1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for initializers.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/DeclObjC.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/AST/ExprObjC.h"
17 #include "clang/AST/ExprOpenMP.h"
18 #include "clang/AST/TypeLoc.h"
19 #include "clang/Basic/CharInfo.h"
20 #include "clang/Basic/SourceManager.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "clang/Sema/Designator.h"
23 #include "clang/Sema/Initialization.h"
24 #include "clang/Sema/Lookup.h"
25 #include "clang/Sema/SemaInternal.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/SmallString.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/raw_ostream.h"
30 
31 using namespace clang;
32 
33 //===----------------------------------------------------------------------===//
34 // Sema Initialization Checking
35 //===----------------------------------------------------------------------===//
36 
37 /// Check whether T is compatible with a wide character type (wchar_t,
38 /// char16_t or char32_t).
39 static bool IsWideCharCompatible(QualType T, ASTContext &Context) {
40   if (Context.typesAreCompatible(Context.getWideCharType(), T))
41     return true;
42   if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) {
43     return Context.typesAreCompatible(Context.Char16Ty, T) ||
44            Context.typesAreCompatible(Context.Char32Ty, T);
45   }
46   return false;
47 }
48 
49 enum StringInitFailureKind {
50   SIF_None,
51   SIF_NarrowStringIntoWideChar,
52   SIF_WideStringIntoChar,
53   SIF_IncompatWideStringIntoWideChar,
54   SIF_UTF8StringIntoPlainChar,
55   SIF_PlainStringIntoUTF8Char,
56   SIF_Other
57 };
58 
59 /// Check whether the array of type AT can be initialized by the Init
60 /// expression by means of string initialization. Returns SIF_None if so,
61 /// otherwise returns a StringInitFailureKind that describes why the
62 /// initialization would not work.
63 static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT,
64                                           ASTContext &Context) {
65   if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
66     return SIF_Other;
67 
68   // See if this is a string literal or @encode.
69   Init = Init->IgnoreParens();
70 
71   // Handle @encode, which is a narrow string.
72   if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
73     return SIF_None;
74 
75   // Otherwise we can only handle string literals.
76   StringLiteral *SL = dyn_cast<StringLiteral>(Init);
77   if (!SL)
78     return SIF_Other;
79 
80   const QualType ElemTy =
81       Context.getCanonicalType(AT->getElementType()).getUnqualifiedType();
82 
83   switch (SL->getKind()) {
84   case StringLiteral::UTF8:
85     // char8_t array can be initialized with a UTF-8 string.
86     if (ElemTy->isChar8Type())
87       return SIF_None;
88     LLVM_FALLTHROUGH;
89   case StringLiteral::Ascii:
90     // char array can be initialized with a narrow string.
91     // Only allow char x[] = "foo";  not char x[] = L"foo";
92     if (ElemTy->isCharType())
93       return (SL->getKind() == StringLiteral::UTF8 &&
94               Context.getLangOpts().Char8)
95                  ? SIF_UTF8StringIntoPlainChar
96                  : SIF_None;
97     if (ElemTy->isChar8Type())
98       return SIF_PlainStringIntoUTF8Char;
99     if (IsWideCharCompatible(ElemTy, Context))
100       return SIF_NarrowStringIntoWideChar;
101     return SIF_Other;
102   // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15:
103   // "An array with element type compatible with a qualified or unqualified
104   // version of wchar_t, char16_t, or char32_t may be initialized by a wide
105   // string literal with the corresponding encoding prefix (L, u, or U,
106   // respectively), optionally enclosed in braces.
107   case StringLiteral::UTF16:
108     if (Context.typesAreCompatible(Context.Char16Ty, ElemTy))
109       return SIF_None;
110     if (ElemTy->isCharType() || ElemTy->isChar8Type())
111       return SIF_WideStringIntoChar;
112     if (IsWideCharCompatible(ElemTy, Context))
113       return SIF_IncompatWideStringIntoWideChar;
114     return SIF_Other;
115   case StringLiteral::UTF32:
116     if (Context.typesAreCompatible(Context.Char32Ty, ElemTy))
117       return SIF_None;
118     if (ElemTy->isCharType() || ElemTy->isChar8Type())
119       return SIF_WideStringIntoChar;
120     if (IsWideCharCompatible(ElemTy, Context))
121       return SIF_IncompatWideStringIntoWideChar;
122     return SIF_Other;
123   case StringLiteral::Wide:
124     if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy))
125       return SIF_None;
126     if (ElemTy->isCharType() || ElemTy->isChar8Type())
127       return SIF_WideStringIntoChar;
128     if (IsWideCharCompatible(ElemTy, Context))
129       return SIF_IncompatWideStringIntoWideChar;
130     return SIF_Other;
131   }
132 
133   llvm_unreachable("missed a StringLiteral kind?");
134 }
135 
136 static StringInitFailureKind IsStringInit(Expr *init, QualType declType,
137                                           ASTContext &Context) {
138   const ArrayType *arrayType = Context.getAsArrayType(declType);
139   if (!arrayType)
140     return SIF_Other;
141   return IsStringInit(init, arrayType, Context);
142 }
143 
144 /// Update the type of a string literal, including any surrounding parentheses,
145 /// to match the type of the object which it is initializing.
146 static void updateStringLiteralType(Expr *E, QualType Ty) {
147   while (true) {
148     E->setType(Ty);
149     E->setValueKind(VK_RValue);
150     if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E)) {
151       break;
152     } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
153       E = PE->getSubExpr();
154     } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
155       assert(UO->getOpcode() == UO_Extension);
156       E = UO->getSubExpr();
157     } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) {
158       E = GSE->getResultExpr();
159     } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) {
160       E = CE->getChosenSubExpr();
161     } else {
162       llvm_unreachable("unexpected expr in string literal init");
163     }
164   }
165 }
166 
167 /// Fix a compound literal initializing an array so it's correctly marked
168 /// as an rvalue.
169 static void updateGNUCompoundLiteralRValue(Expr *E) {
170   while (true) {
171     E->setValueKind(VK_RValue);
172     if (isa<CompoundLiteralExpr>(E)) {
173       break;
174     } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
175       E = PE->getSubExpr();
176     } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
177       assert(UO->getOpcode() == UO_Extension);
178       E = UO->getSubExpr();
179     } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) {
180       E = GSE->getResultExpr();
181     } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) {
182       E = CE->getChosenSubExpr();
183     } else {
184       llvm_unreachable("unexpected expr in array compound literal init");
185     }
186   }
187 }
188 
189 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
190                             Sema &S) {
191   // Get the length of the string as parsed.
192   auto *ConstantArrayTy =
193       cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe());
194   uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue();
195 
196   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
197     // C99 6.7.8p14. We have an array of character type with unknown size
198     // being initialized to a string literal.
199     llvm::APInt ConstVal(32, StrLength);
200     // Return a new array type (C99 6.7.8p22).
201     DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
202                                            ConstVal, nullptr,
203                                            ArrayType::Normal, 0);
204     updateStringLiteralType(Str, DeclT);
205     return;
206   }
207 
208   const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
209 
210   // We have an array of character type with known size.  However,
211   // the size may be smaller or larger than the string we are initializing.
212   // FIXME: Avoid truncation for 64-bit length strings.
213   if (S.getLangOpts().CPlusPlus) {
214     if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
215       // For Pascal strings it's OK to strip off the terminating null character,
216       // so the example below is valid:
217       //
218       // unsigned char a[2] = "\pa";
219       if (SL->isPascal())
220         StrLength--;
221     }
222 
223     // [dcl.init.string]p2
224     if (StrLength > CAT->getSize().getZExtValue())
225       S.Diag(Str->getBeginLoc(),
226              diag::err_initializer_string_for_char_array_too_long)
227           << Str->getSourceRange();
228   } else {
229     // C99 6.7.8p14.
230     if (StrLength-1 > CAT->getSize().getZExtValue())
231       S.Diag(Str->getBeginLoc(),
232              diag::ext_initializer_string_for_char_array_too_long)
233           << Str->getSourceRange();
234   }
235 
236   // Set the type to the actual size that we are initializing.  If we have
237   // something like:
238   //   char x[1] = "foo";
239   // then this will set the string literal's type to char[1].
240   updateStringLiteralType(Str, DeclT);
241 }
242 
243 //===----------------------------------------------------------------------===//
244 // Semantic checking for initializer lists.
245 //===----------------------------------------------------------------------===//
246 
247 namespace {
248 
249 /// Semantic checking for initializer lists.
250 ///
251 /// The InitListChecker class contains a set of routines that each
252 /// handle the initialization of a certain kind of entity, e.g.,
253 /// arrays, vectors, struct/union types, scalars, etc. The
254 /// InitListChecker itself performs a recursive walk of the subobject
255 /// structure of the type to be initialized, while stepping through
256 /// the initializer list one element at a time. The IList and Index
257 /// parameters to each of the Check* routines contain the active
258 /// (syntactic) initializer list and the index into that initializer
259 /// list that represents the current initializer. Each routine is
260 /// responsible for moving that Index forward as it consumes elements.
261 ///
262 /// Each Check* routine also has a StructuredList/StructuredIndex
263 /// arguments, which contains the current "structured" (semantic)
264 /// initializer list and the index into that initializer list where we
265 /// are copying initializers as we map them over to the semantic
266 /// list. Once we have completed our recursive walk of the subobject
267 /// structure, we will have constructed a full semantic initializer
268 /// list.
269 ///
270 /// C99 designators cause changes in the initializer list traversal,
271 /// because they make the initialization "jump" into a specific
272 /// subobject and then continue the initialization from that
273 /// point. CheckDesignatedInitializer() recursively steps into the
274 /// designated subobject and manages backing out the recursion to
275 /// initialize the subobjects after the one designated.
276 ///
277 /// If an initializer list contains any designators, we build a placeholder
278 /// structured list even in 'verify only' mode, so that we can track which
279 /// elements need 'empty' initializtion.
280 class InitListChecker {
281   Sema &SemaRef;
282   bool hadError = false;
283   bool VerifyOnly; // No diagnostics.
284   bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode.
285   bool InOverloadResolution;
286   InitListExpr *FullyStructuredList = nullptr;
287   NoInitExpr *DummyExpr = nullptr;
288 
289   NoInitExpr *getDummyInit() {
290     if (!DummyExpr)
291       DummyExpr = new (SemaRef.Context) NoInitExpr(SemaRef.Context.VoidTy);
292     return DummyExpr;
293   }
294 
295   void CheckImplicitInitList(const InitializedEntity &Entity,
296                              InitListExpr *ParentIList, QualType T,
297                              unsigned &Index, InitListExpr *StructuredList,
298                              unsigned &StructuredIndex);
299   void CheckExplicitInitList(const InitializedEntity &Entity,
300                              InitListExpr *IList, QualType &T,
301                              InitListExpr *StructuredList,
302                              bool TopLevelObject = false);
303   void CheckListElementTypes(const InitializedEntity &Entity,
304                              InitListExpr *IList, QualType &DeclType,
305                              bool SubobjectIsDesignatorContext,
306                              unsigned &Index,
307                              InitListExpr *StructuredList,
308                              unsigned &StructuredIndex,
309                              bool TopLevelObject = false);
310   void CheckSubElementType(const InitializedEntity &Entity,
311                            InitListExpr *IList, QualType ElemType,
312                            unsigned &Index,
313                            InitListExpr *StructuredList,
314                            unsigned &StructuredIndex);
315   void CheckComplexType(const InitializedEntity &Entity,
316                         InitListExpr *IList, QualType DeclType,
317                         unsigned &Index,
318                         InitListExpr *StructuredList,
319                         unsigned &StructuredIndex);
320   void CheckScalarType(const InitializedEntity &Entity,
321                        InitListExpr *IList, QualType DeclType,
322                        unsigned &Index,
323                        InitListExpr *StructuredList,
324                        unsigned &StructuredIndex);
325   void CheckReferenceType(const InitializedEntity &Entity,
326                           InitListExpr *IList, QualType DeclType,
327                           unsigned &Index,
328                           InitListExpr *StructuredList,
329                           unsigned &StructuredIndex);
330   void CheckVectorType(const InitializedEntity &Entity,
331                        InitListExpr *IList, QualType DeclType, unsigned &Index,
332                        InitListExpr *StructuredList,
333                        unsigned &StructuredIndex);
334   void CheckStructUnionTypes(const InitializedEntity &Entity,
335                              InitListExpr *IList, QualType DeclType,
336                              CXXRecordDecl::base_class_range Bases,
337                              RecordDecl::field_iterator Field,
338                              bool SubobjectIsDesignatorContext, unsigned &Index,
339                              InitListExpr *StructuredList,
340                              unsigned &StructuredIndex,
341                              bool TopLevelObject = false);
342   void CheckArrayType(const InitializedEntity &Entity,
343                       InitListExpr *IList, QualType &DeclType,
344                       llvm::APSInt elementIndex,
345                       bool SubobjectIsDesignatorContext, unsigned &Index,
346                       InitListExpr *StructuredList,
347                       unsigned &StructuredIndex);
348   bool CheckDesignatedInitializer(const InitializedEntity &Entity,
349                                   InitListExpr *IList, DesignatedInitExpr *DIE,
350                                   unsigned DesigIdx,
351                                   QualType &CurrentObjectType,
352                                   RecordDecl::field_iterator *NextField,
353                                   llvm::APSInt *NextElementIndex,
354                                   unsigned &Index,
355                                   InitListExpr *StructuredList,
356                                   unsigned &StructuredIndex,
357                                   bool FinishSubobjectInit,
358                                   bool TopLevelObject);
359   InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
360                                            QualType CurrentObjectType,
361                                            InitListExpr *StructuredList,
362                                            unsigned StructuredIndex,
363                                            SourceRange InitRange,
364                                            bool IsFullyOverwritten = false);
365   void UpdateStructuredListElement(InitListExpr *StructuredList,
366                                    unsigned &StructuredIndex,
367                                    Expr *expr);
368   InitListExpr *createInitListExpr(QualType CurrentObjectType,
369                                    SourceRange InitRange,
370                                    unsigned ExpectedNumInits);
371   int numArrayElements(QualType DeclType);
372   int numStructUnionElements(QualType DeclType);
373 
374   ExprResult PerformEmptyInit(SourceLocation Loc,
375                               const InitializedEntity &Entity);
376 
377   /// Diagnose that OldInit (or part thereof) has been overridden by NewInit.
378   void diagnoseInitOverride(Expr *OldInit, SourceRange NewInitRange,
379                             bool FullyOverwritten = true) {
380     // Overriding an initializer via a designator is valid with C99 designated
381     // initializers, but ill-formed with C++20 designated initializers.
382     unsigned DiagID = SemaRef.getLangOpts().CPlusPlus
383                           ? diag::ext_initializer_overrides
384                           : diag::warn_initializer_overrides;
385 
386     if (InOverloadResolution && SemaRef.getLangOpts().CPlusPlus) {
387       // In overload resolution, we have to strictly enforce the rules, and so
388       // don't allow any overriding of prior initializers. This matters for a
389       // case such as:
390       //
391       //   union U { int a, b; };
392       //   struct S { int a, b; };
393       //   void f(U), f(S);
394       //
395       // Here, f({.a = 1, .b = 2}) is required to call the struct overload. For
396       // consistency, we disallow all overriding of prior initializers in
397       // overload resolution, not only overriding of union members.
398       hadError = true;
399     } else if (OldInit->getType().isDestructedType() && !FullyOverwritten) {
400       // If we'll be keeping around the old initializer but overwriting part of
401       // the object it initialized, and that object is not trivially
402       // destructible, this can leak. Don't allow that, not even as an
403       // extension.
404       //
405       // FIXME: It might be reasonable to allow this in cases where the part of
406       // the initializer that we're overriding has trivial destruction.
407       DiagID = diag::err_initializer_overrides_destructed;
408     } else if (!OldInit->getSourceRange().isValid()) {
409       // We need to check on source range validity because the previous
410       // initializer does not have to be an explicit initializer. e.g.,
411       //
412       // struct P { int a, b; };
413       // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
414       //
415       // There is an overwrite taking place because the first braced initializer
416       // list "{ .a = 2 }" already provides value for .p.b (which is zero).
417       //
418       // Such overwrites are harmless, so we don't diagnose them. (Note that in
419       // C++, this cannot be reached unless we've already seen and diagnosed a
420       // different conformance issue, such as a mixture of designated and
421       // non-designated initializers or a multi-level designator.)
422       return;
423     }
424 
425     if (!VerifyOnly) {
426       SemaRef.Diag(NewInitRange.getBegin(), DiagID)
427           << NewInitRange << FullyOverwritten << OldInit->getType();
428       SemaRef.Diag(OldInit->getBeginLoc(), diag::note_previous_initializer)
429           << (OldInit->HasSideEffects(SemaRef.Context) && FullyOverwritten)
430           << OldInit->getSourceRange();
431     }
432   }
433 
434   // Explanation on the "FillWithNoInit" mode:
435   //
436   // Assume we have the following definitions (Case#1):
437   // struct P { char x[6][6]; } xp = { .x[1] = "bar" };
438   // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' };
439   //
440   // l.lp.x[1][0..1] should not be filled with implicit initializers because the
441   // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf".
442   //
443   // But if we have (Case#2):
444   // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } };
445   //
446   // l.lp.x[1][0..1] are implicitly initialized and do not use values from the
447   // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0".
448   //
449   // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes"
450   // in the InitListExpr, the "holes" in Case#1 are filled not with empty
451   // initializers but with special "NoInitExpr" place holders, which tells the
452   // CodeGen not to generate any initializers for these parts.
453   void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base,
454                               const InitializedEntity &ParentEntity,
455                               InitListExpr *ILE, bool &RequiresSecondPass,
456                               bool FillWithNoInit);
457   void FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
458                                const InitializedEntity &ParentEntity,
459                                InitListExpr *ILE, bool &RequiresSecondPass,
460                                bool FillWithNoInit = false);
461   void FillInEmptyInitializations(const InitializedEntity &Entity,
462                                   InitListExpr *ILE, bool &RequiresSecondPass,
463                                   InitListExpr *OuterILE, unsigned OuterIndex,
464                                   bool FillWithNoInit = false);
465   bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
466                               Expr *InitExpr, FieldDecl *Field,
467                               bool TopLevelObject);
468   void CheckEmptyInitializable(const InitializedEntity &Entity,
469                                SourceLocation Loc);
470 
471 public:
472   InitListChecker(Sema &S, const InitializedEntity &Entity, InitListExpr *IL,
473                   QualType &T, bool VerifyOnly, bool TreatUnavailableAsInvalid,
474                   bool InOverloadResolution = false);
475   bool HadError() { return hadError; }
476 
477   // Retrieves the fully-structured initializer list used for
478   // semantic analysis and code generation.
479   InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
480 };
481 
482 } // end anonymous namespace
483 
484 ExprResult InitListChecker::PerformEmptyInit(SourceLocation Loc,
485                                              const InitializedEntity &Entity) {
486   InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
487                                                             true);
488   MultiExprArg SubInit;
489   Expr *InitExpr;
490   InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc);
491 
492   // C++ [dcl.init.aggr]p7:
493   //   If there are fewer initializer-clauses in the list than there are
494   //   members in the aggregate, then each member not explicitly initialized
495   //   ...
496   bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 &&
497       Entity.getType()->getBaseElementTypeUnsafe()->isRecordType();
498   if (EmptyInitList) {
499     // C++1y / DR1070:
500     //   shall be initialized [...] from an empty initializer list.
501     //
502     // We apply the resolution of this DR to C++11 but not C++98, since C++98
503     // does not have useful semantics for initialization from an init list.
504     // We treat this as copy-initialization, because aggregate initialization
505     // always performs copy-initialization on its elements.
506     //
507     // Only do this if we're initializing a class type, to avoid filling in
508     // the initializer list where possible.
509     InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context)
510                    InitListExpr(SemaRef.Context, Loc, None, Loc);
511     InitExpr->setType(SemaRef.Context.VoidTy);
512     SubInit = InitExpr;
513     Kind = InitializationKind::CreateCopy(Loc, Loc);
514   } else {
515     // C++03:
516     //   shall be value-initialized.
517   }
518 
519   InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit);
520   // libstdc++4.6 marks the vector default constructor as explicit in
521   // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case.
522   // stlport does so too. Look for std::__debug for libstdc++, and for
523   // std:: for stlport.  This is effectively a compiler-side implementation of
524   // LWG2193.
525   if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() ==
526           InitializationSequence::FK_ExplicitConstructor) {
527     OverloadCandidateSet::iterator Best;
528     OverloadingResult O =
529         InitSeq.getFailedCandidateSet()
530             .BestViableFunction(SemaRef, Kind.getLocation(), Best);
531     (void)O;
532     assert(O == OR_Success && "Inconsistent overload resolution");
533     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
534     CXXRecordDecl *R = CtorDecl->getParent();
535 
536     if (CtorDecl->getMinRequiredArguments() == 0 &&
537         CtorDecl->isExplicit() && R->getDeclName() &&
538         SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) {
539       bool IsInStd = false;
540       for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext());
541            ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) {
542         if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND))
543           IsInStd = true;
544       }
545 
546       if (IsInStd && llvm::StringSwitch<bool>(R->getName())
547               .Cases("basic_string", "deque", "forward_list", true)
548               .Cases("list", "map", "multimap", "multiset", true)
549               .Cases("priority_queue", "queue", "set", "stack", true)
550               .Cases("unordered_map", "unordered_set", "vector", true)
551               .Default(false)) {
552         InitSeq.InitializeFrom(
553             SemaRef, Entity,
554             InitializationKind::CreateValue(Loc, Loc, Loc, true),
555             MultiExprArg(), /*TopLevelOfInitList=*/false,
556             TreatUnavailableAsInvalid);
557         // Emit a warning for this.  System header warnings aren't shown
558         // by default, but people working on system headers should see it.
559         if (!VerifyOnly) {
560           SemaRef.Diag(CtorDecl->getLocation(),
561                        diag::warn_invalid_initializer_from_system_header);
562           if (Entity.getKind() == InitializedEntity::EK_Member)
563             SemaRef.Diag(Entity.getDecl()->getLocation(),
564                          diag::note_used_in_initialization_here);
565           else if (Entity.getKind() == InitializedEntity::EK_ArrayElement)
566             SemaRef.Diag(Loc, diag::note_used_in_initialization_here);
567         }
568       }
569     }
570   }
571   if (!InitSeq) {
572     if (!VerifyOnly) {
573       InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit);
574       if (Entity.getKind() == InitializedEntity::EK_Member)
575         SemaRef.Diag(Entity.getDecl()->getLocation(),
576                      diag::note_in_omitted_aggregate_initializer)
577           << /*field*/1 << Entity.getDecl();
578       else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) {
579         bool IsTrailingArrayNewMember =
580             Entity.getParent() &&
581             Entity.getParent()->isVariableLengthArrayNew();
582         SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer)
583           << (IsTrailingArrayNewMember ? 2 : /*array element*/0)
584           << Entity.getElementIndex();
585       }
586     }
587     hadError = true;
588     return ExprError();
589   }
590 
591   return VerifyOnly ? ExprResult()
592                     : InitSeq.Perform(SemaRef, Entity, Kind, SubInit);
593 }
594 
595 void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity,
596                                               SourceLocation Loc) {
597   // If we're building a fully-structured list, we'll check this at the end
598   // once we know which elements are actually initialized. Otherwise, we know
599   // that there are no designators so we can just check now.
600   if (FullyStructuredList)
601     return;
602   PerformEmptyInit(Loc, Entity);
603 }
604 
605 void InitListChecker::FillInEmptyInitForBase(
606     unsigned Init, const CXXBaseSpecifier &Base,
607     const InitializedEntity &ParentEntity, InitListExpr *ILE,
608     bool &RequiresSecondPass, bool FillWithNoInit) {
609   InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
610       SemaRef.Context, &Base, false, &ParentEntity);
611 
612   if (Init >= ILE->getNumInits() || !ILE->getInit(Init)) {
613     ExprResult BaseInit = FillWithNoInit
614                               ? new (SemaRef.Context) NoInitExpr(Base.getType())
615                               : PerformEmptyInit(ILE->getEndLoc(), BaseEntity);
616     if (BaseInit.isInvalid()) {
617       hadError = true;
618       return;
619     }
620 
621     if (!VerifyOnly) {
622       assert(Init < ILE->getNumInits() && "should have been expanded");
623       ILE->setInit(Init, BaseInit.getAs<Expr>());
624     }
625   } else if (InitListExpr *InnerILE =
626                  dyn_cast<InitListExpr>(ILE->getInit(Init))) {
627     FillInEmptyInitializations(BaseEntity, InnerILE, RequiresSecondPass,
628                                ILE, Init, FillWithNoInit);
629   } else if (DesignatedInitUpdateExpr *InnerDIUE =
630                dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
631     FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(),
632                                RequiresSecondPass, ILE, Init,
633                                /*FillWithNoInit =*/true);
634   }
635 }
636 
637 void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
638                                         const InitializedEntity &ParentEntity,
639                                               InitListExpr *ILE,
640                                               bool &RequiresSecondPass,
641                                               bool FillWithNoInit) {
642   SourceLocation Loc = ILE->getEndLoc();
643   unsigned NumInits = ILE->getNumInits();
644   InitializedEntity MemberEntity
645     = InitializedEntity::InitializeMember(Field, &ParentEntity);
646 
647   if (Init >= NumInits || !ILE->getInit(Init)) {
648     if (const RecordType *RType = ILE->getType()->getAs<RecordType>())
649       if (!RType->getDecl()->isUnion())
650         assert((Init < NumInits || VerifyOnly) &&
651                "This ILE should have been expanded");
652 
653     if (FillWithNoInit) {
654       assert(!VerifyOnly && "should not fill with no-init in verify-only mode");
655       Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType());
656       if (Init < NumInits)
657         ILE->setInit(Init, Filler);
658       else
659         ILE->updateInit(SemaRef.Context, Init, Filler);
660       return;
661     }
662     // C++1y [dcl.init.aggr]p7:
663     //   If there are fewer initializer-clauses in the list than there are
664     //   members in the aggregate, then each member not explicitly initialized
665     //   shall be initialized from its brace-or-equal-initializer [...]
666     if (Field->hasInClassInitializer()) {
667       if (VerifyOnly)
668         return;
669 
670       ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field);
671       if (DIE.isInvalid()) {
672         hadError = true;
673         return;
674       }
675       SemaRef.checkInitializerLifetime(MemberEntity, DIE.get());
676       if (Init < NumInits)
677         ILE->setInit(Init, DIE.get());
678       else {
679         ILE->updateInit(SemaRef.Context, Init, DIE.get());
680         RequiresSecondPass = true;
681       }
682       return;
683     }
684 
685     if (Field->getType()->isReferenceType()) {
686       if (!VerifyOnly) {
687         // C++ [dcl.init.aggr]p9:
688         //   If an incomplete or empty initializer-list leaves a
689         //   member of reference type uninitialized, the program is
690         //   ill-formed.
691         SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
692           << Field->getType()
693           << ILE->getSyntacticForm()->getSourceRange();
694         SemaRef.Diag(Field->getLocation(),
695                      diag::note_uninit_reference_member);
696       }
697       hadError = true;
698       return;
699     }
700 
701     ExprResult MemberInit = PerformEmptyInit(Loc, MemberEntity);
702     if (MemberInit.isInvalid()) {
703       hadError = true;
704       return;
705     }
706 
707     if (hadError || VerifyOnly) {
708       // Do nothing
709     } else if (Init < NumInits) {
710       ILE->setInit(Init, MemberInit.getAs<Expr>());
711     } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) {
712       // Empty initialization requires a constructor call, so
713       // extend the initializer list to include the constructor
714       // call and make a note that we'll need to take another pass
715       // through the initializer list.
716       ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>());
717       RequiresSecondPass = true;
718     }
719   } else if (InitListExpr *InnerILE
720                = dyn_cast<InitListExpr>(ILE->getInit(Init))) {
721     FillInEmptyInitializations(MemberEntity, InnerILE,
722                                RequiresSecondPass, ILE, Init, FillWithNoInit);
723   } else if (DesignatedInitUpdateExpr *InnerDIUE =
724                  dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
725     FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(),
726                                RequiresSecondPass, ILE, Init,
727                                /*FillWithNoInit =*/true);
728   }
729 }
730 
731 /// Recursively replaces NULL values within the given initializer list
732 /// with expressions that perform value-initialization of the
733 /// appropriate type, and finish off the InitListExpr formation.
734 void
735 InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity,
736                                             InitListExpr *ILE,
737                                             bool &RequiresSecondPass,
738                                             InitListExpr *OuterILE,
739                                             unsigned OuterIndex,
740                                             bool FillWithNoInit) {
741   assert((ILE->getType() != SemaRef.Context.VoidTy) &&
742          "Should not have void type");
743 
744   // We don't need to do any checks when just filling NoInitExprs; that can't
745   // fail.
746   if (FillWithNoInit && VerifyOnly)
747     return;
748 
749   // If this is a nested initializer list, we might have changed its contents
750   // (and therefore some of its properties, such as instantiation-dependence)
751   // while filling it in. Inform the outer initializer list so that its state
752   // can be updated to match.
753   // FIXME: We should fully build the inner initializers before constructing
754   // the outer InitListExpr instead of mutating AST nodes after they have
755   // been used as subexpressions of other nodes.
756   struct UpdateOuterILEWithUpdatedInit {
757     InitListExpr *Outer;
758     unsigned OuterIndex;
759     ~UpdateOuterILEWithUpdatedInit() {
760       if (Outer)
761         Outer->setInit(OuterIndex, Outer->getInit(OuterIndex));
762     }
763   } UpdateOuterRAII = {OuterILE, OuterIndex};
764 
765   // A transparent ILE is not performing aggregate initialization and should
766   // not be filled in.
767   if (ILE->isTransparent())
768     return;
769 
770   if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
771     const RecordDecl *RDecl = RType->getDecl();
772     if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
773       FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(),
774                               Entity, ILE, RequiresSecondPass, FillWithNoInit);
775     else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
776              cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
777       for (auto *Field : RDecl->fields()) {
778         if (Field->hasInClassInitializer()) {
779           FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass,
780                                   FillWithNoInit);
781           break;
782         }
783       }
784     } else {
785       // The fields beyond ILE->getNumInits() are default initialized, so in
786       // order to leave them uninitialized, the ILE is expanded and the extra
787       // fields are then filled with NoInitExpr.
788       unsigned NumElems = numStructUnionElements(ILE->getType());
789       if (RDecl->hasFlexibleArrayMember())
790         ++NumElems;
791       if (!VerifyOnly && ILE->getNumInits() < NumElems)
792         ILE->resizeInits(SemaRef.Context, NumElems);
793 
794       unsigned Init = 0;
795 
796       if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) {
797         for (auto &Base : CXXRD->bases()) {
798           if (hadError)
799             return;
800 
801           FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass,
802                                  FillWithNoInit);
803           ++Init;
804         }
805       }
806 
807       for (auto *Field : RDecl->fields()) {
808         if (Field->isUnnamedBitfield())
809           continue;
810 
811         if (hadError)
812           return;
813 
814         FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass,
815                                 FillWithNoInit);
816         if (hadError)
817           return;
818 
819         ++Init;
820 
821         // Only look at the first initialization of a union.
822         if (RDecl->isUnion())
823           break;
824       }
825     }
826 
827     return;
828   }
829 
830   QualType ElementType;
831 
832   InitializedEntity ElementEntity = Entity;
833   unsigned NumInits = ILE->getNumInits();
834   unsigned NumElements = NumInits;
835   if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
836     ElementType = AType->getElementType();
837     if (const auto *CAType = dyn_cast<ConstantArrayType>(AType))
838       NumElements = CAType->getSize().getZExtValue();
839     // For an array new with an unknown bound, ask for one additional element
840     // in order to populate the array filler.
841     if (Entity.isVariableLengthArrayNew())
842       ++NumElements;
843     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
844                                                          0, Entity);
845   } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
846     ElementType = VType->getElementType();
847     NumElements = VType->getNumElements();
848     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
849                                                          0, Entity);
850   } else
851     ElementType = ILE->getType();
852 
853   bool SkipEmptyInitChecks = false;
854   for (unsigned Init = 0; Init != NumElements; ++Init) {
855     if (hadError)
856       return;
857 
858     if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
859         ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
860       ElementEntity.setElementIndex(Init);
861 
862     if (Init >= NumInits && (ILE->hasArrayFiller() || SkipEmptyInitChecks))
863       return;
864 
865     Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr);
866     if (!InitExpr && Init < NumInits && ILE->hasArrayFiller())
867       ILE->setInit(Init, ILE->getArrayFiller());
868     else if (!InitExpr && !ILE->hasArrayFiller()) {
869       // In VerifyOnly mode, there's no point performing empty initialization
870       // more than once.
871       if (SkipEmptyInitChecks)
872         continue;
873 
874       Expr *Filler = nullptr;
875 
876       if (FillWithNoInit)
877         Filler = new (SemaRef.Context) NoInitExpr(ElementType);
878       else {
879         ExprResult ElementInit =
880             PerformEmptyInit(ILE->getEndLoc(), ElementEntity);
881         if (ElementInit.isInvalid()) {
882           hadError = true;
883           return;
884         }
885 
886         Filler = ElementInit.getAs<Expr>();
887       }
888 
889       if (hadError) {
890         // Do nothing
891       } else if (VerifyOnly) {
892         SkipEmptyInitChecks = true;
893       } else if (Init < NumInits) {
894         // For arrays, just set the expression used for value-initialization
895         // of the "holes" in the array.
896         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
897           ILE->setArrayFiller(Filler);
898         else
899           ILE->setInit(Init, Filler);
900       } else {
901         // For arrays, just set the expression used for value-initialization
902         // of the rest of elements and exit.
903         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
904           ILE->setArrayFiller(Filler);
905           return;
906         }
907 
908         if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) {
909           // Empty initialization requires a constructor call, so
910           // extend the initializer list to include the constructor
911           // call and make a note that we'll need to take another pass
912           // through the initializer list.
913           ILE->updateInit(SemaRef.Context, Init, Filler);
914           RequiresSecondPass = true;
915         }
916       }
917     } else if (InitListExpr *InnerILE
918                  = dyn_cast_or_null<InitListExpr>(InitExpr)) {
919       FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass,
920                                  ILE, Init, FillWithNoInit);
921     } else if (DesignatedInitUpdateExpr *InnerDIUE =
922                    dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr)) {
923       FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(),
924                                  RequiresSecondPass, ILE, Init,
925                                  /*FillWithNoInit =*/true);
926     }
927   }
928 }
929 
930 static bool hasAnyDesignatedInits(const InitListExpr *IL) {
931   for (const Stmt *Init : *IL)
932     if (Init && isa<DesignatedInitExpr>(Init))
933       return true;
934   return false;
935 }
936 
937 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
938                                  InitListExpr *IL, QualType &T, bool VerifyOnly,
939                                  bool TreatUnavailableAsInvalid,
940                                  bool InOverloadResolution)
941     : SemaRef(S), VerifyOnly(VerifyOnly),
942       TreatUnavailableAsInvalid(TreatUnavailableAsInvalid),
943       InOverloadResolution(InOverloadResolution) {
944   if (!VerifyOnly || hasAnyDesignatedInits(IL)) {
945     FullyStructuredList =
946         createInitListExpr(T, IL->getSourceRange(), IL->getNumInits());
947 
948     // FIXME: Check that IL isn't already the semantic form of some other
949     // InitListExpr. If it is, we'd create a broken AST.
