1 //===--- SemaOverload.cpp - C++ Overloading -------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file provides Sema routines for C++ overloading. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ASTContext.h" 14 #include "clang/AST/CXXInheritance.h" 15 #include "clang/AST/DeclObjC.h" 16 #include "clang/AST/DependenceFlags.h" 17 #include "clang/AST/Expr.h" 18 #include "clang/AST/ExprCXX.h" 19 #include "clang/AST/ExprObjC.h" 20 #include "clang/AST/TypeOrdering.h" 21 #include "clang/Basic/Diagnostic.h" 22 #include "clang/Basic/DiagnosticOptions.h" 23 #include "clang/Basic/PartialDiagnostic.h" 24 #include "clang/Basic/SourceManager.h" 25 #include "clang/Basic/TargetInfo.h" 26 #include "clang/Sema/Initialization.h" 27 #include "clang/Sema/Lookup.h" 28 #include "clang/Sema/Overload.h" 29 #include "clang/Sema/SemaInternal.h" 30 #include "clang/Sema/Template.h" 31 #include "clang/Sema/TemplateDeduction.h" 32 #include "llvm/ADT/DenseSet.h" 33 #include "llvm/ADT/Optional.h" 34 #include "llvm/ADT/STLExtras.h" 35 #include "llvm/ADT/SmallPtrSet.h" 36 #include "llvm/ADT/SmallString.h" 37 #include <algorithm> 38 #include <cstdlib> 39 40 using namespace clang; 41 using namespace sema; 42 43 using AllowedExplicit = Sema::AllowedExplicit; 44 45 static bool functionHasPassObjectSizeParams(const FunctionDecl *FD) { 46 return llvm::any_of(FD->parameters(), [](const ParmVarDecl *P) { 47 return P->hasAttr<PassObjectSizeAttr>(); 48 }); 49 } 50 51 /// A convenience routine for creating a decayed reference to a function. 52 static ExprResult 53 CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, NamedDecl *FoundDecl, 54 const Expr *Base, bool HadMultipleCandidates, 55 SourceLocation Loc = SourceLocation(), 56 const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){ 57 if (S.DiagnoseUseOfDecl(FoundDecl, Loc)) 58 return ExprError(); 59 // If FoundDecl is different from Fn (such as if one is a template 60 // and the other a specialization), make sure DiagnoseUseOfDecl is 61 // called on both. 62 // FIXME: This would be more comprehensively addressed by modifying 63 // DiagnoseUseOfDecl to accept both the FoundDecl and the decl 64 // being used. 65 if (FoundDecl != Fn && S.DiagnoseUseOfDecl(Fn, Loc)) 66 return ExprError(); 67 DeclRefExpr *DRE = new (S.Context) 68 DeclRefExpr(S.Context, Fn, false, Fn->getType(), VK_LValue, Loc, LocInfo); 69 if (HadMultipleCandidates) 70 DRE->setHadMultipleCandidates(true); 71 72 S.MarkDeclRefReferenced(DRE, Base); 73 if (auto *FPT = DRE->getType()->getAs<FunctionProtoType>()) { 74 if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) { 75 S.ResolveExceptionSpec(Loc, FPT); 76 DRE->setType(Fn->getType()); 77 } 78 } 79 return S.ImpCastExprToType(DRE, S.Context.getPointerType(DRE->getType()), 80 CK_FunctionToPointerDecay); 81 } 82 83 static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, 84 bool InOverloadResolution, 85 StandardConversionSequence &SCS, 86 bool CStyle, 87 bool AllowObjCWritebackConversion); 88 89 static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From, 90 QualType &ToType, 91 bool InOverloadResolution, 92 StandardConversionSequence &SCS, 93 bool CStyle); 94 static OverloadingResult 95 IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, 96 UserDefinedConversionSequence& User, 97 OverloadCandidateSet& Conversions, 98 AllowedExplicit AllowExplicit, 99 bool AllowObjCConversionOnExplicit); 100 101 static ImplicitConversionSequence::CompareKind 102 CompareStandardConversionSequences(Sema &S, SourceLocation Loc, 103 const StandardConversionSequence& SCS1, 104 const StandardConversionSequence& SCS2); 105 106 static ImplicitConversionSequence::CompareKind 107 CompareQualificationConversions(Sema &S, 108 const StandardConversionSequence& SCS1, 109 const StandardConversionSequence& SCS2); 110 111 static ImplicitConversionSequence::CompareKind 112 CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc, 113 const StandardConversionSequence& SCS1, 114 const StandardConversionSequence& SCS2); 115 116 /// GetConversionRank - Retrieve the implicit conversion rank 117 /// corresponding to the given implicit conversion kind. 118 ImplicitConversionRank clang::GetConversionRank(ImplicitConversionKind Kind) { 119 static const ImplicitConversionRank 120 Rank[(int)ICK_Num_Conversion_Kinds] = { 121 ICR_Exact_Match, 122 ICR_Exact_Match, 123 ICR_Exact_Match, 124 ICR_Exact_Match, 125 ICR_Exact_Match, 126 ICR_Exact_Match, 127 ICR_Promotion, 128 ICR_Promotion, 129 ICR_Promotion, 130 ICR_Conversion, 131 ICR_Conversion, 132 ICR_Conversion, 133 ICR_Conversion, 134 ICR_Conversion, 135 ICR_Conversion, 136 ICR_Conversion, 137 ICR_Conversion, 138 ICR_Conversion, 139 ICR_Conversion, 140 ICR_Conversion, 141 ICR_OCL_Scalar_Widening, 142 ICR_Complex_Real_Conversion, 143 ICR_Conversion, 144 ICR_Conversion, 145 ICR_Writeback_Conversion, 146 ICR_Exact_Match, // NOTE(gbiv): This may not be completely right -- 147 // it was omitted by the patch that added 148 // ICK_Zero_Event_Conversion 149 ICR_C_Conversion, 150 ICR_C_Conversion_Extension 151 }; 152 return Rank[(int)Kind]; 153 } 154 155 /// GetImplicitConversionName - Return the name of this kind of 156 /// implicit conversion. 157 static const char* GetImplicitConversionName(ImplicitConversionKind Kind) { 158 static const char* const Name[(int)ICK_Num_Conversion_Kinds] = { 159 "No conversion", 160 "Lvalue-to-rvalue", 161 "Array-to-pointer", 162 "Function-to-pointer", 163 "Function pointer conversion", 164 "Qualification", 165 "Integral promotion", 166 "Floating point promotion", 167 "Complex promotion", 168 "Integral conversion", 169 "Floating conversion", 170 "Complex conversion", 171 "Floating-integral conversion", 172 "Pointer conversion", 173 "Pointer-to-member conversion", 174 "Boolean conversion", 175 "Compatible-types conversion", 176 "Derived-to-base conversion", 177 "Vector conversion", 178 "SVE Vector conversion", 179 "Vector splat", 180 "Complex-real conversion", 181 "Block Pointer conversion", 182 "Transparent Union Conversion", 183 "Writeback conversion", 184 "OpenCL Zero Event Conversion", 185 "C specific type conversion", 186 "Incompatible pointer conversion" 187 }; 188 return Name[Kind]; 189 } 190 191 /// StandardConversionSequence - Set the standard conversion 192 /// sequence to the identity conversion. 193 void StandardConversionSequence::setAsIdentityConversion() { 194 First = ICK_Identity; 195 Second = ICK_Identity; 196 Third = ICK_Identity; 197 DeprecatedStringLiteralToCharPtr = false; 198 QualificationIncludesObjCLifetime = false; 199 ReferenceBinding = false; 200 DirectBinding = false; 201 IsLvalueReference = true; 202 BindsToFunctionLvalue = false; 203 BindsToRvalue = false; 204 BindsImplicitObjectArgumentWithoutRefQualifier = false; 205 ObjCLifetimeConversionBinding = false; 206 CopyConstructor = nullptr; 207 } 208 209 /// getRank - Retrieve the rank of this standard conversion sequence 210 /// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the 211 /// implicit conversions. 212 ImplicitConversionRank StandardConversionSequence::getRank() const { 213 ImplicitConversionRank Rank = ICR_Exact_Match; 214 if (GetConversionRank(First) > Rank) 215 Rank = GetConversionRank(First); 216 if (GetConversionRank(Second) > Rank) 217 Rank = GetConversionRank(Second); 218 if (GetConversionRank(Third) > Rank) 219 Rank = GetConversionRank(Third); 220 return Rank; 221 } 222 223 /// isPointerConversionToBool - Determines whether this conversion is 224 /// a conversion of a pointer or pointer-to-member to bool. This is 225 /// used as part of the ranking of standard conversion sequences 226 /// (C++ 13.3.3.2p4). 227 bool StandardConversionSequence::isPointerConversionToBool() const { 228 // Note that FromType has not necessarily been transformed by the 229 // array-to-pointer or function-to-pointer implicit conversions, so 230 // check for their presence as well as checking whether FromType is 231 // a pointer. 232 if (getToType(1)->isBooleanType() && 233 (getFromType()->isPointerType() || 234 getFromType()->isMemberPointerType() || 235 getFromType()->isObjCObjectPointerType() || 236 getFromType()->isBlockPointerType() || 237 First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer)) 238 return true; 239 240 return false; 241 } 242 243 /// isPointerConversionToVoidPointer - Determines whether this 244 /// conversion is a conversion of a pointer to a void pointer. This is 245 /// used as part of the ranking of standard conversion sequences (C++ 246 /// 13.3.3.2p4). 247 bool 248 StandardConversionSequence:: 249 isPointerConversionToVoidPointer(ASTContext& Context) const { 250 QualType FromType = getFromType(); 251 QualType ToType = getToType(1); 252 253 // Note that FromType has not necessarily been transformed by the 254 // array-to-pointer implicit conversion, so check for its presence 255 // and redo the conversion to get a pointer. 256 if (First == ICK_Array_To_Pointer) 257 FromType = Context.getArrayDecayedType(FromType); 258 259 if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType()) 260 if (const PointerType* ToPtrType = ToType->getAs<PointerType>()) 261 return ToPtrType->getPointeeType()->isVoidType(); 262 263 return false; 264 } 265 266 /// Skip any implicit casts which could be either part of a narrowing conversion 267 /// or after one in an implicit conversion. 268 static const Expr *IgnoreNarrowingConversion(ASTContext &Ctx, 269 const Expr *Converted) { 270 // We can have cleanups wrapping the converted expression; these need to be 271 // preserved so that destructors run if necessary. 272 if (auto *EWC = dyn_cast<ExprWithCleanups>(Converted)) { 273 Expr *Inner = 274 const_cast<Expr *>(IgnoreNarrowingConversion(Ctx, EWC->getSubExpr())); 275 return ExprWithCleanups::Create(Ctx, Inner, EWC->cleanupsHaveSideEffects(), 276 EWC->getObjects()); 277 } 278 279 while (auto *ICE = dyn_cast<ImplicitCastExpr>(Converted)) { 280 switch (ICE->getCastKind()) { 281 case CK_NoOp: 282 case CK_IntegralCast: 283 case CK_IntegralToBoolean: 284 case CK_IntegralToFloating: 285 case CK_BooleanToSignedIntegral: 286 case CK_FloatingToIntegral: 287 case CK_FloatingToBoolean: 288 case CK_FloatingCast: 289 Converted = ICE->getSubExpr(); 290 continue; 291 292 default: 293 return Converted; 294 } 295 } 296 297 return Converted; 298 } 299 300 /// Check if this standard conversion sequence represents a narrowing 301 /// conversion, according to C++11 [dcl.init.list]p7. 302 /// 303 /// \param Ctx The AST context. 304 /// \param Converted The result of applying this standard conversion sequence. 305 /// \param ConstantValue If this is an NK_Constant_Narrowing conversion, the 306 /// value of the expression prior to the narrowing conversion. 307 /// \param ConstantType If this is an NK_Constant_Narrowing conversion, the 308 /// type of the expression prior to the narrowing conversion. 309 /// \param IgnoreFloatToIntegralConversion If true type-narrowing conversions 310 /// from floating point types to integral types should be ignored. 311 NarrowingKind StandardConversionSequence::getNarrowingKind( 312 ASTContext &Ctx, const Expr *Converted, APValue &ConstantValue, 313 QualType &ConstantType, bool IgnoreFloatToIntegralConversion) const { 314 assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++"); 315 316 // C++11 [dcl.init.list]p7: 317 // A narrowing conversion is an implicit conversion ... 318 QualType FromType = getToType(0); 319 QualType ToType = getToType(1); 320 321 // A conversion to an enumeration type is narrowing if the conversion to 322 // the underlying type is narrowing. This only arises for expressions of 323 // the form 'Enum{init}'. 324 if (auto *ET = ToType->getAs<EnumType>()) 325 ToType = ET->getDecl()->getIntegerType(); 326 327 switch (Second) { 328 // 'bool' is an integral type; dispatch to the right place to handle it. 329 case ICK_Boolean_Conversion: 330 if (FromType->isRealFloatingType()) 331 goto FloatingIntegralConversion; 332 if (FromType->isIntegralOrUnscopedEnumerationType()) 333 goto IntegralConversion; 334 // -- from a pointer type or pointer-to-member type to bool, or 335 return NK_Type_Narrowing; 336 337 // -- from a floating-point type to an integer type, or 338 // 339 // -- from an integer type or unscoped enumeration type to a floating-point 340 // type, except where the source is a constant expression and the actual 341 // value after conversion will fit into the target type and will produce 342 // the original value when converted back to the original type, or 343 case ICK_Floating_Integral: 344 FloatingIntegralConversion: 345 if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) { 346 return NK_Type_Narrowing; 347 } else if (FromType->isIntegralOrUnscopedEnumerationType() && 348 ToType->isRealFloatingType()) { 349 if (IgnoreFloatToIntegralConversion) 350 return NK_Not_Narrowing; 351 const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted); 352 assert(Initializer && "Unknown conversion expression"); 353 354 // If it's value-dependent, we can't tell whether it's narrowing. 355 if (Initializer->isValueDependent()) 356 return NK_Dependent_Narrowing; 357 358 if (Optional<llvm::APSInt> IntConstantValue = 359 Initializer->getIntegerConstantExpr(Ctx)) { 360 // Convert the integer to the floating type. 361 llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType)); 362 Result.convertFromAPInt(*IntConstantValue, IntConstantValue->isSigned(), 363 llvm::APFloat::rmNearestTiesToEven); 364 // And back. 365 llvm::APSInt ConvertedValue = *IntConstantValue; 366 bool ignored; 367 Result.convertToInteger(ConvertedValue, 368 llvm::APFloat::rmTowardZero, &ignored); 369 // If the resulting value is different, this was a narrowing conversion. 370 if (*IntConstantValue != ConvertedValue) { 371 ConstantValue = APValue(*IntConstantValue); 372 ConstantType = Initializer->getType(); 373 return NK_Constant_Narrowing; 374 } 375 } else { 376 // Variables are always narrowings. 377 return NK_Variable_Narrowing; 378 } 379 } 380 return NK_Not_Narrowing; 381 382 // -- from long double to double or float, or from double to float, except 383 // where the source is a constant expression and the actual value after 384 // conversion is within the range of values that can be represented (even 385 // if it cannot be represented exactly), or 386 case ICK_Floating_Conversion: 387 if (FromType->isRealFloatingType() && ToType->isRealFloatingType() && 388 Ctx.getFloatingTypeOrder(FromType, ToType) == 1) { 389 // FromType is larger than ToType. 390 const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted); 391 392 // If it's value-dependent, we can't tell whether it's narrowing. 393 if (Initializer->isValueDependent()) 394 return NK_Dependent_Narrowing; 395 396 if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) { 397 // Constant! 398 assert(ConstantValue.isFloat()); 399 llvm::APFloat FloatVal = ConstantValue.getFloat(); 400 // Convert the source value into the target type. 401 bool ignored; 402 llvm::APFloat::opStatus ConvertStatus = FloatVal.convert( 403 Ctx.getFloatTypeSemantics(ToType), 404 llvm::APFloat::rmNearestTiesToEven, &ignored); 405 // If there was no overflow, the source value is within the range of 406 // values that can be represented. 407 if (ConvertStatus & llvm::APFloat::opOverflow) { 408 ConstantType = Initializer->getType(); 409 return NK_Constant_Narrowing; 410 } 411 } else { 412 return NK_Variable_Narrowing; 413 } 414 } 415 return NK_Not_Narrowing; 416 417 // -- from an integer type or unscoped enumeration type to an integer type 418 // that cannot represent all the values of the original type, except where 419 // the source is a constant expression and the actual value after 420 // conversion will fit into the target type and will produce the original 421 // value when converted back to the original type. 422 case ICK_Integral_Conversion: 423 IntegralConversion: { 424 assert(FromType->isIntegralOrUnscopedEnumerationType()); 425 assert(ToType->isIntegralOrUnscopedEnumerationType()); 426 const bool FromSigned = FromType->isSignedIntegerOrEnumerationType(); 427 const unsigned FromWidth = Ctx.getIntWidth(FromType); 428 const bool ToSigned = ToType->isSignedIntegerOrEnumerationType(); 429 const unsigned ToWidth = Ctx.getIntWidth(ToType); 430 431 if (FromWidth > ToWidth || 432 (FromWidth == ToWidth && FromSigned != ToSigned) || 433 (FromSigned && !ToSigned)) { 434 // Not all values of FromType can be represented in ToType. 435 const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted); 436 437 // If it's value-dependent, we can't tell whether it's narrowing. 438 if (Initializer->isValueDependent()) 439 return NK_Dependent_Narrowing; 440 441 Optional<llvm::APSInt> OptInitializerValue; 442 if (!(OptInitializerValue = Initializer->getIntegerConstantExpr(Ctx))) { 443 // Such conversions on variables are always narrowing. 444 return NK_Variable_Narrowing; 445 } 446 llvm::APSInt &InitializerValue = *OptInitializerValue; 447 bool Narrowing = false; 448 if (FromWidth < ToWidth) { 449 // Negative -> unsigned is narrowing. Otherwise, more bits is never 450 // narrowing. 451 if (InitializerValue.isSigned() && InitializerValue.isNegative()) 452 Narrowing = true; 453 } else { 454 // Add a bit to the InitializerValue so we don't have to worry about 455 // signed vs. unsigned comparisons. 456 InitializerValue = InitializerValue.extend( 457 InitializerValue.getBitWidth() + 1); 458 // Convert the initializer to and from the target width and signed-ness. 459 llvm::APSInt ConvertedValue = InitializerValue; 460 ConvertedValue = ConvertedValue.trunc(ToWidth); 461 ConvertedValue.setIsSigned(ToSigned); 462 ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth()); 463 ConvertedValue.setIsSigned(InitializerValue.isSigned()); 464 // If the result is different, this was a narrowing conversion. 465 if (ConvertedValue != InitializerValue) 466 Narrowing = true; 467 } 468 if (Narrowing) { 469 ConstantType = Initializer->getType(); 470 ConstantValue = APValue(InitializerValue); 471 return NK_Constant_Narrowing; 472 } 473 } 474 return NK_Not_Narrowing; 475 } 476 477 default: 478 // Other kinds of conversions are not narrowings. 479 return NK_Not_Narrowing; 480 } 481 } 482 483 /// dump - Print this standard conversion sequence to standard 484 /// error. Useful for debugging overloading issues. 485 LLVM_DUMP_METHOD void StandardConversionSequence::dump() const { 486 raw_ostream &OS = llvm::errs(); 487 bool PrintedSomething = false; 488 if (First != ICK_Identity) { 489 OS << GetImplicitConversionName(First); 490 PrintedSomething = true; 491 } 492 493 if (Second != ICK_Identity) { 494 if (PrintedSomething) { 495 OS << " -> "; 496 } 497 OS << GetImplicitConversionName(Second); 498 499 if (CopyConstructor) { 500 OS << " (by copy constructor)"; 501 } else if (DirectBinding) { 502 OS << " (direct reference binding)"; 503 } else if (ReferenceBinding) { 504 OS << " (reference binding)"; 505 } 506 PrintedSomething = true; 507 } 508 509 if (Third != ICK_Identity) { 510 if (PrintedSomething) { 511 OS << " -> "; 512 } 513 OS << GetImplicitConversionName(Third); 514 PrintedSomething = true; 515 } 516 517 if (!PrintedSomething) { 518 OS << "No conversions required"; 519 } 520 } 521 522 /// dump - Print this user-defined conversion sequence to standard 523 /// error. Useful for debugging overloading issues. 524 void UserDefinedConversionSequence::dump() const { 525 raw_ostream &OS = llvm::errs(); 526 if (Before.First || Before.Second || Before.Third) { 527 Before.dump(); 528 OS << " -> "; 529 } 530 if (ConversionFunction) 531 OS << '\'' << *ConversionFunction << '\''; 532 else 533 OS << "aggregate initialization"; 534 if (After.First || After.Second || After.Third) { 535 OS << " -> "; 536 After.dump(); 537 } 538 } 539 540 /// dump - Print this implicit conversion sequence to standard 541 /// error. Useful for debugging overloading issues. 542 void ImplicitConversionSequence::dump() const { 543 raw_ostream &OS = llvm::errs(); 544 if (hasInitializerListContainerType()) 545 OS << "Worst list element conversion: "; 546 switch (ConversionKind) { 547 case StandardConversion: 548 OS << "Standard conversion: "; 549 Standard.dump(); 550 break; 551 case UserDefinedConversion: 552 OS << "User-defined conversion: "; 553 UserDefined.dump(); 554 break; 555 case EllipsisConversion: 556 OS << "Ellipsis conversion"; 557 break; 558 case AmbiguousConversion: 559 OS << "Ambiguous conversion"; 560 break; 561 case BadConversion: 562 OS << "Bad conversion"; 563 break; 564 } 565 566 OS << "\n"; 567 } 568 569 void AmbiguousConversionSequence::construct() { 570 new (&conversions()) ConversionSet(); 571 } 572 573 void AmbiguousConversionSequence::destruct() { 574 conversions().~ConversionSet(); 575 } 576 577 void 578 AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) { 579 FromTypePtr = O.FromTypePtr; 580 ToTypePtr = O.ToTypePtr; 581 new (&conversions()) ConversionSet(O.conversions()); 582 } 583 584 namespace { 585 // Structure used by DeductionFailureInfo to store 586 // template argument information. 587 struct DFIArguments { 588 TemplateArgument FirstArg; 589 TemplateArgument SecondArg; 590 }; 591 // Structure used by DeductionFailureInfo to store 592 // template parameter and template argument information. 593 struct DFIParamWithArguments : DFIArguments { 594 TemplateParameter Param; 595 }; 596 // Structure used by DeductionFailureInfo to store template argument 597 // information and the index of the problematic call argument. 598 struct DFIDeducedMismatchArgs : DFIArguments { 599 TemplateArgumentList *TemplateArgs; 600 unsigned CallArgIndex; 601 }; 602 // Structure used by DeductionFailureInfo to store information about 603 // unsatisfied constraints. 604 struct CNSInfo { 605 TemplateArgumentList *TemplateArgs; 606 ConstraintSatisfaction Satisfaction; 607 }; 608 } 609 610 /// Convert from Sema's representation of template deduction information 611 /// to the form used in overload-candidate information. 612 DeductionFailureInfo 613 clang::MakeDeductionFailureInfo(ASTContext &Context, 614 Sema::TemplateDeductionResult TDK, 615 TemplateDeductionInfo &Info) { 616 DeductionFailureInfo Result; 617 Result.Result = static_cast<unsigned>(TDK); 618 Result.HasDiagnostic = false; 619 switch (TDK) { 620 case Sema::TDK_Invalid: 621 case Sema::TDK_InstantiationDepth: 622 case Sema::TDK_TooManyArguments: 623 case Sema::TDK_TooFewArguments: 624 case Sema::TDK_MiscellaneousDeductionFailure: 625 case Sema::TDK_CUDATargetMismatch: 626 Result.Data = nullptr; 627 break; 628 629 case Sema::TDK_Incomplete: 630 case Sema::TDK_InvalidExplicitArguments: 631 Result.Data = Info.Param.getOpaqueValue(); 632 break; 633 634 case Sema::TDK_DeducedMismatch: 635 case Sema::TDK_DeducedMismatchNested: { 636 // FIXME: Should allocate from normal heap so that we can free this later. 637 auto *Saved = new (Context) DFIDeducedMismatchArgs; 638 Saved->FirstArg = Info.FirstArg; 639 Saved->SecondArg = Info.SecondArg; 640 Saved->TemplateArgs = Info.take(); 641 Saved->CallArgIndex = Info.CallArgIndex; 642 Result.Data = Saved; 643 break; 644 } 645 646 case Sema::TDK_NonDeducedMismatch: { 647 // FIXME: Should allocate from normal heap so that we can free this later. 648 DFIArguments *Saved = new (Context) DFIArguments; 649 Saved->FirstArg = Info.FirstArg; 650 Saved->SecondArg = Info.SecondArg; 651 Result.Data = Saved; 652 break; 653 } 654 655 case Sema::TDK_IncompletePack: 656 // FIXME: It's slightly wasteful to allocate two TemplateArguments for this. 657 case Sema::TDK_Inconsistent: 658 case Sema::TDK_Underqualified: { 659 // FIXME: Should allocate from normal heap so that we can free this later. 660 DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments; 661 Saved->Param = Info.Param; 662 Saved->FirstArg = Info.FirstArg; 663 Saved->SecondArg = Info.SecondArg; 664 Result.Data = Saved; 665 break; 666 } 667 668 case Sema::TDK_SubstitutionFailure: 669 Result.Data = Info.take(); 670 if (Info.hasSFINAEDiagnostic()) { 671 PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt( 672 SourceLocation(), PartialDiagnostic::NullDiagnostic()); 673 Info.takeSFINAEDiagnostic(*Diag); 674 Result.HasDiagnostic = true; 675 } 676 break; 677 678 case Sema::TDK_ConstraintsNotSatisfied: { 679 CNSInfo *Saved = new (Context) CNSInfo; 680 Saved->TemplateArgs = Info.take(); 681 Saved->Satisfaction = Info.AssociatedConstraintsSatisfaction; 682 Result.Data = Saved; 683 break; 684 } 685 686 case Sema::TDK_Success: 687 case Sema::TDK_NonDependentConversionFailure: 688 llvm_unreachable("not a deduction failure"); 689 } 690 691 return Result; 692 } 693 694 void DeductionFailureInfo::Destroy() { 695 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 696 case Sema::TDK_Success: 697 case Sema::TDK_Invalid: 698 case Sema::TDK_InstantiationDepth: 699 case Sema::TDK_Incomplete: 700 case Sema::TDK_TooManyArguments: 701 case Sema::TDK_TooFewArguments: 702 case Sema::TDK_InvalidExplicitArguments: 703 case Sema::TDK_CUDATargetMismatch: 704 case Sema::TDK_NonDependentConversionFailure: 705 break; 706 707 case Sema::TDK_IncompletePack: 708 case Sema::TDK_Inconsistent: 709 case Sema::TDK_Underqualified: 710 case Sema::TDK_DeducedMismatch: 711 case Sema::TDK_DeducedMismatchNested: 712 case Sema::TDK_NonDeducedMismatch: 713 // FIXME: Destroy the data? 714 Data = nullptr; 715 break; 716 717 case Sema::TDK_SubstitutionFailure: 718 // FIXME: Destroy the template argument list? 719 Data = nullptr; 720 if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) { 721 Diag->~PartialDiagnosticAt(); 722 HasDiagnostic = false; 723 } 724 break; 725 726 case Sema::TDK_ConstraintsNotSatisfied: 727 // FIXME: Destroy the template argument list? 728 Data = nullptr; 729 if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) { 730 Diag->~PartialDiagnosticAt(); 731 HasDiagnostic = false; 732 } 733 break; 734 735 // Unhandled 736 case Sema::TDK_MiscellaneousDeductionFailure: 737 break; 738 } 739 } 740 741 PartialDiagnosticAt *DeductionFailureInfo::getSFINAEDiagnostic() { 742 if (HasDiagnostic) 743 return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic)); 744 return nullptr; 745 } 746 747 TemplateParameter DeductionFailureInfo::getTemplateParameter() { 748 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 749 case Sema::TDK_Success: 750 case Sema::TDK_Invalid: 751 case Sema::TDK_InstantiationDepth: 752 case Sema::TDK_TooManyArguments: 753 case Sema::TDK_TooFewArguments: 754 case Sema::TDK_SubstitutionFailure: 755 case Sema::TDK_DeducedMismatch: 756 case Sema::TDK_DeducedMismatchNested: 757 case Sema::TDK_NonDeducedMismatch: 758 case Sema::TDK_CUDATargetMismatch: 759 case Sema::TDK_NonDependentConversionFailure: 760 case Sema::TDK_ConstraintsNotSatisfied: 761 return TemplateParameter(); 762 763 case Sema::TDK_Incomplete: 764 case Sema::TDK_InvalidExplicitArguments: 765 return TemplateParameter::getFromOpaqueValue(Data); 766 767 case Sema::TDK_IncompletePack: 768 case Sema::TDK_Inconsistent: 769 case Sema::TDK_Underqualified: 770 return static_cast<DFIParamWithArguments*>(Data)->Param; 771 772 // Unhandled 773 case Sema::TDK_MiscellaneousDeductionFailure: 774 break; 775 } 776 777 return TemplateParameter(); 778 } 779 780 TemplateArgumentList *DeductionFailureInfo::getTemplateArgumentList() { 781 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 782 case Sema::TDK_Success: 783 case Sema::TDK_Invalid: 784 case Sema::TDK_InstantiationDepth: 785 case Sema::TDK_TooManyArguments: 786 case Sema::TDK_TooFewArguments: 787 case Sema::TDK_Incomplete: 788 case Sema::TDK_IncompletePack: 789 case Sema::TDK_InvalidExplicitArguments: 790 case Sema::TDK_Inconsistent: 791 case Sema::TDK_Underqualified: 792 case Sema::TDK_NonDeducedMismatch: 793 case Sema::TDK_CUDATargetMismatch: 794 case Sema::TDK_NonDependentConversionFailure: 795 return nullptr; 796 797 case Sema::TDK_DeducedMismatch: 798 case Sema::TDK_DeducedMismatchNested: 799 return static_cast<DFIDeducedMismatchArgs*>(Data)->TemplateArgs; 800 801 case Sema::TDK_SubstitutionFailure: 802 return static_cast<TemplateArgumentList*>(Data); 803 804 case Sema::TDK_ConstraintsNotSatisfied: 805 return static_cast<CNSInfo*>(Data)->TemplateArgs; 806 807 // Unhandled 808 case Sema::TDK_MiscellaneousDeductionFailure: 809 break; 810 } 811 812 return nullptr; 813 } 814 815 const TemplateArgument *DeductionFailureInfo::getFirstArg() { 816 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 817 case Sema::TDK_Success: 818 case Sema::TDK_Invalid: 819 case Sema::TDK_InstantiationDepth: 820 case Sema::TDK_Incomplete: 821 case Sema::TDK_TooManyArguments: 822 case Sema::TDK_TooFewArguments: 823 case Sema::TDK_InvalidExplicitArguments: 824 case Sema::TDK_SubstitutionFailure: 825 case Sema::TDK_CUDATargetMismatch: 826 case Sema::TDK_NonDependentConversionFailure: 827 case Sema::TDK_ConstraintsNotSatisfied: 828 return nullptr; 829 830 case Sema::TDK_IncompletePack: 831 case Sema::TDK_Inconsistent: 832 case Sema::TDK_Underqualified: 833 case Sema::TDK_DeducedMismatch: 834 case Sema::TDK_DeducedMismatchNested: 835 case Sema::TDK_NonDeducedMismatch: 836 return &static_cast<DFIArguments*>(Data)->FirstArg; 837 838 // Unhandled 839 case Sema::TDK_MiscellaneousDeductionFailure: 840 break; 841 } 842 843 return nullptr; 844 } 845 846 const TemplateArgument *DeductionFailureInfo::getSecondArg() { 847 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 848 case Sema::TDK_Success: 849 case Sema::TDK_Invalid: 850 case Sema::TDK_InstantiationDepth: 851 case Sema::TDK_Incomplete: 852 case Sema::TDK_IncompletePack: 853 case Sema::TDK_TooManyArguments: 854 case Sema::TDK_TooFewArguments: 855 case Sema::TDK_InvalidExplicitArguments: 856 case Sema::TDK_SubstitutionFailure: 857 case Sema::TDK_CUDATargetMismatch: 858 case Sema::TDK_NonDependentConversionFailure: 859 case Sema::TDK_ConstraintsNotSatisfied: 860 return nullptr; 861 862 case Sema::TDK_Inconsistent: 863 case Sema::TDK_Underqualified: 864 case Sema::TDK_DeducedMismatch: 865 case Sema::TDK_DeducedMismatchNested: 866 case Sema::TDK_NonDeducedMismatch: 867 return &static_cast<DFIArguments*>(Data)->SecondArg; 868 869 // Unhandled 870 case Sema::TDK_MiscellaneousDeductionFailure: 871 break; 872 } 873 874 return nullptr; 875 } 876 877 llvm::Optional<unsigned> DeductionFailureInfo::getCallArgIndex() { 878 switch (static_cast<Sema::TemplateDeductionResult>(Result)) { 879 case Sema::TDK_DeducedMismatch: 880 case Sema::TDK_DeducedMismatchNested: 881 return static_cast<DFIDeducedMismatchArgs*>(Data)->CallArgIndex; 882 883 default: 884 return llvm::None; 885 } 886 } 887 888 bool OverloadCandidateSet::OperatorRewriteInfo::shouldAddReversed( 889 OverloadedOperatorKind Op) { 890 if (!AllowRewrittenCandidates) 891 return false; 892 return Op == OO_EqualEqual || Op == OO_Spaceship; 893 } 894 895 bool OverloadCandidateSet::OperatorRewriteInfo::shouldAddReversed( 896 ASTContext &Ctx, const FunctionDecl *FD) { 897 if (!shouldAddReversed(FD->getDeclName().getCXXOverloadedOperator())) 898 return false; 899 // Don't bother adding a reversed candidate that can never be a better 900 // match than the non-reversed version. 901 return FD->getNumParams() != 2 || 902 !Ctx.hasSameUnqualifiedType(FD->getParamDecl(0)->getType(), 903 FD->getParamDecl(1)->getType()) || 904 FD->hasAttr<EnableIfAttr>(); 905 } 906 907 void OverloadCandidateSet::destroyCandidates() { 908 for (iterator i = begin(), e = end(); i != e; ++i) { 909 for (auto &C : i->Conversions) 910 C.~ImplicitConversionSequence(); 911 if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction) 912 i->DeductionFailure.Destroy(); 913 } 914 } 915 916 void OverloadCandidateSet::clear(CandidateSetKind CSK) { 917 destroyCandidates(); 918 SlabAllocator.Reset(); 919 NumInlineBytesUsed = 0; 920 Candidates.clear(); 921 Functions.clear(); 922 Kind = CSK; 923 } 924 925 namespace { 926 class UnbridgedCastsSet { 927 struct Entry { 928 Expr **Addr; 929 Expr *Saved; 930 }; 931 SmallVector<Entry, 2> Entries; 932 933 public: 934 void save(Sema &S, Expr *&E) { 935 assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)); 936 Entry entry = { &E, E }; 937 Entries.push_back(entry); 938 E = S.stripARCUnbridgedCast(E); 939 } 940 941 void restore() { 942 for (SmallVectorImpl<Entry>::iterator 943 i = Entries.begin(), e = Entries.end(); i != e; ++i) 944 *i->Addr = i->Saved; 945 } 946 }; 947 } 948 949 /// checkPlaceholderForOverload - Do any interesting placeholder-like 950 /// preprocessing on the given expression. 951 /// 952 /// \param unbridgedCasts a collection to which to add unbridged casts; 953 /// without this, they will be immediately diagnosed as errors 954 /// 955 /// Return true on unrecoverable error. 956 static bool 957 checkPlaceholderForOverload(Sema &S, Expr *&E, 958 UnbridgedCastsSet *unbridgedCasts = nullptr) { 959 if (const BuiltinType *placeholder = E->getType()->getAsPlaceholderType()) { 960 // We can't handle overloaded expressions here because overload 961 // resolution might reasonably tweak them. 962 if (placeholder->getKind() == BuiltinType::Overload) return false; 963 964 // If the context potentially accepts unbridged ARC casts, strip 965 // the unbridged cast and add it to the collection for later restoration. 966 if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast && 967 unbridgedCasts) { 968 unbridgedCasts->save(S, E); 969 return false; 970 } 971 972 // Go ahead and check everything else. 973 ExprResult result = S.CheckPlaceholderExpr(E); 974 if (result.isInvalid()) 975 return true; 976 977 E = result.get(); 978 return false; 979 } 980 981 // Nothing to do. 982 return false; 983 } 984 985 /// checkArgPlaceholdersForOverload - Check a set of call operands for 986 /// placeholders. 987 static bool checkArgPlaceholdersForOverload(Sema &S, 988 MultiExprArg Args, 989 UnbridgedCastsSet &unbridged) { 990 for (unsigned i = 0, e = Args.size(); i != e; ++i) 991 if (checkPlaceholderForOverload(S, Args[i], &unbridged)) 992 return true; 993 994 return false; 995 } 996 997 /// Determine whether the given New declaration is an overload of the 998 /// declarations in Old. This routine returns Ovl_Match or Ovl_NonFunction if 999 /// New and Old cannot be overloaded, e.g., if New has the same signature as 1000 /// some function in Old (C++ 1.3.10) or if the Old declarations aren't 1001 /// functions (or function templates) at all. When it does return Ovl_Match or 1002 /// Ovl_NonFunction, MatchedDecl will point to the decl that New cannot be 1003 /// overloaded with. This decl may be a UsingShadowDecl on top of the underlying 1004 /// declaration. 1005 /// 1006 /// Example: Given the following input: 1007 /// 1008 /// void f(int, float); // #1 1009 /// void f(int, int); // #2 1010 /// int f(int, int); // #3 1011 /// 1012 /// When we process #1, there is no previous declaration of "f", so IsOverload 1013 /// will not be used. 1014 /// 1015 /// When we process #2, Old contains only the FunctionDecl for #1. By comparing 1016 /// the parameter types, we see that #1 and #2 are overloaded (since they have 1017 /// different signatures), so this routine returns Ovl_Overload; MatchedDecl is 1018 /// unchanged. 1019 /// 1020 /// When we process #3, Old is an overload set containing #1 and #2. We compare 1021 /// the signatures of #3 to #1 (they're overloaded, so we do nothing) and then 1022 /// #3 to #2. Since the signatures of #3 and #2 are identical (return types of 1023 /// functions are not part of the signature), IsOverload returns Ovl_Match and 1024 /// MatchedDecl will be set to point to the FunctionDecl for #2. 1025 /// 1026 /// 'NewIsUsingShadowDecl' indicates that 'New' is being introduced into a class 1027 /// by a using declaration. The rules for whether to hide shadow declarations 1028 /// ignore some properties which otherwise figure into a function template's 1029 /// signature. 1030 Sema::OverloadKind 1031 Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old, 1032 NamedDecl *&Match, bool NewIsUsingDecl) { 1033 for (LookupResult::iterator I = Old.begin(), E = Old.end(); 1034 I != E; ++I) { 1035 NamedDecl *OldD = *I; 1036 1037 bool OldIsUsingDecl = false; 1038 if (isa<UsingShadowDecl>(OldD)) { 1039 OldIsUsingDecl = true; 1040 1041 // We can always introduce two using declarations into the same 1042 // context, even if they have identical signatures. 1043 if (NewIsUsingDecl) continue; 1044 1045 OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl(); 1046 } 1047 1048 // A using-declaration does not conflict with another declaration 1049 // if one of them is hidden. 1050 if ((OldIsUsingDecl || NewIsUsingDecl) && !isVisible(*I)) 1051 continue; 1052 1053 // If either declaration was introduced by a using declaration, 1054 // we'll need to use slightly different rules for matching. 1055 // Essentially, these rules are the normal rules, except that 1056 // function templates hide function templates with different 1057 // return types or template parameter lists. 1058 bool UseMemberUsingDeclRules = 1059 (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord() && 1060 !New->getFriendObjectKind(); 1061 1062 if (FunctionDecl *OldF = OldD->getAsFunction()) { 1063 if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) { 1064 if (UseMemberUsingDeclRules && OldIsUsingDecl) { 1065 HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I)); 1066 continue; 1067 } 1068 1069 if (!isa<FunctionTemplateDecl>(OldD) && 1070 !shouldLinkPossiblyHiddenDecl(*I, New)) 1071 continue; 1072 1073 Match = *I; 1074 return Ovl_Match; 1075 } 1076 1077 // Builtins that have custom typechecking or have a reference should 1078 // not be overloadable or redeclarable. 1079 if (!getASTContext().canBuiltinBeRedeclared(OldF)) { 1080 Match = *I; 1081 return Ovl_NonFunction; 1082 } 1083 } else if (isa<UsingDecl>(OldD) || isa<UsingPackDecl>(OldD)) { 1084 // We can overload with these, which can show up when doing 1085 // redeclaration checks for UsingDecls. 1086 assert(Old.getLookupKind() == LookupUsingDeclName); 1087 } else if (isa<TagDecl>(OldD)) { 1088 // We can always overload with tags by hiding them. 1089 } else if (auto *UUD = dyn_cast<UnresolvedUsingValueDecl>(OldD)) { 1090 // Optimistically assume that an unresolved using decl will 1091 // overload; if it doesn't, we'll have to diagnose during 1092 // template instantiation. 1093 // 1094 // Exception: if the scope is dependent and this is not a class 1095 // member, the using declaration can only introduce an enumerator. 1096 if (UUD->getQualifier()->isDependent() && !UUD->isCXXClassMember()) { 1097 Match = *I; 1098 return Ovl_NonFunction; 1099 } 1100 } else { 1101 // (C++ 13p1): 1102 // Only function declarations can be overloaded; object and type 1103 // declarations cannot be overloaded. 1104 Match = *I; 1105 return Ovl_NonFunction; 1106 } 1107 } 1108 1109 // C++ [temp.friend]p1: 1110 // For a friend function declaration that is not a template declaration: 1111 // -- if the name of the friend is a qualified or unqualified template-id, 1112 // [...], otherwise 1113 // -- if the name of the friend is a qualified-id and a matching 1114 // non-template function is found in the specified class or namespace, 1115 // the friend declaration refers to that function, otherwise, 1116 // -- if the name of the friend is a qualified-id and a matching function 1117 // template is found in the specified class or namespace, the friend 1118 // declaration refers to the deduced specialization of that function 1119 // template, otherwise 1120 // -- the name shall be an unqualified-id [...] 1121 // If we get here for a qualified friend declaration, we've just reached the 1122 // third bullet. If the type of the friend is dependent, skip this lookup 1123 // until instantiation. 1124 if (New->getFriendObjectKind() && New->getQualifier() && 1125 !New->getDescribedFunctionTemplate() && 1126 !New->getDependentSpecializationInfo() && 1127 !New->getType()->isDependentType()) { 1128 LookupResult TemplateSpecResult(LookupResult::Temporary, Old); 1129 TemplateSpecResult.addAllDecls(Old); 1130 if (CheckFunctionTemplateSpecialization(New, nullptr, TemplateSpecResult, 1131 /*QualifiedFriend*/true)) { 1132 New->setInvalidDecl(); 1133 return Ovl_Overload; 1134 } 1135 1136 Match = TemplateSpecResult.getAsSingle<FunctionDecl>(); 1137 return Ovl_Match; 1138 } 1139 1140 return Ovl_Overload; 1141 } 1142 1143 bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old, 1144 bool UseMemberUsingDeclRules, bool ConsiderCudaAttrs, 1145 bool ConsiderRequiresClauses) { 1146 // C++ [basic.start.main]p2: This function shall not be overloaded. 1147 if (New->isMain()) 1148 return false; 1149 1150 // MSVCRT user defined entry points cannot be overloaded. 1151 if (New->isMSVCRTEntryPoint()) 1152 return false; 1153 1154 FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate(); 1155 FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate(); 1156 1157 // C++ [temp.fct]p2: 1158 // A function template can be overloaded with other function templates 1159 // and with normal (non-template) functions. 1160 if ((OldTemplate == nullptr) != (NewTemplate == nullptr)) 1161 return true; 1162 1163 // Is the function New an overload of the function Old? 1164 QualType OldQType = Context.getCanonicalType(Old->getType()); 1165 QualType NewQType = Context.getCanonicalType(New->getType()); 1166 1167 // Compare the signatures (C++ 1.3.10) of the two functions to 1168 // determine whether they are overloads. If we find any mismatch 1169 // in the signature, they are overloads. 1170 1171 // If either of these functions is a K&R-style function (no 1172 // prototype), then we consider them to have matching signatures. 1173 if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) || 1174 isa<FunctionNoProtoType>(NewQType.getTypePtr())) 1175 return false; 1176 1177 const FunctionProtoType *OldType = cast<FunctionProtoType>(OldQType); 1178 const FunctionProtoType *NewType = cast<FunctionProtoType>(NewQType); 1179 1180 // The signature of a function includes the types of its 1181 // parameters (C++ 1.3.10), which includes the presence or absence 1182 // of the ellipsis; see C++ DR 357). 1183 if (OldQType != NewQType && 1184 (OldType->getNumParams() != NewType->getNumParams() || 1185 OldType->isVariadic() != NewType->isVariadic() || 1186 !FunctionParamTypesAreEqual(OldType, NewType))) 1187 return true; 1188 1189 // C++ [temp.over.link]p4: 1190 // The signature of a function template consists of its function 1191 // signature, its return type and its template parameter list. The names 1192 // of the template parameters are significant only for establishing the 1193 // relationship between the template parameters and the rest of the 1194 // signature. 1195 // 1196 // We check the return type and template parameter lists for function 1197 // templates first; the remaining checks follow. 1198 // 1199 // However, we don't consider either of these when deciding whether 1200 // a member introduced by a shadow declaration is hidden. 1201 if (!UseMemberUsingDeclRules && NewTemplate && 1202 (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), 1203 OldTemplate->getTemplateParameters(), 1204 false, TPL_TemplateMatch) || 1205 !Context.hasSameType(Old->getDeclaredReturnType(), 1206 New->getDeclaredReturnType()))) 1207 return true; 1208 1209 // If the function is a class member, its signature includes the 1210 // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself. 1211 // 1212 // As part of this, also check whether one of the member functions 1213 // is static, in which case they are not overloads (C++ 1214 // 13.1p2). While not part of the definition of the signature, 1215 // this check is important to determine whether these functions 1216 // can be overloaded. 1217 CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old); 1218 CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New); 1219 if (OldMethod && NewMethod && 1220 !OldMethod->isStatic() && !NewMethod->isStatic()) { 1221 if (OldMethod->getRefQualifier() != NewMethod->getRefQualifier()) { 1222 if (!UseMemberUsingDeclRules && 1223 (OldMethod->getRefQualifier() == RQ_None || 1224 NewMethod->getRefQualifier() == RQ_None)) { 1225 // C++0x [over.load]p2: 1226 // - Member function declarations with the same name and the same 1227 // parameter-type-list as well as member function template 1228 // declarations with the same name, the same parameter-type-list, and 1229 // the same template parameter lists cannot be overloaded if any of 1230 // them, but not all, have a ref-qualifier (8.3.5). 1231 Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload) 1232 << NewMethod->getRefQualifier() << OldMethod->getRefQualifier(); 1233 Diag(OldMethod->getLocation(), diag::note_previous_declaration); 1234 } 1235 return true; 1236 } 1237 1238 // We may not have applied the implicit const for a constexpr member 1239 // function yet (because we haven't yet resolved whether this is a static 1240 // or non-static member function). Add it now, on the assumption that this 1241 // is a redeclaration of OldMethod. 1242 auto OldQuals = OldMethod->getMethodQualifiers(); 1243 auto NewQuals = NewMethod->getMethodQualifiers(); 1244 if (!getLangOpts().CPlusPlus14 && NewMethod->isConstexpr() && 1245 !isa<CXXConstructorDecl>(NewMethod)) 1246 NewQuals.addConst(); 1247 // We do not allow overloading based off of '__restrict'. 1248 OldQuals.removeRestrict(); 1249 NewQuals.removeRestrict(); 1250 if (OldQuals != NewQuals) 1251 return true; 1252 } 1253 1254 // Though pass_object_size is placed on parameters and takes an argument, we 1255 // consider it to be a function-level modifier for the sake of function 1256 // identity. Either the function has one or more parameters with 1257 // pass_object_size or it doesn't. 1258 if (functionHasPassObjectSizeParams(New) != 1259 functionHasPassObjectSizeParams(Old)) 1260 return true; 1261 1262 // enable_if attributes are an order-sensitive part of the signature. 1263 for (specific_attr_iterator<EnableIfAttr> 1264 NewI = New->specific_attr_begin<EnableIfAttr>(), 1265 NewE = New->specific_attr_end<EnableIfAttr>(), 1266 OldI = Old->specific_attr_begin<EnableIfAttr>(), 1267 OldE = Old->specific_attr_end<EnableIfAttr>(); 1268 NewI != NewE || OldI != OldE; ++NewI, ++OldI) { 1269 if (NewI == NewE || OldI == OldE) 1270 return true; 1271 llvm::FoldingSetNodeID NewID, OldID; 1272 NewI->getCond()->Profile(NewID, Context, true); 1273 OldI->getCond()->Profile(OldID, Context, true); 1274 if (NewID != OldID) 1275 return true; 1276 } 1277 1278 if (getLangOpts().CUDA && ConsiderCudaAttrs) { 1279 // Don't allow overloading of destructors. (In theory we could, but it 1280 // would be a giant change to clang.) 1281 if (!isa<CXXDestructorDecl>(New)) { 1282 CUDAFunctionTarget NewTarget = IdentifyCUDATarget(New), 1283 OldTarget = IdentifyCUDATarget(Old); 1284 if (NewTarget != CFT_InvalidTarget) { 1285 assert((OldTarget != CFT_InvalidTarget) && 1286 "Unexpected invalid target."); 1287 1288 // Allow overloading of functions with same signature and different CUDA 1289 // target attributes. 1290 if (NewTarget != OldTarget) 1291 return true; 1292 } 1293 } 1294 } 1295 1296 if (ConsiderRequiresClauses) { 1297 Expr *NewRC = New->getTrailingRequiresClause(), 1298 *OldRC = Old->getTrailingRequiresClause(); 1299 if ((NewRC != nullptr) != (OldRC != nullptr)) 1300 // RC are most certainly different - these are overloads. 1301 return true; 1302 1303 if (NewRC) { 1304 llvm::FoldingSetNodeID NewID, OldID; 1305 NewRC->Profile(NewID, Context, /*Canonical=*/true); 1306 OldRC->Profile(OldID, Context, /*Canonical=*/true); 1307 if (NewID != OldID) 1308 // RCs are not equivalent - these are overloads. 1309 return true; 1310 } 1311 } 1312 1313 // The signatures match; this is not an overload. 1314 return false; 1315 } 1316 1317 /// Tries a user-defined conversion from From to ToType. 1318 /// 1319 /// Produces an implicit conversion sequence for when a standard conversion 1320 /// is not an option. See TryImplicitConversion for more information. 1321 static ImplicitConversionSequence 1322 TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType, 1323 bool SuppressUserConversions, 1324 AllowedExplicit AllowExplicit, 1325 bool InOverloadResolution, 1326 bool CStyle, 1327 bool AllowObjCWritebackConversion, 1328 bool AllowObjCConversionOnExplicit) { 1329 ImplicitConversionSequence ICS; 1330 1331 if (SuppressUserConversions) { 1332 // We're not in the case above, so there is no conversion that 1333 // we can perform. 1334 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 1335 return ICS; 1336 } 1337 1338 // Attempt user-defined conversion. 1339 OverloadCandidateSet Conversions(From->getExprLoc(), 1340 OverloadCandidateSet::CSK_Normal); 1341 switch (IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, 1342 Conversions, AllowExplicit, 1343 AllowObjCConversionOnExplicit)) { 1344 case OR_Success: 1345 case OR_Deleted: 1346 ICS.setUserDefined(); 1347 // C++ [over.ics.user]p4: 1348 // A conversion of an expression of class type to the same class 1349 // type is given Exact Match rank, and a conversion of an 1350 // expression of class type to a base class of that type is 1351 // given Conversion rank, in spite of the fact that a copy 1352 // constructor (i.e., a user-defined conversion function) is 1353 // called for those cases. 1354 if (CXXConstructorDecl *Constructor 1355 = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) { 1356 QualType FromCanon 1357 = S.Context.getCanonicalType(From->getType().getUnqualifiedType()); 1358 QualType ToCanon 1359 = S.Context.getCanonicalType(ToType).getUnqualifiedType(); 1360 if (Constructor->isCopyConstructor() && 1361 (FromCanon == ToCanon || 1362 S.IsDerivedFrom(From->getBeginLoc(), FromCanon, ToCanon))) { 1363 // Turn this into a "standard" conversion sequence, so that it 1364 // gets ranked with standard conversion sequences. 1365 DeclAccessPair Found = ICS.UserDefined.FoundConversionFunction; 1366 ICS.setStandard(); 1367 ICS.Standard.setAsIdentityConversion(); 1368 ICS.Standard.setFromType(From->getType()); 1369 ICS.Standard.setAllToTypes(ToType); 1370 ICS.Standard.CopyConstructor = Constructor; 1371 ICS.Standard.FoundCopyConstructor = Found; 1372 if (ToCanon != FromCanon) 1373 ICS.Standard.Second = ICK_Derived_To_Base; 1374 } 1375 } 1376 break; 1377 1378 case OR_Ambiguous: 1379 ICS.setAmbiguous(); 1380 ICS.Ambiguous.setFromType(From->getType()); 1381 ICS.Ambiguous.setToType(ToType); 1382 for (OverloadCandidateSet::iterator Cand = Conversions.begin(); 1383 Cand != Conversions.end(); ++Cand) 1384 if (Cand->Best) 1385 ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function); 1386 break; 1387 1388 // Fall through. 1389 case OR_No_Viable_Function: 1390 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 1391 break; 1392 } 1393 1394 return ICS; 1395 } 1396 1397 /// TryImplicitConversion - Attempt to perform an implicit conversion 1398 /// from the given expression (Expr) to the given type (ToType). This 1399 /// function returns an implicit conversion sequence that can be used 1400 /// to perform the initialization. Given 1401 /// 1402 /// void f(float f); 1403 /// void g(int i) { f(i); } 1404 /// 1405 /// this routine would produce an implicit conversion sequence to 1406 /// describe the initialization of f from i, which will be a standard 1407 /// conversion sequence containing an lvalue-to-rvalue conversion (C++ 1408 /// 4.1) followed by a floating-integral conversion (C++ 4.9). 1409 // 1410 /// Note that this routine only determines how the conversion can be 1411 /// performed; it does not actually perform the conversion. As such, 1412 /// it will not produce any diagnostics if no conversion is available, 1413 /// but will instead return an implicit conversion sequence of kind 1414 /// "BadConversion". 1415 /// 1416 /// If @p SuppressUserConversions, then user-defined conversions are 1417 /// not permitted. 1418 /// If @p AllowExplicit, then explicit user-defined conversions are 1419 /// permitted. 1420 /// 1421 /// \param AllowObjCWritebackConversion Whether we allow the Objective-C 1422 /// writeback conversion, which allows __autoreleasing id* parameters to 1423 /// be initialized with __strong id* or __weak id* arguments. 1424 static ImplicitConversionSequence 1425 TryImplicitConversion(Sema &S, Expr *From, QualType ToType, 1426 bool SuppressUserConversions, 1427 AllowedExplicit AllowExplicit, 1428 bool InOverloadResolution, 1429 bool CStyle, 1430 bool AllowObjCWritebackConversion, 1431 bool AllowObjCConversionOnExplicit) { 1432 ImplicitConversionSequence ICS; 1433 if (IsStandardConversion(S, From, ToType, InOverloadResolution, 1434 ICS.Standard, CStyle, AllowObjCWritebackConversion)){ 1435 ICS.setStandard(); 1436 return ICS; 1437 } 1438 1439 if (!S.getLangOpts().CPlusPlus) { 1440 ICS.setBad(BadConversionSequence::no_conversion, From, ToType); 1441 return ICS; 1442 } 1443 1444 // C++ [over.ics.user]p4: 1445 // A conversion of an expression of class type to the same class 1446 // type is given Exact Match rank, and a conversion of an 1447 // expression of class type to a base class of that type is 1448 // given Conversion rank, in spite of the fact that a copy/move 1449 // constructor (i.e., a user-defined conversion function) is 1450 // called for those cases. 1451 QualType FromType = From->getType(); 1452 if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() && 1453 (S.Context.hasSameUnqualifiedType(FromType, ToType) || 1454 S.IsDerivedFrom(From->getBeginLoc(), FromType, ToType))) { 1455 ICS.setStandard(); 1456 ICS.Standard.setAsIdentityConversion(); 1457 ICS.Standard.setFromType(FromType); 1458 ICS.Standard.setAllToTypes(ToType); 1459 1460 // We don't actually check at this point whether there is a valid 1461 // copy/move constructor, since overloading just assumes that it 1462 // exists. When we actually perform initialization, we'll find the 1463 // appropriate constructor to copy the returned object, if needed. 1464 ICS.Standard.CopyConstructor = nullptr; 1465 1466 // Determine whether this is considered a derived-to-base conversion. 1467 if (!S.Context.hasSameUnqualifiedType(FromType, ToType)) 1468 ICS.Standard.Second = ICK_Derived_To_Base; 1469 1470 return ICS; 1471 } 1472 1473 return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions, 1474 AllowExplicit, InOverloadResolution, CStyle, 1475 AllowObjCWritebackConversion, 1476 AllowObjCConversionOnExplicit); 1477 } 1478 1479 ImplicitConversionSequence 1480 Sema::TryImplicitConversion(Expr *From, QualType ToType, 1481 bool SuppressUserConversions, 1482 AllowedExplicit AllowExplicit, 1483 bool InOverloadResolution, 1484 bool CStyle, 1485 bool AllowObjCWritebackConversion) { 1486 return ::TryImplicitConversion(*this, From, ToType, SuppressUserConversions, 1487 AllowExplicit, InOverloadResolution, CStyle, 1488 AllowObjCWritebackConversion, 1489 /*AllowObjCConversionOnExplicit=*/false); 1490 } 1491 1492 /// PerformImplicitConversion - Perform an implicit conversion of the 1493 /// expression From to the type ToType. Returns the 1494 /// converted expression. Flavor is the kind of conversion we're 1495 /// performing, used in the error message. If @p AllowExplicit, 1496 /// explicit user-defined conversions are permitted. 1497 ExprResult Sema::PerformImplicitConversion(Expr *From, QualType ToType, 1498 AssignmentAction Action, 1499 bool AllowExplicit) { 1500 if (checkPlaceholderForOverload(*this, From)) 1501 return ExprError(); 1502 1503 // Objective-C ARC: Determine whether we will allow the writeback conversion. 1504 bool AllowObjCWritebackConversion 1505 = getLangOpts().ObjCAutoRefCount && 1506 (Action == AA_Passing || Action == AA_Sending); 1507 if (getLangOpts().ObjC) 1508 CheckObjCBridgeRelatedConversions(From->getBeginLoc(), ToType, 1509 From->getType(), From); 1510 ImplicitConversionSequence ICS = ::TryImplicitConversion( 1511 *this, From, ToType, 1512 /*SuppressUserConversions=*/false, 1513 AllowExplicit ? AllowedExplicit::All : AllowedExplicit::None, 1514 /*InOverloadResolution=*/false, 1515 /*CStyle=*/false, AllowObjCWritebackConversion, 1516 /*AllowObjCConversionOnExplicit=*/false); 1517 return PerformImplicitConversion(From, ToType, ICS, Action); 1518 } 1519 1520 /// Determine whether the conversion from FromType to ToType is a valid 1521 /// conversion that strips "noexcept" or "noreturn" off the nested function 1522 /// type. 1523 bool Sema::IsFunctionConversion(QualType FromType, QualType ToType, 1524 QualType &ResultTy) { 1525 if (Context.hasSameUnqualifiedType(FromType, ToType)) 1526 return false; 1527 1528 // Permit the conversion F(t __attribute__((noreturn))) -> F(t) 1529 // or F(t noexcept) -> F(t) 1530 // where F adds one of the following at most once: 1531 // - a pointer 1532 // - a member pointer 1533 // - a block pointer 1534 // Changes here need matching changes in FindCompositePointerType. 1535 CanQualType CanTo = Context.getCanonicalType(ToType); 1536 CanQualType CanFrom = Context.getCanonicalType(FromType); 1537 Type::TypeClass TyClass = CanTo->getTypeClass(); 1538 if (TyClass != CanFrom->getTypeClass()) return false; 1539 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) { 1540 if (TyClass == Type::Pointer) { 1541 CanTo = CanTo.castAs<PointerType>()->getPointeeType(); 1542 CanFrom = CanFrom.castAs<PointerType>()->getPointeeType(); 1543 } else if (TyClass == Type::BlockPointer) { 1544 CanTo = CanTo.castAs<BlockPointerType>()->getPointeeType(); 1545 CanFrom = CanFrom.castAs<BlockPointerType>()->getPointeeType(); 1546 } else if (TyClass == Type::MemberPointer) { 1547 auto ToMPT = CanTo.castAs<MemberPointerType>(); 1548 auto FromMPT = CanFrom.castAs<MemberPointerType>(); 1549 // A function pointer conversion cannot change the class of the function. 1550 if (ToMPT->getClass() != FromMPT->getClass()) 1551 return false; 1552 CanTo = ToMPT->getPointeeType(); 1553 CanFrom = FromMPT->getPointeeType(); 1554 } else { 1555 return false; 1556 } 1557 1558 TyClass = CanTo->getTypeClass(); 1559 if (TyClass != CanFrom->getTypeClass()) return false; 1560 if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) 1561 return false; 1562 } 1563 1564 const auto *FromFn = cast<FunctionType>(CanFrom); 1565 FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo(); 1566 1567 const auto *ToFn = cast<FunctionType>(CanTo); 1568 FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo(); 1569 1570 bool Changed = false; 1571 1572 // Drop 'noreturn' if not present in target type. 1573 if (FromEInfo.getNoReturn() && !ToEInfo.getNoReturn()) { 1574 FromFn = Context.adjustFunctionType(FromFn, FromEInfo.withNoReturn(false)); 1575 Changed = true; 1576 } 1577 1578 // Drop 'noexcept' if not present in target type. 1579 if (const auto *FromFPT = dyn_cast<FunctionProtoType>(FromFn)) { 1580 const auto *ToFPT = cast<FunctionProtoType>(ToFn); 1581 if (FromFPT->isNothrow() && !ToFPT->isNothrow()) { 1582 FromFn = cast<FunctionType>( 1583 Context.getFunctionTypeWithExceptionSpec(QualType(FromFPT, 0), 1584 EST_None) 1585 .getTypePtr()); 1586 Changed = true; 1587 } 1588 1589 // Convert FromFPT's ExtParameterInfo if necessary. The conversion is valid 1590 // only if the ExtParameterInfo lists of the two function prototypes can be 1591 // merged and the merged list is identical to ToFPT's ExtParameterInfo list. 1592 SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos; 1593 bool CanUseToFPT, CanUseFromFPT; 1594 if (Context.mergeExtParameterInfo(ToFPT, FromFPT, CanUseToFPT, 1595 CanUseFromFPT, NewParamInfos) && 1596 CanUseToFPT && !CanUseFromFPT) { 1597 FunctionProtoType::ExtProtoInfo ExtInfo = FromFPT->getExtProtoInfo(); 1598 ExtInfo.ExtParameterInfos = 1599 NewParamInfos.empty() ? nullptr : NewParamInfos.data(); 1600 QualType QT = Context.getFunctionType(FromFPT->getReturnType(), 1601 FromFPT->getParamTypes(), ExtInfo); 1602 FromFn = QT->getAs<FunctionType>(); 1603 Changed = true; 1604 } 1605 } 1606 1607 if (!Changed) 1608 return false; 1609 1610 assert(QualType(FromFn, 0).isCanonical()); 1611 if (QualType(FromFn, 0) != CanTo) return false; 1612 1613 ResultTy = ToType; 1614 return true; 1615 } 1616 1617 /// Determine whether the conversion from FromType to ToType is a valid 1618 /// vector conversion. 1619 /// 1620 /// \param ICK Will be set to the vector conversion kind, if this is a vector 1621 /// conversion. 1622 static bool IsVectorConversion(Sema &S, QualType FromType, 1623 QualType ToType, ImplicitConversionKind &ICK) { 1624 // We need at least one of these types to be a vector type to have a vector 1625 // conversion. 1626 if (!ToType->isVectorType() && !FromType->isVectorType()) 1627 return false; 1628 1629 // Identical types require no conversions. 1630 if (S.Context.hasSameUnqualifiedType(FromType, ToType)) 1631 return false; 1632 1633 // There are no conversions between extended vector types, only identity. 1634 if (ToType->isExtVectorType()) { 1635 // There are no conversions between extended vector types other than the 1636 // identity conversion. 1637 if (FromType->isExtVectorType()) 1638 return false; 1639 1640 // Vector splat from any arithmetic type to a vector. 1641 if (FromType->isArithmeticType()) { 1642 ICK = ICK_Vector_Splat; 1643 return true; 1644 } 1645 } 1646 1647 if (ToType->isSizelessBuiltinType() || FromType->isSizelessBuiltinType()) 1648 if (S.Context.areCompatibleSveTypes(FromType, ToType) || 1649 S.Context.areLaxCompatibleSveTypes(FromType, ToType)) { 1650 ICK = ICK_SVE_Vector_Conversion; 1651 return true; 1652 } 1653 1654 // We can perform the conversion between vector types in the following cases: 1655 // 1)vector types are equivalent AltiVec and GCC vector types 1656 // 2)lax vector conversions are permitted and the vector types are of the 1657 // same size 1658 // 3)the destination type does not have the ARM MVE strict-polymorphism 1659 // attribute, which inhibits lax vector conversion for overload resolution 1660 // only 1661 if (ToType->isVectorType() && FromType->isVectorType()) { 1662 if (S.Context.areCompatibleVectorTypes(FromType, ToType) || 1663 (S.isLaxVectorConversion(FromType, ToType) && 1664 !ToType->hasAttr(attr::ArmMveStrictPolymorphism))) { 1665 ICK = ICK_Vector_Conversion; 1666 return true; 1667 } 1668 } 1669 1670 return false; 1671 } 1672 1673 static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType, 1674 bool InOverloadResolution, 1675 StandardConversionSequence &SCS, 1676 bool CStyle); 1677 1678 /// IsStandardConversion - Determines whether there is a standard 1679 /// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the 1680 /// expression From to the type ToType. Standard conversion sequences 1681 /// only consider non-class types; for conversions that involve class 1682 /// types, use TryImplicitConversion. If a conversion exists, SCS will 1683 /// contain the standard conversion sequence required to perform this 1684 /// conversion and this routine will return true. Otherwise, this 1685 /// routine will return false and the value of SCS is unspecified. 1686 static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, 1687 bool InOverloadResolution, 1688 StandardConversionSequence &SCS, 1689 bool CStyle, 1690 bool AllowObjCWritebackConversion) { 1691 QualType FromType = From->getType(); 1692 1693 // Standard conversions (C++ [conv]) 1694 SCS.setAsIdentityConversion(); 1695 SCS.IncompatibleObjC = false; 1696 SCS.setFromType(FromType); 1697 SCS.CopyConstructor = nullptr; 1698 1699 // There are no standard conversions for class types in C++, so 1700 // abort early. When overloading in C, however, we do permit them. 1701 if (S.getLangOpts().CPlusPlus && 1702 (FromType->isRecordType() || ToType->isRecordType())) 1703 return false; 1704 1705 // The first conversion can be an lvalue-to-rvalue conversion, 1706 // array-to-pointer conversion, or function-to-pointer conversion 1707 // (C++ 4p1). 1708 1709 if (FromType == S.Context.OverloadTy) { 1710 DeclAccessPair AccessPair; 1711 if (FunctionDecl *Fn 1712 = S.ResolveAddressOfOverloadedFunction(From, ToType, false, 1713 AccessPair)) { 1714 // We were able to resolve the address of the overloaded function, 1715 // so we can convert to the type of that function. 1716 FromType = Fn->getType(); 1717 SCS.setFromType(FromType); 1718 1719 // we can sometimes resolve &foo<int> regardless of ToType, so check 1720 // if the type matches (identity) or we are converting to bool 1721 if (!S.Context.hasSameUnqualifiedType( 1722 S.ExtractUnqualifiedFunctionType(ToType), FromType)) { 1723 QualType resultTy; 1724 // if the function type matches except for [[noreturn]], it's ok 1725 if (!S.IsFunctionConversion(FromType, 1726 S.ExtractUnqualifiedFunctionType(ToType), resultTy)) 1727 // otherwise, only a boolean conversion is standard 1728 if (!ToType->isBooleanType()) 1729 return false; 1730 } 1731 1732 // Check if the "from" expression is taking the address of an overloaded 1733 // function and recompute the FromType accordingly. Take advantage of the 1734 // fact that non-static member functions *must* have such an address-of 1735 // expression. 1736 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn); 1737 if (Method && !Method->isStatic()) { 1738 assert(isa<UnaryOperator>(From->IgnoreParens()) && 1739 "Non-unary operator on non-static member address"); 1740 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() 1741 == UO_AddrOf && 1742 "Non-address-of operator on non-static member address"); 1743 const Type *ClassType 1744 = S.Context.getTypeDeclType(Method->getParent()).getTypePtr(); 1745 FromType = S.Context.getMemberPointerType(FromType, ClassType); 1746 } else if (isa<UnaryOperator>(From->IgnoreParens())) { 1747 assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == 1748 UO_AddrOf && 1749 "Non-address-of operator for overloaded function expression"); 1750 FromType = S.Context.getPointerType(FromType); 1751 } 1752 1753 // Check that we've computed the proper type after overload resolution. 1754 // FIXME: FixOverloadedFunctionReference has side-effects; we shouldn't 1755 // be calling it from within an NDEBUG block. 1756 assert(S.Context.hasSameType( 1757 FromType, 1758 S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())); 1759 } else { 1760 return false; 1761 } 1762 } 1763 // Lvalue-to-rvalue conversion (C++11 4.1): 1764 // A glvalue (3.10) of a non-function, non-array type T can 1765 // be converted to a prvalue. 1766 bool argIsLValue = From->isGLValue(); 1767 if (argIsLValue && 1768 !FromType->isFunctionType() && !FromType->isArrayType() && 1769 S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) { 1770 SCS.First = ICK_Lvalue_To_Rvalue; 1771 1772 // C11 6.3.2.1p2: 1773 // ... if the lvalue has atomic type, the value has the non-atomic version 1774 // of the type of the lvalue ... 1775 if (const AtomicType *Atomic = FromType->getAs<AtomicType>()) 1776 FromType = Atomic->getValueType(); 1777 1778 // If T is a non-class type, the type of the rvalue is the 1779 // cv-unqualified version of T. Otherwise, the type of the rvalue 1780 // is T (C++ 4.1p1). C++ can't get here with class types; in C, we 1781 // just strip the qualifiers because they don't matter. 1782 FromType = FromType.getUnqualifiedType(); 1783 } else if (FromType->isArrayType()) { 1784 // Array-to-pointer conversion (C++ 4.2) 1785 SCS.First = ICK_Array_To_Pointer; 1786 1787 // An lvalue or rvalue of type "array of N T" or "array of unknown 1788 // bound of T" can be converted to an rvalue of type "pointer to 1789 // T" (C++ 4.2p1). 1790 FromType = S.Context.getArrayDecayedType(FromType); 1791 1792 if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) { 1793 // This conversion is deprecated in C++03 (D.4) 1794 SCS.DeprecatedStringLiteralToCharPtr = true; 1795 1796 // For the purpose of ranking in overload resolution 1797 // (13.3.3.1.1), this conversion is considered an 1798 // array-to-pointer conversion followed by a qualification 1799 // conversion (4.4). (C++ 4.2p2) 1800 SCS.Second = ICK_Identity; 1801 SCS.Third = ICK_Qualification; 1802 SCS.QualificationIncludesObjCLifetime = false; 1803 SCS.setAllToTypes(FromType); 1804 return true; 1805 } 1806 } else if (FromType->isFunctionType() && argIsLValue) { 1807 // Function-to-pointer conversion (C++ 4.3). 1808 SCS.First = ICK_Function_To_Pointer; 1809 1810 if (auto *DRE = dyn_cast<DeclRefExpr>(From->IgnoreParenCasts())) 1811 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) 1812 if (!S.checkAddressOfFunctionIsAvailable(FD)) 1813 return false; 1814 1815 // An lvalue of function type T can be converted to an rvalue of 1816 // type "pointer to T." The result is a pointer to the 1817 // function. (C++ 4.3p1). 1818 FromType = S.Context.getPointerType(FromType); 1819 } else { 1820 // We don't require any conversions for the first step. 1821 SCS.First = ICK_Identity; 1822 } 1823 SCS.setToType(0, FromType); 1824 1825 // The second conversion can be an integral promotion, floating 1826 // point promotion, integral conversion, floating point conversion, 1827 // floating-integral conversion, pointer conversion, 1828 // pointer-to-member conversion, or boolean conversion (C++ 4p1). 1829 // For overloading in C, this can also be a "compatible-type" 1830 // conversion. 1831 bool IncompatibleObjC = false; 1832 ImplicitConversionKind SecondICK = ICK_Identity; 1833 if (S.Context.hasSameUnqualifiedType(FromType, ToType)) { 1834 // The unqualified versions of the types are the same: there's no 1835 // conversion to do. 1836 SCS.Second = ICK_Identity; 1837 } else if (S.IsIntegralPromotion(From, FromType, ToType)) { 1838 // Integral promotion (C++ 4.5). 1839 SCS.Second = ICK_Integral_Promotion; 1840 FromType = ToType.getUnqualifiedType(); 1841 } else if (S.IsFloatingPointPromotion(FromType, ToType)) { 1842 // Floating point promotion (C++ 4.6). 1843 SCS.Second = ICK_Floating_Promotion; 1844 FromType = ToType.getUnqualifiedType(); 1845 } else if (S.IsComplexPromotion(FromType, ToType)) { 1846 // Complex promotion (Clang extension) 1847 SCS.Second = ICK_Complex_Promotion; 1848 FromType = ToType.getUnqualifiedType(); 1849 } else if (ToType->isBooleanType() && 1850 (FromType->isArithmeticType() || 1851 FromType->isAnyPointerType() || 1852 FromType->isBlockPointerType() || 1853 FromType->isMemberPointerType())) { 1854 // Boolean conversions (C++ 4.12). 1855 SCS.Second = ICK_Boolean_Conversion; 1856 FromType = S.Context.BoolTy; 1857 } else if (FromType->isIntegralOrUnscopedEnumerationType() && 1858 ToType->isIntegralType(S.Context)) { 1859 // Integral conversions (C++ 4.7). 1860 SCS.Second = ICK_Integral_Conversion; 1861 FromType = ToType.getUnqualifiedType(); 1862 } else if (FromType->isAnyComplexType() && ToType->isAnyComplexType()) { 1863 // Complex conversions (C99 6.3.1.6) 1864 SCS.Second = ICK_Complex_Conversion; 1865 FromType = ToType.getUnqualifiedType(); 1866 } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) || 1867 (ToType->isAnyComplexType() && FromType->isArithmeticType())) { 1868 // Complex-real conversions (C99 6.3.1.7) 1869 SCS.Second = ICK_Complex_Real; 1870 FromType = ToType.getUnqualifiedType(); 1871 } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) { 1872 // FIXME: disable conversions between long double, __ibm128 and __float128 1873 // if their representation is different until there is back end support 1874 // We of course allow this conversion if long double is really double. 1875 1876 // Conversions between bfloat and other floats are not permitted. 1877 if (FromType == S.Context.BFloat16Ty || ToType == S.Context.BFloat16Ty) 1878 return false; 1879 1880 // Conversions between IEEE-quad and IBM-extended semantics are not 1881 // permitted. 1882 const llvm::fltSemantics &FromSem = 1883 S.Context.getFloatTypeSemantics(FromType); 1884 const llvm::fltSemantics &ToSem = S.Context.getFloatTypeSemantics(ToType); 1885 if ((&FromSem == &llvm::APFloat::PPCDoubleDouble() && 1886 &ToSem == &llvm::APFloat::IEEEquad()) || 1887 (&FromSem == &llvm::APFloat::IEEEquad() && 1888 &ToSem == &llvm::APFloat::PPCDoubleDouble())) 1889 return false; 1890 1891 // Floating point conversions (C++ 4.8). 1892 SCS.Second = ICK_Floating_Conversion; 1893 FromType = ToType.getUnqualifiedType(); 1894 } else if ((FromType->isRealFloatingType() && 1895 ToType->isIntegralType(S.Context)) || 1896 (FromType->isIntegralOrUnscopedEnumerationType() && 1897 ToType->isRealFloatingType())) { 1898 // Conversions between bfloat and int are not permitted. 1899 if (FromType->isBFloat16Type() || ToType->isBFloat16Type()) 1900 return false; 1901 1902 // Floating-integral conversions (C++ 4.9). 1903 SCS.Second = ICK_Floating_Integral; 1904 FromType = ToType.getUnqualifiedType(); 1905 } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) { 1906 SCS.Second = ICK_Block_Pointer_Conversion; 1907 } else if (AllowObjCWritebackConversion && 1908 S.isObjCWritebackConversion(FromType, ToType, FromType)) { 1909 SCS.Second = ICK_Writeback_Conversion; 1910 } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution, 1911 FromType, IncompatibleObjC)) { 1912 // Pointer conversions (C++ 4.10). 1913 SCS.Second = ICK_Pointer_Conversion; 1914 SCS.IncompatibleObjC = IncompatibleObjC; 1915 FromType = FromType.getUnqualifiedType(); 1916 } else if (S.IsMemberPointerConversion(From, FromType, ToType, 1917 InOverloadResolution, FromType)) { 1918 // Pointer to member conversions (4.11). 1919 SCS.Second = ICK_Pointer_Member; 1920 } else if (IsVectorConversion(S, FromType, ToType, SecondICK)) { 1921 SCS.Second = SecondICK; 1922 FromType = ToType.getUnqualifiedType(); 1923 } else if (!S.getLangOpts().CPlusPlus && 1924 S.Context.typesAreCompatible(ToType, FromType)) { 1925 // Compatible conversions (Clang extension for C function overloading) 1926 SCS.Second = ICK_Compatible_Conversion; 1927 FromType = ToType.getUnqualifiedType(); 1928 } else if (IsTransparentUnionStandardConversion(S, From, ToType, 1929 InOverloadResolution, 1930 SCS, CStyle)) { 1931 SCS.Second = ICK_TransparentUnionConversion; 1932 FromType = ToType; 1933 } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS, 1934 CStyle)) { 1935 // tryAtomicConversion has updated the standard conversion sequence 1936 // appropriately. 1937 return true; 1938 } else if (ToType->isEventT() && 1939 From->isIntegerConstantExpr(S.getASTContext()) && 1940 From->EvaluateKnownConstInt(S.getASTContext()) == 0) { 1941 SCS.Second = ICK_Zero_Event_Conversion; 1942 FromType = ToType; 1943 } else if (ToType->isQueueT() && 1944 From->isIntegerConstantExpr(S.getASTContext()) && 1945 (From->EvaluateKnownConstInt(S.getASTContext()) == 0)) { 1946 SCS.Second = ICK_Zero_Queue_Conversion; 1947 FromType = ToType; 1948 } else if (ToType->isSamplerT() && 1949 From->isIntegerConstantExpr(S.getASTContext())) { 1950 SCS.Second = ICK_Compatible_Conversion; 1951 FromType = ToType; 1952 } else { 1953 // No second conversion required. 1954 SCS.Second = ICK_Identity; 1955 } 1956 SCS.setToType(1, FromType); 1957 1958 // The third conversion can be a function pointer conversion or a 1959 // qualification conversion (C++ [conv.fctptr], [conv.qual]). 1960 bool ObjCLifetimeConversion; 1961 if (S.IsFunctionConversion(FromType, ToType, FromType)) { 1962 // Function pointer conversions (removing 'noexcept') including removal of 1963 // 'noreturn' (Clang extension). 1964 SCS.Third = ICK_Function_Conversion; 1965 } else if (S.IsQualificationConversion(FromType, ToType, CStyle, 1966 ObjCLifetimeConversion)) { 1967 SCS.Third = ICK_Qualification; 1968 SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion; 1969 FromType = ToType; 1970 } else { 1971 // No conversion required 1972 SCS.Third = ICK_Identity; 1973 } 1974 1975 // C++ [over.best.ics]p6: 1976 // [...] Any difference in top-level cv-qualification is 1977 // subsumed by the initialization itself and does not constitute 1978 // a conversion. [...] 