1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements semantic analysis for initializers. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Sema/Designator.h" 15 #include "clang/Sema/Initialization.h" 16 #include "clang/Sema/Lookup.h" 17 #include "clang/Sema/SemaInternal.h" 18 #include "clang/Lex/Preprocessor.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/DeclObjC.h" 21 #include "clang/AST/ExprCXX.h" 22 #include "clang/AST/ExprObjC.h" 23 #include "clang/AST/TypeLoc.h" 24 #include "llvm/Support/ErrorHandling.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include <map> 27 using namespace clang; 28 29 //===----------------------------------------------------------------------===// 30 // Sema Initialization Checking 31 //===----------------------------------------------------------------------===// 32 33 static Expr *IsStringInit(Expr *Init, const ArrayType *AT, 34 ASTContext &Context) { 35 if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT)) 36 return 0; 37 38 // See if this is a string literal or @encode. 39 Init = Init->IgnoreParens(); 40 41 // Handle @encode, which is a narrow string. 42 if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType()) 43 return Init; 44 45 // Otherwise we can only handle string literals. 46 StringLiteral *SL = dyn_cast<StringLiteral>(Init); 47 if (SL == 0) return 0; 48 49 QualType ElemTy = Context.getCanonicalType(AT->getElementType()); 50 51 switch (SL->getKind()) { 52 case StringLiteral::Ascii: 53 case StringLiteral::UTF8: 54 // char array can be initialized with a narrow string. 55 // Only allow char x[] = "foo"; not char x[] = L"foo"; 56 return ElemTy->isCharType() ? Init : 0; 57 case StringLiteral::UTF16: 58 return ElemTy->isChar16Type() ? Init : 0; 59 case StringLiteral::UTF32: 60 return ElemTy->isChar32Type() ? Init : 0; 61 case StringLiteral::Wide: 62 // wchar_t array can be initialized with a wide string: C99 6.7.8p15 (with 63 // correction from DR343): "An array with element type compatible with a 64 // qualified or unqualified version of wchar_t may be initialized by a wide 65 // string literal, optionally enclosed in braces." 66 if (Context.typesAreCompatible(Context.getWCharType(), 67 ElemTy.getUnqualifiedType())) 68 return Init; 69 70 return 0; 71 } 72 73 llvm_unreachable("missed a StringLiteral kind?"); 74 } 75 76 static Expr *IsStringInit(Expr *init, QualType declType, ASTContext &Context) { 77 const ArrayType *arrayType = Context.getAsArrayType(declType); 78 if (!arrayType) return 0; 79 80 return IsStringInit(init, arrayType, Context); 81 } 82 83 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT, 84 Sema &S) { 85 // Get the length of the string as parsed. 86 uint64_t StrLength = 87 cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue(); 88 89 90 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) { 91 // C99 6.7.8p14. We have an array of character type with unknown size 92 // being initialized to a string literal. 93 llvm::APSInt ConstVal(32); 94 ConstVal = StrLength; 95 // Return a new array type (C99 6.7.8p22). 96 DeclT = S.Context.getConstantArrayType(IAT->getElementType(), 97 ConstVal, 98 ArrayType::Normal, 0); 99 return; 100 } 101 102 const ConstantArrayType *CAT = cast<ConstantArrayType>(AT); 103 104 // We have an array of character type with known size. However, 105 // the size may be smaller or larger than the string we are initializing. 106 // FIXME: Avoid truncation for 64-bit length strings. 107 if (S.getLangOptions().CPlusPlus) { 108 if (StringLiteral *SL = dyn_cast<StringLiteral>(Str)) { 109 // For Pascal strings it's OK to strip off the terminating null character, 110 // so the example below is valid: 111 // 112 // unsigned char a[2] = "\pa"; 113 if (SL->isPascal()) 114 StrLength--; 115 } 116 117 // [dcl.init.string]p2 118 if (StrLength > CAT->getSize().getZExtValue()) 119 S.Diag(Str->getSourceRange().getBegin(), 120 diag::err_initializer_string_for_char_array_too_long) 121 << Str->getSourceRange(); 122 } else { 123 // C99 6.7.8p14. 124 if (StrLength-1 > CAT->getSize().getZExtValue()) 125 S.Diag(Str->getSourceRange().getBegin(), 126 diag::warn_initializer_string_for_char_array_too_long) 127 << Str->getSourceRange(); 128 } 129 130 // Set the type to the actual size that we are initializing. If we have 131 // something like: 132 // char x[1] = "foo"; 133 // then this will set the string literal's type to char[1]. 134 Str->setType(DeclT); 135 } 136 137 //===----------------------------------------------------------------------===// 138 // Semantic checking for initializer lists. 139 //===----------------------------------------------------------------------===// 140 141 /// @brief Semantic checking for initializer lists. 142 /// 143 /// The InitListChecker class contains a set of routines that each 144 /// handle the initialization of a certain kind of entity, e.g., 145 /// arrays, vectors, struct/union types, scalars, etc. The 146 /// InitListChecker itself performs a recursive walk of the subobject 147 /// structure of the type to be initialized, while stepping through 148 /// the initializer list one element at a time. The IList and Index 149 /// parameters to each of the Check* routines contain the active 150 /// (syntactic) initializer list and the index into that initializer 151 /// list that represents the current initializer. Each routine is 152 /// responsible for moving that Index forward as it consumes elements. 153 /// 154 /// Each Check* routine also has a StructuredList/StructuredIndex 155 /// arguments, which contains the current "structured" (semantic) 156 /// initializer list and the index into that initializer list where we 157 /// are copying initializers as we map them over to the semantic 158 /// list. Once we have completed our recursive walk of the subobject 159 /// structure, we will have constructed a full semantic initializer 160 /// list. 161 /// 162 /// C99 designators cause changes in the initializer list traversal, 163 /// because they make the initialization "jump" into a specific 164 /// subobject and then continue the initialization from that 165 /// point. CheckDesignatedInitializer() recursively steps into the 166 /// designated subobject and manages backing out the recursion to 167 /// initialize the subobjects after the one designated. 168 namespace { 169 class InitListChecker { 170 Sema &SemaRef; 171 bool hadError; 172 bool VerifyOnly; // no diagnostics, no structure building 173 bool AllowBraceElision; 174 std::map<InitListExpr *, InitListExpr *> SyntacticToSemantic; 175 InitListExpr *FullyStructuredList; 176 177 void CheckImplicitInitList(const InitializedEntity &Entity, 178 InitListExpr *ParentIList, QualType T, 179 unsigned &Index, InitListExpr *StructuredList, 180 unsigned &StructuredIndex); 181 void CheckExplicitInitList(const InitializedEntity &Entity, 182 InitListExpr *IList, QualType &T, 183 unsigned &Index, InitListExpr *StructuredList, 184 unsigned &StructuredIndex, 185 bool TopLevelObject = false); 186 void CheckListElementTypes(const InitializedEntity &Entity, 187 InitListExpr *IList, QualType &DeclType, 188 bool SubobjectIsDesignatorContext, 189 unsigned &Index, 190 InitListExpr *StructuredList, 191 unsigned &StructuredIndex, 192 bool TopLevelObject = false); 193 void CheckSubElementType(const InitializedEntity &Entity, 194 InitListExpr *IList, QualType ElemType, 195 unsigned &Index, 196 InitListExpr *StructuredList, 197 unsigned &StructuredIndex); 198 void CheckComplexType(const InitializedEntity &Entity, 199 InitListExpr *IList, QualType DeclType, 200 unsigned &Index, 201 InitListExpr *StructuredList, 202 unsigned &StructuredIndex); 203 void CheckScalarType(const InitializedEntity &Entity, 204 InitListExpr *IList, QualType DeclType, 205 unsigned &Index, 206 InitListExpr *StructuredList, 207 unsigned &StructuredIndex); 208 void CheckReferenceType(const InitializedEntity &Entity, 209 InitListExpr *IList, QualType DeclType, 210 unsigned &Index, 211 InitListExpr *StructuredList, 212 unsigned &StructuredIndex); 213 void CheckVectorType(const InitializedEntity &Entity, 214 InitListExpr *IList, QualType DeclType, unsigned &Index, 215 InitListExpr *StructuredList, 216 unsigned &StructuredIndex); 217 void CheckStructUnionTypes(const InitializedEntity &Entity, 218 InitListExpr *IList, QualType DeclType, 219 RecordDecl::field_iterator Field, 220 bool SubobjectIsDesignatorContext, unsigned &Index, 221 InitListExpr *StructuredList, 222 unsigned &StructuredIndex, 223 bool TopLevelObject = false); 224 void CheckArrayType(const InitializedEntity &Entity, 225 InitListExpr *IList, QualType &DeclType, 226 llvm::APSInt elementIndex, 227 bool SubobjectIsDesignatorContext, unsigned &Index, 228 InitListExpr *StructuredList, 229 unsigned &StructuredIndex); 230 bool CheckDesignatedInitializer(const InitializedEntity &Entity, 231 InitListExpr *IList, DesignatedInitExpr *DIE, 232 unsigned DesigIdx, 233 QualType &CurrentObjectType, 234 RecordDecl::field_iterator *NextField, 235 llvm::APSInt *NextElementIndex, 236 unsigned &Index, 237 InitListExpr *StructuredList, 238 unsigned &StructuredIndex, 239 bool FinishSubobjectInit, 240 bool TopLevelObject); 241 InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, 242 QualType CurrentObjectType, 243 InitListExpr *StructuredList, 244 unsigned StructuredIndex, 245 SourceRange InitRange); 246 void UpdateStructuredListElement(InitListExpr *StructuredList, 247 unsigned &StructuredIndex, 248 Expr *expr); 249 int numArrayElements(QualType DeclType); 250 int numStructUnionElements(QualType DeclType); 251 252 void FillInValueInitForField(unsigned Init, FieldDecl *Field, 253 const InitializedEntity &ParentEntity, 254 InitListExpr *ILE, bool &RequiresSecondPass); 255 void FillInValueInitializations(const InitializedEntity &Entity, 256 InitListExpr *ILE, bool &RequiresSecondPass); 257 bool CheckFlexibleArrayInit(const InitializedEntity &Entity, 258 Expr *InitExpr, FieldDecl *Field, 259 bool TopLevelObject); 260 void CheckValueInitializable(const InitializedEntity &Entity); 261 262 public: 263 InitListChecker(Sema &S, const InitializedEntity &Entity, 264 InitListExpr *IL, QualType &T, bool VerifyOnly, 265 bool AllowBraceElision); 266 bool HadError() { return hadError; } 267 268 // @brief Retrieves the fully-structured initializer list used for 269 // semantic analysis and code generation. 270 InitListExpr *getFullyStructuredList() const { return FullyStructuredList; } 271 }; 272 } // end anonymous namespace 273 274 void InitListChecker::CheckValueInitializable(const InitializedEntity &Entity) { 275 assert(VerifyOnly && 276 "CheckValueInitializable is only inteded for verification mode."); 277 278 SourceLocation Loc; 279 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc, 280 true); 281 InitializationSequence InitSeq(SemaRef, Entity, Kind, 0, 0); 282 if (InitSeq.Failed()) 283 hadError = true; 284 } 285 286 void InitListChecker::FillInValueInitForField(unsigned Init, FieldDecl *Field, 287 const InitializedEntity &ParentEntity, 288 InitListExpr *ILE, 289 bool &RequiresSecondPass) { 290 SourceLocation Loc = ILE->getSourceRange().getBegin(); 291 unsigned NumInits = ILE->getNumInits(); 292 InitializedEntity MemberEntity 293 = InitializedEntity::InitializeMember(Field, &ParentEntity); 294 if (Init >= NumInits || !ILE->getInit(Init)) { 295 // FIXME: We probably don't need to handle references 296 // specially here, since value-initialization of references is 297 // handled in InitializationSequence. 298 if (Field->getType()->isReferenceType()) { 299 // C++ [dcl.init.aggr]p9: 300 // If an incomplete or empty initializer-list leaves a 301 // member of reference type uninitialized, the program is 302 // ill-formed. 303 SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized) 304 << Field->getType() 305 << ILE->getSyntacticForm()->getSourceRange(); 306 SemaRef.Diag(Field->getLocation(), 307 diag::note_uninit_reference_member); 308 hadError = true; 309 return; 310 } 311 312 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc, 313 true); 314 InitializationSequence InitSeq(SemaRef, MemberEntity, Kind, 0, 0); 315 if (!InitSeq) { 316 InitSeq.Diagnose(SemaRef, MemberEntity, Kind, 0, 0); 317 hadError = true; 318 return; 319 } 320 321 ExprResult MemberInit 322 = InitSeq.Perform(SemaRef, MemberEntity, Kind, MultiExprArg()); 323 if (MemberInit.isInvalid()) { 324 hadError = true; 325 return; 326 } 327 328 if (hadError) { 329 // Do nothing 330 } else if (Init < NumInits) { 331 ILE->setInit(Init, MemberInit.takeAs<Expr>()); 332 } else if (InitSeq.isConstructorInitialization()) { 333 // Value-initialization requires a constructor call, so 334 // extend the initializer list to include the constructor 335 // call and make a note that we'll need to take another pass 336 // through the initializer list. 337 ILE->updateInit(SemaRef.Context, Init, MemberInit.takeAs<Expr>()); 338 RequiresSecondPass = true; 339 } 340 } else if (InitListExpr *InnerILE 341 = dyn_cast<InitListExpr>(ILE->getInit(Init))) 342 FillInValueInitializations(MemberEntity, InnerILE, 343 RequiresSecondPass); 344 } 345 346 /// Recursively replaces NULL values within the given initializer list 347 /// with expressions that perform value-initialization of the 348 /// appropriate type. 349 void 350 InitListChecker::FillInValueInitializations(const InitializedEntity &Entity, 351 InitListExpr *ILE, 352 bool &RequiresSecondPass) { 353 assert((ILE->getType() != SemaRef.Context.VoidTy) && 354 "Should not have void type"); 355 SourceLocation Loc = ILE->getSourceRange().getBegin(); 356 if (ILE->getSyntacticForm()) 357 Loc = ILE->getSyntacticForm()->getSourceRange().getBegin(); 358 359 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 360 if (RType->getDecl()->isUnion() && 361 ILE->getInitializedFieldInUnion()) 362 FillInValueInitForField(0, ILE->getInitializedFieldInUnion(), 363 Entity, ILE, RequiresSecondPass); 364 else { 365 unsigned Init = 0; 366 for (RecordDecl::field_iterator 367 Field = RType->getDecl()->field_begin(), 368 FieldEnd = RType->getDecl()->field_end(); 369 Field != FieldEnd; ++Field) { 370 if (Field->isUnnamedBitfield()) 371 continue; 372 373 if (hadError) 374 return; 375 376 FillInValueInitForField(Init, *Field, Entity, ILE, RequiresSecondPass); 377 if (hadError) 378 return; 379 380 ++Init; 381 382 // Only look at the first initialization of a union. 383 if (RType->getDecl()->isUnion()) 384 break; 385 } 386 } 387 388 return; 389 } 390 391 QualType ElementType; 392 393 InitializedEntity ElementEntity = Entity; 394 unsigned NumInits = ILE->getNumInits(); 395 unsigned NumElements = NumInits; 396 if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) { 397 ElementType = AType->getElementType(); 398 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) 399 NumElements = CAType->getSize().getZExtValue(); 400 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, 401 0, Entity); 402 } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) { 403 ElementType = VType->getElementType(); 404 NumElements = VType->getNumElements(); 405 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, 406 0, Entity); 407 } else 408 ElementType = ILE->getType(); 409 410 411 for (unsigned Init = 0; Init != NumElements; ++Init) { 412 if (hadError) 413 return; 414 415 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement || 416 ElementEntity.getKind() == InitializedEntity::EK_VectorElement) 417 ElementEntity.setElementIndex(Init); 418 419 Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : 0); 420 if (!InitExpr && !ILE->hasArrayFiller()) { 421 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc, 422 true); 423 InitializationSequence InitSeq(SemaRef, ElementEntity, Kind, 0, 0); 424 if (!InitSeq) { 425 InitSeq.Diagnose(SemaRef, ElementEntity, Kind, 0, 0); 426 hadError = true; 427 return; 428 } 429 430 ExprResult ElementInit 431 = InitSeq.Perform(SemaRef, ElementEntity, Kind, MultiExprArg()); 432 if (ElementInit.isInvalid()) { 433 hadError = true; 434 return; 435 } 436 437 if (hadError) { 438 // Do nothing 439 } else if (Init < NumInits) { 440 // For arrays, just set the expression used for value-initialization 441 // of the "holes" in the array. 442 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) 443 ILE->setArrayFiller(ElementInit.takeAs<Expr>()); 444 else 445 ILE->setInit(Init, ElementInit.takeAs<Expr>()); 446 } else { 447 // For arrays, just set the expression used for value-initialization 448 // of the rest of elements and exit. 449 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) { 450 ILE->setArrayFiller(ElementInit.takeAs<Expr>()); 451 return; 452 } 453 454 if (InitSeq.isConstructorInitialization()) { 455 // Value-initialization requires a constructor call, so 456 // extend the initializer list to include the constructor 457 // call and make a note that we'll need to take another pass 458 // through the initializer list. 459 ILE->updateInit(SemaRef.Context, Init, ElementInit.takeAs<Expr>()); 460 RequiresSecondPass = true; 461 } 462 } 463 } else if (InitListExpr *InnerILE 464 = dyn_cast_or_null<InitListExpr>(InitExpr)) 465 FillInValueInitializations(ElementEntity, InnerILE, RequiresSecondPass); 466 } 467 } 468 469 470 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity, 471 InitListExpr *IL, QualType &T, 472 bool VerifyOnly, bool AllowBraceElision) 473 : SemaRef(S), VerifyOnly(VerifyOnly), AllowBraceElision(AllowBraceElision) { 474 hadError = false; 475 476 unsigned newIndex = 0; 477 unsigned newStructuredIndex = 0; 478 FullyStructuredList 479 = getStructuredSubobjectInit(IL, newIndex, T, 0, 0, IL->getSourceRange()); 480 CheckExplicitInitList(Entity, IL, T, newIndex, 481 FullyStructuredList, newStructuredIndex, 482 /*TopLevelObject=*/true); 483 484 if (!hadError && !VerifyOnly) { 485 bool RequiresSecondPass = false; 486 FillInValueInitializations(Entity, FullyStructuredList, RequiresSecondPass); 487 if (RequiresSecondPass && !hadError) 488 FillInValueInitializations(Entity, FullyStructuredList, 489 RequiresSecondPass); 490 } 491 } 492 493 int InitListChecker::numArrayElements(QualType DeclType) { 494 // FIXME: use a proper constant 495 int maxElements = 0x7FFFFFFF; 496 if (const ConstantArrayType *CAT = 497 SemaRef.Context.getAsConstantArrayType(DeclType)) { 498 maxElements = static_cast<int>(CAT->getSize().getZExtValue()); 499 } 500 return maxElements; 501 } 502 503 int InitListChecker::numStructUnionElements(QualType DeclType) { 504 RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl(); 505 int InitializableMembers = 0; 506 for (RecordDecl::field_iterator 507 Field = structDecl->field_begin(), 508 FieldEnd = structDecl->field_end(); 509 Field != FieldEnd; ++Field) { 510 if (!Field->isUnnamedBitfield()) 511 ++InitializableMembers; 512 } 513 if (structDecl->isUnion()) 514 return std::min(InitializableMembers, 1); 515 return InitializableMembers - structDecl->hasFlexibleArrayMember(); 516 } 517 518 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity, 519 InitListExpr *ParentIList, 520 QualType T, unsigned &Index, 521 InitListExpr *StructuredList, 522 unsigned &StructuredIndex) { 523 int maxElements = 0; 524 525 if (T->isArrayType()) 526 maxElements = numArrayElements(T); 527 else if (T->isRecordType()) 528 maxElements = numStructUnionElements(T); 529 else if (T->isVectorType()) 530 maxElements = T->getAs<VectorType>()->getNumElements(); 531 else 532 llvm_unreachable("CheckImplicitInitList(): Illegal type"); 533 534 if (maxElements == 0) { 535 if (!VerifyOnly) 536 SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(), 537 diag::err_implicit_empty_initializer); 538 ++Index; 539 hadError = true; 540 return; 541 } 542 543 // Build a structured initializer list corresponding to this subobject. 544 InitListExpr *StructuredSubobjectInitList 545 = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList, 546 StructuredIndex, 547 SourceRange(ParentIList->getInit(Index)->getSourceRange().getBegin(), 548 ParentIList->getSourceRange().getEnd())); 549 unsigned StructuredSubobjectInitIndex = 0; 550 551 // Check the element types and build the structural subobject. 552 unsigned StartIndex = Index; 553 CheckListElementTypes(Entity, ParentIList, T, 554 /*SubobjectIsDesignatorContext=*/false, Index, 555 StructuredSubobjectInitList, 556 StructuredSubobjectInitIndex); 557 558 if (VerifyOnly) { 559 if (!AllowBraceElision && (T->isArrayType() || T->isRecordType())) 560 hadError = true; 561 } else { 562 StructuredSubobjectInitList->setType(T); 563 564 unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1); 565 // Update the structured sub-object initializer so that it's ending 566 // range corresponds with the end of the last initializer it used. 567 if (EndIndex < ParentIList->getNumInits()) { 568 SourceLocation EndLoc 569 = ParentIList->getInit(EndIndex)->getSourceRange().getEnd(); 570 StructuredSubobjectInitList->setRBraceLoc(EndLoc); 571 } 572 573 // Complain about missing braces. 574 if (T->isArrayType() || T->isRecordType()) { 575 SemaRef.Diag(StructuredSubobjectInitList->getLocStart(), 576 AllowBraceElision ? diag::warn_missing_braces : 577 diag::err_missing_braces) 578 << StructuredSubobjectInitList->getSourceRange() 579 << FixItHint::CreateInsertion( 580 StructuredSubobjectInitList->getLocStart(), "{") 581 << FixItHint::CreateInsertion( 582 SemaRef.PP.getLocForEndOfToken( 583 StructuredSubobjectInitList->getLocEnd()), 584 "}"); 585 if (!AllowBraceElision) 586 hadError = true; 587 } 588 } 589 } 590 591 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity, 592 InitListExpr *IList, QualType &T, 593 unsigned &Index, 594 InitListExpr *StructuredList, 595 unsigned &StructuredIndex, 596 bool TopLevelObject) { 597 assert(IList->isExplicit() && "Illegal Implicit InitListExpr"); 598 if (!VerifyOnly) { 599 SyntacticToSemantic[IList] = StructuredList; 600 StructuredList->setSyntacticForm(IList); 601 } 602 CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true, 603 Index, StructuredList, StructuredIndex, TopLevelObject); 604 if (!VerifyOnly) { 605 QualType ExprTy = T.getNonLValueExprType(SemaRef.Context); 606 IList->setType(ExprTy); 607 StructuredList->setType(ExprTy); 608 } 609 if (hadError) 610 return; 611 612 if (Index < IList->getNumInits()) { 613 // We have leftover initializers 614 if (VerifyOnly) { 615 if (SemaRef.getLangOptions().CPlusPlus || 616 (SemaRef.getLangOptions().OpenCL && 617 IList->getType()->isVectorType())) { 618 hadError = true; 619 } 620 return; 621 } 622 623 if (StructuredIndex == 1 && 624 IsStringInit(StructuredList->getInit(0), T, SemaRef.Context)) { 625 unsigned DK = diag::warn_excess_initializers_in_char_array_initializer; 626 if (SemaRef.getLangOptions().CPlusPlus) { 627 DK = diag::err_excess_initializers_in_char_array_initializer; 628 hadError = true; 629 } 630 // Special-case 631 SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK) 632 << IList->getInit(Index)->getSourceRange(); 633 } else if (!T->isIncompleteType()) { 634 // Don't complain for incomplete types, since we'll get an error 635 // elsewhere 636 QualType CurrentObjectType = StructuredList->getType(); 637 int initKind = 638 CurrentObjectType->isArrayType()? 0 : 639 CurrentObjectType->isVectorType()? 1 : 640 CurrentObjectType->isScalarType()? 2 : 641 CurrentObjectType->isUnionType()? 3 : 642 4; 643 644 unsigned DK = diag::warn_excess_initializers; 645 if (SemaRef.getLangOptions().CPlusPlus) { 646 DK = diag::err_excess_initializers; 647 hadError = true; 648 } 649 if (SemaRef.getLangOptions().OpenCL && initKind == 1) { 650 DK = diag::err_excess_initializers; 651 hadError = true; 652 } 653 654 SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK) 655 << initKind << IList->getInit(Index)->getSourceRange(); 656 } 657 } 658 659 if (!VerifyOnly && T->isScalarType() && IList->getNumInits() == 1 && 660 !TopLevelObject) 661 SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init) 662 << IList->getSourceRange() 663 << FixItHint::CreateRemoval(IList->getLocStart()) 664 << FixItHint::CreateRemoval(IList->getLocEnd()); 665 } 666 667 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity, 668 InitListExpr *IList, 669 QualType &DeclType, 670 bool SubobjectIsDesignatorContext, 671 unsigned &Index, 672 InitListExpr *StructuredList, 673 unsigned &StructuredIndex, 674 bool TopLevelObject) { 675 if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) { 676 // Explicitly braced initializer for complex type can be real+imaginary 677 // parts. 678 CheckComplexType(Entity, IList, DeclType, Index, 679 StructuredList, StructuredIndex); 680 } else if (DeclType->isScalarType()) { 681 CheckScalarType(Entity, IList, DeclType, Index, 682 StructuredList, StructuredIndex); 683 } else if (DeclType->isVectorType()) { 684 CheckVectorType(Entity, IList, DeclType, Index, 685 StructuredList, StructuredIndex); 686 } else if (DeclType->isAggregateType()) { 687 if (DeclType->isRecordType()) { 688 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl(); 689 CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(), 690 SubobjectIsDesignatorContext, Index, 691 StructuredList, StructuredIndex, 692 TopLevelObject); 693 } else if (DeclType->isArrayType()) { 694 llvm::APSInt Zero( 695 SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()), 696 false); 697 CheckArrayType(Entity, IList, DeclType, Zero, 698 SubobjectIsDesignatorContext, Index, 699 StructuredList, StructuredIndex); 700 } else 701 llvm_unreachable("Aggregate that isn't a structure or array?!"); 702 } else if (DeclType->isVoidType() || DeclType->isFunctionType()) { 703 // This type is invalid, issue a diagnostic. 704 ++Index; 705 if (!VerifyOnly) 706 SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type) 707 << DeclType; 708 hadError = true; 709 } else if (DeclType->isRecordType()) { 710 // C++ [dcl.init]p14: 711 // [...] If the class is an aggregate (8.5.1), and the initializer 712 // is a brace-enclosed list, see 8.5.1. 713 // 714 // Note: 8.5.1 is handled below; here, we diagnose the case where 715 // we have an initializer list and a destination type that is not 716 // an aggregate. 717 // FIXME: In C++0x, this is yet another form of initialization. 