950     if (!VerifyOnly)
951       FullyStructuredList->setSyntacticForm(IL);
952   }
953 
954   CheckExplicitInitList(Entity, IL, T, FullyStructuredList,
955                         /*TopLevelObject=*/true);
956 
957   if (!hadError && FullyStructuredList) {
958     bool RequiresSecondPass = false;
959     FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass,
960                                /*OuterILE=*/nullptr, /*OuterIndex=*/0);
961     if (RequiresSecondPass && !hadError)
962       FillInEmptyInitializations(Entity, FullyStructuredList,
963                                  RequiresSecondPass, nullptr, 0);
964   }
965   if (hadError && FullyStructuredList)
966     FullyStructuredList->markError();
967 }
968 
969 int InitListChecker::numArrayElements(QualType DeclType) {
970   // FIXME: use a proper constant
971   int maxElements = 0x7FFFFFFF;
972   if (const ConstantArrayType *CAT =
973         SemaRef.Context.getAsConstantArrayType(DeclType)) {
974     maxElements = static_cast<int>(CAT->getSize().getZExtValue());
975   }
976   return maxElements;
977 }
978 
979 int InitListChecker::numStructUnionElements(QualType DeclType) {
980   RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl();
981   int InitializableMembers = 0;
982   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl))
983     InitializableMembers += CXXRD->getNumBases();
984   for (const auto *Field : structDecl->fields())
985     if (!Field->isUnnamedBitfield())
986       ++InitializableMembers;
987 
988   if (structDecl->isUnion())
989     return std::min(InitializableMembers, 1);
990   return InitializableMembers - structDecl->hasFlexibleArrayMember();
991 }
992 
993 /// Determine whether Entity is an entity for which it is idiomatic to elide
994 /// the braces in aggregate initialization.
995 static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) {
996   // Recursive initialization of the one and only field within an aggregate
997   // class is considered idiomatic. This case arises in particular for
998   // initialization of std::array, where the C++ standard suggests the idiom of
999   //
1000   //   std::array<T, N> arr = {1, 2, 3};
1001   //
1002   // (where std::array is an aggregate struct containing a single array field.
1003 
1004   // FIXME: Should aggregate initialization of a struct with a single
1005   // base class and no members also suppress the warning?
1006   if (Entity.getKind() != InitializedEntity::EK_Member || !Entity.getParent())
1007     return false;
1008 
1009   auto *ParentRD =
1010       Entity.getParent()->getType()->castAs<RecordType>()->getDecl();
1011   if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(ParentRD))
1012     if (CXXRD->getNumBases())
1013       return false;
1014 
1015   auto FieldIt = ParentRD->field_begin();
1016   assert(FieldIt != ParentRD->field_end() &&
1017          "no fields but have initializer for member?");
1018   return ++FieldIt == ParentRD->field_end();
1019 }
1020 
1021 /// Check whether the range of the initializer \p ParentIList from element
1022 /// \p Index onwards can be used to initialize an object of type \p T. Update
1023 /// \p Index to indicate how many elements of the list were consumed.
1024 ///
1025 /// This also fills in \p StructuredList, from element \p StructuredIndex
1026 /// onwards, with the fully-braced, desugared form of the initialization.
1027 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
1028                                             InitListExpr *ParentIList,
1029                                             QualType T, unsigned &Index,
1030                                             InitListExpr *StructuredList,
1031                                             unsigned &StructuredIndex) {
1032   int maxElements = 0;
1033 
1034   if (T->isArrayType())
1035     maxElements = numArrayElements(T);
1036   else if (T->isRecordType())
1037     maxElements = numStructUnionElements(T);
1038   else if (T->isVectorType())
1039     maxElements = T->castAs<VectorType>()->getNumElements();
1040   else
1041     llvm_unreachable("CheckImplicitInitList(): Illegal type");
1042 
1043   if (maxElements == 0) {
1044     if (!VerifyOnly)
1045       SemaRef.Diag(ParentIList->getInit(Index)->getBeginLoc(),
1046                    diag::err_implicit_empty_initializer);
1047     ++Index;
1048     hadError = true;
1049     return;
1050   }
1051 
1052   // Build a structured initializer list corresponding to this subobject.
1053   InitListExpr *StructuredSubobjectInitList = getStructuredSubobjectInit(
1054       ParentIList, Index, T, StructuredList, StructuredIndex,
1055       SourceRange(ParentIList->getInit(Index)->getBeginLoc(),
1056                   ParentIList->getSourceRange().getEnd()));
1057   unsigned StructuredSubobjectInitIndex = 0;
1058 
1059   // Check the element types and build the structural subobject.
1060   unsigned StartIndex = Index;
1061   CheckListElementTypes(Entity, ParentIList, T,
1062                         /*SubobjectIsDesignatorContext=*/false, Index,
1063                         StructuredSubobjectInitList,
1064                         StructuredSubobjectInitIndex);
1065 
1066   if (StructuredSubobjectInitList) {
1067     StructuredSubobjectInitList->setType(T);
1068 
1069     unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
1070     // Update the structured sub-object initializer so that it's ending
1071     // range corresponds with the end of the last initializer it used.
1072     if (EndIndex < ParentIList->getNumInits() &&
1073         ParentIList->getInit(EndIndex)) {
1074       SourceLocation EndLoc
1075         = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
1076       StructuredSubobjectInitList->setRBraceLoc(EndLoc);
1077     }
1078 
1079     // Complain about missing braces.
1080     if (!VerifyOnly && (T->isArrayType() || T->isRecordType()) &&
1081         !ParentIList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) &&
1082         !isIdiomaticBraceElisionEntity(Entity)) {
1083       SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
1084                    diag::warn_missing_braces)
1085           << StructuredSubobjectInitList->getSourceRange()
1086           << FixItHint::CreateInsertion(
1087                  StructuredSubobjectInitList->getBeginLoc(), "{")
1088           << FixItHint::CreateInsertion(
1089                  SemaRef.getLocForEndOfToken(
1090                      StructuredSubobjectInitList->getEndLoc()),
1091                  "}");
1092     }
1093 
1094     // Warn if this type won't be an aggregate in future versions of C++.
1095     auto *CXXRD = T->getAsCXXRecordDecl();
1096     if (!VerifyOnly && CXXRD && CXXRD->hasUserDeclaredConstructor()) {
1097       SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
1098                    diag::warn_cxx20_compat_aggregate_init_with_ctors)
1099           << StructuredSubobjectInitList->getSourceRange() << T;
1100     }
1101   }
1102 }
1103 
1104 /// Warn that \p Entity was of scalar type and was initialized by a
1105 /// single-element braced initializer list.
1106 static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity,
1107                                  SourceRange Braces) {
1108   // Don't warn during template instantiation. If the initialization was
1109   // non-dependent, we warned during the initial parse; otherwise, the
1110   // type might not be scalar in some uses of the template.
1111   if (S.inTemplateInstantiation())
1112     return;
1113 
1114   unsigned DiagID = 0;
1115 
1116   switch (Entity.getKind()) {
1117   case InitializedEntity::EK_VectorElement:
1118   case InitializedEntity::EK_ComplexElement:
1119   case InitializedEntity::EK_ArrayElement:
1120   case InitializedEntity::EK_Parameter:
1121   case InitializedEntity::EK_Parameter_CF_Audited:
1122   case InitializedEntity::EK_Result:
1123     // Extra braces here are suspicious.
1124     DiagID = diag::warn_braces_around_init;
1125     break;
1126 
1127   case InitializedEntity::EK_Member:
1128     // Warn on aggregate initialization but not on ctor init list or
1129     // default member initializer.
1130     if (Entity.getParent())
1131       DiagID = diag::warn_braces_around_init;
1132     break;
1133 
1134   case InitializedEntity::EK_Variable:
1135   case InitializedEntity::EK_LambdaCapture:
1136     // No warning, might be direct-list-initialization.
1137     // FIXME: Should we warn for copy-list-initialization in these cases?
1138     break;
1139 
1140   case InitializedEntity::EK_New:
1141   case InitializedEntity::EK_Temporary:
1142   case InitializedEntity::EK_CompoundLiteralInit:
1143     // No warning, braces are part of the syntax of the underlying construct.
1144     break;
1145 
1146   case InitializedEntity::EK_RelatedResult:
1147     // No warning, we already warned when initializing the result.
1148     break;
1149 
1150   case InitializedEntity::EK_Exception:
1151   case InitializedEntity::EK_Base:
1152   case InitializedEntity::EK_Delegating:
1153   case InitializedEntity::EK_BlockElement:
1154   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
1155   case InitializedEntity::EK_Binding:
1156   case InitializedEntity::EK_StmtExprResult:
1157     llvm_unreachable("unexpected braced scalar init");
1158   }
1159 
1160   if (DiagID) {
1161     S.Diag(Braces.getBegin(), DiagID)
1162         << Entity.getType()->isSizelessBuiltinType() << Braces
1163         << FixItHint::CreateRemoval(Braces.getBegin())
1164         << FixItHint::CreateRemoval(Braces.getEnd());
1165   }
1166 }
1167 
1168 /// Check whether the initializer \p IList (that was written with explicit
1169 /// braces) can be used to initialize an object of type \p T.
1170 ///
1171 /// This also fills in \p StructuredList with the fully-braced, desugared
1172 /// form of the initialization.
1173 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
1174                                             InitListExpr *IList, QualType &T,
1175                                             InitListExpr *StructuredList,
1176                                             bool TopLevelObject) {
1177   unsigned Index = 0, StructuredIndex = 0;
1178   CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
1179                         Index, StructuredList, StructuredIndex, TopLevelObject);
1180   if (StructuredList) {
1181     QualType ExprTy = T;
1182     if (!ExprTy->isArrayType())
1183       ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
1184     if (!VerifyOnly)
1185       IList->setType(ExprTy);
1186     StructuredList->setType(ExprTy);
1187   }
1188   if (hadError)
1189     return;
1190 
1191   // Don't complain for incomplete types, since we'll get an error elsewhere.
1192   if (Index < IList->getNumInits() && !T->isIncompleteType()) {
1193     // We have leftover initializers
1194     bool ExtraInitsIsError = SemaRef.getLangOpts().CPlusPlus ||
1195           (SemaRef.getLangOpts().OpenCL && T->isVectorType());
1196     hadError = ExtraInitsIsError;
1197     if (VerifyOnly) {
1198       return;
1199     } else if (StructuredIndex == 1 &&
1200                IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) ==
1201                    SIF_None) {
1202       unsigned DK =
1203           ExtraInitsIsError
1204               ? diag::err_excess_initializers_in_char_array_initializer
1205               : diag::ext_excess_initializers_in_char_array_initializer;
1206       SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1207           << IList->getInit(Index)->getSourceRange();
1208     } else if (T->isSizelessBuiltinType()) {
1209       unsigned DK = ExtraInitsIsError
1210                         ? diag::err_excess_initializers_for_sizeless_type
1211                         : diag::ext_excess_initializers_for_sizeless_type;
1212       SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1213           << T << IList->getInit(Index)->getSourceRange();
1214     } else {
1215       int initKind = T->isArrayType() ? 0 :
1216                      T->isVectorType() ? 1 :
1217                      T->isScalarType() ? 2 :
1218                      T->isUnionType() ? 3 :
1219                      4;
1220 
1221       unsigned DK = ExtraInitsIsError ? diag::err_excess_initializers
1222                                       : diag::ext_excess_initializers;
1223       SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1224           << initKind << IList->getInit(Index)->getSourceRange();
1225     }
1226   }
1227 
1228   if (!VerifyOnly) {
1229     if (T->isScalarType() && IList->getNumInits() == 1 &&
1230         !isa<InitListExpr>(IList->getInit(0)))
1231       warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange());
1232 
1233     // Warn if this is a class type that won't be an aggregate in future
1234     // versions of C++.
1235     auto *CXXRD = T->getAsCXXRecordDecl();
1236     if (CXXRD && CXXRD->hasUserDeclaredConstructor()) {
1237       // Don't warn if there's an equivalent default constructor that would be
1238       // used instead.
1239       bool HasEquivCtor = false;
1240       if (IList->getNumInits() == 0) {
1241         auto *CD = SemaRef.LookupDefaultConstructor(CXXRD);
1242         HasEquivCtor = CD && !CD->isDeleted();
1243       }
1244 
1245       if (!HasEquivCtor) {
1246         SemaRef.Diag(IList->getBeginLoc(),
1247                      diag::warn_cxx20_compat_aggregate_init_with_ctors)
1248             << IList->getSourceRange() << T;
1249       }
1250     }
1251   }
1252 }
1253 
1254 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
1255                                             InitListExpr *IList,
1256                                             QualType &DeclType,
1257                                             bool SubobjectIsDesignatorContext,
1258                                             unsigned &Index,
1259                                             InitListExpr *StructuredList,
1260                                             unsigned &StructuredIndex,
1261                                             bool TopLevelObject) {
1262   if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
1263     // Explicitly braced initializer for complex type can be real+imaginary
1264     // parts.
1265     CheckComplexType(Entity, IList, DeclType, Index,
1266                      StructuredList, StructuredIndex);
1267   } else if (DeclType->isScalarType()) {
1268     CheckScalarType(Entity, IList, DeclType, Index,
1269                     StructuredList, StructuredIndex);
1270   } else if (DeclType->isVectorType()) {
1271     CheckVectorType(Entity, IList, DeclType, Index,
1272                     StructuredList, StructuredIndex);
1273   } else if (DeclType->isRecordType()) {
1274     assert(DeclType->isAggregateType() &&
1275            "non-aggregate records should be handed in CheckSubElementType");
1276     RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl();
1277     auto Bases =
1278         CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
1279                                         CXXRecordDecl::base_class_iterator());
1280     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1281       Bases = CXXRD->bases();
1282     CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(),
1283                           SubobjectIsDesignatorContext, Index, StructuredList,
1284                           StructuredIndex, TopLevelObject);
1285   } else if (DeclType->isArrayType()) {
1286     llvm::APSInt Zero(
1287                     SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
1288                     false);
1289     CheckArrayType(Entity, IList, DeclType, Zero,
1290                    SubobjectIsDesignatorContext, Index,
1291                    StructuredList, StructuredIndex);
1292   } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
1293     // This type is invalid, issue a diagnostic.
1294     ++Index;
1295     if (!VerifyOnly)
1296       SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
1297           << DeclType;
1298     hadError = true;
1299   } else if (DeclType->isReferenceType()) {
1300     CheckReferenceType(Entity, IList, DeclType, Index,
1301                        StructuredList, StructuredIndex);
1302   } else if (DeclType->isObjCObjectType()) {
1303     if (!VerifyOnly)
1304       SemaRef.Diag(IList->getBeginLoc(), diag::err_init_objc_class) << DeclType;
1305     hadError = true;
1306   } else if (DeclType->isOCLIntelSubgroupAVCType() ||
1307              DeclType->isSizelessBuiltinType()) {
1308     // Checks for scalar type are sufficient for these types too.
1309     CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1310                     StructuredIndex);
1311   } else {
1312     if (!VerifyOnly)
1313       SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
1314           << DeclType;
1315     hadError = true;
1316   }
1317 }
1318 
1319 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
1320                                           InitListExpr *IList,
1321                                           QualType ElemType,
1322                                           unsigned &Index,
1323                                           InitListExpr *StructuredList,
1324                                           unsigned &StructuredIndex) {
1325   Expr *expr = IList->getInit(Index);
1326 
1327   if (ElemType->isReferenceType())
1328     return CheckReferenceType(Entity, IList, ElemType, Index,
1329                               StructuredList, StructuredIndex);
1330 
1331   if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
1332     if (SubInitList->getNumInits() == 1 &&
1333         IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) ==
1334         SIF_None) {
1335       // FIXME: It would be more faithful and no less correct to include an
1336       // InitListExpr in the semantic form of the initializer list in this case.
1337       expr = SubInitList->getInit(0);
1338     }
1339     // Nested aggregate initialization and C++ initialization are handled later.
1340   } else if (isa<ImplicitValueInitExpr>(expr)) {
1341     // This happens during template instantiation when we see an InitListExpr
1342     // that we've already checked once.
1343     assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) &&
1344            "found implicit initialization for the wrong type");
1345     UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1346     ++Index;
1347     return;
1348   }
1349 
1350   if (SemaRef.getLangOpts().CPlusPlus || isa<InitListExpr>(expr)) {
1351     // C++ [dcl.init.aggr]p2:
1352     //   Each member is copy-initialized from the corresponding
1353     //   initializer-clause.
1354 
1355     // FIXME: Better EqualLoc?
1356     InitializationKind Kind =
1357         InitializationKind::CreateCopy(expr->getBeginLoc(), SourceLocation());
1358 
1359     // Vector elements can be initialized from other vectors in which case
1360     // we need initialization entity with a type of a vector (and not a vector
1361     // element!) initializing multiple vector elements.
1362     auto TmpEntity =
1363         (ElemType->isExtVectorType() && !Entity.getType()->isExtVectorType())
1364             ? InitializedEntity::InitializeTemporary(ElemType)
1365             : Entity;
1366 
1367     InitializationSequence Seq(SemaRef, TmpEntity, Kind, expr,
1368                                /*TopLevelOfInitList*/ true);
1369 
1370     // C++14 [dcl.init.aggr]p13:
1371     //   If the assignment-expression can initialize a member, the member is
1372     //   initialized. Otherwise [...] brace elision is assumed
1373     //
1374     // Brace elision is never performed if the element is not an
1375     // assignment-expression.
1376     if (Seq || isa<InitListExpr>(expr)) {
1377       if (!VerifyOnly) {
1378         ExprResult Result = Seq.Perform(SemaRef, TmpEntity, Kind, expr);
1379         if (Result.isInvalid())
1380           hadError = true;
1381 
1382         UpdateStructuredListElement(StructuredList, StructuredIndex,
1383                                     Result.getAs<Expr>());
1384       } else if (!Seq) {
1385         hadError = true;
1386       } else if (StructuredList) {
1387         UpdateStructuredListElement(StructuredList, StructuredIndex,
1388                                     getDummyInit());
1389       }
1390       ++Index;
1391       return;
1392     }
1393 
1394     // Fall through for subaggregate initialization
1395   } else if (ElemType->isScalarType() || ElemType->isAtomicType()) {
1396     // FIXME: Need to handle atomic aggregate types with implicit init lists.
1397     return CheckScalarType(Entity, IList, ElemType, Index,
1398                            StructuredList, StructuredIndex);
1399   } else if (const ArrayType *arrayType =
1400                  SemaRef.Context.getAsArrayType(ElemType)) {
1401     // arrayType can be incomplete if we're initializing a flexible
1402     // array member.  There's nothing we can do with the completed
1403     // type here, though.
1404 
1405     if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) {
1406       // FIXME: Should we do this checking in verify-only mode?
1407       if (!VerifyOnly)
1408         CheckStringInit(expr, ElemType, arrayType, SemaRef);
1409       if (StructuredList)
1410         UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1411       ++Index;
1412       return;
1413     }
1414 
1415     // Fall through for subaggregate initialization.
1416 
1417   } else {
1418     assert((ElemType->isRecordType() || ElemType->isVectorType() ||
1419             ElemType->isOpenCLSpecificType()) && "Unexpected type");
1420 
1421     // C99 6.7.8p13:
1422     //
1423     //   The initializer for a structure or union object that has
1424     //   automatic storage duration shall be either an initializer
1425     //   list as described below, or a single expression that has
1426     //   compatible structure or union type. In the latter case, the
1427     //   initial value of the object, including unnamed members, is
1428     //   that of the expression.
1429     ExprResult ExprRes = expr;
1430     if (SemaRef.CheckSingleAssignmentConstraints(
1431             ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) {
1432       if (ExprRes.isInvalid())
1433         hadError = true;
1434       else {
1435         ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get());
1436         if (ExprRes.isInvalid())
1437           hadError = true;
1438       }
1439       UpdateStructuredListElement(StructuredList, StructuredIndex,
1440                                   ExprRes.getAs<Expr>());
1441       ++Index;
1442       return;
1443     }
1444     ExprRes.get();
1445     // Fall through for subaggregate initialization
1446   }
1447 
1448   // C++ [dcl.init.aggr]p12:
1449   //
1450   //   [...] Otherwise, if the member is itself a non-empty
1451   //   subaggregate, brace elision is assumed and the initializer is
1452   //   considered for the initialization of the first member of
1453   //   the subaggregate.
1454   // OpenCL vector initializer is handled elsewhere.
1455   if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) ||
1456       ElemType->isAggregateType()) {
1457     CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
1458                           StructuredIndex);
1459     ++StructuredIndex;
1460   } else {
1461     if (!VerifyOnly) {
1462       // We cannot initialize this element, so let PerformCopyInitialization
1463       // produce the appropriate diagnostic. We already checked that this
1464       // initialization will fail.
1465       ExprResult Copy =
1466           SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr,
1467                                             /*TopLevelOfInitList=*/true);
1468       (void)Copy;
1469       assert(Copy.isInvalid() &&
1470              "expected non-aggregate initialization to fail");
1471     }
1472     hadError = true;
1473     ++Index;
1474     ++StructuredIndex;
1475   }
1476 }
1477 
1478 void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
1479                                        InitListExpr *IList, QualType DeclType,
1480                                        unsigned &Index,
1481                                        InitListExpr *StructuredList,
1482                                        unsigned &StructuredIndex) {
1483   assert(Index == 0 && "Index in explicit init list must be zero");
1484 
1485   // As an extension, clang supports complex initializers, which initialize
1486   // a complex number component-wise.  When an explicit initializer list for
1487   // a complex number contains two two initializers, this extension kicks in:
1488   // it exepcts the initializer list to contain two elements convertible to
1489   // the element type of the complex type. The first element initializes
1490   // the real part, and the second element intitializes the imaginary part.
1491 
1492   if (IList->getNumInits() != 2)
1493     return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1494                            StructuredIndex);
1495 
1496   // This is an extension in C.  (The builtin _Complex type does not exist
1497   // in the C++ standard.)
1498   if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
1499     SemaRef.Diag(IList->getBeginLoc(), diag::ext_complex_component_init)
1500         << IList->getSourceRange();
1501 
1502   // Initialize the complex number.
1503   QualType elementType = DeclType->castAs<ComplexType>()->getElementType();
1504   InitializedEntity ElementEntity =
1505     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1506 
1507   for (unsigned i = 0; i < 2; ++i) {
1508     ElementEntity.setElementIndex(Index);
1509     CheckSubElementType(ElementEntity, IList, elementType, Index,
1510                         StructuredList, StructuredIndex);
1511   }
1512 }
1513 
1514 void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
1515                                       InitListExpr *IList, QualType DeclType,
1516                                       unsigned &Index,
1517                                       InitListExpr *StructuredList,
1518                                       unsigned &StructuredIndex) {
1519   if (Index >= IList->getNumInits()) {
1520     if (!VerifyOnly) {
1521       if (DeclType->isSizelessBuiltinType())
1522         SemaRef.Diag(IList->getBeginLoc(),
1523                      SemaRef.getLangOpts().CPlusPlus11
1524                          ? diag::warn_cxx98_compat_empty_sizeless_initializer
1525                          : diag::err_empty_sizeless_initializer)
1526             << DeclType << IList->getSourceRange();
1527       else
1528         SemaRef.Diag(IList->getBeginLoc(),
1529                      SemaRef.getLangOpts().CPlusPlus11
1530                          ? diag::warn_cxx98_compat_empty_scalar_initializer
1531                          : diag::err_empty_scalar_initializer)
1532             << IList->getSourceRange();
1533     }
1534     hadError = !SemaRef.getLangOpts().CPlusPlus11;
1535     ++Index;
1536     ++StructuredIndex;
1537     return;
1538   }
1539 
1540   Expr *expr = IList->getInit(Index);
1541   if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
1542     // FIXME: This is invalid, and accepting it causes overload resolution
1543     // to pick the wrong overload in some corner cases.
1544     if (!VerifyOnly)
1545       SemaRef.Diag(SubIList->getBeginLoc(), diag::ext_many_braces_around_init)
1546           << DeclType->isSizelessBuiltinType() << SubIList->getSourceRange();
1547 
1548     CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
1549                     StructuredIndex);
1550     return;
1551   } else if (isa<DesignatedInitExpr>(expr)) {
1552     if (!VerifyOnly)
1553       SemaRef.Diag(expr->getBeginLoc(),
1554                    diag::err_designator_for_scalar_or_sizeless_init)
1555           << DeclType->isSizelessBuiltinType() << DeclType
1556           << expr->getSourceRange();
1557     hadError = true;
1558     ++Index;
1559     ++StructuredIndex;
1560     return;
1561   }
1562 
1563   ExprResult Result;
1564   if (VerifyOnly) {
1565     if (SemaRef.CanPerformCopyInitialization(Entity, expr))
1566       Result = getDummyInit();
1567     else
1568       Result = ExprError();
1569   } else {
1570     Result =
1571         SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
1572                                           /*TopLevelOfInitList=*/true);
1573   }
1574 
1575   Expr *ResultExpr = nullptr;
1576 
1577   if (Result.isInvalid())
1578     hadError = true; // types weren't compatible.
1579   else {
1580     ResultExpr = Result.getAs<Expr>();
1581 
1582     if (ResultExpr != expr && !VerifyOnly) {
1583       // The type was promoted, update initializer list.
1584       // FIXME: Why are we updating the syntactic init list?
1585       IList->setInit(Index, ResultExpr);
1586     }
1587   }
1588   UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1589   ++Index;
1590 }
1591 
1592 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
1593                                          InitListExpr *IList, QualType DeclType,
1594                                          unsigned &Index,
1595                                          InitListExpr *StructuredList,
1596                                          unsigned &StructuredIndex) {
1597   if (Index >= IList->getNumInits()) {
1598     // FIXME: It would be wonderful if we could point at the actual member. In
1599     // general, it would be useful to pass location information down the stack,
1600     // so that we know the location (or decl) of the "current object" being
1601     // initialized.
1602     if (!VerifyOnly)
1603       SemaRef.Diag(IList->getBeginLoc(),
1604                    diag::err_init_reference_member_uninitialized)
1605           << DeclType << IList->getSourceRange();
1606     hadError = true;
1607     ++Index;
1608     ++StructuredIndex;
1609     return;
1610   }
1611 
1612   Expr *expr = IList->getInit(Index);
1613   if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
1614     if (!VerifyOnly)
1615       SemaRef.Diag(IList->getBeginLoc(), diag::err_init_non_aggr_init_list)
1616           << DeclType << IList->getSourceRange();
1617     hadError = true;
1618     ++Index;
1619     ++StructuredIndex;
1620     return;
1621   }
1622 
1623   ExprResult Result;
1624   if (VerifyOnly) {
1625     if (SemaRef.CanPerformCopyInitialization(Entity,expr))
1626       Result = getDummyInit();
1627     else
1628       Result = ExprError();
1629   } else {
1630     Result =
1631         SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
1632                                           /*TopLevelOfInitList=*/true);
1633   }
1634 
1635   if (Result.isInvalid())
1636     hadError = true;
1637 
1638   expr = Result.getAs<Expr>();
1639   // FIXME: Why are we updating the syntactic init list?
1640   if (!VerifyOnly && expr)
1641     IList->setInit(Index, expr);
1642 
1643   UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1644   ++Index;
1645 }
1646 
1647 void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1648                                       InitListExpr *IList, QualType DeclType,
1649                                       unsigned &Index,
1650                                       InitListExpr *StructuredList,
1651                                       unsigned &StructuredIndex) {
1652   const VectorType *VT = DeclType->castAs<VectorType>();
1653   unsigned maxElements = VT->getNumElements();
1654   unsigned numEltsInit = 0;
1655   QualType elementType = VT->getElementType();
1656 
1657   if (Index >= IList->getNumInits()) {
1658     // Make sure the element type can be value-initialized.
1659     CheckEmptyInitializable(
1660         InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1661         IList->getEndLoc());
1662     return;
1663   }
1664 
1665   if (!SemaRef.getLangOpts().OpenCL) {
1666     // If the initializing element is a vector, try to copy-initialize
1667     // instead of breaking it apart (which is doomed to failure anyway).
1668     Expr *Init = IList->getInit(Index);
1669     if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1670       ExprResult Result;
1671       if (VerifyOnly) {
1672         if (SemaRef.CanPerformCopyInitialization(Entity, Init))
1673           Result = getDummyInit();
1674         else
1675           Result = ExprError();
1676       } else {
1677         Result =
1678             SemaRef.PerformCopyInitialization(Entity, Init->getBeginLoc(), Init,
1679                                               /*TopLevelOfInitList=*/true);
1680       }
1681 
1682       Expr *ResultExpr = nullptr;
1683       if (Result.isInvalid())
1684         hadError = true; // types weren't compatible.
1685       else {
1686         ResultExpr = Result.getAs<Expr>();
1687 
1688         if (ResultExpr != Init && !VerifyOnly) {
1689           // The type was promoted, update initializer list.
1690           // FIXME: Why are we updating the syntactic init list?
1691           IList->setInit(Index, ResultExpr);
1692         }
1693       }
1694       UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1695       ++Index;
1696       return;
1697     }
1698 
1699     InitializedEntity ElementEntity =
1700       InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1701 
1702     for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1703       // Don't attempt to go past the end of the init list
1704       if (Index >= IList->getNumInits()) {
1705         CheckEmptyInitializable(ElementEntity, IList->getEndLoc());
1706         break;
1707       }
1708 
1709       ElementEntity.setElementIndex(Index);
1710       CheckSubElementType(ElementEntity, IList, elementType, Index,
1711                           StructuredList, StructuredIndex);
1712     }
1713 
1714     if (VerifyOnly)
1715       return;
1716 
1717     bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian();
1718     const VectorType *T = Entity.getType()->castAs<VectorType>();
1719     if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector ||
1720                         T->getVectorKind() == VectorType::NeonPolyVector)) {
1721       // The ability to use vector initializer lists is a GNU vector extension
1722       // and is unrelated to the NEON intrinsics in arm_neon.h. On little
1723       // endian machines it works fine, however on big endian machines it
1724       // exhibits surprising behaviour:
1725       //
1726       //   uint32x2_t x = {42, 64};
1727       //   return vget_lane_u32(x, 0); // Will return 64.
1728       //
1729       // Because of this, explicitly call out that it is non-portable.
1730       //
1731       SemaRef.Diag(IList->getBeginLoc(),
1732                    diag::warn_neon_vector_initializer_non_portable);
1733 
1734       const char *typeCode;
1735       unsigned typeSize = SemaRef.Context.getTypeSize(elementType);
1736 
1737       if (elementType->isFloatingType())
1738         typeCode = "f";
1739       else if (elementType->isSignedIntegerType())
1740         typeCode = "s";
1741       else if (elementType->isUnsignedIntegerType())
1742         typeCode = "u";
1743       else
1744         llvm_unreachable("Invalid element type!");
1745 
1746       SemaRef.Diag(IList->getBeginLoc(),
1747                    SemaRef.Context.getTypeSize(VT) > 64
1748                        ? diag::note_neon_vector_initializer_non_portable_q
1749                        : diag::note_neon_vector_initializer_non_portable)
1750           << typeCode << typeSize;
1751     }
1752 
1753     return;
1754   }
1755 
1756   InitializedEntity ElementEntity =
1757     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1758 
1759   // OpenCL initializers allows vectors to be constructed from vectors.
1760   for (unsigned i = 0; i < maxElements; ++i) {
1761     // Don't attempt to go past the end of the init list
1762     if (Index >= IList->getNumInits())
1763       break;
1764 
1765     ElementEntity.setElementIndex(Index);
1766 
1767     QualType IType = IList->getInit(Index)->getType();
1768     if (!IType->isVectorType()) {
1769       CheckSubElementType(ElementEntity, IList, elementType, Index,
1770                           StructuredList, StructuredIndex);
1771       ++numEltsInit;
1772     } else {
1773       QualType VecType;
1774       const VectorType *IVT = IType->castAs<VectorType>();
1775       unsigned numIElts = IVT->getNumElements();
1776 
1777       if (IType->isExtVectorType())
1778         VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1779       else
1780         VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1781                                                 IVT->getVectorKind());
1782       CheckSubElementType(ElementEntity, IList, VecType, Index,
1783                           StructuredList, StructuredIndex);
1784       numEltsInit += numIElts;
1785     }
1786   }
1787 
1788   // OpenCL requires all elements to be initialized.
1789   if (numEltsInit != maxElements) {
1790     if (!VerifyOnly)
1791       SemaRef.Diag(IList->getBeginLoc(),
1792                    diag::err_vector_incorrect_num_initializers)
1793           << (numEltsInit < maxElements) << maxElements << numEltsInit;
1794     hadError = true;
1795   }
1796 }
1797 
1798 /// Check if the type of a class element has an accessible destructor, and marks
1799 /// it referenced. Returns true if we shouldn't form a reference to the
1800 /// destructor.
1801 ///
1802 /// Aggregate initialization requires a class element's destructor be
1803 /// accessible per 11.6.1 [dcl.init.aggr]:
1804 ///
1805 /// The destructor for each element of class type is potentially invoked
1806 /// (15.4 [class.dtor]) from the context where the aggregate initialization
1807 /// occurs.
1808 static bool checkDestructorReference(QualType ElementType, SourceLocation Loc,
1809                                      Sema &SemaRef) {
1810   auto *CXXRD = ElementType->getAsCXXRecordDecl();
1811   if (!CXXRD)
1812     return false;
1813 
1814   CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(CXXRD);
1815   SemaRef.CheckDestructorAccess(Loc, Destructor,
1816                                 SemaRef.PDiag(diag::err_access_dtor_temp)
1817                                 << ElementType);
1818   SemaRef.MarkFunctionReferenced(Loc, Destructor);
1819   return SemaRef.DiagnoseUseOfDecl(Destructor, Loc);
1820 }
1821 
1822 void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1823                                      InitListExpr *IList, QualType &DeclType,
1824                                      llvm::APSInt elementIndex,
1825                                      bool SubobjectIsDesignatorContext,
1826                                      unsigned &Index,
1827                                      InitListExpr *StructuredList,
1828                                      unsigned &StructuredIndex) {
1829   const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1830 
1831   if (!VerifyOnly) {
1832     if (checkDestructorReference(arrayType->getElementType(),
1833                                  IList->getEndLoc(), SemaRef)) {
1834       hadError = true;
1835       return;
1836     }
1837   }
1838 
1839   // Check for the special-case of initializing an array with a string.
1840   if (Index < IList->getNumInits()) {
1841     if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) ==
1842         SIF_None) {
1843       // We place the string literal directly into the resulting
1844       // initializer list. This is the only place where the structure
1845       // of the structured initializer list doesn't match exactly,
1846       // because doing so would involve allocating one character
1847       // constant for each string.
1848       // FIXME: Should we do these checks in verify-only mode too?
1849       if (!VerifyOnly)
1850         CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef);
1851       if (StructuredList) {
1852         UpdateStructuredListElement(StructuredList, StructuredIndex,
1853                                     IList->getInit(Index));
1854         StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1855       }
1856       ++Index;
1857       return;
1858     }
1859   }
1860   if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1861     // Check for VLAs; in standard C it would be possible to check this
1862     // earlier, but I don't know where clang accepts VLAs (gcc accepts
1863     // them in all sorts of strange places).
1864     if (!VerifyOnly)
1865       SemaRef.Diag(VAT->getSizeExpr()->getBeginLoc(),
1866                    diag::err_variable_object_no_init)
1867           << VAT->getSizeExpr()->getSourceRange();
1868     hadError = true;
1869     ++Index;
1870     ++StructuredIndex;
1871     return;
1872   }
1873 
1874   // We might know the maximum number of elements in advance.
1875   llvm::APSInt maxElements(elementIndex.getBitWidth(),
1876                            elementIndex.isUnsigned());
1877   bool maxElementsKnown = false;
1878   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1879     maxElements = CAT->getSize();
1880     elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1881     elementIndex.setIsUnsigned(maxElements.isUnsigned());
1882     maxElementsKnown = true;
1883   }
1884 
1885   QualType elementType = arrayType->getElementType();
1886   while (Index < IList->getNumInits()) {
1887     Expr *Init = IList->getInit(Index);
1888     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1889       // If we're not the subobject that matches up with the '{' for
1890       // the designator, we shouldn't be handling the
1891       // designator. Return immediately.
