1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements semantic analysis for initializers. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/ASTContext.h" 15 #include "clang/AST/DeclObjC.h" 16 #include "clang/AST/ExprCXX.h" 17 #include "clang/AST/ExprObjC.h" 18 #include "clang/AST/TypeLoc.h" 19 #include "clang/Basic/TargetInfo.h" 20 #include "clang/Sema/Designator.h" 21 #include "clang/Sema/Initialization.h" 22 #include "clang/Sema/Lookup.h" 23 #include "clang/Sema/SemaInternal.h" 24 #include "llvm/ADT/APInt.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/raw_ostream.h" 28 29 using namespace clang; 30 31 //===----------------------------------------------------------------------===// 32 // Sema Initialization Checking 33 //===----------------------------------------------------------------------===// 34 35 /// \brief Check whether T is compatible with a wide character type (wchar_t, 36 /// char16_t or char32_t). 37 static bool IsWideCharCompatible(QualType T, ASTContext &Context) { 38 if (Context.typesAreCompatible(Context.getWideCharType(), T)) 39 return true; 40 if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) { 41 return Context.typesAreCompatible(Context.Char16Ty, T) || 42 Context.typesAreCompatible(Context.Char32Ty, T); 43 } 44 return false; 45 } 46 47 enum StringInitFailureKind { 48 SIF_None, 49 SIF_NarrowStringIntoWideChar, 50 SIF_WideStringIntoChar, 51 SIF_IncompatWideStringIntoWideChar, 52 SIF_Other 53 }; 54 55 /// \brief Check whether the array of type AT can be initialized by the Init 56 /// expression by means of string initialization. Returns SIF_None if so, 57 /// otherwise returns a StringInitFailureKind that describes why the 58 /// initialization would not work. 59 static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT, 60 ASTContext &Context) { 61 if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT)) 62 return SIF_Other; 63 64 // See if this is a string literal or @encode. 65 Init = Init->IgnoreParens(); 66 67 // Handle @encode, which is a narrow string. 68 if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType()) 69 return SIF_None; 70 71 // Otherwise we can only handle string literals. 72 StringLiteral *SL = dyn_cast<StringLiteral>(Init); 73 if (!SL) 74 return SIF_Other; 75 76 const QualType ElemTy = 77 Context.getCanonicalType(AT->getElementType()).getUnqualifiedType(); 78 79 switch (SL->getKind()) { 80 case StringLiteral::Ascii: 81 case StringLiteral::UTF8: 82 // char array can be initialized with a narrow string. 83 // Only allow char x[] = "foo"; not char x[] = L"foo"; 84 if (ElemTy->isCharType()) 85 return SIF_None; 86 if (IsWideCharCompatible(ElemTy, Context)) 87 return SIF_NarrowStringIntoWideChar; 88 return SIF_Other; 89 // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15: 90 // "An array with element type compatible with a qualified or unqualified 91 // version of wchar_t, char16_t, or char32_t may be initialized by a wide 92 // string literal with the corresponding encoding prefix (L, u, or U, 93 // respectively), optionally enclosed in braces. 94 case StringLiteral::UTF16: 95 if (Context.typesAreCompatible(Context.Char16Ty, ElemTy)) 96 return SIF_None; 97 if (ElemTy->isCharType()) 98 return SIF_WideStringIntoChar; 99 if (IsWideCharCompatible(ElemTy, Context)) 100 return SIF_IncompatWideStringIntoWideChar; 101 return SIF_Other; 102 case StringLiteral::UTF32: 103 if (Context.typesAreCompatible(Context.Char32Ty, ElemTy)) 104 return SIF_None; 105 if (ElemTy->isCharType()) 106 return SIF_WideStringIntoChar; 107 if (IsWideCharCompatible(ElemTy, Context)) 108 return SIF_IncompatWideStringIntoWideChar; 109 return SIF_Other; 110 case StringLiteral::Wide: 111 if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy)) 112 return SIF_None; 113 if (ElemTy->isCharType()) 114 return SIF_WideStringIntoChar; 115 if (IsWideCharCompatible(ElemTy, Context)) 116 return SIF_IncompatWideStringIntoWideChar; 117 return SIF_Other; 118 } 119 120 llvm_unreachable("missed a StringLiteral kind?"); 121 } 122 123 static StringInitFailureKind IsStringInit(Expr *init, QualType declType, 124 ASTContext &Context) { 125 const ArrayType *arrayType = Context.getAsArrayType(declType); 126 if (!arrayType) 127 return SIF_Other; 128 return IsStringInit(init, arrayType, Context); 129 } 130 131 /// Update the type of a string literal, including any surrounding parentheses, 132 /// to match the type of the object which it is initializing. 133 static void updateStringLiteralType(Expr *E, QualType Ty) { 134 while (true) { 135 E->setType(Ty); 136 if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E)) 137 break; 138 else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) 139 E = PE->getSubExpr(); 140 else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) 141 E = UO->getSubExpr(); 142 else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) 143 E = GSE->getResultExpr(); 144 else 145 llvm_unreachable("unexpected expr in string literal init"); 146 } 147 } 148 149 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT, 150 Sema &S) { 151 // Get the length of the string as parsed. 152 auto *ConstantArrayTy = 153 cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe()); 154 uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue(); 155 156 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) { 157 // C99 6.7.8p14. We have an array of character type with unknown size 158 // being initialized to a string literal. 159 llvm::APInt ConstVal(32, StrLength); 160 // Return a new array type (C99 6.7.8p22). 161 DeclT = S.Context.getConstantArrayType(IAT->getElementType(), 162 ConstVal, 163 ArrayType::Normal, 0); 164 updateStringLiteralType(Str, DeclT); 165 return; 166 } 167 168 const ConstantArrayType *CAT = cast<ConstantArrayType>(AT); 169 170 // We have an array of character type with known size. However, 171 // the size may be smaller or larger than the string we are initializing. 172 // FIXME: Avoid truncation for 64-bit length strings. 173 if (S.getLangOpts().CPlusPlus) { 174 if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) { 175 // For Pascal strings it's OK to strip off the terminating null character, 176 // so the example below is valid: 177 // 178 // unsigned char a[2] = "\pa"; 179 if (SL->isPascal()) 180 StrLength--; 181 } 182 183 // [dcl.init.string]p2 184 if (StrLength > CAT->getSize().getZExtValue()) 185 S.Diag(Str->getLocStart(), 186 diag::err_initializer_string_for_char_array_too_long) 187 << Str->getSourceRange(); 188 } else { 189 // C99 6.7.8p14. 190 if (StrLength-1 > CAT->getSize().getZExtValue()) 191 S.Diag(Str->getLocStart(), 192 diag::ext_initializer_string_for_char_array_too_long) 193 << Str->getSourceRange(); 194 } 195 196 // Set the type to the actual size that we are initializing. If we have 197 // something like: 198 // char x[1] = "foo"; 199 // then this will set the string literal's type to char[1]. 200 updateStringLiteralType(Str, DeclT); 201 } 202 203 //===----------------------------------------------------------------------===// 204 // Semantic checking for initializer lists. 205 //===----------------------------------------------------------------------===// 206 207 namespace { 208 209 /// @brief Semantic checking for initializer lists. 210 /// 211 /// The InitListChecker class contains a set of routines that each 212 /// handle the initialization of a certain kind of entity, e.g., 213 /// arrays, vectors, struct/union types, scalars, etc. The 214 /// InitListChecker itself performs a recursive walk of the subobject 215 /// structure of the type to be initialized, while stepping through 216 /// the initializer list one element at a time. The IList and Index 217 /// parameters to each of the Check* routines contain the active 218 /// (syntactic) initializer list and the index into that initializer 219 /// list that represents the current initializer. Each routine is 220 /// responsible for moving that Index forward as it consumes elements. 221 /// 222 /// Each Check* routine also has a StructuredList/StructuredIndex 223 /// arguments, which contains the current "structured" (semantic) 224 /// initializer list and the index into that initializer list where we 225 /// are copying initializers as we map them over to the semantic 226 /// list. Once we have completed our recursive walk of the subobject 227 /// structure, we will have constructed a full semantic initializer 228 /// list. 229 /// 230 /// C99 designators cause changes in the initializer list traversal, 231 /// because they make the initialization "jump" into a specific 232 /// subobject and then continue the initialization from that 233 /// point. CheckDesignatedInitializer() recursively steps into the 234 /// designated subobject and manages backing out the recursion to 235 /// initialize the subobjects after the one designated. 236 class InitListChecker { 237 Sema &SemaRef; 238 bool hadError; 239 bool VerifyOnly; // no diagnostics, no structure building 240 bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode. 241 llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic; 242 InitListExpr *FullyStructuredList; 243 244 void CheckImplicitInitList(const InitializedEntity &Entity, 245 InitListExpr *ParentIList, QualType T, 246 unsigned &Index, InitListExpr *StructuredList, 247 unsigned &StructuredIndex); 248 void CheckExplicitInitList(const InitializedEntity &Entity, 249 InitListExpr *IList, QualType &T, 250 InitListExpr *StructuredList, 251 bool TopLevelObject = false); 252 void CheckListElementTypes(const InitializedEntity &Entity, 253 InitListExpr *IList, QualType &DeclType, 254 bool SubobjectIsDesignatorContext, 255 unsigned &Index, 256 InitListExpr *StructuredList, 257 unsigned &StructuredIndex, 258 bool TopLevelObject = false); 259 void CheckSubElementType(const InitializedEntity &Entity, 260 InitListExpr *IList, QualType ElemType, 261 unsigned &Index, 262 InitListExpr *StructuredList, 263 unsigned &StructuredIndex); 264 void CheckComplexType(const InitializedEntity &Entity, 265 InitListExpr *IList, QualType DeclType, 266 unsigned &Index, 267 InitListExpr *StructuredList, 268 unsigned &StructuredIndex); 269 void CheckScalarType(const InitializedEntity &Entity, 270 InitListExpr *IList, QualType DeclType, 271 unsigned &Index, 272 InitListExpr *StructuredList, 273 unsigned &StructuredIndex); 274 void CheckReferenceType(const InitializedEntity &Entity, 275 InitListExpr *IList, QualType DeclType, 276 unsigned &Index, 277 InitListExpr *StructuredList, 278 unsigned &StructuredIndex); 279 void CheckVectorType(const InitializedEntity &Entity, 280 InitListExpr *IList, QualType DeclType, unsigned &Index, 281 InitListExpr *StructuredList, 282 unsigned &StructuredIndex); 283 void CheckStructUnionTypes(const InitializedEntity &Entity, 284 InitListExpr *IList, QualType DeclType, 285 CXXRecordDecl::base_class_range Bases, 286 RecordDecl::field_iterator Field, 287 bool SubobjectIsDesignatorContext, unsigned &Index, 288 InitListExpr *StructuredList, 289 unsigned &StructuredIndex, 290 bool TopLevelObject = false); 291 void CheckArrayType(const InitializedEntity &Entity, 292 InitListExpr *IList, QualType &DeclType, 293 llvm::APSInt elementIndex, 294 bool SubobjectIsDesignatorContext, unsigned &Index, 295 InitListExpr *StructuredList, 296 unsigned &StructuredIndex); 297 bool CheckDesignatedInitializer(const InitializedEntity &Entity, 298 InitListExpr *IList, DesignatedInitExpr *DIE, 299 unsigned DesigIdx, 300 QualType &CurrentObjectType, 301 RecordDecl::field_iterator *NextField, 302 llvm::APSInt *NextElementIndex, 303 unsigned &Index, 304 InitListExpr *StructuredList, 305 unsigned &StructuredIndex, 306 bool FinishSubobjectInit, 307 bool TopLevelObject); 308 InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, 309 QualType CurrentObjectType, 310 InitListExpr *StructuredList, 311 unsigned StructuredIndex, 312 SourceRange InitRange, 313 bool IsFullyOverwritten = false); 314 void UpdateStructuredListElement(InitListExpr *StructuredList, 315 unsigned &StructuredIndex, 316 Expr *expr); 317 int numArrayElements(QualType DeclType); 318 int numStructUnionElements(QualType DeclType); 319 320 static ExprResult PerformEmptyInit(Sema &SemaRef, 321 SourceLocation Loc, 322 const InitializedEntity &Entity, 323 bool VerifyOnly, 324 bool TreatUnavailableAsInvalid); 325 326 // Explanation on the "FillWithNoInit" mode: 327 // 328 // Assume we have the following definitions (Case#1): 329 // struct P { char x[6][6]; } xp = { .x[1] = "bar" }; 330 // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' }; 331 // 332 // l.lp.x[1][0..1] should not be filled with implicit initializers because the 333 // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf". 334 // 335 // But if we have (Case#2): 336 // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } }; 337 // 338 // l.lp.x[1][0..1] are implicitly initialized and do not use values from the 339 // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0". 340 // 341 // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes" 342 // in the InitListExpr, the "holes" in Case#1 are filled not with empty 343 // initializers but with special "NoInitExpr" place holders, which tells the 344 // CodeGen not to generate any initializers for these parts. 345 void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base, 346 const InitializedEntity &ParentEntity, 347 InitListExpr *ILE, bool &RequiresSecondPass, 348 bool FillWithNoInit); 349 void FillInEmptyInitForField(unsigned Init, FieldDecl *Field, 350 const InitializedEntity &ParentEntity, 351 InitListExpr *ILE, bool &RequiresSecondPass, 352 bool FillWithNoInit = false); 353 void FillInEmptyInitializations(const InitializedEntity &Entity, 354 InitListExpr *ILE, bool &RequiresSecondPass, 355 bool FillWithNoInit = false); 356 bool CheckFlexibleArrayInit(const InitializedEntity &Entity, 357 Expr *InitExpr, FieldDecl *Field, 358 bool TopLevelObject); 359 void CheckEmptyInitializable(const InitializedEntity &Entity, 360 SourceLocation Loc); 361 362 public: 363 InitListChecker(Sema &S, const InitializedEntity &Entity, 364 InitListExpr *IL, QualType &T, bool VerifyOnly, 365 bool TreatUnavailableAsInvalid); 366 bool HadError() { return hadError; } 367 368 // @brief Retrieves the fully-structured initializer list used for 369 // semantic analysis and code generation. 370 InitListExpr *getFullyStructuredList() const { return FullyStructuredList; } 371 }; 372 373 } // end anonymous namespace 374 375 ExprResult InitListChecker::PerformEmptyInit(Sema &SemaRef, 376 SourceLocation Loc, 377 const InitializedEntity &Entity, 378 bool VerifyOnly, 379 bool TreatUnavailableAsInvalid) { 380 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc, 381 true); 382 MultiExprArg SubInit; 383 Expr *InitExpr; 384 InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc); 385 386 // C++ [dcl.init.aggr]p7: 387 // If there are fewer initializer-clauses in the list than there are 388 // members in the aggregate, then each member not explicitly initialized 389 // ... 390 bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 && 391 Entity.getType()->getBaseElementTypeUnsafe()->isRecordType(); 392 if (EmptyInitList) { 393 // C++1y / DR1070: 394 // shall be initialized [...] from an empty initializer list. 395 // 396 // We apply the resolution of this DR to C++11 but not C++98, since C++98 397 // does not have useful semantics for initialization from an init list. 398 // We treat this as copy-initialization, because aggregate initialization 399 // always performs copy-initialization on its elements. 400 // 401 // Only do this if we're initializing a class type, to avoid filling in 402 // the initializer list where possible. 403 InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context) 404 InitListExpr(SemaRef.Context, Loc, None, Loc); 405 InitExpr->setType(SemaRef.Context.VoidTy); 406 SubInit = InitExpr; 407 Kind = InitializationKind::CreateCopy(Loc, Loc); 408 } else { 409 // C++03: 410 // shall be value-initialized. 411 } 412 413 InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit); 414 // libstdc++4.6 marks the vector default constructor as explicit in 415 // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case. 416 // stlport does so too. Look for std::__debug for libstdc++, and for 417 // std:: for stlport. This is effectively a compiler-side implementation of 418 // LWG2193. 419 if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() == 420 InitializationSequence::FK_ExplicitConstructor) { 421 OverloadCandidateSet::iterator Best; 422 OverloadingResult O = 423 InitSeq.getFailedCandidateSet() 424 .BestViableFunction(SemaRef, Kind.getLocation(), Best); 425 (void)O; 426 assert(O == OR_Success && "Inconsistent overload resolution"); 427 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 428 CXXRecordDecl *R = CtorDecl->getParent(); 429 430 if (CtorDecl->getMinRequiredArguments() == 0 && 431 CtorDecl->isExplicit() && R->getDeclName() && 432 SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) { 433 bool IsInStd = false; 434 for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext()); 435 ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) { 436 if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND)) 437 IsInStd = true; 438 } 439 440 if (IsInStd && llvm::StringSwitch<bool>(R->getName()) 441 .Cases("basic_string", "deque", "forward_list", true) 442 .Cases("list", "map", "multimap", "multiset", true) 443 .Cases("priority_queue", "queue", "set", "stack", true) 444 .Cases("unordered_map", "unordered_set", "vector", true) 445 .Default(false)) { 446 InitSeq.InitializeFrom( 447 SemaRef, Entity, 448 InitializationKind::CreateValue(Loc, Loc, Loc, true), 449 MultiExprArg(), /*TopLevelOfInitList=*/false, 450 TreatUnavailableAsInvalid); 451 // Emit a warning for this. System header warnings aren't shown 452 // by default, but people working on system headers should see it. 453 if (!VerifyOnly) { 454 SemaRef.Diag(CtorDecl->getLocation(), 455 diag::warn_invalid_initializer_from_system_header); 456 if (Entity.getKind() == InitializedEntity::EK_Member) 457 SemaRef.Diag(Entity.getDecl()->getLocation(), 458 diag::note_used_in_initialization_here); 459 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) 460 SemaRef.Diag(Loc, diag::note_used_in_initialization_here); 461 } 462 } 463 } 464 } 465 if (!InitSeq) { 466 if (!VerifyOnly) { 467 InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit); 468 if (Entity.getKind() == InitializedEntity::EK_Member) 469 SemaRef.Diag(Entity.getDecl()->getLocation(), 470 diag::note_in_omitted_aggregate_initializer) 471 << /*field*/1 << Entity.getDecl(); 472 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) 473 SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer) 474 << /*array element*/0 << Entity.getElementIndex(); 475 } 476 return ExprError(); 477 } 478 479 return VerifyOnly ? ExprResult(static_cast<Expr *>(nullptr)) 480 : InitSeq.Perform(SemaRef, Entity, Kind, SubInit); 481 } 482 483 void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity, 484 SourceLocation Loc) { 485 assert(VerifyOnly && 486 "CheckEmptyInitializable is only inteded for verification mode."); 487 if (PerformEmptyInit(SemaRef, Loc, Entity, /*VerifyOnly*/true, 488 TreatUnavailableAsInvalid).isInvalid()) 489 hadError = true; 490 } 491 492 void InitListChecker::FillInEmptyInitForBase( 493 unsigned Init, const CXXBaseSpecifier &Base, 494 const InitializedEntity &ParentEntity, InitListExpr *ILE, 495 bool &RequiresSecondPass, bool FillWithNoInit) { 496 assert(Init < ILE->getNumInits() && "should have been expanded"); 497 498 InitializedEntity BaseEntity = InitializedEntity::InitializeBase( 499 SemaRef.Context, &Base, false, &ParentEntity); 500 501 if (!ILE->getInit(Init)) { 502 ExprResult BaseInit = 503 FillWithNoInit ? new (SemaRef.Context) NoInitExpr(Base.getType()) 504 : PerformEmptyInit(SemaRef, ILE->getLocEnd(), BaseEntity, 505 /*VerifyOnly*/ false, 506 TreatUnavailableAsInvalid); 507 if (BaseInit.isInvalid()) { 508 hadError = true; 509 return; 510 } 511 512 ILE->setInit(Init, BaseInit.getAs<Expr>()); 513 } else if (InitListExpr *InnerILE = 514 dyn_cast<InitListExpr>(ILE->getInit(Init))) { 515 FillInEmptyInitializations(BaseEntity, InnerILE, 516 RequiresSecondPass, FillWithNoInit); 517 } else if (DesignatedInitUpdateExpr *InnerDIUE = 518 dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) { 519 FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(), 520 RequiresSecondPass, /*FillWithNoInit =*/true); 521 } 522 } 523 524 void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field, 525 const InitializedEntity &ParentEntity, 526 InitListExpr *ILE, 527 bool &RequiresSecondPass, 528 bool FillWithNoInit) { 529 SourceLocation Loc = ILE->getLocEnd(); 530 unsigned NumInits = ILE->getNumInits(); 531 InitializedEntity MemberEntity 532 = InitializedEntity::InitializeMember(Field, &ParentEntity); 533 534 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) 535 if (!RType->getDecl()->isUnion()) 536 assert(Init < NumInits && "This ILE should have been expanded"); 537 538 if (Init >= NumInits || !ILE->getInit(Init)) { 539 if (FillWithNoInit) { 540 Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType()); 541 if (Init < NumInits) 542 ILE->setInit(Init, Filler); 543 else 544 ILE->updateInit(SemaRef.Context, Init, Filler); 545 return; 546 } 547 // C++1y [dcl.init.aggr]p7: 548 // If there are fewer initializer-clauses in the list than there are 549 // members in the aggregate, then each member not explicitly initialized 550 // shall be initialized from its brace-or-equal-initializer [...] 551 if (Field->hasInClassInitializer()) { 552 ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field); 553 if (DIE.isInvalid()) { 554 hadError = true; 555 return; 556 } 557 if (Init < NumInits) 558 ILE->setInit(Init, DIE.get()); 559 else { 560 ILE->updateInit(SemaRef.Context, Init, DIE.get()); 561 RequiresSecondPass = true; 562 } 563 return; 564 } 565 566 if (Field->getType()->isReferenceType()) { 567 // C++ [dcl.init.aggr]p9: 568 // If an incomplete or empty initializer-list leaves a 569 // member of reference type uninitialized, the program is 570 // ill-formed. 571 SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized) 572 << Field->getType() 573 << ILE->getSyntacticForm()->getSourceRange(); 574 SemaRef.Diag(Field->getLocation(), 575 diag::note_uninit_reference_member); 576 hadError = true; 577 return; 578 } 579 580 ExprResult MemberInit = PerformEmptyInit(SemaRef, Loc, MemberEntity, 581 /*VerifyOnly*/false, 582 TreatUnavailableAsInvalid); 583 if (MemberInit.isInvalid()) { 584 hadError = true; 585 return; 586 } 587 588 if (hadError) { 589 // Do nothing 590 } else if (Init < NumInits) { 591 ILE->setInit(Init, MemberInit.getAs<Expr>()); 592 } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) { 593 // Empty initialization requires a constructor call, so 594 // extend the initializer list to include the constructor 595 // call and make a note that we'll need to take another pass 596 // through the initializer list. 597 ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>()); 598 RequiresSecondPass = true; 599 } 600 } else if (InitListExpr *InnerILE 601 = dyn_cast<InitListExpr>(ILE->getInit(Init))) 602 FillInEmptyInitializations(MemberEntity, InnerILE, 603 RequiresSecondPass, FillWithNoInit); 604 else if (DesignatedInitUpdateExpr *InnerDIUE 605 = dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) 606 FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(), 607 RequiresSecondPass, /*FillWithNoInit =*/ true); 608 } 609 610 /// Recursively replaces NULL values within the given initializer list 611 /// with expressions that perform value-initialization of the 612 /// appropriate type. 613 void 614 InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity, 615 InitListExpr *ILE, 616 bool &RequiresSecondPass, 617 bool FillWithNoInit) { 618 assert((ILE->getType() != SemaRef.Context.VoidTy) && 619 "Should not have void type"); 620 621 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 622 const RecordDecl *RDecl = RType->getDecl(); 623 if (RDecl->isUnion() && ILE->getInitializedFieldInUnion()) 624 FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(), 625 Entity, ILE, RequiresSecondPass, FillWithNoInit); 626 else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) && 627 cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) { 628 for (auto *Field : RDecl->fields()) { 629 if (Field->hasInClassInitializer()) { 630 FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass, 631 FillWithNoInit); 632 break; 633 } 634 } 635 } else { 636 // The fields beyond ILE->getNumInits() are default initialized, so in 637 // order to leave them uninitialized, the ILE is expanded and the extra 638 // fields are then filled with NoInitExpr. 639 unsigned NumElems = numStructUnionElements(ILE->getType()); 640 if (RDecl->hasFlexibleArrayMember()) 641 ++NumElems; 642 if (ILE->getNumInits() < NumElems) 643 ILE->resizeInits(SemaRef.Context, NumElems); 644 645 unsigned Init = 0; 646 647 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) { 648 for (auto &Base : CXXRD->bases()) { 649 if (hadError) 650 return; 651 652 FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass, 653 FillWithNoInit); 654 ++Init; 655 } 656 } 657 658 for (auto *Field : RDecl->fields()) { 659 if (Field->isUnnamedBitfield()) 660 continue; 661 662 if (hadError) 663 return; 664 665 FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass, 666 FillWithNoInit); 667 if (hadError) 668 return; 669 670 ++Init; 671 672 // Only look at the first initialization of a union. 673 if (RDecl->isUnion()) 674 break; 675 } 676 } 677 678 return; 679 } 680 681 QualType ElementType; 682 683 InitializedEntity ElementEntity = Entity; 684 unsigned NumInits = ILE->getNumInits(); 685 unsigned NumElements = NumInits; 686 if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) { 687 ElementType = AType->getElementType(); 688 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) 689 NumElements = CAType->getSize().getZExtValue(); 690 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, 691 0, Entity); 692 } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) { 693 ElementType = VType->getElementType(); 694 NumElements = VType->getNumElements(); 695 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, 696 0, Entity); 697 } else 698 ElementType = ILE->getType(); 699 700 for (unsigned Init = 0; Init != NumElements; ++Init) { 701 if (hadError) 702 return; 703 704 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement || 705 ElementEntity.getKind() == InitializedEntity::EK_VectorElement) 706 ElementEntity.setElementIndex(Init); 707 708 Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr); 709 if (!InitExpr && Init < NumInits && ILE->hasArrayFiller()) 710 ILE->setInit(Init, ILE->getArrayFiller()); 711 else if (!InitExpr && !ILE->hasArrayFiller()) { 712 Expr *Filler = nullptr; 713 714 if (FillWithNoInit) 715 Filler = new (SemaRef.Context) NoInitExpr(ElementType); 716 else { 717 ExprResult ElementInit = PerformEmptyInit(SemaRef, ILE->getLocEnd(), 718 ElementEntity, 719 /*VerifyOnly*/false, 720 TreatUnavailableAsInvalid); 721 if (ElementInit.isInvalid()) { 722 hadError = true; 723 return; 724 } 725 726 Filler = ElementInit.getAs<Expr>(); 727 } 728 729 if (hadError) { 730 // Do nothing 731 } else if (Init < NumInits) { 732 // For arrays, just set the expression used for value-initialization 733 // of the "holes" in the array. 734 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) 735 ILE->setArrayFiller(Filler); 736 else 737 ILE->setInit(Init, Filler); 738 } else { 739 // For arrays, just set the expression used for value-initialization 740 // of the rest of elements and exit. 741 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) { 742 ILE->setArrayFiller(Filler); 743 return; 744 } 745 746 if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) { 747 // Empty initialization requires a constructor call, so 748 // extend the initializer list to include the constructor 749 // call and make a note that we'll need to take another pass 750 // through the initializer list. 751 ILE->updateInit(SemaRef.Context, Init, Filler); 752 RequiresSecondPass = true; 753 } 754 } 755 } else if (InitListExpr *InnerILE 756 = dyn_cast_or_null<InitListExpr>(InitExpr)) 757 FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass, 758 FillWithNoInit); 759 else if (DesignatedInitUpdateExpr *InnerDIUE 760 = dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr)) 761 FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(), 762 RequiresSecondPass, /*FillWithNoInit =*/ true); 763 } 764 } 765 766 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity, 767 InitListExpr *IL, QualType &T, 768 bool VerifyOnly, 769 bool TreatUnavailableAsInvalid) 770 : SemaRef(S), VerifyOnly(VerifyOnly), 771 TreatUnavailableAsInvalid(TreatUnavailableAsInvalid) { 772 // FIXME: Check that IL isn't already the semantic form of some other 773 // InitListExpr. If it is, we'd create a broken AST. 774 775 hadError = false; 776 777 FullyStructuredList = 778 getStructuredSubobjectInit(IL, 0, T, nullptr, 0, IL->getSourceRange()); 779 CheckExplicitInitList(Entity, IL, T, FullyStructuredList, 780 /*TopLevelObject=*/true); 781 782 if (!hadError && !VerifyOnly) { 783 bool RequiresSecondPass = false; 784 FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass); 785 if (RequiresSecondPass && !hadError) 786 FillInEmptyInitializations(Entity, FullyStructuredList, 787 RequiresSecondPass); 788 } 789 } 790 791 int InitListChecker::numArrayElements(QualType DeclType) { 792 // FIXME: use a proper constant 793 int maxElements = 0x7FFFFFFF; 794 if (const ConstantArrayType *CAT = 795 SemaRef.Context.getAsConstantArrayType(DeclType)) { 796 maxElements = static_cast<int>(CAT->getSize().getZExtValue()); 797 } 798 return maxElements; 799 } 800 801 int InitListChecker::numStructUnionElements(QualType DeclType) { 802 RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl(); 803 int InitializableMembers = 0; 804 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl)) 805 InitializableMembers += CXXRD->getNumBases(); 806 for (const auto *Field : structDecl->fields()) 807 if (!Field->isUnnamedBitfield()) 808 ++InitializableMembers; 809 810 if (structDecl->isUnion()) 811 return std::min(InitializableMembers, 1); 812 return InitializableMembers - structDecl->hasFlexibleArrayMember(); 813 } 814 815 /// Check whether the range of the initializer \p ParentIList from element 816 /// \p Index onwards can be used to initialize an object of type \p T. Update 817 /// \p Index to indicate how many elements of the list were consumed. 818 /// 819 /// This also fills in \p StructuredList, from element \p StructuredIndex 820 /// onwards, with the fully-braced, desugared form of the initialization. 821 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity, 822 InitListExpr *ParentIList, 823 QualType T, unsigned &Index, 824 InitListExpr *StructuredList, 825 unsigned &StructuredIndex) { 826 int maxElements = 0; 827 828 if (T->isArrayType()) 829 maxElements = numArrayElements(T); 830 else if (T->isRecordType()) 831 maxElements = numStructUnionElements(T); 832 else if (T->isVectorType()) 833 maxElements = T->getAs<VectorType>()->getNumElements(); 834 else 835 llvm_unreachable("CheckImplicitInitList(): Illegal type"); 836 837 if (maxElements == 0) { 838 if (!VerifyOnly) 839 SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(), 840 diag::err_implicit_empty_initializer); 841 ++Index; 842 hadError = true; 843 return; 844 } 845 846 // Build a structured initializer list corresponding to this subobject. 847 InitListExpr *StructuredSubobjectInitList 848 = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList, 849 StructuredIndex, 850 SourceRange(ParentIList->getInit(Index)->getLocStart(), 851 ParentIList->getSourceRange().getEnd())); 852 unsigned StructuredSubobjectInitIndex = 0; 853 854 // Check the element types and build the structural subobject. 855 unsigned StartIndex = Index; 856 CheckListElementTypes(Entity, ParentIList, T, 857 /*SubobjectIsDesignatorContext=*/false, Index, 858 StructuredSubobjectInitList, 859 StructuredSubobjectInitIndex); 860 861 if (!VerifyOnly) { 862 StructuredSubobjectInitList->setType(T); 863 864 unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1); 865 // Update the structured sub-object initializer so that it's ending 866 // range corresponds with the end of the last initializer it used. 867 if (EndIndex < ParentIList->getNumInits() && 868 ParentIList->getInit(EndIndex)) { 869 SourceLocation EndLoc 870 = ParentIList->getInit(EndIndex)->getSourceRange().getEnd(); 871 StructuredSubobjectInitList->setRBraceLoc(EndLoc); 872 } 873 874 // Complain about missing braces. 875 if (T->isArrayType() || T->isRecordType()) { 876 SemaRef.Diag(StructuredSubobjectInitList->getLocStart(), 877 diag::warn_missing_braces) 878 << StructuredSubobjectInitList->getSourceRange() 879 << FixItHint::CreateInsertion( 880 StructuredSubobjectInitList->getLocStart(), "{") 881 << FixItHint::CreateInsertion( 882 SemaRef.getLocForEndOfToken( 883 StructuredSubobjectInitList->getLocEnd()), 884 "}"); 885 } 886 } 887 } 888 889 /// Warn that \p Entity was of scalar type and was initialized by a 890 /// single-element braced initializer list. 891 static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity, 892 SourceRange Braces) { 893 // Don't warn during template instantiation. If the initialization was 894 // non-dependent, we warned during the initial parse; otherwise, the 895 // type might not be scalar in some uses of the template. 896 if (!S.ActiveTemplateInstantiations.empty()) 897 return; 898 899 unsigned DiagID = 0; 900 901 switch (Entity.getKind()) { 902 case InitializedEntity::EK_VectorElement: 903 case InitializedEntity::EK_ComplexElement: 904 case InitializedEntity::EK_ArrayElement: 905 case InitializedEntity::EK_Parameter: 906 case InitializedEntity::EK_Parameter_CF_Audited: 907 case InitializedEntity::EK_Result: 908 // Extra braces here are suspicious. 909 DiagID = diag::warn_braces_around_scalar_init; 910 break; 911 912 case InitializedEntity::EK_Member: 913 // Warn on aggregate initialization but not on ctor init list or 914 // default member initializer. 915 if (Entity.getParent()) 916 DiagID = diag::warn_braces_around_scalar_init; 917 break; 918 919 case InitializedEntity::EK_Variable: 920 case InitializedEntity::EK_LambdaCapture: 921 // No warning, might be direct-list-initialization. 922 // FIXME: Should we warn for copy-list-initialization in these cases? 923 break; 924 925 case InitializedEntity::EK_New: 926 case InitializedEntity::EK_Temporary: 927 case InitializedEntity::EK_CompoundLiteralInit: 928 // No warning, braces are part of the syntax of the underlying construct. 929 break; 930 931 case InitializedEntity::EK_RelatedResult: 932 // No warning, we already warned when initializing the result. 933 break; 934 935 case InitializedEntity::EK_Exception: 936 case InitializedEntity::EK_Base: 937 case InitializedEntity::EK_Delegating: 938 case InitializedEntity::EK_BlockElement: 939 case InitializedEntity::EK_Binding: 940 llvm_unreachable("unexpected braced scalar init"); 941 } 942 943 if (DiagID) { 944 S.Diag(Braces.getBegin(), DiagID) 945 << Braces 946 << FixItHint::CreateRemoval(Braces.getBegin()) 947 << FixItHint::CreateRemoval(Braces.getEnd()); 948 } 949 } 950 951 /// Check whether the initializer \p IList (that was written with explicit 952 /// braces) can be used to initialize an object of type \p T. 953 /// 954 /// This also fills in \p StructuredList with the fully-braced, desugared 955 /// form of the initialization. 956 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity, 957 InitListExpr *IList, QualType &T, 958 InitListExpr *StructuredList, 959 bool TopLevelObject) { 960 if (!VerifyOnly) { 961 SyntacticToSemantic[IList] = StructuredList; 962 StructuredList->setSyntacticForm(IList); 963 } 964 965 unsigned Index = 0, StructuredIndex = 0; 966 CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true, 967 Index, StructuredList, StructuredIndex, TopLevelObject); 968 if (!VerifyOnly) { 969 QualType ExprTy = T; 970 if (!ExprTy->isArrayType()) 971 ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context); 972 IList->setType(ExprTy); 973 StructuredList->setType(ExprTy); 974 } 975 if (hadError) 976 return; 977 978 if (Index < IList->getNumInits()) { 979 // We have leftover initializers 980 if (VerifyOnly) { 981 if (SemaRef.getLangOpts().CPlusPlus || 982 (SemaRef.getLangOpts().OpenCL && 983 IList->getType()->isVectorType())) { 984 hadError = true; 985 } 986 return; 987 } 988 989 if (StructuredIndex == 1 && 990 IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) == 991 SIF_None) { 992 unsigned DK = diag::ext_excess_initializers_in_char_array_initializer; 993 if (SemaRef.getLangOpts().CPlusPlus) { 994 DK = diag::err_excess_initializers_in_char_array_initializer; 995 hadError = true; 996 } 997 // Special-case 998 SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK) 999 << IList->getInit(Index)->getSourceRange(); 1000 } else if (!T->isIncompleteType()) { 1001 // Don't complain for incomplete types, since we'll get an error 1002 // elsewhere 1003 QualType CurrentObjectType = StructuredList->getType(); 1004 int initKind = 1005 CurrentObjectType->isArrayType()? 