718 if (!VerifyOnly) 719 SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list) 720 << DeclType << IList->getSourceRange(); 721 hadError = true; 722 } else if (DeclType->isReferenceType()) { 723 CheckReferenceType(Entity, IList, DeclType, Index, 724 StructuredList, StructuredIndex); 725 } else if (DeclType->isObjCObjectType()) { 726 if (!VerifyOnly) 727 SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class) 728 << DeclType; 729 hadError = true; 730 } else { 731 if (!VerifyOnly) 732 SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type) 733 << DeclType; 734 hadError = true; 735 } 736 } 737 738 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity, 739 InitListExpr *IList, 740 QualType ElemType, 741 unsigned &Index, 742 InitListExpr *StructuredList, 743 unsigned &StructuredIndex) { 744 Expr *expr = IList->getInit(Index); 745 if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) { 746 unsigned newIndex = 0; 747 unsigned newStructuredIndex = 0; 748 InitListExpr *newStructuredList 749 = getStructuredSubobjectInit(IList, Index, ElemType, 750 StructuredList, StructuredIndex, 751 SubInitList->getSourceRange()); 752 CheckExplicitInitList(Entity, SubInitList, ElemType, newIndex, 753 newStructuredList, newStructuredIndex); 754 ++StructuredIndex; 755 ++Index; 756 return; 757 } else if (ElemType->isScalarType()) { 758 return CheckScalarType(Entity, IList, ElemType, Index, 759 StructuredList, StructuredIndex); 760 } else if (ElemType->isReferenceType()) { 761 return CheckReferenceType(Entity, IList, ElemType, Index, 762 StructuredList, StructuredIndex); 763 } 764 765 if (const ArrayType *arrayType = SemaRef.Context.getAsArrayType(ElemType)) { 766 // arrayType can be incomplete if we're initializing a flexible 767 // array member. There's nothing we can do with the completed 768 // type here, though. 769 770 if (Expr *Str = IsStringInit(expr, arrayType, SemaRef.Context)) { 771 if (!VerifyOnly) { 772 CheckStringInit(Str, ElemType, arrayType, SemaRef); 773 UpdateStructuredListElement(StructuredList, StructuredIndex, Str); 774 } 775 ++Index; 776 return; 777 } 778 779 // Fall through for subaggregate initialization. 780 781 } else if (SemaRef.getLangOptions().CPlusPlus) { 782 // C++ [dcl.init.aggr]p12: 783 // All implicit type conversions (clause 4) are considered when 784 // initializing the aggregate member with an initializer from 785 // an initializer-list. If the initializer can initialize a 786 // member, the member is initialized. [...] 787 788 // FIXME: Better EqualLoc? 789 InitializationKind Kind = 790 InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation()); 791 InitializationSequence Seq(SemaRef, Entity, Kind, &expr, 1); 792 793 if (Seq) { 794 if (!VerifyOnly) { 795 ExprResult Result = 796 Seq.Perform(SemaRef, Entity, Kind, MultiExprArg(&expr, 1)); 797 if (Result.isInvalid()) 798 hadError = true; 799 800 UpdateStructuredListElement(StructuredList, StructuredIndex, 801 Result.takeAs<Expr>()); 802 } 803 ++Index; 804 return; 805 } 806 807 // Fall through for subaggregate initialization 808 } else { 809 // C99 6.7.8p13: 810 // 811 // The initializer for a structure or union object that has 812 // automatic storage duration shall be either an initializer 813 // list as described below, or a single expression that has 814 // compatible structure or union type. In the latter case, the 815 // initial value of the object, including unnamed members, is 816 // that of the expression. 817 ExprResult ExprRes = SemaRef.Owned(expr); 818 if ((ElemType->isRecordType() || ElemType->isVectorType()) && 819 SemaRef.CheckSingleAssignmentConstraints(ElemType, ExprRes, 820 !VerifyOnly) 821 == Sema::Compatible) { 822 if (ExprRes.isInvalid()) 823 hadError = true; 824 else { 825 ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.take()); 826 if (ExprRes.isInvalid()) 827 hadError = true; 828 } 829 UpdateStructuredListElement(StructuredList, StructuredIndex, 830 ExprRes.takeAs<Expr>()); 831 ++Index; 832 return; 833 } 834 ExprRes.release(); 835 // Fall through for subaggregate initialization 836 } 837 838 // C++ [dcl.init.aggr]p12: 839 // 840 // [...] Otherwise, if the member is itself a non-empty 841 // subaggregate, brace elision is assumed and the initializer is 842 // considered for the initialization of the first member of 843 // the subaggregate. 844 if (!SemaRef.getLangOptions().OpenCL && 845 (ElemType->isAggregateType() || ElemType->isVectorType())) { 846 CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList, 847 StructuredIndex); 848 ++StructuredIndex; 849 } else { 850 if (!VerifyOnly) { 851 // We cannot initialize this element, so let 852 // PerformCopyInitialization produce the appropriate diagnostic. 853 SemaRef.PerformCopyInitialization(Entity, SourceLocation(), 854 SemaRef.Owned(expr), 855 /*TopLevelOfInitList=*/true); 856 } 857 hadError = true; 858 ++Index; 859 ++StructuredIndex; 860 } 861 } 862 863 void InitListChecker::CheckComplexType(const InitializedEntity &Entity, 864 InitListExpr *IList, QualType DeclType, 865 unsigned &Index, 866 InitListExpr *StructuredList, 867 unsigned &StructuredIndex) { 868 assert(Index == 0 && "Index in explicit init list must be zero"); 869 870 // As an extension, clang supports complex initializers, which initialize 871 // a complex number component-wise. When an explicit initializer list for 872 // a complex number contains two two initializers, this extension kicks in: 873 // it exepcts the initializer list to contain two elements convertible to 874 // the element type of the complex type. The first element initializes 875 // the real part, and the second element intitializes the imaginary part. 876 877 if (IList->getNumInits() != 2) 878 return CheckScalarType(Entity, IList, DeclType, Index, StructuredList, 879 StructuredIndex); 880 881 // This is an extension in C. (The builtin _Complex type does not exist 882 // in the C++ standard.) 883 if (!SemaRef.getLangOptions().CPlusPlus && !VerifyOnly) 884 SemaRef.Diag(IList->getLocStart(), diag::ext_complex_component_init) 885 << IList->getSourceRange(); 886 887 // Initialize the complex number. 888 QualType elementType = DeclType->getAs<ComplexType>()->getElementType(); 889 InitializedEntity ElementEntity = 890 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 891 892 for (unsigned i = 0; i < 2; ++i) { 893 ElementEntity.setElementIndex(Index); 894 CheckSubElementType(ElementEntity, IList, elementType, Index, 895 StructuredList, StructuredIndex); 896 } 897 } 898 899 900 void InitListChecker::CheckScalarType(const InitializedEntity &Entity, 901 InitListExpr *IList, QualType DeclType, 902 unsigned &Index, 903 InitListExpr *StructuredList, 904 unsigned &StructuredIndex) { 905 if (Index >= IList->getNumInits()) { 906 if (!VerifyOnly) 907 SemaRef.Diag(IList->getLocStart(), 908 SemaRef.getLangOptions().CPlusPlus0x ? 909 diag::warn_cxx98_compat_empty_scalar_initializer : 910 diag::err_empty_scalar_initializer) 911 << IList->getSourceRange(); 912 hadError = !SemaRef.getLangOptions().CPlusPlus0x; 913 ++Index; 914 ++StructuredIndex; 915 return; 916 } 917 918 Expr *expr = IList->getInit(Index); 919 if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) { 920 if (!VerifyOnly) 921 SemaRef.Diag(SubIList->getLocStart(), 922 diag::warn_many_braces_around_scalar_init) 923 << SubIList->getSourceRange(); 924 925 CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList, 926 StructuredIndex); 927 return; 928 } else if (isa<DesignatedInitExpr>(expr)) { 929 if (!VerifyOnly) 930 SemaRef.Diag(expr->getSourceRange().getBegin(), 931 diag::err_designator_for_scalar_init) 932 << DeclType << expr->getSourceRange(); 933 hadError = true; 934 ++Index; 935 ++StructuredIndex; 936 return; 937 } 938 939 if (VerifyOnly) { 940 if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr))) 941 hadError = true; 942 ++Index; 943 return; 944 } 945 946 ExprResult Result = 947 SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(), 948 SemaRef.Owned(expr), 949 /*TopLevelOfInitList=*/true); 950 951 Expr *ResultExpr = 0; 952 953 if (Result.isInvalid()) 954 hadError = true; // types weren't compatible. 955 else { 956 ResultExpr = Result.takeAs<Expr>(); 957 958 if (ResultExpr != expr) { 959 // The type was promoted, update initializer list. 960 IList->setInit(Index, ResultExpr); 961 } 962 } 963 if (hadError) 964 ++StructuredIndex; 965 else 966 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr); 967 ++Index; 968 } 969 970 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity, 971 InitListExpr *IList, QualType DeclType, 972 unsigned &Index, 973 InitListExpr *StructuredList, 974 unsigned &StructuredIndex) { 975 if (Index >= IList->getNumInits()) { 976 // FIXME: It would be wonderful if we could point at the actual member. In 977 // general, it would be useful to pass location information down the stack, 978 // so that we know the location (or decl) of the "current object" being 979 // initialized. 980 if (!VerifyOnly) 981 SemaRef.Diag(IList->getLocStart(), 982 diag::err_init_reference_member_uninitialized) 983 << DeclType 984 << IList->getSourceRange(); 985 hadError = true; 986 ++Index; 987 ++StructuredIndex; 988 return; 989 } 990 991 Expr *expr = IList->getInit(Index); 992 if (isa<InitListExpr>(expr) && !SemaRef.getLangOptions().CPlusPlus0x) { 993 if (!VerifyOnly) 994 SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list) 995 << DeclType << IList->getSourceRange(); 996 hadError = true; 997 ++Index; 998 ++StructuredIndex; 999 return; 1000 } 1001 1002 if (VerifyOnly) { 1003 if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr))) 1004 hadError = true; 1005 ++Index; 1006 return; 1007 } 1008 1009 ExprResult Result = 1010 SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(), 1011 SemaRef.Owned(expr), 1012 /*TopLevelOfInitList=*/true); 1013 1014 if (Result.isInvalid()) 1015 hadError = true; 1016 1017 expr = Result.takeAs<Expr>(); 1018 IList->setInit(Index, expr); 1019 1020 if (hadError) 1021 ++StructuredIndex; 1022 else 1023 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1024 ++Index; 1025 } 1026 1027 void InitListChecker::CheckVectorType(const InitializedEntity &Entity, 1028 InitListExpr *IList, QualType DeclType, 1029 unsigned &Index, 1030 InitListExpr *StructuredList, 1031 unsigned &StructuredIndex) { 1032 const VectorType *VT = DeclType->getAs<VectorType>(); 1033 unsigned maxElements = VT->getNumElements(); 1034 unsigned numEltsInit = 0; 1035 QualType elementType = VT->getElementType(); 1036 1037 if (Index >= IList->getNumInits()) { 1038 // Make sure the element type can be value-initialized. 1039 if (VerifyOnly) 1040 CheckValueInitializable( 1041 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity)); 1042 return; 1043 } 1044 1045 if (!SemaRef.getLangOptions().OpenCL) { 1046 // If the initializing element is a vector, try to copy-initialize 1047 // instead of breaking it apart (which is doomed to failure anyway). 1048 Expr *Init = IList->getInit(Index); 1049 if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) { 1050 if (VerifyOnly) { 1051 if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(Init))) 1052 hadError = true; 1053 ++Index; 1054 return; 1055 } 1056 1057 ExprResult Result = 1058 SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(), 1059 SemaRef.Owned(Init), 1060 /*TopLevelOfInitList=*/true); 1061 1062 Expr *ResultExpr = 0; 1063 if (Result.isInvalid()) 1064 hadError = true; // types weren't compatible. 1065 else { 1066 ResultExpr = Result.takeAs<Expr>(); 1067 1068 if (ResultExpr != Init) { 1069 // The type was promoted, update initializer list. 1070 IList->setInit(Index, ResultExpr); 1071 } 1072 } 1073 if (hadError) 1074 ++StructuredIndex; 1075 else 1076 UpdateStructuredListElement(StructuredList, StructuredIndex, 1077 ResultExpr); 1078 ++Index; 1079 return; 1080 } 1081 1082 InitializedEntity ElementEntity = 1083 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1084 1085 for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) { 1086 // Don't attempt to go past the end of the init list 1087 if (Index >= IList->getNumInits()) { 1088 if (VerifyOnly) 1089 CheckValueInitializable(ElementEntity); 1090 break; 1091 } 1092 1093 ElementEntity.setElementIndex(Index); 1094 CheckSubElementType(ElementEntity, IList, elementType, Index, 1095 StructuredList, StructuredIndex); 1096 } 1097 return; 1098 } 1099 1100 InitializedEntity ElementEntity = 1101 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1102 1103 // OpenCL initializers allows vectors to be constructed from vectors. 1104 for (unsigned i = 0; i < maxElements; ++i) { 1105 // Don't attempt to go past the end of the init list 1106 if (Index >= IList->getNumInits()) 1107 break; 1108 1109 ElementEntity.setElementIndex(Index); 1110 1111 QualType IType = IList->getInit(Index)->getType(); 1112 if (!IType->isVectorType()) { 1113 CheckSubElementType(ElementEntity, IList, elementType, Index, 1114 StructuredList, StructuredIndex); 1115 ++numEltsInit; 1116 } else { 1117 QualType VecType; 1118 const VectorType *IVT = IType->getAs<VectorType>(); 1119 unsigned numIElts = IVT->getNumElements(); 1120 1121 if (IType->isExtVectorType()) 1122 VecType = SemaRef.Context.getExtVectorType(elementType, numIElts); 1123 else 1124 VecType = SemaRef.Context.getVectorType(elementType, numIElts, 1125 IVT->getVectorKind()); 1126 CheckSubElementType(ElementEntity, IList, VecType, Index, 1127 StructuredList, StructuredIndex); 1128 numEltsInit += numIElts; 1129 } 1130 } 1131 1132 // OpenCL requires all elements to be initialized. 1133 if (numEltsInit != maxElements) { 1134 if (!VerifyOnly) 1135 SemaRef.Diag(IList->getSourceRange().getBegin(), 1136 diag::err_vector_incorrect_num_initializers) 1137 << (numEltsInit < maxElements) << maxElements << numEltsInit; 1138 hadError = true; 1139 } 1140 } 1141 1142 void InitListChecker::CheckArrayType(const InitializedEntity &Entity, 1143 InitListExpr *IList, QualType &DeclType, 1144 llvm::APSInt elementIndex, 1145 bool SubobjectIsDesignatorContext, 1146 unsigned &Index, 1147 InitListExpr *StructuredList, 1148 unsigned &StructuredIndex) { 1149 const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType); 1150 1151 // Check for the special-case of initializing an array with a string. 1152 if (Index < IList->getNumInits()) { 1153 if (Expr *Str = IsStringInit(IList->getInit(Index), arrayType, 1154 SemaRef.Context)) { 1155 // We place the string literal directly into the resulting 1156 // initializer list. This is the only place where the structure 1157 // of the structured initializer list doesn't match exactly, 1158 // because doing so would involve allocating one character 1159 // constant for each string. 1160 if (!VerifyOnly) { 1161 CheckStringInit(Str, DeclType, arrayType, SemaRef); 1162 UpdateStructuredListElement(StructuredList, StructuredIndex, Str); 1163 StructuredList->resizeInits(SemaRef.Context, StructuredIndex); 1164 } 1165 ++Index; 1166 return; 1167 } 1168 } 1169 if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) { 1170 // Check for VLAs; in standard C it would be possible to check this 1171 // earlier, but I don't know where clang accepts VLAs (gcc accepts 1172 // them in all sorts of strange places). 1173 if (!VerifyOnly) 1174 SemaRef.Diag(VAT->getSizeExpr()->getLocStart(), 1175 diag::err_variable_object_no_init) 1176 << VAT->getSizeExpr()->getSourceRange(); 1177 hadError = true; 1178 ++Index; 1179 ++StructuredIndex; 1180 return; 1181 } 1182 1183 // We might know the maximum number of elements in advance. 1184 llvm::APSInt maxElements(elementIndex.getBitWidth(), 1185 elementIndex.isUnsigned()); 1186 bool maxElementsKnown = false; 1187 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) { 1188 maxElements = CAT->getSize(); 1189 elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth()); 1190 elementIndex.setIsUnsigned(maxElements.isUnsigned()); 1191 maxElementsKnown = true; 1192 } 1193 1194 QualType elementType = arrayType->getElementType(); 1195 while (Index < IList->getNumInits()) { 1196 Expr *Init = IList->getInit(Index); 1197 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { 1198 // If we're not the subobject that matches up with the '{' for 1199 // the designator, we shouldn't be handling the 1200 // designator. Return immediately. 1201 if (!SubobjectIsDesignatorContext) 1202 return; 1203 1204 // Handle this designated initializer. elementIndex will be 1205 // updated to be the next array element we'll initialize. 1206 if (CheckDesignatedInitializer(Entity, IList, DIE, 0, 1207 DeclType, 0, &elementIndex, Index, 1208 StructuredList, StructuredIndex, true, 1209 false)) { 1210 hadError = true; 1211 continue; 1212 } 1213 1214 if (elementIndex.getBitWidth() > maxElements.getBitWidth()) 1215 maxElements = maxElements.extend(elementIndex.getBitWidth()); 1216 else if (elementIndex.getBitWidth() < maxElements.getBitWidth()) 1217 elementIndex = elementIndex.extend(maxElements.getBitWidth()); 1218 elementIndex.setIsUnsigned(maxElements.isUnsigned()); 1219 1220 // If the array is of incomplete type, keep track of the number of 1221 // elements in the initializer. 1222 if (!maxElementsKnown && elementIndex > maxElements) 1223 maxElements = elementIndex; 1224 1225 continue; 1226 } 1227 1228 // If we know the maximum number of elements, and we've already 1229 // hit it, stop consuming elements in the initializer list. 1230 if (maxElementsKnown && elementIndex == maxElements) 1231 break; 1232 1233 InitializedEntity ElementEntity = 1234 InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex, 1235 Entity); 1236 // Check this element. 1237 CheckSubElementType(ElementEntity, IList, elementType, Index, 1238 StructuredList, StructuredIndex); 1239 ++elementIndex; 1240 1241 // If the array is of incomplete type, keep track of the number of 1242 // elements in the initializer. 1243 if (!maxElementsKnown && elementIndex > maxElements) 1244 maxElements = elementIndex; 1245 } 1246 if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) { 1247 // If this is an incomplete array type, the actual type needs to 1248 // be calculated here. 1249 llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned()); 1250 if (maxElements == Zero) { 1251 // Sizing an array implicitly to zero is not allowed by ISO C, 1252 // but is supported by GNU. 1253 SemaRef.Diag(IList->getLocStart(), 1254 diag::ext_typecheck_zero_array_size); 1255 } 1256 1257 DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements, 1258 ArrayType::Normal, 0); 1259 } 1260 if (!hadError && VerifyOnly) { 1261 // Check if there are any members of the array that get value-initialized. 1262 // If so, check if doing that is possible. 1263 // FIXME: This needs to detect holes left by designated initializers too. 1264 if (maxElementsKnown && elementIndex < maxElements) 1265 CheckValueInitializable(InitializedEntity::InitializeElement( 1266 SemaRef.Context, 0, Entity)); 1267 } 1268 } 1269 1270 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity, 1271 Expr *InitExpr, 1272 FieldDecl *Field, 1273 bool TopLevelObject) { 1274 // Handle GNU flexible array initializers. 1275 unsigned FlexArrayDiag; 1276 if (isa<InitListExpr>(InitExpr) && 1277 cast<InitListExpr>(InitExpr)->getNumInits() == 0) { 1278 // Empty flexible array init always allowed as an extension 1279 FlexArrayDiag = diag::ext_flexible_array_init; 1280 } else if (SemaRef.getLangOptions().CPlusPlus) { 1281 // Disallow flexible array init in C++; it is not required for gcc 1282 // compatibility, and it needs work to IRGen correctly in general. 1283 FlexArrayDiag = diag::err_flexible_array_init; 1284 } else if (!TopLevelObject) { 1285 // Disallow flexible array init on non-top-level object 1286 FlexArrayDiag = diag::err_flexible_array_init; 1287 } else if (Entity.getKind() != InitializedEntity::EK_Variable) { 1288 // Disallow flexible array init on anything which is not a variable. 1289 FlexArrayDiag = diag::err_flexible_array_init; 1290 } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) { 1291 // Disallow flexible array init on local variables. 1292 FlexArrayDiag = diag::err_flexible_array_init; 1293 } else { 1294 // Allow other cases. 1295 FlexArrayDiag = diag::ext_flexible_array_init; 1296 } 1297 1298 if (!VerifyOnly) { 1299 SemaRef.Diag(InitExpr->getSourceRange().getBegin(), 1300 FlexArrayDiag) 1301 << InitExpr->getSourceRange().getBegin(); 1302 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 1303 << Field; 1304 } 1305 1306 return FlexArrayDiag != diag::ext_flexible_array_init; 1307 } 1308 1309 void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity, 1310 InitListExpr *IList, 1311 QualType DeclType, 1312 RecordDecl::field_iterator Field, 1313 bool SubobjectIsDesignatorContext, 1314 unsigned &Index, 1315 InitListExpr *StructuredList, 1316 unsigned &StructuredIndex, 1317 bool TopLevelObject) { 1318 RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl(); 1319 1320 // If the record is invalid, some of it's members are invalid. To avoid 1321 // confusion, we forgo checking the intializer for the entire record. 1322 if (structDecl->isInvalidDecl()) { 1323 hadError = true; 1324 return; 1325 } 1326 1327 if (DeclType->isUnionType() && IList->getNumInits() == 0) { 1328 // Value-initialize the first named member of the union. 1329 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl(); 1330 for (RecordDecl::field_iterator FieldEnd = RD->field_end(); 1331 Field != FieldEnd; ++Field) { 1332 if (Field->getDeclName()) { 1333 if (VerifyOnly) 1334 CheckValueInitializable( 1335 InitializedEntity::InitializeMember(*Field, &Entity)); 1336 else 1337 StructuredList->setInitializedFieldInUnion(*Field); 1338 break; 1339 } 1340 } 1341 return; 1342 } 1343 1344 // If structDecl is a forward declaration, this loop won't do 1345 // anything except look at designated initializers; That's okay, 1346 // because an error should get printed out elsewhere. It might be 1347 // worthwhile to skip over the rest of the initializer, though. 1348 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl(); 1349 RecordDecl::field_iterator FieldEnd = RD->field_end(); 1350 bool InitializedSomething = false; 1351 bool CheckForMissingFields = true; 1352 while (Index < IList->getNumInits()) { 1353 Expr *Init = IList->getInit(Index); 1354 1355 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { 1356 // If we're not the subobject that matches up with the '{' for 1357 // the designator, we shouldn't be handling the 1358 // designator. Return immediately. 1359 if (!SubobjectIsDesignatorContext) 1360 return; 1361 1362 // Handle this designated initializer. Field will be updated to 1363 // the next field that we'll be initializing. 1364 if (CheckDesignatedInitializer(Entity, IList, DIE, 0, 1365 DeclType, &Field, 0, Index, 1366 StructuredList, StructuredIndex, 1367 true, TopLevelObject)) 1368 hadError = true; 1369 1370 InitializedSomething = true; 1371 1372 // Disable check for missing fields when designators are used. 1373 // This matches gcc behaviour. 1374 CheckForMissingFields = false; 1375 continue; 1376 } 1377 1378 if (Field == FieldEnd) { 1379 // We've run out of fields. We're done. 1380 break; 1381 } 1382 1383 // We've already initialized a member of a union. We're done. 1384 if (InitializedSomething && DeclType->isUnionType()) 1385 break; 1386 1387 // If we've hit the flexible array member at the end, we're done. 1388 if (Field->getType()->isIncompleteArrayType()) 1389 break; 1390 1391 if (Field->isUnnamedBitfield()) { 1392 // Don't initialize unnamed bitfields, e.g. "int : 20;" 1393 ++Field; 1394 continue; 1395 } 1396 1397 // Make sure we can use this declaration. 1398 bool InvalidUse; 1399 if (VerifyOnly) 1400 InvalidUse = !SemaRef.CanUseDecl(*Field); 1401 else 1402 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, 1403 IList->getInit(Index)->getLocStart()); 1404 if (InvalidUse) { 1405 ++Index; 1406 ++Field; 1407 hadError = true; 1408 continue; 1409 } 1410 1411 InitializedEntity MemberEntity = 1412 InitializedEntity::InitializeMember(*Field, &Entity); 1413 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 1414 StructuredList, StructuredIndex); 1415 InitializedSomething = true; 1416 1417 if (DeclType->isUnionType() && !VerifyOnly) { 1418 // Initialize the first field within the union. 1419 StructuredList->setInitializedFieldInUnion(*Field); 1420 } 1421 1422 ++Field; 1423 } 1424 1425 // Emit warnings for missing struct field initializers. 1426 if (!VerifyOnly && InitializedSomething && CheckForMissingFields && 1427 Field != FieldEnd && !Field->getType()->isIncompleteArrayType() && 1428 !DeclType->isUnionType()) { 1429 // It is possible we have one or more unnamed bitfields remaining. 1430 // Find first (if any) named field and emit warning. 1431 for (RecordDecl::field_iterator it = Field, end = RD->field_end(); 1432 it != end; ++it) { 1433 if (!it->isUnnamedBitfield()) { 1434 SemaRef.Diag(IList->getSourceRange().getEnd(), 1435 diag::warn_missing_field_initializers) << it->getName(); 1436 break; 1437 } 1438 } 1439 } 1440 1441 // Check that any remaining fields can be value-initialized. 1442 if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() && 1443 !Field->getType()->isIncompleteArrayType()) { 1444 // FIXME: Should check for holes left by designated initializers too. 1445 for (; Field != FieldEnd && !hadError; ++Field) { 1446 if (!Field->isUnnamedBitfield()) 1447 CheckValueInitializable( 1448 InitializedEntity::InitializeMember(*Field, &Entity)); 1449 } 1450 } 1451 1452 if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() || 1453 Index >= IList->getNumInits()) 1454 return; 1455 1456 if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field, 1457 TopLevelObject)) { 1458 hadError = true; 1459 ++Index; 1460 return; 1461 } 1462 1463 InitializedEntity MemberEntity = 1464 InitializedEntity::InitializeMember(*Field, &Entity); 1465 1466 if (isa<InitListExpr>(IList->getInit(Index))) 1467 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 1468 StructuredList, StructuredIndex); 1469 else 1470 CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index, 1471 StructuredList, StructuredIndex); 1472 } 1473 1474 /// \brief Expand a field designator that refers to a member of an 1475 /// anonymous struct or union into a series of field designators that 1476 /// refers to the field within the appropriate subobject. 1477 /// 1478 static void ExpandAnonymousFieldDesignator(Sema &SemaRef, 1479 DesignatedInitExpr *DIE, 1480 unsigned DesigIdx, 1481 IndirectFieldDecl *IndirectField) { 1482 typedef DesignatedInitExpr::Designator Designator; 1483 1484 // Build the replacement designators. 1485 SmallVector<Designator, 4> Replacements; 1486 for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(), 1487 PE = IndirectField->chain_end(); PI != PE; ++PI) { 1488 if (PI + 1 == PE) 1489 Replacements.push_back(Designator((IdentifierInfo *)0, 1490 DIE->getDesignator(DesigIdx)->getDotLoc(), 1491 DIE->getDesignator(DesigIdx)->getFieldLoc())); 1492 else 1493 Replacements.push_back(Designator((IdentifierInfo *)0, SourceLocation(), 1494 SourceLocation())); 1495 assert(isa<FieldDecl>(*PI)); 1496 Replacements.back().setField(cast<FieldDecl>(*PI)); 1497 } 1498 1499 // Expand the current designator into the set of replacement 1500 // designators, so we have a full subobject path down to where the 1501 // member of the anonymous struct/union is actually stored. 