1979 QualType CanonFrom = S.Context.getCanonicalType(FromType); 1980 QualType CanonTo = S.Context.getCanonicalType(ToType); 1981 if (CanonFrom.getLocalUnqualifiedType() 1982 == CanonTo.getLocalUnqualifiedType() && 1983 CanonFrom.getLocalQualifiers() != CanonTo.getLocalQualifiers()) { 1984 FromType = ToType; 1985 CanonFrom = CanonTo; 1986 } 1987 1988 SCS.setToType(2, FromType); 1989 1990 if (CanonFrom == CanonTo) 1991 return true; 1992 1993 // If we have not converted the argument type to the parameter type, 1994 // this is a bad conversion sequence, unless we're resolving an overload in C. 1995 if (S.getLangOpts().CPlusPlus || !InOverloadResolution) 1996 return false; 1997 1998 ExprResult ER = ExprResult{From}; 1999 Sema::AssignConvertType Conv = 2000 S.CheckSingleAssignmentConstraints(ToType, ER, 2001 /*Diagnose=*/false, 2002 /*DiagnoseCFAudited=*/false, 2003 /*ConvertRHS=*/false); 2004 ImplicitConversionKind SecondConv; 2005 switch (Conv) { 2006 case Sema::Compatible: 2007 SecondConv = ICK_C_Only_Conversion; 2008 break; 2009 // For our purposes, discarding qualifiers is just as bad as using an 2010 // incompatible pointer. Note that an IncompatiblePointer conversion can drop 2011 // qualifiers, as well. 2012 case Sema::CompatiblePointerDiscardsQualifiers: 2013 case Sema::IncompatiblePointer: 2014 case Sema::IncompatiblePointerSign: 2015 SecondConv = ICK_Incompatible_Pointer_Conversion; 2016 break; 2017 default: 2018 return false; 2019 } 2020 2021 // First can only be an lvalue conversion, so we pretend that this was the 2022 // second conversion. First should already be valid from earlier in the 2023 // function. 2024 SCS.Second = SecondConv; 2025 SCS.setToType(1, ToType); 2026 2027 // Third is Identity, because Second should rank us worse than any other 2028 // conversion. This could also be ICK_Qualification, but it's simpler to just 2029 // lump everything in with the second conversion, and we don't gain anything 2030 // from making this ICK_Qualification. 2031 SCS.Third = ICK_Identity; 2032 SCS.setToType(2, ToType); 2033 return true; 2034 } 2035 2036 static bool 2037 IsTransparentUnionStandardConversion(Sema &S, Expr* From, 2038 QualType &ToType, 2039 bool InOverloadResolution, 2040 StandardConversionSequence &SCS, 2041 bool CStyle) { 2042 2043 const RecordType *UT = ToType->getAsUnionType(); 2044 if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>()) 2045 return false; 2046 // The field to initialize within the transparent union. 2047 RecordDecl *UD = UT->getDecl(); 2048 // It's compatible if the expression matches any of the fields. 2049 for (const auto *it : UD->fields()) { 2050 if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS, 2051 CStyle, /*AllowObjCWritebackConversion=*/false)) { 2052 ToType = it->getType(); 2053 return true; 2054 } 2055 } 2056 return false; 2057 } 2058 2059 /// IsIntegralPromotion - Determines whether the conversion from the 2060 /// expression From (whose potentially-adjusted type is FromType) to 2061 /// ToType is an integral promotion (C++ 4.5). If so, returns true and 2062 /// sets PromotedType to the promoted type. 2063 bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) { 2064 const BuiltinType *To = ToType->getAs<BuiltinType>(); 2065 // All integers are built-in. 2066 if (!To) { 2067 return false; 2068 } 2069 2070 // An rvalue of type char, signed char, unsigned char, short int, or 2071 // unsigned short int can be converted to an rvalue of type int if 2072 // int can represent all the values of the source type; otherwise, 2073 // the source rvalue can be converted to an rvalue of type unsigned 2074 // int (C++ 4.5p1). 2075 if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() && 2076 !FromType->isEnumeralType()) { 2077 if (// We can promote any signed, promotable integer type to an int 2078 (FromType->isSignedIntegerType() || 2079 // We can promote any unsigned integer type whose size is 2080 // less than int to an int. 2081 Context.getTypeSize(FromType) < Context.getTypeSize(ToType))) { 2082 return To->getKind() == BuiltinType::Int; 2083 } 2084 2085 return To->getKind() == BuiltinType::UInt; 2086 } 2087 2088 // C++11 [conv.prom]p3: 2089 // A prvalue of an unscoped enumeration type whose underlying type is not 2090 // fixed (7.2) can be converted to an rvalue a prvalue of the first of the 2091 // following types that can represent all the values of the enumeration 2092 // (i.e., the values in the range bmin to bmax as described in 7.2): int, 2093 // unsigned int, long int, unsigned long int, long long int, or unsigned 2094 // long long int. If none of the types in that list can represent all the 2095 // values of the enumeration, an rvalue a prvalue of an unscoped enumeration 2096 // type can be converted to an rvalue a prvalue of the extended integer type 2097 // with lowest integer conversion rank (4.13) greater than the rank of long 2098 // long in which all the values of the enumeration can be represented. If 2099 // there are two such extended types, the signed one is chosen. 2100 // C++11 [conv.prom]p4: 2101 // A prvalue of an unscoped enumeration type whose underlying type is fixed 2102 // can be converted to a prvalue of its underlying type. Moreover, if 2103 // integral promotion can be applied to its underlying type, a prvalue of an 2104 // unscoped enumeration type whose underlying type is fixed can also be 2105 // converted to a prvalue of the promoted underlying type. 2106 if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) { 2107 // C++0x 7.2p9: Note that this implicit enum to int conversion is not 2108 // provided for a scoped enumeration. 2109 if (FromEnumType->getDecl()->isScoped()) 2110 return false; 2111 2112 // We can perform an integral promotion to the underlying type of the enum, 2113 // even if that's not the promoted type. Note that the check for promoting 2114 // the underlying type is based on the type alone, and does not consider 2115 // the bitfield-ness of the actual source expression. 2116 if (FromEnumType->getDecl()->isFixed()) { 2117 QualType Underlying = FromEnumType->getDecl()->getIntegerType(); 2118 return Context.hasSameUnqualifiedType(Underlying, ToType) || 2119 IsIntegralPromotion(nullptr, Underlying, ToType); 2120 } 2121 2122 // We have already pre-calculated the promotion type, so this is trivial. 2123 if (ToType->isIntegerType() && 2124 isCompleteType(From->getBeginLoc(), FromType)) 2125 return Context.hasSameUnqualifiedType( 2126 ToType, FromEnumType->getDecl()->getPromotionType()); 2127 2128 // C++ [conv.prom]p5: 2129 // If the bit-field has an enumerated type, it is treated as any other 2130 // value of that type for promotion purposes. 2131 // 2132 // ... so do not fall through into the bit-field checks below in C++. 2133 if (getLangOpts().CPlusPlus) 2134 return false; 2135 } 2136 2137 // C++0x [conv.prom]p2: 2138 // A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted 2139 // to an rvalue a prvalue of the first of the following types that can 2140 // represent all the values of its underlying type: int, unsigned int, 2141 // long int, unsigned long int, long long int, or unsigned long long int. 2142 // If none of the types in that list can represent all the values of its 2143 // underlying type, an rvalue a prvalue of type char16_t, char32_t, 2144 // or wchar_t can be converted to an rvalue a prvalue of its underlying 2145 // type. 2146 if (FromType->isAnyCharacterType() && !FromType->isCharType() && 2147 ToType->isIntegerType()) { 2148 // Determine whether the type we're converting from is signed or 2149 // unsigned. 2150 bool FromIsSigned = FromType->isSignedIntegerType(); 2151 uint64_t FromSize = Context.getTypeSize(FromType); 2152 2153 // The types we'll try to promote to, in the appropriate 2154 // order. Try each of these types. 2155 QualType PromoteTypes[6] = { 2156 Context.IntTy, Context.UnsignedIntTy, 2157 Context.LongTy, Context.UnsignedLongTy , 2158 Context.LongLongTy, Context.UnsignedLongLongTy 2159 }; 2160 for (int Idx = 0; Idx < 6; ++Idx) { 2161 uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]); 2162 if (FromSize < ToSize || 2163 (FromSize == ToSize && 2164 FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) { 2165 // We found the type that we can promote to. If this is the 2166 // type we wanted, we have a promotion. Otherwise, no 2167 // promotion. 2168 return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]); 2169 } 2170 } 2171 } 2172 2173 // An rvalue for an integral bit-field (9.6) can be converted to an 2174 // rvalue of type int if int can represent all the values of the 2175 // bit-field; otherwise, it can be converted to unsigned int if 2176 // unsigned int can represent all the values of the bit-field. If 2177 // the bit-field is larger yet, no integral promotion applies to 2178 // it. If the bit-field has an enumerated type, it is treated as any 2179 // other value of that type for promotion purposes (C++ 4.5p3). 2180 // FIXME: We should delay checking of bit-fields until we actually perform the 2181 // conversion. 2182 // 2183 // FIXME: In C, only bit-fields of types _Bool, int, or unsigned int may be 2184 // promoted, per C11 6.3.1.1/2. We promote all bit-fields (including enum 2185 // bit-fields and those whose underlying type is larger than int) for GCC 2186 // compatibility. 2187 if (From) { 2188 if (FieldDecl *MemberDecl = From->getSourceBitField()) { 2189 Optional<llvm::APSInt> BitWidth; 2190 if (FromType->isIntegralType(Context) && 2191 (BitWidth = 2192 MemberDecl->getBitWidth()->getIntegerConstantExpr(Context))) { 2193 llvm::APSInt ToSize(BitWidth->getBitWidth(), BitWidth->isUnsigned()); 2194 ToSize = Context.getTypeSize(ToType); 2195 2196 // Are we promoting to an int from a bitfield that fits in an int? 2197 if (*BitWidth < ToSize || 2198 (FromType->isSignedIntegerType() && *BitWidth <= ToSize)) { 2199 return To->getKind() == BuiltinType::Int; 2200 } 2201 2202 // Are we promoting to an unsigned int from an unsigned bitfield 2203 // that fits into an unsigned int? 2204 if (FromType->isUnsignedIntegerType() && *BitWidth <= ToSize) { 2205 return To->getKind() == BuiltinType::UInt; 2206 } 2207 2208 return false; 2209 } 2210 } 2211 } 2212 2213 // An rvalue of type bool can be converted to an rvalue of type int, 2214 // with false becoming zero and true becoming one (C++ 4.5p4). 2215 if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) { 2216 return true; 2217 } 2218 2219 return false; 2220 } 2221 2222 /// IsFloatingPointPromotion - Determines whether the conversion from 2223 /// FromType to ToType is a floating point promotion (C++ 4.6). If so, 2224 /// returns true and sets PromotedType to the promoted type. 2225 bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) { 2226 if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>()) 2227 if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) { 2228 /// An rvalue of type float can be converted to an rvalue of type 2229 /// double. (C++ 4.6p1). 2230 if (FromBuiltin->getKind() == BuiltinType::Float && 2231 ToBuiltin->getKind() == BuiltinType::Double) 2232 return true; 2233 2234 // C99 6.3.1.5p1: 2235 // When a float is promoted to double or long double, or a 2236 // double is promoted to long double [...]. 2237 if (!getLangOpts().CPlusPlus && 2238 (FromBuiltin->getKind() == BuiltinType::Float || 2239 FromBuiltin->getKind() == BuiltinType::Double) && 2240 (ToBuiltin->getKind() == BuiltinType::LongDouble || 2241 ToBuiltin->getKind() == BuiltinType::Float128 || 2242 ToBuiltin->getKind() == BuiltinType::Ibm128)) 2243 return true; 2244 2245 // Half can be promoted to float. 2246 if (!getLangOpts().NativeHalfType && 2247 FromBuiltin->getKind() == BuiltinType::Half && 2248 ToBuiltin->getKind() == BuiltinType::Float) 2249 return true; 2250 } 2251 2252 return false; 2253 } 2254 2255 /// Determine if a conversion is a complex promotion. 2256 /// 2257 /// A complex promotion is defined as a complex -> complex conversion 2258 /// where the conversion between the underlying real types is a 2259 /// floating-point or integral promotion. 2260 bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) { 2261 const ComplexType *FromComplex = FromType->getAs<ComplexType>(); 2262 if (!FromComplex) 2263 return false; 2264 2265 const ComplexType *ToComplex = ToType->getAs<ComplexType>(); 2266 if (!ToComplex) 2267 return false; 2268 2269 return IsFloatingPointPromotion(FromComplex->getElementType(), 2270 ToComplex->getElementType()) || 2271 IsIntegralPromotion(nullptr, FromComplex->getElementType(), 2272 ToComplex->getElementType()); 2273 } 2274 2275 /// BuildSimilarlyQualifiedPointerType - In a pointer conversion from 2276 /// the pointer type FromPtr to a pointer to type ToPointee, with the 2277 /// same type qualifiers as FromPtr has on its pointee type. ToType, 2278 /// if non-empty, will be a pointer to ToType that may or may not have 2279 /// the right set of qualifiers on its pointee. 2280 /// 2281 static QualType 2282 BuildSimilarlyQualifiedPointerType(const Type *FromPtr, 2283 QualType ToPointee, QualType ToType, 2284 ASTContext &Context, 2285 bool StripObjCLifetime = false) { 2286 assert((FromPtr->getTypeClass() == Type::Pointer || 2287 FromPtr->getTypeClass() == Type::ObjCObjectPointer) && 2288 "Invalid similarly-qualified pointer type"); 2289 2290 /// Conversions to 'id' subsume cv-qualifier conversions. 2291 if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType()) 2292 return ToType.getUnqualifiedType(); 2293 2294 QualType CanonFromPointee 2295 = Context.getCanonicalType(FromPtr->getPointeeType()); 2296 QualType CanonToPointee = Context.getCanonicalType(ToPointee); 2297 Qualifiers Quals = CanonFromPointee.getQualifiers(); 2298 2299 if (StripObjCLifetime) 2300 Quals.removeObjCLifetime(); 2301 2302 // Exact qualifier match -> return the pointer type we're converting to. 2303 if (CanonToPointee.getLocalQualifiers() == Quals) { 2304 // ToType is exactly what we need. Return it. 2305 if (!ToType.isNull()) 2306 return ToType.getUnqualifiedType(); 2307 2308 // Build a pointer to ToPointee. It has the right qualifiers 2309 // already. 2310 if (isa<ObjCObjectPointerType>(ToType)) 2311 return Context.getObjCObjectPointerType(ToPointee); 2312 return Context.getPointerType(ToPointee); 2313 } 2314 2315 // Just build a canonical type that has the right qualifiers. 2316 QualType QualifiedCanonToPointee 2317 = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals); 2318 2319 if (isa<ObjCObjectPointerType>(ToType)) 2320 return Context.getObjCObjectPointerType(QualifiedCanonToPointee); 2321 return Context.getPointerType(QualifiedCanonToPointee); 2322 } 2323 2324 static bool isNullPointerConstantForConversion(Expr *Expr, 2325 bool InOverloadResolution, 2326 ASTContext &Context) { 2327 // Handle value-dependent integral null pointer constants correctly. 2328 // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903 2329 if (Expr->isValueDependent() && !Expr->isTypeDependent() && 2330 Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType()) 2331 return !InOverloadResolution; 2332 2333 return Expr->isNullPointerConstant(Context, 2334 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 2335 : Expr::NPC_ValueDependentIsNull); 2336 } 2337 2338 /// IsPointerConversion - Determines whether the conversion of the 2339 /// expression From, which has the (possibly adjusted) type FromType, 2340 /// can be converted to the type ToType via a pointer conversion (C++ 2341 /// 4.10). If so, returns true and places the converted type (that 2342 /// might differ from ToType in its cv-qualifiers at some level) into 2343 /// ConvertedType. 2344 /// 2345 /// This routine also supports conversions to and from block pointers 2346 /// and conversions with Objective-C's 'id', 'id<protocols...>', and 2347 /// pointers to interfaces. FIXME: Once we've determined the 2348 /// appropriate overloading rules for Objective-C, we may want to 2349 /// split the Objective-C checks into a different routine; however, 2350 /// GCC seems to consider all of these conversions to be pointer 2351 /// conversions, so for now they live here. IncompatibleObjC will be 2352 /// set if the conversion is an allowed Objective-C conversion that 2353 /// should result in a warning. 2354 bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType, 2355 bool InOverloadResolution, 2356 QualType& ConvertedType, 2357 bool &IncompatibleObjC) { 2358 IncompatibleObjC = false; 2359 if (isObjCPointerConversion(FromType, ToType, ConvertedType, 2360 IncompatibleObjC)) 2361 return true; 2362 2363 // Conversion from a null pointer constant to any Objective-C pointer type. 2364 if (ToType->isObjCObjectPointerType() && 2365 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 2366 ConvertedType = ToType; 2367 return true; 2368 } 2369 2370 // Blocks: Block pointers can be converted to void*. 2371 if (FromType->isBlockPointerType() && ToType->isPointerType() && 2372 ToType->castAs<PointerType>()->getPointeeType()->isVoidType()) { 2373 ConvertedType = ToType; 2374 return true; 2375 } 2376 // Blocks: A null pointer constant can be converted to a block 2377 // pointer type. 2378 if (ToType->isBlockPointerType() && 2379 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 2380 ConvertedType = ToType; 2381 return true; 2382 } 2383 2384 // If the left-hand-side is nullptr_t, the right side can be a null 2385 // pointer constant. 2386 if (ToType->isNullPtrType() && 2387 isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 2388 ConvertedType = ToType; 2389 return true; 2390 } 2391 2392 const PointerType* ToTypePtr = ToType->getAs<PointerType>(); 2393 if (!ToTypePtr) 2394 return false; 2395 2396 // A null pointer constant can be converted to a pointer type (C++ 4.10p1). 2397 if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { 2398 ConvertedType = ToType; 2399 return true; 2400 } 2401 2402 // Beyond this point, both types need to be pointers 2403 // , including objective-c pointers. 2404 QualType ToPointeeType = ToTypePtr->getPointeeType(); 2405 if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() && 2406 !getLangOpts().ObjCAutoRefCount) { 2407 ConvertedType = BuildSimilarlyQualifiedPointerType( 2408 FromType->getAs<ObjCObjectPointerType>(), 2409 ToPointeeType, 2410 ToType, Context); 2411 return true; 2412 } 2413 const PointerType *FromTypePtr = FromType->getAs<PointerType>(); 2414 if (!FromTypePtr) 2415 return false; 2416 2417 QualType FromPointeeType = FromTypePtr->getPointeeType(); 2418 2419 // If the unqualified pointee types are the same, this can't be a 2420 // pointer conversion, so don't do all of the work below. 2421 if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) 2422 return false; 2423 2424 // An rvalue of type "pointer to cv T," where T is an object type, 2425 // can be converted to an rvalue of type "pointer to cv void" (C++ 2426 // 4.10p2). 2427 if (FromPointeeType->isIncompleteOrObjectType() && 2428 ToPointeeType->isVoidType()) { 2429 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 2430 ToPointeeType, 2431 ToType, Context, 2432 /*StripObjCLifetime=*/true); 2433 return true; 2434 } 2435 2436 // MSVC allows implicit function to void* type conversion. 2437 if (getLangOpts().MSVCCompat && FromPointeeType->isFunctionType() && 2438 ToPointeeType->isVoidType()) { 2439 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 2440 ToPointeeType, 2441 ToType, Context); 2442 return true; 2443 } 2444 2445 // When we're overloading in C, we allow a special kind of pointer 2446 // conversion for compatible-but-not-identical pointee types. 2447 if (!getLangOpts().CPlusPlus && 2448 Context.typesAreCompatible(FromPointeeType, ToPointeeType)) { 2449 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 2450 ToPointeeType, 2451 ToType, Context); 2452 return true; 2453 } 2454 2455 // C++ [conv.ptr]p3: 2456 // 2457 // An rvalue of type "pointer to cv D," where D is a class type, 2458 // can be converted to an rvalue of type "pointer to cv B," where 2459 // B is a base class (clause 10) of D. If B is an inaccessible 2460 // (clause 11) or ambiguous (10.2) base class of D, a program that 2461 // necessitates this conversion is ill-formed. The result of the 2462 // conversion is a pointer to the base class sub-object of the 2463 // derived class object. The null pointer value is converted to 2464 // the null pointer value of the destination type. 2465 // 2466 // Note that we do not check for ambiguity or inaccessibility 2467 // here. That is handled by CheckPointerConversion. 2468 if (getLangOpts().CPlusPlus && FromPointeeType->isRecordType() && 2469 ToPointeeType->isRecordType() && 2470 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) && 2471 IsDerivedFrom(From->getBeginLoc(), FromPointeeType, ToPointeeType)) { 2472 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 2473 ToPointeeType, 2474 ToType, Context); 2475 return true; 2476 } 2477 2478 if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() && 2479 Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) { 2480 ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, 2481 ToPointeeType, 2482 ToType, Context); 2483 return true; 2484 } 2485 2486 return false; 2487 } 2488 2489 /// Adopt the given qualifiers for the given type. 2490 static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){ 2491 Qualifiers TQs = T.getQualifiers(); 2492 2493 // Check whether qualifiers already match. 2494 if (TQs == Qs) 2495 return T; 2496 2497 if (Qs.compatiblyIncludes(TQs)) 2498 return Context.getQualifiedType(T, Qs); 2499 2500 return Context.getQualifiedType(T.getUnqualifiedType(), Qs); 2501 } 2502 2503 /// isObjCPointerConversion - Determines whether this is an 2504 /// Objective-C pointer conversion. Subroutine of IsPointerConversion, 2505 /// with the same arguments and return values. 2506 bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType, 2507 QualType& ConvertedType, 2508 bool &IncompatibleObjC) { 2509 if (!getLangOpts().ObjC) 2510 return false; 2511 2512 // The set of qualifiers on the type we're converting from. 2513 Qualifiers FromQualifiers = FromType.getQualifiers(); 2514 2515 // First, we handle all conversions on ObjC object pointer types. 2516 const ObjCObjectPointerType* ToObjCPtr = 2517 ToType->getAs<ObjCObjectPointerType>(); 2518 const ObjCObjectPointerType *FromObjCPtr = 2519 FromType->getAs<ObjCObjectPointerType>(); 2520 2521 if (ToObjCPtr && FromObjCPtr) { 2522 // If the pointee types are the same (ignoring qualifications), 2523 // then this is not a pointer conversion. 2524 if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(), 2525 FromObjCPtr->getPointeeType())) 2526 return false; 2527 2528 // Conversion between Objective-C pointers. 2529 if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) { 2530 const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType(); 2531 const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType(); 2532 if (getLangOpts().CPlusPlus && LHS && RHS && 2533 !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs( 2534 FromObjCPtr->getPointeeType())) 2535 return false; 2536 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr, 2537 ToObjCPtr->getPointeeType(), 2538 ToType, Context); 2539 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); 2540 return true; 2541 } 2542 2543 if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) { 2544 // Okay: this is some kind of implicit downcast of Objective-C 2545 // interfaces, which is permitted. However, we're going to 2546 // complain about it. 2547 IncompatibleObjC = true; 2548 ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr, 2549 ToObjCPtr->getPointeeType(), 2550 ToType, Context); 2551 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); 2552 return true; 2553 } 2554 } 2555 // Beyond this point, both types need to be C pointers or block pointers. 2556 QualType ToPointeeType; 2557 if (const PointerType *ToCPtr = ToType->getAs<PointerType>()) 2558 ToPointeeType = ToCPtr->getPointeeType(); 2559 else if (const BlockPointerType *ToBlockPtr = 2560 ToType->getAs<BlockPointerType>()) { 2561 // Objective C++: We're able to convert from a pointer to any object 2562 // to a block pointer type. 2563 if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) { 2564 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); 2565 return true; 2566 } 2567 ToPointeeType = ToBlockPtr->getPointeeType(); 2568 } 2569 else if (FromType->getAs<BlockPointerType>() && 2570 ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) { 2571 // Objective C++: We're able to convert from a block pointer type to a 2572 // pointer to any object. 2573 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); 2574 return true; 2575 } 2576 else 2577 return false; 2578 2579 QualType FromPointeeType; 2580 if (const PointerType *FromCPtr = FromType->getAs<PointerType>()) 2581 FromPointeeType = FromCPtr->getPointeeType(); 2582 else if (const BlockPointerType *FromBlockPtr = 2583 FromType->getAs<BlockPointerType>()) 2584 FromPointeeType = FromBlockPtr->getPointeeType(); 2585 else 2586 return false; 2587 2588 // If we have pointers to pointers, recursively check whether this 2589 // is an Objective-C conversion. 2590 if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() && 2591 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 2592 IncompatibleObjC)) { 2593 // We always complain about this conversion. 2594 IncompatibleObjC = true; 2595 ConvertedType = Context.getPointerType(ConvertedType); 2596 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); 2597 return true; 2598 } 2599 // Allow conversion of pointee being objective-c pointer to another one; 2600 // as in I* to id. 2601 if (FromPointeeType->getAs<ObjCObjectPointerType>() && 2602 ToPointeeType->getAs<ObjCObjectPointerType>() && 2603 isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, 2604 IncompatibleObjC)) { 2605 2606 ConvertedType = Context.getPointerType(ConvertedType); 2607 ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); 2608 return true; 2609 } 2610 2611 // If we have pointers to functions or blocks, check whether the only 2612 // differences in the argument and result types are in Objective-C 2613 // pointer conversions. If so, we permit the conversion (but 2614 // complain about it). 2615 const FunctionProtoType *FromFunctionType 2616 = FromPointeeType->getAs<FunctionProtoType>(); 2617 const FunctionProtoType *ToFunctionType 2618 = ToPointeeType->getAs<FunctionProtoType>(); 2619 if (FromFunctionType && ToFunctionType) { 2620 // If the function types are exactly the same, this isn't an 2621 // Objective-C pointer conversion. 2622 if (Context.getCanonicalType(FromPointeeType) 2623 == Context.getCanonicalType(ToPointeeType)) 2624 return false; 2625 2626 // Perform the quick checks that will tell us whether these 2627 // function types are obviously different. 2628 if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() || 2629 FromFunctionType->isVariadic() != ToFunctionType->isVariadic() || 2630 FromFunctionType->getMethodQuals() != ToFunctionType->getMethodQuals()) 2631 return false; 2632 2633 bool HasObjCConversion = false; 2634 if (Context.getCanonicalType(FromFunctionType->getReturnType()) == 2635 Context.getCanonicalType(ToFunctionType->getReturnType())) { 2636 // Okay, the types match exactly. Nothing to do. 2637 } else if (isObjCPointerConversion(FromFunctionType->getReturnType(), 2638 ToFunctionType->getReturnType(), 2639 ConvertedType, IncompatibleObjC)) { 2640 // Okay, we have an Objective-C pointer conversion. 2641 HasObjCConversion = true; 2642 } else { 2643 // Function types are too different. Abort. 2644 return false; 2645 } 2646 2647 // Check argument types. 2648 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams(); 2649 ArgIdx != NumArgs; ++ArgIdx) { 2650 QualType FromArgType = FromFunctionType->getParamType(ArgIdx); 2651 QualType ToArgType = ToFunctionType->getParamType(ArgIdx); 2652 if (Context.getCanonicalType(FromArgType) 2653 == Context.getCanonicalType(ToArgType)) { 2654 // Okay, the types match exactly. Nothing to do. 2655 } else if (isObjCPointerConversion(FromArgType, ToArgType, 2656 ConvertedType, IncompatibleObjC)) { 2657 // Okay, we have an Objective-C pointer conversion. 2658 HasObjCConversion = true; 2659 } else { 2660 // Argument types are too different. Abort. 2661 return false; 2662 } 2663 } 2664 2665 if (HasObjCConversion) { 2666 // We had an Objective-C conversion. Allow this pointer 2667 // conversion, but complain about it. 2668 ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); 2669 IncompatibleObjC = true; 2670 return true; 2671 } 2672 } 2673 2674 return false; 2675 } 2676 2677 /// Determine whether this is an Objective-C writeback conversion, 2678 /// used for parameter passing when performing automatic reference counting. 2679 /// 2680 /// \param FromType The type we're converting form. 2681 /// 2682 /// \param ToType The type we're converting to. 2683 /// 2684 /// \param ConvertedType The type that will be produced after applying 2685 /// this conversion. 2686 bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType, 2687 QualType &ConvertedType) { 2688 if (!getLangOpts().ObjCAutoRefCount || 2689 Context.hasSameUnqualifiedType(FromType, ToType)) 2690 return false; 2691 2692 // Parameter must be a pointer to __autoreleasing (with no other qualifiers). 2693 QualType ToPointee; 2694 if (const PointerType *ToPointer = ToType->getAs<PointerType>()) 2695 ToPointee = ToPointer->getPointeeType(); 2696 else 2697 return false; 2698 2699 Qualifiers ToQuals = ToPointee.getQualifiers(); 2700 if (!ToPointee->isObjCLifetimeType() || 2701 ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing || 2702 !ToQuals.withoutObjCLifetime().empty()) 2703 return false; 2704 2705 // Argument must be a pointer to __strong to __weak. 2706 QualType FromPointee; 2707 if (const PointerType *FromPointer = FromType->getAs<PointerType>()) 2708 FromPointee = FromPointer->getPointeeType(); 2709 else 2710 return false; 2711 2712 Qualifiers FromQuals = FromPointee.getQualifiers(); 2713 if (!FromPointee->isObjCLifetimeType() || 2714 (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong && 2715 FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak)) 2716 return false; 2717 2718 // Make sure that we have compatible qualifiers. 2719 FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing); 2720 if (!ToQuals.compatiblyIncludes(FromQuals)) 2721 return false; 2722 2723 // Remove qualifiers from the pointee type we're converting from; they 2724 // aren't used in the compatibility check belong, and we'll be adding back 2725 // qualifiers (with __autoreleasing) if the compatibility check succeeds. 2726 FromPointee = FromPointee.getUnqualifiedType(); 2727 2728 // The unqualified form of the pointee types must be compatible. 2729 ToPointee = ToPointee.getUnqualifiedType(); 2730 bool IncompatibleObjC; 2731 if (Context.typesAreCompatible(FromPointee, ToPointee)) 2732 FromPointee = ToPointee; 2733 else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee, 2734 IncompatibleObjC)) 2735 return false; 2736 2737 /// Construct the type we're converting to, which is a pointer to 2738 /// __autoreleasing pointee. 2739 FromPointee = Context.getQualifiedType(FromPointee, FromQuals); 2740 ConvertedType = Context.getPointerType(FromPointee); 2741 return true; 2742 } 2743 2744 bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType, 2745 QualType& ConvertedType) { 2746 QualType ToPointeeType; 2747 if (const BlockPointerType *ToBlockPtr = 2748 ToType->getAs<BlockPointerType>()) 2749 ToPointeeType = ToBlockPtr->getPointeeType(); 2750 else 2751 return false; 2752 2753 QualType FromPointeeType; 2754 if (const BlockPointerType *FromBlockPtr = 2755 FromType->getAs<BlockPointerType>()) 2756 FromPointeeType = FromBlockPtr->getPointeeType(); 2757 else 2758 return false; 2759 // We have pointer to blocks, check whether the only 2760 // differences in the argument and result types are in Objective-C 2761 // pointer conversions. If so, we permit the conversion. 2762 2763 const FunctionProtoType *FromFunctionType 2764 = FromPointeeType->getAs<FunctionProtoType>(); 2765 const FunctionProtoType *ToFunctionType 2766 = ToPointeeType->getAs<FunctionProtoType>(); 2767 2768 if (!FromFunctionType || !ToFunctionType) 2769 return false; 2770 2771 if (Context.hasSameType(FromPointeeType, ToPointeeType)) 2772 return true; 2773 2774 // Perform the quick checks that will tell us whether these 2775 // function types are obviously different. 2776 if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() || 2777 FromFunctionType->isVariadic() != ToFunctionType->isVariadic()) 2778 return false; 2779 2780 FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo(); 2781 FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo(); 2782 if (FromEInfo != ToEInfo) 2783 return false; 2784 2785 bool IncompatibleObjC = false; 2786 if (Context.hasSameType(FromFunctionType->getReturnType(), 2787 ToFunctionType->getReturnType())) { 2788 // Okay, the types match exactly. Nothing to do. 2789 } else { 2790 QualType RHS = FromFunctionType->getReturnType(); 2791 QualType LHS = ToFunctionType->getReturnType(); 2792 if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) && 2793 !RHS.hasQualifiers() && LHS.hasQualifiers()) 2794 LHS = LHS.getUnqualifiedType(); 2795 2796 if (Context.hasSameType(RHS,LHS)) { 2797 // OK exact match. 2798 } else if (isObjCPointerConversion(RHS, LHS, 2799 ConvertedType, IncompatibleObjC)) { 2800 if (IncompatibleObjC) 2801 return false; 2802 // Okay, we have an Objective-C pointer conversion. 2803 } 2804 else 2805 return false; 2806 } 2807 2808 // Check argument types. 2809 for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams(); 2810 ArgIdx != NumArgs; ++ArgIdx) { 2811 IncompatibleObjC = false; 2812 QualType FromArgType = FromFunctionType->getParamType(ArgIdx); 2813 QualType ToArgType = ToFunctionType->getParamType(ArgIdx); 2814 if (Context.hasSameType(FromArgType, ToArgType)) { 2815 // Okay, the types match exactly. Nothing to do. 2816 } else if (isObjCPointerConversion(ToArgType, FromArgType, 2817 ConvertedType, IncompatibleObjC)) { 2818 if (IncompatibleObjC) 2819 return false; 2820 // Okay, we have an Objective-C pointer conversion. 2821 } else 2822 // Argument types are too different. Abort. 2823 return false; 2824 } 2825 2826 SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos; 2827 bool CanUseToFPT, CanUseFromFPT; 2828 if (!Context.mergeExtParameterInfo(ToFunctionType, FromFunctionType, 2829 CanUseToFPT, CanUseFromFPT, 2830 NewParamInfos)) 2831 return false; 2832 2833 ConvertedType = ToType; 2834 return true; 2835 } 2836 2837 enum { 2838 ft_default, 2839 ft_different_class, 2840 ft_parameter_arity, 2841 ft_parameter_mismatch, 2842 ft_return_type, 2843 ft_qualifer_mismatch, 2844 ft_noexcept 2845 }; 2846 2847 /// Attempts to get the FunctionProtoType from a Type. Handles 2848 /// MemberFunctionPointers properly. 2849 static const FunctionProtoType *tryGetFunctionProtoType(QualType FromType) { 2850 if (auto *FPT = FromType->getAs<FunctionProtoType>()) 2851 return FPT; 2852 2853 if (auto *MPT = FromType->getAs<MemberPointerType>()) 2854 return MPT->getPointeeType()->getAs<FunctionProtoType>(); 2855 2856 return nullptr; 2857 } 2858 2859 /// HandleFunctionTypeMismatch - Gives diagnostic information for differeing 2860 /// function types. Catches different number of parameter, mismatch in 2861 /// parameter types, and different return types. 2862 void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag, 2863 QualType FromType, QualType ToType) { 2864 // If either type is not valid, include no extra info. 2865 if (FromType.isNull() || ToType.isNull()) { 2866 PDiag << ft_default; 2867 return; 2868 } 2869 2870 // Get the function type from the pointers. 2871 if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) { 2872 const auto *FromMember = FromType->castAs<MemberPointerType>(), 2873 *ToMember = ToType->castAs<MemberPointerType>(); 2874 if (!Context.hasSameType(FromMember->getClass(), ToMember->getClass())) { 2875 PDiag << ft_different_class << QualType(ToMember->getClass(), 0) 2876 << QualType(FromMember->getClass(), 0); 2877 return; 2878 } 2879 FromType = FromMember->getPointeeType(); 2880 ToType = ToMember->getPointeeType(); 2881 } 2882 2883 if (FromType->isPointerType()) 2884 FromType = FromType->getPointeeType(); 2885 if (ToType->isPointerType()) 2886 ToType = ToType->getPointeeType(); 2887 2888 // Remove references. 2889 FromType = FromType.getNonReferenceType(); 2890 ToType = ToType.getNonReferenceType(); 2891 2892 // Don't print extra info for non-specialized template functions. 2893 if (FromType->isInstantiationDependentType() && 2894 !FromType->getAs<TemplateSpecializationType>()) { 2895 PDiag << ft_default; 2896 return; 2897 } 2898 2899 // No extra info for same types. 2900 if (Context.hasSameType(FromType, ToType)) { 2901 PDiag << ft_default; 2902 return; 2903 } 2904 2905 const FunctionProtoType *FromFunction = tryGetFunctionProtoType(FromType), 2906 *ToFunction = tryGetFunctionProtoType(ToType); 2907 2908 // Both types need to be function types. 2909 if (!FromFunction || !ToFunction) { 2910 PDiag << ft_default; 2911 return; 2912 } 2913 2914 if (FromFunction->getNumParams() != ToFunction->getNumParams()) { 2915 PDiag << ft_parameter_arity << ToFunction->getNumParams() 2916 << FromFunction->getNumParams(); 2917 return; 2918 } 2919 2920 // Handle different parameter types. 2921 unsigned ArgPos; 2922 if (!FunctionParamTypesAreEqual(FromFunction, ToFunction, &ArgPos)) { 2923 PDiag << ft_parameter_mismatch << ArgPos + 1 2924 << ToFunction->getParamType(ArgPos) 2925 << FromFunction->getParamType(ArgPos); 2926 return; 2927 } 2928 2929 // Handle different return type. 2930 if (!Context.hasSameType(FromFunction->getReturnType(), 2931 ToFunction->getReturnType())) { 2932 PDiag << ft_return_type << ToFunction->getReturnType() 2933 << FromFunction->getReturnType(); 2934 return; 2935 } 2936 2937 if (FromFunction->getMethodQuals() != ToFunction->getMethodQuals()) { 2938 PDiag << ft_qualifer_mismatch << ToFunction->getMethodQuals() 2939 << FromFunction->getMethodQuals(); 2940 return; 2941 } 2942 2943 // Handle exception specification differences on canonical type (in C++17 2944 // onwards). 2945 if (cast<FunctionProtoType>(FromFunction->getCanonicalTypeUnqualified()) 2946 ->isNothrow() != 2947 cast<FunctionProtoType>(ToFunction->getCanonicalTypeUnqualified()) 2948 ->isNothrow()) { 2949 PDiag << ft_noexcept; 2950 return; 2951 } 2952 2953 // Unable to find a difference, so add no extra info. 2954 PDiag << ft_default; 2955 } 2956 2957 /// FunctionParamTypesAreEqual - This routine checks two function proto types 2958 /// for equality of their argument types. Caller has already checked that 2959 /// they have same number of arguments. If the parameters are different, 2960 /// ArgPos will have the parameter index of the first different parameter. 2961 bool Sema::FunctionParamTypesAreEqual(const FunctionProtoType *OldType, 2962 const FunctionProtoType *NewType, 2963 unsigned *ArgPos) { 2964 for (FunctionProtoType::param_type_iterator O = OldType->param_type_begin(), 2965 N = NewType->param_type_begin(), 2966 E = OldType->param_type_end(); 2967 O && (O != E); ++O, ++N) { 2968 // Ignore address spaces in pointee type. This is to disallow overloading 2969 // on __ptr32/__ptr64 address spaces. 2970 QualType Old = Context.removePtrSizeAddrSpace(O->getUnqualifiedType()); 2971 QualType New = Context.removePtrSizeAddrSpace(N->getUnqualifiedType()); 2972 2973 if (!Context.hasSameType(Old, New)) { 2974 if (ArgPos) 2975 *ArgPos = O - OldType->param_type_begin(); 2976 return false; 2977 } 2978 } 2979 return true; 2980 } 2981 2982 /// CheckPointerConversion - Check the pointer conversion from the 2983 /// expression From to the type ToType. This routine checks for 2984 /// ambiguous or inaccessible derived-to-base pointer 2985 /// conversions for which IsPointerConversion has already returned 2986 /// true. It returns true and produces a diagnostic if there was an 2987 /// error, or returns false otherwise. 2988 bool Sema::CheckPointerConversion(Expr *From, QualType ToType, 2989 CastKind &Kind, 2990 CXXCastPath& BasePath, 2991 bool IgnoreBaseAccess, 2992 bool Diagnose) { 2993 QualType FromType = From->getType(); 2994 bool IsCStyleOrFunctionalCast = IgnoreBaseAccess; 2995 2996 Kind = CK_BitCast; 2997 2998 if (Diagnose && !IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() && 2999 From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull) == 3000 Expr::NPCK_ZeroExpression) { 3001 if (Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy)) 3002 DiagRuntimeBehavior(From->getExprLoc(), From, 3003 PDiag(diag::warn_impcast_bool_to_null_pointer) 3004 << ToType << From->getSourceRange()); 3005 else if (!isUnevaluatedContext()) 3006 Diag(From->getExprLoc(), diag::warn_non_literal_null_pointer) 3007 << ToType << From->getSourceRange(); 3008 } 3009 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) { 3010 if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) { 3011 QualType FromPointeeType = FromPtrType->getPointeeType(), 3012 ToPointeeType = ToPtrType->getPointeeType(); 3013 3014 if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && 3015 !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) { 3016 // We must have a derived-to-base conversion. Check an 3017 // ambiguous or inaccessible conversion. 3018 unsigned InaccessibleID = 0; 3019 unsigned AmbiguousID = 0; 3020 if (Diagnose) { 3021 InaccessibleID = diag::err_upcast_to_inaccessible_base; 3022 AmbiguousID = diag::err_ambiguous_derived_to_base_conv; 3023 } 3024 if (CheckDerivedToBaseConversion( 3025 FromPointeeType, ToPointeeType, InaccessibleID, AmbiguousID, 3026 From->getExprLoc(), From->getSourceRange(), DeclarationName(), 3027 &BasePath, IgnoreBaseAccess)) 3028 return true; 3029 3030 // The conversion was successful. 3031 Kind = CK_DerivedToBase; 3032 } 3033 3034 if (Diagnose && !IsCStyleOrFunctionalCast && 3035 FromPointeeType->isFunctionType() && ToPointeeType->isVoidType()) { 3036 assert(getLangOpts().MSVCCompat && 3037 "this should only be possible with MSVCCompat!"); 3038 Diag(From->getExprLoc(), diag::ext_ms_impcast_fn_obj) 3039 << From->getSourceRange(); 3040 } 3041 } 3042 } else if (const ObjCObjectPointerType *ToPtrType = 3043 ToType->getAs<ObjCObjectPointerType>()) { 3044 if (const ObjCObjectPointerType *FromPtrType = 3045 FromType->getAs<ObjCObjectPointerType>()) { 3046 // Objective-C++ conversions are always okay. 3047 // FIXME: We should have a different class of conversions for the 3048 // Objective-C++ implicit conversions. 3049 if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType()) 3050 return false; 3051 } else if (FromType->isBlockPointerType()) { 3052 Kind = CK_BlockPointerToObjCPointerCast; 3053 } else { 3054 Kind = CK_CPointerToObjCPointerCast; 3055 } 3056 } else if (ToType->isBlockPointerType()) { 3057 if (!FromType->isBlockPointerType()) 3058 Kind = CK_AnyPointerToBlockPointerCast; 3059 } 3060 3061 // We shouldn't fall into this case unless it's valid for other 3062 // reasons. 3063 if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) 3064 Kind = CK_NullToPointer; 3065 3066 return false; 3067 } 3068 3069 /// IsMemberPointerConversion - Determines whether the conversion of the 3070 /// expression From, which has the (possibly adjusted) type FromType, can be 3071 /// converted to the type ToType via a member pointer conversion (C++ 4.11). 3072 /// If so, returns true and places the converted type (that might differ from 3073 /// ToType in its cv-qualifiers at some level) into ConvertedType. 3074 bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType, 3075 QualType ToType, 3076 bool InOverloadResolution, 3077 QualType &ConvertedType) { 3078 const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>(); 3079 if (!ToTypePtr) 3080 return false; 3081 3082 // A null pointer constant can be converted to a member pointer (C++ 4.11p1) 3083 if (From->isNullPointerConstant(Context, 3084 InOverloadResolution? Expr::NPC_ValueDependentIsNotNull 3085 : Expr::NPC_ValueDependentIsNull)) { 3086 ConvertedType = ToType; 3087 return true; 3088 } 3089 3090 // Otherwise, both types have to be member pointers. 3091 const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>(); 3092 if (!FromTypePtr) 3093 return false; 3094 3095 // A pointer to member of B can be converted to a pointer to member of D, 3096 // where D is derived from B (C++ 4.11p2). 3097 QualType FromClass(FromTypePtr->getClass(), 0); 3098 QualType ToClass(ToTypePtr->getClass(), 0); 3099 3100 if (!Context.hasSameUnqualifiedType(FromClass, ToClass) && 3101 IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass)) { 3102 ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(), 3103 ToClass.getTypePtr()); 3104 return true; 3105 } 3106 3107 return false; 3108 } 3109 3110 /// CheckMemberPointerConversion - Check the member pointer conversion from the 3111 /// expression From to the type ToType. This routine checks for ambiguous or 3112 /// virtual or inaccessible base-to-derived member pointer conversions 3113 /// for which IsMemberPointerConversion has already returned true. It returns 3114 /// true and produces a diagnostic if there was an error, or returns false 3115 /// otherwise. 3116 bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType, 3117 CastKind &Kind, 3118 CXXCastPath &BasePath, 3119 bool IgnoreBaseAccess) { 3120 QualType FromType = From->getType(); 3121 const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>(); 3122 if (!FromPtrType) { 3123 // This must be a null pointer to member pointer conversion 3124 assert(From->isNullPointerConstant(Context, 3125 Expr::NPC_ValueDependentIsNull) && 3126 "Expr must be null pointer constant!"); 3127 Kind = CK_NullToMemberPointer; 3128 return false; 3129 } 3130 3131 const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>(); 3132 assert(ToPtrType && "No member pointer cast has a target type " 3133 "that is not a member pointer."); 3134 3135 QualType FromClass = QualType(FromPtrType->getClass(), 0); 3136 QualType ToClass = QualType(ToPtrType->getClass(), 0); 3137 3138 // FIXME: What about dependent types? 3139 assert(FromClass->isRecordType() && "Pointer into non-class."); 3140 assert(ToClass->isRecordType() && "Pointer into non-class."); 3141 3142 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 3143 /*DetectVirtual=*/true); 3144 bool DerivationOkay = 3145 IsDerivedFrom(From->getBeginLoc(), ToClass, FromClass, Paths); 3146 assert(DerivationOkay && 3147 "Should not have been called if derivation isn't OK."); 3148 (void)DerivationOkay; 3149 3150 if (Paths.isAmbiguous(Context.getCanonicalType(FromClass). 3151 getUnqualifiedType())) { 3152 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); 3153 Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv) 3154 << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange(); 3155 return true; 3156 } 3157 3158 if (const RecordType *VBase = Paths.getDetectedVirtual()) { 3159 Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual) 3160 << FromClass << ToClass << QualType(VBase, 0) 3161 << From->getSourceRange(); 3162 return true; 3163 } 3164 3165 if (!IgnoreBaseAccess) 3166 CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass, 3167 Paths.front(), 3168 diag::err_downcast_from_inaccessible_base); 3169 3170 // Must be a base to derived member conversion. 3171 BuildBasePathArray(Paths, BasePath); 3172 Kind = CK_BaseToDerivedMemberPointer; 3173 return false; 3174 } 3175 3176 /// Determine whether the lifetime conversion between the two given 3177 /// qualifiers sets is nontrivial. 3178 static bool isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals, 3179 Qualifiers ToQuals) { 3180 // Converting anything to const __unsafe_unretained is trivial. 3181 if (ToQuals.hasConst() && 3182 ToQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone) 3183 return false; 3184 3185 return true; 3186 } 3187 3188 /// Perform a single iteration of the loop for checking if a qualification 3189 /// conversion is valid. 3190 /// 3191 /// Specifically, check whether any change between the qualifiers of \p 3192 /// FromType and \p ToType is permissible, given knowledge about whether every 3193 /// outer layer is const-qualified. 3194 static bool isQualificationConversionStep(QualType FromType, QualType ToType, 3195 bool CStyle, bool IsTopLevel, 3196 bool &PreviousToQualsIncludeConst, 3197 bool &ObjCLifetimeConversion) { 3198 Qualifiers FromQuals = FromType.getQualifiers(); 3199 Qualifiers ToQuals = ToType.getQualifiers(); 3200 3201 // Ignore __unaligned qualifier if this type is void. 3202 if (ToType.getUnqualifiedType()->isVoidType()) 3203 FromQuals.removeUnaligned(); 3204 3205 // Objective-C ARC: 3206 // Check Objective-C lifetime conversions. 3207 if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime()) { 3208 if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) { 3209 if (isNonTrivialObjCLifetimeConversion(FromQuals, ToQuals)) 3210 ObjCLifetimeConversion = true; 3211 FromQuals.removeObjCLifetime(); 3212 ToQuals.removeObjCLifetime(); 3213 } else { 3214 // Qualification conversions cannot cast between different 3215 // Objective-C lifetime qualifiers. 3216 return false; 3217 } 3218 } 3219 3220 // Allow addition/removal of GC attributes but not changing GC attributes. 3221 if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() && 3222 (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) { 3223 FromQuals.removeObjCGCAttr(); 3224 ToQuals.removeObjCGCAttr(); 3225 } 3226 3227 // -- for every j > 0, if const is in cv 1,j then const is in cv 3228 // 2,j, and similarly for volatile. 3229 if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals)) 3230 return false; 3231 3232 // If address spaces mismatch: 3233 // - in top level it is only valid to convert to addr space that is a 3234 // superset in all cases apart from C-style casts where we allow 3235 // conversions between overlapping address spaces. 3236 // - in non-top levels it is not a valid conversion. 3237 if (ToQuals.getAddressSpace() != FromQuals.getAddressSpace() && 3238 (!IsTopLevel || 3239 !(ToQuals.isAddressSpaceSupersetOf(FromQuals) || 3240 (CStyle && FromQuals.isAddressSpaceSupersetOf(ToQuals))))) 3241 return false; 3242 3243 // -- if the cv 1,j and cv 2,j are different, then const is in 3244 // every cv for 0 < k < j. 3245 if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers() && 3246 !PreviousToQualsIncludeConst) 3247 return false; 3248 3249 // Keep track of whether all prior cv-qualifiers in the "to" type 3250 // include const. 3251 PreviousToQualsIncludeConst = 3252 PreviousToQualsIncludeConst && ToQuals.hasConst(); 3253 return true; 3254 } 3255 3256 /// IsQualificationConversion - Determines whether the conversion from 3257 /// an rvalue of type FromType to ToType is a qualification conversion 3258 /// (C++ 4.4). 3259 /// 3260 /// \param ObjCLifetimeConversion Output parameter that will be set to indicate 3261 /// when the qualification conversion involves a change in the Objective-C 3262 /// object lifetime. 3263 bool 3264 Sema::IsQualificationConversion(QualType FromType, QualType ToType, 3265 bool CStyle, bool &ObjCLifetimeConversion) { 3266 FromType = Context.getCanonicalType(FromType); 3267 ToType = Context.getCanonicalType(ToType); 3268 ObjCLifetimeConversion = false; 3269 3270 // If FromType and ToType are the same type, this is not a 3271 // qualification conversion. 3272 if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType()) 3273 return false; 3274 3275 // (C++ 4.4p4): 3276 // A conversion can add cv-qualifiers at levels other than the first 3277 // in multi-level pointers, subject to the following rules: [...] 3278 bool PreviousToQualsIncludeConst = true; 3279 bool UnwrappedAnyPointer = false; 3280 while (Context.UnwrapSimilarTypes(FromType, ToType)) { 3281 if (!isQualificationConversionStep( 3282 FromType, ToType, CStyle, !UnwrappedAnyPointer, 3283 PreviousToQualsIncludeConst, ObjCLifetimeConversion)) 3284 return false; 3285 UnwrappedAnyPointer = true; 3286 } 3287 3288 // We are left with FromType and ToType being the pointee types 3289 // after unwrapping the original FromType and ToType the same number 3290 // of times. If we unwrapped any pointers, and if FromType and 3291 // ToType have the same unqualified type (since we checked 3292 // qualifiers above), then this is a qualification conversion. 3293 return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType); 3294 } 3295 3296 /// - Determine whether this is a conversion from a scalar type to an 3297 /// atomic type. 3298 /// 3299 /// If successful, updates \c SCS's second and third steps in the conversion 3300 /// sequence to finish the conversion. 3301 static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType, 3302 bool InOverloadResolution, 3303 StandardConversionSequence &SCS, 3304 bool CStyle) { 3305 const AtomicType *ToAtomic = ToType->getAs<AtomicType>(); 3306 if (!ToAtomic) 3307 return false; 3308 3309 StandardConversionSequence InnerSCS; 3310 if (!IsStandardConversion(S, From, ToAtomic->getValueType(), 3311 InOverloadResolution, InnerSCS, 3312 CStyle, /*AllowObjCWritebackConversion=*/false)) 3313 return false; 3314 3315 SCS.Second = InnerSCS.Second; 3316 SCS.setToType(1, InnerSCS.getToType(1)); 3317 SCS.Third = InnerSCS.Third; 3318 SCS.QualificationIncludesObjCLifetime 3319 = InnerSCS.QualificationIncludesObjCLifetime; 3320 SCS.setToType(2, InnerSCS.getToType(2)); 3321 return true; 3322 } 3323 3324 static bool isFirstArgumentCompatibleWithType(ASTContext &Context, 3325 CXXConstructorDecl *Constructor, 3326 QualType Type) { 3327 const auto *CtorType = Constructor->getType()->castAs<FunctionProtoType>(); 3328 if (CtorType->getNumParams() > 0) { 3329 QualType FirstArg = CtorType->getParamType(0); 3330 if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType())) 3331 return true; 3332 } 3333 return false; 3334 } 3335 3336 static OverloadingResult 3337 IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType, 3338 CXXRecordDecl *To, 3339 UserDefinedConversionSequence &User, 3340 OverloadCandidateSet &CandidateSet, 3341 bool AllowExplicit) { 3342 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); 3343 for (auto *D : S.LookupConstructors(To)) { 3344 auto Info = getConstructorInfo(D); 3345 if (!Info) 3346 continue; 3347 3348 bool Usable = !Info.Constructor->isInvalidDecl() && 3349 S.isInitListConstructor(Info.Constructor); 3350 if (Usable) { 3351 bool SuppressUserConversions = false; 3352 if (Info.ConstructorTmpl) 3353 S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl, 3354 /*ExplicitArgs*/ nullptr, From, 3355 CandidateSet, SuppressUserConversions, 3356 /*PartialOverloading*/ false, 3357 AllowExplicit); 3358 else 3359 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, From, 3360 CandidateSet, SuppressUserConversions, 3361 /*PartialOverloading*/ false, AllowExplicit); 3362 } 3363 } 3364 3365 bool HadMultipleCandidates = (CandidateSet.size() > 1); 3366 3367 OverloadCandidateSet::iterator Best; 3368 switch (auto Result = 3369 CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) { 3370 case OR_Deleted: 3371 case OR_Success: { 3372 // Record the standard conversion we used and the conversion function. 3373 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function); 3374 QualType ThisType = Constructor->getThisType(); 3375 // Initializer lists don't have conversions as such. 3376 User.Before.setAsIdentityConversion(); 3377 User.HadMultipleCandidates = HadMultipleCandidates; 3378 User.ConversionFunction = Constructor; 3379 User.FoundConversionFunction = Best->FoundDecl; 3380 User.After.setAsIdentityConversion(); 3381 User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType()); 3382 User.After.setAllToTypes(ToType); 3383 return Result; 3384 } 3385 3386 case OR_No_Viable_Function: 3387 return OR_No_Viable_Function; 3388 case OR_Ambiguous: 3389 return OR_Ambiguous; 3390 } 3391 3392 llvm_unreachable("Invalid OverloadResult!"); 3393 } 3394 3395 /// Determines whether there is a user-defined conversion sequence 3396 /// (C++ [over.ics.user]) that converts expression From to the type 3397 /// ToType. If such a conversion exists, User will contain the 3398 /// user-defined conversion sequence that performs such a conversion 3399 /// and this routine will return true. Otherwise, this routine returns 3400 /// false and User is unspecified. 3401 /// 3402 /// \param AllowExplicit true if the conversion should consider C++0x 3403 /// "explicit" conversion functions as well as non-explicit conversion 3404 /// functions (C++0x [class.conv.fct]p2). 3405 /// 3406 /// \param AllowObjCConversionOnExplicit true if the conversion should 3407 /// allow an extra Objective-C pointer conversion on uses of explicit 3408 /// constructors. Requires \c AllowExplicit to also be set. 3409 static OverloadingResult 3410 IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, 3411 UserDefinedConversionSequence &User, 3412 OverloadCandidateSet &CandidateSet, 3413 AllowedExplicit AllowExplicit, 3414 bool AllowObjCConversionOnExplicit) { 3415 assert(AllowExplicit != AllowedExplicit::None || 3416 !AllowObjCConversionOnExplicit); 3417 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); 3418 3419 // Whether we will only visit constructors. 3420 bool ConstructorsOnly = false; 3421 3422 // If the type we are conversion to is a class type, enumerate its 3423 // constructors. 3424 if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) { 3425 // C++ [over.match.ctor]p1: 3426 // When objects of class type are direct-initialized (8.5), or 3427 // copy-initialized from an expression of the same or a 3428 // derived class type (8.5), overload resolution selects the 3429 // constructor. [...] For copy-initialization, the candidate 3430 // functions are all the converting constructors (12.3.1) of 3431 // that class. The argument list is the expression-list within 3432 // the parentheses of the initializer. 3433 if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) || 3434 (From->getType()->getAs<RecordType>() && 3435 S.IsDerivedFrom(From->getBeginLoc(), From->getType(), ToType))) 3436 ConstructorsOnly = true; 3437 3438 if (!S.isCompleteType(From->getExprLoc(), ToType)) { 3439 // We're not going to find any constructors. 3440 } else if (CXXRecordDecl *ToRecordDecl 3441 = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) { 3442 3443 Expr **Args = &From; 3444 unsigned NumArgs = 1; 3445 bool ListInitializing = false; 3446 if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) { 3447 // But first, see if there is an init-list-constructor that will work. 3448 OverloadingResult Result = IsInitializerListConstructorConversion( 3449 S, From, ToType, ToRecordDecl, User, CandidateSet, 3450 AllowExplicit == AllowedExplicit::All); 3451 if (Result != OR_No_Viable_Function) 3452 return Result; 3453 // Never mind. 3454 CandidateSet.clear( 3455 OverloadCandidateSet::CSK_InitByUserDefinedConversion); 3456 3457 // If we're list-initializing, we pass the individual elements as 3458 // arguments, not the entire list. 3459 Args = InitList->getInits(); 3460 NumArgs = InitList->getNumInits(); 3461 ListInitializing = true; 3462 } 3463 3464 for (auto *D : S.LookupConstructors(ToRecordDecl)) { 3465 auto Info = getConstructorInfo(D); 3466 if (!Info) 3467 continue; 3468 3469 bool Usable = !Info.Constructor->isInvalidDecl(); 3470 if (!ListInitializing) 3471 Usable = Usable && Info.Constructor->isConvertingConstructor( 3472 /*AllowExplicit*/ true); 3473 if (Usable) { 3474 bool SuppressUserConversions = !ConstructorsOnly; 3475 // C++20 [over.best.ics.general]/4.5: 3476 // if the target is the first parameter of a constructor [of class 3477 // X] and the constructor [...] is a candidate by [...] the second 3478 // phase of [over.match.list] when the initializer list has exactly 3479 // one element that is itself an initializer list, [...] and the 3480 // conversion is to X or reference to cv X, user-defined conversion 3481 // sequences are not cnosidered. 3482 if (SuppressUserConversions && ListInitializing) { 3483 SuppressUserConversions = 3484 NumArgs == 1 && isa<InitListExpr>(Args[0]) && 3485 isFirstArgumentCompatibleWithType(S.Context, Info.Constructor, 3486 ToType); 3487 } 3488 if (Info.ConstructorTmpl) 3489 S.AddTemplateOverloadCandidate( 3490 Info.ConstructorTmpl, Info.FoundDecl, 3491 /*ExplicitArgs*/ nullptr, llvm::makeArrayRef(Args, NumArgs), 3492 CandidateSet, SuppressUserConversions, 3493 /*PartialOverloading*/ false, 3494 AllowExplicit == AllowedExplicit::All); 3495 else 3496 // Allow one user-defined conversion when user specifies a 3497 // From->ToType conversion via an static cast (c-style, etc). 3498 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, 3499 llvm::makeArrayRef(Args, NumArgs), 3500 CandidateSet, SuppressUserConversions, 3501 /*PartialOverloading*/ false, 3502 AllowExplicit == AllowedExplicit::All); 3503 } 3504 } 3505 } 3506 } 3507 3508 // Enumerate conversion functions, if we're allowed to. 3509 if (ConstructorsOnly || isa<InitListExpr>(From)) { 3510 } else if (!S.isCompleteType(From->getBeginLoc(), From->getType())) { 3511 // No conversion functions from incomplete types. 3512 } else if (const RecordType *FromRecordType = 3513 From->getType()->getAs<RecordType>()) { 3514 if (CXXRecordDecl *FromRecordDecl 3515 = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) { 3516 // Add all of the conversion functions as candidates. 3517 const auto &Conversions = FromRecordDecl->getVisibleConversionFunctions(); 3518 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 3519 DeclAccessPair FoundDecl = I.getPair(); 3520 NamedDecl *D = FoundDecl.getDecl(); 3521 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 3522 if (isa<UsingShadowDecl>(D)) 3523 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 3524 3525 CXXConversionDecl *Conv; 3526 FunctionTemplateDecl *ConvTemplate; 3527 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D))) 3528 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 3529 else 3530 Conv = cast<CXXConversionDecl>(D); 3531 3532 if (ConvTemplate) 3533 S.AddTemplateConversionCandidate( 3534 ConvTemplate, FoundDecl, ActingContext, From, ToType, 3535 CandidateSet, AllowObjCConversionOnExplicit, 3536 AllowExplicit != AllowedExplicit::None); 3537 else 3538 S.AddConversionCandidate(Conv, FoundDecl, ActingContext, From, ToType, 3539 CandidateSet, AllowObjCConversionOnExplicit, 3540 AllowExplicit != AllowedExplicit::None); 3541 } 3542 } 3543 } 3544 3545 bool HadMultipleCandidates = (CandidateSet.size() > 1); 3546 3547 OverloadCandidateSet::iterator Best; 3548 switch (auto Result = 3549 CandidateSet.BestViableFunction(S, From->getBeginLoc(), Best)) { 3550 case OR_Success: 3551 case OR_Deleted: 3552 // Record the standard conversion we used and the conversion function. 3553 if (CXXConstructorDecl *Constructor 3554 = dyn_cast<CXXConstructorDecl>(Best->Function)) { 3555 // C++ [over.ics.user]p1: 3556 // If the user-defined conversion is specified by a 3557 // constructor (12.3.1), the initial standard conversion 3558 // sequence converts the source type to the type required by 3559 // the argument of the constructor. 3560 // 3561 QualType ThisType = Constructor->getThisType(); 3562 if (isa<InitListExpr>(From)) { 3563 // Initializer lists don't have conversions as such. 3564 User.Before.setAsIdentityConversion(); 3565 } else { 3566 if (Best->Conversions[0].isEllipsis()) 3567 User.EllipsisConversion = true; 3568 else { 3569 User.Before = Best->Conversions[0].Standard; 3570 User.EllipsisConversion = false; 3571 } 3572 } 3573 User.HadMultipleCandidates = HadMultipleCandidates; 3574 User.ConversionFunction = Constructor; 3575 User.FoundConversionFunction = Best->FoundDecl; 3576 User.After.setAsIdentityConversion(); 3577 User.After.setFromType(ThisType->castAs<PointerType>()->getPointeeType()); 3578 User.After.setAllToTypes(ToType); 3579 return Result; 3580 } 3581 if (CXXConversionDecl *Conversion 3582 = dyn_cast<CXXConversionDecl>(Best->Function)) { 3583 // C++ [over.ics.user]p1: 3584 // 3585 // [...] If the user-defined conversion is specified by a 3586 // conversion function (12.3.2), the initial standard 3587 // conversion sequence converts the source type to the 3588 // implicit object parameter of the conversion function. 3589 User.Before = Best->Conversions[0].Standard; 3590 User.HadMultipleCandidates = HadMultipleCandidates; 3591 User.ConversionFunction = Conversion; 3592 User.FoundConversionFunction = Best->FoundDecl; 3593 User.EllipsisConversion = false; 3594 3595 // C++ [over.ics.user]p2: 3596 // The second standard conversion sequence converts the 3597 // result of the user-defined conversion to the target type 3598 // for the sequence. Since an implicit conversion sequence 3599 // is an initialization, the special rules for 3600 // initialization by user-defined conversion apply when 3601 // selecting the best user-defined conversion for a 3602 // user-defined conversion sequence (see 13.3.3 and 3603 // 13.3.3.1). 3604 User.After = Best->FinalConversion; 3605 return Result; 3606 } 3607 llvm_unreachable("Not a constructor or conversion function?"); 3608 3609 case OR_No_Viable_Function: 3610 return OR_No_Viable_Function; 3611 3612 case OR_Ambiguous: 3613 return OR_Ambiguous; 3614 } 3615 3616 llvm_unreachable("Invalid OverloadResult!"); 3617 } 3618 3619 bool 3620 Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) { 3621 ImplicitConversionSequence ICS; 3622 OverloadCandidateSet CandidateSet(From->getExprLoc(), 3623 OverloadCandidateSet::CSK_Normal); 3624 OverloadingResult OvResult = 3625 IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined, 3626 CandidateSet, AllowedExplicit::None, false); 3627 3628 if (!(OvResult == OR_Ambiguous || 3629 (OvResult == OR_No_Viable_Function && !CandidateSet.empty()))) 3630 return false; 3631 3632 auto Cands = CandidateSet.CompleteCandidates( 3633 *this, 3634 OvResult == OR_Ambiguous ? OCD_AmbiguousCandidates : OCD_AllCandidates, 3635 From); 3636 if (OvResult == OR_Ambiguous) 3637 Diag(From->getBeginLoc(), diag::err_typecheck_ambiguous_condition) 3638 << From->getType() << ToType << From->getSourceRange(); 3639 else { // OR_No_Viable_Function && !CandidateSet.empty() 3640 if (!RequireCompleteType(From->getBeginLoc(), ToType, 3641 diag::err_typecheck_nonviable_condition_incomplete, 3642 From->getType(), From->getSourceRange())) 3643 Diag(From->getBeginLoc(), diag::err_typecheck_nonviable_condition) 3644 << false << From->getType() << From->getSourceRange() << ToType; 3645 } 3646 3647 CandidateSet.NoteCandidates( 3648 *this, From, Cands); 3649 return true; 3650 } 3651 3652 // Helper for compareConversionFunctions that gets the FunctionType that the 3653 // conversion-operator return value 'points' to, or nullptr. 3654 static const FunctionType * 3655 getConversionOpReturnTyAsFunction(CXXConversionDecl *Conv) { 3656 const FunctionType *ConvFuncTy = Conv->getType()->castAs<FunctionType>(); 3657 const PointerType *RetPtrTy = 3658 ConvFuncTy->getReturnType()->getAs<PointerType>(); 3659 3660 if (!RetPtrTy) 3661 return nullptr; 3662 3663 return RetPtrTy->getPointeeType()->getAs<FunctionType>(); 3664 } 3665 3666 /// Compare the user-defined conversion functions or constructors 3667 /// of two user-defined conversion sequences to determine whether any ordering 3668 /// is possible. 3669 static ImplicitConversionSequence::CompareKind 3670 compareConversionFunctions(Sema &S, FunctionDecl *Function1, 3671 FunctionDecl *Function2) { 3672 CXXConversionDecl *Conv1 = dyn_cast_or_null<CXXConversionDecl>(Function1); 3673 CXXConversionDecl *Conv2 = dyn_cast_or_null<CXXConversionDecl>(Function2); 3674 if (!Conv1 || !Conv2) 3675 return ImplicitConversionSequence::Indistinguishable; 3676 3677 if (!Conv1->getParent()->isLambda() || !Conv2->getParent()->isLambda()) 3678 return ImplicitConversionSequence::Indistinguishable; 3679 3680 // Objective-C++: 3681 // If both conversion functions are implicitly-declared conversions from 3682 // a lambda closure type to a function pointer and a block pointer, 3683 // respectively, always prefer the conversion to a function pointer, 3684 // because the function pointer is more lightweight and is more likely 3685 // to keep code working. 3686 if (S.getLangOpts().ObjC && S.getLangOpts().CPlusPlus11) { 3687 bool Block1 = Conv1->getConversionType()->isBlockPointerType(); 3688 bool Block2 = Conv2->getConversionType()->isBlockPointerType(); 3689 if (Block1 != Block2) 3690 return Block1 ? ImplicitConversionSequence::Worse 3691 : ImplicitConversionSequence::Better; 3692 } 3693 3694 // In order to support multiple calling conventions for the lambda conversion 3695 // operator (such as when the free and member function calling convention is 3696 // different), prefer the 'free' mechanism, followed by the calling-convention 3697 // of operator(). The latter is in place to support the MSVC-like solution of 3698 // defining ALL of the possible conversions in regards to calling-convention. 3699 const FunctionType *Conv1FuncRet = getConversionOpReturnTyAsFunction(Conv1); 3700 const FunctionType *Conv2FuncRet = getConversionOpReturnTyAsFunction(Conv2); 3701 3702 if (Conv1FuncRet && Conv2FuncRet && 3703 Conv1FuncRet->getCallConv() != Conv2FuncRet->getCallConv()) { 3704 CallingConv Conv1CC = Conv1FuncRet->getCallConv(); 3705 CallingConv Conv2CC = Conv2FuncRet->getCallConv(); 3706 3707 CXXMethodDecl *CallOp = Conv2->getParent()->getLambdaCallOperator(); 3708 const FunctionProtoType *CallOpProto = 3709 CallOp->getType()->getAs<FunctionProtoType>(); 3710 3711 CallingConv CallOpCC = 3712 CallOp->getType()->castAs<FunctionType>()->getCallConv(); 3713 CallingConv DefaultFree = S.Context.getDefaultCallingConvention( 3714 CallOpProto->isVariadic(), /*IsCXXMethod=*/false); 3715 CallingConv DefaultMember = S.Context.getDefaultCallingConvention( 3716 CallOpProto->isVariadic(), /*IsCXXMethod=*/true); 3717 3718 CallingConv PrefOrder[] = {DefaultFree, DefaultMember, CallOpCC}; 3719 for (CallingConv CC : PrefOrder) { 3720 if (Conv1CC == CC) 3721 return ImplicitConversionSequence::Better; 3722 if (Conv2CC == CC) 3723 return ImplicitConversionSequence::Worse; 3724 } 3725 } 3726 3727 return ImplicitConversionSequence::Indistinguishable; 3728 } 3729 3730 static bool hasDeprecatedStringLiteralToCharPtrConversion( 3731 const ImplicitConversionSequence &ICS) { 3732 return (ICS.isStandard() && ICS.Standard.DeprecatedStringLiteralToCharPtr) || 3733 (ICS.isUserDefined() && 3734 ICS.UserDefined.Before.DeprecatedStringLiteralToCharPtr); 3735 } 3736 3737 /// CompareImplicitConversionSequences - Compare two implicit 3738 /// conversion sequences to determine whether one is better than the 3739 /// other or if they are indistinguishable (C++ 13.3.3.2). 3740 static ImplicitConversionSequence::CompareKind 3741 CompareImplicitConversionSequences(Sema &S, SourceLocation Loc, 3742 const ImplicitConversionSequence& ICS1, 3743 const ImplicitConversionSequence& ICS2) 3744 { 3745 // (C++ 13.3.3.2p2): When comparing the basic forms of implicit 3746 // conversion sequences (as defined in 13.3.3.1) 3747 // -- a standard conversion sequence (13.3.3.1.1) is a better 3748 // conversion sequence than a user-defined conversion sequence or 3749 // an ellipsis conversion sequence, and 3750 // -- a user-defined conversion sequence (13.3.3.1.2) is a better 3751 // conversion sequence than an ellipsis conversion sequence 3752 // (13.3.3.1.3). 3753 // 3754 // C++0x [over.best.ics]p10: 3755 // For the purpose of ranking implicit conversion sequences as 3756 // described in 13.3.3.2, the ambiguous conversion sequence is 3757 // treated as a user-defined sequence that is indistinguishable 3758 // from any other user-defined conversion sequence. 3759 3760 // String literal to 'char *' conversion has been deprecated in C++03. It has 3761 // been removed from C++11. We still accept this conversion, if it happens at 3762 // the best viable function. Otherwise, this conversion is considered worse 3763 // than ellipsis conversion. Consider this as an extension; this is not in the 3764 // standard. For example: 3765 // 3766 // int &f(...); // #1 3767 // void f(char*); // #2 3768 // void g() { int &r = f("foo"); } 3769 // 3770 // In C++03, we pick #2 as the best viable function. 3771 // In C++11, we pick #1 as the best viable function, because ellipsis 3772 // conversion is better than string-literal to char* conversion (since there 3773 // is no such conversion in C++11). If there was no #1 at all or #1 couldn't 3774 // convert arguments, #2 would be the best viable function in C++11. 3775 // If the best viable function has this conversion, a warning will be issued 3776 // in C++03, or an ExtWarn (+SFINAE failure) will be issued in C++11. 3777 3778 if (S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings && 3779 hasDeprecatedStringLiteralToCharPtrConversion(ICS1) != 3780 hasDeprecatedStringLiteralToCharPtrConversion(ICS2) && 3781 // Ill-formedness must not differ 3782 ICS1.isBad() == ICS2.isBad()) 3783 return hasDeprecatedStringLiteralToCharPtrConversion(ICS1) 3784 ? ImplicitConversionSequence::Worse 3785 : ImplicitConversionSequence::Better; 3786 3787 if (ICS1.getKindRank() < ICS2.getKindRank()) 3788 return ImplicitConversionSequence::Better; 3789 if (ICS2.getKindRank() < ICS1.getKindRank()) 3790 return ImplicitConversionSequence::Worse; 3791 3792 // The following checks require both conversion sequences to be of 3793 // the same kind. 3794 if (ICS1.getKind() != ICS2.getKind()) 3795 return ImplicitConversionSequence::Indistinguishable; 3796 3797 ImplicitConversionSequence::CompareKind Result = 3798 ImplicitConversionSequence::Indistinguishable; 3799 3800 // Two implicit conversion sequences of the same form are 3801 // indistinguishable conversion sequences unless one of the 3802 // following rules apply: (C++ 13.3.3.2p3): 3803 3804 // List-initialization sequence L1 is a better conversion sequence than 3805 // list-initialization sequence L2 if: 3806 // - L1 converts to std::initializer_list<X> for some X and L2 does not, or, 3807 // if not that, 3808 // — L1 and L2 convert to arrays of the same element type, and either the 3809 // number of elements n_1 initialized by L1 is less than the number of 3810 // elements n_2 initialized by L2, or (unimplemented:C++20) n_1 = n_2 and L2 3811 // converts to an array of unknown bound and L1 does not, 3812 // even if one of the other rules in this paragraph would otherwise apply. 3813 if (!ICS1.isBad()) { 3814 bool StdInit1 = false, StdInit2 = false; 3815 if (ICS1.hasInitializerListContainerType()) 3816 StdInit1 = S.isStdInitializerList(ICS1.getInitializerListContainerType(), 3817 nullptr); 3818 if (ICS2.hasInitializerListContainerType()) 3819 StdInit2 = S.isStdInitializerList(ICS2.getInitializerListContainerType(), 3820 nullptr); 3821 if (StdInit1 != StdInit2) 3822 return StdInit1 ? ImplicitConversionSequence::Better 3823 : ImplicitConversionSequence::Worse; 3824 3825 if (ICS1.hasInitializerListContainerType() && 3826 ICS2.hasInitializerListContainerType()) 3827 if (auto *CAT1 = S.Context.getAsConstantArrayType( 3828 ICS1.getInitializerListContainerType())) 3829 if (auto *CAT2 = S.Context.getAsConstantArrayType( 3830 ICS2.getInitializerListContainerType())) 3831 if (S.Context.hasSameUnqualifiedType(CAT1->getElementType(), 3832 CAT2->getElementType()) && 3833 CAT1->getSize() != CAT2->getSize()) 3834 return CAT1->getSize().ult(CAT2->getSize()) 3835 ? ImplicitConversionSequence::Better 3836 : ImplicitConversionSequence::Worse; 3837 } 3838 3839 if (ICS1.isStandard()) 3840 // Standard conversion sequence S1 is a better conversion sequence than 3841 // standard conversion sequence S2 if [...] 