1892       if (!SubobjectIsDesignatorContext)
1893         return;
1894 
1895       // Handle this designated initializer. elementIndex will be
1896       // updated to be the next array element we'll initialize.
1897       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1898                                      DeclType, nullptr, &elementIndex, Index,
1899                                      StructuredList, StructuredIndex, true,
1900                                      false)) {
1901         hadError = true;
1902         continue;
1903       }
1904 
1905       if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1906         maxElements = maxElements.extend(elementIndex.getBitWidth());
1907       else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1908         elementIndex = elementIndex.extend(maxElements.getBitWidth());
1909       elementIndex.setIsUnsigned(maxElements.isUnsigned());
1910 
1911       // If the array is of incomplete type, keep track of the number of
1912       // elements in the initializer.
1913       if (!maxElementsKnown && elementIndex > maxElements)
1914         maxElements = elementIndex;
1915 
1916       continue;
1917     }
1918 
1919     // If we know the maximum number of elements, and we've already
1920     // hit it, stop consuming elements in the initializer list.
1921     if (maxElementsKnown && elementIndex == maxElements)
1922       break;
1923 
1924     InitializedEntity ElementEntity =
1925       InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1926                                            Entity);
1927     // Check this element.
1928     CheckSubElementType(ElementEntity, IList, elementType, Index,
1929                         StructuredList, StructuredIndex);
1930     ++elementIndex;
1931 
1932     // If the array is of incomplete type, keep track of the number of
1933     // elements in the initializer.
1934     if (!maxElementsKnown && elementIndex > maxElements)
1935       maxElements = elementIndex;
1936   }
1937   if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1938     // If this is an incomplete array type, the actual type needs to
1939     // be calculated here.
1940     llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1941     if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) {
1942       // Sizing an array implicitly to zero is not allowed by ISO C,
1943       // but is supported by GNU.
1944       SemaRef.Diag(IList->getBeginLoc(), diag::ext_typecheck_zero_array_size);
1945     }
1946 
1947     DeclType = SemaRef.Context.getConstantArrayType(
1948         elementType, maxElements, nullptr, ArrayType::Normal, 0);
1949   }
1950   if (!hadError) {
1951     // If there are any members of the array that get value-initialized, check
1952     // that is possible. That happens if we know the bound and don't have
1953     // enough elements, or if we're performing an array new with an unknown
1954     // bound.
1955     if ((maxElementsKnown && elementIndex < maxElements) ||
1956         Entity.isVariableLengthArrayNew())
1957       CheckEmptyInitializable(
1958           InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1959           IList->getEndLoc());
1960   }
1961 }
1962 
1963 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1964                                              Expr *InitExpr,
1965                                              FieldDecl *Field,
1966                                              bool TopLevelObject) {
1967   // Handle GNU flexible array initializers.
1968   unsigned FlexArrayDiag;
1969   if (isa<InitListExpr>(InitExpr) &&
1970       cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
1971     // Empty flexible array init always allowed as an extension
1972     FlexArrayDiag = diag::ext_flexible_array_init;
1973   } else if (SemaRef.getLangOpts().CPlusPlus) {
1974     // Disallow flexible array init in C++; it is not required for gcc
1975     // compatibility, and it needs work to IRGen correctly in general.
1976     FlexArrayDiag = diag::err_flexible_array_init;
1977   } else if (!TopLevelObject) {
1978     // Disallow flexible array init on non-top-level object
1979     FlexArrayDiag = diag::err_flexible_array_init;
1980   } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
1981     // Disallow flexible array init on anything which is not a variable.
1982     FlexArrayDiag = diag::err_flexible_array_init;
1983   } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
1984     // Disallow flexible array init on local variables.
1985     FlexArrayDiag = diag::err_flexible_array_init;
1986   } else {
1987     // Allow other cases.
1988     FlexArrayDiag = diag::ext_flexible_array_init;
1989   }
1990 
1991   if (!VerifyOnly) {
1992     SemaRef.Diag(InitExpr->getBeginLoc(), FlexArrayDiag)
1993         << InitExpr->getBeginLoc();
1994     SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1995       << Field;
1996   }
1997 
1998   return FlexArrayDiag != diag::ext_flexible_array_init;
1999 }
2000 
2001 void InitListChecker::CheckStructUnionTypes(
2002     const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType,
2003     CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field,
2004     bool SubobjectIsDesignatorContext, unsigned &Index,
2005     InitListExpr *StructuredList, unsigned &StructuredIndex,
2006     bool TopLevelObject) {
2007   RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl();
2008 
2009   // If the record is invalid, some of it's members are invalid. To avoid
2010   // confusion, we forgo checking the intializer for the entire record.
2011   if (structDecl->isInvalidDecl()) {
2012     // Assume it was supposed to consume a single initializer.
2013     ++Index;
2014     hadError = true;
2015     return;
2016   }
2017 
2018   if (DeclType->isUnionType() && IList->getNumInits() == 0) {
2019     RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl();
2020 
2021     if (!VerifyOnly)
2022       for (FieldDecl *FD : RD->fields()) {
2023         QualType ET = SemaRef.Context.getBaseElementType(FD->getType());
2024         if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) {
2025           hadError = true;
2026           return;
2027         }
2028       }
2029 
2030     // If there's a default initializer, use it.
2031     if (isa<CXXRecordDecl>(RD) &&
2032         cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
2033       if (!StructuredList)
2034         return;
2035       for (RecordDecl::field_iterator FieldEnd = RD->field_end();
2036            Field != FieldEnd; ++Field) {
2037         if (Field->hasInClassInitializer()) {
2038           StructuredList->setInitializedFieldInUnion(*Field);
2039           // FIXME: Actually build a CXXDefaultInitExpr?
2040           return;
2041         }
2042       }
2043     }
2044 
2045     // Value-initialize the first member of the union that isn't an unnamed
2046     // bitfield.
2047     for (RecordDecl::field_iterator FieldEnd = RD->field_end();
2048          Field != FieldEnd; ++Field) {
2049       if (!Field->isUnnamedBitfield()) {
2050         CheckEmptyInitializable(
2051             InitializedEntity::InitializeMember(*Field, &Entity),
2052             IList->getEndLoc());
2053         if (StructuredList)
2054           StructuredList->setInitializedFieldInUnion(*Field);
2055         break;
2056       }
2057     }
2058     return;
2059   }
2060 
2061   bool InitializedSomething = false;
2062 
2063   // If we have any base classes, they are initialized prior to the fields.
2064   for (auto &Base : Bases) {
2065     Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr;
2066 
2067     // Designated inits always initialize fields, so if we see one, all
2068     // remaining base classes have no explicit initializer.
2069     if (Init && isa<DesignatedInitExpr>(Init))
2070       Init = nullptr;
2071 
2072     SourceLocation InitLoc = Init ? Init->getBeginLoc() : IList->getEndLoc();
2073     InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
2074         SemaRef.Context, &Base, false, &Entity);
2075     if (Init) {
2076       CheckSubElementType(BaseEntity, IList, Base.getType(), Index,
2077                           StructuredList, StructuredIndex);
2078       InitializedSomething = true;
2079     } else {
2080       CheckEmptyInitializable(BaseEntity, InitLoc);
2081     }
2082 
2083     if (!VerifyOnly)
2084       if (checkDestructorReference(Base.getType(), InitLoc, SemaRef)) {
2085         hadError = true;
2086         return;
2087       }
2088   }
2089 
2090   // If structDecl is a forward declaration, this loop won't do
2091   // anything except look at designated initializers; That's okay,
2092   // because an error should get printed out elsewhere. It might be
2093   // worthwhile to skip over the rest of the initializer, though.
2094   RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl();
2095   RecordDecl::field_iterator FieldEnd = RD->field_end();
2096   bool CheckForMissingFields =
2097     !IList->isIdiomaticZeroInitializer(SemaRef.getLangOpts());
2098   bool HasDesignatedInit = false;
2099 
2100   while (Index < IList->getNumInits()) {
2101     Expr *Init = IList->getInit(Index);
2102     SourceLocation InitLoc = Init->getBeginLoc();
2103 
2104     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
2105       // If we're not the subobject that matches up with the '{' for
2106       // the designator, we shouldn't be handling the
2107       // designator. Return immediately.
2108       if (!SubobjectIsDesignatorContext)
2109         return;
2110 
2111       HasDesignatedInit = true;
2112 
2113       // Handle this designated initializer. Field will be updated to
2114       // the next field that we'll be initializing.
2115       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
2116                                      DeclType, &Field, nullptr, Index,
2117                                      StructuredList, StructuredIndex,
2118                                      true, TopLevelObject))
2119         hadError = true;
2120       else if (!VerifyOnly) {
2121         // Find the field named by the designated initializer.
2122         RecordDecl::field_iterator F = RD->field_begin();
2123         while (std::next(F) != Field)
2124           ++F;
2125         QualType ET = SemaRef.Context.getBaseElementType(F->getType());
2126         if (checkDestructorReference(ET, InitLoc, SemaRef)) {
2127           hadError = true;
2128           return;
2129         }
2130       }
2131 
2132       InitializedSomething = true;
2133 
2134       // Disable check for missing fields when designators are used.
2135       // This matches gcc behaviour.
2136       CheckForMissingFields = false;
2137       continue;
2138     }
2139 
2140     if (Field == FieldEnd) {
2141       // We've run out of fields. We're done.
2142       break;
2143     }
2144 
2145     // We've already initialized a member of a union. We're done.
2146     if (InitializedSomething && DeclType->isUnionType())
2147       break;
2148 
2149     // If we've hit the flexible array member at the end, we're done.
2150     if (Field->getType()->isIncompleteArrayType())
2151       break;
2152 
2153     if (Field->isUnnamedBitfield()) {
2154       // Don't initialize unnamed bitfields, e.g. "int : 20;"
2155       ++Field;
2156       continue;
2157     }
2158 
2159     // Make sure we can use this declaration.
2160     bool InvalidUse;
2161     if (VerifyOnly)
2162       InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2163     else
2164       InvalidUse = SemaRef.DiagnoseUseOfDecl(
2165           *Field, IList->getInit(Index)->getBeginLoc());
2166     if (InvalidUse) {
2167       ++Index;
2168       ++Field;
2169       hadError = true;
2170       continue;
2171     }
2172 
2173     if (!VerifyOnly) {
2174       QualType ET = SemaRef.Context.getBaseElementType(Field->getType());
2175       if (checkDestructorReference(ET, InitLoc, SemaRef)) {
2176         hadError = true;
2177         return;
2178       }
2179     }
2180 
2181     InitializedEntity MemberEntity =
2182       InitializedEntity::InitializeMember(*Field, &Entity);
2183     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2184                         StructuredList, StructuredIndex);
2185     InitializedSomething = true;
2186 
2187     if (DeclType->isUnionType() && StructuredList) {
2188       // Initialize the first field within the union.
2189       StructuredList->setInitializedFieldInUnion(*Field);
2190     }
2191 
2192     ++Field;
2193   }
2194 
2195   // Emit warnings for missing struct field initializers.
2196   if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
2197       Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
2198       !DeclType->isUnionType()) {
2199     // It is possible we have one or more unnamed bitfields remaining.
2200     // Find first (if any) named field and emit warning.
2201     for (RecordDecl::field_iterator it = Field, end = RD->field_end();
2202          it != end; ++it) {
2203       if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
2204         SemaRef.Diag(IList->getSourceRange().getEnd(),
2205                      diag::warn_missing_field_initializers) << *it;
2206         break;
2207       }
2208     }
2209   }
2210 
2211   // Check that any remaining fields can be value-initialized if we're not
2212   // building a structured list. (If we are, we'll check this later.)
2213   if (!StructuredList && Field != FieldEnd && !DeclType->isUnionType() &&
2214       !Field->getType()->isIncompleteArrayType()) {
2215     for (; Field != FieldEnd && !hadError; ++Field) {
2216       if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
2217         CheckEmptyInitializable(
2218             InitializedEntity::InitializeMember(*Field, &Entity),
2219             IList->getEndLoc());
2220     }
2221   }
2222 
2223   // Check that the types of the remaining fields have accessible destructors.
2224   if (!VerifyOnly) {
2225     // If the initializer expression has a designated initializer, check the
2226     // elements for which a designated initializer is not provided too.
2227     RecordDecl::field_iterator I = HasDesignatedInit ? RD->field_begin()
2228                                                      : Field;
2229     for (RecordDecl::field_iterator E = RD->field_end(); I != E; ++I) {
2230       QualType ET = SemaRef.Context.getBaseElementType(I->getType());
2231       if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) {
2232         hadError = true;
2233         return;
2234       }
2235     }
2236   }
2237 
2238   if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
2239       Index >= IList->getNumInits())
2240     return;
2241 
2242   if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
2243                              TopLevelObject)) {
2244     hadError = true;
2245     ++Index;
2246     return;
2247   }
2248 
2249   InitializedEntity MemberEntity =
2250     InitializedEntity::InitializeMember(*Field, &Entity);
2251 
2252   if (isa<InitListExpr>(IList->getInit(Index)))
2253     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2254                         StructuredList, StructuredIndex);
2255   else
2256     CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
2257                           StructuredList, StructuredIndex);
2258 }
2259 
2260 /// Expand a field designator that refers to a member of an
2261 /// anonymous struct or union into a series of field designators that
2262 /// refers to the field within the appropriate subobject.
2263 ///
2264 static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
2265                                            DesignatedInitExpr *DIE,
2266                                            unsigned DesigIdx,
2267                                            IndirectFieldDecl *IndirectField) {
2268   typedef DesignatedInitExpr::Designator Designator;
2269 
2270   // Build the replacement designators.
2271   SmallVector<Designator, 4> Replacements;
2272   for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
2273        PE = IndirectField->chain_end(); PI != PE; ++PI) {
2274     if (PI + 1 == PE)
2275       Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2276                                     DIE->getDesignator(DesigIdx)->getDotLoc(),
2277                                 DIE->getDesignator(DesigIdx)->getFieldLoc()));
2278     else
2279       Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2280                                         SourceLocation(), SourceLocation()));
2281     assert(isa<FieldDecl>(*PI));
2282     Replacements.back().setField(cast<FieldDecl>(*PI));
2283   }
2284 
2285   // Expand the current designator into the set of replacement
2286   // designators, so we have a full subobject path down to where the
2287   // member of the anonymous struct/union is actually stored.
2288   DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
2289                         &Replacements[0] + Replacements.size());
2290 }
2291 
2292 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
2293                                                    DesignatedInitExpr *DIE) {
2294   unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
2295   SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
2296   for (unsigned I = 0; I < NumIndexExprs; ++I)
2297     IndexExprs[I] = DIE->getSubExpr(I + 1);
2298   return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(),
2299                                     IndexExprs,
2300                                     DIE->getEqualOrColonLoc(),
2301                                     DIE->usesGNUSyntax(), DIE->getInit());
2302 }
2303 
2304 namespace {
2305 
2306 // Callback to only accept typo corrections that are for field members of
2307 // the given struct or union.
2308 class FieldInitializerValidatorCCC final : public CorrectionCandidateCallback {
2309  public:
2310   explicit FieldInitializerValidatorCCC(RecordDecl *RD)
2311       : Record(RD) {}
2312 
2313   bool ValidateCandidate(const TypoCorrection &candidate) override {
2314     FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
2315     return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
2316   }
2317 
2318   std::unique_ptr<CorrectionCandidateCallback> clone() override {
2319     return std::make_unique<FieldInitializerValidatorCCC>(*this);
2320   }
2321 
2322  private:
2323   RecordDecl *Record;
2324 };
2325 
2326 } // end anonymous namespace
2327 
2328 /// Check the well-formedness of a C99 designated initializer.
2329 ///
2330 /// Determines whether the designated initializer @p DIE, which
2331 /// resides at the given @p Index within the initializer list @p
2332 /// IList, is well-formed for a current object of type @p DeclType
2333 /// (C99 6.7.8). The actual subobject that this designator refers to
2334 /// within the current subobject is returned in either
2335 /// @p NextField or @p NextElementIndex (whichever is appropriate).
2336 ///
2337 /// @param IList  The initializer list in which this designated
2338 /// initializer occurs.
2339 ///
2340 /// @param DIE The designated initializer expression.
2341 ///
2342 /// @param DesigIdx  The index of the current designator.
2343 ///
2344 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
2345 /// into which the designation in @p DIE should refer.
2346 ///
2347 /// @param NextField  If non-NULL and the first designator in @p DIE is
2348 /// a field, this will be set to the field declaration corresponding
2349 /// to the field named by the designator. On input, this is expected to be
2350 /// the next field that would be initialized in the absence of designation,
2351 /// if the complete object being initialized is a struct.
2352 ///
2353 /// @param NextElementIndex  If non-NULL and the first designator in @p
2354 /// DIE is an array designator or GNU array-range designator, this
2355 /// will be set to the last index initialized by this designator.
2356 ///
2357 /// @param Index  Index into @p IList where the designated initializer
2358 /// @p DIE occurs.
2359 ///
2360 /// @param StructuredList  The initializer list expression that
2361 /// describes all of the subobject initializers in the order they'll
2362 /// actually be initialized.
2363 ///
2364 /// @returns true if there was an error, false otherwise.
2365 bool
2366 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
2367                                             InitListExpr *IList,
2368                                             DesignatedInitExpr *DIE,
2369                                             unsigned DesigIdx,
2370                                             QualType &CurrentObjectType,
2371                                           RecordDecl::field_iterator *NextField,
2372                                             llvm::APSInt *NextElementIndex,
2373                                             unsigned &Index,
2374                                             InitListExpr *StructuredList,
2375                                             unsigned &StructuredIndex,
2376                                             bool FinishSubobjectInit,
2377                                             bool TopLevelObject) {
2378   if (DesigIdx == DIE->size()) {
2379     // C++20 designated initialization can result in direct-list-initialization
2380     // of the designated subobject. This is the only way that we can end up
2381     // performing direct initialization as part of aggregate initialization, so
2382     // it needs special handling.
2383     if (DIE->isDirectInit()) {
2384       Expr *Init = DIE->getInit();
2385       assert(isa<InitListExpr>(Init) &&
2386              "designator result in direct non-list initialization?");
2387       InitializationKind Kind = InitializationKind::CreateDirectList(
2388           DIE->getBeginLoc(), Init->getBeginLoc(), Init->getEndLoc());
2389       InitializationSequence Seq(SemaRef, Entity, Kind, Init,
2390                                  /*TopLevelOfInitList*/ true);
2391       if (StructuredList) {
2392         ExprResult Result = VerifyOnly
2393                                 ? getDummyInit()
2394                                 : Seq.Perform(SemaRef, Entity, Kind, Init);
2395         UpdateStructuredListElement(StructuredList, StructuredIndex,
2396                                     Result.get());
2397       }
2398       ++Index;
2399       return !Seq;
2400     }
2401 
2402     // Check the actual initialization for the designated object type.
2403     bool prevHadError = hadError;
2404 
2405     // Temporarily remove the designator expression from the
2406     // initializer list that the child calls see, so that we don't try
2407     // to re-process the designator.
2408     unsigned OldIndex = Index;
2409     IList->setInit(OldIndex, DIE->getInit());
2410 
2411     CheckSubElementType(Entity, IList, CurrentObjectType, Index,
2412                         StructuredList, StructuredIndex);
2413 
2414     // Restore the designated initializer expression in the syntactic
2415     // form of the initializer list.
2416     if (IList->getInit(OldIndex) != DIE->getInit())
2417       DIE->setInit(IList->getInit(OldIndex));
2418     IList->setInit(OldIndex, DIE);
2419 
2420     return hadError && !prevHadError;
2421   }
2422 
2423   DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
2424   bool IsFirstDesignator = (DesigIdx == 0);
2425   if (IsFirstDesignator ? FullyStructuredList : StructuredList) {
2426     // Determine the structural initializer list that corresponds to the
2427     // current subobject.
2428     if (IsFirstDesignator)
2429       StructuredList = FullyStructuredList;
2430     else {
2431       Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ?
2432           StructuredList->getInit(StructuredIndex) : nullptr;
2433       if (!ExistingInit && StructuredList->hasArrayFiller())
2434         ExistingInit = StructuredList->getArrayFiller();
2435 
2436       if (!ExistingInit)
2437         StructuredList = getStructuredSubobjectInit(
2438             IList, Index, CurrentObjectType, StructuredList, StructuredIndex,
2439             SourceRange(D->getBeginLoc(), DIE->getEndLoc()));
2440       else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit))
2441         StructuredList = Result;
2442       else {
2443         // We are creating an initializer list that initializes the
2444         // subobjects of the current object, but there was already an
2445         // initialization that completely initialized the current
2446         // subobject, e.g., by a compound literal:
2447         //
2448         // struct X { int a, b; };
2449         // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2450         //
2451         // Here, xs[0].a == 1 and xs[0].b == 3, since the second,
2452         // designated initializer re-initializes only its current object
2453         // subobject [0].b.
2454         diagnoseInitOverride(ExistingInit,
2455                              SourceRange(D->getBeginLoc(), DIE->getEndLoc()),
2456                              /*FullyOverwritten=*/false);
2457 
2458         if (!VerifyOnly) {
2459           if (DesignatedInitUpdateExpr *E =
2460                   dyn_cast<DesignatedInitUpdateExpr>(ExistingInit))
2461             StructuredList = E->getUpdater();
2462           else {
2463             DesignatedInitUpdateExpr *DIUE = new (SemaRef.Context)
2464                 DesignatedInitUpdateExpr(SemaRef.Context, D->getBeginLoc(),
2465                                          ExistingInit, DIE->getEndLoc());
2466             StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE);
2467             StructuredList = DIUE->getUpdater();
2468           }
2469         } else {
2470           // We don't need to track the structured representation of a
2471           // designated init update of an already-fully-initialized object in
2472           // verify-only mode. The only reason we would need the structure is
2473           // to determine where the uninitialized "holes" are, and in this
2474           // case, we know there aren't any and we can't introduce any.
2475           StructuredList = nullptr;
2476         }
2477       }
2478     }
2479   }
2480 
2481   if (D->isFieldDesignator()) {
2482     // C99 6.7.8p7:
2483     //
2484     //   If a designator has the form
2485     //
2486     //      . identifier
2487     //
2488     //   then the current object (defined below) shall have
2489     //   structure or union type and the identifier shall be the
2490     //   name of a member of that type.
2491     const RecordType *RT = CurrentObjectType->getAs<RecordType>();
2492     if (!RT) {
2493       SourceLocation Loc = D->getDotLoc();
2494       if (Loc.isInvalid())
2495         Loc = D->getFieldLoc();
2496       if (!VerifyOnly)
2497         SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
2498           << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
2499       ++Index;
2500       return true;
2501     }
2502 
2503     FieldDecl *KnownField = D->getField();
2504     if (!KnownField) {
2505       IdentifierInfo *FieldName = D->getFieldName();
2506       DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
2507       for (NamedDecl *ND : Lookup) {
2508         if (auto *FD = dyn_cast<FieldDecl>(ND)) {
2509           KnownField = FD;
2510           break;
2511         }
2512         if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) {
2513           // In verify mode, don't modify the original.
2514           if (VerifyOnly)
2515             DIE = CloneDesignatedInitExpr(SemaRef, DIE);
2516           ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD);
2517           D = DIE->getDesignator(DesigIdx);
2518           KnownField = cast<FieldDecl>(*IFD->chain_begin());
2519           break;
2520         }
2521       }
2522       if (!KnownField) {
2523         if (VerifyOnly) {
2524           ++Index;
2525           return true;  // No typo correction when just trying this out.
2526         }
2527 
2528         // Name lookup found something, but it wasn't a field.
2529         if (!Lookup.empty()) {
2530           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
2531             << FieldName;
2532           SemaRef.Diag(Lookup.front()->getLocation(),
2533                        diag::note_field_designator_found);
2534           ++Index;
2535           return true;
2536         }
2537 
2538         // Name lookup didn't find anything.
2539         // Determine whether this was a typo for another field name.
2540         FieldInitializerValidatorCCC CCC(RT->getDecl());
2541         if (TypoCorrection Corrected = SemaRef.CorrectTypo(
2542                 DeclarationNameInfo(FieldName, D->getFieldLoc()),
2543                 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr, CCC,
2544                 Sema::CTK_ErrorRecovery, RT->getDecl())) {
2545           SemaRef.diagnoseTypo(
2546               Corrected,
2547               SemaRef.PDiag(diag::err_field_designator_unknown_suggest)
2548                 << FieldName << CurrentObjectType);
2549           KnownField = Corrected.getCorrectionDeclAs<FieldDecl>();
2550           hadError = true;
2551         } else {
2552           // Typo correction didn't find anything.
2553           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
2554             << FieldName << CurrentObjectType;
2555           ++Index;
2556           return true;
2557         }
2558       }
2559     }
2560 
2561     unsigned NumBases = 0;
2562     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2563       NumBases = CXXRD->getNumBases();
2564 
2565     unsigned FieldIndex = NumBases;
2566 
2567     for (auto *FI : RT->getDecl()->fields()) {
2568       if (FI->isUnnamedBitfield())
2569         continue;
2570       if (declaresSameEntity(KnownField, FI)) {
2571         KnownField = FI;
2572         break;
2573       }
2574       ++FieldIndex;
2575     }
2576 
2577     RecordDecl::field_iterator Field =
2578         RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField));
2579 
2580     // All of the fields of a union are located at the same place in
2581     // the initializer list.
2582     if (RT->getDecl()->isUnion()) {
2583       FieldIndex = 0;
2584       if (StructuredList) {
2585         FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion();
2586         if (CurrentField && !declaresSameEntity(CurrentField, *Field)) {
2587           assert(StructuredList->getNumInits() == 1
2588                  && "A union should never have more than one initializer!");
2589 
2590           Expr *ExistingInit = StructuredList->getInit(0);
2591           if (ExistingInit) {
2592             // We're about to throw away an initializer, emit warning.
2593             diagnoseInitOverride(
2594                 ExistingInit, SourceRange(D->getBeginLoc(), DIE->getEndLoc()));
2595           }
2596 
2597           // remove existing initializer
2598           StructuredList->resizeInits(SemaRef.Context, 0);
2599           StructuredList->setInitializedFieldInUnion(nullptr);
2600         }
2601 
2602         StructuredList->setInitializedFieldInUnion(*Field);
2603       }
2604     }
2605 
2606     // Make sure we can use this declaration.
2607     bool InvalidUse;
2608     if (VerifyOnly)
2609       InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2610     else
2611       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
2612     if (InvalidUse) {
2613       ++Index;
2614       return true;
2615     }
2616 
2617     // C++20 [dcl.init.list]p3:
2618     //   The ordered identifiers in the designators of the designated-
2619     //   initializer-list shall form a subsequence of the ordered identifiers
2620     //   in the direct non-static data members of T.
2621     //
2622     // Note that this is not a condition on forming the aggregate
2623     // initialization, only on actually performing initialization,
2624     // so it is not checked in VerifyOnly mode.
2625     //
2626     // FIXME: This is the only reordering diagnostic we produce, and it only
2627     // catches cases where we have a top-level field designator that jumps
2628     // backwards. This is the only such case that is reachable in an
2629     // otherwise-valid C++20 program, so is the only case that's required for
2630     // conformance, but for consistency, we should diagnose all the other
2631     // cases where a designator takes us backwards too.
2632     if (IsFirstDesignator && !VerifyOnly && SemaRef.getLangOpts().CPlusPlus &&
2633         NextField &&
2634         (*NextField == RT->getDecl()->field_end() ||
2635          (*NextField)->getFieldIndex() > Field->getFieldIndex() + 1)) {
2636       // Find the field that we just initialized.
2637       FieldDecl *PrevField = nullptr;
2638       for (auto FI = RT->getDecl()->field_begin();
2639            FI != RT->getDecl()->field_end(); ++FI) {
2640         if (FI->isUnnamedBitfield())
2641           continue;
2642         if (*NextField != RT->getDecl()->field_end() &&
2643             declaresSameEntity(*FI, **NextField))
2644           break;
2645         PrevField = *FI;
2646       }
2647 
2648       if (PrevField &&
2649           PrevField->getFieldIndex() > KnownField->getFieldIndex()) {
2650         SemaRef.Diag(DIE->getBeginLoc(), diag::ext_designated_init_reordered)
2651             << KnownField << PrevField << DIE->getSourceRange();
2652 
2653         unsigned OldIndex = NumBases + PrevField->getFieldIndex();
2654         if (StructuredList && OldIndex <= StructuredList->getNumInits()) {
2655           if (Expr *PrevInit = StructuredList->getInit(OldIndex)) {
2656             SemaRef.Diag(PrevInit->getBeginLoc(),
2657                          diag::note_previous_field_init)
2658                 << PrevField << PrevInit->getSourceRange();
2659           }
2660         }
2661       }
2662     }
2663 
2664 
2665     // Update the designator with the field declaration.
2666     if (!VerifyOnly)
2667       D->setField(*Field);
2668 
2669     // Make sure that our non-designated initializer list has space
2670     // for a subobject corresponding to this field.
2671     if (StructuredList && FieldIndex >= StructuredList->getNumInits())
2672       StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
2673 
2674     // This designator names a flexible array member.
2675     if (Field->getType()->isIncompleteArrayType()) {
2676       bool Invalid = false;
2677       if ((DesigIdx + 1) != DIE->size()) {
2678         // We can't designate an object within the flexible array
2679         // member (because GCC doesn't allow it).
2680         if (!VerifyOnly) {
2681           DesignatedInitExpr::Designator *NextD
2682             = DIE->getDesignator(DesigIdx + 1);
2683           SemaRef.Diag(NextD->getBeginLoc(),
2684                        diag::err_designator_into_flexible_array_member)
2685               << SourceRange(NextD->getBeginLoc(), DIE->getEndLoc());
2686           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2687             << *Field;
2688         }
2689         Invalid = true;
2690       }
2691 
2692       if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
2693           !isa<StringLiteral>(DIE->getInit())) {
2694         // The initializer is not an initializer list.
2695         if (!VerifyOnly) {
2696           SemaRef.Diag(DIE->getInit()->getBeginLoc(),
2697                        diag::err_flexible_array_init_needs_braces)
2698               << DIE->getInit()->getSourceRange();
2699           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2700             << *Field;
2701         }
2702         Invalid = true;
2703       }
2704 
2705       // Check GNU flexible array initializer.
2706       if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
2707                                              TopLevelObject))
2708         Invalid = true;
2709 
2710       if (Invalid) {
2711         ++Index;
2712         return true;
2713       }
2714 
2715       // Initialize the array.
2716       bool prevHadError = hadError;
2717       unsigned newStructuredIndex = FieldIndex;
2718       unsigned OldIndex = Index;
2719       IList->setInit(Index, DIE->getInit());
2720 
2721       InitializedEntity MemberEntity =
2722         InitializedEntity::InitializeMember(*Field, &Entity);
2723       CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2724                           StructuredList, newStructuredIndex);
2725 
2726       IList->setInit(OldIndex, DIE);
2727       if (hadError && !prevHadError) {
2728         ++Field;
2729         ++FieldIndex;
2730         if (NextField)
2731           *NextField = Field;
2732         StructuredIndex = FieldIndex;
2733         return true;
2734       }
2735     } else {
2736       // Recurse to check later designated subobjects.
2737       QualType FieldType = Field->getType();
2738       unsigned newStructuredIndex = FieldIndex;
2739 
2740       InitializedEntity MemberEntity =
2741         InitializedEntity::InitializeMember(*Field, &Entity);
2742       if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
2743                                      FieldType, nullptr, nullptr, Index,
2744                                      StructuredList, newStructuredIndex,
2745                                      FinishSubobjectInit, false))
2746         return true;
2747     }
2748 
2749     // Find the position of the next field to be initialized in this
2750     // subobject.
2751     ++Field;
2752     ++FieldIndex;
2753 
2754     // If this the first designator, our caller will continue checking
2755     // the rest of this struct/class/union subobject.
2756     if (IsFirstDesignator) {
2757       if (NextField)
2758         *NextField = Field;
2759       StructuredIndex = FieldIndex;
2760       return false;
2761     }
2762 
2763     if (!FinishSubobjectInit)
2764       return false;
2765 
2766     // We've already initialized something in the union; we're done.
2767     if (RT->getDecl()->isUnion())
2768       return hadError;
2769 
2770     // Check the remaining fields within this class/struct/union subobject.
2771     bool prevHadError = hadError;
2772 
2773     auto NoBases =
2774         CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
2775                                         CXXRecordDecl::base_class_iterator());
2776     CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field,
2777                           false, Index, StructuredList, FieldIndex);
2778     return hadError && !prevHadError;
2779   }
2780 
2781   // C99 6.7.8p6:
2782   //
2783   //   If a designator has the form
2784   //
2785   //      [ constant-expression ]
2786   //
2787   //   then the current object (defined below) shall have array
2788   //   type and the expression shall be an integer constant
2789   //   expression. If the array is of unknown size, any
2790   //   nonnegative value is valid.
2791   //
2792   // Additionally, cope with the GNU extension that permits
2793   // designators of the form
2794   //
2795   //      [ constant-expression ... constant-expression ]
2796   const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
2797   if (!AT) {
2798     if (!VerifyOnly)
2799       SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
2800         << CurrentObjectType;
2801     ++Index;
2802     return true;
2803   }
2804 
2805   Expr *IndexExpr = nullptr;
2806   llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
2807   if (D->isArrayDesignator()) {
2808     IndexExpr = DIE->getArrayIndex(*D);
2809     DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
2810     DesignatedEndIndex = DesignatedStartIndex;
2811   } else {
2812     assert(D->isArrayRangeDesignator() && "Need array-range designator");
2813 
2814     DesignatedStartIndex =
2815       DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
2816     DesignatedEndIndex =
2817       DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
2818     IndexExpr = DIE->getArrayRangeEnd(*D);
2819 
2820     // Codegen can't handle evaluating array range designators that have side
2821     // effects, because we replicate the AST value for each initialized element.
2822     // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
2823     // elements with something that has a side effect, so codegen can emit an
2824     // "error unsupported" error instead of miscompiling the app.
2825     if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
2826         DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
2827       FullyStructuredList->sawArrayRangeDesignator();
2828   }
2829 
2830   if (isa<ConstantArrayType>(AT)) {
2831     llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
2832     DesignatedStartIndex
2833       = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
2834     DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
2835     DesignatedEndIndex
2836       = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
2837     DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
2838     if (DesignatedEndIndex >= MaxElements) {
2839       if (!VerifyOnly)
2840         SemaRef.Diag(IndexExpr->getBeginLoc(),
2841                      diag::err_array_designator_too_large)
2842             << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
2843             << IndexExpr->getSourceRange();
2844       ++Index;
2845       return true;
2846     }
2847   } else {
2848     unsigned DesignatedIndexBitWidth =
2849       ConstantArrayType::getMaxSizeBits(SemaRef.Context);
2850     DesignatedStartIndex =
2851       DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth);
2852     DesignatedEndIndex =
2853       DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth);
2854     DesignatedStartIndex.setIsUnsigned(true);
2855     DesignatedEndIndex.setIsUnsigned(true);
2856   }
2857 
2858   bool IsStringLiteralInitUpdate =
2859       StructuredList && StructuredList->isStringLiteralInit();
2860   if (IsStringLiteralInitUpdate && VerifyOnly) {
2861     // We're just verifying an update to a string literal init. We don't need
2862     // to split the string up into individual characters to do that.
2863     StructuredList = nullptr;
2864   } else if (IsStringLiteralInitUpdate) {
2865     // We're modifying a string literal init; we have to decompose the string
2866     // so we can modify the individual characters.