0 : 1006 CurrentObjectType->isVectorType()? 1 : 1007 CurrentObjectType->isScalarType()? 2 : 1008 CurrentObjectType->isUnionType()? 3 : 1009 4; 1010 1011 unsigned DK = diag::ext_excess_initializers; 1012 if (SemaRef.getLangOpts().CPlusPlus) { 1013 DK = diag::err_excess_initializers; 1014 hadError = true; 1015 } 1016 if (SemaRef.getLangOpts().OpenCL && initKind == 1) { 1017 DK = diag::err_excess_initializers; 1018 hadError = true; 1019 } 1020 1021 SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK) 1022 << initKind << IList->getInit(Index)->getSourceRange(); 1023 } 1024 } 1025 1026 if (!VerifyOnly && T->isScalarType() && 1027 IList->getNumInits() == 1 && !isa<InitListExpr>(IList->getInit(0))) 1028 warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange()); 1029 } 1030 1031 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity, 1032 InitListExpr *IList, 1033 QualType &DeclType, 1034 bool SubobjectIsDesignatorContext, 1035 unsigned &Index, 1036 InitListExpr *StructuredList, 1037 unsigned &StructuredIndex, 1038 bool TopLevelObject) { 1039 if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) { 1040 // Explicitly braced initializer for complex type can be real+imaginary 1041 // parts. 1042 CheckComplexType(Entity, IList, DeclType, Index, 1043 StructuredList, StructuredIndex); 1044 } else if (DeclType->isScalarType()) { 1045 CheckScalarType(Entity, IList, DeclType, Index, 1046 StructuredList, StructuredIndex); 1047 } else if (DeclType->isVectorType()) { 1048 CheckVectorType(Entity, IList, DeclType, Index, 1049 StructuredList, StructuredIndex); 1050 } else if (DeclType->isRecordType()) { 1051 assert(DeclType->isAggregateType() && 1052 "non-aggregate records should be handed in CheckSubElementType"); 1053 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl(); 1054 auto Bases = 1055 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(), 1056 CXXRecordDecl::base_class_iterator()); 1057 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1058 Bases = CXXRD->bases(); 1059 CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(), 1060 SubobjectIsDesignatorContext, Index, StructuredList, 1061 StructuredIndex, TopLevelObject); 1062 } else if (DeclType->isArrayType()) { 1063 llvm::APSInt Zero( 1064 SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()), 1065 false); 1066 CheckArrayType(Entity, IList, DeclType, Zero, 1067 SubobjectIsDesignatorContext, Index, 1068 StructuredList, StructuredIndex); 1069 } else if (DeclType->isVoidType() || DeclType->isFunctionType()) { 1070 // This type is invalid, issue a diagnostic. 1071 ++Index; 1072 if (!VerifyOnly) 1073 SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type) 1074 << DeclType; 1075 hadError = true; 1076 } else if (DeclType->isReferenceType()) { 1077 CheckReferenceType(Entity, IList, DeclType, Index, 1078 StructuredList, StructuredIndex); 1079 } else if (DeclType->isObjCObjectType()) { 1080 if (!VerifyOnly) 1081 SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class) 1082 << DeclType; 1083 hadError = true; 1084 } else { 1085 if (!VerifyOnly) 1086 SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type) 1087 << DeclType; 1088 hadError = true; 1089 } 1090 } 1091 1092 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity, 1093 InitListExpr *IList, 1094 QualType ElemType, 1095 unsigned &Index, 1096 InitListExpr *StructuredList, 1097 unsigned &StructuredIndex) { 1098 Expr *expr = IList->getInit(Index); 1099 1100 if (ElemType->isReferenceType()) 1101 return CheckReferenceType(Entity, IList, ElemType, Index, 1102 StructuredList, StructuredIndex); 1103 1104 if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) { 1105 if (SubInitList->getNumInits() == 1 && 1106 IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) == 1107 SIF_None) { 1108 expr = SubInitList->getInit(0); 1109 } else if (!SemaRef.getLangOpts().CPlusPlus) { 1110 InitListExpr *InnerStructuredList 1111 = getStructuredSubobjectInit(IList, Index, ElemType, 1112 StructuredList, StructuredIndex, 1113 SubInitList->getSourceRange(), true); 1114 CheckExplicitInitList(Entity, SubInitList, ElemType, 1115 InnerStructuredList); 1116 1117 if (!hadError && !VerifyOnly) { 1118 bool RequiresSecondPass = false; 1119 FillInEmptyInitializations(Entity, InnerStructuredList, 1120 RequiresSecondPass); 1121 if (RequiresSecondPass && !hadError) 1122 FillInEmptyInitializations(Entity, InnerStructuredList, 1123 RequiresSecondPass); 1124 } 1125 ++StructuredIndex; 1126 ++Index; 1127 return; 1128 } 1129 // C++ initialization is handled later. 1130 } else if (isa<ImplicitValueInitExpr>(expr)) { 1131 // This happens during template instantiation when we see an InitListExpr 1132 // that we've already checked once. 1133 assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) && 1134 "found implicit initialization for the wrong type"); 1135 if (!VerifyOnly) 1136 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1137 ++Index; 1138 return; 1139 } 1140 1141 if (SemaRef.getLangOpts().CPlusPlus) { 1142 // C++ [dcl.init.aggr]p2: 1143 // Each member is copy-initialized from the corresponding 1144 // initializer-clause. 1145 1146 // FIXME: Better EqualLoc? 1147 InitializationKind Kind = 1148 InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation()); 1149 InitializationSequence Seq(SemaRef, Entity, Kind, expr, 1150 /*TopLevelOfInitList*/ true); 1151 1152 // C++14 [dcl.init.aggr]p13: 1153 // If the assignment-expression can initialize a member, the member is 1154 // initialized. Otherwise [...] brace elision is assumed 1155 // 1156 // Brace elision is never performed if the element is not an 1157 // assignment-expression. 1158 if (Seq || isa<InitListExpr>(expr)) { 1159 if (!VerifyOnly) { 1160 ExprResult Result = 1161 Seq.Perform(SemaRef, Entity, Kind, expr); 1162 if (Result.isInvalid()) 1163 hadError = true; 1164 1165 UpdateStructuredListElement(StructuredList, StructuredIndex, 1166 Result.getAs<Expr>()); 1167 } else if (!Seq) 1168 hadError = true; 1169 ++Index; 1170 return; 1171 } 1172 1173 // Fall through for subaggregate initialization 1174 } else if (ElemType->isScalarType() || ElemType->isAtomicType()) { 1175 // FIXME: Need to handle atomic aggregate types with implicit init lists. 1176 return CheckScalarType(Entity, IList, ElemType, Index, 1177 StructuredList, StructuredIndex); 1178 } else if (const ArrayType *arrayType = 1179 SemaRef.Context.getAsArrayType(ElemType)) { 1180 // arrayType can be incomplete if we're initializing a flexible 1181 // array member. There's nothing we can do with the completed 1182 // type here, though. 1183 1184 if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) { 1185 if (!VerifyOnly) { 1186 CheckStringInit(expr, ElemType, arrayType, SemaRef); 1187 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1188 } 1189 ++Index; 1190 return; 1191 } 1192 1193 // Fall through for subaggregate initialization. 1194 1195 } else { 1196 assert((ElemType->isRecordType() || ElemType->isVectorType() || 1197 ElemType->isClkEventT()) && "Unexpected type"); 1198 1199 // C99 6.7.8p13: 1200 // 1201 // The initializer for a structure or union object that has 1202 // automatic storage duration shall be either an initializer 1203 // list as described below, or a single expression that has 1204 // compatible structure or union type. In the latter case, the 1205 // initial value of the object, including unnamed members, is 1206 // that of the expression. 1207 ExprResult ExprRes = expr; 1208 if (SemaRef.CheckSingleAssignmentConstraints( 1209 ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) { 1210 if (ExprRes.isInvalid()) 1211 hadError = true; 1212 else { 1213 ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get()); 1214 if (ExprRes.isInvalid()) 1215 hadError = true; 1216 } 1217 UpdateStructuredListElement(StructuredList, StructuredIndex, 1218 ExprRes.getAs<Expr>()); 1219 ++Index; 1220 return; 1221 } 1222 ExprRes.get(); 1223 // Fall through for subaggregate initialization 1224 } 1225 1226 // C++ [dcl.init.aggr]p12: 1227 // 1228 // [...] Otherwise, if the member is itself a non-empty 1229 // subaggregate, brace elision is assumed and the initializer is 1230 // considered for the initialization of the first member of 1231 // the subaggregate. 1232 if (!SemaRef.getLangOpts().OpenCL && 1233 (ElemType->isAggregateType() || ElemType->isVectorType())) { 1234 CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList, 1235 StructuredIndex); 1236 ++StructuredIndex; 1237 } else { 1238 if (!VerifyOnly) { 1239 // We cannot initialize this element, so let 1240 // PerformCopyInitialization produce the appropriate diagnostic. 1241 SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr, 1242 /*TopLevelOfInitList=*/true); 1243 } 1244 hadError = true; 1245 ++Index; 1246 ++StructuredIndex; 1247 } 1248 } 1249 1250 void InitListChecker::CheckComplexType(const InitializedEntity &Entity, 1251 InitListExpr *IList, QualType DeclType, 1252 unsigned &Index, 1253 InitListExpr *StructuredList, 1254 unsigned &StructuredIndex) { 1255 assert(Index == 0 && "Index in explicit init list must be zero"); 1256 1257 // As an extension, clang supports complex initializers, which initialize 1258 // a complex number component-wise. When an explicit initializer list for 1259 // a complex number contains two two initializers, this extension kicks in: 1260 // it exepcts the initializer list to contain two elements convertible to 1261 // the element type of the complex type. The first element initializes 1262 // the real part, and the second element intitializes the imaginary part. 1263 1264 if (IList->getNumInits() != 2) 1265 return CheckScalarType(Entity, IList, DeclType, Index, StructuredList, 1266 StructuredIndex); 1267 1268 // This is an extension in C. (The builtin _Complex type does not exist 1269 // in the C++ standard.) 1270 if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly) 1271 SemaRef.Diag(IList->getLocStart(), diag::ext_complex_component_init) 1272 << IList->getSourceRange(); 1273 1274 // Initialize the complex number. 1275 QualType elementType = DeclType->getAs<ComplexType>()->getElementType(); 1276 InitializedEntity ElementEntity = 1277 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1278 1279 for (unsigned i = 0; i < 2; ++i) { 1280 ElementEntity.setElementIndex(Index); 1281 CheckSubElementType(ElementEntity, IList, elementType, Index, 1282 StructuredList, StructuredIndex); 1283 } 1284 } 1285 1286 void InitListChecker::CheckScalarType(const InitializedEntity &Entity, 1287 InitListExpr *IList, QualType DeclType, 1288 unsigned &Index, 1289 InitListExpr *StructuredList, 1290 unsigned &StructuredIndex) { 1291 if (Index >= IList->getNumInits()) { 1292 if (!VerifyOnly) 1293 SemaRef.Diag(IList->getLocStart(), 1294 SemaRef.getLangOpts().CPlusPlus11 ? 1295 diag::warn_cxx98_compat_empty_scalar_initializer : 1296 diag::err_empty_scalar_initializer) 1297 << IList->getSourceRange(); 1298 hadError = !SemaRef.getLangOpts().CPlusPlus11; 1299 ++Index; 1300 ++StructuredIndex; 1301 return; 1302 } 1303 1304 Expr *expr = IList->getInit(Index); 1305 if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) { 1306 // FIXME: This is invalid, and accepting it causes overload resolution 1307 // to pick the wrong overload in some corner cases. 1308 if (!VerifyOnly) 1309 SemaRef.Diag(SubIList->getLocStart(), 1310 diag::ext_many_braces_around_scalar_init) 1311 << SubIList->getSourceRange(); 1312 1313 CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList, 1314 StructuredIndex); 1315 return; 1316 } else if (isa<DesignatedInitExpr>(expr)) { 1317 if (!VerifyOnly) 1318 SemaRef.Diag(expr->getLocStart(), 1319 diag::err_designator_for_scalar_init) 1320 << DeclType << expr->getSourceRange(); 1321 hadError = true; 1322 ++Index; 1323 ++StructuredIndex; 1324 return; 1325 } 1326 1327 if (VerifyOnly) { 1328 if (!SemaRef.CanPerformCopyInitialization(Entity,expr)) 1329 hadError = true; 1330 ++Index; 1331 return; 1332 } 1333 1334 ExprResult Result = 1335 SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(), expr, 1336 /*TopLevelOfInitList=*/true); 1337 1338 Expr *ResultExpr = nullptr; 1339 1340 if (Result.isInvalid()) 1341 hadError = true; // types weren't compatible. 1342 else { 1343 ResultExpr = Result.getAs<Expr>(); 1344 1345 if (ResultExpr != expr) { 1346 // The type was promoted, update initializer list. 1347 IList->setInit(Index, ResultExpr); 1348 } 1349 } 1350 if (hadError) 1351 ++StructuredIndex; 1352 else 1353 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr); 1354 ++Index; 1355 } 1356 1357 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity, 1358 InitListExpr *IList, QualType DeclType, 1359 unsigned &Index, 1360 InitListExpr *StructuredList, 1361 unsigned &StructuredIndex) { 1362 if (Index >= IList->getNumInits()) { 1363 // FIXME: It would be wonderful if we could point at the actual member. In 1364 // general, it would be useful to pass location information down the stack, 1365 // so that we know the location (or decl) of the "current object" being 1366 // initialized. 1367 if (!VerifyOnly) 1368 SemaRef.Diag(IList->getLocStart(), 1369 diag::err_init_reference_member_uninitialized) 1370 << DeclType 1371 << IList->getSourceRange(); 1372 hadError = true; 1373 ++Index; 1374 ++StructuredIndex; 1375 return; 1376 } 1377 1378 Expr *expr = IList->getInit(Index); 1379 if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) { 1380 if (!VerifyOnly) 1381 SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list) 1382 << DeclType << IList->getSourceRange(); 1383 hadError = true; 1384 ++Index; 1385 ++StructuredIndex; 1386 return; 1387 } 1388 1389 if (VerifyOnly) { 1390 if (!SemaRef.CanPerformCopyInitialization(Entity,expr)) 1391 hadError = true; 1392 ++Index; 1393 return; 1394 } 1395 1396 ExprResult Result = 1397 SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(), expr, 1398 /*TopLevelOfInitList=*/true); 1399 1400 if (Result.isInvalid()) 1401 hadError = true; 1402 1403 expr = Result.getAs<Expr>(); 1404 IList->setInit(Index, expr); 1405 1406 if (hadError) 1407 ++StructuredIndex; 1408 else 1409 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1410 ++Index; 1411 } 1412 1413 void InitListChecker::CheckVectorType(const InitializedEntity &Entity, 1414 InitListExpr *IList, QualType DeclType, 1415 unsigned &Index, 1416 InitListExpr *StructuredList, 1417 unsigned &StructuredIndex) { 1418 const VectorType *VT = DeclType->getAs<VectorType>(); 1419 unsigned maxElements = VT->getNumElements(); 1420 unsigned numEltsInit = 0; 1421 QualType elementType = VT->getElementType(); 1422 1423 if (Index >= IList->getNumInits()) { 1424 // Make sure the element type can be value-initialized. 1425 if (VerifyOnly) 1426 CheckEmptyInitializable( 1427 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity), 1428 IList->getLocEnd()); 1429 return; 1430 } 1431 1432 if (!SemaRef.getLangOpts().OpenCL) { 1433 // If the initializing element is a vector, try to copy-initialize 1434 // instead of breaking it apart (which is doomed to failure anyway). 1435 Expr *Init = IList->getInit(Index); 1436 if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) { 1437 if (VerifyOnly) { 1438 if (!SemaRef.CanPerformCopyInitialization(Entity, Init)) 1439 hadError = true; 1440 ++Index; 1441 return; 1442 } 1443 1444 ExprResult Result = 1445 SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(), Init, 1446 /*TopLevelOfInitList=*/true); 1447 1448 Expr *ResultExpr = nullptr; 1449 if (Result.isInvalid()) 1450 hadError = true; // types weren't compatible. 1451 else { 1452 ResultExpr = Result.getAs<Expr>(); 1453 1454 if (ResultExpr != Init) { 1455 // The type was promoted, update initializer list. 1456 IList->setInit(Index, ResultExpr); 1457 } 1458 } 1459 if (hadError) 1460 ++StructuredIndex; 1461 else 1462 UpdateStructuredListElement(StructuredList, StructuredIndex, 1463 ResultExpr); 1464 ++Index; 1465 return; 1466 } 1467 1468 InitializedEntity ElementEntity = 1469 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1470 1471 for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) { 1472 // Don't attempt to go past the end of the init list 1473 if (Index >= IList->getNumInits()) { 1474 if (VerifyOnly) 1475 CheckEmptyInitializable(ElementEntity, IList->getLocEnd()); 1476 break; 1477 } 1478 1479 ElementEntity.setElementIndex(Index); 1480 CheckSubElementType(ElementEntity, IList, elementType, Index, 1481 StructuredList, StructuredIndex); 1482 } 1483 1484 if (VerifyOnly) 1485 return; 1486 1487 bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian(); 1488 const VectorType *T = Entity.getType()->getAs<VectorType>(); 1489 if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector || 1490 T->getVectorKind() == VectorType::NeonPolyVector)) { 1491 // The ability to use vector initializer lists is a GNU vector extension 1492 // and is unrelated to the NEON intrinsics in arm_neon.h. On little 1493 // endian machines it works fine, however on big endian machines it 1494 // exhibits surprising behaviour: 1495 // 1496 // uint32x2_t x = {42, 64}; 1497 // return vget_lane_u32(x, 0); // Will return 64. 1498 // 1499 // Because of this, explicitly call out that it is non-portable. 1500 // 1501 SemaRef.Diag(IList->getLocStart(), 1502 diag::warn_neon_vector_initializer_non_portable); 1503 1504 const char *typeCode; 1505 unsigned typeSize = SemaRef.Context.getTypeSize(elementType); 1506 1507 if (elementType->isFloatingType()) 1508 typeCode = "f"; 1509 else if (elementType->isSignedIntegerType()) 1510 typeCode = "s"; 1511 else if (elementType->isUnsignedIntegerType()) 1512 typeCode = "u"; 1513 else 1514 llvm_unreachable("Invalid element type!"); 1515 1516 SemaRef.Diag(IList->getLocStart(), 1517 SemaRef.Context.getTypeSize(VT) > 64 ? 1518 diag::note_neon_vector_initializer_non_portable_q : 1519 diag::note_neon_vector_initializer_non_portable) 1520 << typeCode << typeSize; 1521 } 1522 1523 return; 1524 } 1525 1526 InitializedEntity ElementEntity = 1527 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1528 1529 // OpenCL initializers allows vectors to be constructed from vectors. 1530 for (unsigned i = 0; i < maxElements; ++i) { 1531 // Don't attempt to go past the end of the init list 1532 if (Index >= IList->getNumInits()) 1533 break; 1534 1535 ElementEntity.setElementIndex(Index); 1536 1537 QualType IType = IList->getInit(Index)->getType(); 1538 if (!IType->isVectorType()) { 1539 CheckSubElementType(ElementEntity, IList, elementType, Index, 1540 StructuredList, StructuredIndex); 1541 ++numEltsInit; 1542 } else { 1543 QualType VecType; 1544 const VectorType *IVT = IType->getAs<VectorType>(); 1545 unsigned numIElts = IVT->getNumElements(); 1546 1547 if (IType->isExtVectorType()) 1548 VecType = SemaRef.Context.getExtVectorType(elementType, numIElts); 1549 else 1550 VecType = SemaRef.Context.getVectorType(elementType, numIElts, 1551 IVT->getVectorKind()); 1552 CheckSubElementType(ElementEntity, IList, VecType, Index, 1553 StructuredList, StructuredIndex); 1554 numEltsInit += numIElts; 1555 } 1556 } 1557 1558 // OpenCL requires all elements to be initialized. 1559 if (numEltsInit != maxElements) { 1560 if (!VerifyOnly) 1561 SemaRef.Diag(IList->getLocStart(), 1562 diag::err_vector_incorrect_num_initializers) 1563 << (numEltsInit < maxElements) << maxElements << numEltsInit; 1564 hadError = true; 1565 } 1566 } 1567 1568 void InitListChecker::CheckArrayType(const InitializedEntity &Entity, 1569 InitListExpr *IList, QualType &DeclType, 1570 llvm::APSInt elementIndex, 1571 bool SubobjectIsDesignatorContext, 1572 unsigned &Index, 1573 InitListExpr *StructuredList, 1574 unsigned &StructuredIndex) { 1575 const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType); 1576 1577 // Check for the special-case of initializing an array with a string. 1578 if (Index < IList->getNumInits()) { 1579 if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) == 1580 SIF_None) { 1581 // We place the string literal directly into the resulting 1582 // initializer list. This is the only place where the structure 1583 // of the structured initializer list doesn't match exactly, 1584 // because doing so would involve allocating one character 1585 // constant for each string. 1586 if (!VerifyOnly) { 1587 CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef); 1588 UpdateStructuredListElement(StructuredList, StructuredIndex, 1589 IList->getInit(Index)); 1590 StructuredList->resizeInits(SemaRef.Context, StructuredIndex); 1591 } 1592 ++Index; 1593 return; 1594 } 1595 } 1596 if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) { 1597 // Check for VLAs; in standard C it would be possible to check this 1598 // earlier, but I don't know where clang accepts VLAs (gcc accepts 1599 // them in all sorts of strange places). 1600 if (!VerifyOnly) 1601 SemaRef.Diag(VAT->getSizeExpr()->getLocStart(), 1602 diag::err_variable_object_no_init) 1603 << VAT->getSizeExpr()->getSourceRange(); 1604 hadError = true; 1605 ++Index; 1606 ++StructuredIndex; 1607 return; 1608 } 1609 1610 // We might know the maximum number of elements in advance. 1611 llvm::APSInt maxElements(elementIndex.getBitWidth(), 1612 elementIndex.isUnsigned()); 1613 bool maxElementsKnown = false; 1614 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) { 1615 maxElements = CAT->getSize(); 1616 elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth()); 1617 elementIndex.setIsUnsigned(maxElements.isUnsigned()); 1618 maxElementsKnown = true; 1619 } 1620 1621 QualType elementType = arrayType->getElementType(); 1622 while (Index < IList->getNumInits()) { 1623 Expr *Init = IList->getInit(Index); 1624 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { 1625 // If we're not the subobject that matches up with the '{' for 1626 // the designator, we shouldn't be handling the 1627 // designator. Return immediately. 1628 if (!SubobjectIsDesignatorContext) 1629 return; 1630 1631 // Handle this designated initializer. elementIndex will be 1632 // updated to be the next array element we'll initialize. 1633 if (CheckDesignatedInitializer(Entity, IList, DIE, 0, 1634 DeclType, nullptr, &elementIndex, Index, 1635 StructuredList, StructuredIndex, true, 1636 false)) { 1637 hadError = true; 1638 continue; 1639 } 1640 1641 if (elementIndex.getBitWidth() > maxElements.getBitWidth()) 1642 maxElements = maxElements.extend(elementIndex.getBitWidth()); 1643 else if (elementIndex.getBitWidth() < maxElements.getBitWidth()) 1644 elementIndex = elementIndex.extend(maxElements.getBitWidth()); 1645 elementIndex.setIsUnsigned(maxElements.isUnsigned()); 1646 1647 // If the array is of incomplete type, keep track of the number of 1648 // elements in the initializer. 1649 if (!maxElementsKnown && elementIndex > maxElements) 1650 maxElements = elementIndex; 1651 1652 continue; 1653 } 1654 1655 // If we know the maximum number of elements, and we've already 1656 // hit it, stop consuming elements in the initializer list. 1657 if (maxElementsKnown && elementIndex == maxElements) 1658 break; 1659 1660 InitializedEntity ElementEntity = 1661 InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex, 1662 Entity); 1663 // Check this element. 1664 CheckSubElementType(ElementEntity, IList, elementType, Index, 1665 StructuredList, StructuredIndex); 1666 ++elementIndex; 1667 1668 // If the array is of incomplete type, keep track of the number of 1669 // elements in the initializer. 1670 if (!maxElementsKnown && elementIndex > maxElements) 1671 maxElements = elementIndex; 1672 } 1673 if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) { 1674 // If this is an incomplete array type, the actual type needs to 1675 // be calculated here. 1676 llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned()); 1677 if (maxElements == Zero) { 1678 // Sizing an array implicitly to zero is not allowed by ISO C, 1679 // but is supported by GNU. 1680 SemaRef.Diag(IList->getLocStart(), 1681 diag::ext_typecheck_zero_array_size); 1682 } 1683 1684 DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements, 1685 ArrayType::Normal, 0); 1686 } 1687 if (!hadError && VerifyOnly) { 1688 // Check if there are any members of the array that get value-initialized. 1689 // If so, check if doing that is possible. 1690 // FIXME: This needs to detect holes left by designated initializers too. 1691 if (maxElementsKnown && elementIndex < maxElements) 1692 CheckEmptyInitializable(InitializedEntity::InitializeElement( 1693 SemaRef.Context, 0, Entity), 1694 IList->getLocEnd()); 1695 } 1696 } 1697 1698 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity, 1699 Expr *InitExpr, 1700 FieldDecl *Field, 1701 bool TopLevelObject) { 1702 // Handle GNU flexible array initializers. 1703 unsigned FlexArrayDiag; 1704 if (isa<InitListExpr>(InitExpr) && 1705 cast<InitListExpr>(InitExpr)->getNumInits() == 0) { 1706 // Empty flexible array init always allowed as an extension 1707 FlexArrayDiag = diag::ext_flexible_array_init; 1708 } else if (SemaRef.getLangOpts().CPlusPlus) { 1709 // Disallow flexible array init in C++; it is not required for gcc 1710 // compatibility, and it needs work to IRGen correctly in general. 1711 FlexArrayDiag = diag::err_flexible_array_init; 1712 } else if (!TopLevelObject) { 1713 // Disallow flexible array init on non-top-level object 1714 FlexArrayDiag = diag::err_flexible_array_init; 1715 } else if (Entity.getKind() != InitializedEntity::EK_Variable) { 1716 // Disallow flexible array init on anything which is not a variable. 1717 FlexArrayDiag = diag::err_flexible_array_init; 1718 } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) { 1719 // Disallow flexible array init on local variables. 1720 FlexArrayDiag = diag::err_flexible_array_init; 1721 } else { 1722 // Allow other cases. 1723 FlexArrayDiag = diag::ext_flexible_array_init; 1724 } 1725 1726 if (!VerifyOnly) { 1727 SemaRef.Diag(InitExpr->getLocStart(), 1728 FlexArrayDiag) 1729 << InitExpr->getLocStart(); 1730 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 1731 << Field; 1732 } 1733 1734 return FlexArrayDiag != diag::ext_flexible_array_init; 1735 } 1736 1737 void InitListChecker::CheckStructUnionTypes( 1738 const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType, 1739 CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field, 1740 bool SubobjectIsDesignatorContext, unsigned &Index, 1741 InitListExpr *StructuredList, unsigned &StructuredIndex, 1742 bool TopLevelObject) { 1743 RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl(); 1744 1745 // If the record is invalid, some of it's members are invalid. To avoid 1746 // confusion, we forgo checking the intializer for the entire record. 1747 if (structDecl->isInvalidDecl()) { 1748 // Assume it was supposed to consume a single initializer. 1749 ++Index; 1750 hadError = true; 1751 return; 1752 } 1753 1754 if (DeclType->isUnionType() && IList->getNumInits() == 0) { 1755 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl(); 1756 1757 // If there's a default initializer, use it. 1758 if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->hasInClassInitializer()) { 1759 if (VerifyOnly) 1760 return; 1761 for (RecordDecl::field_iterator FieldEnd = RD->field_end(); 1762 Field != FieldEnd; ++Field) { 1763 if (Field->hasInClassInitializer()) { 1764 StructuredList->setInitializedFieldInUnion(*Field); 1765 // FIXME: Actually build a CXXDefaultInitExpr? 1766 return; 1767 } 1768 } 1769 } 1770 1771 // Value-initialize the first member of the union that isn't an unnamed 1772 // bitfield. 1773 for (RecordDecl::field_iterator FieldEnd = RD->field_end(); 1774 Field != FieldEnd; ++Field) { 1775 if (!Field->isUnnamedBitfield()) { 1776 if (VerifyOnly) 1777 CheckEmptyInitializable( 1778 InitializedEntity::InitializeMember(*Field, &Entity), 1779 IList->getLocEnd()); 1780 else 1781 StructuredList->setInitializedFieldInUnion(*Field); 1782 break; 1783 } 1784 } 1785 return; 1786 } 1787 1788 bool InitializedSomething = false; 1789 1790 // If we have any base classes, they are initialized prior to the fields. 1791 for (auto &Base : Bases) { 1792 Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr; 1793 SourceLocation InitLoc = Init ? Init->getLocStart() : IList->getLocEnd(); 1794 1795 // Designated inits always initialize fields, so if we see one, all 1796 // remaining base classes have no explicit initializer. 1797 if (Init && isa<DesignatedInitExpr>(Init)) 1798 Init = nullptr; 1799 1800 InitializedEntity BaseEntity = InitializedEntity::InitializeBase( 1801 SemaRef.Context, &Base, false, &Entity); 1802 if (Init) { 1803 CheckSubElementType(BaseEntity, IList, Base.getType(), Index, 1804 StructuredList, StructuredIndex); 1805 InitializedSomething = true; 1806 } else if (VerifyOnly) { 1807 CheckEmptyInitializable(BaseEntity, InitLoc); 1808 } 1809 } 1810 1811 // If structDecl is a forward declaration, this loop won't do 1812 // anything except look at designated initializers; That's okay, 1813 // because an error should get printed out elsewhere. It might be 1814 // worthwhile to skip over the rest of the initializer, though. 1815 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl(); 1816 RecordDecl::field_iterator FieldEnd = RD->field_end(); 1817 bool CheckForMissingFields = true; 1818 while (Index < IList->getNumInits()) { 1819 Expr *Init = IList->getInit(Index); 1820 1821 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { 1822 // If we're not the subobject that matches up with the '{' for 1823 // the designator, we shouldn't be handling the 1824 // designator. Return immediately. 1825 if (!SubobjectIsDesignatorContext) 1826 return; 1827 1828 // Handle this designated initializer. Field will be updated to 1829 // the next field that we'll be initializing. 1830 if (CheckDesignatedInitializer(Entity, IList, DIE, 0, 1831 DeclType, &Field, nullptr, Index, 1832 StructuredList, StructuredIndex, 1833 true, TopLevelObject)) 1834 hadError = true; 1835 1836 InitializedSomething = true; 1837 1838 // Disable check for missing fields when designators are used. 1839 // This matches gcc behaviour. 1840 CheckForMissingFields = false; 1841 continue; 1842 } 1843 1844 if (Field == FieldEnd) { 1845 // We've run out of fields. We're done. 1846 break; 1847 } 1848 1849 // We've already initialized a member of a union. We're done. 1850 if (InitializedSomething && DeclType->isUnionType()) 1851 break; 1852 1853 // If we've hit the flexible array member at the end, we're done. 1854 if (Field->getType()->isIncompleteArrayType()) 1855 break; 1856 1857 if (Field->isUnnamedBitfield()) { 1858 // Don't initialize unnamed bitfields, e.g. "int : 20;" 1859 ++Field; 1860 continue; 1861 } 1862 1863 // Make sure we can use this declaration. 1864 bool InvalidUse; 1865 if (VerifyOnly) 1866 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid); 1867 else 1868 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, 1869 IList->getInit(Index)->getLocStart()); 1870 if (InvalidUse) { 1871 ++Index; 1872 ++Field; 1873 hadError = true; 1874 continue; 1875 } 1876 1877 InitializedEntity MemberEntity = 1878 InitializedEntity::InitializeMember(*Field, &Entity); 1879 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 1880 StructuredList, StructuredIndex); 1881 InitializedSomething = true; 1882 1883 if (DeclType->isUnionType() && !VerifyOnly) { 1884 // Initialize the first field within the union. 1885 StructuredList->setInitializedFieldInUnion(*Field); 1886 } 1887 1888 ++Field; 1889 } 1890 1891 // Emit warnings for missing struct field initializers. 1892 if (!VerifyOnly && InitializedSomething && CheckForMissingFields && 1893 Field != FieldEnd && !Field->getType()->isIncompleteArrayType() && 1894 !DeclType->isUnionType()) { 1895 // It is possible we have one or more unnamed bitfields remaining. 1896 // Find first (if any) named field and emit warning. 1897 for (RecordDecl::field_iterator it = Field, end = RD->field_end(); 1898 it != end; ++it) { 1899 if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) { 1900 SemaRef.Diag(IList->getSourceRange().getEnd(), 1901 diag::warn_missing_field_initializers) << *it; 1902 break; 1903 } 1904 } 1905 } 1906 1907 // Check that any remaining fields can be value-initialized. 1908 if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() && 1909 !Field->getType()->isIncompleteArrayType()) { 1910 // FIXME: Should check for holes left by designated initializers too. 1911 for (; Field != FieldEnd && !hadError; ++Field) { 1912 if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer()) 1913 CheckEmptyInitializable( 1914 InitializedEntity::InitializeMember(*Field, &Entity), 1915 IList->getLocEnd()); 1916 } 1917 } 1918 1919 if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() || 1920 Index >= IList->getNumInits()) 1921 return; 1922 1923 if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field, 1924 TopLevelObject)) { 1925 hadError = true; 1926 ++Index; 1927 return; 1928 } 1929 1930 InitializedEntity MemberEntity = 1931 InitializedEntity::InitializeMember(*Field, &Entity); 1932 1933 if (isa<InitListExpr>(IList->getInit(Index))) 1934 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 1935 StructuredList, StructuredIndex); 1936 else 1937 CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index, 1938 StructuredList, StructuredIndex); 1939 } 1940 1941 /// \brief Expand a field designator that refers to a member of an 1942 /// anonymous struct or union into a series of field designators that 1943 /// refers to the field within the appropriate subobject. 1944 /// 1945 static void ExpandAnonymousFieldDesignator(Sema &SemaRef, 1946 DesignatedInitExpr *DIE, 1947 unsigned DesigIdx, 1948 IndirectFieldDecl *IndirectField) { 1949 typedef DesignatedInitExpr::Designator Designator; 1950 1951 // Build the replacement designators. 1952 SmallVector<Designator, 4> Replacements; 1953 for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(), 1954 PE = IndirectField->chain_end(); PI != PE; ++PI) { 1955 if (PI + 1 == PE) 1956 Replacements.push_back(Designator((IdentifierInfo *)nullptr, 1957 DIE->getDesignator(DesigIdx)->getDotLoc(), 1958 DIE->getDesignator(DesigIdx)->getFieldLoc())); 1959 else 1960 Replacements.push_back(Designator((IdentifierInfo *)nullptr, 1961 SourceLocation(), SourceLocation())); 1962 assert(isa<FieldDecl>(*PI)); 1963 Replacements.back().setField(cast<FieldDecl>(*PI)); 1964 } 1965 1966 // Expand the current designator into the set of replacement 1967 // designators, so we have a full subobject path down to where the 1968 // member of the anonymous struct/union is actually stored. 1969 DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0], 1970 &Replacements[0] + Replacements.size()); 1971 } 1972 1973 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef, 1974 DesignatedInitExpr *DIE) { 1975 unsigned NumIndexExprs = DIE->getNumSubExprs() - 1; 1976 SmallVector<Expr*, 4> IndexExprs(NumIndexExprs); 1977 for (unsigned I = 0; I < NumIndexExprs; ++I) 1978 IndexExprs[I] = DIE->getSubExpr(I + 1); 1979 return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(), 1980 IndexExprs, 1981 DIE->getEqualOrColonLoc(), 1982 DIE->usesGNUSyntax(), DIE->getInit()); 1983 } 1984 1985 namespace { 1986 1987 // Callback to only accept typo corrections that are for field members of 1988 // the given struct or union. 1989 class FieldInitializerValidatorCCC : public CorrectionCandidateCallback { 1990 public: 1991 explicit FieldInitializerValidatorCCC(RecordDecl *RD) 1992 : Record(RD) {} 1993 1994 bool ValidateCandidate(const TypoCorrection &candidate) override { 1995 FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>(); 1996 return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record); 1997 } 1998 1999 private: 2000 RecordDecl *Record; 2001 }; 2002 2003 } // end anonymous namespace 2004 2005 /// @brief Check the well-formedness of a C99 designated initializer. 