1502 DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0], 1503 &Replacements[0] + Replacements.size()); 1504 } 1505 1506 /// \brief Given an implicit anonymous field, search the IndirectField that 1507 /// corresponds to FieldName. 1508 static IndirectFieldDecl *FindIndirectFieldDesignator(FieldDecl *AnonField, 1509 IdentifierInfo *FieldName) { 1510 assert(AnonField->isAnonymousStructOrUnion()); 1511 Decl *NextDecl = AnonField->getNextDeclInContext(); 1512 while (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(NextDecl)) { 1513 if (FieldName && FieldName == IF->getAnonField()->getIdentifier()) 1514 return IF; 1515 NextDecl = NextDecl->getNextDeclInContext(); 1516 } 1517 return 0; 1518 } 1519 1520 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef, 1521 DesignatedInitExpr *DIE) { 1522 unsigned NumIndexExprs = DIE->getNumSubExprs() - 1; 1523 SmallVector<Expr*, 4> IndexExprs(NumIndexExprs); 1524 for (unsigned I = 0; I < NumIndexExprs; ++I) 1525 IndexExprs[I] = DIE->getSubExpr(I + 1); 1526 return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators_begin(), 1527 DIE->size(), IndexExprs.data(), 1528 NumIndexExprs, DIE->getEqualOrColonLoc(), 1529 DIE->usesGNUSyntax(), DIE->getInit()); 1530 } 1531 1532 /// @brief Check the well-formedness of a C99 designated initializer. 1533 /// 1534 /// Determines whether the designated initializer @p DIE, which 1535 /// resides at the given @p Index within the initializer list @p 1536 /// IList, is well-formed for a current object of type @p DeclType 1537 /// (C99 6.7.8). The actual subobject that this designator refers to 1538 /// within the current subobject is returned in either 1539 /// @p NextField or @p NextElementIndex (whichever is appropriate). 1540 /// 1541 /// @param IList The initializer list in which this designated 1542 /// initializer occurs. 1543 /// 1544 /// @param DIE The designated initializer expression. 1545 /// 1546 /// @param DesigIdx The index of the current designator. 1547 /// 1548 /// @param DeclType The type of the "current object" (C99 6.7.8p17), 1549 /// into which the designation in @p DIE should refer. 1550 /// 1551 /// @param NextField If non-NULL and the first designator in @p DIE is 1552 /// a field, this will be set to the field declaration corresponding 1553 /// to the field named by the designator. 1554 /// 1555 /// @param NextElementIndex If non-NULL and the first designator in @p 1556 /// DIE is an array designator or GNU array-range designator, this 1557 /// will be set to the last index initialized by this designator. 1558 /// 1559 /// @param Index Index into @p IList where the designated initializer 1560 /// @p DIE occurs. 1561 /// 1562 /// @param StructuredList The initializer list expression that 1563 /// describes all of the subobject initializers in the order they'll 1564 /// actually be initialized. 1565 /// 1566 /// @returns true if there was an error, false otherwise. 1567 bool 1568 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity, 1569 InitListExpr *IList, 1570 DesignatedInitExpr *DIE, 1571 unsigned DesigIdx, 1572 QualType &CurrentObjectType, 1573 RecordDecl::field_iterator *NextField, 1574 llvm::APSInt *NextElementIndex, 1575 unsigned &Index, 1576 InitListExpr *StructuredList, 1577 unsigned &StructuredIndex, 1578 bool FinishSubobjectInit, 1579 bool TopLevelObject) { 1580 if (DesigIdx == DIE->size()) { 1581 // Check the actual initialization for the designated object type. 1582 bool prevHadError = hadError; 1583 1584 // Temporarily remove the designator expression from the 1585 // initializer list that the child calls see, so that we don't try 1586 // to re-process the designator. 1587 unsigned OldIndex = Index; 1588 IList->setInit(OldIndex, DIE->getInit()); 1589 1590 CheckSubElementType(Entity, IList, CurrentObjectType, Index, 1591 StructuredList, StructuredIndex); 1592 1593 // Restore the designated initializer expression in the syntactic 1594 // form of the initializer list. 1595 if (IList->getInit(OldIndex) != DIE->getInit()) 1596 DIE->setInit(IList->getInit(OldIndex)); 1597 IList->setInit(OldIndex, DIE); 1598 1599 return hadError && !prevHadError; 1600 } 1601 1602 DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx); 1603 bool IsFirstDesignator = (DesigIdx == 0); 1604 if (!VerifyOnly) { 1605 assert((IsFirstDesignator || StructuredList) && 1606 "Need a non-designated initializer list to start from"); 1607 1608 // Determine the structural initializer list that corresponds to the 1609 // current subobject. 1610 StructuredList = IsFirstDesignator? SyntacticToSemantic[IList] 1611 : getStructuredSubobjectInit(IList, Index, CurrentObjectType, 1612 StructuredList, StructuredIndex, 1613 SourceRange(D->getStartLocation(), 1614 DIE->getSourceRange().getEnd())); 1615 assert(StructuredList && "Expected a structured initializer list"); 1616 } 1617 1618 if (D->isFieldDesignator()) { 1619 // C99 6.7.8p7: 1620 // 1621 // If a designator has the form 1622 // 1623 // . identifier 1624 // 1625 // then the current object (defined below) shall have 1626 // structure or union type and the identifier shall be the 1627 // name of a member of that type. 1628 const RecordType *RT = CurrentObjectType->getAs<RecordType>(); 1629 if (!RT) { 1630 SourceLocation Loc = D->getDotLoc(); 1631 if (Loc.isInvalid()) 1632 Loc = D->getFieldLoc(); 1633 if (!VerifyOnly) 1634 SemaRef.Diag(Loc, diag::err_field_designator_non_aggr) 1635 << SemaRef.getLangOptions().CPlusPlus << CurrentObjectType; 1636 ++Index; 1637 return true; 1638 } 1639 1640 // Note: we perform a linear search of the fields here, despite 1641 // the fact that we have a faster lookup method, because we always 1642 // need to compute the field's index. 1643 FieldDecl *KnownField = D->getField(); 1644 IdentifierInfo *FieldName = D->getFieldName(); 1645 unsigned FieldIndex = 0; 1646 RecordDecl::field_iterator 1647 Field = RT->getDecl()->field_begin(), 1648 FieldEnd = RT->getDecl()->field_end(); 1649 for (; Field != FieldEnd; ++Field) { 1650 if (Field->isUnnamedBitfield()) 1651 continue; 1652 1653 // If we find a field representing an anonymous field, look in the 1654 // IndirectFieldDecl that follow for the designated initializer. 1655 if (!KnownField && Field->isAnonymousStructOrUnion()) { 1656 if (IndirectFieldDecl *IF = 1657 FindIndirectFieldDesignator(*Field, FieldName)) { 1658 // In verify mode, don't modify the original. 1659 if (VerifyOnly) 1660 DIE = CloneDesignatedInitExpr(SemaRef, DIE); 1661 ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IF); 1662 D = DIE->getDesignator(DesigIdx); 1663 break; 1664 } 1665 } 1666 if (KnownField && KnownField == *Field) 1667 break; 1668 if (FieldName && FieldName == Field->getIdentifier()) 1669 break; 1670 1671 ++FieldIndex; 1672 } 1673 1674 if (Field == FieldEnd) { 1675 if (VerifyOnly) { 1676 ++Index; 1677 return true; // No typo correction when just trying this out. 1678 } 1679 1680 // There was no normal field in the struct with the designated 1681 // name. Perform another lookup for this name, which may find 1682 // something that we can't designate (e.g., a member function), 1683 // may find nothing, or may find a member of an anonymous 1684 // struct/union. 1685 DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName); 1686 FieldDecl *ReplacementField = 0; 1687 if (Lookup.first == Lookup.second) { 1688 // Name lookup didn't find anything. Determine whether this 1689 // was a typo for another field name. 1690 LookupResult R(SemaRef, FieldName, D->getFieldLoc(), 1691 Sema::LookupMemberName); 1692 TypoCorrection Corrected = SemaRef.CorrectTypo( 1693 DeclarationNameInfo(FieldName, D->getFieldLoc()), 1694 Sema::LookupMemberName, /*Scope=*/NULL, /*SS=*/NULL, 1695 RT->getDecl(), false, Sema::CTC_NoKeywords); 1696 if ((ReplacementField = Corrected.getCorrectionDeclAs<FieldDecl>()) && 1697 ReplacementField->getDeclContext()->getRedeclContext() 1698 ->Equals(RT->getDecl())) { 1699 std::string CorrectedStr( 1700 Corrected.getAsString(SemaRef.getLangOptions())); 1701 std::string CorrectedQuotedStr( 1702 Corrected.getQuoted(SemaRef.getLangOptions())); 1703 SemaRef.Diag(D->getFieldLoc(), 1704 diag::err_field_designator_unknown_suggest) 1705 << FieldName << CurrentObjectType << CorrectedQuotedStr 1706 << FixItHint::CreateReplacement(D->getFieldLoc(), CorrectedStr); 1707 SemaRef.Diag(ReplacementField->getLocation(), 1708 diag::note_previous_decl) << CorrectedQuotedStr; 1709 hadError = true; 1710 } else { 1711 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown) 1712 << FieldName << CurrentObjectType; 1713 ++Index; 1714 return true; 1715 } 1716 } 1717 1718 if (!ReplacementField) { 1719 // Name lookup found something, but it wasn't a field. 1720 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield) 1721 << FieldName; 1722 SemaRef.Diag((*Lookup.first)->getLocation(), 1723 diag::note_field_designator_found); 1724 ++Index; 1725 return true; 1726 } 1727 1728 if (!KnownField) { 1729 // The replacement field comes from typo correction; find it 1730 // in the list of fields. 1731 FieldIndex = 0; 1732 Field = RT->getDecl()->field_begin(); 1733 for (; Field != FieldEnd; ++Field) { 1734 if (Field->isUnnamedBitfield()) 1735 continue; 1736 1737 if (ReplacementField == *Field || 1738 Field->getIdentifier() == ReplacementField->getIdentifier()) 1739 break; 1740 1741 ++FieldIndex; 1742 } 1743 } 1744 } 1745 1746 // All of the fields of a union are located at the same place in 1747 // the initializer list. 1748 if (RT->getDecl()->isUnion()) { 1749 FieldIndex = 0; 1750 if (!VerifyOnly) 1751 StructuredList->setInitializedFieldInUnion(*Field); 1752 } 1753 1754 // Make sure we can use this declaration. 1755 bool InvalidUse; 1756 if (VerifyOnly) 1757 InvalidUse = !SemaRef.CanUseDecl(*Field); 1758 else 1759 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc()); 1760 if (InvalidUse) { 1761 ++Index; 1762 return true; 1763 } 1764 1765 if (!VerifyOnly) { 1766 // Update the designator with the field declaration. 1767 D->setField(*Field); 1768 1769 // Make sure that our non-designated initializer list has space 1770 // for a subobject corresponding to this field. 1771 if (FieldIndex >= StructuredList->getNumInits()) 1772 StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1); 1773 } 1774 1775 // This designator names a flexible array member. 1776 if (Field->getType()->isIncompleteArrayType()) { 1777 bool Invalid = false; 1778 if ((DesigIdx + 1) != DIE->size()) { 1779 // We can't designate an object within the flexible array 1780 // member (because GCC doesn't allow it). 1781 if (!VerifyOnly) { 1782 DesignatedInitExpr::Designator *NextD 1783 = DIE->getDesignator(DesigIdx + 1); 1784 SemaRef.Diag(NextD->getStartLocation(), 1785 diag::err_designator_into_flexible_array_member) 1786 << SourceRange(NextD->getStartLocation(), 1787 DIE->getSourceRange().getEnd()); 1788 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 1789 << *Field; 1790 } 1791 Invalid = true; 1792 } 1793 1794 if (!hadError && !isa<InitListExpr>(DIE->getInit()) && 1795 !isa<StringLiteral>(DIE->getInit())) { 1796 // The initializer is not an initializer list. 1797 if (!VerifyOnly) { 1798 SemaRef.Diag(DIE->getInit()->getSourceRange().getBegin(), 1799 diag::err_flexible_array_init_needs_braces) 1800 << DIE->getInit()->getSourceRange(); 1801 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 1802 << *Field; 1803 } 1804 Invalid = true; 1805 } 1806 1807 // Check GNU flexible array initializer. 1808 if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field, 1809 TopLevelObject)) 1810 Invalid = true; 1811 1812 if (Invalid) { 1813 ++Index; 1814 return true; 1815 } 1816 1817 // Initialize the array. 1818 bool prevHadError = hadError; 1819 unsigned newStructuredIndex = FieldIndex; 1820 unsigned OldIndex = Index; 1821 IList->setInit(Index, DIE->getInit()); 1822 1823 InitializedEntity MemberEntity = 1824 InitializedEntity::InitializeMember(*Field, &Entity); 1825 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 1826 StructuredList, newStructuredIndex); 1827 1828 IList->setInit(OldIndex, DIE); 1829 if (hadError && !prevHadError) { 1830 ++Field; 1831 ++FieldIndex; 1832 if (NextField) 1833 *NextField = Field; 1834 StructuredIndex = FieldIndex; 1835 return true; 1836 } 1837 } else { 1838 // Recurse to check later designated subobjects. 1839 QualType FieldType = (*Field)->getType(); 1840 unsigned newStructuredIndex = FieldIndex; 1841 1842 InitializedEntity MemberEntity = 1843 InitializedEntity::InitializeMember(*Field, &Entity); 1844 if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1, 1845 FieldType, 0, 0, Index, 1846 StructuredList, newStructuredIndex, 1847 true, false)) 1848 return true; 1849 } 1850 1851 // Find the position of the next field to be initialized in this 1852 // subobject. 1853 ++Field; 1854 ++FieldIndex; 1855 1856 // If this the first designator, our caller will continue checking 1857 // the rest of this struct/class/union subobject. 1858 if (IsFirstDesignator) { 1859 if (NextField) 1860 *NextField = Field; 1861 StructuredIndex = FieldIndex; 1862 return false; 1863 } 1864 1865 if (!FinishSubobjectInit) 1866 return false; 1867 1868 // We've already initialized something in the union; we're done. 1869 if (RT->getDecl()->isUnion()) 1870 return hadError; 1871 1872 // Check the remaining fields within this class/struct/union subobject. 1873 bool prevHadError = hadError; 1874 1875 CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index, 1876 StructuredList, FieldIndex); 1877 return hadError && !prevHadError; 1878 } 1879 1880 // C99 6.7.8p6: 1881 // 1882 // If a designator has the form 1883 // 1884 // [ constant-expression ] 1885 // 1886 // then the current object (defined below) shall have array 1887 // type and the expression shall be an integer constant 1888 // expression. If the array is of unknown size, any 1889 // nonnegative value is valid. 1890 // 1891 // Additionally, cope with the GNU extension that permits 1892 // designators of the form 1893 // 1894 // [ constant-expression ... constant-expression ] 1895 const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType); 1896 if (!AT) { 1897 if (!VerifyOnly) 1898 SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array) 1899 << CurrentObjectType; 1900 ++Index; 1901 return true; 1902 } 1903 1904 Expr *IndexExpr = 0; 1905 llvm::APSInt DesignatedStartIndex, DesignatedEndIndex; 1906 if (D->isArrayDesignator()) { 1907 IndexExpr = DIE->getArrayIndex(*D); 1908 DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context); 1909 DesignatedEndIndex = DesignatedStartIndex; 1910 } else { 1911 assert(D->isArrayRangeDesignator() && "Need array-range designator"); 1912 1913 DesignatedStartIndex = 1914 DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context); 1915 DesignatedEndIndex = 1916 DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context); 1917 IndexExpr = DIE->getArrayRangeEnd(*D); 1918 1919 // Codegen can't handle evaluating array range designators that have side 1920 // effects, because we replicate the AST value for each initialized element. 1921 // As such, set the sawArrayRangeDesignator() bit if we initialize multiple 1922 // elements with something that has a side effect, so codegen can emit an 1923 // "error unsupported" error instead of miscompiling the app. 1924 if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&& 1925 DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly) 1926 FullyStructuredList->sawArrayRangeDesignator(); 1927 } 1928 1929 if (isa<ConstantArrayType>(AT)) { 1930 llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false); 1931 DesignatedStartIndex 1932 = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth()); 1933 DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned()); 1934 DesignatedEndIndex 1935 = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth()); 1936 DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned()); 1937 if (DesignatedEndIndex >= MaxElements) { 1938 if (!VerifyOnly) 1939 SemaRef.Diag(IndexExpr->getSourceRange().getBegin(), 1940 diag::err_array_designator_too_large) 1941 << DesignatedEndIndex.toString(10) << MaxElements.toString(10) 1942 << IndexExpr->getSourceRange(); 1943 ++Index; 1944 return true; 1945 } 1946 } else { 1947 // Make sure the bit-widths and signedness match. 1948 if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth()) 1949 DesignatedEndIndex 1950 = DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth()); 1951 else if (DesignatedStartIndex.getBitWidth() < 1952 DesignatedEndIndex.getBitWidth()) 1953 DesignatedStartIndex 1954 = DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth()); 1955 DesignatedStartIndex.setIsUnsigned(true); 1956 DesignatedEndIndex.setIsUnsigned(true); 1957 } 1958 1959 // Make sure that our non-designated initializer list has space 1960 // for a subobject corresponding to this array element. 1961 if (!VerifyOnly && 1962 DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits()) 1963 StructuredList->resizeInits(SemaRef.Context, 1964 DesignatedEndIndex.getZExtValue() + 1); 1965 1966 // Repeatedly perform subobject initializations in the range 1967 // [DesignatedStartIndex, DesignatedEndIndex]. 1968 1969 // Move to the next designator 1970 unsigned ElementIndex = DesignatedStartIndex.getZExtValue(); 1971 unsigned OldIndex = Index; 1972 1973 InitializedEntity ElementEntity = 1974 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1975 1976 while (DesignatedStartIndex <= DesignatedEndIndex) { 1977 // Recurse to check later designated subobjects. 1978 QualType ElementType = AT->getElementType(); 1979 Index = OldIndex; 1980 1981 ElementEntity.setElementIndex(ElementIndex); 1982 if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1, 1983 ElementType, 0, 0, Index, 1984 StructuredList, ElementIndex, 1985 (DesignatedStartIndex == DesignatedEndIndex), 1986 false)) 1987 return true; 1988 1989 // Move to the next index in the array that we'll be initializing. 1990 ++DesignatedStartIndex; 1991 ElementIndex = DesignatedStartIndex.getZExtValue(); 1992 } 1993 1994 // If this the first designator, our caller will continue checking 1995 // the rest of this array subobject. 1996 if (IsFirstDesignator) { 1997 if (NextElementIndex) 1998 *NextElementIndex = DesignatedStartIndex; 1999 StructuredIndex = ElementIndex; 2000 return false; 2001 } 2002 2003 if (!FinishSubobjectInit) 2004 return false; 2005 2006 // Check the remaining elements within this array subobject. 2007 bool prevHadError = hadError; 2008 CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex, 2009 /*SubobjectIsDesignatorContext=*/false, Index, 2010 StructuredList, ElementIndex); 2011 return hadError && !prevHadError; 2012 } 2013 2014 // Get the structured initializer list for a subobject of type 2015 // @p CurrentObjectType. 2016 InitListExpr * 2017 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, 2018 QualType CurrentObjectType, 2019 InitListExpr *StructuredList, 2020 unsigned StructuredIndex, 2021 SourceRange InitRange) { 2022 if (VerifyOnly) 2023 return 0; // No structured list in verification-only mode. 2024 Expr *ExistingInit = 0; 2025 if (!StructuredList) 2026 ExistingInit = SyntacticToSemantic[IList]; 2027 else if (StructuredIndex < StructuredList->getNumInits()) 2028 ExistingInit = StructuredList->getInit(StructuredIndex); 2029 2030 if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit)) 2031 return Result; 2032 2033 if (ExistingInit) { 2034 // We are creating an initializer list that initializes the 2035 // subobjects of the current object, but there was already an 2036 // initialization that completely initialized the current 2037 // subobject, e.g., by a compound literal: 2038 // 2039 // struct X { int a, b; }; 2040 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; 2041 // 2042 // Here, xs[0].a == 0 and xs[0].b == 3, since the second, 2043 // designated initializer re-initializes the whole 2044 // subobject [0], overwriting previous initializers. 2045 SemaRef.Diag(InitRange.getBegin(), 2046 diag::warn_subobject_initializer_overrides) 2047 << InitRange; 2048 SemaRef.Diag(ExistingInit->getSourceRange().getBegin(), 2049 diag::note_previous_initializer) 2050 << /*FIXME:has side effects=*/0 2051 << ExistingInit->getSourceRange(); 2052 } 2053 2054 InitListExpr *Result 2055 = new (SemaRef.Context) InitListExpr(SemaRef.Context, 2056 InitRange.getBegin(), 0, 0, 2057 InitRange.getEnd()); 2058 2059 Result->setType(CurrentObjectType.getNonLValueExprType(SemaRef.Context)); 2060 2061 // Pre-allocate storage for the structured initializer list. 2062 unsigned NumElements = 0; 2063 unsigned NumInits = 0; 2064 bool GotNumInits = false; 2065 if (!StructuredList) { 2066 NumInits = IList->getNumInits(); 2067 GotNumInits = true; 2068 } else if (Index < IList->getNumInits()) { 2069 if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) { 2070 NumInits = SubList->getNumInits(); 2071 GotNumInits = true; 2072 } 2073 } 2074 2075 if (const ArrayType *AType 2076 = SemaRef.Context.getAsArrayType(CurrentObjectType)) { 2077 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) { 2078 NumElements = CAType->getSize().getZExtValue(); 2079 // Simple heuristic so that we don't allocate a very large 2080 // initializer with many empty entries at the end. 2081 if (GotNumInits && NumElements > NumInits) 2082 NumElements = 0; 2083 } 2084 } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>()) 2085 NumElements = VType->getNumElements(); 2086 else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) { 2087 RecordDecl *RDecl = RType->getDecl(); 2088 if (RDecl->isUnion()) 2089 NumElements = 1; 2090 else 2091 NumElements = std::distance(RDecl->field_begin(), 2092 RDecl->field_end()); 2093 } 2094 2095 Result->reserveInits(SemaRef.Context, NumElements); 2096 2097 // Link this new initializer list into the structured initializer 2098 // lists. 2099 if (StructuredList) 2100 StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result); 2101 else { 2102 Result->setSyntacticForm(IList); 2103 SyntacticToSemantic[IList] = Result; 2104 } 2105 2106 return Result; 2107 } 2108 2109 /// Update the initializer at index @p StructuredIndex within the 2110 /// structured initializer list to the value @p expr. 2111 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList, 2112 unsigned &StructuredIndex, 2113 Expr *expr) { 2114 // No structured initializer list to update 2115 if (!StructuredList) 2116 return; 2117 2118 if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context, 2119 StructuredIndex, expr)) { 2120 // This initializer overwrites a previous initializer. Warn. 2121 SemaRef.Diag(expr->getSourceRange().getBegin(), 2122 diag::warn_initializer_overrides) 2123 << expr->getSourceRange(); 2124 SemaRef.Diag(PrevInit->getSourceRange().getBegin(), 2125 diag::note_previous_initializer) 2126 << /*FIXME:has side effects=*/0 2127 << PrevInit->getSourceRange(); 2128 } 2129 2130 ++StructuredIndex; 2131 } 2132 2133 /// Check that the given Index expression is a valid array designator 2134 /// value. This is essentailly just a wrapper around 2135 /// VerifyIntegerConstantExpression that also checks for negative values 2136 /// and produces a reasonable diagnostic if there is a 2137 /// failure. Returns true if there was an error, false otherwise. If 2138 /// everything went okay, Value will receive the value of the constant 2139 /// expression. 2140 static bool 2141 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) { 2142 SourceLocation Loc = Index->getSourceRange().getBegin(); 2143 2144 // Make sure this is an integer constant expression. 2145 if (S.VerifyIntegerConstantExpression(Index, &Value)) 2146 return true; 2147 2148 if (Value.isSigned() && Value.isNegative()) 2149 return S.Diag(Loc, diag::err_array_designator_negative) 2150 << Value.toString(10) << Index->getSourceRange(); 2151 2152 Value.setIsUnsigned(true); 2153 return false; 2154 } 2155 2156 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig, 2157 SourceLocation Loc, 2158 bool GNUSyntax, 2159 ExprResult Init) { 2160 typedef DesignatedInitExpr::Designator ASTDesignator; 2161 2162 bool Invalid = false; 2163 SmallVector<ASTDesignator, 32> Designators; 2164 SmallVector<Expr *, 32> InitExpressions; 2165 2166 // Build designators and check array designator expressions. 2167 for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) { 2168 const Designator &D = Desig.getDesignator(Idx); 2169 switch (D.getKind()) { 2170 case Designator::FieldDesignator: 2171 Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(), 2172 D.getFieldLoc())); 2173 break; 2174 2175 case Designator::ArrayDesignator: { 2176 Expr *Index = static_cast<Expr *>(D.getArrayIndex()); 2177 llvm::APSInt IndexValue; 2178 if (!Index->isTypeDependent() && 2179 !Index->isValueDependent() && 2180 CheckArrayDesignatorExpr(*this, Index, IndexValue)) 2181 Invalid = true; 2182 else { 2183 Designators.push_back(ASTDesignator(InitExpressions.size(), 2184 D.getLBracketLoc(), 2185 D.getRBracketLoc())); 2186 InitExpressions.push_back(Index); 2187 } 2188 break; 2189 } 2190 2191 case Designator::ArrayRangeDesignator: { 2192 Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart()); 2193 Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd()); 2194 llvm::APSInt StartValue; 2195 llvm::APSInt EndValue; 2196 bool StartDependent = StartIndex->isTypeDependent() || 2197 StartIndex->isValueDependent(); 2198 bool EndDependent = EndIndex->isTypeDependent() || 2199 EndIndex->isValueDependent(); 2200 if ((!StartDependent && 2201 CheckArrayDesignatorExpr(*this, StartIndex, StartValue)) || 2202 (!EndDependent && 2203 CheckArrayDesignatorExpr(*this, EndIndex, EndValue))) 2204 Invalid = true; 2205 else { 2206 // Make sure we're comparing values with the same bit width. 2207 if (StartDependent || EndDependent) { 2208 // Nothing to compute. 2209 } else if (StartValue.getBitWidth() > EndValue.getBitWidth()) 2210 EndValue = EndValue.extend(StartValue.getBitWidth()); 2211 else if (StartValue.getBitWidth() < EndValue.getBitWidth()) 2212 StartValue = StartValue.extend(EndValue.getBitWidth()); 2213 2214 if (!StartDependent && !EndDependent && EndValue < StartValue) { 2215 Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range) 2216 << StartValue.toString(10) << EndValue.toString(10) 2217 << StartIndex->getSourceRange() << EndIndex->getSourceRange(); 2218 Invalid = true; 2219 } else { 2220 Designators.push_back(ASTDesignator(InitExpressions.size(), 2221 D.getLBracketLoc(), 2222 D.getEllipsisLoc(), 2223 D.getRBracketLoc())); 2224 InitExpressions.push_back(StartIndex); 2225 InitExpressions.push_back(EndIndex); 2226 } 2227 } 2228 break; 2229 } 2230 } 2231 } 2232 2233 if (Invalid || Init.isInvalid()) 2234 return ExprError(); 2235 2236 // Clear out the expressions within the designation. 