3842 Result = CompareStandardConversionSequences(S, Loc, 3843 ICS1.Standard, ICS2.Standard); 3844 else if (ICS1.isUserDefined()) { 3845 // User-defined conversion sequence U1 is a better conversion 3846 // sequence than another user-defined conversion sequence U2 if 3847 // they contain the same user-defined conversion function or 3848 // constructor and if the second standard conversion sequence of 3849 // U1 is better than the second standard conversion sequence of 3850 // U2 (C++ 13.3.3.2p3). 3851 if (ICS1.UserDefined.ConversionFunction == 3852 ICS2.UserDefined.ConversionFunction) 3853 Result = CompareStandardConversionSequences(S, Loc, 3854 ICS1.UserDefined.After, 3855 ICS2.UserDefined.After); 3856 else 3857 Result = compareConversionFunctions(S, 3858 ICS1.UserDefined.ConversionFunction, 3859 ICS2.UserDefined.ConversionFunction); 3860 } 3861 3862 return Result; 3863 } 3864 3865 // Per 13.3.3.2p3, compare the given standard conversion sequences to 3866 // determine if one is a proper subset of the other. 3867 static ImplicitConversionSequence::CompareKind 3868 compareStandardConversionSubsets(ASTContext &Context, 3869 const StandardConversionSequence& SCS1, 3870 const StandardConversionSequence& SCS2) { 3871 ImplicitConversionSequence::CompareKind Result 3872 = ImplicitConversionSequence::Indistinguishable; 3873 3874 // the identity conversion sequence is considered to be a subsequence of 3875 // any non-identity conversion sequence 3876 if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion()) 3877 return ImplicitConversionSequence::Better; 3878 else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion()) 3879 return ImplicitConversionSequence::Worse; 3880 3881 if (SCS1.Second != SCS2.Second) { 3882 if (SCS1.Second == ICK_Identity) 3883 Result = ImplicitConversionSequence::Better; 3884 else if (SCS2.Second == ICK_Identity) 3885 Result = ImplicitConversionSequence::Worse; 3886 else 3887 return ImplicitConversionSequence::Indistinguishable; 3888 } else if (!Context.hasSimilarType(SCS1.getToType(1), SCS2.getToType(1))) 3889 return ImplicitConversionSequence::Indistinguishable; 3890 3891 if (SCS1.Third == SCS2.Third) { 3892 return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result 3893 : ImplicitConversionSequence::Indistinguishable; 3894 } 3895 3896 if (SCS1.Third == ICK_Identity) 3897 return Result == ImplicitConversionSequence::Worse 3898 ? ImplicitConversionSequence::Indistinguishable 3899 : ImplicitConversionSequence::Better; 3900 3901 if (SCS2.Third == ICK_Identity) 3902 return Result == ImplicitConversionSequence::Better 3903 ? ImplicitConversionSequence::Indistinguishable 3904 : ImplicitConversionSequence::Worse; 3905 3906 return ImplicitConversionSequence::Indistinguishable; 3907 } 3908 3909 /// Determine whether one of the given reference bindings is better 3910 /// than the other based on what kind of bindings they are. 3911 static bool 3912 isBetterReferenceBindingKind(const StandardConversionSequence &SCS1, 3913 const StandardConversionSequence &SCS2) { 3914 // C++0x [over.ics.rank]p3b4: 3915 // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an 3916 // implicit object parameter of a non-static member function declared 3917 // without a ref-qualifier, and *either* S1 binds an rvalue reference 3918 // to an rvalue and S2 binds an lvalue reference *or S1 binds an 3919 // lvalue reference to a function lvalue and S2 binds an rvalue 3920 // reference*. 3921 // 3922 // FIXME: Rvalue references. We're going rogue with the above edits, 3923 // because the semantics in the current C++0x working paper (N3225 at the 3924 // time of this writing) break the standard definition of std::forward 3925 // and std::reference_wrapper when dealing with references to functions. 3926 // Proposed wording changes submitted to CWG for consideration. 3927 if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier || 3928 SCS2.BindsImplicitObjectArgumentWithoutRefQualifier) 3929 return false; 3930 3931 return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue && 3932 SCS2.IsLvalueReference) || 3933 (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue && 3934 !SCS2.IsLvalueReference && SCS2.BindsToFunctionLvalue); 3935 } 3936 3937 enum class FixedEnumPromotion { 3938 None, 3939 ToUnderlyingType, 3940 ToPromotedUnderlyingType 3941 }; 3942 3943 /// Returns kind of fixed enum promotion the \a SCS uses. 3944 static FixedEnumPromotion 3945 getFixedEnumPromtion(Sema &S, const StandardConversionSequence &SCS) { 3946 3947 if (SCS.Second != ICK_Integral_Promotion) 3948 return FixedEnumPromotion::None; 3949 3950 QualType FromType = SCS.getFromType(); 3951 if (!FromType->isEnumeralType()) 3952 return FixedEnumPromotion::None; 3953 3954 EnumDecl *Enum = FromType->castAs<EnumType>()->getDecl(); 3955 if (!Enum->isFixed()) 3956 return FixedEnumPromotion::None; 3957 3958 QualType UnderlyingType = Enum->getIntegerType(); 3959 if (S.Context.hasSameType(SCS.getToType(1), UnderlyingType)) 3960 return FixedEnumPromotion::ToUnderlyingType; 3961 3962 return FixedEnumPromotion::ToPromotedUnderlyingType; 3963 } 3964 3965 /// CompareStandardConversionSequences - Compare two standard 3966 /// conversion sequences to determine whether one is better than the 3967 /// other or if they are indistinguishable (C++ 13.3.3.2p3). 3968 static ImplicitConversionSequence::CompareKind 3969 CompareStandardConversionSequences(Sema &S, SourceLocation Loc, 3970 const StandardConversionSequence& SCS1, 3971 const StandardConversionSequence& SCS2) 3972 { 3973 // Standard conversion sequence S1 is a better conversion sequence 3974 // than standard conversion sequence S2 if (C++ 13.3.3.2p3): 3975 3976 // -- S1 is a proper subsequence of S2 (comparing the conversion 3977 // sequences in the canonical form defined by 13.3.3.1.1, 3978 // excluding any Lvalue Transformation; the identity conversion 3979 // sequence is considered to be a subsequence of any 3980 // non-identity conversion sequence) or, if not that, 3981 if (ImplicitConversionSequence::CompareKind CK 3982 = compareStandardConversionSubsets(S.Context, SCS1, SCS2)) 3983 return CK; 3984 3985 // -- the rank of S1 is better than the rank of S2 (by the rules 3986 // defined below), or, if not that, 3987 ImplicitConversionRank Rank1 = SCS1.getRank(); 3988 ImplicitConversionRank Rank2 = SCS2.getRank(); 3989 if (Rank1 < Rank2) 3990 return ImplicitConversionSequence::Better; 3991 else if (Rank2 < Rank1) 3992 return ImplicitConversionSequence::Worse; 3993 3994 // (C++ 13.3.3.2p4): Two conversion sequences with the same rank 3995 // are indistinguishable unless one of the following rules 3996 // applies: 3997 3998 // A conversion that is not a conversion of a pointer, or 3999 // pointer to member, to bool is better than another conversion 4000 // that is such a conversion. 4001 if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool()) 4002 return SCS2.isPointerConversionToBool() 4003 ? ImplicitConversionSequence::Better 4004 : ImplicitConversionSequence::Worse; 4005 4006 // C++14 [over.ics.rank]p4b2: 4007 // This is retroactively applied to C++11 by CWG 1601. 4008 // 4009 // A conversion that promotes an enumeration whose underlying type is fixed 4010 // to its underlying type is better than one that promotes to the promoted 4011 // underlying type, if the two are different. 4012 FixedEnumPromotion FEP1 = getFixedEnumPromtion(S, SCS1); 4013 FixedEnumPromotion FEP2 = getFixedEnumPromtion(S, SCS2); 4014 if (FEP1 != FixedEnumPromotion::None && FEP2 != FixedEnumPromotion::None && 4015 FEP1 != FEP2) 4016 return FEP1 == FixedEnumPromotion::ToUnderlyingType 4017 ? ImplicitConversionSequence::Better 4018 : ImplicitConversionSequence::Worse; 4019 4020 // C++ [over.ics.rank]p4b2: 4021 // 4022 // If class B is derived directly or indirectly from class A, 4023 // conversion of B* to A* is better than conversion of B* to 4024 // void*, and conversion of A* to void* is better than conversion 4025 // of B* to void*. 4026 bool SCS1ConvertsToVoid 4027 = SCS1.isPointerConversionToVoidPointer(S.Context); 4028 bool SCS2ConvertsToVoid 4029 = SCS2.isPointerConversionToVoidPointer(S.Context); 4030 if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) { 4031 // Exactly one of the conversion sequences is a conversion to 4032 // a void pointer; it's the worse conversion. 4033 return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better 4034 : ImplicitConversionSequence::Worse; 4035 } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) { 4036 // Neither conversion sequence converts to a void pointer; compare 4037 // their derived-to-base conversions. 4038 if (ImplicitConversionSequence::CompareKind DerivedCK 4039 = CompareDerivedToBaseConversions(S, Loc, SCS1, SCS2)) 4040 return DerivedCK; 4041 } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid && 4042 !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) { 4043 // Both conversion sequences are conversions to void 4044 // pointers. Compare the source types to determine if there's an 4045 // inheritance relationship in their sources. 4046 QualType FromType1 = SCS1.getFromType(); 4047 QualType FromType2 = SCS2.getFromType(); 4048 4049 // Adjust the types we're converting from via the array-to-pointer 4050 // conversion, if we need to. 4051 if (SCS1.First == ICK_Array_To_Pointer) 4052 FromType1 = S.Context.getArrayDecayedType(FromType1); 4053 if (SCS2.First == ICK_Array_To_Pointer) 4054 FromType2 = S.Context.getArrayDecayedType(FromType2); 4055 4056 QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType(); 4057 QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType(); 4058 4059 if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1)) 4060 return ImplicitConversionSequence::Better; 4061 else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2)) 4062 return ImplicitConversionSequence::Worse; 4063 4064 // Objective-C++: If one interface is more specific than the 4065 // other, it is the better one. 4066 const ObjCObjectPointerType* FromObjCPtr1 4067 = FromType1->getAs<ObjCObjectPointerType>(); 4068 const ObjCObjectPointerType* FromObjCPtr2 4069 = FromType2->getAs<ObjCObjectPointerType>(); 4070 if (FromObjCPtr1 && FromObjCPtr2) { 4071 bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1, 4072 FromObjCPtr2); 4073 bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2, 4074 FromObjCPtr1); 4075 if (AssignLeft != AssignRight) { 4076 return AssignLeft? ImplicitConversionSequence::Better 4077 : ImplicitConversionSequence::Worse; 4078 } 4079 } 4080 } 4081 4082 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { 4083 // Check for a better reference binding based on the kind of bindings. 4084 if (isBetterReferenceBindingKind(SCS1, SCS2)) 4085 return ImplicitConversionSequence::Better; 4086 else if (isBetterReferenceBindingKind(SCS2, SCS1)) 4087 return ImplicitConversionSequence::Worse; 4088 } 4089 4090 // Compare based on qualification conversions (C++ 13.3.3.2p3, 4091 // bullet 3). 4092 if (ImplicitConversionSequence::CompareKind QualCK 4093 = CompareQualificationConversions(S, SCS1, SCS2)) 4094 return QualCK; 4095 4096 if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { 4097 // C++ [over.ics.rank]p3b4: 4098 // -- S1 and S2 are reference bindings (8.5.3), and the types to 4099 // which the references refer are the same type except for 4100 // top-level cv-qualifiers, and the type to which the reference 4101 // initialized by S2 refers is more cv-qualified than the type 4102 // to which the reference initialized by S1 refers. 4103 QualType T1 = SCS1.getToType(2); 4104 QualType T2 = SCS2.getToType(2); 4105 T1 = S.Context.getCanonicalType(T1); 4106 T2 = S.Context.getCanonicalType(T2); 4107 Qualifiers T1Quals, T2Quals; 4108 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); 4109 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); 4110 if (UnqualT1 == UnqualT2) { 4111 // Objective-C++ ARC: If the references refer to objects with different 4112 // lifetimes, prefer bindings that don't change lifetime. 4113 if (SCS1.ObjCLifetimeConversionBinding != 4114 SCS2.ObjCLifetimeConversionBinding) { 4115 return SCS1.ObjCLifetimeConversionBinding 4116 ? ImplicitConversionSequence::Worse 4117 : ImplicitConversionSequence::Better; 4118 } 4119 4120 // If the type is an array type, promote the element qualifiers to the 4121 // type for comparison. 4122 if (isa<ArrayType>(T1) && T1Quals) 4123 T1 = S.Context.getQualifiedType(UnqualT1, T1Quals); 4124 if (isa<ArrayType>(T2) && T2Quals) 4125 T2 = S.Context.getQualifiedType(UnqualT2, T2Quals); 4126 if (T2.isMoreQualifiedThan(T1)) 4127 return ImplicitConversionSequence::Better; 4128 if (T1.isMoreQualifiedThan(T2)) 4129 return ImplicitConversionSequence::Worse; 4130 } 4131 } 4132 4133 // In Microsoft mode (below 19.28), prefer an integral conversion to a 4134 // floating-to-integral conversion if the integral conversion 4135 // is between types of the same size. 4136 // For example: 4137 // void f(float); 4138 // void f(int); 4139 // int main { 4140 // long a; 4141 // f(a); 4142 // } 4143 // Here, MSVC will call f(int) instead of generating a compile error 4144 // as clang will do in standard mode. 4145 if (S.getLangOpts().MSVCCompat && 4146 !S.getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2019_8) && 4147 SCS1.Second == ICK_Integral_Conversion && 4148 SCS2.Second == ICK_Floating_Integral && 4149 S.Context.getTypeSize(SCS1.getFromType()) == 4150 S.Context.getTypeSize(SCS1.getToType(2))) 4151 return ImplicitConversionSequence::Better; 4152 4153 // Prefer a compatible vector conversion over a lax vector conversion 4154 // For example: 4155 // 4156 // typedef float __v4sf __attribute__((__vector_size__(16))); 4157 // void f(vector float); 4158 // void f(vector signed int); 4159 // int main() { 4160 // __v4sf a; 4161 // f(a); 4162 // } 4163 // Here, we'd like to choose f(vector float) and not 4164 // report an ambiguous call error 4165 if (SCS1.Second == ICK_Vector_Conversion && 4166 SCS2.Second == ICK_Vector_Conversion) { 4167 bool SCS1IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes( 4168 SCS1.getFromType(), SCS1.getToType(2)); 4169 bool SCS2IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes( 4170 SCS2.getFromType(), SCS2.getToType(2)); 4171 4172 if (SCS1IsCompatibleVectorConversion != SCS2IsCompatibleVectorConversion) 4173 return SCS1IsCompatibleVectorConversion 4174 ? ImplicitConversionSequence::Better 4175 : ImplicitConversionSequence::Worse; 4176 } 4177 4178 if (SCS1.Second == ICK_SVE_Vector_Conversion && 4179 SCS2.Second == ICK_SVE_Vector_Conversion) { 4180 bool SCS1IsCompatibleSVEVectorConversion = 4181 S.Context.areCompatibleSveTypes(SCS1.getFromType(), SCS1.getToType(2)); 4182 bool SCS2IsCompatibleSVEVectorConversion = 4183 S.Context.areCompatibleSveTypes(SCS2.getFromType(), SCS2.getToType(2)); 4184 4185 if (SCS1IsCompatibleSVEVectorConversion != 4186 SCS2IsCompatibleSVEVectorConversion) 4187 return SCS1IsCompatibleSVEVectorConversion 4188 ? ImplicitConversionSequence::Better 4189 : ImplicitConversionSequence::Worse; 4190 } 4191 4192 return ImplicitConversionSequence::Indistinguishable; 4193 } 4194 4195 /// CompareQualificationConversions - Compares two standard conversion 4196 /// sequences to determine whether they can be ranked based on their 4197 /// qualification conversions (C++ 13.3.3.2p3 bullet 3). 4198 static ImplicitConversionSequence::CompareKind 4199 CompareQualificationConversions(Sema &S, 4200 const StandardConversionSequence& SCS1, 4201 const StandardConversionSequence& SCS2) { 4202 // C++ 13.3.3.2p3: 4203 // -- S1 and S2 differ only in their qualification conversion and 4204 // yield similar types T1 and T2 (C++ 4.4), respectively, and the 4205 // cv-qualification signature of type T1 is a proper subset of 4206 // the cv-qualification signature of type T2, and S1 is not the 4207 // deprecated string literal array-to-pointer conversion (4.2). 4208 if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second || 4209 SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification) 4210 return ImplicitConversionSequence::Indistinguishable; 4211 4212 // FIXME: the example in the standard doesn't use a qualification 4213 // conversion (!) 4214 QualType T1 = SCS1.getToType(2); 4215 QualType T2 = SCS2.getToType(2); 4216 T1 = S.Context.getCanonicalType(T1); 4217 T2 = S.Context.getCanonicalType(T2); 4218 assert(!T1->isReferenceType() && !T2->isReferenceType()); 4219 Qualifiers T1Quals, T2Quals; 4220 QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); 4221 QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); 4222 4223 // If the types are the same, we won't learn anything by unwrapping 4224 // them. 4225 if (UnqualT1 == UnqualT2) 4226 return ImplicitConversionSequence::Indistinguishable; 4227 4228 ImplicitConversionSequence::CompareKind Result 4229 = ImplicitConversionSequence::Indistinguishable; 4230 4231 // Objective-C++ ARC: 4232 // Prefer qualification conversions not involving a change in lifetime 4233 // to qualification conversions that do not change lifetime. 4234 if (SCS1.QualificationIncludesObjCLifetime != 4235 SCS2.QualificationIncludesObjCLifetime) { 4236 Result = SCS1.QualificationIncludesObjCLifetime 4237 ? ImplicitConversionSequence::Worse 4238 : ImplicitConversionSequence::Better; 4239 } 4240 4241 while (S.Context.UnwrapSimilarTypes(T1, T2)) { 4242 // Within each iteration of the loop, we check the qualifiers to 4243 // determine if this still looks like a qualification 4244 // conversion. Then, if all is well, we unwrap one more level of 4245 // pointers or pointers-to-members and do it all again 4246 // until there are no more pointers or pointers-to-members left 4247 // to unwrap. This essentially mimics what 4248 // IsQualificationConversion does, but here we're checking for a 4249 // strict subset of qualifiers. 4250 if (T1.getQualifiers().withoutObjCLifetime() == 4251 T2.getQualifiers().withoutObjCLifetime()) 4252 // The qualifiers are the same, so this doesn't tell us anything 4253 // about how the sequences rank. 4254 // ObjC ownership quals are omitted above as they interfere with 4255 // the ARC overload rule. 4256 ; 4257 else if (T2.isMoreQualifiedThan(T1)) { 4258 // T1 has fewer qualifiers, so it could be the better sequence. 4259 if (Result == ImplicitConversionSequence::Worse) 4260 // Neither has qualifiers that are a subset of the other's 4261 // qualifiers. 4262 return ImplicitConversionSequence::Indistinguishable; 4263 4264 Result = ImplicitConversionSequence::Better; 4265 } else if (T1.isMoreQualifiedThan(T2)) { 4266 // T2 has fewer qualifiers, so it could be the better sequence. 4267 if (Result == ImplicitConversionSequence::Better) 4268 // Neither has qualifiers that are a subset of the other's 4269 // qualifiers. 4270 return ImplicitConversionSequence::Indistinguishable; 4271 4272 Result = ImplicitConversionSequence::Worse; 4273 } else { 4274 // Qualifiers are disjoint. 4275 return ImplicitConversionSequence::Indistinguishable; 4276 } 4277 4278 // If the types after this point are equivalent, we're done. 4279 if (S.Context.hasSameUnqualifiedType(T1, T2)) 4280 break; 4281 } 4282 4283 // Check that the winning standard conversion sequence isn't using 4284 // the deprecated string literal array to pointer conversion. 4285 switch (Result) { 4286 case ImplicitConversionSequence::Better: 4287 if (SCS1.DeprecatedStringLiteralToCharPtr) 4288 Result = ImplicitConversionSequence::Indistinguishable; 4289 break; 4290 4291 case ImplicitConversionSequence::Indistinguishable: 4292 break; 4293 4294 case ImplicitConversionSequence::Worse: 4295 if (SCS2.DeprecatedStringLiteralToCharPtr) 4296 Result = ImplicitConversionSequence::Indistinguishable; 4297 break; 4298 } 4299 4300 return Result; 4301 } 4302 4303 /// CompareDerivedToBaseConversions - Compares two standard conversion 4304 /// sequences to determine whether they can be ranked based on their 4305 /// various kinds of derived-to-base conversions (C++ 4306 /// [over.ics.rank]p4b3). As part of these checks, we also look at 4307 /// conversions between Objective-C interface types. 4308 static ImplicitConversionSequence::CompareKind 4309 CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc, 4310 const StandardConversionSequence& SCS1, 4311 const StandardConversionSequence& SCS2) { 4312 QualType FromType1 = SCS1.getFromType(); 4313 QualType ToType1 = SCS1.getToType(1); 4314 QualType FromType2 = SCS2.getFromType(); 4315 QualType ToType2 = SCS2.getToType(1); 4316 4317 // Adjust the types we're converting from via the array-to-pointer 4318 // conversion, if we need to. 4319 if (SCS1.First == ICK_Array_To_Pointer) 4320 FromType1 = S.Context.getArrayDecayedType(FromType1); 4321 if (SCS2.First == ICK_Array_To_Pointer) 4322 FromType2 = S.Context.getArrayDecayedType(FromType2); 4323 4324 // Canonicalize all of the types. 4325 FromType1 = S.Context.getCanonicalType(FromType1); 4326 ToType1 = S.Context.getCanonicalType(ToType1); 4327 FromType2 = S.Context.getCanonicalType(FromType2); 4328 ToType2 = S.Context.getCanonicalType(ToType2); 4329 4330 // C++ [over.ics.rank]p4b3: 4331 // 4332 // If class B is derived directly or indirectly from class A and 4333 // class C is derived directly or indirectly from B, 4334 // 4335 // Compare based on pointer conversions. 4336 if (SCS1.Second == ICK_Pointer_Conversion && 4337 SCS2.Second == ICK_Pointer_Conversion && 4338 /*FIXME: Remove if Objective-C id conversions get their own rank*/ 4339 FromType1->isPointerType() && FromType2->isPointerType() && 4340 ToType1->isPointerType() && ToType2->isPointerType()) { 4341 QualType FromPointee1 = 4342 FromType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType(); 4343 QualType ToPointee1 = 4344 ToType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType(); 4345 QualType FromPointee2 = 4346 FromType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType(); 4347 QualType ToPointee2 = 4348 ToType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType(); 4349 4350 // -- conversion of C* to B* is better than conversion of C* to A*, 4351 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 4352 if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2)) 4353 return ImplicitConversionSequence::Better; 4354 else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1)) 4355 return ImplicitConversionSequence::Worse; 4356 } 4357 4358 // -- conversion of B* to A* is better than conversion of C* to A*, 4359 if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) { 4360 if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1)) 4361 return ImplicitConversionSequence::Better; 4362 else if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2)) 4363 return ImplicitConversionSequence::Worse; 4364 } 4365 } else if (SCS1.Second == ICK_Pointer_Conversion && 4366 SCS2.Second == ICK_Pointer_Conversion) { 4367 const ObjCObjectPointerType *FromPtr1 4368 = FromType1->getAs<ObjCObjectPointerType>(); 4369 const ObjCObjectPointerType *FromPtr2 4370 = FromType2->getAs<ObjCObjectPointerType>(); 4371 const ObjCObjectPointerType *ToPtr1 4372 = ToType1->getAs<ObjCObjectPointerType>(); 4373 const ObjCObjectPointerType *ToPtr2 4374 = ToType2->getAs<ObjCObjectPointerType>(); 4375 4376 if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) { 4377 // Apply the same conversion ranking rules for Objective-C pointer types 4378 // that we do for C++ pointers to class types. However, we employ the 4379 // Objective-C pseudo-subtyping relationship used for assignment of 4380 // Objective-C pointer types. 4381 bool FromAssignLeft 4382 = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2); 4383 bool FromAssignRight 4384 = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1); 4385 bool ToAssignLeft 4386 = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2); 4387 bool ToAssignRight 4388 = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1); 4389 4390 // A conversion to an a non-id object pointer type or qualified 'id' 4391 // type is better than a conversion to 'id'. 4392 if (ToPtr1->isObjCIdType() && 4393 (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl())) 4394 return ImplicitConversionSequence::Worse; 4395 if (ToPtr2->isObjCIdType() && 4396 (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl())) 4397 return ImplicitConversionSequence::Better; 4398 4399 // A conversion to a non-id object pointer type is better than a 4400 // conversion to a qualified 'id' type 4401 if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl()) 4402 return ImplicitConversionSequence::Worse; 4403 if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl()) 4404 return ImplicitConversionSequence::Better; 4405 4406 // A conversion to an a non-Class object pointer type or qualified 'Class' 4407 // type is better than a conversion to 'Class'. 4408 if (ToPtr1->isObjCClassType() && 4409 (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl())) 4410 return ImplicitConversionSequence::Worse; 4411 if (ToPtr2->isObjCClassType() && 4412 (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl())) 4413 return ImplicitConversionSequence::Better; 4414 4415 // A conversion to a non-Class object pointer type is better than a 4416 // conversion to a qualified 'Class' type. 4417 if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl()) 4418 return ImplicitConversionSequence::Worse; 4419 if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl()) 4420 return ImplicitConversionSequence::Better; 4421 4422 // -- "conversion of C* to B* is better than conversion of C* to A*," 4423 if (S.Context.hasSameType(FromType1, FromType2) && 4424 !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() && 4425 (ToAssignLeft != ToAssignRight)) { 4426 if (FromPtr1->isSpecialized()) { 4427 // "conversion of B<A> * to B * is better than conversion of B * to 4428 // C *. 4429 bool IsFirstSame = 4430 FromPtr1->getInterfaceDecl() == ToPtr1->getInterfaceDecl(); 4431 bool IsSecondSame = 4432 FromPtr1->getInterfaceDecl() == ToPtr2->getInterfaceDecl(); 4433 if (IsFirstSame) { 4434 if (!IsSecondSame) 4435 return ImplicitConversionSequence::Better; 4436 } else if (IsSecondSame) 4437 return ImplicitConversionSequence::Worse; 4438 } 4439 return ToAssignLeft? ImplicitConversionSequence::Worse 4440 : ImplicitConversionSequence::Better; 4441 } 4442 4443 // -- "conversion of B* to A* is better than conversion of C* to A*," 4444 if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) && 4445 (FromAssignLeft != FromAssignRight)) 4446 return FromAssignLeft? ImplicitConversionSequence::Better 4447 : ImplicitConversionSequence::Worse; 4448 } 4449 } 4450 4451 // Ranking of member-pointer types. 4452 if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member && 4453 FromType1->isMemberPointerType() && FromType2->isMemberPointerType() && 4454 ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) { 4455 const auto *FromMemPointer1 = FromType1->castAs<MemberPointerType>(); 4456 const auto *ToMemPointer1 = ToType1->castAs<MemberPointerType>(); 4457 const auto *FromMemPointer2 = FromType2->castAs<MemberPointerType>(); 4458 const auto *ToMemPointer2 = ToType2->castAs<MemberPointerType>(); 4459 const Type *FromPointeeType1 = FromMemPointer1->getClass(); 4460 const Type *ToPointeeType1 = ToMemPointer1->getClass(); 4461 const Type *FromPointeeType2 = FromMemPointer2->getClass(); 4462 const Type *ToPointeeType2 = ToMemPointer2->getClass(); 4463 QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType(); 4464 QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType(); 4465 QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType(); 4466 QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType(); 4467 // conversion of A::* to B::* is better than conversion of A::* to C::*, 4468 if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { 4469 if (S.IsDerivedFrom(Loc, ToPointee1, ToPointee2)) 4470 return ImplicitConversionSequence::Worse; 4471 else if (S.IsDerivedFrom(Loc, ToPointee2, ToPointee1)) 4472 return ImplicitConversionSequence::Better; 4473 } 4474 // conversion of B::* to C::* is better than conversion of A::* to C::* 4475 if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) { 4476 if (S.IsDerivedFrom(Loc, FromPointee1, FromPointee2)) 4477 return ImplicitConversionSequence::Better; 4478 else if (S.IsDerivedFrom(Loc, FromPointee2, FromPointee1)) 4479 return ImplicitConversionSequence::Worse; 4480 } 4481 } 4482 4483 if (SCS1.Second == ICK_Derived_To_Base) { 4484 // -- conversion of C to B is better than conversion of C to A, 4485 // -- binding of an expression of type C to a reference of type 4486 // B& is better than binding an expression of type C to a 4487 // reference of type A&, 4488 if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) && 4489 !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { 4490 if (S.IsDerivedFrom(Loc, ToType1, ToType2)) 4491 return ImplicitConversionSequence::Better; 4492 else if (S.IsDerivedFrom(Loc, ToType2, ToType1)) 4493 return ImplicitConversionSequence::Worse; 4494 } 4495 4496 // -- conversion of B to A is better than conversion of C to A. 4497 // -- binding of an expression of type B to a reference of type 4498 // A& is better than binding an expression of type C to a 4499 // reference of type A&, 4500 if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) && 4501 S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { 4502 if (S.IsDerivedFrom(Loc, FromType2, FromType1)) 4503 return ImplicitConversionSequence::Better; 4504 else if (S.IsDerivedFrom(Loc, FromType1, FromType2)) 4505 return ImplicitConversionSequence::Worse; 4506 } 4507 } 4508 4509 return ImplicitConversionSequence::Indistinguishable; 4510 } 4511 4512 /// Determine whether the given type is valid, e.g., it is not an invalid 4513 /// C++ class. 4514 static bool isTypeValid(QualType T) { 4515 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) 4516 return !Record->isInvalidDecl(); 4517 4518 return true; 4519 } 4520 4521 static QualType withoutUnaligned(ASTContext &Ctx, QualType T) { 4522 if (!T.getQualifiers().hasUnaligned()) 4523 return T; 4524 4525 Qualifiers Q; 4526 T = Ctx.getUnqualifiedArrayType(T, Q); 4527 Q.removeUnaligned(); 4528 return Ctx.getQualifiedType(T, Q); 4529 } 4530 4531 /// CompareReferenceRelationship - Compare the two types T1 and T2 to 4532 /// determine whether they are reference-compatible, 4533 /// reference-related, or incompatible, for use in C++ initialization by 4534 /// reference (C++ [dcl.ref.init]p4). Neither type can be a reference 4535 /// type, and the first type (T1) is the pointee type of the reference 4536 /// type being initialized. 4537 Sema::ReferenceCompareResult 4538 Sema::CompareReferenceRelationship(SourceLocation Loc, 4539 QualType OrigT1, QualType OrigT2, 4540 ReferenceConversions *ConvOut) { 4541 assert(!OrigT1->isReferenceType() && 4542 "T1 must be the pointee type of the reference type"); 4543 assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type"); 4544 4545 QualType T1 = Context.getCanonicalType(OrigT1); 4546 QualType T2 = Context.getCanonicalType(OrigT2); 4547 Qualifiers T1Quals, T2Quals; 4548 QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); 4549 QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); 4550 4551 ReferenceConversions ConvTmp; 4552 ReferenceConversions &Conv = ConvOut ? *ConvOut : ConvTmp; 4553 Conv = ReferenceConversions(); 4554 4555 // C++2a [dcl.init.ref]p4: 4556 // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is 4557 // reference-related to "cv2 T2" if T1 is similar to T2, or 4558 // T1 is a base class of T2. 4559 // "cv1 T1" is reference-compatible with "cv2 T2" if 4560 // a prvalue of type "pointer to cv2 T2" can be converted to the type 4561 // "pointer to cv1 T1" via a standard conversion sequence. 4562 4563 // Check for standard conversions we can apply to pointers: derived-to-base 4564 // conversions, ObjC pointer conversions, and function pointer conversions. 4565 // (Qualification conversions are checked last.) 4566 QualType ConvertedT2; 4567 if (UnqualT1 == UnqualT2) { 4568 // Nothing to do. 4569 } else if (isCompleteType(Loc, OrigT2) && 4570 isTypeValid(UnqualT1) && isTypeValid(UnqualT2) && 4571 IsDerivedFrom(Loc, UnqualT2, UnqualT1)) 4572 Conv |= ReferenceConversions::DerivedToBase; 4573 else if (UnqualT1->isObjCObjectOrInterfaceType() && 4574 UnqualT2->isObjCObjectOrInterfaceType() && 4575 Context.canBindObjCObjectType(UnqualT1, UnqualT2)) 4576 Conv |= ReferenceConversions::ObjC; 4577 else if (UnqualT2->isFunctionType() && 4578 IsFunctionConversion(UnqualT2, UnqualT1, ConvertedT2)) { 4579 Conv |= ReferenceConversions::Function; 4580 // No need to check qualifiers; function types don't have them. 4581 return Ref_Compatible; 4582 } 4583 bool ConvertedReferent = Conv != 0; 4584 4585 // We can have a qualification conversion. Compute whether the types are 4586 // similar at the same time. 4587 bool PreviousToQualsIncludeConst = true; 4588 bool TopLevel = true; 4589 do { 4590 if (T1 == T2) 4591 break; 4592 4593 // We will need a qualification conversion. 4594 Conv |= ReferenceConversions::Qualification; 4595 4596 // Track whether we performed a qualification conversion anywhere other 4597 // than the top level. This matters for ranking reference bindings in 4598 // overload resolution. 4599 if (!TopLevel) 4600 Conv |= ReferenceConversions::NestedQualification; 4601 4602 // MS compiler ignores __unaligned qualifier for references; do the same. 4603 T1 = withoutUnaligned(Context, T1); 4604 T2 = withoutUnaligned(Context, T2); 4605 4606 // If we find a qualifier mismatch, the types are not reference-compatible, 4607 // but are still be reference-related if they're similar. 4608 bool ObjCLifetimeConversion = false; 4609 if (!isQualificationConversionStep(T2, T1, /*CStyle=*/false, TopLevel, 4610 PreviousToQualsIncludeConst, 4611 ObjCLifetimeConversion)) 4612 return (ConvertedReferent || Context.hasSimilarType(T1, T2)) 4613 ? Ref_Related 4614 : Ref_Incompatible; 4615 4616 // FIXME: Should we track this for any level other than the first? 4617 if (ObjCLifetimeConversion) 4618 Conv |= ReferenceConversions::ObjCLifetime; 4619 4620 TopLevel = false; 4621 } while (Context.UnwrapSimilarTypes(T1, T2)); 4622 4623 // At this point, if the types are reference-related, we must either have the 4624 // same inner type (ignoring qualifiers), or must have already worked out how 4625 // to convert the referent. 4626 return (ConvertedReferent || Context.hasSameUnqualifiedType(T1, T2)) 4627 ? Ref_Compatible 4628 : Ref_Incompatible; 4629 } 4630 4631 /// Look for a user-defined conversion to a value reference-compatible 4632 /// with DeclType. Return true if something definite is found. 4633 static bool 4634 FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS, 4635 QualType DeclType, SourceLocation DeclLoc, 4636 Expr *Init, QualType T2, bool AllowRvalues, 4637 bool AllowExplicit) { 4638 assert(T2->isRecordType() && "Can only find conversions of record types."); 4639 auto *T2RecordDecl = cast<CXXRecordDecl>(T2->castAs<RecordType>()->getDecl()); 4640 4641 OverloadCandidateSet CandidateSet( 4642 DeclLoc, OverloadCandidateSet::CSK_InitByUserDefinedConversion); 4643 const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions(); 4644 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 4645 NamedDecl *D = *I; 4646 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 4647 if (isa<UsingShadowDecl>(D)) 4648 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 4649 4650 FunctionTemplateDecl *ConvTemplate 4651 = dyn_cast<FunctionTemplateDecl>(D); 4652 CXXConversionDecl *Conv; 4653 if (ConvTemplate) 4654 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 4655 else 4656 Conv = cast<CXXConversionDecl>(D); 4657 4658 if (AllowRvalues) { 4659 // If we are initializing an rvalue reference, don't permit conversion 4660 // functions that return lvalues. 4661 if (!ConvTemplate && DeclType->isRValueReferenceType()) { 4662 const ReferenceType *RefType 4663 = Conv->getConversionType()->getAs<LValueReferenceType>(); 4664 if (RefType && !RefType->getPointeeType()->isFunctionType()) 4665 continue; 4666 } 4667 4668 if (!ConvTemplate && 4669 S.CompareReferenceRelationship( 4670 DeclLoc, 4671 Conv->getConversionType() 4672 .getNonReferenceType() 4673 .getUnqualifiedType(), 4674 DeclType.getNonReferenceType().getUnqualifiedType()) == 4675 Sema::Ref_Incompatible) 4676 continue; 4677 } else { 4678 // If the conversion function doesn't return a reference type, 4679 // it can't be considered for this conversion. An rvalue reference 4680 // is only acceptable if its referencee is a function type. 4681 4682 const ReferenceType *RefType = 4683 Conv->getConversionType()->getAs<ReferenceType>(); 4684 if (!RefType || 4685 (!RefType->isLValueReferenceType() && 4686 !RefType->getPointeeType()->isFunctionType())) 4687 continue; 4688 } 4689 4690 if (ConvTemplate) 4691 S.AddTemplateConversionCandidate( 4692 ConvTemplate, I.getPair(), ActingDC, Init, DeclType, CandidateSet, 4693 /*AllowObjCConversionOnExplicit=*/false, AllowExplicit); 4694 else 4695 S.AddConversionCandidate( 4696 Conv, I.getPair(), ActingDC, Init, DeclType, CandidateSet, 4697 /*AllowObjCConversionOnExplicit=*/false, AllowExplicit); 4698 } 4699 4700 bool HadMultipleCandidates = (CandidateSet.size() > 1); 4701 4702 OverloadCandidateSet::iterator Best; 4703 switch (CandidateSet.BestViableFunction(S, DeclLoc, Best)) { 4704 case OR_Success: 4705 // C++ [over.ics.ref]p1: 4706 // 4707 // [...] If the parameter binds directly to the result of 4708 // applying a conversion function to the argument 4709 // expression, the implicit conversion sequence is a 4710 // user-defined conversion sequence (13.3.3.1.2), with the 4711 // second standard conversion sequence either an identity 4712 // conversion or, if the conversion function returns an 4713 // entity of a type that is a derived class of the parameter 4714 // type, a derived-to-base Conversion. 4715 if (!Best->FinalConversion.DirectBinding) 4716 return false; 4717 4718 ICS.setUserDefined(); 4719 ICS.UserDefined.Before = Best->Conversions[0].Standard; 4720 ICS.UserDefined.After = Best->FinalConversion; 4721 ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates; 4722 ICS.UserDefined.ConversionFunction = Best->Function; 4723 ICS.UserDefined.FoundConversionFunction = Best->FoundDecl; 4724 ICS.UserDefined.EllipsisConversion = false; 4725 assert(ICS.UserDefined.After.ReferenceBinding && 4726 ICS.UserDefined.After.DirectBinding && 4727 "Expected a direct reference binding!"); 4728 return true; 4729 4730 case OR_Ambiguous: 4731 ICS.setAmbiguous(); 4732 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); 4733 Cand != CandidateSet.end(); ++Cand) 4734 if (Cand->Best) 4735 ICS.Ambiguous.addConversion(Cand->FoundDecl, Cand->Function); 4736 return true; 4737 4738 case OR_No_Viable_Function: 4739 case OR_Deleted: 4740 // There was no suitable conversion, or we found a deleted 4741 // conversion; continue with other checks. 4742 return false; 4743 } 4744 4745 llvm_unreachable("Invalid OverloadResult!"); 4746 } 4747 4748 /// Compute an implicit conversion sequence for reference 4749 /// initialization. 4750 static ImplicitConversionSequence 4751 TryReferenceInit(Sema &S, Expr *Init, QualType DeclType, 4752 SourceLocation DeclLoc, 4753 bool SuppressUserConversions, 4754 bool AllowExplicit) { 4755 assert(DeclType->isReferenceType() && "Reference init needs a reference"); 4756 4757 // Most paths end in a failed conversion. 4758 ImplicitConversionSequence ICS; 4759 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); 4760 4761 QualType T1 = DeclType->castAs<ReferenceType>()->getPointeeType(); 4762 QualType T2 = Init->getType(); 4763 4764 // If the initializer is the address of an overloaded function, try 4765 // to resolve the overloaded function. If all goes well, T2 is the 4766 // type of the resulting function. 4767 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { 4768 DeclAccessPair Found; 4769 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType, 4770 false, Found)) 4771 T2 = Fn->getType(); 4772 } 4773 4774 // Compute some basic properties of the types and the initializer. 4775 bool isRValRef = DeclType->isRValueReferenceType(); 4776 Expr::Classification InitCategory = Init->Classify(S.Context); 4777 4778 Sema::ReferenceConversions RefConv; 4779 Sema::ReferenceCompareResult RefRelationship = 4780 S.CompareReferenceRelationship(DeclLoc, T1, T2, &RefConv); 4781 4782 auto SetAsReferenceBinding = [&](bool BindsDirectly) { 4783 ICS.setStandard(); 4784 ICS.Standard.First = ICK_Identity; 4785 // FIXME: A reference binding can be a function conversion too. We should 4786 // consider that when ordering reference-to-function bindings. 4787 ICS.Standard.Second = (RefConv & Sema::ReferenceConversions::DerivedToBase) 4788 ? ICK_Derived_To_Base 4789 : (RefConv & Sema::ReferenceConversions::ObjC) 4790 ? ICK_Compatible_Conversion 4791 : ICK_Identity; 4792 // FIXME: As a speculative fix to a defect introduced by CWG2352, we rank 4793 // a reference binding that performs a non-top-level qualification 4794 // conversion as a qualification conversion, not as an identity conversion. 4795 ICS.Standard.Third = (RefConv & 4796 Sema::ReferenceConversions::NestedQualification) 4797 ? ICK_Qualification 4798 : ICK_Identity; 4799 ICS.Standard.setFromType(T2); 4800 ICS.Standard.setToType(0, T2); 4801 ICS.Standard.setToType(1, T1); 4802 ICS.Standard.setToType(2, T1); 4803 ICS.Standard.ReferenceBinding = true; 4804 ICS.Standard.DirectBinding = BindsDirectly; 4805 ICS.Standard.IsLvalueReference = !isRValRef; 4806 ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType(); 4807 ICS.Standard.BindsToRvalue = InitCategory.isRValue(); 4808 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; 4809 ICS.Standard.ObjCLifetimeConversionBinding = 4810 (RefConv & Sema::ReferenceConversions::ObjCLifetime) != 0; 4811 ICS.Standard.CopyConstructor = nullptr; 4812 ICS.Standard.DeprecatedStringLiteralToCharPtr = false; 4813 }; 4814 4815 // C++0x [dcl.init.ref]p5: 4816 // A reference to type "cv1 T1" is initialized by an expression 4817 // of type "cv2 T2" as follows: 4818 4819 // -- If reference is an lvalue reference and the initializer expression 4820 if (!isRValRef) { 4821 // -- is an lvalue (but is not a bit-field), and "cv1 T1" is 4822 // reference-compatible with "cv2 T2," or 4823 // 4824 // Per C++ [over.ics.ref]p4, we don't check the bit-field property here. 4825 if (InitCategory.isLValue() && RefRelationship == Sema::Ref_Compatible) { 4826 // C++ [over.ics.ref]p1: 4827 // When a parameter of reference type binds directly (8.5.3) 4828 // to an argument expression, the implicit conversion sequence 4829 // is the identity conversion, unless the argument expression 4830 // has a type that is a derived class of the parameter type, 4831 // in which case the implicit conversion sequence is a 4832 // derived-to-base Conversion (13.3.3.1). 4833 SetAsReferenceBinding(/*BindsDirectly=*/true); 4834 4835 // Nothing more to do: the inaccessibility/ambiguity check for 4836 // derived-to-base conversions is suppressed when we're 4837 // computing the implicit conversion sequence (C++ 4838 // [over.best.ics]p2). 4839 return ICS; 4840 } 4841 4842 // -- has a class type (i.e., T2 is a class type), where T1 is 4843 // not reference-related to T2, and can be implicitly 4844 // converted to an lvalue of type "cv3 T3," where "cv1 T1" 4845 // is reference-compatible with "cv3 T3" 92) (this 4846 // conversion is selected by enumerating the applicable 4847 // conversion functions (13.3.1.6) and choosing the best 4848 // one through overload resolution (13.3)), 4849 if (!SuppressUserConversions && T2->isRecordType() && 4850 S.isCompleteType(DeclLoc, T2) && 4851 RefRelationship == Sema::Ref_Incompatible) { 4852 if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc, 4853 Init, T2, /*AllowRvalues=*/false, 4854 AllowExplicit)) 4855 return ICS; 4856 } 4857 } 4858 4859 // -- Otherwise, the reference shall be an lvalue reference to a 4860 // non-volatile const type (i.e., cv1 shall be const), or the reference 4861 // shall be an rvalue reference. 4862 if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified())) { 4863 if (InitCategory.isRValue() && RefRelationship != Sema::Ref_Incompatible) 4864 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init, DeclType); 4865 return ICS; 4866 } 4867 4868 // -- If the initializer expression 4869 // 4870 // -- is an xvalue, class prvalue, array prvalue or function 4871 // lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or 4872 if (RefRelationship == Sema::Ref_Compatible && 4873 (InitCategory.isXValue() || 4874 (InitCategory.isPRValue() && 4875 (T2->isRecordType() || T2->isArrayType())) || 4876 (InitCategory.isLValue() && T2->isFunctionType()))) { 4877 // In C++11, this is always a direct binding. In C++98/03, it's a direct 4878 // binding unless we're binding to a class prvalue. 4879 // Note: Although xvalues wouldn't normally show up in C++98/03 code, we 4880 // allow the use of rvalue references in C++98/03 for the benefit of 4881 // standard library implementors; therefore, we need the xvalue check here. 4882 SetAsReferenceBinding(/*BindsDirectly=*/S.getLangOpts().CPlusPlus11 || 4883 !(InitCategory.isPRValue() || T2->isRecordType())); 4884 return ICS; 4885 } 4886 4887 // -- has a class type (i.e., T2 is a class type), where T1 is not 4888 // reference-related to T2, and can be implicitly converted to 4889 // an xvalue, class prvalue, or function lvalue of type 4890 // "cv3 T3", where "cv1 T1" is reference-compatible with 4891 // "cv3 T3", 4892 // 4893 // then the reference is bound to the value of the initializer 4894 // expression in the first case and to the result of the conversion 4895 // in the second case (or, in either case, to an appropriate base 4896 // class subobject). 4897 if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && 4898 T2->isRecordType() && S.isCompleteType(DeclLoc, T2) && 4899 FindConversionForRefInit(S, ICS, DeclType, DeclLoc, 4900 Init, T2, /*AllowRvalues=*/true, 4901 AllowExplicit)) { 4902 // In the second case, if the reference is an rvalue reference 4903 // and the second standard conversion sequence of the 4904 // user-defined conversion sequence includes an lvalue-to-rvalue 4905 // conversion, the program is ill-formed. 4906 if (ICS.isUserDefined() && isRValRef && 4907 ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue) 4908 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); 4909 4910 return ICS; 4911 } 4912 4913 // A temporary of function type cannot be created; don't even try. 4914 if (T1->isFunctionType()) 4915 return ICS; 4916 4917 // -- Otherwise, a temporary of type "cv1 T1" is created and 4918 // initialized from the initializer expression using the 4919 // rules for a non-reference copy initialization (8.5). The 4920 // reference is then bound to the temporary. If T1 is 4921 // reference-related to T2, cv1 must be the same 4922 // cv-qualification as, or greater cv-qualification than, 4923 // cv2; otherwise, the program is ill-formed. 4924 if (RefRelationship == Sema::Ref_Related) { 4925 // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then 4926 // we would be reference-compatible or reference-compatible with 4927 // added qualification. But that wasn't the case, so the reference 4928 // initialization fails. 4929 // 4930 // Note that we only want to check address spaces and cvr-qualifiers here. 4931 // ObjC GC, lifetime and unaligned qualifiers aren't important. 4932 Qualifiers T1Quals = T1.getQualifiers(); 4933 Qualifiers T2Quals = T2.getQualifiers(); 4934 T1Quals.removeObjCGCAttr(); 4935 T1Quals.removeObjCLifetime(); 4936 T2Quals.removeObjCGCAttr(); 4937 T2Quals.removeObjCLifetime(); 4938 // MS compiler ignores __unaligned qualifier for references; do the same. 4939 T1Quals.removeUnaligned(); 4940 T2Quals.removeUnaligned(); 4941 if (!T1Quals.compatiblyIncludes(T2Quals)) 4942 return ICS; 4943 } 4944 4945 // If at least one of the types is a class type, the types are not 4946 // related, and we aren't allowed any user conversions, the 4947 // reference binding fails. This case is important for breaking 4948 // recursion, since TryImplicitConversion below will attempt to 4949 // create a temporary through the use of a copy constructor. 4950 if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && 4951 (T1->isRecordType() || T2->isRecordType())) 4952 return ICS; 4953 4954 // If T1 is reference-related to T2 and the reference is an rvalue 4955 // reference, the initializer expression shall not be an lvalue. 4956 if (RefRelationship >= Sema::Ref_Related && isRValRef && 4957 Init->Classify(S.Context).isLValue()) { 4958 ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, Init, DeclType); 4959 return ICS; 4960 } 4961 4962 // C++ [over.ics.ref]p2: 4963 // When a parameter of reference type is not bound directly to 4964 // an argument expression, the conversion sequence is the one 4965 // required to convert the argument expression to the 4966 // underlying type of the reference according to 4967 // 13.3.3.1. Conceptually, this conversion sequence corresponds 4968 // to copy-initializing a temporary of the underlying type with 4969 // the argument expression. Any difference in top-level 4970 // cv-qualification is subsumed by the initialization itself 4971 // and does not constitute a conversion. 4972 ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions, 4973 AllowedExplicit::None, 4974 /*InOverloadResolution=*/false, 4975 /*CStyle=*/false, 4976 /*AllowObjCWritebackConversion=*/false, 4977 /*AllowObjCConversionOnExplicit=*/false); 4978 4979 // Of course, that's still a reference binding. 4980 if (ICS.isStandard()) { 4981 ICS.Standard.ReferenceBinding = true; 4982 ICS.Standard.IsLvalueReference = !isRValRef; 4983 ICS.Standard.BindsToFunctionLvalue = false; 4984 ICS.Standard.BindsToRvalue = true; 4985 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; 4986 ICS.Standard.ObjCLifetimeConversionBinding = false; 4987 } else if (ICS.isUserDefined()) { 4988 const ReferenceType *LValRefType = 4989 ICS.UserDefined.ConversionFunction->getReturnType() 4990 ->getAs<LValueReferenceType>(); 4991 4992 // C++ [over.ics.ref]p3: 4993 // Except for an implicit object parameter, for which see 13.3.1, a 4994 // standard conversion sequence cannot be formed if it requires [...] 4995 // binding an rvalue reference to an lvalue other than a function 4996 // lvalue. 4997 // Note that the function case is not possible here. 4998 if (isRValRef && LValRefType) { 4999 ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); 5000 return ICS; 5001 } 5002 5003 ICS.UserDefined.After.ReferenceBinding = true; 5004 ICS.UserDefined.After.IsLvalueReference = !isRValRef; 5005 ICS.UserDefined.After.BindsToFunctionLvalue = false; 5006 ICS.UserDefined.After.BindsToRvalue = !LValRefType; 5007 ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false; 5008 ICS.UserDefined.After.ObjCLifetimeConversionBinding = false; 5009 } 5010 5011 return ICS; 5012 } 5013 5014 static ImplicitConversionSequence 5015 TryCopyInitialization(Sema &S, Expr *From, QualType ToType, 5016 bool SuppressUserConversions, 5017 bool InOverloadResolution, 5018 bool AllowObjCWritebackConversion, 5019 bool AllowExplicit = false); 5020 5021 /// TryListConversion - Try to copy-initialize a value of type ToType from the 5022 /// initializer list From. 5023 static ImplicitConversionSequence 5024 TryListConversion(Sema &S, InitListExpr *From, QualType ToType, 5025 bool SuppressUserConversions, 5026 bool InOverloadResolution, 5027 bool AllowObjCWritebackConversion) { 5028 // C++11 [over.ics.list]p1: 5029 // When an argument is an initializer list, it is not an expression and 5030 // special rules apply for converting it to a parameter type. 5031 5032 ImplicitConversionSequence Result; 5033 Result.setBad(BadConversionSequence::no_conversion, From, ToType); 5034 5035 // We need a complete type for what follows. Incomplete types can never be 5036 // initialized from init lists. 5037 if (!S.isCompleteType(From->getBeginLoc(), ToType)) 5038 return Result; 5039 5040 // Per DR1467: 5041 // If the parameter type is a class X and the initializer list has a single 5042 // element of type cv U, where U is X or a class derived from X, the 5043 // implicit conversion sequence is the one required to convert the element 5044 // to the parameter type. 5045 // 5046 // Otherwise, if the parameter type is a character array [... ] 5047 // and the initializer list has a single element that is an 5048 // appropriately-typed string literal (8.5.2 [dcl.init.string]), the 5049 // implicit conversion sequence is the identity conversion. 5050 if (From->getNumInits() == 1) { 5051 if (ToType->isRecordType()) { 5052 QualType InitType = From->getInit(0)->getType(); 5053 if (S.Context.hasSameUnqualifiedType(InitType, ToType) || 5054 S.IsDerivedFrom(From->getBeginLoc(), InitType, ToType)) 5055 return TryCopyInitialization(S, From->getInit(0), ToType, 5056 SuppressUserConversions, 5057 InOverloadResolution, 5058 AllowObjCWritebackConversion); 5059 } 5060 5061 if (const auto *AT = S.Context.getAsArrayType(ToType)) { 5062 if (S.IsStringInit(From->getInit(0), AT)) { 5063 InitializedEntity Entity = 5064 InitializedEntity::InitializeParameter(S.Context, ToType, 5065 /*Consumed=*/false); 5066 if (S.CanPerformCopyInitialization(Entity, From)) { 5067 Result.setStandard(); 5068 Result.Standard.setAsIdentityConversion(); 5069 Result.Standard.setFromType(ToType); 5070 Result.Standard.setAllToTypes(ToType); 5071 return Result; 5072 } 5073 } 5074 } 5075 } 5076 5077 // C++14 [over.ics.list]p2: Otherwise, if the parameter type [...] (below). 5078 // C++11 [over.ics.list]p2: 5079 // If the parameter type is std::initializer_list<X> or "array of X" and 5080 // all the elements can be implicitly converted to X, the implicit 5081 // conversion sequence is the worst conversion necessary to convert an 5082 // element of the list to X. 5083 // 5084 // C++14 [over.ics.list]p3: 5085 // Otherwise, if the parameter type is "array of N X", if the initializer 5086 // list has exactly N elements or if it has fewer than N elements and X is 5087 // default-constructible, and if all the elements of the initializer list 5088 // can be implicitly converted to X, the implicit conversion sequence is 5089 // the worst conversion necessary to convert an element of the list to X. 5090 QualType InitTy = ToType; 5091 ArrayType const *AT = S.Context.getAsArrayType(ToType); 5092 if (AT || S.isStdInitializerList(ToType, &InitTy)) { 5093 unsigned e = From->getNumInits(); 5094 ImplicitConversionSequence DfltElt; 5095 DfltElt.setBad(BadConversionSequence::no_conversion, QualType(), 5096 QualType()); 5097 if (AT) { 5098 // Result has been initialized above as a BadConversionSequence 5099 InitTy = AT->getElementType(); 5100 if (ConstantArrayType const *CT = dyn_cast<ConstantArrayType>(AT)) { 5101 if (CT->getSize().ult(e)) { 5102 // Too many inits, fatally bad 5103 Result.setBad(BadConversionSequence::too_many_initializers, From, 5104 ToType); 5105 Result.setInitializerListContainerType(ToType); 5106 return Result; 5107 } 5108 if (CT->getSize().ugt(e)) { 5109 // Need an init from empty {}, is there one? 5110 InitListExpr EmptyList(S.Context, From->getEndLoc(), None, 5111 From->getEndLoc()); 5112 EmptyList.setType(S.Context.VoidTy); 5113 DfltElt = TryListConversion( 5114 S, &EmptyList, InitTy, SuppressUserConversions, 5115 InOverloadResolution, AllowObjCWritebackConversion); 5116 if (DfltElt.isBad()) { 5117 // No {} init, fatally bad 5118 Result.setBad(BadConversionSequence::too_few_initializers, From, 5119 ToType); 5120 Result.setInitializerListContainerType(ToType); 5121 return Result; 5122 } 5123 } 5124 } 5125 } 5126 5127 Result.setStandard(); 5128 Result.Standard.setAsIdentityConversion(); 5129 Result.Standard.setFromType(InitTy); 5130 Result.Standard.setAllToTypes(InitTy); 5131 for (unsigned i = 0; i < e; ++i) { 5132 Expr *Init = From->getInit(i); 5133 ImplicitConversionSequence ICS = TryCopyInitialization( 5134 S, Init, InitTy, SuppressUserConversions, InOverloadResolution, 5135 AllowObjCWritebackConversion); 5136 5137 // Keep the worse conversion seen so far. 5138 // FIXME: Sequences are not totally ordered, so 'worse' can be 5139 // ambiguous. CWG has been informed. 5140 if (CompareImplicitConversionSequences(S, From->getBeginLoc(), ICS, 5141 Result) == 5142 ImplicitConversionSequence::Worse) { 5143 Result = ICS; 5144 // Bail as soon as we find something unconvertible. 5145 if (Result.isBad()) { 5146 Result.setInitializerListContainerType(ToType); 5147 return Result; 5148 } 5149 } 5150 } 5151 5152 // If we needed any implicit {} initialization, compare that now. 5153 // over.ics.list/6 indicates we should compare that conversion. Again CWG 5154 // has been informed that this might not be the best thing. 5155 if (!DfltElt.isBad() && CompareImplicitConversionSequences( 5156 S, From->getEndLoc(), DfltElt, Result) == 5157 ImplicitConversionSequence::Worse) 5158 Result = DfltElt; 5159 5160 Result.setInitializerListContainerType(ToType); 5161 return Result; 5162 } 5163 5164 // C++14 [over.ics.list]p4: 5165 // C++11 [over.ics.list]p3: 5166 // Otherwise, if the parameter is a non-aggregate class X and overload 5167 // resolution chooses a single best constructor [...] the implicit 5168 // conversion sequence is a user-defined conversion sequence. If multiple 5169 // constructors are viable but none is better than the others, the 5170 // implicit conversion sequence is a user-defined conversion sequence. 5171 if (ToType->isRecordType() && !ToType->isAggregateType()) { 5172 // This function can deal with initializer lists. 5173 return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions, 5174 AllowedExplicit::None, 5175 InOverloadResolution, /*CStyle=*/false, 5176 AllowObjCWritebackConversion, 5177 /*AllowObjCConversionOnExplicit=*/false); 5178 } 5179 5180 // C++14 [over.ics.list]p5: 5181 // C++11 [over.ics.list]p4: 5182 // Otherwise, if the parameter has an aggregate type which can be 5183 // initialized from the initializer list [...] the implicit conversion 5184 // sequence is a user-defined conversion sequence. 5185 if (ToType->isAggregateType()) { 5186 // Type is an aggregate, argument is an init list. At this point it comes 5187 // down to checking whether the initialization works. 5188 // FIXME: Find out whether this parameter is consumed or not. 5189 InitializedEntity Entity = 5190 InitializedEntity::InitializeParameter(S.Context, ToType, 5191 /*Consumed=*/false); 5192 if (S.CanPerformAggregateInitializationForOverloadResolution(Entity, 5193 From)) { 5194 Result.setUserDefined(); 5195 Result.UserDefined.Before.setAsIdentityConversion(); 5196 // Initializer lists don't have a type. 5197 Result.UserDefined.Before.setFromType(QualType()); 5198 Result.UserDefined.Before.setAllToTypes(QualType()); 5199 5200 Result.UserDefined.After.setAsIdentityConversion(); 5201 Result.UserDefined.After.setFromType(ToType); 5202 Result.UserDefined.After.setAllToTypes(ToType); 5203 Result.UserDefined.ConversionFunction = nullptr; 5204 } 5205 return Result; 5206 } 5207 5208 // C++14 [over.ics.list]p6: 5209 // C++11 [over.ics.list]p5: 5210 // Otherwise, if the parameter is a reference, see 13.3.3.1.4. 5211 if (ToType->isReferenceType()) { 5212 // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't 5213 // mention initializer lists in any way. So we go by what list- 5214 // initialization would do and try to extrapolate from that. 5215 5216 QualType T1 = ToType->castAs<ReferenceType>()->getPointeeType(); 5217 5218 // If the initializer list has a single element that is reference-related 5219 // to the parameter type, we initialize the reference from that. 5220 if (From->getNumInits() == 1) { 5221 Expr *Init = From->getInit(0); 5222 5223 QualType T2 = Init->getType(); 5224 5225 // If the initializer is the address of an overloaded function, try 5226 // to resolve the overloaded function. If all goes well, T2 is the 5227 // type of the resulting function. 5228 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { 5229 DeclAccessPair Found; 5230 if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction( 5231 Init, ToType, false, Found)) 5232 T2 = Fn->getType(); 5233 } 5234 5235 // Compute some basic properties of the types and the initializer. 5236 Sema::ReferenceCompareResult RefRelationship = 5237 S.CompareReferenceRelationship(From->getBeginLoc(), T1, T2); 5238 5239 if (RefRelationship >= Sema::Ref_Related) { 5240 return TryReferenceInit(S, Init, ToType, /*FIXME*/ From->getBeginLoc(), 5241 SuppressUserConversions, 5242 /*AllowExplicit=*/false); 5243 } 5244 } 5245 5246 // Otherwise, we bind the reference to a temporary created from the 5247 // initializer list. 5248 Result = TryListConversion(S, From, T1, SuppressUserConversions, 5249 InOverloadResolution, 5250 AllowObjCWritebackConversion); 5251 if (Result.isFailure()) 5252 return Result; 5253 assert(!Result.isEllipsis() && 5254 "Sub-initialization cannot result in ellipsis conversion."); 5255 5256 // Can we even bind to a temporary? 5257 if (ToType->isRValueReferenceType() || 5258 (T1.isConstQualified() && !T1.isVolatileQualified())) { 5259 StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard : 5260 Result.UserDefined.After; 5261 SCS.ReferenceBinding = true; 5262 SCS.IsLvalueReference = ToType->isLValueReferenceType(); 5263 SCS.BindsToRvalue = true; 5264 SCS.BindsToFunctionLvalue = false; 5265 SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false; 5266 SCS.ObjCLifetimeConversionBinding = false; 5267 } else 5268 Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue, 5269 From, ToType); 5270 return Result; 5271 } 5272 5273 // C++14 [over.ics.list]p7: 5274 // C++11 [over.ics.list]p6: 5275 // Otherwise, if the parameter type is not a class: 5276 if (!ToType->isRecordType()) { 5277 // - if the initializer list has one element that is not itself an 5278 // initializer list, the implicit conversion sequence is the one 5279 // required to convert the element to the parameter type. 5280 unsigned NumInits = From->getNumInits(); 5281 if (NumInits == 1 && !isa<InitListExpr>(From->getInit(0))) 5282 Result = TryCopyInitialization(S, From->getInit(0), ToType, 5283 SuppressUserConversions, 5284 InOverloadResolution, 5285 AllowObjCWritebackConversion); 5286 // - if the initializer list has no elements, the implicit conversion 5287 // sequence is the identity conversion. 5288 else if (NumInits == 0) { 5289 Result.setStandard(); 5290 Result.Standard.setAsIdentityConversion(); 5291 Result.Standard.setFromType(ToType); 5292 Result.Standard.setAllToTypes(ToType); 5293 } 5294 return Result; 5295 } 5296 5297 // C++14 [over.ics.list]p8: 5298 // C++11 [over.ics.list]p7: 5299 // In all cases other than those enumerated above, no conversion is possible 5300 return Result; 5301 } 5302 5303 /// TryCopyInitialization - Try to copy-initialize a value of type 5304 /// ToType from the expression From. Return the implicit conversion 5305 /// sequence required to pass this argument, which may be a bad 5306 /// conversion sequence (meaning that the argument cannot be passed to 5307 /// a parameter of this type). If @p SuppressUserConversions, then we 5308 /// do not permit any user-defined conversion sequences. 5309 static ImplicitConversionSequence 5310 TryCopyInitialization(Sema &S, Expr *From, QualType ToType, 5311 bool SuppressUserConversions, 5312 bool InOverloadResolution, 5313 bool AllowObjCWritebackConversion, 5314 bool AllowExplicit) { 5315 if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From)) 5316 return TryListConversion(S, FromInitList, ToType, SuppressUserConversions, 5317 InOverloadResolution,AllowObjCWritebackConversion); 5318 5319 if (ToType->isReferenceType()) 5320 return TryReferenceInit(S, From, ToType, 5321 /*FIXME:*/ From->getBeginLoc(), 5322 SuppressUserConversions, AllowExplicit); 5323 5324 return TryImplicitConversion(S, From, ToType, 5325 SuppressUserConversions, 5326 AllowedExplicit::None, 5327 InOverloadResolution, 5328 /*CStyle=*/false, 5329 AllowObjCWritebackConversion, 5330 /*AllowObjCConversionOnExplicit=*/false); 5331 } 5332 5333 static bool TryCopyInitialization(const CanQualType FromQTy, 5334 const CanQualType ToQTy, 5335 Sema &S, 5336 SourceLocation Loc, 5337 ExprValueKind FromVK) { 5338 OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK); 5339 ImplicitConversionSequence ICS = 5340 TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false); 5341 5342 return !ICS.isBad(); 5343 } 5344 5345 /// TryObjectArgumentInitialization - Try to initialize the object 5346 /// parameter of the given member function (@c Method) from the 5347 /// expression @p From. 5348 static ImplicitConversionSequence 5349 TryObjectArgumentInitialization(Sema &S, SourceLocation Loc, QualType FromType, 5350 Expr::Classification FromClassification, 5351 CXXMethodDecl *Method, 5352 CXXRecordDecl *ActingContext) { 5353 QualType ClassType = S.Context.getTypeDeclType(ActingContext); 5354 // [class.dtor]p2: A destructor can be invoked for a const, volatile or 5355 // const volatile object. 5356 Qualifiers Quals = Method->getMethodQualifiers(); 5357 if (isa<CXXDestructorDecl>(Method)) { 5358 Quals.addConst(); 5359 Quals.addVolatile(); 5360 } 5361 5362 QualType ImplicitParamType = S.Context.getQualifiedType(ClassType, Quals); 5363 5364 // Set up the conversion sequence as a "bad" conversion, to allow us 5365 // to exit early. 5366 ImplicitConversionSequence ICS; 5367 5368 // We need to have an object of class type. 5369 if (const PointerType *PT = FromType->getAs<PointerType>()) { 5370 FromType = PT->getPointeeType(); 5371 5372 // When we had a pointer, it's implicitly dereferenced, so we 5373 // better have an lvalue. 5374 assert(FromClassification.isLValue()); 5375 } 5376 5377 assert(FromType->isRecordType()); 5378 5379 // C++0x [over.match.funcs]p4: 5380 // For non-static member functions, the type of the implicit object 5381 // parameter is 5382 // 5383 // - "lvalue reference to cv X" for functions declared without a 5384 // ref-qualifier or with the & ref-qualifier 5385 // - "rvalue reference to cv X" for functions declared with the && 5386 // ref-qualifier 5387 // 5388 // where X is the class of which the function is a member and cv is the 5389 // cv-qualification on the member function declaration. 5390 // 5391 // However, when finding an implicit conversion sequence for the argument, we 5392 // are not allowed to perform user-defined conversions 5393 // (C++ [over.match.funcs]p5). We perform a simplified version of 5394 // reference binding here, that allows class rvalues to bind to 5395 // non-constant references. 5396 5397 // First check the qualifiers. 5398 QualType FromTypeCanon = S.Context.getCanonicalType(FromType); 5399 if (ImplicitParamType.getCVRQualifiers() 5400 != FromTypeCanon.getLocalCVRQualifiers() && 5401 !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) { 5402 ICS.setBad(BadConversionSequence::bad_qualifiers, 5403 FromType, ImplicitParamType); 5404 return ICS; 5405 } 5406 5407 if (FromTypeCanon.hasAddressSpace()) { 5408 Qualifiers QualsImplicitParamType = ImplicitParamType.getQualifiers(); 5409 Qualifiers QualsFromType = FromTypeCanon.getQualifiers(); 5410 if (!QualsImplicitParamType.isAddressSpaceSupersetOf(QualsFromType)) { 5411 ICS.setBad(BadConversionSequence::bad_qualifiers, 5412 FromType, ImplicitParamType); 5413 return ICS; 5414 } 5415 } 5416 5417 // Check that we have either the same type or a derived type. It 5418 // affects the conversion rank. 5419 QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType); 5420 ImplicitConversionKind SecondKind; 5421 if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) { 5422 SecondKind = ICK_Identity; 5423 } else if (S.IsDerivedFrom(Loc, FromType, ClassType)) 5424 SecondKind = ICK_Derived_To_Base; 5425 else { 5426 ICS.setBad(BadConversionSequence::unrelated_class, 5427 FromType, ImplicitParamType); 5428 return ICS; 5429 } 5430 5431 // Check the ref-qualifier. 5432 switch (Method->getRefQualifier()) { 5433 case RQ_None: 5434 // Do nothing; we don't care about lvalueness or rvalueness. 5435 break; 5436 5437 case RQ_LValue: 5438 if (!FromClassification.isLValue() && !Quals.hasOnlyConst()) { 5439 // non-const lvalue reference cannot bind to an rvalue 5440 ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType, 5441 ImplicitParamType); 5442 return ICS; 5443 } 5444 break; 5445 5446 case RQ_RValue: 5447 if (!FromClassification.isRValue()) { 5448 // rvalue reference cannot bind to an lvalue 5449 ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType, 5450 ImplicitParamType); 5451 return ICS; 5452 } 5453 break; 5454 } 5455 5456 // Success. Mark this as a reference binding. 5457 ICS.setStandard(); 5458 ICS.Standard.setAsIdentityConversion(); 5459 ICS.Standard.Second = SecondKind; 5460 ICS.Standard.setFromType(FromType); 5461 ICS.Standard.setAllToTypes(ImplicitParamType); 5462 ICS.Standard.ReferenceBinding = true; 5463 ICS.Standard.DirectBinding = true; 5464 ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue; 5465 ICS.Standard.BindsToFunctionLvalue = false; 5466 ICS.Standard.BindsToRvalue = FromClassification.isRValue(); 5467 ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier 5468 = (Method->getRefQualifier() == RQ_None); 5469 return ICS; 5470 } 5471 5472 /// PerformObjectArgumentInitialization - Perform initialization of 5473 /// the implicit object parameter for the given Method with the given 5474 /// expression. 5475 ExprResult 5476 Sema::PerformObjectArgumentInitialization(Expr *From, 5477 NestedNameSpecifier *Qualifier, 5478 NamedDecl *FoundDecl, 5479 CXXMethodDecl *Method) { 5480 QualType FromRecordType, DestType; 5481 QualType ImplicitParamRecordType = 5482 Method->getThisType()->castAs<PointerType>()->getPointeeType(); 5483 5484 Expr::Classification FromClassification; 5485 if (const PointerType *PT = From->getType()->getAs<PointerType>()) { 5486 FromRecordType = PT->getPointeeType(); 5487 DestType = Method->getThisType(); 5488 FromClassification = Expr::Classification::makeSimpleLValue(); 5489 } else { 5490 FromRecordType = From->getType(); 5491 DestType = ImplicitParamRecordType; 5492 FromClassification = From->Classify(Context); 5493 5494 // When performing member access on a prvalue, materialize a temporary. 5495 if (From->isPRValue()) { 5496 From = CreateMaterializeTemporaryExpr(FromRecordType, From, 5497 Method->getRefQualifier() != 5498 RefQualifierKind::RQ_RValue); 5499 } 5500 } 5501 5502 // Note that we always use the true parent context when performing 5503 // the actual argument initialization. 5504 ImplicitConversionSequence ICS = TryObjectArgumentInitialization( 5505 *this, From->getBeginLoc(), From->getType(), FromClassification, Method, 5506 Method->getParent()); 5507 if (ICS.isBad()) { 5508 switch (ICS.Bad.Kind) { 5509 case BadConversionSequence::bad_qualifiers: { 5510 Qualifiers FromQs = FromRecordType.getQualifiers(); 5511 Qualifiers ToQs = DestType.getQualifiers(); 5512 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); 5513 if (CVR) { 5514 Diag(From->getBeginLoc(), diag::err_member_function_call_bad_cvr) 5515 << Method->getDeclName() << FromRecordType << (CVR - 1) 5516 << From->getSourceRange(); 5517 Diag(Method->getLocation(), diag::note_previous_decl) 5518 << Method->getDeclName(); 5519 return ExprError(); 5520 } 5521 break; 5522 } 5523 5524 case BadConversionSequence::lvalue_ref_to_rvalue: 5525 case BadConversionSequence::rvalue_ref_to_lvalue: { 5526 bool IsRValueQualified = 5527 Method->getRefQualifier() == RefQualifierKind::RQ_RValue; 5528 Diag(From->getBeginLoc(), diag::err_member_function_call_bad_ref) 5529 << Method->getDeclName() << FromClassification.isRValue() 5530 << IsRValueQualified; 5531 Diag(Method->getLocation(), diag::note_previous_decl) 5532 << Method->getDeclName(); 5533 return ExprError(); 5534 } 5535 5536 case BadConversionSequence::no_conversion: 5537 case BadConversionSequence::unrelated_class: 5538 break; 5539 5540 case BadConversionSequence::too_few_initializers: 5541 case BadConversionSequence::too_many_initializers: 5542 llvm_unreachable("Lists are not objects"); 5543 } 5544 5545 return Diag(From->getBeginLoc(), diag::err_member_function_call_bad_type) 5546 << ImplicitParamRecordType << FromRecordType 5547 << From->getSourceRange(); 5548 } 5549 5550 if (ICS.Standard.Second == ICK_Derived_To_Base) { 5551 ExprResult FromRes = 5552 PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method); 5553 if (FromRes.isInvalid()) 5554 return ExprError(); 5555 From = FromRes.get(); 5556 } 5557 5558 if (!Context.hasSameType(From->getType(), DestType)) { 5559 CastKind CK; 5560 QualType PteeTy = DestType->getPointeeType(); 5561 LangAS DestAS = 5562 PteeTy.isNull() ? DestType.getAddressSpace() : PteeTy.getAddressSpace(); 5563 if (FromRecordType.getAddressSpace() != DestAS) 5564 CK = CK_AddressSpaceConversion; 5565 else 5566 CK = CK_NoOp; 5567 From = ImpCastExprToType(From, DestType, CK, From->getValueKind()).get(); 5568 } 5569 return From; 5570 } 5571 5572 /// TryContextuallyConvertToBool - Attempt to contextually convert the 5573 /// expression From to bool (C++0x [conv]p3). 5574 static ImplicitConversionSequence 5575 TryContextuallyConvertToBool(Sema &S, Expr *From) { 5576 // C++ [dcl.init]/17.8: 5577 // - Otherwise, if the initialization is direct-initialization, the source 5578 // type is std::nullptr_t, and the destination type is bool, the initial 5579 // value of the object being initialized is false. 5580 if (From->getType()->isNullPtrType()) 5581 return ImplicitConversionSequence::getNullptrToBool(From->getType(), 5582 S.Context.BoolTy, 5583 From->isGLValue()); 5584 5585 // All other direct-initialization of bool is equivalent to an implicit 5586 // conversion to bool in which explicit conversions are permitted. 5587 return TryImplicitConversion(S, From, S.Context.BoolTy, 5588 /*SuppressUserConversions=*/false, 5589 AllowedExplicit::Conversions, 5590 /*InOverloadResolution=*/false, 5591 /*CStyle=*/false, 5592 /*AllowObjCWritebackConversion=*/false, 5593 /*AllowObjCConversionOnExplicit=*/false); 5594 } 5595 5596 /// PerformContextuallyConvertToBool - Perform a contextual conversion 5597 /// of the expression From to bool (C++0x [conv]p3). 5598 ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) { 5599 if (checkPlaceholderForOverload(*this, From)) 5600 return ExprError(); 5601 5602 ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From); 5603 if (!ICS.isBad()) 5604 return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting); 5605 5606 if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy)) 5607 return Diag(From->getBeginLoc(), diag::err_typecheck_bool_condition) 5608 << From->getType() << From->getSourceRange(); 5609 return ExprError(); 5610 } 5611 5612 /// Check that the specified conversion is permitted in a converted constant 5613 /// expression, according to C++11 [expr.const]p3. Return true if the conversion 5614 /// is acceptable. 5615 static bool CheckConvertedConstantConversions(Sema &S, 5616 StandardConversionSequence &SCS) { 5617 // Since we know that the target type is an integral or unscoped enumeration 5618 // type, most conversion kinds are impossible. All possible First and Third 5619 // conversions are fine. 5620 switch (SCS.Second) { 5621 case ICK_Identity: 5622 case ICK_Integral_Promotion: 5623 case ICK_Integral_Conversion: // Narrowing conversions are checked elsewhere. 5624 case ICK_Zero_Queue_Conversion: 5625 return true; 5626 5627 case ICK_Boolean_Conversion: 5628 // Conversion from an integral or unscoped enumeration type to bool is 5629 // classified as ICK_Boolean_Conversion, but it's also arguably an integral 5630 // conversion, so we allow it in a converted constant expression. 5631 // 5632 // FIXME: Per core issue 1407, we should not allow this, but that breaks 5633 // a lot of popular code. We should at least add a warning for this 5634 // (non-conforming) extension. 