2867     ASTContext &Context = SemaRef.Context;
2868     Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens();
2869 
2870     // Compute the character type
2871     QualType CharTy = AT->getElementType();
2872 
2873     // Compute the type of the integer literals.
2874     QualType PromotedCharTy = CharTy;
2875     if (CharTy->isPromotableIntegerType())
2876       PromotedCharTy = Context.getPromotedIntegerType(CharTy);
2877     unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy);
2878 
2879     if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) {
2880       // Get the length of the string.
2881       uint64_t StrLen = SL->getLength();
2882       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2883         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2884       StructuredList->resizeInits(Context, StrLen);
2885 
2886       // Build a literal for each character in the string, and put them into
2887       // the init list.
2888       for (unsigned i = 0, e = StrLen; i != e; ++i) {
2889         llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i));
2890         Expr *Init = new (Context) IntegerLiteral(
2891             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2892         if (CharTy != PromotedCharTy)
2893           Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2894                                           Init, nullptr, VK_RValue);
2895         StructuredList->updateInit(Context, i, Init);
2896       }
2897     } else {
2898       ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr);
2899       std::string Str;
2900       Context.getObjCEncodingForType(E->getEncodedType(), Str);
2901 
2902       // Get the length of the string.
2903       uint64_t StrLen = Str.size();
2904       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2905         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2906       StructuredList->resizeInits(Context, StrLen);
2907 
2908       // Build a literal for each character in the string, and put them into
2909       // the init list.
2910       for (unsigned i = 0, e = StrLen; i != e; ++i) {
2911         llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]);
2912         Expr *Init = new (Context) IntegerLiteral(
2913             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2914         if (CharTy != PromotedCharTy)
2915           Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2916                                           Init, nullptr, VK_RValue);
2917         StructuredList->updateInit(Context, i, Init);
2918       }
2919     }
2920   }
2921 
2922   // Make sure that our non-designated initializer list has space
2923   // for a subobject corresponding to this array element.
2924   if (StructuredList &&
2925       DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
2926     StructuredList->resizeInits(SemaRef.Context,
2927                                 DesignatedEndIndex.getZExtValue() + 1);
2928 
2929   // Repeatedly perform subobject initializations in the range
2930   // [DesignatedStartIndex, DesignatedEndIndex].
2931 
2932   // Move to the next designator
2933   unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
2934   unsigned OldIndex = Index;
2935 
2936   InitializedEntity ElementEntity =
2937     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
2938 
2939   while (DesignatedStartIndex <= DesignatedEndIndex) {
2940     // Recurse to check later designated subobjects.
2941     QualType ElementType = AT->getElementType();
2942     Index = OldIndex;
2943 
2944     ElementEntity.setElementIndex(ElementIndex);
2945     if (CheckDesignatedInitializer(
2946             ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr,
2947             nullptr, Index, StructuredList, ElementIndex,
2948             FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex),
2949             false))
2950       return true;
2951 
2952     // Move to the next index in the array that we'll be initializing.
2953     ++DesignatedStartIndex;
2954     ElementIndex = DesignatedStartIndex.getZExtValue();
2955   }
2956 
2957   // If this the first designator, our caller will continue checking
2958   // the rest of this array subobject.
2959   if (IsFirstDesignator) {
2960     if (NextElementIndex)
2961       *NextElementIndex = DesignatedStartIndex;
2962     StructuredIndex = ElementIndex;
2963     return false;
2964   }
2965 
2966   if (!FinishSubobjectInit)
2967     return false;
2968 
2969   // Check the remaining elements within this array subobject.
2970   bool prevHadError = hadError;
2971   CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
2972                  /*SubobjectIsDesignatorContext=*/false, Index,
2973                  StructuredList, ElementIndex);
2974   return hadError && !prevHadError;
2975 }
2976 
2977 // Get the structured initializer list for a subobject of type
2978 // @p CurrentObjectType.
2979 InitListExpr *
2980 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
2981                                             QualType CurrentObjectType,
2982                                             InitListExpr *StructuredList,
2983                                             unsigned StructuredIndex,
2984                                             SourceRange InitRange,
2985                                             bool IsFullyOverwritten) {
2986   if (!StructuredList)
2987     return nullptr;
2988 
2989   Expr *ExistingInit = nullptr;
2990   if (StructuredIndex < StructuredList->getNumInits())
2991     ExistingInit = StructuredList->getInit(StructuredIndex);
2992 
2993   if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
2994     // There might have already been initializers for subobjects of the current
2995     // object, but a subsequent initializer list will overwrite the entirety
2996     // of the current object. (See DR 253 and C99 6.7.8p21). e.g.,
2997     //
2998     // struct P { char x[6]; };
2999     // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } };
3000     //
3001     // The first designated initializer is ignored, and l.x is just "f".
3002     if (!IsFullyOverwritten)
3003       return Result;
3004 
3005   if (ExistingInit) {
3006     // We are creating an initializer list that initializes the
3007     // subobjects of the current object, but there was already an
3008     // initialization that completely initialized the current
3009     // subobject:
3010     //
3011     // struct X { int a, b; };
3012     // struct X xs[] = { [0] = { 1, 2 }, [0].b = 3 };
3013     //
3014     // Here, xs[0].a == 1 and xs[0].b == 3, since the second,
3015     // designated initializer overwrites the [0].b initializer
3016     // from the prior initialization.
3017     //
3018     // When the existing initializer is an expression rather than an
3019     // initializer list, we cannot decompose and update it in this way.
3020     // For example:
3021     //
3022     // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
3023     //
3024     // This case is handled by CheckDesignatedInitializer.
3025     diagnoseInitOverride(ExistingInit, InitRange);
3026   }
3027 
3028   unsigned ExpectedNumInits = 0;
3029   if (Index < IList->getNumInits()) {
3030     if (auto *Init = dyn_cast_or_null<InitListExpr>(IList->getInit(Index)))
3031       ExpectedNumInits = Init->getNumInits();
3032     else
3033       ExpectedNumInits = IList->getNumInits() - Index;
3034   }
3035 
3036   InitListExpr *Result =
3037       createInitListExpr(CurrentObjectType, InitRange, ExpectedNumInits);
3038 
3039   // Link this new initializer list into the structured initializer
3040   // lists.
3041   StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
3042   return Result;
3043 }
3044 
3045 InitListExpr *
3046 InitListChecker::createInitListExpr(QualType CurrentObjectType,
3047                                     SourceRange InitRange,
3048                                     unsigned ExpectedNumInits) {
3049   InitListExpr *Result
3050     = new (SemaRef.Context) InitListExpr(SemaRef.Context,
3051                                          InitRange.getBegin(), None,
3052                                          InitRange.getEnd());
3053 
3054   QualType ResultType = CurrentObjectType;
3055   if (!ResultType->isArrayType())
3056     ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
3057   Result->setType(ResultType);
3058 
3059   // Pre-allocate storage for the structured initializer list.
3060   unsigned NumElements = 0;
3061 
3062   if (const ArrayType *AType
3063       = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
3064     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
3065       NumElements = CAType->getSize().getZExtValue();
3066       // Simple heuristic so that we don't allocate a very large
3067       // initializer with many empty entries at the end.
3068       if (NumElements > ExpectedNumInits)
3069         NumElements = 0;
3070     }
3071   } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>()) {
3072     NumElements = VType->getNumElements();
3073   } else if (CurrentObjectType->isRecordType()) {
3074     NumElements = numStructUnionElements(CurrentObjectType);
3075   }
3076 
3077   Result->reserveInits(SemaRef.Context, NumElements);
3078 
3079   return Result;
3080 }
3081 
3082 /// Update the initializer at index @p StructuredIndex within the
3083 /// structured initializer list to the value @p expr.
3084 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
3085                                                   unsigned &StructuredIndex,
3086                                                   Expr *expr) {
3087   // No structured initializer list to update
3088   if (!StructuredList)
3089     return;
3090 
3091   if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
3092                                                   StructuredIndex, expr)) {
3093     // This initializer overwrites a previous initializer.
3094     // No need to diagnose when `expr` is nullptr because a more relevant
3095     // diagnostic has already been issued and this diagnostic is potentially
3096     // noise.
3097     if (expr)
3098       diagnoseInitOverride(PrevInit, expr->getSourceRange());
3099   }
3100 
3101   ++StructuredIndex;
3102 }
3103 
3104 /// Determine whether we can perform aggregate initialization for the purposes
3105 /// of overload resolution.
3106 bool Sema::CanPerformAggregateInitializationForOverloadResolution(
3107     const InitializedEntity &Entity, InitListExpr *From) {
3108   QualType Type = Entity.getType();
3109   InitListChecker Check(*this, Entity, From, Type, /*VerifyOnly=*/true,
3110                         /*TreatUnavailableAsInvalid=*/false,
3111                         /*InOverloadResolution=*/true);
3112   return !Check.HadError();
3113 }
3114 
3115 /// Check that the given Index expression is a valid array designator
3116 /// value. This is essentially just a wrapper around
3117 /// VerifyIntegerConstantExpression that also checks for negative values
3118 /// and produces a reasonable diagnostic if there is a
3119 /// failure. Returns the index expression, possibly with an implicit cast
3120 /// added, on success.  If everything went okay, Value will receive the
3121 /// value of the constant expression.
3122 static ExprResult
3123 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
3124   SourceLocation Loc = Index->getBeginLoc();
3125 
3126   // Make sure this is an integer constant expression.
3127   ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value);
3128   if (Result.isInvalid())
3129     return Result;
3130 
3131   if (Value.isSigned() && Value.isNegative())
3132     return S.Diag(Loc, diag::err_array_designator_negative)
3133       << Value.toString(10) << Index->getSourceRange();
3134 
3135   Value.setIsUnsigned(true);
3136   return Result;
3137 }
3138 
3139 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
3140                                             SourceLocation EqualOrColonLoc,
3141                                             bool GNUSyntax,
3142                                             ExprResult Init) {
3143   typedef DesignatedInitExpr::Designator ASTDesignator;
3144 
3145   bool Invalid = false;
3146   SmallVector<ASTDesignator, 32> Designators;
3147   SmallVector<Expr *, 32> InitExpressions;
3148 
3149   // Build designators and check array designator expressions.
3150   for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
3151     const Designator &D = Desig.getDesignator(Idx);
3152     switch (D.getKind()) {
3153     case Designator::FieldDesignator:
3154       Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
3155                                           D.getFieldLoc()));
3156       break;
3157 
3158     case Designator::ArrayDesignator: {
3159       Expr *Index = static_cast<Expr *>(D.getArrayIndex());
3160       llvm::APSInt IndexValue;
3161       if (!Index->isTypeDependent() && !Index->isValueDependent())
3162         Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get();
3163       if (!Index)
3164         Invalid = true;
3165       else {
3166         Designators.push_back(ASTDesignator(InitExpressions.size(),
3167                                             D.getLBracketLoc(),
3168                                             D.getRBracketLoc()));
3169         InitExpressions.push_back(Index);
3170       }
3171       break;
3172     }
3173 
3174     case Designator::ArrayRangeDesignator: {
3175       Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
3176       Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
3177       llvm::APSInt StartValue;
3178       llvm::APSInt EndValue;
3179       bool StartDependent = StartIndex->isTypeDependent() ||
3180                             StartIndex->isValueDependent();
3181       bool EndDependent = EndIndex->isTypeDependent() ||
3182                           EndIndex->isValueDependent();
3183       if (!StartDependent)
3184         StartIndex =
3185             CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get();
3186       if (!EndDependent)
3187         EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get();
3188 
3189       if (!StartIndex || !EndIndex)
3190         Invalid = true;
3191       else {
3192         // Make sure we're comparing values with the same bit width.
3193         if (StartDependent || EndDependent) {
3194           // Nothing to compute.
3195         } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
3196           EndValue = EndValue.extend(StartValue.getBitWidth());
3197         else if (StartValue.getBitWidth() < EndValue.getBitWidth())
3198           StartValue = StartValue.extend(EndValue.getBitWidth());
3199 
3200         if (!StartDependent && !EndDependent && EndValue < StartValue) {
3201           Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
3202             << StartValue.toString(10) << EndValue.toString(10)
3203             << StartIndex->getSourceRange() << EndIndex->getSourceRange();
3204           Invalid = true;
3205         } else {
3206           Designators.push_back(ASTDesignator(InitExpressions.size(),
3207                                               D.getLBracketLoc(),
3208                                               D.getEllipsisLoc(),
3209                                               D.getRBracketLoc()));
3210           InitExpressions.push_back(StartIndex);
3211           InitExpressions.push_back(EndIndex);
3212         }
3213       }
3214       break;
3215     }
3216     }
3217   }
3218 
3219   if (Invalid || Init.isInvalid())
3220     return ExprError();
3221 
3222   // Clear out the expressions within the designation.
3223   Desig.ClearExprs(*this);
3224 
3225   return DesignatedInitExpr::Create(Context, Designators, InitExpressions,
3226                                     EqualOrColonLoc, GNUSyntax,
3227                                     Init.getAs<Expr>());
3228 }
3229 
3230 //===----------------------------------------------------------------------===//
3231 // Initialization entity
3232 //===----------------------------------------------------------------------===//
3233 
3234 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
3235                                      const InitializedEntity &Parent)
3236   : Parent(&Parent), Index(Index)
3237 {
3238   if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
3239     Kind = EK_ArrayElement;
3240     Type = AT->getElementType();
3241   } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
3242     Kind = EK_VectorElement;
3243     Type = VT->getElementType();
3244   } else {
3245     const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
3246     assert(CT && "Unexpected type");
3247     Kind = EK_ComplexElement;
3248     Type = CT->getElementType();
3249   }
3250 }
3251 
3252 InitializedEntity
3253 InitializedEntity::InitializeBase(ASTContext &Context,
3254                                   const CXXBaseSpecifier *Base,
3255                                   bool IsInheritedVirtualBase,
3256                                   const InitializedEntity *Parent) {
3257   InitializedEntity Result;
3258   Result.Kind = EK_Base;
3259   Result.Parent = Parent;
3260   Result.Base = reinterpret_cast<uintptr_t>(Base);
3261   if (IsInheritedVirtualBase)
3262     Result.Base |= 0x01;
3263 
3264   Result.Type = Base->getType();
3265   return Result;
3266 }
3267 
3268 DeclarationName InitializedEntity::getName() const {
3269   switch (getKind()) {
3270   case EK_Parameter:
3271   case EK_Parameter_CF_Audited: {
3272     ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
3273     return (D ? D->getDeclName() : DeclarationName());
3274   }
3275 
3276   case EK_Variable:
3277   case EK_Member:
3278   case EK_Binding:
3279     return Variable.VariableOrMember->getDeclName();
3280 
3281   case EK_LambdaCapture:
3282     return DeclarationName(Capture.VarID);
3283 
3284   case EK_Result:
3285   case EK_StmtExprResult:
3286   case EK_Exception:
3287   case EK_New:
3288   case EK_Temporary:
3289   case EK_Base:
3290   case EK_Delegating:
3291   case EK_ArrayElement:
3292   case EK_VectorElement:
3293   case EK_ComplexElement:
3294   case EK_BlockElement:
3295   case EK_LambdaToBlockConversionBlockElement:
3296   case EK_CompoundLiteralInit:
3297   case EK_RelatedResult:
3298     return DeclarationName();
3299   }
3300 
3301   llvm_unreachable("Invalid EntityKind!");
3302 }
3303 
3304 ValueDecl *InitializedEntity::getDecl() const {
3305   switch (getKind()) {
3306   case EK_Variable:
3307   case EK_Member:
3308   case EK_Binding:
3309     return Variable.VariableOrMember;
3310 
3311   case EK_Parameter:
3312   case EK_Parameter_CF_Audited:
3313     return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
3314 
3315   case EK_Result:
3316   case EK_StmtExprResult:
3317   case EK_Exception:
3318   case EK_New:
3319   case EK_Temporary:
3320   case EK_Base:
3321   case EK_Delegating:
3322   case EK_ArrayElement:
3323   case EK_VectorElement:
3324   case EK_ComplexElement:
3325   case EK_BlockElement:
3326   case EK_LambdaToBlockConversionBlockElement:
3327   case EK_LambdaCapture:
3328   case EK_CompoundLiteralInit:
3329   case EK_RelatedResult:
3330     return nullptr;
3331   }
3332 
3333   llvm_unreachable("Invalid EntityKind!");
3334 }
3335 
3336 bool InitializedEntity::allowsNRVO() const {
3337   switch (getKind()) {
3338   case EK_Result:
3339   case EK_Exception:
3340     return LocAndNRVO.NRVO;
3341 
3342   case EK_StmtExprResult:
3343   case EK_Variable:
3344   case EK_Parameter:
3345   case EK_Parameter_CF_Audited:
3346   case EK_Member:
3347   case EK_Binding:
3348   case EK_New:
3349   case EK_Temporary:
3350   case EK_CompoundLiteralInit:
3351   case EK_Base:
3352   case EK_Delegating:
3353   case EK_ArrayElement:
3354   case EK_VectorElement:
3355   case EK_ComplexElement:
3356   case EK_BlockElement:
3357   case EK_LambdaToBlockConversionBlockElement:
3358   case EK_LambdaCapture:
3359   case EK_RelatedResult:
3360     break;
3361   }
3362 
3363   return false;
3364 }
3365 
3366 unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const {
3367   assert(getParent() != this);
3368   unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0;
3369   for (unsigned I = 0; I != Depth; ++I)
3370     OS << "`-";
3371 
3372   switch (getKind()) {
3373   case EK_Variable: OS << "Variable"; break;
3374   case EK_Parameter: OS << "Parameter"; break;
3375   case EK_Parameter_CF_Audited: OS << "CF audited function Parameter";
3376     break;
3377   case EK_Result: OS << "Result"; break;
3378   case EK_StmtExprResult: OS << "StmtExprResult"; break;
3379   case EK_Exception: OS << "Exception"; break;
3380   case EK_Member: OS << "Member"; break;
3381   case EK_Binding: OS << "Binding"; break;
3382   case EK_New: OS << "New"; break;
3383   case EK_Temporary: OS << "Temporary"; break;
3384   case EK_CompoundLiteralInit: OS << "CompoundLiteral";break;
3385   case EK_RelatedResult: OS << "RelatedResult"; break;
3386   case EK_Base: OS << "Base"; break;
3387   case EK_Delegating: OS << "Delegating"; break;
3388   case EK_ArrayElement: OS << "ArrayElement " << Index; break;
3389   case EK_VectorElement: OS << "VectorElement " << Index; break;
3390   case EK_ComplexElement: OS << "ComplexElement " << Index; break;
3391   case EK_BlockElement: OS << "Block"; break;
3392   case EK_LambdaToBlockConversionBlockElement:
3393     OS << "Block (lambda)";
3394     break;
3395   case EK_LambdaCapture:
3396     OS << "LambdaCapture ";
3397     OS << DeclarationName(Capture.VarID);
3398     break;
3399   }
3400 
3401   if (auto *D = getDecl()) {
3402     OS << " ";
3403     D->printQualifiedName(OS);
3404   }
3405 
3406   OS << " '" << getType().getAsString() << "'\n";
3407 
3408   return Depth + 1;
3409 }
3410 
3411 LLVM_DUMP_METHOD void InitializedEntity::dump() const {
3412   dumpImpl(llvm::errs());
3413 }
3414 
3415 //===----------------------------------------------------------------------===//
3416 // Initialization sequence
3417 //===----------------------------------------------------------------------===//
3418 
3419 void InitializationSequence::Step::Destroy() {
3420   switch (Kind) {
3421   case SK_ResolveAddressOfOverloadedFunction:
3422   case SK_CastDerivedToBaseRValue:
3423   case SK_CastDerivedToBaseXValue:
3424   case SK_CastDerivedToBaseLValue:
3425   case SK_BindReference:
3426   case SK_BindReferenceToTemporary:
3427   case SK_FinalCopy:
3428   case SK_ExtraneousCopyToTemporary:
3429   case SK_UserConversion:
3430   case SK_QualificationConversionRValue:
3431   case SK_QualificationConversionXValue:
3432   case SK_QualificationConversionLValue:
3433   case SK_AtomicConversion:
3434   case SK_ListInitialization:
3435   case SK_UnwrapInitList:
3436   case SK_RewrapInitList:
3437   case SK_ConstructorInitialization:
3438   case SK_ConstructorInitializationFromList:
3439   case SK_ZeroInitialization:
3440   case SK_CAssignment:
3441   case SK_StringInit:
3442   case SK_ObjCObjectConversion:
3443   case SK_ArrayLoopIndex:
3444   case SK_ArrayLoopInit:
3445   case SK_ArrayInit:
3446   case SK_GNUArrayInit:
3447   case SK_ParenthesizedArrayInit:
3448   case SK_PassByIndirectCopyRestore:
3449   case SK_PassByIndirectRestore:
3450   case SK_ProduceObjCObject:
3451   case SK_StdInitializerList:
3452   case SK_StdInitializerListConstructorCall:
3453   case SK_OCLSamplerInit:
3454   case SK_OCLZeroOpaqueType:
3455     break;
3456 
3457   case SK_ConversionSequence:
3458   case SK_ConversionSequenceNoNarrowing:
3459     delete ICS;
3460   }
3461 }
3462 
3463 bool InitializationSequence::isDirectReferenceBinding() const {
3464   // There can be some lvalue adjustments after the SK_BindReference step.
3465   for (auto I = Steps.rbegin(); I != Steps.rend(); ++I) {
3466     if (I->Kind == SK_BindReference)
3467       return true;
3468     if (I->Kind == SK_BindReferenceToTemporary)
3469       return false;
3470   }
3471   return false;
3472 }
3473 
3474 bool InitializationSequence::isAmbiguous() const {
3475   if (!Failed())
3476     return false;
3477 
3478   switch (getFailureKind()) {
3479   case FK_TooManyInitsForReference:
3480   case FK_ParenthesizedListInitForReference:
3481   case FK_ArrayNeedsInitList:
3482   case FK_ArrayNeedsInitListOrStringLiteral:
3483   case FK_ArrayNeedsInitListOrWideStringLiteral:
3484   case FK_NarrowStringIntoWideCharArray:
3485   case FK_WideStringIntoCharArray:
3486   case FK_IncompatWideStringIntoWideChar:
3487   case FK_PlainStringIntoUTF8Char:
3488   case FK_UTF8StringIntoPlainChar:
3489   case FK_AddressOfOverloadFailed: // FIXME: Could do better
3490   case FK_NonConstLValueReferenceBindingToTemporary:
3491   case FK_NonConstLValueReferenceBindingToBitfield:
3492   case FK_NonConstLValueReferenceBindingToVectorElement:
3493   case FK_NonConstLValueReferenceBindingToMatrixElement:
3494   case FK_NonConstLValueReferenceBindingToUnrelated:
3495   case FK_RValueReferenceBindingToLValue:
3496   case FK_ReferenceAddrspaceMismatchTemporary:
3497   case FK_ReferenceInitDropsQualifiers:
3498   case FK_ReferenceInitFailed:
3499   case FK_ConversionFailed:
3500   case FK_ConversionFromPropertyFailed:
3501   case FK_TooManyInitsForScalar:
3502   case FK_ParenthesizedListInitForScalar:
3503   case FK_ReferenceBindingToInitList:
3504   case FK_InitListBadDestinationType:
3505   case FK_DefaultInitOfConst:
3506   case FK_Incomplete:
3507   case FK_ArrayTypeMismatch:
3508   case FK_NonConstantArrayInit:
3509   case FK_ListInitializationFailed:
3510   case FK_VariableLengthArrayHasInitializer:
3511   case FK_PlaceholderType:
3512   case FK_ExplicitConstructor:
3513   case FK_AddressOfUnaddressableFunction:
3514     return false;
3515 
3516   case FK_ReferenceInitOverloadFailed:
3517   case FK_UserConversionOverloadFailed:
3518   case FK_ConstructorOverloadFailed:
3519   case FK_ListConstructorOverloadFailed:
3520     return FailedOverloadResult == OR_Ambiguous;
3521   }
3522 
3523   llvm_unreachable("Invalid EntityKind!");
3524 }
3525 
3526 bool InitializationSequence::isConstructorInitialization() const {
3527   return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
3528 }
3529 
3530 void
3531 InitializationSequence
3532 ::AddAddressOverloadResolutionStep(FunctionDecl *Function,
3533                                    DeclAccessPair Found,
3534                                    bool HadMultipleCandidates) {
3535   Step S;
3536   S.Kind = SK_ResolveAddressOfOverloadedFunction;
3537   S.Type = Function->getType();
3538   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3539   S.Function.Function = Function;
3540   S.Function.FoundDecl = Found;
3541   Steps.push_back(S);
3542 }
3543 
3544 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
3545                                                       ExprValueKind VK) {
3546   Step S;
3547   switch (VK) {
3548   case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
3549   case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
3550   case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
3551   }
3552   S.Type = BaseType;
3553   Steps.push_back(S);
3554 }
3555 
3556 void InitializationSequence::AddReferenceBindingStep(QualType T,
3557                                                      bool BindingTemporary) {
3558   Step S;
3559   S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
3560   S.Type = T;
3561   Steps.push_back(S);
3562 }
3563 
3564 void InitializationSequence::AddFinalCopy(QualType T) {
3565   Step S;
3566   S.Kind = SK_FinalCopy;
3567   S.Type = T;
3568   Steps.push_back(S);
3569 }
3570 
3571 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
3572   Step S;
3573   S.Kind = SK_ExtraneousCopyToTemporary;
3574   S.Type = T;
3575   Steps.push_back(S);
3576 }
3577 
3578 void
3579 InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
3580                                               DeclAccessPair FoundDecl,
3581                                               QualType T,
3582                                               bool HadMultipleCandidates) {
3583   Step S;
3584   S.Kind = SK_UserConversion;
3585   S.Type = T;
3586   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3587   S.Function.Function = Function;
3588   S.Function.FoundDecl = FoundDecl;
3589   Steps.push_back(S);
3590 }
3591 
3592 void InitializationSequence::AddQualificationConversionStep(QualType Ty,
3593                                                             ExprValueKind VK) {
3594   Step S;
3595   S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
3596   switch (VK) {
3597   case VK_RValue:
3598     S.Kind = SK_QualificationConversionRValue;
3599     break;
3600   case VK_XValue:
3601     S.Kind = SK_QualificationConversionXValue;
3602     break;
3603   case VK_LValue:
3604     S.Kind = SK_QualificationConversionLValue;
3605     break;
3606   }
3607   S.Type = Ty;
3608   Steps.push_back(S);
3609 }
3610 
3611 void InitializationSequence::AddAtomicConversionStep(QualType Ty) {
3612   Step S;
3613   S.Kind = SK_AtomicConversion;
3614   S.Type = Ty;
3615   Steps.push_back(S);
3616 }
3617 
3618 void InitializationSequence::AddConversionSequenceStep(
3619     const ImplicitConversionSequence &ICS, QualType T,
3620     bool TopLevelOfInitList) {
3621   Step S;
3622   S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing
3623                               : SK_ConversionSequence;
3624   S.Type = T;
3625   S.ICS = new ImplicitConversionSequence(ICS);
3626   Steps.push_back(S);
3627 }
3628 
3629 void InitializationSequence::AddListInitializationStep(QualType T) {
3630   Step S;
3631   S.Kind = SK_ListInitialization;
3632   S.Type = T;
3633   Steps.push_back(S);
3634 }
3635 
3636 void InitializationSequence::AddConstructorInitializationStep(
3637     DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T,
3638     bool HadMultipleCandidates, bool FromInitList, bool AsInitList) {
3639   Step S;
3640   S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall
3641                                      : SK_ConstructorInitializationFromList
3642                         : SK_ConstructorInitialization;
3643   S.Type = T;
3644   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3645   S.Function.Function = Constructor;
3646   S.Function.FoundDecl = FoundDecl;
3647   Steps.push_back(S);
3648 }
3649 
3650 void InitializationSequence::AddZeroInitializationStep(QualType T) {
3651   Step S;
3652   S.Kind = SK_ZeroInitialization;
3653   S.Type = T;
3654   Steps.push_back(S);
3655 }
3656 
3657 void InitializationSequence::AddCAssignmentStep(QualType T) {
3658   Step S;
3659   S.Kind = SK_CAssignment;
3660   S.Type = T;
3661   Steps.push_back(S);
3662 }
3663 
3664 void InitializationSequence::AddStringInitStep(QualType T) {
3665   Step S;
3666   S.Kind = SK_StringInit;
3667   S.Type = T;
3668   Steps.push_back(S);
3669 }
3670 
3671 void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
3672   Step S;
3673   S.Kind = SK_ObjCObjectConversion;
3674   S.Type = T;
3675   Steps.push_back(S);
3676 }
3677 
3678 void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) {
3679   Step S;
3680   S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit;
3681   S.Type = T;
3682   Steps.push_back(S);
3683 }
3684 
3685 void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) {
3686   Step S;
3687   S.Kind = SK_ArrayLoopIndex;
3688   S.Type = EltT;
3689   Steps.insert(Steps.begin(), S);
3690 
3691   S.Kind = SK_ArrayLoopInit;
3692   S.Type = T;
3693   Steps.push_back(S);
3694 }
3695 
3696 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
3697   Step S;
3698   S.Kind = SK_ParenthesizedArrayInit;
3699   S.Type = T;
3700   Steps.push_back(S);
3701 }
3702 
3703 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
3704                                                               bool shouldCopy) {
3705   Step s;
3706   s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
3707                        : SK_PassByIndirectRestore);
3708   s.Type = type;
3709   Steps.push_back(s);
3710 }
3711 
3712 void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
3713   Step S;
3714   S.Kind = SK_ProduceObjCObject;
3715   S.Type = T;
3716   Steps.push_back(S);
3717 }
3718 
3719 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
3720   Step S;
3721   S.Kind = SK_StdInitializerList;
3722   S.Type = T;
3723   Steps.push_back(S);
3724 }
3725 
3726 void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
3727   Step S;
3728   S.Kind = SK_OCLSamplerInit;
3729   S.Type = T;
3730   Steps.push_back(S);
3731 }
3732 
3733 void InitializationSequence::AddOCLZeroOpaqueTypeStep(QualType T) {
3734   Step S;
3735   S.Kind = SK_OCLZeroOpaqueType;
3736   S.Type = T;
3737   Steps.push_back(S);
3738 }
3739 
3740 void InitializationSequence::RewrapReferenceInitList(QualType T,
3741                                                      InitListExpr *Syntactic) {
3742   assert(Syntactic->getNumInits() == 1 &&
3743          "Can only rewrap trivial init lists.");
3744   Step S;
3745   S.Kind = SK_UnwrapInitList;
3746   S.Type = Syntactic->getInit(0)->getType();
3747   Steps.insert(Steps.begin(), S);
3748 
3749   S.Kind = SK_RewrapInitList;
3750   S.Type = T;
3751   S.WrappingSyntacticList = Syntactic;
3752   Steps.push_back(S);
3753 }
3754 
3755 void InitializationSequence::SetOverloadFailure(FailureKind Failure,
3756                                                 OverloadingResult Result) {
3757   setSequenceKind(FailedSequence);
3758   this->Failure = Failure;
3759   this->FailedOverloadResult = Result;
3760 }
3761 
3762 //===----------------------------------------------------------------------===//
3763 // Attempt initialization
3764 //===----------------------------------------------------------------------===//
3765 
3766 /// Tries to add a zero initializer. Returns true if that worked.
3767 static bool
3768 maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence,
3769                                    const InitializedEntity &Entity) {
3770   if (Entity.getKind() != InitializedEntity::EK_Variable)
3771     return false;
3772 
3773   VarDecl *VD = cast<VarDecl>(Entity.getDecl());
3774   if (VD->getInit() || VD->getEndLoc().isMacroID())
3775     return false;
3776 
3777   QualType VariableTy = VD->getType().getCanonicalType();
3778   SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc());
3779   std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
3780   if (!Init.empty()) {
3781     Sequence.AddZeroInitializationStep(Entity.getType());
3782     Sequence.SetZeroInitializationFixit(Init, Loc);
3783     return true;
3784   }
3785   return false;
3786 }
3787 
3788 static void MaybeProduceObjCObject(Sema &S,
3789                                    InitializationSequence &Sequence,
3790                                    const InitializedEntity &Entity) {
3791   if (!S.getLangOpts().ObjCAutoRefCount) return;
3792 
3793   /// When initializing a parameter, produce the value if it's marked
3794   /// __attribute__((ns_consumed)).
3795   if (Entity.isParameterKind()) {
3796     if (!Entity.isParameterConsumed())
3797       return;
3798 
3799     assert(Entity.getType()->isObjCRetainableType() &&
3800            "consuming an object of unretainable type?");
3801     Sequence.AddProduceObjCObjectStep(Entity.getType());
3802 
3803   /// When initializing a return value, if the return type is a
3804   /// retainable type, then returns need to immediately retain the
3805   /// object.  If an autorelease is required, it will be done at the
3806   /// last instant.
3807   } else if (Entity.getKind() == InitializedEntity::EK_Result ||
3808              Entity.getKind() == InitializedEntity::EK_StmtExprResult) {
3809     if (!Entity.getType()->isObjCRetainableType())
3810       return;
3811 
3812     Sequence.AddProduceObjCObjectStep(Entity.getType());
3813   }
3814 }
3815 
3816 static void TryListInitialization(Sema &S,
3817                                   const InitializedEntity &Entity,
3818                                   const InitializationKind &Kind,
3819                                   InitListExpr *InitList,
3820                                   InitializationSequence &Sequence,
3821                                   bool TreatUnavailableAsInvalid);
3822 
3823 /// When initializing from init list via constructor, handle
3824 /// initialization of an object of type std::initializer_list<T>.
3825 ///
3826 /// \return true if we have handled initialization of an object of type
3827 /// std::initializer_list<T>, false otherwise.
3828 static bool TryInitializerListConstruction(Sema &S,
3829                                            InitListExpr *List,
3830                                            QualType DestType,
3831                                            InitializationSequence &Sequence,
3832                                            bool TreatUnavailableAsInvalid) {
3833   QualType E;
3834   if (!S.isStdInitializerList(DestType, &E))
3835     return false;
3836 
3837   if (!S.isCompleteType(List->getExprLoc(), E)) {
3838     Sequence.setIncompleteTypeFailure(E);
3839     return true;
3840   }
3841 
3842   // Try initializing a temporary array from the init list.
3843   QualType ArrayType = S.Context.getConstantArrayType(
3844       E.withConst(),
3845       llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
3846                   List->getNumInits()),
3847       nullptr, clang::ArrayType::Normal, 0);
3848   InitializedEntity HiddenArray =
3849       InitializedEntity::InitializeTemporary(ArrayType);
3850   InitializationKind Kind = InitializationKind::CreateDirectList(
3851       List->getExprLoc(), List->getBeginLoc(), List->getEndLoc());
3852   TryListInitialization(S, HiddenArray, Kind, List, Sequence,
3853                         TreatUnavailableAsInvalid);
3854   if (Sequence)
3855     Sequence.AddStdInitializerListConstructionStep(DestType);
3856   return true;
3857 }
3858 
3859 /// Determine if the constructor has the signature of a copy or move
3860 /// constructor for the type T of the class in which it was found. That is,
3861 /// determine if its first parameter is of type T or reference to (possibly
3862 /// cv-qualified) T.