2237 Desig.ClearExprs(*this); 2238 2239 DesignatedInitExpr *DIE 2240 = DesignatedInitExpr::Create(Context, 2241 Designators.data(), Designators.size(), 2242 InitExpressions.data(), InitExpressions.size(), 2243 Loc, GNUSyntax, Init.takeAs<Expr>()); 2244 2245 if (getLangOptions().CPlusPlus) 2246 Diag(DIE->getLocStart(), diag::ext_designated_init_cxx) 2247 << DIE->getSourceRange(); 2248 else if (!getLangOptions().C99) 2249 Diag(DIE->getLocStart(), diag::ext_designated_init) 2250 << DIE->getSourceRange(); 2251 2252 return Owned(DIE); 2253 } 2254 2255 //===----------------------------------------------------------------------===// 2256 // Initialization entity 2257 //===----------------------------------------------------------------------===// 2258 2259 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index, 2260 const InitializedEntity &Parent) 2261 : Parent(&Parent), Index(Index) 2262 { 2263 if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) { 2264 Kind = EK_ArrayElement; 2265 Type = AT->getElementType(); 2266 } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) { 2267 Kind = EK_VectorElement; 2268 Type = VT->getElementType(); 2269 } else { 2270 const ComplexType *CT = Parent.getType()->getAs<ComplexType>(); 2271 assert(CT && "Unexpected type"); 2272 Kind = EK_ComplexElement; 2273 Type = CT->getElementType(); 2274 } 2275 } 2276 2277 InitializedEntity InitializedEntity::InitializeBase(ASTContext &Context, 2278 CXXBaseSpecifier *Base, 2279 bool IsInheritedVirtualBase) 2280 { 2281 InitializedEntity Result; 2282 Result.Kind = EK_Base; 2283 Result.Base = reinterpret_cast<uintptr_t>(Base); 2284 if (IsInheritedVirtualBase) 2285 Result.Base |= 0x01; 2286 2287 Result.Type = Base->getType(); 2288 return Result; 2289 } 2290 2291 DeclarationName InitializedEntity::getName() const { 2292 switch (getKind()) { 2293 case EK_Parameter: { 2294 ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1); 2295 return (D ? D->getDeclName() : DeclarationName()); 2296 } 2297 2298 case EK_Variable: 2299 case EK_Member: 2300 return VariableOrMember->getDeclName(); 2301 2302 case EK_Result: 2303 case EK_Exception: 2304 case EK_New: 2305 case EK_Temporary: 2306 case EK_Base: 2307 case EK_Delegating: 2308 case EK_ArrayElement: 2309 case EK_VectorElement: 2310 case EK_ComplexElement: 2311 case EK_BlockElement: 2312 return DeclarationName(); 2313 } 2314 2315 // Silence GCC warning 2316 return DeclarationName(); 2317 } 2318 2319 DeclaratorDecl *InitializedEntity::getDecl() const { 2320 switch (getKind()) { 2321 case EK_Variable: 2322 case EK_Member: 2323 return VariableOrMember; 2324 2325 case EK_Parameter: 2326 return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1); 2327 2328 case EK_Result: 2329 case EK_Exception: 2330 case EK_New: 2331 case EK_Temporary: 2332 case EK_Base: 2333 case EK_Delegating: 2334 case EK_ArrayElement: 2335 case EK_VectorElement: 2336 case EK_ComplexElement: 2337 case EK_BlockElement: 2338 return 0; 2339 } 2340 2341 // Silence GCC warning 2342 return 0; 2343 } 2344 2345 bool InitializedEntity::allowsNRVO() const { 2346 switch (getKind()) { 2347 case EK_Result: 2348 case EK_Exception: 2349 return LocAndNRVO.NRVO; 2350 2351 case EK_Variable: 2352 case EK_Parameter: 2353 case EK_Member: 2354 case EK_New: 2355 case EK_Temporary: 2356 case EK_Base: 2357 case EK_Delegating: 2358 case EK_ArrayElement: 2359 case EK_VectorElement: 2360 case EK_ComplexElement: 2361 case EK_BlockElement: 2362 break; 2363 } 2364 2365 return false; 2366 } 2367 2368 //===----------------------------------------------------------------------===// 2369 // Initialization sequence 2370 //===----------------------------------------------------------------------===// 2371 2372 void InitializationSequence::Step::Destroy() { 2373 switch (Kind) { 2374 case SK_ResolveAddressOfOverloadedFunction: 2375 case SK_CastDerivedToBaseRValue: 2376 case SK_CastDerivedToBaseXValue: 2377 case SK_CastDerivedToBaseLValue: 2378 case SK_BindReference: 2379 case SK_BindReferenceToTemporary: 2380 case SK_ExtraneousCopyToTemporary: 2381 case SK_UserConversion: 2382 case SK_QualificationConversionRValue: 2383 case SK_QualificationConversionXValue: 2384 case SK_QualificationConversionLValue: 2385 case SK_ListInitialization: 2386 case SK_ListConstructorCall: 2387 case SK_UnwrapInitList: 2388 case SK_RewrapInitList: 2389 case SK_ConstructorInitialization: 2390 case SK_ZeroInitialization: 2391 case SK_CAssignment: 2392 case SK_StringInit: 2393 case SK_ObjCObjectConversion: 2394 case SK_ArrayInit: 2395 case SK_PassByIndirectCopyRestore: 2396 case SK_PassByIndirectRestore: 2397 case SK_ProduceObjCObject: 2398 break; 2399 2400 case SK_ConversionSequence: 2401 delete ICS; 2402 } 2403 } 2404 2405 bool InitializationSequence::isDirectReferenceBinding() const { 2406 return !Steps.empty() && Steps.back().Kind == SK_BindReference; 2407 } 2408 2409 bool InitializationSequence::isAmbiguous() const { 2410 if (!Failed()) 2411 return false; 2412 2413 switch (getFailureKind()) { 2414 case FK_TooManyInitsForReference: 2415 case FK_ArrayNeedsInitList: 2416 case FK_ArrayNeedsInitListOrStringLiteral: 2417 case FK_AddressOfOverloadFailed: // FIXME: Could do better 2418 case FK_NonConstLValueReferenceBindingToTemporary: 2419 case FK_NonConstLValueReferenceBindingToUnrelated: 2420 case FK_RValueReferenceBindingToLValue: 2421 case FK_ReferenceInitDropsQualifiers: 2422 case FK_ReferenceInitFailed: 2423 case FK_ConversionFailed: 2424 case FK_ConversionFromPropertyFailed: 2425 case FK_TooManyInitsForScalar: 2426 case FK_ReferenceBindingToInitList: 2427 case FK_InitListBadDestinationType: 2428 case FK_DefaultInitOfConst: 2429 case FK_Incomplete: 2430 case FK_ArrayTypeMismatch: 2431 case FK_NonConstantArrayInit: 2432 case FK_ListInitializationFailed: 2433 case FK_PlaceholderType: 2434 return false; 2435 2436 case FK_ReferenceInitOverloadFailed: 2437 case FK_UserConversionOverloadFailed: 2438 case FK_ConstructorOverloadFailed: 2439 case FK_ListConstructorOverloadFailed: 2440 return FailedOverloadResult == OR_Ambiguous; 2441 } 2442 2443 return false; 2444 } 2445 2446 bool InitializationSequence::isConstructorInitialization() const { 2447 return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization; 2448 } 2449 2450 bool InitializationSequence::endsWithNarrowing(ASTContext &Ctx, 2451 const Expr *Initializer, 2452 bool *isInitializerConstant, 2453 APValue *ConstantValue) const { 2454 if (Steps.empty() || Initializer->isValueDependent()) 2455 return false; 2456 2457 const Step &LastStep = Steps.back(); 2458 if (LastStep.Kind != SK_ConversionSequence) 2459 return false; 2460 2461 const ImplicitConversionSequence &ICS = *LastStep.ICS; 2462 const StandardConversionSequence *SCS = NULL; 2463 switch (ICS.getKind()) { 2464 case ImplicitConversionSequence::StandardConversion: 2465 SCS = &ICS.Standard; 2466 break; 2467 case ImplicitConversionSequence::UserDefinedConversion: 2468 SCS = &ICS.UserDefined.After; 2469 break; 2470 case ImplicitConversionSequence::AmbiguousConversion: 2471 case ImplicitConversionSequence::EllipsisConversion: 2472 case ImplicitConversionSequence::BadConversion: 2473 return false; 2474 } 2475 2476 // Check if SCS represents a narrowing conversion, according to C++0x 2477 // [dcl.init.list]p7: 2478 // 2479 // A narrowing conversion is an implicit conversion ... 2480 ImplicitConversionKind PossibleNarrowing = SCS->Second; 2481 QualType FromType = SCS->getToType(0); 2482 QualType ToType = SCS->getToType(1); 2483 switch (PossibleNarrowing) { 2484 // * from a floating-point type to an integer type, or 2485 // 2486 // * from an integer type or unscoped enumeration type to a floating-point 2487 // type, except where the source is a constant expression and the actual 2488 // value after conversion will fit into the target type and will produce 2489 // the original value when converted back to the original type, or 2490 case ICK_Floating_Integral: 2491 if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) { 2492 *isInitializerConstant = false; 2493 return true; 2494 } else if (FromType->isIntegralType(Ctx) && ToType->isRealFloatingType()) { 2495 llvm::APSInt IntConstantValue; 2496 if (Initializer && 2497 Initializer->isIntegerConstantExpr(IntConstantValue, Ctx)) { 2498 // Convert the integer to the floating type. 2499 llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType)); 2500 Result.convertFromAPInt(IntConstantValue, IntConstantValue.isSigned(), 2501 llvm::APFloat::rmNearestTiesToEven); 2502 // And back. 2503 llvm::APSInt ConvertedValue = IntConstantValue; 2504 bool ignored; 2505 Result.convertToInteger(ConvertedValue, 2506 llvm::APFloat::rmTowardZero, &ignored); 2507 // If the resulting value is different, this was a narrowing conversion. 2508 if (IntConstantValue != ConvertedValue) { 2509 *isInitializerConstant = true; 2510 *ConstantValue = APValue(IntConstantValue); 2511 return true; 2512 } 2513 } else { 2514 // Variables are always narrowings. 2515 *isInitializerConstant = false; 2516 return true; 2517 } 2518 } 2519 return false; 2520 2521 // * from long double to double or float, or from double to float, except 2522 // where the source is a constant expression and the actual value after 2523 // conversion is within the range of values that can be represented (even 2524 // if it cannot be represented exactly), or 2525 case ICK_Floating_Conversion: 2526 if (1 == Ctx.getFloatingTypeOrder(FromType, ToType)) { 2527 // FromType is larger than ToType. 2528 Expr::EvalResult InitializerValue; 2529 // FIXME: Check whether Initializer is a constant expression according 2530 // to C++0x [expr.const], rather than just whether it can be folded. 2531 if (Initializer->EvaluateAsRValue(InitializerValue, Ctx) && 2532 !InitializerValue.HasSideEffects && InitializerValue.Val.isFloat()) { 2533 // Constant! (Except for FIXME above.) 2534 llvm::APFloat FloatVal = InitializerValue.Val.getFloat(); 2535 // Convert the source value into the target type. 2536 bool ignored; 2537 llvm::APFloat::opStatus ConvertStatus = FloatVal.convert( 2538 Ctx.getFloatTypeSemantics(ToType), 2539 llvm::APFloat::rmNearestTiesToEven, &ignored); 2540 // If there was no overflow, the source value is within the range of 2541 // values that can be represented. 2542 if (ConvertStatus & llvm::APFloat::opOverflow) { 2543 *isInitializerConstant = true; 2544 *ConstantValue = InitializerValue.Val; 2545 return true; 2546 } 2547 } else { 2548 *isInitializerConstant = false; 2549 return true; 2550 } 2551 } 2552 return false; 2553 2554 // * from an integer type or unscoped enumeration type to an integer type 2555 // that cannot represent all the values of the original type, except where 2556 // the source is a constant expression and the actual value after 2557 // conversion will fit into the target type and will produce the original 2558 // value when converted back to the original type. 2559 case ICK_Boolean_Conversion: // Bools are integers too. 2560 if (!FromType->isIntegralOrUnscopedEnumerationType()) { 2561 // Boolean conversions can be from pointers and pointers to members 2562 // [conv.bool], and those aren't considered narrowing conversions. 2563 return false; 2564 } // Otherwise, fall through to the integral case. 2565 case ICK_Integral_Conversion: { 2566 assert(FromType->isIntegralOrUnscopedEnumerationType()); 2567 assert(ToType->isIntegralOrUnscopedEnumerationType()); 2568 const bool FromSigned = FromType->isSignedIntegerOrEnumerationType(); 2569 const unsigned FromWidth = Ctx.getIntWidth(FromType); 2570 const bool ToSigned = ToType->isSignedIntegerOrEnumerationType(); 2571 const unsigned ToWidth = Ctx.getIntWidth(ToType); 2572 2573 if (FromWidth > ToWidth || 2574 (FromWidth == ToWidth && FromSigned != ToSigned)) { 2575 // Not all values of FromType can be represented in ToType. 2576 llvm::APSInt InitializerValue; 2577 if (Initializer->isIntegerConstantExpr(InitializerValue, Ctx)) { 2578 *isInitializerConstant = true; 2579 *ConstantValue = APValue(InitializerValue); 2580 2581 // Add a bit to the InitializerValue so we don't have to worry about 2582 // signed vs. unsigned comparisons. 2583 InitializerValue = InitializerValue.extend( 2584 InitializerValue.getBitWidth() + 1); 2585 // Convert the initializer to and from the target width and signed-ness. 2586 llvm::APSInt ConvertedValue = InitializerValue; 2587 ConvertedValue = ConvertedValue.trunc(ToWidth); 2588 ConvertedValue.setIsSigned(ToSigned); 2589 ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth()); 2590 ConvertedValue.setIsSigned(InitializerValue.isSigned()); 2591 // If the result is different, this was a narrowing conversion. 2592 return ConvertedValue != InitializerValue; 2593 } else { 2594 // Variables are always narrowings. 2595 *isInitializerConstant = false; 2596 return true; 2597 } 2598 } 2599 return false; 2600 } 2601 2602 default: 2603 // Other kinds of conversions are not narrowings. 2604 return false; 2605 } 2606 } 2607 2608 void 2609 InitializationSequence 2610 ::AddAddressOverloadResolutionStep(FunctionDecl *Function, 2611 DeclAccessPair Found, 2612 bool HadMultipleCandidates) { 2613 Step S; 2614 S.Kind = SK_ResolveAddressOfOverloadedFunction; 2615 S.Type = Function->getType(); 2616 S.Function.HadMultipleCandidates = HadMultipleCandidates; 2617 S.Function.Function = Function; 2618 S.Function.FoundDecl = Found; 2619 Steps.push_back(S); 2620 } 2621 2622 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType, 2623 ExprValueKind VK) { 2624 Step S; 2625 switch (VK) { 2626 case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break; 2627 case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break; 2628 case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break; 2629 default: llvm_unreachable("No such category"); 2630 } 2631 S.Type = BaseType; 2632 Steps.push_back(S); 2633 } 2634 2635 void InitializationSequence::AddReferenceBindingStep(QualType T, 2636 bool BindingTemporary) { 2637 Step S; 2638 S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference; 2639 S.Type = T; 2640 Steps.push_back(S); 2641 } 2642 2643 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) { 2644 Step S; 2645 S.Kind = SK_ExtraneousCopyToTemporary; 2646 S.Type = T; 2647 Steps.push_back(S); 2648 } 2649 2650 void 2651 InitializationSequence::AddUserConversionStep(FunctionDecl *Function, 2652 DeclAccessPair FoundDecl, 2653 QualType T, 2654 bool HadMultipleCandidates) { 2655 Step S; 2656 S.Kind = SK_UserConversion; 2657 S.Type = T; 2658 S.Function.HadMultipleCandidates = HadMultipleCandidates; 2659 S.Function.Function = Function; 2660 S.Function.FoundDecl = FoundDecl; 2661 Steps.push_back(S); 2662 } 2663 2664 void InitializationSequence::AddQualificationConversionStep(QualType Ty, 2665 ExprValueKind VK) { 2666 Step S; 2667 S.Kind = SK_QualificationConversionRValue; // work around a gcc warning 2668 switch (VK) { 2669 case VK_RValue: 2670 S.Kind = SK_QualificationConversionRValue; 2671 break; 2672 case VK_XValue: 2673 S.Kind = SK_QualificationConversionXValue; 2674 break; 2675 case VK_LValue: 2676 S.Kind = SK_QualificationConversionLValue; 2677 break; 2678 } 2679 S.Type = Ty; 2680 Steps.push_back(S); 2681 } 2682 2683 void InitializationSequence::AddConversionSequenceStep( 2684 const ImplicitConversionSequence &ICS, 2685 QualType T) { 2686 Step S; 2687 S.Kind = SK_ConversionSequence; 2688 S.Type = T; 2689 S.ICS = new ImplicitConversionSequence(ICS); 2690 Steps.push_back(S); 2691 } 2692 2693 void InitializationSequence::AddListInitializationStep(QualType T) { 2694 Step S; 2695 S.Kind = SK_ListInitialization; 2696 S.Type = T; 2697 Steps.push_back(S); 2698 } 2699 2700 void 2701 InitializationSequence 2702 ::AddConstructorInitializationStep(CXXConstructorDecl *Constructor, 2703 AccessSpecifier Access, 2704 QualType T, 2705 bool HadMultipleCandidates, 2706 bool FromInitList) { 2707 Step S; 2708 S.Kind = FromInitList ? SK_ListConstructorCall : SK_ConstructorInitialization; 2709 S.Type = T; 2710 S.Function.HadMultipleCandidates = HadMultipleCandidates; 2711 S.Function.Function = Constructor; 2712 S.Function.FoundDecl = DeclAccessPair::make(Constructor, Access); 2713 Steps.push_back(S); 2714 } 2715 2716 void InitializationSequence::AddZeroInitializationStep(QualType T) { 2717 Step S; 2718 S.Kind = SK_ZeroInitialization; 2719 S.Type = T; 2720 Steps.push_back(S); 2721 } 2722 2723 void InitializationSequence::AddCAssignmentStep(QualType T) { 2724 Step S; 2725 S.Kind = SK_CAssignment; 2726 S.Type = T; 2727 Steps.push_back(S); 2728 } 2729 2730 void InitializationSequence::AddStringInitStep(QualType T) { 2731 Step S; 2732 S.Kind = SK_StringInit; 2733 S.Type = T; 2734 Steps.push_back(S); 2735 } 2736 2737 void InitializationSequence::AddObjCObjectConversionStep(QualType T) { 2738 Step S; 2739 S.Kind = SK_ObjCObjectConversion; 2740 S.Type = T; 2741 Steps.push_back(S); 2742 } 2743 2744 void InitializationSequence::AddArrayInitStep(QualType T) { 2745 Step S; 2746 S.Kind = SK_ArrayInit; 2747 S.Type = T; 2748 Steps.push_back(S); 2749 } 2750 2751 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type, 2752 bool shouldCopy) { 2753 Step s; 2754 s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore 2755 : SK_PassByIndirectRestore); 2756 s.Type = type; 2757 Steps.push_back(s); 2758 } 2759 2760 void InitializationSequence::AddProduceObjCObjectStep(QualType T) { 2761 Step S; 2762 S.Kind = SK_ProduceObjCObject; 2763 S.Type = T; 2764 Steps.push_back(S); 2765 } 2766 2767 void InitializationSequence::RewrapReferenceInitList(QualType T, 2768 InitListExpr *Syntactic) { 2769 assert(Syntactic->getNumInits() == 1 && 2770 "Can only rewrap trivial init lists."); 2771 Step S; 2772 S.Kind = SK_UnwrapInitList; 2773 S.Type = Syntactic->getInit(0)->getType(); 2774 Steps.insert(Steps.begin(), S); 2775 2776 S.Kind = SK_RewrapInitList; 2777 S.Type = T; 2778 S.WrappingSyntacticList = Syntactic; 2779 Steps.push_back(S); 2780 } 2781 2782 void InitializationSequence::SetOverloadFailure(FailureKind Failure, 2783 OverloadingResult Result) { 2784 setSequenceKind(FailedSequence); 2785 this->Failure = Failure; 2786 this->FailedOverloadResult = Result; 2787 } 2788 2789 //===----------------------------------------------------------------------===// 2790 // Attempt initialization 2791 //===----------------------------------------------------------------------===// 2792 2793 static void MaybeProduceObjCObject(Sema &S, 2794 InitializationSequence &Sequence, 2795 const InitializedEntity &Entity) { 2796 if (!S.getLangOptions().ObjCAutoRefCount) return; 2797 2798 /// When initializing a parameter, produce the value if it's marked 2799 /// __attribute__((ns_consumed)). 2800 if (Entity.getKind() == InitializedEntity::EK_Parameter) { 2801 if (!Entity.isParameterConsumed()) 2802 return; 2803 2804 assert(Entity.getType()->isObjCRetainableType() && 2805 "consuming an object of unretainable type?"); 2806 Sequence.AddProduceObjCObjectStep(Entity.getType()); 2807 2808 /// When initializing a return value, if the return type is a 2809 /// retainable type, then returns need to immediately retain the 2810 /// object. If an autorelease is required, it will be done at the 2811 /// last instant. 2812 } else if (Entity.getKind() == InitializedEntity::EK_Result) { 2813 if (!Entity.getType()->isObjCRetainableType()) 2814 return; 2815 2816 Sequence.AddProduceObjCObjectStep(Entity.getType()); 2817 } 2818 } 2819 2820 /// \brief When initializing from init list via constructor, deal with the 2821 /// empty init list and std::initializer_list special cases. 2822 /// 2823 /// \return True if this was a special case, false otherwise. 2824 static bool TryListConstructionSpecialCases(Sema &S, 2825 Expr **Args, unsigned NumArgs, 2826 CXXRecordDecl *DestRecordDecl, 2827 QualType DestType, 2828 InitializationSequence &Sequence) { 2829 // C++0x [dcl.init.list]p3: 2830 // List-initialization of an object of type T is defined as follows: 2831 // - If the initializer list has no elements and T is a class type with 2832 // a default constructor, the object is value-initialized. 2833 if (NumArgs == 0) { 2834 if (CXXConstructorDecl *DefaultConstructor = 2835 S.LookupDefaultConstructor(DestRecordDecl)) { 2836 if (DefaultConstructor->isDeleted() || 2837 S.isFunctionConsideredUnavailable(DefaultConstructor)) { 2838 // Fake an overload resolution failure. 2839 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 2840 DeclAccessPair FoundDecl = DeclAccessPair::make(DefaultConstructor, 2841 DefaultConstructor->getAccess()); 2842 if (FunctionTemplateDecl *ConstructorTmpl = 2843 dyn_cast<FunctionTemplateDecl>(DefaultConstructor)) 2844 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 2845 /*ExplicitArgs*/ 0, 2846 Args, NumArgs, CandidateSet, 2847 /*SuppressUserConversions*/ false); 2848 else 2849 S.AddOverloadCandidate(DefaultConstructor, FoundDecl, 2850 Args, NumArgs, CandidateSet, 2851 /*SuppressUserConversions*/ false); 2852 Sequence.SetOverloadFailure( 2853 InitializationSequence::FK_ListConstructorOverloadFailed, 2854 OR_Deleted); 2855 } else 2856 Sequence.AddConstructorInitializationStep(DefaultConstructor, 2857 DefaultConstructor->getAccess(), 2858 DestType, 2859 /*MultipleCandidates=*/false, 2860 /*FromInitList=*/true); 2861 return true; 2862 } 2863 } 2864 2865 // - Otherwise, if T is a specialization of std::initializer_list, [...] 2866 // FIXME: Implement. 2867 2868 // Not a special case. 2869 return false; 2870 } 2871 2872 /// \brief Attempt initialization by constructor (C++ [dcl.init]), which 2873 /// enumerates the constructors of the initialized entity and performs overload 2874 /// resolution to select the best. 2875 /// If FromInitList is true, this is list-initialization of a non-aggregate 2876 /// class type. 2877 static void TryConstructorInitialization(Sema &S, 2878 const InitializedEntity &Entity, 2879 const InitializationKind &Kind, 2880 Expr **Args, unsigned NumArgs, 2881 QualType DestType, 2882 InitializationSequence &Sequence, 2883 bool FromInitList = false) { 2884 // Check constructor arguments for self reference. 2885 if (DeclaratorDecl *DD = Entity.getDecl()) 2886 // Parameters arguments are occassionially constructed with itself, 2887 // for instance, in recursive functions. Skip them. 2888 if (!isa<ParmVarDecl>(DD)) 2889 for (unsigned i = 0; i < NumArgs; ++i) 2890 S.CheckSelfReference(DD, Args[i]); 2891 2892 // Build the candidate set directly in the initialization sequence 2893 // structure, so that it will persist if we fail. 2894 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 2895 CandidateSet.clear(); 2896 2897 // Determine whether we are allowed to call explicit constructors or 2898 // explicit conversion operators. 2899 bool AllowExplicit = (Kind.getKind() == InitializationKind::IK_Direct || 2900 Kind.getKind() == InitializationKind::IK_Value || 2901 Kind.getKind() == InitializationKind::IK_Default); 2902 2903 // The type we're constructing needs to be complete. 2904 if (S.RequireCompleteType(Kind.getLocation(), DestType, 0)) { 2905 Sequence.SetFailed(InitializationSequence::FK_Incomplete); 2906 } 2907 2908 const RecordType *DestRecordType = DestType->getAs<RecordType>(); 2909 assert(DestRecordType && "Constructor initialization requires record type"); 2910 CXXRecordDecl *DestRecordDecl 2911 = cast<CXXRecordDecl>(DestRecordType->getDecl()); 2912 2913 if (FromInitList && 2914 TryListConstructionSpecialCases(S, Args, NumArgs, DestRecordDecl, 2915 DestType, Sequence)) 2916 return; 2917 2918 // - Otherwise, if T is a class type, constructors are considered. The 2919 // applicable constructors are enumerated, and the best one is chosen 2920 // through overload resolution. 2921 DeclContext::lookup_iterator Con, ConEnd; 2922 for (llvm::tie(Con, ConEnd) = S.LookupConstructors(DestRecordDecl); 2923 Con != ConEnd; ++Con) { 2924 NamedDecl *D = *Con; 2925 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess()); 2926 bool SuppressUserConversions = false; 2927 2928 // Find the constructor (which may be a template). 2929 CXXConstructorDecl *Constructor = 0; 2930 FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D); 2931 if (ConstructorTmpl) 2932 Constructor = cast<CXXConstructorDecl>( 2933 ConstructorTmpl->getTemplatedDecl()); 2934 else { 2935 Constructor = cast<CXXConstructorDecl>(D); 2936 2937 // If we're performing copy initialization using a copy constructor, we 2938 // suppress user-defined conversions on the arguments. 2939 // FIXME: Move constructors? 2940 if (Kind.getKind() == InitializationKind::IK_Copy && 2941 Constructor->isCopyConstructor()) 2942 SuppressUserConversions = true; 2943 } 2944 2945 if (!Constructor->isInvalidDecl() && 2946 (AllowExplicit || !Constructor->isExplicit())) { 2947 if (ConstructorTmpl) 2948 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 2949 /*ExplicitArgs*/ 0, 2950 Args, NumArgs, CandidateSet, 2951 SuppressUserConversions); 2952 else 2953 S.AddOverloadCandidate(Constructor, FoundDecl, 2954 Args, NumArgs, CandidateSet, 2955 SuppressUserConversions); 2956 } 2957 } 2958 2959 SourceLocation DeclLoc = Kind.getLocation(); 2960 2961 // Perform overload resolution. If it fails, return the failed result. 2962 OverloadCandidateSet::iterator Best; 2963 if (OverloadingResult Result 2964 = CandidateSet.BestViableFunction(S, DeclLoc, Best)) { 2965 Sequence.SetOverloadFailure(FromInitList ? 2966 InitializationSequence::FK_ListConstructorOverloadFailed : 2967 InitializationSequence::FK_ConstructorOverloadFailed, 2968 Result); 2969 return; 2970 } 2971 2972 // C++0x [dcl.init]p6: 2973 // If a program calls for the default initialization of an object 2974 // of a const-qualified type T, T shall be a class type with a 2975 // user-provided default constructor. 2976 if (Kind.getKind() == InitializationKind::IK_Default && 2977 Entity.getType().isConstQualified() && 2978 cast<CXXConstructorDecl>(Best->Function)->isImplicit()) { 2979 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); 2980 return; 2981 } 2982 2983 // Add the constructor initialization step. Any cv-qualification conversion is 2984 // subsumed by the initialization. 