5635 return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() && 5636 SCS.getToType(2)->isBooleanType(); 5637 5638 case ICK_Pointer_Conversion: 5639 case ICK_Pointer_Member: 5640 // C++1z: null pointer conversions and null member pointer conversions are 5641 // only permitted if the source type is std::nullptr_t. 5642 return SCS.getFromType()->isNullPtrType(); 5643 5644 case ICK_Floating_Promotion: 5645 case ICK_Complex_Promotion: 5646 case ICK_Floating_Conversion: 5647 case ICK_Complex_Conversion: 5648 case ICK_Floating_Integral: 5649 case ICK_Compatible_Conversion: 5650 case ICK_Derived_To_Base: 5651 case ICK_Vector_Conversion: 5652 case ICK_SVE_Vector_Conversion: 5653 case ICK_Vector_Splat: 5654 case ICK_Complex_Real: 5655 case ICK_Block_Pointer_Conversion: 5656 case ICK_TransparentUnionConversion: 5657 case ICK_Writeback_Conversion: 5658 case ICK_Zero_Event_Conversion: 5659 case ICK_C_Only_Conversion: 5660 case ICK_Incompatible_Pointer_Conversion: 5661 return false; 5662 5663 case ICK_Lvalue_To_Rvalue: 5664 case ICK_Array_To_Pointer: 5665 case ICK_Function_To_Pointer: 5666 llvm_unreachable("found a first conversion kind in Second"); 5667 5668 case ICK_Function_Conversion: 5669 case ICK_Qualification: 5670 llvm_unreachable("found a third conversion kind in Second"); 5671 5672 case ICK_Num_Conversion_Kinds: 5673 break; 5674 } 5675 5676 llvm_unreachable("unknown conversion kind"); 5677 } 5678 5679 /// CheckConvertedConstantExpression - Check that the expression From is a 5680 /// converted constant expression of type T, perform the conversion and produce 5681 /// the converted expression, per C++11 [expr.const]p3. 5682 static ExprResult CheckConvertedConstantExpression(Sema &S, Expr *From, 5683 QualType T, APValue &Value, 5684 Sema::CCEKind CCE, 5685 bool RequireInt, 5686 NamedDecl *Dest) { 5687 assert(S.getLangOpts().CPlusPlus11 && 5688 "converted constant expression outside C++11"); 5689 5690 if (checkPlaceholderForOverload(S, From)) 5691 return ExprError(); 5692 5693 // C++1z [expr.const]p3: 5694 // A converted constant expression of type T is an expression, 5695 // implicitly converted to type T, where the converted 5696 // expression is a constant expression and the implicit conversion 5697 // sequence contains only [... list of conversions ...]. 5698 ImplicitConversionSequence ICS = 5699 (CCE == Sema::CCEK_ExplicitBool || CCE == Sema::CCEK_Noexcept) 5700 ? TryContextuallyConvertToBool(S, From) 5701 : TryCopyInitialization(S, From, T, 5702 /*SuppressUserConversions=*/false, 5703 /*InOverloadResolution=*/false, 5704 /*AllowObjCWritebackConversion=*/false, 5705 /*AllowExplicit=*/false); 5706 StandardConversionSequence *SCS = nullptr; 5707 switch (ICS.getKind()) { 5708 case ImplicitConversionSequence::StandardConversion: 5709 SCS = &ICS.Standard; 5710 break; 5711 case ImplicitConversionSequence::UserDefinedConversion: 5712 if (T->isRecordType()) 5713 SCS = &ICS.UserDefined.Before; 5714 else 5715 SCS = &ICS.UserDefined.After; 5716 break; 5717 case ImplicitConversionSequence::AmbiguousConversion: 5718 case ImplicitConversionSequence::BadConversion: 5719 if (!S.DiagnoseMultipleUserDefinedConversion(From, T)) 5720 return S.Diag(From->getBeginLoc(), 5721 diag::err_typecheck_converted_constant_expression) 5722 << From->getType() << From->getSourceRange() << T; 5723 return ExprError(); 5724 5725 case ImplicitConversionSequence::EllipsisConversion: 5726 llvm_unreachable("ellipsis conversion in converted constant expression"); 5727 } 5728 5729 // Check that we would only use permitted conversions. 5730 if (!CheckConvertedConstantConversions(S, *SCS)) { 5731 return S.Diag(From->getBeginLoc(), 5732 diag::err_typecheck_converted_constant_expression_disallowed) 5733 << From->getType() << From->getSourceRange() << T; 5734 } 5735 // [...] and where the reference binding (if any) binds directly. 5736 if (SCS->ReferenceBinding && !SCS->DirectBinding) { 5737 return S.Diag(From->getBeginLoc(), 5738 diag::err_typecheck_converted_constant_expression_indirect) 5739 << From->getType() << From->getSourceRange() << T; 5740 } 5741 5742 // Usually we can simply apply the ImplicitConversionSequence we formed 5743 // earlier, but that's not guaranteed to work when initializing an object of 5744 // class type. 5745 ExprResult Result; 5746 if (T->isRecordType()) { 5747 assert(CCE == Sema::CCEK_TemplateArg && 5748 "unexpected class type converted constant expr"); 5749 Result = S.PerformCopyInitialization( 5750 InitializedEntity::InitializeTemplateParameter( 5751 T, cast<NonTypeTemplateParmDecl>(Dest)), 5752 SourceLocation(), From); 5753 } else { 5754 Result = S.PerformImplicitConversion(From, T, ICS, Sema::AA_Converting); 5755 } 5756 if (Result.isInvalid()) 5757 return Result; 5758 5759 // C++2a [intro.execution]p5: 5760 // A full-expression is [...] a constant-expression [...] 5761 Result = 5762 S.ActOnFinishFullExpr(Result.get(), From->getExprLoc(), 5763 /*DiscardedValue=*/false, /*IsConstexpr=*/true); 5764 if (Result.isInvalid()) 5765 return Result; 5766 5767 // Check for a narrowing implicit conversion. 5768 bool ReturnPreNarrowingValue = false; 5769 APValue PreNarrowingValue; 5770 QualType PreNarrowingType; 5771 switch (SCS->getNarrowingKind(S.Context, Result.get(), PreNarrowingValue, 5772 PreNarrowingType)) { 5773 case NK_Dependent_Narrowing: 5774 // Implicit conversion to a narrower type, but the expression is 5775 // value-dependent so we can't tell whether it's actually narrowing. 5776 case NK_Variable_Narrowing: 5777 // Implicit conversion to a narrower type, and the value is not a constant 5778 // expression. We'll diagnose this in a moment. 5779 case NK_Not_Narrowing: 5780 break; 5781 5782 case NK_Constant_Narrowing: 5783 if (CCE == Sema::CCEK_ArrayBound && 5784 PreNarrowingType->isIntegralOrEnumerationType() && 5785 PreNarrowingValue.isInt()) { 5786 // Don't diagnose array bound narrowing here; we produce more precise 5787 // errors by allowing the un-narrowed value through. 5788 ReturnPreNarrowingValue = true; 5789 break; 5790 } 5791 S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing) 5792 << CCE << /*Constant*/ 1 5793 << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << T; 5794 break; 5795 5796 case NK_Type_Narrowing: 5797 // FIXME: It would be better to diagnose that the expression is not a 5798 // constant expression. 5799 S.Diag(From->getBeginLoc(), diag::ext_cce_narrowing) 5800 << CCE << /*Constant*/ 0 << From->getType() << T; 5801 break; 5802 } 5803 5804 if (Result.get()->isValueDependent()) { 5805 Value = APValue(); 5806 return Result; 5807 } 5808 5809 // Check the expression is a constant expression. 5810 SmallVector<PartialDiagnosticAt, 8> Notes; 5811 Expr::EvalResult Eval; 5812 Eval.Diag = &Notes; 5813 5814 ConstantExprKind Kind; 5815 if (CCE == Sema::CCEK_TemplateArg && T->isRecordType()) 5816 Kind = ConstantExprKind::ClassTemplateArgument; 5817 else if (CCE == Sema::CCEK_TemplateArg) 5818 Kind = ConstantExprKind::NonClassTemplateArgument; 5819 else 5820 Kind = ConstantExprKind::Normal; 5821 5822 if (!Result.get()->EvaluateAsConstantExpr(Eval, S.Context, Kind) || 5823 (RequireInt && !Eval.Val.isInt())) { 5824 // The expression can't be folded, so we can't keep it at this position in 5825 // the AST. 5826 Result = ExprError(); 5827 } else { 5828 Value = Eval.Val; 5829 5830 if (Notes.empty()) { 5831 // It's a constant expression. 5832 Expr *E = ConstantExpr::Create(S.Context, Result.get(), Value); 5833 if (ReturnPreNarrowingValue) 5834 Value = std::move(PreNarrowingValue); 5835 return E; 5836 } 5837 } 5838 5839 // It's not a constant expression. Produce an appropriate diagnostic. 5840 if (Notes.size() == 1 && 5841 Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr) { 5842 S.Diag(Notes[0].first, diag::err_expr_not_cce) << CCE; 5843 } else if (!Notes.empty() && Notes[0].second.getDiagID() == 5844 diag::note_constexpr_invalid_template_arg) { 5845 Notes[0].second.setDiagID(diag::err_constexpr_invalid_template_arg); 5846 for (unsigned I = 0; I < Notes.size(); ++I) 5847 S.Diag(Notes[I].first, Notes[I].second); 5848 } else { 5849 S.Diag(From->getBeginLoc(), diag::err_expr_not_cce) 5850 << CCE << From->getSourceRange(); 5851 for (unsigned I = 0; I < Notes.size(); ++I) 5852 S.Diag(Notes[I].first, Notes[I].second); 5853 } 5854 return ExprError(); 5855 } 5856 5857 ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T, 5858 APValue &Value, CCEKind CCE, 5859 NamedDecl *Dest) { 5860 return ::CheckConvertedConstantExpression(*this, From, T, Value, CCE, false, 5861 Dest); 5862 } 5863 5864 ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T, 5865 llvm::APSInt &Value, 5866 CCEKind CCE) { 5867 assert(T->isIntegralOrEnumerationType() && "unexpected converted const type"); 5868 5869 APValue V; 5870 auto R = ::CheckConvertedConstantExpression(*this, From, T, V, CCE, true, 5871 /*Dest=*/nullptr); 5872 if (!R.isInvalid() && !R.get()->isValueDependent()) 5873 Value = V.getInt(); 5874 return R; 5875 } 5876 5877 5878 /// dropPointerConversions - If the given standard conversion sequence 5879 /// involves any pointer conversions, remove them. This may change 5880 /// the result type of the conversion sequence. 5881 static void dropPointerConversion(StandardConversionSequence &SCS) { 5882 if (SCS.Second == ICK_Pointer_Conversion) { 5883 SCS.Second = ICK_Identity; 5884 SCS.Third = ICK_Identity; 5885 SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0]; 5886 } 5887 } 5888 5889 /// TryContextuallyConvertToObjCPointer - Attempt to contextually 5890 /// convert the expression From to an Objective-C pointer type. 5891 static ImplicitConversionSequence 5892 TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) { 5893 // Do an implicit conversion to 'id'. 5894 QualType Ty = S.Context.getObjCIdType(); 5895 ImplicitConversionSequence ICS 5896 = TryImplicitConversion(S, From, Ty, 5897 // FIXME: Are these flags correct? 5898 /*SuppressUserConversions=*/false, 5899 AllowedExplicit::Conversions, 5900 /*InOverloadResolution=*/false, 5901 /*CStyle=*/false, 5902 /*AllowObjCWritebackConversion=*/false, 5903 /*AllowObjCConversionOnExplicit=*/true); 5904 5905 // Strip off any final conversions to 'id'. 5906 switch (ICS.getKind()) { 5907 case ImplicitConversionSequence::BadConversion: 5908 case ImplicitConversionSequence::AmbiguousConversion: 5909 case ImplicitConversionSequence::EllipsisConversion: 5910 break; 5911 5912 case ImplicitConversionSequence::UserDefinedConversion: 5913 dropPointerConversion(ICS.UserDefined.After); 5914 break; 5915 5916 case ImplicitConversionSequence::StandardConversion: 5917 dropPointerConversion(ICS.Standard); 5918 break; 5919 } 5920 5921 return ICS; 5922 } 5923 5924 /// PerformContextuallyConvertToObjCPointer - Perform a contextual 5925 /// conversion of the expression From to an Objective-C pointer type. 5926 /// Returns a valid but null ExprResult if no conversion sequence exists. 5927 ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) { 5928 if (checkPlaceholderForOverload(*this, From)) 5929 return ExprError(); 5930 5931 QualType Ty = Context.getObjCIdType(); 5932 ImplicitConversionSequence ICS = 5933 TryContextuallyConvertToObjCPointer(*this, From); 5934 if (!ICS.isBad()) 5935 return PerformImplicitConversion(From, Ty, ICS, AA_Converting); 5936 return ExprResult(); 5937 } 5938 5939 /// Determine whether the provided type is an integral type, or an enumeration 5940 /// type of a permitted flavor. 5941 bool Sema::ICEConvertDiagnoser::match(QualType T) { 5942 return AllowScopedEnumerations ? T->isIntegralOrEnumerationType() 5943 : T->isIntegralOrUnscopedEnumerationType(); 5944 } 5945 5946 static ExprResult 5947 diagnoseAmbiguousConversion(Sema &SemaRef, SourceLocation Loc, Expr *From, 5948 Sema::ContextualImplicitConverter &Converter, 5949 QualType T, UnresolvedSetImpl &ViableConversions) { 5950 5951 if (Converter.Suppress) 5952 return ExprError(); 5953 5954 Converter.diagnoseAmbiguous(SemaRef, Loc, T) << From->getSourceRange(); 5955 for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) { 5956 CXXConversionDecl *Conv = 5957 cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl()); 5958 QualType ConvTy = Conv->getConversionType().getNonReferenceType(); 5959 Converter.noteAmbiguous(SemaRef, Conv, ConvTy); 5960 } 5961 return From; 5962 } 5963 5964 static bool 5965 diagnoseNoViableConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From, 5966 Sema::ContextualImplicitConverter &Converter, 5967 QualType T, bool HadMultipleCandidates, 5968 UnresolvedSetImpl &ExplicitConversions) { 5969 if (ExplicitConversions.size() == 1 && !Converter.Suppress) { 5970 DeclAccessPair Found = ExplicitConversions[0]; 5971 CXXConversionDecl *Conversion = 5972 cast<CXXConversionDecl>(Found->getUnderlyingDecl()); 5973 5974 // The user probably meant to invoke the given explicit 5975 // conversion; use it. 5976 QualType ConvTy = Conversion->getConversionType().getNonReferenceType(); 5977 std::string TypeStr; 5978 ConvTy.getAsStringInternal(TypeStr, SemaRef.getPrintingPolicy()); 5979 5980 Converter.diagnoseExplicitConv(SemaRef, Loc, T, ConvTy) 5981 << FixItHint::CreateInsertion(From->getBeginLoc(), 5982 "static_cast<" + TypeStr + ">(") 5983 << FixItHint::CreateInsertion( 5984 SemaRef.getLocForEndOfToken(From->getEndLoc()), ")"); 5985 Converter.noteExplicitConv(SemaRef, Conversion, ConvTy); 5986 5987 // If we aren't in a SFINAE context, build a call to the 5988 // explicit conversion function. 5989 if (SemaRef.isSFINAEContext()) 5990 return true; 5991 5992 SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found); 5993 ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion, 5994 HadMultipleCandidates); 5995 if (Result.isInvalid()) 5996 return true; 5997 // Record usage of conversion in an implicit cast. 5998 From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(), 5999 CK_UserDefinedConversion, Result.get(), 6000 nullptr, Result.get()->getValueKind(), 6001 SemaRef.CurFPFeatureOverrides()); 6002 } 6003 return false; 6004 } 6005 6006 static bool recordConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From, 6007 Sema::ContextualImplicitConverter &Converter, 6008 QualType T, bool HadMultipleCandidates, 6009 DeclAccessPair &Found) { 6010 CXXConversionDecl *Conversion = 6011 cast<CXXConversionDecl>(Found->getUnderlyingDecl()); 6012 SemaRef.CheckMemberOperatorAccess(From->getExprLoc(), From, nullptr, Found); 6013 6014 QualType ToType = Conversion->getConversionType().getNonReferenceType(); 6015 if (!Converter.SuppressConversion) { 6016 if (SemaRef.isSFINAEContext()) 6017 return true; 6018 6019 Converter.diagnoseConversion(SemaRef, Loc, T, ToType) 6020 << From->getSourceRange(); 6021 } 6022 6023 ExprResult Result = SemaRef.BuildCXXMemberCallExpr(From, Found, Conversion, 6024 HadMultipleCandidates); 6025 if (Result.isInvalid()) 6026 return true; 6027 // Record usage of conversion in an implicit cast. 6028 From = ImplicitCastExpr::Create(SemaRef.Context, Result.get()->getType(), 6029 CK_UserDefinedConversion, Result.get(), 6030 nullptr, Result.get()->getValueKind(), 6031 SemaRef.CurFPFeatureOverrides()); 6032 return false; 6033 } 6034 6035 static ExprResult finishContextualImplicitConversion( 6036 Sema &SemaRef, SourceLocation Loc, Expr *From, 6037 Sema::ContextualImplicitConverter &Converter) { 6038 if (!Converter.match(From->getType()) && !Converter.Suppress) 6039 Converter.diagnoseNoMatch(SemaRef, Loc, From->getType()) 6040 << From->getSourceRange(); 6041 6042 return SemaRef.DefaultLvalueConversion(From); 6043 } 6044 6045 static void 6046 collectViableConversionCandidates(Sema &SemaRef, Expr *From, QualType ToType, 6047 UnresolvedSetImpl &ViableConversions, 6048 OverloadCandidateSet &CandidateSet) { 6049 for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) { 6050 DeclAccessPair FoundDecl = ViableConversions[I]; 6051 NamedDecl *D = FoundDecl.getDecl(); 6052 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 6053 if (isa<UsingShadowDecl>(D)) 6054 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 6055 6056 CXXConversionDecl *Conv; 6057 FunctionTemplateDecl *ConvTemplate; 6058 if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D))) 6059 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 6060 else 6061 Conv = cast<CXXConversionDecl>(D); 6062 6063 if (ConvTemplate) 6064 SemaRef.AddTemplateConversionCandidate( 6065 ConvTemplate, FoundDecl, ActingContext, From, ToType, CandidateSet, 6066 /*AllowObjCConversionOnExplicit=*/false, /*AllowExplicit*/ true); 6067 else 6068 SemaRef.AddConversionCandidate(Conv, FoundDecl, ActingContext, From, 6069 ToType, CandidateSet, 6070 /*AllowObjCConversionOnExplicit=*/false, 6071 /*AllowExplicit*/ true); 6072 } 6073 } 6074 6075 /// Attempt to convert the given expression to a type which is accepted 6076 /// by the given converter. 6077 /// 6078 /// This routine will attempt to convert an expression of class type to a 6079 /// type accepted by the specified converter. In C++11 and before, the class 6080 /// must have a single non-explicit conversion function converting to a matching 6081 /// type. In C++1y, there can be multiple such conversion functions, but only 6082 /// one target type. 6083 /// 6084 /// \param Loc The source location of the construct that requires the 6085 /// conversion. 6086 /// 6087 /// \param From The expression we're converting from. 6088 /// 6089 /// \param Converter Used to control and diagnose the conversion process. 6090 /// 6091 /// \returns The expression, converted to an integral or enumeration type if 6092 /// successful. 6093 ExprResult Sema::PerformContextualImplicitConversion( 6094 SourceLocation Loc, Expr *From, ContextualImplicitConverter &Converter) { 6095 // We can't perform any more checking for type-dependent expressions. 6096 if (From->isTypeDependent()) 6097 return From; 6098 6099 // Process placeholders immediately. 6100 if (From->hasPlaceholderType()) { 6101 ExprResult result = CheckPlaceholderExpr(From); 6102 if (result.isInvalid()) 6103 return result; 6104 From = result.get(); 6105 } 6106 6107 // If the expression already has a matching type, we're golden. 6108 QualType T = From->getType(); 6109 if (Converter.match(T)) 6110 return DefaultLvalueConversion(From); 6111 6112 // FIXME: Check for missing '()' if T is a function type? 6113 6114 // We can only perform contextual implicit conversions on objects of class 6115 // type. 6116 const RecordType *RecordTy = T->getAs<RecordType>(); 6117 if (!RecordTy || !getLangOpts().CPlusPlus) { 6118 if (!Converter.Suppress) 6119 Converter.diagnoseNoMatch(*this, Loc, T) << From->getSourceRange(); 6120 return From; 6121 } 6122 6123 // We must have a complete class type. 6124 struct TypeDiagnoserPartialDiag : TypeDiagnoser { 6125 ContextualImplicitConverter &Converter; 6126 Expr *From; 6127 6128 TypeDiagnoserPartialDiag(ContextualImplicitConverter &Converter, Expr *From) 6129 : Converter(Converter), From(From) {} 6130 6131 void diagnose(Sema &S, SourceLocation Loc, QualType T) override { 6132 Converter.diagnoseIncomplete(S, Loc, T) << From->getSourceRange(); 6133 } 6134 } IncompleteDiagnoser(Converter, From); 6135 6136 if (Converter.Suppress ? !isCompleteType(Loc, T) 6137 : RequireCompleteType(Loc, T, IncompleteDiagnoser)) 6138 return From; 6139 6140 // Look for a conversion to an integral or enumeration type. 6141 UnresolvedSet<4> 6142 ViableConversions; // These are *potentially* viable in C++1y. 6143 UnresolvedSet<4> ExplicitConversions; 6144 const auto &Conversions = 6145 cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions(); 6146 6147 bool HadMultipleCandidates = 6148 (std::distance(Conversions.begin(), Conversions.end()) > 1); 6149 6150 // To check that there is only one target type, in C++1y: 6151 QualType ToType; 6152 bool HasUniqueTargetType = true; 6153 6154 // Collect explicit or viable (potentially in C++1y) conversions. 6155 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 6156 NamedDecl *D = (*I)->getUnderlyingDecl(); 6157 CXXConversionDecl *Conversion; 6158 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 6159 if (ConvTemplate) { 6160 if (getLangOpts().CPlusPlus14) 6161 Conversion = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 6162 else 6163 continue; // C++11 does not consider conversion operator templates(?). 6164 } else 6165 Conversion = cast<CXXConversionDecl>(D); 6166 6167 assert((!ConvTemplate || getLangOpts().CPlusPlus14) && 6168 "Conversion operator templates are considered potentially " 6169 "viable in C++1y"); 6170 6171 QualType CurToType = Conversion->getConversionType().getNonReferenceType(); 6172 if (Converter.match(CurToType) || ConvTemplate) { 6173 6174 if (Conversion->isExplicit()) { 6175 // FIXME: For C++1y, do we need this restriction? 6176 // cf. diagnoseNoViableConversion() 6177 if (!ConvTemplate) 6178 ExplicitConversions.addDecl(I.getDecl(), I.getAccess()); 6179 } else { 6180 if (!ConvTemplate && getLangOpts().CPlusPlus14) { 6181 if (ToType.isNull()) 6182 ToType = CurToType.getUnqualifiedType(); 6183 else if (HasUniqueTargetType && 6184 (CurToType.getUnqualifiedType() != ToType)) 6185 HasUniqueTargetType = false; 6186 } 6187 ViableConversions.addDecl(I.getDecl(), I.getAccess()); 6188 } 6189 } 6190 } 6191 6192 if (getLangOpts().CPlusPlus14) { 6193 // C++1y [conv]p6: 6194 // ... An expression e of class type E appearing in such a context 6195 // is said to be contextually implicitly converted to a specified 6196 // type T and is well-formed if and only if e can be implicitly 6197 // converted to a type T that is determined as follows: E is searched 6198 // for conversion functions whose return type is cv T or reference to 6199 // cv T such that T is allowed by the context. There shall be 6200 // exactly one such T. 6201 6202 // If no unique T is found: 6203 if (ToType.isNull()) { 6204 if (diagnoseNoViableConversion(*this, Loc, From, Converter, T, 6205 HadMultipleCandidates, 6206 ExplicitConversions)) 6207 return ExprError(); 6208 return finishContextualImplicitConversion(*this, Loc, From, Converter); 6209 } 6210 6211 // If more than one unique Ts are found: 6212 if (!HasUniqueTargetType) 6213 return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T, 6214 ViableConversions); 6215 6216 // If one unique T is found: 6217 // First, build a candidate set from the previously recorded 6218 // potentially viable conversions. 6219 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); 6220 collectViableConversionCandidates(*this, From, ToType, ViableConversions, 6221 CandidateSet); 6222 6223 // Then, perform overload resolution over the candidate set. 6224 OverloadCandidateSet::iterator Best; 6225 switch (CandidateSet.BestViableFunction(*this, Loc, Best)) { 6226 case OR_Success: { 6227 // Apply this conversion. 6228 DeclAccessPair Found = 6229 DeclAccessPair::make(Best->Function, Best->FoundDecl.getAccess()); 6230 if (recordConversion(*this, Loc, From, Converter, T, 6231 HadMultipleCandidates, Found)) 6232 return ExprError(); 6233 break; 6234 } 6235 case OR_Ambiguous: 6236 return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T, 6237 ViableConversions); 6238 case OR_No_Viable_Function: 6239 if (diagnoseNoViableConversion(*this, Loc, From, Converter, T, 6240 HadMultipleCandidates, 6241 ExplicitConversions)) 6242 return ExprError(); 6243 LLVM_FALLTHROUGH; 6244 case OR_Deleted: 6245 // We'll complain below about a non-integral condition type. 6246 break; 6247 } 6248 } else { 6249 switch (ViableConversions.size()) { 6250 case 0: { 6251 if (diagnoseNoViableConversion(*this, Loc, From, Converter, T, 6252 HadMultipleCandidates, 6253 ExplicitConversions)) 6254 return ExprError(); 6255 6256 // We'll complain below about a non-integral condition type. 6257 break; 6258 } 6259 case 1: { 6260 // Apply this conversion. 6261 DeclAccessPair Found = ViableConversions[0]; 6262 if (recordConversion(*this, Loc, From, Converter, T, 6263 HadMultipleCandidates, Found)) 6264 return ExprError(); 6265 break; 6266 } 6267 default: 6268 return diagnoseAmbiguousConversion(*this, Loc, From, Converter, T, 6269 ViableConversions); 6270 } 6271 } 6272 6273 return finishContextualImplicitConversion(*this, Loc, From, Converter); 6274 } 6275 6276 /// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is 6277 /// an acceptable non-member overloaded operator for a call whose 6278 /// arguments have types T1 (and, if non-empty, T2). This routine 6279 /// implements the check in C++ [over.match.oper]p3b2 concerning 6280 /// enumeration types. 6281 static bool IsAcceptableNonMemberOperatorCandidate(ASTContext &Context, 6282 FunctionDecl *Fn, 6283 ArrayRef<Expr *> Args) { 6284 QualType T1 = Args[0]->getType(); 6285 QualType T2 = Args.size() > 1 ? Args[1]->getType() : QualType(); 6286 6287 if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType())) 6288 return true; 6289 6290 if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType())) 6291 return true; 6292 6293 const auto *Proto = Fn->getType()->castAs<FunctionProtoType>(); 6294 if (Proto->getNumParams() < 1) 6295 return false; 6296 6297 if (T1->isEnumeralType()) { 6298 QualType ArgType = Proto->getParamType(0).getNonReferenceType(); 6299 if (Context.hasSameUnqualifiedType(T1, ArgType)) 6300 return true; 6301 } 6302 6303 if (Proto->getNumParams() < 2) 6304 return false; 6305 6306 if (!T2.isNull() && T2->isEnumeralType()) { 6307 QualType ArgType = Proto->getParamType(1).getNonReferenceType(); 6308 if (Context.hasSameUnqualifiedType(T2, ArgType)) 6309 return true; 6310 } 6311 6312 return false; 6313 } 6314 6315 /// AddOverloadCandidate - Adds the given function to the set of 6316 /// candidate functions, using the given function call arguments. If 6317 /// @p SuppressUserConversions, then don't allow user-defined 6318 /// conversions via constructors or conversion operators. 6319 /// 6320 /// \param PartialOverloading true if we are performing "partial" overloading 6321 /// based on an incomplete set of function arguments. This feature is used by 6322 /// code completion. 6323 void Sema::AddOverloadCandidate( 6324 FunctionDecl *Function, DeclAccessPair FoundDecl, ArrayRef<Expr *> Args, 6325 OverloadCandidateSet &CandidateSet, bool SuppressUserConversions, 6326 bool PartialOverloading, bool AllowExplicit, bool AllowExplicitConversions, 6327 ADLCallKind IsADLCandidate, ConversionSequenceList EarlyConversions, 6328 OverloadCandidateParamOrder PO) { 6329 const FunctionProtoType *Proto 6330 = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>()); 6331 assert(Proto && "Functions without a prototype cannot be overloaded"); 6332 assert(!Function->getDescribedFunctionTemplate() && 6333 "Use AddTemplateOverloadCandidate for function templates"); 6334 6335 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) { 6336 if (!isa<CXXConstructorDecl>(Method)) { 6337 // If we get here, it's because we're calling a member function 6338 // that is named without a member access expression (e.g., 6339 // "this->f") that was either written explicitly or created 6340 // implicitly. This can happen with a qualified call to a member 6341 // function, e.g., X::f(). We use an empty type for the implied 6342 // object argument (C++ [over.call.func]p3), and the acting context 6343 // is irrelevant. 6344 AddMethodCandidate(Method, FoundDecl, Method->getParent(), QualType(), 6345 Expr::Classification::makeSimpleLValue(), Args, 6346 CandidateSet, SuppressUserConversions, 6347 PartialOverloading, EarlyConversions, PO); 6348 return; 6349 } 6350 // We treat a constructor like a non-member function, since its object 6351 // argument doesn't participate in overload resolution. 6352 } 6353 6354 if (!CandidateSet.isNewCandidate(Function, PO)) 6355 return; 6356 6357 // C++11 [class.copy]p11: [DR1402] 6358 // A defaulted move constructor that is defined as deleted is ignored by 6359 // overload resolution. 6360 CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function); 6361 if (Constructor && Constructor->isDefaulted() && Constructor->isDeleted() && 6362 Constructor->isMoveConstructor()) 6363 return; 6364 6365 // Overload resolution is always an unevaluated context. 6366 EnterExpressionEvaluationContext Unevaluated( 6367 *this, Sema::ExpressionEvaluationContext::Unevaluated); 6368 6369 // C++ [over.match.oper]p3: 6370 // if no operand has a class type, only those non-member functions in the 6371 // lookup set that have a first parameter of type T1 or "reference to 6372 // (possibly cv-qualified) T1", when T1 is an enumeration type, or (if there 6373 // is a right operand) a second parameter of type T2 or "reference to 6374 // (possibly cv-qualified) T2", when T2 is an enumeration type, are 6375 // candidate functions. 6376 if (CandidateSet.getKind() == OverloadCandidateSet::CSK_Operator && 6377 !IsAcceptableNonMemberOperatorCandidate(Context, Function, Args)) 6378 return; 6379 6380 // Add this candidate 6381 OverloadCandidate &Candidate = 6382 CandidateSet.addCandidate(Args.size(), EarlyConversions); 6383 Candidate.FoundDecl = FoundDecl; 6384 Candidate.Function = Function; 6385 Candidate.Viable = true; 6386 Candidate.RewriteKind = 6387 CandidateSet.getRewriteInfo().getRewriteKind(Function, PO); 6388 Candidate.IsSurrogate = false; 6389 Candidate.IsADLCandidate = IsADLCandidate; 6390 Candidate.IgnoreObjectArgument = false; 6391 Candidate.ExplicitCallArguments = Args.size(); 6392 6393 // Explicit functions are not actually candidates at all if we're not 6394 // allowing them in this context, but keep them around so we can point 6395 // to them in diagnostics. 6396 if (!AllowExplicit && ExplicitSpecifier::getFromDecl(Function).isExplicit()) { 6397 Candidate.Viable = false; 6398 Candidate.FailureKind = ovl_fail_explicit; 6399 return; 6400 } 6401 6402 if (Function->isMultiVersion() && Function->hasAttr<TargetAttr>() && 6403 !Function->getAttr<TargetAttr>()->isDefaultVersion()) { 6404 Candidate.Viable = false; 6405 Candidate.FailureKind = ovl_non_default_multiversion_function; 6406 return; 6407 } 6408 6409 if (Constructor) { 6410 // C++ [class.copy]p3: 6411 // A member function template is never instantiated to perform the copy 6412 // of a class object to an object of its class type. 6413 QualType ClassType = Context.getTypeDeclType(Constructor->getParent()); 6414 if (Args.size() == 1 && Constructor->isSpecializationCopyingObject() && 6415 (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) || 6416 IsDerivedFrom(Args[0]->getBeginLoc(), Args[0]->getType(), 6417 ClassType))) { 6418 Candidate.Viable = false; 6419 Candidate.FailureKind = ovl_fail_illegal_constructor; 6420 return; 6421 } 6422 6423 // C++ [over.match.funcs]p8: (proposed DR resolution) 6424 // A constructor inherited from class type C that has a first parameter 6425 // of type "reference to P" (including such a constructor instantiated 6426 // from a template) is excluded from the set of candidate functions when 6427 // constructing an object of type cv D if the argument list has exactly 6428 // one argument and D is reference-related to P and P is reference-related 6429 // to C. 6430 auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl.getDecl()); 6431 if (Shadow && Args.size() == 1 && Constructor->getNumParams() >= 1 && 6432 Constructor->getParamDecl(0)->getType()->isReferenceType()) { 6433 QualType P = Constructor->getParamDecl(0)->getType()->getPointeeType(); 6434 QualType C = Context.getRecordType(Constructor->getParent()); 6435 QualType D = Context.getRecordType(Shadow->getParent()); 6436 SourceLocation Loc = Args.front()->getExprLoc(); 6437 if ((Context.hasSameUnqualifiedType(P, C) || IsDerivedFrom(Loc, P, C)) && 6438 (Context.hasSameUnqualifiedType(D, P) || IsDerivedFrom(Loc, D, P))) { 6439 Candidate.Viable = false; 6440 Candidate.FailureKind = ovl_fail_inhctor_slice; 6441 return; 6442 } 6443 } 6444 6445 // Check that the constructor is capable of constructing an object in the 6446 // destination address space. 6447 if (!Qualifiers::isAddressSpaceSupersetOf( 6448 Constructor->getMethodQualifiers().getAddressSpace(), 6449 CandidateSet.getDestAS())) { 6450 Candidate.Viable = false; 6451 Candidate.FailureKind = ovl_fail_object_addrspace_mismatch; 6452 } 6453 } 6454 6455 unsigned NumParams = Proto->getNumParams(); 6456 6457 // (C++ 13.3.2p2): A candidate function having fewer than m 6458 // parameters is viable only if it has an ellipsis in its parameter 6459 // list (8.3.5). 6460 if (TooManyArguments(NumParams, Args.size(), PartialOverloading) && 6461 !Proto->isVariadic()) { 6462 Candidate.Viable = false; 6463 Candidate.FailureKind = ovl_fail_too_many_arguments; 6464 return; 6465 } 6466 6467 // (C++ 13.3.2p2): A candidate function having more than m parameters 6468 // is viable only if the (m+1)st parameter has a default argument 6469 // (8.3.6). For the purposes of overload resolution, the 6470 // parameter list is truncated on the right, so that there are 6471 // exactly m parameters. 6472 unsigned MinRequiredArgs = Function->getMinRequiredArguments(); 6473 if (Args.size() < MinRequiredArgs && !PartialOverloading) { 6474 // Not enough arguments. 6475 Candidate.Viable = false; 6476 Candidate.FailureKind = ovl_fail_too_few_arguments; 6477 return; 6478 } 6479 6480 // (CUDA B.1): Check for invalid calls between targets. 6481 if (getLangOpts().CUDA) 6482 if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext)) 6483 // Skip the check for callers that are implicit members, because in this 6484 // case we may not yet know what the member's target is; the target is 6485 // inferred for the member automatically, based on the bases and fields of 6486 // the class. 6487 if (!Caller->isImplicit() && !IsAllowedCUDACall(Caller, Function)) { 6488 Candidate.Viable = false; 6489 Candidate.FailureKind = ovl_fail_bad_target; 6490 return; 6491 } 6492 6493 if (Function->getTrailingRequiresClause()) { 6494 ConstraintSatisfaction Satisfaction; 6495 if (CheckFunctionConstraints(Function, Satisfaction) || 6496 !Satisfaction.IsSatisfied) { 6497 Candidate.Viable = false; 6498 Candidate.FailureKind = ovl_fail_constraints_not_satisfied; 6499 return; 6500 } 6501 } 6502 6503 // Determine the implicit conversion sequences for each of the 6504 // arguments. 6505 for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) { 6506 unsigned ConvIdx = 6507 PO == OverloadCandidateParamOrder::Reversed ? 1 - ArgIdx : ArgIdx; 6508 if (Candidate.Conversions[ConvIdx].isInitialized()) { 6509 // We already formed a conversion sequence for this parameter during 6510 // template argument deduction. 6511 } else if (ArgIdx < NumParams) { 6512 // (C++ 13.3.2p3): for F to be a viable function, there shall 6513 // exist for each argument an implicit conversion sequence 6514 // (13.3.3.1) that converts that argument to the corresponding 6515 // parameter of F. 6516 QualType ParamType = Proto->getParamType(ArgIdx); 6517 Candidate.Conversions[ConvIdx] = TryCopyInitialization( 6518 *this, Args[ArgIdx], ParamType, SuppressUserConversions, 6519 /*InOverloadResolution=*/true, 6520 /*AllowObjCWritebackConversion=*/ 6521 getLangOpts().ObjCAutoRefCount, AllowExplicitConversions); 6522 if (Candidate.Conversions[ConvIdx].isBad()) { 6523 Candidate.Viable = false; 6524 Candidate.FailureKind = ovl_fail_bad_conversion; 6525 return; 6526 } 6527 } else { 6528 // (C++ 13.3.2p2): For the purposes of overload resolution, any 6529 // argument for which there is no corresponding parameter is 6530 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 6531 Candidate.Conversions[ConvIdx].setEllipsis(); 6532 } 6533 } 6534 6535 if (EnableIfAttr *FailedAttr = 6536 CheckEnableIf(Function, CandidateSet.getLocation(), Args)) { 6537 Candidate.Viable = false; 6538 Candidate.FailureKind = ovl_fail_enable_if; 6539 Candidate.DeductionFailure.Data = FailedAttr; 6540 return; 6541 } 6542 } 6543 6544 ObjCMethodDecl * 6545 Sema::SelectBestMethod(Selector Sel, MultiExprArg Args, bool IsInstance, 6546 SmallVectorImpl<ObjCMethodDecl *> &Methods) { 6547 if (Methods.size() <= 1) 6548 return nullptr; 6549 6550 for (unsigned b = 0, e = Methods.size(); b < e; b++) { 6551 bool Match = true; 6552 ObjCMethodDecl *Method = Methods[b]; 6553 unsigned NumNamedArgs = Sel.getNumArgs(); 6554 // Method might have more arguments than selector indicates. This is due 6555 // to addition of c-style arguments in method. 6556 if (Method->param_size() > NumNamedArgs) 6557 NumNamedArgs = Method->param_size(); 6558 if (Args.size() < NumNamedArgs) 6559 continue; 6560 6561 for (unsigned i = 0; i < NumNamedArgs; i++) { 6562 // We can't do any type-checking on a type-dependent argument. 6563 if (Args[i]->isTypeDependent()) { 6564 Match = false; 6565 break; 6566 } 6567 6568 ParmVarDecl *param = Method->parameters()[i]; 6569 Expr *argExpr = Args[i]; 6570 assert(argExpr && "SelectBestMethod(): missing expression"); 6571 6572 // Strip the unbridged-cast placeholder expression off unless it's 6573 // a consumed argument. 6574 if (argExpr->hasPlaceholderType(BuiltinType::ARCUnbridgedCast) && 6575 !param->hasAttr<CFConsumedAttr>()) 6576 argExpr = stripARCUnbridgedCast(argExpr); 6577 6578 // If the parameter is __unknown_anytype, move on to the next method. 6579 if (param->getType() == Context.UnknownAnyTy) { 6580 Match = false; 6581 break; 6582 } 6583 6584 ImplicitConversionSequence ConversionState 6585 = TryCopyInitialization(*this, argExpr, param->getType(), 6586 /*SuppressUserConversions*/false, 6587 /*InOverloadResolution=*/true, 6588 /*AllowObjCWritebackConversion=*/ 6589 getLangOpts().ObjCAutoRefCount, 6590 /*AllowExplicit*/false); 6591 // This function looks for a reasonably-exact match, so we consider 6592 // incompatible pointer conversions to be a failure here. 6593 if (ConversionState.isBad() || 6594 (ConversionState.isStandard() && 6595 ConversionState.Standard.Second == 6596 ICK_Incompatible_Pointer_Conversion)) { 6597 Match = false; 6598 break; 6599 } 6600 } 6601 // Promote additional arguments to variadic methods. 6602 if (Match && Method->isVariadic()) { 6603 for (unsigned i = NumNamedArgs, e = Args.size(); i < e; ++i) { 6604 if (Args[i]->isTypeDependent()) { 6605 Match = false; 6606 break; 6607 } 6608 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 6609 nullptr); 6610 if (Arg.isInvalid()) { 6611 Match = false; 6612 break; 6613 } 6614 } 6615 } else { 6616 // Check for extra arguments to non-variadic methods. 6617 if (Args.size() != NumNamedArgs) 6618 Match = false; 6619 else if (Match && NumNamedArgs == 0 && Methods.size() > 1) { 6620 // Special case when selectors have no argument. In this case, select 6621 // one with the most general result type of 'id'. 6622 for (unsigned b = 0, e = Methods.size(); b < e; b++) { 6623 QualType ReturnT = Methods[b]->getReturnType(); 6624 if (ReturnT->isObjCIdType()) 6625 return Methods[b]; 6626 } 6627 } 6628 } 6629 6630 if (Match) 6631 return Method; 6632 } 6633 return nullptr; 6634 } 6635 6636 static bool convertArgsForAvailabilityChecks( 6637 Sema &S, FunctionDecl *Function, Expr *ThisArg, SourceLocation CallLoc, 6638 ArrayRef<Expr *> Args, Sema::SFINAETrap &Trap, bool MissingImplicitThis, 6639 Expr *&ConvertedThis, SmallVectorImpl<Expr *> &ConvertedArgs) { 6640 if (ThisArg) { 6641 CXXMethodDecl *Method = cast<CXXMethodDecl>(Function); 6642 assert(!isa<CXXConstructorDecl>(Method) && 6643 "Shouldn't have `this` for ctors!"); 6644 assert(!Method->isStatic() && "Shouldn't have `this` for static methods!"); 6645 ExprResult R = S.PerformObjectArgumentInitialization( 6646 ThisArg, /*Qualifier=*/nullptr, Method, Method); 6647 if (R.isInvalid()) 6648 return false; 6649 ConvertedThis = R.get(); 6650 } else { 6651 if (auto *MD = dyn_cast<CXXMethodDecl>(Function)) { 6652 (void)MD; 6653 assert((MissingImplicitThis || MD->isStatic() || 6654 isa<CXXConstructorDecl>(MD)) && 6655 "Expected `this` for non-ctor instance methods"); 6656 } 6657 ConvertedThis = nullptr; 6658 } 6659 6660 // Ignore any variadic arguments. Converting them is pointless, since the 6661 // user can't refer to them in the function condition. 6662 unsigned ArgSizeNoVarargs = std::min(Function->param_size(), Args.size()); 6663 6664 // Convert the arguments. 6665 for (unsigned I = 0; I != ArgSizeNoVarargs; ++I) { 6666 ExprResult R; 6667 R = S.PerformCopyInitialization(InitializedEntity::InitializeParameter( 6668 S.Context, Function->getParamDecl(I)), 6669 SourceLocation(), Args[I]); 6670 6671 if (R.isInvalid()) 6672 return false; 6673 6674 ConvertedArgs.push_back(R.get()); 6675 } 6676 6677 if (Trap.hasErrorOccurred()) 6678 return false; 6679 6680 // Push default arguments if needed. 6681 if (!Function->isVariadic() && Args.size() < Function->getNumParams()) { 6682 for (unsigned i = Args.size(), e = Function->getNumParams(); i != e; ++i) { 6683 ParmVarDecl *P = Function->getParamDecl(i); 6684 if (!P->hasDefaultArg()) 6685 return false; 6686 ExprResult R = S.BuildCXXDefaultArgExpr(CallLoc, Function, P); 6687 if (R.isInvalid()) 6688 return false; 6689 ConvertedArgs.push_back(R.get()); 6690 } 6691 6692 if (Trap.hasErrorOccurred()) 6693 return false; 6694 } 6695 return true; 6696 } 6697 6698 EnableIfAttr *Sema::CheckEnableIf(FunctionDecl *Function, 6699 SourceLocation CallLoc, 6700 ArrayRef<Expr *> Args, 6701 bool MissingImplicitThis) { 6702 auto EnableIfAttrs = Function->specific_attrs<EnableIfAttr>(); 6703 if (EnableIfAttrs.begin() == EnableIfAttrs.end()) 6704 return nullptr; 6705 6706 SFINAETrap Trap(*this); 6707 SmallVector<Expr *, 16> ConvertedArgs; 6708 // FIXME: We should look into making enable_if late-parsed. 6709 Expr *DiscardedThis; 6710 if (!convertArgsForAvailabilityChecks( 6711 *this, Function, /*ThisArg=*/nullptr, CallLoc, Args, Trap, 6712 /*MissingImplicitThis=*/true, DiscardedThis, ConvertedArgs)) 6713 return *EnableIfAttrs.begin(); 6714 6715 for (auto *EIA : EnableIfAttrs) { 6716 APValue Result; 6717 // FIXME: This doesn't consider value-dependent cases, because doing so is 6718 // very difficult. Ideally, we should handle them more gracefully. 6719 if (EIA->getCond()->isValueDependent() || 6720 !EIA->getCond()->EvaluateWithSubstitution( 6721 Result, Context, Function, llvm::makeArrayRef(ConvertedArgs))) 6722 return EIA; 6723 6724 if (!Result.isInt() || !Result.getInt().getBoolValue()) 6725 return EIA; 6726 } 6727 return nullptr; 6728 } 6729 6730 template <typename CheckFn> 6731 static bool diagnoseDiagnoseIfAttrsWith(Sema &S, const NamedDecl *ND, 6732 bool ArgDependent, SourceLocation Loc, 6733 CheckFn &&IsSuccessful) { 6734 SmallVector<const DiagnoseIfAttr *, 8> Attrs; 6735 for (const auto *DIA : ND->specific_attrs<DiagnoseIfAttr>()) { 6736 if (ArgDependent == DIA->getArgDependent()) 6737 Attrs.push_back(DIA); 6738 } 6739 6740 // Common case: No diagnose_if attributes, so we can quit early. 6741 if (Attrs.empty()) 6742 return false; 6743 6744 auto WarningBegin = std::stable_partition( 6745 Attrs.begin(), Attrs.end(), 6746 [](const DiagnoseIfAttr *DIA) { return DIA->isError(); }); 6747 6748 // Note that diagnose_if attributes are late-parsed, so they appear in the 6749 // correct order (unlike enable_if attributes). 6750 auto ErrAttr = llvm::find_if(llvm::make_range(Attrs.begin(), WarningBegin), 6751 IsSuccessful); 6752 if (ErrAttr != WarningBegin) { 6753 const DiagnoseIfAttr *DIA = *ErrAttr; 6754 S.Diag(Loc, diag::err_diagnose_if_succeeded) << DIA->getMessage(); 6755 S.Diag(DIA->getLocation(), diag::note_from_diagnose_if) 6756 << DIA->getParent() << DIA->getCond()->getSourceRange(); 6757 return true; 6758 } 6759 6760 for (const auto *DIA : llvm::make_range(WarningBegin, Attrs.end())) 6761 if (IsSuccessful(DIA)) { 6762 S.Diag(Loc, diag::warn_diagnose_if_succeeded) << DIA->getMessage(); 6763 S.Diag(DIA->getLocation(), diag::note_from_diagnose_if) 6764 << DIA->getParent() << DIA->getCond()->getSourceRange(); 6765 } 6766 6767 return false; 6768 } 6769 6770 bool Sema::diagnoseArgDependentDiagnoseIfAttrs(const FunctionDecl *Function, 6771 const Expr *ThisArg, 6772 ArrayRef<const Expr *> Args, 6773 SourceLocation Loc) { 6774 return diagnoseDiagnoseIfAttrsWith( 6775 *this, Function, /*ArgDependent=*/true, Loc, 6776 [&](const DiagnoseIfAttr *DIA) { 6777 APValue Result; 6778 // It's sane to use the same Args for any redecl of this function, since 6779 // EvaluateWithSubstitution only cares about the position of each 6780 // argument in the arg list, not the ParmVarDecl* it maps to. 6781 if (!DIA->getCond()->EvaluateWithSubstitution( 6782 Result, Context, cast<FunctionDecl>(DIA->getParent()), Args, ThisArg)) 6783 return false; 6784 return Result.isInt() && Result.getInt().getBoolValue(); 6785 }); 6786 } 6787 6788 bool Sema::diagnoseArgIndependentDiagnoseIfAttrs(const NamedDecl *ND, 6789 SourceLocation Loc) { 6790 return diagnoseDiagnoseIfAttrsWith( 6791 *this, ND, /*ArgDependent=*/false, Loc, 6792 [&](const DiagnoseIfAttr *DIA) { 6793 bool Result; 6794 return DIA->getCond()->EvaluateAsBooleanCondition(Result, Context) && 6795 Result; 6796 }); 6797 } 6798 6799 /// Add all of the function declarations in the given function set to 6800 /// the overload candidate set. 6801 void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns, 6802 ArrayRef<Expr *> Args, 6803 OverloadCandidateSet &CandidateSet, 6804 TemplateArgumentListInfo *ExplicitTemplateArgs, 6805 bool SuppressUserConversions, 6806 bool PartialOverloading, 6807 bool FirstArgumentIsBase) { 6808 for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) { 6809 NamedDecl *D = F.getDecl()->getUnderlyingDecl(); 6810 ArrayRef<Expr *> FunctionArgs = Args; 6811 6812 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D); 6813 FunctionDecl *FD = 6814 FunTmpl ? FunTmpl->getTemplatedDecl() : cast<FunctionDecl>(D); 6815 6816 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) { 6817 QualType ObjectType; 6818 Expr::Classification ObjectClassification; 6819 if (Args.size() > 0) { 6820 if (Expr *E = Args[0]) { 6821 // Use the explicit base to restrict the lookup: 6822 ObjectType = E->getType(); 6823 // Pointers in the object arguments are implicitly dereferenced, so we 6824 // always classify them as l-values. 6825 if (!ObjectType.isNull() && ObjectType->isPointerType()) 6826 ObjectClassification = Expr::Classification::makeSimpleLValue(); 6827 else 6828 ObjectClassification = E->Classify(Context); 6829 } // .. else there is an implicit base. 6830 FunctionArgs = Args.slice(1); 6831 } 6832 if (FunTmpl) { 6833 AddMethodTemplateCandidate( 6834 FunTmpl, F.getPair(), 6835 cast<CXXRecordDecl>(FunTmpl->getDeclContext()), 6836 ExplicitTemplateArgs, ObjectType, ObjectClassification, 6837 FunctionArgs, CandidateSet, SuppressUserConversions, 6838 PartialOverloading); 6839 } else { 6840 AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(), 6841 cast<CXXMethodDecl>(FD)->getParent(), ObjectType, 6842 ObjectClassification, FunctionArgs, CandidateSet, 6843 SuppressUserConversions, PartialOverloading); 6844 } 6845 } else { 6846 // This branch handles both standalone functions and static methods. 6847 6848 // Slice the first argument (which is the base) when we access 6849 // static method as non-static. 6850 if (Args.size() > 0 && 6851 (!Args[0] || (FirstArgumentIsBase && isa<CXXMethodDecl>(FD) && 6852 !isa<CXXConstructorDecl>(FD)))) { 6853 assert(cast<CXXMethodDecl>(FD)->isStatic()); 6854 FunctionArgs = Args.slice(1); 6855 } 6856 if (FunTmpl) { 6857 AddTemplateOverloadCandidate(FunTmpl, F.getPair(), 6858 ExplicitTemplateArgs, FunctionArgs, 6859 CandidateSet, SuppressUserConversions, 6860 PartialOverloading); 6861 } else { 6862 AddOverloadCandidate(FD, F.getPair(), FunctionArgs, CandidateSet, 6863 SuppressUserConversions, PartialOverloading); 6864 } 6865 } 6866 } 6867 } 6868 6869 /// AddMethodCandidate - Adds a named decl (which is some kind of 6870 /// method) as a method candidate to the given overload set. 6871 void Sema::AddMethodCandidate(DeclAccessPair FoundDecl, QualType ObjectType, 6872 Expr::Classification ObjectClassification, 6873 ArrayRef<Expr *> Args, 6874 OverloadCandidateSet &CandidateSet, 6875 bool SuppressUserConversions, 6876 OverloadCandidateParamOrder PO) { 6877 NamedDecl *Decl = FoundDecl.getDecl(); 6878 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext()); 6879 6880 if (isa<UsingShadowDecl>(Decl)) 6881 Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl(); 6882 6883 if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) { 6884 assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) && 6885 "Expected a member function template"); 6886 AddMethodTemplateCandidate(TD, FoundDecl, ActingContext, 6887 /*ExplicitArgs*/ nullptr, ObjectType, 6888 ObjectClassification, Args, CandidateSet, 6889 SuppressUserConversions, false, PO); 6890 } else { 6891 AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext, 6892 ObjectType, ObjectClassification, Args, CandidateSet, 6893 SuppressUserConversions, false, None, PO); 6894 } 6895 } 6896 6897 /// AddMethodCandidate - Adds the given C++ member function to the set 6898 /// of candidate functions, using the given function call arguments 6899 /// and the object argument (@c Object). For example, in a call 6900 /// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain 6901 /// both @c a1 and @c a2. If @p SuppressUserConversions, then don't 6902 /// allow user-defined conversions via constructors or conversion 6903 /// operators. 6904 void 6905 Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl, 6906 CXXRecordDecl *ActingContext, QualType ObjectType, 6907 Expr::Classification ObjectClassification, 6908 ArrayRef<Expr *> Args, 6909 OverloadCandidateSet &CandidateSet, 6910 bool SuppressUserConversions, 6911 bool PartialOverloading, 6912 ConversionSequenceList EarlyConversions, 6913 OverloadCandidateParamOrder PO) { 6914 const FunctionProtoType *Proto 6915 = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>()); 6916 assert(Proto && "Methods without a prototype cannot be overloaded"); 6917 assert(!isa<CXXConstructorDecl>(Method) && 6918 "Use AddOverloadCandidate for constructors"); 6919 6920 if (!CandidateSet.isNewCandidate(Method, PO)) 6921 return; 6922 6923 // C++11 [class.copy]p23: [DR1402] 6924 // A defaulted move assignment operator that is defined as deleted is 6925 // ignored by overload resolution. 6926 if (Method->isDefaulted() && Method->isDeleted() && 6927 Method->isMoveAssignmentOperator()) 6928 return; 6929 6930 // Overload resolution is always an unevaluated context. 6931 EnterExpressionEvaluationContext Unevaluated( 6932 *this, Sema::ExpressionEvaluationContext::Unevaluated); 6933 6934 // Add this candidate 6935 OverloadCandidate &Candidate = 6936 CandidateSet.addCandidate(Args.size() + 1, EarlyConversions); 6937 Candidate.FoundDecl = FoundDecl; 6938 Candidate.Function = Method; 6939 Candidate.RewriteKind = 6940 CandidateSet.getRewriteInfo().getRewriteKind(Method, PO); 6941 Candidate.IsSurrogate = false; 6942 Candidate.IgnoreObjectArgument = false; 6943 Candidate.ExplicitCallArguments = Args.size(); 6944 6945 unsigned NumParams = Proto->getNumParams(); 6946 6947 // (C++ 13.3.2p2): A candidate function having fewer than m 6948 // parameters is viable only if it has an ellipsis in its parameter 6949 // list (8.3.5). 6950 if (TooManyArguments(NumParams, Args.size(), PartialOverloading) && 6951 !Proto->isVariadic()) { 6952 Candidate.Viable = false; 6953 Candidate.FailureKind = ovl_fail_too_many_arguments; 6954 return; 6955 } 6956 6957 // (C++ 13.3.2p2): A candidate function having more than m parameters 6958 // is viable only if the (m+1)st parameter has a default argument 6959 // (8.3.6). For the purposes of overload resolution, the 6960 // parameter list is truncated on the right, so that there are 6961 // exactly m parameters. 6962 unsigned MinRequiredArgs = Method->getMinRequiredArguments(); 6963 if (Args.size() < MinRequiredArgs && !PartialOverloading) { 6964 // Not enough arguments. 6965 Candidate.Viable = false; 6966 Candidate.FailureKind = ovl_fail_too_few_arguments; 6967 return; 6968 } 6969 6970 Candidate.Viable = true; 6971 6972 if (Method->isStatic() || ObjectType.isNull()) 6973 // The implicit object argument is ignored. 6974 Candidate.IgnoreObjectArgument = true; 6975 else { 6976 unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed ? 1 : 0; 6977 // Determine the implicit conversion sequence for the object 6978 // parameter. 6979 Candidate.Conversions[ConvIdx] = TryObjectArgumentInitialization( 6980 *this, CandidateSet.getLocation(), ObjectType, ObjectClassification, 6981 Method, ActingContext); 6982 if (Candidate.Conversions[ConvIdx].isBad()) { 6983 Candidate.Viable = false; 6984 Candidate.FailureKind = ovl_fail_bad_conversion; 6985 return; 6986 } 6987 } 6988 6989 // (CUDA B.1): Check for invalid calls between targets. 6990 if (getLangOpts().CUDA) 6991 if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext)) 6992 if (!IsAllowedCUDACall(Caller, Method)) { 6993 Candidate.Viable = false; 6994 Candidate.FailureKind = ovl_fail_bad_target; 6995 return; 6996 } 6997 6998 if (Method->getTrailingRequiresClause()) { 6999 ConstraintSatisfaction Satisfaction; 7000 if (CheckFunctionConstraints(Method, Satisfaction) || 7001 !Satisfaction.IsSatisfied) { 7002 Candidate.Viable = false; 7003 Candidate.FailureKind = ovl_fail_constraints_not_satisfied; 7004 return; 7005 } 7006 } 7007 7008 // Determine the implicit conversion sequences for each of the 7009 // arguments. 7010 for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) { 7011 unsigned ConvIdx = 7012 PO == OverloadCandidateParamOrder::Reversed ? 0 : (ArgIdx + 1); 7013 if (Candidate.Conversions[ConvIdx].isInitialized()) { 7014 // We already formed a conversion sequence for this parameter during 7015 // template argument deduction. 7016 } else if (ArgIdx < NumParams) { 7017 // (C++ 13.3.2p3): for F to be a viable function, there shall 7018 // exist for each argument an implicit conversion sequence 7019 // (13.3.3.1) that converts that argument to the corresponding 7020 // parameter of F. 7021 QualType ParamType = Proto->getParamType(ArgIdx); 7022 Candidate.Conversions[ConvIdx] 7023 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 7024 SuppressUserConversions, 7025 /*InOverloadResolution=*/true, 7026 /*AllowObjCWritebackConversion=*/ 7027 getLangOpts().ObjCAutoRefCount); 7028 if (Candidate.Conversions[ConvIdx].isBad()) { 7029 Candidate.Viable = false; 7030 Candidate.FailureKind = ovl_fail_bad_conversion; 7031 return; 7032 } 7033 } else { 7034 // (C++ 13.3.2p2): For the purposes of overload resolution, any 7035 // argument for which there is no corresponding parameter is 7036 // considered to "match the ellipsis" (C+ 13.3.3.1.3). 7037 Candidate.Conversions[ConvIdx].setEllipsis(); 7038 } 7039 } 7040 7041 if (EnableIfAttr *FailedAttr = 7042 CheckEnableIf(Method, CandidateSet.getLocation(), Args, true)) { 7043 Candidate.Viable = false; 7044 Candidate.FailureKind = ovl_fail_enable_if; 7045 Candidate.DeductionFailure.Data = FailedAttr; 7046 return; 7047 } 7048 7049 if (Method->isMultiVersion() && Method->hasAttr<TargetAttr>() && 7050 !Method->getAttr<TargetAttr>()->isDefaultVersion()) { 7051 Candidate.Viable = false; 7052 Candidate.FailureKind = ovl_non_default_multiversion_function; 7053 } 7054 } 7055 7056 /// Add a C++ member function template as a candidate to the candidate 7057 /// set, using template argument deduction to produce an appropriate member 7058 /// function template specialization. 7059 void Sema::AddMethodTemplateCandidate( 7060 FunctionTemplateDecl *MethodTmpl, DeclAccessPair FoundDecl, 7061 CXXRecordDecl *ActingContext, 7062 TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ObjectType, 7063 Expr::Classification ObjectClassification, ArrayRef<Expr *> Args, 7064 OverloadCandidateSet &CandidateSet, bool SuppressUserConversions, 7065 bool PartialOverloading, OverloadCandidateParamOrder PO) { 7066 if (!CandidateSet.isNewCandidate(MethodTmpl, PO)) 7067 return; 7068 7069 // C++ [over.match.funcs]p7: 7070 // In each case where a candidate is a function template, candidate 7071 // function template specializations are generated using template argument 7072 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 7073 // candidate functions in the usual way.113) A given name can refer to one 7074 // or more function templates and also to a set of overloaded non-template 7075 // functions. In such a case, the candidate functions generated from each 7076 // function template are combined with the set of non-template candidate 7077 // functions. 7078 TemplateDeductionInfo Info(CandidateSet.getLocation()); 7079 FunctionDecl *Specialization = nullptr; 7080 ConversionSequenceList Conversions; 7081 if (TemplateDeductionResult Result = DeduceTemplateArguments( 7082 MethodTmpl, ExplicitTemplateArgs, Args, Specialization, Info, 7083 PartialOverloading, [&](ArrayRef<QualType> ParamTypes) { 7084 return CheckNonDependentConversions( 7085 MethodTmpl, ParamTypes, Args, CandidateSet, Conversions, 7086 SuppressUserConversions, ActingContext, ObjectType, 7087 ObjectClassification, PO); 7088 })) { 7089 OverloadCandidate &Candidate = 7090 CandidateSet.addCandidate(Conversions.size(), Conversions); 7091 Candidate.FoundDecl = FoundDecl; 7092 Candidate.Function = MethodTmpl->getTemplatedDecl(); 7093 Candidate.Viable = false; 7094 Candidate.RewriteKind = 7095 CandidateSet.getRewriteInfo().getRewriteKind(Candidate.Function, PO); 7096 Candidate.IsSurrogate = false; 7097 Candidate.IgnoreObjectArgument = 7098 cast<CXXMethodDecl>(Candidate.Function)->isStatic() || 7099 ObjectType.isNull(); 7100 Candidate.ExplicitCallArguments = Args.size(); 7101 if (Result == TDK_NonDependentConversionFailure) 7102 Candidate.FailureKind = ovl_fail_bad_conversion; 7103 else { 7104 Candidate.FailureKind = ovl_fail_bad_deduction; 7105 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 7106 Info); 7107 } 7108 return; 7109 } 7110 7111 // Add the function template specialization produced by template argument 7112 // deduction as a candidate. 7113 assert(Specialization && "Missing member function template specialization?"); 7114 assert(isa<CXXMethodDecl>(Specialization) && 7115 "Specialization is not a member function?"); 7116 AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl, 7117 ActingContext, ObjectType, ObjectClassification, Args, 7118 CandidateSet, SuppressUserConversions, PartialOverloading, 7119 Conversions, PO); 7120 } 7121 7122 /// Determine whether a given function template has a simple explicit specifier 7123 /// or a non-value-dependent explicit-specification that evaluates to true. 7124 static bool isNonDependentlyExplicit(FunctionTemplateDecl *FTD) { 7125 return ExplicitSpecifier::getFromDecl(FTD->getTemplatedDecl()).isExplicit(); 7126 } 7127 7128 /// Add a C++ function template specialization as a candidate 7129 /// in the candidate set, using template argument deduction to produce 7130 /// an appropriate function template specialization. 7131 void Sema::AddTemplateOverloadCandidate( 7132 FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl, 7133 TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args, 7134 OverloadCandidateSet &CandidateSet, bool SuppressUserConversions, 7135 bool PartialOverloading, bool AllowExplicit, ADLCallKind IsADLCandidate, 7136 OverloadCandidateParamOrder PO) { 7137 if (!CandidateSet.isNewCandidate(FunctionTemplate, PO)) 7138 return; 7139 7140 // If the function template has a non-dependent explicit specification, 7141 // exclude it now if appropriate; we are not permitted to perform deduction 7142 // and substitution in this case. 7143 if (!AllowExplicit && isNonDependentlyExplicit(FunctionTemplate)) { 7144 OverloadCandidate &Candidate = CandidateSet.addCandidate(); 7145 Candidate.FoundDecl = FoundDecl; 7146 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 7147 Candidate.Viable = false; 7148 Candidate.FailureKind = ovl_fail_explicit; 7149 return; 7150 } 7151 7152 // C++ [over.match.funcs]p7: 7153 // In each case where a candidate is a function template, candidate 7154 // function template specializations are generated using template argument 7155 // deduction (14.8.3, 14.8.2). Those candidates are then handled as 7156 // candidate functions in the usual way.113) A given name can refer to one 7157 // or more function templates and also to a set of overloaded non-template 7158 // functions. In such a case, the candidate functions generated from each 7159 // function template are combined with the set of non-template candidate 7160 // functions. 7161 TemplateDeductionInfo Info(CandidateSet.getLocation()); 7162 FunctionDecl *Specialization = nullptr; 7163 ConversionSequenceList Conversions; 7164 if (TemplateDeductionResult Result = DeduceTemplateArguments( 7165 FunctionTemplate, ExplicitTemplateArgs, Args, Specialization, Info, 7166 PartialOverloading, [&](ArrayRef<QualType> ParamTypes) { 7167 return CheckNonDependentConversions( 7168 FunctionTemplate, ParamTypes, Args, CandidateSet, Conversions, 7169 SuppressUserConversions, nullptr, QualType(), {}, PO); 7170 })) { 7171 OverloadCandidate &Candidate = 7172 CandidateSet.addCandidate(Conversions.size(), Conversions); 7173 Candidate.FoundDecl = FoundDecl; 7174 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 7175 Candidate.Viable = false; 7176 Candidate.RewriteKind = 7177 CandidateSet.getRewriteInfo().getRewriteKind(Candidate.Function, PO); 7178 Candidate.IsSurrogate = false; 7179 Candidate.IsADLCandidate = IsADLCandidate; 7180 // Ignore the object argument if there is one, since we don't have an object 7181 // type. 7182 Candidate.IgnoreObjectArgument = 7183 isa<CXXMethodDecl>(Candidate.Function) && 7184 !isa<CXXConstructorDecl>(Candidate.Function); 7185 Candidate.ExplicitCallArguments = Args.size(); 7186 if (Result == TDK_NonDependentConversionFailure) 7187 Candidate.FailureKind = ovl_fail_bad_conversion; 7188 else { 7189 Candidate.FailureKind = ovl_fail_bad_deduction; 7190 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 7191 Info); 7192 } 7193 return; 7194 } 7195 7196 // Add the function template specialization produced by template argument 7197 // deduction as a candidate. 7198 assert(Specialization && "Missing function template specialization?"); 7199 AddOverloadCandidate( 7200 Specialization, FoundDecl, Args, CandidateSet, SuppressUserConversions, 7201 PartialOverloading, AllowExplicit, 7202 /*AllowExplicitConversions*/ false, IsADLCandidate, Conversions, PO); 7203 } 7204 7205 /// Check that implicit conversion sequences can be formed for each argument 7206 /// whose corresponding parameter has a non-dependent type, per DR1391's 7207 /// [temp.deduct.call]p10. 7208 bool Sema::CheckNonDependentConversions( 7209 FunctionTemplateDecl *FunctionTemplate, ArrayRef<QualType> ParamTypes, 7210 ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet, 7211 ConversionSequenceList &Conversions, bool SuppressUserConversions, 7212 CXXRecordDecl *ActingContext, QualType ObjectType, 7213 Expr::Classification ObjectClassification, OverloadCandidateParamOrder PO) { 7214 // FIXME: The cases in which we allow explicit conversions for constructor 7215 // arguments never consider calling a constructor template. It's not clear 7216 // that is correct. 7217 const bool AllowExplicit = false; 7218 7219 auto *FD = FunctionTemplate->getTemplatedDecl(); 7220 auto *Method = dyn_cast<CXXMethodDecl>(FD); 7221 bool HasThisConversion = Method && !isa<CXXConstructorDecl>(Method); 7222 unsigned ThisConversions = HasThisConversion ? 1 : 0; 7223 7224 Conversions = 7225 CandidateSet.allocateConversionSequences(ThisConversions + Args.size()); 7226 7227 // Overload resolution is always an unevaluated context. 7228 EnterExpressionEvaluationContext Unevaluated( 7229 *this, Sema::ExpressionEvaluationContext::Unevaluated); 7230 7231 // For a method call, check the 'this' conversion here too. DR1391 doesn't 7232 // require that, but this check should never result in a hard error, and 7233 // overload resolution is permitted to sidestep instantiations. 7234 if (HasThisConversion && !cast<CXXMethodDecl>(FD)->isStatic() && 7235 !ObjectType.isNull()) { 7236 unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed ? 1 : 0; 7237 Conversions[ConvIdx] = TryObjectArgumentInitialization( 7238 *this, CandidateSet.getLocation(), ObjectType, ObjectClassification, 7239 Method, ActingContext); 7240 if (Conversions[ConvIdx].isBad()) 7241 return true; 7242 } 7243 7244 for (unsigned I = 0, N = std::min(ParamTypes.size(), Args.size()); I != N; 7245 ++I) { 7246 QualType ParamType = ParamTypes[I]; 7247 if (!ParamType->isDependentType()) { 7248 unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed 7249 ? 0 7250 : (ThisConversions + I); 7251 Conversions[ConvIdx] 7252 = TryCopyInitialization(*this, Args[I], ParamType, 7253 SuppressUserConversions, 7254 /*InOverloadResolution=*/true, 7255 /*AllowObjCWritebackConversion=*/ 7256 getLangOpts().ObjCAutoRefCount, 7257 AllowExplicit); 7258 if (Conversions[ConvIdx].isBad()) 7259 return true; 7260 } 7261 } 7262 7263 return false; 7264 } 7265 7266 /// Determine whether this is an allowable conversion from the result 7267 /// of an explicit conversion operator to the expected type, per C++ 7268 /// [over.match.conv]p1 and [over.match.ref]p1. 7269 /// 7270 /// \param ConvType The return type of the conversion function. 7271 /// 7272 /// \param ToType The type we are converting to. 7273 /// 7274 /// \param AllowObjCPointerConversion Allow a conversion from one 7275 /// Objective-C pointer to another. 7276 /// 7277 /// \returns true if the conversion is allowable, false otherwise. 7278 static bool isAllowableExplicitConversion(Sema &S, 7279 QualType ConvType, QualType ToType, 7280 bool AllowObjCPointerConversion) { 7281 QualType ToNonRefType = ToType.getNonReferenceType(); 7282 7283 // Easy case: the types are the same. 7284 if (S.Context.hasSameUnqualifiedType(ConvType, ToNonRefType)) 7285 return true; 7286 7287 // Allow qualification conversions. 7288 bool ObjCLifetimeConversion; 7289 if (S.IsQualificationConversion(ConvType, ToNonRefType, /*CStyle*/false, 7290 ObjCLifetimeConversion)) 7291 return true; 7292 7293 // If we're not allowed to consider Objective-C pointer conversions, 7294 // we're done. 7295 if (!AllowObjCPointerConversion) 7296 return false; 7297 7298 // Is this an Objective-C pointer conversion? 7299 bool IncompatibleObjC = false; 7300 QualType ConvertedType; 7301 return S.isObjCPointerConversion(ConvType, ToNonRefType, ConvertedType, 7302 IncompatibleObjC); 7303 } 7304 7305 /// AddConversionCandidate - Add a C++ conversion function as a 7306 /// candidate in the candidate set (C++ [over.match.conv], 7307 /// C++ [over.match.copy]). From is the expression we're converting from, 7308 /// and ToType is the type that we're eventually trying to convert to 7309 /// (which may or may not be the same type as the type that the 7310 /// conversion function produces). 7311 void Sema::AddConversionCandidate( 7312 CXXConversionDecl *Conversion, DeclAccessPair FoundDecl, 7313 CXXRecordDecl *ActingContext, Expr *From, QualType ToType, 7314 OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit, 7315 bool AllowExplicit, bool AllowResultConversion) { 7316 assert(!Conversion->getDescribedFunctionTemplate() && 7317 "Conversion function templates use AddTemplateConversionCandidate"); 7318 QualType ConvType = Conversion->getConversionType().getNonReferenceType(); 7319 if (!CandidateSet.isNewCandidate(Conversion)) 7320 return; 7321 7322 // If the conversion function has an undeduced return type, trigger its 7323 // deduction now. 7324 if (getLangOpts().CPlusPlus14 && ConvType->isUndeducedType()) { 7325 if (DeduceReturnType(Conversion, From->getExprLoc())) 7326 return; 7327 ConvType = Conversion->getConversionType().getNonReferenceType(); 7328 } 7329 7330 // If we don't allow any conversion of the result type, ignore conversion 7331 // functions that don't convert to exactly (possibly cv-qualified) T. 7332 if (!AllowResultConversion && 7333 !Context.hasSameUnqualifiedType(Conversion->getConversionType(), ToType)) 7334 return; 7335 7336 // Per C++ [over.match.conv]p1, [over.match.ref]p1, an explicit conversion 7337 // operator is only a candidate if its return type is the target type or 7338 // can be converted to the target type with a qualification conversion. 7339 // 7340 // FIXME: Include such functions in the candidate list and explain why we 7341 // can't select them. 7342 if (Conversion->isExplicit() && 7343 !isAllowableExplicitConversion(*this, ConvType, ToType, 7344 AllowObjCConversionOnExplicit)) 7345 return; 7346 7347 // Overload resolution is always an unevaluated context. 7348 EnterExpressionEvaluationContext Unevaluated( 7349 *this, Sema::ExpressionEvaluationContext::Unevaluated); 7350 7351 // Add this candidate 7352 OverloadCandidate &Candidate = CandidateSet.addCandidate(1); 7353 Candidate.FoundDecl = FoundDecl; 7354 Candidate.Function = Conversion; 7355 Candidate.IsSurrogate = false; 7356 Candidate.IgnoreObjectArgument = false; 7357 Candidate.FinalConversion.setAsIdentityConversion(); 7358 Candidate.FinalConversion.setFromType(ConvType); 7359 Candidate.FinalConversion.setAllToTypes(ToType); 7360 Candidate.Viable = true; 7361 Candidate.ExplicitCallArguments = 1; 7362 7363 // Explicit functions are not actually candidates at all if we're not 7364 // allowing them in this context, but keep them around so we can point 7365 // to them in diagnostics. 7366 if (!AllowExplicit && Conversion->isExplicit()) { 7367 Candidate.Viable = false; 7368 Candidate.FailureKind = ovl_fail_explicit; 7369 return; 7370 } 7371 7372 // C++ [over.match.funcs]p4: 7373 // For conversion functions, the function is considered to be a member of 7374 // the class of the implicit implied object argument for the purpose of 7375 // defining the type of the implicit object parameter. 7376 // 7377 // Determine the implicit conversion sequence for the implicit 7378 // object parameter. 7379 QualType ImplicitParamType = From->getType(); 7380 if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>()) 7381 ImplicitParamType = FromPtrType->getPointeeType(); 7382 CXXRecordDecl *ConversionContext 7383 = cast<CXXRecordDecl>(ImplicitParamType->castAs<RecordType>()->getDecl()); 7384 7385 Candidate.Conversions[0] = TryObjectArgumentInitialization( 7386 *this, CandidateSet.getLocation(), From->getType(), 7387 From->Classify(Context), Conversion, ConversionContext); 7388 7389 if (Candidate.Conversions[0].isBad()) { 7390 Candidate.Viable = false; 7391 Candidate.FailureKind = ovl_fail_bad_conversion; 7392 return; 7393 } 7394 7395 if (Conversion->getTrailingRequiresClause()) { 7396 ConstraintSatisfaction Satisfaction; 7397 if (CheckFunctionConstraints(Conversion, Satisfaction) || 7398 !Satisfaction.IsSatisfied) { 7399 Candidate.Viable = false; 7400 Candidate.FailureKind = ovl_fail_constraints_not_satisfied; 7401 return; 7402 } 7403 } 7404 7405 // We won't go through a user-defined type conversion function to convert a 7406 // derived to base as such conversions are given Conversion Rank. They only 7407 // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user] 7408 QualType FromCanon 7409 = Context.getCanonicalType(From->getType().getUnqualifiedType()); 7410 QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); 7411 if (FromCanon == ToCanon || 7412 IsDerivedFrom(CandidateSet.getLocation(), FromCanon, ToCanon)) { 7413 Candidate.Viable = false; 7414 Candidate.FailureKind = ovl_fail_trivial_conversion; 7415 return; 7416 } 7417 7418 // To determine what the conversion from the result of calling the 7419 // conversion function to the type we're eventually trying to 7420 // convert to (ToType), we need to synthesize a call to the 7421 // conversion function and attempt copy initialization from it. This 7422 // makes sure that we get the right semantics with respect to 7423 // lvalues/rvalues and the type. Fortunately, we can allocate this 7424 // call on the stack and we don't need its arguments to be 7425 // well-formed. 7426 DeclRefExpr ConversionRef(Context, Conversion, false, Conversion->getType(), 7427 VK_LValue, From->getBeginLoc()); 7428 ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack, 7429 Context.getPointerType(Conversion->getType()), 7430 CK_FunctionToPointerDecay, &ConversionRef, 7431 VK_PRValue, FPOptionsOverride()); 7432 7433 QualType ConversionType = Conversion->getConversionType(); 7434 if (!isCompleteType(From->getBeginLoc(), ConversionType)) { 7435 Candidate.Viable = false; 7436 Candidate.FailureKind = ovl_fail_bad_final_conversion; 7437 return; 7438 } 7439 7440 ExprValueKind VK = Expr::getValueKindForType(ConversionType); 7441 7442 // Note that it is safe to allocate CallExpr on the stack here because 7443 // there are 0 arguments (i.e., nothing is allocated using ASTContext's 7444 // allocator). 7445 QualType CallResultType = ConversionType.getNonLValueExprType(Context); 7446 7447 alignas(CallExpr) char Buffer[sizeof(CallExpr) + sizeof(Stmt *)]; 7448 CallExpr *TheTemporaryCall = CallExpr::CreateTemporary( 7449 Buffer, &ConversionFn, CallResultType, VK, From->getBeginLoc()); 7450 7451 ImplicitConversionSequence ICS = 7452 TryCopyInitialization(*this, TheTemporaryCall, ToType, 7453 /*SuppressUserConversions=*/true, 7454 /*InOverloadResolution=*/false, 7455 /*AllowObjCWritebackConversion=*/false); 7456 7457 switch (ICS.getKind()) { 7458 case ImplicitConversionSequence::StandardConversion: 7459 Candidate.FinalConversion = ICS.Standard; 7460 7461 // C++ [over.ics.user]p3: 7462 // If the user-defined conversion is specified by a specialization of a 7463 // conversion function template, the second standard conversion sequence 7464 // shall have exact match rank. 7465 if (Conversion->getPrimaryTemplate() && 7466 GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) { 7467 Candidate.Viable = false; 7468 Candidate.FailureKind = ovl_fail_final_conversion_not_exact; 7469 return; 7470 } 7471 7472 // C++0x [dcl.init.ref]p5: 7473 // In the second case, if the reference is an rvalue reference and 7474 // the second standard conversion sequence of the user-defined 7475 // conversion sequence includes an lvalue-to-rvalue conversion, the 7476 // program is ill-formed. 7477 if (ToType->isRValueReferenceType() && 7478 ICS.Standard.First == ICK_Lvalue_To_Rvalue) { 7479 Candidate.Viable = false; 7480 Candidate.FailureKind = ovl_fail_bad_final_conversion; 7481 return; 7482 } 7483 break; 7484 7485 case ImplicitConversionSequence::BadConversion: 7486 Candidate.Viable = false; 7487 Candidate.FailureKind = ovl_fail_bad_final_conversion; 7488 return; 7489 7490 default: 7491 llvm_unreachable( 7492 "Can only end up with a standard conversion sequence or failure"); 7493 } 7494 7495 if (EnableIfAttr *FailedAttr = 7496 CheckEnableIf(Conversion, CandidateSet.getLocation(), None)) { 7497 Candidate.Viable = false; 7498 Candidate.FailureKind = ovl_fail_enable_if; 7499 Candidate.DeductionFailure.Data = FailedAttr; 7500 return; 7501 } 7502 7503 if (Conversion->isMultiVersion() && Conversion->hasAttr<TargetAttr>() && 7504 !Conversion->getAttr<TargetAttr>()->isDefaultVersion()) { 7505 Candidate.Viable = false; 7506 Candidate.FailureKind = ovl_non_default_multiversion_function; 7507 } 7508 } 7509 7510 /// Adds a conversion function template specialization 7511 /// candidate to the overload set, using template argument deduction 7512 /// to deduce the template arguments of the conversion function 7513 /// template from the type that we are converting to (C++ 7514 /// [temp.deduct.conv]). 