3863 static bool hasCopyOrMoveCtorParam(ASTContext &Ctx,
3864                                    const ConstructorInfo &Info) {
3865   if (Info.Constructor->getNumParams() == 0)
3866     return false;
3867 
3868   QualType ParmT =
3869       Info.Constructor->getParamDecl(0)->getType().getNonReferenceType();
3870   QualType ClassT =
3871       Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext()));
3872 
3873   return Ctx.hasSameUnqualifiedType(ParmT, ClassT);
3874 }
3875 
3876 static OverloadingResult
3877 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
3878                            MultiExprArg Args,
3879                            OverloadCandidateSet &CandidateSet,
3880                            QualType DestType,
3881                            DeclContext::lookup_result Ctors,
3882                            OverloadCandidateSet::iterator &Best,
3883                            bool CopyInitializing, bool AllowExplicit,
3884                            bool OnlyListConstructors, bool IsListInit,
3885                            bool SecondStepOfCopyInit = false) {
3886   CandidateSet.clear(OverloadCandidateSet::CSK_InitByConstructor);
3887   CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace());
3888 
3889   for (NamedDecl *D : Ctors) {
3890     auto Info = getConstructorInfo(D);
3891     if (!Info.Constructor || Info.Constructor->isInvalidDecl())
3892       continue;
3893 
3894     if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor))
3895       continue;
3896 
3897     // C++11 [over.best.ics]p4:
3898     //   ... and the constructor or user-defined conversion function is a
3899     //   candidate by
3900     //   - 13.3.1.3, when the argument is the temporary in the second step
3901     //     of a class copy-initialization, or
3902     //   - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here]
3903     //   - the second phase of 13.3.1.7 when the initializer list has exactly
3904     //     one element that is itself an initializer list, and the target is
3905     //     the first parameter of a constructor of class X, and the conversion
3906     //     is to X or reference to (possibly cv-qualified X),
3907     //   user-defined conversion sequences are not considered.
3908     bool SuppressUserConversions =
3909         SecondStepOfCopyInit ||
3910         (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
3911          hasCopyOrMoveCtorParam(S.Context, Info));
3912 
3913     if (Info.ConstructorTmpl)
3914       S.AddTemplateOverloadCandidate(
3915           Info.ConstructorTmpl, Info.FoundDecl,
3916           /*ExplicitArgs*/ nullptr, Args, CandidateSet, SuppressUserConversions,
3917           /*PartialOverloading=*/false, AllowExplicit);
3918     else {
3919       // C++ [over.match.copy]p1:
3920       //   - When initializing a temporary to be bound to the first parameter
3921       //     of a constructor [for type T] that takes a reference to possibly
3922       //     cv-qualified T as its first argument, called with a single
3923       //     argument in the context of direct-initialization, explicit
3924       //     conversion functions are also considered.
3925       // FIXME: What if a constructor template instantiates to such a signature?
3926       bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
3927                                Args.size() == 1 &&
3928                                hasCopyOrMoveCtorParam(S.Context, Info);
3929       S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args,
3930                              CandidateSet, SuppressUserConversions,
3931                              /*PartialOverloading=*/false, AllowExplicit,
3932                              AllowExplicitConv);
3933     }
3934   }
3935 
3936   // FIXME: Work around a bug in C++17 guaranteed copy elision.
3937   //
3938   // When initializing an object of class type T by constructor
3939   // ([over.match.ctor]) or by list-initialization ([over.match.list])
3940   // from a single expression of class type U, conversion functions of
3941   // U that convert to the non-reference type cv T are candidates.
3942   // Explicit conversion functions are only candidates during
3943   // direct-initialization.
3944   //
3945   // Note: SecondStepOfCopyInit is only ever true in this case when
3946   // evaluating whether to produce a C++98 compatibility warning.
3947   if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 &&
3948       !SecondStepOfCopyInit) {
3949     Expr *Initializer = Args[0];
3950     auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl();
3951     if (SourceRD && S.isCompleteType(DeclLoc, Initializer->getType())) {
3952       const auto &Conversions = SourceRD->getVisibleConversionFunctions();
3953       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
3954         NamedDecl *D = *I;
3955         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3956         D = D->getUnderlyingDecl();
3957 
3958         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3959         CXXConversionDecl *Conv;
3960         if (ConvTemplate)
3961           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3962         else
3963           Conv = cast<CXXConversionDecl>(D);
3964 
3965         if (ConvTemplate)
3966           S.AddTemplateConversionCandidate(
3967               ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
3968               CandidateSet, AllowExplicit, AllowExplicit,
3969               /*AllowResultConversion*/ false);
3970         else
3971           S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer,
3972                                    DestType, CandidateSet, AllowExplicit,
3973                                    AllowExplicit,
3974                                    /*AllowResultConversion*/ false);
3975       }
3976     }
3977   }
3978 
3979   // Perform overload resolution and return the result.
3980   return CandidateSet.BestViableFunction(S, DeclLoc, Best);
3981 }
3982 
3983 /// Attempt initialization by constructor (C++ [dcl.init]), which
3984 /// enumerates the constructors of the initialized entity and performs overload
3985 /// resolution to select the best.
3986 /// \param DestType       The destination class type.
3987 /// \param DestArrayType  The destination type, which is either DestType or
3988 ///                       a (possibly multidimensional) array of DestType.
3989 /// \param IsListInit     Is this list-initialization?
3990 /// \param IsInitListCopy Is this non-list-initialization resulting from a
3991 ///                       list-initialization from {x} where x is the same
3992 ///                       type as the entity?
3993 static void TryConstructorInitialization(Sema &S,
3994                                          const InitializedEntity &Entity,
3995                                          const InitializationKind &Kind,
3996                                          MultiExprArg Args, QualType DestType,
3997                                          QualType DestArrayType,
3998                                          InitializationSequence &Sequence,
3999                                          bool IsListInit = false,
4000                                          bool IsInitListCopy = false) {
4001   assert(((!IsListInit && !IsInitListCopy) ||
4002           (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&
4003          "IsListInit/IsInitListCopy must come with a single initializer list "
4004          "argument.");
4005   InitListExpr *ILE =
4006       (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr;
4007   MultiExprArg UnwrappedArgs =
4008       ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args;
4009 
4010   // The type we're constructing needs to be complete.
4011   if (!S.isCompleteType(Kind.getLocation(), DestType)) {
4012     Sequence.setIncompleteTypeFailure(DestType);
4013     return;
4014   }
4015 
4016   // C++17 [dcl.init]p17:
4017   //     - If the initializer expression is a prvalue and the cv-unqualified
4018   //       version of the source type is the same class as the class of the
4019   //       destination, the initializer expression is used to initialize the
4020   //       destination object.
4021   // Per DR (no number yet), this does not apply when initializing a base
4022   // class or delegating to another constructor from a mem-initializer.
4023   // ObjC++: Lambda captured by the block in the lambda to block conversion
4024   // should avoid copy elision.
4025   if (S.getLangOpts().CPlusPlus17 &&
4026       Entity.getKind() != InitializedEntity::EK_Base &&
4027       Entity.getKind() != InitializedEntity::EK_Delegating &&
4028       Entity.getKind() !=
4029           InitializedEntity::EK_LambdaToBlockConversionBlockElement &&
4030       UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isRValue() &&
4031       S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) {
4032     // Convert qualifications if necessary.
4033     Sequence.AddQualificationConversionStep(DestType, VK_RValue);
4034     if (ILE)
4035       Sequence.RewrapReferenceInitList(DestType, ILE);
4036     return;
4037   }
4038 
4039   const RecordType *DestRecordType = DestType->getAs<RecordType>();
4040   assert(DestRecordType && "Constructor initialization requires record type");
4041   CXXRecordDecl *DestRecordDecl
4042     = cast<CXXRecordDecl>(DestRecordType->getDecl());
4043 
4044   // Build the candidate set directly in the initialization sequence
4045   // structure, so that it will persist if we fail.
4046   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4047 
4048   // Determine whether we are allowed to call explicit constructors or
4049   // explicit conversion operators.
4050   bool AllowExplicit = Kind.AllowExplicit() || IsListInit;
4051   bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
4052 
4053   //   - Otherwise, if T is a class type, constructors are considered. The
4054   //     applicable constructors are enumerated, and the best one is chosen
4055   //     through overload resolution.
4056   DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl);
4057 
4058   OverloadingResult Result = OR_No_Viable_Function;
4059   OverloadCandidateSet::iterator Best;
4060   bool AsInitializerList = false;
4061 
4062   // C++11 [over.match.list]p1, per DR1467:
4063   //   When objects of non-aggregate type T are list-initialized, such that
4064   //   8.5.4 [dcl.init.list] specifies that overload resolution is performed
4065   //   according to the rules in this section, overload resolution selects
4066   //   the constructor in two phases:
4067   //
4068   //   - Initially, the candidate functions are the initializer-list
4069   //     constructors of the class T and the argument list consists of the
4070   //     initializer list as a single argument.
4071   if (IsListInit) {
4072     AsInitializerList = true;
4073 
4074     // If the initializer list has no elements and T has a default constructor,
4075     // the first phase is omitted.
4076     if (!(UnwrappedArgs.empty() && S.LookupDefaultConstructor(DestRecordDecl)))
4077       Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
4078                                           CandidateSet, DestType, Ctors, Best,
4079                                           CopyInitialization, AllowExplicit,
4080                                           /*OnlyListConstructors=*/true,
4081                                           IsListInit);
4082   }
4083 
4084   // C++11 [over.match.list]p1:
4085   //   - If no viable initializer-list constructor is found, overload resolution
4086   //     is performed again, where the candidate functions are all the
4087   //     constructors of the class T and the argument list consists of the
4088   //     elements of the initializer list.
4089   if (Result == OR_No_Viable_Function) {
4090     AsInitializerList = false;
4091     Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs,
4092                                         CandidateSet, DestType, Ctors, Best,
4093                                         CopyInitialization, AllowExplicit,
4094                                         /*OnlyListConstructors=*/false,
4095                                         IsListInit);
4096   }
4097   if (Result) {
4098     Sequence.SetOverloadFailure(IsListInit ?
4099                       InitializationSequence::FK_ListConstructorOverloadFailed :
4100                       InitializationSequence::FK_ConstructorOverloadFailed,
4101                                 Result);
4102     return;
4103   }
4104 
4105   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4106 
4107   // In C++17, ResolveConstructorOverload can select a conversion function
4108   // instead of a constructor.
4109   if (auto *CD = dyn_cast<CXXConversionDecl>(Best->Function)) {
4110     // Add the user-defined conversion step that calls the conversion function.
4111     QualType ConvType = CD->getConversionType();
4112     assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) &&
4113            "should not have selected this conversion function");
4114     Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType,
4115                                    HadMultipleCandidates);
4116     if (!S.Context.hasSameType(ConvType, DestType))
4117       Sequence.AddQualificationConversionStep(DestType, VK_RValue);
4118     if (IsListInit)
4119       Sequence.RewrapReferenceInitList(Entity.getType(), ILE);
4120     return;
4121   }
4122 
4123   // C++11 [dcl.init]p6:
4124   //   If a program calls for the default initialization of an object
4125   //   of a const-qualified type T, T shall be a class type with a
4126   //   user-provided default constructor.
4127   // C++ core issue 253 proposal:
4128   //   If the implicit default constructor initializes all subobjects, no
4129   //   initializer should be required.
4130   // The 253 proposal is for example needed to process libstdc++ headers in 5.x.
4131   CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
4132   if (Kind.getKind() == InitializationKind::IK_Default &&
4133       Entity.getType().isConstQualified()) {
4134     if (!CtorDecl->getParent()->allowConstDefaultInit()) {
4135       if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
4136         Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
4137       return;
4138     }
4139   }
4140 
4141   // C++11 [over.match.list]p1:
4142   //   In copy-list-initialization, if an explicit constructor is chosen, the
4143   //   initializer is ill-formed.
4144   if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
4145     Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
4146     return;
4147   }
4148 
4149   // Add the constructor initialization step. Any cv-qualification conversion is
4150   // subsumed by the initialization.
4151   Sequence.AddConstructorInitializationStep(
4152       Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates,
4153       IsListInit | IsInitListCopy, AsInitializerList);
4154 }
4155 
4156 static bool
4157 ResolveOverloadedFunctionForReferenceBinding(Sema &S,
4158                                              Expr *Initializer,
4159                                              QualType &SourceType,
4160                                              QualType &UnqualifiedSourceType,
4161                                              QualType UnqualifiedTargetType,
4162                                              InitializationSequence &Sequence) {
4163   if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
4164         S.Context.OverloadTy) {
4165     DeclAccessPair Found;
4166     bool HadMultipleCandidates = false;
4167     if (FunctionDecl *Fn
4168         = S.ResolveAddressOfOverloadedFunction(Initializer,
4169                                                UnqualifiedTargetType,
4170                                                false, Found,
4171                                                &HadMultipleCandidates)) {
4172       Sequence.AddAddressOverloadResolutionStep(Fn, Found,
4173                                                 HadMultipleCandidates);
4174       SourceType = Fn->getType();
4175       UnqualifiedSourceType = SourceType.getUnqualifiedType();
4176     } else if (!UnqualifiedTargetType->isRecordType()) {
4177       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4178       return true;
4179     }
4180   }
4181   return false;
4182 }
4183 
4184 static void TryReferenceInitializationCore(Sema &S,
4185                                            const InitializedEntity &Entity,
4186                                            const InitializationKind &Kind,
4187                                            Expr *Initializer,
4188                                            QualType cv1T1, QualType T1,
4189                                            Qualifiers T1Quals,
4190                                            QualType cv2T2, QualType T2,
4191                                            Qualifiers T2Quals,
4192                                            InitializationSequence &Sequence);
4193 
4194 static void TryValueInitialization(Sema &S,
4195                                    const InitializedEntity &Entity,
4196                                    const InitializationKind &Kind,
4197                                    InitializationSequence &Sequence,
4198                                    InitListExpr *InitList = nullptr);
4199 
4200 /// Attempt list initialization of a reference.
4201 static void TryReferenceListInitialization(Sema &S,
4202                                            const InitializedEntity &Entity,
4203                                            const InitializationKind &Kind,
4204                                            InitListExpr *InitList,
4205                                            InitializationSequence &Sequence,
4206                                            bool TreatUnavailableAsInvalid) {
4207   // First, catch C++03 where this isn't possible.
4208   if (!S.getLangOpts().CPlusPlus11) {
4209     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
4210     return;
4211   }
4212   // Can't reference initialize a compound literal.
4213   if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) {
4214     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
4215     return;
4216   }
4217 
4218   QualType DestType = Entity.getType();
4219   QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
4220   Qualifiers T1Quals;
4221   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4222 
4223   // Reference initialization via an initializer list works thus:
4224   // If the initializer list consists of a single element that is
4225   // reference-related to the referenced type, bind directly to that element
4226   // (possibly creating temporaries).
4227   // Otherwise, initialize a temporary with the initializer list and
4228   // bind to that.
4229   if (InitList->getNumInits() == 1) {
4230     Expr *Initializer = InitList->getInit(0);
4231     QualType cv2T2 = Initializer->getType();
4232     Qualifiers T2Quals;
4233     QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4234 
4235     // If this fails, creating a temporary wouldn't work either.
4236     if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4237                                                      T1, Sequence))
4238       return;
4239 
4240     SourceLocation DeclLoc = Initializer->getBeginLoc();
4241     Sema::ReferenceCompareResult RefRelationship
4242       = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2);
4243     if (RefRelationship >= Sema::Ref_Related) {
4244       // Try to bind the reference here.
4245       TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4246                                      T1Quals, cv2T2, T2, T2Quals, Sequence);
4247       if (Sequence)
4248         Sequence.RewrapReferenceInitList(cv1T1, InitList);
4249       return;
4250     }
4251 
4252     // Update the initializer if we've resolved an overloaded function.
4253     if (Sequence.step_begin() != Sequence.step_end())
4254       Sequence.RewrapReferenceInitList(cv1T1, InitList);
4255   }
4256 
4257   // Not reference-related. Create a temporary and bind to that.
4258   InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
4259 
4260   TryListInitialization(S, TempEntity, Kind, InitList, Sequence,
4261                         TreatUnavailableAsInvalid);
4262   if (Sequence) {
4263     if (DestType->isRValueReferenceType() ||
4264         (T1Quals.hasConst() && !T1Quals.hasVolatile()))
4265       Sequence.AddReferenceBindingStep(cv1T1, /*BindingTemporary=*/true);
4266     else
4267       Sequence.SetFailed(
4268           InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
4269   }
4270 }
4271 
4272 /// Attempt list initialization (C++0x [dcl.init.list])
4273 static void TryListInitialization(Sema &S,
4274                                   const InitializedEntity &Entity,
4275                                   const InitializationKind &Kind,
4276                                   InitListExpr *InitList,
4277                                   InitializationSequence &Sequence,
4278                                   bool TreatUnavailableAsInvalid) {
4279   QualType DestType = Entity.getType();
4280 
4281   // C++ doesn't allow scalar initialization with more than one argument.
4282   // But C99 complex numbers are scalars and it makes sense there.
4283   if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
4284       !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
4285     Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
4286     return;
4287   }
4288   if (DestType->isReferenceType()) {
4289     TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence,
4290                                    TreatUnavailableAsInvalid);
4291     return;
4292   }
4293 
4294   if (DestType->isRecordType() &&
4295       !S.isCompleteType(InitList->getBeginLoc(), DestType)) {
4296     Sequence.setIncompleteTypeFailure(DestType);
4297     return;
4298   }
4299 
4300   // C++11 [dcl.init.list]p3, per DR1467:
4301   // - If T is a class type and the initializer list has a single element of
4302   //   type cv U, where U is T or a class derived from T, the object is
4303   //   initialized from that element (by copy-initialization for
4304   //   copy-list-initialization, or by direct-initialization for
4305   //   direct-list-initialization).
4306   // - Otherwise, if T is a character array and the initializer list has a
4307   //   single element that is an appropriately-typed string literal
4308   //   (8.5.2 [dcl.init.string]), initialization is performed as described
4309   //   in that section.
4310   // - Otherwise, if T is an aggregate, [...] (continue below).
4311   if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) {
4312     if (DestType->isRecordType()) {
4313       QualType InitType = InitList->getInit(0)->getType();
4314       if (S.Context.hasSameUnqualifiedType(InitType, DestType) ||
4315           S.IsDerivedFrom(InitList->getBeginLoc(), InitType, DestType)) {
4316         Expr *InitListAsExpr = InitList;
4317         TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4318                                      DestType, Sequence,
4319                                      /*InitListSyntax*/false,
4320                                      /*IsInitListCopy*/true);
4321         return;
4322       }
4323     }
4324     if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) {
4325       Expr *SubInit[1] = {InitList->getInit(0)};
4326       if (!isa<VariableArrayType>(DestAT) &&
4327           IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) {
4328         InitializationKind SubKind =
4329             Kind.getKind() == InitializationKind::IK_DirectList
4330                 ? InitializationKind::CreateDirect(Kind.getLocation(),
4331                                                    InitList->getLBraceLoc(),
4332                                                    InitList->getRBraceLoc())
4333                 : Kind;
4334         Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4335                                 /*TopLevelOfInitList*/ true,
4336                                 TreatUnavailableAsInvalid);
4337 
4338         // TryStringLiteralInitialization() (in InitializeFrom()) will fail if
4339         // the element is not an appropriately-typed string literal, in which
4340         // case we should proceed as in C++11 (below).
4341         if (Sequence) {
4342           Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4343           return;
4344         }
4345       }
4346     }
4347   }
4348 
4349   // C++11 [dcl.init.list]p3:
4350   //   - If T is an aggregate, aggregate initialization is performed.
4351   if ((DestType->isRecordType() && !DestType->isAggregateType()) ||
4352       (S.getLangOpts().CPlusPlus11 &&
4353        S.isStdInitializerList(DestType, nullptr))) {
4354     if (S.getLangOpts().CPlusPlus11) {
4355       //   - Otherwise, if the initializer list has no elements and T is a
4356       //     class type with a default constructor, the object is
4357       //     value-initialized.
4358       if (InitList->getNumInits() == 0) {
4359         CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
4360         if (S.LookupDefaultConstructor(RD)) {
4361           TryValueInitialization(S, Entity, Kind, Sequence, InitList);
4362           return;
4363         }
4364       }
4365 
4366       //   - Otherwise, if T is a specialization of std::initializer_list<E>,
4367       //     an initializer_list object constructed [...]
4368       if (TryInitializerListConstruction(S, InitList, DestType, Sequence,
4369                                          TreatUnavailableAsInvalid))
4370         return;
4371 
4372       //   - Otherwise, if T is a class type, constructors are considered.
4373       Expr *InitListAsExpr = InitList;
4374       TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4375                                    DestType, Sequence, /*InitListSyntax*/true);
4376     } else
4377       Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
4378     return;
4379   }
4380 
4381   if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() &&
4382       InitList->getNumInits() == 1) {
4383     Expr *E = InitList->getInit(0);
4384 
4385     //   - Otherwise, if T is an enumeration with a fixed underlying type,
4386     //     the initializer-list has a single element v, and the initialization
4387     //     is direct-list-initialization, the object is initialized with the
4388     //     value T(v); if a narrowing conversion is required to convert v to
4389     //     the underlying type of T, the program is ill-formed.
4390     auto *ET = DestType->getAs<EnumType>();
4391     if (S.getLangOpts().CPlusPlus17 &&
4392         Kind.getKind() == InitializationKind::IK_DirectList &&
4393         ET && ET->getDecl()->isFixed() &&
4394         !S.Context.hasSameUnqualifiedType(E->getType(), DestType) &&
4395         (E->getType()->isIntegralOrEnumerationType() ||
4396          E->getType()->isFloatingType())) {
4397       // There are two ways that T(v) can work when T is an enumeration type.
4398       // If there is either an implicit conversion sequence from v to T or
4399       // a conversion function that can convert from v to T, then we use that.
4400       // Otherwise, if v is of integral, enumeration, or floating-point type,
4401       // it is converted to the enumeration type via its underlying type.
4402       // There is no overlap possible between these two cases (except when the
4403       // source value is already of the destination type), and the first
4404       // case is handled by the general case for single-element lists below.
4405       ImplicitConversionSequence ICS;
4406       ICS.setStandard();
4407       ICS.Standard.setAsIdentityConversion();
4408       if (!E->isRValue())
4409         ICS.Standard.First = ICK_Lvalue_To_Rvalue;
4410       // If E is of a floating-point type, then the conversion is ill-formed
4411       // due to narrowing, but go through the motions in order to produce the
4412       // right diagnostic.
4413       ICS.Standard.Second = E->getType()->isFloatingType()
4414                                 ? ICK_Floating_Integral
4415                                 : ICK_Integral_Conversion;
4416       ICS.Standard.setFromType(E->getType());
4417       ICS.Standard.setToType(0, E->getType());
4418       ICS.Standard.setToType(1, DestType);
4419       ICS.Standard.setToType(2, DestType);
4420       Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2),
4421                                          /*TopLevelOfInitList*/true);
4422       Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4423       return;
4424     }
4425 
4426     //   - Otherwise, if the initializer list has a single element of type E
4427     //     [...references are handled above...], the object or reference is
4428     //     initialized from that element (by copy-initialization for
4429     //     copy-list-initialization, or by direct-initialization for
4430     //     direct-list-initialization); if a narrowing conversion is required
4431     //     to convert the element to T, the program is ill-formed.
4432     //
4433     // Per core-24034, this is direct-initialization if we were performing
4434     // direct-list-initialization and copy-initialization otherwise.
4435     // We can't use InitListChecker for this, because it always performs
4436     // copy-initialization. This only matters if we might use an 'explicit'
4437     // conversion operator, or for the special case conversion of nullptr_t to
4438     // bool, so we only need to handle those cases.
4439     //
4440     // FIXME: Why not do this in all cases?
4441     Expr *Init = InitList->getInit(0);
4442     if (Init->getType()->isRecordType() ||
4443         (Init->getType()->isNullPtrType() && DestType->isBooleanType())) {
4444       InitializationKind SubKind =
4445           Kind.getKind() == InitializationKind::IK_DirectList
4446               ? InitializationKind::CreateDirect(Kind.getLocation(),
4447                                                  InitList->getLBraceLoc(),
4448                                                  InitList->getRBraceLoc())
4449               : Kind;
4450       Expr *SubInit[1] = { Init };
4451       Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4452                               /*TopLevelOfInitList*/true,
4453                               TreatUnavailableAsInvalid);
4454       if (Sequence)
4455         Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4456       return;
4457     }
4458   }
4459 
4460   InitListChecker CheckInitList(S, Entity, InitList,
4461           DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid);
4462   if (CheckInitList.HadError()) {
4463     Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
4464     return;
4465   }
4466 
4467   // Add the list initialization step with the built init list.
4468   Sequence.AddListInitializationStep(DestType);
4469 }
4470 
4471 /// Try a reference initialization that involves calling a conversion
4472 /// function.
4473 static OverloadingResult TryRefInitWithConversionFunction(
4474     Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind,
4475     Expr *Initializer, bool AllowRValues, bool IsLValueRef,
4476     InitializationSequence &Sequence) {
4477   QualType DestType = Entity.getType();
4478   QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
4479   QualType T1 = cv1T1.getUnqualifiedType();
4480   QualType cv2T2 = Initializer->getType();
4481   QualType T2 = cv2T2.getUnqualifiedType();
4482 
4483   assert(!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2) &&
4484          "Must have incompatible references when binding via conversion");
4485 
4486   // Build the candidate set directly in the initialization sequence
4487   // structure, so that it will persist if we fail.
4488   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4489   CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4490 
4491   // Determine whether we are allowed to call explicit conversion operators.
4492   // Note that none of [over.match.copy], [over.match.conv], nor
4493   // [over.match.ref] permit an explicit constructor to be chosen when
4494   // initializing a reference, not even for direct-initialization.
4495   bool AllowExplicitCtors = false;
4496   bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding();
4497 
4498   const RecordType *T1RecordType = nullptr;
4499   if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
4500       S.isCompleteType(Kind.getLocation(), T1)) {
4501     // The type we're converting to is a class type. Enumerate its constructors
4502     // to see if there is a suitable conversion.
4503     CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
4504 
4505     for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) {
4506       auto Info = getConstructorInfo(D);
4507       if (!Info.Constructor)
4508         continue;
4509 
4510       if (!Info.Constructor->isInvalidDecl() &&
4511           Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) {
4512         if (Info.ConstructorTmpl)
4513           S.AddTemplateOverloadCandidate(
4514               Info.ConstructorTmpl, Info.FoundDecl,
4515               /*ExplicitArgs*/ nullptr, Initializer, CandidateSet,
4516               /*SuppressUserConversions=*/true,
4517               /*PartialOverloading*/ false, AllowExplicitCtors);
4518         else
4519           S.AddOverloadCandidate(
4520               Info.Constructor, Info.FoundDecl, Initializer, CandidateSet,
4521               /*SuppressUserConversions=*/true,
4522               /*PartialOverloading*/ false, AllowExplicitCtors);
4523       }
4524     }
4525   }
4526   if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
4527     return OR_No_Viable_Function;
4528 
4529   const RecordType *T2RecordType = nullptr;
4530   if ((T2RecordType = T2->getAs<RecordType>()) &&
4531       S.isCompleteType(Kind.getLocation(), T2)) {
4532     // The type we're converting from is a class type, enumerate its conversion
4533     // functions.
4534     CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
4535 
4536     const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4537     for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4538       NamedDecl *D = *I;
4539       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4540       if (isa<UsingShadowDecl>(D))
4541         D = cast<UsingShadowDecl>(D)->getTargetDecl();
4542 
4543       FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4544       CXXConversionDecl *Conv;
4545       if (ConvTemplate)
4546         Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4547       else
4548         Conv = cast<CXXConversionDecl>(D);
4549 
4550       // If the conversion function doesn't return a reference type,
4551       // it can't be considered for this conversion unless we're allowed to
4552       // consider rvalues.
4553       // FIXME: Do we need to make sure that we only consider conversion
4554       // candidates with reference-compatible results? That might be needed to
4555       // break recursion.
4556       if ((AllowRValues ||
4557            Conv->getConversionType()->isLValueReferenceType())) {
4558         if (ConvTemplate)
4559           S.AddTemplateConversionCandidate(
4560               ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
4561               CandidateSet,
4562               /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs);
4563         else
4564           S.AddConversionCandidate(
4565               Conv, I.getPair(), ActingDC, Initializer, DestType, CandidateSet,
4566               /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs);
4567       }
4568     }
4569   }
4570   if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
4571     return OR_No_Viable_Function;
4572 
4573   SourceLocation DeclLoc = Initializer->getBeginLoc();
4574 
4575   // Perform overload resolution. If it fails, return the failed result.
4576   OverloadCandidateSet::iterator Best;
4577   if (OverloadingResult Result
4578         = CandidateSet.BestViableFunction(S, DeclLoc, Best))
4579     return Result;
4580 
4581   FunctionDecl *Function = Best->Function;
4582   // This is the overload that will be used for this initialization step if we
4583   // use this initialization. Mark it as referenced.
4584   Function->setReferenced();
4585 
4586   // Compute the returned type and value kind of the conversion.
4587   QualType cv3T3;
4588   if (isa<CXXConversionDecl>(Function))
4589     cv3T3 = Function->getReturnType();
4590   else
4591     cv3T3 = T1;
4592 
4593   ExprValueKind VK = VK_RValue;
4594   if (cv3T3->isLValueReferenceType())
4595     VK = VK_LValue;
4596   else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>())
4597     VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
4598   cv3T3 = cv3T3.getNonLValueExprType(S.Context);
4599 
4600   // Add the user-defined conversion step.
4601   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4602   Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3,
4603                                  HadMultipleCandidates);
4604 
4605   // Determine whether we'll need to perform derived-to-base adjustments or
4606   // other conversions.
4607   Sema::ReferenceConversions RefConv;
4608   Sema::ReferenceCompareResult NewRefRelationship =
4609       S.CompareReferenceRelationship(DeclLoc, T1, cv3T3, &RefConv);
4610 
4611   // Add the final conversion sequence, if necessary.
4612   if (NewRefRelationship == Sema::Ref_Incompatible) {
4613     assert(!isa<CXXConstructorDecl>(Function) &&
4614            "should not have conversion after constructor");
4615 
4616     ImplicitConversionSequence ICS;
4617     ICS.setStandard();
4618     ICS.Standard = Best->FinalConversion;
4619     Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2));
4620 
4621     // Every implicit conversion results in a prvalue, except for a glvalue
4622     // derived-to-base conversion, which we handle below.
4623     cv3T3 = ICS.Standard.getToType(2);
4624     VK = VK_RValue;
4625   }
4626 
4627   //   If the converted initializer is a prvalue, its type T4 is adjusted to
4628   //   type "cv1 T4" and the temporary materialization conversion is applied.
4629   //
4630   // We adjust the cv-qualifications to match the reference regardless of
4631   // whether we have a prvalue so that the AST records the change. In this
4632   // case, T4 is "cv3 T3".
4633   QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers());
4634   if (cv1T4.getQualifiers() != cv3T3.getQualifiers())
4635     Sequence.AddQualificationConversionStep(cv1T4, VK);
4636   Sequence.AddReferenceBindingStep(cv1T4, VK == VK_RValue);
4637   VK = IsLValueRef ? VK_LValue : VK_XValue;
4638 
4639   if (RefConv & Sema::ReferenceConversions::DerivedToBase)
4640     Sequence.AddDerivedToBaseCastStep(cv1T1, VK);
4641   else if (RefConv & Sema::ReferenceConversions::ObjC)
4642     Sequence.AddObjCObjectConversionStep(cv1T1);
4643   else if (RefConv & Sema::ReferenceConversions::Function)
4644     Sequence.AddQualificationConversionStep(cv1T1, VK);
4645   else if (RefConv & Sema::ReferenceConversions::Qualification) {
4646     if (!S.Context.hasSameType(cv1T4, cv1T1))
4647       Sequence.AddQualificationConversionStep(cv1T1, VK);
4648   }
4649 
4650   return OR_Success;
4651 }
4652 
4653 static void CheckCXX98CompatAccessibleCopy(Sema &S,
4654                                            const InitializedEntity &Entity,
4655                                            Expr *CurInitExpr);
4656 
4657 /// Attempt reference initialization (C++0x [dcl.init.ref])
4658 static void TryReferenceInitialization(Sema &S,
4659                                        const InitializedEntity &Entity,
4660                                        const InitializationKind &Kind,
4661                                        Expr *Initializer,
4662                                        InitializationSequence &Sequence) {
4663   QualType DestType = Entity.getType();
4664   QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
4665   Qualifiers T1Quals;
4666   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4667   QualType cv2T2 = Initializer->getType();
4668   Qualifiers T2Quals;
4669   QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4670 
4671   // If the initializer is the address of an overloaded function, try
4672   // to resolve the overloaded function. If all goes well, T2 is the
4673   // type of the resulting function.
4674   if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4675                                                    T1, Sequence))
4676     return;
4677 
4678   // Delegate everything else to a subfunction.
4679   TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4680                                  T1Quals, cv2T2, T2, T2Quals, Sequence);
4681 }
4682 
4683 /// Determine whether an expression is a non-referenceable glvalue (one to
4684 /// which a reference can never bind). Attempting to bind a reference to
4685 /// such a glvalue will always create a temporary.
4686 static bool isNonReferenceableGLValue(Expr *E) {
4687   return E->refersToBitField() || E->refersToVectorElement() ||
4688          E->refersToMatrixElement();
4689 }
4690 
4691 /// Reference initialization without resolving overloaded functions.
4692 ///
4693 /// We also can get here in C if we call a builtin which is declared as
4694 /// a function with a parameter of reference type (such as __builtin_va_end()).
4695 static void TryReferenceInitializationCore(Sema &S,
4696                                            const InitializedEntity &Entity,
4697                                            const InitializationKind &Kind,
4698                                            Expr *Initializer,
4699                                            QualType cv1T1, QualType T1,
4700                                            Qualifiers T1Quals,
4701                                            QualType cv2T2, QualType T2,
4702                                            Qualifiers T2Quals,
4703                                            InitializationSequence &Sequence) {
4704   QualType DestType = Entity.getType();
4705   SourceLocation DeclLoc = Initializer->getBeginLoc();
4706 
4707   // Compute some basic properties of the types and the initializer.
4708   bool isLValueRef = DestType->isLValueReferenceType();
4709   bool isRValueRef = !isLValueRef;
4710   Expr::Classification InitCategory = Initializer->Classify(S.Context);
4711 
4712   Sema::ReferenceConversions RefConv;
4713   Sema::ReferenceCompareResult RefRelationship =
4714       S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, &RefConv);
4715 
4716   // C++0x [dcl.init.ref]p5:
4717   //   A reference to type "cv1 T1" is initialized by an expression of type
4718   //   "cv2 T2" as follows:
4719   //
4720   //     - If the reference is an lvalue reference and the initializer
4721   //       expression
4722   // Note the analogous bullet points for rvalue refs to functions. Because
4723   // there are no function rvalues in C++, rvalue refs to functions are treated
4724   // like lvalue refs.
4725   OverloadingResult ConvOvlResult = OR_Success;
4726   bool T1Function = T1->isFunctionType();
4727   if (isLValueRef || T1Function) {
4728     if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) &&
4729         (RefRelationship == Sema::Ref_Compatible ||
4730          (Kind.isCStyleOrFunctionalCast() &&
4731           RefRelationship == Sema::Ref_Related))) {
4732       //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
4733       //     reference-compatible with "cv2 T2," or
4734       if (RefConv & (Sema::ReferenceConversions::DerivedToBase |
4735                      Sema::ReferenceConversions::ObjC)) {
4736         // If we're converting the pointee, add any qualifiers first;
4737         // these qualifiers must all be top-level, so just convert to "cv1 T2".
4738         if (RefConv & (Sema::ReferenceConversions::Qualification))
4739           Sequence.AddQualificationConversionStep(
4740               S.Context.getQualifiedType(T2, T1Quals),
4741               Initializer->getValueKind());
4742         if (RefConv & Sema::ReferenceConversions::DerivedToBase)
4743           Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue);
4744         else
4745           Sequence.AddObjCObjectConversionStep(cv1T1);
4746       } else if (RefConv & (Sema::ReferenceConversions::Qualification |
4747                             Sema::ReferenceConversions::Function)) {
4748         // Perform a (possibly multi-level) qualification conversion.