2985 bool HadMultipleCandidates = (CandidateSet.size() > 1); 2986 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 2987 Sequence.AddConstructorInitializationStep(CtorDecl, 2988 Best->FoundDecl.getAccess(), 2989 DestType, HadMultipleCandidates, 2990 FromInitList); 2991 } 2992 2993 static bool 2994 ResolveOverloadedFunctionForReferenceBinding(Sema &S, 2995 Expr *Initializer, 2996 QualType &SourceType, 2997 QualType &UnqualifiedSourceType, 2998 QualType UnqualifiedTargetType, 2999 InitializationSequence &Sequence) { 3000 if (S.Context.getCanonicalType(UnqualifiedSourceType) == 3001 S.Context.OverloadTy) { 3002 DeclAccessPair Found; 3003 bool HadMultipleCandidates = false; 3004 if (FunctionDecl *Fn 3005 = S.ResolveAddressOfOverloadedFunction(Initializer, 3006 UnqualifiedTargetType, 3007 false, Found, 3008 &HadMultipleCandidates)) { 3009 Sequence.AddAddressOverloadResolutionStep(Fn, Found, 3010 HadMultipleCandidates); 3011 SourceType = Fn->getType(); 3012 UnqualifiedSourceType = SourceType.getUnqualifiedType(); 3013 } else if (!UnqualifiedTargetType->isRecordType()) { 3014 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 3015 return true; 3016 } 3017 } 3018 return false; 3019 } 3020 3021 static void TryReferenceInitializationCore(Sema &S, 3022 const InitializedEntity &Entity, 3023 const InitializationKind &Kind, 3024 Expr *Initializer, 3025 QualType cv1T1, QualType T1, 3026 Qualifiers T1Quals, 3027 QualType cv2T2, QualType T2, 3028 Qualifiers T2Quals, 3029 InitializationSequence &Sequence); 3030 3031 static void TryListInitialization(Sema &S, 3032 const InitializedEntity &Entity, 3033 const InitializationKind &Kind, 3034 InitListExpr *InitList, 3035 InitializationSequence &Sequence); 3036 3037 /// \brief Attempt list initialization of a reference. 3038 static void TryReferenceListInitialization(Sema &S, 3039 const InitializedEntity &Entity, 3040 const InitializationKind &Kind, 3041 InitListExpr *InitList, 3042 InitializationSequence &Sequence) 3043 { 3044 // First, catch C++03 where this isn't possible. 3045 if (!S.getLangOptions().CPlusPlus0x) { 3046 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); 3047 return; 3048 } 3049 3050 QualType DestType = Entity.getType(); 3051 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType(); 3052 Qualifiers T1Quals; 3053 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); 3054 3055 // Reference initialization via an initializer list works thus: 3056 // If the initializer list consists of a single element that is 3057 // reference-related to the referenced type, bind directly to that element 3058 // (possibly creating temporaries). 3059 // Otherwise, initialize a temporary with the initializer list and 3060 // bind to that. 3061 if (InitList->getNumInits() == 1) { 3062 Expr *Initializer = InitList->getInit(0); 3063 QualType cv2T2 = Initializer->getType(); 3064 Qualifiers T2Quals; 3065 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); 3066 3067 // If this fails, creating a temporary wouldn't work either. 3068 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, 3069 T1, Sequence)) 3070 return; 3071 3072 SourceLocation DeclLoc = Initializer->getLocStart(); 3073 bool dummy1, dummy2, dummy3; 3074 Sema::ReferenceCompareResult RefRelationship 3075 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1, 3076 dummy2, dummy3); 3077 if (RefRelationship >= Sema::Ref_Related) { 3078 // Try to bind the reference here. 3079 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, 3080 T1Quals, cv2T2, T2, T2Quals, Sequence); 3081 if (Sequence) 3082 Sequence.RewrapReferenceInitList(cv1T1, InitList); 3083 return; 3084 } 3085 } 3086 3087 // Not reference-related. Create a temporary and bind to that. 3088 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1); 3089 3090 TryListInitialization(S, TempEntity, Kind, InitList, Sequence); 3091 if (Sequence) { 3092 if (DestType->isRValueReferenceType() || 3093 (T1Quals.hasConst() && !T1Quals.hasVolatile())) 3094 Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true); 3095 else 3096 Sequence.SetFailed( 3097 InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary); 3098 } 3099 } 3100 3101 /// \brief Attempt list initialization (C++0x [dcl.init.list]) 3102 static void TryListInitialization(Sema &S, 3103 const InitializedEntity &Entity, 3104 const InitializationKind &Kind, 3105 InitListExpr *InitList, 3106 InitializationSequence &Sequence) { 3107 QualType DestType = Entity.getType(); 3108 3109 // C++ doesn't allow scalar initialization with more than one argument. 3110 // But C99 complex numbers are scalars and it makes sense there. 3111 if (S.getLangOptions().CPlusPlus && DestType->isScalarType() && 3112 !DestType->isAnyComplexType() && InitList->getNumInits() > 1) { 3113 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar); 3114 return; 3115 } 3116 if (DestType->isReferenceType()) { 3117 TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence); 3118 return; 3119 } 3120 if (DestType->isRecordType() && !DestType->isAggregateType()) { 3121 if (S.getLangOptions().CPlusPlus0x) 3122 TryConstructorInitialization(S, Entity, Kind, InitList->getInits(), 3123 InitList->getNumInits(), DestType, Sequence, 3124 /*FromInitList=*/true); 3125 else 3126 Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType); 3127 return; 3128 } 3129 3130 InitListChecker CheckInitList(S, Entity, InitList, 3131 DestType, /*VerifyOnly=*/true, 3132 Kind.getKind() != InitializationKind::IK_Direct || 3133 !S.getLangOptions().CPlusPlus0x); 3134 if (CheckInitList.HadError()) { 3135 Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed); 3136 return; 3137 } 3138 3139 // Add the list initialization step with the built init list. 3140 Sequence.AddListInitializationStep(DestType); 3141 } 3142 3143 /// \brief Try a reference initialization that involves calling a conversion 3144 /// function. 3145 static OverloadingResult TryRefInitWithConversionFunction(Sema &S, 3146 const InitializedEntity &Entity, 3147 const InitializationKind &Kind, 3148 Expr *Initializer, 3149 bool AllowRValues, 3150 InitializationSequence &Sequence) { 3151 QualType DestType = Entity.getType(); 3152 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType(); 3153 QualType T1 = cv1T1.getUnqualifiedType(); 3154 QualType cv2T2 = Initializer->getType(); 3155 QualType T2 = cv2T2.getUnqualifiedType(); 3156 3157 bool DerivedToBase; 3158 bool ObjCConversion; 3159 bool ObjCLifetimeConversion; 3160 assert(!S.CompareReferenceRelationship(Initializer->getLocStart(), 3161 T1, T2, DerivedToBase, 3162 ObjCConversion, 3163 ObjCLifetimeConversion) && 3164 "Must have incompatible references when binding via conversion"); 3165 (void)DerivedToBase; 3166 (void)ObjCConversion; 3167 (void)ObjCLifetimeConversion; 3168 3169 // Build the candidate set directly in the initialization sequence 3170 // structure, so that it will persist if we fail. 3171 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 3172 CandidateSet.clear(); 3173 3174 // Determine whether we are allowed to call explicit constructors or 3175 // explicit conversion operators. 3176 bool AllowExplicit = Kind.getKind() == InitializationKind::IK_Direct; 3177 3178 const RecordType *T1RecordType = 0; 3179 if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) && 3180 !S.RequireCompleteType(Kind.getLocation(), T1, 0)) { 3181 // The type we're converting to is a class type. Enumerate its constructors 3182 // to see if there is a suitable conversion. 3183 CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl()); 3184 3185 DeclContext::lookup_iterator Con, ConEnd; 3186 for (llvm::tie(Con, ConEnd) = S.LookupConstructors(T1RecordDecl); 3187 Con != ConEnd; ++Con) { 3188 NamedDecl *D = *Con; 3189 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess()); 3190 3191 // Find the constructor (which may be a template). 3192 CXXConstructorDecl *Constructor = 0; 3193 FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D); 3194 if (ConstructorTmpl) 3195 Constructor = cast<CXXConstructorDecl>( 3196 ConstructorTmpl->getTemplatedDecl()); 3197 else 3198 Constructor = cast<CXXConstructorDecl>(D); 3199 3200 if (!Constructor->isInvalidDecl() && 3201 Constructor->isConvertingConstructor(AllowExplicit)) { 3202 if (ConstructorTmpl) 3203 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 3204 /*ExplicitArgs*/ 0, 3205 &Initializer, 1, CandidateSet, 3206 /*SuppressUserConversions=*/true); 3207 else 3208 S.AddOverloadCandidate(Constructor, FoundDecl, 3209 &Initializer, 1, CandidateSet, 3210 /*SuppressUserConversions=*/true); 3211 } 3212 } 3213 } 3214 if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl()) 3215 return OR_No_Viable_Function; 3216 3217 const RecordType *T2RecordType = 0; 3218 if ((T2RecordType = T2->getAs<RecordType>()) && 3219 !S.RequireCompleteType(Kind.getLocation(), T2, 0)) { 3220 // The type we're converting from is a class type, enumerate its conversion 3221 // functions. 3222 CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl()); 3223 3224 const UnresolvedSetImpl *Conversions 3225 = T2RecordDecl->getVisibleConversionFunctions(); 3226 for (UnresolvedSetImpl::const_iterator I = Conversions->begin(), 3227 E = Conversions->end(); I != E; ++I) { 3228 NamedDecl *D = *I; 3229 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 3230 if (isa<UsingShadowDecl>(D)) 3231 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 3232 3233 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 3234 CXXConversionDecl *Conv; 3235 if (ConvTemplate) 3236 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 3237 else 3238 Conv = cast<CXXConversionDecl>(D); 3239 3240 // If the conversion function doesn't return a reference type, 3241 // it can't be considered for this conversion unless we're allowed to 3242 // consider rvalues. 3243 // FIXME: Do we need to make sure that we only consider conversion 3244 // candidates with reference-compatible results? That might be needed to 3245 // break recursion. 3246 if ((AllowExplicit || !Conv->isExplicit()) && 3247 (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){ 3248 if (ConvTemplate) 3249 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), 3250 ActingDC, Initializer, 3251 DestType, CandidateSet); 3252 else 3253 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, 3254 Initializer, DestType, CandidateSet); 3255 } 3256 } 3257 } 3258 if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl()) 3259 return OR_No_Viable_Function; 3260 3261 SourceLocation DeclLoc = Initializer->getLocStart(); 3262 3263 // Perform overload resolution. If it fails, return the failed result. 3264 OverloadCandidateSet::iterator Best; 3265 if (OverloadingResult Result 3266 = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) 3267 return Result; 3268 3269 FunctionDecl *Function = Best->Function; 3270 3271 // This is the overload that will actually be used for the initialization, so 3272 // mark it as used. 3273 S.MarkDeclarationReferenced(DeclLoc, Function); 3274 3275 // Compute the returned type of the conversion. 3276 if (isa<CXXConversionDecl>(Function)) 3277 T2 = Function->getResultType(); 3278 else 3279 T2 = cv1T1; 3280 3281 // Add the user-defined conversion step. 3282 bool HadMultipleCandidates = (CandidateSet.size() > 1); 3283 Sequence.AddUserConversionStep(Function, Best->FoundDecl, 3284 T2.getNonLValueExprType(S.Context), 3285 HadMultipleCandidates); 3286 3287 // Determine whether we need to perform derived-to-base or 3288 // cv-qualification adjustments. 3289 ExprValueKind VK = VK_RValue; 3290 if (T2->isLValueReferenceType()) 3291 VK = VK_LValue; 3292 else if (const RValueReferenceType *RRef = T2->getAs<RValueReferenceType>()) 3293 VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue; 3294 3295 bool NewDerivedToBase = false; 3296 bool NewObjCConversion = false; 3297 bool NewObjCLifetimeConversion = false; 3298 Sema::ReferenceCompareResult NewRefRelationship 3299 = S.CompareReferenceRelationship(DeclLoc, T1, 3300 T2.getNonLValueExprType(S.Context), 3301 NewDerivedToBase, NewObjCConversion, 3302 NewObjCLifetimeConversion); 3303 if (NewRefRelationship == Sema::Ref_Incompatible) { 3304 // If the type we've converted to is not reference-related to the 3305 // type we're looking for, then there is another conversion step 3306 // we need to perform to produce a temporary of the right type 3307 // that we'll be binding to. 3308 ImplicitConversionSequence ICS; 3309 ICS.setStandard(); 3310 ICS.Standard = Best->FinalConversion; 3311 T2 = ICS.Standard.getToType(2); 3312 Sequence.AddConversionSequenceStep(ICS, T2); 3313 } else if (NewDerivedToBase) 3314 Sequence.AddDerivedToBaseCastStep( 3315 S.Context.getQualifiedType(T1, 3316 T2.getNonReferenceType().getQualifiers()), 3317 VK); 3318 else if (NewObjCConversion) 3319 Sequence.AddObjCObjectConversionStep( 3320 S.Context.getQualifiedType(T1, 3321 T2.getNonReferenceType().getQualifiers())); 3322 3323 if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers()) 3324 Sequence.AddQualificationConversionStep(cv1T1, VK); 3325 3326 Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType()); 3327 return OR_Success; 3328 } 3329 3330 static void CheckCXX98CompatAccessibleCopy(Sema &S, 3331 const InitializedEntity &Entity, 3332 Expr *CurInitExpr); 3333 3334 /// \brief Attempt reference initialization (C++0x [dcl.init.ref]) 3335 static void TryReferenceInitialization(Sema &S, 3336 const InitializedEntity &Entity, 3337 const InitializationKind &Kind, 3338 Expr *Initializer, 3339 InitializationSequence &Sequence) { 3340 QualType DestType = Entity.getType(); 3341 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType(); 3342 Qualifiers T1Quals; 3343 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); 3344 QualType cv2T2 = Initializer->getType(); 3345 Qualifiers T2Quals; 3346 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); 3347 3348 // If the initializer is the address of an overloaded function, try 3349 // to resolve the overloaded function. If all goes well, T2 is the 3350 // type of the resulting function. 3351 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, 3352 T1, Sequence)) 3353 return; 3354 3355 // Delegate everything else to a subfunction. 3356 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, 3357 T1Quals, cv2T2, T2, T2Quals, Sequence); 3358 } 3359 3360 /// \brief Reference initialization without resolving overloaded functions. 3361 static void TryReferenceInitializationCore(Sema &S, 3362 const InitializedEntity &Entity, 3363 const InitializationKind &Kind, 3364 Expr *Initializer, 3365 QualType cv1T1, QualType T1, 3366 Qualifiers T1Quals, 3367 QualType cv2T2, QualType T2, 3368 Qualifiers T2Quals, 3369 InitializationSequence &Sequence) { 3370 QualType DestType = Entity.getType(); 3371 SourceLocation DeclLoc = Initializer->getLocStart(); 3372 // Compute some basic properties of the types and the initializer. 3373 bool isLValueRef = DestType->isLValueReferenceType(); 3374 bool isRValueRef = !isLValueRef; 3375 bool DerivedToBase = false; 3376 bool ObjCConversion = false; 3377 bool ObjCLifetimeConversion = false; 3378 Expr::Classification InitCategory = Initializer->Classify(S.Context); 3379 Sema::ReferenceCompareResult RefRelationship 3380 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase, 3381 ObjCConversion, ObjCLifetimeConversion); 3382 3383 // C++0x [dcl.init.ref]p5: 3384 // A reference to type "cv1 T1" is initialized by an expression of type 3385 // "cv2 T2" as follows: 3386 // 3387 // - If the reference is an lvalue reference and the initializer 3388 // expression 3389 // Note the analogous bullet points for rvlaue refs to functions. Because 3390 // there are no function rvalues in C++, rvalue refs to functions are treated 3391 // like lvalue refs. 3392 OverloadingResult ConvOvlResult = OR_Success; 3393 bool T1Function = T1->isFunctionType(); 3394 if (isLValueRef || T1Function) { 3395 if (InitCategory.isLValue() && 3396 (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification || 3397 (Kind.isCStyleOrFunctionalCast() && 3398 RefRelationship == Sema::Ref_Related))) { 3399 // - is an lvalue (but is not a bit-field), and "cv1 T1" is 3400 // reference-compatible with "cv2 T2," or 3401 // 3402 // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a 3403 // bit-field when we're determining whether the reference initialization 3404 // can occur. However, we do pay attention to whether it is a bit-field 3405 // to decide whether we're actually binding to a temporary created from 3406 // the bit-field. 3407 if (DerivedToBase) 3408 Sequence.AddDerivedToBaseCastStep( 3409 S.Context.getQualifiedType(T1, T2Quals), 3410 VK_LValue); 3411 else if (ObjCConversion) 3412 Sequence.AddObjCObjectConversionStep( 3413 S.Context.getQualifiedType(T1, T2Quals)); 3414 3415 if (T1Quals != T2Quals) 3416 Sequence.AddQualificationConversionStep(cv1T1, VK_LValue); 3417 bool BindingTemporary = T1Quals.hasConst() && !T1Quals.hasVolatile() && 3418 (Initializer->getBitField() || Initializer->refersToVectorElement()); 3419 Sequence.AddReferenceBindingStep(cv1T1, BindingTemporary); 3420 return; 3421 } 3422 3423 // - has a class type (i.e., T2 is a class type), where T1 is not 3424 // reference-related to T2, and can be implicitly converted to an 3425 // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible 3426 // with "cv3 T3" (this conversion is selected by enumerating the 3427 // applicable conversion functions (13.3.1.6) and choosing the best 3428 // one through overload resolution (13.3)), 3429 // If we have an rvalue ref to function type here, the rhs must be 3430 // an rvalue. 3431 if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() && 3432 (isLValueRef || InitCategory.isRValue())) { 3433 ConvOvlResult = TryRefInitWithConversionFunction(S, Entity, Kind, 3434 Initializer, 3435 /*AllowRValues=*/isRValueRef, 3436 Sequence); 3437 if (ConvOvlResult == OR_Success) 3438 return; 3439 if (ConvOvlResult != OR_No_Viable_Function) { 3440 Sequence.SetOverloadFailure( 3441 InitializationSequence::FK_ReferenceInitOverloadFailed, 3442 ConvOvlResult); 3443 } 3444 } 3445 } 3446 3447 // - Otherwise, the reference shall be an lvalue reference to a 3448 // non-volatile const type (i.e., cv1 shall be const), or the reference 3449 // shall be an rvalue reference. 3450 if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) { 3451 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) 3452 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 3453 else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) 3454 Sequence.SetOverloadFailure( 3455 InitializationSequence::FK_ReferenceInitOverloadFailed, 3456 ConvOvlResult); 3457 else 3458 Sequence.SetFailed(InitCategory.isLValue() 3459 ? (RefRelationship == Sema::Ref_Related 3460 ? InitializationSequence::FK_ReferenceInitDropsQualifiers 3461 : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated) 3462 : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary); 3463 3464 return; 3465 } 3466 3467 // - If the initializer expression 3468 // - is an xvalue, class prvalue, array prvalue, or function lvalue and 3469 // "cv1 T1" is reference-compatible with "cv2 T2" 3470 // Note: functions are handled below. 3471 if (!T1Function && 3472 (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification || 3473 (Kind.isCStyleOrFunctionalCast() && 3474 RefRelationship == Sema::Ref_Related)) && 3475 (InitCategory.isXValue() || 3476 (InitCategory.isPRValue() && T2->isRecordType()) || 3477 (InitCategory.isPRValue() && T2->isArrayType()))) { 3478 ExprValueKind ValueKind = InitCategory.isXValue()? VK_XValue : VK_RValue; 3479 if (InitCategory.isPRValue() && T2->isRecordType()) { 3480 // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the 3481 // compiler the freedom to perform a copy here or bind to the 3482 // object, while C++0x requires that we bind directly to the 3483 // object. Hence, we always bind to the object without making an 3484 // extra copy. However, in C++03 requires that we check for the 3485 // presence of a suitable copy constructor: 3486 // 3487 // The constructor that would be used to make the copy shall 3488 // be callable whether or not the copy is actually done. 3489 if (!S.getLangOptions().CPlusPlus0x && !S.getLangOptions().MicrosoftExt) 3490 Sequence.AddExtraneousCopyToTemporary(cv2T2); 3491 else if (S.getLangOptions().CPlusPlus0x) 3492 CheckCXX98CompatAccessibleCopy(S, Entity, Initializer); 3493 } 3494 3495 if (DerivedToBase) 3496 Sequence.AddDerivedToBaseCastStep(S.Context.getQualifiedType(T1, T2Quals), 3497 ValueKind); 3498 else if (ObjCConversion) 3499 Sequence.AddObjCObjectConversionStep( 3500 S.Context.getQualifiedType(T1, T2Quals)); 3501 3502 if (T1Quals != T2Quals) 3503 Sequence.AddQualificationConversionStep(cv1T1, ValueKind); 3504 Sequence.AddReferenceBindingStep(cv1T1, 3505 /*bindingTemporary=*/InitCategory.isPRValue()); 3506 return; 3507 } 3508 3509 // - has a class type (i.e., T2 is a class type), where T1 is not 3510 // reference-related to T2, and can be implicitly converted to an 3511 // xvalue, class prvalue, or function lvalue of type "cv3 T3", 3512 // where "cv1 T1" is reference-compatible with "cv3 T3", 3513 if (T2->isRecordType()) { 3514 if (RefRelationship == Sema::Ref_Incompatible) { 3515 ConvOvlResult = TryRefInitWithConversionFunction(S, Entity, 3516 Kind, Initializer, 3517 /*AllowRValues=*/true, 3518 Sequence); 3519 if (ConvOvlResult) 3520 Sequence.SetOverloadFailure( 3521 InitializationSequence::FK_ReferenceInitOverloadFailed, 3522 ConvOvlResult); 3523 3524 return; 3525 } 3526 3527 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); 3528 return; 3529 } 3530 3531 // - Otherwise, a temporary of type "cv1 T1" is created and initialized 3532 // from the initializer expression using the rules for a non-reference 3533 // copy initialization (8.5). The reference is then bound to the 3534 // temporary. [...] 3535 3536 // Determine whether we are allowed to call explicit constructors or 3537 // explicit conversion operators. 3538 bool AllowExplicit = (Kind.getKind() == InitializationKind::IK_Direct); 3539 3540 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1); 3541 3542 ImplicitConversionSequence ICS 3543 = S.TryImplicitConversion(Initializer, TempEntity.getType(), 3544 /*SuppressUserConversions*/ false, 3545 AllowExplicit, 3546 /*FIXME:InOverloadResolution=*/false, 3547 /*CStyle=*/Kind.isCStyleOrFunctionalCast(), 3548 /*AllowObjCWritebackConversion=*/false); 3549 3550 if (ICS.isBad()) { 3551 // FIXME: Use the conversion function set stored in ICS to turn 3552 // this into an overloading ambiguity diagnostic. However, we need 3553 // to keep that set as an OverloadCandidateSet rather than as some 3554 // other kind of set. 3555 if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) 3556 Sequence.SetOverloadFailure( 3557 InitializationSequence::FK_ReferenceInitOverloadFailed, 3558 ConvOvlResult); 3559 else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) 3560 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 3561 else 3562 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed); 3563 return; 3564 } else { 3565 Sequence.AddConversionSequenceStep(ICS, TempEntity.getType()); 3566 } 3567 3568 // [...] If T1 is reference-related to T2, cv1 must be the 3569 // same cv-qualification as, or greater cv-qualification 3570 // than, cv2; otherwise, the program is ill-formed. 3571 unsigned T1CVRQuals = T1Quals.getCVRQualifiers(); 3572 unsigned T2CVRQuals = T2Quals.getCVRQualifiers(); 3573 if (RefRelationship == Sema::Ref_Related && 3574 (T1CVRQuals | T2CVRQuals) != T1CVRQuals) { 3575 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); 3576 return; 3577 } 3578 3579 // [...] If T1 is reference-related to T2 and the reference is an rvalue 3580 // reference, the initializer expression shall not be an lvalue. 3581 if (RefRelationship >= Sema::Ref_Related && !isLValueRef && 3582 InitCategory.isLValue()) { 3583 Sequence.SetFailed( 3584 InitializationSequence::FK_RValueReferenceBindingToLValue); 3585 return; 3586 } 3587 3588 Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true); 3589 return; 3590 } 3591 3592 /// \brief Attempt character array initialization from a string literal 3593 /// (C++ [dcl.init.string], C99 6.7.8). 3594 static void TryStringLiteralInitialization(Sema &S, 3595 const InitializedEntity &Entity, 3596 const InitializationKind &Kind, 3597 Expr *Initializer, 3598 InitializationSequence &Sequence) { 3599 Sequence.AddStringInitStep(Entity.getType()); 3600 } 3601 3602 /// \brief Attempt value initialization (C++ [dcl.init]p7). 3603 static void TryValueInitialization(Sema &S, 3604 const InitializedEntity &Entity, 3605 const InitializationKind &Kind, 3606 InitializationSequence &Sequence) { 3607 // C++ [dcl.init]p5: 3608 // 3609 // To value-initialize an object of type T means: 3610 QualType T = Entity.getType(); 3611 3612 // -- if T is an array type, then each element is value-initialized; 3613 while (const ArrayType *AT = S.Context.getAsArrayType(T)) 3614 T = AT->getElementType(); 3615 3616 if (const RecordType *RT = T->getAs<RecordType>()) { 3617 if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3618 // -- if T is a class type (clause 9) with a user-declared 3619 // constructor (12.1), then the default constructor for T is 3620 // called (and the initialization is ill-formed if T has no 3621 // accessible default constructor); 3622 // 3623 // FIXME: we really want to refer to a single subobject of the array, 3624 // but Entity doesn't have a way to capture that (yet). 3625 if (ClassDecl->hasUserDeclaredConstructor()) 3626 return TryConstructorInitialization(S, Entity, Kind, 0, 0, T, Sequence); 3627 3628 // -- if T is a (possibly cv-qualified) non-union class type 3629 // without a user-provided constructor, then the object is 3630 // zero-initialized and, if T's implicitly-declared default 3631 // constructor is non-trivial, that constructor is called. 3632 if ((ClassDecl->getTagKind() == TTK_Class || 3633 ClassDecl->getTagKind() == TTK_Struct)) { 3634 Sequence.AddZeroInitializationStep(Entity.getType()); 3635 return TryConstructorInitialization(S, Entity, Kind, 0, 0, T, Sequence); 3636 } 3637 } 3638 } 3639 3640 Sequence.AddZeroInitializationStep(Entity.getType()); 3641 } 3642 3643 /// \brief Attempt default initialization (C++ [dcl.init]p6). 3644 static void TryDefaultInitialization(Sema &S, 3645 const InitializedEntity &Entity, 3646 const InitializationKind &Kind, 3647 InitializationSequence &Sequence) { 3648 assert(Kind.getKind() == InitializationKind::IK_Default); 3649 3650 // C++ [dcl.init]p6: 3651 // To default-initialize an object of type T means: 3652 // - if T is an array type, each element is default-initialized; 3653 QualType DestType = S.Context.getBaseElementType(Entity.getType()); 3654 3655 // - if T is a (possibly cv-qualified) class type (Clause 9), the default 3656 // constructor for T is called (and the initialization is ill-formed if 3657 // T has no accessible default constructor); 3658 if (DestType->isRecordType() && S.getLangOptions().CPlusPlus) { 3659 TryConstructorInitialization(S, Entity, Kind, 0, 0, DestType, Sequence); 3660 return; 3661 } 3662 3663 // - otherwise, no initialization is performed. 