7515 void Sema::AddTemplateConversionCandidate( 7516 FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl, 7517 CXXRecordDecl *ActingDC, Expr *From, QualType ToType, 7518 OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit, 7519 bool AllowExplicit, bool AllowResultConversion) { 7520 assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) && 7521 "Only conversion function templates permitted here"); 7522 7523 if (!CandidateSet.isNewCandidate(FunctionTemplate)) 7524 return; 7525 7526 // If the function template has a non-dependent explicit specification, 7527 // exclude it now if appropriate; we are not permitted to perform deduction 7528 // and substitution in this case. 7529 if (!AllowExplicit && isNonDependentlyExplicit(FunctionTemplate)) { 7530 OverloadCandidate &Candidate = CandidateSet.addCandidate(); 7531 Candidate.FoundDecl = FoundDecl; 7532 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 7533 Candidate.Viable = false; 7534 Candidate.FailureKind = ovl_fail_explicit; 7535 return; 7536 } 7537 7538 TemplateDeductionInfo Info(CandidateSet.getLocation()); 7539 CXXConversionDecl *Specialization = nullptr; 7540 if (TemplateDeductionResult Result 7541 = DeduceTemplateArguments(FunctionTemplate, ToType, 7542 Specialization, Info)) { 7543 OverloadCandidate &Candidate = CandidateSet.addCandidate(); 7544 Candidate.FoundDecl = FoundDecl; 7545 Candidate.Function = FunctionTemplate->getTemplatedDecl(); 7546 Candidate.Viable = false; 7547 Candidate.FailureKind = ovl_fail_bad_deduction; 7548 Candidate.IsSurrogate = false; 7549 Candidate.IgnoreObjectArgument = false; 7550 Candidate.ExplicitCallArguments = 1; 7551 Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, 7552 Info); 7553 return; 7554 } 7555 7556 // Add the conversion function template specialization produced by 7557 // template argument deduction as a candidate. 7558 assert(Specialization && "Missing function template specialization?"); 7559 AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType, 7560 CandidateSet, AllowObjCConversionOnExplicit, 7561 AllowExplicit, AllowResultConversion); 7562 } 7563 7564 /// AddSurrogateCandidate - Adds a "surrogate" candidate function that 7565 /// converts the given @c Object to a function pointer via the 7566 /// conversion function @c Conversion, and then attempts to call it 7567 /// with the given arguments (C++ [over.call.object]p2-4). Proto is 7568 /// the type of function that we'll eventually be calling. 7569 void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion, 7570 DeclAccessPair FoundDecl, 7571 CXXRecordDecl *ActingContext, 7572 const FunctionProtoType *Proto, 7573 Expr *Object, 7574 ArrayRef<Expr *> Args, 7575 OverloadCandidateSet& CandidateSet) { 7576 if (!CandidateSet.isNewCandidate(Conversion)) 7577 return; 7578 7579 // Overload resolution is always an unevaluated context. 7580 EnterExpressionEvaluationContext Unevaluated( 7581 *this, Sema::ExpressionEvaluationContext::Unevaluated); 7582 7583 OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1); 7584 Candidate.FoundDecl = FoundDecl; 7585 Candidate.Function = nullptr; 7586 Candidate.Surrogate = Conversion; 7587 Candidate.Viable = true; 7588 Candidate.IsSurrogate = true; 7589 Candidate.IgnoreObjectArgument = false; 7590 Candidate.ExplicitCallArguments = Args.size(); 7591 7592 // Determine the implicit conversion sequence for the implicit 7593 // object parameter. 7594 ImplicitConversionSequence ObjectInit = TryObjectArgumentInitialization( 7595 *this, CandidateSet.getLocation(), Object->getType(), 7596 Object->Classify(Context), Conversion, ActingContext); 7597 if (ObjectInit.isBad()) { 7598 Candidate.Viable = false; 7599 Candidate.FailureKind = ovl_fail_bad_conversion; 7600 Candidate.Conversions[0] = ObjectInit; 7601 return; 7602 } 7603 7604 // The first conversion is actually a user-defined conversion whose 7605 // first conversion is ObjectInit's standard conversion (which is 7606 // effectively a reference binding). Record it as such. 7607 Candidate.Conversions[0].setUserDefined(); 7608 Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard; 7609 Candidate.Conversions[0].UserDefined.EllipsisConversion = false; 7610 Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false; 7611 Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion; 7612 Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl; 7613 Candidate.Conversions[0].UserDefined.After 7614 = Candidate.Conversions[0].UserDefined.Before; 7615 Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion(); 7616 7617 // Find the 7618 unsigned NumParams = Proto->getNumParams(); 7619 7620 // (C++ 13.3.2p2): A candidate function having fewer than m 7621 // parameters is viable only if it has an ellipsis in its parameter 7622 // list (8.3.5). 7623 if (Args.size() > NumParams && !Proto->isVariadic()) { 7624 Candidate.Viable = false; 7625 Candidate.FailureKind = ovl_fail_too_many_arguments; 7626 return; 7627 } 7628 7629 // Function types don't have any default arguments, so just check if 7630 // we have enough arguments. 7631 if (Args.size() < NumParams) { 7632 // Not enough arguments. 7633 Candidate.Viable = false; 7634 Candidate.FailureKind = ovl_fail_too_few_arguments; 7635 return; 7636 } 7637 7638 // Determine the implicit conversion sequences for each of the 7639 // arguments. 7640 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { 7641 if (ArgIdx < NumParams) { 7642 // (C++ 13.3.2p3): for F to be a viable function, there shall 7643 // exist for each argument an implicit conversion sequence 7644 // (13.3.3.1) that converts that argument to the corresponding 7645 // parameter of F. 7646 QualType ParamType = Proto->getParamType(ArgIdx); 7647 Candidate.Conversions[ArgIdx + 1] 7648 = TryCopyInitialization(*this, Args[ArgIdx], ParamType, 7649 /*SuppressUserConversions=*/false, 7650 /*InOverloadResolution=*/false, 7651 /*AllowObjCWritebackConversion=*/ 7652 getLangOpts().ObjCAutoRefCount); 7653 if (Candidate.Conversions[ArgIdx + 1].isBad()) { 7654 Candidate.Viable = false; 7655 Candidate.FailureKind = ovl_fail_bad_conversion; 7656 return; 7657 } 7658 } else { 7659 // (C++ 13.3.2p2): For the purposes of overload resolution, any 7660 // argument for which there is no corresponding parameter is 7661 // considered to ""match the ellipsis" (C+ 13.3.3.1.3). 7662 Candidate.Conversions[ArgIdx + 1].setEllipsis(); 7663 } 7664 } 7665 7666 if (EnableIfAttr *FailedAttr = 7667 CheckEnableIf(Conversion, CandidateSet.getLocation(), None)) { 7668 Candidate.Viable = false; 7669 Candidate.FailureKind = ovl_fail_enable_if; 7670 Candidate.DeductionFailure.Data = FailedAttr; 7671 return; 7672 } 7673 } 7674 7675 /// Add all of the non-member operator function declarations in the given 7676 /// function set to the overload candidate set. 7677 void Sema::AddNonMemberOperatorCandidates( 7678 const UnresolvedSetImpl &Fns, ArrayRef<Expr *> Args, 7679 OverloadCandidateSet &CandidateSet, 7680 TemplateArgumentListInfo *ExplicitTemplateArgs) { 7681 for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) { 7682 NamedDecl *D = F.getDecl()->getUnderlyingDecl(); 7683 ArrayRef<Expr *> FunctionArgs = Args; 7684 7685 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D); 7686 FunctionDecl *FD = 7687 FunTmpl ? FunTmpl->getTemplatedDecl() : cast<FunctionDecl>(D); 7688 7689 // Don't consider rewritten functions if we're not rewriting. 7690 if (!CandidateSet.getRewriteInfo().isAcceptableCandidate(FD)) 7691 continue; 7692 7693 assert(!isa<CXXMethodDecl>(FD) && 7694 "unqualified operator lookup found a member function"); 7695 7696 if (FunTmpl) { 7697 AddTemplateOverloadCandidate(FunTmpl, F.getPair(), ExplicitTemplateArgs, 7698 FunctionArgs, CandidateSet); 7699 if (CandidateSet.getRewriteInfo().shouldAddReversed(Context, FD)) 7700 AddTemplateOverloadCandidate( 7701 FunTmpl, F.getPair(), ExplicitTemplateArgs, 7702 {FunctionArgs[1], FunctionArgs[0]}, CandidateSet, false, false, 7703 true, ADLCallKind::NotADL, OverloadCandidateParamOrder::Reversed); 7704 } else { 7705 if (ExplicitTemplateArgs) 7706 continue; 7707 AddOverloadCandidate(FD, F.getPair(), FunctionArgs, CandidateSet); 7708 if (CandidateSet.getRewriteInfo().shouldAddReversed(Context, FD)) 7709 AddOverloadCandidate(FD, F.getPair(), 7710 {FunctionArgs[1], FunctionArgs[0]}, CandidateSet, 7711 false, false, true, false, ADLCallKind::NotADL, 7712 None, OverloadCandidateParamOrder::Reversed); 7713 } 7714 } 7715 } 7716 7717 /// Add overload candidates for overloaded operators that are 7718 /// member functions. 7719 /// 7720 /// Add the overloaded operator candidates that are member functions 7721 /// for the operator Op that was used in an operator expression such 7722 /// as "x Op y". , Args/NumArgs provides the operator arguments, and 7723 /// CandidateSet will store the added overload candidates. (C++ 7724 /// [over.match.oper]). 7725 void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op, 7726 SourceLocation OpLoc, 7727 ArrayRef<Expr *> Args, 7728 OverloadCandidateSet &CandidateSet, 7729 OverloadCandidateParamOrder PO) { 7730 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 7731 7732 // C++ [over.match.oper]p3: 7733 // For a unary operator @ with an operand of a type whose 7734 // cv-unqualified version is T1, and for a binary operator @ with 7735 // a left operand of a type whose cv-unqualified version is T1 and 7736 // a right operand of a type whose cv-unqualified version is T2, 7737 // three sets of candidate functions, designated member 7738 // candidates, non-member candidates and built-in candidates, are 7739 // constructed as follows: 7740 QualType T1 = Args[0]->getType(); 7741 7742 // -- If T1 is a complete class type or a class currently being 7743 // defined, the set of member candidates is the result of the 7744 // qualified lookup of T1::operator@ (13.3.1.1.1); otherwise, 7745 // the set of member candidates is empty. 7746 if (const RecordType *T1Rec = T1->getAs<RecordType>()) { 7747 // Complete the type if it can be completed. 7748 if (!isCompleteType(OpLoc, T1) && !T1Rec->isBeingDefined()) 7749 return; 7750 // If the type is neither complete nor being defined, bail out now. 7751 if (!T1Rec->getDecl()->getDefinition()) 7752 return; 7753 7754 LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName); 7755 LookupQualifiedName(Operators, T1Rec->getDecl()); 7756 Operators.suppressDiagnostics(); 7757 7758 for (LookupResult::iterator Oper = Operators.begin(), 7759 OperEnd = Operators.end(); 7760 Oper != OperEnd; 7761 ++Oper) 7762 AddMethodCandidate(Oper.getPair(), Args[0]->getType(), 7763 Args[0]->Classify(Context), Args.slice(1), 7764 CandidateSet, /*SuppressUserConversion=*/false, PO); 7765 } 7766 } 7767 7768 /// AddBuiltinCandidate - Add a candidate for a built-in 7769 /// operator. ResultTy and ParamTys are the result and parameter types 7770 /// of the built-in candidate, respectively. Args and NumArgs are the 7771 /// arguments being passed to the candidate. IsAssignmentOperator 7772 /// should be true when this built-in candidate is an assignment 7773 /// operator. NumContextualBoolArguments is the number of arguments 7774 /// (at the beginning of the argument list) that will be contextually 7775 /// converted to bool. 7776 void Sema::AddBuiltinCandidate(QualType *ParamTys, ArrayRef<Expr *> Args, 7777 OverloadCandidateSet& CandidateSet, 7778 bool IsAssignmentOperator, 7779 unsigned NumContextualBoolArguments) { 7780 // Overload resolution is always an unevaluated context. 7781 EnterExpressionEvaluationContext Unevaluated( 7782 *this, Sema::ExpressionEvaluationContext::Unevaluated); 7783 7784 // Add this candidate 7785 OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size()); 7786 Candidate.FoundDecl = DeclAccessPair::make(nullptr, AS_none); 7787 Candidate.Function = nullptr; 7788 Candidate.IsSurrogate = false; 7789 Candidate.IgnoreObjectArgument = false; 7790 std::copy(ParamTys, ParamTys + Args.size(), Candidate.BuiltinParamTypes); 7791 7792 // Determine the implicit conversion sequences for each of the 7793 // arguments. 7794 Candidate.Viable = true; 7795 Candidate.ExplicitCallArguments = Args.size(); 7796 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { 7797 // C++ [over.match.oper]p4: 7798 // For the built-in assignment operators, conversions of the 7799 // left operand are restricted as follows: 7800 // -- no temporaries are introduced to hold the left operand, and 7801 // -- no user-defined conversions are applied to the left 7802 // operand to achieve a type match with the left-most 7803 // parameter of a built-in candidate. 7804 // 7805 // We block these conversions by turning off user-defined 7806 // conversions, since that is the only way that initialization of 7807 // a reference to a non-class type can occur from something that 7808 // is not of the same type. 7809 if (ArgIdx < NumContextualBoolArguments) { 7810 assert(ParamTys[ArgIdx] == Context.BoolTy && 7811 "Contextual conversion to bool requires bool type"); 7812 Candidate.Conversions[ArgIdx] 7813 = TryContextuallyConvertToBool(*this, Args[ArgIdx]); 7814 } else { 7815 Candidate.Conversions[ArgIdx] 7816 = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx], 7817 ArgIdx == 0 && IsAssignmentOperator, 7818 /*InOverloadResolution=*/false, 7819 /*AllowObjCWritebackConversion=*/ 7820 getLangOpts().ObjCAutoRefCount); 7821 } 7822 if (Candidate.Conversions[ArgIdx].isBad()) { 7823 Candidate.Viable = false; 7824 Candidate.FailureKind = ovl_fail_bad_conversion; 7825 break; 7826 } 7827 } 7828 } 7829 7830 namespace { 7831 7832 /// BuiltinCandidateTypeSet - A set of types that will be used for the 7833 /// candidate operator functions for built-in operators (C++ 7834 /// [over.built]). The types are separated into pointer types and 7835 /// enumeration types. 7836 class BuiltinCandidateTypeSet { 7837 /// TypeSet - A set of types. 7838 typedef llvm::SetVector<QualType, SmallVector<QualType, 8>, 7839 llvm::SmallPtrSet<QualType, 8>> TypeSet; 7840 7841 /// PointerTypes - The set of pointer types that will be used in the 7842 /// built-in candidates. 7843 TypeSet PointerTypes; 7844 7845 /// MemberPointerTypes - The set of member pointer types that will be 7846 /// used in the built-in candidates. 7847 TypeSet MemberPointerTypes; 7848 7849 /// EnumerationTypes - The set of enumeration types that will be 7850 /// used in the built-in candidates. 7851 TypeSet EnumerationTypes; 7852 7853 /// The set of vector types that will be used in the built-in 7854 /// candidates. 7855 TypeSet VectorTypes; 7856 7857 /// The set of matrix types that will be used in the built-in 7858 /// candidates. 7859 TypeSet MatrixTypes; 7860 7861 /// A flag indicating non-record types are viable candidates 7862 bool HasNonRecordTypes; 7863 7864 /// A flag indicating whether either arithmetic or enumeration types 7865 /// were present in the candidate set. 7866 bool HasArithmeticOrEnumeralTypes; 7867 7868 /// A flag indicating whether the nullptr type was present in the 7869 /// candidate set. 7870 bool HasNullPtrType; 7871 7872 /// Sema - The semantic analysis instance where we are building the 7873 /// candidate type set. 7874 Sema &SemaRef; 7875 7876 /// Context - The AST context in which we will build the type sets. 7877 ASTContext &Context; 7878 7879 bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 7880 const Qualifiers &VisibleQuals); 7881 bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty); 7882 7883 public: 7884 /// iterator - Iterates through the types that are part of the set. 7885 typedef TypeSet::iterator iterator; 7886 7887 BuiltinCandidateTypeSet(Sema &SemaRef) 7888 : HasNonRecordTypes(false), 7889 HasArithmeticOrEnumeralTypes(false), 7890 HasNullPtrType(false), 7891 SemaRef(SemaRef), 7892 Context(SemaRef.Context) { } 7893 7894 void AddTypesConvertedFrom(QualType Ty, 7895 SourceLocation Loc, 7896 bool AllowUserConversions, 7897 bool AllowExplicitConversions, 7898 const Qualifiers &VisibleTypeConversionsQuals); 7899 7900 llvm::iterator_range<iterator> pointer_types() { return PointerTypes; } 7901 llvm::iterator_range<iterator> member_pointer_types() { 7902 return MemberPointerTypes; 7903 } 7904 llvm::iterator_range<iterator> enumeration_types() { 7905 return EnumerationTypes; 7906 } 7907 llvm::iterator_range<iterator> vector_types() { return VectorTypes; } 7908 llvm::iterator_range<iterator> matrix_types() { return MatrixTypes; } 7909 7910 bool containsMatrixType(QualType Ty) const { return MatrixTypes.count(Ty); } 7911 bool hasNonRecordTypes() { return HasNonRecordTypes; } 7912 bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; } 7913 bool hasNullPtrType() const { return HasNullPtrType; } 7914 }; 7915 7916 } // end anonymous namespace 7917 7918 /// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to 7919 /// the set of pointer types along with any more-qualified variants of 7920 /// that type. For example, if @p Ty is "int const *", this routine 7921 /// will add "int const *", "int const volatile *", "int const 7922 /// restrict *", and "int const volatile restrict *" to the set of 7923 /// pointer types. Returns true if the add of @p Ty itself succeeded, 7924 /// false otherwise. 7925 /// 7926 /// FIXME: what to do about extended qualifiers? 7927 bool 7928 BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty, 7929 const Qualifiers &VisibleQuals) { 7930 7931 // Insert this type. 7932 if (!PointerTypes.insert(Ty)) 7933 return false; 7934 7935 QualType PointeeTy; 7936 const PointerType *PointerTy = Ty->getAs<PointerType>(); 7937 bool buildObjCPtr = false; 7938 if (!PointerTy) { 7939 const ObjCObjectPointerType *PTy = Ty->castAs<ObjCObjectPointerType>(); 7940 PointeeTy = PTy->getPointeeType(); 7941 buildObjCPtr = true; 7942 } else { 7943 PointeeTy = PointerTy->getPointeeType(); 7944 } 7945 7946 // Don't add qualified variants of arrays. For one, they're not allowed 7947 // (the qualifier would sink to the element type), and for another, the 7948 // only overload situation where it matters is subscript or pointer +- int, 7949 // and those shouldn't have qualifier variants anyway. 7950 if (PointeeTy->isArrayType()) 7951 return true; 7952 7953 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 7954 bool hasVolatile = VisibleQuals.hasVolatile(); 7955 bool hasRestrict = VisibleQuals.hasRestrict(); 7956 7957 // Iterate through all strict supersets of BaseCVR. 7958 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 7959 if ((CVR | BaseCVR) != CVR) continue; 7960 // Skip over volatile if no volatile found anywhere in the types. 7961 if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue; 7962 7963 // Skip over restrict if no restrict found anywhere in the types, or if 7964 // the type cannot be restrict-qualified. 7965 if ((CVR & Qualifiers::Restrict) && 7966 (!hasRestrict || 7967 (!(PointeeTy->isAnyPointerType() || PointeeTy->isReferenceType())))) 7968 continue; 7969 7970 // Build qualified pointee type. 7971 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 7972 7973 // Build qualified pointer type. 7974 QualType QPointerTy; 7975 if (!buildObjCPtr) 7976 QPointerTy = Context.getPointerType(QPointeeTy); 7977 else 7978 QPointerTy = Context.getObjCObjectPointerType(QPointeeTy); 7979 7980 // Insert qualified pointer type. 7981 PointerTypes.insert(QPointerTy); 7982 } 7983 7984 return true; 7985 } 7986 7987 /// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty 7988 /// to the set of pointer types along with any more-qualified variants of 7989 /// that type. For example, if @p Ty is "int const *", this routine 7990 /// will add "int const *", "int const volatile *", "int const 7991 /// restrict *", and "int const volatile restrict *" to the set of 7992 /// pointer types. Returns true if the add of @p Ty itself succeeded, 7993 /// false otherwise. 7994 /// 7995 /// FIXME: what to do about extended qualifiers? 7996 bool 7997 BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants( 7998 QualType Ty) { 7999 // Insert this type. 8000 if (!MemberPointerTypes.insert(Ty)) 8001 return false; 8002 8003 const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>(); 8004 assert(PointerTy && "type was not a member pointer type!"); 8005 8006 QualType PointeeTy = PointerTy->getPointeeType(); 8007 // Don't add qualified variants of arrays. For one, they're not allowed 8008 // (the qualifier would sink to the element type), and for another, the 8009 // only overload situation where it matters is subscript or pointer +- int, 8010 // and those shouldn't have qualifier variants anyway. 8011 if (PointeeTy->isArrayType()) 8012 return true; 8013 const Type *ClassTy = PointerTy->getClass(); 8014 8015 // Iterate through all strict supersets of the pointee type's CVR 8016 // qualifiers. 8017 unsigned BaseCVR = PointeeTy.getCVRQualifiers(); 8018 for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { 8019 if ((CVR | BaseCVR) != CVR) continue; 8020 8021 QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); 8022 MemberPointerTypes.insert( 8023 Context.getMemberPointerType(QPointeeTy, ClassTy)); 8024 } 8025 8026 return true; 8027 } 8028 8029 /// AddTypesConvertedFrom - Add each of the types to which the type @p 8030 /// Ty can be implicit converted to the given set of @p Types. We're 8031 /// primarily interested in pointer types and enumeration types. We also 8032 /// take member pointer types, for the conditional operator. 8033 /// AllowUserConversions is true if we should look at the conversion 8034 /// functions of a class type, and AllowExplicitConversions if we 8035 /// should also include the explicit conversion functions of a class 8036 /// type. 8037 void 8038 BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty, 8039 SourceLocation Loc, 8040 bool AllowUserConversions, 8041 bool AllowExplicitConversions, 8042 const Qualifiers &VisibleQuals) { 8043 // Only deal with canonical types. 8044 Ty = Context.getCanonicalType(Ty); 8045 8046 // Look through reference types; they aren't part of the type of an 8047 // expression for the purposes of conversions. 8048 if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>()) 8049 Ty = RefTy->getPointeeType(); 8050 8051 // If we're dealing with an array type, decay to the pointer. 8052 if (Ty->isArrayType()) 8053 Ty = SemaRef.Context.getArrayDecayedType(Ty); 8054 8055 // Otherwise, we don't care about qualifiers on the type. 8056 Ty = Ty.getLocalUnqualifiedType(); 8057 8058 // Flag if we ever add a non-record type. 8059 const RecordType *TyRec = Ty->getAs<RecordType>(); 8060 HasNonRecordTypes = HasNonRecordTypes || !TyRec; 8061 8062 // Flag if we encounter an arithmetic type. 8063 HasArithmeticOrEnumeralTypes = 8064 HasArithmeticOrEnumeralTypes || Ty->isArithmeticType(); 8065 8066 if (Ty->isObjCIdType() || Ty->isObjCClassType()) 8067 PointerTypes.insert(Ty); 8068 else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) { 8069 // Insert our type, and its more-qualified variants, into the set 8070 // of types. 8071 if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals)) 8072 return; 8073 } else if (Ty->isMemberPointerType()) { 8074 // Member pointers are far easier, since the pointee can't be converted. 8075 if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty)) 8076 return; 8077 } else if (Ty->isEnumeralType()) { 8078 HasArithmeticOrEnumeralTypes = true; 8079 EnumerationTypes.insert(Ty); 8080 } else if (Ty->isVectorType()) { 8081 // We treat vector types as arithmetic types in many contexts as an 8082 // extension. 8083 HasArithmeticOrEnumeralTypes = true; 8084 VectorTypes.insert(Ty); 8085 } else if (Ty->isMatrixType()) { 8086 // Similar to vector types, we treat vector types as arithmetic types in 8087 // many contexts as an extension. 8088 HasArithmeticOrEnumeralTypes = true; 8089 MatrixTypes.insert(Ty); 8090 } else if (Ty->isNullPtrType()) { 8091 HasNullPtrType = true; 8092 } else if (AllowUserConversions && TyRec) { 8093 // No conversion functions in incomplete types. 8094 if (!SemaRef.isCompleteType(Loc, Ty)) 8095 return; 8096 8097 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 8098 for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) { 8099 if (isa<UsingShadowDecl>(D)) 8100 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 8101 8102 // Skip conversion function templates; they don't tell us anything 8103 // about which builtin types we can convert to. 8104 if (isa<FunctionTemplateDecl>(D)) 8105 continue; 8106 8107 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); 8108 if (AllowExplicitConversions || !Conv->isExplicit()) { 8109 AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false, 8110 VisibleQuals); 8111 } 8112 } 8113 } 8114 } 8115 /// Helper function for adjusting address spaces for the pointer or reference 8116 /// operands of builtin operators depending on the argument. 8117 static QualType AdjustAddressSpaceForBuiltinOperandType(Sema &S, QualType T, 8118 Expr *Arg) { 8119 return S.Context.getAddrSpaceQualType(T, Arg->getType().getAddressSpace()); 8120 } 8121 8122 /// Helper function for AddBuiltinOperatorCandidates() that adds 8123 /// the volatile- and non-volatile-qualified assignment operators for the 8124 /// given type to the candidate set. 8125 static void AddBuiltinAssignmentOperatorCandidates(Sema &S, 8126 QualType T, 8127 ArrayRef<Expr *> Args, 8128 OverloadCandidateSet &CandidateSet) { 8129 QualType ParamTypes[2]; 8130 8131 // T& operator=(T&, T) 8132 ParamTypes[0] = S.Context.getLValueReferenceType( 8133 AdjustAddressSpaceForBuiltinOperandType(S, T, Args[0])); 8134 ParamTypes[1] = T; 8135 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8136 /*IsAssignmentOperator=*/true); 8137 8138 if (!S.Context.getCanonicalType(T).isVolatileQualified()) { 8139 // volatile T& operator=(volatile T&, T) 8140 ParamTypes[0] = S.Context.getLValueReferenceType( 8141 AdjustAddressSpaceForBuiltinOperandType(S, S.Context.getVolatileType(T), 8142 Args[0])); 8143 ParamTypes[1] = T; 8144 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8145 /*IsAssignmentOperator=*/true); 8146 } 8147 } 8148 8149 /// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers, 8150 /// if any, found in visible type conversion functions found in ArgExpr's type. 8151 static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) { 8152 Qualifiers VRQuals; 8153 const RecordType *TyRec; 8154 if (const MemberPointerType *RHSMPType = 8155 ArgExpr->getType()->getAs<MemberPointerType>()) 8156 TyRec = RHSMPType->getClass()->getAs<RecordType>(); 8157 else 8158 TyRec = ArgExpr->getType()->getAs<RecordType>(); 8159 if (!TyRec) { 8160 // Just to be safe, assume the worst case. 8161 VRQuals.addVolatile(); 8162 VRQuals.addRestrict(); 8163 return VRQuals; 8164 } 8165 8166 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); 8167 if (!ClassDecl->hasDefinition()) 8168 return VRQuals; 8169 8170 for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) { 8171 if (isa<UsingShadowDecl>(D)) 8172 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 8173 if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) { 8174 QualType CanTy = Context.getCanonicalType(Conv->getConversionType()); 8175 if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>()) 8176 CanTy = ResTypeRef->getPointeeType(); 8177 // Need to go down the pointer/mempointer chain and add qualifiers 8178 // as see them. 8179 bool done = false; 8180 while (!done) { 8181 if (CanTy.isRestrictQualified()) 8182 VRQuals.addRestrict(); 8183 if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>()) 8184 CanTy = ResTypePtr->getPointeeType(); 8185 else if (const MemberPointerType *ResTypeMPtr = 8186 CanTy->getAs<MemberPointerType>()) 8187 CanTy = ResTypeMPtr->getPointeeType(); 8188 else 8189 done = true; 8190 if (CanTy.isVolatileQualified()) 8191 VRQuals.addVolatile(); 8192 if (VRQuals.hasRestrict() && VRQuals.hasVolatile()) 8193 return VRQuals; 8194 } 8195 } 8196 } 8197 return VRQuals; 8198 } 8199 8200 namespace { 8201 8202 /// Helper class to manage the addition of builtin operator overload 8203 /// candidates. It provides shared state and utility methods used throughout 8204 /// the process, as well as a helper method to add each group of builtin 8205 /// operator overloads from the standard to a candidate set. 8206 class BuiltinOperatorOverloadBuilder { 8207 // Common instance state available to all overload candidate addition methods. 8208 Sema &S; 8209 ArrayRef<Expr *> Args; 8210 Qualifiers VisibleTypeConversionsQuals; 8211 bool HasArithmeticOrEnumeralCandidateType; 8212 SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes; 8213 OverloadCandidateSet &CandidateSet; 8214 8215 static constexpr int ArithmeticTypesCap = 24; 8216 SmallVector<CanQualType, ArithmeticTypesCap> ArithmeticTypes; 8217 8218 // Define some indices used to iterate over the arithmetic types in 8219 // ArithmeticTypes. The "promoted arithmetic types" are the arithmetic 8220 // types are that preserved by promotion (C++ [over.built]p2). 8221 unsigned FirstIntegralType, 8222 LastIntegralType; 8223 unsigned FirstPromotedIntegralType, 8224 LastPromotedIntegralType; 8225 unsigned FirstPromotedArithmeticType, 8226 LastPromotedArithmeticType; 8227 unsigned NumArithmeticTypes; 8228 8229 void InitArithmeticTypes() { 8230 // Start of promoted types. 8231 FirstPromotedArithmeticType = 0; 8232 ArithmeticTypes.push_back(S.Context.FloatTy); 8233 ArithmeticTypes.push_back(S.Context.DoubleTy); 8234 ArithmeticTypes.push_back(S.Context.LongDoubleTy); 8235 if (S.Context.getTargetInfo().hasFloat128Type()) 8236 ArithmeticTypes.push_back(S.Context.Float128Ty); 8237 if (S.Context.getTargetInfo().hasIbm128Type()) 8238 ArithmeticTypes.push_back(S.Context.Ibm128Ty); 8239 8240 // Start of integral types. 8241 FirstIntegralType = ArithmeticTypes.size(); 8242 FirstPromotedIntegralType = ArithmeticTypes.size(); 8243 ArithmeticTypes.push_back(S.Context.IntTy); 8244 ArithmeticTypes.push_back(S.Context.LongTy); 8245 ArithmeticTypes.push_back(S.Context.LongLongTy); 8246 if (S.Context.getTargetInfo().hasInt128Type() || 8247 (S.Context.getAuxTargetInfo() && 8248 S.Context.getAuxTargetInfo()->hasInt128Type())) 8249 ArithmeticTypes.push_back(S.Context.Int128Ty); 8250 ArithmeticTypes.push_back(S.Context.UnsignedIntTy); 8251 ArithmeticTypes.push_back(S.Context.UnsignedLongTy); 8252 ArithmeticTypes.push_back(S.Context.UnsignedLongLongTy); 8253 if (S.Context.getTargetInfo().hasInt128Type() || 8254 (S.Context.getAuxTargetInfo() && 8255 S.Context.getAuxTargetInfo()->hasInt128Type())) 8256 ArithmeticTypes.push_back(S.Context.UnsignedInt128Ty); 8257 LastPromotedIntegralType = ArithmeticTypes.size(); 8258 LastPromotedArithmeticType = ArithmeticTypes.size(); 8259 // End of promoted types. 8260 8261 ArithmeticTypes.push_back(S.Context.BoolTy); 8262 ArithmeticTypes.push_back(S.Context.CharTy); 8263 ArithmeticTypes.push_back(S.Context.WCharTy); 8264 if (S.Context.getLangOpts().Char8) 8265 ArithmeticTypes.push_back(S.Context.Char8Ty); 8266 ArithmeticTypes.push_back(S.Context.Char16Ty); 8267 ArithmeticTypes.push_back(S.Context.Char32Ty); 8268 ArithmeticTypes.push_back(S.Context.SignedCharTy); 8269 ArithmeticTypes.push_back(S.Context.ShortTy); 8270 ArithmeticTypes.push_back(S.Context.UnsignedCharTy); 8271 ArithmeticTypes.push_back(S.Context.UnsignedShortTy); 8272 LastIntegralType = ArithmeticTypes.size(); 8273 NumArithmeticTypes = ArithmeticTypes.size(); 8274 // End of integral types. 8275 // FIXME: What about complex? What about half? 8276 8277 assert(ArithmeticTypes.size() <= ArithmeticTypesCap && 8278 "Enough inline storage for all arithmetic types."); 8279 } 8280 8281 /// Helper method to factor out the common pattern of adding overloads 8282 /// for '++' and '--' builtin operators. 8283 void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy, 8284 bool HasVolatile, 8285 bool HasRestrict) { 8286 QualType ParamTypes[2] = { 8287 S.Context.getLValueReferenceType(CandidateTy), 8288 S.Context.IntTy 8289 }; 8290 8291 // Non-volatile version. 8292 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8293 8294 // Use a heuristic to reduce number of builtin candidates in the set: 8295 // add volatile version only if there are conversions to a volatile type. 8296 if (HasVolatile) { 8297 ParamTypes[0] = 8298 S.Context.getLValueReferenceType( 8299 S.Context.getVolatileType(CandidateTy)); 8300 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8301 } 8302 8303 // Add restrict version only if there are conversions to a restrict type 8304 // and our candidate type is a non-restrict-qualified pointer. 8305 if (HasRestrict && CandidateTy->isAnyPointerType() && 8306 !CandidateTy.isRestrictQualified()) { 8307 ParamTypes[0] 8308 = S.Context.getLValueReferenceType( 8309 S.Context.getCVRQualifiedType(CandidateTy, Qualifiers::Restrict)); 8310 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8311 8312 if (HasVolatile) { 8313 ParamTypes[0] 8314 = S.Context.getLValueReferenceType( 8315 S.Context.getCVRQualifiedType(CandidateTy, 8316 (Qualifiers::Volatile | 8317 Qualifiers::Restrict))); 8318 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8319 } 8320 } 8321 8322 } 8323 8324 /// Helper to add an overload candidate for a binary builtin with types \p L 8325 /// and \p R. 8326 void AddCandidate(QualType L, QualType R) { 8327 QualType LandR[2] = {L, R}; 8328 S.AddBuiltinCandidate(LandR, Args, CandidateSet); 8329 } 8330 8331 public: 8332 BuiltinOperatorOverloadBuilder( 8333 Sema &S, ArrayRef<Expr *> Args, 8334 Qualifiers VisibleTypeConversionsQuals, 8335 bool HasArithmeticOrEnumeralCandidateType, 8336 SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes, 8337 OverloadCandidateSet &CandidateSet) 8338 : S(S), Args(Args), 8339 VisibleTypeConversionsQuals(VisibleTypeConversionsQuals), 8340 HasArithmeticOrEnumeralCandidateType( 8341 HasArithmeticOrEnumeralCandidateType), 8342 CandidateTypes(CandidateTypes), 8343 CandidateSet(CandidateSet) { 8344 8345 InitArithmeticTypes(); 8346 } 8347 8348 // Increment is deprecated for bool since C++17. 8349 // 8350 // C++ [over.built]p3: 8351 // 8352 // For every pair (T, VQ), where T is an arithmetic type other 8353 // than bool, and VQ is either volatile or empty, there exist 8354 // candidate operator functions of the form 8355 // 8356 // VQ T& operator++(VQ T&); 8357 // T operator++(VQ T&, int); 8358 // 8359 // C++ [over.built]p4: 8360 // 8361 // For every pair (T, VQ), where T is an arithmetic type other 8362 // than bool, and VQ is either volatile or empty, there exist 8363 // candidate operator functions of the form 8364 // 8365 // VQ T& operator--(VQ T&); 8366 // T operator--(VQ T&, int); 8367 void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) { 8368 if (!HasArithmeticOrEnumeralCandidateType) 8369 return; 8370 8371 for (unsigned Arith = 0; Arith < NumArithmeticTypes; ++Arith) { 8372 const auto TypeOfT = ArithmeticTypes[Arith]; 8373 if (TypeOfT == S.Context.BoolTy) { 8374 if (Op == OO_MinusMinus) 8375 continue; 8376 if (Op == OO_PlusPlus && S.getLangOpts().CPlusPlus17) 8377 continue; 8378 } 8379 addPlusPlusMinusMinusStyleOverloads( 8380 TypeOfT, 8381 VisibleTypeConversionsQuals.hasVolatile(), 8382 VisibleTypeConversionsQuals.hasRestrict()); 8383 } 8384 } 8385 8386 // C++ [over.built]p5: 8387 // 8388 // For every pair (T, VQ), where T is a cv-qualified or 8389 // cv-unqualified object type, and VQ is either volatile or 8390 // empty, there exist candidate operator functions of the form 8391 // 8392 // T*VQ& operator++(T*VQ&); 8393 // T*VQ& operator--(T*VQ&); 8394 // T* operator++(T*VQ&, int); 8395 // T* operator--(T*VQ&, int); 8396 void addPlusPlusMinusMinusPointerOverloads() { 8397 for (QualType PtrTy : CandidateTypes[0].pointer_types()) { 8398 // Skip pointer types that aren't pointers to object types. 8399 if (!PtrTy->getPointeeType()->isObjectType()) 8400 continue; 8401 8402 addPlusPlusMinusMinusStyleOverloads( 8403 PtrTy, 8404 (!PtrTy.isVolatileQualified() && 8405 VisibleTypeConversionsQuals.hasVolatile()), 8406 (!PtrTy.isRestrictQualified() && 8407 VisibleTypeConversionsQuals.hasRestrict())); 8408 } 8409 } 8410 8411 // C++ [over.built]p6: 8412 // For every cv-qualified or cv-unqualified object type T, there 8413 // exist candidate operator functions of the form 8414 // 8415 // T& operator*(T*); 8416 // 8417 // C++ [over.built]p7: 8418 // For every function type T that does not have cv-qualifiers or a 8419 // ref-qualifier, there exist candidate operator functions of the form 8420 // T& operator*(T*); 8421 void addUnaryStarPointerOverloads() { 8422 for (QualType ParamTy : CandidateTypes[0].pointer_types()) { 8423 QualType PointeeTy = ParamTy->getPointeeType(); 8424 if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType()) 8425 continue; 8426 8427 if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>()) 8428 if (Proto->getMethodQuals() || Proto->getRefQualifier()) 8429 continue; 8430 8431 S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet); 8432 } 8433 } 8434 8435 // C++ [over.built]p9: 8436 // For every promoted arithmetic type T, there exist candidate 8437 // operator functions of the form 8438 // 8439 // T operator+(T); 8440 // T operator-(T); 8441 void addUnaryPlusOrMinusArithmeticOverloads() { 8442 if (!HasArithmeticOrEnumeralCandidateType) 8443 return; 8444 8445 for (unsigned Arith = FirstPromotedArithmeticType; 8446 Arith < LastPromotedArithmeticType; ++Arith) { 8447 QualType ArithTy = ArithmeticTypes[Arith]; 8448 S.AddBuiltinCandidate(&ArithTy, Args, CandidateSet); 8449 } 8450 8451 // Extension: We also add these operators for vector types. 8452 for (QualType VecTy : CandidateTypes[0].vector_types()) 8453 S.AddBuiltinCandidate(&VecTy, Args, CandidateSet); 8454 } 8455 8456 // C++ [over.built]p8: 8457 // For every type T, there exist candidate operator functions of 8458 // the form 8459 // 8460 // T* operator+(T*); 8461 void addUnaryPlusPointerOverloads() { 8462 for (QualType ParamTy : CandidateTypes[0].pointer_types()) 8463 S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet); 8464 } 8465 8466 // C++ [over.built]p10: 8467 // For every promoted integral type T, there exist candidate 8468 // operator functions of the form 8469 // 8470 // T operator~(T); 8471 void addUnaryTildePromotedIntegralOverloads() { 8472 if (!HasArithmeticOrEnumeralCandidateType) 8473 return; 8474 8475 for (unsigned Int = FirstPromotedIntegralType; 8476 Int < LastPromotedIntegralType; ++Int) { 8477 QualType IntTy = ArithmeticTypes[Int]; 8478 S.AddBuiltinCandidate(&IntTy, Args, CandidateSet); 8479 } 8480 8481 // Extension: We also add this operator for vector types. 8482 for (QualType VecTy : CandidateTypes[0].vector_types()) 8483 S.AddBuiltinCandidate(&VecTy, Args, CandidateSet); 8484 } 8485 8486 // C++ [over.match.oper]p16: 8487 // For every pointer to member type T or type std::nullptr_t, there 8488 // exist candidate operator functions of the form 8489 // 8490 // bool operator==(T,T); 8491 // bool operator!=(T,T); 8492 void addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads() { 8493 /// Set of (canonical) types that we've already handled. 8494 llvm::SmallPtrSet<QualType, 8> AddedTypes; 8495 8496 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { 8497 for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) { 8498 // Don't add the same builtin candidate twice. 8499 if (!AddedTypes.insert(S.Context.getCanonicalType(MemPtrTy)).second) 8500 continue; 8501 8502 QualType ParamTypes[2] = {MemPtrTy, MemPtrTy}; 8503 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8504 } 8505 8506 if (CandidateTypes[ArgIdx].hasNullPtrType()) { 8507 CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy); 8508 if (AddedTypes.insert(NullPtrTy).second) { 8509 QualType ParamTypes[2] = { NullPtrTy, NullPtrTy }; 8510 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8511 } 8512 } 8513 } 8514 } 8515 8516 // C++ [over.built]p15: 8517 // 8518 // For every T, where T is an enumeration type or a pointer type, 8519 // there exist candidate operator functions of the form 8520 // 8521 // bool operator<(T, T); 8522 // bool operator>(T, T); 8523 // bool operator<=(T, T); 8524 // bool operator>=(T, T); 8525 // bool operator==(T, T); 8526 // bool operator!=(T, T); 8527 // R operator<=>(T, T) 8528 void addGenericBinaryPointerOrEnumeralOverloads(bool IsSpaceship) { 8529 // C++ [over.match.oper]p3: 8530 // [...]the built-in candidates include all of the candidate operator 8531 // functions defined in 13.6 that, compared to the given operator, [...] 8532 // do not have the same parameter-type-list as any non-template non-member 8533 // candidate. 8534 // 8535 // Note that in practice, this only affects enumeration types because there 8536 // aren't any built-in candidates of record type, and a user-defined operator 8537 // must have an operand of record or enumeration type. Also, the only other 8538 // overloaded operator with enumeration arguments, operator=, 8539 // cannot be overloaded for enumeration types, so this is the only place 8540 // where we must suppress candidates like this. 8541 llvm::DenseSet<std::pair<CanQualType, CanQualType> > 8542 UserDefinedBinaryOperators; 8543 8544 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { 8545 if (!CandidateTypes[ArgIdx].enumeration_types().empty()) { 8546 for (OverloadCandidateSet::iterator C = CandidateSet.begin(), 8547 CEnd = CandidateSet.end(); 8548 C != CEnd; ++C) { 8549 if (!C->Viable || !C->Function || C->Function->getNumParams() != 2) 8550 continue; 8551 8552 if (C->Function->isFunctionTemplateSpecialization()) 8553 continue; 8554 8555 // We interpret "same parameter-type-list" as applying to the 8556 // "synthesized candidate, with the order of the two parameters 8557 // reversed", not to the original function. 8558 bool Reversed = C->isReversed(); 8559 QualType FirstParamType = C->Function->getParamDecl(Reversed ? 1 : 0) 8560 ->getType() 8561 .getUnqualifiedType(); 8562 QualType SecondParamType = C->Function->getParamDecl(Reversed ? 0 : 1) 8563 ->getType() 8564 .getUnqualifiedType(); 8565 8566 // Skip if either parameter isn't of enumeral type. 8567 if (!FirstParamType->isEnumeralType() || 8568 !SecondParamType->isEnumeralType()) 8569 continue; 8570 8571 // Add this operator to the set of known user-defined operators. 8572 UserDefinedBinaryOperators.insert( 8573 std::make_pair(S.Context.getCanonicalType(FirstParamType), 8574 S.Context.getCanonicalType(SecondParamType))); 8575 } 8576 } 8577 } 8578 8579 /// Set of (canonical) types that we've already handled. 8580 llvm::SmallPtrSet<QualType, 8> AddedTypes; 8581 8582 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { 8583 for (QualType PtrTy : CandidateTypes[ArgIdx].pointer_types()) { 8584 // Don't add the same builtin candidate twice. 8585 if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second) 8586 continue; 8587 if (IsSpaceship && PtrTy->isFunctionPointerType()) 8588 continue; 8589 8590 QualType ParamTypes[2] = {PtrTy, PtrTy}; 8591 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8592 } 8593 for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) { 8594 CanQualType CanonType = S.Context.getCanonicalType(EnumTy); 8595 8596 // Don't add the same builtin candidate twice, or if a user defined 8597 // candidate exists. 8598 if (!AddedTypes.insert(CanonType).second || 8599 UserDefinedBinaryOperators.count(std::make_pair(CanonType, 8600 CanonType))) 8601 continue; 8602 QualType ParamTypes[2] = {EnumTy, EnumTy}; 8603 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8604 } 8605 } 8606 } 8607 8608 // C++ [over.built]p13: 8609 // 8610 // For every cv-qualified or cv-unqualified object type T 8611 // there exist candidate operator functions of the form 8612 // 8613 // T* operator+(T*, ptrdiff_t); 8614 // T& operator[](T*, ptrdiff_t); [BELOW] 8615 // T* operator-(T*, ptrdiff_t); 8616 // T* operator+(ptrdiff_t, T*); 8617 // T& operator[](ptrdiff_t, T*); [BELOW] 8618 // 8619 // C++ [over.built]p14: 8620 // 8621 // For every T, where T is a pointer to object type, there 8622 // exist candidate operator functions of the form 8623 // 8624 // ptrdiff_t operator-(T, T); 8625 void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) { 8626 /// Set of (canonical) types that we've already handled. 8627 llvm::SmallPtrSet<QualType, 8> AddedTypes; 8628 8629 for (int Arg = 0; Arg < 2; ++Arg) { 8630 QualType AsymmetricParamTypes[2] = { 8631 S.Context.getPointerDiffType(), 8632 S.Context.getPointerDiffType(), 8633 }; 8634 for (QualType PtrTy : CandidateTypes[Arg].pointer_types()) { 8635 QualType PointeeTy = PtrTy->getPointeeType(); 8636 if (!PointeeTy->isObjectType()) 8637 continue; 8638 8639 AsymmetricParamTypes[Arg] = PtrTy; 8640 if (Arg == 0 || Op == OO_Plus) { 8641 // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t) 8642 // T* operator+(ptrdiff_t, T*); 8643 S.AddBuiltinCandidate(AsymmetricParamTypes, Args, CandidateSet); 8644 } 8645 if (Op == OO_Minus) { 8646 // ptrdiff_t operator-(T, T); 8647 if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second) 8648 continue; 8649 8650 QualType ParamTypes[2] = {PtrTy, PtrTy}; 8651 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 8652 } 8653 } 8654 } 8655 } 8656 8657 // C++ [over.built]p12: 8658 // 8659 // For every pair of promoted arithmetic types L and R, there 8660 // exist candidate operator functions of the form 8661 // 8662 // LR operator*(L, R); 8663 // LR operator/(L, R); 8664 // LR operator+(L, R); 8665 // LR operator-(L, R); 8666 // bool operator<(L, R); 8667 // bool operator>(L, R); 8668 // bool operator<=(L, R); 8669 // bool operator>=(L, R); 8670 // bool operator==(L, R); 8671 // bool operator!=(L, R); 8672 // 8673 // where LR is the result of the usual arithmetic conversions 8674 // between types L and R. 8675 // 8676 // C++ [over.built]p24: 8677 // 8678 // For every pair of promoted arithmetic types L and R, there exist 8679 // candidate operator functions of the form 8680 // 8681 // LR operator?(bool, L, R); 8682 // 8683 // where LR is the result of the usual arithmetic conversions 8684 // between types L and R. 8685 // Our candidates ignore the first parameter. 8686 void addGenericBinaryArithmeticOverloads() { 8687 if (!HasArithmeticOrEnumeralCandidateType) 8688 return; 8689 8690 for (unsigned Left = FirstPromotedArithmeticType; 8691 Left < LastPromotedArithmeticType; ++Left) { 8692 for (unsigned Right = FirstPromotedArithmeticType; 8693 Right < LastPromotedArithmeticType; ++Right) { 8694 QualType LandR[2] = { ArithmeticTypes[Left], 8695 ArithmeticTypes[Right] }; 8696 S.AddBuiltinCandidate(LandR, Args, CandidateSet); 8697 } 8698 } 8699 8700 // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the 8701 // conditional operator for vector types. 8702 for (QualType Vec1Ty : CandidateTypes[0].vector_types()) 8703 for (QualType Vec2Ty : CandidateTypes[1].vector_types()) { 8704 QualType LandR[2] = {Vec1Ty, Vec2Ty}; 8705 S.AddBuiltinCandidate(LandR, Args, CandidateSet); 8706 } 8707 } 8708 8709 /// Add binary operator overloads for each candidate matrix type M1, M2: 8710 /// * (M1, M1) -> M1 8711 /// * (M1, M1.getElementType()) -> M1 8712 /// * (M2.getElementType(), M2) -> M2 8713 /// * (M2, M2) -> M2 // Only if M2 is not part of CandidateTypes[0]. 8714 void addMatrixBinaryArithmeticOverloads() { 8715 if (!HasArithmeticOrEnumeralCandidateType) 8716 return; 8717 8718 for (QualType M1 : CandidateTypes[0].matrix_types()) { 8719 AddCandidate(M1, cast<MatrixType>(M1)->getElementType()); 8720 AddCandidate(M1, M1); 8721 } 8722 8723 for (QualType M2 : CandidateTypes[1].matrix_types()) { 8724 AddCandidate(cast<MatrixType>(M2)->getElementType(), M2); 8725 if (!CandidateTypes[0].containsMatrixType(M2)) 8726 AddCandidate(M2, M2); 8727 } 8728 } 8729 8730 // C++2a [over.built]p14: 8731 // 8732 // For every integral type T there exists a candidate operator function 8733 // of the form 8734 // 8735 // std::strong_ordering operator<=>(T, T) 8736 // 8737 // C++2a [over.built]p15: 8738 // 8739 // For every pair of floating-point types L and R, there exists a candidate 8740 // operator function of the form 8741 // 8742 // std::partial_ordering operator<=>(L, R); 8743 // 8744 // FIXME: The current specification for integral types doesn't play nice with 8745 // the direction of p0946r0, which allows mixed integral and unscoped-enum 8746 // comparisons. Under the current spec this can lead to ambiguity during 8747 // overload resolution. For example: 8748 // 8749 // enum A : int {a}; 8750 // auto x = (a <=> (long)42); 8751 // 8752 // error: call is ambiguous for arguments 'A' and 'long'. 8753 // note: candidate operator<=>(int, int) 8754 // note: candidate operator<=>(long, long) 8755 // 8756 // To avoid this error, this function deviates from the specification and adds 8757 // the mixed overloads `operator<=>(L, R)` where L and R are promoted 8758 // arithmetic types (the same as the generic relational overloads). 8759 // 8760 // For now this function acts as a placeholder. 8761 void addThreeWayArithmeticOverloads() { 8762 addGenericBinaryArithmeticOverloads(); 8763 } 8764 8765 // C++ [over.built]p17: 8766 // 8767 // For every pair of promoted integral types L and R, there 8768 // exist candidate operator functions of the form 8769 // 8770 // LR operator%(L, R); 8771 // LR operator&(L, R); 8772 // LR operator^(L, R); 8773 // LR operator|(L, R); 8774 // L operator<<(L, R); 8775 // L operator>>(L, R); 8776 // 8777 // where LR is the result of the usual arithmetic conversions 8778 // between types L and R. 8779 void addBinaryBitwiseArithmeticOverloads() { 8780 if (!HasArithmeticOrEnumeralCandidateType) 8781 return; 8782 8783 for (unsigned Left = FirstPromotedIntegralType; 8784 Left < LastPromotedIntegralType; ++Left) { 8785 for (unsigned Right = FirstPromotedIntegralType; 8786 Right < LastPromotedIntegralType; ++Right) { 8787 QualType LandR[2] = { ArithmeticTypes[Left], 8788 ArithmeticTypes[Right] }; 8789 S.AddBuiltinCandidate(LandR, Args, CandidateSet); 8790 } 8791 } 8792 } 8793 8794 // C++ [over.built]p20: 8795 // 8796 // For every pair (T, VQ), where T is an enumeration or 8797 // pointer to member type and VQ is either volatile or 8798 // empty, there exist candidate operator functions of the form 8799 // 8800 // VQ T& operator=(VQ T&, T); 8801 void addAssignmentMemberPointerOrEnumeralOverloads() { 8802 /// Set of (canonical) types that we've already handled. 8803 llvm::SmallPtrSet<QualType, 8> AddedTypes; 8804 8805 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) { 8806 for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) { 8807 if (!AddedTypes.insert(S.Context.getCanonicalType(EnumTy)).second) 8808 continue; 8809 8810 AddBuiltinAssignmentOperatorCandidates(S, EnumTy, Args, CandidateSet); 8811 } 8812 8813 for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) { 8814 if (!AddedTypes.insert(S.Context.getCanonicalType(MemPtrTy)).second) 8815 continue; 8816 8817 AddBuiltinAssignmentOperatorCandidates(S, MemPtrTy, Args, CandidateSet); 8818 } 8819 } 8820 } 8821 8822 // C++ [over.built]p19: 8823 // 8824 // For every pair (T, VQ), where T is any type and VQ is either 8825 // volatile or empty, there exist candidate operator functions 8826 // of the form 8827 // 8828 // T*VQ& operator=(T*VQ&, T*); 8829 // 8830 // C++ [over.built]p21: 8831 // 8832 // For every pair (T, VQ), where T is a cv-qualified or 8833 // cv-unqualified object type and VQ is either volatile or 8834 // empty, there exist candidate operator functions of the form 8835 // 8836 // T*VQ& operator+=(T*VQ&, ptrdiff_t); 8837 // T*VQ& operator-=(T*VQ&, ptrdiff_t); 8838 void addAssignmentPointerOverloads(bool isEqualOp) { 8839 /// Set of (canonical) types that we've already handled. 8840 llvm::SmallPtrSet<QualType, 8> AddedTypes; 8841 8842 for (QualType PtrTy : CandidateTypes[0].pointer_types()) { 8843 // If this is operator=, keep track of the builtin candidates we added. 8844 if (isEqualOp) 8845 AddedTypes.insert(S.Context.getCanonicalType(PtrTy)); 8846 else if (!PtrTy->getPointeeType()->isObjectType()) 8847 continue; 8848 8849 // non-volatile version 8850 QualType ParamTypes[2] = { 8851 S.Context.getLValueReferenceType(PtrTy), 8852 isEqualOp ? PtrTy : S.Context.getPointerDiffType(), 8853 }; 8854 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8855 /*IsAssignmentOperator=*/ isEqualOp); 8856 8857 bool NeedVolatile = !PtrTy.isVolatileQualified() && 8858 VisibleTypeConversionsQuals.hasVolatile(); 8859 if (NeedVolatile) { 8860 // volatile version 8861 ParamTypes[0] = 8862 S.Context.getLValueReferenceType(S.Context.getVolatileType(PtrTy)); 8863 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8864 /*IsAssignmentOperator=*/isEqualOp); 8865 } 8866 8867 if (!PtrTy.isRestrictQualified() && 8868 VisibleTypeConversionsQuals.hasRestrict()) { 8869 // restrict version 8870 ParamTypes[0] = 8871 S.Context.getLValueReferenceType(S.Context.getRestrictType(PtrTy)); 8872 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8873 /*IsAssignmentOperator=*/isEqualOp); 8874 8875 if (NeedVolatile) { 8876 // volatile restrict version 8877 ParamTypes[0] = 8878 S.Context.getLValueReferenceType(S.Context.getCVRQualifiedType( 8879 PtrTy, (Qualifiers::Volatile | Qualifiers::Restrict))); 8880 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8881 /*IsAssignmentOperator=*/isEqualOp); 8882 } 8883 } 8884 } 8885 8886 if (isEqualOp) { 8887 for (QualType PtrTy : CandidateTypes[1].pointer_types()) { 8888 // Make sure we don't add the same candidate twice. 8889 if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second) 8890 continue; 8891 8892 QualType ParamTypes[2] = { 8893 S.Context.getLValueReferenceType(PtrTy), 8894 PtrTy, 8895 }; 8896 8897 // non-volatile version 8898 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8899 /*IsAssignmentOperator=*/true); 8900 8901 bool NeedVolatile = !PtrTy.isVolatileQualified() && 8902 VisibleTypeConversionsQuals.hasVolatile(); 8903 if (NeedVolatile) { 8904 // volatile version 8905 ParamTypes[0] = S.Context.getLValueReferenceType( 8906 S.Context.getVolatileType(PtrTy)); 8907 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8908 /*IsAssignmentOperator=*/true); 8909 } 8910 8911 if (!PtrTy.isRestrictQualified() && 8912 VisibleTypeConversionsQuals.hasRestrict()) { 8913 // restrict version 8914 ParamTypes[0] = S.Context.getLValueReferenceType( 8915 S.Context.getRestrictType(PtrTy)); 8916 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8917 /*IsAssignmentOperator=*/true); 8918 8919 if (NeedVolatile) { 8920 // volatile restrict version 8921 ParamTypes[0] = 8922 S.Context.getLValueReferenceType(S.Context.getCVRQualifiedType( 8923 PtrTy, (Qualifiers::Volatile | Qualifiers::Restrict))); 8924 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8925 /*IsAssignmentOperator=*/true); 8926 } 8927 } 8928 } 8929 } 8930 } 8931 8932 // C++ [over.built]p18: 8933 // 8934 // For every triple (L, VQ, R), where L is an arithmetic type, 8935 // VQ is either volatile or empty, and R is a promoted 8936 // arithmetic type, there exist candidate operator functions of 8937 // the form 8938 // 8939 // VQ L& operator=(VQ L&, R); 8940 // VQ L& operator*=(VQ L&, R); 8941 // VQ L& operator/=(VQ L&, R); 8942 // VQ L& operator+=(VQ L&, R); 8943 // VQ L& operator-=(VQ L&, R); 8944 void addAssignmentArithmeticOverloads(bool isEqualOp) { 8945 if (!HasArithmeticOrEnumeralCandidateType) 8946 return; 8947 8948 for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) { 8949 for (unsigned Right = FirstPromotedArithmeticType; 8950 Right < LastPromotedArithmeticType; ++Right) { 8951 QualType ParamTypes[2]; 8952 ParamTypes[1] = ArithmeticTypes[Right]; 8953 auto LeftBaseTy = AdjustAddressSpaceForBuiltinOperandType( 8954 S, ArithmeticTypes[Left], Args[0]); 8955 // Add this built-in operator as a candidate (VQ is empty). 8956 ParamTypes[0] = S.Context.getLValueReferenceType(LeftBaseTy); 8957 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8958 /*IsAssignmentOperator=*/isEqualOp); 8959 8960 // Add this built-in operator as a candidate (VQ is 'volatile'). 8961 if (VisibleTypeConversionsQuals.hasVolatile()) { 8962 ParamTypes[0] = S.Context.getVolatileType(LeftBaseTy); 8963 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); 8964 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8965 /*IsAssignmentOperator=*/isEqualOp); 8966 } 8967 } 8968 } 8969 8970 // Extension: Add the binary operators =, +=, -=, *=, /= for vector types. 8971 for (QualType Vec1Ty : CandidateTypes[0].vector_types()) 8972 for (QualType Vec2Ty : CandidateTypes[0].vector_types()) { 8973 QualType ParamTypes[2]; 8974 ParamTypes[1] = Vec2Ty; 8975 // Add this built-in operator as a candidate (VQ is empty). 8976 ParamTypes[0] = S.Context.getLValueReferenceType(Vec1Ty); 8977 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8978 /*IsAssignmentOperator=*/isEqualOp); 8979 8980 // Add this built-in operator as a candidate (VQ is 'volatile'). 8981 if (VisibleTypeConversionsQuals.hasVolatile()) { 8982 ParamTypes[0] = S.Context.getVolatileType(Vec1Ty); 8983 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); 8984 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 8985 /*IsAssignmentOperator=*/isEqualOp); 8986 } 8987 } 8988 } 8989 8990 // C++ [over.built]p22: 8991 // 8992 // For every triple (L, VQ, R), where L is an integral type, VQ 8993 // is either volatile or empty, and R is a promoted integral 8994 // type, there exist candidate operator functions of the form 8995 // 8996 // VQ L& operator%=(VQ L&, R); 8997 // VQ L& operator<<=(VQ L&, R); 8998 // VQ L& operator>>=(VQ L&, R); 8999 // VQ L& operator&=(VQ L&, R); 9000 // VQ L& operator^=(VQ L&, R); 9001 // VQ L& operator|=(VQ L&, R); 9002 void addAssignmentIntegralOverloads() { 9003 if (!HasArithmeticOrEnumeralCandidateType) 9004 return; 9005 9006 for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) { 9007 for (unsigned Right = FirstPromotedIntegralType; 9008 Right < LastPromotedIntegralType; ++Right) { 9009 QualType ParamTypes[2]; 9010 ParamTypes[1] = ArithmeticTypes[Right]; 9011 auto LeftBaseTy = AdjustAddressSpaceForBuiltinOperandType( 9012 S, ArithmeticTypes[Left], Args[0]); 9013 // Add this built-in operator as a candidate (VQ is empty). 9014 ParamTypes[0] = S.Context.getLValueReferenceType(LeftBaseTy); 9015 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 9016 if (VisibleTypeConversionsQuals.hasVolatile()) { 9017 // Add this built-in operator as a candidate (VQ is 'volatile'). 9018 ParamTypes[0] = LeftBaseTy; 9019 ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]); 9020 ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); 9021 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 9022 } 9023 } 9024 } 9025 } 9026 9027 // C++ [over.operator]p23: 9028 // 9029 // There also exist candidate operator functions of the form 9030 // 9031 // bool operator!(bool); 9032 // bool operator&&(bool, bool); 9033 // bool operator||(bool, bool); 9034 void addExclaimOverload() { 9035 QualType ParamTy = S.Context.BoolTy; 9036 S.AddBuiltinCandidate(&ParamTy, Args, CandidateSet, 9037 /*IsAssignmentOperator=*/false, 9038 /*NumContextualBoolArguments=*/1); 9039 } 9040 void addAmpAmpOrPipePipeOverload() { 9041 QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy }; 9042 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet, 9043 /*IsAssignmentOperator=*/false, 9044 /*NumContextualBoolArguments=*/2); 9045 } 9046 9047 // C++ [over.built]p13: 9048 // 9049 // For every cv-qualified or cv-unqualified object type T there 9050 // exist candidate operator functions of the form 9051 // 9052 // T* operator+(T*, ptrdiff_t); [ABOVE] 9053 // T& operator[](T*, ptrdiff_t); 9054 // T* operator-(T*, ptrdiff_t); [ABOVE] 9055 // T* operator+(ptrdiff_t, T*); [ABOVE] 9056 // T& operator[](ptrdiff_t, T*); 9057 void addSubscriptOverloads() { 9058 for (QualType PtrTy : CandidateTypes[0].pointer_types()) { 9059 QualType ParamTypes[2] = {PtrTy, S.Context.getPointerDiffType()}; 9060 QualType PointeeType = PtrTy->getPointeeType(); 9061 if (!PointeeType->isObjectType()) 9062 continue; 9063 9064 // T& operator[](T*, ptrdiff_t) 9065 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 9066 } 9067 9068 for (QualType PtrTy : CandidateTypes[1].pointer_types()) { 9069 QualType ParamTypes[2] = {S.Context.getPointerDiffType(), PtrTy}; 9070 QualType PointeeType = PtrTy->getPointeeType(); 9071 if (!PointeeType->isObjectType()) 9072 continue; 9073 9074 // T& operator[](ptrdiff_t, T*) 9075 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 9076 } 9077 } 9078 9079 // C++ [over.built]p11: 9080 // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type, 9081 // C1 is the same type as C2 or is a derived class of C2, T is an object 9082 // type or a function type, and CV1 and CV2 are cv-qualifier-seqs, 9083 // there exist candidate operator functions of the form 9084 // 9085 // CV12 T& operator->*(CV1 C1*, CV2 T C2::*); 9086 // 9087 // where CV12 is the union of CV1 and CV2. 9088 void addArrowStarOverloads() { 9089 for (QualType PtrTy : CandidateTypes[0].pointer_types()) { 9090 QualType C1Ty = PtrTy; 9091 QualType C1; 9092 QualifierCollector Q1; 9093 C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0); 9094 if (!isa<RecordType>(C1)) 9095 continue; 9096 // heuristic to reduce number of builtin candidates in the set. 9097 // Add volatile/restrict version only if there are conversions to a 9098 // volatile/restrict type. 9099 if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile()) 9100 continue; 9101 if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict()) 9102 continue; 9103 for (QualType MemPtrTy : CandidateTypes[1].member_pointer_types()) { 9104 const MemberPointerType *mptr = cast<MemberPointerType>(MemPtrTy); 9105 QualType C2 = QualType(mptr->getClass(), 0); 9106 C2 = C2.getUnqualifiedType(); 9107 if (C1 != C2 && !S.IsDerivedFrom(CandidateSet.getLocation(), C1, C2)) 9108 break; 9109 QualType ParamTypes[2] = {PtrTy, MemPtrTy}; 9110 // build CV12 T& 9111 QualType T = mptr->getPointeeType(); 9112 if (!VisibleTypeConversionsQuals.hasVolatile() && 9113 T.isVolatileQualified()) 9114 continue; 9115 if (!VisibleTypeConversionsQuals.hasRestrict() && 9116 T.isRestrictQualified()) 9117 continue; 9118 T = Q1.apply(S.Context, T); 9119 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 9120 } 9121 } 9122 } 9123 9124 // Note that we don't consider the first argument, since it has been 9125 // contextually converted to bool long ago. The candidates below are 9126 // therefore added as binary. 9127 // 9128 // C++ [over.built]p25: 9129 // For every type T, where T is a pointer, pointer-to-member, or scoped 9130 // enumeration type, there exist candidate operator functions of the form 9131 // 9132 // T operator?(bool, T, T); 9133 // 9134 void addConditionalOperatorOverloads() { 9135 /// Set of (canonical) types that we've already handled. 9136 llvm::SmallPtrSet<QualType, 8> AddedTypes; 9137 9138 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) { 9139 for (QualType PtrTy : CandidateTypes[ArgIdx].pointer_types()) { 9140 if (!AddedTypes.insert(S.Context.getCanonicalType(PtrTy)).second) 9141 continue; 9142 9143 QualType ParamTypes[2] = {PtrTy, PtrTy}; 9144 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 9145 } 9146 9147 for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) { 9148 if (!AddedTypes.insert(S.Context.getCanonicalType(MemPtrTy)).second) 9149 continue; 9150 9151 QualType ParamTypes[2] = {MemPtrTy, MemPtrTy}; 9152 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 9153 } 9154 9155 if (S.getLangOpts().CPlusPlus11) { 9156 for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) { 9157 if (!EnumTy->castAs<EnumType>()->getDecl()->isScoped()) 9158 continue; 9159 9160 if (!AddedTypes.insert(S.Context.getCanonicalType(EnumTy)).second) 9161 continue; 9162 9163 QualType ParamTypes[2] = {EnumTy, EnumTy}; 9164 S.AddBuiltinCandidate(ParamTypes, Args, CandidateSet); 9165 } 9166 } 9167 } 9168 } 9169 }; 9170 9171 } // end anonymous namespace 9172 9173 /// AddBuiltinOperatorCandidates - Add the appropriate built-in 9174 /// operator overloads to the candidate set (C++ [over.built]), based 9175 /// on the operator @p Op and the arguments given. For example, if the 9176 /// operator is a binary '+', this routine might add "int 9177 /// operator+(int, int)" to cover integer addition. 9178 void Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op, 9179 SourceLocation OpLoc, 9180 ArrayRef<Expr *> Args, 9181 OverloadCandidateSet &CandidateSet) { 9182 // Find all of the types that the arguments can convert to, but only 9183 // if the operator we're looking at has built-in operator candidates 9184 // that make use of these types. Also record whether we encounter non-record 9185 // candidate types or either arithmetic or enumeral candidate types. 9186 Qualifiers VisibleTypeConversionsQuals; 9187 VisibleTypeConversionsQuals.addConst(); 9188 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) 9189 VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]); 9190 9191 bool HasNonRecordCandidateType = false; 9192 bool HasArithmeticOrEnumeralCandidateType = false; 9193 SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes; 9194 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { 9195 CandidateTypes.emplace_back(*this); 9196 CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(), 9197 OpLoc, 9198 true, 9199 (Op == OO_Exclaim || 9200 Op == OO_AmpAmp || 9201 Op == OO_PipePipe), 9202 VisibleTypeConversionsQuals); 9203 HasNonRecordCandidateType = HasNonRecordCandidateType || 9204 CandidateTypes[ArgIdx].hasNonRecordTypes(); 9205 HasArithmeticOrEnumeralCandidateType = 9206 HasArithmeticOrEnumeralCandidateType || 9207 CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes(); 9208 } 9209 9210 // Exit early when no non-record types have been added to the candidate set 9211 // for any of the arguments to the operator. 9212 // 9213 // We can't exit early for !, ||, or &&, since there we have always have 9214 // 'bool' overloads. 9215 if (!HasNonRecordCandidateType && 9216 !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe)) 9217 return; 9218 9219 // Setup an object to manage the common state for building overloads. 9220 BuiltinOperatorOverloadBuilder OpBuilder(*this, Args, 9221 VisibleTypeConversionsQuals, 9222 HasArithmeticOrEnumeralCandidateType, 9223 CandidateTypes, CandidateSet); 9224 9225 // Dispatch over the operation to add in only those overloads which apply. 9226 switch (Op) { 9227 case OO_None: 9228 case NUM_OVERLOADED_OPERATORS: 9229 llvm_unreachable("Expected an overloaded operator"); 9230 9231 case OO_New: 9232 case OO_Delete: 9233 case OO_Array_New: 9234 case OO_Array_Delete: 9235 case OO_Call: 9236 llvm_unreachable( 9237 "Special operators don't use AddBuiltinOperatorCandidates"); 9238 9239 case OO_Comma: 9240 case OO_Arrow: 9241 case OO_Coawait: 9242 // C++ [over.match.oper]p3: 9243 // -- For the operator ',', the unary operator '&', the 9244 // operator '->', or the operator 'co_await', the 9245 // built-in candidates set is empty. 9246 break; 9247 9248 case OO_Plus: // '+' is either unary or binary 9249 if (Args.size() == 1) 9250 OpBuilder.addUnaryPlusPointerOverloads(); 9251 LLVM_FALLTHROUGH; 9252 9253 case OO_Minus: // '-' is either unary or binary 9254 if (Args.size() == 1) { 9255 OpBuilder.addUnaryPlusOrMinusArithmeticOverloads(); 9256 } else { 9257 OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op); 9258 OpBuilder.addGenericBinaryArithmeticOverloads(); 9259 OpBuilder.addMatrixBinaryArithmeticOverloads(); 9260 } 9261 break; 9262 9263 case OO_Star: // '*' is either unary or binary 9264 if (Args.size() == 1) 9265 OpBuilder.addUnaryStarPointerOverloads(); 9266 else { 9267 OpBuilder.addGenericBinaryArithmeticOverloads(); 9268 OpBuilder.addMatrixBinaryArithmeticOverloads(); 9269 } 9270 break; 9271 9272 case OO_Slash: 9273 OpBuilder.addGenericBinaryArithmeticOverloads(); 9274 break; 9275 9276 case OO_PlusPlus: 9277 case OO_MinusMinus: 9278 OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op); 9279 OpBuilder.addPlusPlusMinusMinusPointerOverloads(); 9280 break; 9281 9282 case OO_EqualEqual: 9283 case OO_ExclaimEqual: 9284 OpBuilder.addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads(); 9285 OpBuilder.addGenericBinaryPointerOrEnumeralOverloads(/*IsSpaceship=*/false); 9286 OpBuilder.addGenericBinaryArithmeticOverloads(); 9287 break; 9288 9289 case OO_Less: 9290 case OO_Greater: 9291 case OO_LessEqual: 9292 case OO_GreaterEqual: 9293 OpBuilder.addGenericBinaryPointerOrEnumeralOverloads(/*IsSpaceship=*/false); 9294 OpBuilder.addGenericBinaryArithmeticOverloads(); 9295 break; 9296 9297 case OO_Spaceship: 9298 OpBuilder.addGenericBinaryPointerOrEnumeralOverloads(/*IsSpaceship=*/true); 9299 OpBuilder.addThreeWayArithmeticOverloads(); 9300 break; 9301 9302 case OO_Percent: 9303 case OO_Caret: 9304 case OO_Pipe: 9305 case OO_LessLess: 9306 case OO_GreaterGreater: 9307 OpBuilder.addBinaryBitwiseArithmeticOverloads(); 9308 break; 9309 9310 case OO_Amp: // '&' is either unary or binary 9311 if (Args.size() == 1) 9312 // C++ [over.match.oper]p3: 9313 // -- For the operator ',', the unary operator '&', or the 9314 // operator '->', the built-in candidates set is empty. 9315 break; 9316 9317 OpBuilder.addBinaryBitwiseArithmeticOverloads(); 9318 break; 9319 9320 case OO_Tilde: 9321 OpBuilder.addUnaryTildePromotedIntegralOverloads(); 9322 break; 9323 9324 case OO_Equal: 9325 OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads(); 9326 LLVM_FALLTHROUGH; 9327 9328 case OO_PlusEqual: 9329 case OO_MinusEqual: 9330 OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal); 9331 LLVM_FALLTHROUGH; 9332 9333 case OO_StarEqual: 9334 case OO_SlashEqual: 9335 OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal); 9336 break; 9337 9338 case OO_PercentEqual: 9339 case OO_LessLessEqual: 9340 case OO_GreaterGreaterEqual: 9341 case OO_AmpEqual: 9342 case OO_CaretEqual: 9343 case OO_PipeEqual: 9344 OpBuilder.addAssignmentIntegralOverloads(); 9345 break; 9346 9347 case OO_Exclaim: 9348 OpBuilder.addExclaimOverload(); 9349 break; 9350 9351 case OO_AmpAmp: 9352 case OO_PipePipe: 9353 OpBuilder.addAmpAmpOrPipePipeOverload(); 9354 break; 9355 9356 case OO_Subscript: 9357 OpBuilder.addSubscriptOverloads(); 9358 break; 9359 9360 case OO_ArrowStar: 9361 OpBuilder.addArrowStarOverloads(); 9362 break; 9363 9364 case OO_Conditional: 9365 OpBuilder.addConditionalOperatorOverloads(); 9366 OpBuilder.addGenericBinaryArithmeticOverloads(); 9367 break; 9368 } 9369 } 9370 9371 /// Add function candidates found via argument-dependent lookup 9372 /// to the set of overloading candidates. 9373 /// 9374 /// This routine performs argument-dependent name lookup based on the 9375 /// given function name (which may also be an operator name) and adds 9376 /// all of the overload candidates found by ADL to the overload 9377 /// candidate set (C++ [basic.lookup.argdep]). 9378 void 9379 Sema::AddArgumentDependentLookupCandidates(DeclarationName Name, 9380 SourceLocation Loc, 9381 ArrayRef<Expr *> Args, 9382 TemplateArgumentListInfo *ExplicitTemplateArgs, 9383 OverloadCandidateSet& CandidateSet, 9384 bool PartialOverloading) { 9385 ADLResult Fns; 9386 9387 // FIXME: This approach for uniquing ADL results (and removing 9388 // redundant candidates from the set) relies on pointer-equality, 9389 // which means we need to key off the canonical decl. However, 9390 // always going back to the canonical decl might not get us the 9391 // right set of default arguments. What default arguments are 9392 // we supposed to consider on ADL candidates, anyway? 9393 9394 // FIXME: Pass in the explicit template arguments? 9395 ArgumentDependentLookup(Name, Loc, Args, Fns); 9396 9397 // Erase all of the candidates we already knew about. 9398 for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), 9399 CandEnd = CandidateSet.end(); 9400 Cand != CandEnd; ++Cand) 9401 if (Cand->Function) { 9402 Fns.erase(Cand->Function); 9403 if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate()) 9404 Fns.erase(FunTmpl); 9405 } 9406 9407 // For each of the ADL candidates we found, add it to the overload 9408 // set. 9409 for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 9410 DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none); 9411 9412 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) { 9413 if (ExplicitTemplateArgs) 9414 continue; 9415 9416 AddOverloadCandidate( 9417 FD, FoundDecl, Args, CandidateSet, /*SuppressUserConversions=*/false, 9418 PartialOverloading, /*AllowExplicit=*/true, 9419 /*AllowExplicitConversions=*/false, ADLCallKind::UsesADL); 9420 if (CandidateSet.getRewriteInfo().shouldAddReversed(Context, FD)) { 9421 AddOverloadCandidate( 9422 FD, FoundDecl, {Args[1], Args[0]}, CandidateSet, 9423 /*SuppressUserConversions=*/false, PartialOverloading, 9424 /*AllowExplicit=*/true, /*AllowExplicitConversions=*/false, 9425 ADLCallKind::UsesADL, None, OverloadCandidateParamOrder::Reversed); 9426 } 9427 } else { 9428 auto *FTD = cast<FunctionTemplateDecl>(*I); 9429 AddTemplateOverloadCandidate( 9430 FTD, FoundDecl, ExplicitTemplateArgs, Args, CandidateSet, 9431 /*SuppressUserConversions=*/false, PartialOverloading, 9432 /*AllowExplicit=*/true, ADLCallKind::UsesADL); 9433 if (CandidateSet.getRewriteInfo().shouldAddReversed( 9434 Context, FTD->getTemplatedDecl())) { 9435 AddTemplateOverloadCandidate( 9436 FTD, FoundDecl, ExplicitTemplateArgs, {Args[1], Args[0]}, 9437 CandidateSet, /*SuppressUserConversions=*/false, PartialOverloading, 9438 /*AllowExplicit=*/true, ADLCallKind::UsesADL, 9439 OverloadCandidateParamOrder::Reversed); 9440 } 9441 } 9442 } 9443 } 9444 9445 namespace { 9446 enum class Comparison { Equal, Better, Worse }; 9447 } 9448 9449 /// Compares the enable_if attributes of two FunctionDecls, for the purposes of 9450 /// overload resolution. 9451 /// 9452 /// Cand1's set of enable_if attributes are said to be "better" than Cand2's iff 9453 /// Cand1's first N enable_if attributes have precisely the same conditions as 9454 /// Cand2's first N enable_if attributes (where N = the number of enable_if 9455 /// attributes on Cand2), and Cand1 has more than N enable_if attributes. 9456 /// 9457 /// Note that you can have a pair of candidates such that Cand1's enable_if 9458 /// attributes are worse than Cand2's, and Cand2's enable_if attributes are 9459 /// worse than Cand1's. 9460 static Comparison compareEnableIfAttrs(const Sema &S, const FunctionDecl *Cand1, 9461 const FunctionDecl *Cand2) { 9462 // Common case: One (or both) decls don't have enable_if attrs. 9463 bool Cand1Attr = Cand1->hasAttr<EnableIfAttr>(); 9464 bool Cand2Attr = Cand2->hasAttr<EnableIfAttr>(); 9465 if (!Cand1Attr || !Cand2Attr) { 9466 if (Cand1Attr == Cand2Attr) 9467 return Comparison::Equal; 9468 return Cand1Attr ? Comparison::Better : Comparison::Worse; 9469 } 9470 9471 auto Cand1Attrs = Cand1->specific_attrs<EnableIfAttr>(); 9472 auto Cand2Attrs = Cand2->specific_attrs<EnableIfAttr>(); 9473 9474 llvm::FoldingSetNodeID Cand1ID, Cand2ID; 9475 for (auto Pair : zip_longest(Cand1Attrs, Cand2Attrs)) { 9476 Optional<EnableIfAttr *> Cand1A = std::get<0>(Pair); 9477 Optional<EnableIfAttr *> Cand2A = std::get<1>(Pair); 9478 9479 // It's impossible for Cand1 to be better than (or equal to) Cand2 if Cand1 9480 // has fewer enable_if attributes than Cand2, and vice versa. 9481 if (!Cand1A) 9482 return Comparison::Worse; 9483 if (!Cand2A) 9484 return Comparison::Better; 9485 9486 Cand1ID.clear(); 9487 Cand2ID.clear(); 9488 9489 (*Cand1A)->getCond()->Profile(Cand1ID, S.getASTContext(), true); 9490 (*Cand2A)->getCond()->Profile(Cand2ID, S.getASTContext(), true); 9491 if (Cand1ID != Cand2ID) 9492 return Comparison::Worse; 9493 } 9494 9495 return Comparison::Equal; 9496 } 9497 9498 static Comparison 9499 isBetterMultiversionCandidate(const OverloadCandidate &Cand1, 9500 const OverloadCandidate &Cand2) { 9501 if (!Cand1.Function || !Cand1.Function->isMultiVersion() || !Cand2.Function || 9502 !Cand2.Function->isMultiVersion()) 9503 return Comparison::Equal; 9504 9505 // If both are invalid, they are equal. If one of them is invalid, the other 9506 // is better. 9507 if (Cand1.Function->isInvalidDecl()) { 9508 if (Cand2.Function->isInvalidDecl()) 9509 return Comparison::Equal; 9510 return Comparison::Worse; 9511 } 9512 if (Cand2.Function->isInvalidDecl()) 9513 return Comparison::Better; 9514 9515 // If this is a cpu_dispatch/cpu_specific multiversion situation, prefer 9516 // cpu_dispatch, else arbitrarily based on the identifiers. 