4749         // FIXME: Should we use a different step kind for function conversions?
4750         Sequence.AddQualificationConversionStep(cv1T1,
4751                                                 Initializer->getValueKind());
4752       }
4753 
4754       // We only create a temporary here when binding a reference to a
4755       // bit-field or vector element. Those cases are't supposed to be
4756       // handled by this bullet, but the outcome is the same either way.
4757       Sequence.AddReferenceBindingStep(cv1T1, false);
4758       return;
4759     }
4760 
4761     //     - has a class type (i.e., T2 is a class type), where T1 is not
4762     //       reference-related to T2, and can be implicitly converted to an
4763     //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
4764     //       with "cv3 T3" (this conversion is selected by enumerating the
4765     //       applicable conversion functions (13.3.1.6) and choosing the best
4766     //       one through overload resolution (13.3)),
4767     // If we have an rvalue ref to function type here, the rhs must be
4768     // an rvalue. DR1287 removed the "implicitly" here.
4769     if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
4770         (isLValueRef || InitCategory.isRValue())) {
4771       if (S.getLangOpts().CPlusPlus) {
4772         // Try conversion functions only for C++.
4773         ConvOvlResult = TryRefInitWithConversionFunction(
4774             S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef,
4775             /*IsLValueRef*/ isLValueRef, Sequence);
4776         if (ConvOvlResult == OR_Success)
4777           return;
4778         if (ConvOvlResult != OR_No_Viable_Function)
4779           Sequence.SetOverloadFailure(
4780               InitializationSequence::FK_ReferenceInitOverloadFailed,
4781               ConvOvlResult);
4782       } else {
4783         ConvOvlResult = OR_No_Viable_Function;
4784       }
4785     }
4786   }
4787 
4788   //     - Otherwise, the reference shall be an lvalue reference to a
4789   //       non-volatile const type (i.e., cv1 shall be const), or the reference
4790   //       shall be an rvalue reference.
4791   //       For address spaces, we interpret this to mean that an addr space
4792   //       of a reference "cv1 T1" is a superset of addr space of "cv2 T2".
4793   if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile() &&
4794                        T1Quals.isAddressSpaceSupersetOf(T2Quals))) {
4795     if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4796       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4797     else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4798       Sequence.SetOverloadFailure(
4799                         InitializationSequence::FK_ReferenceInitOverloadFailed,
4800                                   ConvOvlResult);
4801     else if (!InitCategory.isLValue())
4802       Sequence.SetFailed(
4803           T1Quals.isAddressSpaceSupersetOf(T2Quals)
4804               ? InitializationSequence::
4805                     FK_NonConstLValueReferenceBindingToTemporary
4806               : InitializationSequence::FK_ReferenceInitDropsQualifiers);
4807     else {
4808       InitializationSequence::FailureKind FK;
4809       switch (RefRelationship) {
4810       case Sema::Ref_Compatible:
4811         if (Initializer->refersToBitField())
4812           FK = InitializationSequence::
4813               FK_NonConstLValueReferenceBindingToBitfield;
4814         else if (Initializer->refersToVectorElement())
4815           FK = InitializationSequence::
4816               FK_NonConstLValueReferenceBindingToVectorElement;
4817         else if (Initializer->refersToMatrixElement())
4818           FK = InitializationSequence::
4819               FK_NonConstLValueReferenceBindingToMatrixElement;
4820         else
4821           llvm_unreachable("unexpected kind of compatible initializer");
4822         break;
4823       case Sema::Ref_Related:
4824         FK = InitializationSequence::FK_ReferenceInitDropsQualifiers;
4825         break;
4826       case Sema::Ref_Incompatible:
4827         FK = InitializationSequence::
4828             FK_NonConstLValueReferenceBindingToUnrelated;
4829         break;
4830       }
4831       Sequence.SetFailed(FK);
4832     }
4833     return;
4834   }
4835 
4836   //    - If the initializer expression
4837   //      - is an
4838   // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or
4839   // [1z]   rvalue (but not a bit-field) or
4840   //        function lvalue and "cv1 T1" is reference-compatible with "cv2 T2"
4841   //
4842   // Note: functions are handled above and below rather than here...
4843   if (!T1Function &&
4844       (RefRelationship == Sema::Ref_Compatible ||
4845        (Kind.isCStyleOrFunctionalCast() &&
4846         RefRelationship == Sema::Ref_Related)) &&
4847       ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) ||
4848        (InitCategory.isPRValue() &&
4849         (S.getLangOpts().CPlusPlus17 || T2->isRecordType() ||
4850          T2->isArrayType())))) {
4851     ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_RValue;
4852     if (InitCategory.isPRValue() && T2->isRecordType()) {
4853       // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
4854       // compiler the freedom to perform a copy here or bind to the
4855       // object, while C++0x requires that we bind directly to the
4856       // object. Hence, we always bind to the object without making an
4857       // extra copy. However, in C++03 requires that we check for the
4858       // presence of a suitable copy constructor:
4859       //
4860       //   The constructor that would be used to make the copy shall
4861       //   be callable whether or not the copy is actually done.
4862       if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
4863         Sequence.AddExtraneousCopyToTemporary(cv2T2);
4864       else if (S.getLangOpts().CPlusPlus11)
4865         CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
4866     }
4867 
4868     // C++1z [dcl.init.ref]/5.2.1.2:
4869     //   If the converted initializer is a prvalue, its type T4 is adjusted
4870     //   to type "cv1 T4" and the temporary materialization conversion is
4871     //   applied.
4872     // Postpone address space conversions to after the temporary materialization
4873     // conversion to allow creating temporaries in the alloca address space.
4874     auto T1QualsIgnoreAS = T1Quals;
4875     auto T2QualsIgnoreAS = T2Quals;
4876     if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) {
4877       T1QualsIgnoreAS.removeAddressSpace();
4878       T2QualsIgnoreAS.removeAddressSpace();
4879     }
4880     QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1QualsIgnoreAS);
4881     if (T1QualsIgnoreAS != T2QualsIgnoreAS)
4882       Sequence.AddQualificationConversionStep(cv1T4, ValueKind);
4883     Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_RValue);
4884     ValueKind = isLValueRef ? VK_LValue : VK_XValue;
4885     // Add addr space conversion if required.
4886     if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) {
4887       auto T4Quals = cv1T4.getQualifiers();
4888       T4Quals.addAddressSpace(T1Quals.getAddressSpace());
4889       QualType cv1T4WithAS = S.Context.getQualifiedType(T2, T4Quals);
4890       Sequence.AddQualificationConversionStep(cv1T4WithAS, ValueKind);
4891       cv1T4 = cv1T4WithAS;
4892     }
4893 
4894     //   In any case, the reference is bound to the resulting glvalue (or to
4895     //   an appropriate base class subobject).
4896     if (RefConv & Sema::ReferenceConversions::DerivedToBase)
4897       Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind);
4898     else if (RefConv & Sema::ReferenceConversions::ObjC)
4899       Sequence.AddObjCObjectConversionStep(cv1T1);
4900     else if (RefConv & Sema::ReferenceConversions::Qualification) {
4901       if (!S.Context.hasSameType(cv1T4, cv1T1))
4902         Sequence.AddQualificationConversionStep(cv1T1, ValueKind);
4903     }
4904     return;
4905   }
4906 
4907   //       - has a class type (i.e., T2 is a class type), where T1 is not
4908   //         reference-related to T2, and can be implicitly converted to an
4909   //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
4910   //         where "cv1 T1" is reference-compatible with "cv3 T3",
4911   //
4912   // DR1287 removes the "implicitly" here.
4913   if (T2->isRecordType()) {
4914     if (RefRelationship == Sema::Ref_Incompatible) {
4915       ConvOvlResult = TryRefInitWithConversionFunction(
4916           S, Entity, Kind, Initializer, /*AllowRValues*/ true,
4917           /*IsLValueRef*/ isLValueRef, Sequence);
4918       if (ConvOvlResult)
4919         Sequence.SetOverloadFailure(
4920             InitializationSequence::FK_ReferenceInitOverloadFailed,
4921             ConvOvlResult);
4922 
4923       return;
4924     }
4925 
4926     if (RefRelationship == Sema::Ref_Compatible &&
4927         isRValueRef && InitCategory.isLValue()) {
4928       Sequence.SetFailed(
4929         InitializationSequence::FK_RValueReferenceBindingToLValue);
4930       return;
4931     }
4932 
4933     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4934     return;
4935   }
4936 
4937   //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
4938   //        from the initializer expression using the rules for a non-reference
4939   //        copy-initialization (8.5). The reference is then bound to the
4940   //        temporary. [...]
4941 
4942   // Ignore address space of reference type at this point and perform address
4943   // space conversion after the reference binding step.
4944   QualType cv1T1IgnoreAS =
4945       T1Quals.hasAddressSpace()
4946           ? S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace())
4947           : cv1T1;
4948 
4949   InitializedEntity TempEntity =
4950       InitializedEntity::InitializeTemporary(cv1T1IgnoreAS);
4951 
4952   // FIXME: Why do we use an implicit conversion here rather than trying
4953   // copy-initialization?
4954   ImplicitConversionSequence ICS
4955     = S.TryImplicitConversion(Initializer, TempEntity.getType(),
4956                               /*SuppressUserConversions=*/false,
4957                               Sema::AllowedExplicit::None,
4958                               /*FIXME:InOverloadResolution=*/false,
4959                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
4960                               /*AllowObjCWritebackConversion=*/false);
4961 
4962   if (ICS.isBad()) {
4963     // FIXME: Use the conversion function set stored in ICS to turn
4964     // this into an overloading ambiguity diagnostic. However, we need
4965     // to keep that set as an OverloadCandidateSet rather than as some
4966     // other kind of set.
4967     if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4968       Sequence.SetOverloadFailure(
4969                         InitializationSequence::FK_ReferenceInitOverloadFailed,
4970                                   ConvOvlResult);
4971     else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4972       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4973     else
4974       Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
4975     return;
4976   } else {
4977     Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
4978   }
4979 
4980   //        [...] If T1 is reference-related to T2, cv1 must be the
4981   //        same cv-qualification as, or greater cv-qualification
4982   //        than, cv2; otherwise, the program is ill-formed.
4983   unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
4984   unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
4985   if ((RefRelationship == Sema::Ref_Related &&
4986        (T1CVRQuals | T2CVRQuals) != T1CVRQuals) ||
4987       !T1Quals.isAddressSpaceSupersetOf(T2Quals)) {
4988     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4989     return;
4990   }
4991 
4992   //   [...] If T1 is reference-related to T2 and the reference is an rvalue
4993   //   reference, the initializer expression shall not be an lvalue.
4994   if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
4995       InitCategory.isLValue()) {
4996     Sequence.SetFailed(
4997                     InitializationSequence::FK_RValueReferenceBindingToLValue);
4998     return;
4999   }
5000 
5001   Sequence.AddReferenceBindingStep(cv1T1IgnoreAS, /*BindingTemporary=*/true);
5002 
5003   if (T1Quals.hasAddressSpace()) {
5004     if (!Qualifiers::isAddressSpaceSupersetOf(T1Quals.getAddressSpace(),
5005                                               LangAS::Default)) {
5006       Sequence.SetFailed(
5007           InitializationSequence::FK_ReferenceAddrspaceMismatchTemporary);
5008       return;
5009     }
5010     Sequence.AddQualificationConversionStep(cv1T1, isLValueRef ? VK_LValue
5011                                                                : VK_XValue);
5012   }
5013 }
5014 
5015 /// Attempt character array initialization from a string literal
5016 /// (C++ [dcl.init.string], C99 6.7.8).
5017 static void TryStringLiteralInitialization(Sema &S,
5018                                            const InitializedEntity &Entity,
5019                                            const InitializationKind &Kind,
5020                                            Expr *Initializer,
5021                                        InitializationSequence &Sequence) {
5022   Sequence.AddStringInitStep(Entity.getType());
5023 }
5024 
5025 /// Attempt value initialization (C++ [dcl.init]p7).
5026 static void TryValueInitialization(Sema &S,
5027                                    const InitializedEntity &Entity,
5028                                    const InitializationKind &Kind,
5029                                    InitializationSequence &Sequence,
5030                                    InitListExpr *InitList) {
5031   assert((!InitList || InitList->getNumInits() == 0) &&
5032          "Shouldn't use value-init for non-empty init lists");
5033 
5034   // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
5035   //
5036   //   To value-initialize an object of type T means:
5037   QualType T = Entity.getType();
5038 
5039   //     -- if T is an array type, then each element is value-initialized;
5040   T = S.Context.getBaseElementType(T);
5041 
5042   if (const RecordType *RT = T->getAs<RecordType>()) {
5043     if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
5044       bool NeedZeroInitialization = true;
5045       // C++98:
5046       // -- if T is a class type (clause 9) with a user-declared constructor
5047       //    (12.1), then the default constructor for T is called (and the
5048       //    initialization is ill-formed if T has no accessible default
5049       //    constructor);
5050       // C++11:
5051       // -- if T is a class type (clause 9) with either no default constructor
5052       //    (12.1 [class.ctor]) or a default constructor that is user-provided
5053       //    or deleted, then the object is default-initialized;
5054       //
5055       // Note that the C++11 rule is the same as the C++98 rule if there are no
5056       // defaulted or deleted constructors, so we just use it unconditionally.
5057       CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
5058       if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
5059         NeedZeroInitialization = false;
5060 
5061       // -- if T is a (possibly cv-qualified) non-union class type without a
5062       //    user-provided or deleted default constructor, then the object is
5063       //    zero-initialized and, if T has a non-trivial default constructor,
5064       //    default-initialized;
5065       // The 'non-union' here was removed by DR1502. The 'non-trivial default
5066       // constructor' part was removed by DR1507.
5067       if (NeedZeroInitialization)
5068         Sequence.AddZeroInitializationStep(Entity.getType());
5069 
5070       // C++03:
5071       // -- if T is a non-union class type without a user-declared constructor,
5072       //    then every non-static data member and base class component of T is
5073       //    value-initialized;
5074       // [...] A program that calls for [...] value-initialization of an
5075       // entity of reference type is ill-formed.
5076       //
5077       // C++11 doesn't need this handling, because value-initialization does not
5078       // occur recursively there, and the implicit default constructor is
5079       // defined as deleted in the problematic cases.
5080       if (!S.getLangOpts().CPlusPlus11 &&
5081           ClassDecl->hasUninitializedReferenceMember()) {
5082         Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
5083         return;
5084       }
5085 
5086       // If this is list-value-initialization, pass the empty init list on when
5087       // building the constructor call. This affects the semantics of a few
5088       // things (such as whether an explicit default constructor can be called).
5089       Expr *InitListAsExpr = InitList;
5090       MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
5091       bool InitListSyntax = InitList;
5092 
5093       // FIXME: Instead of creating a CXXConstructExpr of array type here,
5094       // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr.
5095       return TryConstructorInitialization(
5096           S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax);
5097     }
5098   }
5099 
5100   Sequence.AddZeroInitializationStep(Entity.getType());
5101 }
5102 
5103 /// Attempt default initialization (C++ [dcl.init]p6).
5104 static void TryDefaultInitialization(Sema &S,
5105                                      const InitializedEntity &Entity,
5106                                      const InitializationKind &Kind,
5107                                      InitializationSequence &Sequence) {
5108   assert(Kind.getKind() == InitializationKind::IK_Default);
5109 
5110   // C++ [dcl.init]p6:
5111   //   To default-initialize an object of type T means:
5112   //     - if T is an array type, each element is default-initialized;
5113   QualType DestType = S.Context.getBaseElementType(Entity.getType());
5114 
5115   //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
5116   //       constructor for T is called (and the initialization is ill-formed if
5117   //       T has no accessible default constructor);
5118   if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
5119     TryConstructorInitialization(S, Entity, Kind, None, DestType,
5120                                  Entity.getType(), Sequence);
5121     return;
5122   }
5123 
5124   //     - otherwise, no initialization is performed.
5125 
5126   //   If a program calls for the default initialization of an object of
5127   //   a const-qualified type T, T shall be a class type with a user-provided
5128   //   default constructor.
5129   if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
5130     if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
5131       Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
5132     return;
5133   }
5134 
5135   // If the destination type has a lifetime property, zero-initialize it.
5136   if (DestType.getQualifiers().hasObjCLifetime()) {
5137     Sequence.AddZeroInitializationStep(Entity.getType());
5138     return;
5139   }
5140 }
5141 
5142 /// Attempt a user-defined conversion between two types (C++ [dcl.init]),
5143 /// which enumerates all conversion functions and performs overload resolution
5144 /// to select the best.
5145 static void TryUserDefinedConversion(Sema &S,
5146                                      QualType DestType,
5147                                      const InitializationKind &Kind,
5148                                      Expr *Initializer,
5149                                      InitializationSequence &Sequence,
5150                                      bool TopLevelOfInitList) {
5151   assert(!DestType->isReferenceType() && "References are handled elsewhere");
5152   QualType SourceType = Initializer->getType();
5153   assert((DestType->isRecordType() || SourceType->isRecordType()) &&
5154          "Must have a class type to perform a user-defined conversion");
5155 
5156   // Build the candidate set directly in the initialization sequence
5157   // structure, so that it will persist if we fail.
5158   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
5159   CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
5160   CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace());
5161 
5162   // Determine whether we are allowed to call explicit constructors or
5163   // explicit conversion operators.
5164   bool AllowExplicit = Kind.AllowExplicit();
5165 
5166   if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
5167     // The type we're converting to is a class type. Enumerate its constructors
5168     // to see if there is a suitable conversion.
5169     CXXRecordDecl *DestRecordDecl
5170       = cast<CXXRecordDecl>(DestRecordType->getDecl());
5171 
5172     // Try to complete the type we're converting to.
5173     if (S.isCompleteType(Kind.getLocation(), DestType)) {
5174       for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) {
5175         auto Info = getConstructorInfo(D);
5176         if (!Info.Constructor)
5177           continue;
5178 
5179         if (!Info.Constructor->isInvalidDecl() &&
5180             Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) {
5181           if (Info.ConstructorTmpl)
5182             S.AddTemplateOverloadCandidate(
5183                 Info.ConstructorTmpl, Info.FoundDecl,
5184                 /*ExplicitArgs*/ nullptr, Initializer, CandidateSet,
5185                 /*SuppressUserConversions=*/true,
5186                 /*PartialOverloading*/ false, AllowExplicit);
5187           else
5188             S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
5189                                    Initializer, CandidateSet,
5190                                    /*SuppressUserConversions=*/true,
5191                                    /*PartialOverloading*/ false, AllowExplicit);
5192         }
5193       }
5194     }
5195   }
5196 
5197   SourceLocation DeclLoc = Initializer->getBeginLoc();
5198 
5199   if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
5200     // The type we're converting from is a class type, enumerate its conversion
5201     // functions.
5202 
5203     // We can only enumerate the conversion functions for a complete type; if
5204     // the type isn't complete, simply skip this step.
5205     if (S.isCompleteType(DeclLoc, SourceType)) {
5206       CXXRecordDecl *SourceRecordDecl
5207         = cast<CXXRecordDecl>(SourceRecordType->getDecl());
5208 
5209       const auto &Conversions =
5210           SourceRecordDecl->getVisibleConversionFunctions();
5211       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
5212         NamedDecl *D = *I;
5213         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
5214         if (isa<UsingShadowDecl>(D))
5215           D = cast<UsingShadowDecl>(D)->getTargetDecl();
5216 
5217         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
5218         CXXConversionDecl *Conv;
5219         if (ConvTemplate)
5220           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5221         else
5222           Conv = cast<CXXConversionDecl>(D);
5223 
5224         if (ConvTemplate)
5225           S.AddTemplateConversionCandidate(
5226               ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
5227               CandidateSet, AllowExplicit, AllowExplicit);
5228         else
5229           S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer,
5230                                    DestType, CandidateSet, AllowExplicit,
5231                                    AllowExplicit);
5232       }
5233     }
5234   }
5235 
5236   // Perform overload resolution. If it fails, return the failed result.
5237   OverloadCandidateSet::iterator Best;
5238   if (OverloadingResult Result
5239         = CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
5240     Sequence.SetOverloadFailure(
5241                         InitializationSequence::FK_UserConversionOverloadFailed,
5242                                 Result);
5243     return;
5244   }
5245 
5246   FunctionDecl *Function = Best->Function;
5247   Function->setReferenced();
5248   bool HadMultipleCandidates = (CandidateSet.size() > 1);
5249 
5250   if (isa<CXXConstructorDecl>(Function)) {
5251     // Add the user-defined conversion step. Any cv-qualification conversion is
5252     // subsumed by the initialization. Per DR5, the created temporary is of the
5253     // cv-unqualified type of the destination.
5254     Sequence.AddUserConversionStep(Function, Best->FoundDecl,
5255                                    DestType.getUnqualifiedType(),
5256                                    HadMultipleCandidates);
5257 
5258     // C++14 and before:
5259     //   - if the function is a constructor, the call initializes a temporary
5260     //     of the cv-unqualified version of the destination type. The [...]
5261     //     temporary [...] is then used to direct-initialize, according to the
5262     //     rules above, the object that is the destination of the
5263     //     copy-initialization.
5264     // Note that this just performs a simple object copy from the temporary.
5265     //
5266     // C++17:
5267     //   - if the function is a constructor, the call is a prvalue of the
5268     //     cv-unqualified version of the destination type whose return object
5269     //     is initialized by the constructor. The call is used to
5270     //     direct-initialize, according to the rules above, the object that
5271     //     is the destination of the copy-initialization.
5272     // Therefore we need to do nothing further.
5273     //
5274     // FIXME: Mark this copy as extraneous.
5275     if (!S.getLangOpts().CPlusPlus17)
5276       Sequence.AddFinalCopy(DestType);
5277     else if (DestType.hasQualifiers())
5278       Sequence.AddQualificationConversionStep(DestType, VK_RValue);
5279     return;
5280   }
5281 
5282   // Add the user-defined conversion step that calls the conversion function.
5283   QualType ConvType = Function->getCallResultType();
5284   Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
5285                                  HadMultipleCandidates);
5286 
5287   if (ConvType->getAs<RecordType>()) {
5288     //   The call is used to direct-initialize [...] the object that is the
5289     //   destination of the copy-initialization.
5290     //
5291     // In C++17, this does not call a constructor if we enter /17.6.1:
5292     //   - If the initializer expression is a prvalue and the cv-unqualified
5293     //     version of the source type is the same as the class of the
5294     //     destination [... do not make an extra copy]
5295     //
5296     // FIXME: Mark this copy as extraneous.
5297     if (!S.getLangOpts().CPlusPlus17 ||
5298         Function->getReturnType()->isReferenceType() ||
5299         !S.Context.hasSameUnqualifiedType(ConvType, DestType))
5300       Sequence.AddFinalCopy(DestType);
5301     else if (!S.Context.hasSameType(ConvType, DestType))
5302       Sequence.AddQualificationConversionStep(DestType, VK_RValue);
5303     return;
5304   }
5305 
5306   // If the conversion following the call to the conversion function
5307   // is interesting, add it as a separate step.
5308   if (Best->FinalConversion.First || Best->FinalConversion.Second ||
5309       Best->FinalConversion.Third) {
5310     ImplicitConversionSequence ICS;
5311     ICS.setStandard();
5312     ICS.Standard = Best->FinalConversion;
5313     Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5314   }
5315 }
5316 
5317 /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>,
5318 /// a function with a pointer return type contains a 'return false;' statement.
5319 /// In C++11, 'false' is not a null pointer, so this breaks the build of any
5320 /// code using that header.
5321 ///
5322 /// Work around this by treating 'return false;' as zero-initializing the result
5323 /// if it's used in a pointer-returning function in a system header.
5324 static bool isLibstdcxxPointerReturnFalseHack(Sema &S,
5325                                               const InitializedEntity &Entity,
5326                                               const Expr *Init) {
5327   return S.getLangOpts().CPlusPlus11 &&
5328          Entity.getKind() == InitializedEntity::EK_Result &&
5329          Entity.getType()->isPointerType() &&
5330          isa<CXXBoolLiteralExpr>(Init) &&
5331          !cast<CXXBoolLiteralExpr>(Init)->getValue() &&
5332          S.getSourceManager().isInSystemHeader(Init->getExprLoc());
5333 }
5334 
5335 /// The non-zero enum values here are indexes into diagnostic alternatives.
5336 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
5337 
5338 /// Determines whether this expression is an acceptable ICR source.
5339 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
5340                                          bool isAddressOf, bool &isWeakAccess) {
5341   // Skip parens.
5342   e = e->IgnoreParens();
5343 
5344   // Skip address-of nodes.
5345   if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
5346     if (op->getOpcode() == UO_AddrOf)
5347       return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
5348                                 isWeakAccess);
5349 
5350   // Skip certain casts.
5351   } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
5352     switch (ce->getCastKind()) {
5353     case CK_Dependent:
5354     case CK_BitCast:
5355     case CK_LValueBitCast:
5356     case CK_NoOp:
5357       return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
5358 
5359     case CK_ArrayToPointerDecay:
5360       return IIK_nonscalar;
5361 
5362     case CK_NullToPointer:
5363       return IIK_okay;
5364 
5365     default:
5366       break;
5367     }
5368 
5369   // If we have a declaration reference, it had better be a local variable.
5370   } else if (isa<DeclRefExpr>(e)) {
5371     // set isWeakAccess to true, to mean that there will be an implicit
5372     // load which requires a cleanup.
5373     if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
5374       isWeakAccess = true;
5375 
5376     if (!isAddressOf) return IIK_nonlocal;
5377 
5378     VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
5379     if (!var) return IIK_nonlocal;
5380 
5381     return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
5382 
5383   // If we have a conditional operator, check both sides.
5384   } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
5385     if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
5386                                                 isWeakAccess))
5387       return iik;
5388 
5389     return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
5390 
5391   // These are never scalar.
5392   } else if (isa<ArraySubscriptExpr>(e)) {
5393     return IIK_nonscalar;
5394 
5395   // Otherwise, it needs to be a null pointer constant.
5396   } else {
5397     return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
5398             ? IIK_okay : IIK_nonlocal);
5399   }
5400 
5401   return IIK_nonlocal;
5402 }
5403 
5404 /// Check whether the given expression is a valid operand for an
5405 /// indirect copy/restore.
5406 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
5407   assert(src->isRValue());
5408   bool isWeakAccess = false;
5409   InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
5410   // If isWeakAccess to true, there will be an implicit
5411   // load which requires a cleanup.
5412   if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
5413     S.Cleanup.setExprNeedsCleanups(true);
5414 
5415   if (iik == IIK_okay) return;
5416 
5417   S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
5418     << ((unsigned) iik - 1)  // shift index into diagnostic explanations
5419     << src->getSourceRange();
5420 }
5421 
5422 /// Determine whether we have compatible array types for the
5423 /// purposes of GNU by-copy array initialization.
5424 static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest,
5425                                     const ArrayType *Source) {
5426   // If the source and destination array types are equivalent, we're
5427   // done.
5428   if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
5429     return true;
5430 
5431   // Make sure that the element types are the same.
5432   if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
5433     return false;
5434 
5435   // The only mismatch we allow is when the destination is an
5436   // incomplete array type and the source is a constant array type.
5437   return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
5438 }
5439 
5440 static bool tryObjCWritebackConversion(Sema &S,
5441                                        InitializationSequence &Sequence,
5442                                        const InitializedEntity &Entity,
5443                                        Expr *Initializer) {
5444   bool ArrayDecay = false;
5445   QualType ArgType = Initializer->getType();
5446   QualType ArgPointee;
5447   if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
5448     ArrayDecay = true;
5449     ArgPointee = ArgArrayType->getElementType();
5450     ArgType = S.Context.getPointerType(ArgPointee);
5451   }
5452 
5453   // Handle write-back conversion.
5454   QualType ConvertedArgType;
5455   if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
5456                                    ConvertedArgType))
5457     return false;
5458 
5459   // We should copy unless we're passing to an argument explicitly
5460   // marked 'out'.
5461   bool ShouldCopy = true;
5462   if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5463     ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5464 
5465   // Do we need an lvalue conversion?
5466   if (ArrayDecay || Initializer->isGLValue()) {
5467     ImplicitConversionSequence ICS;
5468     ICS.setStandard();
5469     ICS.Standard.setAsIdentityConversion();
5470 
5471     QualType ResultType;
5472     if (ArrayDecay) {
5473       ICS.Standard.First = ICK_Array_To_Pointer;
5474       ResultType = S.Context.getPointerType(ArgPointee);
5475     } else {
5476       ICS.Standard.First = ICK_Lvalue_To_Rvalue;
5477       ResultType = Initializer->getType().getNonLValueExprType(S.Context);
5478     }
5479 
5480     Sequence.AddConversionSequenceStep(ICS, ResultType);
5481   }
5482 
5483   Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
5484   return true;
5485 }
5486 
5487 static bool TryOCLSamplerInitialization(Sema &S,
5488                                         InitializationSequence &Sequence,
5489                                         QualType DestType,
5490                                         Expr *Initializer) {
5491   if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
5492       (!Initializer->isIntegerConstantExpr(S.Context) &&
5493       !Initializer->getType()->isSamplerT()))
5494     return false;
5495 
5496   Sequence.AddOCLSamplerInitStep(DestType);
5497   return true;
5498 }
5499 
5500 static bool IsZeroInitializer(Expr *Initializer, Sema &S) {
5501   return Initializer->isIntegerConstantExpr(S.getASTContext()) &&
5502     (Initializer->EvaluateKnownConstInt(S.getASTContext()) == 0);
5503 }
5504 
5505 static bool TryOCLZeroOpaqueTypeInitialization(Sema &S,
5506                                                InitializationSequence &Sequence,
5507                                                QualType DestType,
5508                                                Expr *Initializer) {
5509   if (!S.getLangOpts().OpenCL)
5510     return false;
5511 
5512   //
5513   // OpenCL 1.2 spec, s6.12.10
5514   //
5515   // The event argument can also be used to associate the
5516   // async_work_group_copy with a previous async copy allowing
5517   // an event to be shared by multiple async copies; otherwise
5518   // event should be zero.
5519   //
5520   if (DestType->isEventT() || DestType->isQueueT()) {
5521     if (!IsZeroInitializer(Initializer, S))
5522       return false;
5523 
5524     Sequence.AddOCLZeroOpaqueTypeStep(DestType);
5525     return true;
5526   }
5527 
5528   // We should allow zero initialization for all types defined in the
5529   // cl_intel_device_side_avc_motion_estimation extension, except
5530   // intel_sub_group_avc_mce_payload_t and intel_sub_group_avc_mce_result_t.
5531   if (S.getOpenCLOptions().isEnabled(
5532           "cl_intel_device_side_avc_motion_estimation") &&
5533       DestType->isOCLIntelSubgroupAVCType()) {
5534     if (DestType->isOCLIntelSubgroupAVCMcePayloadType() ||
5535         DestType->isOCLIntelSubgroupAVCMceResultType())
5536       return false;
5537     if (!IsZeroInitializer(Initializer, S))
5538       return false;
5539 
5540     Sequence.AddOCLZeroOpaqueTypeStep(DestType);
5541     return true;
5542   }
5543 
5544   return false;
5545 }
5546 
5547 InitializationSequence::InitializationSequence(Sema &S,
5548                                                const InitializedEntity &Entity,
5549                                                const InitializationKind &Kind,
5550                                                MultiExprArg Args,
5551                                                bool TopLevelOfInitList,
5552                                                bool TreatUnavailableAsInvalid)
5553     : FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) {
5554   InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList,
5555                  TreatUnavailableAsInvalid);
5556 }
5557 
5558 /// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the
5559 /// address of that function, this returns true. Otherwise, it returns false.
5560 static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) {
5561   auto *DRE = dyn_cast<DeclRefExpr>(E);
5562   if (!DRE || !isa<FunctionDecl>(DRE->getDecl()))
5563     return false;
5564 
5565   return !S.checkAddressOfFunctionIsAvailable(
5566       cast<FunctionDecl>(DRE->getDecl()));
5567 }
5568 
5569 /// Determine whether we can perform an elementwise array copy for this kind
5570 /// of entity.
5571 static bool canPerformArrayCopy(const InitializedEntity &Entity) {
5572   switch (Entity.getKind()) {
5573   case InitializedEntity::EK_LambdaCapture:
5574     // C++ [expr.prim.lambda]p24:
5575     //   For array members, the array elements are direct-initialized in
5576     //   increasing subscript order.
5577     return true;
5578 
5579   case InitializedEntity::EK_Variable:
5580     // C++ [dcl.decomp]p1:
5581     //   [...] each element is copy-initialized or direct-initialized from the
5582     //   corresponding element of the assignment-expression [...]
5583     return isa<DecompositionDecl>(Entity.getDecl());
5584 
5585   case InitializedEntity::EK_Member:
5586     // C++ [class.copy.ctor]p14:
5587     //   - if the member is an array, each element is direct-initialized with
5588     //     the corresponding subobject of x
5589     return Entity.isImplicitMemberInitializer();
5590 
5591   case InitializedEntity::EK_ArrayElement:
5592     // All the above cases are intended to apply recursively, even though none
5593     // of them actually say that.
5594     if (auto *E = Entity.getParent())
5595       return canPerformArrayCopy(*E);
5596     break;
5597 
5598   default:
5599     break;
5600   }
5601 
5602   return false;
5603 }
5604 
5605 void InitializationSequence::InitializeFrom(Sema &S,
5606                                             const InitializedEntity &Entity,
5607                                             const InitializationKind &Kind,
5608                                             MultiExprArg Args,
5609                                             bool TopLevelOfInitList,
5610                                             bool TreatUnavailableAsInvalid) {
5611   ASTContext &Context = S.Context;
5612 
5613   // Eliminate non-overload placeholder types in the arguments.  We
5614   // need to do this before checking whether types are dependent
5615   // because lowering a pseudo-object expression might well give us
5616   // something of dependent type.
5617   for (unsigned I = 0, E = Args.size(); I != E; ++I)
5618     if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
5619       // FIXME: should we be doing this here?
5620       ExprResult result = S.CheckPlaceholderExpr(Args[I]);
5621       if (result.isInvalid()) {
5622         SetFailed(FK_PlaceholderType);
5623         return;
5624       }
5625       Args[I] = result.get();
5626     }
5627 
5628   // C++0x [dcl.init]p16:
5629   //   The semantics of initializers are as follows. The destination type is
5630   //   the type of the object or reference being initialized and the source
5631   //   type is the type of the initializer expression. The source type is not
5632   //   defined when the initializer is a braced-init-list or when it is a
5633   //   parenthesized list of expressions.
5634   QualType DestType = Entity.getType();
5635 
5636   if (DestType->isDependentType() ||
5637       Expr::hasAnyTypeDependentArguments(Args)) {
5638     SequenceKind = DependentSequence;
5639     return;
5640   }
5641 
5642   // Almost everything is a normal sequence.
5643   setSequenceKind(NormalSequence);
5644 
5645   QualType SourceType;
5646   Expr *Initializer = nullptr;
5647   if (Args.size() == 1) {
5648     Initializer = Args[0];
5649     if (S.getLangOpts().ObjC) {
5650       if (S.CheckObjCBridgeRelatedConversions(Initializer->getBeginLoc(),
5651                                               DestType, Initializer->getType(),
5652                                               Initializer) ||
5653           S.CheckConversionToObjCLiteral(DestType, Initializer))
5654         Args[0] = Initializer;
5655     }
5656     if (!isa<InitListExpr>(Initializer))
5657       SourceType = Initializer->getType();
5658   }
5659 
5660   //     - If the initializer is a (non-parenthesized) braced-init-list, the
5661   //       object is list-initialized (8.5.4).