3664 3665 // If a program calls for the default initialization of an object of 3666 // a const-qualified type T, T shall be a class type with a user-provided 3667 // default constructor. 3668 if (DestType.isConstQualified() && S.getLangOptions().CPlusPlus) { 3669 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); 3670 return; 3671 } 3672 3673 // If the destination type has a lifetime property, zero-initialize it. 3674 if (DestType.getQualifiers().hasObjCLifetime()) { 3675 Sequence.AddZeroInitializationStep(Entity.getType()); 3676 return; 3677 } 3678 } 3679 3680 /// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]), 3681 /// which enumerates all conversion functions and performs overload resolution 3682 /// to select the best. 3683 static void TryUserDefinedConversion(Sema &S, 3684 const InitializedEntity &Entity, 3685 const InitializationKind &Kind, 3686 Expr *Initializer, 3687 InitializationSequence &Sequence) { 3688 QualType DestType = Entity.getType(); 3689 assert(!DestType->isReferenceType() && "References are handled elsewhere"); 3690 QualType SourceType = Initializer->getType(); 3691 assert((DestType->isRecordType() || SourceType->isRecordType()) && 3692 "Must have a class type to perform a user-defined conversion"); 3693 3694 // Build the candidate set directly in the initialization sequence 3695 // structure, so that it will persist if we fail. 3696 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 3697 CandidateSet.clear(); 3698 3699 // Determine whether we are allowed to call explicit constructors or 3700 // explicit conversion operators. 3701 bool AllowExplicit = Kind.getKind() == InitializationKind::IK_Direct; 3702 3703 if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) { 3704 // The type we're converting to is a class type. Enumerate its constructors 3705 // to see if there is a suitable conversion. 3706 CXXRecordDecl *DestRecordDecl 3707 = cast<CXXRecordDecl>(DestRecordType->getDecl()); 3708 3709 // Try to complete the type we're converting to. 3710 if (!S.RequireCompleteType(Kind.getLocation(), DestType, 0)) { 3711 DeclContext::lookup_iterator Con, ConEnd; 3712 for (llvm::tie(Con, ConEnd) = S.LookupConstructors(DestRecordDecl); 3713 Con != ConEnd; ++Con) { 3714 NamedDecl *D = *Con; 3715 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess()); 3716 3717 // Find the constructor (which may be a template). 3718 CXXConstructorDecl *Constructor = 0; 3719 FunctionTemplateDecl *ConstructorTmpl 3720 = dyn_cast<FunctionTemplateDecl>(D); 3721 if (ConstructorTmpl) 3722 Constructor = cast<CXXConstructorDecl>( 3723 ConstructorTmpl->getTemplatedDecl()); 3724 else 3725 Constructor = cast<CXXConstructorDecl>(D); 3726 3727 if (!Constructor->isInvalidDecl() && 3728 Constructor->isConvertingConstructor(AllowExplicit)) { 3729 if (ConstructorTmpl) 3730 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 3731 /*ExplicitArgs*/ 0, 3732 &Initializer, 1, CandidateSet, 3733 /*SuppressUserConversions=*/true); 3734 else 3735 S.AddOverloadCandidate(Constructor, FoundDecl, 3736 &Initializer, 1, CandidateSet, 3737 /*SuppressUserConversions=*/true); 3738 } 3739 } 3740 } 3741 } 3742 3743 SourceLocation DeclLoc = Initializer->getLocStart(); 3744 3745 if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) { 3746 // The type we're converting from is a class type, enumerate its conversion 3747 // functions. 3748 3749 // We can only enumerate the conversion functions for a complete type; if 3750 // the type isn't complete, simply skip this step. 3751 if (!S.RequireCompleteType(DeclLoc, SourceType, 0)) { 3752 CXXRecordDecl *SourceRecordDecl 3753 = cast<CXXRecordDecl>(SourceRecordType->getDecl()); 3754 3755 const UnresolvedSetImpl *Conversions 3756 = SourceRecordDecl->getVisibleConversionFunctions(); 3757 for (UnresolvedSetImpl::const_iterator I = Conversions->begin(), 3758 E = Conversions->end(); 3759 I != E; ++I) { 3760 NamedDecl *D = *I; 3761 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 3762 if (isa<UsingShadowDecl>(D)) 3763 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 3764 3765 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 3766 CXXConversionDecl *Conv; 3767 if (ConvTemplate) 3768 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 3769 else 3770 Conv = cast<CXXConversionDecl>(D); 3771 3772 if (AllowExplicit || !Conv->isExplicit()) { 3773 if (ConvTemplate) 3774 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), 3775 ActingDC, Initializer, DestType, 3776 CandidateSet); 3777 else 3778 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, 3779 Initializer, DestType, CandidateSet); 3780 } 3781 } 3782 } 3783 } 3784 3785 // Perform overload resolution. If it fails, return the failed result. 3786 OverloadCandidateSet::iterator Best; 3787 if (OverloadingResult Result 3788 = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) { 3789 Sequence.SetOverloadFailure( 3790 InitializationSequence::FK_UserConversionOverloadFailed, 3791 Result); 3792 return; 3793 } 3794 3795 FunctionDecl *Function = Best->Function; 3796 S.MarkDeclarationReferenced(DeclLoc, Function); 3797 bool HadMultipleCandidates = (CandidateSet.size() > 1); 3798 3799 if (isa<CXXConstructorDecl>(Function)) { 3800 // Add the user-defined conversion step. Any cv-qualification conversion is 3801 // subsumed by the initialization. 3802 Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType, 3803 HadMultipleCandidates); 3804 return; 3805 } 3806 3807 // Add the user-defined conversion step that calls the conversion function. 3808 QualType ConvType = Function->getCallResultType(); 3809 if (ConvType->getAs<RecordType>()) { 3810 // If we're converting to a class type, there may be an copy if 3811 // the resulting temporary object (possible to create an object of 3812 // a base class type). That copy is not a separate conversion, so 3813 // we just make a note of the actual destination type (possibly a 3814 // base class of the type returned by the conversion function) and 3815 // let the user-defined conversion step handle the conversion. 3816 Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType, 3817 HadMultipleCandidates); 3818 return; 3819 } 3820 3821 Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType, 3822 HadMultipleCandidates); 3823 3824 // If the conversion following the call to the conversion function 3825 // is interesting, add it as a separate step. 3826 if (Best->FinalConversion.First || Best->FinalConversion.Second || 3827 Best->FinalConversion.Third) { 3828 ImplicitConversionSequence ICS; 3829 ICS.setStandard(); 3830 ICS.Standard = Best->FinalConversion; 3831 Sequence.AddConversionSequenceStep(ICS, DestType); 3832 } 3833 } 3834 3835 /// The non-zero enum values here are indexes into diagnostic alternatives. 3836 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar }; 3837 3838 /// Determines whether this expression is an acceptable ICR source. 3839 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e, 3840 bool isAddressOf) { 3841 // Skip parens. 3842 e = e->IgnoreParens(); 3843 3844 // Skip address-of nodes. 3845 if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) { 3846 if (op->getOpcode() == UO_AddrOf) 3847 return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true); 3848 3849 // Skip certain casts. 3850 } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) { 3851 switch (ce->getCastKind()) { 3852 case CK_Dependent: 3853 case CK_BitCast: 3854 case CK_LValueBitCast: 3855 case CK_NoOp: 3856 return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf); 3857 3858 case CK_ArrayToPointerDecay: 3859 return IIK_nonscalar; 3860 3861 case CK_NullToPointer: 3862 return IIK_okay; 3863 3864 default: 3865 break; 3866 } 3867 3868 // If we have a declaration reference, it had better be a local variable. 3869 } else if (isa<DeclRefExpr>(e) || isa<BlockDeclRefExpr>(e)) { 3870 if (!isAddressOf) return IIK_nonlocal; 3871 3872 VarDecl *var; 3873 if (isa<DeclRefExpr>(e)) { 3874 var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl()); 3875 if (!var) return IIK_nonlocal; 3876 } else { 3877 var = cast<BlockDeclRefExpr>(e)->getDecl(); 3878 } 3879 3880 return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal); 3881 3882 // If we have a conditional operator, check both sides. 3883 } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) { 3884 if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf)) 3885 return iik; 3886 3887 return isInvalidICRSource(C, cond->getRHS(), isAddressOf); 3888 3889 // These are never scalar. 3890 } else if (isa<ArraySubscriptExpr>(e)) { 3891 return IIK_nonscalar; 3892 3893 // Otherwise, it needs to be a null pointer constant. 3894 } else { 3895 return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull) 3896 ? IIK_okay : IIK_nonlocal); 3897 } 3898 3899 return IIK_nonlocal; 3900 } 3901 3902 /// Check whether the given expression is a valid operand for an 3903 /// indirect copy/restore. 3904 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) { 3905 assert(src->isRValue()); 3906 3907 InvalidICRKind iik = isInvalidICRSource(S.Context, src, false); 3908 if (iik == IIK_okay) return; 3909 3910 S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback) 3911 << ((unsigned) iik - 1) // shift index into diagnostic explanations 3912 << src->getSourceRange(); 3913 } 3914 3915 /// \brief Determine whether we have compatible array types for the 3916 /// purposes of GNU by-copy array initialization. 3917 static bool hasCompatibleArrayTypes(ASTContext &Context, 3918 const ArrayType *Dest, 3919 const ArrayType *Source) { 3920 // If the source and destination array types are equivalent, we're 3921 // done. 3922 if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0))) 3923 return true; 3924 3925 // Make sure that the element types are the same. 3926 if (!Context.hasSameType(Dest->getElementType(), Source->getElementType())) 3927 return false; 3928 3929 // The only mismatch we allow is when the destination is an 3930 // incomplete array type and the source is a constant array type. 3931 return Source->isConstantArrayType() && Dest->isIncompleteArrayType(); 3932 } 3933 3934 static bool tryObjCWritebackConversion(Sema &S, 3935 InitializationSequence &Sequence, 3936 const InitializedEntity &Entity, 3937 Expr *Initializer) { 3938 bool ArrayDecay = false; 3939 QualType ArgType = Initializer->getType(); 3940 QualType ArgPointee; 3941 if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) { 3942 ArrayDecay = true; 3943 ArgPointee = ArgArrayType->getElementType(); 3944 ArgType = S.Context.getPointerType(ArgPointee); 3945 } 3946 3947 // Handle write-back conversion. 3948 QualType ConvertedArgType; 3949 if (!S.isObjCWritebackConversion(ArgType, Entity.getType(), 3950 ConvertedArgType)) 3951 return false; 3952 3953 // We should copy unless we're passing to an argument explicitly 3954 // marked 'out'. 3955 bool ShouldCopy = true; 3956 if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl())) 3957 ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); 3958 3959 // Do we need an lvalue conversion? 3960 if (ArrayDecay || Initializer->isGLValue()) { 3961 ImplicitConversionSequence ICS; 3962 ICS.setStandard(); 3963 ICS.Standard.setAsIdentityConversion(); 3964 3965 QualType ResultType; 3966 if (ArrayDecay) { 3967 ICS.Standard.First = ICK_Array_To_Pointer; 3968 ResultType = S.Context.getPointerType(ArgPointee); 3969 } else { 3970 ICS.Standard.First = ICK_Lvalue_To_Rvalue; 3971 ResultType = Initializer->getType().getNonLValueExprType(S.Context); 3972 } 3973 3974 Sequence.AddConversionSequenceStep(ICS, ResultType); 3975 } 3976 3977 Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy); 3978 return true; 3979 } 3980 3981 InitializationSequence::InitializationSequence(Sema &S, 3982 const InitializedEntity &Entity, 3983 const InitializationKind &Kind, 3984 Expr **Args, 3985 unsigned NumArgs) 3986 : FailedCandidateSet(Kind.getLocation()) { 3987 ASTContext &Context = S.Context; 3988 3989 // C++0x [dcl.init]p16: 3990 // The semantics of initializers are as follows. The destination type is 3991 // the type of the object or reference being initialized and the source 3992 // type is the type of the initializer expression. The source type is not 3993 // defined when the initializer is a braced-init-list or when it is a 3994 // parenthesized list of expressions. 3995 QualType DestType = Entity.getType(); 3996 3997 if (DestType->isDependentType() || 3998 Expr::hasAnyTypeDependentArguments(Args, NumArgs)) { 3999 SequenceKind = DependentSequence; 4000 return; 4001 } 4002 4003 // Almost everything is a normal sequence. 4004 setSequenceKind(NormalSequence); 4005 4006 for (unsigned I = 0; I != NumArgs; ++I) 4007 if (Args[I]->getType()->isNonOverloadPlaceholderType()) { 4008 // FIXME: should we be doing this here? 4009 ExprResult result = S.CheckPlaceholderExpr(Args[I]); 4010 if (result.isInvalid()) { 4011 SetFailed(FK_PlaceholderType); 4012 return; 4013 } 4014 Args[I] = result.take(); 4015 } 4016 4017 4018 QualType SourceType; 4019 Expr *Initializer = 0; 4020 if (NumArgs == 1) { 4021 Initializer = Args[0]; 4022 if (!isa<InitListExpr>(Initializer)) 4023 SourceType = Initializer->getType(); 4024 } 4025 4026 // - If the initializer is a braced-init-list, the object is 4027 // list-initialized (8.5.4). 4028 if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) { 4029 TryListInitialization(S, Entity, Kind, InitList, *this); 4030 return; 4031 } 4032 4033 // - If the destination type is a reference type, see 8.5.3. 4034 if (DestType->isReferenceType()) { 4035 // C++0x [dcl.init.ref]p1: 4036 // A variable declared to be a T& or T&&, that is, "reference to type T" 4037 // (8.3.2), shall be initialized by an object, or function, of type T or 4038 // by an object that can be converted into a T. 4039 // (Therefore, multiple arguments are not permitted.) 4040 if (NumArgs != 1) 4041 SetFailed(FK_TooManyInitsForReference); 4042 else 4043 TryReferenceInitialization(S, Entity, Kind, Args[0], *this); 4044 return; 4045 } 4046 4047 // - If the initializer is (), the object is value-initialized. 4048 if (Kind.getKind() == InitializationKind::IK_Value || 4049 (Kind.getKind() == InitializationKind::IK_Direct && NumArgs == 0)) { 4050 TryValueInitialization(S, Entity, Kind, *this); 4051 return; 4052 } 4053 4054 // Handle default initialization. 4055 if (Kind.getKind() == InitializationKind::IK_Default) { 4056 TryDefaultInitialization(S, Entity, Kind, *this); 4057 return; 4058 } 4059 4060 // - If the destination type is an array of characters, an array of 4061 // char16_t, an array of char32_t, or an array of wchar_t, and the 4062 // initializer is a string literal, see 8.5.2. 4063 // - Otherwise, if the destination type is an array, the program is 4064 // ill-formed. 4065 if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) { 4066 if (Initializer && IsStringInit(Initializer, DestAT, Context)) { 4067 TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this); 4068 return; 4069 } 4070 4071 // Note: as an GNU C extension, we allow initialization of an 4072 // array from a compound literal that creates an array of the same 4073 // type, so long as the initializer has no side effects. 4074 if (!S.getLangOptions().CPlusPlus && Initializer && 4075 isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) && 4076 Initializer->getType()->isArrayType()) { 4077 const ArrayType *SourceAT 4078 = Context.getAsArrayType(Initializer->getType()); 4079 if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT)) 4080 SetFailed(FK_ArrayTypeMismatch); 4081 else if (Initializer->HasSideEffects(S.Context)) 4082 SetFailed(FK_NonConstantArrayInit); 4083 else { 4084 AddArrayInitStep(DestType); 4085 } 4086 } else if (DestAT->getElementType()->isAnyCharacterType()) 4087 SetFailed(FK_ArrayNeedsInitListOrStringLiteral); 4088 else 4089 SetFailed(FK_ArrayNeedsInitList); 4090 4091 return; 4092 } 4093 4094 // Determine whether we should consider writeback conversions for 4095 // Objective-C ARC. 4096 bool allowObjCWritebackConversion = S.getLangOptions().ObjCAutoRefCount && 4097 Entity.getKind() == InitializedEntity::EK_Parameter; 4098 4099 // We're at the end of the line for C: it's either a write-back conversion 4100 // or it's a C assignment. There's no need to check anything else. 4101 if (!S.getLangOptions().CPlusPlus) { 4102 // If allowed, check whether this is an Objective-C writeback conversion. 4103 if (allowObjCWritebackConversion && 4104 tryObjCWritebackConversion(S, *this, Entity, Initializer)) { 4105 return; 4106 } 4107 4108 // Handle initialization in C 4109 AddCAssignmentStep(DestType); 4110 MaybeProduceObjCObject(S, *this, Entity); 4111 return; 4112 } 4113 4114 assert(S.getLangOptions().CPlusPlus); 4115 4116 // - If the destination type is a (possibly cv-qualified) class type: 4117 if (DestType->isRecordType()) { 4118 // - If the initialization is direct-initialization, or if it is 4119 // copy-initialization where the cv-unqualified version of the 4120 // source type is the same class as, or a derived class of, the 4121 // class of the destination, constructors are considered. [...] 4122 if (Kind.getKind() == InitializationKind::IK_Direct || 4123 (Kind.getKind() == InitializationKind::IK_Copy && 4124 (Context.hasSameUnqualifiedType(SourceType, DestType) || 4125 S.IsDerivedFrom(SourceType, DestType)))) 4126 TryConstructorInitialization(S, Entity, Kind, Args, NumArgs, 4127 Entity.getType(), *this); 4128 // - Otherwise (i.e., for the remaining copy-initialization cases), 4129 // user-defined conversion sequences that can convert from the source 4130 // type to the destination type or (when a conversion function is 4131 // used) to a derived class thereof are enumerated as described in 4132 // 13.3.1.4, and the best one is chosen through overload resolution 4133 // (13.3). 4134 else 4135 TryUserDefinedConversion(S, Entity, Kind, Initializer, *this); 4136 return; 4137 } 4138 4139 if (NumArgs > 1) { 4140 SetFailed(FK_TooManyInitsForScalar); 4141 return; 4142 } 4143 assert(NumArgs == 1 && "Zero-argument case handled above"); 4144 4145 // - Otherwise, if the source type is a (possibly cv-qualified) class 4146 // type, conversion functions are considered. 4147 if (!SourceType.isNull() && SourceType->isRecordType()) { 4148 TryUserDefinedConversion(S, Entity, Kind, Initializer, *this); 4149 MaybeProduceObjCObject(S, *this, Entity); 4150 return; 4151 } 4152 4153 // - Otherwise, the initial value of the object being initialized is the 4154 // (possibly converted) value of the initializer expression. Standard 4155 // conversions (Clause 4) will be used, if necessary, to convert the 4156 // initializer expression to the cv-unqualified version of the 4157 // destination type; no user-defined conversions are considered. 4158 4159 ImplicitConversionSequence ICS 4160 = S.TryImplicitConversion(Initializer, Entity.getType(), 4161 /*SuppressUserConversions*/true, 4162 /*AllowExplicitConversions*/ false, 4163 /*InOverloadResolution*/ false, 4164 /*CStyle=*/Kind.isCStyleOrFunctionalCast(), 4165 allowObjCWritebackConversion); 4166 4167 if (ICS.isStandard() && 4168 ICS.Standard.Second == ICK_Writeback_Conversion) { 4169 // Objective-C ARC writeback conversion. 4170 4171 // We should copy unless we're passing to an argument explicitly 4172 // marked 'out'. 4173 bool ShouldCopy = true; 4174 if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl())) 4175 ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); 4176 4177 // If there was an lvalue adjustment, add it as a separate conversion. 4178 if (ICS.Standard.First == ICK_Array_To_Pointer || 4179 ICS.Standard.First == ICK_Lvalue_To_Rvalue) { 4180 ImplicitConversionSequence LvalueICS; 4181 LvalueICS.setStandard(); 4182 LvalueICS.Standard.setAsIdentityConversion(); 4183 LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0)); 4184 LvalueICS.Standard.First = ICS.Standard.First; 4185 AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0)); 4186 } 4187 4188 AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy); 4189 } else if (ICS.isBad()) { 4190 DeclAccessPair dap; 4191 if (Initializer->getType() == Context.OverloadTy && 4192 !S.ResolveAddressOfOverloadedFunction(Initializer 4193 , DestType, false, dap)) 4194 SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 4195 else 4196 SetFailed(InitializationSequence::FK_ConversionFailed); 4197 } else { 4198 AddConversionSequenceStep(ICS, Entity.getType()); 4199 4200 MaybeProduceObjCObject(S, *this, Entity); 4201 } 4202 } 4203 4204 InitializationSequence::~InitializationSequence() { 4205 for (SmallVectorImpl<Step>::iterator Step = Steps.begin(), 4206 StepEnd = Steps.end(); 4207 Step != StepEnd; ++Step) 4208 Step->Destroy(); 4209 } 4210 4211 //===----------------------------------------------------------------------===// 4212 // Perform initialization 4213 //===----------------------------------------------------------------------===// 4214 static Sema::AssignmentAction 4215 getAssignmentAction(const InitializedEntity &Entity) { 4216 switch(Entity.getKind()) { 4217 case InitializedEntity::EK_Variable: 4218 case InitializedEntity::EK_New: 4219 case InitializedEntity::EK_Exception: 4220 case InitializedEntity::EK_Base: 4221 case InitializedEntity::EK_Delegating: 4222 return Sema::AA_Initializing; 4223 4224 case InitializedEntity::EK_Parameter: 4225 if (Entity.getDecl() && 4226 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) 4227 return Sema::AA_Sending; 4228 4229 return Sema::AA_Passing; 4230 4231 case InitializedEntity::EK_Result: 4232 return Sema::AA_Returning; 4233 4234 case InitializedEntity::EK_Temporary: 4235 // FIXME: Can we tell apart casting vs. converting? 4236 return Sema::AA_Casting; 4237 4238 case InitializedEntity::EK_Member: 4239 case InitializedEntity::EK_ArrayElement: 4240 case InitializedEntity::EK_VectorElement: 4241 case InitializedEntity::EK_ComplexElement: 4242 case InitializedEntity::EK_BlockElement: 4243 return Sema::AA_Initializing; 4244 } 4245 4246 return Sema::AA_Converting; 4247 } 4248 4249 /// \brief Whether we should binding a created object as a temporary when 4250 /// initializing the given entity. 4251 static bool shouldBindAsTemporary(const InitializedEntity &Entity) { 4252 switch (Entity.getKind()) { 4253 case InitializedEntity::EK_ArrayElement: 4254 case InitializedEntity::EK_Member: 4255 case InitializedEntity::EK_Result: 4256 case InitializedEntity::EK_New: 4257 case InitializedEntity::EK_Variable: 4258 case InitializedEntity::EK_Base: 4259 case InitializedEntity::EK_Delegating: 4260 case InitializedEntity::EK_VectorElement: 4261 case InitializedEntity::EK_ComplexElement: 4262 case InitializedEntity::EK_Exception: 4263 case InitializedEntity::EK_BlockElement: 4264 return false; 4265 4266 case InitializedEntity::EK_Parameter: 4267 case InitializedEntity::EK_Temporary: 4268 return true; 4269 } 4270 4271 llvm_unreachable("missed an InitializedEntity kind?"); 4272 } 4273 4274 /// \brief Whether the given entity, when initialized with an object 4275 /// created for that initialization, requires destruction. 4276 static bool shouldDestroyTemporary(const InitializedEntity &Entity) { 4277 switch (Entity.getKind()) { 4278 case InitializedEntity::EK_Member: 4279 case InitializedEntity::EK_Result: 4280 case InitializedEntity::EK_New: 4281 case InitializedEntity::EK_Base: 4282 case InitializedEntity::EK_Delegating: 4283 case InitializedEntity::EK_VectorElement: 4284 case InitializedEntity::EK_ComplexElement: 4285 case InitializedEntity::EK_BlockElement: 4286 return false; 4287 4288 case InitializedEntity::EK_Variable: 4289 case InitializedEntity::EK_Parameter: 4290 case InitializedEntity::EK_Temporary: 4291 case InitializedEntity::EK_ArrayElement: 4292 case InitializedEntity::EK_Exception: 4293 return true; 4294 } 4295 4296 llvm_unreachable("missed an InitializedEntity kind?"); 4297 } 4298 4299 /// \brief Look for copy and move constructors and constructor templates, for 4300 /// copying an object via direct-initialization (per C++11 [dcl.init]p16). 4301 static void LookupCopyAndMoveConstructors(Sema &S, 4302 OverloadCandidateSet &CandidateSet, 4303 CXXRecordDecl *Class, 4304 Expr *CurInitExpr) { 4305 DeclContext::lookup_iterator Con, ConEnd; 4306 for (llvm::tie(Con, ConEnd) = S.LookupConstructors(Class); 4307 Con != ConEnd; ++Con) { 4308 CXXConstructorDecl *Constructor = 0; 4309 4310 if ((Constructor = dyn_cast<CXXConstructorDecl>(*Con))) { 4311 // Handle copy/moveconstructors, only. 4312 if (!Constructor || Constructor->isInvalidDecl() || 4313 !Constructor->isCopyOrMoveConstructor() || 4314 !Constructor->isConvertingConstructor(/*AllowExplicit=*/true)) 4315 continue; 4316 4317 DeclAccessPair FoundDecl 4318 = DeclAccessPair::make(Constructor, Constructor->getAccess()); 4319 S.AddOverloadCandidate(Constructor, FoundDecl, 4320 &CurInitExpr, 1, CandidateSet); 4321 continue; 4322 } 4323 4324 // Handle constructor templates. 4325 FunctionTemplateDecl *ConstructorTmpl = cast<FunctionTemplateDecl>(*Con); 4326 if (ConstructorTmpl->isInvalidDecl()) 4327 continue; 4328 4329 Constructor = cast<CXXConstructorDecl>( 4330 ConstructorTmpl->getTemplatedDecl()); 4331 if (!Constructor->isConvertingConstructor(/*AllowExplicit=*/true)) 4332 continue; 4333 4334 // FIXME: Do we need to limit this to copy-constructor-like 4335 // candidates? 4336 DeclAccessPair FoundDecl 4337 = DeclAccessPair::make(ConstructorTmpl, ConstructorTmpl->getAccess()); 4338 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 0, 4339 &CurInitExpr, 1, CandidateSet, true); 4340 } 4341 } 4342 4343 /// \brief Get the location at which initialization diagnostics should appear. 4344 static SourceLocation getInitializationLoc(const InitializedEntity &Entity, 4345 Expr *Initializer) { 4346 switch (Entity.getKind()) { 4347 case InitializedEntity::EK_Result: 4348 return Entity.getReturnLoc(); 4349 4350 case InitializedEntity::EK_Exception: 4351 return Entity.getThrowLoc(); 4352 4353 case InitializedEntity::EK_Variable: 4354 return Entity.getDecl()->getLocation(); 4355 4356 case InitializedEntity::EK_ArrayElement: 4357 case InitializedEntity::EK_Member: 4358 case InitializedEntity::EK_Parameter: 4359 case InitializedEntity::EK_Temporary: 4360 case InitializedEntity::EK_New: 4361 case InitializedEntity::EK_Base: 4362 case InitializedEntity::EK_Delegating: 4363 case InitializedEntity::EK_VectorElement: 4364 case InitializedEntity::EK_ComplexElement: 4365 case InitializedEntity::EK_BlockElement: 4366 return Initializer->getLocStart(); 4367 } 4368 llvm_unreachable("missed an InitializedEntity kind?"); 4369 } 4370 4371 /// \brief Make a (potentially elidable) temporary copy of the object 4372 /// provided by the given initializer by calling the appropriate copy 4373 /// constructor. 