2006 /// 2007 /// Determines whether the designated initializer @p DIE, which 2008 /// resides at the given @p Index within the initializer list @p 2009 /// IList, is well-formed for a current object of type @p DeclType 2010 /// (C99 6.7.8). The actual subobject that this designator refers to 2011 /// within the current subobject is returned in either 2012 /// @p NextField or @p NextElementIndex (whichever is appropriate). 2013 /// 2014 /// @param IList The initializer list in which this designated 2015 /// initializer occurs. 2016 /// 2017 /// @param DIE The designated initializer expression. 2018 /// 2019 /// @param DesigIdx The index of the current designator. 2020 /// 2021 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17), 2022 /// into which the designation in @p DIE should refer. 2023 /// 2024 /// @param NextField If non-NULL and the first designator in @p DIE is 2025 /// a field, this will be set to the field declaration corresponding 2026 /// to the field named by the designator. 2027 /// 2028 /// @param NextElementIndex If non-NULL and the first designator in @p 2029 /// DIE is an array designator or GNU array-range designator, this 2030 /// will be set to the last index initialized by this designator. 2031 /// 2032 /// @param Index Index into @p IList where the designated initializer 2033 /// @p DIE occurs. 2034 /// 2035 /// @param StructuredList The initializer list expression that 2036 /// describes all of the subobject initializers in the order they'll 2037 /// actually be initialized. 2038 /// 2039 /// @returns true if there was an error, false otherwise. 2040 bool 2041 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity, 2042 InitListExpr *IList, 2043 DesignatedInitExpr *DIE, 2044 unsigned DesigIdx, 2045 QualType &CurrentObjectType, 2046 RecordDecl::field_iterator *NextField, 2047 llvm::APSInt *NextElementIndex, 2048 unsigned &Index, 2049 InitListExpr *StructuredList, 2050 unsigned &StructuredIndex, 2051 bool FinishSubobjectInit, 2052 bool TopLevelObject) { 2053 if (DesigIdx == DIE->size()) { 2054 // Check the actual initialization for the designated object type. 2055 bool prevHadError = hadError; 2056 2057 // Temporarily remove the designator expression from the 2058 // initializer list that the child calls see, so that we don't try 2059 // to re-process the designator. 2060 unsigned OldIndex = Index; 2061 IList->setInit(OldIndex, DIE->getInit()); 2062 2063 CheckSubElementType(Entity, IList, CurrentObjectType, Index, 2064 StructuredList, StructuredIndex); 2065 2066 // Restore the designated initializer expression in the syntactic 2067 // form of the initializer list. 2068 if (IList->getInit(OldIndex) != DIE->getInit()) 2069 DIE->setInit(IList->getInit(OldIndex)); 2070 IList->setInit(OldIndex, DIE); 2071 2072 return hadError && !prevHadError; 2073 } 2074 2075 DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx); 2076 bool IsFirstDesignator = (DesigIdx == 0); 2077 if (!VerifyOnly) { 2078 assert((IsFirstDesignator || StructuredList) && 2079 "Need a non-designated initializer list to start from"); 2080 2081 // Determine the structural initializer list that corresponds to the 2082 // current subobject. 2083 if (IsFirstDesignator) 2084 StructuredList = SyntacticToSemantic.lookup(IList); 2085 else { 2086 Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ? 2087 StructuredList->getInit(StructuredIndex) : nullptr; 2088 if (!ExistingInit && StructuredList->hasArrayFiller()) 2089 ExistingInit = StructuredList->getArrayFiller(); 2090 2091 if (!ExistingInit) 2092 StructuredList = 2093 getStructuredSubobjectInit(IList, Index, CurrentObjectType, 2094 StructuredList, StructuredIndex, 2095 SourceRange(D->getLocStart(), 2096 DIE->getLocEnd())); 2097 else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit)) 2098 StructuredList = Result; 2099 else { 2100 if (DesignatedInitUpdateExpr *E = 2101 dyn_cast<DesignatedInitUpdateExpr>(ExistingInit)) 2102 StructuredList = E->getUpdater(); 2103 else { 2104 DesignatedInitUpdateExpr *DIUE = 2105 new (SemaRef.Context) DesignatedInitUpdateExpr(SemaRef.Context, 2106 D->getLocStart(), ExistingInit, 2107 DIE->getLocEnd()); 2108 StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE); 2109 StructuredList = DIUE->getUpdater(); 2110 } 2111 2112 // We need to check on source range validity because the previous 2113 // initializer does not have to be an explicit initializer. e.g., 2114 // 2115 // struct P { int a, b; }; 2116 // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 }; 2117 // 2118 // There is an overwrite taking place because the first braced initializer 2119 // list "{ .a = 2 }" already provides value for .p.b (which is zero). 2120 if (ExistingInit->getSourceRange().isValid()) { 2121 // We are creating an initializer list that initializes the 2122 // subobjects of the current object, but there was already an 2123 // initialization that completely initialized the current 2124 // subobject, e.g., by a compound literal: 2125 // 2126 // struct X { int a, b; }; 2127 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; 2128 // 2129 // Here, xs[0].a == 0 and xs[0].b == 3, since the second, 2130 // designated initializer re-initializes the whole 2131 // subobject [0], overwriting previous initializers. 2132 SemaRef.Diag(D->getLocStart(), 2133 diag::warn_subobject_initializer_overrides) 2134 << SourceRange(D->getLocStart(), DIE->getLocEnd()); 2135 2136 SemaRef.Diag(ExistingInit->getLocStart(), 2137 diag::note_previous_initializer) 2138 << /*FIXME:has side effects=*/0 2139 << ExistingInit->getSourceRange(); 2140 } 2141 } 2142 } 2143 assert(StructuredList && "Expected a structured initializer list"); 2144 } 2145 2146 if (D->isFieldDesignator()) { 2147 // C99 6.7.8p7: 2148 // 2149 // If a designator has the form 2150 // 2151 // . identifier 2152 // 2153 // then the current object (defined below) shall have 2154 // structure or union type and the identifier shall be the 2155 // name of a member of that type. 2156 const RecordType *RT = CurrentObjectType->getAs<RecordType>(); 2157 if (!RT) { 2158 SourceLocation Loc = D->getDotLoc(); 2159 if (Loc.isInvalid()) 2160 Loc = D->getFieldLoc(); 2161 if (!VerifyOnly) 2162 SemaRef.Diag(Loc, diag::err_field_designator_non_aggr) 2163 << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType; 2164 ++Index; 2165 return true; 2166 } 2167 2168 FieldDecl *KnownField = D->getField(); 2169 if (!KnownField) { 2170 IdentifierInfo *FieldName = D->getFieldName(); 2171 DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName); 2172 for (NamedDecl *ND : Lookup) { 2173 if (auto *FD = dyn_cast<FieldDecl>(ND)) { 2174 KnownField = FD; 2175 break; 2176 } 2177 if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) { 2178 // In verify mode, don't modify the original. 2179 if (VerifyOnly) 2180 DIE = CloneDesignatedInitExpr(SemaRef, DIE); 2181 ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD); 2182 D = DIE->getDesignator(DesigIdx); 2183 KnownField = cast<FieldDecl>(*IFD->chain_begin()); 2184 break; 2185 } 2186 } 2187 if (!KnownField) { 2188 if (VerifyOnly) { 2189 ++Index; 2190 return true; // No typo correction when just trying this out. 2191 } 2192 2193 // Name lookup found something, but it wasn't a field. 2194 if (!Lookup.empty()) { 2195 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield) 2196 << FieldName; 2197 SemaRef.Diag(Lookup.front()->getLocation(), 2198 diag::note_field_designator_found); 2199 ++Index; 2200 return true; 2201 } 2202 2203 // Name lookup didn't find anything. 2204 // Determine whether this was a typo for another field name. 2205 if (TypoCorrection Corrected = SemaRef.CorrectTypo( 2206 DeclarationNameInfo(FieldName, D->getFieldLoc()), 2207 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr, 2208 llvm::make_unique<FieldInitializerValidatorCCC>(RT->getDecl()), 2209 Sema::CTK_ErrorRecovery, RT->getDecl())) { 2210 SemaRef.diagnoseTypo( 2211 Corrected, 2212 SemaRef.PDiag(diag::err_field_designator_unknown_suggest) 2213 << FieldName << CurrentObjectType); 2214 KnownField = Corrected.getCorrectionDeclAs<FieldDecl>(); 2215 hadError = true; 2216 } else { 2217 // Typo correction didn't find anything. 2218 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown) 2219 << FieldName << CurrentObjectType; 2220 ++Index; 2221 return true; 2222 } 2223 } 2224 } 2225 2226 unsigned FieldIndex = 0; 2227 for (auto *FI : RT->getDecl()->fields()) { 2228 if (FI->isUnnamedBitfield()) 2229 continue; 2230 if (declaresSameEntity(KnownField, FI)) { 2231 KnownField = FI; 2232 break; 2233 } 2234 ++FieldIndex; 2235 } 2236 2237 RecordDecl::field_iterator Field = 2238 RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField)); 2239 2240 // All of the fields of a union are located at the same place in 2241 // the initializer list. 2242 if (RT->getDecl()->isUnion()) { 2243 FieldIndex = 0; 2244 if (!VerifyOnly) { 2245 FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion(); 2246 if (CurrentField && !declaresSameEntity(CurrentField, *Field)) { 2247 assert(StructuredList->getNumInits() == 1 2248 && "A union should never have more than one initializer!"); 2249 2250 // We're about to throw away an initializer, emit warning. 2251 SemaRef.Diag(D->getFieldLoc(), 2252 diag::warn_initializer_overrides) 2253 << D->getSourceRange(); 2254 Expr *ExistingInit = StructuredList->getInit(0); 2255 SemaRef.Diag(ExistingInit->getLocStart(), 2256 diag::note_previous_initializer) 2257 << /*FIXME:has side effects=*/0 2258 << ExistingInit->getSourceRange(); 2259 2260 // remove existing initializer 2261 StructuredList->resizeInits(SemaRef.Context, 0); 2262 StructuredList->setInitializedFieldInUnion(nullptr); 2263 } 2264 2265 StructuredList->setInitializedFieldInUnion(*Field); 2266 } 2267 } 2268 2269 // Make sure we can use this declaration. 2270 bool InvalidUse; 2271 if (VerifyOnly) 2272 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid); 2273 else 2274 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc()); 2275 if (InvalidUse) { 2276 ++Index; 2277 return true; 2278 } 2279 2280 if (!VerifyOnly) { 2281 // Update the designator with the field declaration. 2282 D->setField(*Field); 2283 2284 // Make sure that our non-designated initializer list has space 2285 // for a subobject corresponding to this field. 2286 if (FieldIndex >= StructuredList->getNumInits()) 2287 StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1); 2288 } 2289 2290 // This designator names a flexible array member. 2291 if (Field->getType()->isIncompleteArrayType()) { 2292 bool Invalid = false; 2293 if ((DesigIdx + 1) != DIE->size()) { 2294 // We can't designate an object within the flexible array 2295 // member (because GCC doesn't allow it). 2296 if (!VerifyOnly) { 2297 DesignatedInitExpr::Designator *NextD 2298 = DIE->getDesignator(DesigIdx + 1); 2299 SemaRef.Diag(NextD->getLocStart(), 2300 diag::err_designator_into_flexible_array_member) 2301 << SourceRange(NextD->getLocStart(), 2302 DIE->getLocEnd()); 2303 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 2304 << *Field; 2305 } 2306 Invalid = true; 2307 } 2308 2309 if (!hadError && !isa<InitListExpr>(DIE->getInit()) && 2310 !isa<StringLiteral>(DIE->getInit())) { 2311 // The initializer is not an initializer list. 2312 if (!VerifyOnly) { 2313 SemaRef.Diag(DIE->getInit()->getLocStart(), 2314 diag::err_flexible_array_init_needs_braces) 2315 << DIE->getInit()->getSourceRange(); 2316 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 2317 << *Field; 2318 } 2319 Invalid = true; 2320 } 2321 2322 // Check GNU flexible array initializer. 2323 if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field, 2324 TopLevelObject)) 2325 Invalid = true; 2326 2327 if (Invalid) { 2328 ++Index; 2329 return true; 2330 } 2331 2332 // Initialize the array. 2333 bool prevHadError = hadError; 2334 unsigned newStructuredIndex = FieldIndex; 2335 unsigned OldIndex = Index; 2336 IList->setInit(Index, DIE->getInit()); 2337 2338 InitializedEntity MemberEntity = 2339 InitializedEntity::InitializeMember(*Field, &Entity); 2340 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 2341 StructuredList, newStructuredIndex); 2342 2343 IList->setInit(OldIndex, DIE); 2344 if (hadError && !prevHadError) { 2345 ++Field; 2346 ++FieldIndex; 2347 if (NextField) 2348 *NextField = Field; 2349 StructuredIndex = FieldIndex; 2350 return true; 2351 } 2352 } else { 2353 // Recurse to check later designated subobjects. 2354 QualType FieldType = Field->getType(); 2355 unsigned newStructuredIndex = FieldIndex; 2356 2357 InitializedEntity MemberEntity = 2358 InitializedEntity::InitializeMember(*Field, &Entity); 2359 if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1, 2360 FieldType, nullptr, nullptr, Index, 2361 StructuredList, newStructuredIndex, 2362 FinishSubobjectInit, false)) 2363 return true; 2364 } 2365 2366 // Find the position of the next field to be initialized in this 2367 // subobject. 2368 ++Field; 2369 ++FieldIndex; 2370 2371 // If this the first designator, our caller will continue checking 2372 // the rest of this struct/class/union subobject. 2373 if (IsFirstDesignator) { 2374 if (NextField) 2375 *NextField = Field; 2376 StructuredIndex = FieldIndex; 2377 return false; 2378 } 2379 2380 if (!FinishSubobjectInit) 2381 return false; 2382 2383 // We've already initialized something in the union; we're done. 2384 if (RT->getDecl()->isUnion()) 2385 return hadError; 2386 2387 // Check the remaining fields within this class/struct/union subobject. 2388 bool prevHadError = hadError; 2389 2390 auto NoBases = 2391 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(), 2392 CXXRecordDecl::base_class_iterator()); 2393 CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field, 2394 false, Index, StructuredList, FieldIndex); 2395 return hadError && !prevHadError; 2396 } 2397 2398 // C99 6.7.8p6: 2399 // 2400 // If a designator has the form 2401 // 2402 // [ constant-expression ] 2403 // 2404 // then the current object (defined below) shall have array 2405 // type and the expression shall be an integer constant 2406 // expression. If the array is of unknown size, any 2407 // nonnegative value is valid. 2408 // 2409 // Additionally, cope with the GNU extension that permits 2410 // designators of the form 2411 // 2412 // [ constant-expression ... constant-expression ] 2413 const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType); 2414 if (!AT) { 2415 if (!VerifyOnly) 2416 SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array) 2417 << CurrentObjectType; 2418 ++Index; 2419 return true; 2420 } 2421 2422 Expr *IndexExpr = nullptr; 2423 llvm::APSInt DesignatedStartIndex, DesignatedEndIndex; 2424 if (D->isArrayDesignator()) { 2425 IndexExpr = DIE->getArrayIndex(*D); 2426 DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context); 2427 DesignatedEndIndex = DesignatedStartIndex; 2428 } else { 2429 assert(D->isArrayRangeDesignator() && "Need array-range designator"); 2430 2431 DesignatedStartIndex = 2432 DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context); 2433 DesignatedEndIndex = 2434 DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context); 2435 IndexExpr = DIE->getArrayRangeEnd(*D); 2436 2437 // Codegen can't handle evaluating array range designators that have side 2438 // effects, because we replicate the AST value for each initialized element. 2439 // As such, set the sawArrayRangeDesignator() bit if we initialize multiple 2440 // elements with something that has a side effect, so codegen can emit an 2441 // "error unsupported" error instead of miscompiling the app. 2442 if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&& 2443 DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly) 2444 FullyStructuredList->sawArrayRangeDesignator(); 2445 } 2446 2447 if (isa<ConstantArrayType>(AT)) { 2448 llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false); 2449 DesignatedStartIndex 2450 = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth()); 2451 DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned()); 2452 DesignatedEndIndex 2453 = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth()); 2454 DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned()); 2455 if (DesignatedEndIndex >= MaxElements) { 2456 if (!VerifyOnly) 2457 SemaRef.Diag(IndexExpr->getLocStart(), 2458 diag::err_array_designator_too_large) 2459 << DesignatedEndIndex.toString(10) << MaxElements.toString(10) 2460 << IndexExpr->getSourceRange(); 2461 ++Index; 2462 return true; 2463 } 2464 } else { 2465 unsigned DesignatedIndexBitWidth = 2466 ConstantArrayType::getMaxSizeBits(SemaRef.Context); 2467 DesignatedStartIndex = 2468 DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth); 2469 DesignatedEndIndex = 2470 DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth); 2471 DesignatedStartIndex.setIsUnsigned(true); 2472 DesignatedEndIndex.setIsUnsigned(true); 2473 } 2474 2475 if (!VerifyOnly && StructuredList->isStringLiteralInit()) { 2476 // We're modifying a string literal init; we have to decompose the string 2477 // so we can modify the individual characters. 2478 ASTContext &Context = SemaRef.Context; 2479 Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens(); 2480 2481 // Compute the character type 2482 QualType CharTy = AT->getElementType(); 2483 2484 // Compute the type of the integer literals. 2485 QualType PromotedCharTy = CharTy; 2486 if (CharTy->isPromotableIntegerType()) 2487 PromotedCharTy = Context.getPromotedIntegerType(CharTy); 2488 unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy); 2489 2490 if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) { 2491 // Get the length of the string. 2492 uint64_t StrLen = SL->getLength(); 2493 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen)) 2494 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue(); 2495 StructuredList->resizeInits(Context, StrLen); 2496 2497 // Build a literal for each character in the string, and put them into 2498 // the init list. 2499 for (unsigned i = 0, e = StrLen; i != e; ++i) { 2500 llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i)); 2501 Expr *Init = new (Context) IntegerLiteral( 2502 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); 2503 if (CharTy != PromotedCharTy) 2504 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, 2505 Init, nullptr, VK_RValue); 2506 StructuredList->updateInit(Context, i, Init); 2507 } 2508 } else { 2509 ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr); 2510 std::string Str; 2511 Context.getObjCEncodingForType(E->getEncodedType(), Str); 2512 2513 // Get the length of the string. 2514 uint64_t StrLen = Str.size(); 2515 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen)) 2516 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue(); 2517 StructuredList->resizeInits(Context, StrLen); 2518 2519 // Build a literal for each character in the string, and put them into 2520 // the init list. 2521 for (unsigned i = 0, e = StrLen; i != e; ++i) { 2522 llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]); 2523 Expr *Init = new (Context) IntegerLiteral( 2524 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); 2525 if (CharTy != PromotedCharTy) 2526 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, 2527 Init, nullptr, VK_RValue); 2528 StructuredList->updateInit(Context, i, Init); 2529 } 2530 } 2531 } 2532 2533 // Make sure that our non-designated initializer list has space 2534 // for a subobject corresponding to this array element. 2535 if (!VerifyOnly && 2536 DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits()) 2537 StructuredList->resizeInits(SemaRef.Context, 2538 DesignatedEndIndex.getZExtValue() + 1); 2539 2540 // Repeatedly perform subobject initializations in the range 2541 // [DesignatedStartIndex, DesignatedEndIndex]. 2542 2543 // Move to the next designator 2544 unsigned ElementIndex = DesignatedStartIndex.getZExtValue(); 2545 unsigned OldIndex = Index; 2546 2547 InitializedEntity ElementEntity = 2548 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 2549 2550 while (DesignatedStartIndex <= DesignatedEndIndex) { 2551 // Recurse to check later designated subobjects. 2552 QualType ElementType = AT->getElementType(); 2553 Index = OldIndex; 2554 2555 ElementEntity.setElementIndex(ElementIndex); 2556 if (CheckDesignatedInitializer( 2557 ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr, 2558 nullptr, Index, StructuredList, ElementIndex, 2559 FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex), 2560 false)) 2561 return true; 2562 2563 // Move to the next index in the array that we'll be initializing. 2564 ++DesignatedStartIndex; 2565 ElementIndex = DesignatedStartIndex.getZExtValue(); 2566 } 2567 2568 // If this the first designator, our caller will continue checking 2569 // the rest of this array subobject. 2570 if (IsFirstDesignator) { 2571 if (NextElementIndex) 2572 *NextElementIndex = DesignatedStartIndex; 2573 StructuredIndex = ElementIndex; 2574 return false; 2575 } 2576 2577 if (!FinishSubobjectInit) 2578 return false; 2579 2580 // Check the remaining elements within this array subobject. 2581 bool prevHadError = hadError; 2582 CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex, 2583 /*SubobjectIsDesignatorContext=*/false, Index, 2584 StructuredList, ElementIndex); 2585 return hadError && !prevHadError; 2586 } 2587 2588 // Get the structured initializer list for a subobject of type 2589 // @p CurrentObjectType. 2590 InitListExpr * 2591 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, 2592 QualType CurrentObjectType, 2593 InitListExpr *StructuredList, 2594 unsigned StructuredIndex, 2595 SourceRange InitRange, 2596 bool IsFullyOverwritten) { 2597 if (VerifyOnly) 2598 return nullptr; // No structured list in verification-only mode. 2599 Expr *ExistingInit = nullptr; 2600 if (!StructuredList) 2601 ExistingInit = SyntacticToSemantic.lookup(IList); 2602 else if (StructuredIndex < StructuredList->getNumInits()) 2603 ExistingInit = StructuredList->getInit(StructuredIndex); 2604 2605 if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit)) 2606 // There might have already been initializers for subobjects of the current 2607 // object, but a subsequent initializer list will overwrite the entirety 2608 // of the current object. (See DR 253 and C99 6.7.8p21). e.g., 2609 // 2610 // struct P { char x[6]; }; 2611 // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } }; 2612 // 2613 // The first designated initializer is ignored, and l.x is just "f". 2614 if (!IsFullyOverwritten) 2615 return Result; 2616 2617 if (ExistingInit) { 2618 // We are creating an initializer list that initializes the 2619 // subobjects of the current object, but there was already an 2620 // initialization that completely initialized the current 2621 // subobject, e.g., by a compound literal: 2622 // 2623 // struct X { int a, b; }; 2624 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; 2625 // 2626 // Here, xs[0].a == 0 and xs[0].b == 3, since the second, 2627 // designated initializer re-initializes the whole 2628 // subobject [0], overwriting previous initializers. 2629 SemaRef.Diag(InitRange.getBegin(), 2630 diag::warn_subobject_initializer_overrides) 2631 << InitRange; 2632 SemaRef.Diag(ExistingInit->getLocStart(), 2633 diag::note_previous_initializer) 2634 << /*FIXME:has side effects=*/0 2635 << ExistingInit->getSourceRange(); 2636 } 2637 2638 InitListExpr *Result 2639 = new (SemaRef.Context) InitListExpr(SemaRef.Context, 2640 InitRange.getBegin(), None, 2641 InitRange.getEnd()); 2642 2643 QualType ResultType = CurrentObjectType; 2644 if (!ResultType->isArrayType()) 2645 ResultType = ResultType.getNonLValueExprType(SemaRef.Context); 2646 Result->setType(ResultType); 2647 2648 // Pre-allocate storage for the structured initializer list. 2649 unsigned NumElements = 0; 2650 unsigned NumInits = 0; 2651 bool GotNumInits = false; 2652 if (!StructuredList) { 2653 NumInits = IList->getNumInits(); 2654 GotNumInits = true; 2655 } else if (Index < IList->getNumInits()) { 2656 if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) { 2657 NumInits = SubList->getNumInits(); 2658 GotNumInits = true; 2659 } 2660 } 2661 2662 if (const ArrayType *AType 2663 = SemaRef.Context.getAsArrayType(CurrentObjectType)) { 2664 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) { 2665 NumElements = CAType->getSize().getZExtValue(); 2666 // Simple heuristic so that we don't allocate a very large 2667 // initializer with many empty entries at the end. 2668 if (GotNumInits && NumElements > NumInits) 2669 NumElements = 0; 2670 } 2671 } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>()) 2672 NumElements = VType->getNumElements(); 2673 else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) { 2674 RecordDecl *RDecl = RType->getDecl(); 2675 if (RDecl->isUnion()) 2676 NumElements = 1; 2677 else 2678 NumElements = std::distance(RDecl->field_begin(), RDecl->field_end()); 2679 } 2680 2681 Result->reserveInits(SemaRef.Context, NumElements); 2682 2683 // Link this new initializer list into the structured initializer 2684 // lists. 2685 if (StructuredList) 2686 StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result); 2687 else { 2688 Result->setSyntacticForm(IList); 2689 SyntacticToSemantic[IList] = Result; 2690 } 2691 2692 return Result; 2693 } 2694 2695 /// Update the initializer at index @p StructuredIndex within the 2696 /// structured initializer list to the value @p expr. 2697 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList, 2698 unsigned &StructuredIndex, 2699 Expr *expr) { 2700 // No structured initializer list to update 2701 if (!StructuredList) 2702 return; 2703 2704 if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context, 2705 StructuredIndex, expr)) { 2706 // This initializer overwrites a previous initializer. Warn. 2707 // We need to check on source range validity because the previous 2708 // initializer does not have to be an explicit initializer. 2709 // struct P { int a, b; }; 2710 // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 }; 2711 // There is an overwrite taking place because the first braced initializer 2712 // list "{ .a = 2 }' already provides value for .p.b (which is zero). 2713 if (PrevInit->getSourceRange().isValid()) { 2714 SemaRef.Diag(expr->getLocStart(), 2715 diag::warn_initializer_overrides) 2716 << expr->getSourceRange(); 2717 2718 SemaRef.Diag(PrevInit->getLocStart(), 2719 diag::note_previous_initializer) 2720 << /*FIXME:has side effects=*/0 2721 << PrevInit->getSourceRange(); 2722 } 2723 } 2724 2725 ++StructuredIndex; 2726 } 2727 2728 /// Check that the given Index expression is a valid array designator 2729 /// value. This is essentially just a wrapper around 2730 /// VerifyIntegerConstantExpression that also checks for negative values 2731 /// and produces a reasonable diagnostic if there is a 2732 /// failure. Returns the index expression, possibly with an implicit cast 2733 /// added, on success. If everything went okay, Value will receive the 2734 /// value of the constant expression. 2735 static ExprResult 2736 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) { 2737 SourceLocation Loc = Index->getLocStart(); 2738 2739 // Make sure this is an integer constant expression. 2740 ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value); 2741 if (Result.isInvalid()) 2742 return Result; 2743 2744 if (Value.isSigned() && Value.isNegative()) 2745 return S.Diag(Loc, diag::err_array_designator_negative) 2746 << Value.toString(10) << Index->getSourceRange(); 2747 2748 Value.setIsUnsigned(true); 2749 return Result; 2750 } 2751 2752 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig, 2753 SourceLocation Loc, 2754 bool GNUSyntax, 2755 ExprResult Init) { 2756 typedef DesignatedInitExpr::Designator ASTDesignator; 2757 2758 bool Invalid = false; 2759 SmallVector<ASTDesignator, 32> Designators; 2760 SmallVector<Expr *, 32> InitExpressions; 2761 2762 // Build designators and check array designator expressions. 2763 for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) { 2764 const Designator &D = Desig.getDesignator(Idx); 2765 switch (D.getKind()) { 2766 case Designator::FieldDesignator: 2767 Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(), 2768 D.getFieldLoc())); 2769 break; 2770 2771 case Designator::ArrayDesignator: { 2772 Expr *Index = static_cast<Expr *>(D.getArrayIndex()); 2773 llvm::APSInt IndexValue; 2774 if (!Index->isTypeDependent() && !Index->isValueDependent()) 2775 Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get(); 2776 if (!Index) 2777 Invalid = true; 2778 else { 2779 Designators.push_back(ASTDesignator(InitExpressions.size(), 2780 D.getLBracketLoc(), 2781 D.getRBracketLoc())); 2782 InitExpressions.push_back(Index); 2783 } 2784 break; 2785 } 2786 2787 case Designator::ArrayRangeDesignator: { 2788 Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart()); 2789 Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd()); 2790 llvm::APSInt StartValue; 2791 llvm::APSInt EndValue; 2792 bool StartDependent = StartIndex->isTypeDependent() || 2793 StartIndex->isValueDependent(); 2794 bool EndDependent = EndIndex->isTypeDependent() || 2795 EndIndex->isValueDependent(); 2796 if (!StartDependent) 2797 StartIndex = 2798 CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get(); 2799 if (!EndDependent) 2800 EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get(); 2801 2802 if (!StartIndex || !EndIndex) 2803 Invalid = true; 2804 else { 2805 // Make sure we're comparing values with the same bit width. 2806 if (StartDependent || EndDependent) { 2807 // Nothing to compute. 2808 } else if (StartValue.getBitWidth() > EndValue.getBitWidth()) 2809 EndValue = EndValue.extend(StartValue.getBitWidth()); 2810 else if (StartValue.getBitWidth() < EndValue.getBitWidth()) 2811 StartValue = StartValue.extend(EndValue.getBitWidth()); 2812 2813 if (!StartDependent && !EndDependent && EndValue < StartValue) { 2814 Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range) 2815 << StartValue.toString(10) << EndValue.toString(10) 2816 << StartIndex->getSourceRange() << EndIndex->getSourceRange(); 2817 Invalid = true; 2818 } else { 2819 Designators.push_back(ASTDesignator(InitExpressions.size(), 2820 D.getLBracketLoc(), 2821 D.getEllipsisLoc(), 2822 D.getRBracketLoc())); 2823 InitExpressions.push_back(StartIndex); 2824 InitExpressions.push_back(EndIndex); 2825 } 2826 } 2827 break; 2828 } 2829 } 2830 } 2831 2832 if (Invalid || Init.isInvalid()) 2833 return ExprError(); 2834 2835 // Clear out the expressions within the designation. 2836 Desig.ClearExprs(*this); 2837 2838 DesignatedInitExpr *DIE 2839 = DesignatedInitExpr::Create(Context, 2840 Designators, 2841 InitExpressions, Loc, GNUSyntax, 2842 Init.getAs<Expr>()); 2843 2844 if (!getLangOpts().C99) 2845 Diag(DIE->getLocStart(), diag::ext_designated_init) 2846 << DIE->getSourceRange(); 2847 2848 return DIE; 2849 } 2850 2851 //===----------------------------------------------------------------------===// 2852 // Initialization entity 2853 //===----------------------------------------------------------------------===// 2854 2855 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index, 2856 const InitializedEntity &Parent) 2857 : Parent(&Parent), Index(Index) 2858 { 2859 if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) { 2860 Kind = EK_ArrayElement; 2861 Type = AT->getElementType(); 2862 } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) { 2863 Kind = EK_VectorElement; 2864 Type = VT->getElementType(); 2865 } else { 2866 const ComplexType *CT = Parent.getType()->getAs<ComplexType>(); 2867 assert(CT && "Unexpected type"); 2868 Kind = EK_ComplexElement; 2869 Type = CT->getElementType(); 2870 } 2871 } 2872 2873 InitializedEntity 2874 InitializedEntity::InitializeBase(ASTContext &Context, 2875 const CXXBaseSpecifier *Base, 2876 bool IsInheritedVirtualBase, 2877 const InitializedEntity *Parent) { 2878 InitializedEntity Result; 2879 Result.Kind = EK_Base; 2880 Result.Parent = Parent; 2881 Result.Base = reinterpret_cast<uintptr_t>(Base); 2882 if (IsInheritedVirtualBase) 2883 Result.Base |= 0x01; 2884 2885 Result.Type = Base->getType(); 2886 return Result; 2887 } 2888 2889 DeclarationName InitializedEntity::getName() const { 2890 switch (getKind()) { 2891 case EK_Parameter: 2892 case EK_Parameter_CF_Audited: { 2893 ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1); 2894 return (D ? D->getDeclName() : DeclarationName()); 2895 } 2896 2897 case EK_Variable: 2898 case EK_Member: 2899 case EK_Binding: 2900 return VariableOrMember->getDeclName(); 2901 2902 case EK_LambdaCapture: 2903 return DeclarationName(Capture.VarID); 2904 2905 case EK_Result: 2906 case EK_Exception: 2907 case EK_New: 2908 case EK_Temporary: 2909 case EK_Base: 2910 case EK_Delegating: 2911 case EK_ArrayElement: 2912 case EK_VectorElement: 2913 case EK_ComplexElement: 2914 case EK_BlockElement: 2915 case EK_CompoundLiteralInit: 2916 case EK_RelatedResult: 2917 return DeclarationName(); 2918 } 2919 2920 llvm_unreachable("Invalid EntityKind!"); 2921 } 2922 2923 ValueDecl *InitializedEntity::getDecl() const { 2924 switch (getKind()) { 2925 case EK_Variable: 2926 case EK_Member: 2927 case EK_Binding: 2928 return VariableOrMember; 2929 2930 case EK_Parameter: 2931 case EK_Parameter_CF_Audited: 2932 return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1); 2933 2934 case EK_Result: 2935 case EK_Exception: 2936 case EK_New: 2937 case EK_Temporary: 2938 case EK_Base: 2939 case EK_Delegating: 2940 case EK_ArrayElement: 2941 case EK_VectorElement: 2942 case EK_ComplexElement: 2943 case EK_BlockElement: 2944 case EK_LambdaCapture: 2945 case EK_CompoundLiteralInit: 2946 case EK_RelatedResult: 2947 return nullptr; 2948 } 2949 2950 llvm_unreachable("Invalid EntityKind!"); 2951 } 2952 2953 bool InitializedEntity::allowsNRVO() const { 2954 switch (getKind()) { 2955 case EK_Result: 2956 case EK_Exception: 2957 return LocAndNRVO.NRVO; 2958 2959 case EK_Variable: 2960 case EK_Parameter: 2961 case EK_Parameter_CF_Audited: 2962 case EK_Member: 2963 case EK_Binding: 2964 case EK_New: 2965 case EK_Temporary: 2966 case EK_CompoundLiteralInit: 2967 case EK_Base: 2968 case EK_Delegating: 2969 case EK_ArrayElement: 2970 case EK_VectorElement: 2971 case EK_ComplexElement: 2972 case EK_BlockElement: 2973 case EK_LambdaCapture: 2974 case EK_RelatedResult: 2975 break; 2976 } 2977 2978 return false; 2979 } 2980 2981 unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const { 2982 assert(getParent() != this); 2983 unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0; 2984 for (unsigned I = 0; I != Depth; ++I) 2985 OS << "`-"; 2986 2987 switch (getKind()) { 2988 case EK_Variable: OS << "Variable"; break; 2989 case EK_Parameter: OS << "Parameter"; break; 2990 case EK_Parameter_CF_Audited: OS << "CF audited function Parameter"; 2991 break; 2992 case EK_Result: OS << "Result"; break; 2993 case EK_Exception: OS << "Exception"; break; 2994 case EK_Member: OS << "Member"; break; 2995 case EK_Binding: OS << "Binding"; break; 2996 case EK_New: OS << "New"; break; 2997 case EK_Temporary: OS << "Temporary"; break; 2998 case EK_CompoundLiteralInit: OS << "CompoundLiteral";break; 2999 case EK_RelatedResult: OS << "RelatedResult"; break; 3000 case EK_Base: OS << "Base"; break; 3001 case EK_Delegating: OS << "Delegating"; break; 3002 case EK_ArrayElement: OS << "ArrayElement " << Index; break; 3003 case EK_VectorElement: OS << "VectorElement " << Index; break; 3004 case EK_ComplexElement: OS << "ComplexElement " << Index; break; 3005 case EK_BlockElement: OS << "Block"; break; 3006 case EK_LambdaCapture: 3007 OS << "LambdaCapture "; 3008 OS << DeclarationName(Capture.VarID); 3009 break; 3010 } 3011 3012 if (auto *D = getDecl()) { 3013 OS << " "; 3014 D->printQualifiedName(OS); 3015 } 3016 3017 OS << " '" << getType().getAsString() << "'\n"; 3018 3019 return Depth + 1; 3020 } 3021 3022 LLVM_DUMP_METHOD void InitializedEntity::dump() const { 3023 dumpImpl(llvm::errs()); 3024 } 3025 3026 //===----------------------------------------------------------------------===// 3027 // Initialization sequence 3028 //===----------------------------------------------------------------------===// 3029 3030 void InitializationSequence::Step::Destroy() { 3031 switch (Kind) { 3032 case SK_ResolveAddressOfOverloadedFunction: 3033 case SK_CastDerivedToBaseRValue: 3034 case SK_CastDerivedToBaseXValue: 3035 case SK_CastDerivedToBaseLValue: 3036 case SK_BindReference: 3037 case SK_BindReferenceToTemporary: 3038 case