5662   if (Kind.getKind() != InitializationKind::IK_Direct) {
5663     if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
5664       TryListInitialization(S, Entity, Kind, InitList, *this,
5665                             TreatUnavailableAsInvalid);
5666       return;
5667     }
5668   }
5669 
5670   //     - If the destination type is a reference type, see 8.5.3.
5671   if (DestType->isReferenceType()) {
5672     // C++0x [dcl.init.ref]p1:
5673     //   A variable declared to be a T& or T&&, that is, "reference to type T"
5674     //   (8.3.2), shall be initialized by an object, or function, of type T or
5675     //   by an object that can be converted into a T.
5676     // (Therefore, multiple arguments are not permitted.)
5677     if (Args.size() != 1)
5678       SetFailed(FK_TooManyInitsForReference);
5679     // C++17 [dcl.init.ref]p5:
5680     //   A reference [...] is initialized by an expression [...] as follows:
5681     // If the initializer is not an expression, presumably we should reject,
5682     // but the standard fails to actually say so.
5683     else if (isa<InitListExpr>(Args[0]))
5684       SetFailed(FK_ParenthesizedListInitForReference);
5685     else
5686       TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
5687     return;
5688   }
5689 
5690   //     - If the initializer is (), the object is value-initialized.
5691   if (Kind.getKind() == InitializationKind::IK_Value ||
5692       (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
5693     TryValueInitialization(S, Entity, Kind, *this);
5694     return;
5695   }
5696 
5697   // Handle default initialization.
5698   if (Kind.getKind() == InitializationKind::IK_Default) {
5699     TryDefaultInitialization(S, Entity, Kind, *this);
5700     return;
5701   }
5702 
5703   //     - If the destination type is an array of characters, an array of
5704   //       char16_t, an array of char32_t, or an array of wchar_t, and the
5705   //       initializer is a string literal, see 8.5.2.
5706   //     - Otherwise, if the destination type is an array, the program is
5707   //       ill-formed.
5708   if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
5709     if (Initializer && isa<VariableArrayType>(DestAT)) {
5710       SetFailed(FK_VariableLengthArrayHasInitializer);
5711       return;
5712     }
5713 
5714     if (Initializer) {
5715       switch (IsStringInit(Initializer, DestAT, Context)) {
5716       case SIF_None:
5717         TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
5718         return;
5719       case SIF_NarrowStringIntoWideChar:
5720         SetFailed(FK_NarrowStringIntoWideCharArray);
5721         return;
5722       case SIF_WideStringIntoChar:
5723         SetFailed(FK_WideStringIntoCharArray);
5724         return;
5725       case SIF_IncompatWideStringIntoWideChar:
5726         SetFailed(FK_IncompatWideStringIntoWideChar);
5727         return;
5728       case SIF_PlainStringIntoUTF8Char:
5729         SetFailed(FK_PlainStringIntoUTF8Char);
5730         return;
5731       case SIF_UTF8StringIntoPlainChar:
5732         SetFailed(FK_UTF8StringIntoPlainChar);
5733         return;
5734       case SIF_Other:
5735         break;
5736       }
5737     }
5738 
5739     // Some kinds of initialization permit an array to be initialized from
5740     // another array of the same type, and perform elementwise initialization.
5741     if (Initializer && isa<ConstantArrayType>(DestAT) &&
5742         S.Context.hasSameUnqualifiedType(Initializer->getType(),
5743                                          Entity.getType()) &&
5744         canPerformArrayCopy(Entity)) {
5745       // If source is a prvalue, use it directly.
5746       if (Initializer->getValueKind() == VK_RValue) {
5747         AddArrayInitStep(DestType, /*IsGNUExtension*/false);
5748         return;
5749       }
5750 
5751       // Emit element-at-a-time copy loop.
5752       InitializedEntity Element =
5753           InitializedEntity::InitializeElement(S.Context, 0, Entity);
5754       QualType InitEltT =
5755           Context.getAsArrayType(Initializer->getType())->getElementType();
5756       OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT,
5757                           Initializer->getValueKind(),
5758                           Initializer->getObjectKind());
5759       Expr *OVEAsExpr = &OVE;
5760       InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList,
5761                      TreatUnavailableAsInvalid);
5762       if (!Failed())
5763         AddArrayInitLoopStep(Entity.getType(), InitEltT);
5764       return;
5765     }
5766 
5767     // Note: as an GNU C extension, we allow initialization of an
5768     // array from a compound literal that creates an array of the same
5769     // type, so long as the initializer has no side effects.
5770     if (!S.getLangOpts().CPlusPlus && Initializer &&
5771         isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
5772         Initializer->getType()->isArrayType()) {
5773       const ArrayType *SourceAT
5774         = Context.getAsArrayType(Initializer->getType());
5775       if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
5776         SetFailed(FK_ArrayTypeMismatch);
5777       else if (Initializer->HasSideEffects(S.Context))
5778         SetFailed(FK_NonConstantArrayInit);
5779       else {
5780         AddArrayInitStep(DestType, /*IsGNUExtension*/true);
5781       }
5782     }
5783     // Note: as a GNU C++ extension, we allow list-initialization of a
5784     // class member of array type from a parenthesized initializer list.
5785     else if (S.getLangOpts().CPlusPlus &&
5786              Entity.getKind() == InitializedEntity::EK_Member &&
5787              Initializer && isa<InitListExpr>(Initializer)) {
5788       TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
5789                             *this, TreatUnavailableAsInvalid);
5790       AddParenthesizedArrayInitStep(DestType);
5791     } else if (DestAT->getElementType()->isCharType())
5792       SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
5793     else if (IsWideCharCompatible(DestAT->getElementType(), Context))
5794       SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral);
5795     else
5796       SetFailed(FK_ArrayNeedsInitList);
5797 
5798     return;
5799   }
5800 
5801   // Determine whether we should consider writeback conversions for
5802   // Objective-C ARC.
5803   bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
5804          Entity.isParameterKind();
5805 
5806   if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
5807     return;
5808 
5809   // We're at the end of the line for C: it's either a write-back conversion
5810   // or it's a C assignment. There's no need to check anything else.
5811   if (!S.getLangOpts().CPlusPlus) {
5812     // If allowed, check whether this is an Objective-C writeback conversion.
5813     if (allowObjCWritebackConversion &&
5814         tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
5815       return;
5816     }
5817 
5818     if (TryOCLZeroOpaqueTypeInitialization(S, *this, DestType, Initializer))
5819       return;
5820 
5821     // Handle initialization in C
5822     AddCAssignmentStep(DestType);
5823     MaybeProduceObjCObject(S, *this, Entity);
5824     return;
5825   }
5826 
5827   assert(S.getLangOpts().CPlusPlus);
5828 
5829   //     - If the destination type is a (possibly cv-qualified) class type:
5830   if (DestType->isRecordType()) {
5831     //     - If the initialization is direct-initialization, or if it is
5832     //       copy-initialization where the cv-unqualified version of the
5833     //       source type is the same class as, or a derived class of, the
5834     //       class of the destination, constructors are considered. [...]
5835     if (Kind.getKind() == InitializationKind::IK_Direct ||
5836         (Kind.getKind() == InitializationKind::IK_Copy &&
5837          (Context.hasSameUnqualifiedType(SourceType, DestType) ||
5838           S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, DestType))))
5839       TryConstructorInitialization(S, Entity, Kind, Args,
5840                                    DestType, DestType, *this);
5841     //     - Otherwise (i.e., for the remaining copy-initialization cases),
5842     //       user-defined conversion sequences that can convert from the source
5843     //       type to the destination type or (when a conversion function is
5844     //       used) to a derived class thereof are enumerated as described in
5845     //       13.3.1.4, and the best one is chosen through overload resolution
5846     //       (13.3).
5847     else
5848       TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5849                                TopLevelOfInitList);
5850     return;
5851   }
5852 
5853   assert(Args.size() >= 1 && "Zero-argument case handled above");
5854 
5855   // The remaining cases all need a source type.
5856   if (Args.size() > 1) {
5857     SetFailed(FK_TooManyInitsForScalar);
5858     return;
5859   } else if (isa<InitListExpr>(Args[0])) {
5860     SetFailed(FK_ParenthesizedListInitForScalar);
5861     return;
5862   }
5863 
5864   //    - Otherwise, if the source type is a (possibly cv-qualified) class
5865   //      type, conversion functions are considered.
5866   if (!SourceType.isNull() && SourceType->isRecordType()) {
5867     // For a conversion to _Atomic(T) from either T or a class type derived
5868     // from T, initialize the T object then convert to _Atomic type.
5869     bool NeedAtomicConversion = false;
5870     if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) {
5871       if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) ||
5872           S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType,
5873                           Atomic->getValueType())) {
5874         DestType = Atomic->getValueType();
5875         NeedAtomicConversion = true;
5876       }
5877     }
5878 
5879     TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5880                              TopLevelOfInitList);
5881     MaybeProduceObjCObject(S, *this, Entity);
5882     if (!Failed() && NeedAtomicConversion)
5883       AddAtomicConversionStep(Entity.getType());
5884     return;
5885   }
5886 
5887   //    - Otherwise, if the initialization is direct-initialization, the source
5888   //    type is std::nullptr_t, and the destination type is bool, the initial
5889   //    value of the object being initialized is false.
5890   if (!SourceType.isNull() && SourceType->isNullPtrType() &&
5891       DestType->isBooleanType() &&
5892       Kind.getKind() == InitializationKind::IK_Direct) {
5893     AddConversionSequenceStep(
5894         ImplicitConversionSequence::getNullptrToBool(SourceType, DestType,
5895                                                      Initializer->isGLValue()),
5896         DestType);
5897     return;
5898   }
5899 
5900   //    - Otherwise, the initial value of the object being initialized is the
5901   //      (possibly converted) value of the initializer expression. Standard
5902   //      conversions (Clause 4) will be used, if necessary, to convert the
5903   //      initializer expression to the cv-unqualified version of the
5904   //      destination type; no user-defined conversions are considered.
5905 
5906   ImplicitConversionSequence ICS
5907     = S.TryImplicitConversion(Initializer, DestType,
5908                               /*SuppressUserConversions*/true,
5909                               Sema::AllowedExplicit::None,
5910                               /*InOverloadResolution*/ false,
5911                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
5912                               allowObjCWritebackConversion);
5913 
5914   if (ICS.isStandard() &&
5915       ICS.Standard.Second == ICK_Writeback_Conversion) {
5916     // Objective-C ARC writeback conversion.
5917 
5918     // We should copy unless we're passing to an argument explicitly
5919     // marked 'out'.
5920     bool ShouldCopy = true;
5921     if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5922       ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5923 
5924     // If there was an lvalue adjustment, add it as a separate conversion.
5925     if (ICS.Standard.First == ICK_Array_To_Pointer ||
5926         ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
5927       ImplicitConversionSequence LvalueICS;
5928       LvalueICS.setStandard();
5929       LvalueICS.Standard.setAsIdentityConversion();
5930       LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
5931       LvalueICS.Standard.First = ICS.Standard.First;
5932       AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
5933     }
5934 
5935     AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy);
5936   } else if (ICS.isBad()) {
5937     DeclAccessPair dap;
5938     if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) {
5939       AddZeroInitializationStep(Entity.getType());
5940     } else if (Initializer->getType() == Context.OverloadTy &&
5941                !S.ResolveAddressOfOverloadedFunction(Initializer, DestType,
5942                                                      false, dap))
5943       SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
5944     else if (Initializer->getType()->isFunctionType() &&
5945              isExprAnUnaddressableFunction(S, Initializer))
5946       SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction);
5947     else
5948       SetFailed(InitializationSequence::FK_ConversionFailed);
5949   } else {
5950     AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5951 
5952     MaybeProduceObjCObject(S, *this, Entity);
5953   }
5954 }
5955 
5956 InitializationSequence::~InitializationSequence() {
5957   for (auto &S : Steps)
5958     S.Destroy();
5959 }
5960 
5961 //===----------------------------------------------------------------------===//
5962 // Perform initialization
5963 //===----------------------------------------------------------------------===//
5964 static Sema::AssignmentAction
5965 getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) {
5966   switch(Entity.getKind()) {
5967   case InitializedEntity::EK_Variable:
5968   case InitializedEntity::EK_New:
5969   case InitializedEntity::EK_Exception:
5970   case InitializedEntity::EK_Base:
5971   case InitializedEntity::EK_Delegating:
5972     return Sema::AA_Initializing;
5973 
5974   case InitializedEntity::EK_Parameter:
5975     if (Entity.getDecl() &&
5976         isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5977       return Sema::AA_Sending;
5978 
5979     return Sema::AA_Passing;
5980 
5981   case InitializedEntity::EK_Parameter_CF_Audited:
5982     if (Entity.getDecl() &&
5983       isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5984       return Sema::AA_Sending;
5985 
5986     return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited;
5987 
5988   case InitializedEntity::EK_Result:
5989   case InitializedEntity::EK_StmtExprResult: // FIXME: Not quite right.
5990     return Sema::AA_Returning;
5991 
5992   case InitializedEntity::EK_Temporary:
5993   case InitializedEntity::EK_RelatedResult:
5994     // FIXME: Can we tell apart casting vs. converting?
5995     return Sema::AA_Casting;
5996 
5997   case InitializedEntity::EK_Member:
5998   case InitializedEntity::EK_Binding:
5999   case InitializedEntity::EK_ArrayElement:
6000   case InitializedEntity::EK_VectorElement:
6001   case InitializedEntity::EK_ComplexElement:
6002   case InitializedEntity::EK_BlockElement:
6003   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6004   case InitializedEntity::EK_LambdaCapture:
6005   case InitializedEntity::EK_CompoundLiteralInit:
6006     return Sema::AA_Initializing;
6007   }
6008 
6009   llvm_unreachable("Invalid EntityKind!");
6010 }
6011 
6012 /// Whether we should bind a created object as a temporary when
6013 /// initializing the given entity.
6014 static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
6015   switch (Entity.getKind()) {
6016   case InitializedEntity::EK_ArrayElement:
6017   case InitializedEntity::EK_Member:
6018   case InitializedEntity::EK_Result:
6019   case InitializedEntity::EK_StmtExprResult:
6020   case InitializedEntity::EK_New:
6021   case InitializedEntity::EK_Variable:
6022   case InitializedEntity::EK_Base:
6023   case InitializedEntity::EK_Delegating:
6024   case InitializedEntity::EK_VectorElement:
6025   case InitializedEntity::EK_ComplexElement:
6026   case InitializedEntity::EK_Exception:
6027   case InitializedEntity::EK_BlockElement:
6028   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6029   case InitializedEntity::EK_LambdaCapture:
6030   case InitializedEntity::EK_CompoundLiteralInit:
6031     return false;
6032 
6033   case InitializedEntity::EK_Parameter:
6034   case InitializedEntity::EK_Parameter_CF_Audited:
6035   case InitializedEntity::EK_Temporary:
6036   case InitializedEntity::EK_RelatedResult:
6037   case InitializedEntity::EK_Binding:
6038     return true;
6039   }
6040 
6041   llvm_unreachable("missed an InitializedEntity kind?");
6042 }
6043 
6044 /// Whether the given entity, when initialized with an object
6045 /// created for that initialization, requires destruction.
6046 static bool shouldDestroyEntity(const InitializedEntity &Entity) {
6047   switch (Entity.getKind()) {
6048     case InitializedEntity::EK_Result:
6049     case InitializedEntity::EK_StmtExprResult:
6050     case InitializedEntity::EK_New:
6051     case InitializedEntity::EK_Base:
6052     case InitializedEntity::EK_Delegating:
6053     case InitializedEntity::EK_VectorElement:
6054     case InitializedEntity::EK_ComplexElement:
6055     case InitializedEntity::EK_BlockElement:
6056     case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6057     case InitializedEntity::EK_LambdaCapture:
6058       return false;
6059 
6060     case InitializedEntity::EK_Member:
6061     case InitializedEntity::EK_Binding:
6062     case InitializedEntity::EK_Variable:
6063     case InitializedEntity::EK_Parameter:
6064     case InitializedEntity::EK_Parameter_CF_Audited:
6065     case InitializedEntity::EK_Temporary:
6066     case InitializedEntity::EK_ArrayElement:
6067     case InitializedEntity::EK_Exception:
6068     case InitializedEntity::EK_CompoundLiteralInit:
6069     case InitializedEntity::EK_RelatedResult:
6070       return true;
6071   }
6072 
6073   llvm_unreachable("missed an InitializedEntity kind?");
6074 }
6075 
6076 /// Get the location at which initialization diagnostics should appear.
6077 static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
6078                                            Expr *Initializer) {
6079   switch (Entity.getKind()) {
6080   case InitializedEntity::EK_Result:
6081   case InitializedEntity::EK_StmtExprResult:
6082     return Entity.getReturnLoc();
6083 
6084   case InitializedEntity::EK_Exception:
6085     return Entity.getThrowLoc();
6086 
6087   case InitializedEntity::EK_Variable:
6088   case InitializedEntity::EK_Binding:
6089     return Entity.getDecl()->getLocation();
6090 
6091   case InitializedEntity::EK_LambdaCapture:
6092     return Entity.getCaptureLoc();
6093 
6094   case InitializedEntity::EK_ArrayElement:
6095   case InitializedEntity::EK_Member:
6096   case InitializedEntity::EK_Parameter:
6097   case InitializedEntity::EK_Parameter_CF_Audited:
6098   case InitializedEntity::EK_Temporary:
6099   case InitializedEntity::EK_New:
6100   case InitializedEntity::EK_Base:
6101   case InitializedEntity::EK_Delegating:
6102   case InitializedEntity::EK_VectorElement:
6103   case InitializedEntity::EK_ComplexElement:
6104   case InitializedEntity::EK_BlockElement:
6105   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6106   case InitializedEntity::EK_CompoundLiteralInit:
6107   case InitializedEntity::EK_RelatedResult:
6108     return Initializer->getBeginLoc();
6109   }
6110   llvm_unreachable("missed an InitializedEntity kind?");
6111 }
6112 
6113 /// Make a (potentially elidable) temporary copy of the object
6114 /// provided by the given initializer by calling the appropriate copy
6115 /// constructor.
6116 ///
6117 /// \param S The Sema object used for type-checking.
6118 ///
6119 /// \param T The type of the temporary object, which must either be
6120 /// the type of the initializer expression or a superclass thereof.
6121 ///
6122 /// \param Entity The entity being initialized.
6123 ///
6124 /// \param CurInit The initializer expression.
6125 ///
6126 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that
6127 /// is permitted in C++03 (but not C++0x) when binding a reference to
6128 /// an rvalue.
6129 ///
6130 /// \returns An expression that copies the initializer expression into
6131 /// a temporary object, or an error expression if a copy could not be
6132 /// created.
6133 static ExprResult CopyObject(Sema &S,
6134                              QualType T,
6135                              const InitializedEntity &Entity,
6136                              ExprResult CurInit,
6137                              bool IsExtraneousCopy) {
6138   if (CurInit.isInvalid())
6139     return CurInit;
6140   // Determine which class type we're copying to.
6141   Expr *CurInitExpr = (Expr *)CurInit.get();
6142   CXXRecordDecl *Class = nullptr;
6143   if (const RecordType *Record = T->getAs<RecordType>())
6144     Class = cast<CXXRecordDecl>(Record->getDecl());
6145   if (!Class)
6146     return CurInit;
6147 
6148   SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
6149 
6150   // Make sure that the type we are copying is complete.
6151   if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
6152     return CurInit;
6153 
6154   // Perform overload resolution using the class's constructors. Per
6155   // C++11 [dcl.init]p16, second bullet for class types, this initialization
6156   // is direct-initialization.
6157   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
6158   DeclContext::lookup_result Ctors = S.LookupConstructors(Class);
6159 
6160   OverloadCandidateSet::iterator Best;
6161   switch (ResolveConstructorOverload(
6162       S, Loc, CurInitExpr, CandidateSet, T, Ctors, Best,
6163       /*CopyInitializing=*/false, /*AllowExplicit=*/true,
6164       /*OnlyListConstructors=*/false, /*IsListInit=*/false,
6165       /*SecondStepOfCopyInit=*/true)) {
6166   case OR_Success:
6167     break;
6168 
6169   case OR_No_Viable_Function:
6170     CandidateSet.NoteCandidates(
6171         PartialDiagnosticAt(
6172             Loc, S.PDiag(IsExtraneousCopy && !S.isSFINAEContext()
6173                              ? diag::ext_rvalue_to_reference_temp_copy_no_viable
6174                              : diag::err_temp_copy_no_viable)
6175                      << (int)Entity.getKind() << CurInitExpr->getType()
6176                      << CurInitExpr->getSourceRange()),
6177         S, OCD_AllCandidates, CurInitExpr);
6178     if (!IsExtraneousCopy || S.isSFINAEContext())
6179       return ExprError();
6180     return CurInit;
6181 
6182   case OR_Ambiguous:
6183     CandidateSet.NoteCandidates(
6184         PartialDiagnosticAt(Loc, S.PDiag(diag::err_temp_copy_ambiguous)
6185                                      << (int)Entity.getKind()
6186                                      << CurInitExpr->getType()
6187                                      << CurInitExpr->getSourceRange()),
6188         S, OCD_AmbiguousCandidates, CurInitExpr);
6189     return ExprError();
6190 
6191   case OR_Deleted:
6192     S.Diag(Loc, diag::err_temp_copy_deleted)
6193       << (int)Entity.getKind() << CurInitExpr->getType()
6194       << CurInitExpr->getSourceRange();
6195     S.NoteDeletedFunction(Best->Function);
6196     return ExprError();
6197   }
6198 
6199   bool HadMultipleCandidates = CandidateSet.size() > 1;
6200 
6201   CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
6202   SmallVector<Expr*, 8> ConstructorArgs;
6203   CurInit.get(); // Ownership transferred into MultiExprArg, below.
6204 
6205   S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity,
6206                            IsExtraneousCopy);
6207 
6208   if (IsExtraneousCopy) {
6209     // If this is a totally extraneous copy for C++03 reference
6210     // binding purposes, just return the original initialization
6211     // expression. We don't generate an (elided) copy operation here
6212     // because doing so would require us to pass down a flag to avoid
6213     // infinite recursion, where each step adds another extraneous,
6214     // elidable copy.
6215 
6216     // Instantiate the default arguments of any extra parameters in
6217     // the selected copy constructor, as if we were going to create a
6218     // proper call to the copy constructor.
6219     for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
6220       ParmVarDecl *Parm = Constructor->getParamDecl(I);
6221       if (S.RequireCompleteType(Loc, Parm->getType(),
6222                                 diag::err_call_incomplete_argument))
6223         break;
6224 
6225       // Build the default argument expression; we don't actually care
6226       // if this succeeds or not, because this routine will complain
6227       // if there was a problem.
6228       S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
6229     }
6230 
6231     return CurInitExpr;
6232   }
6233 
6234   // Determine the arguments required to actually perform the
6235   // constructor call (we might have derived-to-base conversions, or
6236   // the copy constructor may have default arguments).
6237   if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs))
6238     return ExprError();
6239 
6240   // C++0x [class.copy]p32:
6241   //   When certain criteria are met, an implementation is allowed to
6242   //   omit the copy/move construction of a class object, even if the
6243   //   copy/move constructor and/or destructor for the object have
6244   //   side effects. [...]
6245   //     - when a temporary class object that has not been bound to a
6246   //       reference (12.2) would be copied/moved to a class object
6247   //       with the same cv-unqualified type, the copy/move operation
6248   //       can be omitted by constructing the temporary object
6249   //       directly into the target of the omitted copy/move
6250   //
6251   // Note that the other three bullets are handled elsewhere. Copy
6252   // elision for return statements and throw expressions are handled as part
6253   // of constructor initialization, while copy elision for exception handlers
6254   // is handled by the run-time.
6255   //
6256   // FIXME: If the function parameter is not the same type as the temporary, we
6257   // should still be able to elide the copy, but we don't have a way to
6258   // represent in the AST how much should be elided in this case.
6259   bool Elidable =
6260       CurInitExpr->isTemporaryObject(S.Context, Class) &&
6261       S.Context.hasSameUnqualifiedType(
6262           Best->Function->getParamDecl(0)->getType().getNonReferenceType(),
6263           CurInitExpr->getType());
6264 
6265   // Actually perform the constructor call.
6266   CurInit = S.BuildCXXConstructExpr(Loc, T, Best->FoundDecl, Constructor,
6267                                     Elidable,
6268                                     ConstructorArgs,
6269                                     HadMultipleCandidates,
6270                                     /*ListInit*/ false,
6271                                     /*StdInitListInit*/ false,
6272                                     /*ZeroInit*/ false,
6273                                     CXXConstructExpr::CK_Complete,
6274                                     SourceRange());
6275 
6276   // If we're supposed to bind temporaries, do so.
6277   if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
6278     CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
6279   return CurInit;
6280 }
6281 
6282 /// Check whether elidable copy construction for binding a reference to
6283 /// a temporary would have succeeded if we were building in C++98 mode, for
6284 /// -Wc++98-compat.
6285 static void CheckCXX98CompatAccessibleCopy(Sema &S,
6286                                            const InitializedEntity &Entity,
6287                                            Expr *CurInitExpr) {
6288   assert(S.getLangOpts().CPlusPlus11);
6289 
6290   const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
6291   if (!Record)
6292     return;
6293 
6294   SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
6295   if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc))
6296     return;
6297 
6298   // Find constructors which would have been considered.
6299   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
6300   DeclContext::lookup_result Ctors =
6301       S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl()));
6302 
6303   // Perform overload resolution.
6304   OverloadCandidateSet::iterator Best;
6305   OverloadingResult OR = ResolveConstructorOverload(
6306       S, Loc, CurInitExpr, CandidateSet, CurInitExpr->getType(), Ctors, Best,
6307       /*CopyInitializing=*/false, /*AllowExplicit=*/true,
6308       /*OnlyListConstructors=*/false, /*IsListInit=*/false,
6309       /*SecondStepOfCopyInit=*/true);
6310 
6311   PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
6312     << OR << (int)Entity.getKind() << CurInitExpr->getType()
6313     << CurInitExpr->getSourceRange();
6314 
6315   switch (OR) {
6316   case OR_Success:
6317     S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
6318                              Best->FoundDecl, Entity, Diag);
6319     // FIXME: Check default arguments as far as that's possible.
6320     break;
6321 
6322   case OR_No_Viable_Function:
6323     CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S,
6324                                 OCD_AllCandidates, CurInitExpr);
6325     break;
6326 
6327   case OR_Ambiguous:
6328     CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S,
6329                                 OCD_AmbiguousCandidates, CurInitExpr);
6330     break;
6331 
6332   case OR_Deleted:
6333     S.Diag(Loc, Diag);
6334     S.NoteDeletedFunction(Best->Function);
6335     break;
6336   }
6337 }
6338 
6339 void InitializationSequence::PrintInitLocationNote(Sema &S,
6340                                               const InitializedEntity &Entity) {
6341   if (Entity.isParameterKind() && Entity.getDecl()) {
6342     if (Entity.getDecl()->getLocation().isInvalid())
6343       return;
6344 
6345     if (Entity.getDecl()->getDeclName())
6346       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
6347         << Entity.getDecl()->getDeclName();
6348     else
6349       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
6350   }
6351   else if (Entity.getKind() == InitializedEntity::EK_RelatedResult &&
6352            Entity.getMethodDecl())
6353     S.Diag(Entity.getMethodDecl()->getLocation(),
6354            diag::note_method_return_type_change)
6355       << Entity.getMethodDecl()->getDeclName();
6356 }
6357 
6358 /// Returns true if the parameters describe a constructor initialization of
6359 /// an explicit temporary object, e.g. "Point(x, y)".
6360 static bool isExplicitTemporary(const InitializedEntity &Entity,
6361                                 const InitializationKind &Kind,
6362                                 unsigned NumArgs) {
6363   switch (Entity.getKind()) {
6364   case InitializedEntity::EK_Temporary:
6365   case InitializedEntity::EK_CompoundLiteralInit:
6366   case InitializedEntity::EK_RelatedResult:
6367     break;
6368   default:
6369     return false;
6370   }
6371 
6372   switch (Kind.getKind()) {
6373   case InitializationKind::IK_DirectList:
6374     return true;
6375   // FIXME: Hack to work around cast weirdness.
6376   case InitializationKind::IK_Direct:
6377   case InitializationKind::IK_Value:
6378     return NumArgs != 1;
6379   default:
6380     return false;
6381   }
6382 }
6383 
6384 static ExprResult
6385 PerformConstructorInitialization(Sema &S,
6386                                  const InitializedEntity &Entity,
6387                                  const InitializationKind &Kind,
6388                                  MultiExprArg Args,
6389                                  const InitializationSequence::Step& Step,
6390                                  bool &ConstructorInitRequiresZeroInit,
6391                                  bool IsListInitialization,
6392                                  bool IsStdInitListInitialization,
6393                                  SourceLocation LBraceLoc,
6394                                  SourceLocation RBraceLoc) {
6395   unsigned NumArgs = Args.size();
6396   CXXConstructorDecl *Constructor
6397     = cast<CXXConstructorDecl>(Step.Function.Function);
6398   bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
6399 
6400   // Build a call to the selected constructor.
6401   SmallVector<Expr*, 8> ConstructorArgs;
6402   SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
6403                          ? Kind.getEqualLoc()
6404                          : Kind.getLocation();
6405 
6406   if (Kind.getKind() == InitializationKind::IK_Default) {
6407     // Force even a trivial, implicit default constructor to be
6408     // semantically checked. We do this explicitly because we don't build
6409     // the definition for completely trivial constructors.
6410     assert(Constructor->getParent() && "No parent class for constructor.");
6411     if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6412         Constructor->isTrivial() && !Constructor->isUsed(false)) {
6413       S.runWithSufficientStackSpace(Loc, [&] {
6414         S.DefineImplicitDefaultConstructor(Loc, Constructor);
6415       });
6416     }
6417   }
6418 
6419   ExprResult CurInit((Expr *)nullptr);
6420 
6421   // C++ [over.match.copy]p1:
6422   //   - When initializing a temporary to be bound to the first parameter
6423   //     of a constructor that takes a reference to possibly cv-qualified
6424   //     T as its first argument, called with a single argument in the
6425   //     context of direct-initialization, explicit conversion functions
6426   //     are also considered.
6427   bool AllowExplicitConv =
6428       Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 &&
6429       hasCopyOrMoveCtorParam(S.Context,
6430                              getConstructorInfo(Step.Function.FoundDecl));
6431 
6432   // Determine the arguments required to actually perform the constructor
6433   // call.
6434   if (S.CompleteConstructorCall(Constructor, Args,
6435                                 Loc, ConstructorArgs,
6436                                 AllowExplicitConv,
6437                                 IsListInitialization))
6438     return ExprError();
6439 
6440 
6441   if (isExplicitTemporary(Entity, Kind, NumArgs)) {
6442     // An explicitly-constructed temporary, e.g., X(1, 2).
6443     if (S.DiagnoseUseOfDecl(Constructor, Loc))
6444       return ExprError();
6445 
6446     TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
6447     if (!TSInfo)
6448       TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
6449     SourceRange ParenOrBraceRange =
6450         (Kind.getKind() == InitializationKind::IK_DirectList)
6451         ? SourceRange(LBraceLoc, RBraceLoc)
6452         : Kind.getParenOrBraceRange();
6453 
6454     if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(
6455             Step.Function.FoundDecl.getDecl())) {
6456       Constructor = S.findInheritingConstructor(Loc, Constructor, Shadow);
6457       if (S.DiagnoseUseOfDecl(Constructor, Loc))
6458         return ExprError();
6459     }
6460     S.MarkFunctionReferenced(Loc, Constructor);
6461 
6462     CurInit = S.CheckForImmediateInvocation(
6463         CXXTemporaryObjectExpr::Create(
6464             S.Context, Constructor,
6465             Entity.getType().getNonLValueExprType(S.Context), TSInfo,
6466             ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates,
6467             IsListInitialization, IsStdInitListInitialization,
6468             ConstructorInitRequiresZeroInit),
6469         Constructor);
6470   } else {
6471     CXXConstructExpr::ConstructionKind ConstructKind =
6472       CXXConstructExpr::CK_Complete;
6473 
6474     if (Entity.getKind() == InitializedEntity::EK_Base) {
6475       ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
6476         CXXConstructExpr::CK_VirtualBase :
6477         CXXConstructExpr::CK_NonVirtualBase;
6478     } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
6479       ConstructKind = CXXConstructExpr::CK_Delegating;
6480     }
6481 
6482     // Only get the parenthesis or brace range if it is a list initialization or
6483     // direct construction.
6484     SourceRange ParenOrBraceRange;
6485     if (IsListInitialization)
6486       ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc);
6487     else if (Kind.getKind() == InitializationKind::IK_Direct)
6488       ParenOrBraceRange = Kind.getParenOrBraceRange();
6489 
6490     // If the entity allows NRVO, mark the construction as elidable
6491     // unconditionally.
6492     if (Entity.allowsNRVO())
6493       CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
6494                                         Step.Function.FoundDecl,
6495                                         Constructor, /*Elidable=*/true,
6496                                         ConstructorArgs,
6497                                         HadMultipleCandidates,
6498                                         IsListInitialization,
6499                                         IsStdInitListInitialization,
6500                                         ConstructorInitRequiresZeroInit,
6501                                         ConstructKind,
6502                                         ParenOrBraceRange);
6503     else
6504       CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
6505                                         Step.Function.FoundDecl,
6506                                         Constructor,
6507                                         ConstructorArgs,
6508                                         HadMultipleCandidates,
6509                                         IsListInitialization,
6510                                         IsStdInitListInitialization,
6511                                         ConstructorInitRequiresZeroInit,
6512                                         ConstructKind,
6513                                         ParenOrBraceRange);
6514   }
6515   if (CurInit.isInvalid())
6516     return ExprError();
6517 
6518   // Only check access if all of that succeeded.
6519   S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity);
6520   if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc))
6521     return ExprError();
6522 
6523   if (const ArrayType *AT = S.Context.getAsArrayType(Entity.getType()))
6524     if (checkDestructorReference(S.Context.getBaseElementType(AT), Loc, S))
6525       return ExprError();
6526 
6527   if (shouldBindAsTemporary(Entity))
6528     CurInit = S.MaybeBindToTemporary(CurInit.get());
6529 
6530   return CurInit;
6531 }
6532 
6533 namespace {
6534 enum LifetimeKind {
6535   /// The lifetime of a temporary bound to this entity ends at the end of the
6536   /// full-expression, and that's (probably) fine.
6537   LK_FullExpression,
6538 
6539   /// The lifetime of a temporary bound to this entity is extended to the
6540   /// lifeitme of the entity itself.
6541   LK_Extended,
6542 
6543   /// The lifetime of a temporary bound to this entity probably ends too soon,
6544   /// because the entity is allocated in a new-expression.
6545   LK_New,
6546 
6547   /// The lifetime of a temporary bound to this entity ends too soon, because
6548   /// the entity is a return object.
6549   LK_Return,
6550 
6551   /// The lifetime of a temporary bound to this entity ends too soon, because
6552   /// the entity is the result of a statement expression.
6553   LK_StmtExprResult,
6554 
6555   /// This is a mem-initializer: if it would extend a temporary (other than via
6556   /// a default member initializer), the program is ill-formed.
6557   LK_MemInitializer,
6558 };
6559 using LifetimeResult =
6560     llvm::PointerIntPair<const InitializedEntity *, 3, LifetimeKind>;
6561 }
6562 
6563 /// Determine the declaration which an initialized entity ultimately refers to,
6564 /// for the purpose of lifetime-extending a temporary bound to a reference in
6565 /// the initialization of \p Entity.