9517 bool Cand1CPUDisp = Cand1.Function->hasAttr<CPUDispatchAttr>(); 9518 bool Cand2CPUDisp = Cand2.Function->hasAttr<CPUDispatchAttr>(); 9519 const auto *Cand1CPUSpec = Cand1.Function->getAttr<CPUSpecificAttr>(); 9520 const auto *Cand2CPUSpec = Cand2.Function->getAttr<CPUSpecificAttr>(); 9521 9522 if (!Cand1CPUDisp && !Cand2CPUDisp && !Cand1CPUSpec && !Cand2CPUSpec) 9523 return Comparison::Equal; 9524 9525 if (Cand1CPUDisp && !Cand2CPUDisp) 9526 return Comparison::Better; 9527 if (Cand2CPUDisp && !Cand1CPUDisp) 9528 return Comparison::Worse; 9529 9530 if (Cand1CPUSpec && Cand2CPUSpec) { 9531 if (Cand1CPUSpec->cpus_size() != Cand2CPUSpec->cpus_size()) 9532 return Cand1CPUSpec->cpus_size() < Cand2CPUSpec->cpus_size() 9533 ? Comparison::Better 9534 : Comparison::Worse; 9535 9536 std::pair<CPUSpecificAttr::cpus_iterator, CPUSpecificAttr::cpus_iterator> 9537 FirstDiff = std::mismatch( 9538 Cand1CPUSpec->cpus_begin(), Cand1CPUSpec->cpus_end(), 9539 Cand2CPUSpec->cpus_begin(), 9540 [](const IdentifierInfo *LHS, const IdentifierInfo *RHS) { 9541 return LHS->getName() == RHS->getName(); 9542 }); 9543 9544 assert(FirstDiff.first != Cand1CPUSpec->cpus_end() && 9545 "Two different cpu-specific versions should not have the same " 9546 "identifier list, otherwise they'd be the same decl!"); 9547 return (*FirstDiff.first)->getName() < (*FirstDiff.second)->getName() 9548 ? Comparison::Better 9549 : Comparison::Worse; 9550 } 9551 llvm_unreachable("No way to get here unless both had cpu_dispatch"); 9552 } 9553 9554 /// Compute the type of the implicit object parameter for the given function, 9555 /// if any. Returns None if there is no implicit object parameter, and a null 9556 /// QualType if there is a 'matches anything' implicit object parameter. 9557 static Optional<QualType> getImplicitObjectParamType(ASTContext &Context, 9558 const FunctionDecl *F) { 9559 if (!isa<CXXMethodDecl>(F) || isa<CXXConstructorDecl>(F)) 9560 return llvm::None; 9561 9562 auto *M = cast<CXXMethodDecl>(F); 9563 // Static member functions' object parameters match all types. 9564 if (M->isStatic()) 9565 return QualType(); 9566 9567 QualType T = M->getThisObjectType(); 9568 if (M->getRefQualifier() == RQ_RValue) 9569 return Context.getRValueReferenceType(T); 9570 return Context.getLValueReferenceType(T); 9571 } 9572 9573 static bool haveSameParameterTypes(ASTContext &Context, const FunctionDecl *F1, 9574 const FunctionDecl *F2, unsigned NumParams) { 9575 if (declaresSameEntity(F1, F2)) 9576 return true; 9577 9578 auto NextParam = [&](const FunctionDecl *F, unsigned &I, bool First) { 9579 if (First) { 9580 if (Optional<QualType> T = getImplicitObjectParamType(Context, F)) 9581 return *T; 9582 } 9583 assert(I < F->getNumParams()); 9584 return F->getParamDecl(I++)->getType(); 9585 }; 9586 9587 unsigned I1 = 0, I2 = 0; 9588 for (unsigned I = 0; I != NumParams; ++I) { 9589 QualType T1 = NextParam(F1, I1, I == 0); 9590 QualType T2 = NextParam(F2, I2, I == 0); 9591 if (!T1.isNull() && !T1.isNull() && !Context.hasSameUnqualifiedType(T1, T2)) 9592 return false; 9593 } 9594 return true; 9595 } 9596 9597 /// isBetterOverloadCandidate - Determines whether the first overload 9598 /// candidate is a better candidate than the second (C++ 13.3.3p1). 9599 bool clang::isBetterOverloadCandidate( 9600 Sema &S, const OverloadCandidate &Cand1, const OverloadCandidate &Cand2, 9601 SourceLocation Loc, OverloadCandidateSet::CandidateSetKind Kind) { 9602 // Define viable functions to be better candidates than non-viable 9603 // functions. 9604 if (!Cand2.Viable) 9605 return Cand1.Viable; 9606 else if (!Cand1.Viable) 9607 return false; 9608 9609 // [CUDA] A function with 'never' preference is marked not viable, therefore 9610 // is never shown up here. The worst preference shown up here is 'wrong side', 9611 // e.g. an H function called by a HD function in device compilation. This is 9612 // valid AST as long as the HD function is not emitted, e.g. it is an inline 9613 // function which is called only by an H function. A deferred diagnostic will 9614 // be triggered if it is emitted. However a wrong-sided function is still 9615 // a viable candidate here. 9616 // 9617 // If Cand1 can be emitted and Cand2 cannot be emitted in the current 9618 // context, Cand1 is better than Cand2. If Cand1 can not be emitted and Cand2 9619 // can be emitted, Cand1 is not better than Cand2. This rule should have 9620 // precedence over other rules. 9621 // 9622 // If both Cand1 and Cand2 can be emitted, or neither can be emitted, then 9623 // other rules should be used to determine which is better. This is because 9624 // host/device based overloading resolution is mostly for determining 9625 // viability of a function. If two functions are both viable, other factors 9626 // should take precedence in preference, e.g. the standard-defined preferences 9627 // like argument conversion ranks or enable_if partial-ordering. The 9628 // preference for pass-object-size parameters is probably most similar to a 9629 // type-based-overloading decision and so should take priority. 9630 // 9631 // If other rules cannot determine which is better, CUDA preference will be 9632 // used again to determine which is better. 9633 // 9634 // TODO: Currently IdentifyCUDAPreference does not return correct values 9635 // for functions called in global variable initializers due to missing 9636 // correct context about device/host. Therefore we can only enforce this 9637 // rule when there is a caller. We should enforce this rule for functions 9638 // in global variable initializers once proper context is added. 9639 // 9640 // TODO: We can only enable the hostness based overloading resolution when 9641 // -fgpu-exclude-wrong-side-overloads is on since this requires deferring 9642 // overloading resolution diagnostics. 9643 if (S.getLangOpts().CUDA && Cand1.Function && Cand2.Function && 9644 S.getLangOpts().GPUExcludeWrongSideOverloads) { 9645 if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext)) { 9646 bool IsCallerImplicitHD = Sema::isCUDAImplicitHostDeviceFunction(Caller); 9647 bool IsCand1ImplicitHD = 9648 Sema::isCUDAImplicitHostDeviceFunction(Cand1.Function); 9649 bool IsCand2ImplicitHD = 9650 Sema::isCUDAImplicitHostDeviceFunction(Cand2.Function); 9651 auto P1 = S.IdentifyCUDAPreference(Caller, Cand1.Function); 9652 auto P2 = S.IdentifyCUDAPreference(Caller, Cand2.Function); 9653 assert(P1 != Sema::CFP_Never && P2 != Sema::CFP_Never); 9654 // The implicit HD function may be a function in a system header which 9655 // is forced by pragma. In device compilation, if we prefer HD candidates 9656 // over wrong-sided candidates, overloading resolution may change, which 9657 // may result in non-deferrable diagnostics. As a workaround, we let 9658 // implicit HD candidates take equal preference as wrong-sided candidates. 9659 // This will preserve the overloading resolution. 9660 // TODO: We still need special handling of implicit HD functions since 9661 // they may incur other diagnostics to be deferred. We should make all 9662 // host/device related diagnostics deferrable and remove special handling 9663 // of implicit HD functions. 9664 auto EmitThreshold = 9665 (S.getLangOpts().CUDAIsDevice && IsCallerImplicitHD && 9666 (IsCand1ImplicitHD || IsCand2ImplicitHD)) 9667 ? Sema::CFP_Never 9668 : Sema::CFP_WrongSide; 9669 auto Cand1Emittable = P1 > EmitThreshold; 9670 auto Cand2Emittable = P2 > EmitThreshold; 9671 if (Cand1Emittable && !Cand2Emittable) 9672 return true; 9673 if (!Cand1Emittable && Cand2Emittable) 9674 return false; 9675 } 9676 } 9677 9678 // C++ [over.match.best]p1: 9679 // 9680 // -- if F is a static member function, ICS1(F) is defined such 9681 // that ICS1(F) is neither better nor worse than ICS1(G) for 9682 // any function G, and, symmetrically, ICS1(G) is neither 9683 // better nor worse than ICS1(F). 9684 unsigned StartArg = 0; 9685 if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument) 9686 StartArg = 1; 9687 9688 auto IsIllFormedConversion = [&](const ImplicitConversionSequence &ICS) { 9689 // We don't allow incompatible pointer conversions in C++. 9690 if (!S.getLangOpts().CPlusPlus) 9691 return ICS.isStandard() && 9692 ICS.Standard.Second == ICK_Incompatible_Pointer_Conversion; 9693 9694 // The only ill-formed conversion we allow in C++ is the string literal to 9695 // char* conversion, which is only considered ill-formed after C++11. 9696 return S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings && 9697 hasDeprecatedStringLiteralToCharPtrConversion(ICS); 9698 }; 9699 9700 // Define functions that don't require ill-formed conversions for a given 9701 // argument to be better candidates than functions that do. 9702 unsigned NumArgs = Cand1.Conversions.size(); 9703 assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch"); 9704 bool HasBetterConversion = false; 9705 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { 9706 bool Cand1Bad = IsIllFormedConversion(Cand1.Conversions[ArgIdx]); 9707 bool Cand2Bad = IsIllFormedConversion(Cand2.Conversions[ArgIdx]); 9708 if (Cand1Bad != Cand2Bad) { 9709 if (Cand1Bad) 9710 return false; 9711 HasBetterConversion = true; 9712 } 9713 } 9714 9715 if (HasBetterConversion) 9716 return true; 9717 9718 // C++ [over.match.best]p1: 9719 // A viable function F1 is defined to be a better function than another 9720 // viable function F2 if for all arguments i, ICSi(F1) is not a worse 9721 // conversion sequence than ICSi(F2), and then... 9722 bool HasWorseConversion = false; 9723 for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { 9724 switch (CompareImplicitConversionSequences(S, Loc, 9725 Cand1.Conversions[ArgIdx], 9726 Cand2.Conversions[ArgIdx])) { 9727 case ImplicitConversionSequence::Better: 9728 // Cand1 has a better conversion sequence. 9729 HasBetterConversion = true; 9730 break; 9731 9732 case ImplicitConversionSequence::Worse: 9733 if (Cand1.Function && Cand2.Function && 9734 Cand1.isReversed() != Cand2.isReversed() && 9735 haveSameParameterTypes(S.Context, Cand1.Function, Cand2.Function, 9736 NumArgs)) { 9737 // Work around large-scale breakage caused by considering reversed 9738 // forms of operator== in C++20: 9739 // 9740 // When comparing a function against a reversed function with the same 9741 // parameter types, if we have a better conversion for one argument and 9742 // a worse conversion for the other, the implicit conversion sequences 9743 // are treated as being equally good. 9744 // 9745 // This prevents a comparison function from being considered ambiguous 9746 // with a reversed form that is written in the same way. 9747 // 9748 // We diagnose this as an extension from CreateOverloadedBinOp. 9749 HasWorseConversion = true; 9750 break; 9751 } 9752 9753 // Cand1 can't be better than Cand2. 9754 return false; 9755 9756 case ImplicitConversionSequence::Indistinguishable: 9757 // Do nothing. 9758 break; 9759 } 9760 } 9761 9762 // -- for some argument j, ICSj(F1) is a better conversion sequence than 9763 // ICSj(F2), or, if not that, 9764 if (HasBetterConversion && !HasWorseConversion) 9765 return true; 9766 9767 // -- the context is an initialization by user-defined conversion 9768 // (see 8.5, 13.3.1.5) and the standard conversion sequence 9769 // from the return type of F1 to the destination type (i.e., 9770 // the type of the entity being initialized) is a better 9771 // conversion sequence than the standard conversion sequence 9772 // from the return type of F2 to the destination type. 9773 if (Kind == OverloadCandidateSet::CSK_InitByUserDefinedConversion && 9774 Cand1.Function && Cand2.Function && 9775 isa<CXXConversionDecl>(Cand1.Function) && 9776 isa<CXXConversionDecl>(Cand2.Function)) { 9777 // First check whether we prefer one of the conversion functions over the 9778 // other. This only distinguishes the results in non-standard, extension 9779 // cases such as the conversion from a lambda closure type to a function 9780 // pointer or block. 9781 ImplicitConversionSequence::CompareKind Result = 9782 compareConversionFunctions(S, Cand1.Function, Cand2.Function); 9783 if (Result == ImplicitConversionSequence::Indistinguishable) 9784 Result = CompareStandardConversionSequences(S, Loc, 9785 Cand1.FinalConversion, 9786 Cand2.FinalConversion); 9787 9788 if (Result != ImplicitConversionSequence::Indistinguishable) 9789 return Result == ImplicitConversionSequence::Better; 9790 9791 // FIXME: Compare kind of reference binding if conversion functions 9792 // convert to a reference type used in direct reference binding, per 9793 // C++14 [over.match.best]p1 section 2 bullet 3. 9794 } 9795 9796 // FIXME: Work around a defect in the C++17 guaranteed copy elision wording, 9797 // as combined with the resolution to CWG issue 243. 9798 // 9799 // When the context is initialization by constructor ([over.match.ctor] or 9800 // either phase of [over.match.list]), a constructor is preferred over 9801 // a conversion function. 9802 if (Kind == OverloadCandidateSet::CSK_InitByConstructor && NumArgs == 1 && 9803 Cand1.Function && Cand2.Function && 9804 isa<CXXConstructorDecl>(Cand1.Function) != 9805 isa<CXXConstructorDecl>(Cand2.Function)) 9806 return isa<CXXConstructorDecl>(Cand1.Function); 9807 9808 // -- F1 is a non-template function and F2 is a function template 9809 // specialization, or, if not that, 9810 bool Cand1IsSpecialization = Cand1.Function && 9811 Cand1.Function->getPrimaryTemplate(); 9812 bool Cand2IsSpecialization = Cand2.Function && 9813 Cand2.Function->getPrimaryTemplate(); 9814 if (Cand1IsSpecialization != Cand2IsSpecialization) 9815 return Cand2IsSpecialization; 9816 9817 // -- F1 and F2 are function template specializations, and the function 9818 // template for F1 is more specialized than the template for F2 9819 // according to the partial ordering rules described in 14.5.5.2, or, 9820 // if not that, 9821 if (Cand1IsSpecialization && Cand2IsSpecialization) { 9822 if (FunctionTemplateDecl *BetterTemplate = S.getMoreSpecializedTemplate( 9823 Cand1.Function->getPrimaryTemplate(), 9824 Cand2.Function->getPrimaryTemplate(), Loc, 9825 isa<CXXConversionDecl>(Cand1.Function) ? TPOC_Conversion 9826 : TPOC_Call, 9827 Cand1.ExplicitCallArguments, Cand2.ExplicitCallArguments, 9828 Cand1.isReversed() ^ Cand2.isReversed())) 9829 return BetterTemplate == Cand1.Function->getPrimaryTemplate(); 9830 } 9831 9832 // -— F1 and F2 are non-template functions with the same 9833 // parameter-type-lists, and F1 is more constrained than F2 [...], 9834 if (Cand1.Function && Cand2.Function && !Cand1IsSpecialization && 9835 !Cand2IsSpecialization && Cand1.Function->hasPrototype() && 9836 Cand2.Function->hasPrototype()) { 9837 auto *PT1 = cast<FunctionProtoType>(Cand1.Function->getFunctionType()); 9838 auto *PT2 = cast<FunctionProtoType>(Cand2.Function->getFunctionType()); 9839 if (PT1->getNumParams() == PT2->getNumParams() && 9840 PT1->isVariadic() == PT2->isVariadic() && 9841 S.FunctionParamTypesAreEqual(PT1, PT2)) { 9842 Expr *RC1 = Cand1.Function->getTrailingRequiresClause(); 9843 Expr *RC2 = Cand2.Function->getTrailingRequiresClause(); 9844 if (RC1 && RC2) { 9845 bool AtLeastAsConstrained1, AtLeastAsConstrained2; 9846 if (S.IsAtLeastAsConstrained(Cand1.Function, {RC1}, Cand2.Function, 9847 {RC2}, AtLeastAsConstrained1) || 9848 S.IsAtLeastAsConstrained(Cand2.Function, {RC2}, Cand1.Function, 9849 {RC1}, AtLeastAsConstrained2)) 9850 return false; 9851 if (AtLeastAsConstrained1 != AtLeastAsConstrained2) 9852 return AtLeastAsConstrained1; 9853 } else if (RC1 || RC2) { 9854 return RC1 != nullptr; 9855 } 9856 } 9857 } 9858 9859 // -- F1 is a constructor for a class D, F2 is a constructor for a base 9860 // class B of D, and for all arguments the corresponding parameters of 9861 // F1 and F2 have the same type. 9862 // FIXME: Implement the "all parameters have the same type" check. 9863 bool Cand1IsInherited = 9864 dyn_cast_or_null<ConstructorUsingShadowDecl>(Cand1.FoundDecl.getDecl()); 9865 bool Cand2IsInherited = 9866 dyn_cast_or_null<ConstructorUsingShadowDecl>(Cand2.FoundDecl.getDecl()); 9867 if (Cand1IsInherited != Cand2IsInherited) 9868 return Cand2IsInherited; 9869 else if (Cand1IsInherited) { 9870 assert(Cand2IsInherited); 9871 auto *Cand1Class = cast<CXXRecordDecl>(Cand1.Function->getDeclContext()); 9872 auto *Cand2Class = cast<CXXRecordDecl>(Cand2.Function->getDeclContext()); 9873 if (Cand1Class->isDerivedFrom(Cand2Class)) 9874 return true; 9875 if (Cand2Class->isDerivedFrom(Cand1Class)) 9876 return false; 9877 // Inherited from sibling base classes: still ambiguous. 9878 } 9879 9880 // -- F2 is a rewritten candidate (12.4.1.2) and F1 is not 9881 // -- F1 and F2 are rewritten candidates, and F2 is a synthesized candidate 9882 // with reversed order of parameters and F1 is not 9883 // 9884 // We rank reversed + different operator as worse than just reversed, but 9885 // that comparison can never happen, because we only consider reversing for 9886 // the maximally-rewritten operator (== or <=>). 9887 if (Cand1.RewriteKind != Cand2.RewriteKind) 9888 return Cand1.RewriteKind < Cand2.RewriteKind; 9889 9890 // Check C++17 tie-breakers for deduction guides. 9891 { 9892 auto *Guide1 = dyn_cast_or_null<CXXDeductionGuideDecl>(Cand1.Function); 9893 auto *Guide2 = dyn_cast_or_null<CXXDeductionGuideDecl>(Cand2.Function); 9894 if (Guide1 && Guide2) { 9895 // -- F1 is generated from a deduction-guide and F2 is not 9896 if (Guide1->isImplicit() != Guide2->isImplicit()) 9897 return Guide2->isImplicit(); 9898 9899 // -- F1 is the copy deduction candidate(16.3.1.8) and F2 is not 9900 if (Guide1->isCopyDeductionCandidate()) 9901 return true; 9902 } 9903 } 9904 9905 // Check for enable_if value-based overload resolution. 9906 if (Cand1.Function && Cand2.Function) { 9907 Comparison Cmp = compareEnableIfAttrs(S, Cand1.Function, Cand2.Function); 9908 if (Cmp != Comparison::Equal) 9909 return Cmp == Comparison::Better; 9910 } 9911 9912 bool HasPS1 = Cand1.Function != nullptr && 9913 functionHasPassObjectSizeParams(Cand1.Function); 9914 bool HasPS2 = Cand2.Function != nullptr && 9915 functionHasPassObjectSizeParams(Cand2.Function); 9916 if (HasPS1 != HasPS2 && HasPS1) 9917 return true; 9918 9919 auto MV = isBetterMultiversionCandidate(Cand1, Cand2); 9920 if (MV == Comparison::Better) 9921 return true; 9922 if (MV == Comparison::Worse) 9923 return false; 9924 9925 // If other rules cannot determine which is better, CUDA preference is used 9926 // to determine which is better. 9927 if (S.getLangOpts().CUDA && Cand1.Function && Cand2.Function) { 9928 FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext); 9929 return S.IdentifyCUDAPreference(Caller, Cand1.Function) > 9930 S.IdentifyCUDAPreference(Caller, Cand2.Function); 9931 } 9932 9933 // General member function overloading is handled above, so this only handles 9934 // constructors with address spaces. 9935 // This only handles address spaces since C++ has no other 9936 // qualifier that can be used with constructors. 9937 const auto *CD1 = dyn_cast_or_null<CXXConstructorDecl>(Cand1.Function); 9938 const auto *CD2 = dyn_cast_or_null<CXXConstructorDecl>(Cand2.Function); 9939 if (CD1 && CD2) { 9940 LangAS AS1 = CD1->getMethodQualifiers().getAddressSpace(); 9941 LangAS AS2 = CD2->getMethodQualifiers().getAddressSpace(); 9942 if (AS1 != AS2) { 9943 if (Qualifiers::isAddressSpaceSupersetOf(AS2, AS1)) 9944 return true; 9945 if (Qualifiers::isAddressSpaceSupersetOf(AS2, AS1)) 9946 return false; 9947 } 9948 } 9949 9950 return false; 9951 } 9952 9953 /// Determine whether two declarations are "equivalent" for the purposes of 9954 /// name lookup and overload resolution. This applies when the same internal/no 9955 /// linkage entity is defined by two modules (probably by textually including 9956 /// the same header). In such a case, we don't consider the declarations to 9957 /// declare the same entity, but we also don't want lookups with both 9958 /// declarations visible to be ambiguous in some cases (this happens when using 9959 /// a modularized libstdc++). 9960 bool Sema::isEquivalentInternalLinkageDeclaration(const NamedDecl *A, 9961 const NamedDecl *B) { 9962 auto *VA = dyn_cast_or_null<ValueDecl>(A); 9963 auto *VB = dyn_cast_or_null<ValueDecl>(B); 9964 if (!VA || !VB) 9965 return false; 9966 9967 // The declarations must be declaring the same name as an internal linkage 9968 // entity in different modules. 9969 if (!VA->getDeclContext()->getRedeclContext()->Equals( 9970 VB->getDeclContext()->getRedeclContext()) || 9971 getOwningModule(VA) == getOwningModule(VB) || 9972 VA->isExternallyVisible() || VB->isExternallyVisible()) 9973 return false; 9974 9975 // Check that the declarations appear to be equivalent. 9976 // 9977 // FIXME: Checking the type isn't really enough to resolve the ambiguity. 9978 // For constants and functions, we should check the initializer or body is 9979 // the same. For non-constant variables, we shouldn't allow it at all. 9980 if (Context.hasSameType(VA->getType(), VB->getType())) 9981 return true; 9982 9983 // Enum constants within unnamed enumerations will have different types, but 9984 // may still be similar enough to be interchangeable for our purposes. 9985 if (auto *EA = dyn_cast<EnumConstantDecl>(VA)) { 9986 if (auto *EB = dyn_cast<EnumConstantDecl>(VB)) { 9987 // Only handle anonymous enums. If the enumerations were named and 9988 // equivalent, they would have been merged to the same type. 9989 auto *EnumA = cast<EnumDecl>(EA->getDeclContext()); 9990 auto *EnumB = cast<EnumDecl>(EB->getDeclContext()); 9991 if (EnumA->hasNameForLinkage() || EnumB->hasNameForLinkage() || 9992 !Context.hasSameType(EnumA->getIntegerType(), 9993 EnumB->getIntegerType())) 9994 return false; 9995 // Allow this only if the value is the same for both enumerators. 9996 return llvm::APSInt::isSameValue(EA->getInitVal(), EB->getInitVal()); 9997 } 9998 } 9999 10000 // Nothing else is sufficiently similar. 10001 return false; 10002 } 10003 10004 void Sema::diagnoseEquivalentInternalLinkageDeclarations( 10005 SourceLocation Loc, const NamedDecl *D, ArrayRef<const NamedDecl *> Equiv) { 10006 assert(D && "Unknown declaration"); 10007 Diag(Loc, diag::ext_equivalent_internal_linkage_decl_in_modules) << D; 10008 10009 Module *M = getOwningModule(D); 10010 Diag(D->getLocation(), diag::note_equivalent_internal_linkage_decl) 10011 << !M << (M ? M->getFullModuleName() : ""); 10012 10013 for (auto *E : Equiv) { 10014 Module *M = getOwningModule(E); 10015 Diag(E->getLocation(), diag::note_equivalent_internal_linkage_decl) 10016 << !M << (M ? M->getFullModuleName() : ""); 10017 } 10018 } 10019 10020 /// Computes the best viable function (C++ 13.3.3) 10021 /// within an overload candidate set. 10022 /// 10023 /// \param Loc The location of the function name (or operator symbol) for 10024 /// which overload resolution occurs. 10025 /// 10026 /// \param Best If overload resolution was successful or found a deleted 10027 /// function, \p Best points to the candidate function found. 10028 /// 10029 /// \returns The result of overload resolution. 10030 OverloadingResult 10031 OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc, 10032 iterator &Best) { 10033 llvm::SmallVector<OverloadCandidate *, 16> Candidates; 10034 std::transform(begin(), end(), std::back_inserter(Candidates), 10035 [](OverloadCandidate &Cand) { return &Cand; }); 10036 10037 // [CUDA] HD->H or HD->D calls are technically not allowed by CUDA but 10038 // are accepted by both clang and NVCC. However, during a particular 10039 // compilation mode only one call variant is viable. We need to 10040 // exclude non-viable overload candidates from consideration based 10041 // only on their host/device attributes. Specifically, if one 10042 // candidate call is WrongSide and the other is SameSide, we ignore 10043 // the WrongSide candidate. 10044 // We only need to remove wrong-sided candidates here if 10045 // -fgpu-exclude-wrong-side-overloads is off. When 10046 // -fgpu-exclude-wrong-side-overloads is on, all candidates are compared 10047 // uniformly in isBetterOverloadCandidate. 10048 if (S.getLangOpts().CUDA && !S.getLangOpts().GPUExcludeWrongSideOverloads) { 10049 const FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext); 10050 bool ContainsSameSideCandidate = 10051 llvm::any_of(Candidates, [&](OverloadCandidate *Cand) { 10052 // Check viable function only. 10053 return Cand->Viable && Cand->Function && 10054 S.IdentifyCUDAPreference(Caller, Cand->Function) == 10055 Sema::CFP_SameSide; 10056 }); 10057 if (ContainsSameSideCandidate) { 10058 auto IsWrongSideCandidate = [&](OverloadCandidate *Cand) { 10059 // Check viable function only to avoid unnecessary data copying/moving. 10060 return Cand->Viable && Cand->Function && 10061 S.IdentifyCUDAPreference(Caller, Cand->Function) == 10062 Sema::CFP_WrongSide; 10063 }; 10064 llvm::erase_if(Candidates, IsWrongSideCandidate); 10065 } 10066 } 10067 10068 // Find the best viable function. 10069 Best = end(); 10070 for (auto *Cand : Candidates) { 10071 Cand->Best = false; 10072 if (Cand->Viable) 10073 if (Best == end() || 10074 isBetterOverloadCandidate(S, *Cand, *Best, Loc, Kind)) 10075 Best = Cand; 10076 } 10077 10078 // If we didn't find any viable functions, abort. 10079 if (Best == end()) 10080 return OR_No_Viable_Function; 10081 10082 llvm::SmallVector<const NamedDecl *, 4> EquivalentCands; 10083 10084 llvm::SmallVector<OverloadCandidate*, 4> PendingBest; 10085 PendingBest.push_back(&*Best); 10086 Best->Best = true; 10087 10088 // Make sure that this function is better than every other viable 10089 // function. If not, we have an ambiguity. 10090 while (!PendingBest.empty()) { 10091 auto *Curr = PendingBest.pop_back_val(); 10092 for (auto *Cand : Candidates) { 10093 if (Cand->Viable && !Cand->Best && 10094 !isBetterOverloadCandidate(S, *Curr, *Cand, Loc, Kind)) { 10095 PendingBest.push_back(Cand); 10096 Cand->Best = true; 10097 10098 if (S.isEquivalentInternalLinkageDeclaration(Cand->Function, 10099 Curr->Function)) 10100 EquivalentCands.push_back(Cand->Function); 10101 else 10102 Best = end(); 10103 } 10104 } 10105 } 10106 10107 // If we found more than one best candidate, this is ambiguous. 10108 if (Best == end()) 10109 return OR_Ambiguous; 10110 10111 // Best is the best viable function. 10112 if (Best->Function && Best->Function->isDeleted()) 10113 return OR_Deleted; 10114 10115 if (!EquivalentCands.empty()) 10116 S.diagnoseEquivalentInternalLinkageDeclarations(Loc, Best->Function, 10117 EquivalentCands); 10118 10119 return OR_Success; 10120 } 10121 10122 namespace { 10123 10124 enum OverloadCandidateKind { 10125 oc_function, 10126 oc_method, 10127 oc_reversed_binary_operator, 10128 oc_constructor, 10129 oc_implicit_default_constructor, 10130 oc_implicit_copy_constructor, 10131 oc_implicit_move_constructor, 10132 oc_implicit_copy_assignment, 10133 oc_implicit_move_assignment, 10134 oc_implicit_equality_comparison, 10135 oc_inherited_constructor 10136 }; 10137 10138 enum OverloadCandidateSelect { 10139 ocs_non_template, 10140 ocs_template, 10141 ocs_described_template, 10142 }; 10143 10144 static std::pair<OverloadCandidateKind, OverloadCandidateSelect> 10145 ClassifyOverloadCandidate(Sema &S, NamedDecl *Found, FunctionDecl *Fn, 10146 OverloadCandidateRewriteKind CRK, 10147 std::string &Description) { 10148 10149 bool isTemplate = Fn->isTemplateDecl() || Found->isTemplateDecl(); 10150 if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) { 10151 isTemplate = true; 10152 Description = S.getTemplateArgumentBindingsText( 10153 FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs()); 10154 } 10155 10156 OverloadCandidateSelect Select = [&]() { 10157 if (!Description.empty()) 10158 return ocs_described_template; 10159 return isTemplate ? ocs_template : ocs_non_template; 10160 }(); 10161 10162 OverloadCandidateKind Kind = [&]() { 10163 if (Fn->isImplicit() && Fn->getOverloadedOperator() == OO_EqualEqual) 10164 return oc_implicit_equality_comparison; 10165 10166 if (CRK & CRK_Reversed) 10167 return oc_reversed_binary_operator; 10168 10169 if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) { 10170 if (!Ctor->isImplicit()) { 10171 if (isa<ConstructorUsingShadowDecl>(Found)) 10172 return oc_inherited_constructor; 10173 else 10174 return oc_constructor; 10175 } 10176 10177 if (Ctor->isDefaultConstructor()) 10178 return oc_implicit_default_constructor; 10179 10180 if (Ctor->isMoveConstructor()) 10181 return oc_implicit_move_constructor; 10182 10183 assert(Ctor->isCopyConstructor() && 10184 "unexpected sort of implicit constructor"); 10185 return oc_implicit_copy_constructor; 10186 } 10187 10188 if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) { 10189 // This actually gets spelled 'candidate function' for now, but 10190 // it doesn't hurt to split it out. 10191 if (!Meth->isImplicit()) 10192 return oc_method; 10193 10194 if (Meth->isMoveAssignmentOperator()) 10195 return oc_implicit_move_assignment; 10196 10197 if (Meth->isCopyAssignmentOperator()) 10198 return oc_implicit_copy_assignment; 10199 10200 assert(isa<CXXConversionDecl>(Meth) && "expected conversion"); 10201 return oc_method; 10202 } 10203 10204 return oc_function; 10205 }(); 10206 10207 return std::make_pair(Kind, Select); 10208 } 10209 10210 void MaybeEmitInheritedConstructorNote(Sema &S, Decl *FoundDecl) { 10211 // FIXME: It'd be nice to only emit a note once per using-decl per overload 10212 // set. 10213 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl)) 10214 S.Diag(FoundDecl->getLocation(), 10215 diag::note_ovl_candidate_inherited_constructor) 10216 << Shadow->getNominatedBaseClass(); 10217 } 10218 10219 } // end anonymous namespace 10220 10221 static bool isFunctionAlwaysEnabled(const ASTContext &Ctx, 10222 const FunctionDecl *FD) { 10223 for (auto *EnableIf : FD->specific_attrs<EnableIfAttr>()) { 10224 bool AlwaysTrue; 10225 if (EnableIf->getCond()->isValueDependent() || 10226 !EnableIf->getCond()->EvaluateAsBooleanCondition(AlwaysTrue, Ctx)) 10227 return false; 10228 if (!AlwaysTrue) 10229 return false; 10230 } 10231 return true; 10232 } 10233 10234 /// Returns true if we can take the address of the function. 10235 /// 10236 /// \param Complain - If true, we'll emit a diagnostic 10237 /// \param InOverloadResolution - For the purposes of emitting a diagnostic, are 10238 /// we in overload resolution? 10239 /// \param Loc - The location of the statement we're complaining about. Ignored 10240 /// if we're not complaining, or if we're in overload resolution. 10241 static bool checkAddressOfFunctionIsAvailable(Sema &S, const FunctionDecl *FD, 10242 bool Complain, 10243 bool InOverloadResolution, 10244 SourceLocation Loc) { 10245 if (!isFunctionAlwaysEnabled(S.Context, FD)) { 10246 if (Complain) { 10247 if (InOverloadResolution) 10248 S.Diag(FD->getBeginLoc(), 10249 diag::note_addrof_ovl_candidate_disabled_by_enable_if_attr); 10250 else 10251 S.Diag(Loc, diag::err_addrof_function_disabled_by_enable_if_attr) << FD; 10252 } 10253 return false; 10254 } 10255 10256 if (FD->getTrailingRequiresClause()) { 10257 ConstraintSatisfaction Satisfaction; 10258 if (S.CheckFunctionConstraints(FD, Satisfaction, Loc)) 10259 return false; 10260 if (!Satisfaction.IsSatisfied) { 10261 if (Complain) { 10262 if (InOverloadResolution) 10263 S.Diag(FD->getBeginLoc(), 10264 diag::note_ovl_candidate_unsatisfied_constraints); 10265 else 10266 S.Diag(Loc, diag::err_addrof_function_constraints_not_satisfied) 10267 << FD; 10268 S.DiagnoseUnsatisfiedConstraint(Satisfaction); 10269 } 10270 return false; 10271 } 10272 } 10273 10274 auto I = llvm::find_if(FD->parameters(), [](const ParmVarDecl *P) { 10275 return P->hasAttr<PassObjectSizeAttr>(); 10276 }); 10277 if (I == FD->param_end()) 10278 return true; 10279 10280 if (Complain) { 10281 // Add one to ParamNo because it's user-facing 10282 unsigned ParamNo = std::distance(FD->param_begin(), I) + 1; 10283 if (InOverloadResolution) 10284 S.Diag(FD->getLocation(), 10285 diag::note_ovl_candidate_has_pass_object_size_params) 10286 << ParamNo; 10287 else 10288 S.Diag(Loc, diag::err_address_of_function_with_pass_object_size_params) 10289 << FD << ParamNo; 10290 } 10291 return false; 10292 } 10293 10294 static bool checkAddressOfCandidateIsAvailable(Sema &S, 10295 const FunctionDecl *FD) { 10296 return checkAddressOfFunctionIsAvailable(S, FD, /*Complain=*/true, 10297 /*InOverloadResolution=*/true, 10298 /*Loc=*/SourceLocation()); 10299 } 10300 10301 bool Sema::checkAddressOfFunctionIsAvailable(const FunctionDecl *Function, 10302 bool Complain, 10303 SourceLocation Loc) { 10304 return ::checkAddressOfFunctionIsAvailable(*this, Function, Complain, 10305 /*InOverloadResolution=*/false, 10306 Loc); 10307 } 10308 10309 // Don't print candidates other than the one that matches the calling 10310 // convention of the call operator, since that is guaranteed to exist. 10311 static bool shouldSkipNotingLambdaConversionDecl(FunctionDecl *Fn) { 10312 const auto *ConvD = dyn_cast<CXXConversionDecl>(Fn); 10313 10314 if (!ConvD) 10315 return false; 10316 const auto *RD = cast<CXXRecordDecl>(Fn->getParent()); 10317 if (!RD->isLambda()) 10318 return false; 10319 10320 CXXMethodDecl *CallOp = RD->getLambdaCallOperator(); 10321 CallingConv CallOpCC = 10322 CallOp->getType()->castAs<FunctionType>()->getCallConv(); 10323 QualType ConvRTy = ConvD->getType()->castAs<FunctionType>()->getReturnType(); 10324 CallingConv ConvToCC = 10325 ConvRTy->getPointeeType()->castAs<FunctionType>()->getCallConv(); 10326 10327 return ConvToCC != CallOpCC; 10328 } 10329 10330 // Notes the location of an overload candidate. 10331 void Sema::NoteOverloadCandidate(NamedDecl *Found, FunctionDecl *Fn, 10332 OverloadCandidateRewriteKind RewriteKind, 10333 QualType DestType, bool TakingAddress) { 10334 if (TakingAddress && !checkAddressOfCandidateIsAvailable(*this, Fn)) 10335 return; 10336 if (Fn->isMultiVersion() && Fn->hasAttr<TargetAttr>() && 10337 !Fn->getAttr<TargetAttr>()->isDefaultVersion()) 10338 return; 10339 if (shouldSkipNotingLambdaConversionDecl(Fn)) 10340 return; 10341 10342 std::string FnDesc; 10343 std::pair<OverloadCandidateKind, OverloadCandidateSelect> KSPair = 10344 ClassifyOverloadCandidate(*this, Found, Fn, RewriteKind, FnDesc); 10345 PartialDiagnostic PD = PDiag(diag::note_ovl_candidate) 10346 << (unsigned)KSPair.first << (unsigned)KSPair.second 10347 << Fn << FnDesc; 10348 10349 HandleFunctionTypeMismatch(PD, Fn->getType(), DestType); 10350 Diag(Fn->getLocation(), PD); 10351 MaybeEmitInheritedConstructorNote(*this, Found); 10352 } 10353 10354 static void 10355 MaybeDiagnoseAmbiguousConstraints(Sema &S, ArrayRef<OverloadCandidate> Cands) { 10356 // Perhaps the ambiguity was caused by two atomic constraints that are 10357 // 'identical' but not equivalent: 10358 // 10359 // void foo() requires (sizeof(T) > 4) { } // #1 10360 // void foo() requires (sizeof(T) > 4) && T::value { } // #2 10361 // 10362 // The 'sizeof(T) > 4' constraints are seemingly equivalent and should cause 10363 // #2 to subsume #1, but these constraint are not considered equivalent 10364 // according to the subsumption rules because they are not the same 10365 // source-level construct. This behavior is quite confusing and we should try 10366 // to help the user figure out what happened. 10367 10368 SmallVector<const Expr *, 3> FirstAC, SecondAC; 10369 FunctionDecl *FirstCand = nullptr, *SecondCand = nullptr; 10370 for (auto I = Cands.begin(), E = Cands.end(); I != E; ++I) { 10371 if (!I->Function) 10372 continue; 10373 SmallVector<const Expr *, 3> AC; 10374 if (auto *Template = I->Function->getPrimaryTemplate()) 10375 Template->getAssociatedConstraints(AC); 10376 else 10377 I->Function->getAssociatedConstraints(AC); 10378 if (AC.empty()) 10379 continue; 10380 if (FirstCand == nullptr) { 10381 FirstCand = I->Function; 10382 FirstAC = AC; 10383 } else if (SecondCand == nullptr) { 10384 SecondCand = I->Function; 10385 SecondAC = AC; 10386 } else { 10387 // We have more than one pair of constrained functions - this check is 10388 // expensive and we'd rather not try to diagnose it. 10389 return; 10390 } 10391 } 10392 if (!SecondCand) 10393 return; 10394 // The diagnostic can only happen if there are associated constraints on 10395 // both sides (there needs to be some identical atomic constraint). 10396 if (S.MaybeEmitAmbiguousAtomicConstraintsDiagnostic(FirstCand, FirstAC, 10397 SecondCand, SecondAC)) 10398 // Just show the user one diagnostic, they'll probably figure it out 10399 // from here. 10400 return; 10401 } 10402 10403 // Notes the location of all overload candidates designated through 10404 // OverloadedExpr 10405 void Sema::NoteAllOverloadCandidates(Expr *OverloadedExpr, QualType DestType, 10406 bool TakingAddress) { 10407 assert(OverloadedExpr->getType() == Context.OverloadTy); 10408 10409 OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr); 10410 OverloadExpr *OvlExpr = Ovl.Expression; 10411 10412 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 10413 IEnd = OvlExpr->decls_end(); 10414 I != IEnd; ++I) { 10415 if (FunctionTemplateDecl *FunTmpl = 10416 dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) { 10417 NoteOverloadCandidate(*I, FunTmpl->getTemplatedDecl(), CRK_None, DestType, 10418 TakingAddress); 10419 } else if (FunctionDecl *Fun 10420 = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) { 10421 NoteOverloadCandidate(*I, Fun, CRK_None, DestType, TakingAddress); 10422 } 10423 } 10424 } 10425 10426 /// Diagnoses an ambiguous conversion. The partial diagnostic is the 10427 /// "lead" diagnostic; it will be given two arguments, the source and 10428 /// target types of the conversion. 10429 void ImplicitConversionSequence::DiagnoseAmbiguousConversion( 10430 Sema &S, 10431 SourceLocation CaretLoc, 10432 const PartialDiagnostic &PDiag) const { 10433 S.Diag(CaretLoc, PDiag) 10434 << Ambiguous.getFromType() << Ambiguous.getToType(); 10435 unsigned CandsShown = 0; 10436 AmbiguousConversionSequence::const_iterator I, E; 10437 for (I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) { 10438 if (CandsShown >= S.Diags.getNumOverloadCandidatesToShow()) 10439 break; 10440 ++CandsShown; 10441 S.NoteOverloadCandidate(I->first, I->second); 10442 } 10443 S.Diags.overloadCandidatesShown(CandsShown); 10444 if (I != E) 10445 S.Diag(SourceLocation(), diag::note_ovl_too_many_candidates) << int(E - I); 10446 } 10447 10448 static void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, 10449 unsigned I, bool TakingCandidateAddress) { 10450 const ImplicitConversionSequence &Conv = Cand->Conversions[I]; 10451 assert(Conv.isBad()); 10452 assert(Cand->Function && "for now, candidate must be a function"); 10453 FunctionDecl *Fn = Cand->Function; 10454 10455 // There's a conversion slot for the object argument if this is a 10456 // non-constructor method. Note that 'I' corresponds the 10457 // conversion-slot index. 10458 bool isObjectArgument = false; 10459 if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) { 10460 if (I == 0) 10461 isObjectArgument = true; 10462 else 10463 I--; 10464 } 10465 10466 std::string FnDesc; 10467 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair = 10468 ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, Cand->getRewriteKind(), 10469 FnDesc); 10470 10471 Expr *FromExpr = Conv.Bad.FromExpr; 10472 QualType FromTy = Conv.Bad.getFromType(); 10473 QualType ToTy = Conv.Bad.getToType(); 10474 10475 if (FromTy == S.Context.OverloadTy) { 10476 assert(FromExpr && "overload set argument came from implicit argument?"); 10477 Expr *E = FromExpr->IgnoreParens(); 10478 if (isa<UnaryOperator>(E)) 10479 E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens(); 10480 DeclarationName Name = cast<OverloadExpr>(E)->getName(); 10481 10482 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload) 10483 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 10484 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << ToTy 10485 << Name << I + 1; 10486 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10487 return; 10488 } 10489 10490 // Do some hand-waving analysis to see if the non-viability is due 10491 // to a qualifier mismatch. 10492 CanQualType CFromTy = S.Context.getCanonicalType(FromTy); 10493 CanQualType CToTy = S.Context.getCanonicalType(ToTy); 10494 if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>()) 10495 CToTy = RT->getPointeeType(); 10496 else { 10497 // TODO: detect and diagnose the full richness of const mismatches. 10498 if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>()) 10499 if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>()) { 10500 CFromTy = FromPT->getPointeeType(); 10501 CToTy = ToPT->getPointeeType(); 10502 } 10503 } 10504 10505 if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() && 10506 !CToTy.isAtLeastAsQualifiedAs(CFromTy)) { 10507 Qualifiers FromQs = CFromTy.getQualifiers(); 10508 Qualifiers ToQs = CToTy.getQualifiers(); 10509 10510 if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) { 10511 if (isObjectArgument) 10512 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace_this) 10513 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second 10514 << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 10515 << FromQs.getAddressSpace() << ToQs.getAddressSpace(); 10516 else 10517 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace) 10518 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second 10519 << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 10520 << FromQs.getAddressSpace() << ToQs.getAddressSpace() 10521 << ToTy->isReferenceType() << I + 1; 10522 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10523 return; 10524 } 10525 10526 if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) { 10527 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership) 10528 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 10529 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy 10530 << FromQs.getObjCLifetime() << ToQs.getObjCLifetime() 10531 << (unsigned)isObjectArgument << I + 1; 10532 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10533 return; 10534 } 10535 10536 if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) { 10537 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc) 10538 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 10539 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy 10540 << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr() 10541 << (unsigned)isObjectArgument << I + 1; 10542 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10543 return; 10544 } 10545 10546 if (FromQs.hasUnaligned() != ToQs.hasUnaligned()) { 10547 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_unaligned) 10548 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 10549 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy 10550 << FromQs.hasUnaligned() << I + 1; 10551 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10552 return; 10553 } 10554 10555 unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); 10556 assert(CVR && "expected qualifiers mismatch"); 10557 10558 if (isObjectArgument) { 10559 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this) 10560 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 10561 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy 10562 << (CVR - 1); 10563 } else { 10564 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr) 10565 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 10566 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy 10567 << (CVR - 1) << I + 1; 10568 } 10569 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10570 return; 10571 } 10572 10573 if (Conv.Bad.Kind == BadConversionSequence::lvalue_ref_to_rvalue || 10574 Conv.Bad.Kind == BadConversionSequence::rvalue_ref_to_lvalue) { 10575 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_value_category) 10576 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 10577 << (unsigned)isObjectArgument << I + 1 10578 << (Conv.Bad.Kind == BadConversionSequence::rvalue_ref_to_lvalue) 10579 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()); 10580 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10581 return; 10582 } 10583 10584 // Special diagnostic for failure to convert an initializer list, since 10585 // telling the user that it has type void is not useful. 10586 if (FromExpr && isa<InitListExpr>(FromExpr)) { 10587 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument) 10588 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 10589 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy 10590 << ToTy << (unsigned)isObjectArgument << I + 1 10591 << (Conv.Bad.Kind == BadConversionSequence::too_few_initializers ? 1 10592 : Conv.Bad.Kind == BadConversionSequence::too_many_initializers 10593 ? 2 10594 : 0); 10595 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10596 return; 10597 } 10598 10599 // Diagnose references or pointers to incomplete types differently, 10600 // since it's far from impossible that the incompleteness triggered 10601 // the failure. 10602 QualType TempFromTy = FromTy.getNonReferenceType(); 10603 if (const PointerType *PTy = TempFromTy->getAs<PointerType>()) 10604 TempFromTy = PTy->getPointeeType(); 10605 if (TempFromTy->isIncompleteType()) { 10606 // Emit the generic diagnostic and, optionally, add the hints to it. 10607 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete) 10608 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 10609 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy 10610 << ToTy << (unsigned)isObjectArgument << I + 1 10611 << (unsigned)(Cand->Fix.Kind); 10612 10613 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10614 return; 10615 } 10616 10617 // Diagnose base -> derived pointer conversions. 10618 unsigned BaseToDerivedConversion = 0; 10619 if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) { 10620 if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) { 10621 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs( 10622 FromPtrTy->getPointeeType()) && 10623 !FromPtrTy->getPointeeType()->isIncompleteType() && 10624 !ToPtrTy->getPointeeType()->isIncompleteType() && 10625 S.IsDerivedFrom(SourceLocation(), ToPtrTy->getPointeeType(), 10626 FromPtrTy->getPointeeType())) 10627 BaseToDerivedConversion = 1; 10628 } 10629 } else if (const ObjCObjectPointerType *FromPtrTy 10630 = FromTy->getAs<ObjCObjectPointerType>()) { 10631 if (const ObjCObjectPointerType *ToPtrTy 10632 = ToTy->getAs<ObjCObjectPointerType>()) 10633 if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl()) 10634 if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl()) 10635 if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs( 10636 FromPtrTy->getPointeeType()) && 10637 FromIface->isSuperClassOf(ToIface)) 10638 BaseToDerivedConversion = 2; 10639 } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) { 10640 if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) && 10641 !FromTy->isIncompleteType() && 10642 !ToRefTy->getPointeeType()->isIncompleteType() && 10643 S.IsDerivedFrom(SourceLocation(), ToRefTy->getPointeeType(), FromTy)) { 10644 BaseToDerivedConversion = 3; 10645 } 10646 } 10647 10648 if (BaseToDerivedConversion) { 10649 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_base_to_derived_conv) 10650 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 10651 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 10652 << (BaseToDerivedConversion - 1) << FromTy << ToTy << I + 1; 10653 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10654 return; 10655 } 10656 10657 if (isa<ObjCObjectPointerType>(CFromTy) && 10658 isa<PointerType>(CToTy)) { 10659 Qualifiers FromQs = CFromTy.getQualifiers(); 10660 Qualifiers ToQs = CToTy.getQualifiers(); 10661 if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) { 10662 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv) 10663 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second 10664 << FnDesc << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) 10665 << FromTy << ToTy << (unsigned)isObjectArgument << I + 1; 10666 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10667 return; 10668 } 10669 } 10670 10671 if (TakingCandidateAddress && 10672 !checkAddressOfCandidateIsAvailable(S, Cand->Function)) 10673 return; 10674 10675 // Emit the generic diagnostic and, optionally, add the hints to it. 10676 PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv); 10677 FDiag << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 10678 << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) << FromTy 10679 << ToTy << (unsigned)isObjectArgument << I + 1 10680 << (unsigned)(Cand->Fix.Kind); 10681 10682 // If we can fix the conversion, suggest the FixIts. 10683 for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(), 10684 HE = Cand->Fix.Hints.end(); HI != HE; ++HI) 10685 FDiag << *HI; 10686 S.Diag(Fn->getLocation(), FDiag); 10687 10688 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 10689 } 10690 10691 /// Additional arity mismatch diagnosis specific to a function overload 10692 /// candidates. This is not covered by the more general DiagnoseArityMismatch() 10693 /// over a candidate in any candidate set. 10694 static bool CheckArityMismatch(Sema &S, OverloadCandidate *Cand, 10695 unsigned NumArgs) { 10696 FunctionDecl *Fn = Cand->Function; 10697 unsigned MinParams = Fn->getMinRequiredArguments(); 10698 10699 // With invalid overloaded operators, it's possible that we think we 10700 // have an arity mismatch when in fact it looks like we have the 10701 // right number of arguments, because only overloaded operators have 10702 // the weird behavior of overloading member and non-member functions. 10703 // Just don't report anything. 10704 if (Fn->isInvalidDecl() && 10705 Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName) 10706 return true; 10707 10708 if (NumArgs < MinParams) { 10709 assert((Cand->FailureKind == ovl_fail_too_few_arguments) || 10710 (Cand->FailureKind == ovl_fail_bad_deduction && 10711 Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments)); 10712 } else { 10713 assert((Cand->FailureKind == ovl_fail_too_many_arguments) || 10714 (Cand->FailureKind == ovl_fail_bad_deduction && 10715 Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments)); 10716 } 10717 10718 return false; 10719 } 10720 10721 /// General arity mismatch diagnosis over a candidate in a candidate set. 10722 static void DiagnoseArityMismatch(Sema &S, NamedDecl *Found, Decl *D, 10723 unsigned NumFormalArgs) { 10724 assert(isa<FunctionDecl>(D) && 10725 "The templated declaration should at least be a function" 10726 " when diagnosing bad template argument deduction due to too many" 10727 " or too few arguments"); 10728 10729 FunctionDecl *Fn = cast<FunctionDecl>(D); 10730 10731 // TODO: treat calls to a missing default constructor as a special case 10732 const auto *FnTy = Fn->getType()->castAs<FunctionProtoType>(); 10733 unsigned MinParams = Fn->getMinRequiredArguments(); 10734 10735 // at least / at most / exactly 10736 unsigned mode, modeCount; 10737 if (NumFormalArgs < MinParams) { 10738 if (MinParams != FnTy->getNumParams() || FnTy->isVariadic() || 10739 FnTy->isTemplateVariadic()) 10740 mode = 0; // "at least" 10741 else 10742 mode = 2; // "exactly" 10743 modeCount = MinParams; 10744 } else { 10745 if (MinParams != FnTy->getNumParams()) 10746 mode = 1; // "at most" 10747 else 10748 mode = 2; // "exactly" 10749 modeCount = FnTy->getNumParams(); 10750 } 10751 10752 std::string Description; 10753 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair = 10754 ClassifyOverloadCandidate(S, Found, Fn, CRK_None, Description); 10755 10756 if (modeCount == 1 && Fn->getParamDecl(0)->getDeclName()) 10757 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity_one) 10758 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second 10759 << Description << mode << Fn->getParamDecl(0) << NumFormalArgs; 10760 else 10761 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity) 10762 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second 10763 << Description << mode << modeCount << NumFormalArgs; 10764 10765 MaybeEmitInheritedConstructorNote(S, Found); 10766 } 10767 10768 /// Arity mismatch diagnosis specific to a function overload candidate. 10769 static void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand, 10770 unsigned NumFormalArgs) { 10771 if (!CheckArityMismatch(S, Cand, NumFormalArgs)) 10772 DiagnoseArityMismatch(S, Cand->FoundDecl, Cand->Function, NumFormalArgs); 10773 } 10774 10775 static TemplateDecl *getDescribedTemplate(Decl *Templated) { 10776 if (TemplateDecl *TD = Templated->getDescribedTemplate()) 10777 return TD; 10778 llvm_unreachable("Unsupported: Getting the described template declaration" 10779 " for bad deduction diagnosis"); 10780 } 10781 10782 /// Diagnose a failed template-argument deduction. 10783 static void DiagnoseBadDeduction(Sema &S, NamedDecl *Found, Decl *Templated, 10784 DeductionFailureInfo &DeductionFailure, 10785 unsigned NumArgs, 10786 bool TakingCandidateAddress) { 10787 TemplateParameter Param = DeductionFailure.getTemplateParameter(); 10788 NamedDecl *ParamD; 10789 (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) || 10790 (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) || 10791 (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>()); 10792 switch (DeductionFailure.Result) { 10793 case Sema::TDK_Success: 10794 llvm_unreachable("TDK_success while diagnosing bad deduction"); 10795 10796 case Sema::TDK_Incomplete: { 10797 assert(ParamD && "no parameter found for incomplete deduction result"); 10798 S.Diag(Templated->getLocation(), 10799 diag::note_ovl_candidate_incomplete_deduction) 10800 << ParamD->getDeclName(); 10801 MaybeEmitInheritedConstructorNote(S, Found); 10802 return; 10803 } 10804 10805 case Sema::TDK_IncompletePack: { 10806 assert(ParamD && "no parameter found for incomplete deduction result"); 10807 S.Diag(Templated->getLocation(), 10808 diag::note_ovl_candidate_incomplete_deduction_pack) 10809 << ParamD->getDeclName() 10810 << (DeductionFailure.getFirstArg()->pack_size() + 1) 10811 << *DeductionFailure.getFirstArg(); 10812 MaybeEmitInheritedConstructorNote(S, Found); 10813 return; 10814 } 10815 10816 case Sema::TDK_Underqualified: { 10817 assert(ParamD && "no parameter found for bad qualifiers deduction result"); 10818 TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD); 10819 10820 QualType Param = DeductionFailure.getFirstArg()->getAsType(); 10821 10822 // Param will have been canonicalized, but it should just be a 10823 // qualified version of ParamD, so move the qualifiers to that. 10824 QualifierCollector Qs; 10825 Qs.strip(Param); 10826 QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl()); 10827 assert(S.Context.hasSameType(Param, NonCanonParam)); 10828 10829 // Arg has also been canonicalized, but there's nothing we can do 10830 // about that. It also doesn't matter as much, because it won't 10831 // have any template parameters in it (because deduction isn't 10832 // done on dependent types). 10833 QualType Arg = DeductionFailure.getSecondArg()->getAsType(); 10834 10835 S.Diag(Templated->getLocation(), diag::note_ovl_candidate_underqualified) 10836 << ParamD->getDeclName() << Arg << NonCanonParam; 10837 MaybeEmitInheritedConstructorNote(S, Found); 10838 return; 10839 } 10840 10841 case Sema::TDK_Inconsistent: { 10842 assert(ParamD && "no parameter found for inconsistent deduction result"); 10843 int which = 0; 10844 if (isa<TemplateTypeParmDecl>(ParamD)) 10845 which = 0; 10846 else if (isa<NonTypeTemplateParmDecl>(ParamD)) { 10847 // Deduction might have failed because we deduced arguments of two 10848 // different types for a non-type template parameter. 10849 // FIXME: Use a different TDK value for this. 10850 QualType T1 = 10851 DeductionFailure.getFirstArg()->getNonTypeTemplateArgumentType(); 10852 QualType T2 = 10853 DeductionFailure.getSecondArg()->getNonTypeTemplateArgumentType(); 10854 if (!T1.isNull() && !T2.isNull() && !S.Context.hasSameType(T1, T2)) { 10855 S.Diag(Templated->getLocation(), 10856 diag::note_ovl_candidate_inconsistent_deduction_types) 10857 << ParamD->getDeclName() << *DeductionFailure.getFirstArg() << T1 10858 << *DeductionFailure.getSecondArg() << T2; 10859 MaybeEmitInheritedConstructorNote(S, Found); 10860 return; 10861 } 10862 10863 which = 1; 10864 } else { 10865 which = 2; 10866 } 10867 10868 // Tweak the diagnostic if the problem is that we deduced packs of 10869 // different arities. We'll print the actual packs anyway in case that 10870 // includes additional useful information. 10871 if (DeductionFailure.getFirstArg()->getKind() == TemplateArgument::Pack && 10872 DeductionFailure.getSecondArg()->getKind() == TemplateArgument::Pack && 10873 DeductionFailure.getFirstArg()->pack_size() != 10874 DeductionFailure.getSecondArg()->pack_size()) { 10875 which = 3; 10876 } 10877 10878 S.Diag(Templated->getLocation(), 10879 diag::note_ovl_candidate_inconsistent_deduction) 10880 << which << ParamD->getDeclName() << *DeductionFailure.getFirstArg() 10881 << *DeductionFailure.getSecondArg(); 10882 MaybeEmitInheritedConstructorNote(S, Found); 10883 return; 10884 } 10885 10886 case Sema::TDK_InvalidExplicitArguments: 10887 assert(ParamD && "no parameter found for invalid explicit arguments"); 10888 if (ParamD->getDeclName()) 10889 S.Diag(Templated->getLocation(), 10890 diag::note_ovl_candidate_explicit_arg_mismatch_named) 10891 << ParamD->getDeclName(); 10892 else { 10893 int index = 0; 10894 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD)) 10895 index = TTP->getIndex(); 10896 else if (NonTypeTemplateParmDecl *NTTP 10897 = dyn_cast<NonTypeTemplateParmDecl>(ParamD)) 10898 index = NTTP->getIndex(); 10899 else 10900 index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex(); 10901 S.Diag(Templated->getLocation(), 10902 diag::note_ovl_candidate_explicit_arg_mismatch_unnamed) 10903 << (index + 1); 10904 } 10905 MaybeEmitInheritedConstructorNote(S, Found); 10906 return; 10907 10908 case Sema::TDK_ConstraintsNotSatisfied: { 10909 // Format the template argument list into the argument string. 10910 SmallString<128> TemplateArgString; 10911 TemplateArgumentList *Args = DeductionFailure.getTemplateArgumentList(); 10912 TemplateArgString = " "; 10913 TemplateArgString += S.getTemplateArgumentBindingsText( 10914 getDescribedTemplate(Templated)->getTemplateParameters(), *Args); 10915 if (TemplateArgString.size() == 1) 10916 TemplateArgString.clear(); 10917 S.Diag(Templated->getLocation(), 10918 diag::note_ovl_candidate_unsatisfied_constraints) 10919 << TemplateArgString; 10920 10921 S.DiagnoseUnsatisfiedConstraint( 10922 static_cast<CNSInfo*>(DeductionFailure.Data)->Satisfaction); 10923 return; 10924 } 10925 case Sema::TDK_TooManyArguments: 10926 case Sema::TDK_TooFewArguments: 10927 DiagnoseArityMismatch(S, Found, Templated, NumArgs); 10928 return; 10929 10930 case Sema::TDK_InstantiationDepth: 10931 S.Diag(Templated->getLocation(), 10932 diag::note_ovl_candidate_instantiation_depth); 10933 MaybeEmitInheritedConstructorNote(S, Found); 10934 return; 10935 10936 case Sema::TDK_SubstitutionFailure: { 10937 // Format the template argument list into the argument string. 10938 SmallString<128> TemplateArgString; 10939 if (TemplateArgumentList *Args = 10940 DeductionFailure.getTemplateArgumentList()) { 10941 TemplateArgString = " "; 10942 TemplateArgString += S.getTemplateArgumentBindingsText( 10943 getDescribedTemplate(Templated)->getTemplateParameters(), *Args); 10944 if (TemplateArgString.size() == 1) 10945 TemplateArgString.clear(); 10946 } 10947 10948 // If this candidate was disabled by enable_if, say so. 10949 PartialDiagnosticAt *PDiag = DeductionFailure.getSFINAEDiagnostic(); 10950 if (PDiag && PDiag->second.getDiagID() == 10951 diag::err_typename_nested_not_found_enable_if) { 10952 // FIXME: Use the source range of the condition, and the fully-qualified 10953 // name of the enable_if template. These are both present in PDiag. 10954 S.Diag(PDiag->first, diag::note_ovl_candidate_disabled_by_enable_if) 10955 << "'enable_if'" << TemplateArgString; 10956 return; 10957 } 10958 10959 // We found a specific requirement that disabled the enable_if. 10960 if (PDiag && PDiag->second.getDiagID() == 10961 diag::err_typename_nested_not_found_requirement) { 10962 S.Diag(Templated->getLocation(), 10963 diag::note_ovl_candidate_disabled_by_requirement) 10964 << PDiag->second.getStringArg(0) << TemplateArgString; 10965 return; 10966 } 10967 10968 // Format the SFINAE diagnostic into the argument string. 10969 // FIXME: Add a general mechanism to include a PartialDiagnostic *'s 10970 // formatted message in another diagnostic. 10971 SmallString<128> SFINAEArgString; 10972 SourceRange R; 10973 if (PDiag) { 10974 SFINAEArgString = ": "; 10975 R = SourceRange(PDiag->first, PDiag->first); 10976 PDiag->second.EmitToString(S.getDiagnostics(), SFINAEArgString); 10977 } 10978 10979 S.Diag(Templated->getLocation(), 10980 diag::note_ovl_candidate_substitution_failure) 10981 << TemplateArgString << SFINAEArgString << R; 10982 MaybeEmitInheritedConstructorNote(S, Found); 10983 return; 10984 } 10985 10986 case Sema::TDK_DeducedMismatch: 10987 case Sema::TDK_DeducedMismatchNested: { 10988 // Format the template argument list into the argument string. 10989 SmallString<128> TemplateArgString; 10990 if (TemplateArgumentList *Args = 10991 DeductionFailure.getTemplateArgumentList()) { 10992 TemplateArgString = " "; 10993 TemplateArgString += S.getTemplateArgumentBindingsText( 10994 getDescribedTemplate(Templated)->getTemplateParameters(), *Args); 10995 if (TemplateArgString.size() == 1) 10996 TemplateArgString.clear(); 10997 } 10998 10999 S.Diag(Templated->getLocation(), diag::note_ovl_candidate_deduced_mismatch) 11000 << (*DeductionFailure.getCallArgIndex() + 1) 11001 << *DeductionFailure.getFirstArg() << *DeductionFailure.getSecondArg() 11002 << TemplateArgString 11003 << (DeductionFailure.Result == Sema::TDK_DeducedMismatchNested); 11004 break; 11005 } 11006 11007 case Sema::TDK_NonDeducedMismatch: { 11008 // FIXME: Provide a source location to indicate what we couldn't match. 11009 TemplateArgument FirstTA = *DeductionFailure.getFirstArg(); 11010 TemplateArgument SecondTA = *DeductionFailure.getSecondArg(); 11011 if (FirstTA.getKind() == TemplateArgument::Template && 11012 SecondTA.getKind() == TemplateArgument::Template) { 11013 TemplateName FirstTN = FirstTA.getAsTemplate(); 11014 TemplateName SecondTN = SecondTA.getAsTemplate(); 11015 if (FirstTN.getKind() == TemplateName::Template && 11016 SecondTN.getKind() == TemplateName::Template) { 11017 if (FirstTN.getAsTemplateDecl()->getName() == 11018 SecondTN.getAsTemplateDecl()->getName()) { 11019 // FIXME: This fixes a bad diagnostic where both templates are named 11020 // the same. This particular case is a bit difficult since: 11021 // 1) It is passed as a string to the diagnostic printer. 11022 // 2) The diagnostic printer only attempts to find a better 11023 // name for types, not decls. 11024 // Ideally, this should folded into the diagnostic printer. 11025 S.Diag(Templated->getLocation(), 11026 diag::note_ovl_candidate_non_deduced_mismatch_qualified) 11027 << FirstTN.getAsTemplateDecl() << SecondTN.getAsTemplateDecl(); 11028 return; 11029 } 11030 } 11031 } 11032 11033 if (TakingCandidateAddress && isa<FunctionDecl>(Templated) && 11034 !checkAddressOfCandidateIsAvailable(S, cast<FunctionDecl>(Templated))) 11035 return; 11036 11037 // FIXME: For generic lambda parameters, check if the function is a lambda 11038 // call operator, and if so, emit a prettier and more informative 11039 // diagnostic that mentions 'auto' and lambda in addition to 11040 // (or instead of?) the canonical template type parameters. 11041 S.Diag(Templated->getLocation(), 11042 diag::note_ovl_candidate_non_deduced_mismatch) 11043 << FirstTA << SecondTA; 11044 return; 11045 } 11046 // TODO: diagnose these individually, then kill off 11047 // note_ovl_candidate_bad_deduction, which is uselessly vague. 11048 case Sema::TDK_MiscellaneousDeductionFailure: 11049 S.Diag(Templated->getLocation(), diag::note_ovl_candidate_bad_deduction); 11050 MaybeEmitInheritedConstructorNote(S, Found); 11051 return; 11052 case Sema::TDK_CUDATargetMismatch: 11053 S.Diag(Templated->getLocation(), 11054 diag::note_cuda_ovl_candidate_target_mismatch); 11055 return; 11056 } 11057 } 11058 11059 /// Diagnose a failed template-argument deduction, for function calls. 11060 static void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand, 11061 unsigned NumArgs, 11062 bool TakingCandidateAddress) { 11063 unsigned TDK = Cand->DeductionFailure.Result; 11064 if (TDK == Sema::TDK_TooFewArguments || TDK == Sema::TDK_TooManyArguments) { 11065 if (CheckArityMismatch(S, Cand, NumArgs)) 11066 return; 11067 } 11068 DiagnoseBadDeduction(S, Cand->FoundDecl, Cand->Function, // pattern 11069 Cand->DeductionFailure, NumArgs, TakingCandidateAddress); 11070 } 11071 11072 /// CUDA: diagnose an invalid call across targets. 11073 static void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) { 11074 FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext); 11075 FunctionDecl *Callee = Cand->Function; 11076 11077 Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller), 11078 CalleeTarget = S.IdentifyCUDATarget(Callee); 11079 11080 std::string FnDesc; 11081 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair = 11082 ClassifyOverloadCandidate(S, Cand->FoundDecl, Callee, 11083 Cand->getRewriteKind(), FnDesc); 11084 11085 S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target) 11086 << (unsigned)FnKindPair.first << (unsigned)ocs_non_template 11087 << FnDesc /* Ignored */ 11088 << CalleeTarget << CallerTarget; 11089 11090 // This could be an implicit constructor for which we could not infer the 11091 // target due to a collsion. Diagnose that case. 11092 CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Callee); 11093 if (Meth != nullptr && Meth->isImplicit()) { 11094 CXXRecordDecl *ParentClass = Meth->getParent(); 11095 Sema::CXXSpecialMember CSM; 11096 11097 switch (FnKindPair.first) { 11098 default: 11099 return; 11100 case oc_implicit_default_constructor: 11101 CSM = Sema::CXXDefaultConstructor; 11102 break; 11103 case oc_implicit_copy_constructor: 11104 CSM = Sema::CXXCopyConstructor; 11105 break; 11106 case oc_implicit_move_constructor: 11107 CSM = Sema::CXXMoveConstructor; 11108 break; 11109 case oc_implicit_copy_assignment: 11110 CSM = Sema::CXXCopyAssignment; 11111 break; 11112 case oc_implicit_move_assignment: 11113 CSM = Sema::CXXMoveAssignment; 11114 break; 11115 }; 11116 11117 bool ConstRHS = false; 11118 if (Meth->getNumParams()) { 11119 if (const ReferenceType *RT = 11120 Meth->getParamDecl(0)->getType()->getAs<ReferenceType>()) { 11121 ConstRHS = RT->getPointeeType().isConstQualified(); 11122 } 11123 } 11124 11125 S.inferCUDATargetForImplicitSpecialMember(ParentClass, CSM, Meth, 11126 /* ConstRHS */ ConstRHS, 11127 /* Diagnose */ true); 11128 } 11129 } 11130 11131 static void DiagnoseFailedEnableIfAttr(Sema &S, OverloadCandidate *Cand) { 11132 FunctionDecl *Callee = Cand->Function; 11133 EnableIfAttr *Attr = static_cast<EnableIfAttr*>(Cand->DeductionFailure.Data); 11134 11135 S.Diag(Callee->getLocation(), 11136 diag::note_ovl_candidate_disabled_by_function_cond_attr) 11137 << Attr->getCond()->getSourceRange() << Attr->getMessage(); 11138 } 11139 11140 static void DiagnoseFailedExplicitSpec(Sema &S, OverloadCandidate *Cand) { 11141 ExplicitSpecifier ES = ExplicitSpecifier::getFromDecl(Cand->Function); 11142 assert(ES.isExplicit() && "not an explicit candidate"); 11143 11144 unsigned Kind; 11145 switch (Cand->Function->getDeclKind()) { 11146 case Decl::Kind::CXXConstructor: 11147 Kind = 0; 11148 break; 11149 case Decl::Kind::CXXConversion: 11150 Kind = 1; 11151 break; 11152 case Decl::Kind::CXXDeductionGuide: 11153 Kind = Cand->Function->isImplicit() ? 0 : 2; 11154 break; 11155 default: 11156 llvm_unreachable("invalid Decl"); 11157 } 11158 11159 // Note the location of the first (in-class) declaration; a redeclaration 11160 // (particularly an out-of-class definition) will typically lack the 11161 // 'explicit' specifier. 11162 // FIXME: This is probably a good thing to do for all 'candidate' notes. 11163 FunctionDecl *First = Cand->Function->getFirstDecl(); 11164 if (FunctionDecl *Pattern = First->getTemplateInstantiationPattern()) 11165 First = Pattern->getFirstDecl(); 11166 11167 S.Diag(First->getLocation(), 11168 diag::note_ovl_candidate_explicit) 11169 << Kind << (ES.getExpr() ? 1 : 0) 11170 << (ES.getExpr() ? ES.getExpr()->getSourceRange() : SourceRange()); 11171 } 11172 11173 /// Generates a 'note' diagnostic for an overload candidate. We've 11174 /// already generated a primary error at the call site. 11175 /// 11176 /// It really does need to be a single diagnostic with its caret 11177 /// pointed at the candidate declaration. Yes, this creates some 11178 /// major challenges of technical writing. Yes, this makes pointing 11179 /// out problems with specific arguments quite awkward. It's still 11180 /// better than generating twenty screens of text for every failed 11181 /// overload. 11182 /// 11183 /// It would be great to be able to express per-candidate problems 11184 /// more richly for those diagnostic clients that cared, but we'd 11185 /// still have to be just as careful with the default diagnostics. 11186 /// \param CtorDestAS Addr space of object being constructed (for ctor 11187 /// candidates only). 11188 static void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand, 11189 unsigned NumArgs, 11190 bool TakingCandidateAddress, 11191 LangAS CtorDestAS = LangAS::Default) { 11192 FunctionDecl *Fn = Cand->Function; 11193 if (shouldSkipNotingLambdaConversionDecl(Fn)) 11194 return; 11195 11196 // Note deleted candidates, but only if they're viable. 11197 if (Cand->Viable) { 11198 if (Fn->isDeleted()) { 11199 std::string FnDesc; 11200 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair = 11201 ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, 11202 Cand->getRewriteKind(), FnDesc); 11203 11204 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted) 11205 << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc 11206 << (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0); 11207 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 11208 return; 11209 } 11210 11211 // We don't really have anything else to say about viable candidates. 11212 S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind()); 11213 return; 11214 } 11215 11216 switch (Cand->FailureKind) { 11217 case ovl_fail_too_many_arguments: 11218 case ovl_fail_too_few_arguments: 11219 return DiagnoseArityMismatch(S, Cand, NumArgs); 11220 11221 case ovl_fail_bad_deduction: 11222 return DiagnoseBadDeduction(S, Cand, NumArgs, 11223 TakingCandidateAddress); 11224 11225 case ovl_fail_illegal_constructor: { 11226 S.Diag(Fn->getLocation(), diag::note_ovl_candidate_illegal_constructor) 11227 << (Fn->getPrimaryTemplate() ? 1 : 0); 11228 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 11229 return; 11230 } 11231 11232 case ovl_fail_object_addrspace_mismatch: { 11233 Qualifiers QualsForPrinting; 11234 QualsForPrinting.setAddressSpace(CtorDestAS); 11235 S.Diag(Fn->getLocation(), 11236 diag::note_ovl_candidate_illegal_constructor_adrspace_mismatch) 11237 << QualsForPrinting; 11238 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 11239 return; 11240 } 11241 11242 case ovl_fail_trivial_conversion: 11243 case ovl_fail_bad_final_conversion: 11244 case ovl_fail_final_conversion_not_exact: 11245 return S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind()); 11246 11247 case ovl_fail_bad_conversion: { 11248 unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0); 11249 for (unsigned N = Cand->Conversions.size(); I != N; ++I) 11250 if (Cand->Conversions[I].isBad()) 11251 return DiagnoseBadConversion(S, Cand, I, TakingCandidateAddress); 11252 11253 // FIXME: this currently happens when we're called from SemaInit 11254 // when user-conversion overload fails. Figure out how to handle 11255 // those conditions and diagnose them well. 11256 return S.NoteOverloadCandidate(Cand->FoundDecl, Fn, Cand->getRewriteKind()); 11257 } 11258 11259 case ovl_fail_bad_target: 11260 return DiagnoseBadTarget(S, Cand); 11261 11262 case ovl_fail_enable_if: 11263 return DiagnoseFailedEnableIfAttr(S, Cand); 11264 11265 case ovl_fail_explicit: 11266 return DiagnoseFailedExplicitSpec(S, Cand); 11267 11268 case ovl_fail_inhctor_slice: 11269 // It's generally not interesting to note copy/move constructors here. 11270 if (cast<CXXConstructorDecl>(Fn)->isCopyOrMoveConstructor()) 11271 return; 11272 S.Diag(Fn->getLocation(), 11273 diag::note_ovl_candidate_inherited_constructor_slice) 11274 << (Fn->getPrimaryTemplate() ? 1 : 0) 11275 << Fn->getParamDecl(0)->getType()->isRValueReferenceType(); 11276 MaybeEmitInheritedConstructorNote(S, Cand->FoundDecl); 11277 return; 11278 11279 case ovl_fail_addr_not_available: { 11280 bool Available = checkAddressOfCandidateIsAvailable(S, Cand->Function); 11281 (void)Available; 11282 assert(!Available); 11283 break; 11284 } 11285 case ovl_non_default_multiversion_function: 11286 // Do nothing, these should simply be ignored. 11287 break; 11288 11289 case ovl_fail_constraints_not_satisfied: { 11290 std::string FnDesc; 11291 std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair = 11292 ClassifyOverloadCandidate(S, Cand->FoundDecl, Fn, 11293 Cand->getRewriteKind(), FnDesc); 11294 11295 S.Diag(Fn->getLocation(), 11296 diag::note_ovl_candidate_constraints_not_satisfied) 11297 << (unsigned)FnKindPair.first << (unsigned)ocs_non_template 11298 << FnDesc /* Ignored */; 11299 ConstraintSatisfaction Satisfaction; 11300 if (S.CheckFunctionConstraints(Fn, Satisfaction)) 11301 break; 11302 S.DiagnoseUnsatisfiedConstraint(Satisfaction); 11303 } 11304 } 11305 } 11306 11307 static void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) { 11308 if (shouldSkipNotingLambdaConversionDecl(Cand->Surrogate)) 11309 return; 11310 11311 // Desugar the type of the surrogate down to a function type, 11312 // retaining as many typedefs as possible while still showing 11313 // the function type (and, therefore, its parameter types). 11314 QualType FnType = Cand->Surrogate->getConversionType(); 11315 bool isLValueReference = false; 11316 bool isRValueReference = false; 11317 bool isPointer = false; 11318 if (const LValueReferenceType *FnTypeRef = 11319 FnType->getAs<LValueReferenceType>()) { 11320 FnType = FnTypeRef->getPointeeType(); 11321 isLValueReference = true; 11322 } else if (const RValueReferenceType *FnTypeRef = 11323 FnType->getAs<RValueReferenceType>()) { 11324 FnType = FnTypeRef->getPointeeType(); 11325 isRValueReference = true; 11326 } 11327 if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) { 11328 FnType = FnTypePtr->getPointeeType(); 11329 isPointer = true; 11330 } 11331 // Desugar down to a function type. 11332 FnType = QualType(FnType->getAs<FunctionType>(), 0); 11333 // Reconstruct the pointer/reference as appropriate. 