SK_ExtraneousCopyToTemporary: 3039 case SK_UserConversion: 3040 case SK_QualificationConversionRValue: 3041 case SK_QualificationConversionXValue: 3042 case SK_QualificationConversionLValue: 3043 case SK_AtomicConversion: 3044 case SK_LValueToRValue: 3045 case SK_ListInitialization: 3046 case SK_UnwrapInitList: 3047 case SK_RewrapInitList: 3048 case SK_ConstructorInitialization: 3049 case SK_ConstructorInitializationFromList: 3050 case SK_ZeroInitialization: 3051 case SK_CAssignment: 3052 case SK_StringInit: 3053 case SK_ObjCObjectConversion: 3054 case SK_ArrayInit: 3055 case SK_ParenthesizedArrayInit: 3056 case SK_PassByIndirectCopyRestore: 3057 case SK_PassByIndirectRestore: 3058 case SK_ProduceObjCObject: 3059 case SK_StdInitializerList: 3060 case SK_StdInitializerListConstructorCall: 3061 case SK_OCLSamplerInit: 3062 case SK_OCLZeroEvent: 3063 break; 3064 3065 case SK_ConversionSequence: 3066 case SK_ConversionSequenceNoNarrowing: 3067 delete ICS; 3068 } 3069 } 3070 3071 bool InitializationSequence::isDirectReferenceBinding() const { 3072 return !Steps.empty() && Steps.back().Kind == SK_BindReference; 3073 } 3074 3075 bool InitializationSequence::isAmbiguous() const { 3076 if (!Failed()) 3077 return false; 3078 3079 switch (getFailureKind()) { 3080 case FK_TooManyInitsForReference: 3081 case FK_ArrayNeedsInitList: 3082 case FK_ArrayNeedsInitListOrStringLiteral: 3083 case FK_ArrayNeedsInitListOrWideStringLiteral: 3084 case FK_NarrowStringIntoWideCharArray: 3085 case FK_WideStringIntoCharArray: 3086 case FK_IncompatWideStringIntoWideChar: 3087 case FK_AddressOfOverloadFailed: // FIXME: Could do better 3088 case FK_NonConstLValueReferenceBindingToTemporary: 3089 case FK_NonConstLValueReferenceBindingToUnrelated: 3090 case FK_RValueReferenceBindingToLValue: 3091 case FK_ReferenceInitDropsQualifiers: 3092 case FK_ReferenceInitFailed: 3093 case FK_ConversionFailed: 3094 case FK_ConversionFromPropertyFailed: 3095 case FK_TooManyInitsForScalar: 3096 case FK_ReferenceBindingToInitList: 3097 case FK_InitListBadDestinationType: 3098 case FK_DefaultInitOfConst: 3099 case FK_Incomplete: 3100 case FK_ArrayTypeMismatch: 3101 case FK_NonConstantArrayInit: 3102 case FK_ListInitializationFailed: 3103 case FK_VariableLengthArrayHasInitializer: 3104 case FK_PlaceholderType: 3105 case FK_ExplicitConstructor: 3106 case FK_AddressOfUnaddressableFunction: 3107 return false; 3108 3109 case FK_ReferenceInitOverloadFailed: 3110 case FK_UserConversionOverloadFailed: 3111 case FK_ConstructorOverloadFailed: 3112 case FK_ListConstructorOverloadFailed: 3113 return FailedOverloadResult == OR_Ambiguous; 3114 } 3115 3116 llvm_unreachable("Invalid EntityKind!"); 3117 } 3118 3119 bool InitializationSequence::isConstructorInitialization() const { 3120 return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization; 3121 } 3122 3123 void 3124 InitializationSequence 3125 ::AddAddressOverloadResolutionStep(FunctionDecl *Function, 3126 DeclAccessPair Found, 3127 bool HadMultipleCandidates) { 3128 Step S; 3129 S.Kind = SK_ResolveAddressOfOverloadedFunction; 3130 S.Type = Function->getType(); 3131 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3132 S.Function.Function = Function; 3133 S.Function.FoundDecl = Found; 3134 Steps.push_back(S); 3135 } 3136 3137 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType, 3138 ExprValueKind VK) { 3139 Step S; 3140 switch (VK) { 3141 case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break; 3142 case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break; 3143 case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break; 3144 } 3145 S.Type = BaseType; 3146 Steps.push_back(S); 3147 } 3148 3149 void InitializationSequence::AddReferenceBindingStep(QualType T, 3150 bool BindingTemporary) { 3151 Step S; 3152 S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference; 3153 S.Type = T; 3154 Steps.push_back(S); 3155 } 3156 3157 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) { 3158 Step S; 3159 S.Kind = SK_ExtraneousCopyToTemporary; 3160 S.Type = T; 3161 Steps.push_back(S); 3162 } 3163 3164 void 3165 InitializationSequence::AddUserConversionStep(FunctionDecl *Function, 3166 DeclAccessPair FoundDecl, 3167 QualType T, 3168 bool HadMultipleCandidates) { 3169 Step S; 3170 S.Kind = SK_UserConversion; 3171 S.Type = T; 3172 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3173 S.Function.Function = Function; 3174 S.Function.FoundDecl = FoundDecl; 3175 Steps.push_back(S); 3176 } 3177 3178 void InitializationSequence::AddQualificationConversionStep(QualType Ty, 3179 ExprValueKind VK) { 3180 Step S; 3181 S.Kind = SK_QualificationConversionRValue; // work around a gcc warning 3182 switch (VK) { 3183 case VK_RValue: 3184 S.Kind = SK_QualificationConversionRValue; 3185 break; 3186 case VK_XValue: 3187 S.Kind = SK_QualificationConversionXValue; 3188 break; 3189 case VK_LValue: 3190 S.Kind = SK_QualificationConversionLValue; 3191 break; 3192 } 3193 S.Type = Ty; 3194 Steps.push_back(S); 3195 } 3196 3197 void InitializationSequence::AddAtomicConversionStep(QualType Ty) { 3198 Step S; 3199 S.Kind = SK_AtomicConversion; 3200 S.Type = Ty; 3201 Steps.push_back(S); 3202 } 3203 3204 void InitializationSequence::AddLValueToRValueStep(QualType Ty) { 3205 assert(!Ty.hasQualifiers() && "rvalues may not have qualifiers"); 3206 3207 Step S; 3208 S.Kind = SK_LValueToRValue; 3209 S.Type = Ty; 3210 Steps.push_back(S); 3211 } 3212 3213 void InitializationSequence::AddConversionSequenceStep( 3214 const ImplicitConversionSequence &ICS, QualType T, 3215 bool TopLevelOfInitList) { 3216 Step S; 3217 S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing 3218 : SK_ConversionSequence; 3219 S.Type = T; 3220 S.ICS = new ImplicitConversionSequence(ICS); 3221 Steps.push_back(S); 3222 } 3223 3224 void InitializationSequence::AddListInitializationStep(QualType T) { 3225 Step S; 3226 S.Kind = SK_ListInitialization; 3227 S.Type = T; 3228 Steps.push_back(S); 3229 } 3230 3231 void InitializationSequence::AddConstructorInitializationStep( 3232 DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T, 3233 bool HadMultipleCandidates, bool FromInitList, bool AsInitList) { 3234 Step S; 3235 S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall 3236 : SK_ConstructorInitializationFromList 3237 : SK_ConstructorInitialization; 3238 S.Type = T; 3239 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3240 S.Function.Function = Constructor; 3241 S.Function.FoundDecl = FoundDecl; 3242 Steps.push_back(S); 3243 } 3244 3245 void InitializationSequence::AddZeroInitializationStep(QualType T) { 3246 Step S; 3247 S.Kind = SK_ZeroInitialization; 3248 S.Type = T; 3249 Steps.push_back(S); 3250 } 3251 3252 void InitializationSequence::AddCAssignmentStep(QualType T) { 3253 Step S; 3254 S.Kind = SK_CAssignment; 3255 S.Type = T; 3256 Steps.push_back(S); 3257 } 3258 3259 void InitializationSequence::AddStringInitStep(QualType T) { 3260 Step S; 3261 S.Kind = SK_StringInit; 3262 S.Type = T; 3263 Steps.push_back(S); 3264 } 3265 3266 void InitializationSequence::AddObjCObjectConversionStep(QualType T) { 3267 Step S; 3268 S.Kind = SK_ObjCObjectConversion; 3269 S.Type = T; 3270 Steps.push_back(S); 3271 } 3272 3273 void InitializationSequence::AddArrayInitStep(QualType T) { 3274 Step S; 3275 S.Kind = SK_ArrayInit; 3276 S.Type = T; 3277 Steps.push_back(S); 3278 } 3279 3280 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) { 3281 Step S; 3282 S.Kind = SK_ParenthesizedArrayInit; 3283 S.Type = T; 3284 Steps.push_back(S); 3285 } 3286 3287 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type, 3288 bool shouldCopy) { 3289 Step s; 3290 s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore 3291 : SK_PassByIndirectRestore); 3292 s.Type = type; 3293 Steps.push_back(s); 3294 } 3295 3296 void InitializationSequence::AddProduceObjCObjectStep(QualType T) { 3297 Step S; 3298 S.Kind = SK_ProduceObjCObject; 3299 S.Type = T; 3300 Steps.push_back(S); 3301 } 3302 3303 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) { 3304 Step S; 3305 S.Kind = SK_StdInitializerList; 3306 S.Type = T; 3307 Steps.push_back(S); 3308 } 3309 3310 void InitializationSequence::AddOCLSamplerInitStep(QualType T) { 3311 Step S; 3312 S.Kind = SK_OCLSamplerInit; 3313 S.Type = T; 3314 Steps.push_back(S); 3315 } 3316 3317 void InitializationSequence::AddOCLZeroEventStep(QualType T) { 3318 Step S; 3319 S.Kind = SK_OCLZeroEvent; 3320 S.Type = T; 3321 Steps.push_back(S); 3322 } 3323 3324 void InitializationSequence::RewrapReferenceInitList(QualType T, 3325 InitListExpr *Syntactic) { 3326 assert(Syntactic->getNumInits() == 1 && 3327 "Can only rewrap trivial init lists."); 3328 Step S; 3329 S.Kind = SK_UnwrapInitList; 3330 S.Type = Syntactic->getInit(0)->getType(); 3331 Steps.insert(Steps.begin(), S); 3332 3333 S.Kind = SK_RewrapInitList; 3334 S.Type = T; 3335 S.WrappingSyntacticList = Syntactic; 3336 Steps.push_back(S); 3337 } 3338 3339 void InitializationSequence::SetOverloadFailure(FailureKind Failure, 3340 OverloadingResult Result) { 3341 setSequenceKind(FailedSequence); 3342 this->Failure = Failure; 3343 this->FailedOverloadResult = Result; 3344 } 3345 3346 //===----------------------------------------------------------------------===// 3347 // Attempt initialization 3348 //===----------------------------------------------------------------------===// 3349 3350 /// Tries to add a zero initializer. Returns true if that worked. 3351 static bool 3352 maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence, 3353 const InitializedEntity &Entity) { 3354 if (Entity.getKind() != InitializedEntity::EK_Variable) 3355 return false; 3356 3357 VarDecl *VD = cast<VarDecl>(Entity.getDecl()); 3358 if (VD->getInit() || VD->getLocEnd().isMacroID()) 3359 return false; 3360 3361 QualType VariableTy = VD->getType().getCanonicalType(); 3362 SourceLocation Loc = S.getLocForEndOfToken(VD->getLocEnd()); 3363 std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc); 3364 if (!Init.empty()) { 3365 Sequence.AddZeroInitializationStep(Entity.getType()); 3366 Sequence.SetZeroInitializationFixit(Init, Loc); 3367 return true; 3368 } 3369 return false; 3370 } 3371 3372 static void MaybeProduceObjCObject(Sema &S, 3373 InitializationSequence &Sequence, 3374 const InitializedEntity &Entity) { 3375 if (!S.getLangOpts().ObjCAutoRefCount) return; 3376 3377 /// When initializing a parameter, produce the value if it's marked 3378 /// __attribute__((ns_consumed)). 3379 if (Entity.isParameterKind()) { 3380 if (!Entity.isParameterConsumed()) 3381 return; 3382 3383 assert(Entity.getType()->isObjCRetainableType() && 3384 "consuming an object of unretainable type?"); 3385 Sequence.AddProduceObjCObjectStep(Entity.getType()); 3386 3387 /// When initializing a return value, if the return type is a 3388 /// retainable type, then returns need to immediately retain the 3389 /// object. If an autorelease is required, it will be done at the 3390 /// last instant. 3391 } else if (Entity.getKind() == InitializedEntity::EK_Result) { 3392 if (!Entity.getType()->isObjCRetainableType()) 3393 return; 3394 3395 Sequence.AddProduceObjCObjectStep(Entity.getType()); 3396 } 3397 } 3398 3399 static void TryListInitialization(Sema &S, 3400 const InitializedEntity &Entity, 3401 const InitializationKind &Kind, 3402 InitListExpr *InitList, 3403 InitializationSequence &Sequence, 3404 bool TreatUnavailableAsInvalid); 3405 3406 /// \brief When initializing from init list via constructor, handle 3407 /// initialization of an object of type std::initializer_list<T>. 3408 /// 3409 /// \return true if we have handled initialization of an object of type 3410 /// std::initializer_list<T>, false otherwise. 3411 static bool TryInitializerListConstruction(Sema &S, 3412 InitListExpr *List, 3413 QualType DestType, 3414 InitializationSequence &Sequence, 3415 bool TreatUnavailableAsInvalid) { 3416 QualType E; 3417 if (!S.isStdInitializerList(DestType, &E)) 3418 return false; 3419 3420 if (!S.isCompleteType(List->getExprLoc(), E)) { 3421 Sequence.setIncompleteTypeFailure(E); 3422 return true; 3423 } 3424 3425 // Try initializing a temporary array from the init list. 3426 QualType ArrayType = S.Context.getConstantArrayType( 3427 E.withConst(), llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()), 3428 List->getNumInits()), 3429 clang::ArrayType::Normal, 0); 3430 InitializedEntity HiddenArray = 3431 InitializedEntity::InitializeTemporary(ArrayType); 3432 InitializationKind Kind = 3433 InitializationKind::CreateDirectList(List->getExprLoc()); 3434 TryListInitialization(S, HiddenArray, Kind, List, Sequence, 3435 TreatUnavailableAsInvalid); 3436 if (Sequence) 3437 Sequence.AddStdInitializerListConstructionStep(DestType); 3438 return true; 3439 } 3440 3441 /// Determine if the constructor has the signature of a copy or move 3442 /// constructor for the type T of the class in which it was found. That is, 3443 /// determine if its first parameter is of type T or reference to (possibly 3444 /// cv-qualified) T. 3445 static bool hasCopyOrMoveCtorParam(ASTContext &Ctx, 3446 const ConstructorInfo &Info) { 3447 if (Info.Constructor->getNumParams() == 0) 3448 return false; 3449 3450 QualType ParmT = 3451 Info.Constructor->getParamDecl(0)->getType().getNonReferenceType(); 3452 QualType ClassT = 3453 Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext())); 3454 3455 return Ctx.hasSameUnqualifiedType(ParmT, ClassT); 3456 } 3457 3458 static OverloadingResult 3459 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc, 3460 MultiExprArg Args, 3461 OverloadCandidateSet &CandidateSet, 3462 DeclContext::lookup_result Ctors, 3463 OverloadCandidateSet::iterator &Best, 3464 bool CopyInitializing, bool AllowExplicit, 3465 bool OnlyListConstructors, bool IsListInit, 3466 bool SecondStepOfCopyInit = false) { 3467 CandidateSet.clear(); 3468 3469 for (NamedDecl *D : Ctors) { 3470 auto Info = getConstructorInfo(D); 3471 if (!Info.Constructor || Info.Constructor->isInvalidDecl()) 3472 continue; 3473 3474 if (!AllowExplicit && Info.Constructor->isExplicit()) 3475 continue; 3476 3477 if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor)) 3478 continue; 3479 3480 // C++11 [over.best.ics]p4: 3481 // ... and the constructor or user-defined conversion function is a 3482 // candidate by 3483 // - 13.3.1.3, when the argument is the temporary in the second step 3484 // of a class copy-initialization, or 3485 // - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here] 3486 // - the second phase of 13.3.1.7 when the initializer list has exactly 3487 // one element that is itself an initializer list, and the target is 3488 // the first parameter of a constructor of class X, and the conversion 3489 // is to X or reference to (possibly cv-qualified X), 3490 // user-defined conversion sequences are not considered. 3491 bool SuppressUserConversions = 3492 SecondStepOfCopyInit || 3493 (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) && 3494 hasCopyOrMoveCtorParam(S.Context, Info)); 3495 3496 if (Info.ConstructorTmpl) 3497 S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl, 3498 /*ExplicitArgs*/ nullptr, Args, 3499 CandidateSet, SuppressUserConversions); 3500 else { 3501 // C++ [over.match.copy]p1: 3502 // - When initializing a temporary to be bound to the first parameter 3503 // of a constructor [for type T] that takes a reference to possibly 3504 // cv-qualified T as its first argument, called with a single 3505 // argument in the context of direct-initialization, explicit 3506 // conversion functions are also considered. 3507 // FIXME: What if a constructor template instantiates to such a signature? 3508 bool AllowExplicitConv = AllowExplicit && !CopyInitializing && 3509 Args.size() == 1 && 3510 hasCopyOrMoveCtorParam(S.Context, Info); 3511 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args, 3512 CandidateSet, SuppressUserConversions, 3513 /*PartialOverloading=*/false, 3514 /*AllowExplicit=*/AllowExplicitConv); 3515 } 3516 } 3517 3518 // Perform overload resolution and return the result. 3519 return CandidateSet.BestViableFunction(S, DeclLoc, Best); 3520 } 3521 3522 /// \brief Attempt initialization by constructor (C++ [dcl.init]), which 3523 /// enumerates the constructors of the initialized entity and performs overload 3524 /// resolution to select the best. 3525 /// \param IsListInit Is this list-initialization? 3526 /// \param IsInitListCopy Is this non-list-initialization resulting from a 3527 /// list-initialization from {x} where x is the same 3528 /// type as the entity? 3529 static void TryConstructorInitialization(Sema &S, 3530 const InitializedEntity &Entity, 3531 const InitializationKind &Kind, 3532 MultiExprArg Args, QualType DestType, 3533 InitializationSequence &Sequence, 3534 bool IsListInit = false, 3535 bool IsInitListCopy = false) { 3536 assert((!IsListInit || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && 3537 "IsListInit must come with a single initializer list argument."); 3538 3539 // The type we're constructing needs to be complete. 3540 if (!S.isCompleteType(Kind.getLocation(), DestType)) { 3541 Sequence.setIncompleteTypeFailure(DestType); 3542 return; 3543 } 3544 3545 const RecordType *DestRecordType = DestType->getAs<RecordType>(); 3546 assert(DestRecordType && "Constructor initialization requires record type"); 3547 CXXRecordDecl *DestRecordDecl 3548 = cast<CXXRecordDecl>(DestRecordType->getDecl()); 3549 3550 // Build the candidate set directly in the initialization sequence 3551 // structure, so that it will persist if we fail. 3552 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 3553 3554 // Determine whether we are allowed to call explicit constructors or 3555 // explicit conversion operators. 3556 bool AllowExplicit = Kind.AllowExplicit() || IsListInit; 3557 bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy; 3558 3559 // - Otherwise, if T is a class type, constructors are considered. The 3560 // applicable constructors are enumerated, and the best one is chosen 3561 // through overload resolution. 3562 DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl); 3563 3564 OverloadingResult Result = OR_No_Viable_Function; 3565 OverloadCandidateSet::iterator Best; 3566 bool AsInitializerList = false; 3567 3568 // C++11 [over.match.list]p1, per DR1467: 3569 // When objects of non-aggregate type T are list-initialized, such that 3570 // 8.5.4 [dcl.init.list] specifies that overload resolution is performed 3571 // according to the rules in this section, overload resolution selects 3572 // the constructor in two phases: 3573 // 3574 // - Initially, the candidate functions are the initializer-list 3575 // constructors of the class T and the argument list consists of the 3576 // initializer list as a single argument. 3577 if (IsListInit) { 3578 InitListExpr *ILE = cast<InitListExpr>(Args[0]); 3579 AsInitializerList = true; 3580 3581 // If the initializer list has no elements and T has a default constructor, 3582 // the first phase is omitted. 3583 if (ILE->getNumInits() != 0 || !DestRecordDecl->hasDefaultConstructor()) 3584 Result = ResolveConstructorOverload(S, Kind.getLocation(), Args, 3585 CandidateSet, Ctors, Best, 3586 CopyInitialization, AllowExplicit, 3587 /*OnlyListConstructor=*/true, 3588 IsListInit); 3589 3590 // Time to unwrap the init list. 3591 Args = MultiExprArg(ILE->getInits(), ILE->getNumInits()); 3592 } 3593 3594 // C++11 [over.match.list]p1: 3595 // - If no viable initializer-list constructor is found, overload resolution 3596 // is performed again, where the candidate functions are all the 3597 // constructors of the class T and the argument list consists of the 3598 // elements of the initializer list. 3599 if (Result == OR_No_Viable_Function) { 3600 AsInitializerList = false; 3601 Result = ResolveConstructorOverload(S, Kind.getLocation(), Args, 3602 CandidateSet, Ctors, Best, 3603 CopyInitialization, AllowExplicit, 3604 /*OnlyListConstructors=*/false, 3605 IsListInit); 3606 } 3607 if (Result) { 3608 Sequence.SetOverloadFailure(IsListInit ? 3609 InitializationSequence::FK_ListConstructorOverloadFailed : 3610 InitializationSequence::FK_ConstructorOverloadFailed, 3611 Result); 3612 return; 3613 } 3614 3615 // C++11 [dcl.init]p6: 3616 // If a program calls for the default initialization of an object 3617 // of a const-qualified type T, T shall be a class type with a 3618 // user-provided default constructor. 3619 // C++ core issue 253 proposal: 3620 // If the implicit default constructor initializes all subobjects, no 3621 // initializer should be required. 3622 // The 253 proposal is for example needed to process libstdc++ headers in 5.x. 3623 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 3624 if (Kind.getKind() == InitializationKind::IK_Default && 3625 Entity.getType().isConstQualified()) { 3626 if (!CtorDecl->getParent()->allowConstDefaultInit()) { 3627 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity)) 3628 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); 3629 return; 3630 } 3631 } 3632 3633 // C++11 [over.match.list]p1: 3634 // In copy-list-initialization, if an explicit constructor is chosen, the 3635 // initializer is ill-formed. 3636 if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) { 3637 Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor); 3638 return; 3639 } 3640 3641 // Add the constructor initialization step. Any cv-qualification conversion is 3642 // subsumed by the initialization. 3643 bool HadMultipleCandidates = (CandidateSet.size() > 1); 3644 Sequence.AddConstructorInitializationStep( 3645 Best->FoundDecl, CtorDecl, DestType, HadMultipleCandidates, 3646 IsListInit | IsInitListCopy, AsInitializerList); 3647 } 3648 3649 static bool 3650 ResolveOverloadedFunctionForReferenceBinding(Sema &S, 3651 Expr *Initializer, 3652 QualType &SourceType, 3653 QualType &UnqualifiedSourceType, 3654 QualType UnqualifiedTargetType, 3655 InitializationSequence &Sequence) { 3656 if (S.Context.getCanonicalType(UnqualifiedSourceType) == 3657 S.Context.OverloadTy) { 3658 DeclAccessPair Found; 3659 bool HadMultipleCandidates = false; 3660 if (FunctionDecl *Fn 3661 = S.ResolveAddressOfOverloadedFunction(Initializer, 3662 UnqualifiedTargetType, 3663 false, Found, 3664 &HadMultipleCandidates)) { 3665 Sequence.AddAddressOverloadResolutionStep(Fn, Found, 3666 HadMultipleCandidates); 3667 SourceType = Fn->getType(); 3668 UnqualifiedSourceType = SourceType.getUnqualifiedType(); 3669 } else if (!UnqualifiedTargetType->isRecordType()) { 3670 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 3671 return true; 3672 } 3673 } 3674 return false; 3675 } 3676 3677 static void TryReferenceInitializationCore(Sema &S, 3678 const InitializedEntity &Entity, 3679 const InitializationKind &Kind, 3680 Expr *Initializer, 3681 QualType cv1T1, QualType T1, 3682 Qualifiers T1Quals, 3683 QualType cv2T2, QualType T2, 3684 Qualifiers T2Quals, 3685 InitializationSequence &Sequence); 3686 3687 static void TryValueInitialization(Sema &S, 3688 const InitializedEntity &Entity, 3689 const InitializationKind &Kind, 3690 InitializationSequence &Sequence, 3691 InitListExpr *InitList = nullptr); 3692 3693 /// \brief Attempt list initialization of a reference. 3694 static void TryReferenceListInitialization(Sema &S, 3695 const InitializedEntity &Entity, 3696 const InitializationKind &Kind, 3697 InitListExpr *InitList, 3698 InitializationSequence &Sequence, 3699 bool TreatUnavailableAsInvalid) { 3700 // First, catch C++03 where this isn't possible. 3701 if (!S.getLangOpts().CPlusPlus11) { 3702 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); 3703 return; 3704 } 3705 // Can't reference initialize a compound literal. 3706 if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) { 3707 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); 3708 return; 3709 } 3710 3711 QualType DestType = Entity.getType(); 3712 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType(); 3713 Qualifiers T1Quals; 3714 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); 3715 3716 // Reference initialization via an initializer list works thus: 3717 // If the initializer list consists of a single element that is 3718 // reference-related to the referenced type, bind directly to that element 3719 // (possibly creating temporaries). 3720 // Otherwise, initialize a temporary with the initializer list and 3721 // bind to that. 3722 if (InitList->getNumInits() == 1) { 3723 Expr *Initializer = InitList->getInit(0); 3724 QualType cv2T2 = Initializer->getType(); 3725 Qualifiers T2Quals; 3726 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); 3727 3728 // If this fails, creating a temporary wouldn't work either. 3729 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, 3730 T1, Sequence)) 3731 return; 3732 3733 SourceLocation DeclLoc = Initializer->getLocStart(); 3734 bool dummy1, dummy2, dummy3; 3735 Sema::ReferenceCompareResult RefRelationship 3736 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1, 3737 dummy2, dummy3); 3738 if (RefRelationship >= Sema::Ref_Related) { 3739 // Try to bind the reference here. 3740 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, 3741 T1Quals, cv2T2, T2, T2Quals, Sequence); 3742 if (Sequence) 3743 Sequence.RewrapReferenceInitList(cv1T1, InitList); 3744 return; 3745 } 3746 3747 // Update the initializer if we've resolved an overloaded function. 3748 if (Sequence.step_begin() != Sequence.step_end()) 3749 Sequence.RewrapReferenceInitList(cv1T1, InitList); 3750 } 3751 3752 // Not reference-related. Create a temporary and bind to that. 3753 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1); 3754 3755 TryListInitialization(S, TempEntity, Kind, InitList, Sequence, 3756 TreatUnavailableAsInvalid); 3757 if (Sequence) { 3758 if (DestType->isRValueReferenceType() || 3759 (T1Quals.hasConst() && !T1Quals.hasVolatile())) 3760 Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true); 3761 else 3762 Sequence.SetFailed( 3763 InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary); 3764 } 3765 } 3766 3767 /// \brief Attempt list initialization (C++0x [dcl.init.list]) 3768 static void TryListInitialization(Sema &S, 3769 const InitializedEntity &Entity, 3770 const InitializationKind &Kind, 3771 InitListExpr *InitList, 3772 InitializationSequence &Sequence, 3773 bool TreatUnavailableAsInvalid) { 3774 QualType DestType = Entity.getType(); 3775 3776 // C++ doesn't allow scalar initialization with more than one argument. 3777 // But C99 complex numbers are scalars and it makes sense there. 3778 if (S.getLangOpts().CPlusPlus && DestType->isScalarType() && 3779 !DestType->isAnyComplexType() && InitList->getNumInits() > 1) { 3780 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar); 3781 return; 3782 } 3783 if (DestType->isReferenceType()) { 3784 TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence, 3785 TreatUnavailableAsInvalid); 3786 return; 3787 } 3788 3789 if (DestType->isRecordType() && 3790 !S.isCompleteType(InitList->getLocStart(), DestType)) { 3791 Sequence.setIncompleteTypeFailure(DestType); 3792 return; 3793 } 3794 3795 // C++11 [dcl.init.list]p3, per DR1467: 3796 // - If T is a class type and the initializer list has a single element of 3797 // type cv U, where U is T or a class derived from T, the object is 3798 // initialized from that element (by copy-initialization for 3799 // copy-list-initialization, or by direct-initialization for 3800 // direct-list-initialization). 3801 // - Otherwise, if T is a character array and the initializer list has a 3802 // single element that is an appropriately-typed string literal 3803 // (8.5.2 [dcl.init.string]), initialization is performed as described 3804 // in that section. 3805 // - Otherwise, if T is an aggregate, [...] (continue below). 3806 if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) { 3807 if (DestType->isRecordType()) { 3808 QualType InitType = InitList->getInit(0)->getType(); 3809 if (S.Context.hasSameUnqualifiedType(InitType, DestType) || 3810 S.IsDerivedFrom(InitList->getLocStart(), InitType, DestType)) { 3811 Expr *InitAsExpr = InitList->getInit(0); 3812 TryConstructorInitialization(S, Entity, Kind, InitAsExpr, DestType, 3813 Sequence, /*InitListSyntax*/ false, 3814 /*IsInitListCopy*/ true); 3815 return; 3816 } 3817 } 3818 if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) { 3819 Expr *SubInit[1] = {InitList->getInit(0)}; 3820 if (!isa<VariableArrayType>(DestAT) && 3821 IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) { 3822 InitializationKind SubKind = 3823 Kind.getKind() == InitializationKind::IK_DirectList 3824 ? InitializationKind::CreateDirect(Kind.getLocation(), 3825 InitList->getLBraceLoc(), 3826 InitList->getRBraceLoc()) 3827 : Kind; 3828 Sequence.InitializeFrom(S, Entity, SubKind, SubInit, 3829 /*TopLevelOfInitList*/ true, 3830 TreatUnavailableAsInvalid); 3831 3832 // TryStringLiteralInitialization() (in InitializeFrom()) will fail if 3833 // the element is not an appropriately-typed string literal, in which 3834 // case we should proceed as in C++11 (below). 3835 if (Sequence) { 3836 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 3837 return; 3838 } 3839 } 3840 } 3841 } 3842 3843 // C++11 [dcl.init.list]p3: 3844 // - If T is an aggregate, aggregate initialization is performed. 3845 if ((DestType->isRecordType() && !DestType->isAggregateType()) || 3846 (S.getLangOpts().CPlusPlus11 && 3847 S.isStdInitializerList(DestType, nullptr))) { 3848 if (S.getLangOpts().CPlusPlus11) { 3849 // - Otherwise, if the initializer list has no elements and T is a 3850 // class type with a default constructor, the object is 3851 // value-initialized. 3852 if (InitList->getNumInits() == 0) { 3853 CXXRecordDecl *RD = DestType->getAsCXXRecordDecl(); 3854 if (RD->hasDefaultConstructor()) { 3855 TryValueInitialization(S, Entity, Kind, Sequence, InitList); 3856 return; 3857 } 3858 } 3859 3860 // - Otherwise, if T is a specialization of std::initializer_list<E>, 3861 // an initializer_list object constructed [...] 3862 if (TryInitializerListConstruction(S, InitList, DestType, Sequence, 3863 TreatUnavailableAsInvalid)) 3864 return; 3865 3866 // - Otherwise, if T is a class type, constructors are considered. 3867 Expr *InitListAsExpr = InitList; 3868 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType, 3869 Sequence, /*InitListSyntax*/ true); 3870 } else 3871 Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType); 3872 return; 3873 } 3874 3875 if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() && 3876 InitList->getNumInits() == 1) { 3877 Expr *E = InitList->getInit(0); 3878 3879 // - Otherwise, if T is an enumeration with a fixed underlying type, 3880 // the initializer-list has a single element v, and the initialization 3881 // is direct-list-initialization, the object is initialized with the 3882 // value T(v); if a narrowing conversion is required to convert v to 3883 // the underlying type of T, the program is ill-formed. 3884 auto *ET = DestType->getAs<EnumType>(); 3885 if (S.getLangOpts().CPlusPlus1z && 3886 Kind.getKind() == InitializationKind::IK_DirectList && 3887 ET && ET->getDecl()->isFixed() && 3888 !S.Context.hasSameUnqualifiedType(E->getType(), DestType) && 3889 (E->getType()->isIntegralOrEnumerationType() || 3890 E->getType()->isFloatingType())) { 3891 // There are two ways that T(v) can work when T is an enumeration type. 3892 // If there is either an implicit conversion sequence from v to T or 3893 // a conversion function that can convert from v to T, then we use that. 3894 // Otherwise, if v is of integral, enumeration, or floating-point type, 3895 // it is converted to the enumeration type via its underlying type. 3896 // There is no overlap possible between these two cases (except when the 3897 // source value is already of the destination type), and the first 3898 // case is handled by the general case for single-element lists below. 3899 ImplicitConversionSequence ICS; 3900 ICS.setStandard(); 3901 ICS.Standard.setAsIdentityConversion(); 3902 // If E is of a floating-point type, then the conversion is ill-formed 3903 // due to narrowing, but go through the motions in order to produce the 3904 // right diagnostic. 3905 ICS.Standard.Second = E->getType()->isFloatingType() 3906 ? ICK_Floating_Integral 3907 : ICK_Integral_Conversion; 3908 ICS.Standard.setFromType(E->getType()); 3909 ICS.Standard.setToType(0, E->getType()); 3910 ICS.Standard.setToType(1, DestType); 3911 ICS.Standard.setToType(2, DestType); 3912 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2), 3913 /*TopLevelOfInitList*/true); 3914 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 3915 return; 3916 } 3917 3918 // - Otherwise, if the initializer list has a single element of type E 3919 // [...references are handled above...], the object or reference is 3920 // initialized from that element (by copy-initialization for 3921 // copy-list-initialization, or by direct-initialization for 3922 // direct-list-initialization); if a narrowing conversion is required 3923 // to convert the element to T, the program is ill-formed. 3924 // 3925 // Per core-24034, this is direct-initialization if we were performing 3926 // direct-list-initialization and copy-initialization otherwise. 3927 // We can't use InitListChecker for this, because it always performs 3928 // copy-initialization. This only matters if we might use an 'explicit' 3929 // conversion operator, so we only need to handle the cases where the source 3930 // is of record type. 3931 if (InitList->getInit(0)->getType()->isRecordType()) { 3932 InitializationKind SubKind = 3933 Kind.getKind() == InitializationKind::IK_DirectList 3934 ? InitializationKind::CreateDirect(Kind.getLocation(), 3935 InitList->getLBraceLoc(), 3936 InitList->getRBraceLoc()) 3937 : Kind; 3938 Expr *SubInit[1] = { InitList->getInit(0) }; 3939 Sequence.InitializeFrom(S, Entity, SubKind, SubInit, 3940 /*TopLevelOfInitList*/true, 3941 TreatUnavailableAsInvalid); 3942 if (Sequence) 3943 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 3944 return; 3945 } 3946 } 3947 3948 InitListChecker CheckInitList(S, Entity, InitList, 3949 DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid); 3950 if (CheckInitList.HadError()) { 3951 Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed); 3952 return; 3953 } 3954 3955 // Add the list initialization step with the built init list. 3956 Sequence.AddListInitializationStep(DestType); 3957 } 3958 3959 /// \brief Try a reference initialization that involves calling a conversion 3960 /// function. 3961 static OverloadingResult TryRefInitWithConversionFunction(Sema &S, 3962 const InitializedEntity &Entity, 3963 const InitializationKind &Kind, 3964 Expr *Initializer, 3965 bool AllowRValues, 3966 InitializationSequence &Sequence) { 3967 QualType DestType = Entity.getType(); 3968 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType(); 3969 QualType T1 = cv1T1.getUnqualifiedType(); 3970 QualType cv2T2 = Initializer->getType(); 3971 QualType T2 = cv2T2.getUnqualifiedType(); 3972 3973 bool DerivedToBase; 3974 bool ObjCConversion; 3975 bool ObjCLifetimeConversion; 3976 assert(!S.CompareReferenceRelationship(Initializer->getLocStart(), 3977 T1, T2, DerivedToBase, 3978 ObjCConversion, 3979 ObjCLifetimeConversion) && 3980 "Must have incompatible references when binding via conversion"); 3981 (void)DerivedToBase; 3982 (void)ObjCConversion; 3983 (void)ObjCLifetimeConversion; 3984 3985 // Build the candidate set directly in the initialization sequence 3986 // structure, so that it will persist if we fail. 3987 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 3988 CandidateSet.clear(); 3989 3990 // Determine whether we are allowed to call explicit constructors or 3991 // explicit conversion operators. 3992 bool AllowExplicit = Kind.AllowExplicit(); 3993 bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding(); 3994 3995 const RecordType *T1RecordType = nullptr; 3996 if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) && 3997 S.isCompleteType(Kind.getLocation(), T1)) { 3998 // The type we're converting to is a class type. Enumerate its constructors 3999 // to see if there is a suitable conversion. 