4374 /// 4375 /// \param S The Sema object used for type-checking. 4376 /// 4377 /// \param T The type of the temporary object, which must either be 4378 /// the type of the initializer expression or a superclass thereof. 4379 /// 4380 /// \param Enter The entity being initialized. 4381 /// 4382 /// \param CurInit The initializer expression. 4383 /// 4384 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that 4385 /// is permitted in C++03 (but not C++0x) when binding a reference to 4386 /// an rvalue. 4387 /// 4388 /// \returns An expression that copies the initializer expression into 4389 /// a temporary object, or an error expression if a copy could not be 4390 /// created. 4391 static ExprResult CopyObject(Sema &S, 4392 QualType T, 4393 const InitializedEntity &Entity, 4394 ExprResult CurInit, 4395 bool IsExtraneousCopy) { 4396 // Determine which class type we're copying to. 4397 Expr *CurInitExpr = (Expr *)CurInit.get(); 4398 CXXRecordDecl *Class = 0; 4399 if (const RecordType *Record = T->getAs<RecordType>()) 4400 Class = cast<CXXRecordDecl>(Record->getDecl()); 4401 if (!Class) 4402 return move(CurInit); 4403 4404 // C++0x [class.copy]p32: 4405 // When certain criteria are met, an implementation is allowed to 4406 // omit the copy/move construction of a class object, even if the 4407 // copy/move constructor and/or destructor for the object have 4408 // side effects. [...] 4409 // - when a temporary class object that has not been bound to a 4410 // reference (12.2) would be copied/moved to a class object 4411 // with the same cv-unqualified type, the copy/move operation 4412 // can be omitted by constructing the temporary object 4413 // directly into the target of the omitted copy/move 4414 // 4415 // Note that the other three bullets are handled elsewhere. Copy 4416 // elision for return statements and throw expressions are handled as part 4417 // of constructor initialization, while copy elision for exception handlers 4418 // is handled by the run-time. 4419 bool Elidable = CurInitExpr->isTemporaryObject(S.Context, Class); 4420 SourceLocation Loc = getInitializationLoc(Entity, CurInit.get()); 4421 4422 // Make sure that the type we are copying is complete. 4423 if (S.RequireCompleteType(Loc, T, S.PDiag(diag::err_temp_copy_incomplete))) 4424 return move(CurInit); 4425 4426 // Perform overload resolution using the class's copy/move constructors. 4427 // Only consider constructors and constructor templates. Per 4428 // C++0x [dcl.init]p16, second bullet to class types, this initialization 4429 // is direct-initialization. 4430 OverloadCandidateSet CandidateSet(Loc); 4431 LookupCopyAndMoveConstructors(S, CandidateSet, Class, CurInitExpr); 4432 4433 bool HadMultipleCandidates = (CandidateSet.size() > 1); 4434 4435 OverloadCandidateSet::iterator Best; 4436 switch (CandidateSet.BestViableFunction(S, Loc, Best)) { 4437 case OR_Success: 4438 break; 4439 4440 case OR_No_Viable_Function: 4441 S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext() 4442 ? diag::ext_rvalue_to_reference_temp_copy_no_viable 4443 : diag::err_temp_copy_no_viable) 4444 << (int)Entity.getKind() << CurInitExpr->getType() 4445 << CurInitExpr->getSourceRange(); 4446 CandidateSet.NoteCandidates(S, OCD_AllCandidates, &CurInitExpr, 1); 4447 if (!IsExtraneousCopy || S.isSFINAEContext()) 4448 return ExprError(); 4449 return move(CurInit); 4450 4451 case OR_Ambiguous: 4452 S.Diag(Loc, diag::err_temp_copy_ambiguous) 4453 << (int)Entity.getKind() << CurInitExpr->getType() 4454 << CurInitExpr->getSourceRange(); 4455 CandidateSet.NoteCandidates(S, OCD_ViableCandidates, &CurInitExpr, 1); 4456 return ExprError(); 4457 4458 case OR_Deleted: 4459 S.Diag(Loc, diag::err_temp_copy_deleted) 4460 << (int)Entity.getKind() << CurInitExpr->getType() 4461 << CurInitExpr->getSourceRange(); 4462 S.Diag(Best->Function->getLocation(), diag::note_unavailable_here) 4463 << 1 << Best->Function->isDeleted(); 4464 return ExprError(); 4465 } 4466 4467 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function); 4468 ASTOwningVector<Expr*> ConstructorArgs(S); 4469 CurInit.release(); // Ownership transferred into MultiExprArg, below. 4470 4471 S.CheckConstructorAccess(Loc, Constructor, Entity, 4472 Best->FoundDecl.getAccess(), IsExtraneousCopy); 4473 4474 if (IsExtraneousCopy) { 4475 // If this is a totally extraneous copy for C++03 reference 4476 // binding purposes, just return the original initialization 4477 // expression. We don't generate an (elided) copy operation here 4478 // because doing so would require us to pass down a flag to avoid 4479 // infinite recursion, where each step adds another extraneous, 4480 // elidable copy. 4481 4482 // Instantiate the default arguments of any extra parameters in 4483 // the selected copy constructor, as if we were going to create a 4484 // proper call to the copy constructor. 4485 for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) { 4486 ParmVarDecl *Parm = Constructor->getParamDecl(I); 4487 if (S.RequireCompleteType(Loc, Parm->getType(), 4488 S.PDiag(diag::err_call_incomplete_argument))) 4489 break; 4490 4491 // Build the default argument expression; we don't actually care 4492 // if this succeeds or not, because this routine will complain 4493 // if there was a problem. 4494 S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm); 4495 } 4496 4497 return S.Owned(CurInitExpr); 4498 } 4499 4500 S.MarkDeclarationReferenced(Loc, Constructor); 4501 4502 // Determine the arguments required to actually perform the 4503 // constructor call (we might have derived-to-base conversions, or 4504 // the copy constructor may have default arguments). 4505 if (S.CompleteConstructorCall(Constructor, MultiExprArg(&CurInitExpr, 1), 4506 Loc, ConstructorArgs)) 4507 return ExprError(); 4508 4509 // Actually perform the constructor call. 4510 CurInit = S.BuildCXXConstructExpr(Loc, T, Constructor, Elidable, 4511 move_arg(ConstructorArgs), 4512 HadMultipleCandidates, 4513 /*ZeroInit*/ false, 4514 CXXConstructExpr::CK_Complete, 4515 SourceRange()); 4516 4517 // If we're supposed to bind temporaries, do so. 4518 if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity)) 4519 CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>()); 4520 return move(CurInit); 4521 } 4522 4523 /// \brief Check whether elidable copy construction for binding a reference to 4524 /// a temporary would have succeeded if we were building in C++98 mode, for 4525 /// -Wc++98-compat. 4526 static void CheckCXX98CompatAccessibleCopy(Sema &S, 4527 const InitializedEntity &Entity, 4528 Expr *CurInitExpr) { 4529 assert(S.getLangOptions().CPlusPlus0x); 4530 4531 const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>(); 4532 if (!Record) 4533 return; 4534 4535 SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr); 4536 if (S.Diags.getDiagnosticLevel(diag::warn_cxx98_compat_temp_copy, Loc) 4537 == DiagnosticsEngine::Ignored) 4538 return; 4539 4540 // Find constructors which would have been considered. 4541 OverloadCandidateSet CandidateSet(Loc); 4542 LookupCopyAndMoveConstructors( 4543 S, CandidateSet, cast<CXXRecordDecl>(Record->getDecl()), CurInitExpr); 4544 4545 // Perform overload resolution. 4546 OverloadCandidateSet::iterator Best; 4547 OverloadingResult OR = CandidateSet.BestViableFunction(S, Loc, Best); 4548 4549 PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy) 4550 << OR << (int)Entity.getKind() << CurInitExpr->getType() 4551 << CurInitExpr->getSourceRange(); 4552 4553 switch (OR) { 4554 case OR_Success: 4555 S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function), 4556 Best->FoundDecl.getAccess(), Diag); 4557 // FIXME: Check default arguments as far as that's possible. 4558 break; 4559 4560 case OR_No_Viable_Function: 4561 S.Diag(Loc, Diag); 4562 CandidateSet.NoteCandidates(S, OCD_AllCandidates, &CurInitExpr, 1); 4563 break; 4564 4565 case OR_Ambiguous: 4566 S.Diag(Loc, Diag); 4567 CandidateSet.NoteCandidates(S, OCD_ViableCandidates, &CurInitExpr, 1); 4568 break; 4569 4570 case OR_Deleted: 4571 S.Diag(Loc, Diag); 4572 S.Diag(Best->Function->getLocation(), diag::note_unavailable_here) 4573 << 1 << Best->Function->isDeleted(); 4574 break; 4575 } 4576 } 4577 4578 void InitializationSequence::PrintInitLocationNote(Sema &S, 4579 const InitializedEntity &Entity) { 4580 if (Entity.getKind() == InitializedEntity::EK_Parameter && Entity.getDecl()) { 4581 if (Entity.getDecl()->getLocation().isInvalid()) 4582 return; 4583 4584 if (Entity.getDecl()->getDeclName()) 4585 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here) 4586 << Entity.getDecl()->getDeclName(); 4587 else 4588 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here); 4589 } 4590 } 4591 4592 static bool isReferenceBinding(const InitializationSequence::Step &s) { 4593 return s.Kind == InitializationSequence::SK_BindReference || 4594 s.Kind == InitializationSequence::SK_BindReferenceToTemporary; 4595 } 4596 4597 static ExprResult 4598 PerformConstructorInitialization(Sema &S, 4599 const InitializedEntity &Entity, 4600 const InitializationKind &Kind, 4601 MultiExprArg Args, 4602 const InitializationSequence::Step& Step, 4603 bool &ConstructorInitRequiresZeroInit) { 4604 unsigned NumArgs = Args.size(); 4605 CXXConstructorDecl *Constructor 4606 = cast<CXXConstructorDecl>(Step.Function.Function); 4607 bool HadMultipleCandidates = Step.Function.HadMultipleCandidates; 4608 4609 // Build a call to the selected constructor. 4610 ASTOwningVector<Expr*> ConstructorArgs(S); 4611 SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid()) 4612 ? Kind.getEqualLoc() 4613 : Kind.getLocation(); 4614 4615 if (Kind.getKind() == InitializationKind::IK_Default) { 4616 // Force even a trivial, implicit default constructor to be 4617 // semantically checked. We do this explicitly because we don't build 4618 // the definition for completely trivial constructors. 4619 CXXRecordDecl *ClassDecl = Constructor->getParent(); 4620 assert(ClassDecl && "No parent class for constructor."); 4621 if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() && 4622 ClassDecl->hasTrivialDefaultConstructor() && 4623 !Constructor->isUsed(false)) 4624 S.DefineImplicitDefaultConstructor(Loc, Constructor); 4625 } 4626 4627 ExprResult CurInit = S.Owned((Expr *)0); 4628 4629 // Determine the arguments required to actually perform the constructor 4630 // call. 4631 if (S.CompleteConstructorCall(Constructor, move(Args), 4632 Loc, ConstructorArgs)) 4633 return ExprError(); 4634 4635 4636 if (Entity.getKind() == InitializedEntity::EK_Temporary && 4637 NumArgs != 1 && // FIXME: Hack to work around cast weirdness 4638 (Kind.getKind() == InitializationKind::IK_Direct || 4639 Kind.getKind() == InitializationKind::IK_Value)) { 4640 // An explicitly-constructed temporary, e.g., X(1, 2). 4641 unsigned NumExprs = ConstructorArgs.size(); 4642 Expr **Exprs = (Expr **)ConstructorArgs.take(); 4643 S.MarkDeclarationReferenced(Loc, Constructor); 4644 S.DiagnoseUseOfDecl(Constructor, Loc); 4645 4646 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); 4647 if (!TSInfo) 4648 TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc); 4649 4650 CurInit = S.Owned(new (S.Context) CXXTemporaryObjectExpr(S.Context, 4651 Constructor, 4652 TSInfo, 4653 Exprs, 4654 NumExprs, 4655 Kind.getParenRange(), 4656 HadMultipleCandidates, 4657 ConstructorInitRequiresZeroInit)); 4658 } else { 4659 CXXConstructExpr::ConstructionKind ConstructKind = 4660 CXXConstructExpr::CK_Complete; 4661 4662 if (Entity.getKind() == InitializedEntity::EK_Base) { 4663 ConstructKind = Entity.getBaseSpecifier()->isVirtual() ? 4664 CXXConstructExpr::CK_VirtualBase : 4665 CXXConstructExpr::CK_NonVirtualBase; 4666 } else if (Entity.getKind() == InitializedEntity::EK_Delegating) { 4667 ConstructKind = CXXConstructExpr::CK_Delegating; 4668 } 4669 4670 // Only get the parenthesis range if it is a direct construction. 4671 SourceRange parenRange = 4672 Kind.getKind() == InitializationKind::IK_Direct ? 4673 Kind.getParenRange() : SourceRange(); 4674 4675 // If the entity allows NRVO, mark the construction as elidable 4676 // unconditionally. 4677 if (Entity.allowsNRVO()) 4678 CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(), 4679 Constructor, /*Elidable=*/true, 4680 move_arg(ConstructorArgs), 4681 HadMultipleCandidates, 4682 ConstructorInitRequiresZeroInit, 4683 ConstructKind, 4684 parenRange); 4685 else 4686 CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(), 4687 Constructor, 4688 move_arg(ConstructorArgs), 4689 HadMultipleCandidates, 4690 ConstructorInitRequiresZeroInit, 4691 ConstructKind, 4692 parenRange); 4693 } 4694 if (CurInit.isInvalid()) 4695 return ExprError(); 4696 4697 // Only check access if all of that succeeded. 4698 S.CheckConstructorAccess(Loc, Constructor, Entity, 4699 Step.Function.FoundDecl.getAccess()); 4700 S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc); 4701 4702 if (shouldBindAsTemporary(Entity)) 4703 CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>()); 4704 4705 return move(CurInit); 4706 } 4707 4708 ExprResult 4709 InitializationSequence::Perform(Sema &S, 4710 const InitializedEntity &Entity, 4711 const InitializationKind &Kind, 4712 MultiExprArg Args, 4713 QualType *ResultType) { 4714 if (Failed()) { 4715 unsigned NumArgs = Args.size(); 4716 Diagnose(S, Entity, Kind, (Expr **)Args.release(), NumArgs); 4717 return ExprError(); 4718 } 4719 4720 if (getKind() == DependentSequence) { 4721 // If the declaration is a non-dependent, incomplete array type 4722 // that has an initializer, then its type will be completed once 4723 // the initializer is instantiated. 4724 if (ResultType && !Entity.getType()->isDependentType() && 4725 Args.size() == 1) { 4726 QualType DeclType = Entity.getType(); 4727 if (const IncompleteArrayType *ArrayT 4728 = S.Context.getAsIncompleteArrayType(DeclType)) { 4729 // FIXME: We don't currently have the ability to accurately 4730 // compute the length of an initializer list without 4731 // performing full type-checking of the initializer list 4732 // (since we have to determine where braces are implicitly 4733 // introduced and such). So, we fall back to making the array 4734 // type a dependently-sized array type with no specified 4735 // bound. 4736 if (isa<InitListExpr>((Expr *)Args.get()[0])) { 4737 SourceRange Brackets; 4738 4739 // Scavange the location of the brackets from the entity, if we can. 4740 if (DeclaratorDecl *DD = Entity.getDecl()) { 4741 if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) { 4742 TypeLoc TL = TInfo->getTypeLoc(); 4743 if (IncompleteArrayTypeLoc *ArrayLoc 4744 = dyn_cast<IncompleteArrayTypeLoc>(&TL)) 4745 Brackets = ArrayLoc->getBracketsRange(); 4746 } 4747 } 4748 4749 *ResultType 4750 = S.Context.getDependentSizedArrayType(ArrayT->getElementType(), 4751 /*NumElts=*/0, 4752 ArrayT->getSizeModifier(), 4753 ArrayT->getIndexTypeCVRQualifiers(), 4754 Brackets); 4755 } 4756 4757 } 4758 } 4759 assert(Kind.getKind() == InitializationKind::IK_Copy || 4760 Kind.isExplicitCast()); 4761 return ExprResult(Args.release()[0]); 4762 } 4763 4764 // No steps means no initialization. 4765 if (Steps.empty()) 4766 return S.Owned((Expr *)0); 4767 4768 QualType DestType = Entity.getType().getNonReferenceType(); 4769 // FIXME: Ugly hack around the fact that Entity.getType() is not 4770 // the same as Entity.getDecl()->getType() in cases involving type merging, 4771 // and we want latter when it makes sense. 4772 if (ResultType) 4773 *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() : 4774 Entity.getType(); 4775 4776 ExprResult CurInit = S.Owned((Expr *)0); 4777 4778 // For initialization steps that start with a single initializer, 4779 // grab the only argument out the Args and place it into the "current" 4780 // initializer. 4781 switch (Steps.front().Kind) { 4782 case SK_ResolveAddressOfOverloadedFunction: 4783 case SK_CastDerivedToBaseRValue: 4784 case SK_CastDerivedToBaseXValue: 4785 case SK_CastDerivedToBaseLValue: 4786 case SK_BindReference: 4787 case SK_BindReferenceToTemporary: 4788 case SK_ExtraneousCopyToTemporary: 4789 case SK_UserConversion: 4790 case SK_QualificationConversionLValue: 4791 case SK_QualificationConversionXValue: 4792 case SK_QualificationConversionRValue: 4793 case SK_ConversionSequence: 4794 case SK_ListConstructorCall: 4795 case SK_ListInitialization: 4796 case SK_UnwrapInitList: 4797 case SK_RewrapInitList: 4798 case SK_CAssignment: 4799 case SK_StringInit: 4800 case SK_ObjCObjectConversion: 4801 case SK_ArrayInit: 4802 case SK_PassByIndirectCopyRestore: 4803 case SK_PassByIndirectRestore: 4804 case SK_ProduceObjCObject: { 4805 assert(Args.size() == 1); 4806 CurInit = Args.get()[0]; 4807 if (!CurInit.get()) return ExprError(); 4808 break; 4809 } 4810 4811 case SK_ConstructorInitialization: 4812 case SK_ZeroInitialization: 4813 break; 4814 } 4815 4816 // Walk through the computed steps for the initialization sequence, 4817 // performing the specified conversions along the way. 4818 bool ConstructorInitRequiresZeroInit = false; 4819 for (step_iterator Step = step_begin(), StepEnd = step_end(); 4820 Step != StepEnd; ++Step) { 4821 if (CurInit.isInvalid()) 4822 return ExprError(); 4823 4824 QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType(); 4825 4826 switch (Step->Kind) { 4827 case SK_ResolveAddressOfOverloadedFunction: 4828 // Overload resolution determined which function invoke; update the 4829 // initializer to reflect that choice. 4830 S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl); 4831 S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()); 4832 CurInit = S.FixOverloadedFunctionReference(move(CurInit), 4833 Step->Function.FoundDecl, 4834 Step->Function.Function); 4835 break; 4836 4837 case SK_CastDerivedToBaseRValue: 4838 case SK_CastDerivedToBaseXValue: 4839 case SK_CastDerivedToBaseLValue: { 4840 // We have a derived-to-base cast that produces either an rvalue or an 4841 // lvalue. Perform that cast. 4842 4843 CXXCastPath BasePath; 4844 4845 // Casts to inaccessible base classes are allowed with C-style casts. 4846 bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast(); 4847 if (S.CheckDerivedToBaseConversion(SourceType, Step->Type, 4848 CurInit.get()->getLocStart(), 4849 CurInit.get()->getSourceRange(), 4850 &BasePath, IgnoreBaseAccess)) 4851 return ExprError(); 4852 4853 if (S.BasePathInvolvesVirtualBase(BasePath)) { 4854 QualType T = SourceType; 4855 if (const PointerType *Pointer = T->getAs<PointerType>()) 4856 T = Pointer->getPointeeType(); 4857 if (const RecordType *RecordTy = T->getAs<RecordType>()) 4858 S.MarkVTableUsed(CurInit.get()->getLocStart(), 4859 cast<CXXRecordDecl>(RecordTy->getDecl())); 4860 } 4861 4862 ExprValueKind VK = 4863 Step->Kind == SK_CastDerivedToBaseLValue ? 4864 VK_LValue : 4865 (Step->Kind == SK_CastDerivedToBaseXValue ? 4866 VK_XValue : 4867 VK_RValue); 4868 CurInit = S.Owned(ImplicitCastExpr::Create(S.Context, 4869 Step->Type, 4870 CK_DerivedToBase, 4871 CurInit.get(), 4872 &BasePath, VK)); 4873 break; 4874 } 4875 4876 case SK_BindReference: 4877 if (FieldDecl *BitField = CurInit.get()->getBitField()) { 4878 // References cannot bind to bit fields (C++ [dcl.init.ref]p5). 4879 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield) 4880 << Entity.getType().isVolatileQualified() 4881 << BitField->getDeclName() 4882 << CurInit.get()->getSourceRange(); 4883 S.Diag(BitField->getLocation(), diag::note_bitfield_decl); 4884 return ExprError(); 4885 } 4886 4887 if (CurInit.get()->refersToVectorElement()) { 4888 // References cannot bind to vector elements. 4889 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element) 4890 << Entity.getType().isVolatileQualified() 4891 << CurInit.get()->getSourceRange(); 4892 PrintInitLocationNote(S, Entity); 4893 return ExprError(); 4894 } 4895 4896 // Reference binding does not have any corresponding ASTs. 4897 4898 // Check exception specifications 4899 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType)) 4900 return ExprError(); 4901 4902 break; 4903 4904 case SK_BindReferenceToTemporary: 4905 // Check exception specifications 4906 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType)) 4907 return ExprError(); 4908 4909 // Materialize the temporary into memory. 4910 CurInit = new (S.Context) MaterializeTemporaryExpr( 4911 Entity.getType().getNonReferenceType(), 4912 CurInit.get(), 4913 Entity.getType()->isLValueReferenceType()); 4914 4915 // If we're binding to an Objective-C object that has lifetime, we 4916 // need cleanups. 4917 if (S.getLangOptions().ObjCAutoRefCount && 4918 CurInit.get()->getType()->isObjCLifetimeType()) 4919 S.ExprNeedsCleanups = true; 4920 4921 break; 4922 4923 case SK_ExtraneousCopyToTemporary: 4924 CurInit = CopyObject(S, Step->Type, Entity, move(CurInit), 4925 /*IsExtraneousCopy=*/true); 4926 break; 4927 4928 case SK_UserConversion: { 4929 // We have a user-defined conversion that invokes either a constructor 4930 // or a conversion function. 4931 CastKind CastKind; 4932 bool IsCopy = false; 4933 FunctionDecl *Fn = Step->Function.Function; 4934 DeclAccessPair FoundFn = Step->Function.FoundDecl; 4935 bool HadMultipleCandidates = Step->Function.HadMultipleCandidates; 4936 bool CreatedObject = false; 4937 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) { 4938 // Build a call to the selected constructor. 4939 ASTOwningVector<Expr*> ConstructorArgs(S); 4940 SourceLocation Loc = CurInit.get()->getLocStart(); 4941 CurInit.release(); // Ownership transferred into MultiExprArg, below. 4942 4943 // Determine the arguments required to actually perform the constructor 4944 // call. 4945 Expr *Arg = CurInit.get(); 4946 if (S.CompleteConstructorCall(Constructor, 4947 MultiExprArg(&Arg, 1), 4948 Loc, ConstructorArgs)) 4949 return ExprError(); 4950 4951 // Build the an expression that constructs a temporary. 4952 CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor, 4953 move_arg(ConstructorArgs), 4954 HadMultipleCandidates, 4955 /*ZeroInit*/ false, 4956 CXXConstructExpr::CK_Complete, 4957 SourceRange()); 4958 if (CurInit.isInvalid()) 4959 return ExprError(); 4960 4961 S.CheckConstructorAccess(Kind.getLocation(), Constructor, Entity, 4962 FoundFn.getAccess()); 4963 S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()); 4964 4965 CastKind = CK_ConstructorConversion; 4966 QualType Class = S.Context.getTypeDeclType(Constructor->getParent()); 4967 if (S.Context.hasSameUnqualifiedType(SourceType, Class) || 4968 S.IsDerivedFrom(SourceType, Class)) 4969 IsCopy = true; 4970 4971 CreatedObject = true; 4972 } else { 4973 // Build a call to the conversion function. 4974 CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn); 4975 S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), 0, 4976 FoundFn); 4977 S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()); 4978 4979 // FIXME: Should we move this initialization into a separate 4980 // derived-to-base conversion? I believe the answer is "no", because 4981 // we don't want to turn off access control here for c-style casts. 4982 ExprResult CurInitExprRes = 4983 S.PerformObjectArgumentInitialization(CurInit.take(), /*Qualifier=*/0, 4984 FoundFn, Conversion); 4985 if(CurInitExprRes.isInvalid()) 4986 return ExprError(); 4987 CurInit = move(CurInitExprRes); 4988 4989 // Build the actual call to the conversion function. 4990 CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion, 4991 HadMultipleCandidates); 4992 if (CurInit.isInvalid() || !CurInit.get()) 4993 return ExprError(); 4994 4995 CastKind = CK_UserDefinedConversion; 4996 4997 CreatedObject = Conversion->getResultType()->isRecordType(); 4998 } 4999 5000 bool RequiresCopy = !IsCopy && !isReferenceBinding(Steps.back()); 5001 bool MaybeBindToTemp = RequiresCopy || shouldBindAsTemporary(Entity); 5002 5003 if (!MaybeBindToTemp && CreatedObject && shouldDestroyTemporary(Entity)) { 5004 QualType T = CurInit.get()->getType(); 5005 if (const RecordType *Record = T->getAs<RecordType>()) { 5006 CXXDestructorDecl *Destructor 5007 = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl())); 5008 S.CheckDestructorAccess(CurInit.get()->getLocStart(), Destructor, 5009 S.PDiag(diag::err_access_dtor_temp) << T); 5010 S.MarkDeclarationReferenced(CurInit.get()->getLocStart(), Destructor); 5011 S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getLocStart()); 5012 } 5013 } 5014 5015 CurInit = S.Owned(ImplicitCastExpr::Create(S.Context, 5016 CurInit.get()->getType(), 5017 CastKind, CurInit.get(), 0, 5018 CurInit.get()->getValueKind())); 5019 if (MaybeBindToTemp) 5020 CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>()); 5021 if (RequiresCopy) 5022 CurInit = CopyObject(S, Entity.getType().getNonReferenceType(), Entity, 5023 move(CurInit), /*IsExtraneousCopy=*/false); 5024 break; 5025 } 5026 5027 case SK_QualificationConversionLValue: 5028 case SK_QualificationConversionXValue: 5029 case SK_QualificationConversionRValue: { 5030 // Perform a qualification conversion; these can never go wrong. 5031 ExprValueKind VK = 5032 Step->Kind == SK_QualificationConversionLValue ? 5033 VK_LValue : 5034 (Step->Kind == SK_QualificationConversionXValue ? 5035 VK_XValue : 5036 VK_RValue); 5037 CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type, CK_NoOp, VK); 5038 break; 5039 } 5040 5041 case SK_ConversionSequence: { 5042 Sema::CheckedConversionKind CCK 5043 = Kind.isCStyleCast()? Sema::CCK_CStyleCast 5044 : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast 5045 : Kind.isExplicitCast()? Sema::CCK_OtherCast 5046 : Sema::CCK_ImplicitConversion; 5047 ExprResult CurInitExprRes = 5048 S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS, 5049 getAssignmentAction(Entity), CCK); 5050 if (CurInitExprRes.isInvalid()) 5051 return ExprError(); 5052 CurInit = move(CurInitExprRes); 5053 break; 5054 } 5055 5056 case SK_ListInitialization: { 5057 InitListExpr *InitList = cast<InitListExpr>(CurInit.get()); 5058 // Hack: We must pass *ResultType if available in order to set the type 5059 // of arrays, e.g. in 'int ar[] = {1, 2, 3};'. 5060 // But in 'const X &x = {1, 2, 3};' we're supposed to initialize a 5061 // temporary, not a reference, so we should pass Ty. 5062 // Worst case: 'const int (&arref)[] = {1, 2, 3};'. 5063 // Since this step is never used for a reference directly, we explicitly 5064 // unwrap references here and rewrap them afterwards. 