11334 if (isPointer) FnType = S.Context.getPointerType(FnType); 11335 if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType); 11336 if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType); 11337 11338 S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand) 11339 << FnType; 11340 } 11341 11342 static void NoteBuiltinOperatorCandidate(Sema &S, StringRef Opc, 11343 SourceLocation OpLoc, 11344 OverloadCandidate *Cand) { 11345 assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary"); 11346 std::string TypeStr("operator"); 11347 TypeStr += Opc; 11348 TypeStr += "("; 11349 TypeStr += Cand->BuiltinParamTypes[0].getAsString(); 11350 if (Cand->Conversions.size() == 1) { 11351 TypeStr += ")"; 11352 S.Diag(OpLoc, diag::note_ovl_builtin_candidate) << TypeStr; 11353 } else { 11354 TypeStr += ", "; 11355 TypeStr += Cand->BuiltinParamTypes[1].getAsString(); 11356 TypeStr += ")"; 11357 S.Diag(OpLoc, diag::note_ovl_builtin_candidate) << TypeStr; 11358 } 11359 } 11360 11361 static void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc, 11362 OverloadCandidate *Cand) { 11363 for (const ImplicitConversionSequence &ICS : Cand->Conversions) { 11364 if (ICS.isBad()) break; // all meaningless after first invalid 11365 if (!ICS.isAmbiguous()) continue; 11366 11367 ICS.DiagnoseAmbiguousConversion( 11368 S, OpLoc, S.PDiag(diag::note_ambiguous_type_conversion)); 11369 } 11370 } 11371 11372 static SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) { 11373 if (Cand->Function) 11374 return Cand->Function->getLocation(); 11375 if (Cand->IsSurrogate) 11376 return Cand->Surrogate->getLocation(); 11377 return SourceLocation(); 11378 } 11379 11380 static unsigned RankDeductionFailure(const DeductionFailureInfo &DFI) { 11381 switch ((Sema::TemplateDeductionResult)DFI.Result) { 11382 case Sema::TDK_Success: 11383 case Sema::TDK_NonDependentConversionFailure: 11384 llvm_unreachable("non-deduction failure while diagnosing bad deduction"); 11385 11386 case Sema::TDK_Invalid: 11387 case Sema::TDK_Incomplete: 11388 case Sema::TDK_IncompletePack: 11389 return 1; 11390 11391 case Sema::TDK_Underqualified: 11392 case Sema::TDK_Inconsistent: 11393 return 2; 11394 11395 case Sema::TDK_SubstitutionFailure: 11396 case Sema::TDK_DeducedMismatch: 11397 case Sema::TDK_ConstraintsNotSatisfied: 11398 case Sema::TDK_DeducedMismatchNested: 11399 case Sema::TDK_NonDeducedMismatch: 11400 case Sema::TDK_MiscellaneousDeductionFailure: 11401 case Sema::TDK_CUDATargetMismatch: 11402 return 3; 11403 11404 case Sema::TDK_InstantiationDepth: 11405 return 4; 11406 11407 case Sema::TDK_InvalidExplicitArguments: 11408 return 5; 11409 11410 case Sema::TDK_TooManyArguments: 11411 case Sema::TDK_TooFewArguments: 11412 return 6; 11413 } 11414 llvm_unreachable("Unhandled deduction result"); 11415 } 11416 11417 namespace { 11418 struct CompareOverloadCandidatesForDisplay { 11419 Sema &S; 11420 SourceLocation Loc; 11421 size_t NumArgs; 11422 OverloadCandidateSet::CandidateSetKind CSK; 11423 11424 CompareOverloadCandidatesForDisplay( 11425 Sema &S, SourceLocation Loc, size_t NArgs, 11426 OverloadCandidateSet::CandidateSetKind CSK) 11427 : S(S), NumArgs(NArgs), CSK(CSK) {} 11428 11429 OverloadFailureKind EffectiveFailureKind(const OverloadCandidate *C) const { 11430 // If there are too many or too few arguments, that's the high-order bit we 11431 // want to sort by, even if the immediate failure kind was something else. 11432 if (C->FailureKind == ovl_fail_too_many_arguments || 11433 C->FailureKind == ovl_fail_too_few_arguments) 11434 return static_cast<OverloadFailureKind>(C->FailureKind); 11435 11436 if (C->Function) { 11437 if (NumArgs > C->Function->getNumParams() && !C->Function->isVariadic()) 11438 return ovl_fail_too_many_arguments; 11439 if (NumArgs < C->Function->getMinRequiredArguments()) 11440 return ovl_fail_too_few_arguments; 11441 } 11442 11443 return static_cast<OverloadFailureKind>(C->FailureKind); 11444 } 11445 11446 bool operator()(const OverloadCandidate *L, 11447 const OverloadCandidate *R) { 11448 // Fast-path this check. 11449 if (L == R) return false; 11450 11451 // Order first by viability. 11452 if (L->Viable) { 11453 if (!R->Viable) return true; 11454 11455 // TODO: introduce a tri-valued comparison for overload 11456 // candidates. Would be more worthwhile if we had a sort 11457 // that could exploit it. 11458 if (isBetterOverloadCandidate(S, *L, *R, SourceLocation(), CSK)) 11459 return true; 11460 if (isBetterOverloadCandidate(S, *R, *L, SourceLocation(), CSK)) 11461 return false; 11462 } else if (R->Viable) 11463 return false; 11464 11465 assert(L->Viable == R->Viable); 11466 11467 // Criteria by which we can sort non-viable candidates: 11468 if (!L->Viable) { 11469 OverloadFailureKind LFailureKind = EffectiveFailureKind(L); 11470 OverloadFailureKind RFailureKind = EffectiveFailureKind(R); 11471 11472 // 1. Arity mismatches come after other candidates. 11473 if (LFailureKind == ovl_fail_too_many_arguments || 11474 LFailureKind == ovl_fail_too_few_arguments) { 11475 if (RFailureKind == ovl_fail_too_many_arguments || 11476 RFailureKind == ovl_fail_too_few_arguments) { 11477 int LDist = std::abs((int)L->getNumParams() - (int)NumArgs); 11478 int RDist = std::abs((int)R->getNumParams() - (int)NumArgs); 11479 if (LDist == RDist) { 11480 if (LFailureKind == RFailureKind) 11481 // Sort non-surrogates before surrogates. 11482 return !L->IsSurrogate && R->IsSurrogate; 11483 // Sort candidates requiring fewer parameters than there were 11484 // arguments given after candidates requiring more parameters 11485 // than there were arguments given. 11486 return LFailureKind == ovl_fail_too_many_arguments; 11487 } 11488 return LDist < RDist; 11489 } 11490 return false; 11491 } 11492 if (RFailureKind == ovl_fail_too_many_arguments || 11493 RFailureKind == ovl_fail_too_few_arguments) 11494 return true; 11495 11496 // 2. Bad conversions come first and are ordered by the number 11497 // of bad conversions and quality of good conversions. 11498 if (LFailureKind == ovl_fail_bad_conversion) { 11499 if (RFailureKind != ovl_fail_bad_conversion) 11500 return true; 11501 11502 // The conversion that can be fixed with a smaller number of changes, 11503 // comes first. 11504 unsigned numLFixes = L->Fix.NumConversionsFixed; 11505 unsigned numRFixes = R->Fix.NumConversionsFixed; 11506 numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes; 11507 numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes; 11508 if (numLFixes != numRFixes) { 11509 return numLFixes < numRFixes; 11510 } 11511 11512 // If there's any ordering between the defined conversions... 11513 // FIXME: this might not be transitive. 11514 assert(L->Conversions.size() == R->Conversions.size()); 11515 11516 int leftBetter = 0; 11517 unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument); 11518 for (unsigned E = L->Conversions.size(); I != E; ++I) { 11519 switch (CompareImplicitConversionSequences(S, Loc, 11520 L->Conversions[I], 11521 R->Conversions[I])) { 11522 case ImplicitConversionSequence::Better: 11523 leftBetter++; 11524 break; 11525 11526 case ImplicitConversionSequence::Worse: 11527 leftBetter--; 11528 break; 11529 11530 case ImplicitConversionSequence::Indistinguishable: 11531 break; 11532 } 11533 } 11534 if (leftBetter > 0) return true; 11535 if (leftBetter < 0) return false; 11536 11537 } else if (RFailureKind == ovl_fail_bad_conversion) 11538 return false; 11539 11540 if (LFailureKind == ovl_fail_bad_deduction) { 11541 if (RFailureKind != ovl_fail_bad_deduction) 11542 return true; 11543 11544 if (L->DeductionFailure.Result != R->DeductionFailure.Result) 11545 return RankDeductionFailure(L->DeductionFailure) 11546 < RankDeductionFailure(R->DeductionFailure); 11547 } else if (RFailureKind == ovl_fail_bad_deduction) 11548 return false; 11549 11550 // TODO: others? 11551 } 11552 11553 // Sort everything else by location. 11554 SourceLocation LLoc = GetLocationForCandidate(L); 11555 SourceLocation RLoc = GetLocationForCandidate(R); 11556 11557 // Put candidates without locations (e.g. builtins) at the end. 11558 if (LLoc.isInvalid()) return false; 11559 if (RLoc.isInvalid()) return true; 11560 11561 return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc); 11562 } 11563 }; 11564 } 11565 11566 /// CompleteNonViableCandidate - Normally, overload resolution only 11567 /// computes up to the first bad conversion. Produces the FixIt set if 11568 /// possible. 11569 static void 11570 CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand, 11571 ArrayRef<Expr *> Args, 11572 OverloadCandidateSet::CandidateSetKind CSK) { 11573 assert(!Cand->Viable); 11574 11575 // Don't do anything on failures other than bad conversion. 11576 if (Cand->FailureKind != ovl_fail_bad_conversion) 11577 return; 11578 11579 // We only want the FixIts if all the arguments can be corrected. 11580 bool Unfixable = false; 11581 // Use a implicit copy initialization to check conversion fixes. 11582 Cand->Fix.setConversionChecker(TryCopyInitialization); 11583 11584 // Attempt to fix the bad conversion. 11585 unsigned ConvCount = Cand->Conversions.size(); 11586 for (unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0); /**/; 11587 ++ConvIdx) { 11588 assert(ConvIdx != ConvCount && "no bad conversion in candidate"); 11589 if (Cand->Conversions[ConvIdx].isInitialized() && 11590 Cand->Conversions[ConvIdx].isBad()) { 11591 Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S); 11592 break; 11593 } 11594 } 11595 11596 // FIXME: this should probably be preserved from the overload 11597 // operation somehow. 11598 bool SuppressUserConversions = false; 11599 11600 unsigned ConvIdx = 0; 11601 unsigned ArgIdx = 0; 11602 ArrayRef<QualType> ParamTypes; 11603 bool Reversed = Cand->isReversed(); 11604 11605 if (Cand->IsSurrogate) { 11606 QualType ConvType 11607 = Cand->Surrogate->getConversionType().getNonReferenceType(); 11608 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 11609 ConvType = ConvPtrType->getPointeeType(); 11610 ParamTypes = ConvType->castAs<FunctionProtoType>()->getParamTypes(); 11611 // Conversion 0 is 'this', which doesn't have a corresponding parameter. 11612 ConvIdx = 1; 11613 } else if (Cand->Function) { 11614 ParamTypes = 11615 Cand->Function->getType()->castAs<FunctionProtoType>()->getParamTypes(); 11616 if (isa<CXXMethodDecl>(Cand->Function) && 11617 !isa<CXXConstructorDecl>(Cand->Function) && !Reversed) { 11618 // Conversion 0 is 'this', which doesn't have a corresponding parameter. 11619 ConvIdx = 1; 11620 if (CSK == OverloadCandidateSet::CSK_Operator && 11621 Cand->Function->getDeclName().getCXXOverloadedOperator() != OO_Call) 11622 // Argument 0 is 'this', which doesn't have a corresponding parameter. 11623 ArgIdx = 1; 11624 } 11625 } else { 11626 // Builtin operator. 11627 assert(ConvCount <= 3); 11628 ParamTypes = Cand->BuiltinParamTypes; 11629 } 11630 11631 // Fill in the rest of the conversions. 11632 for (unsigned ParamIdx = Reversed ? ParamTypes.size() - 1 : 0; 11633 ConvIdx != ConvCount; 11634 ++ConvIdx, ++ArgIdx, ParamIdx += (Reversed ? -1 : 1)) { 11635 assert(ArgIdx < Args.size() && "no argument for this arg conversion"); 11636 if (Cand->Conversions[ConvIdx].isInitialized()) { 11637 // We've already checked this conversion. 11638 } else if (ParamIdx < ParamTypes.size()) { 11639 if (ParamTypes[ParamIdx]->isDependentType()) 11640 Cand->Conversions[ConvIdx].setAsIdentityConversion( 11641 Args[ArgIdx]->getType()); 11642 else { 11643 Cand->Conversions[ConvIdx] = 11644 TryCopyInitialization(S, Args[ArgIdx], ParamTypes[ParamIdx], 11645 SuppressUserConversions, 11646 /*InOverloadResolution=*/true, 11647 /*AllowObjCWritebackConversion=*/ 11648 S.getLangOpts().ObjCAutoRefCount); 11649 // Store the FixIt in the candidate if it exists. 11650 if (!Unfixable && Cand->Conversions[ConvIdx].isBad()) 11651 Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S); 11652 } 11653 } else 11654 Cand->Conversions[ConvIdx].setEllipsis(); 11655 } 11656 } 11657 11658 SmallVector<OverloadCandidate *, 32> OverloadCandidateSet::CompleteCandidates( 11659 Sema &S, OverloadCandidateDisplayKind OCD, ArrayRef<Expr *> Args, 11660 SourceLocation OpLoc, 11661 llvm::function_ref<bool(OverloadCandidate &)> Filter) { 11662 // Sort the candidates by viability and position. Sorting directly would 11663 // be prohibitive, so we make a set of pointers and sort those. 11664 SmallVector<OverloadCandidate*, 32> Cands; 11665 if (OCD == OCD_AllCandidates) Cands.reserve(size()); 11666 for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) { 11667 if (!Filter(*Cand)) 11668 continue; 11669 switch (OCD) { 11670 case OCD_AllCandidates: 11671 if (!Cand->Viable) { 11672 if (!Cand->Function && !Cand->IsSurrogate) { 11673 // This a non-viable builtin candidate. We do not, in general, 11674 // want to list every possible builtin candidate. 11675 continue; 11676 } 11677 CompleteNonViableCandidate(S, Cand, Args, Kind); 11678 } 11679 break; 11680 11681 case OCD_ViableCandidates: 11682 if (!Cand->Viable) 11683 continue; 11684 break; 11685 11686 case OCD_AmbiguousCandidates: 11687 if (!Cand->Best) 11688 continue; 11689 break; 11690 } 11691 11692 Cands.push_back(Cand); 11693 } 11694 11695 llvm::stable_sort( 11696 Cands, CompareOverloadCandidatesForDisplay(S, OpLoc, Args.size(), Kind)); 11697 11698 return Cands; 11699 } 11700 11701 bool OverloadCandidateSet::shouldDeferDiags(Sema &S, ArrayRef<Expr *> Args, 11702 SourceLocation OpLoc) { 11703 bool DeferHint = false; 11704 if (S.getLangOpts().CUDA && S.getLangOpts().GPUDeferDiag) { 11705 // Defer diagnostic for CUDA/HIP if there are wrong-sided candidates or 11706 // host device candidates. 11707 auto WrongSidedCands = 11708 CompleteCandidates(S, OCD_AllCandidates, Args, OpLoc, [](auto &Cand) { 11709 return (Cand.Viable == false && 11710 Cand.FailureKind == ovl_fail_bad_target) || 11711 (Cand.Function && 11712 Cand.Function->template hasAttr<CUDAHostAttr>() && 11713 Cand.Function->template hasAttr<CUDADeviceAttr>()); 11714 }); 11715 DeferHint = !WrongSidedCands.empty(); 11716 } 11717 return DeferHint; 11718 } 11719 11720 /// When overload resolution fails, prints diagnostic messages containing the 11721 /// candidates in the candidate set. 11722 void OverloadCandidateSet::NoteCandidates( 11723 PartialDiagnosticAt PD, Sema &S, OverloadCandidateDisplayKind OCD, 11724 ArrayRef<Expr *> Args, StringRef Opc, SourceLocation OpLoc, 11725 llvm::function_ref<bool(OverloadCandidate &)> Filter) { 11726 11727 auto Cands = CompleteCandidates(S, OCD, Args, OpLoc, Filter); 11728 11729 S.Diag(PD.first, PD.second, shouldDeferDiags(S, Args, OpLoc)); 11730 11731 NoteCandidates(S, Args, Cands, Opc, OpLoc); 11732 11733 if (OCD == OCD_AmbiguousCandidates) 11734 MaybeDiagnoseAmbiguousConstraints(S, {begin(), end()}); 11735 } 11736 11737 void OverloadCandidateSet::NoteCandidates(Sema &S, ArrayRef<Expr *> Args, 11738 ArrayRef<OverloadCandidate *> Cands, 11739 StringRef Opc, SourceLocation OpLoc) { 11740 bool ReportedAmbiguousConversions = false; 11741 11742 const OverloadsShown ShowOverloads = S.Diags.getShowOverloads(); 11743 unsigned CandsShown = 0; 11744 auto I = Cands.begin(), E = Cands.end(); 11745 for (; I != E; ++I) { 11746 OverloadCandidate *Cand = *I; 11747 11748 if (CandsShown >= S.Diags.getNumOverloadCandidatesToShow() && 11749 ShowOverloads == Ovl_Best) { 11750 break; 11751 } 11752 ++CandsShown; 11753 11754 if (Cand->Function) 11755 NoteFunctionCandidate(S, Cand, Args.size(), 11756 /*TakingCandidateAddress=*/false, DestAS); 11757 else if (Cand->IsSurrogate) 11758 NoteSurrogateCandidate(S, Cand); 11759 else { 11760 assert(Cand->Viable && 11761 "Non-viable built-in candidates are not added to Cands."); 11762 // Generally we only see ambiguities including viable builtin 11763 // operators if overload resolution got screwed up by an 11764 // ambiguous user-defined conversion. 11765 // 11766 // FIXME: It's quite possible for different conversions to see 11767 // different ambiguities, though. 11768 if (!ReportedAmbiguousConversions) { 11769 NoteAmbiguousUserConversions(S, OpLoc, Cand); 11770 ReportedAmbiguousConversions = true; 11771 } 11772 11773 // If this is a viable builtin, print it. 11774 NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand); 11775 } 11776 } 11777 11778 // Inform S.Diags that we've shown an overload set with N elements. This may 11779 // inform the future value of S.Diags.getNumOverloadCandidatesToShow(). 11780 S.Diags.overloadCandidatesShown(CandsShown); 11781 11782 if (I != E) 11783 S.Diag(OpLoc, diag::note_ovl_too_many_candidates, 11784 shouldDeferDiags(S, Args, OpLoc)) 11785 << int(E - I); 11786 } 11787 11788 static SourceLocation 11789 GetLocationForCandidate(const TemplateSpecCandidate *Cand) { 11790 return Cand->Specialization ? Cand->Specialization->getLocation() 11791 : SourceLocation(); 11792 } 11793 11794 namespace { 11795 struct CompareTemplateSpecCandidatesForDisplay { 11796 Sema &S; 11797 CompareTemplateSpecCandidatesForDisplay(Sema &S) : S(S) {} 11798 11799 bool operator()(const TemplateSpecCandidate *L, 11800 const TemplateSpecCandidate *R) { 11801 // Fast-path this check. 11802 if (L == R) 11803 return false; 11804 11805 // Assuming that both candidates are not matches... 11806 11807 // Sort by the ranking of deduction failures. 11808 if (L->DeductionFailure.Result != R->DeductionFailure.Result) 11809 return RankDeductionFailure(L->DeductionFailure) < 11810 RankDeductionFailure(R->DeductionFailure); 11811 11812 // Sort everything else by location. 11813 SourceLocation LLoc = GetLocationForCandidate(L); 11814 SourceLocation RLoc = GetLocationForCandidate(R); 11815 11816 // Put candidates without locations (e.g. builtins) at the end. 11817 if (LLoc.isInvalid()) 11818 return false; 11819 if (RLoc.isInvalid()) 11820 return true; 11821 11822 return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc); 11823 } 11824 }; 11825 } 11826 11827 /// Diagnose a template argument deduction failure. 11828 /// We are treating these failures as overload failures due to bad 11829 /// deductions. 11830 void TemplateSpecCandidate::NoteDeductionFailure(Sema &S, 11831 bool ForTakingAddress) { 11832 DiagnoseBadDeduction(S, FoundDecl, Specialization, // pattern 11833 DeductionFailure, /*NumArgs=*/0, ForTakingAddress); 11834 } 11835 11836 void TemplateSpecCandidateSet::destroyCandidates() { 11837 for (iterator i = begin(), e = end(); i != e; ++i) { 11838 i->DeductionFailure.Destroy(); 11839 } 11840 } 11841 11842 void TemplateSpecCandidateSet::clear() { 11843 destroyCandidates(); 11844 Candidates.clear(); 11845 } 11846 11847 /// NoteCandidates - When no template specialization match is found, prints 11848 /// diagnostic messages containing the non-matching specializations that form 11849 /// the candidate set. 11850 /// This is analoguous to OverloadCandidateSet::NoteCandidates() with 11851 /// OCD == OCD_AllCandidates and Cand->Viable == false. 11852 void TemplateSpecCandidateSet::NoteCandidates(Sema &S, SourceLocation Loc) { 11853 // Sort the candidates by position (assuming no candidate is a match). 11854 // Sorting directly would be prohibitive, so we make a set of pointers 11855 // and sort those. 11856 SmallVector<TemplateSpecCandidate *, 32> Cands; 11857 Cands.reserve(size()); 11858 for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) { 11859 if (Cand->Specialization) 11860 Cands.push_back(Cand); 11861 // Otherwise, this is a non-matching builtin candidate. We do not, 11862 // in general, want to list every possible builtin candidate. 11863 } 11864 11865 llvm::sort(Cands, CompareTemplateSpecCandidatesForDisplay(S)); 11866 11867 // FIXME: Perhaps rename OverloadsShown and getShowOverloads() 11868 // for generalization purposes (?). 11869 const OverloadsShown ShowOverloads = S.Diags.getShowOverloads(); 11870 11871 SmallVectorImpl<TemplateSpecCandidate *>::iterator I, E; 11872 unsigned CandsShown = 0; 11873 for (I = Cands.begin(), E = Cands.end(); I != E; ++I) { 11874 TemplateSpecCandidate *Cand = *I; 11875 11876 // Set an arbitrary limit on the number of candidates we'll spam 11877 // the user with. FIXME: This limit should depend on details of the 11878 // candidate list. 11879 if (CandsShown >= 4 && ShowOverloads == Ovl_Best) 11880 break; 11881 ++CandsShown; 11882 11883 assert(Cand->Specialization && 11884 "Non-matching built-in candidates are not added to Cands."); 11885 Cand->NoteDeductionFailure(S, ForTakingAddress); 11886 } 11887 11888 if (I != E) 11889 S.Diag(Loc, diag::note_ovl_too_many_candidates) << int(E - I); 11890 } 11891 11892 // [PossiblyAFunctionType] --> [Return] 11893 // NonFunctionType --> NonFunctionType 11894 // R (A) --> R(A) 11895 // R (*)(A) --> R (A) 11896 // R (&)(A) --> R (A) 11897 // R (S::*)(A) --> R (A) 11898 QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) { 11899 QualType Ret = PossiblyAFunctionType; 11900 if (const PointerType *ToTypePtr = 11901 PossiblyAFunctionType->getAs<PointerType>()) 11902 Ret = ToTypePtr->getPointeeType(); 11903 else if (const ReferenceType *ToTypeRef = 11904 PossiblyAFunctionType->getAs<ReferenceType>()) 11905 Ret = ToTypeRef->getPointeeType(); 11906 else if (const MemberPointerType *MemTypePtr = 11907 PossiblyAFunctionType->getAs<MemberPointerType>()) 11908 Ret = MemTypePtr->getPointeeType(); 11909 Ret = 11910 Context.getCanonicalType(Ret).getUnqualifiedType(); 11911 return Ret; 11912 } 11913 11914 static bool completeFunctionType(Sema &S, FunctionDecl *FD, SourceLocation Loc, 11915 bool Complain = true) { 11916 if (S.getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() && 11917 S.DeduceReturnType(FD, Loc, Complain)) 11918 return true; 11919 11920 auto *FPT = FD->getType()->castAs<FunctionProtoType>(); 11921 if (S.getLangOpts().CPlusPlus17 && 11922 isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 11923 !S.ResolveExceptionSpec(Loc, FPT)) 11924 return true; 11925 11926 return false; 11927 } 11928 11929 namespace { 11930 // A helper class to help with address of function resolution 11931 // - allows us to avoid passing around all those ugly parameters 11932 class AddressOfFunctionResolver { 11933 Sema& S; 11934 Expr* SourceExpr; 11935 const QualType& TargetType; 11936 QualType TargetFunctionType; // Extracted function type from target type 11937 11938 bool Complain; 11939 //DeclAccessPair& ResultFunctionAccessPair; 11940 ASTContext& Context; 11941 11942 bool TargetTypeIsNonStaticMemberFunction; 11943 bool FoundNonTemplateFunction; 11944 bool StaticMemberFunctionFromBoundPointer; 11945 bool HasComplained; 11946 11947 OverloadExpr::FindResult OvlExprInfo; 11948 OverloadExpr *OvlExpr; 11949 TemplateArgumentListInfo OvlExplicitTemplateArgs; 11950 SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches; 11951 TemplateSpecCandidateSet FailedCandidates; 11952 11953 public: 11954 AddressOfFunctionResolver(Sema &S, Expr *SourceExpr, 11955 const QualType &TargetType, bool Complain) 11956 : S(S), SourceExpr(SourceExpr), TargetType(TargetType), 11957 Complain(Complain), Context(S.getASTContext()), 11958 TargetTypeIsNonStaticMemberFunction( 11959 !!TargetType->getAs<MemberPointerType>()), 11960 FoundNonTemplateFunction(false), 11961 StaticMemberFunctionFromBoundPointer(false), 11962 HasComplained(false), 11963 OvlExprInfo(OverloadExpr::find(SourceExpr)), 11964 OvlExpr(OvlExprInfo.Expression), 11965 FailedCandidates(OvlExpr->getNameLoc(), /*ForTakingAddress=*/true) { 11966 ExtractUnqualifiedFunctionTypeFromTargetType(); 11967 11968 if (TargetFunctionType->isFunctionType()) { 11969 if (UnresolvedMemberExpr *UME = dyn_cast<UnresolvedMemberExpr>(OvlExpr)) 11970 if (!UME->isImplicitAccess() && 11971 !S.ResolveSingleFunctionTemplateSpecialization(UME)) 11972 StaticMemberFunctionFromBoundPointer = true; 11973 } else if (OvlExpr->hasExplicitTemplateArgs()) { 11974 DeclAccessPair dap; 11975 if (FunctionDecl *Fn = S.ResolveSingleFunctionTemplateSpecialization( 11976 OvlExpr, false, &dap)) { 11977 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) 11978 if (!Method->isStatic()) { 11979 // If the target type is a non-function type and the function found 11980 // is a non-static member function, pretend as if that was the 11981 // target, it's the only possible type to end up with. 11982 TargetTypeIsNonStaticMemberFunction = true; 11983 11984 // And skip adding the function if its not in the proper form. 11985 // We'll diagnose this due to an empty set of functions. 11986 if (!OvlExprInfo.HasFormOfMemberPointer) 11987 return; 11988 } 11989 11990 Matches.push_back(std::make_pair(dap, Fn)); 11991 } 11992 return; 11993 } 11994 11995 if (OvlExpr->hasExplicitTemplateArgs()) 11996 OvlExpr->copyTemplateArgumentsInto(OvlExplicitTemplateArgs); 11997 11998 if (FindAllFunctionsThatMatchTargetTypeExactly()) { 11999 // C++ [over.over]p4: 12000 // If more than one function is selected, [...] 12001 if (Matches.size() > 1 && !eliminiateSuboptimalOverloadCandidates()) { 12002 if (FoundNonTemplateFunction) 12003 EliminateAllTemplateMatches(); 12004 else 12005 EliminateAllExceptMostSpecializedTemplate(); 12006 } 12007 } 12008 12009 if (S.getLangOpts().CUDA && Matches.size() > 1) 12010 EliminateSuboptimalCudaMatches(); 12011 } 12012 12013 bool hasComplained() const { return HasComplained; } 12014 12015 private: 12016 bool candidateHasExactlyCorrectType(const FunctionDecl *FD) { 12017 QualType Discard; 12018 return Context.hasSameUnqualifiedType(TargetFunctionType, FD->getType()) || 12019 S.IsFunctionConversion(FD->getType(), TargetFunctionType, Discard); 12020 } 12021 12022 /// \return true if A is considered a better overload candidate for the 12023 /// desired type than B. 12024 bool isBetterCandidate(const FunctionDecl *A, const FunctionDecl *B) { 12025 // If A doesn't have exactly the correct type, we don't want to classify it 12026 // as "better" than anything else. This way, the user is required to 12027 // disambiguate for us if there are multiple candidates and no exact match. 12028 return candidateHasExactlyCorrectType(A) && 12029 (!candidateHasExactlyCorrectType(B) || 12030 compareEnableIfAttrs(S, A, B) == Comparison::Better); 12031 } 12032 12033 /// \return true if we were able to eliminate all but one overload candidate, 12034 /// false otherwise. 12035 bool eliminiateSuboptimalOverloadCandidates() { 12036 // Same algorithm as overload resolution -- one pass to pick the "best", 12037 // another pass to be sure that nothing is better than the best. 12038 auto Best = Matches.begin(); 12039 for (auto I = Matches.begin()+1, E = Matches.end(); I != E; ++I) 12040 if (isBetterCandidate(I->second, Best->second)) 12041 Best = I; 12042 12043 const FunctionDecl *BestFn = Best->second; 12044 auto IsBestOrInferiorToBest = [this, BestFn]( 12045 const std::pair<DeclAccessPair, FunctionDecl *> &Pair) { 12046 return BestFn == Pair.second || isBetterCandidate(BestFn, Pair.second); 12047 }; 12048 12049 // Note: We explicitly leave Matches unmodified if there isn't a clear best 12050 // option, so we can potentially give the user a better error 12051 if (!llvm::all_of(Matches, IsBestOrInferiorToBest)) 12052 return false; 12053 Matches[0] = *Best; 12054 Matches.resize(1); 12055 return true; 12056 } 12057 12058 bool isTargetTypeAFunction() const { 12059 return TargetFunctionType->isFunctionType(); 12060 } 12061 12062 // [ToType] [Return] 12063 12064 // R (*)(A) --> R (A), IsNonStaticMemberFunction = false 12065 // R (&)(A) --> R (A), IsNonStaticMemberFunction = false 12066 // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true 12067 void inline ExtractUnqualifiedFunctionTypeFromTargetType() { 12068 TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType); 12069 } 12070 12071 // return true if any matching specializations were found 12072 bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate, 12073 const DeclAccessPair& CurAccessFunPair) { 12074 if (CXXMethodDecl *Method 12075 = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) { 12076 // Skip non-static function templates when converting to pointer, and 12077 // static when converting to member pointer. 12078 if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction) 12079 return false; 12080 } 12081 else if (TargetTypeIsNonStaticMemberFunction) 12082 return false; 12083 12084 // C++ [over.over]p2: 12085 // If the name is a function template, template argument deduction is 12086 // done (14.8.2.2), and if the argument deduction succeeds, the 12087 // resulting template argument list is used to generate a single 12088 // function template specialization, which is added to the set of 12089 // overloaded functions considered. 12090 FunctionDecl *Specialization = nullptr; 12091 TemplateDeductionInfo Info(FailedCandidates.getLocation()); 12092 if (Sema::TemplateDeductionResult Result 12093 = S.DeduceTemplateArguments(FunctionTemplate, 12094 &OvlExplicitTemplateArgs, 12095 TargetFunctionType, Specialization, 12096 Info, /*IsAddressOfFunction*/true)) { 12097 // Make a note of the failed deduction for diagnostics. 12098 FailedCandidates.addCandidate() 12099 .set(CurAccessFunPair, FunctionTemplate->getTemplatedDecl(), 12100 MakeDeductionFailureInfo(Context, Result, Info)); 12101 return false; 12102 } 12103 12104 // Template argument deduction ensures that we have an exact match or 12105 // compatible pointer-to-function arguments that would be adjusted by ICS. 12106 // This function template specicalization works. 12107 assert(S.isSameOrCompatibleFunctionType( 12108 Context.getCanonicalType(Specialization->getType()), 12109 Context.getCanonicalType(TargetFunctionType))); 12110 12111 if (!S.checkAddressOfFunctionIsAvailable(Specialization)) 12112 return false; 12113 12114 Matches.push_back(std::make_pair(CurAccessFunPair, Specialization)); 12115 return true; 12116 } 12117 12118 bool AddMatchingNonTemplateFunction(NamedDecl* Fn, 12119 const DeclAccessPair& CurAccessFunPair) { 12120 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 12121 // Skip non-static functions when converting to pointer, and static 12122 // when converting to member pointer. 12123 if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction) 12124 return false; 12125 } 12126 else if (TargetTypeIsNonStaticMemberFunction) 12127 return false; 12128 12129 if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) { 12130 if (S.getLangOpts().CUDA) 12131 if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext)) 12132 if (!Caller->isImplicit() && !S.IsAllowedCUDACall(Caller, FunDecl)) 12133 return false; 12134 if (FunDecl->isMultiVersion()) { 12135 const auto *TA = FunDecl->getAttr<TargetAttr>(); 12136 if (TA && !TA->isDefaultVersion()) 12137 return false; 12138 } 12139 12140 // If any candidate has a placeholder return type, trigger its deduction 12141 // now. 12142 if (completeFunctionType(S, FunDecl, SourceExpr->getBeginLoc(), 12143 Complain)) { 12144 HasComplained |= Complain; 12145 return false; 12146 } 12147 12148 if (!S.checkAddressOfFunctionIsAvailable(FunDecl)) 12149 return false; 12150 12151 // If we're in C, we need to support types that aren't exactly identical. 12152 if (!S.getLangOpts().CPlusPlus || 12153 candidateHasExactlyCorrectType(FunDecl)) { 12154 Matches.push_back(std::make_pair( 12155 CurAccessFunPair, cast<FunctionDecl>(FunDecl->getCanonicalDecl()))); 12156 FoundNonTemplateFunction = true; 12157 return true; 12158 } 12159 } 12160 12161 return false; 12162 } 12163 12164 bool FindAllFunctionsThatMatchTargetTypeExactly() { 12165 bool Ret = false; 12166 12167 // If the overload expression doesn't have the form of a pointer to 12168 // member, don't try to convert it to a pointer-to-member type. 12169 if (IsInvalidFormOfPointerToMemberFunction()) 12170 return false; 12171 12172 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 12173 E = OvlExpr->decls_end(); 12174 I != E; ++I) { 12175 // Look through any using declarations to find the underlying function. 12176 NamedDecl *Fn = (*I)->getUnderlyingDecl(); 12177 12178 // C++ [over.over]p3: 12179 // Non-member functions and static member functions match 12180 // targets of type "pointer-to-function" or "reference-to-function." 12181 // Nonstatic member functions match targets of 12182 // type "pointer-to-member-function." 12183 // Note that according to DR 247, the containing class does not matter. 12184 if (FunctionTemplateDecl *FunctionTemplate 12185 = dyn_cast<FunctionTemplateDecl>(Fn)) { 12186 if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair())) 12187 Ret = true; 12188 } 12189 // If we have explicit template arguments supplied, skip non-templates. 12190 else if (!OvlExpr->hasExplicitTemplateArgs() && 12191 AddMatchingNonTemplateFunction(Fn, I.getPair())) 12192 Ret = true; 12193 } 12194 assert(Ret || Matches.empty()); 12195 return Ret; 12196 } 12197 12198 void EliminateAllExceptMostSpecializedTemplate() { 12199 // [...] and any given function template specialization F1 is 12200 // eliminated if the set contains a second function template 12201 // specialization whose function template is more specialized 12202 // than the function template of F1 according to the partial 12203 // ordering rules of 14.5.5.2. 12204 12205 // The algorithm specified above is quadratic. We instead use a 12206 // two-pass algorithm (similar to the one used to identify the 12207 // best viable function in an overload set) that identifies the 12208 // best function template (if it exists). 12209 12210 UnresolvedSet<4> MatchesCopy; // TODO: avoid! 12211 for (unsigned I = 0, E = Matches.size(); I != E; ++I) 12212 MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess()); 12213 12214 // TODO: It looks like FailedCandidates does not serve much purpose 12215 // here, since the no_viable diagnostic has index 0. 12216 UnresolvedSetIterator Result = S.getMostSpecialized( 12217 MatchesCopy.begin(), MatchesCopy.end(), FailedCandidates, 12218 SourceExpr->getBeginLoc(), S.PDiag(), 12219 S.PDiag(diag::err_addr_ovl_ambiguous) 12220 << Matches[0].second->getDeclName(), 12221 S.PDiag(diag::note_ovl_candidate) 12222 << (unsigned)oc_function << (unsigned)ocs_described_template, 12223 Complain, TargetFunctionType); 12224 12225 if (Result != MatchesCopy.end()) { 12226 // Make it the first and only element 12227 Matches[0].first = Matches[Result - MatchesCopy.begin()].first; 12228 Matches[0].second = cast<FunctionDecl>(*Result); 12229 Matches.resize(1); 12230 } else 12231 HasComplained |= Complain; 12232 } 12233 12234 void EliminateAllTemplateMatches() { 12235 // [...] any function template specializations in the set are 12236 // eliminated if the set also contains a non-template function, [...] 12237 for (unsigned I = 0, N = Matches.size(); I != N; ) { 12238 if (Matches[I].second->getPrimaryTemplate() == nullptr) 12239 ++I; 12240 else { 12241 Matches[I] = Matches[--N]; 12242 Matches.resize(N); 12243 } 12244 } 12245 } 12246 12247 void EliminateSuboptimalCudaMatches() { 12248 S.EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(S.CurContext), Matches); 12249 } 12250 12251 public: 12252 void ComplainNoMatchesFound() const { 12253 assert(Matches.empty()); 12254 S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_no_viable) 12255 << OvlExpr->getName() << TargetFunctionType 12256 << OvlExpr->getSourceRange(); 12257 if (FailedCandidates.empty()) 12258 S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType, 12259 /*TakingAddress=*/true); 12260 else { 12261 // We have some deduction failure messages. Use them to diagnose 12262 // the function templates, and diagnose the non-template candidates 12263 // normally. 12264 for (UnresolvedSetIterator I = OvlExpr->decls_begin(), 12265 IEnd = OvlExpr->decls_end(); 12266 I != IEnd; ++I) 12267 if (FunctionDecl *Fun = 12268 dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl())) 12269 if (!functionHasPassObjectSizeParams(Fun)) 12270 S.NoteOverloadCandidate(*I, Fun, CRK_None, TargetFunctionType, 12271 /*TakingAddress=*/true); 12272 FailedCandidates.NoteCandidates(S, OvlExpr->getBeginLoc()); 12273 } 12274 } 12275 12276 bool IsInvalidFormOfPointerToMemberFunction() const { 12277 return TargetTypeIsNonStaticMemberFunction && 12278 !OvlExprInfo.HasFormOfMemberPointer; 12279 } 12280 12281 void ComplainIsInvalidFormOfPointerToMemberFunction() const { 12282 // TODO: Should we condition this on whether any functions might 12283 // have matched, or is it more appropriate to do that in callers? 12284 // TODO: a fixit wouldn't hurt. 12285 S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier) 12286 << TargetType << OvlExpr->getSourceRange(); 12287 } 12288 12289 bool IsStaticMemberFunctionFromBoundPointer() const { 12290 return StaticMemberFunctionFromBoundPointer; 12291 } 12292 12293 void ComplainIsStaticMemberFunctionFromBoundPointer() const { 12294 S.Diag(OvlExpr->getBeginLoc(), 12295 diag::err_invalid_form_pointer_member_function) 12296 << OvlExpr->getSourceRange(); 12297 } 12298 12299 void ComplainOfInvalidConversion() const { 12300 S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_not_func_ptrref) 12301 << OvlExpr->getName() << TargetType; 12302 } 12303 12304 void ComplainMultipleMatchesFound() const { 12305 assert(Matches.size() > 1); 12306 S.Diag(OvlExpr->getBeginLoc(), diag::err_addr_ovl_ambiguous) 12307 << OvlExpr->getName() << OvlExpr->getSourceRange(); 12308 S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType, 12309 /*TakingAddress=*/true); 12310 } 12311 12312 bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); } 12313 12314 int getNumMatches() const { return Matches.size(); } 12315 12316 FunctionDecl* getMatchingFunctionDecl() const { 12317 if (Matches.size() != 1) return nullptr; 12318 return Matches[0].second; 12319 } 12320 12321 const DeclAccessPair* getMatchingFunctionAccessPair() const { 12322 if (Matches.size() != 1) return nullptr; 12323 return &Matches[0].first; 12324 } 12325 }; 12326 } 12327 12328 /// ResolveAddressOfOverloadedFunction - Try to resolve the address of 12329 /// an overloaded function (C++ [over.over]), where @p From is an 12330 /// expression with overloaded function type and @p ToType is the type 12331 /// we're trying to resolve to. For example: 12332 /// 12333 /// @code 12334 /// int f(double); 12335 /// int f(int); 12336 /// 12337 /// int (*pfd)(double) = f; // selects f(double) 12338 /// @endcode 12339 /// 12340 /// This routine returns the resulting FunctionDecl if it could be 12341 /// resolved, and NULL otherwise. When @p Complain is true, this 12342 /// routine will emit diagnostics if there is an error. 12343 FunctionDecl * 12344 Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr, 12345 QualType TargetType, 12346 bool Complain, 12347 DeclAccessPair &FoundResult, 12348 bool *pHadMultipleCandidates) { 12349 assert(AddressOfExpr->getType() == Context.OverloadTy); 12350 12351 AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType, 12352 Complain); 12353 int NumMatches = Resolver.getNumMatches(); 12354 FunctionDecl *Fn = nullptr; 12355 bool ShouldComplain = Complain && !Resolver.hasComplained(); 12356 if (NumMatches == 0 && ShouldComplain) { 12357 if (Resolver.IsInvalidFormOfPointerToMemberFunction()) 12358 Resolver.ComplainIsInvalidFormOfPointerToMemberFunction(); 12359 else 12360 Resolver.ComplainNoMatchesFound(); 12361 } 12362 else if (NumMatches > 1 && ShouldComplain) 12363 Resolver.ComplainMultipleMatchesFound(); 12364 else if (NumMatches == 1) { 12365 Fn = Resolver.getMatchingFunctionDecl(); 12366 assert(Fn); 12367 if (auto *FPT = Fn->getType()->getAs<FunctionProtoType>()) 12368 ResolveExceptionSpec(AddressOfExpr->getExprLoc(), FPT); 12369 FoundResult = *Resolver.getMatchingFunctionAccessPair(); 12370 if (Complain) { 12371 if (Resolver.IsStaticMemberFunctionFromBoundPointer()) 12372 Resolver.ComplainIsStaticMemberFunctionFromBoundPointer(); 12373 else 12374 CheckAddressOfMemberAccess(AddressOfExpr, FoundResult); 12375 } 12376 } 12377 12378 if (pHadMultipleCandidates) 12379 *pHadMultipleCandidates = Resolver.hadMultipleCandidates(); 12380 return Fn; 12381 } 12382 12383 /// Given an expression that refers to an overloaded function, try to 12384 /// resolve that function to a single function that can have its address taken. 12385 /// This will modify `Pair` iff it returns non-null. 12386 /// 12387 /// This routine can only succeed if from all of the candidates in the overload 12388 /// set for SrcExpr that can have their addresses taken, there is one candidate 12389 /// that is more constrained than the rest. 12390 FunctionDecl * 12391 Sema::resolveAddressOfSingleOverloadCandidate(Expr *E, DeclAccessPair &Pair) { 12392 OverloadExpr::FindResult R = OverloadExpr::find(E); 12393 OverloadExpr *Ovl = R.Expression; 12394 bool IsResultAmbiguous = false; 12395 FunctionDecl *Result = nullptr; 12396 DeclAccessPair DAP; 12397 SmallVector<FunctionDecl *, 2> AmbiguousDecls; 12398 12399 auto CheckMoreConstrained = 12400 [&] (FunctionDecl *FD1, FunctionDecl *FD2) -> Optional<bool> { 12401 SmallVector<const Expr *, 1> AC1, AC2; 12402 FD1->getAssociatedConstraints(AC1); 12403 FD2->getAssociatedConstraints(AC2); 12404 bool AtLeastAsConstrained1, AtLeastAsConstrained2; 12405 if (IsAtLeastAsConstrained(FD1, AC1, FD2, AC2, AtLeastAsConstrained1)) 12406 return None; 12407 if (IsAtLeastAsConstrained(FD2, AC2, FD1, AC1, AtLeastAsConstrained2)) 12408 return None; 12409 if (AtLeastAsConstrained1 == AtLeastAsConstrained2) 12410 return None; 12411 return AtLeastAsConstrained1; 12412 }; 12413 12414 // Don't use the AddressOfResolver because we're specifically looking for 12415 // cases where we have one overload candidate that lacks 12416 // enable_if/pass_object_size/... 12417 for (auto I = Ovl->decls_begin(), E = Ovl->decls_end(); I != E; ++I) { 12418 auto *FD = dyn_cast<FunctionDecl>(I->getUnderlyingDecl()); 12419 if (!FD) 12420 return nullptr; 12421 12422 if (!checkAddressOfFunctionIsAvailable(FD)) 12423 continue; 12424 12425 // We have more than one result - see if it is more constrained than the 12426 // previous one. 12427 if (Result) { 12428 Optional<bool> MoreConstrainedThanPrevious = CheckMoreConstrained(FD, 12429 Result); 12430 if (!MoreConstrainedThanPrevious) { 12431 IsResultAmbiguous = true; 12432 AmbiguousDecls.push_back(FD); 12433 continue; 12434 } 12435 if (!*MoreConstrainedThanPrevious) 12436 continue; 12437 // FD is more constrained - replace Result with it. 12438 } 12439 IsResultAmbiguous = false; 12440 DAP = I.getPair(); 12441 Result = FD; 12442 } 12443 12444 if (IsResultAmbiguous) 12445 return nullptr; 12446 12447 if (Result) { 12448 SmallVector<const Expr *, 1> ResultAC; 12449 // We skipped over some ambiguous declarations which might be ambiguous with 12450 // the selected result. 12451 for (FunctionDecl *Skipped : AmbiguousDecls) 12452 if (!CheckMoreConstrained(Skipped, Result).hasValue()) 12453 return nullptr; 12454 Pair = DAP; 12455 } 12456 return Result; 12457 } 12458 12459 /// Given an overloaded function, tries to turn it into a non-overloaded 12460 /// function reference using resolveAddressOfSingleOverloadCandidate. This 12461 /// will perform access checks, diagnose the use of the resultant decl, and, if 12462 /// requested, potentially perform a function-to-pointer decay. 12463 /// 12464 /// Returns false if resolveAddressOfSingleOverloadCandidate fails. 12465 /// Otherwise, returns true. This may emit diagnostics and return true. 12466 bool Sema::resolveAndFixAddressOfSingleOverloadCandidate( 12467 ExprResult &SrcExpr, bool DoFunctionPointerConverion) { 12468 Expr *E = SrcExpr.get(); 12469 assert(E->getType() == Context.OverloadTy && "SrcExpr must be an overload"); 12470 12471 DeclAccessPair DAP; 12472 FunctionDecl *Found = resolveAddressOfSingleOverloadCandidate(E, DAP); 12473 if (!Found || Found->isCPUDispatchMultiVersion() || 12474 Found->isCPUSpecificMultiVersion()) 12475 return false; 12476 12477 // Emitting multiple diagnostics for a function that is both inaccessible and 12478 // unavailable is consistent with our behavior elsewhere. So, always check 12479 // for both. 12480 DiagnoseUseOfDecl(Found, E->getExprLoc()); 12481 CheckAddressOfMemberAccess(E, DAP); 12482 Expr *Fixed = FixOverloadedFunctionReference(E, DAP, Found); 12483 if (DoFunctionPointerConverion && Fixed->getType()->isFunctionType()) 12484 SrcExpr = DefaultFunctionArrayConversion(Fixed, /*Diagnose=*/false); 12485 else 12486 SrcExpr = Fixed; 12487 return true; 12488 } 12489 12490 /// Given an expression that refers to an overloaded function, try to 12491 /// resolve that overloaded function expression down to a single function. 12492 /// 12493 /// This routine can only resolve template-ids that refer to a single function 12494 /// template, where that template-id refers to a single template whose template 12495 /// arguments are either provided by the template-id or have defaults, 12496 /// as described in C++0x [temp.arg.explicit]p3. 12497 /// 12498 /// If no template-ids are found, no diagnostics are emitted and NULL is 12499 /// returned. 12500 FunctionDecl * 12501 Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl, 12502 bool Complain, 12503 DeclAccessPair *FoundResult) { 12504 // C++ [over.over]p1: 12505 // [...] [Note: any redundant set of parentheses surrounding the 12506 // overloaded function name is ignored (5.1). ] 12507 // C++ [over.over]p1: 12508 // [...] The overloaded function name can be preceded by the & 12509 // operator. 12510 12511 // If we didn't actually find any template-ids, we're done. 12512 if (!ovl->hasExplicitTemplateArgs()) 12513 return nullptr; 12514 12515 TemplateArgumentListInfo ExplicitTemplateArgs; 12516 ovl->copyTemplateArgumentsInto(ExplicitTemplateArgs); 12517 TemplateSpecCandidateSet FailedCandidates(ovl->getNameLoc()); 12518 12519 // Look through all of the overloaded functions, searching for one 12520 // whose type matches exactly. 12521 FunctionDecl *Matched = nullptr; 12522 for (UnresolvedSetIterator I = ovl->decls_begin(), 12523 E = ovl->decls_end(); I != E; ++I) { 12524 // C++0x [temp.arg.explicit]p3: 12525 // [...] In contexts where deduction is done and fails, or in contexts 12526 // where deduction is not done, if a template argument list is 12527 // specified and it, along with any default template arguments, 12528 // identifies a single function template specialization, then the 12529 // template-id is an lvalue for the function template specialization. 12530 FunctionTemplateDecl *FunctionTemplate 12531 = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()); 12532 12533 // C++ [over.over]p2: 12534 // If the name is a function template, template argument deduction is 12535 // done (14.8.2.2), and if the argument deduction succeeds, the 12536 // resulting template argument list is used to generate a single 12537 // function template specialization, which is added to the set of 12538 // overloaded functions considered. 12539 FunctionDecl *Specialization = nullptr; 12540 TemplateDeductionInfo Info(FailedCandidates.getLocation()); 12541 if (TemplateDeductionResult Result 12542 = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs, 12543 Specialization, Info, 12544 /*IsAddressOfFunction*/true)) { 12545 // Make a note of the failed deduction for diagnostics. 12546 // TODO: Actually use the failed-deduction info? 12547 FailedCandidates.addCandidate() 12548 .set(I.getPair(), FunctionTemplate->getTemplatedDecl(), 12549 MakeDeductionFailureInfo(Context, Result, Info)); 12550 continue; 12551 } 12552 12553 assert(Specialization && "no specialization and no error?"); 12554 12555 // Multiple matches; we can't resolve to a single declaration. 12556 if (Matched) { 12557 if (Complain) { 12558 Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous) 12559 << ovl->getName(); 12560 NoteAllOverloadCandidates(ovl); 12561 } 12562 return nullptr; 12563 } 12564 12565 Matched = Specialization; 12566 if (FoundResult) *FoundResult = I.getPair(); 12567 } 12568 12569 if (Matched && 12570 completeFunctionType(*this, Matched, ovl->getExprLoc(), Complain)) 12571 return nullptr; 12572 12573 return Matched; 12574 } 12575 12576 // Resolve and fix an overloaded expression that can be resolved 12577 // because it identifies a single function template specialization. 12578 // 12579 // Last three arguments should only be supplied if Complain = true 12580 // 12581 // Return true if it was logically possible to so resolve the 12582 // expression, regardless of whether or not it succeeded. Always 12583 // returns true if 'complain' is set. 12584 bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization( 12585 ExprResult &SrcExpr, bool doFunctionPointerConverion, 12586 bool complain, SourceRange OpRangeForComplaining, 12587 QualType DestTypeForComplaining, 12588 unsigned DiagIDForComplaining) { 12589 assert(SrcExpr.get()->getType() == Context.OverloadTy); 12590 12591 OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get()); 12592 12593 DeclAccessPair found; 12594 ExprResult SingleFunctionExpression; 12595 if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization( 12596 ovl.Expression, /*complain*/ false, &found)) { 12597 if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getBeginLoc())) { 12598 SrcExpr = ExprError(); 12599 return true; 12600 } 12601 12602 // It is only correct to resolve to an instance method if we're 12603 // resolving a form that's permitted to be a pointer to member. 12604 // Otherwise we'll end up making a bound member expression, which 12605 // is illegal in all the contexts we resolve like this. 12606 if (!ovl.HasFormOfMemberPointer && 12607 isa<CXXMethodDecl>(fn) && 12608 cast<CXXMethodDecl>(fn)->isInstance()) { 12609 if (!complain) return false; 12610 12611 Diag(ovl.Expression->getExprLoc(), 12612 diag::err_bound_member_function) 12613 << 0 << ovl.Expression->getSourceRange(); 12614 12615 // TODO: I believe we only end up here if there's a mix of 12616 // static and non-static candidates (otherwise the expression 12617 // would have 'bound member' type, not 'overload' type). 12618 // Ideally we would note which candidate was chosen and why 12619 // the static candidates were rejected. 12620 SrcExpr = ExprError(); 12621 return true; 12622 } 12623 12624 // Fix the expression to refer to 'fn'. 12625 SingleFunctionExpression = 12626 FixOverloadedFunctionReference(SrcExpr.get(), found, fn); 12627 12628 // If desired, do function-to-pointer decay. 12629 if (doFunctionPointerConverion) { 12630 SingleFunctionExpression = 12631 DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.get()); 12632 if (SingleFunctionExpression.isInvalid()) { 12633 SrcExpr = ExprError(); 12634 return true; 12635 } 12636 } 12637 } 12638 12639 if (!SingleFunctionExpression.isUsable()) { 12640 if (complain) { 12641 Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining) 12642 << ovl.Expression->getName() 12643 << DestTypeForComplaining 12644 << OpRangeForComplaining 12645 << ovl.Expression->getQualifierLoc().getSourceRange(); 12646 NoteAllOverloadCandidates(SrcExpr.get()); 12647 12648 SrcExpr = ExprError(); 12649 return true; 12650 } 12651 12652 return false; 12653 } 12654 12655 SrcExpr = SingleFunctionExpression; 12656 return true; 12657 } 12658 12659 /// Add a single candidate to the overload set. 12660 static void AddOverloadedCallCandidate(Sema &S, 12661 DeclAccessPair FoundDecl, 12662 TemplateArgumentListInfo *ExplicitTemplateArgs, 12663 ArrayRef<Expr *> Args, 12664 OverloadCandidateSet &CandidateSet, 12665 bool PartialOverloading, 12666 bool KnownValid) { 12667 NamedDecl *Callee = FoundDecl.getDecl(); 12668 if (isa<UsingShadowDecl>(Callee)) 12669 Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl(); 12670 12671 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) { 12672 if (ExplicitTemplateArgs) { 12673 assert(!KnownValid && "Explicit template arguments?"); 12674 return; 12675 } 12676 // Prevent ill-formed function decls to be added as overload candidates. 12677 if (!dyn_cast<FunctionProtoType>(Func->getType()->getAs<FunctionType>())) 12678 return; 12679 12680 S.AddOverloadCandidate(Func, FoundDecl, Args, CandidateSet, 12681 /*SuppressUserConversions=*/false, 12682 PartialOverloading); 12683 return; 12684 } 12685 12686 if (FunctionTemplateDecl *FuncTemplate 12687 = dyn_cast<FunctionTemplateDecl>(Callee)) { 12688 S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl, 12689 ExplicitTemplateArgs, Args, CandidateSet, 12690 /*SuppressUserConversions=*/false, 12691 PartialOverloading); 12692 return; 12693 } 12694 12695 assert(!KnownValid && "unhandled case in overloaded call candidate"); 12696 } 12697 12698 /// Add the overload candidates named by callee and/or found by argument 12699 /// dependent lookup to the given overload set. 12700 void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE, 12701 ArrayRef<Expr *> Args, 12702 OverloadCandidateSet &CandidateSet, 12703 bool PartialOverloading) { 12704 12705 #ifndef NDEBUG 12706 // Verify that ArgumentDependentLookup is consistent with the rules 12707 // in C++0x [basic.lookup.argdep]p3: 12708 // 12709 // Let X be the lookup set produced by unqualified lookup (3.4.1) 12710 // and let Y be the lookup set produced by argument dependent 12711 // lookup (defined as follows). If X contains 12712 // 12713 // -- a declaration of a class member, or 12714 // 12715 // -- a block-scope function declaration that is not a 12716 // using-declaration, or 12717 // 12718 // -- a declaration that is neither a function or a function 12719 // template 12720 // 12721 // then Y is empty. 12722 12723 if (ULE->requiresADL()) { 12724 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), 12725 E = ULE->decls_end(); I != E; ++I) { 12726 assert(!(*I)->getDeclContext()->isRecord()); 12727 assert(isa<UsingShadowDecl>(*I) || 12728 !(*I)->getDeclContext()->isFunctionOrMethod()); 12729 assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate()); 12730 } 12731 } 12732 #endif 12733 12734 // It would be nice to avoid this copy. 12735 TemplateArgumentListInfo TABuffer; 12736 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr; 12737 if (ULE->hasExplicitTemplateArgs()) { 12738 ULE->copyTemplateArgumentsInto(TABuffer); 12739 ExplicitTemplateArgs = &TABuffer; 12740 } 12741 12742 for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), 12743 E = ULE->decls_end(); I != E; ++I) 12744 AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args, 12745 CandidateSet, PartialOverloading, 12746 /*KnownValid*/ true); 12747 12748 if (ULE->requiresADL()) 12749 AddArgumentDependentLookupCandidates(ULE->getName(), ULE->getExprLoc(), 12750 Args, ExplicitTemplateArgs, 12751 CandidateSet, PartialOverloading); 12752 } 12753 12754 /// Add the call candidates from the given set of lookup results to the given 12755 /// overload set. Non-function lookup results are ignored. 12756 void Sema::AddOverloadedCallCandidates( 12757 LookupResult &R, TemplateArgumentListInfo *ExplicitTemplateArgs, 12758 ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet) { 12759 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) 12760 AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args, 12761 CandidateSet, false, /*KnownValid*/ false); 12762 } 12763 12764 /// Determine whether a declaration with the specified name could be moved into 12765 /// a different namespace. 12766 static bool canBeDeclaredInNamespace(const DeclarationName &Name) { 12767 switch (Name.getCXXOverloadedOperator()) { 12768 case OO_New: case OO_Array_New: 12769 case OO_Delete: case OO_Array_Delete: 12770 return false; 12771 12772 default: 12773 return true; 12774 } 12775 } 12776 12777 /// Attempt to recover from an ill-formed use of a non-dependent name in a 12778 /// template, where the non-dependent name was declared after the template 12779 /// was defined. This is common in code written for a compilers which do not 12780 /// correctly implement two-stage name lookup. 12781 /// 12782 /// Returns true if a viable candidate was found and a diagnostic was issued. 12783 static bool DiagnoseTwoPhaseLookup( 12784 Sema &SemaRef, SourceLocation FnLoc, const CXXScopeSpec &SS, 12785 LookupResult &R, OverloadCandidateSet::CandidateSetKind CSK, 12786 TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args, 12787 CXXRecordDecl **FoundInClass = nullptr) { 12788 if (!SemaRef.inTemplateInstantiation() || !SS.isEmpty()) 12789 return false; 12790 12791 for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) { 12792 if (DC->isTransparentContext()) 12793 continue; 12794 12795 SemaRef.LookupQualifiedName(R, DC); 12796 12797 if (!R.empty()) { 12798 R.suppressDiagnostics(); 12799 12800 OverloadCandidateSet Candidates(FnLoc, CSK); 12801 SemaRef.AddOverloadedCallCandidates(R, ExplicitTemplateArgs, Args, 12802 Candidates); 12803 12804 OverloadCandidateSet::iterator Best; 12805 OverloadingResult OR = 12806 Candidates.BestViableFunction(SemaRef, FnLoc, Best); 12807 12808 if (auto *RD = dyn_cast<CXXRecordDecl>(DC)) { 12809 // We either found non-function declarations or a best viable function 12810 // at class scope. A class-scope lookup result disables ADL. Don't 12811 // look past this, but let the caller know that we found something that 12812 // either is, or might be, usable in this class. 12813 if (FoundInClass) { 12814 *FoundInClass = RD; 12815 if (OR == OR_Success) { 12816 R.clear(); 12817 R.addDecl(Best->FoundDecl.getDecl(), Best->FoundDecl.getAccess()); 12818 R.resolveKind(); 12819 } 12820 } 12821 return false; 12822 } 12823 12824 if (OR != OR_Success) { 12825 // There wasn't a unique best function or function template. 12826 return false; 12827 } 12828 12829 // Find the namespaces where ADL would have looked, and suggest 12830 // declaring the function there instead. 12831 Sema::AssociatedNamespaceSet AssociatedNamespaces; 12832 Sema::AssociatedClassSet AssociatedClasses; 12833 SemaRef.FindAssociatedClassesAndNamespaces(FnLoc, Args, 12834 AssociatedNamespaces, 12835 AssociatedClasses); 12836 Sema::AssociatedNamespaceSet SuggestedNamespaces; 12837 if (canBeDeclaredInNamespace(R.getLookupName())) { 12838 DeclContext *Std = SemaRef.getStdNamespace(); 12839 for (Sema::AssociatedNamespaceSet::iterator 12840 it = AssociatedNamespaces.begin(), 12841 end = AssociatedNamespaces.end(); it != end; ++it) { 12842 // Never suggest declaring a function within namespace 'std'. 12843 if (Std && Std->Encloses(*it)) 12844 continue; 12845 12846 // Never suggest declaring a function within a namespace with a 12847 // reserved name, like __gnu_cxx. 12848 NamespaceDecl *NS = dyn_cast<NamespaceDecl>(*it); 12849 if (NS && 12850 NS->getQualifiedNameAsString().find("__") != std::string::npos) 12851 continue; 12852 12853 SuggestedNamespaces.insert(*it); 12854 } 12855 } 12856 12857 SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup) 12858 << R.getLookupName(); 12859 if (SuggestedNamespaces.empty()) { 12860 SemaRef.Diag(Best->Function->getLocation(), 12861 diag::note_not_found_by_two_phase_lookup) 12862 << R.getLookupName() << 0; 12863 } else if (SuggestedNamespaces.size() == 1) { 12864 SemaRef.Diag(Best->Function->getLocation(), 12865 diag::note_not_found_by_two_phase_lookup) 12866 << R.getLookupName() << 1 << *SuggestedNamespaces.begin(); 12867 } else { 12868 // FIXME: It would be useful to list the associated namespaces here, 12869 // but the diagnostics infrastructure doesn't provide a way to produce 12870 // a localized representation of a list of items. 12871 SemaRef.Diag(Best->Function->getLocation(), 12872 diag::note_not_found_by_two_phase_lookup) 12873 << R.getLookupName() << 2; 12874 } 12875 12876 // Try to recover by calling this function. 12877 return true; 12878 } 12879 12880 R.clear(); 12881 } 12882 12883 return false; 12884 } 12885 12886 /// Attempt to recover from ill-formed use of a non-dependent operator in a 12887 /// template, where the non-dependent operator was declared after the template 12888 /// was defined. 12889 /// 12890 /// Returns true if a viable candidate was found and a diagnostic was issued. 12891 static bool 12892 DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op, 12893 SourceLocation OpLoc, 12894 ArrayRef<Expr *> Args) { 12895 DeclarationName OpName = 12896 SemaRef.Context.DeclarationNames.getCXXOperatorName(Op); 12897 LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName); 12898 return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R, 12899 OverloadCandidateSet::CSK_Operator, 12900 /*ExplicitTemplateArgs=*/nullptr, Args); 12901 } 12902 12903 namespace { 12904 class BuildRecoveryCallExprRAII { 12905 Sema &SemaRef; 12906 public: 12907 BuildRecoveryCallExprRAII(Sema &S) : SemaRef(S) { 12908 assert(SemaRef.IsBuildingRecoveryCallExpr == false); 12909 SemaRef.IsBuildingRecoveryCallExpr = true; 12910 } 12911 12912 ~BuildRecoveryCallExprRAII() { 12913 SemaRef.IsBuildingRecoveryCallExpr = false; 12914 } 12915 }; 12916 12917 } 12918 12919 /// Attempts to recover from a call where no functions were found. 12920 /// 12921 /// This function will do one of three things: 12922 /// * Diagnose, recover, and return a recovery expression. 12923 /// * Diagnose, fail to recover, and return ExprError(). 12924 /// * Do not diagnose, do not recover, and return ExprResult(). The caller is 12925 /// expected to diagnose as appropriate. 12926 static ExprResult 12927 BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn, 12928 UnresolvedLookupExpr *ULE, 12929 SourceLocation LParenLoc, 12930 MutableArrayRef<Expr *> Args, 12931 SourceLocation RParenLoc, 12932 bool EmptyLookup, bool AllowTypoCorrection) { 12933 // Do not try to recover if it is already building a recovery call. 12934 // This stops infinite loops for template instantiations like 12935 // 12936 // template <typename T> auto foo(T t) -> decltype(foo(t)) {} 12937 // template <typename T> auto foo(T t) -> decltype(foo(&t)) {} 12938 if (SemaRef.IsBuildingRecoveryCallExpr) 12939 return ExprResult(); 12940 BuildRecoveryCallExprRAII RCE(SemaRef); 12941 12942 CXXScopeSpec SS; 12943 SS.Adopt(ULE->getQualifierLoc()); 12944 SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc(); 12945 12946 TemplateArgumentListInfo TABuffer; 12947 TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr; 12948 if (ULE->hasExplicitTemplateArgs()) { 12949 ULE->copyTemplateArgumentsInto(TABuffer); 12950 ExplicitTemplateArgs = &TABuffer; 12951 } 12952 12953 LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(), 12954 Sema::LookupOrdinaryName); 12955 CXXRecordDecl *FoundInClass = nullptr; 12956 if (DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R, 12957 OverloadCandidateSet::CSK_Normal, 12958 ExplicitTemplateArgs, Args, &FoundInClass)) { 12959 // OK, diagnosed a two-phase lookup issue. 12960 } else if (EmptyLookup) { 12961 // Try to recover from an empty lookup with typo correction. 12962 R.clear(); 12963 NoTypoCorrectionCCC NoTypoValidator{}; 12964 FunctionCallFilterCCC FunctionCallValidator(SemaRef, Args.size(), 12965 ExplicitTemplateArgs != nullptr, 12966 dyn_cast<MemberExpr>(Fn)); 12967 CorrectionCandidateCallback &Validator = 12968 AllowTypoCorrection 12969 ? static_cast<CorrectionCandidateCallback &>(FunctionCallValidator) 12970 : static_cast<CorrectionCandidateCallback &>(NoTypoValidator); 12971 if (SemaRef.DiagnoseEmptyLookup(S, SS, R, Validator, ExplicitTemplateArgs, 12972 Args)) 12973 return ExprError(); 12974 } else if (FoundInClass && SemaRef.getLangOpts().MSVCCompat) { 12975 // We found a usable declaration of the name in a dependent base of some 12976 // enclosing class. 12977 // FIXME: We should also explain why the candidates found by name lookup 12978 // were not viable. 12979 if (SemaRef.DiagnoseDependentMemberLookup(R)) 12980 return ExprError(); 12981 } else { 12982 // We had viable candidates and couldn't recover; let the caller diagnose 12983 // this. 12984 return ExprResult(); 12985 } 12986 12987 // If we get here, we should have issued a diagnostic and formed a recovery 12988 // lookup result. 12989 assert(!R.empty() && "lookup results empty despite recovery"); 12990 12991 // If recovery created an ambiguity, just bail out. 12992 if (R.isAmbiguous()) { 12993 R.suppressDiagnostics(); 12994 return ExprError(); 12995 } 12996 12997 // Build an implicit member call if appropriate. Just drop the 12998 // casts and such from the call, we don't really care. 12999 ExprResult NewFn = ExprError(); 13000 if ((*R.begin())->isCXXClassMember()) 13001 NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, R, 13002 ExplicitTemplateArgs, S); 13003 else if (ExplicitTemplateArgs || TemplateKWLoc.isValid()) 13004 NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false, 13005 ExplicitTemplateArgs); 13006 else 13007 NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false); 13008 13009 if (NewFn.isInvalid()) 13010 return ExprError(); 13011 13012 // This shouldn't cause an infinite loop because we're giving it 13013 // an expression with viable lookup results, which should never 13014 // end up here. 13015 return SemaRef.BuildCallExpr(/*Scope*/ nullptr, NewFn.get(), LParenLoc, 13016 MultiExprArg(Args.data(), Args.size()), 13017 RParenLoc); 13018 } 13019 13020 /// Constructs and populates an OverloadedCandidateSet from 13021 /// the given function. 13022 /// \returns true when an the ExprResult output parameter has been set. 13023 bool Sema::buildOverloadedCallSet(Scope *S, Expr *Fn, 13024 UnresolvedLookupExpr *ULE, 13025 MultiExprArg Args, 13026 SourceLocation RParenLoc, 13027 OverloadCandidateSet *CandidateSet, 13028 ExprResult *Result) { 13029 #ifndef NDEBUG 13030 if (ULE->requiresADL()) { 13031 // To do ADL, we must have found an unqualified name. 13032 assert(!ULE->getQualifier() && "qualified name with ADL"); 13033 13034 // We don't perform ADL for implicit declarations of builtins. 13035 // Verify that this was correctly set up. 13036 FunctionDecl *F; 13037 if (ULE->decls_begin() != ULE->decls_end() && 13038 ULE->decls_begin() + 1 == ULE->decls_end() && 13039 (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) && 13040 F->getBuiltinID() && F->isImplicit()) 13041 llvm_unreachable("performing ADL for builtin"); 13042 13043 // We don't perform ADL in C. 13044 assert(getLangOpts().CPlusPlus && "ADL enabled in C"); 13045 } 13046 #endif 13047 13048 UnbridgedCastsSet UnbridgedCasts; 13049 if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) { 13050 *Result = ExprError(); 13051 return true; 13052 } 13053 13054 // Add the functions denoted by the callee to the set of candidate 13055 // functions, including those from argument-dependent lookup. 13056 AddOverloadedCallCandidates(ULE, Args, *CandidateSet); 13057 13058 if (getLangOpts().MSVCCompat && 13059 CurContext->isDependentContext() && !isSFINAEContext() && 13060 (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) { 13061 13062 OverloadCandidateSet::iterator Best; 13063 if (CandidateSet->empty() || 13064 CandidateSet->BestViableFunction(*this, Fn->getBeginLoc(), Best) == 13065 OR_No_Viable_Function) { 13066 // In Microsoft mode, if we are inside a template class member function 13067 // then create a type dependent CallExpr. The goal is to postpone name 13068 // lookup to instantiation time to be able to search into type dependent 13069 // base classes. 13070 CallExpr *CE = 13071 CallExpr::Create(Context, Fn, Args, Context.DependentTy, VK_PRValue, 13072 RParenLoc, CurFPFeatureOverrides()); 13073 CE->markDependentForPostponedNameLookup(); 13074 *Result = CE; 13075 return true; 13076 } 13077 } 13078 13079 if (CandidateSet->empty()) 13080 return false; 13081 13082 UnbridgedCasts.restore(); 13083 return false; 13084 } 13085 13086 // Guess at what the return type for an unresolvable overload should be. 13087 static QualType chooseRecoveryType(OverloadCandidateSet &CS, 13088 OverloadCandidateSet::iterator *Best) { 13089 llvm::Optional<QualType> Result; 13090 // Adjust Type after seeing a candidate. 13091 auto ConsiderCandidate = [&](const OverloadCandidate &Candidate) { 13092 if (!Candidate.Function) 13093 return; 13094 if (Candidate.Function->isInvalidDecl()) 13095 return; 13096 QualType T = Candidate.Function->getReturnType(); 13097 if (T.isNull()) 13098 return; 13099 if (!Result) 13100 Result = T; 13101 else if (Result != T) 13102 Result = QualType(); 13103 }; 13104 13105 // Look for an unambiguous type from a progressively larger subset. 13106 // e.g. if types disagree, but all *viable* overloads return int, choose int. 13107 // 13108 // First, consider only the best candidate. 13109 if (Best && *Best != CS.end()) 13110 ConsiderCandidate(**Best); 13111 // Next, consider only viable candidates. 13112 if (!Result) 13113 for (const auto &C : CS) 13114 if (C.Viable) 13115 ConsiderCandidate(C); 13116 // Finally, consider all candidates. 13117 if (!Result) 13118 for (const auto &C : CS) 13119 ConsiderCandidate(C); 13120 13121 if (!Result) 13122 return QualType(); 13123 auto Value = Result.getValue(); 13124 if (Value.isNull() || Value->isUndeducedType()) 13125 return QualType(); 13126 return Value; 13127 } 13128 13129 /// FinishOverloadedCallExpr - given an OverloadCandidateSet, builds and returns 13130 /// the completed call expression. If overload resolution fails, emits 13131 /// diagnostics and returns ExprError() 13132 static ExprResult FinishOverloadedCallExpr(Sema &SemaRef, Scope *S, Expr *Fn, 13133 UnresolvedLookupExpr *ULE, 13134 SourceLocation LParenLoc, 13135 MultiExprArg Args, 13136 SourceLocation RParenLoc, 13137 Expr *ExecConfig, 13138 OverloadCandidateSet *CandidateSet, 13139 OverloadCandidateSet::iterator *Best, 13140 OverloadingResult OverloadResult, 13141 bool AllowTypoCorrection) { 13142 switch (OverloadResult) { 13143 case OR_Success: { 13144 FunctionDecl *FDecl = (*Best)->Function; 13145 SemaRef.CheckUnresolvedLookupAccess(ULE, (*Best)->FoundDecl); 13146 if (SemaRef.DiagnoseUseOfDecl(FDecl, ULE->getNameLoc())) 13147 return ExprError(); 13148 Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl); 13149 return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc, 13150 ExecConfig, /*IsExecConfig=*/false, 13151 (*Best)->IsADLCandidate); 13152 } 13153 13154 case OR_No_Viable_Function: { 13155 // Try to recover by looking for viable functions which the user might 13156 // have meant to call. 13157 ExprResult Recovery = BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc, 13158 Args, RParenLoc, 13159 CandidateSet->empty(), 13160 AllowTypoCorrection); 13161 if (Recovery.isInvalid() || Recovery.isUsable()) 13162 return Recovery; 13163 13164 // If the user passes in a function that we can't take the address of, we 13165 // generally end up emitting really bad error messages. Here, we attempt to 13166 // emit better ones. 13167 for (const Expr *Arg : Args) { 13168 if (!Arg->getType()->isFunctionType()) 13169 continue; 13170 if (auto *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts())) { 13171 auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()); 13172 if (FD && 13173 !SemaRef.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, 13174 Arg->getExprLoc())) 13175 return ExprError(); 13176 } 13177 } 13178 13179 CandidateSet->NoteCandidates( 13180 PartialDiagnosticAt( 13181 Fn->getBeginLoc(), 13182 SemaRef.PDiag(diag::err_ovl_no_viable_function_in_call) 13183 << ULE->getName() << Fn->getSourceRange()), 13184 SemaRef, OCD_AllCandidates, Args); 13185 break; 13186 } 13187 13188 case OR_Ambiguous: 13189 CandidateSet->NoteCandidates( 13190 PartialDiagnosticAt(Fn->getBeginLoc(), 13191 SemaRef.PDiag(diag::err_ovl_ambiguous_call) 13192 << ULE->getName() << Fn->getSourceRange()), 13193 SemaRef, OCD_AmbiguousCandidates, Args); 13194 break; 13195 13196 case OR_Deleted: { 13197 CandidateSet->NoteCandidates( 13198 PartialDiagnosticAt(Fn->getBeginLoc(), 13199 SemaRef.PDiag(diag::err_ovl_deleted_call) 13200 << ULE->getName() << Fn->getSourceRange()), 13201 SemaRef, OCD_AllCandidates, Args); 13202 13203 // We emitted an error for the unavailable/deleted function call but keep 13204 // the call in the AST. 13205 FunctionDecl *FDecl = (*Best)->Function; 13206 Fn = SemaRef.FixOverloadedFunctionReference(Fn, (*Best)->FoundDecl, FDecl); 13207 return SemaRef.BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, RParenLoc, 13208 ExecConfig, /*IsExecConfig=*/false, 13209 (*Best)->IsADLCandidate); 13210 } 13211 } 13212 13213 // Overload resolution failed, try to recover. 13214 SmallVector<Expr *, 8> SubExprs = {Fn}; 13215 SubExprs.append(Args.begin(), Args.end()); 13216 return SemaRef.CreateRecoveryExpr(Fn->getBeginLoc(), RParenLoc, SubExprs, 13217 chooseRecoveryType(*CandidateSet, Best)); 13218 } 13219 13220 static void markUnaddressableCandidatesUnviable(Sema &S, 13221 OverloadCandidateSet &CS) { 13222 for (auto I = CS.begin(), E = CS.end(); I != E; ++I) { 13223 if (I->Viable && 13224 !S.checkAddressOfFunctionIsAvailable(I->Function, /*Complain=*/false)) { 13225 I->Viable = false; 13226 I->FailureKind = ovl_fail_addr_not_available; 13227 } 13228 } 13229 } 13230 13231 /// BuildOverloadedCallExpr - Given the call expression that calls Fn 13232 /// (which eventually refers to the declaration Func) and the call 13233 /// arguments Args/NumArgs, attempt to resolve the function call down 13234 /// to a specific function. If overload resolution succeeds, returns 13235 /// the call expression produced by overload resolution. 13236 /// Otherwise, emits diagnostics and returns ExprError. 13237 ExprResult Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, 13238 UnresolvedLookupExpr *ULE, 13239 SourceLocation LParenLoc, 13240 MultiExprArg Args, 13241 SourceLocation RParenLoc, 13242 Expr *ExecConfig, 13243 bool AllowTypoCorrection, 13244 bool CalleesAddressIsTaken) { 13245 OverloadCandidateSet CandidateSet(Fn->getExprLoc(), 13246 OverloadCandidateSet::CSK_Normal); 13247 ExprResult result; 13248 13249 if (buildOverloadedCallSet(S, Fn, ULE, Args, LParenLoc, &CandidateSet, 13250 &result)) 13251 return result; 13252 13253 // If the user handed us something like `(&Foo)(Bar)`, we need to ensure that 13254 // functions that aren't addressible are considered unviable. 13255 if (CalleesAddressIsTaken) 13256 markUnaddressableCandidatesUnviable(*this, CandidateSet); 13257 13258 OverloadCandidateSet::iterator Best; 13259 OverloadingResult OverloadResult = 13260 CandidateSet.BestViableFunction(*this, Fn->getBeginLoc(), Best); 13261 13262 return FinishOverloadedCallExpr(*this, S, Fn, ULE, LParenLoc, Args, RParenLoc, 13263 ExecConfig, &CandidateSet, &Best, 13264 OverloadResult, AllowTypoCorrection); 13265 } 13266 13267 static bool IsOverloaded(const UnresolvedSetImpl &Functions) { 13268 return Functions.size() > 1 || 13269 (Functions.size() == 1 && 13270 isa<FunctionTemplateDecl>((*Functions.begin())->getUnderlyingDecl())); 13271 } 13272 13273 ExprResult Sema::CreateUnresolvedLookupExpr(CXXRecordDecl *NamingClass, 13274 NestedNameSpecifierLoc NNSLoc, 13275 DeclarationNameInfo DNI, 13276 const UnresolvedSetImpl &Fns, 13277 bool PerformADL) { 13278 return UnresolvedLookupExpr::Create(Context, NamingClass, NNSLoc, DNI, 13279 PerformADL, IsOverloaded(Fns), 13280 Fns.begin(), Fns.end()); 13281 } 13282 13283 /// Create a unary operation that may resolve to an overloaded 13284 /// operator. 13285 /// 13286 /// \param OpLoc The location of the operator itself (e.g., '*'). 13287 /// 13288 /// \param Opc The UnaryOperatorKind that describes this operator. 13289 /// 13290 /// \param Fns The set of non-member functions that will be 13291 /// considered by overload resolution. The caller needs to build this 13292 /// set based on the context using, e.g., 13293 /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 13294 /// set should not contain any member functions; those will be added 13295 /// by CreateOverloadedUnaryOp(). 13296 /// 13297 /// \param Input The input argument. 13298 ExprResult 13299 Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc, 13300 const UnresolvedSetImpl &Fns, 13301 Expr *Input, bool PerformADL) { 13302 OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc); 13303 assert(Op != OO_None && "Invalid opcode for overloaded unary operator"); 13304 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 13305 // TODO: provide better source location info. 13306 DeclarationNameInfo OpNameInfo(OpName, OpLoc); 13307 13308 if (checkPlaceholderForOverload(*this, Input)) 13309 return ExprError(); 13310 13311 Expr *Args[2] = { Input, nullptr }; 13312 unsigned NumArgs = 1; 13313 13314 // For post-increment and post-decrement, add the implicit '0' as 13315 // the second argument, so that we know this is a post-increment or 13316 // post-decrement. 