4000 CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl()); 4001 4002 for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) { 4003 auto Info = getConstructorInfo(D); 4004 if (!Info.Constructor) 4005 continue; 4006 4007 if (!Info.Constructor->isInvalidDecl() && 4008 Info.Constructor->isConvertingConstructor(AllowExplicit)) { 4009 if (Info.ConstructorTmpl) 4010 S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl, 4011 /*ExplicitArgs*/ nullptr, 4012 Initializer, CandidateSet, 4013 /*SuppressUserConversions=*/true); 4014 else 4015 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, 4016 Initializer, CandidateSet, 4017 /*SuppressUserConversions=*/true); 4018 } 4019 } 4020 } 4021 if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl()) 4022 return OR_No_Viable_Function; 4023 4024 const RecordType *T2RecordType = nullptr; 4025 if ((T2RecordType = T2->getAs<RecordType>()) && 4026 S.isCompleteType(Kind.getLocation(), T2)) { 4027 // The type we're converting from is a class type, enumerate its conversion 4028 // functions. 4029 CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl()); 4030 4031 const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions(); 4032 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 4033 NamedDecl *D = *I; 4034 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 4035 if (isa<UsingShadowDecl>(D)) 4036 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 4037 4038 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 4039 CXXConversionDecl *Conv; 4040 if (ConvTemplate) 4041 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 4042 else 4043 Conv = cast<CXXConversionDecl>(D); 4044 4045 // If the conversion function doesn't return a reference type, 4046 // it can't be considered for this conversion unless we're allowed to 4047 // consider rvalues. 4048 // FIXME: Do we need to make sure that we only consider conversion 4049 // candidates with reference-compatible results? That might be needed to 4050 // break recursion. 4051 if ((AllowExplicitConvs || !Conv->isExplicit()) && 4052 (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){ 4053 if (ConvTemplate) 4054 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), 4055 ActingDC, Initializer, 4056 DestType, CandidateSet, 4057 /*AllowObjCConversionOnExplicit=*/ 4058 false); 4059 else 4060 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, 4061 Initializer, DestType, CandidateSet, 4062 /*AllowObjCConversionOnExplicit=*/false); 4063 } 4064 } 4065 } 4066 if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl()) 4067 return OR_No_Viable_Function; 4068 4069 SourceLocation DeclLoc = Initializer->getLocStart(); 4070 4071 // Perform overload resolution. If it fails, return the failed result. 4072 OverloadCandidateSet::iterator Best; 4073 if (OverloadingResult Result 4074 = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) 4075 return Result; 4076 4077 FunctionDecl *Function = Best->Function; 4078 // This is the overload that will be used for this initialization step if we 4079 // use this initialization. Mark it as referenced. 4080 Function->setReferenced(); 4081 4082 // Compute the returned type of the conversion. 4083 if (isa<CXXConversionDecl>(Function)) 4084 T2 = Function->getReturnType(); 4085 else 4086 T2 = cv1T1; 4087 4088 // Add the user-defined conversion step. 4089 bool HadMultipleCandidates = (CandidateSet.size() > 1); 4090 Sequence.AddUserConversionStep(Function, Best->FoundDecl, 4091 T2.getNonLValueExprType(S.Context), 4092 HadMultipleCandidates); 4093 4094 // Determine whether we need to perform derived-to-base or 4095 // cv-qualification adjustments. 4096 ExprValueKind VK = VK_RValue; 4097 if (T2->isLValueReferenceType()) 4098 VK = VK_LValue; 4099 else if (const RValueReferenceType *RRef = T2->getAs<RValueReferenceType>()) 4100 VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue; 4101 4102 bool NewDerivedToBase = false; 4103 bool NewObjCConversion = false; 4104 bool NewObjCLifetimeConversion = false; 4105 Sema::ReferenceCompareResult NewRefRelationship 4106 = S.CompareReferenceRelationship(DeclLoc, T1, 4107 T2.getNonLValueExprType(S.Context), 4108 NewDerivedToBase, NewObjCConversion, 4109 NewObjCLifetimeConversion); 4110 if (NewRefRelationship == Sema::Ref_Incompatible) { 4111 // If the type we've converted to is not reference-related to the 4112 // type we're looking for, then there is another conversion step 4113 // we need to perform to produce a temporary of the right type 4114 // that we'll be binding to. 4115 ImplicitConversionSequence ICS; 4116 ICS.setStandard(); 4117 ICS.Standard = Best->FinalConversion; 4118 T2 = ICS.Standard.getToType(2); 4119 Sequence.AddConversionSequenceStep(ICS, T2); 4120 } else if (NewDerivedToBase) 4121 Sequence.AddDerivedToBaseCastStep( 4122 S.Context.getQualifiedType(T1, 4123 T2.getNonReferenceType().getQualifiers()), 4124 VK); 4125 else if (NewObjCConversion) 4126 Sequence.AddObjCObjectConversionStep( 4127 S.Context.getQualifiedType(T1, 4128 T2.getNonReferenceType().getQualifiers())); 4129 4130 if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers()) 4131 Sequence.AddQualificationConversionStep(cv1T1, VK); 4132 4133 Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType()); 4134 return OR_Success; 4135 } 4136 4137 static void CheckCXX98CompatAccessibleCopy(Sema &S, 4138 const InitializedEntity &Entity, 4139 Expr *CurInitExpr); 4140 4141 /// \brief Attempt reference initialization (C++0x [dcl.init.ref]) 4142 static void TryReferenceInitialization(Sema &S, 4143 const InitializedEntity &Entity, 4144 const InitializationKind &Kind, 4145 Expr *Initializer, 4146 InitializationSequence &Sequence) { 4147 QualType DestType = Entity.getType(); 4148 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType(); 4149 Qualifiers T1Quals; 4150 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); 4151 QualType cv2T2 = Initializer->getType(); 4152 Qualifiers T2Quals; 4153 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); 4154 4155 // If the initializer is the address of an overloaded function, try 4156 // to resolve the overloaded function. If all goes well, T2 is the 4157 // type of the resulting function. 4158 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, 4159 T1, Sequence)) 4160 return; 4161 4162 // Delegate everything else to a subfunction. 4163 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, 4164 T1Quals, cv2T2, T2, T2Quals, Sequence); 4165 } 4166 4167 /// Converts the target of reference initialization so that it has the 4168 /// appropriate qualifiers and value kind. 4169 /// 4170 /// In this case, 'x' is an 'int' lvalue, but it needs to be 'const int'. 4171 /// \code 4172 /// int x; 4173 /// const int &r = x; 4174 /// \endcode 4175 /// 4176 /// In this case the reference is binding to a bitfield lvalue, which isn't 4177 /// valid. Perform a load to create a lifetime-extended temporary instead. 4178 /// \code 4179 /// const int &r = someStruct.bitfield; 4180 /// \endcode 4181 static ExprValueKind 4182 convertQualifiersAndValueKindIfNecessary(Sema &S, 4183 InitializationSequence &Sequence, 4184 Expr *Initializer, 4185 QualType cv1T1, 4186 Qualifiers T1Quals, 4187 Qualifiers T2Quals, 4188 bool IsLValueRef) { 4189 bool IsNonAddressableType = Initializer->refersToBitField() || 4190 Initializer->refersToVectorElement(); 4191 4192 if (IsNonAddressableType) { 4193 // C++11 [dcl.init.ref]p5: [...] Otherwise, the reference shall be an 4194 // lvalue reference to a non-volatile const type, or the reference shall be 4195 // an rvalue reference. 4196 // 4197 // If not, we can't make a temporary and bind to that. Give up and allow the 4198 // error to be diagnosed later. 4199 if (IsLValueRef && (!T1Quals.hasConst() || T1Quals.hasVolatile())) { 4200 assert(Initializer->isGLValue()); 4201 return Initializer->getValueKind(); 4202 } 4203 4204 // Force a load so we can materialize a temporary. 4205 Sequence.AddLValueToRValueStep(cv1T1.getUnqualifiedType()); 4206 return VK_RValue; 4207 } 4208 4209 if (T1Quals != T2Quals) { 4210 Sequence.AddQualificationConversionStep(cv1T1, 4211 Initializer->getValueKind()); 4212 } 4213 4214 return Initializer->getValueKind(); 4215 } 4216 4217 /// \brief Reference initialization without resolving overloaded functions. 4218 static void TryReferenceInitializationCore(Sema &S, 4219 const InitializedEntity &Entity, 4220 const InitializationKind &Kind, 4221 Expr *Initializer, 4222 QualType cv1T1, QualType T1, 4223 Qualifiers T1Quals, 4224 QualType cv2T2, QualType T2, 4225 Qualifiers T2Quals, 4226 InitializationSequence &Sequence) { 4227 QualType DestType = Entity.getType(); 4228 SourceLocation DeclLoc = Initializer->getLocStart(); 4229 // Compute some basic properties of the types and the initializer. 4230 bool isLValueRef = DestType->isLValueReferenceType(); 4231 bool isRValueRef = !isLValueRef; 4232 bool DerivedToBase = false; 4233 bool ObjCConversion = false; 4234 bool ObjCLifetimeConversion = false; 4235 Expr::Classification InitCategory = Initializer->Classify(S.Context); 4236 Sema::ReferenceCompareResult RefRelationship 4237 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase, 4238 ObjCConversion, ObjCLifetimeConversion); 4239 4240 // C++0x [dcl.init.ref]p5: 4241 // A reference to type "cv1 T1" is initialized by an expression of type 4242 // "cv2 T2" as follows: 4243 // 4244 // - If the reference is an lvalue reference and the initializer 4245 // expression 4246 // Note the analogous bullet points for rvalue refs to functions. Because 4247 // there are no function rvalues in C++, rvalue refs to functions are treated 4248 // like lvalue refs. 4249 OverloadingResult ConvOvlResult = OR_Success; 4250 bool T1Function = T1->isFunctionType(); 4251 if (isLValueRef || T1Function) { 4252 if (InitCategory.isLValue() && 4253 (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification || 4254 (Kind.isCStyleOrFunctionalCast() && 4255 RefRelationship == Sema::Ref_Related))) { 4256 // - is an lvalue (but is not a bit-field), and "cv1 T1" is 4257 // reference-compatible with "cv2 T2," or 4258 // 4259 // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a 4260 // bit-field when we're determining whether the reference initialization 4261 // can occur. However, we do pay attention to whether it is a bit-field 4262 // to decide whether we're actually binding to a temporary created from 4263 // the bit-field. 4264 if (DerivedToBase) 4265 Sequence.AddDerivedToBaseCastStep( 4266 S.Context.getQualifiedType(T1, T2Quals), 4267 VK_LValue); 4268 else if (ObjCConversion) 4269 Sequence.AddObjCObjectConversionStep( 4270 S.Context.getQualifiedType(T1, T2Quals)); 4271 4272 ExprValueKind ValueKind = 4273 convertQualifiersAndValueKindIfNecessary(S, Sequence, Initializer, 4274 cv1T1, T1Quals, T2Quals, 4275 isLValueRef); 4276 Sequence.AddReferenceBindingStep(cv1T1, ValueKind == VK_RValue); 4277 return; 4278 } 4279 4280 // - has a class type (i.e., T2 is a class type), where T1 is not 4281 // reference-related to T2, and can be implicitly converted to an 4282 // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible 4283 // with "cv3 T3" (this conversion is selected by enumerating the 4284 // applicable conversion functions (13.3.1.6) and choosing the best 4285 // one through overload resolution (13.3)), 4286 // If we have an rvalue ref to function type here, the rhs must be 4287 // an rvalue. DR1287 removed the "implicitly" here. 4288 if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() && 4289 (isLValueRef || InitCategory.isRValue())) { 4290 ConvOvlResult = TryRefInitWithConversionFunction( 4291 S, Entity, Kind, Initializer, /*AllowRValues*/isRValueRef, Sequence); 4292 if (ConvOvlResult == OR_Success) 4293 return; 4294 if (ConvOvlResult != OR_No_Viable_Function) 4295 Sequence.SetOverloadFailure( 4296 InitializationSequence::FK_ReferenceInitOverloadFailed, 4297 ConvOvlResult); 4298 } 4299 } 4300 4301 // - Otherwise, the reference shall be an lvalue reference to a 4302 // non-volatile const type (i.e., cv1 shall be const), or the reference 4303 // shall be an rvalue reference. 4304 if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) { 4305 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) 4306 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 4307 else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) 4308 Sequence.SetOverloadFailure( 4309 InitializationSequence::FK_ReferenceInitOverloadFailed, 4310 ConvOvlResult); 4311 else 4312 Sequence.SetFailed(InitCategory.isLValue() 4313 ? (RefRelationship == Sema::Ref_Related 4314 ? InitializationSequence::FK_ReferenceInitDropsQualifiers 4315 : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated) 4316 : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary); 4317 4318 return; 4319 } 4320 4321 // - If the initializer expression 4322 // - is an xvalue, class prvalue, array prvalue, or function lvalue and 4323 // "cv1 T1" is reference-compatible with "cv2 T2" 4324 // Note: functions are handled below. 4325 if (!T1Function && 4326 (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification || 4327 (Kind.isCStyleOrFunctionalCast() && 4328 RefRelationship == Sema::Ref_Related)) && 4329 (InitCategory.isXValue() || 4330 (InitCategory.isPRValue() && T2->isRecordType()) || 4331 (InitCategory.isPRValue() && T2->isArrayType()))) { 4332 ExprValueKind ValueKind = InitCategory.isXValue()? VK_XValue : VK_RValue; 4333 if (InitCategory.isPRValue() && T2->isRecordType()) { 4334 // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the 4335 // compiler the freedom to perform a copy here or bind to the 4336 // object, while C++0x requires that we bind directly to the 4337 // object. Hence, we always bind to the object without making an 4338 // extra copy. However, in C++03 requires that we check for the 4339 // presence of a suitable copy constructor: 4340 // 4341 // The constructor that would be used to make the copy shall 4342 // be callable whether or not the copy is actually done. 4343 if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt) 4344 Sequence.AddExtraneousCopyToTemporary(cv2T2); 4345 else if (S.getLangOpts().CPlusPlus11) 4346 CheckCXX98CompatAccessibleCopy(S, Entity, Initializer); 4347 } 4348 4349 if (DerivedToBase) 4350 Sequence.AddDerivedToBaseCastStep(S.Context.getQualifiedType(T1, T2Quals), 4351 ValueKind); 4352 else if (ObjCConversion) 4353 Sequence.AddObjCObjectConversionStep( 4354 S.Context.getQualifiedType(T1, T2Quals)); 4355 4356 ValueKind = convertQualifiersAndValueKindIfNecessary(S, Sequence, 4357 Initializer, cv1T1, 4358 T1Quals, T2Quals, 4359 isLValueRef); 4360 4361 Sequence.AddReferenceBindingStep(cv1T1, ValueKind == VK_RValue); 4362 return; 4363 } 4364 4365 // - has a class type (i.e., T2 is a class type), where T1 is not 4366 // reference-related to T2, and can be implicitly converted to an 4367 // xvalue, class prvalue, or function lvalue of type "cv3 T3", 4368 // where "cv1 T1" is reference-compatible with "cv3 T3", 4369 // 4370 // DR1287 removes the "implicitly" here. 4371 if (T2->isRecordType()) { 4372 if (RefRelationship == Sema::Ref_Incompatible) { 4373 ConvOvlResult = TryRefInitWithConversionFunction( 4374 S, Entity, Kind, Initializer, /*AllowRValues*/true, Sequence); 4375 if (ConvOvlResult) 4376 Sequence.SetOverloadFailure( 4377 InitializationSequence::FK_ReferenceInitOverloadFailed, 4378 ConvOvlResult); 4379 4380 return; 4381 } 4382 4383 if ((RefRelationship == Sema::Ref_Compatible || 4384 RefRelationship == Sema::Ref_Compatible_With_Added_Qualification) && 4385 isRValueRef && InitCategory.isLValue()) { 4386 Sequence.SetFailed( 4387 InitializationSequence::FK_RValueReferenceBindingToLValue); 4388 return; 4389 } 4390 4391 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); 4392 return; 4393 } 4394 4395 // - Otherwise, a temporary of type "cv1 T1" is created and initialized 4396 // from the initializer expression using the rules for a non-reference 4397 // copy-initialization (8.5). The reference is then bound to the 4398 // temporary. [...] 4399 4400 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1); 4401 4402 // FIXME: Why do we use an implicit conversion here rather than trying 4403 // copy-initialization? 4404 ImplicitConversionSequence ICS 4405 = S.TryImplicitConversion(Initializer, TempEntity.getType(), 4406 /*SuppressUserConversions=*/false, 4407 /*AllowExplicit=*/false, 4408 /*FIXME:InOverloadResolution=*/false, 4409 /*CStyle=*/Kind.isCStyleOrFunctionalCast(), 4410 /*AllowObjCWritebackConversion=*/false); 4411 4412 if (ICS.isBad()) { 4413 // FIXME: Use the conversion function set stored in ICS to turn 4414 // this into an overloading ambiguity diagnostic. However, we need 4415 // to keep that set as an OverloadCandidateSet rather than as some 4416 // other kind of set. 4417 if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) 4418 Sequence.SetOverloadFailure( 4419 InitializationSequence::FK_ReferenceInitOverloadFailed, 4420 ConvOvlResult); 4421 else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) 4422 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 4423 else 4424 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed); 4425 return; 4426 } else { 4427 Sequence.AddConversionSequenceStep(ICS, TempEntity.getType()); 4428 } 4429 4430 // [...] If T1 is reference-related to T2, cv1 must be the 4431 // same cv-qualification as, or greater cv-qualification 4432 // than, cv2; otherwise, the program is ill-formed. 4433 unsigned T1CVRQuals = T1Quals.getCVRQualifiers(); 4434 unsigned T2CVRQuals = T2Quals.getCVRQualifiers(); 4435 if (RefRelationship == Sema::Ref_Related && 4436 (T1CVRQuals | T2CVRQuals) != T1CVRQuals) { 4437 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); 4438 return; 4439 } 4440 4441 // [...] If T1 is reference-related to T2 and the reference is an rvalue 4442 // reference, the initializer expression shall not be an lvalue. 4443 if (RefRelationship >= Sema::Ref_Related && !isLValueRef && 4444 InitCategory.isLValue()) { 4445 Sequence.SetFailed( 4446 InitializationSequence::FK_RValueReferenceBindingToLValue); 4447 return; 4448 } 4449 4450 Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true); 4451 } 4452 4453 /// \brief Attempt character array initialization from a string literal 4454 /// (C++ [dcl.init.string], C99 6.7.8). 4455 static void TryStringLiteralInitialization(Sema &S, 4456 const InitializedEntity &Entity, 4457 const InitializationKind &Kind, 4458 Expr *Initializer, 4459 InitializationSequence &Sequence) { 4460 Sequence.AddStringInitStep(Entity.getType()); 4461 } 4462 4463 /// \brief Attempt value initialization (C++ [dcl.init]p7). 4464 static void TryValueInitialization(Sema &S, 4465 const InitializedEntity &Entity, 4466 const InitializationKind &Kind, 4467 InitializationSequence &Sequence, 4468 InitListExpr *InitList) { 4469 assert((!InitList || InitList->getNumInits() == 0) && 4470 "Shouldn't use value-init for non-empty init lists"); 4471 4472 // C++98 [dcl.init]p5, C++11 [dcl.init]p7: 4473 // 4474 // To value-initialize an object of type T means: 4475 QualType T = Entity.getType(); 4476 4477 // -- if T is an array type, then each element is value-initialized; 4478 T = S.Context.getBaseElementType(T); 4479 4480 if (const RecordType *RT = T->getAs<RecordType>()) { 4481 if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 4482 bool NeedZeroInitialization = true; 4483 if (!S.getLangOpts().CPlusPlus11) { 4484 // C++98: 4485 // -- if T is a class type (clause 9) with a user-declared constructor 4486 // (12.1), then the default constructor for T is called (and the 4487 // initialization is ill-formed if T has no accessible default 4488 // constructor); 4489 if (ClassDecl->hasUserDeclaredConstructor()) 4490 NeedZeroInitialization = false; 4491 } else { 4492 // C++11: 4493 // -- if T is a class type (clause 9) with either no default constructor 4494 // (12.1 [class.ctor]) or a default constructor that is user-provided 4495 // or deleted, then the object is default-initialized; 4496 CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl); 4497 if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted()) 4498 NeedZeroInitialization = false; 4499 } 4500 4501 // -- if T is a (possibly cv-qualified) non-union class type without a 4502 // user-provided or deleted default constructor, then the object is 4503 // zero-initialized and, if T has a non-trivial default constructor, 4504 // default-initialized; 4505 // The 'non-union' here was removed by DR1502. The 'non-trivial default 4506 // constructor' part was removed by DR1507. 4507 if (NeedZeroInitialization) 4508 Sequence.AddZeroInitializationStep(Entity.getType()); 4509 4510 // C++03: 4511 // -- if T is a non-union class type without a user-declared constructor, 4512 // then every non-static data member and base class component of T is 4513 // value-initialized; 4514 // [...] A program that calls for [...] value-initialization of an 4515 // entity of reference type is ill-formed. 4516 // 4517 // C++11 doesn't need this handling, because value-initialization does not 4518 // occur recursively there, and the implicit default constructor is 4519 // defined as deleted in the problematic cases. 4520 if (!S.getLangOpts().CPlusPlus11 && 4521 ClassDecl->hasUninitializedReferenceMember()) { 4522 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference); 4523 return; 4524 } 4525 4526 // If this is list-value-initialization, pass the empty init list on when 4527 // building the constructor call. This affects the semantics of a few 4528 // things (such as whether an explicit default constructor can be called). 4529 Expr *InitListAsExpr = InitList; 4530 MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0); 4531 bool InitListSyntax = InitList; 4532 4533 return TryConstructorInitialization(S, Entity, Kind, Args, T, Sequence, 4534 InitListSyntax); 4535 } 4536 } 4537 4538 Sequence.AddZeroInitializationStep(Entity.getType()); 4539 } 4540 4541 /// \brief Attempt default initialization (C++ [dcl.init]p6). 4542 static void TryDefaultInitialization(Sema &S, 4543 const InitializedEntity &Entity, 4544 const InitializationKind &Kind, 4545 InitializationSequence &Sequence) { 4546 assert(Kind.getKind() == InitializationKind::IK_Default); 4547 4548 // C++ [dcl.init]p6: 4549 // To default-initialize an object of type T means: 4550 // - if T is an array type, each element is default-initialized; 4551 QualType DestType = S.Context.getBaseElementType(Entity.getType()); 4552 4553 // - if T is a (possibly cv-qualified) class type (Clause 9), the default 4554 // constructor for T is called (and the initialization is ill-formed if 4555 // T has no accessible default constructor); 4556 if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) { 4557 TryConstructorInitialization(S, Entity, Kind, None, DestType, Sequence); 4558 return; 4559 } 4560 4561 // - otherwise, no initialization is performed. 4562 4563 // If a program calls for the default initialization of an object of 4564 // a const-qualified type T, T shall be a class type with a user-provided 4565 // default constructor. 4566 if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) { 4567 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity)) 4568 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); 4569 return; 4570 } 4571 4572 // If the destination type has a lifetime property, zero-initialize it. 4573 if (DestType.getQualifiers().hasObjCLifetime()) { 4574 Sequence.AddZeroInitializationStep(Entity.getType()); 4575 return; 4576 } 4577 } 4578 4579 /// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]), 4580 /// which enumerates all conversion functions and performs overload resolution 4581 /// to select the best. 4582 static void TryUserDefinedConversion(Sema &S, 4583 QualType DestType, 4584 const InitializationKind &Kind, 4585 Expr *Initializer, 4586 InitializationSequence &Sequence, 4587 bool TopLevelOfInitList) { 4588 assert(!DestType->isReferenceType() && "References are handled elsewhere"); 4589 QualType SourceType = Initializer->getType(); 4590 assert((DestType->isRecordType() || SourceType->isRecordType()) && 4591 "Must have a class type to perform a user-defined conversion"); 4592 4593 // Build the candidate set directly in the initialization sequence 4594 // structure, so that it will persist if we fail. 4595 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 4596 CandidateSet.clear(); 4597 4598 // Determine whether we are allowed to call explicit constructors or 4599 // explicit conversion operators. 4600 bool AllowExplicit = Kind.AllowExplicit(); 4601 4602 if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) { 4603 // The type we're converting to is a class type. Enumerate its constructors 4604 // to see if there is a suitable conversion. 4605 CXXRecordDecl *DestRecordDecl 4606 = cast<CXXRecordDecl>(DestRecordType->getDecl()); 4607 4608 // Try to complete the type we're converting to. 4609 if (S.isCompleteType(Kind.getLocation(), DestType)) { 4610 DeclContext::lookup_result R = S.LookupConstructors(DestRecordDecl); 4611 // The container holding the constructors can under certain conditions 4612 // be changed while iterating. To be safe we copy the lookup results 4613 // to a new container. 4614 SmallVector<NamedDecl*, 8> CopyOfCon(R.begin(), R.end()); 4615 for (SmallVectorImpl<NamedDecl *>::iterator 4616 Con = CopyOfCon.begin(), ConEnd = CopyOfCon.end(); 4617 Con != ConEnd; ++Con) { 4618 NamedDecl *D = *Con; 4619 auto Info = getConstructorInfo(D); 4620 if (!Info.Constructor) 4621 continue; 4622 4623 if (!Info.Constructor->isInvalidDecl() && 4624 Info.Constructor->isConvertingConstructor(AllowExplicit)) { 4625 if (Info.ConstructorTmpl) 4626 S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl, 4627 /*ExplicitArgs*/ nullptr, 4628 Initializer, CandidateSet, 4629 /*SuppressUserConversions=*/true); 4630 else 4631 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, 4632 Initializer, CandidateSet, 4633 /*SuppressUserConversions=*/true); 4634 } 4635 } 4636 } 4637 } 4638 4639 SourceLocation DeclLoc = Initializer->getLocStart(); 4640 4641 if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) { 4642 // The type we're converting from is a class type, enumerate its conversion 4643 // functions. 4644 4645 // We can only enumerate the conversion functions for a complete type; if 4646 // the type isn't complete, simply skip this step. 4647 if (S.isCompleteType(DeclLoc, SourceType)) { 4648 CXXRecordDecl *SourceRecordDecl 4649 = cast<CXXRecordDecl>(SourceRecordType->getDecl()); 4650 4651 const auto &Conversions = 4652 SourceRecordDecl->getVisibleConversionFunctions(); 4653 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 4654 NamedDecl *D = *I; 4655 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 4656 if (isa<UsingShadowDecl>(D)) 4657 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 4658 4659 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 4660 CXXConversionDecl *Conv; 4661 if (ConvTemplate) 4662 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 4663 else 4664 Conv = cast<CXXConversionDecl>(D); 4665 4666 if (AllowExplicit || !Conv->isExplicit()) { 4667 if (ConvTemplate) 4668 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), 4669 ActingDC, Initializer, DestType, 4670 CandidateSet, AllowExplicit); 4671 else 4672 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, 4673 Initializer, DestType, CandidateSet, 4674 AllowExplicit); 4675 } 4676 } 4677 } 4678 } 4679 4680 // Perform overload resolution. If it fails, return the failed result. 4681 OverloadCandidateSet::iterator Best; 4682 if (OverloadingResult Result 4683 = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) { 4684 Sequence.SetOverloadFailure( 4685 InitializationSequence::FK_UserConversionOverloadFailed, 4686 Result); 4687 return; 4688 } 4689 4690 FunctionDecl *Function = Best->Function; 4691 Function->setReferenced(); 4692 bool HadMultipleCandidates = (CandidateSet.size() > 1); 4693 4694 if (isa<CXXConstructorDecl>(Function)) { 4695 // Add the user-defined conversion step. Any cv-qualification conversion is 4696 // subsumed by the initialization. Per DR5, the created temporary is of the 4697 // cv-unqualified type of the destination. 4698 Sequence.AddUserConversionStep(Function, Best->FoundDecl, 4699 DestType.getUnqualifiedType(), 4700 HadMultipleCandidates); 4701 return; 4702 } 4703 4704 // Add the user-defined conversion step that calls the conversion function. 4705 QualType ConvType = Function->getCallResultType(); 4706 if (ConvType->getAs<RecordType>()) { 4707 // If we're converting to a class type, there may be an copy of 4708 // the resulting temporary object (possible to create an object of 4709 // a base class type). That copy is not a separate conversion, so 4710 // we just make a note of the actual destination type (possibly a 4711 // base class of the type returned by the conversion function) and 4712 // let the user-defined conversion step handle the conversion. 4713 Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType, 4714 HadMultipleCandidates); 4715 return; 4716 } 4717 4718 Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType, 4719 HadMultipleCandidates); 4720 4721 // If the conversion following the call to the conversion function 4722 // is interesting, add it as a separate step. 4723 if (Best->FinalConversion.First || Best->FinalConversion.Second || 4724 Best->FinalConversion.Third) { 4725 ImplicitConversionSequence ICS; 4726 ICS.setStandard(); 4727 ICS.Standard = Best->FinalConversion; 4728 Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList); 4729 } 4730 } 4731 4732 /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>, 4733 /// a function with a pointer return type contains a 'return false;' statement. 4734 /// In C++11, 'false' is not a null pointer, so this breaks the build of any 4735 /// code using that header. 4736 /// 4737 /// Work around this by treating 'return false;' as zero-initializing the result 4738 /// if it's used in a pointer-returning function in a system header. 4739 static bool isLibstdcxxPointerReturnFalseHack(Sema &S, 4740 const InitializedEntity &Entity, 4741 const Expr *Init) { 4742 return S.getLangOpts().CPlusPlus11 && 4743 Entity.getKind() == InitializedEntity::EK_Result && 4744 Entity.getType()->isPointerType() && 4745 isa<CXXBoolLiteralExpr>(Init) && 4746 !cast<CXXBoolLiteralExpr>(Init)->getValue() && 4747 S.getSourceManager().isInSystemHeader(Init->getExprLoc()); 4748 } 4749 4750 /// The non-zero enum values here are indexes into diagnostic alternatives. 4751 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar }; 4752 4753 /// Determines whether this expression is an acceptable ICR source. 4754 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e, 4755 bool isAddressOf, bool &isWeakAccess) { 4756 // Skip parens. 4757 e = e->IgnoreParens(); 4758 4759 // Skip address-of nodes. 4760 if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) { 4761 if (op->getOpcode() == UO_AddrOf) 4762 return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true, 4763 isWeakAccess); 4764 4765 // Skip certain casts. 4766 } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) { 4767 switch (ce->getCastKind()) { 4768 case CK_Dependent: 4769 case CK_BitCast: 4770 case CK_LValueBitCast: 4771 case CK_NoOp: 4772 return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess); 4773 4774 case CK_ArrayToPointerDecay: 4775 return IIK_nonscalar; 4776 4777 case CK_NullToPointer: 4778 return IIK_okay; 4779 4780 default: 4781 break; 4782 } 4783 4784 // If we have a declaration reference, it had better be a local variable. 4785 } else if (isa<DeclRefExpr>(e)) { 4786 // set isWeakAccess to true, to mean that there will be an implicit 4787 // load which requires a cleanup. 4788 if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak) 4789 isWeakAccess = true; 4790 4791 if (!isAddressOf) return IIK_nonlocal; 4792 4793 VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl()); 4794 if (!var) return IIK_nonlocal; 4795 4796 return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal); 4797 4798 // If we have a conditional operator, check both sides. 4799 } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) { 4800 if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf, 4801 isWeakAccess)) 4802 return iik; 4803 4804 return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess); 4805 4806 // These are never scalar. 4807 } else if (isa<ArraySubscriptExpr>(e)) { 4808 return IIK_nonscalar; 4809 4810 // Otherwise, it needs to be a null pointer constant. 4811 } else { 4812 return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull) 4813 ? IIK_okay : IIK_nonlocal); 4814 } 4815 4816 return IIK_nonlocal; 4817 } 4818 4819 /// Check whether the given expression is a valid operand for an 4820 /// indirect copy/restore. 4821 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) { 4822 assert(src->isRValue()); 4823 bool isWeakAccess = false; 4824 InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess); 4825 // If isWeakAccess to true, there will be an implicit 4826 // load which requires a cleanup. 4827 if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess) 4828 S.Cleanup.setExprNeedsCleanups(true); 4829 4830 if (iik == IIK_okay) return; 4831 4832 S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback) 4833 << ((unsigned) iik - 1) // shift index into diagnostic explanations 4834 << src->getSourceRange(); 4835 } 4836 4837 /// \brief Determine whether we have compatible array types for the 4838 /// purposes of GNU by-copy array initialization. 4839 static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest, 4840 const ArrayType *Source) { 4841 // If the source and destination array types are equivalent, we're 4842 // done. 4843 if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0))) 4844 return true; 4845 4846 // Make sure that the element types are the same. 4847 if (!Context.hasSameType(Dest->getElementType(), Source->getElementType())) 4848 return false; 4849 4850 // The only mismatch we allow is when the destination is an 4851 // incomplete array type and the source is a constant array type. 4852 return Source->isConstantArrayType() && Dest->isIncompleteArrayType(); 4853 } 4854 4855 static bool tryObjCWritebackConversion(Sema &S, 4856 InitializationSequence &Sequence, 4857 const InitializedEntity &Entity, 4858 Expr *Initializer) { 4859 bool ArrayDecay = false; 4860 QualType ArgType = Initializer->getType(); 4861 QualType ArgPointee; 4862 if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) { 4863 ArrayDecay = true; 4864 ArgPointee = ArgArrayType->getElementType(); 4865 ArgType = S.Context.getPointerType(ArgPointee); 4866 } 4867 4868 // Handle write-back conversion. 4869 QualType ConvertedArgType; 4870 if (!S.isObjCWritebackConversion(ArgType, Entity.getType(), 4871 ConvertedArgType)) 4872 return false; 4873 4874 // We should copy unless we're passing to an argument explicitly 4875 // marked 'out'. 4876 bool ShouldCopy = true; 4877 if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl())) 4878 ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); 4879 4880 // Do we need an lvalue conversion? 4881 if (ArrayDecay || Initializer->isGLValue()) { 4882 ImplicitConversionSequence ICS; 4883 ICS.setStandard(); 4884 ICS.Standard.setAsIdentityConversion(); 4885 4886 QualType ResultType; 4887 if (ArrayDecay) { 4888 ICS.Standard.First = ICK_Array_To_Pointer; 4889 ResultType = S.Context.getPointerType(ArgPointee); 4890 } else { 4891 ICS.Standard.First = ICK_Lvalue_To_Rvalue; 4892 ResultType = Initializer->getType().getNonLValueExprType(S.Context); 4893 } 4894 4895 Sequence.AddConversionSequenceStep(ICS, ResultType); 4896 } 4897 4898 Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy); 4899 return true; 4900 } 4901 4902 static bool TryOCLSamplerInitialization(Sema &S, 4903 InitializationSequence &Sequence, 4904 QualType DestType, 4905 Expr *Initializer) { 4906 if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() || 4907 (!Initializer->isIntegerConstantExpr(S.Context) && 4908 !Initializer->getType()->isSamplerT())) 4909 return false; 4910 4911 Sequence.AddOCLSamplerInitStep(DestType); 4912 return true; 4913 } 4914 4915 // 4916 // OpenCL 1.2 spec, s6.12.10 4917 // 4918 // The event argument can also be used to associate the 4919 // async_work_group_copy with a previous async copy allowing 4920 // an event to be shared by multiple async copies; otherwise 4921 // event should be zero. 4922 // 4923 static bool TryOCLZeroEventInitialization(Sema &S, 4924 InitializationSequence &Sequence, 4925 QualType DestType, 4926 Expr *Initializer) { 4927 if (!S.getLangOpts().OpenCL || !DestType->isEventT() || 4928 !Initializer->isIntegerConstantExpr(S.getASTContext()) || 4929 (Initializer->EvaluateKnownConstInt(S.getASTContext()) != 0)) 4930 return false; 4931 4932 Sequence.AddOCLZeroEventStep(DestType); 4933 return true; 4934 } 4935 4936 InitializationSequence::InitializationSequence(Sema &S, 4937 const InitializedEntity &Entity, 4938 const InitializationKind &Kind, 4939 MultiExprArg Args, 4940 bool TopLevelOfInitList, 4941 bool TreatUnavailableAsInvalid) 4942 : FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) { 4943 InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList, 4944 TreatUnavailableAsInvalid); 4945 } 4946 4947 /// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the 4948 /// address of that function, this returns true. Otherwise, it returns false. 