5065 // We also need to create a InitializeTemporary entity for this. 5066 QualType Ty = ResultType ? ResultType->getNonReferenceType() : Step->Type; 5067 bool IsTemporary = ResultType && (*ResultType)->isReferenceType(); 5068 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty); 5069 InitListChecker PerformInitList(S, IsTemporary ? TempEntity : Entity, 5070 InitList, Ty, /*VerifyOnly=*/false, 5071 Kind.getKind() != InitializationKind::IK_Direct || 5072 !S.getLangOptions().CPlusPlus0x); 5073 if (PerformInitList.HadError()) 5074 return ExprError(); 5075 5076 if (ResultType) { 5077 if ((*ResultType)->isRValueReferenceType()) 5078 Ty = S.Context.getRValueReferenceType(Ty); 5079 else if ((*ResultType)->isLValueReferenceType()) 5080 Ty = S.Context.getLValueReferenceType(Ty, 5081 (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue()); 5082 *ResultType = Ty; 5083 } 5084 5085 InitListExpr *StructuredInitList = 5086 PerformInitList.getFullyStructuredList(); 5087 CurInit.release(); 5088 CurInit = S.Owned(StructuredInitList); 5089 break; 5090 } 5091 5092 case SK_ListConstructorCall: { 5093 InitListExpr *InitList = cast<InitListExpr>(CurInit.get()); 5094 MultiExprArg Arg(InitList->getInits(), InitList->getNumInits()); 5095 CurInit = PerformConstructorInitialization(S, Entity, Kind, 5096 move(Arg), *Step, 5097 ConstructorInitRequiresZeroInit); 5098 break; 5099 } 5100 5101 case SK_UnwrapInitList: 5102 CurInit = S.Owned(cast<InitListExpr>(CurInit.take())->getInit(0)); 5103 break; 5104 5105 case SK_RewrapInitList: { 5106 Expr *E = CurInit.take(); 5107 InitListExpr *Syntactic = Step->WrappingSyntacticList; 5108 InitListExpr *ILE = new (S.Context) InitListExpr(S.Context, 5109 Syntactic->getLBraceLoc(), &E, 1, Syntactic->getRBraceLoc()); 5110 ILE->setSyntacticForm(Syntactic); 5111 ILE->setType(E->getType()); 5112 ILE->setValueKind(E->getValueKind()); 5113 CurInit = S.Owned(ILE); 5114 break; 5115 } 5116 5117 case SK_ConstructorInitialization: 5118 CurInit = PerformConstructorInitialization(S, Entity, Kind, move(Args), 5119 *Step, 5120 ConstructorInitRequiresZeroInit); 5121 break; 5122 5123 case SK_ZeroInitialization: { 5124 step_iterator NextStep = Step; 5125 ++NextStep; 5126 if (NextStep != StepEnd && 5127 NextStep->Kind == SK_ConstructorInitialization) { 5128 // The need for zero-initialization is recorded directly into 5129 // the call to the object's constructor within the next step. 5130 ConstructorInitRequiresZeroInit = true; 5131 } else if (Kind.getKind() == InitializationKind::IK_Value && 5132 S.getLangOptions().CPlusPlus && 5133 !Kind.isImplicitValueInit()) { 5134 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); 5135 if (!TSInfo) 5136 TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type, 5137 Kind.getRange().getBegin()); 5138 5139 CurInit = S.Owned(new (S.Context) CXXScalarValueInitExpr( 5140 TSInfo->getType().getNonLValueExprType(S.Context), 5141 TSInfo, 5142 Kind.getRange().getEnd())); 5143 } else { 5144 CurInit = S.Owned(new (S.Context) ImplicitValueInitExpr(Step->Type)); 5145 } 5146 break; 5147 } 5148 5149 case SK_CAssignment: { 5150 QualType SourceType = CurInit.get()->getType(); 5151 ExprResult Result = move(CurInit); 5152 Sema::AssignConvertType ConvTy = 5153 S.CheckSingleAssignmentConstraints(Step->Type, Result); 5154 if (Result.isInvalid()) 5155 return ExprError(); 5156 CurInit = move(Result); 5157 5158 // If this is a call, allow conversion to a transparent union. 5159 ExprResult CurInitExprRes = move(CurInit); 5160 if (ConvTy != Sema::Compatible && 5161 Entity.getKind() == InitializedEntity::EK_Parameter && 5162 S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes) 5163 == Sema::Compatible) 5164 ConvTy = Sema::Compatible; 5165 if (CurInitExprRes.isInvalid()) 5166 return ExprError(); 5167 CurInit = move(CurInitExprRes); 5168 5169 bool Complained; 5170 if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(), 5171 Step->Type, SourceType, 5172 CurInit.get(), 5173 getAssignmentAction(Entity), 5174 &Complained)) { 5175 PrintInitLocationNote(S, Entity); 5176 return ExprError(); 5177 } else if (Complained) 5178 PrintInitLocationNote(S, Entity); 5179 break; 5180 } 5181 5182 case SK_StringInit: { 5183 QualType Ty = Step->Type; 5184 CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty, 5185 S.Context.getAsArrayType(Ty), S); 5186 break; 5187 } 5188 5189 case SK_ObjCObjectConversion: 5190 CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type, 5191 CK_ObjCObjectLValueCast, 5192 CurInit.get()->getValueKind()); 5193 break; 5194 5195 case SK_ArrayInit: 5196 // Okay: we checked everything before creating this step. Note that 5197 // this is a GNU extension. 5198 S.Diag(Kind.getLocation(), diag::ext_array_init_copy) 5199 << Step->Type << CurInit.get()->getType() 5200 << CurInit.get()->getSourceRange(); 5201 5202 // If the destination type is an incomplete array type, update the 5203 // type accordingly. 5204 if (ResultType) { 5205 if (const IncompleteArrayType *IncompleteDest 5206 = S.Context.getAsIncompleteArrayType(Step->Type)) { 5207 if (const ConstantArrayType *ConstantSource 5208 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) { 5209 *ResultType = S.Context.getConstantArrayType( 5210 IncompleteDest->getElementType(), 5211 ConstantSource->getSize(), 5212 ArrayType::Normal, 0); 5213 } 5214 } 5215 } 5216 break; 5217 5218 case SK_PassByIndirectCopyRestore: 5219 case SK_PassByIndirectRestore: 5220 checkIndirectCopyRestoreSource(S, CurInit.get()); 5221 CurInit = S.Owned(new (S.Context) 5222 ObjCIndirectCopyRestoreExpr(CurInit.take(), Step->Type, 5223 Step->Kind == SK_PassByIndirectCopyRestore)); 5224 break; 5225 5226 case SK_ProduceObjCObject: 5227 CurInit = S.Owned(ImplicitCastExpr::Create(S.Context, Step->Type, 5228 CK_ARCProduceObject, 5229 CurInit.take(), 0, VK_RValue)); 5230 break; 5231 } 5232 } 5233 5234 // Diagnose non-fatal problems with the completed initialization. 5235 if (Entity.getKind() == InitializedEntity::EK_Member && 5236 cast<FieldDecl>(Entity.getDecl())->isBitField()) 5237 S.CheckBitFieldInitialization(Kind.getLocation(), 5238 cast<FieldDecl>(Entity.getDecl()), 5239 CurInit.get()); 5240 5241 return move(CurInit); 5242 } 5243 5244 //===----------------------------------------------------------------------===// 5245 // Diagnose initialization failures 5246 //===----------------------------------------------------------------------===// 5247 bool InitializationSequence::Diagnose(Sema &S, 5248 const InitializedEntity &Entity, 5249 const InitializationKind &Kind, 5250 Expr **Args, unsigned NumArgs) { 5251 if (!Failed()) 5252 return false; 5253 5254 QualType DestType = Entity.getType(); 5255 switch (Failure) { 5256 case FK_TooManyInitsForReference: 5257 // FIXME: Customize for the initialized entity? 5258 if (NumArgs == 0) 5259 S.Diag(Kind.getLocation(), diag::err_reference_without_init) 5260 << DestType.getNonReferenceType(); 5261 else // FIXME: diagnostic below could be better! 5262 S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits) 5263 << SourceRange(Args[0]->getLocStart(), Args[NumArgs - 1]->getLocEnd()); 5264 break; 5265 5266 case FK_ArrayNeedsInitList: 5267 case FK_ArrayNeedsInitListOrStringLiteral: 5268 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) 5269 << (Failure == FK_ArrayNeedsInitListOrStringLiteral); 5270 break; 5271 5272 case FK_ArrayTypeMismatch: 5273 case FK_NonConstantArrayInit: 5274 S.Diag(Kind.getLocation(), 5275 (Failure == FK_ArrayTypeMismatch 5276 ? diag::err_array_init_different_type 5277 : diag::err_array_init_non_constant_array)) 5278 << DestType.getNonReferenceType() 5279 << Args[0]->getType() 5280 << Args[0]->getSourceRange(); 5281 break; 5282 5283 case FK_AddressOfOverloadFailed: { 5284 DeclAccessPair Found; 5285 S.ResolveAddressOfOverloadedFunction(Args[0], 5286 DestType.getNonReferenceType(), 5287 true, 5288 Found); 5289 break; 5290 } 5291 5292 case FK_ReferenceInitOverloadFailed: 5293 case FK_UserConversionOverloadFailed: 5294 switch (FailedOverloadResult) { 5295 case OR_Ambiguous: 5296 if (Failure == FK_UserConversionOverloadFailed) 5297 S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition) 5298 << Args[0]->getType() << DestType 5299 << Args[0]->getSourceRange(); 5300 else 5301 S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous) 5302 << DestType << Args[0]->getType() 5303 << Args[0]->getSourceRange(); 5304 5305 FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args, NumArgs); 5306 break; 5307 5308 case OR_No_Viable_Function: 5309 S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition) 5310 << Args[0]->getType() << DestType.getNonReferenceType() 5311 << Args[0]->getSourceRange(); 5312 FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args, NumArgs); 5313 break; 5314 5315 case OR_Deleted: { 5316 S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function) 5317 << Args[0]->getType() << DestType.getNonReferenceType() 5318 << Args[0]->getSourceRange(); 5319 OverloadCandidateSet::iterator Best; 5320 OverloadingResult Ovl 5321 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best, 5322 true); 5323 if (Ovl == OR_Deleted) { 5324 S.Diag(Best->Function->getLocation(), diag::note_unavailable_here) 5325 << 1 << Best->Function->isDeleted(); 5326 } else { 5327 llvm_unreachable("Inconsistent overload resolution?"); 5328 } 5329 break; 5330 } 5331 5332 case OR_Success: 5333 llvm_unreachable("Conversion did not fail!"); 5334 break; 5335 } 5336 break; 5337 5338 case FK_NonConstLValueReferenceBindingToTemporary: 5339 if (isa<InitListExpr>(Args[0])) { 5340 S.Diag(Kind.getLocation(), 5341 diag::err_lvalue_reference_bind_to_initlist) 5342 << DestType.getNonReferenceType().isVolatileQualified() 5343 << DestType.getNonReferenceType() 5344 << Args[0]->getSourceRange(); 5345 break; 5346 } 5347 // Intentional fallthrough 5348 5349 case FK_NonConstLValueReferenceBindingToUnrelated: 5350 S.Diag(Kind.getLocation(), 5351 Failure == FK_NonConstLValueReferenceBindingToTemporary 5352 ? diag::err_lvalue_reference_bind_to_temporary 5353 : diag::err_lvalue_reference_bind_to_unrelated) 5354 << DestType.getNonReferenceType().isVolatileQualified() 5355 << DestType.getNonReferenceType() 5356 << Args[0]->getType() 5357 << Args[0]->getSourceRange(); 5358 break; 5359 5360 case FK_RValueReferenceBindingToLValue: 5361 S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref) 5362 << DestType.getNonReferenceType() << Args[0]->getType() 5363 << Args[0]->getSourceRange(); 5364 break; 5365 5366 case FK_ReferenceInitDropsQualifiers: 5367 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) 5368 << DestType.getNonReferenceType() 5369 << Args[0]->getType() 5370 << Args[0]->getSourceRange(); 5371 break; 5372 5373 case FK_ReferenceInitFailed: 5374 S.Diag(Kind.getLocation(), diag::err_reference_bind_failed) 5375 << DestType.getNonReferenceType() 5376 << Args[0]->isLValue() 5377 << Args[0]->getType() 5378 << Args[0]->getSourceRange(); 5379 if (DestType.getNonReferenceType()->isObjCObjectPointerType() && 5380 Args[0]->getType()->isObjCObjectPointerType()) 5381 S.EmitRelatedResultTypeNote(Args[0]); 5382 break; 5383 5384 case FK_ConversionFailed: { 5385 QualType FromType = Args[0]->getType(); 5386 PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed) 5387 << (int)Entity.getKind() 5388 << DestType 5389 << Args[0]->isLValue() 5390 << FromType 5391 << Args[0]->getSourceRange(); 5392 S.HandleFunctionTypeMismatch(PDiag, FromType, DestType); 5393 S.Diag(Kind.getLocation(), PDiag); 5394 if (DestType.getNonReferenceType()->isObjCObjectPointerType() && 5395 Args[0]->getType()->isObjCObjectPointerType()) 5396 S.EmitRelatedResultTypeNote(Args[0]); 5397 break; 5398 } 5399 5400 case FK_ConversionFromPropertyFailed: 5401 // No-op. This error has already been reported. 5402 break; 5403 5404 case FK_TooManyInitsForScalar: { 5405 SourceRange R; 5406 5407 if (InitListExpr *InitList = dyn_cast<InitListExpr>(Args[0])) 5408 R = SourceRange(InitList->getInit(0)->getLocEnd(), 5409 InitList->getLocEnd()); 5410 else 5411 R = SourceRange(Args[0]->getLocEnd(), Args[NumArgs - 1]->getLocEnd()); 5412 5413 R.setBegin(S.PP.getLocForEndOfToken(R.getBegin())); 5414 if (Kind.isCStyleOrFunctionalCast()) 5415 S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg) 5416 << R; 5417 else 5418 S.Diag(Kind.getLocation(), diag::err_excess_initializers) 5419 << /*scalar=*/2 << R; 5420 break; 5421 } 5422 5423 case FK_ReferenceBindingToInitList: 5424 S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list) 5425 << DestType.getNonReferenceType() << Args[0]->getSourceRange(); 5426 break; 5427 5428 case FK_InitListBadDestinationType: 5429 S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type) 5430 << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange(); 5431 break; 5432 5433 case FK_ListConstructorOverloadFailed: 5434 case FK_ConstructorOverloadFailed: { 5435 SourceRange ArgsRange; 5436 if (NumArgs) 5437 ArgsRange = SourceRange(Args[0]->getLocStart(), 5438 Args[NumArgs - 1]->getLocEnd()); 5439 5440 if (Failure == FK_ListConstructorOverloadFailed) { 5441 assert(NumArgs == 1 && "List construction from other than 1 argument."); 5442 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 5443 Args = InitList->getInits(); 5444 NumArgs = InitList->getNumInits(); 5445 } 5446 5447 // FIXME: Using "DestType" for the entity we're printing is probably 5448 // bad. 5449 switch (FailedOverloadResult) { 5450 case OR_Ambiguous: 5451 S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init) 5452 << DestType << ArgsRange; 5453 FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, 5454 Args, NumArgs); 5455 break; 5456 5457 case OR_No_Viable_Function: 5458 if (Kind.getKind() == InitializationKind::IK_Default && 5459 (Entity.getKind() == InitializedEntity::EK_Base || 5460 Entity.getKind() == InitializedEntity::EK_Member) && 5461 isa<CXXConstructorDecl>(S.CurContext)) { 5462 // This is implicit default initialization of a member or 5463 // base within a constructor. If no viable function was 5464 // found, notify the user that she needs to explicitly 5465 // initialize this base/member. 5466 CXXConstructorDecl *Constructor 5467 = cast<CXXConstructorDecl>(S.CurContext); 5468 if (Entity.getKind() == InitializedEntity::EK_Base) { 5469 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) 5470 << Constructor->isImplicit() 5471 << S.Context.getTypeDeclType(Constructor->getParent()) 5472 << /*base=*/0 5473 << Entity.getType(); 5474 5475 RecordDecl *BaseDecl 5476 = Entity.getBaseSpecifier()->getType()->getAs<RecordType>() 5477 ->getDecl(); 5478 S.Diag(BaseDecl->getLocation(), diag::note_previous_decl) 5479 << S.Context.getTagDeclType(BaseDecl); 5480 } else { 5481 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) 5482 << Constructor->isImplicit() 5483 << S.Context.getTypeDeclType(Constructor->getParent()) 5484 << /*member=*/1 5485 << Entity.getName(); 5486 S.Diag(Entity.getDecl()->getLocation(), diag::note_field_decl); 5487 5488 if (const RecordType *Record 5489 = Entity.getType()->getAs<RecordType>()) 5490 S.Diag(Record->getDecl()->getLocation(), 5491 diag::note_previous_decl) 5492 << S.Context.getTagDeclType(Record->getDecl()); 5493 } 5494 break; 5495 } 5496 5497 S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init) 5498 << DestType << ArgsRange; 5499 FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args, NumArgs); 5500 break; 5501 5502 case OR_Deleted: { 5503 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) 5504 << true << DestType << ArgsRange; 5505 OverloadCandidateSet::iterator Best; 5506 OverloadingResult Ovl 5507 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 5508 if (Ovl == OR_Deleted) { 5509 S.Diag(Best->Function->getLocation(), diag::note_unavailable_here) 5510 << 1 << Best->Function->isDeleted(); 5511 } else { 5512 llvm_unreachable("Inconsistent overload resolution?"); 5513 } 5514 break; 5515 } 5516 5517 case OR_Success: 5518 llvm_unreachable("Conversion did not fail!"); 5519 break; 5520 } 5521 break; 5522 } 5523 5524 case FK_DefaultInitOfConst: 5525 if (Entity.getKind() == InitializedEntity::EK_Member && 5526 isa<CXXConstructorDecl>(S.CurContext)) { 5527 // This is implicit default-initialization of a const member in 5528 // a constructor. Complain that it needs to be explicitly 5529 // initialized. 5530 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext); 5531 S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor) 5532 << Constructor->isImplicit() 5533 << S.Context.getTypeDeclType(Constructor->getParent()) 5534 << /*const=*/1 5535 << Entity.getName(); 5536 S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl) 5537 << Entity.getName(); 5538 } else { 5539 S.Diag(Kind.getLocation(), diag::err_default_init_const) 5540 << DestType << (bool)DestType->getAs<RecordType>(); 5541 } 5542 break; 5543 5544 case FK_Incomplete: 5545 S.RequireCompleteType(Kind.getLocation(), DestType, 5546 diag::err_init_incomplete_type); 5547 break; 5548 5549 case FK_ListInitializationFailed: { 5550 // Run the init list checker again to emit diagnostics. 5551 InitListExpr* InitList = cast<InitListExpr>(Args[0]); 5552 QualType DestType = Entity.getType(); 5553 InitListChecker DiagnoseInitList(S, Entity, InitList, 5554 DestType, /*VerifyOnly=*/false, 5555 Kind.getKind() != InitializationKind::IK_Direct || 5556 !S.getLangOptions().CPlusPlus0x); 5557 assert(DiagnoseInitList.HadError() && 5558 "Inconsistent init list check result."); 5559 break; 5560 } 5561 5562 case FK_PlaceholderType: { 5563 // FIXME: Already diagnosed! 5564 break; 5565 } 5566 } 5567 5568 PrintInitLocationNote(S, Entity); 5569 return true; 5570 } 5571 5572 void InitializationSequence::dump(raw_ostream &OS) const { 5573 switch (SequenceKind) { 5574 case FailedSequence: { 5575 OS << "Failed sequence: "; 5576 switch (Failure) { 5577 case FK_TooManyInitsForReference: 5578 OS << "too many initializers for reference"; 5579 break; 5580 5581 case FK_ArrayNeedsInitList: 5582 OS << "array requires initializer list"; 5583 break; 5584 5585 case FK_ArrayNeedsInitListOrStringLiteral: 5586 OS << "array requires initializer list or string literal"; 5587 break; 5588 5589 case FK_ArrayTypeMismatch: 5590 OS << "array type mismatch"; 5591 break; 5592 5593 case FK_NonConstantArrayInit: 5594 OS << "non-constant array initializer"; 5595 break; 5596 5597 case FK_AddressOfOverloadFailed: 5598 OS << "address of overloaded function failed"; 5599 break; 5600 5601 case FK_ReferenceInitOverloadFailed: 5602 OS << "overload resolution for reference initialization failed"; 5603 break; 5604 5605 case FK_NonConstLValueReferenceBindingToTemporary: 5606 OS << "non-const lvalue reference bound to temporary"; 5607 break; 5608 5609 case FK_NonConstLValueReferenceBindingToUnrelated: 5610 OS << "non-const lvalue reference bound to unrelated type"; 5611 break; 5612 5613 case FK_RValueReferenceBindingToLValue: 5614 OS << "rvalue reference bound to an lvalue"; 5615 break; 5616 5617 case FK_ReferenceInitDropsQualifiers: 5618 OS << "reference initialization drops qualifiers"; 5619 break; 5620 5621 case FK_ReferenceInitFailed: 5622 OS << "reference initialization failed"; 5623 break; 5624 5625 case FK_ConversionFailed: 5626 OS << "conversion failed"; 5627 break; 5628 5629 case FK_ConversionFromPropertyFailed: 5630 OS << "conversion from property failed"; 5631 break; 5632 5633 case FK_TooManyInitsForScalar: 5634 OS << "too many initializers for scalar"; 5635 break; 5636 5637 case FK_ReferenceBindingToInitList: 5638 OS << "referencing binding to initializer list"; 5639 break; 5640 5641 case FK_InitListBadDestinationType: 5642 OS << "initializer list for non-aggregate, non-scalar type"; 5643 break; 5644 5645 case FK_UserConversionOverloadFailed: 5646 OS << "overloading failed for user-defined conversion"; 5647 break; 5648 5649 case FK_ConstructorOverloadFailed: 5650 OS << "constructor overloading failed"; 5651 break; 5652 5653 case FK_DefaultInitOfConst: 5654 OS << "default initialization of a const variable"; 5655 break; 5656 5657 case FK_Incomplete: 5658 OS << "initialization of incomplete type"; 5659 break; 5660 5661 case FK_ListInitializationFailed: 5662 OS << "list initialization checker failure"; 5663 break; 5664 5665 case FK_PlaceholderType: 5666 OS << "initializer expression isn't contextually valid"; 5667 break; 5668 5669 case FK_ListConstructorOverloadFailed: 5670 OS << "list constructor overloading failed"; 5671 break; 5672 } 5673 OS << '\n'; 5674 return; 5675 } 5676 5677 case DependentSequence: 5678 OS << "Dependent sequence\n"; 5679 return; 5680 5681 case NormalSequence: 5682 OS << "Normal sequence: "; 5683 break; 5684 } 5685 5686 for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) { 5687 if (S != step_begin()) { 5688 OS << " -> "; 5689 } 5690 5691 switch (S->Kind) { 5692 case SK_ResolveAddressOfOverloadedFunction: 5693 OS << "resolve address of overloaded function"; 5694 break; 5695 5696 case SK_CastDerivedToBaseRValue: 5697 OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")"; 5698 break; 5699 5700 case SK_CastDerivedToBaseXValue: 5701 OS << "derived-to-base case (xvalue" << S->Type.getAsString() << ")"; 5702 break; 5703 5704 case SK_CastDerivedToBaseLValue: 5705 OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")"; 5706 break; 5707 5708 case SK_BindReference: 5709 OS << "bind reference to lvalue"; 5710 break; 5711 5712 case SK_BindReferenceToTemporary: 5713 OS << "bind reference to a temporary"; 5714 break; 5715 5716 case SK_ExtraneousCopyToTemporary: 5717 OS << "extraneous C++03 copy to temporary"; 5718 break; 5719 5720 case SK_UserConversion: 5721 OS << "user-defined conversion via " << *S->Function.Function; 5722 break; 5723 5724 case SK_QualificationConversionRValue: 5725 OS << "qualification conversion (rvalue)"; 5726 break; 5727 5728 case SK_QualificationConversionXValue: 5729 OS << "qualification conversion (xvalue)"; 5730 break; 5731 5732 case SK_QualificationConversionLValue: 5733 OS << "qualification conversion (lvalue)"; 5734 break; 5735 5736 case SK_ConversionSequence: 5737 OS << "implicit conversion sequence ("; 5738 S->ICS->DebugPrint(); // FIXME: use OS 5739 OS << ")"; 5740 break; 5741 5742 case SK_ListInitialization: 5743 OS << "list aggregate initialization"; 5744 break; 5745 5746 case SK_ListConstructorCall: 5747 OS << "list initialization via constructor"; 5748 break; 5749 5750 case SK_UnwrapInitList: 5751 OS << "unwrap reference initializer list"; 5752 break; 5753 5754 case SK_RewrapInitList: 5755 OS << "rewrap reference initializer list"; 5756 break; 5757 5758 case SK_ConstructorInitialization: 5759 OS << "constructor initialization"; 5760 break; 5761 5762 case SK_ZeroInitialization: 5763 OS << "zero initialization"; 5764 break; 5765 5766 case SK_CAssignment: 5767 OS << "C assignment"; 5768 break; 5769 5770 case SK_StringInit: 5771 OS << "string initialization"; 5772 break; 5773 5774 case SK_ObjCObjectConversion: 5775 OS << "Objective-C object conversion"; 5776 break; 5777 5778 case SK_ArrayInit: 5779 OS << "array initialization"; 5780 break; 5781 5782 case SK_PassByIndirectCopyRestore: 5783 OS << "pass by indirect copy and restore"; 5784 break; 5785 5786 case SK_PassByIndirectRestore: 5787 OS << "pass by indirect restore"; 5788 break; 5789 5790 case SK_ProduceObjCObject: 5791 OS << "Objective-C object retension"; 5792 break; 5793 } 5794 } 5795 } 5796 5797 void InitializationSequence::dump() const { 5798 dump(llvm::errs()); 5799 } 5800 5801 static void DiagnoseNarrowingInInitList( 5802 Sema& S, QualType EntityType, const Expr *InitE, 5803 bool Constant, const APValue &ConstantValue) { 5804 if (Constant) { 5805 S.Diag(InitE->getLocStart(), 5806 S.getLangOptions().CPlusPlus0x && !S.getLangOptions().MicrosoftExt 5807 ? diag::err_init_list_constant_narrowing 5808 : diag::warn_init_list_constant_narrowing) 5809 << InitE->getSourceRange() 5810 << ConstantValue.getAsString(S.getASTContext(), EntityType) 5811 << EntityType.getLocalUnqualifiedType(); 5812 } else 5813 S.Diag(InitE->getLocStart(), 5814 S.getLangOptions().CPlusPlus0x && !S.getLangOptions().MicrosoftExt 5815 ? diag::err_init_list_variable_narrowing 5816 : diag::warn_init_list_variable_narrowing) 5817 << InitE->getSourceRange() 5818 << InitE->getType().getLocalUnqualifiedType() 5819 << EntityType.getLocalUnqualifiedType(); 5820 5821 llvm::SmallString<128> StaticCast; 5822 llvm::raw_svector_ostream OS(StaticCast); 5823 OS << "static_cast<"; 5824 if (const TypedefType *TT = EntityType->getAs<TypedefType>()) { 5825 // It's important to use the typedef's name if there is one so that the 5826 // fixit doesn't break code using types like int64_t. 5827 // 5828 // FIXME: This will break if the typedef requires qualification. But 5829 // getQualifiedNameAsString() includes non-machine-parsable components. 5830 OS << *TT->getDecl(); 5831 } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>()) 5832 OS << BT->getName(S.getLangOptions()); 5833 else { 5834 // Oops, we didn't find the actual type of the variable. Don't emit a fixit 5835 // with a broken cast. 5836 return; 5837 } 5838 OS << ">("; 5839 S.Diag(InitE->getLocStart(), diag::note_init_list_narrowing_override) 5840 << InitE->getSourceRange() 5841 << FixItHint::CreateInsertion(InitE->getLocStart(), OS.str()) 5842 << FixItHint::CreateInsertion( 5843 S.getPreprocessor().getLocForEndOfToken(InitE->getLocEnd()), ")"); 5844 } 5845 5846 //===----------------------------------------------------------------------===// 5847 // Initialization helper functions 5848 //===----------------------------------------------------------------------===// 5849 bool 5850 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity, 5851 ExprResult Init) { 5852 if (Init.isInvalid()) 5853 return false; 5854 5855 Expr *InitE = Init.get(); 5856 assert(InitE && "No initialization expression"); 5857 5858 InitializationKind Kind = InitializationKind::CreateCopy(SourceLocation(), 5859 SourceLocation()); 5860 InitializationSequence Seq(*this, Entity, Kind, &InitE, 1); 5861 return !Seq.Failed(); 5862 } 5863 5864 ExprResult 5865 Sema::PerformCopyInitialization(const InitializedEntity &Entity, 5866 SourceLocation EqualLoc, 5867 ExprResult Init, 5868 bool TopLevelOfInitList) { 5869 if (Init.isInvalid()) 5870 return ExprError(); 5871 5872 Expr *InitE = Init.get(); 5873 assert(InitE && "No initialization expression?"); 5874 5875 if (EqualLoc.isInvalid()) 5876 EqualLoc = InitE->getLocStart(); 5877 5878 InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(), 5879 EqualLoc); 5880 InitializationSequence Seq(*this, Entity, Kind, &InitE, 1); 5881 Init.release(); 5882 5883 bool Constant = false; 5884 APValue Result; 5885 if (TopLevelOfInitList && 5886 Seq.endsWithNarrowing(Context, InitE, &Constant, &Result)) { 5887 DiagnoseNarrowingInInitList(*this, Entity.getType(), InitE, 5888 Constant, Result); 5889 } 5890 return Seq.Perform(*this, Entity, Kind, MultiExprArg(&InitE, 1)); 5891 } 5892