13317 if (Opc == UO_PostInc || Opc == UO_PostDec) { 13318 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false); 13319 Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy, 13320 SourceLocation()); 13321 NumArgs = 2; 13322 } 13323 13324 ArrayRef<Expr *> ArgsArray(Args, NumArgs); 13325 13326 if (Input->isTypeDependent()) { 13327 if (Fns.empty()) 13328 return UnaryOperator::Create(Context, Input, Opc, Context.DependentTy, 13329 VK_PRValue, OK_Ordinary, OpLoc, false, 13330 CurFPFeatureOverrides()); 13331 13332 CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators 13333 ExprResult Fn = CreateUnresolvedLookupExpr( 13334 NamingClass, NestedNameSpecifierLoc(), OpNameInfo, Fns); 13335 if (Fn.isInvalid()) 13336 return ExprError(); 13337 return CXXOperatorCallExpr::Create(Context, Op, Fn.get(), ArgsArray, 13338 Context.DependentTy, VK_PRValue, OpLoc, 13339 CurFPFeatureOverrides()); 13340 } 13341 13342 // Build an empty overload set. 13343 OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator); 13344 13345 // Add the candidates from the given function set. 13346 AddNonMemberOperatorCandidates(Fns, ArgsArray, CandidateSet); 13347 13348 // Add operator candidates that are member functions. 13349 AddMemberOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet); 13350 13351 // Add candidates from ADL. 13352 if (PerformADL) { 13353 AddArgumentDependentLookupCandidates(OpName, OpLoc, ArgsArray, 13354 /*ExplicitTemplateArgs*/nullptr, 13355 CandidateSet); 13356 } 13357 13358 // Add builtin operator candidates. 13359 AddBuiltinOperatorCandidates(Op, OpLoc, ArgsArray, CandidateSet); 13360 13361 bool HadMultipleCandidates = (CandidateSet.size() > 1); 13362 13363 // Perform overload resolution. 13364 OverloadCandidateSet::iterator Best; 13365 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { 13366 case OR_Success: { 13367 // We found a built-in operator or an overloaded operator. 13368 FunctionDecl *FnDecl = Best->Function; 13369 13370 if (FnDecl) { 13371 Expr *Base = nullptr; 13372 // We matched an overloaded operator. Build a call to that 13373 // operator. 13374 13375 // Convert the arguments. 13376 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 13377 CheckMemberOperatorAccess(OpLoc, Args[0], nullptr, Best->FoundDecl); 13378 13379 ExprResult InputRes = 13380 PerformObjectArgumentInitialization(Input, /*Qualifier=*/nullptr, 13381 Best->FoundDecl, Method); 13382 if (InputRes.isInvalid()) 13383 return ExprError(); 13384 Base = Input = InputRes.get(); 13385 } else { 13386 // Convert the arguments. 13387 ExprResult InputInit 13388 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 13389 Context, 13390 FnDecl->getParamDecl(0)), 13391 SourceLocation(), 13392 Input); 13393 if (InputInit.isInvalid()) 13394 return ExprError(); 13395 Input = InputInit.get(); 13396 } 13397 13398 // Build the actual expression node. 13399 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, Best->FoundDecl, 13400 Base, HadMultipleCandidates, 13401 OpLoc); 13402 if (FnExpr.isInvalid()) 13403 return ExprError(); 13404 13405 // Determine the result type. 13406 QualType ResultTy = FnDecl->getReturnType(); 13407 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 13408 ResultTy = ResultTy.getNonLValueExprType(Context); 13409 13410 Args[0] = Input; 13411 CallExpr *TheCall = CXXOperatorCallExpr::Create( 13412 Context, Op, FnExpr.get(), ArgsArray, ResultTy, VK, OpLoc, 13413 CurFPFeatureOverrides(), Best->IsADLCandidate); 13414 13415 if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall, FnDecl)) 13416 return ExprError(); 13417 13418 if (CheckFunctionCall(FnDecl, TheCall, 13419 FnDecl->getType()->castAs<FunctionProtoType>())) 13420 return ExprError(); 13421 return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), FnDecl); 13422 } else { 13423 // We matched a built-in operator. Convert the arguments, then 13424 // break out so that we will build the appropriate built-in 13425 // operator node. 13426 ExprResult InputRes = PerformImplicitConversion( 13427 Input, Best->BuiltinParamTypes[0], Best->Conversions[0], AA_Passing, 13428 CCK_ForBuiltinOverloadedOp); 13429 if (InputRes.isInvalid()) 13430 return ExprError(); 13431 Input = InputRes.get(); 13432 break; 13433 } 13434 } 13435 13436 case OR_No_Viable_Function: 13437 // This is an erroneous use of an operator which can be overloaded by 13438 // a non-member function. Check for non-member operators which were 13439 // defined too late to be candidates. 13440 if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, ArgsArray)) 13441 // FIXME: Recover by calling the found function. 13442 return ExprError(); 13443 13444 // No viable function; fall through to handling this as a 13445 // built-in operator, which will produce an error message for us. 13446 break; 13447 13448 case OR_Ambiguous: 13449 CandidateSet.NoteCandidates( 13450 PartialDiagnosticAt(OpLoc, 13451 PDiag(diag::err_ovl_ambiguous_oper_unary) 13452 << UnaryOperator::getOpcodeStr(Opc) 13453 << Input->getType() << Input->getSourceRange()), 13454 *this, OCD_AmbiguousCandidates, ArgsArray, 13455 UnaryOperator::getOpcodeStr(Opc), OpLoc); 13456 return ExprError(); 13457 13458 case OR_Deleted: 13459 CandidateSet.NoteCandidates( 13460 PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_deleted_oper) 13461 << UnaryOperator::getOpcodeStr(Opc) 13462 << Input->getSourceRange()), 13463 *this, OCD_AllCandidates, ArgsArray, UnaryOperator::getOpcodeStr(Opc), 13464 OpLoc); 13465 return ExprError(); 13466 } 13467 13468 // Either we found no viable overloaded operator or we matched a 13469 // built-in operator. In either case, fall through to trying to 13470 // build a built-in operation. 13471 return CreateBuiltinUnaryOp(OpLoc, Opc, Input); 13472 } 13473 13474 /// Perform lookup for an overloaded binary operator. 13475 void Sema::LookupOverloadedBinOp(OverloadCandidateSet &CandidateSet, 13476 OverloadedOperatorKind Op, 13477 const UnresolvedSetImpl &Fns, 13478 ArrayRef<Expr *> Args, bool PerformADL) { 13479 SourceLocation OpLoc = CandidateSet.getLocation(); 13480 13481 OverloadedOperatorKind ExtraOp = 13482 CandidateSet.getRewriteInfo().AllowRewrittenCandidates 13483 ? getRewrittenOverloadedOperator(Op) 13484 : OO_None; 13485 13486 // Add the candidates from the given function set. This also adds the 13487 // rewritten candidates using these functions if necessary. 13488 AddNonMemberOperatorCandidates(Fns, Args, CandidateSet); 13489 13490 // Add operator candidates that are member functions. 13491 AddMemberOperatorCandidates(Op, OpLoc, Args, CandidateSet); 13492 if (CandidateSet.getRewriteInfo().shouldAddReversed(Op)) 13493 AddMemberOperatorCandidates(Op, OpLoc, {Args[1], Args[0]}, CandidateSet, 13494 OverloadCandidateParamOrder::Reversed); 13495 13496 // In C++20, also add any rewritten member candidates. 13497 if (ExtraOp) { 13498 AddMemberOperatorCandidates(ExtraOp, OpLoc, Args, CandidateSet); 13499 if (CandidateSet.getRewriteInfo().shouldAddReversed(ExtraOp)) 13500 AddMemberOperatorCandidates(ExtraOp, OpLoc, {Args[1], Args[0]}, 13501 CandidateSet, 13502 OverloadCandidateParamOrder::Reversed); 13503 } 13504 13505 // Add candidates from ADL. Per [over.match.oper]p2, this lookup is not 13506 // performed for an assignment operator (nor for operator[] nor operator->, 13507 // which don't get here). 13508 if (Op != OO_Equal && PerformADL) { 13509 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 13510 AddArgumentDependentLookupCandidates(OpName, OpLoc, Args, 13511 /*ExplicitTemplateArgs*/ nullptr, 13512 CandidateSet); 13513 if (ExtraOp) { 13514 DeclarationName ExtraOpName = 13515 Context.DeclarationNames.getCXXOperatorName(ExtraOp); 13516 AddArgumentDependentLookupCandidates(ExtraOpName, OpLoc, Args, 13517 /*ExplicitTemplateArgs*/ nullptr, 13518 CandidateSet); 13519 } 13520 } 13521 13522 // Add builtin operator candidates. 13523 // 13524 // FIXME: We don't add any rewritten candidates here. This is strictly 13525 // incorrect; a builtin candidate could be hidden by a non-viable candidate, 13526 // resulting in our selecting a rewritten builtin candidate. For example: 13527 // 13528 // enum class E { e }; 13529 // bool operator!=(E, E) requires false; 13530 // bool k = E::e != E::e; 13531 // 13532 // ... should select the rewritten builtin candidate 'operator==(E, E)'. But 13533 // it seems unreasonable to consider rewritten builtin candidates. A core 13534 // issue has been filed proposing to removed this requirement. 13535 AddBuiltinOperatorCandidates(Op, OpLoc, Args, CandidateSet); 13536 } 13537 13538 /// Create a binary operation that may resolve to an overloaded 13539 /// operator. 13540 /// 13541 /// \param OpLoc The location of the operator itself (e.g., '+'). 13542 /// 13543 /// \param Opc The BinaryOperatorKind that describes this operator. 13544 /// 13545 /// \param Fns The set of non-member functions that will be 13546 /// considered by overload resolution. The caller needs to build this 13547 /// set based on the context using, e.g., 13548 /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This 13549 /// set should not contain any member functions; those will be added 13550 /// by CreateOverloadedBinOp(). 13551 /// 13552 /// \param LHS Left-hand argument. 13553 /// \param RHS Right-hand argument. 13554 /// \param PerformADL Whether to consider operator candidates found by ADL. 13555 /// \param AllowRewrittenCandidates Whether to consider candidates found by 13556 /// C++20 operator rewrites. 13557 /// \param DefaultedFn If we are synthesizing a defaulted operator function, 13558 /// the function in question. Such a function is never a candidate in 13559 /// our overload resolution. This also enables synthesizing a three-way 13560 /// comparison from < and == as described in C++20 [class.spaceship]p1. 13561 ExprResult Sema::CreateOverloadedBinOp(SourceLocation OpLoc, 13562 BinaryOperatorKind Opc, 13563 const UnresolvedSetImpl &Fns, Expr *LHS, 13564 Expr *RHS, bool PerformADL, 13565 bool AllowRewrittenCandidates, 13566 FunctionDecl *DefaultedFn) { 13567 Expr *Args[2] = { LHS, RHS }; 13568 LHS=RHS=nullptr; // Please use only Args instead of LHS/RHS couple 13569 13570 if (!getLangOpts().CPlusPlus20) 13571 AllowRewrittenCandidates = false; 13572 13573 OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc); 13574 13575 // If either side is type-dependent, create an appropriate dependent 13576 // expression. 13577 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 13578 if (Fns.empty()) { 13579 // If there are no functions to store, just build a dependent 13580 // BinaryOperator or CompoundAssignment. 13581 if (BinaryOperator::isCompoundAssignmentOp(Opc)) 13582 return CompoundAssignOperator::Create( 13583 Context, Args[0], Args[1], Opc, Context.DependentTy, VK_LValue, 13584 OK_Ordinary, OpLoc, CurFPFeatureOverrides(), Context.DependentTy, 13585 Context.DependentTy); 13586 return BinaryOperator::Create( 13587 Context, Args[0], Args[1], Opc, Context.DependentTy, VK_PRValue, 13588 OK_Ordinary, OpLoc, CurFPFeatureOverrides()); 13589 } 13590 13591 // FIXME: save results of ADL from here? 13592 CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators 13593 // TODO: provide better source location info in DNLoc component. 13594 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); 13595 DeclarationNameInfo OpNameInfo(OpName, OpLoc); 13596 ExprResult Fn = CreateUnresolvedLookupExpr( 13597 NamingClass, NestedNameSpecifierLoc(), OpNameInfo, Fns, PerformADL); 13598 if (Fn.isInvalid()) 13599 return ExprError(); 13600 return CXXOperatorCallExpr::Create(Context, Op, Fn.get(), Args, 13601 Context.DependentTy, VK_PRValue, OpLoc, 13602 CurFPFeatureOverrides()); 13603 } 13604 13605 // Always do placeholder-like conversions on the RHS. 13606 if (checkPlaceholderForOverload(*this, Args[1])) 13607 return ExprError(); 13608 13609 // Do placeholder-like conversion on the LHS; note that we should 13610 // not get here with a PseudoObject LHS. 13611 assert(Args[0]->getObjectKind() != OK_ObjCProperty); 13612 if (checkPlaceholderForOverload(*this, Args[0])) 13613 return ExprError(); 13614 13615 // If this is the assignment operator, we only perform overload resolution 13616 // if the left-hand side is a class or enumeration type. This is actually 13617 // a hack. The standard requires that we do overload resolution between the 13618 // various built-in candidates, but as DR507 points out, this can lead to 13619 // problems. So we do it this way, which pretty much follows what GCC does. 13620 // Note that we go the traditional code path for compound assignment forms. 13621 if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType()) 13622 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 13623 13624 // If this is the .* operator, which is not overloadable, just 13625 // create a built-in binary operator. 13626 if (Opc == BO_PtrMemD) 13627 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 13628 13629 // Build the overload set. 13630 OverloadCandidateSet CandidateSet( 13631 OpLoc, OverloadCandidateSet::CSK_Operator, 13632 OverloadCandidateSet::OperatorRewriteInfo(Op, AllowRewrittenCandidates)); 13633 if (DefaultedFn) 13634 CandidateSet.exclude(DefaultedFn); 13635 LookupOverloadedBinOp(CandidateSet, Op, Fns, Args, PerformADL); 13636 13637 bool HadMultipleCandidates = (CandidateSet.size() > 1); 13638 13639 // Perform overload resolution. 13640 OverloadCandidateSet::iterator Best; 13641 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { 13642 case OR_Success: { 13643 // We found a built-in operator or an overloaded operator. 13644 FunctionDecl *FnDecl = Best->Function; 13645 13646 bool IsReversed = Best->isReversed(); 13647 if (IsReversed) 13648 std::swap(Args[0], Args[1]); 13649 13650 if (FnDecl) { 13651 Expr *Base = nullptr; 13652 // We matched an overloaded operator. Build a call to that 13653 // operator. 13654 13655 OverloadedOperatorKind ChosenOp = 13656 FnDecl->getDeclName().getCXXOverloadedOperator(); 13657 13658 // C++2a [over.match.oper]p9: 13659 // If a rewritten operator== candidate is selected by overload 13660 // resolution for an operator@, its return type shall be cv bool 13661 if (Best->RewriteKind && ChosenOp == OO_EqualEqual && 13662 !FnDecl->getReturnType()->isBooleanType()) { 13663 bool IsExtension = 13664 FnDecl->getReturnType()->isIntegralOrUnscopedEnumerationType(); 13665 Diag(OpLoc, IsExtension ? diag::ext_ovl_rewrite_equalequal_not_bool 13666 : diag::err_ovl_rewrite_equalequal_not_bool) 13667 << FnDecl->getReturnType() << BinaryOperator::getOpcodeStr(Opc) 13668 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 13669 Diag(FnDecl->getLocation(), diag::note_declared_at); 13670 if (!IsExtension) 13671 return ExprError(); 13672 } 13673 13674 if (AllowRewrittenCandidates && !IsReversed && 13675 CandidateSet.getRewriteInfo().isReversible()) { 13676 // We could have reversed this operator, but didn't. Check if some 13677 // reversed form was a viable candidate, and if so, if it had a 13678 // better conversion for either parameter. If so, this call is 13679 // formally ambiguous, and allowing it is an extension. 13680 llvm::SmallVector<FunctionDecl*, 4> AmbiguousWith; 13681 for (OverloadCandidate &Cand : CandidateSet) { 13682 if (Cand.Viable && Cand.Function && Cand.isReversed() && 13683 haveSameParameterTypes(Context, Cand.Function, FnDecl, 2)) { 13684 for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) { 13685 if (CompareImplicitConversionSequences( 13686 *this, OpLoc, Cand.Conversions[ArgIdx], 13687 Best->Conversions[ArgIdx]) == 13688 ImplicitConversionSequence::Better) { 13689 AmbiguousWith.push_back(Cand.Function); 13690 break; 13691 } 13692 } 13693 } 13694 } 13695 13696 if (!AmbiguousWith.empty()) { 13697 bool AmbiguousWithSelf = 13698 AmbiguousWith.size() == 1 && 13699 declaresSameEntity(AmbiguousWith.front(), FnDecl); 13700 Diag(OpLoc, diag::ext_ovl_ambiguous_oper_binary_reversed) 13701 << BinaryOperator::getOpcodeStr(Opc) 13702 << Args[0]->getType() << Args[1]->getType() << AmbiguousWithSelf 13703 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 13704 if (AmbiguousWithSelf) { 13705 Diag(FnDecl->getLocation(), 13706 diag::note_ovl_ambiguous_oper_binary_reversed_self); 13707 } else { 13708 Diag(FnDecl->getLocation(), 13709 diag::note_ovl_ambiguous_oper_binary_selected_candidate); 13710 for (auto *F : AmbiguousWith) 13711 Diag(F->getLocation(), 13712 diag::note_ovl_ambiguous_oper_binary_reversed_candidate); 13713 } 13714 } 13715 } 13716 13717 // Convert the arguments. 13718 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { 13719 // Best->Access is only meaningful for class members. 13720 CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl); 13721 13722 ExprResult Arg1 = 13723 PerformCopyInitialization( 13724 InitializedEntity::InitializeParameter(Context, 13725 FnDecl->getParamDecl(0)), 13726 SourceLocation(), Args[1]); 13727 if (Arg1.isInvalid()) 13728 return ExprError(); 13729 13730 ExprResult Arg0 = 13731 PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr, 13732 Best->FoundDecl, Method); 13733 if (Arg0.isInvalid()) 13734 return ExprError(); 13735 Base = Args[0] = Arg0.getAs<Expr>(); 13736 Args[1] = RHS = Arg1.getAs<Expr>(); 13737 } else { 13738 // Convert the arguments. 13739 ExprResult Arg0 = PerformCopyInitialization( 13740 InitializedEntity::InitializeParameter(Context, 13741 FnDecl->getParamDecl(0)), 13742 SourceLocation(), Args[0]); 13743 if (Arg0.isInvalid()) 13744 return ExprError(); 13745 13746 ExprResult Arg1 = 13747 PerformCopyInitialization( 13748 InitializedEntity::InitializeParameter(Context, 13749 FnDecl->getParamDecl(1)), 13750 SourceLocation(), Args[1]); 13751 if (Arg1.isInvalid()) 13752 return ExprError(); 13753 Args[0] = LHS = Arg0.getAs<Expr>(); 13754 Args[1] = RHS = Arg1.getAs<Expr>(); 13755 } 13756 13757 // Build the actual expression node. 13758 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, 13759 Best->FoundDecl, Base, 13760 HadMultipleCandidates, OpLoc); 13761 if (FnExpr.isInvalid()) 13762 return ExprError(); 13763 13764 // Determine the result type. 13765 QualType ResultTy = FnDecl->getReturnType(); 13766 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 13767 ResultTy = ResultTy.getNonLValueExprType(Context); 13768 13769 CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create( 13770 Context, ChosenOp, FnExpr.get(), Args, ResultTy, VK, OpLoc, 13771 CurFPFeatureOverrides(), Best->IsADLCandidate); 13772 13773 if (CheckCallReturnType(FnDecl->getReturnType(), OpLoc, TheCall, 13774 FnDecl)) 13775 return ExprError(); 13776 13777 ArrayRef<const Expr *> ArgsArray(Args, 2); 13778 const Expr *ImplicitThis = nullptr; 13779 // Cut off the implicit 'this'. 13780 if (isa<CXXMethodDecl>(FnDecl)) { 13781 ImplicitThis = ArgsArray[0]; 13782 ArgsArray = ArgsArray.slice(1); 13783 } 13784 13785 // Check for a self move. 13786 if (Op == OO_Equal) 13787 DiagnoseSelfMove(Args[0], Args[1], OpLoc); 13788 13789 if (ImplicitThis) { 13790 QualType ThisType = Context.getPointerType(ImplicitThis->getType()); 13791 QualType ThisTypeFromDecl = Context.getPointerType( 13792 cast<CXXMethodDecl>(FnDecl)->getThisObjectType()); 13793 13794 CheckArgAlignment(OpLoc, FnDecl, "'this'", ThisType, 13795 ThisTypeFromDecl); 13796 } 13797 13798 checkCall(FnDecl, nullptr, ImplicitThis, ArgsArray, 13799 isa<CXXMethodDecl>(FnDecl), OpLoc, TheCall->getSourceRange(), 13800 VariadicDoesNotApply); 13801 13802 ExprResult R = MaybeBindToTemporary(TheCall); 13803 if (R.isInvalid()) 13804 return ExprError(); 13805 13806 R = CheckForImmediateInvocation(R, FnDecl); 13807 if (R.isInvalid()) 13808 return ExprError(); 13809 13810 // For a rewritten candidate, we've already reversed the arguments 13811 // if needed. Perform the rest of the rewrite now. 13812 if ((Best->RewriteKind & CRK_DifferentOperator) || 13813 (Op == OO_Spaceship && IsReversed)) { 13814 if (Op == OO_ExclaimEqual) { 13815 assert(ChosenOp == OO_EqualEqual && "unexpected operator name"); 13816 R = CreateBuiltinUnaryOp(OpLoc, UO_LNot, R.get()); 13817 } else { 13818 assert(ChosenOp == OO_Spaceship && "unexpected operator name"); 13819 llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false); 13820 Expr *ZeroLiteral = 13821 IntegerLiteral::Create(Context, Zero, Context.IntTy, OpLoc); 13822 13823 Sema::CodeSynthesisContext Ctx; 13824 Ctx.Kind = Sema::CodeSynthesisContext::RewritingOperatorAsSpaceship; 13825 Ctx.Entity = FnDecl; 13826 pushCodeSynthesisContext(Ctx); 13827 13828 R = CreateOverloadedBinOp( 13829 OpLoc, Opc, Fns, IsReversed ? ZeroLiteral : R.get(), 13830 IsReversed ? R.get() : ZeroLiteral, PerformADL, 13831 /*AllowRewrittenCandidates=*/false); 13832 13833 popCodeSynthesisContext(); 13834 } 13835 if (R.isInvalid()) 13836 return ExprError(); 13837 } else { 13838 assert(ChosenOp == Op && "unexpected operator name"); 13839 } 13840 13841 // Make a note in the AST if we did any rewriting. 13842 if (Best->RewriteKind != CRK_None) 13843 R = new (Context) CXXRewrittenBinaryOperator(R.get(), IsReversed); 13844 13845 return R; 13846 } else { 13847 // We matched a built-in operator. Convert the arguments, then 13848 // break out so that we will build the appropriate built-in 13849 // operator node. 13850 ExprResult ArgsRes0 = PerformImplicitConversion( 13851 Args[0], Best->BuiltinParamTypes[0], Best->Conversions[0], 13852 AA_Passing, CCK_ForBuiltinOverloadedOp); 13853 if (ArgsRes0.isInvalid()) 13854 return ExprError(); 13855 Args[0] = ArgsRes0.get(); 13856 13857 ExprResult ArgsRes1 = PerformImplicitConversion( 13858 Args[1], Best->BuiltinParamTypes[1], Best->Conversions[1], 13859 AA_Passing, CCK_ForBuiltinOverloadedOp); 13860 if (ArgsRes1.isInvalid()) 13861 return ExprError(); 13862 Args[1] = ArgsRes1.get(); 13863 break; 13864 } 13865 } 13866 13867 case OR_No_Viable_Function: { 13868 // C++ [over.match.oper]p9: 13869 // If the operator is the operator , [...] and there are no 13870 // viable functions, then the operator is assumed to be the 13871 // built-in operator and interpreted according to clause 5. 13872 if (Opc == BO_Comma) 13873 break; 13874 13875 // When defaulting an 'operator<=>', we can try to synthesize a three-way 13876 // compare result using '==' and '<'. 13877 if (DefaultedFn && Opc == BO_Cmp) { 13878 ExprResult E = BuildSynthesizedThreeWayComparison(OpLoc, Fns, Args[0], 13879 Args[1], DefaultedFn); 13880 if (E.isInvalid() || E.isUsable()) 13881 return E; 13882 } 13883 13884 // For class as left operand for assignment or compound assignment 13885 // operator do not fall through to handling in built-in, but report that 13886 // no overloaded assignment operator found 13887 ExprResult Result = ExprError(); 13888 StringRef OpcStr = BinaryOperator::getOpcodeStr(Opc); 13889 auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates, 13890 Args, OpLoc); 13891 DeferDiagsRAII DDR(*this, 13892 CandidateSet.shouldDeferDiags(*this, Args, OpLoc)); 13893 if (Args[0]->getType()->isRecordType() && 13894 Opc >= BO_Assign && Opc <= BO_OrAssign) { 13895 Diag(OpLoc, diag::err_ovl_no_viable_oper) 13896 << BinaryOperator::getOpcodeStr(Opc) 13897 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 13898 if (Args[0]->getType()->isIncompleteType()) { 13899 Diag(OpLoc, diag::note_assign_lhs_incomplete) 13900 << Args[0]->getType() 13901 << Args[0]->getSourceRange() << Args[1]->getSourceRange(); 13902 } 13903 } else { 13904 // This is an erroneous use of an operator which can be overloaded by 13905 // a non-member function. Check for non-member operators which were 13906 // defined too late to be candidates. 13907 if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args)) 13908 // FIXME: Recover by calling the found function. 13909 return ExprError(); 13910 13911 // No viable function; try to create a built-in operation, which will 13912 // produce an error. Then, show the non-viable candidates. 13913 Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 13914 } 13915 assert(Result.isInvalid() && 13916 "C++ binary operator overloading is missing candidates!"); 13917 CandidateSet.NoteCandidates(*this, Args, Cands, OpcStr, OpLoc); 13918 return Result; 13919 } 13920 13921 case OR_Ambiguous: 13922 CandidateSet.NoteCandidates( 13923 PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_ambiguous_oper_binary) 13924 << BinaryOperator::getOpcodeStr(Opc) 13925 << Args[0]->getType() 13926 << Args[1]->getType() 13927 << Args[0]->getSourceRange() 13928 << Args[1]->getSourceRange()), 13929 *this, OCD_AmbiguousCandidates, Args, BinaryOperator::getOpcodeStr(Opc), 13930 OpLoc); 13931 return ExprError(); 13932 13933 case OR_Deleted: 13934 if (isImplicitlyDeleted(Best->Function)) { 13935 FunctionDecl *DeletedFD = Best->Function; 13936 DefaultedFunctionKind DFK = getDefaultedFunctionKind(DeletedFD); 13937 if (DFK.isSpecialMember()) { 13938 Diag(OpLoc, diag::err_ovl_deleted_special_oper) 13939 << Args[0]->getType() << DFK.asSpecialMember(); 13940 } else { 13941 assert(DFK.isComparison()); 13942 Diag(OpLoc, diag::err_ovl_deleted_comparison) 13943 << Args[0]->getType() << DeletedFD; 13944 } 13945 13946 // The user probably meant to call this special member. Just 13947 // explain why it's deleted. 13948 NoteDeletedFunction(DeletedFD); 13949 return ExprError(); 13950 } 13951 CandidateSet.NoteCandidates( 13952 PartialDiagnosticAt( 13953 OpLoc, PDiag(diag::err_ovl_deleted_oper) 13954 << getOperatorSpelling(Best->Function->getDeclName() 13955 .getCXXOverloadedOperator()) 13956 << Args[0]->getSourceRange() 13957 << Args[1]->getSourceRange()), 13958 *this, OCD_AllCandidates, Args, BinaryOperator::getOpcodeStr(Opc), 13959 OpLoc); 13960 return ExprError(); 13961 } 13962 13963 // We matched a built-in operator; build it. 13964 return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); 13965 } 13966 13967 ExprResult Sema::BuildSynthesizedThreeWayComparison( 13968 SourceLocation OpLoc, const UnresolvedSetImpl &Fns, Expr *LHS, Expr *RHS, 13969 FunctionDecl *DefaultedFn) { 13970 const ComparisonCategoryInfo *Info = 13971 Context.CompCategories.lookupInfoForType(DefaultedFn->getReturnType()); 13972 // If we're not producing a known comparison category type, we can't 13973 // synthesize a three-way comparison. Let the caller diagnose this. 13974 if (!Info) 13975 return ExprResult((Expr*)nullptr); 13976 13977 // If we ever want to perform this synthesis more generally, we will need to 13978 // apply the temporary materialization conversion to the operands. 13979 assert(LHS->isGLValue() && RHS->isGLValue() && 13980 "cannot use prvalue expressions more than once"); 13981 Expr *OrigLHS = LHS; 13982 Expr *OrigRHS = RHS; 13983 13984 // Replace the LHS and RHS with OpaqueValueExprs; we're going to refer to 13985 // each of them multiple times below. 13986 LHS = new (Context) 13987 OpaqueValueExpr(LHS->getExprLoc(), LHS->getType(), LHS->getValueKind(), 13988 LHS->getObjectKind(), LHS); 13989 RHS = new (Context) 13990 OpaqueValueExpr(RHS->getExprLoc(), RHS->getType(), RHS->getValueKind(), 13991 RHS->getObjectKind(), RHS); 13992 13993 ExprResult Eq = CreateOverloadedBinOp(OpLoc, BO_EQ, Fns, LHS, RHS, true, true, 13994 DefaultedFn); 13995 if (Eq.isInvalid()) 13996 return ExprError(); 13997 13998 ExprResult Less = CreateOverloadedBinOp(OpLoc, BO_LT, Fns, LHS, RHS, true, 13999 true, DefaultedFn); 14000 if (Less.isInvalid()) 14001 return ExprError(); 14002 14003 ExprResult Greater; 14004 if (Info->isPartial()) { 14005 Greater = CreateOverloadedBinOp(OpLoc, BO_LT, Fns, RHS, LHS, true, true, 14006 DefaultedFn); 14007 if (Greater.isInvalid()) 14008 return ExprError(); 14009 } 14010 14011 // Form the list of comparisons we're going to perform. 14012 struct Comparison { 14013 ExprResult Cmp; 14014 ComparisonCategoryResult Result; 14015 } Comparisons[4] = 14016 { {Eq, Info->isStrong() ? ComparisonCategoryResult::Equal 14017 : ComparisonCategoryResult::Equivalent}, 14018 {Less, ComparisonCategoryResult::Less}, 14019 {Greater, ComparisonCategoryResult::Greater}, 14020 {ExprResult(), ComparisonCategoryResult::Unordered}, 14021 }; 14022 14023 int I = Info->isPartial() ? 3 : 2; 14024 14025 // Combine the comparisons with suitable conditional expressions. 14026 ExprResult Result; 14027 for (; I >= 0; --I) { 14028 // Build a reference to the comparison category constant. 14029 auto *VI = Info->lookupValueInfo(Comparisons[I].Result); 14030 // FIXME: Missing a constant for a comparison category. Diagnose this? 14031 if (!VI) 14032 return ExprResult((Expr*)nullptr); 14033 ExprResult ThisResult = 14034 BuildDeclarationNameExpr(CXXScopeSpec(), DeclarationNameInfo(), VI->VD); 14035 if (ThisResult.isInvalid()) 14036 return ExprError(); 14037 14038 // Build a conditional unless this is the final case. 14039 if (Result.get()) { 14040 Result = ActOnConditionalOp(OpLoc, OpLoc, Comparisons[I].Cmp.get(), 14041 ThisResult.get(), Result.get()); 14042 if (Result.isInvalid()) 14043 return ExprError(); 14044 } else { 14045 Result = ThisResult; 14046 } 14047 } 14048 14049 // Build a PseudoObjectExpr to model the rewriting of an <=> operator, and to 14050 // bind the OpaqueValueExprs before they're (repeatedly) used. 14051 Expr *SyntacticForm = BinaryOperator::Create( 14052 Context, OrigLHS, OrigRHS, BO_Cmp, Result.get()->getType(), 14053 Result.get()->getValueKind(), Result.get()->getObjectKind(), OpLoc, 14054 CurFPFeatureOverrides()); 14055 Expr *SemanticForm[] = {LHS, RHS, Result.get()}; 14056 return PseudoObjectExpr::Create(Context, SyntacticForm, SemanticForm, 2); 14057 } 14058 14059 ExprResult 14060 Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc, 14061 SourceLocation RLoc, 14062 Expr *Base, Expr *Idx) { 14063 Expr *Args[2] = { Base, Idx }; 14064 DeclarationName OpName = 14065 Context.DeclarationNames.getCXXOperatorName(OO_Subscript); 14066 14067 // If either side is type-dependent, create an appropriate dependent 14068 // expression. 14069 if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { 14070 14071 CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators 14072 // CHECKME: no 'operator' keyword? 14073 DeclarationNameInfo OpNameInfo(OpName, LLoc); 14074 OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc)); 14075 ExprResult Fn = CreateUnresolvedLookupExpr( 14076 NamingClass, NestedNameSpecifierLoc(), OpNameInfo, UnresolvedSet<0>()); 14077 if (Fn.isInvalid()) 14078 return ExprError(); 14079 // Can't add any actual overloads yet 14080 14081 return CXXOperatorCallExpr::Create(Context, OO_Subscript, Fn.get(), Args, 14082 Context.DependentTy, VK_PRValue, RLoc, 14083 CurFPFeatureOverrides()); 14084 } 14085 14086 // Handle placeholders on both operands. 14087 if (checkPlaceholderForOverload(*this, Args[0])) 14088 return ExprError(); 14089 if (checkPlaceholderForOverload(*this, Args[1])) 14090 return ExprError(); 14091 14092 // Build an empty overload set. 14093 OverloadCandidateSet CandidateSet(LLoc, OverloadCandidateSet::CSK_Operator); 14094 14095 // Subscript can only be overloaded as a member function. 14096 14097 // Add operator candidates that are member functions. 14098 AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet); 14099 14100 // Add builtin operator candidates. 14101 AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, CandidateSet); 14102 14103 bool HadMultipleCandidates = (CandidateSet.size() > 1); 14104 14105 // Perform overload resolution. 14106 OverloadCandidateSet::iterator Best; 14107 switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) { 14108 case OR_Success: { 14109 // We found a built-in operator or an overloaded operator. 14110 FunctionDecl *FnDecl = Best->Function; 14111 14112 if (FnDecl) { 14113 // We matched an overloaded operator. Build a call to that 14114 // operator. 14115 14116 CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl); 14117 14118 // Convert the arguments. 14119 CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl); 14120 ExprResult Arg0 = 14121 PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/nullptr, 14122 Best->FoundDecl, Method); 14123 if (Arg0.isInvalid()) 14124 return ExprError(); 14125 Args[0] = Arg0.get(); 14126 14127 // Convert the arguments. 14128 ExprResult InputInit 14129 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 14130 Context, 14131 FnDecl->getParamDecl(0)), 14132 SourceLocation(), 14133 Args[1]); 14134 if (InputInit.isInvalid()) 14135 return ExprError(); 14136 14137 Args[1] = InputInit.getAs<Expr>(); 14138 14139 // Build the actual expression node. 14140 DeclarationNameInfo OpLocInfo(OpName, LLoc); 14141 OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc)); 14142 ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, 14143 Best->FoundDecl, 14144 Base, 14145 HadMultipleCandidates, 14146 OpLocInfo.getLoc(), 14147 OpLocInfo.getInfo()); 14148 if (FnExpr.isInvalid()) 14149 return ExprError(); 14150 14151 // Determine the result type 14152 QualType ResultTy = FnDecl->getReturnType(); 14153 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 14154 ResultTy = ResultTy.getNonLValueExprType(Context); 14155 14156 CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create( 14157 Context, OO_Subscript, FnExpr.get(), Args, ResultTy, VK, RLoc, 14158 CurFPFeatureOverrides()); 14159 if (CheckCallReturnType(FnDecl->getReturnType(), LLoc, TheCall, FnDecl)) 14160 return ExprError(); 14161 14162 if (CheckFunctionCall(Method, TheCall, 14163 Method->getType()->castAs<FunctionProtoType>())) 14164 return ExprError(); 14165 14166 return MaybeBindToTemporary(TheCall); 14167 } else { 14168 // We matched a built-in operator. Convert the arguments, then 14169 // break out so that we will build the appropriate built-in 14170 // operator node. 14171 ExprResult ArgsRes0 = PerformImplicitConversion( 14172 Args[0], Best->BuiltinParamTypes[0], Best->Conversions[0], 14173 AA_Passing, CCK_ForBuiltinOverloadedOp); 14174 if (ArgsRes0.isInvalid()) 14175 return ExprError(); 14176 Args[0] = ArgsRes0.get(); 14177 14178 ExprResult ArgsRes1 = PerformImplicitConversion( 14179 Args[1], Best->BuiltinParamTypes[1], Best->Conversions[1], 14180 AA_Passing, CCK_ForBuiltinOverloadedOp); 14181 if (ArgsRes1.isInvalid()) 14182 return ExprError(); 14183 Args[1] = ArgsRes1.get(); 14184 14185 break; 14186 } 14187 } 14188 14189 case OR_No_Viable_Function: { 14190 PartialDiagnostic PD = CandidateSet.empty() 14191 ? (PDiag(diag::err_ovl_no_oper) 14192 << Args[0]->getType() << /*subscript*/ 0 14193 << Args[0]->getSourceRange() << Args[1]->getSourceRange()) 14194 : (PDiag(diag::err_ovl_no_viable_subscript) 14195 << Args[0]->getType() << Args[0]->getSourceRange() 14196 << Args[1]->getSourceRange()); 14197 CandidateSet.NoteCandidates(PartialDiagnosticAt(LLoc, PD), *this, 14198 OCD_AllCandidates, Args, "[]", LLoc); 14199 return ExprError(); 14200 } 14201 14202 case OR_Ambiguous: 14203 CandidateSet.NoteCandidates( 14204 PartialDiagnosticAt(LLoc, PDiag(diag::err_ovl_ambiguous_oper_binary) 14205 << "[]" << Args[0]->getType() 14206 << Args[1]->getType() 14207 << Args[0]->getSourceRange() 14208 << Args[1]->getSourceRange()), 14209 *this, OCD_AmbiguousCandidates, Args, "[]", LLoc); 14210 return ExprError(); 14211 14212 case OR_Deleted: 14213 CandidateSet.NoteCandidates( 14214 PartialDiagnosticAt(LLoc, PDiag(diag::err_ovl_deleted_oper) 14215 << "[]" << Args[0]->getSourceRange() 14216 << Args[1]->getSourceRange()), 14217 *this, OCD_AllCandidates, Args, "[]", LLoc); 14218 return ExprError(); 14219 } 14220 14221 // We matched a built-in operator; build it. 14222 return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc); 14223 } 14224 14225 /// BuildCallToMemberFunction - Build a call to a member 14226 /// function. MemExpr is the expression that refers to the member 14227 /// function (and includes the object parameter), Args/NumArgs are the 14228 /// arguments to the function call (not including the object 14229 /// parameter). The caller needs to validate that the member 14230 /// expression refers to a non-static member function or an overloaded 14231 /// member function. 14232 ExprResult Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE, 14233 SourceLocation LParenLoc, 14234 MultiExprArg Args, 14235 SourceLocation RParenLoc, 14236 Expr *ExecConfig, bool IsExecConfig, 14237 bool AllowRecovery) { 14238 assert(MemExprE->getType() == Context.BoundMemberTy || 14239 MemExprE->getType() == Context.OverloadTy); 14240 14241 // Dig out the member expression. This holds both the object 14242 // argument and the member function we're referring to. 14243 Expr *NakedMemExpr = MemExprE->IgnoreParens(); 14244 14245 // Determine whether this is a call to a pointer-to-member function. 14246 if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) { 14247 assert(op->getType() == Context.BoundMemberTy); 14248 assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI); 14249 14250 QualType fnType = 14251 op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType(); 14252 14253 const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>(); 14254 QualType resultType = proto->getCallResultType(Context); 14255 ExprValueKind valueKind = Expr::getValueKindForType(proto->getReturnType()); 14256 14257 // Check that the object type isn't more qualified than the 14258 // member function we're calling. 14259 Qualifiers funcQuals = proto->getMethodQuals(); 14260 14261 QualType objectType = op->getLHS()->getType(); 14262 if (op->getOpcode() == BO_PtrMemI) 14263 objectType = objectType->castAs<PointerType>()->getPointeeType(); 14264 Qualifiers objectQuals = objectType.getQualifiers(); 14265 14266 Qualifiers difference = objectQuals - funcQuals; 14267 difference.removeObjCGCAttr(); 14268 difference.removeAddressSpace(); 14269 if (difference) { 14270 std::string qualsString = difference.getAsString(); 14271 Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals) 14272 << fnType.getUnqualifiedType() 14273 << qualsString 14274 << (qualsString.find(' ') == std::string::npos ? 1 : 2); 14275 } 14276 14277 CXXMemberCallExpr *call = CXXMemberCallExpr::Create( 14278 Context, MemExprE, Args, resultType, valueKind, RParenLoc, 14279 CurFPFeatureOverrides(), proto->getNumParams()); 14280 14281 if (CheckCallReturnType(proto->getReturnType(), op->getRHS()->getBeginLoc(), 14282 call, nullptr)) 14283 return ExprError(); 14284 14285 if (ConvertArgumentsForCall(call, op, nullptr, proto, Args, RParenLoc)) 14286 return ExprError(); 14287 14288 if (CheckOtherCall(call, proto)) 14289 return ExprError(); 14290 14291 return MaybeBindToTemporary(call); 14292 } 14293 14294 // We only try to build a recovery expr at this level if we can preserve 14295 // the return type, otherwise we return ExprError() and let the caller 14296 // recover. 14297 auto BuildRecoveryExpr = [&](QualType Type) { 14298 if (!AllowRecovery) 14299 return ExprError(); 14300 std::vector<Expr *> SubExprs = {MemExprE}; 14301 llvm::for_each(Args, [&SubExprs](Expr *E) { SubExprs.push_back(E); }); 14302 return CreateRecoveryExpr(MemExprE->getBeginLoc(), RParenLoc, SubExprs, 14303 Type); 14304 }; 14305 if (isa<CXXPseudoDestructorExpr>(NakedMemExpr)) 14306 return CallExpr::Create(Context, MemExprE, Args, Context.VoidTy, VK_PRValue, 14307 RParenLoc, CurFPFeatureOverrides()); 14308 14309 UnbridgedCastsSet UnbridgedCasts; 14310 if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) 14311 return ExprError(); 14312 14313 MemberExpr *MemExpr; 14314 CXXMethodDecl *Method = nullptr; 14315 DeclAccessPair FoundDecl = DeclAccessPair::make(nullptr, AS_public); 14316 NestedNameSpecifier *Qualifier = nullptr; 14317 if (isa<MemberExpr>(NakedMemExpr)) { 14318 MemExpr = cast<MemberExpr>(NakedMemExpr); 14319 Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl()); 14320 FoundDecl = MemExpr->getFoundDecl(); 14321 Qualifier = MemExpr->getQualifier(); 14322 UnbridgedCasts.restore(); 14323 } else { 14324 UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr); 14325 Qualifier = UnresExpr->getQualifier(); 14326 14327 QualType ObjectType = UnresExpr->getBaseType(); 14328 Expr::Classification ObjectClassification 14329 = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue() 14330 : UnresExpr->getBase()->Classify(Context); 14331 14332 // Add overload candidates 14333 OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc(), 14334 OverloadCandidateSet::CSK_Normal); 14335 14336 // FIXME: avoid copy. 14337 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr; 14338 if (UnresExpr->hasExplicitTemplateArgs()) { 14339 UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); 14340 TemplateArgs = &TemplateArgsBuffer; 14341 } 14342 14343 for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(), 14344 E = UnresExpr->decls_end(); I != E; ++I) { 14345 14346 NamedDecl *Func = *I; 14347 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext()); 14348 if (isa<UsingShadowDecl>(Func)) 14349 Func = cast<UsingShadowDecl>(Func)->getTargetDecl(); 14350 14351 14352 // Microsoft supports direct constructor calls. 14353 if (getLangOpts().MicrosoftExt && isa<CXXConstructorDecl>(Func)) { 14354 AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(), Args, 14355 CandidateSet, 14356 /*SuppressUserConversions*/ false); 14357 } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) { 14358 // If explicit template arguments were provided, we can't call a 14359 // non-template member function. 14360 if (TemplateArgs) 14361 continue; 14362 14363 AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType, 14364 ObjectClassification, Args, CandidateSet, 14365 /*SuppressUserConversions=*/false); 14366 } else { 14367 AddMethodTemplateCandidate( 14368 cast<FunctionTemplateDecl>(Func), I.getPair(), ActingDC, 14369 TemplateArgs, ObjectType, ObjectClassification, Args, CandidateSet, 14370 /*SuppressUserConversions=*/false); 14371 } 14372 } 14373 14374 DeclarationName DeclName = UnresExpr->getMemberName(); 14375 14376 UnbridgedCasts.restore(); 14377 14378 OverloadCandidateSet::iterator Best; 14379 bool Succeeded = false; 14380 switch (CandidateSet.BestViableFunction(*this, UnresExpr->getBeginLoc(), 14381 Best)) { 14382 case OR_Success: 14383 Method = cast<CXXMethodDecl>(Best->Function); 14384 FoundDecl = Best->FoundDecl; 14385 CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl); 14386 if (DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc())) 14387 break; 14388 // If FoundDecl is different from Method (such as if one is a template 14389 // and the other a specialization), make sure DiagnoseUseOfDecl is 14390 // called on both. 14391 // FIXME: This would be more comprehensively addressed by modifying 14392 // DiagnoseUseOfDecl to accept both the FoundDecl and the decl 14393 // being used. 14394 if (Method != FoundDecl.getDecl() && 14395 DiagnoseUseOfDecl(Method, UnresExpr->getNameLoc())) 14396 break; 14397 Succeeded = true; 14398 break; 14399 14400 case OR_No_Viable_Function: 14401 CandidateSet.NoteCandidates( 14402 PartialDiagnosticAt( 14403 UnresExpr->getMemberLoc(), 14404 PDiag(diag::err_ovl_no_viable_member_function_in_call) 14405 << DeclName << MemExprE->getSourceRange()), 14406 *this, OCD_AllCandidates, Args); 14407 break; 14408 case OR_Ambiguous: 14409 CandidateSet.NoteCandidates( 14410 PartialDiagnosticAt(UnresExpr->getMemberLoc(), 14411 PDiag(diag::err_ovl_ambiguous_member_call) 14412 << DeclName << MemExprE->getSourceRange()), 14413 *this, OCD_AmbiguousCandidates, Args); 14414 break; 14415 case OR_Deleted: 14416 CandidateSet.NoteCandidates( 14417 PartialDiagnosticAt(UnresExpr->getMemberLoc(), 14418 PDiag(diag::err_ovl_deleted_member_call) 14419 << DeclName << MemExprE->getSourceRange()), 14420 *this, OCD_AllCandidates, Args); 14421 break; 14422 } 14423 // Overload resolution fails, try to recover. 14424 if (!Succeeded) 14425 return BuildRecoveryExpr(chooseRecoveryType(CandidateSet, &Best)); 14426 14427 MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method); 14428 14429 // If overload resolution picked a static member, build a 14430 // non-member call based on that function. 14431 if (Method->isStatic()) { 14432 return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, Args, RParenLoc, 14433 ExecConfig, IsExecConfig); 14434 } 14435 14436 MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens()); 14437 } 14438 14439 QualType ResultType = Method->getReturnType(); 14440 ExprValueKind VK = Expr::getValueKindForType(ResultType); 14441 ResultType = ResultType.getNonLValueExprType(Context); 14442 14443 assert(Method && "Member call to something that isn't a method?"); 14444 const auto *Proto = Method->getType()->castAs<FunctionProtoType>(); 14445 CXXMemberCallExpr *TheCall = CXXMemberCallExpr::Create( 14446 Context, MemExprE, Args, ResultType, VK, RParenLoc, 14447 CurFPFeatureOverrides(), Proto->getNumParams()); 14448 14449 // Check for a valid return type. 14450 if (CheckCallReturnType(Method->getReturnType(), MemExpr->getMemberLoc(), 14451 TheCall, Method)) 14452 return BuildRecoveryExpr(ResultType); 14453 14454 // Convert the object argument (for a non-static member function call). 14455 // We only need to do this if there was actually an overload; otherwise 14456 // it was done at lookup. 14457 if (!Method->isStatic()) { 14458 ExprResult ObjectArg = 14459 PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier, 14460 FoundDecl, Method); 14461 if (ObjectArg.isInvalid()) 14462 return ExprError(); 14463 MemExpr->setBase(ObjectArg.get()); 14464 } 14465 14466 // Convert the rest of the arguments 14467 if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args, 14468 RParenLoc)) 14469 return BuildRecoveryExpr(ResultType); 14470 14471 DiagnoseSentinelCalls(Method, LParenLoc, Args); 14472 14473 if (CheckFunctionCall(Method, TheCall, Proto)) 14474 return ExprError(); 14475 14476 // In the case the method to call was not selected by the overloading 14477 // resolution process, we still need to handle the enable_if attribute. Do 14478 // that here, so it will not hide previous -- and more relevant -- errors. 14479 if (auto *MemE = dyn_cast<MemberExpr>(NakedMemExpr)) { 14480 if (const EnableIfAttr *Attr = 14481 CheckEnableIf(Method, LParenLoc, Args, true)) { 14482 Diag(MemE->getMemberLoc(), 14483 diag::err_ovl_no_viable_member_function_in_call) 14484 << Method << Method->getSourceRange(); 14485 Diag(Method->getLocation(), 14486 diag::note_ovl_candidate_disabled_by_function_cond_attr) 14487 << Attr->getCond()->getSourceRange() << Attr->getMessage(); 14488 return ExprError(); 14489 } 14490 } 14491 14492 if ((isa<CXXConstructorDecl>(CurContext) || 14493 isa<CXXDestructorDecl>(CurContext)) && 14494 TheCall->getMethodDecl()->isPure()) { 14495 const CXXMethodDecl *MD = TheCall->getMethodDecl(); 14496 14497 if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts()) && 14498 MemExpr->performsVirtualDispatch(getLangOpts())) { 14499 Diag(MemExpr->getBeginLoc(), 14500 diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor) 14501 << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext) 14502 << MD->getParent(); 14503 14504 Diag(MD->getBeginLoc(), diag::note_previous_decl) << MD->getDeclName(); 14505 if (getLangOpts().AppleKext) 14506 Diag(MemExpr->getBeginLoc(), diag::note_pure_qualified_call_kext) 14507 << MD->getParent() << MD->getDeclName(); 14508 } 14509 } 14510 14511 if (CXXDestructorDecl *DD = 14512 dyn_cast<CXXDestructorDecl>(TheCall->getMethodDecl())) { 14513 // a->A::f() doesn't go through the vtable, except in AppleKext mode. 14514 bool CallCanBeVirtual = !MemExpr->hasQualifier() || getLangOpts().AppleKext; 14515 CheckVirtualDtorCall(DD, MemExpr->getBeginLoc(), /*IsDelete=*/false, 14516 CallCanBeVirtual, /*WarnOnNonAbstractTypes=*/true, 14517 MemExpr->getMemberLoc()); 14518 } 14519 14520 return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), 14521 TheCall->getMethodDecl()); 14522 } 14523 14524 /// BuildCallToObjectOfClassType - Build a call to an object of class 14525 /// type (C++ [over.call.object]), which can end up invoking an 14526 /// overloaded function call operator (@c operator()) or performing a 14527 /// user-defined conversion on the object argument. 14528 ExprResult 14529 Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj, 14530 SourceLocation LParenLoc, 14531 MultiExprArg Args, 14532 SourceLocation RParenLoc) { 14533 if (checkPlaceholderForOverload(*this, Obj)) 14534 return ExprError(); 14535 ExprResult Object = Obj; 14536 14537 UnbridgedCastsSet UnbridgedCasts; 14538 if (checkArgPlaceholdersForOverload(*this, Args, UnbridgedCasts)) 14539 return ExprError(); 14540 14541 assert(Object.get()->getType()->isRecordType() && 14542 "Requires object type argument"); 14543 14544 // C++ [over.call.object]p1: 14545 // If the primary-expression E in the function call syntax 14546 // evaluates to a class object of type "cv T", then the set of 14547 // candidate functions includes at least the function call 14548 // operators of T. The function call operators of T are obtained by 14549 // ordinary lookup of the name operator() in the context of 14550 // (E).operator(). 14551 OverloadCandidateSet CandidateSet(LParenLoc, 14552 OverloadCandidateSet::CSK_Operator); 14553 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call); 14554 14555 if (RequireCompleteType(LParenLoc, Object.get()->getType(), 14556 diag::err_incomplete_object_call, Object.get())) 14557 return true; 14558 14559 const auto *Record = Object.get()->getType()->castAs<RecordType>(); 14560 LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName); 14561 LookupQualifiedName(R, Record->getDecl()); 14562 R.suppressDiagnostics(); 14563 14564 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 14565 Oper != OperEnd; ++Oper) { 14566 AddMethodCandidate(Oper.getPair(), Object.get()->getType(), 14567 Object.get()->Classify(Context), Args, CandidateSet, 14568 /*SuppressUserConversion=*/false); 14569 } 14570 14571 // C++ [over.call.object]p2: 14572 // In addition, for each (non-explicit in C++0x) conversion function 14573 // declared in T of the form 14574 // 14575 // operator conversion-type-id () cv-qualifier; 14576 // 14577 // where cv-qualifier is the same cv-qualification as, or a 14578 // greater cv-qualification than, cv, and where conversion-type-id 14579 // denotes the type "pointer to function of (P1,...,Pn) returning 14580 // R", or the type "reference to pointer to function of 14581 // (P1,...,Pn) returning R", or the type "reference to function 14582 // of (P1,...,Pn) returning R", a surrogate call function [...] 14583 // is also considered as a candidate function. Similarly, 14584 // surrogate call functions are added to the set of candidate 14585 // functions for each conversion function declared in an 14586 // accessible base class provided the function is not hidden 14587 // within T by another intervening declaration. 14588 const auto &Conversions = 14589 cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions(); 14590 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 14591 NamedDecl *D = *I; 14592 CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); 14593 if (isa<UsingShadowDecl>(D)) 14594 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 14595 14596 // Skip over templated conversion functions; they aren't 14597 // surrogates. 14598 if (isa<FunctionTemplateDecl>(D)) 14599 continue; 14600 14601 CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); 14602 if (!Conv->isExplicit()) { 14603 // Strip the reference type (if any) and then the pointer type (if 14604 // any) to get down to what might be a function type. 14605 QualType ConvType = Conv->getConversionType().getNonReferenceType(); 14606 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 14607 ConvType = ConvPtrType->getPointeeType(); 14608 14609 if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>()) 14610 { 14611 AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto, 14612 Object.get(), Args, CandidateSet); 14613 } 14614 } 14615 } 14616 14617 bool HadMultipleCandidates = (CandidateSet.size() > 1); 14618 14619 // Perform overload resolution. 14620 OverloadCandidateSet::iterator Best; 14621 switch (CandidateSet.BestViableFunction(*this, Object.get()->getBeginLoc(), 14622 Best)) { 14623 case OR_Success: 14624 // Overload resolution succeeded; we'll build the appropriate call 14625 // below. 14626 break; 14627 14628 case OR_No_Viable_Function: { 14629 PartialDiagnostic PD = 14630 CandidateSet.empty() 14631 ? (PDiag(diag::err_ovl_no_oper) 14632 << Object.get()->getType() << /*call*/ 1 14633 << Object.get()->getSourceRange()) 14634 : (PDiag(diag::err_ovl_no_viable_object_call) 14635 << Object.get()->getType() << Object.get()->getSourceRange()); 14636 CandidateSet.NoteCandidates( 14637 PartialDiagnosticAt(Object.get()->getBeginLoc(), PD), *this, 14638 OCD_AllCandidates, Args); 14639 break; 14640 } 14641 case OR_Ambiguous: 14642 CandidateSet.NoteCandidates( 14643 PartialDiagnosticAt(Object.get()->getBeginLoc(), 14644 PDiag(diag::err_ovl_ambiguous_object_call) 14645 << Object.get()->getType() 14646 << Object.get()->getSourceRange()), 14647 *this, OCD_AmbiguousCandidates, Args); 14648 break; 14649 14650 case OR_Deleted: 14651 CandidateSet.NoteCandidates( 14652 PartialDiagnosticAt(Object.get()->getBeginLoc(), 14653 PDiag(diag::err_ovl_deleted_object_call) 14654 << Object.get()->getType() 14655 << Object.get()->getSourceRange()), 14656 *this, OCD_AllCandidates, Args); 14657 break; 14658 } 14659 14660 if (Best == CandidateSet.end()) 14661 return true; 14662 14663 UnbridgedCasts.restore(); 14664 14665 if (Best->Function == nullptr) { 14666 // Since there is no function declaration, this is one of the 14667 // surrogate candidates. Dig out the conversion function. 14668 CXXConversionDecl *Conv 14669 = cast<CXXConversionDecl>( 14670 Best->Conversions[0].UserDefined.ConversionFunction); 14671 14672 CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr, 14673 Best->FoundDecl); 14674 if (DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc)) 14675 return ExprError(); 14676 assert(Conv == Best->FoundDecl.getDecl() && 14677 "Found Decl & conversion-to-functionptr should be same, right?!"); 14678 // We selected one of the surrogate functions that converts the 14679 // object parameter to a function pointer. Perform the conversion 14680 // on the object argument, then let BuildCallExpr finish the job. 14681 14682 // Create an implicit member expr to refer to the conversion operator. 14683 // and then call it. 14684 ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl, 14685 Conv, HadMultipleCandidates); 14686 if (Call.isInvalid()) 14687 return ExprError(); 14688 // Record usage of conversion in an implicit cast. 14689 Call = ImplicitCastExpr::Create( 14690 Context, Call.get()->getType(), CK_UserDefinedConversion, Call.get(), 14691 nullptr, VK_PRValue, CurFPFeatureOverrides()); 14692 14693 return BuildCallExpr(S, Call.get(), LParenLoc, Args, RParenLoc); 14694 } 14695 14696 CheckMemberOperatorAccess(LParenLoc, Object.get(), nullptr, Best->FoundDecl); 14697 14698 // We found an overloaded operator(). Build a CXXOperatorCallExpr 14699 // that calls this method, using Object for the implicit object 14700 // parameter and passing along the remaining arguments. 14701 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 14702 14703 // An error diagnostic has already been printed when parsing the declaration. 14704 if (Method->isInvalidDecl()) 14705 return ExprError(); 14706 14707 const auto *Proto = Method->getType()->castAs<FunctionProtoType>(); 14708 unsigned NumParams = Proto->getNumParams(); 14709 14710 DeclarationNameInfo OpLocInfo( 14711 Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc); 14712 OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc)); 14713 ExprResult NewFn = CreateFunctionRefExpr(*this, Method, Best->FoundDecl, 14714 Obj, HadMultipleCandidates, 14715 OpLocInfo.getLoc(), 14716 OpLocInfo.getInfo()); 14717 if (NewFn.isInvalid()) 14718 return true; 14719 14720 // The number of argument slots to allocate in the call. If we have default 14721 // arguments we need to allocate space for them as well. We additionally 14722 // need one more slot for the object parameter. 14723 unsigned NumArgsSlots = 1 + std::max<unsigned>(Args.size(), NumParams); 14724 14725 // Build the full argument list for the method call (the implicit object 14726 // parameter is placed at the beginning of the list). 14727 SmallVector<Expr *, 8> MethodArgs(NumArgsSlots); 14728 14729 bool IsError = false; 14730 14731 // Initialize the implicit object parameter. 14732 ExprResult ObjRes = 14733 PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/nullptr, 14734 Best->FoundDecl, Method); 14735 if (ObjRes.isInvalid()) 14736 IsError = true; 14737 else 14738 Object = ObjRes; 14739 MethodArgs[0] = Object.get(); 14740 14741 // Check the argument types. 14742 for (unsigned i = 0; i != NumParams; i++) { 14743 Expr *Arg; 14744 if (i < Args.size()) { 14745 Arg = Args[i]; 14746 14747 // Pass the argument. 14748 14749 ExprResult InputInit 14750 = PerformCopyInitialization(InitializedEntity::InitializeParameter( 14751 Context, 14752 Method->getParamDecl(i)), 14753 SourceLocation(), Arg); 14754 14755 IsError |= InputInit.isInvalid(); 14756 Arg = InputInit.getAs<Expr>(); 14757 } else { 14758 ExprResult DefArg 14759 = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i)); 14760 if (DefArg.isInvalid()) { 14761 IsError = true; 14762 break; 14763 } 14764 14765 Arg = DefArg.getAs<Expr>(); 14766 } 14767 14768 MethodArgs[i + 1] = Arg; 14769 } 14770 14771 // If this is a variadic call, handle args passed through "...". 14772 if (Proto->isVariadic()) { 14773 // Promote the arguments (C99 6.5.2.2p7). 14774 for (unsigned i = NumParams, e = Args.size(); i < e; i++) { 14775 ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 14776 nullptr); 14777 IsError |= Arg.isInvalid(); 14778 MethodArgs[i + 1] = Arg.get(); 14779 } 14780 } 14781 14782 if (IsError) 14783 return true; 14784 14785 DiagnoseSentinelCalls(Method, LParenLoc, Args); 14786 14787 // Once we've built TheCall, all of the expressions are properly owned. 14788 QualType ResultTy = Method->getReturnType(); 14789 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 14790 ResultTy = ResultTy.getNonLValueExprType(Context); 14791 14792 CXXOperatorCallExpr *TheCall = CXXOperatorCallExpr::Create( 14793 Context, OO_Call, NewFn.get(), MethodArgs, ResultTy, VK, RParenLoc, 14794 CurFPFeatureOverrides()); 14795 14796 if (CheckCallReturnType(Method->getReturnType(), LParenLoc, TheCall, Method)) 14797 return true; 14798 14799 if (CheckFunctionCall(Method, TheCall, Proto)) 14800 return true; 14801 14802 return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), Method); 14803 } 14804 14805 /// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator-> 14806 /// (if one exists), where @c Base is an expression of class type and 14807 /// @c Member is the name of the member we're trying to find. 14808 ExprResult 14809 Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc, 14810 bool *NoArrowOperatorFound) { 14811 assert(Base->getType()->isRecordType() && 14812 "left-hand side must have class type"); 14813 14814 if (checkPlaceholderForOverload(*this, Base)) 14815 return ExprError(); 14816 14817 SourceLocation Loc = Base->getExprLoc(); 14818 14819 // C++ [over.ref]p1: 14820 // 14821 // [...] An expression x->m is interpreted as (x.operator->())->m 14822 // for a class object x of type T if T::operator->() exists and if 14823 // the operator is selected as the best match function by the 14824 // overload resolution mechanism (13.3). 14825 DeclarationName OpName = 14826 Context.DeclarationNames.getCXXOperatorName(OO_Arrow); 14827 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Operator); 14828 14829 if (RequireCompleteType(Loc, Base->getType(), 14830 diag::err_typecheck_incomplete_tag, Base)) 14831 return ExprError(); 14832 14833 LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName); 14834 LookupQualifiedName(R, Base->getType()->castAs<RecordType>()->getDecl()); 14835 R.suppressDiagnostics(); 14836 14837 for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); 14838 Oper != OperEnd; ++Oper) { 14839 AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context), 14840 None, CandidateSet, /*SuppressUserConversion=*/false); 14841 } 14842 14843 bool HadMultipleCandidates = (CandidateSet.size() > 1); 14844 14845 // Perform overload resolution. 14846 OverloadCandidateSet::iterator Best; 14847 switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { 14848 case OR_Success: 14849 // Overload resolution succeeded; we'll build the call below. 14850 break; 14851 14852 case OR_No_Viable_Function: { 14853 auto Cands = CandidateSet.CompleteCandidates(*this, OCD_AllCandidates, Base); 14854 if (CandidateSet.empty()) { 14855 QualType BaseType = Base->getType(); 14856 if (NoArrowOperatorFound) { 14857 // Report this specific error to the caller instead of emitting a 14858 // diagnostic, as requested. 14859 *NoArrowOperatorFound = true; 14860 return ExprError(); 14861 } 14862 Diag(OpLoc, diag::err_typecheck_member_reference_arrow) 14863 << BaseType << Base->getSourceRange(); 14864 if (BaseType->isRecordType() && !BaseType->isPointerType()) { 14865 Diag(OpLoc, diag::note_typecheck_member_reference_suggestion) 14866 << FixItHint::CreateReplacement(OpLoc, "."); 14867 } 14868 } else 14869 Diag(OpLoc, diag::err_ovl_no_viable_oper) 14870 << "operator->" << Base->getSourceRange(); 14871 CandidateSet.NoteCandidates(*this, Base, Cands); 14872 return ExprError(); 14873 } 14874 case OR_Ambiguous: 14875 CandidateSet.NoteCandidates( 14876 PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_ambiguous_oper_unary) 14877 << "->" << Base->getType() 14878 << Base->getSourceRange()), 14879 *this, OCD_AmbiguousCandidates, Base); 14880 return ExprError(); 14881 14882 case OR_Deleted: 14883 CandidateSet.NoteCandidates( 14884 PartialDiagnosticAt(OpLoc, PDiag(diag::err_ovl_deleted_oper) 14885 << "->" << Base->getSourceRange()), 14886 *this, OCD_AllCandidates, Base); 14887 return ExprError(); 14888 } 14889 14890 CheckMemberOperatorAccess(OpLoc, Base, nullptr, Best->FoundDecl); 14891 14892 // Convert the object parameter. 14893 CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); 14894 ExprResult BaseResult = 14895 PerformObjectArgumentInitialization(Base, /*Qualifier=*/nullptr, 14896 Best->FoundDecl, Method); 14897 if (BaseResult.isInvalid()) 14898 return ExprError(); 14899 Base = BaseResult.get(); 14900 14901 // Build the operator call. 14902 ExprResult FnExpr = CreateFunctionRefExpr(*this, Method, Best->FoundDecl, 14903 Base, HadMultipleCandidates, OpLoc); 14904 if (FnExpr.isInvalid()) 14905 return ExprError(); 14906 14907 QualType ResultTy = Method->getReturnType(); 14908 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 14909 ResultTy = ResultTy.getNonLValueExprType(Context); 14910 CXXOperatorCallExpr *TheCall = 14911 CXXOperatorCallExpr::Create(Context, OO_Arrow, FnExpr.get(), Base, 14912 ResultTy, VK, OpLoc, CurFPFeatureOverrides()); 14913 14914 if (CheckCallReturnType(Method->getReturnType(), OpLoc, TheCall, Method)) 14915 return ExprError(); 14916 14917 if (CheckFunctionCall(Method, TheCall, 14918 Method->getType()->castAs<FunctionProtoType>())) 14919 return ExprError(); 14920 14921 return MaybeBindToTemporary(TheCall); 14922 } 14923 14924 /// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call to 14925 /// a literal operator described by the provided lookup results. 14926 ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R, 14927 DeclarationNameInfo &SuffixInfo, 14928 ArrayRef<Expr*> Args, 14929 SourceLocation LitEndLoc, 14930 TemplateArgumentListInfo *TemplateArgs) { 14931 SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc(); 14932 14933 OverloadCandidateSet CandidateSet(UDSuffixLoc, 14934 OverloadCandidateSet::CSK_Normal); 14935 AddNonMemberOperatorCandidates(R.asUnresolvedSet(), Args, CandidateSet, 14936 TemplateArgs); 14937 14938 bool HadMultipleCandidates = (CandidateSet.size() > 1); 14939 14940 // Perform overload resolution. This will usually be trivial, but might need 14941 // to perform substitutions for a literal operator template. 14942 OverloadCandidateSet::iterator Best; 14943 switch (CandidateSet.BestViableFunction(*this, UDSuffixLoc, Best)) { 14944 case OR_Success: 14945 case OR_Deleted: 14946 break; 14947 14948 case OR_No_Viable_Function: 14949 CandidateSet.NoteCandidates( 14950 PartialDiagnosticAt(UDSuffixLoc, 14951 PDiag(diag::err_ovl_no_viable_function_in_call) 14952 << R.getLookupName()), 14953 *this, OCD_AllCandidates, Args); 14954 return ExprError(); 14955 14956 case OR_Ambiguous: 14957 CandidateSet.NoteCandidates( 14958 PartialDiagnosticAt(R.getNameLoc(), PDiag(diag::err_ovl_ambiguous_call) 14959 << R.getLookupName()), 14960 *this, OCD_AmbiguousCandidates, Args); 14961 return ExprError(); 14962 } 14963 14964 FunctionDecl *FD = Best->Function; 14965 ExprResult Fn = CreateFunctionRefExpr(*this, FD, Best->FoundDecl, 14966 nullptr, HadMultipleCandidates, 14967 SuffixInfo.getLoc(), 14968 SuffixInfo.getInfo()); 14969 if (Fn.isInvalid()) 14970 return true; 14971 14972 // Check the argument types. This should almost always be a no-op, except 14973 // that array-to-pointer decay is applied to string literals. 14974 Expr *ConvArgs[2]; 14975 for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { 14976 ExprResult InputInit = PerformCopyInitialization( 14977 InitializedEntity::InitializeParameter(Context, FD->getParamDecl(ArgIdx)), 14978 SourceLocation(), Args[ArgIdx]); 14979 if (InputInit.isInvalid()) 14980 return true; 14981 ConvArgs[ArgIdx] = InputInit.get(); 14982 } 14983 14984 QualType ResultTy = FD->getReturnType(); 14985 ExprValueKind VK = Expr::getValueKindForType(ResultTy); 14986 ResultTy = ResultTy.getNonLValueExprType(Context); 14987 14988 UserDefinedLiteral *UDL = UserDefinedLiteral::Create( 14989 Context, Fn.get(), llvm::makeArrayRef(ConvArgs, Args.size()), ResultTy, 14990 VK, LitEndLoc, UDSuffixLoc, CurFPFeatureOverrides()); 14991 14992 if (CheckCallReturnType(FD->getReturnType(), UDSuffixLoc, UDL, FD)) 14993 return ExprError(); 14994 14995 if (CheckFunctionCall(FD, UDL, nullptr)) 14996 return ExprError(); 14997 14998 return CheckForImmediateInvocation(MaybeBindToTemporary(UDL), FD); 14999 } 15000 15001 /// Build a call to 'begin' or 'end' for a C++11 for-range statement. If the 15002 /// given LookupResult is non-empty, it is assumed to describe a member which 15003 /// will be invoked. Otherwise, the function will be found via argument 15004 /// dependent lookup. 15005 /// CallExpr is set to a valid expression and FRS_Success returned on success, 15006 /// otherwise CallExpr is set to ExprError() and some non-success value 15007 /// is returned. 15008 Sema::ForRangeStatus 15009 Sema::BuildForRangeBeginEndCall(SourceLocation Loc, 15010 SourceLocation RangeLoc, 15011 const DeclarationNameInfo &NameInfo, 15012 LookupResult &MemberLookup, 15013 OverloadCandidateSet *CandidateSet, 15014 Expr *Range, ExprResult *CallExpr) { 15015 Scope *S = nullptr; 15016 15017 CandidateSet->clear(OverloadCandidateSet::CSK_Normal); 15018 if (!MemberLookup.empty()) { 15019 ExprResult MemberRef = 15020 BuildMemberReferenceExpr(Range, Range->getType(), Loc, 15021 /*IsPtr=*/false, CXXScopeSpec(), 15022 /*TemplateKWLoc=*/SourceLocation(), 15023 /*FirstQualifierInScope=*/nullptr, 15024 MemberLookup, 15025 /*TemplateArgs=*/nullptr, S); 15026 if (MemberRef.isInvalid()) { 15027 *CallExpr = ExprError(); 15028 return FRS_DiagnosticIssued; 15029 } 15030 *CallExpr = BuildCallExpr(S, MemberRef.get(), Loc, None, Loc, nullptr); 15031 if (CallExpr->isInvalid()) { 15032 *CallExpr = ExprError(); 15033 return FRS_DiagnosticIssued; 15034 } 15035 } else { 15036 ExprResult FnR = CreateUnresolvedLookupExpr(/*NamingClass=*/nullptr, 15037 NestedNameSpecifierLoc(), 15038 NameInfo, UnresolvedSet<0>()); 15039 if (FnR.isInvalid()) 15040 return FRS_DiagnosticIssued; 15041 UnresolvedLookupExpr *Fn = cast<UnresolvedLookupExpr>(FnR.get()); 15042 15043 bool CandidateSetError = buildOverloadedCallSet(S, Fn, Fn, Range, Loc, 15044 CandidateSet, CallExpr); 15045 if (CandidateSet->empty() || CandidateSetError) { 15046 *CallExpr = ExprError(); 15047 return FRS_NoViableFunction; 15048 } 15049 OverloadCandidateSet::iterator Best; 15050 OverloadingResult OverloadResult = 15051 CandidateSet->BestViableFunction(*this, Fn->getBeginLoc(), Best); 15052 15053 if (OverloadResult == OR_No_Viable_Function) { 15054 *CallExpr = ExprError(); 15055 return FRS_NoViableFunction; 15056 } 15057 *CallExpr = FinishOverloadedCallExpr(*this, S, Fn, Fn, Loc, Range, 15058 Loc, nullptr, CandidateSet, &Best, 15059 OverloadResult, 15060 /*AllowTypoCorrection=*/false); 15061 if (CallExpr->isInvalid() || OverloadResult != OR_Success) { 15062 *CallExpr = ExprError(); 15063 return FRS_DiagnosticIssued; 15064 } 15065 } 15066 return FRS_Success; 15067 } 15068 15069 15070 /// FixOverloadedFunctionReference - E is an expression that refers to 15071 /// a C++ overloaded function (possibly with some parentheses and 15072 /// perhaps a '&' around it). We have resolved the overloaded function 15073 /// to the function declaration Fn, so patch up the expression E to 15074 /// refer (possibly indirectly) to Fn. Returns the new expr. 15075 Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found, 15076 FunctionDecl *Fn) { 15077 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 15078 Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(), 15079 Found, Fn); 15080 if (SubExpr == PE->getSubExpr()) 15081 return PE; 15082 15083 return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr); 15084 } 15085 15086 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 15087 Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(), 15088 Found, Fn); 15089 assert(Context.hasSameType(ICE->getSubExpr()->getType(), 15090 SubExpr->getType()) && 15091 "Implicit cast type cannot be determined from overload"); 15092 assert(ICE->path_empty() && "fixing up hierarchy conversion?"); 15093 if (SubExpr == ICE->getSubExpr()) 15094 return ICE; 15095 15096 return ImplicitCastExpr::Create(Context, ICE->getType(), ICE->getCastKind(), 15097 SubExpr, nullptr, ICE->getValueKind(), 15098 CurFPFeatureOverrides()); 15099 } 15100 15101 if (auto *GSE = dyn_cast<GenericSelectionExpr>(E)) { 15102 if (!GSE->isResultDependent()) { 15103 Expr *SubExpr = 15104 FixOverloadedFunctionReference(GSE->getResultExpr(), Found, Fn); 15105 if (SubExpr == GSE->getResultExpr()) 15106 return GSE; 15107 15108 // Replace the resulting type information before rebuilding the generic 15109 // selection expression. 15110 ArrayRef<Expr *> A = GSE->getAssocExprs(); 15111 SmallVector<Expr *, 4> AssocExprs(A.begin(), A.end()); 15112 unsigned ResultIdx = GSE->getResultIndex(); 15113 AssocExprs[ResultIdx] = SubExpr; 15114 15115 return GenericSelectionExpr::Create( 15116 Context, GSE->getGenericLoc(), GSE->getControllingExpr(), 15117 GSE->getAssocTypeSourceInfos(), AssocExprs, GSE->getDefaultLoc(), 15118 GSE->getRParenLoc(), GSE->containsUnexpandedParameterPack(), 15119 ResultIdx); 15120 } 15121 // Rather than fall through to the unreachable, return the original generic 15122 // selection expression. 15123 return GSE; 15124 } 15125 15126 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) { 15127 assert(UnOp->getOpcode() == UO_AddrOf && 15128 "Can only take the address of an overloaded function"); 15129 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { 15130 if (Method->isStatic()) { 15131 // Do nothing: static member functions aren't any different 15132 // from non-member functions. 15133 } else { 15134 // Fix the subexpression, which really has to be an 15135 // UnresolvedLookupExpr holding an overloaded member function 15136 // or template. 15137 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), 15138 Found, Fn); 15139 if (SubExpr == UnOp->getSubExpr()) 15140 return UnOp; 15141 15142 assert(isa<DeclRefExpr>(SubExpr) 15143 && "fixed to something other than a decl ref"); 15144 assert(cast<DeclRefExpr>(SubExpr)->getQualifier() 15145 && "fixed to a member ref with no nested name qualifier"); 15146 15147 // We have taken the address of a pointer to member 15148 // function. Perform the computation here so that we get the 15149 // appropriate pointer to member type. 15150 QualType ClassType 15151 = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext())); 15152 QualType MemPtrType 15153 = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr()); 15154 // Under the MS ABI, lock down the inheritance model now. 15155 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) 15156 (void)isCompleteType(UnOp->getOperatorLoc(), MemPtrType); 15157 15158 return UnaryOperator::Create( 15159 Context, SubExpr, UO_AddrOf, MemPtrType, VK_PRValue, OK_Ordinary, 15160 UnOp->getOperatorLoc(), false, CurFPFeatureOverrides()); 15161 } 15162 } 15163 Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), 15164 Found, Fn); 15165 if (SubExpr == UnOp->getSubExpr()) 15166 return UnOp; 15167 15168 return UnaryOperator::Create( 15169 Context, SubExpr, UO_AddrOf, Context.getPointerType(SubExpr->getType()), 15170 VK_PRValue, OK_Ordinary, UnOp->getOperatorLoc(), false, 15171 CurFPFeatureOverrides()); 15172 } 15173 15174 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) { 15175 // FIXME: avoid copy. 15176 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr; 15177 if (ULE->hasExplicitTemplateArgs()) { 15178 ULE->copyTemplateArgumentsInto(TemplateArgsBuffer); 15179 TemplateArgs = &TemplateArgsBuffer; 15180 } 15181 15182 DeclRefExpr *DRE = 15183 BuildDeclRefExpr(Fn, Fn->getType(), VK_LValue, ULE->getNameInfo(), 15184 ULE->getQualifierLoc(), Found.getDecl(), 15185 ULE->getTemplateKeywordLoc(), TemplateArgs); 15186 DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1); 15187 return DRE; 15188 } 15189 15190 if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) { 15191 // FIXME: avoid copy. 15192 TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr; 15193 if (MemExpr->hasExplicitTemplateArgs()) { 15194 MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); 15195 TemplateArgs = &TemplateArgsBuffer; 15196 } 15197 15198 Expr *Base; 15199 15200 // If we're filling in a static method where we used to have an 15201 // implicit member access, rewrite to a simple decl ref. 15202 if (MemExpr->isImplicitAccess()) { 15203 if (cast<CXXMethodDecl>(Fn)->isStatic()) { 15204 DeclRefExpr *DRE = BuildDeclRefExpr( 15205 Fn, Fn->getType(), VK_LValue, MemExpr->getNameInfo(), 15206 MemExpr->getQualifierLoc(), Found.getDecl(), 15207 MemExpr->getTemplateKeywordLoc(), TemplateArgs); 15208 DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1); 15209 return DRE; 15210 } else { 15211 SourceLocation Loc = MemExpr->getMemberLoc(); 15212 if (MemExpr->getQualifier()) 15213 Loc = MemExpr->getQualifierLoc().getBeginLoc(); 15214 Base = 15215 BuildCXXThisExpr(Loc, MemExpr->getBaseType(), /*IsImplicit=*/true); 15216 } 15217 } else 15218 Base = MemExpr->getBase(); 15219 15220 ExprValueKind valueKind; 15221 QualType type; 15222 if (cast<CXXMethodDecl>(Fn)->isStatic()) { 15223 valueKind = VK_LValue; 15224 type = Fn->getType(); 15225 } else { 15226 valueKind = VK_PRValue; 15227 type = Context.BoundMemberTy; 15228 } 15229 15230 return BuildMemberExpr( 15231 Base, MemExpr->isArrow(), MemExpr->getOperatorLoc(), 15232 MemExpr->getQualifierLoc(), MemExpr->getTemplateKeywordLoc(), Fn, Found, 15233 /*HadMultipleCandidates=*/true, MemExpr->getMemberNameInfo(), 15234 type, valueKind, OK_Ordinary, TemplateArgs); 15235 } 15236 15237 llvm_unreachable("Invalid reference to overloaded function"); 15238 } 15239 15240 ExprResult Sema::FixOverloadedFunctionReference(ExprResult E, 15241 DeclAccessPair Found, 15242 FunctionDecl *Fn) { 15243 return FixOverloadedFunctionReference(E.get(), Found, Fn); 15244 } 15245