4949 static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) { 4950 auto *DRE = dyn_cast<DeclRefExpr>(E); 4951 if (!DRE || !isa<FunctionDecl>(DRE->getDecl())) 4952 return false; 4953 4954 return !S.checkAddressOfFunctionIsAvailable( 4955 cast<FunctionDecl>(DRE->getDecl())); 4956 } 4957 4958 void InitializationSequence::InitializeFrom(Sema &S, 4959 const InitializedEntity &Entity, 4960 const InitializationKind &Kind, 4961 MultiExprArg Args, 4962 bool TopLevelOfInitList, 4963 bool TreatUnavailableAsInvalid) { 4964 ASTContext &Context = S.Context; 4965 4966 // Eliminate non-overload placeholder types in the arguments. We 4967 // need to do this before checking whether types are dependent 4968 // because lowering a pseudo-object expression might well give us 4969 // something of dependent type. 4970 for (unsigned I = 0, E = Args.size(); I != E; ++I) 4971 if (Args[I]->getType()->isNonOverloadPlaceholderType()) { 4972 // FIXME: should we be doing this here? 4973 ExprResult result = S.CheckPlaceholderExpr(Args[I]); 4974 if (result.isInvalid()) { 4975 SetFailed(FK_PlaceholderType); 4976 return; 4977 } 4978 Args[I] = result.get(); 4979 } 4980 4981 // C++0x [dcl.init]p16: 4982 // The semantics of initializers are as follows. The destination type is 4983 // the type of the object or reference being initialized and the source 4984 // type is the type of the initializer expression. The source type is not 4985 // defined when the initializer is a braced-init-list or when it is a 4986 // parenthesized list of expressions. 4987 QualType DestType = Entity.getType(); 4988 4989 if (DestType->isDependentType() || 4990 Expr::hasAnyTypeDependentArguments(Args)) { 4991 SequenceKind = DependentSequence; 4992 return; 4993 } 4994 4995 // Almost everything is a normal sequence. 4996 setSequenceKind(NormalSequence); 4997 4998 QualType SourceType; 4999 Expr *Initializer = nullptr; 5000 if (Args.size() == 1) { 5001 Initializer = Args[0]; 5002 if (S.getLangOpts().ObjC1) { 5003 if (S.CheckObjCBridgeRelatedConversions(Initializer->getLocStart(), 5004 DestType, Initializer->getType(), 5005 Initializer) || 5006 S.ConversionToObjCStringLiteralCheck(DestType, Initializer)) 5007 Args[0] = Initializer; 5008 } 5009 if (!isa<InitListExpr>(Initializer)) 5010 SourceType = Initializer->getType(); 5011 } 5012 5013 // - If the initializer is a (non-parenthesized) braced-init-list, the 5014 // object is list-initialized (8.5.4). 5015 if (Kind.getKind() != InitializationKind::IK_Direct) { 5016 if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) { 5017 TryListInitialization(S, Entity, Kind, InitList, *this, 5018 TreatUnavailableAsInvalid); 5019 return; 5020 } 5021 } 5022 5023 // - If the destination type is a reference type, see 8.5.3. 5024 if (DestType->isReferenceType()) { 5025 // C++0x [dcl.init.ref]p1: 5026 // A variable declared to be a T& or T&&, that is, "reference to type T" 5027 // (8.3.2), shall be initialized by an object, or function, of type T or 5028 // by an object that can be converted into a T. 5029 // (Therefore, multiple arguments are not permitted.) 5030 if (Args.size() != 1) 5031 SetFailed(FK_TooManyInitsForReference); 5032 else 5033 TryReferenceInitialization(S, Entity, Kind, Args[0], *this); 5034 return; 5035 } 5036 5037 // - If the initializer is (), the object is value-initialized. 5038 if (Kind.getKind() == InitializationKind::IK_Value || 5039 (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) { 5040 TryValueInitialization(S, Entity, Kind, *this); 5041 return; 5042 } 5043 5044 // Handle default initialization. 5045 if (Kind.getKind() == InitializationKind::IK_Default) { 5046 TryDefaultInitialization(S, Entity, Kind, *this); 5047 return; 5048 } 5049 5050 // - If the destination type is an array of characters, an array of 5051 // char16_t, an array of char32_t, or an array of wchar_t, and the 5052 // initializer is a string literal, see 8.5.2. 5053 // - Otherwise, if the destination type is an array, the program is 5054 // ill-formed. 5055 if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) { 5056 if (Initializer && isa<VariableArrayType>(DestAT)) { 5057 SetFailed(FK_VariableLengthArrayHasInitializer); 5058 return; 5059 } 5060 5061 if (Initializer) { 5062 switch (IsStringInit(Initializer, DestAT, Context)) { 5063 case SIF_None: 5064 TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this); 5065 return; 5066 case SIF_NarrowStringIntoWideChar: 5067 SetFailed(FK_NarrowStringIntoWideCharArray); 5068 return; 5069 case SIF_WideStringIntoChar: 5070 SetFailed(FK_WideStringIntoCharArray); 5071 return; 5072 case SIF_IncompatWideStringIntoWideChar: 5073 SetFailed(FK_IncompatWideStringIntoWideChar); 5074 return; 5075 case SIF_Other: 5076 break; 5077 } 5078 } 5079 5080 // Note: as an GNU C extension, we allow initialization of an 5081 // array from a compound literal that creates an array of the same 5082 // type, so long as the initializer has no side effects. 5083 if (!S.getLangOpts().CPlusPlus && Initializer && 5084 isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) && 5085 Initializer->getType()->isArrayType()) { 5086 const ArrayType *SourceAT 5087 = Context.getAsArrayType(Initializer->getType()); 5088 if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT)) 5089 SetFailed(FK_ArrayTypeMismatch); 5090 else if (Initializer->HasSideEffects(S.Context)) 5091 SetFailed(FK_NonConstantArrayInit); 5092 else { 5093 AddArrayInitStep(DestType); 5094 } 5095 } 5096 // Note: as a GNU C++ extension, we allow list-initialization of a 5097 // class member of array type from a parenthesized initializer list. 5098 else if (S.getLangOpts().CPlusPlus && 5099 Entity.getKind() == InitializedEntity::EK_Member && 5100 Initializer && isa<InitListExpr>(Initializer)) { 5101 TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer), 5102 *this, TreatUnavailableAsInvalid); 5103 AddParenthesizedArrayInitStep(DestType); 5104 } else if (DestAT->getElementType()->isCharType()) 5105 SetFailed(FK_ArrayNeedsInitListOrStringLiteral); 5106 else if (IsWideCharCompatible(DestAT->getElementType(), Context)) 5107 SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral); 5108 else 5109 SetFailed(FK_ArrayNeedsInitList); 5110 5111 return; 5112 } 5113 5114 // Determine whether we should consider writeback conversions for 5115 // Objective-C ARC. 5116 bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount && 5117 Entity.isParameterKind(); 5118 5119 // We're at the end of the line for C: it's either a write-back conversion 5120 // or it's a C assignment. There's no need to check anything else. 5121 if (!S.getLangOpts().CPlusPlus) { 5122 // If allowed, check whether this is an Objective-C writeback conversion. 5123 if (allowObjCWritebackConversion && 5124 tryObjCWritebackConversion(S, *this, Entity, Initializer)) { 5125 return; 5126 } 5127 5128 if (TryOCLSamplerInitialization(S, *this, DestType, Initializer)) 5129 return; 5130 5131 if (TryOCLZeroEventInitialization(S, *this, DestType, Initializer)) 5132 return; 5133 5134 // Handle initialization in C 5135 AddCAssignmentStep(DestType); 5136 MaybeProduceObjCObject(S, *this, Entity); 5137 return; 5138 } 5139 5140 assert(S.getLangOpts().CPlusPlus); 5141 5142 // - If the destination type is a (possibly cv-qualified) class type: 5143 if (DestType->isRecordType()) { 5144 // - If the initialization is direct-initialization, or if it is 5145 // copy-initialization where the cv-unqualified version of the 5146 // source type is the same class as, or a derived class of, the 5147 // class of the destination, constructors are considered. [...] 5148 if (Kind.getKind() == InitializationKind::IK_Direct || 5149 (Kind.getKind() == InitializationKind::IK_Copy && 5150 (Context.hasSameUnqualifiedType(SourceType, DestType) || 5151 S.IsDerivedFrom(Initializer->getLocStart(), SourceType, DestType)))) 5152 TryConstructorInitialization(S, Entity, Kind, Args, 5153 DestType, *this); 5154 // - Otherwise (i.e., for the remaining copy-initialization cases), 5155 // user-defined conversion sequences that can convert from the source 5156 // type to the destination type or (when a conversion function is 5157 // used) to a derived class thereof are enumerated as described in 5158 // 13.3.1.4, and the best one is chosen through overload resolution 5159 // (13.3). 5160 else 5161 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this, 5162 TopLevelOfInitList); 5163 return; 5164 } 5165 5166 if (Args.size() > 1) { 5167 SetFailed(FK_TooManyInitsForScalar); 5168 return; 5169 } 5170 assert(Args.size() == 1 && "Zero-argument case handled above"); 5171 5172 // - Otherwise, if the source type is a (possibly cv-qualified) class 5173 // type, conversion functions are considered. 5174 if (!SourceType.isNull() && SourceType->isRecordType()) { 5175 // For a conversion to _Atomic(T) from either T or a class type derived 5176 // from T, initialize the T object then convert to _Atomic type. 5177 bool NeedAtomicConversion = false; 5178 if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) { 5179 if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) || 5180 S.IsDerivedFrom(Initializer->getLocStart(), SourceType, 5181 Atomic->getValueType())) { 5182 DestType = Atomic->getValueType(); 5183 NeedAtomicConversion = true; 5184 } 5185 } 5186 5187 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this, 5188 TopLevelOfInitList); 5189 MaybeProduceObjCObject(S, *this, Entity); 5190 if (!Failed() && NeedAtomicConversion) 5191 AddAtomicConversionStep(Entity.getType()); 5192 return; 5193 } 5194 5195 // - Otherwise, the initial value of the object being initialized is the 5196 // (possibly converted) value of the initializer expression. Standard 5197 // conversions (Clause 4) will be used, if necessary, to convert the 5198 // initializer expression to the cv-unqualified version of the 5199 // destination type; no user-defined conversions are considered. 5200 5201 ImplicitConversionSequence ICS 5202 = S.TryImplicitConversion(Initializer, DestType, 5203 /*SuppressUserConversions*/true, 5204 /*AllowExplicitConversions*/ false, 5205 /*InOverloadResolution*/ false, 5206 /*CStyle=*/Kind.isCStyleOrFunctionalCast(), 5207 allowObjCWritebackConversion); 5208 5209 if (ICS.isStandard() && 5210 ICS.Standard.Second == ICK_Writeback_Conversion) { 5211 // Objective-C ARC writeback conversion. 5212 5213 // We should copy unless we're passing to an argument explicitly 5214 // marked 'out'. 5215 bool ShouldCopy = true; 5216 if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl())) 5217 ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); 5218 5219 // If there was an lvalue adjustment, add it as a separate conversion. 5220 if (ICS.Standard.First == ICK_Array_To_Pointer || 5221 ICS.Standard.First == ICK_Lvalue_To_Rvalue) { 5222 ImplicitConversionSequence LvalueICS; 5223 LvalueICS.setStandard(); 5224 LvalueICS.Standard.setAsIdentityConversion(); 5225 LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0)); 5226 LvalueICS.Standard.First = ICS.Standard.First; 5227 AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0)); 5228 } 5229 5230 AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy); 5231 } else if (ICS.isBad()) { 5232 DeclAccessPair dap; 5233 if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) { 5234 AddZeroInitializationStep(Entity.getType()); 5235 } else if (Initializer->getType() == Context.OverloadTy && 5236 !S.ResolveAddressOfOverloadedFunction(Initializer, DestType, 5237 false, dap)) 5238 SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 5239 else if (Initializer->getType()->isFunctionType() && 5240 isExprAnUnaddressableFunction(S, Initializer)) 5241 SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction); 5242 else 5243 SetFailed(InitializationSequence::FK_ConversionFailed); 5244 } else { 5245 AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList); 5246 5247 MaybeProduceObjCObject(S, *this, Entity); 5248 } 5249 } 5250 5251 InitializationSequence::~InitializationSequence() { 5252 for (auto &S : Steps) 5253 S.Destroy(); 5254 } 5255 5256 //===----------------------------------------------------------------------===// 5257 // Perform initialization 5258 //===----------------------------------------------------------------------===// 5259 static Sema::AssignmentAction 5260 getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) { 5261 switch(Entity.getKind()) { 5262 case InitializedEntity::EK_Variable: 5263 case InitializedEntity::EK_New: 5264 case InitializedEntity::EK_Exception: 5265 case InitializedEntity::EK_Base: 5266 case InitializedEntity::EK_Delegating: 5267 return Sema::AA_Initializing; 5268 5269 case InitializedEntity::EK_Parameter: 5270 if (Entity.getDecl() && 5271 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) 5272 return Sema::AA_Sending; 5273 5274 return Sema::AA_Passing; 5275 5276 case InitializedEntity::EK_Parameter_CF_Audited: 5277 if (Entity.getDecl() && 5278 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) 5279 return Sema::AA_Sending; 5280 5281 return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited; 5282 5283 case InitializedEntity::EK_Result: 5284 return Sema::AA_Returning; 5285 5286 case InitializedEntity::EK_Temporary: 5287 case InitializedEntity::EK_RelatedResult: 5288 // FIXME: Can we tell apart casting vs. converting? 5289 return Sema::AA_Casting; 5290 5291 case InitializedEntity::EK_Member: 5292 case InitializedEntity::EK_Binding: 5293 case InitializedEntity::EK_ArrayElement: 5294 case InitializedEntity::EK_VectorElement: 5295 case InitializedEntity::EK_ComplexElement: 5296 case InitializedEntity::EK_BlockElement: 5297 case InitializedEntity::EK_LambdaCapture: 5298 case InitializedEntity::EK_CompoundLiteralInit: 5299 return Sema::AA_Initializing; 5300 } 5301 5302 llvm_unreachable("Invalid EntityKind!"); 5303 } 5304 5305 /// \brief Whether we should bind a created object as a temporary when 5306 /// initializing the given entity. 5307 static bool shouldBindAsTemporary(const InitializedEntity &Entity) { 5308 switch (Entity.getKind()) { 5309 case InitializedEntity::EK_ArrayElement: 5310 case InitializedEntity::EK_Member: 5311 case InitializedEntity::EK_Result: 5312 case InitializedEntity::EK_New: 5313 case InitializedEntity::EK_Variable: 5314 case InitializedEntity::EK_Base: 5315 case InitializedEntity::EK_Delegating: 5316 case InitializedEntity::EK_VectorElement: 5317 case InitializedEntity::EK_ComplexElement: 5318 case InitializedEntity::EK_Exception: 5319 case InitializedEntity::EK_BlockElement: 5320 case InitializedEntity::EK_LambdaCapture: 5321 case InitializedEntity::EK_CompoundLiteralInit: 5322 return false; 5323 5324 case InitializedEntity::EK_Parameter: 5325 case InitializedEntity::EK_Parameter_CF_Audited: 5326 case InitializedEntity::EK_Temporary: 5327 case InitializedEntity::EK_RelatedResult: 5328 case InitializedEntity::EK_Binding: 5329 return true; 5330 } 5331 5332 llvm_unreachable("missed an InitializedEntity kind?"); 5333 } 5334 5335 /// \brief Whether the given entity, when initialized with an object 5336 /// created for that initialization, requires destruction. 5337 static bool shouldDestroyTemporary(const InitializedEntity &Entity) { 5338 switch (Entity.getKind()) { 5339 case InitializedEntity::EK_Result: 5340 case InitializedEntity::EK_New: 5341 case InitializedEntity::EK_Base: 5342 case InitializedEntity::EK_Delegating: 5343 case InitializedEntity::EK_VectorElement: 5344 case InitializedEntity::EK_ComplexElement: 5345 case InitializedEntity::EK_BlockElement: 5346 case InitializedEntity::EK_LambdaCapture: 5347 return false; 5348 5349 case InitializedEntity::EK_Member: 5350 case InitializedEntity::EK_Binding: 5351 case InitializedEntity::EK_Variable: 5352 case InitializedEntity::EK_Parameter: 5353 case InitializedEntity::EK_Parameter_CF_Audited: 5354 case InitializedEntity::EK_Temporary: 5355 case InitializedEntity::EK_ArrayElement: 5356 case InitializedEntity::EK_Exception: 5357 case InitializedEntity::EK_CompoundLiteralInit: 5358 case InitializedEntity::EK_RelatedResult: 5359 return true; 5360 } 5361 5362 llvm_unreachable("missed an InitializedEntity kind?"); 5363 } 5364 5365 /// \brief Get the location at which initialization diagnostics should appear. 5366 static SourceLocation getInitializationLoc(const InitializedEntity &Entity, 5367 Expr *Initializer) { 5368 switch (Entity.getKind()) { 5369 case InitializedEntity::EK_Result: 5370 return Entity.getReturnLoc(); 5371 5372 case InitializedEntity::EK_Exception: 5373 return Entity.getThrowLoc(); 5374 5375 case InitializedEntity::EK_Variable: 5376 case InitializedEntity::EK_Binding: 5377 return Entity.getDecl()->getLocation(); 5378 5379 case InitializedEntity::EK_LambdaCapture: 5380 return Entity.getCaptureLoc(); 5381 5382 case InitializedEntity::EK_ArrayElement: 5383 case InitializedEntity::EK_Member: 5384 case InitializedEntity::EK_Parameter: 5385 case InitializedEntity::EK_Parameter_CF_Audited: 5386 case InitializedEntity::EK_Temporary: 5387 case InitializedEntity::EK_New: 5388 case InitializedEntity::EK_Base: 5389 case InitializedEntity::EK_Delegating: 5390 case InitializedEntity::EK_VectorElement: 5391 case InitializedEntity::EK_ComplexElement: 5392 case InitializedEntity::EK_BlockElement: 5393 case InitializedEntity::EK_CompoundLiteralInit: 5394 case InitializedEntity::EK_RelatedResult: 5395 return Initializer->getLocStart(); 5396 } 5397 llvm_unreachable("missed an InitializedEntity kind?"); 5398 } 5399 5400 /// \brief Make a (potentially elidable) temporary copy of the object 5401 /// provided by the given initializer by calling the appropriate copy 5402 /// constructor. 5403 /// 5404 /// \param S The Sema object used for type-checking. 5405 /// 5406 /// \param T The type of the temporary object, which must either be 5407 /// the type of the initializer expression or a superclass thereof. 5408 /// 5409 /// \param Entity The entity being initialized. 5410 /// 5411 /// \param CurInit The initializer expression. 5412 /// 5413 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that 5414 /// is permitted in C++03 (but not C++0x) when binding a reference to 5415 /// an rvalue. 5416 /// 5417 /// \returns An expression that copies the initializer expression into 5418 /// a temporary object, or an error expression if a copy could not be 5419 /// created. 5420 static ExprResult CopyObject(Sema &S, 5421 QualType T, 5422 const InitializedEntity &Entity, 5423 ExprResult CurInit, 5424 bool IsExtraneousCopy) { 5425 if (CurInit.isInvalid()) 5426 return CurInit; 5427 // Determine which class type we're copying to. 5428 Expr *CurInitExpr = (Expr *)CurInit.get(); 5429 CXXRecordDecl *Class = nullptr; 5430 if (const RecordType *Record = T->getAs<RecordType>()) 5431 Class = cast<CXXRecordDecl>(Record->getDecl()); 5432 if (!Class) 5433 return CurInit; 5434 5435 SourceLocation Loc = getInitializationLoc(Entity, CurInit.get()); 5436 5437 // Make sure that the type we are copying is complete. 5438 if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete)) 5439 return CurInit; 5440 5441 // Perform overload resolution using the class's constructors. Per 5442 // C++11 [dcl.init]p16, second bullet for class types, this initialization 5443 // is direct-initialization. 5444 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); 5445 DeclContext::lookup_result Ctors = S.LookupConstructors(Class); 5446 5447 OverloadCandidateSet::iterator Best; 5448 switch (ResolveConstructorOverload( 5449 S, Loc, CurInitExpr, CandidateSet, Ctors, Best, 5450 /*CopyInitializing=*/false, /*AllowExplicit=*/true, 5451 /*OnlyListConstructors=*/false, /*IsListInit=*/false, 5452 /*SecondStepOfCopyInit=*/true)) { 5453 case OR_Success: 5454 break; 5455 5456 case OR_No_Viable_Function: 5457 S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext() 5458 ? diag::ext_rvalue_to_reference_temp_copy_no_viable 5459 : diag::err_temp_copy_no_viable) 5460 << (int)Entity.getKind() << CurInitExpr->getType() 5461 << CurInitExpr->getSourceRange(); 5462 CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr); 5463 if (!IsExtraneousCopy || S.isSFINAEContext()) 5464 return ExprError(); 5465 return CurInit; 5466 5467 case OR_Ambiguous: 5468 S.Diag(Loc, diag::err_temp_copy_ambiguous) 5469 << (int)Entity.getKind() << CurInitExpr->getType() 5470 << CurInitExpr->getSourceRange(); 5471 CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr); 5472 return ExprError(); 5473 5474 case OR_Deleted: 5475 S.Diag(Loc, diag::err_temp_copy_deleted) 5476 << (int)Entity.getKind() << CurInitExpr->getType() 5477 << CurInitExpr->getSourceRange(); 5478 S.NoteDeletedFunction(Best->Function); 5479 return ExprError(); 5480 } 5481 5482 bool HadMultipleCandidates = CandidateSet.size() > 1; 5483 5484 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function); 5485 SmallVector<Expr*, 8> ConstructorArgs; 5486 CurInit.get(); // Ownership transferred into MultiExprArg, below. 5487 5488 S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity, 5489 IsExtraneousCopy); 5490 5491 if (IsExtraneousCopy) { 5492 // If this is a totally extraneous copy for C++03 reference 5493 // binding purposes, just return the original initialization 5494 // expression. We don't generate an (elided) copy operation here 5495 // because doing so would require us to pass down a flag to avoid 5496 // infinite recursion, where each step adds another extraneous, 5497 // elidable copy. 5498 5499 // Instantiate the default arguments of any extra parameters in 5500 // the selected copy constructor, as if we were going to create a 5501 // proper call to the copy constructor. 5502 for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) { 5503 ParmVarDecl *Parm = Constructor->getParamDecl(I); 5504 if (S.RequireCompleteType(Loc, Parm->getType(), 5505 diag::err_call_incomplete_argument)) 5506 break; 5507 5508 // Build the default argument expression; we don't actually care 5509 // if this succeeds or not, because this routine will complain 5510 // if there was a problem. 5511 S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm); 5512 } 5513 5514 return CurInitExpr; 5515 } 5516 5517 // Determine the arguments required to actually perform the 5518 // constructor call (we might have derived-to-base conversions, or 5519 // the copy constructor may have default arguments). 5520 if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs)) 5521 return ExprError(); 5522 5523 // C++0x [class.copy]p32: 5524 // When certain criteria are met, an implementation is allowed to 5525 // omit the copy/move construction of a class object, even if the 5526 // copy/move constructor and/or destructor for the object have 5527 // side effects. [...] 5528 // - when a temporary class object that has not been bound to a 5529 // reference (12.2) would be copied/moved to a class object 5530 // with the same cv-unqualified type, the copy/move operation 5531 // can be omitted by constructing the temporary object 5532 // directly into the target of the omitted copy/move 5533 // 5534 // Note that the other three bullets are handled elsewhere. Copy 5535 // elision for return statements and throw expressions are handled as part 5536 // of constructor initialization, while copy elision for exception handlers 5537 // is handled by the run-time. 5538 // 5539 // FIXME: If the function parameter is not the same type as the temporary, we 5540 // should still be able to elide the copy, but we don't have a way to 5541 // represent in the AST how much should be elided in this case. 5542 bool Elidable = 5543 CurInitExpr->isTemporaryObject(S.Context, Class) && 5544 S.Context.hasSameUnqualifiedType( 5545 Best->Function->getParamDecl(0)->getType().getNonReferenceType(), 5546 CurInitExpr->getType()); 5547 5548 // Actually perform the constructor call. 5549 CurInit = S.BuildCXXConstructExpr(Loc, T, Best->FoundDecl, Constructor, 5550 Elidable, 5551 ConstructorArgs, 5552 HadMultipleCandidates, 5553 /*ListInit*/ false, 5554 /*StdInitListInit*/ false, 5555 /*ZeroInit*/ false, 5556 CXXConstructExpr::CK_Complete, 5557 SourceRange()); 5558 5559 // If we're supposed to bind temporaries, do so. 5560 if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity)) 5561 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>()); 5562 return CurInit; 5563 } 5564 5565 /// \brief Check whether elidable copy construction for binding a reference to 5566 /// a temporary would have succeeded if we were building in C++98 mode, for 5567 /// -Wc++98-compat. 5568 static void CheckCXX98CompatAccessibleCopy(Sema &S, 5569 const InitializedEntity &Entity, 5570 Expr *CurInitExpr) { 5571 assert(S.getLangOpts().CPlusPlus11); 5572 5573 const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>(); 5574 if (!Record) 5575 return; 5576 5577 SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr); 5578 if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc)) 5579 return; 5580 5581 // Find constructors which would have been considered. 5582 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); 5583 DeclContext::lookup_result Ctors = 5584 S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl())); 5585 5586 // Perform overload resolution. 5587 OverloadCandidateSet::iterator Best; 5588 OverloadingResult OR = ResolveConstructorOverload( 5589 S, Loc, CurInitExpr, CandidateSet, Ctors, Best, 5590 /*CopyInitializing=*/false, /*AllowExplicit=*/true, 5591 /*OnlyListConstructors=*/false, /*IsListInit=*/false, 5592 /*SecondStepOfCopyInit=*/true); 5593 5594 PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy) 5595 << OR << (int)Entity.getKind() << CurInitExpr->getType() 5596 << CurInitExpr->getSourceRange(); 5597 5598 switch (OR) { 5599 case OR_Success: 5600 S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function), 5601 Best->FoundDecl, Entity, Diag); 5602 // FIXME: Check default arguments as far as that's possible. 5603 break; 5604 5605 case OR_No_Viable_Function: 5606 S.Diag(Loc, Diag); 5607 CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr); 5608 break; 5609 5610 case OR_Ambiguous: 5611 S.Diag(Loc, Diag); 5612 CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr); 5613 break; 5614 5615 case OR_Deleted: 5616 S.Diag(Loc, Diag); 5617 S.NoteDeletedFunction(Best->Function); 5618 break; 5619 } 5620 } 5621 5622 void InitializationSequence::PrintInitLocationNote(Sema &S, 5623 const InitializedEntity &Entity) { 5624 if (Entity.isParameterKind() && Entity.getDecl()) { 5625 if (Entity.getDecl()->getLocation().isInvalid()) 5626 return; 5627 5628 if (Entity.getDecl()->getDeclName()) 5629 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here) 5630 << Entity.getDecl()->getDeclName(); 5631 else 5632 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here); 5633 } 5634 else if (Entity.getKind() == InitializedEntity::EK_RelatedResult && 5635 Entity.getMethodDecl()) 5636 S.Diag(Entity.getMethodDecl()->getLocation(), 5637 diag::note_method_return_type_change) 5638 << Entity.getMethodDecl()->getDeclName(); 5639 } 5640 5641 static bool isReferenceBinding(const InitializationSequence::Step &s) { 5642 return s.Kind == InitializationSequence::SK_BindReference || 5643 s.Kind == InitializationSequence::SK_BindReferenceToTemporary; 5644 } 5645 5646 /// Returns true if the parameters describe a constructor initialization of 5647 /// an explicit temporary object, e.g. "Point(x, y)". 5648 static bool isExplicitTemporary(const InitializedEntity &Entity, 5649 const InitializationKind &Kind, 5650 unsigned NumArgs) { 5651 switch (Entity.getKind()) { 5652 case InitializedEntity::EK_Temporary: 5653 case InitializedEntity::EK_CompoundLiteralInit: 5654 case InitializedEntity::EK_RelatedResult: 5655 break; 5656 default: 5657 return false; 5658 } 5659 5660 switch (Kind.getKind()) { 5661 case InitializationKind::IK_DirectList: 5662 return true; 5663 // FIXME: Hack to work around cast weirdness. 5664 case InitializationKind::IK_Direct: 5665 case InitializationKind::IK_Value: 5666 return NumArgs != 1; 5667 default: 5668 return false; 5669 } 5670 } 5671 5672 static ExprResult 5673 PerformConstructorInitialization(Sema &S, 5674 const InitializedEntity &Entity, 5675 const InitializationKind &Kind, 5676 MultiExprArg Args, 5677 const InitializationSequence::Step& Step, 5678 bool &ConstructorInitRequiresZeroInit, 5679 bool IsListInitialization, 5680 bool IsStdInitListInitialization, 5681 SourceLocation LBraceLoc, 5682 SourceLocation RBraceLoc) { 5683 unsigned NumArgs = Args.size(); 5684 CXXConstructorDecl *Constructor 5685 = cast<CXXConstructorDecl>(Step.Function.Function); 5686 bool HadMultipleCandidates = Step.Function.HadMultipleCandidates; 5687 5688 // Build a call to the selected constructor. 5689 SmallVector<Expr*, 8> ConstructorArgs; 5690 SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid()) 5691 ? Kind.getEqualLoc() 5692 : Kind.getLocation(); 5693 5694 if (Kind.getKind() == InitializationKind::IK_Default) { 5695 // Force even a trivial, implicit default constructor to be 5696 // semantically checked. We do this explicitly because we don't build 5697 // the definition for completely trivial constructors. 5698 assert(Constructor->getParent() && "No parent class for constructor."); 5699 if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() && 5700 Constructor->isTrivial() && !Constructor->isUsed(false)) 5701 S.DefineImplicitDefaultConstructor(Loc, Constructor); 5702 } 5703 5704 ExprResult CurInit((Expr *)nullptr); 5705 5706 // C++ [over.match.copy]p1: 5707 // - When initializing a temporary to be bound to the first parameter 5708 // of a constructor that takes a reference to possibly cv-qualified 5709 // T as its first argument, called with a single argument in the 5710 // context of direct-initialization, explicit conversion functions 5711 // are also considered. 5712 bool AllowExplicitConv = 5713 Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 && 5714 hasCopyOrMoveCtorParam(S.Context, 5715 getConstructorInfo(Step.Function.FoundDecl)); 5716 5717 // Determine the arguments required to actually perform the constructor 5718 // call. 5719 if (S.CompleteConstructorCall(Constructor, Args, 5720 Loc, ConstructorArgs, 5721 AllowExplicitConv, 5722 IsListInitialization)) 5723 return ExprError(); 5724 5725 5726 if (isExplicitTemporary(Entity, Kind, NumArgs)) { 5727 // An explicitly-constructed temporary, e.g., X(1, 2). 5728 if (S.DiagnoseUseOfDecl(Constructor, Loc)) 5729 return ExprError(); 5730 5731 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); 5732 if (!TSInfo) 5733 TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc); 5734 SourceRange ParenOrBraceRange = 5735 (Kind.getKind() == InitializationKind::IK_DirectList) 5736 ? SourceRange(LBraceLoc, RBraceLoc) 5737 : Kind.getParenRange(); 5738 5739 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>( 5740 Step.Function.FoundDecl.getDecl())) { 5741 Constructor = S.findInheritingConstructor(Loc, Constructor, Shadow); 5742 if (S.DiagnoseUseOfDecl(Constructor, Loc)) 5743 return ExprError(); 5744 } 5745 S.MarkFunctionReferenced(Loc, Constructor); 5746 5747 CurInit = new (S.Context) CXXTemporaryObjectExpr( 5748 S.Context, Constructor, TSInfo, 5749 ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates, 5750 IsListInitialization, IsStdInitListInitialization, 5751 ConstructorInitRequiresZeroInit); 5752 } else { 5753 CXXConstructExpr::ConstructionKind ConstructKind = 5754 CXXConstructExpr::CK_Complete; 5755 5756 if (Entity.getKind() == InitializedEntity::EK_Base) { 5757 ConstructKind = Entity.getBaseSpecifier()->isVirtual() ? 5758 CXXConstructExpr::CK_VirtualBase : 5759 CXXConstructExpr::CK_NonVirtualBase; 5760 } else if (Entity.getKind() == InitializedEntity::EK_Delegating) { 5761 ConstructKind = CXXConstructExpr::CK_Delegating; 5762 } 5763 5764 // Only get the parenthesis or brace range if it is a list initialization or 5765 // direct construction. 5766 SourceRange ParenOrBraceRange; 5767 if (IsListInitialization) 5768 ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc); 5769 else if (Kind.getKind() == InitializationKind::IK_Direct) 5770 ParenOrBraceRange = Kind.getParenRange(); 5771 5772 // If the entity allows NRVO, mark the construction as elidable 5773 // unconditionally. 5774 if (Entity.allowsNRVO()) 5775 CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(), 5776 Step.Function.FoundDecl, 5777 Constructor, /*Elidable=*/true, 5778 ConstructorArgs, 5779 HadMultipleCandidates, 5780 IsListInitialization, 5781 IsStdInitListInitialization, 5782 ConstructorInitRequiresZeroInit, 5783 ConstructKind, 5784 ParenOrBraceRange); 5785 else 5786 CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(), 5787 Step.Function.FoundDecl, 5788 Constructor, 5789 ConstructorArgs, 5790 HadMultipleCandidates, 5791 IsListInitialization, 5792 IsStdInitListInitialization, 5793 ConstructorInitRequiresZeroInit, 5794 ConstructKind, 5795 ParenOrBraceRange); 5796 } 5797 if (CurInit.isInvalid()) 5798 return ExprError(); 5799 5800 // Only check access if all of that succeeded. 5801 S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity); 5802 if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc)) 5803 return ExprError(); 5804 5805 if (shouldBindAsTemporary(Entity)) 5806 CurInit = S.MaybeBindToTemporary(CurInit.get()); 5807 5808 return CurInit; 5809 } 5810 5811 /// Determine whether the specified InitializedEntity definitely has a lifetime 5812 /// longer than the current full-expression. Conservatively returns false if 5813 /// it's unclear. 5814 static bool 5815 InitializedEntityOutlivesFullExpression(const InitializedEntity &Entity) { 5816 const InitializedEntity *Top = &Entity; 5817 while (Top->getParent()) 5818 Top = Top->getParent(); 5819 5820 switch (Top->getKind()) { 5821 case InitializedEntity::EK_Variable: 5822 case InitializedEntity::EK_Result: 5823 case InitializedEntity::EK_Exception: 5824 case InitializedEntity::EK_Member: 5825 case InitializedEntity::EK_Binding: 5826 case InitializedEntity::EK_New: 5827 case InitializedEntity::EK_Base: 5828 case InitializedEntity::EK_Delegating: 5829 return true; 5830 5831 case InitializedEntity::EK_ArrayElement: 5832 case InitializedEntity::EK_VectorElement: 5833 case InitializedEntity::EK_BlockElement: 5834 case InitializedEntity::EK_ComplexElement: 5835 // Could not determine what the full initialization is. Assume it might not 5836 // outlive the full-expression. 5837 return false; 5838 5839 case InitializedEntity::EK_Parameter: 5840 case InitializedEntity::EK_Parameter_CF_Audited: 5841 case InitializedEntity::EK_Temporary: 5842 case InitializedEntity::EK_LambdaCapture: 5843 case InitializedEntity::EK_CompoundLiteralInit: 5844 case InitializedEntity::EK_RelatedResult: 5845 // The entity being initialized might not outlive the full-expression. 5846 return false; 5847 } 5848 5849 llvm_unreachable("unknown entity kind"); 5850 } 5851 5852 /// Determine the declaration which an initialized entity ultimately refers to, 5853 /// for the purpose of lifetime-extending a temporary bound to a reference in 5854 /// the initialization of \p Entity. 5855 static const InitializedEntity *getEntityForTemporaryLifetimeExtension( 5856 const InitializedEntity *Entity, 5857 const InitializedEntity *FallbackDecl = nullptr) { 5858 // C++11 [class.temporary]p5: 5859 switch (Entity->getKind()) { 5860 case InitializedEntity::EK_Variable: 5861 // The temporary [...] persists for the lifetime of the reference 5862 return Entity; 5863 5864 case InitializedEntity::EK_Member: 5865 // For subobjects, we look at the complete object. 5866 if (Entity->getParent()) 5867 return getEntityForTemporaryLifetimeExtension(Entity->getParent(), 5868 Entity); 5869 5870 // except: 5871 // -- A temporary bound to a reference member in a constructor's 5872 // ctor-initializer persists until the constructor exits. 5873 return Entity; 5874 5875 case InitializedEntity::EK_Binding: 5876 // Per [dcl.decomp]p3, the binding is treated as a variable of reference 5877 // type. 5878 return Entity; 5879 5880 case InitializedEntity::EK_Parameter: 5881 case InitializedEntity::EK_Parameter_CF_Audited: 5882 // -- A temporary bound to a reference parameter in a function call 5883 // persists until the completion of the full-expression containing 5884 // the call. 5885 case InitializedEntity::EK_Result: 5886 // -- The lifetime of a temporary bound to the returned value in a 5887 // function return statement is not extended; the temporary is 5888 // destroyed at the end of the full-expression in the return statement. 5889 case InitializedEntity::EK_New: 5890 // -- A temporary bound to a reference in a new-initializer persists 5891 // until the completion of the full-expression containing the 5892 // new-initializer. 5893 return nullptr; 5894 5895 case InitializedEntity::EK_Temporary: 5896 case InitializedEntity::EK_CompoundLiteralInit: 5897 case InitializedEntity::EK_RelatedResult: 5898 // We don't yet know the storage duration of the surrounding temporary. 5899 // Assume it's got full-expression duration for now, it will patch up our 5900 // storage duration if that's not correct. 5901 return nullptr; 5902 5903 case InitializedEntity::EK_ArrayElement: 5904 // For subobjects, we look at the complete object. 5905 return getEntityForTemporaryLifetimeExtension(Entity->getParent(), 5906 FallbackDecl); 5907 5908 case InitializedEntity::EK_Base: 5909 // For subobjects, we look at the complete object. 5910 if (Entity->getParent()) 5911 return getEntityForTemporaryLifetimeExtension(Entity->getParent(), 5912 Entity); 5913 // Fall through. 5914 case InitializedEntity::EK_Delegating: 5915 // We can reach this case for aggregate initialization in a constructor: 5916 // struct A { int &&r; }; 5917 // struct B : A { B() : A{0} {} }; 5918 // In this case, use the innermost field decl as the context. 5919 return FallbackDecl; 5920 5921 case InitializedEntity::EK_BlockElement: 5922 case InitializedEntity::EK_LambdaCapture: 5923 case InitializedEntity::EK_Exception: 5924 case InitializedEntity::EK_VectorElement: 5925 case InitializedEntity::EK_ComplexElement: 5926 return nullptr; 5927 } 5928 llvm_unreachable("unknown entity kind"); 5929 } 5930 5931 static void performLifetimeExtension(Expr *Init, 5932 const InitializedEntity *ExtendingEntity); 5933 5934 /// Update a glvalue expression that is used as the initializer of a reference 5935 /// to note that its lifetime is extended. 5936 /// \return \c true if any temporary had its lifetime extended. 5937 static bool 5938 performReferenceExtension(Expr *Init, 5939 const InitializedEntity *ExtendingEntity) { 5940 // Walk past any constructs which we can lifetime-extend across. 5941 Expr *Old; 5942 do { 5943 Old = Init; 5944 5945 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 5946 if (ILE->getNumInits() == 1 && ILE->isGLValue()) { 5947 // This is just redundant braces around an initializer. Step over it. 5948 Init = ILE->getInit(0); 5949 } 5950 } 5951 5952 // Step over any subobject adjustments; we may have a materialized 5953 // temporary inside them. 5954 SmallVector<const Expr *, 2> CommaLHSs; 5955 SmallVector<SubobjectAdjustment, 2> Adjustments; 5956 Init = const_cast<Expr *>( 5957 Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments)); 5958 5959 // Per current approach for DR1376, look through casts to reference type 5960 // when performing lifetime extension. 5961 if (CastExpr *CE = dyn_cast<CastExpr>(Init)) 5962 if (CE->getSubExpr()->isGLValue()) 5963 Init = CE->getSubExpr(); 5964 5965 // FIXME: Per DR1213, subscripting on an array temporary produces an xvalue. 5966 // It's unclear if binding a reference to that xvalue extends the array 5967 // temporary. 5968 } while (Init != Old); 5969 5970 if (MaterializeTemporaryExpr *ME = dyn_cast<MaterializeTemporaryExpr>(Init)) { 5971 // Update the storage duration of the materialized temporary. 5972 // FIXME: Rebuild the expression instead of mutating it. 5973 ME->setExtendingDecl(ExtendingEntity->getDecl(), 5974 ExtendingEntity->allocateManglingNumber()); 5975 performLifetimeExtension(ME->GetTemporaryExpr(), ExtendingEntity); 5976 return true; 5977 } 5978 5979 return false; 5980 } 5981 5982 /// Update a prvalue expression that is going to be materialized as a 5983 /// lifetime-extended temporary. 5984 static void performLifetimeExtension(Expr *Init, 5985 const InitializedEntity *ExtendingEntity) { 5986 // Dig out the expression which constructs the extended temporary. 5987 SmallVector<const Expr *, 2> CommaLHSs; 5988 SmallVector<SubobjectAdjustment, 2> Adjustments; 5989 Init = const_cast<Expr *>( 5990 Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments)); 5991 5992 if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init)) 5993 Init = BTE->getSubExpr(); 5994 5995 if (CXXStdInitializerListExpr *ILE = 5996 dyn_cast<CXXStdInitializerListExpr>(Init)) { 5997 performReferenceExtension(ILE->getSubExpr(), ExtendingEntity); 5998 return; 5999 } 6000 6001 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 6002 if (ILE->getType()->isArrayType()) { 6003 for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I) 6004 performLifetimeExtension(ILE->getInit(I), ExtendingEntity); 6005 return; 6006 } 6007 6008 if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) { 6009 assert(RD->isAggregate() && "aggregate init on non-aggregate"); 6010 6011 // If we lifetime-extend a braced initializer which is initializing an 6012 // aggregate, and that aggregate contains reference members which are 6013 // bound to temporaries, those temporaries are also lifetime-extended. 6014 if (RD->isUnion() && ILE->getInitializedFieldInUnion() && 6015 ILE->getInitializedFieldInUnion()->getType()->isReferenceType()) 6016 performReferenceExtension(ILE->getInit(0), ExtendingEntity); 6017 else { 6018 unsigned Index = 0; 6019 for (const auto *I : RD->fields()) { 6020 if (Index >= ILE->getNumInits()) 6021 break; 6022 if (I->isUnnamedBitfield()) 6023 continue; 6024 Expr *SubInit = ILE->getInit(Index); 6025 if (I->getType()->isReferenceType()) 6026 performReferenceExtension(SubInit, ExtendingEntity); 6027 else if (isa<InitListExpr>(SubInit) || 6028 isa<CXXStdInitializerListExpr>(SubInit)) 6029 // This may be either aggregate-initialization of a member or 6030 // initialization of a std::initializer_list object. Either way, 6031 // we should recursively lifetime-extend that initializer. 6032 performLifetimeExtension(SubInit, ExtendingEntity); 6033 ++Index; 6034 } 6035 } 6036 } 6037 } 6038 } 6039 6040 static void warnOnLifetimeExtension(Sema &S, const InitializedEntity &Entity, 6041 const Expr *Init, bool IsInitializerList, 6042 const ValueDecl *ExtendingDecl) { 6043 // Warn if a field lifetime-extends a temporary. 6044 if (isa<FieldDecl>(ExtendingDecl)) { 6045 if (IsInitializerList) { 6046 S.Diag(Init->getExprLoc(), diag::warn_dangling_std_initializer_list) 6047 << /*at end of constructor*/true; 6048 return; 6049 } 6050 6051 bool IsSubobjectMember = false; 6052 for (const InitializedEntity *Ent = Entity.getParent(); Ent; 6053 Ent = Ent->getParent()) { 6054 if (Ent->getKind() != InitializedEntity::EK_Base) { 6055 IsSubobjectMember = true; 6056 break; 6057 } 6058 } 6059 S.Diag(Init->getExprLoc(), 6060 diag::warn_bind_ref_member_to_temporary) 6061 << ExtendingDecl << Init->getSourceRange() 6062 << IsSubobjectMember << IsInitializerList; 6063 if (IsSubobjectMember) 6064 S.Diag(ExtendingDecl->getLocation(), 6065 diag::note_ref_subobject_of_member_declared_here); 6066 else 6067 S.Diag(ExtendingDecl->getLocation(), 6068 diag::note_ref_or_ptr_member_declared_here) 6069 << /*is pointer*/false; 6070 } 6071 } 6072 6073 static void DiagnoseNarrowingInInitList(Sema &S, 6074 const ImplicitConversionSequence &ICS, 6075 QualType PreNarrowingType, 6076 QualType EntityType, 6077 const Expr *PostInit); 6078 6079 /// Provide warnings when std::move is used on construction. 6080 static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr, 6081 bool IsReturnStmt) { 6082 if (!InitExpr) 6083 return; 6084 6085 if (!S.ActiveTemplateInstantiations.empty()) 6086 return; 6087 6088 QualType DestType = InitExpr->getType(); 6089 if (!DestType->isRecordType()) 6090 return; 6091 6092 unsigned DiagID = 0; 6093 if (IsReturnStmt) { 6094 const CXXConstructExpr *CCE = 6095 dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens()); 6096 if (!CCE || CCE->getNumArgs() != 1) 6097 return; 6098 6099 if (!CCE->getConstructor()->isCopyOrMoveConstructor()) 6100 return; 6101 6102 InitExpr = CCE->getArg(0)->IgnoreImpCasts(); 6103 } 6104 6105 // Find the std::move call and get the argument. 6106 const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens()); 6107 if (!CE || CE->getNumArgs() != 1) 6108 return; 6109 6110 const FunctionDecl *MoveFunction = CE->getDirectCallee(); 6111 if (!MoveFunction || !MoveFunction->isInStdNamespace() || 6112 !MoveFunction->getIdentifier() || 6113 !MoveFunction->getIdentifier()->isStr("move")) 6114 return; 6115 6116 const Expr *Arg = CE->getArg(0)->IgnoreImplicit(); 6117 6118 if (IsReturnStmt) { 6119 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts()); 6120 if (!DRE || DRE->refersToEnclosingVariableOrCapture()) 6121 return; 6122 6123 const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()); 6124 if (!VD || !VD->hasLocalStorage()) 6125 return; 6126 6127 QualType SourceType = VD->getType(); 6128 if (!SourceType->isRecordType()) 6129 return; 6130 6131 if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) { 6132 return; 6133 } 6134 6135 // If we're returning a function parameter, copy elision 6136 // is not possible. 6137 if (isa<ParmVarDecl>(VD)) 6138 DiagID = diag::warn_redundant_move_on_return; 6139 else 6140 DiagID = diag::warn_pessimizing_move_on_return; 6141 } else { 6142 DiagID = diag::warn_pessimizing_move_on_initialization; 6143 const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens(); 6144 if (!ArgStripped->isRValue() || !ArgStripped->getType()->isRecordType()) 6145 return; 6146 } 6147 6148 S.Diag(CE->getLocStart(), DiagID); 6149 6150 // Get all the locations for a fix-it. Don't emit the fix-it if any location 6151 // is within a macro. 6152 SourceLocation CallBegin = CE->getCallee()->getLocStart(); 6153 if (CallBegin.isMacroID()) 6154 return; 6155 SourceLocation RParen = CE->getRParenLoc(); 6156 if (RParen.isMacroID()) 6157 return; 6158 SourceLocation LParen; 6159 SourceLocation ArgLoc = Arg->getLocStart(); 6160 6161 // Special testing for the argument location. Since the fix-it needs the 6162 // location right before the argument, the argument location can be in a 6163 // macro only if it is at the beginning of the macro. 6164 while (ArgLoc.isMacroID() && 6165 S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) { 6166 ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).first; 6167 } 6168 6169 if (LParen.isMacroID()) 6170 return; 6171 6172 LParen = ArgLoc.getLocWithOffset(-1); 6173 6174 S.Diag(CE->getLocStart(), diag::note_remove_move) 6175 << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen)) 6176 << FixItHint::CreateRemoval(SourceRange(RParen, RParen)); 6177 } 6178 6179 static void CheckForNullPointerDereference(Sema &S, const Expr *E) { 6180 // Check to see if we are dereferencing a null pointer. If so, this is 6181 // undefined behavior, so warn about it. This only handles the pattern 6182 // "*null", which is a very syntactic check. 6183 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts())) 6184 if (UO->getOpcode() == UO_Deref && 6185 UO->getSubExpr()->IgnoreParenCasts()-> 6186 isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) { 6187 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO, 6188 S.PDiag(diag::warn_binding_null_to_reference) 6189 << UO->getSubExpr()->getSourceRange()); 6190 } 6191 } 6192 6193 MaterializeTemporaryExpr * 6194 Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary, 6195 bool BoundToLvalueReference) { 6196 auto MTE = new (Context) 6197 MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference); 6198 6199 // Order an ExprWithCleanups for lifetime marks. 6200 // 6201 // TODO: It'll be good to have a single place to check the access of the 6202 // destructor and generate ExprWithCleanups for various uses. Currently these 6203 // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary, 6204 // but there may be a chance to merge them. 6205 Cleanup.setExprNeedsCleanups(false); 6206 return MTE; 6207 } 6208 6209 ExprResult 6210 InitializationSequence::Perform(Sema &S, 6211 const InitializedEntity &Entity, 6212 const InitializationKind &Kind, 6213 MultiExprArg Args, 6214 QualType *ResultType) { 6215 if (Failed()) { 6216 Diagnose(S, Entity, Kind, Args); 6217 return ExprError(); 6218 } 6219 if (!ZeroInitializationFixit.empty()) { 6220 unsigned DiagID = diag::err_default_init_const; 6221 if (Decl *D = Entity.getDecl()) 6222 if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>()) 6223 DiagID = diag::ext_default_init_const; 6224 6225 // The initialization would have succeeded with this fixit. Since the fixit 6226 // is on the error, we need to build a valid AST in this case, so this isn't 6227 // handled in the Failed() branch above. 6228 QualType DestType = Entity.getType(); 6229 S.Diag(Kind.getLocation(), DiagID) 6230 << DestType << (bool)DestType->getAs<RecordType>() 6231 << FixItHint::CreateInsertion(ZeroInitializationFixitLoc, 6232 ZeroInitializationFixit); 6233 } 6234 6235 if (getKind() == DependentSequence) { 6236 // If the declaration is a non-dependent, incomplete array type 6237 // that has an initializer, then its type will be completed once 6238 // the initializer is instantiated. 6239 if (ResultType && !Entity.getType()->isDependentType() && 6240 Args.size() == 1) { 6241 QualType DeclType = Entity.getType(); 6242 if (const IncompleteArrayType *ArrayT 6243 = S.Context.getAsIncompleteArrayType(DeclType)) { 6244 // FIXME: We don't currently have the ability to accurately 6245 // compute the length of an initializer list without 6246 // performing full type-checking of the initializer list 6247 // (since we have to determine where braces are implicitly 6248 // introduced and such). So, we fall back to making the array 6249 // type a dependently-sized array type with no specified 6250 // bound. 6251 if (isa<InitListExpr>((Expr *)Args[0])) { 6252 SourceRange Brackets; 6253 6254 // Scavange the location of the brackets from the entity, if we can. 6255 if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Entity.getDecl())) { 6256 if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) { 6257 TypeLoc TL = TInfo->getTypeLoc(); 6258 if (IncompleteArrayTypeLoc ArrayLoc = 6259 TL.getAs<IncompleteArrayTypeLoc>()) 6260 Brackets = ArrayLoc.getBracketsRange(); 6261 } 6262 } 6263 6264 *ResultType 6265 = S.Context.getDependentSizedArrayType(ArrayT->getElementType(), 6266 /*NumElts=*/nullptr, 6267 ArrayT->getSizeModifier(), 6268 ArrayT->getIndexTypeCVRQualifiers(), 6269 Brackets); 6270 } 6271 6272 } 6273 } 6274 if (Kind.getKind() == InitializationKind::IK_Direct && 6275 !Kind.isExplicitCast()) { 6276 // Rebuild the ParenListExpr. 6277 SourceRange ParenRange = Kind.getParenRange(); 6278 return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(), 6279 Args); 6280 } 6281 assert(Kind.getKind() == InitializationKind::IK_Copy || 6282 Kind.isExplicitCast() || 6283 Kind.getKind() == InitializationKind::IK_DirectList); 6284 return ExprResult(Args[0]); 6285 } 6286 6287 // No steps means no initialization. 6288 if (Steps.empty()) 6289 return ExprResult((Expr *)nullptr); 6290 6291 if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() && 6292 Args.size() == 1 && isa<InitListExpr>(Args[0]) && 6293 !Entity.isParameterKind()) { 6294 // Produce a C++98 compatibility warning if we are initializing a reference 6295 // from an initializer list. For parameters, we produce a better warning 6296 // elsewhere. 6297 Expr *Init = Args[0]; 6298 S.Diag(Init->getLocStart(), diag::warn_cxx98_compat_reference_list_init) 6299 << Init->getSourceRange(); 6300 } 6301 6302 // Diagnose cases where we initialize a pointer to an array temporary, and the 6303 // pointer obviously outlives the temporary. 6304 if (Args.size() == 1 && Args[0]->getType()->isArrayType() && 6305 Entity.getType()->isPointerType() && 6306 InitializedEntityOutlivesFullExpression(Entity)) { 6307 Expr *Init = Args[0]; 6308 Expr::LValueClassification Kind = Init->ClassifyLValue(S.Context); 6309 if (Kind == Expr::LV_ClassTemporary || Kind == Expr::LV_ArrayTemporary) 6310 S.Diag(Init->getLocStart(), diag::warn_temporary_array_to_pointer_decay) 6311 << Init->getSourceRange(); 6312 } 6313 6314 QualType DestType = Entity.getType().getNonReferenceType(); 6315 // FIXME: Ugly hack around the fact that Entity.getType() is not 6316 // the same as Entity.getDecl()->getType() in cases involving type merging, 6317 // and we want latter when it makes sense. 6318 if (ResultType) 6319 *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() : 6320 Entity.getType(); 6321 6322 ExprResult CurInit((Expr *)nullptr); 6323 6324 // For initialization steps that start with a single initializer, 6325 // grab the only argument out the Args and place it into the "current" 6326 // initializer. 6327 switch (Steps.front().Kind) { 6328 case SK_ResolveAddressOfOverloadedFunction: 6329 case SK_CastDerivedToBaseRValue: 6330 case SK_CastDerivedToBaseXValue: 6331 case SK_CastDerivedToBaseLValue: 6332 case SK_BindReference: 6333 case SK_BindReferenceToTemporary: 6334 case SK_ExtraneousCopyToTemporary: 6335 case SK_UserConversion: 6336 case SK_QualificationConversionLValue: 6337 case SK_QualificationConversionXValue: 6338 case SK_QualificationConversionRValue: 6339 case SK_AtomicConversion: 6340 case SK_LValueToRValue: 6341 case SK_ConversionSequence: 6342 case SK_ConversionSequenceNoNarrowing: 6343 case SK_ListInitialization: 6344 case SK_UnwrapInitList: 6345 case SK_RewrapInitList: 6346 case SK_CAssignment: 6347 case SK_StringInit: 6348 case SK_ObjCObjectConversion: 6349 case SK_ArrayInit: 6350 case SK_ParenthesizedArrayInit: 6351 case SK_PassByIndirectCopyRestore: 6352 case SK_PassByIndirectRestore: 6353 case SK_ProduceObjCObject: 6354 case SK_StdInitializerList: 6355 case SK_OCLSamplerInit: 6356 case SK_OCLZeroEvent: { 6357 assert(Args.size() == 1); 6358 CurInit = Args[0]; 6359 if (!CurInit.get()) return ExprError(); 6360 break; 6361 } 6362 6363 case SK_ConstructorInitialization: 6364 case SK_ConstructorInitializationFromList: 6365 case SK_StdInitializerListConstructorCall: 6366 case SK_ZeroInitialization: 6367 break; 6368 } 6369 6370 // Walk through the computed steps for the initialization sequence, 6371 // performing the specified conversions along the way. 6372 bool ConstructorInitRequiresZeroInit = false; 6373 for (step_iterator Step = step_begin(), StepEnd = step_end(); 6374 Step != StepEnd; ++Step) { 6375 if (CurInit.isInvalid()) 6376 return ExprError(); 6377 6378 QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType(); 6379 6380 switch (Step->Kind) { 6381 case SK_ResolveAddressOfOverloadedFunction: 6382 // Overload resolution determined which function invoke; update the 6383 // initializer to reflect that choice. 6384 S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl); 6385 if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation())) 6386 return ExprError(); 6387 CurInit = S.FixOverloadedFunctionReference(CurInit, 6388 Step->Function.FoundDecl, 6389 Step->Function.Function); 6390 break; 6391 6392 case SK_CastDerivedToBaseRValue: 6393 case SK_CastDerivedToBaseXValue: 6394 case SK_CastDerivedToBaseLValue: { 6395 // We have a derived-to-base cast that produces either an rvalue or an 6396 // lvalue. Perform that cast. 6397 6398 CXXCastPath BasePath; 6399 6400 // Casts to inaccessible base classes are allowed with C-style casts. 6401 bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast(); 6402 if (S.CheckDerivedToBaseConversion(SourceType, Step->Type, 6403 CurInit.get()->getLocStart(), 6404 CurInit.get()->getSourceRange(), 6405 &BasePath, IgnoreBaseAccess)) 6406 return ExprError(); 6407 6408 ExprValueKind VK = 6409 Step->Kind == SK_CastDerivedToBaseLValue ? 6410 VK_LValue : 6411 (Step->Kind == SK_CastDerivedToBaseXValue ? 6412 VK_XValue : 6413 VK_RValue); 6414 CurInit = 6415 ImplicitCastExpr::Create(S.Context, Step->Type, CK_DerivedToBase, 6416 CurInit.get(), &BasePath, VK); 6417 break; 6418 } 6419 6420 case SK_BindReference: 6421 // References cannot bind to bit-fields (C++ [dcl.init.ref]p5). 6422 if (CurInit.get()->refersToBitField()) { 6423 // We don't necessarily have an unambiguous source bit-field. 6424 FieldDecl *BitField = CurInit.get()->getSourceBitField(); 6425 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield) 6426 << Entity.getType().isVolatileQualified() 6427 << (BitField ? BitField->getDeclName() : DeclarationName()) 6428 << (BitField != nullptr) 6429 << CurInit.get()->getSourceRange(); 6430 if (BitField) 6431 S.Diag(BitField->getLocation(), diag::note_bitfield_decl); 6432 6433 return ExprError(); 6434 } 6435 6436 if (CurInit.get()->refersToVectorElement()) { 6437 // References cannot bind to vector elements. 6438 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element) 6439 << Entity.getType().isVolatileQualified() 6440 << CurInit.get()->getSourceRange(); 6441 PrintInitLocationNote(S, Entity); 6442 return ExprError(); 6443 } 6444 6445 // Reference binding does not have any corresponding ASTs. 6446 6447 // Check exception specifications 6448 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType)) 6449 return ExprError(); 6450 6451 // Even though we didn't materialize a temporary, the binding may still 6452 // extend the lifetime of a temporary. This happens if we bind a reference 6453 // to the result of a cast to reference type. 6454 if (const InitializedEntity *ExtendingEntity = 6455 getEntityForTemporaryLifetimeExtension(&Entity)) 6456 if (performReferenceExtension(CurInit.get(), ExtendingEntity)) 6457 warnOnLifetimeExtension(S, Entity, CurInit.get(), 6458 /*IsInitializerList=*/false, 6459 ExtendingEntity->getDecl()); 6460 6461 CheckForNullPointerDereference(S, CurInit.get()); 6462 break; 6463 6464 case SK_BindReferenceToTemporary: { 6465 // Make sure the "temporary" is actually an rvalue. 6466 assert(CurInit.get()->isRValue() && "not a temporary"); 6467 6468 // Check exception specifications 6469 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType)) 6470 return ExprError(); 6471 6472 // Materialize the temporary into memory. 6473 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr( 6474 Entity.getType().getNonReferenceType(), CurInit.get(), 6475 Entity.getType()->isLValueReferenceType()); 6476 6477 // Maybe lifetime-extend the temporary's subobjects to match the 6478 // entity's lifetime. 6479 if (const InitializedEntity *ExtendingEntity = 6480 getEntityForTemporaryLifetimeExtension(&Entity)) 6481 if (performReferenceExtension(MTE, ExtendingEntity)) 6482 warnOnLifetimeExtension(S, Entity, CurInit.get(), /*IsInitializerList=*/false, 6483 ExtendingEntity->getDecl()); 6484 6485 // If we're binding to an Objective-C object that has lifetime, we 6486 // need cleanups. Likewise if we're extending this temporary to automatic 6487 // storage duration -- we need to register its cleanup during the 6488 // full-expression's cleanups. 6489 if ((S.getLangOpts().ObjCAutoRefCount && 6490 MTE->getType()->isObjCLifetimeType()) || 6491 (MTE->getStorageDuration() == SD_Automatic && 6492 MTE->getType().isDestructedType())) 6493 S.Cleanup.setExprNeedsCleanups(true); 6494 6495 CurInit = MTE; 6496 break; 6497 } 6498 6499 case SK_ExtraneousCopyToTemporary: 6500 CurInit = CopyObject(S, Step->Type, Entity, CurInit, 6501 /*IsExtraneousCopy=*/true); 6502 break; 6503 6504 case SK_UserConversion: { 6505 // We have a user-defined conversion that invokes either a constructor 6506 // or a conversion function. 6507 CastKind CastKind; 6508 bool IsCopy = false; 6509 FunctionDecl *Fn = Step->Function.Function; 6510 DeclAccessPair FoundFn = Step->Function.FoundDecl; 6511 bool HadMultipleCandidates = Step->Function.HadMultipleCandidates; 6512 bool CreatedObject = false; 6513 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) { 6514 // Build a call to the selected constructor. 6515 SmallVector<Expr*, 8> ConstructorArgs; 6516 SourceLocation Loc = CurInit.get()->getLocStart(); 6517 CurInit.get(); // Ownership transferred into MultiExprArg, below. 6518 6519 // Determine the arguments required to actually perform the constructor 6520 // call. 6521 Expr *Arg = CurInit.get(); 6522 if (S.CompleteConstructorCall(Constructor, 6523 MultiExprArg(&Arg, 1), 6524 Loc, ConstructorArgs)) 6525 return ExprError(); 6526 6527 // Build an expression that constructs a temporary. 6528 CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, 6529 FoundFn, Constructor, 6530 ConstructorArgs, 6531 HadMultipleCandidates, 6532 /*ListInit*/ false, 6533 /*StdInitListInit*/ false, 6534 /*ZeroInit*/ false, 6535 CXXConstructExpr::CK_Complete, 6536 SourceRange()); 6537 if (CurInit.isInvalid()) 6538 return ExprError(); 6539 6540 S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn, 6541 Entity); 6542 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation())) 6543 return ExprError(); 6544 6545 CastKind = CK_ConstructorConversion; 6546 QualType Class = S.Context.getTypeDeclType(Constructor->getParent()); 6547 if (S.Context.hasSameUnqualifiedType(SourceType, Class) || 6548 S.IsDerivedFrom(Loc, SourceType, Class)) 6549 IsCopy = true; 6550 6551 CreatedObject = true; 6552 } else { 6553 // Build a call to the conversion function. 6554 CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn); 6555 S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr, 6556 FoundFn); 6557 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation())) 6558 return ExprError(); 6559 6560 // FIXME: Should we move this initialization into a separate 6561 // derived-to-base conversion? I believe the answer is "no", because 6562 // we don't want to turn off access control here for c-style casts. 6563 ExprResult CurInitExprRes = 6564 S.PerformObjectArgumentInitialization(CurInit.get(), 6565 /*Qualifier=*/nullptr, 6566 FoundFn, Conversion); 6567 if(CurInitExprRes.isInvalid()) 6568 return ExprError(); 6569 CurInit = CurInitExprRes; 6570 6571 // Build the actual call to the conversion function. 6572 CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion, 6573 HadMultipleCandidates); 6574 if (CurInit.isInvalid() || !CurInit.get()) 6575 return ExprError(); 6576 6577 CastKind = CK_UserDefinedConversion; 6578 6579 CreatedObject = Conversion->getReturnType()->isRecordType(); 6580 } 6581 6582 bool RequiresCopy = !IsCopy && !isReferenceBinding(Steps.back()); 6583 bool MaybeBindToTemp = RequiresCopy || shouldBindAsTemporary(Entity); 6584 6585 if (!MaybeBindToTemp && CreatedObject && shouldDestroyTemporary(Entity)) { 6586 QualType T = CurInit.get()->getType(); 6587 if (const RecordType *Record = T->getAs<RecordType>()) { 6588 CXXDestructorDecl *Destructor 6589 = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl())); 6590 S.CheckDestructorAccess(CurInit.get()->getLocStart(), Destructor, 6591 S.PDiag(diag::err_access_dtor_temp) << T); 6592 S.MarkFunctionReferenced(CurInit.get()->getLocStart(), Destructor); 6593 if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getLocStart())) 6594 return ExprError(); 6595 } 6596 } 6597 6598 CurInit = ImplicitCastExpr::Create(S.Context, CurInit.get()->getType(), 6599 CastKind, CurInit.get(), nullptr, 6600 CurInit.get()->getValueKind()); 6601 if (MaybeBindToTemp) 6602 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>()); 6603 if (RequiresCopy) 6604 CurInit = CopyObject(S, Entity.getType().getNonReferenceType(), Entity, 6605 CurInit, /*IsExtraneousCopy=*/false); 6606 break; 6607 } 6608 6609 case SK_QualificationConversionLValue: 6610 case SK_QualificationConversionXValue: 6611 case SK_QualificationConversionRValue: { 6612 // Perform a qualification conversion; these can never go wrong. 6613 ExprValueKind VK = 6614 Step->Kind == SK_QualificationConversionLValue ? 6615 VK_LValue : 6616 (Step->Kind == SK_QualificationConversionXValue ? 6617 VK_XValue : 6618 VK_RValue); 6619 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, CK_NoOp, VK); 6620 break; 6621 } 6622 6623 case SK_AtomicConversion: { 6624 assert(CurInit.get()->isRValue() && "cannot convert glvalue to atomic"); 6625 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 6626 CK_NonAtomicToAtomic, VK_RValue); 6627 break; 6628 } 6629 6630 case SK_LValueToRValue: { 6631 assert(CurInit.get()->isGLValue() && "cannot load from a prvalue"); 6632 CurInit = ImplicitCastExpr::Create(S.Context, Step->Type, 6633 CK_LValueToRValue, CurInit.get(), 6634 /*BasePath=*/nullptr, VK_RValue); 6635 break; 6636 } 6637 6638 case SK_ConversionSequence: 6639 case SK_ConversionSequenceNoNarrowing: { 6640 Sema::CheckedConversionKind CCK 6641 = Kind.isCStyleCast()? Sema::CCK_CStyleCast 6642 : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast 6643 : Kind.isExplicitCast()? Sema::CCK_OtherCast 6644 : Sema::CCK_ImplicitConversion; 6645 ExprResult CurInitExprRes = 6646 S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS, 6647 getAssignmentAction(Entity), CCK); 6648 if (CurInitExprRes.isInvalid()) 6649 return ExprError(); 6650 6651 S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), CurInit.get()); 6652 6653 CurInit = CurInitExprRes; 6654 6655 if (Step->Kind == SK_ConversionSequenceNoNarrowing && 6656 S.getLangOpts().CPlusPlus && !CurInit.get()->isValueDependent()) 6657 DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(), 6658 CurInit.get()); 6659 6660 break; 6661 } 6662 6663 case SK_ListInitialization: { 6664 InitListExpr *InitList = cast<InitListExpr>(CurInit.get()); 6665 // If we're not initializing the top-level entity, we need to create an 6666 // InitializeTemporary entity for our target type. 6667 QualType Ty = Step->Type; 6668 bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty); 6669 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty); 6670 InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity; 6671 InitListChecker PerformInitList(S, InitEntity, 6672 InitList, Ty, /*VerifyOnly=*/false, 6673 /*TreatUnavailableAsInvalid=*/false); 6674 if (PerformInitList.HadError()) 6675 return ExprError(); 6676 6677 // Hack: We must update *ResultType if available in order to set the 6678 // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'. 6679 // Worst case: 'const int (&arref)[] = {1, 2, 3};'. 6680 if (ResultType && 6681 ResultType->getNonReferenceType()->isIncompleteArrayType()) { 6682 if ((*ResultType)->isRValueReferenceType()) 6683 Ty = S.Context.getRValueReferenceType(Ty); 6684 else if ((*ResultType)->isLValueReferenceType()) 6685 Ty = S.Context.getLValueReferenceType(Ty, 6686 (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue()); 6687 *ResultType = Ty; 6688 } 6689 6690 InitListExpr *StructuredInitList = 6691 PerformInitList.getFullyStructuredList(); 6692 CurInit.get(); 6693 CurInit = shouldBindAsTemporary(InitEntity) 6694 ? S.MaybeBindToTemporary(StructuredInitList) 6695 : StructuredInitList; 6696 break; 6697 } 6698 6699 case SK_ConstructorInitializationFromList: { 6700 // When an initializer list is passed for a parameter of type "reference 6701 // to object", we don't get an EK_Temporary entity, but instead an 6702 // EK_Parameter entity with reference type. 6703 // FIXME: This is a hack. What we really should do is create a user 6704 // conversion step for this case, but this makes it considerably more 6705 // complicated. For now, this will do. 6706 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( 6707 Entity.getType().getNonReferenceType()); 6708 bool UseTemporary = Entity.getType()->isReferenceType(); 6709 assert(Args.size() == 1 && "expected a single argument for list init"); 6710 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 6711 S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init) 6712 << InitList->getSourceRange(); 6713 MultiExprArg Arg(InitList->getInits(), InitList->getNumInits()); 6714 CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity : 6715 Entity, 6716 Kind, Arg, *Step, 6717 ConstructorInitRequiresZeroInit, 6718 /*IsListInitialization*/true, 6719 /*IsStdInitListInit*/false, 6720 InitList->getLBraceLoc(), 6721 InitList->getRBraceLoc()); 6722 break; 6723 } 6724 6725 case SK_UnwrapInitList: 6726 CurInit = cast<InitListExpr>(CurInit.get())->getInit(0); 6727 break; 6728 6729 case SK_RewrapInitList: { 6730 Expr *E = CurInit.get(); 6731 InitListExpr *Syntactic = Step->WrappingSyntacticList; 6732 InitListExpr *ILE = new (S.Context) InitListExpr(S.Context, 6733 Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc()); 6734 ILE->setSyntacticForm(Syntactic); 6735 ILE->setType(E->getType()); 6736 ILE->setValueKind(E->getValueKind()); 6737 CurInit = ILE; 6738 break; 6739 } 6740 6741 case SK_ConstructorInitialization: 6742 case SK_StdInitializerListConstructorCall: { 6743 // When an initializer list is passed for a parameter of type "reference 6744 // to object", we don't get an EK_Temporary entity, but instead an 6745 // EK_Parameter entity with reference type. 6746 // FIXME: This is a hack. What we really should do is create a user 6747 // conversion step for this case, but this makes it considerably more 6748 // complicated. For now, this will do. 6749 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( 6750 Entity.getType().getNonReferenceType()); 6751 bool UseTemporary = Entity.getType()->isReferenceType(); 6752 bool IsStdInitListInit = 6753 Step->Kind == SK_StdInitializerListConstructorCall; 6754 CurInit = PerformConstructorInitialization( 6755 S, UseTemporary ? TempEntity : Entity, Kind, Args, *Step, 6756 ConstructorInitRequiresZeroInit, 6757 /*IsListInitialization*/IsStdInitListInit, 6758 /*IsStdInitListInitialization*/IsStdInitListInit, 6759 /*LBraceLoc*/SourceLocation(), 6760 /*RBraceLoc*/SourceLocation()); 6761 break; 6762 } 6763 6764 case SK_ZeroInitialization: { 6765 step_iterator NextStep = Step; 6766 ++NextStep; 6767 if (NextStep != StepEnd && 6768 (NextStep->Kind == SK_ConstructorInitialization || 6769 NextStep->Kind == SK_ConstructorInitializationFromList)) { 6770 // The need for zero-initialization is recorded directly into 6771 // the call to the object's constructor within the next step. 6772 ConstructorInitRequiresZeroInit = true; 6773 } else if (Kind.getKind() == InitializationKind::IK_Value && 6774 S.getLangOpts().CPlusPlus && 6775 !Kind.isImplicitValueInit()) { 6776 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); 6777 if (!TSInfo) 6778 TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type, 6779 Kind.getRange().getBegin()); 6780 6781 CurInit = new (S.Context) CXXScalarValueInitExpr( 6782 TSInfo->getType().getNonLValueExprType(S.Context), TSInfo, 6783 Kind.getRange().getEnd()); 6784 } else { 6785 CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type); 6786 } 6787 break; 6788 } 6789 6790 case SK_CAssignment: { 6791 QualType SourceType = CurInit.get()->getType(); 6792 // Save off the initial CurInit in case we need to emit a diagnostic 6793 ExprResult InitialCurInit = CurInit; 6794 ExprResult Result = CurInit; 6795 Sema::AssignConvertType ConvTy = 6796 S.CheckSingleAssignmentConstraints(Step->Type, Result, true, 6797 Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited); 6798 if (Result.isInvalid()) 6799 return ExprError(); 6800 CurInit = Result; 6801 6802 // If this is a call, allow conversion to a transparent union. 6803 ExprResult CurInitExprRes = CurInit; 6804 if (ConvTy != Sema::Compatible && 6805 Entity.isParameterKind() && 6806 S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes) 6807 == Sema::Compatible) 6808 ConvTy = Sema::Compatible; 6809 if (CurInitExprRes.isInvalid()) 6810 return ExprError(); 6811 CurInit = CurInitExprRes; 6812 6813 bool Complained; 6814 if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(), 6815 Step->Type, SourceType, 6816 InitialCurInit.get(), 6817 getAssignmentAction(Entity, true), 6818 &Complained)) { 6819 PrintInitLocationNote(S, Entity); 6820 return ExprError(); 6821 } else if (Complained) 6822 PrintInitLocationNote(S, Entity); 6823 break; 6824 } 6825 6826 case SK_StringInit: { 6827 QualType Ty = Step->Type; 6828 CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty, 6829 S.Context.getAsArrayType(Ty), S); 6830 break; 6831 } 6832 6833 case SK_ObjCObjectConversion: 6834 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 6835 CK_ObjCObjectLValueCast, 6836 CurInit.get()->getValueKind()); 6837 break; 6838 6839 case SK_ArrayInit: 6840 // Okay: we checked everything before creating this step. Note that 6841 // this is a GNU extension. 6842 S.Diag(Kind.getLocation(), diag::ext_array_init_copy) 6843 << Step->Type << CurInit.get()->getType() 6844 << CurInit.get()->getSourceRange(); 6845 6846 // If the destination type is an incomplete array type, update the 6847 // type accordingly. 6848 if (ResultType) { 6849 if (const IncompleteArrayType *IncompleteDest 6850 = S.Context.getAsIncompleteArrayType(Step->Type)) { 6851 if (const ConstantArrayType *ConstantSource 6852 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) { 6853 *ResultType = S.Context.getConstantArrayType( 6854 IncompleteDest->getElementType(), 6855 ConstantSource->getSize(), 6856 ArrayType::Normal, 0); 6857 } 6858 } 6859 } 6860 break; 6861 6862 case SK_ParenthesizedArrayInit: 6863 // Okay: we checked everything before creating this step. Note that 6864 // this is a GNU extension. 6865 S.Diag(Kind.getLocation(), diag::ext_array_init_parens) 6866 << CurInit.get()->getSourceRange(); 6867 break; 6868 6869 case SK_PassByIndirectCopyRestore: 6870 case SK_PassByIndirectRestore: 6871 checkIndirectCopyRestoreSource(S, CurInit.get()); 6872 CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr( 6873 CurInit.get(), Step->Type, 6874 Step->Kind == SK_PassByIndirectCopyRestore); 6875 break; 6876 6877 case SK_ProduceObjCObject: 6878 CurInit = 6879 ImplicitCastExpr::Create(S.Context, Step->Type, CK_ARCProduceObject, 6880 CurInit.get(), nullptr, VK_RValue); 6881 break; 6882 6883 case SK_StdInitializerList: { 6884 S.Diag(CurInit.get()->getExprLoc(), 6885 diag::warn_cxx98_compat_initializer_list_init) 6886 << CurInit.get()->getSourceRange(); 6887 6888 // Materialize the temporary into memory. 6889 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr( 6890 CurInit.get()->getType(), CurInit.get(), 6891 /*BoundToLvalueReference=*/false); 6892 6893 // Maybe lifetime-extend the array temporary's subobjects to match the 6894 // entity's lifetime. 6895 if (const InitializedEntity *ExtendingEntity = 6896 getEntityForTemporaryLifetimeExtension(&Entity)) 6897 if (performReferenceExtension(MTE, ExtendingEntity)) 6898 warnOnLifetimeExtension(S, Entity, CurInit.get(), 6899 /*IsInitializerList=*/true, 6900 ExtendingEntity->getDecl()); 6901 6902 // Wrap it in a construction of a std::initializer_list<T>. 6903 CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE); 6904 6905 // Bind the result, in case the library has given initializer_list a 6906 // non-trivial destructor. 6907 if (shouldBindAsTemporary(Entity)) 6908 CurInit = S.MaybeBindToTemporary(CurInit.get()); 6909 break; 6910 } 6911 6912 case SK_OCLSamplerInit: { 6913 // Sampler initialzation have 5 cases: 6914 // 1. function argument passing 6915 // 1a. argument is a file-scope variable 6916 // 1b. argument is a function-scope variable 6917 // 1c. argument is one of caller function's parameters 6918 // 2. variable initialization 6919 // 2a. initializing a file-scope variable 6920 // 2b. initializing a function-scope variable 6921 // 6922 // For file-scope variables, since they cannot be initialized by function 6923 // call of __translate_sampler_initializer in LLVM IR, their references 6924 // need to be replaced by a cast from their literal initializers to 6925 // sampler type. Since sampler variables can only be used in function 6926 // calls as arguments, we only need to replace them when handling the 6927 // argument passing. 6928 assert(Step->Type->isSamplerT() && 6929 "Sampler initialization on non-sampler type."); 6930 Expr *Init = CurInit.get(); 6931 QualType SourceType = Init->getType(); 6932 // Case 1 6933 if (Entity.isParameterKind()) { 6934 if (!SourceType->isSamplerT()) { 6935 S.Diag(Kind.getLocation(), diag::err_sampler_argument_required) 6936 << SourceType; 6937 break; 6938 } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init)) { 6939 auto Var = cast<VarDecl>(DRE->getDecl()); 6940 // Case 1b and 1c 6941 // No cast from integer to sampler is needed. 6942 if (!Var->hasGlobalStorage()) { 6943 CurInit = ImplicitCastExpr::Create(S.Context, Step->Type, 6944 CK_LValueToRValue, Init, 6945 /*BasePath=*/nullptr, VK_RValue); 6946 break; 6947 } 6948 // Case 1a 6949 // For function call with a file-scope sampler variable as argument, 6950 // get the integer literal. 6951 // Do not diagnose if the file-scope variable does not have initializer 6952 // since this has already been diagnosed when parsing the variable 6953 // declaration. 6954 if (!Var->getInit() || !isa<ImplicitCastExpr>(Var->getInit())) 6955 break; 6956 Init = cast<ImplicitCastExpr>(const_cast<Expr*>( 6957 Var->getInit()))->getSubExpr(); 6958 SourceType = Init->getType(); 6959 } 6960 } else { 6961 // Case 2 6962 // Check initializer is 32 bit integer constant. 6963 // If the initializer is taken from global variable, do not diagnose since 6964 // this has already been done when parsing the variable declaration. 6965 if (!Init->isConstantInitializer(S.Context, false)) 6966 break; 6967 6968 if (!SourceType->isIntegerType() || 6969 32 != S.Context.getIntWidth(SourceType)) { 6970 S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer) 6971 << SourceType; 6972 break; 6973 } 6974 6975 llvm::APSInt Result; 6976 Init->EvaluateAsInt(Result, S.Context); 6977 const uint64_t SamplerValue = Result.getLimitedValue(); 6978 // 32-bit value of sampler's initializer is interpreted as 6979 // bit-field with the following structure: 6980 // |unspecified|Filter|Addressing Mode| Normalized Coords| 6981 // |31 6|5 4|3 1| 0| 6982 // This structure corresponds to enum values of sampler properties 6983 // defined in SPIR spec v1.2 and also opencl-c.h 6984 unsigned AddressingMode = (0x0E & SamplerValue) >> 1; 6985 unsigned FilterMode = (0x30 & SamplerValue) >> 4; 6986 if (FilterMode != 1 && FilterMode != 2) 6987 S.Diag(Kind.getLocation(), 6988 diag::warn_sampler_initializer_invalid_bits) 6989 << "Filter Mode"; 6990 if (AddressingMode > 4) 6991 S.Diag(Kind.getLocation(), 6992 diag::warn_sampler_initializer_invalid_bits) 6993 << "Addressing Mode"; 6994 } 6995 6996 // Cases 1a, 2a and 2b 6997 // Insert cast from integer to sampler. 6998 CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy, 6999 CK_IntToOCLSampler); 7000 break; 7001 } 7002 case SK_OCLZeroEvent: { 7003 assert(Step->Type->isEventT() && 7004 "Event initialization on non-event type."); 7005 7006 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 7007 CK_ZeroToOCLEvent, 7008 CurInit.get()->getValueKind()); 7009 break; 7010 } 7011 } 7012 } 7013 7014 // Diagnose non-fatal problems with the completed initialization. 7015 if (Entity.getKind() == InitializedEntity::EK_Member && 7016 cast<FieldDecl>(Entity.getDecl())->isBitField()) 7017 S.CheckBitFieldInitialization(Kind.getLocation(), 7018 cast<FieldDecl>(Entity.getDecl()), 7019 CurInit.get()); 7020 7021 // Check for std::move on construction. 7022 if (const Expr *E = CurInit.get()) { 7023 CheckMoveOnConstruction(S, E, 7024 Entity.getKind() == InitializedEntity::EK_Result); 7025 } 7026 7027 return CurInit; 7028 } 7029 7030 /// Somewhere within T there is an uninitialized reference subobject. 7031 /// Dig it out and diagnose it. 7032 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc, 7033 QualType T) { 7034 if (T->isReferenceType()) { 7035 S.Diag(Loc, diag::err_reference_without_init) 7036 << T.getNonReferenceType(); 7037 return true; 7038 } 7039 7040 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 7041 if (!RD || !RD->hasUninitializedReferenceMember()) 7042 return false; 7043 7044 for (const auto *FI : RD->fields()) { 7045 if (FI->isUnnamedBitfield()) 7046 continue; 7047 7048 if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) { 7049 S.Diag(Loc, diag::note_value_initialization_here) << RD; 7050 return true; 7051 } 7052 } 7053 7054 for (const auto &BI : RD->bases()) { 7055 if (DiagnoseUninitializedReference(S, BI.getLocStart(), BI.getType())) { 7056 S.Diag(Loc, diag::note_value_initialization_here) << RD; 7057 return true; 7058 } 7059 } 7060 7061 return false; 7062 } 7063 7064 7065 //===----------------------------------------------------------------------===// 7066 // Diagnose initialization failures 7067 //===----------------------------------------------------------------------===// 7068 7069 /// Emit notes associated with an initialization that failed due to a 7070 /// "simple" conversion failure. 7071 static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity, 7072 Expr *op) { 7073 QualType destType = entity.getType(); 7074 if (destType.getNonReferenceType()->isObjCObjectPointerType() && 7075 op->getType()->isObjCObjectPointerType()) { 7076 7077 // Emit a possible note about the conversion failing because the 7078 // operand is a message send with a related result type. 7079 S.EmitRelatedResultTypeNote(op); 7080 7081 // Emit a possible note about a return failing because we're 7082 // expecting a related result type. 7083 if (entity.getKind() == InitializedEntity::EK_Result) 7084 S.EmitRelatedResultTypeNoteForReturn(destType); 7085 } 7086 } 7087 7088 static void diagnoseListInit(Sema &S, const InitializedEntity &Entity, 7089 InitListExpr *InitList) { 7090 QualType DestType = Entity.getType(); 7091 7092 QualType E; 7093 if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) { 7094 QualType ArrayType = S.Context.getConstantArrayType( 7095 E.withConst(), 7096 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()), 7097 InitList->getNumInits()), 7098 clang::ArrayType::Normal, 0); 7099 InitializedEntity HiddenArray = 7100 InitializedEntity::InitializeTemporary(ArrayType); 7101 return diagnoseListInit(S, HiddenArray, InitList); 7102 } 7103 7104 if (DestType->isReferenceType()) { 7105 // A list-initialization failure for a reference means that we tried to 7106 // create a temporary of the inner type (per [dcl.init.list]p3.6) and the 7107 // inner initialization failed. 7108 QualType T = DestType->getAs<ReferenceType>()->getPointeeType(); 7109 diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList); 7110 SourceLocation Loc = InitList->getLocStart(); 7111 if (auto *D = Entity.getDecl()) 7112 Loc = D->getLocation(); 7113 S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T; 7114 return; 7115 } 7116 7117 InitListChecker DiagnoseInitList(S, Entity, InitList, DestType, 7118 /*VerifyOnly=*/false, 7119 /*TreatUnavailableAsInvalid=*/false); 7120 assert(DiagnoseInitList.HadError() && 7121 "Inconsistent init list check result."); 7122 } 7123 7124 bool InitializationSequence::Diagnose(Sema &S, 7125 const InitializedEntity &Entity, 7126 const InitializationKind &Kind, 7127 ArrayRef<Expr *> Args) { 7128 if (!Failed()) 7129 return false; 7130 7131 QualType DestType = Entity.getType(); 7132 switch (Failure) { 7133 case FK_TooManyInitsForReference: 7134 // FIXME: Customize for the initialized entity? 7135 if (Args.empty()) { 7136 // Dig out the reference subobject which is uninitialized and diagnose it. 7137 // If this is value-initialization, this could be nested some way within 7138 // the target type. 7139 assert(Kind.getKind() == InitializationKind::IK_Value || 7140 DestType->isReferenceType()); 7141 bool Diagnosed = 7142 DiagnoseUninitializedReference(S, Kind.getLocation(), DestType); 7143 assert(Diagnosed && "couldn't find uninitialized reference to diagnose"); 7144 (void)Diagnosed; 7145 } else // FIXME: diagnostic below could be better! 7146 S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits) 7147 << SourceRange(Args.front()->getLocStart(), Args.back()->getLocEnd()); 7148 break; 7149 7150 case FK_ArrayNeedsInitList: 7151 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0; 7152 break; 7153 case FK_ArrayNeedsInitListOrStringLiteral: 7154 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1; 7155 break; 7156 case FK_ArrayNeedsInitListOrWideStringLiteral: 7157 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2; 7158 break; 7159 case FK_NarrowStringIntoWideCharArray: 7160 S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar); 7161 break; 7162 case FK_WideStringIntoCharArray: 7163 S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char); 7164 break; 7165 case FK_IncompatWideStringIntoWideChar: 7166 S.Diag(Kind.getLocation(), 7167 diag::err_array_init_incompat_wide_string_into_wchar); 7168 break; 7169 case FK_ArrayTypeMismatch: 7170 case FK_NonConstantArrayInit: 7171 S.Diag(Kind.getLocation(), 7172 (Failure == FK_ArrayTypeMismatch 7173 ? diag::err_array_init_different_type 7174 : diag::err_array_init_non_constant_array)) 7175 << DestType.getNonReferenceType() 7176 << Args[0]->getType() 7177 << Args[0]->getSourceRange(); 7178 break; 7179 7180 case FK_VariableLengthArrayHasInitializer: 7181 S.Diag(Kind.getLocation(), diag::err_variable_object_no_init) 7182 << Args[0]->getSourceRange(); 7183 break; 7184 7185 case FK_AddressOfOverloadFailed: { 7186 DeclAccessPair Found; 7187 S.ResolveAddressOfOverloadedFunction(Args[0], 7188 DestType.getNonReferenceType(), 7189 true, 7190 Found); 7191 break; 7192 } 7193 7194 case FK_AddressOfUnaddressableFunction: { 7195 auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(Args[0])->getDecl()); 7196 S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, 7197 Args[0]->getLocStart()); 7198 break; 7199 } 7200 7201 case FK_ReferenceInitOverloadFailed: 7202 case FK_UserConversionOverloadFailed: 7203 switch (FailedOverloadResult) { 7204 case OR_Ambiguous: 7205 if (Failure == FK_UserConversionOverloadFailed) 7206 S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition) 7207 << Args[0]->getType() << DestType 7208 << Args[0]->getSourceRange(); 7209 else 7210 S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous) 7211 << DestType << Args[0]->getType() 7212 << Args[0]->getSourceRange(); 7213 7214 FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args); 7215 break; 7216 7217 case OR_No_Viable_Function: 7218 if (!S.RequireCompleteType(Kind.getLocation(), 7219 DestType.getNonReferenceType(), 7220 diag::err_typecheck_nonviable_condition_incomplete, 7221 Args[0]->getType(), Args[0]->getSourceRange())) 7222 S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition) 7223 << (Entity.getKind() == InitializedEntity::EK_Result) 7224 << Args[0]->getType() << Args[0]->getSourceRange() 7225 << DestType.getNonReferenceType(); 7226 7227 FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args); 7228 break; 7229 7230 case OR_Deleted: { 7231 S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function) 7232 << Args[0]->getType() << DestType.getNonReferenceType() 7233 << Args[0]->getSourceRange(); 7234 OverloadCandidateSet::iterator Best; 7235 OverloadingResult Ovl 7236 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best, 7237 true); 7238 if (Ovl == OR_Deleted) { 7239 S.NoteDeletedFunction(Best->Function); 7240 } else { 7241 llvm_unreachable("Inconsistent overload resolution?"); 7242 } 7243 break; 7244 } 7245 7246 case OR_Success: 7247 llvm_unreachable("Conversion did not fail!"); 7248 } 7249 break; 7250 7251 case FK_NonConstLValueReferenceBindingToTemporary: 7252 if (isa<InitListExpr>(Args[0])) { 7253 S.Diag(Kind.getLocation(), 7254 diag::err_lvalue_reference_bind_to_initlist) 7255 << DestType.getNonReferenceType().isVolatileQualified() 7256 << DestType.getNonReferenceType() 7257 << Args[0]->getSourceRange(); 7258 break; 7259 } 7260 // Intentional fallthrough 7261 7262 case FK_NonConstLValueReferenceBindingToUnrelated: 7263 S.Diag(Kind.getLocation(), 7264 Failure == FK_NonConstLValueReferenceBindingToTemporary 7265 ? diag::err_lvalue_reference_bind_to_temporary 7266 : diag::err_lvalue_reference_bind_to_unrelated) 7267 << DestType.getNonReferenceType().isVolatileQualified() 7268 << DestType.getNonReferenceType() 7269 << Args[0]->getType() 7270 << Args[0]->getSourceRange(); 7271 break; 7272 7273 case FK_RValueReferenceBindingToLValue: 7274 S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref) 7275 << DestType.getNonReferenceType() << Args[0]->getType() 7276 << Args[0]->getSourceRange(); 7277 break; 7278 7279 case FK_ReferenceInitDropsQualifiers: { 7280 QualType SourceType = Args[0]->getType(); 7281 QualType NonRefType = DestType.getNonReferenceType(); 7282 Qualifiers DroppedQualifiers = 7283 SourceType.getQualifiers() - NonRefType.getQualifiers(); 7284 7285 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) 7286 << SourceType 7287 << NonRefType 7288 << DroppedQualifiers.getCVRQualifiers() 7289 << Args[0]->getSourceRange(); 7290 break; 7291 } 7292 7293 case FK_ReferenceInitFailed: 7294 S.Diag(Kind.getLocation(), diag::err_reference_bind_failed) 7295 << DestType.getNonReferenceType() 7296 << Args[0]->isLValue() 7297 << Args[0]->getType() 7298 << Args[0]->getSourceRange(); 7299 emitBadConversionNotes(S, Entity, Args[0]); 7300 break; 7301 7302 case FK_ConversionFailed: { 7303 QualType FromType = Args[0]->getType(); 7304 PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed) 7305 << (int)Entity.getKind() 7306 << DestType 7307 << Args[0]->isLValue() 7308 << FromType 7309 << Args[0]->getSourceRange(); 7310 S.HandleFunctionTypeMismatch(PDiag, FromType, DestType); 7311 S.Diag(Kind.getLocation(), PDiag); 7312 emitBadConversionNotes(S, Entity, Args[0]); 7313 break; 7314 } 7315 7316 case FK_ConversionFromPropertyFailed: 7317 // No-op. This error has already been reported. 7318 break; 7319 7320 case FK_TooManyInitsForScalar: { 7321 SourceRange R; 7322 7323 auto *InitList = dyn_cast<InitListExpr>(Args[0]); 7324 if (InitList && InitList->getNumInits() >= 1) { 7325 R = SourceRange(InitList->getInit(0)->getLocEnd(), InitList->getLocEnd()); 7326 } else { 7327 assert(Args.size() > 1 && "Expected multiple initializers!"); 7328 R = SourceRange(Args.front()->getLocEnd(), Args.back()->getLocEnd()); 7329 } 7330 7331 R.setBegin(S.getLocForEndOfToken(R.getBegin())); 7332 if (Kind.isCStyleOrFunctionalCast()) 7333 S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg) 7334 << R; 7335 else 7336 S.Diag(Kind.getLocation(), diag::err_excess_initializers) 7337 << /*scalar=*/2 << R; 7338 break; 7339 } 7340 7341 case FK_ReferenceBindingToInitList: 7342 S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list) 7343 << DestType.getNonReferenceType() << Args[0]->getSourceRange(); 7344 break; 7345 7346 case FK_InitListBadDestinationType: 7347 S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type) 7348 << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange(); 7349 break; 7350 7351 case FK_ListConstructorOverloadFailed: 7352 case FK_ConstructorOverloadFailed: { 7353 SourceRange ArgsRange; 7354 if (Args.size()) 7355 ArgsRange = SourceRange(Args.front()->getLocStart(), 7356 Args.back()->getLocEnd()); 7357 7358 if (Failure == FK_ListConstructorOverloadFailed) { 7359 assert(Args.size() == 1 && 7360 "List construction from other than 1 argument."); 7361 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 7362 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits()); 7363 } 7364 7365 // FIXME: Using "DestType" for the entity we're printing is probably 7366 // bad. 7367 switch (FailedOverloadResult) { 7368 case OR_Ambiguous: 7369 S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init) 7370 << DestType << ArgsRange; 7371 FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args); 7372 break; 7373 7374 case OR_No_Viable_Function: 7375 if (Kind.getKind() == InitializationKind::IK_Default && 7376 (Entity.getKind() == InitializedEntity::EK_Base || 7377 Entity.getKind() == InitializedEntity::EK_Member) && 7378 isa<CXXConstructorDecl>(S.CurContext)) { 7379 // This is implicit default initialization of a member or 7380 // base within a constructor. If no viable function was 7381 // found, notify the user that they need to explicitly 7382 // initialize this base/member. 7383 CXXConstructorDecl *Constructor 7384 = cast<CXXConstructorDecl>(S.CurContext); 7385 const CXXRecordDecl *InheritedFrom = nullptr; 7386 if (auto Inherited = Constructor->getInheritedConstructor()) 7387 InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass(); 7388 if (Entity.getKind() == InitializedEntity::EK_Base) { 7389 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) 7390 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0) 7391 << S.Context.getTypeDeclType(Constructor->getParent()) 7392 << /*base=*/0 7393 << Entity.getType() 7394 << InheritedFrom; 7395 7396 RecordDecl *BaseDecl 7397 = Entity.getBaseSpecifier()->getType()->getAs<RecordType>() 7398 ->getDecl(); 7399 S.Diag(BaseDecl->getLocation(), diag::note_previous_decl) 7400 << S.Context.getTagDeclType(BaseDecl); 7401 } else { 7402 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) 7403 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0) 7404 << S.Context.getTypeDeclType(Constructor->getParent()) 7405 << /*member=*/1 7406 << Entity.getName() 7407 << InheritedFrom; 7408 S.Diag(Entity.getDecl()->getLocation(), 7409 diag::note_member_declared_at); 7410 7411 if (const RecordType *Record 7412 = Entity.getType()->getAs<RecordType>()) 7413 S.Diag(Record->getDecl()->getLocation(), 7414 diag::note_previous_decl) 7415 << S.Context.getTagDeclType(Record->getDecl()); 7416 } 7417 break; 7418 } 7419 7420 S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init) 7421 << DestType << ArgsRange; 7422 FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args); 7423 break; 7424 7425 case OR_Deleted: { 7426 OverloadCandidateSet::iterator Best; 7427 OverloadingResult Ovl 7428 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 7429 if (Ovl != OR_Deleted) { 7430 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) 7431 << true << DestType << ArgsRange; 7432 llvm_unreachable("Inconsistent overload resolution?"); 7433 break; 7434 } 7435 7436 // If this is a defaulted or implicitly-declared function, then 7437 // it was implicitly deleted. Make it clear that the deletion was 7438 // implicit. 7439 if (S.isImplicitlyDeleted(Best->Function)) 7440 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init) 7441 << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function)) 7442 << DestType << ArgsRange; 7443 else 7444 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) 7445 << true << DestType << ArgsRange; 7446 7447 S.NoteDeletedFunction(Best->Function); 7448 break; 7449 } 7450 7451 case OR_Success: 7452 llvm_unreachable("Conversion did not fail!"); 7453 } 7454 } 7455 break; 7456 7457 case FK_DefaultInitOfConst: 7458 if (Entity.getKind() == InitializedEntity::EK_Member && 7459 isa<CXXConstructorDecl>(S.CurContext)) { 7460 // This is implicit default-initialization of a const member in 7461 // a constructor. Complain that it needs to be explicitly 7462 // initialized. 7463 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext); 7464 S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor) 7465 << (Constructor->getInheritedConstructor() ? 2 : 7466 Constructor->isImplicit() ? 1 : 0) 7467 << S.Context.getTypeDeclType(Constructor->getParent()) 7468 << /*const=*/1 7469 << Entity.getName(); 7470 S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl) 7471 << Entity.getName(); 7472 } else { 7473 S.Diag(Kind.getLocation(), diag::err_default_init_const) 7474 << DestType << (bool)DestType->getAs<RecordType>(); 7475 } 7476 break; 7477 7478 case FK_Incomplete: 7479 S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType, 7480 diag::err_init_incomplete_type); 7481 break; 7482 7483 case FK_ListInitializationFailed: { 7484 // Run the init list checker again to emit diagnostics. 7485 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 7486 diagnoseListInit(S, Entity, InitList); 7487 break; 7488 } 7489 7490 case FK_PlaceholderType: { 7491 // FIXME: Already diagnosed! 7492 break; 7493 } 7494 7495 case FK_ExplicitConstructor: { 7496 S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor) 7497 << Args[0]->getSourceRange(); 7498 OverloadCandidateSet::iterator Best; 7499 OverloadingResult Ovl 7500 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 7501 (void)Ovl; 7502 assert(Ovl == OR_Success && "Inconsistent overload resolution"); 7503 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 7504 S.Diag(CtorDecl->getLocation(), diag::note_constructor_declared_here); 7505 break; 7506 } 7507 } 7508 7509 PrintInitLocationNote(S, Entity); 7510 return true; 7511 } 7512 7513 void InitializationSequence::dump(raw_ostream &OS) const { 7514 switch (SequenceKind) { 7515 case FailedSequence: { 7516 OS << "Failed sequence: "; 7517 switch (Failure) { 7518 case FK_TooManyInitsForReference: 7519 OS << "too many initializers for reference"; 7520 break; 7521 7522 case FK_ArrayNeedsInitList: 7523 OS << "array requires initializer list"; 7524 break; 7525 7526 case FK_AddressOfUnaddressableFunction: 7527 OS << "address of unaddressable function was taken"; 7528 break; 7529 7530 case FK_ArrayNeedsInitListOrStringLiteral: 7531 OS << "array requires initializer list or string literal"; 7532 break; 7533 7534 case FK_ArrayNeedsInitListOrWideStringLiteral: 7535 OS << "array requires initializer list or wide string literal"; 7536 break; 7537 7538 case FK_NarrowStringIntoWideCharArray: 7539 OS << "narrow string into wide char array"; 7540 break; 7541 7542 case FK_WideStringIntoCharArray: 7543 OS << "wide string into char array"; 7544 break; 7545 7546 case FK_IncompatWideStringIntoWideChar: 7547 OS << "incompatible wide string into wide char array"; 7548 break; 7549 7550 case FK_ArrayTypeMismatch: 7551 OS << "array type mismatch"; 7552 break; 7553 7554 case FK_NonConstantArrayInit: 7555 OS << "non-constant array initializer"; 7556 break; 7557 7558 case FK_AddressOfOverloadFailed: 7559 OS << "address of overloaded function failed"; 7560 break; 7561 7562 case FK_ReferenceInitOverloadFailed: 7563 OS << "overload resolution for reference initialization failed"; 7564 break; 7565 7566 case FK_NonConstLValueReferenceBindingToTemporary: 7567 OS << "non-const lvalue reference bound to temporary"; 7568 break; 7569 7570 case FK_NonConstLValueReferenceBindingToUnrelated: 7571 OS << "non-const lvalue reference bound to unrelated type"; 7572 break; 7573 7574 case FK_RValueReferenceBindingToLValue: 7575 OS << "rvalue reference bound to an lvalue"; 7576 break; 7577 7578 case FK_ReferenceInitDropsQualifiers: 7579 OS << "reference initialization drops qualifiers"; 7580 break; 7581 7582 case FK_ReferenceInitFailed: 7583 OS << "reference initialization failed"; 7584 break; 7585 7586 case FK_ConversionFailed: 7587 OS << "conversion failed"; 7588 break; 7589 7590 case FK_ConversionFromPropertyFailed: 7591 OS << "conversion from property failed"; 7592 break; 7593 7594 case FK_TooManyInitsForScalar: 7595 OS << "too many initializers for scalar"; 7596 break; 7597 7598 case FK_ReferenceBindingToInitList: 7599 OS << "referencing binding to initializer list"; 7600 break; 7601 7602 case FK_InitListBadDestinationType: 7603 OS << "initializer list for non-aggregate, non-scalar type"; 7604 break; 7605 7606 case FK_UserConversionOverloadFailed: 7607 OS << "overloading failed for user-defined conversion"; 7608 break; 7609 7610 case FK_ConstructorOverloadFailed: 7611 OS << "constructor overloading failed"; 7612 break; 7613 7614 case FK_DefaultInitOfConst: 7615 OS << "default initialization of a const variable"; 7616 break; 7617 7618 case FK_Incomplete: 7619 OS << "initialization of incomplete type"; 7620 break; 7621 7622 case FK_ListInitializationFailed: 7623 OS << "list initialization checker failure"; 7624 break; 7625 7626 case FK_VariableLengthArrayHasInitializer: 7627 OS << "variable length array has an initializer"; 7628 break; 7629 7630 case FK_PlaceholderType: 7631 OS << "initializer expression isn't contextually valid"; 7632 break; 7633 7634 case FK_ListConstructorOverloadFailed: 7635 OS << "list constructor overloading failed"; 7636 break; 7637 7638 case FK_ExplicitConstructor: 7639 OS << "list copy initialization chose explicit constructor"; 7640 break; 7641 } 7642 OS << '\n'; 7643 return; 7644 } 7645 7646 case DependentSequence: 7647 OS << "Dependent sequence\n"; 7648 return; 7649 7650 case NormalSequence: 7651 OS << "Normal sequence: "; 7652 break; 7653 } 7654 7655 for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) { 7656 if (S != step_begin()) { 7657 OS << " -> "; 7658 } 7659 7660 switch (S->Kind) { 7661 case SK_ResolveAddressOfOverloadedFunction: 7662 OS << "resolve address of overloaded function"; 7663 break; 7664 7665 case SK_CastDerivedToBaseRValue: 7666 OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")"; 7667 break; 7668 7669 case SK_CastDerivedToBaseXValue: 7670 OS << "derived-to-base case (xvalue" << S->Type.getAsString() << ")"; 7671 break; 7672 7673 case SK_CastDerivedToBaseLValue: 7674 OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")"; 7675 break; 7676 7677 case SK_BindReference: 7678 OS << "bind reference to lvalue"; 7679 break; 7680 7681 case SK_BindReferenceToTemporary: 7682 OS << "bind reference to a temporary"; 7683 break; 7684 7685 case SK_ExtraneousCopyToTemporary: 7686 OS << "extraneous C++03 copy to temporary"; 7687 break; 7688 7689 case SK_UserConversion: 7690 OS << "user-defined conversion via " << *S->Function.Function; 7691 break; 7692 7693 case SK_QualificationConversionRValue: 7694 OS << "qualification conversion (rvalue)"; 7695 break; 7696 7697 case SK_QualificationConversionXValue: 7698 OS << "qualification conversion (xvalue)"; 7699 break; 7700 7701 case SK_QualificationConversionLValue: 7702 OS << "qualification conversion (lvalue)"; 7703 break; 7704 7705 case SK_AtomicConversion: 7706 OS << "non-atomic-to-atomic conversion"; 7707 break; 7708 7709 case SK_LValueToRValue: 7710 OS << "load (lvalue to rvalue)"; 7711 break; 7712 7713 case SK_ConversionSequence: 7714 OS << "implicit conversion sequence ("; 7715 S->ICS->dump(); // FIXME: use OS 7716 OS << ")"; 7717 break; 7718 7719 case SK_ConversionSequenceNoNarrowing: 7720 OS << "implicit conversion sequence with narrowing prohibited ("; 7721 S->ICS->dump(); // FIXME: use OS 7722 OS << ")"; 7723 break; 7724 7725 case SK_ListInitialization: 7726 OS << "list aggregate initialization"; 7727 break; 7728 7729 case SK_UnwrapInitList: 7730 OS << "unwrap reference initializer list"; 7731 break; 7732 7733 case SK_RewrapInitList: 7734 OS << "rewrap reference initializer list"; 7735 break; 7736 7737 case SK_ConstructorInitialization: 7738 OS << "constructor initialization"; 7739 break; 7740 7741 case SK_ConstructorInitializationFromList: 7742 OS << "list initialization via constructor"; 7743 break; 7744 7745 case SK_ZeroInitialization: 7746 OS << "zero initialization"; 7747 break; 7748 7749 case SK_CAssignment: 7750 OS << "C assignment"; 7751 break; 7752 7753 case SK_StringInit: 7754 OS << "string initialization"; 7755 break; 7756 7757 case SK_ObjCObjectConversion: 7758 OS << "Objective-C object conversion"; 7759 break; 7760 7761 case SK_ArrayInit: 7762 OS << "array initialization"; 7763 break; 7764 7765 case SK_ParenthesizedArrayInit: 7766 OS << "parenthesized array initialization"; 7767 break; 7768 7769 case SK_PassByIndirectCopyRestore: 7770 OS << "pass by indirect copy and restore"; 7771 break; 7772 7773 case SK_PassByIndirectRestore: 7774 OS << "pass by indirect restore"; 7775 break; 7776 7777 case SK_ProduceObjCObject: 7778 OS << "Objective-C object retension"; 7779 break; 7780 7781 case SK_StdInitializerList: 7782 OS << "std::initializer_list from initializer list"; 7783 break; 7784 7785 case SK_StdInitializerListConstructorCall: 7786 OS << "list initialization from std::initializer_list"; 7787 break; 7788 7789 case SK_OCLSamplerInit: 7790 OS << "OpenCL sampler_t from integer constant"; 7791 break; 7792 7793 case SK_OCLZeroEvent: 7794 OS << "OpenCL event_t from zero"; 7795 break; 7796 } 7797 7798 OS << " [" << S->Type.getAsString() << ']'; 7799 } 7800 7801 OS << '\n'; 7802 } 7803 7804 void InitializationSequence::dump() const { 7805 dump(llvm::errs()); 7806 } 7807 7808 static void DiagnoseNarrowingInInitList(Sema &S, 7809 const ImplicitConversionSequence &ICS, 7810 QualType PreNarrowingType, 7811 QualType EntityType, 7812 const Expr *PostInit) { 7813 const StandardConversionSequence *SCS = nullptr; 7814 switch (ICS.getKind()) { 7815 case ImplicitConversionSequence::StandardConversion: 7816 SCS = &ICS.Standard; 7817 break; 7818 case ImplicitConversionSequence::UserDefinedConversion: 7819 SCS = &ICS.UserDefined.After; 7820 break; 7821 case ImplicitConversionSequence::AmbiguousConversion: 7822 case ImplicitConversionSequence::EllipsisConversion: 7823 case ImplicitConversionSequence::BadConversion: 7824 return; 7825 } 7826 7827 // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion. 7828 APValue ConstantValue; 7829 QualType ConstantType; 7830 switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue, 7831 ConstantType)) { 7832 case NK_Not_Narrowing: 7833 // No narrowing occurred. 7834 return; 7835 7836 case NK_Type_Narrowing: 7837 // This was a floating-to-integer conversion, which is always considered a 7838 // narrowing conversion even if the value is a constant and can be 7839 // represented exactly as an integer. 7840 S.Diag(PostInit->getLocStart(), 7841 (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11) 7842 ? diag::warn_init_list_type_narrowing 7843 : diag::ext_init_list_type_narrowing) 7844 << PostInit->getSourceRange() 7845 << PreNarrowingType.getLocalUnqualifiedType() 7846 << EntityType.getLocalUnqualifiedType(); 7847 break; 7848 7849 case NK_Constant_Narrowing: 7850 // A constant value was narrowed. 7851 S.Diag(PostInit->getLocStart(), 7852 (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11) 7853 ? diag::warn_init_list_constant_narrowing 7854 : diag::ext_init_list_constant_narrowing) 7855 << PostInit->getSourceRange() 7856 << ConstantValue.getAsString(S.getASTContext(), ConstantType) 7857 << EntityType.getLocalUnqualifiedType(); 7858 break; 7859 7860 case NK_Variable_Narrowing: 7861 // A variable's value may have been narrowed. 7862 S.Diag(PostInit->getLocStart(), 7863 (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11) 7864 ? diag::warn_init_list_variable_narrowing 7865 : diag::ext_init_list_variable_narrowing) 7866 << PostInit->getSourceRange() 7867 << PreNarrowingType.getLocalUnqualifiedType() 7868 << EntityType.getLocalUnqualifiedType(); 7869 break; 7870 } 7871 7872 SmallString<128> StaticCast; 7873 llvm::raw_svector_ostream OS(StaticCast); 7874 OS << "static_cast<"; 7875 if (const TypedefType *TT = EntityType->getAs<TypedefType>()) { 7876 // It's important to use the typedef's name if there is one so that the 7877 // fixit doesn't break code using types like int64_t. 7878 // 7879 // FIXME: This will break if the typedef requires qualification. But 7880 // getQualifiedNameAsString() includes non-machine-parsable components. 7881 OS << *TT->getDecl(); 7882 } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>()) 7883 OS << BT->getName(S.getLangOpts()); 7884 else { 7885 // Oops, we didn't find the actual type of the variable. Don't emit a fixit 7886 // with a broken cast. 7887 return; 7888 } 7889 OS << ">("; 7890 S.Diag(PostInit->getLocStart(), diag::note_init_list_narrowing_silence) 7891 << PostInit->getSourceRange() 7892 << FixItHint::CreateInsertion(PostInit->getLocStart(), OS.str()) 7893 << FixItHint::CreateInsertion( 7894 S.getLocForEndOfToken(PostInit->getLocEnd()), ")"); 7895 } 7896 7897 //===----------------------------------------------------------------------===// 7898 // Initialization helper functions 7899 //===----------------------------------------------------------------------===// 7900 bool 7901 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity, 7902 ExprResult Init) { 7903 if (Init.isInvalid()) 7904 return false; 7905 7906 Expr *InitE = Init.get(); 7907 assert(InitE && "No initialization expression"); 7908 7909 InitializationKind Kind 7910 = InitializationKind::CreateCopy(InitE->getLocStart(), SourceLocation()); 7911 InitializationSequence Seq(*this, Entity, Kind, InitE); 7912 return !Seq.Failed(); 7913 } 7914 7915 ExprResult 7916 Sema::PerformCopyInitialization(const InitializedEntity &Entity, 7917 SourceLocation EqualLoc, 7918 ExprResult Init, 7919 bool TopLevelOfInitList, 7920 bool AllowExplicit) { 7921 if (Init.isInvalid()) 7922 return ExprError(); 7923 7924 Expr *InitE = Init.get(); 7925 assert(InitE && "No initialization expression?"); 7926 7927 if (EqualLoc.isInvalid()) 7928 EqualLoc = InitE->getLocStart(); 7929 7930 InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(), 7931 EqualLoc, 7932 AllowExplicit); 7933 InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList); 7934 7935 ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE); 7936 7937 return Result; 7938 } 7939