6566 static LifetimeResult getEntityLifetime(
6567     const InitializedEntity *Entity,
6568     const InitializedEntity *InitField = nullptr) {
6569   // C++11 [class.temporary]p5:
6570   switch (Entity->getKind()) {
6571   case InitializedEntity::EK_Variable:
6572     //   The temporary [...] persists for the lifetime of the reference
6573     return {Entity, LK_Extended};
6574 
6575   case InitializedEntity::EK_Member:
6576     // For subobjects, we look at the complete object.
6577     if (Entity->getParent())
6578       return getEntityLifetime(Entity->getParent(), Entity);
6579 
6580     //   except:
6581     // C++17 [class.base.init]p8:
6582     //   A temporary expression bound to a reference member in a
6583     //   mem-initializer is ill-formed.
6584     // C++17 [class.base.init]p11:
6585     //   A temporary expression bound to a reference member from a
6586     //   default member initializer is ill-formed.
6587     //
6588     // The context of p11 and its example suggest that it's only the use of a
6589     // default member initializer from a constructor that makes the program
6590     // ill-formed, not its mere existence, and that it can even be used by
6591     // aggregate initialization.
6592     return {Entity, Entity->isDefaultMemberInitializer() ? LK_Extended
6593                                                          : LK_MemInitializer};
6594 
6595   case InitializedEntity::EK_Binding:
6596     // Per [dcl.decomp]p3, the binding is treated as a variable of reference
6597     // type.
6598     return {Entity, LK_Extended};
6599 
6600   case InitializedEntity::EK_Parameter:
6601   case InitializedEntity::EK_Parameter_CF_Audited:
6602     //   -- A temporary bound to a reference parameter in a function call
6603     //      persists until the completion of the full-expression containing
6604     //      the call.
6605     return {nullptr, LK_FullExpression};
6606 
6607   case InitializedEntity::EK_Result:
6608     //   -- The lifetime of a temporary bound to the returned value in a
6609     //      function return statement is not extended; the temporary is
6610     //      destroyed at the end of the full-expression in the return statement.
6611     return {nullptr, LK_Return};
6612 
6613   case InitializedEntity::EK_StmtExprResult:
6614     // FIXME: Should we lifetime-extend through the result of a statement
6615     // expression?
6616     return {nullptr, LK_StmtExprResult};
6617 
6618   case InitializedEntity::EK_New:
6619     //   -- A temporary bound to a reference in a new-initializer persists
6620     //      until the completion of the full-expression containing the
6621     //      new-initializer.
6622     return {nullptr, LK_New};
6623 
6624   case InitializedEntity::EK_Temporary:
6625   case InitializedEntity::EK_CompoundLiteralInit:
6626   case InitializedEntity::EK_RelatedResult:
6627     // We don't yet know the storage duration of the surrounding temporary.
6628     // Assume it's got full-expression duration for now, it will patch up our
6629     // storage duration if that's not correct.
6630     return {nullptr, LK_FullExpression};
6631 
6632   case InitializedEntity::EK_ArrayElement:
6633     // For subobjects, we look at the complete object.
6634     return getEntityLifetime(Entity->getParent(), InitField);
6635 
6636   case InitializedEntity::EK_Base:
6637     // For subobjects, we look at the complete object.
6638     if (Entity->getParent())
6639       return getEntityLifetime(Entity->getParent(), InitField);
6640     return {InitField, LK_MemInitializer};
6641 
6642   case InitializedEntity::EK_Delegating:
6643     // We can reach this case for aggregate initialization in a constructor:
6644     //   struct A { int &&r; };
6645     //   struct B : A { B() : A{0} {} };
6646     // In this case, use the outermost field decl as the context.
6647     return {InitField, LK_MemInitializer};
6648 
6649   case InitializedEntity::EK_BlockElement:
6650   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6651   case InitializedEntity::EK_LambdaCapture:
6652   case InitializedEntity::EK_VectorElement:
6653   case InitializedEntity::EK_ComplexElement:
6654     return {nullptr, LK_FullExpression};
6655 
6656   case InitializedEntity::EK_Exception:
6657     // FIXME: Can we diagnose lifetime problems with exceptions?
6658     return {nullptr, LK_FullExpression};
6659   }
6660   llvm_unreachable("unknown entity kind");
6661 }
6662 
6663 namespace {
6664 enum ReferenceKind {
6665   /// Lifetime would be extended by a reference binding to a temporary.
6666   RK_ReferenceBinding,
6667   /// Lifetime would be extended by a std::initializer_list object binding to
6668   /// its backing array.
6669   RK_StdInitializerList,
6670 };
6671 
6672 /// A temporary or local variable. This will be one of:
6673 ///  * A MaterializeTemporaryExpr.
6674 ///  * A DeclRefExpr whose declaration is a local.
6675 ///  * An AddrLabelExpr.
6676 ///  * A BlockExpr for a block with captures.
6677 using Local = Expr*;
6678 
6679 /// Expressions we stepped over when looking for the local state. Any steps
6680 /// that would inhibit lifetime extension or take us out of subexpressions of
6681 /// the initializer are included.
6682 struct IndirectLocalPathEntry {
6683   enum EntryKind {
6684     DefaultInit,
6685     AddressOf,
6686     VarInit,
6687     LValToRVal,
6688     LifetimeBoundCall,
6689     GslReferenceInit,
6690     GslPointerInit
6691   } Kind;
6692   Expr *E;
6693   const Decl *D = nullptr;
6694   IndirectLocalPathEntry() {}
6695   IndirectLocalPathEntry(EntryKind K, Expr *E) : Kind(K), E(E) {}
6696   IndirectLocalPathEntry(EntryKind K, Expr *E, const Decl *D)
6697       : Kind(K), E(E), D(D) {}
6698 };
6699 
6700 using IndirectLocalPath = llvm::SmallVectorImpl<IndirectLocalPathEntry>;
6701 
6702 struct RevertToOldSizeRAII {
6703   IndirectLocalPath &Path;
6704   unsigned OldSize = Path.size();
6705   RevertToOldSizeRAII(IndirectLocalPath &Path) : Path(Path) {}
6706   ~RevertToOldSizeRAII() { Path.resize(OldSize); }
6707 };
6708 
6709 using LocalVisitor = llvm::function_ref<bool(IndirectLocalPath &Path, Local L,
6710                                              ReferenceKind RK)>;
6711 }
6712 
6713 static bool isVarOnPath(IndirectLocalPath &Path, VarDecl *VD) {
6714   for (auto E : Path)
6715     if (E.Kind == IndirectLocalPathEntry::VarInit && E.D == VD)
6716       return true;
6717   return false;
6718 }
6719 
6720 static bool pathContainsInit(IndirectLocalPath &Path) {
6721   return llvm::any_of(Path, [=](IndirectLocalPathEntry E) {
6722     return E.Kind == IndirectLocalPathEntry::DefaultInit ||
6723            E.Kind == IndirectLocalPathEntry::VarInit;
6724   });
6725 }
6726 
6727 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
6728                                              Expr *Init, LocalVisitor Visit,
6729                                              bool RevisitSubinits,
6730                                              bool EnableLifetimeWarnings);
6731 
6732 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
6733                                                   Expr *Init, ReferenceKind RK,
6734                                                   LocalVisitor Visit,
6735                                                   bool EnableLifetimeWarnings);
6736 
6737 template <typename T> static bool isRecordWithAttr(QualType Type) {
6738   if (auto *RD = Type->getAsCXXRecordDecl())
6739     return RD->hasAttr<T>();
6740   return false;
6741 }
6742 
6743 // Decl::isInStdNamespace will return false for iterators in some STL
6744 // implementations due to them being defined in a namespace outside of the std
6745 // namespace.
6746 static bool isInStlNamespace(const Decl *D) {
6747   const DeclContext *DC = D->getDeclContext();
6748   if (!DC)
6749     return false;
6750   if (const auto *ND = dyn_cast<NamespaceDecl>(DC))
6751     if (const IdentifierInfo *II = ND->getIdentifier()) {
6752       StringRef Name = II->getName();
6753       if (Name.size() >= 2 && Name.front() == '_' &&
6754           (Name[1] == '_' || isUppercase(Name[1])))
6755         return true;
6756     }
6757 
6758   return DC->isStdNamespace();
6759 }
6760 
6761 static bool shouldTrackImplicitObjectArg(const CXXMethodDecl *Callee) {
6762   if (auto *Conv = dyn_cast_or_null<CXXConversionDecl>(Callee))
6763     if (isRecordWithAttr<PointerAttr>(Conv->getConversionType()))
6764       return true;
6765   if (!isInStlNamespace(Callee->getParent()))
6766     return false;
6767   if (!isRecordWithAttr<PointerAttr>(Callee->getThisObjectType()) &&
6768       !isRecordWithAttr<OwnerAttr>(Callee->getThisObjectType()))
6769     return false;
6770   if (Callee->getReturnType()->isPointerType() ||
6771       isRecordWithAttr<PointerAttr>(Callee->getReturnType())) {
6772     if (!Callee->getIdentifier())
6773       return false;
6774     return llvm::StringSwitch<bool>(Callee->getName())
6775         .Cases("begin", "rbegin", "cbegin", "crbegin", true)
6776         .Cases("end", "rend", "cend", "crend", true)
6777         .Cases("c_str", "data", "get", true)
6778         // Map and set types.
6779         .Cases("find", "equal_range", "lower_bound", "upper_bound", true)
6780         .Default(false);
6781   } else if (Callee->getReturnType()->isReferenceType()) {
6782     if (!Callee->getIdentifier()) {
6783       auto OO = Callee->getOverloadedOperator();
6784       return OO == OverloadedOperatorKind::OO_Subscript ||
6785              OO == OverloadedOperatorKind::OO_Star;
6786     }
6787     return llvm::StringSwitch<bool>(Callee->getName())
6788         .Cases("front", "back", "at", "top", "value", true)
6789         .Default(false);
6790   }
6791   return false;
6792 }
6793 
6794 static bool shouldTrackFirstArgument(const FunctionDecl *FD) {
6795   if (!FD->getIdentifier() || FD->getNumParams() != 1)
6796     return false;
6797   const auto *RD = FD->getParamDecl(0)->getType()->getPointeeCXXRecordDecl();
6798   if (!FD->isInStdNamespace() || !RD || !RD->isInStdNamespace())
6799     return false;
6800   if (!isRecordWithAttr<PointerAttr>(QualType(RD->getTypeForDecl(), 0)) &&
6801       !isRecordWithAttr<OwnerAttr>(QualType(RD->getTypeForDecl(), 0)))
6802     return false;
6803   if (FD->getReturnType()->isPointerType() ||
6804       isRecordWithAttr<PointerAttr>(FD->getReturnType())) {
6805     return llvm::StringSwitch<bool>(FD->getName())
6806         .Cases("begin", "rbegin", "cbegin", "crbegin", true)
6807         .Cases("end", "rend", "cend", "crend", true)
6808         .Case("data", true)
6809         .Default(false);
6810   } else if (FD->getReturnType()->isReferenceType()) {
6811     return llvm::StringSwitch<bool>(FD->getName())
6812         .Cases("get", "any_cast", true)
6813         .Default(false);
6814   }
6815   return false;
6816 }
6817 
6818 static void handleGslAnnotatedTypes(IndirectLocalPath &Path, Expr *Call,
6819                                     LocalVisitor Visit) {
6820   auto VisitPointerArg = [&](const Decl *D, Expr *Arg, bool Value) {
6821     // We are not interested in the temporary base objects of gsl Pointers:
6822     //   Temp().ptr; // Here ptr might not dangle.
6823     if (isa<MemberExpr>(Arg->IgnoreImpCasts()))
6824       return;
6825     // Once we initialized a value with a reference, it can no longer dangle.
6826     if (!Value) {
6827       for (auto It = Path.rbegin(), End = Path.rend(); It != End; ++It) {
6828         if (It->Kind == IndirectLocalPathEntry::GslReferenceInit)
6829           continue;
6830         if (It->Kind == IndirectLocalPathEntry::GslPointerInit)
6831           return;
6832         break;
6833       }
6834     }
6835     Path.push_back({Value ? IndirectLocalPathEntry::GslPointerInit
6836                           : IndirectLocalPathEntry::GslReferenceInit,
6837                     Arg, D});
6838     if (Arg->isGLValue())
6839       visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding,
6840                                             Visit,
6841                                             /*EnableLifetimeWarnings=*/true);
6842     else
6843       visitLocalsRetainedByInitializer(Path, Arg, Visit, true,
6844                                        /*EnableLifetimeWarnings=*/true);
6845     Path.pop_back();
6846   };
6847 
6848   if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) {
6849     const auto *MD = cast_or_null<CXXMethodDecl>(MCE->getDirectCallee());
6850     if (MD && shouldTrackImplicitObjectArg(MD))
6851       VisitPointerArg(MD, MCE->getImplicitObjectArgument(),
6852                       !MD->getReturnType()->isReferenceType());
6853     return;
6854   } else if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(Call)) {
6855     FunctionDecl *Callee = OCE->getDirectCallee();
6856     if (Callee && Callee->isCXXInstanceMember() &&
6857         shouldTrackImplicitObjectArg(cast<CXXMethodDecl>(Callee)))
6858       VisitPointerArg(Callee, OCE->getArg(0),
6859                       !Callee->getReturnType()->isReferenceType());
6860     return;
6861   } else if (auto *CE = dyn_cast<CallExpr>(Call)) {
6862     FunctionDecl *Callee = CE->getDirectCallee();
6863     if (Callee && shouldTrackFirstArgument(Callee))
6864       VisitPointerArg(Callee, CE->getArg(0),
6865                       !Callee->getReturnType()->isReferenceType());
6866     return;
6867   }
6868 
6869   if (auto *CCE = dyn_cast<CXXConstructExpr>(Call)) {
6870     const auto *Ctor = CCE->getConstructor();
6871     const CXXRecordDecl *RD = Ctor->getParent();
6872     if (CCE->getNumArgs() > 0 && RD->hasAttr<PointerAttr>())
6873       VisitPointerArg(Ctor->getParamDecl(0), CCE->getArgs()[0], true);
6874   }
6875 }
6876 
6877 static bool implicitObjectParamIsLifetimeBound(const FunctionDecl *FD) {
6878   const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
6879   if (!TSI)
6880     return false;
6881   // Don't declare this variable in the second operand of the for-statement;
6882   // GCC miscompiles that by ending its lifetime before evaluating the
6883   // third operand. See gcc.gnu.org/PR86769.
6884   AttributedTypeLoc ATL;
6885   for (TypeLoc TL = TSI->getTypeLoc();
6886        (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
6887        TL = ATL.getModifiedLoc()) {
6888     if (ATL.getAttrAs<LifetimeBoundAttr>())
6889       return true;
6890   }
6891   return false;
6892 }
6893 
6894 static void visitLifetimeBoundArguments(IndirectLocalPath &Path, Expr *Call,
6895                                         LocalVisitor Visit) {
6896   const FunctionDecl *Callee;
6897   ArrayRef<Expr*> Args;
6898 
6899   if (auto *CE = dyn_cast<CallExpr>(Call)) {
6900     Callee = CE->getDirectCallee();
6901     Args = llvm::makeArrayRef(CE->getArgs(), CE->getNumArgs());
6902   } else {
6903     auto *CCE = cast<CXXConstructExpr>(Call);
6904     Callee = CCE->getConstructor();
6905     Args = llvm::makeArrayRef(CCE->getArgs(), CCE->getNumArgs());
6906   }
6907   if (!Callee)
6908     return;
6909 
6910   Expr *ObjectArg = nullptr;
6911   if (isa<CXXOperatorCallExpr>(Call) && Callee->isCXXInstanceMember()) {
6912     ObjectArg = Args[0];
6913     Args = Args.slice(1);
6914   } else if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) {
6915     ObjectArg = MCE->getImplicitObjectArgument();
6916   }
6917 
6918   auto VisitLifetimeBoundArg = [&](const Decl *D, Expr *Arg) {
6919     Path.push_back({IndirectLocalPathEntry::LifetimeBoundCall, Arg, D});
6920     if (Arg->isGLValue())
6921       visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding,
6922                                             Visit,
6923                                             /*EnableLifetimeWarnings=*/false);
6924     else
6925       visitLocalsRetainedByInitializer(Path, Arg, Visit, true,
6926                                        /*EnableLifetimeWarnings=*/false);
6927     Path.pop_back();
6928   };
6929 
6930   if (ObjectArg && implicitObjectParamIsLifetimeBound(Callee))
6931     VisitLifetimeBoundArg(Callee, ObjectArg);
6932 
6933   for (unsigned I = 0,
6934                 N = std::min<unsigned>(Callee->getNumParams(), Args.size());
6935        I != N; ++I) {
6936     if (Callee->getParamDecl(I)->hasAttr<LifetimeBoundAttr>())
6937       VisitLifetimeBoundArg(Callee->getParamDecl(I), Args[I]);
6938   }
6939 }
6940 
6941 /// Visit the locals that would be reachable through a reference bound to the
6942 /// glvalue expression \c Init.
6943 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
6944                                                   Expr *Init, ReferenceKind RK,
6945                                                   LocalVisitor Visit,
6946                                                   bool EnableLifetimeWarnings) {
6947   RevertToOldSizeRAII RAII(Path);
6948 
6949   // Walk past any constructs which we can lifetime-extend across.
6950   Expr *Old;
6951   do {
6952     Old = Init;
6953 
6954     if (auto *FE = dyn_cast<FullExpr>(Init))
6955       Init = FE->getSubExpr();
6956 
6957     if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
6958       // If this is just redundant braces around an initializer, step over it.
6959       if (ILE->isTransparent())
6960         Init = ILE->getInit(0);
6961     }
6962 
6963     // Step over any subobject adjustments; we may have a materialized
6964     // temporary inside them.
6965     Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
6966 
6967     // Per current approach for DR1376, look through casts to reference type
6968     // when performing lifetime extension.
6969     if (CastExpr *CE = dyn_cast<CastExpr>(Init))
6970       if (CE->getSubExpr()->isGLValue())
6971         Init = CE->getSubExpr();
6972 
6973     // Per the current approach for DR1299, look through array element access
6974     // on array glvalues when performing lifetime extension.
6975     if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Init)) {
6976       Init = ASE->getBase();
6977       auto *ICE = dyn_cast<ImplicitCastExpr>(Init);
6978       if (ICE && ICE->getCastKind() == CK_ArrayToPointerDecay)
6979         Init = ICE->getSubExpr();
6980       else
6981         // We can't lifetime extend through this but we might still find some
6982         // retained temporaries.
6983         return visitLocalsRetainedByInitializer(Path, Init, Visit, true,
6984                                                 EnableLifetimeWarnings);
6985     }
6986 
6987     // Step into CXXDefaultInitExprs so we can diagnose cases where a
6988     // constructor inherits one as an implicit mem-initializer.
6989     if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
6990       Path.push_back(
6991           {IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
6992       Init = DIE->getExpr();
6993     }
6994   } while (Init != Old);
6995 
6996   if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Init)) {
6997     if (Visit(Path, Local(MTE), RK))
6998       visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit, true,
6999                                        EnableLifetimeWarnings);
7000   }
7001 
7002   if (isa<CallExpr>(Init)) {
7003     if (EnableLifetimeWarnings)
7004       handleGslAnnotatedTypes(Path, Init, Visit);
7005     return visitLifetimeBoundArguments(Path, Init, Visit);
7006   }
7007 
7008   switch (Init->getStmtClass()) {
7009   case Stmt::DeclRefExprClass: {
7010     // If we find the name of a local non-reference parameter, we could have a
7011     // lifetime problem.
7012     auto *DRE = cast<DeclRefExpr>(Init);
7013     auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
7014     if (VD && VD->hasLocalStorage() &&
7015         !DRE->refersToEnclosingVariableOrCapture()) {
7016       if (!VD->getType()->isReferenceType()) {
7017         Visit(Path, Local(DRE), RK);
7018       } else if (isa<ParmVarDecl>(DRE->getDecl())) {
7019         // The lifetime of a reference parameter is unknown; assume it's OK
7020         // for now.
7021         break;
7022       } else if (VD->getInit() && !isVarOnPath(Path, VD)) {
7023         Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
7024         visitLocalsRetainedByReferenceBinding(Path, VD->getInit(),
7025                                               RK_ReferenceBinding, Visit,
7026                                               EnableLifetimeWarnings);
7027       }
7028     }
7029     break;
7030   }
7031 
7032   case Stmt::UnaryOperatorClass: {
7033     // The only unary operator that make sense to handle here
7034     // is Deref.  All others don't resolve to a "name."  This includes
7035     // handling all sorts of rvalues passed to a unary operator.
7036     const UnaryOperator *U = cast<UnaryOperator>(Init);
7037     if (U->getOpcode() == UO_Deref)
7038       visitLocalsRetainedByInitializer(Path, U->getSubExpr(), Visit, true,
7039                                        EnableLifetimeWarnings);
7040     break;
7041   }
7042 
7043   case Stmt::OMPArraySectionExprClass: {
7044     visitLocalsRetainedByInitializer(Path,
7045                                      cast<OMPArraySectionExpr>(Init)->getBase(),
7046                                      Visit, true, EnableLifetimeWarnings);
7047     break;
7048   }
7049 
7050   case Stmt::ConditionalOperatorClass:
7051   case Stmt::BinaryConditionalOperatorClass: {
7052     auto *C = cast<AbstractConditionalOperator>(Init);
7053     if (!C->getTrueExpr()->getType()->isVoidType())
7054       visitLocalsRetainedByReferenceBinding(Path, C->getTrueExpr(), RK, Visit,
7055                                             EnableLifetimeWarnings);
7056     if (!C->getFalseExpr()->getType()->isVoidType())
7057       visitLocalsRetainedByReferenceBinding(Path, C->getFalseExpr(), RK, Visit,
7058                                             EnableLifetimeWarnings);
7059     break;
7060   }
7061 
7062   // FIXME: Visit the left-hand side of an -> or ->*.
7063 
7064   default:
7065     break;
7066   }
7067 }
7068 
7069 /// Visit the locals that would be reachable through an object initialized by
7070 /// the prvalue expression \c Init.
7071 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
7072                                              Expr *Init, LocalVisitor Visit,
7073                                              bool RevisitSubinits,
7074                                              bool EnableLifetimeWarnings) {
7075   RevertToOldSizeRAII RAII(Path);
7076 
7077   Expr *Old;
7078   do {
7079     Old = Init;
7080 
7081     // Step into CXXDefaultInitExprs so we can diagnose cases where a
7082     // constructor inherits one as an implicit mem-initializer.
7083     if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
7084       Path.push_back({IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
7085       Init = DIE->getExpr();
7086     }
7087 
7088     if (auto *FE = dyn_cast<FullExpr>(Init))
7089       Init = FE->getSubExpr();
7090 
7091     // Dig out the expression which constructs the extended temporary.
7092     Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
7093 
7094     if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init))
7095       Init = BTE->getSubExpr();
7096 
7097     Init = Init->IgnoreParens();
7098 
7099     // Step over value-preserving rvalue casts.
7100     if (auto *CE = dyn_cast<CastExpr>(Init)) {
7101       switch (CE->getCastKind()) {
7102       case CK_LValueToRValue:
7103         // If we can match the lvalue to a const object, we can look at its
7104         // initializer.
7105         Path.push_back({IndirectLocalPathEntry::LValToRVal, CE});
7106         return visitLocalsRetainedByReferenceBinding(
7107             Path, Init, RK_ReferenceBinding,
7108             [&](IndirectLocalPath &Path, Local L, ReferenceKind RK) -> bool {
7109           if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
7110             auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
7111             if (VD && VD->getType().isConstQualified() && VD->getInit() &&
7112                 !isVarOnPath(Path, VD)) {
7113               Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
7114               visitLocalsRetainedByInitializer(Path, VD->getInit(), Visit, true,
7115                                                EnableLifetimeWarnings);
7116             }
7117           } else if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L)) {
7118             if (MTE->getType().isConstQualified())
7119               visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit,
7120                                                true, EnableLifetimeWarnings);
7121           }
7122           return false;
7123         }, EnableLifetimeWarnings);
7124 
7125         // We assume that objects can be retained by pointers cast to integers,
7126         // but not if the integer is cast to floating-point type or to _Complex.
7127         // We assume that casts to 'bool' do not preserve enough information to
7128         // retain a local object.
7129       case CK_NoOp:
7130       case CK_BitCast:
7131       case CK_BaseToDerived:
7132       case CK_DerivedToBase:
7133       case CK_UncheckedDerivedToBase:
7134       case CK_Dynamic:
7135       case CK_ToUnion:
7136       case CK_UserDefinedConversion:
7137       case CK_ConstructorConversion:
7138       case CK_IntegralToPointer:
7139       case CK_PointerToIntegral:
7140       case CK_VectorSplat:
7141       case CK_IntegralCast:
7142       case CK_CPointerToObjCPointerCast:
7143       case CK_BlockPointerToObjCPointerCast:
7144       case CK_AnyPointerToBlockPointerCast:
7145       case CK_AddressSpaceConversion:
7146         break;
7147 
7148       case CK_ArrayToPointerDecay:
7149         // Model array-to-pointer decay as taking the address of the array
7150         // lvalue.
7151         Path.push_back({IndirectLocalPathEntry::AddressOf, CE});
7152         return visitLocalsRetainedByReferenceBinding(Path, CE->getSubExpr(),
7153                                                      RK_ReferenceBinding, Visit,
7154                                                      EnableLifetimeWarnings);
7155 
7156       default:
7157         return;
7158       }
7159 
7160       Init = CE->getSubExpr();
7161     }
7162   } while (Old != Init);
7163 
7164   // C++17 [dcl.init.list]p6:
7165   //   initializing an initializer_list object from the array extends the
7166   //   lifetime of the array exactly like binding a reference to a temporary.
7167   if (auto *ILE = dyn_cast<CXXStdInitializerListExpr>(Init))
7168     return visitLocalsRetainedByReferenceBinding(Path, ILE->getSubExpr(),
7169                                                  RK_StdInitializerList, Visit,
7170                                                  EnableLifetimeWarnings);
7171 
7172   if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
7173     // We already visited the elements of this initializer list while
7174     // performing the initialization. Don't visit them again unless we've
7175     // changed the lifetime of the initialized entity.
7176     if (!RevisitSubinits)
7177       return;
7178 
7179     if (ILE->isTransparent())
7180       return visitLocalsRetainedByInitializer(Path, ILE->getInit(0), Visit,
7181                                               RevisitSubinits,
7182                                               EnableLifetimeWarnings);
7183 
7184     if (ILE->getType()->isArrayType()) {
7185       for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I)
7186         visitLocalsRetainedByInitializer(Path, ILE->getInit(I), Visit,
7187                                          RevisitSubinits,
7188                                          EnableLifetimeWarnings);
7189       return;
7190     }
7191 
7192     if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) {
7193       assert(RD->isAggregate() && "aggregate init on non-aggregate");
7194 
7195       // If we lifetime-extend a braced initializer which is initializing an
7196       // aggregate, and that aggregate contains reference members which are
7197       // bound to temporaries, those temporaries are also lifetime-extended.
7198       if (RD->isUnion() && ILE->getInitializedFieldInUnion() &&
7199           ILE->getInitializedFieldInUnion()->getType()->isReferenceType())
7200         visitLocalsRetainedByReferenceBinding(Path, ILE->getInit(0),
7201                                               RK_ReferenceBinding, Visit,
7202                                               EnableLifetimeWarnings);
7203       else {
7204         unsigned Index = 0;
7205         for (; Index < RD->getNumBases() && Index < ILE->getNumInits(); ++Index)
7206           visitLocalsRetainedByInitializer(Path, ILE->getInit(Index), Visit,
7207                                            RevisitSubinits,
7208                                            EnableLifetimeWarnings);
7209         for (const auto *I : RD->fields()) {
7210           if (Index >= ILE->getNumInits())
7211             break;
7212           if (I->isUnnamedBitfield())
7213             continue;
7214           Expr *SubInit = ILE->getInit(Index);
7215           if (I->getType()->isReferenceType())
7216             visitLocalsRetainedByReferenceBinding(Path, SubInit,
7217                                                   RK_ReferenceBinding, Visit,
7218                                                   EnableLifetimeWarnings);
7219           else
7220             // This might be either aggregate-initialization of a member or
7221             // initialization of a std::initializer_list object. Regardless,
7222             // we should recursively lifetime-extend that initializer.
7223             visitLocalsRetainedByInitializer(Path, SubInit, Visit,
7224                                              RevisitSubinits,
7225                                              EnableLifetimeWarnings);
7226           ++Index;
7227         }
7228       }
7229     }
7230     return;
7231   }
7232 
7233   // The lifetime of an init-capture is that of the closure object constructed
7234   // by a lambda-expression.
7235   if (auto *LE = dyn_cast<LambdaExpr>(Init)) {
7236     for (Expr *E : LE->capture_inits()) {
7237       if (!E)
7238         continue;
7239       if (E->isGLValue())
7240         visitLocalsRetainedByReferenceBinding(Path, E, RK_ReferenceBinding,
7241                                               Visit, EnableLifetimeWarnings);
7242       else
7243         visitLocalsRetainedByInitializer(Path, E, Visit, true,
7244                                          EnableLifetimeWarnings);
7245     }
7246   }
7247 
7248   if (isa<CallExpr>(Init) || isa<CXXConstructExpr>(Init)) {
7249     if (EnableLifetimeWarnings)
7250       handleGslAnnotatedTypes(Path, Init, Visit);
7251     return visitLifetimeBoundArguments(Path, Init, Visit);
7252   }
7253 
7254   switch (Init->getStmtClass()) {
7255   case Stmt::UnaryOperatorClass: {
7256     auto *UO = cast<UnaryOperator>(Init);
7257     // If the initializer is the address of a local, we could have a lifetime
7258     // problem.
7259     if (UO->getOpcode() == UO_AddrOf) {
7260       // If this is &rvalue, then it's ill-formed and we have already diagnosed
7261       // it. Don't produce a redundant warning about the lifetime of the
7262       // temporary.
7263       if (isa<MaterializeTemporaryExpr>(UO->getSubExpr()))
7264         return;
7265 
7266       Path.push_back({IndirectLocalPathEntry::AddressOf, UO});
7267       visitLocalsRetainedByReferenceBinding(Path, UO->getSubExpr(),
7268                                             RK_ReferenceBinding, Visit,
7269                                             EnableLifetimeWarnings);
7270     }
7271     break;
7272   }
7273 
7274   case Stmt::BinaryOperatorClass: {
7275     // Handle pointer arithmetic.
7276     auto *BO = cast<BinaryOperator>(Init);
7277     BinaryOperatorKind BOK = BO->getOpcode();
7278     if (!BO->getType()->isPointerType() || (BOK != BO_Add && BOK != BO_Sub))
7279       break;
7280 
7281     if (BO->getLHS()->getType()->isPointerType())
7282       visitLocalsRetainedByInitializer(Path, BO->getLHS(), Visit, true,
7283                                        EnableLifetimeWarnings);
7284     else if (BO->getRHS()->getType()->isPointerType())
7285       visitLocalsRetainedByInitializer(Path, BO->getRHS(), Visit, true,
7286                                        EnableLifetimeWarnings);
7287     break;
7288   }
7289 
7290   case Stmt::ConditionalOperatorClass:
7291   case Stmt::BinaryConditionalOperatorClass: {
7292     auto *C = cast<AbstractConditionalOperator>(Init);
7293     // In C++, we can have a throw-expression operand, which has 'void' type
7294     // and isn't interesting from a lifetime perspective.
7295     if (!C->getTrueExpr()->getType()->isVoidType())
7296       visitLocalsRetainedByInitializer(Path, C->getTrueExpr(), Visit, true,
7297                                        EnableLifetimeWarnings);
7298     if (!C->getFalseExpr()->getType()->isVoidType())
7299       visitLocalsRetainedByInitializer(Path, C->getFalseExpr(), Visit, true,
7300                                        EnableLifetimeWarnings);
7301     break;
7302   }
7303 
7304   case Stmt::BlockExprClass:
7305     if (cast<BlockExpr>(Init)->getBlockDecl()->hasCaptures()) {
7306       // This is a local block, whose lifetime is that of the function.
7307       Visit(Path, Local(cast<BlockExpr>(Init)), RK_ReferenceBinding);
7308     }
7309     break;
7310 
7311   case Stmt::AddrLabelExprClass:
7312     // We want to warn if the address of a label would escape the function.
7313     Visit(Path, Local(cast<AddrLabelExpr>(Init)), RK_ReferenceBinding);
7314     break;
7315 
7316   default:
7317     break;
7318   }
7319 }
7320 
7321 /// Determine whether this is an indirect path to a temporary that we are
7322 /// supposed to lifetime-extend along (but don't).
7323 static bool shouldLifetimeExtendThroughPath(const IndirectLocalPath &Path) {
7324   for (auto Elem : Path) {
7325     if (Elem.Kind != IndirectLocalPathEntry::DefaultInit)
7326       return false;
7327   }
7328   return true;
7329 }
7330 
7331 /// Find the range for the first interesting entry in the path at or after I.
7332 static SourceRange nextPathEntryRange(const IndirectLocalPath &Path, unsigned I,
7333                                       Expr *E) {
7334   for (unsigned N = Path.size(); I != N; ++I) {
7335     switch (Path[I].Kind) {
7336     case IndirectLocalPathEntry::AddressOf:
7337     case IndirectLocalPathEntry::LValToRVal:
7338     case IndirectLocalPathEntry::LifetimeBoundCall:
7339     case IndirectLocalPathEntry::GslReferenceInit:
7340     case IndirectLocalPathEntry::GslPointerInit:
7341       // These exist primarily to mark the path as not permitting or
7342       // supporting lifetime extension.
7343       break;
7344 
7345     case IndirectLocalPathEntry::VarInit:
7346       if (cast<VarDecl>(Path[I].D)->isImplicit())
7347         return SourceRange();
7348       LLVM_FALLTHROUGH;
7349     case IndirectLocalPathEntry::DefaultInit:
7350       return Path[I].E->getSourceRange();
7351     }
7352   }
7353   return E->getSourceRange();
7354 }
7355 
7356 static bool pathOnlyInitializesGslPointer(IndirectLocalPath &Path) {
7357   for (auto It = Path.rbegin(), End = Path.rend(); It != End; ++It) {
7358     if (It->Kind == IndirectLocalPathEntry::VarInit)
7359       continue;
7360     if (It->Kind == IndirectLocalPathEntry::AddressOf)
7361       continue;
7362     return It->Kind == IndirectLocalPathEntry::GslPointerInit ||
7363            It->Kind == IndirectLocalPathEntry::GslReferenceInit;
7364   }
7365   return false;
7366 }
7367 
7368 void Sema::checkInitializerLifetime(const InitializedEntity &Entity,
7369                                     Expr *Init) {
7370   LifetimeResult LR = getEntityLifetime(&Entity);
7371   LifetimeKind LK = LR.getInt();
7372   const InitializedEntity *ExtendingEntity = LR.getPointer();
7373 
7374   // If this entity doesn't have an interesting lifetime, don't bother looking
7375   // for temporaries within its initializer.
7376   if (LK == LK_FullExpression)
7377     return;
7378 
7379   auto TemporaryVisitor = [&](IndirectLocalPath &Path, Local L,
7380                               ReferenceKind RK) -> bool {
7381     SourceRange DiagRange = nextPathEntryRange(Path, 0, L);
7382     SourceLocation DiagLoc = DiagRange.getBegin();
7383 
7384     auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L);
7385 
7386     bool IsGslPtrInitWithGslTempOwner = false;
7387     bool IsLocalGslOwner = false;
7388     if (pathOnlyInitializesGslPointer(Path)) {
7389       if (isa<DeclRefExpr>(L)) {
7390         // We do not want to follow the references when returning a pointer originating
7391         // from a local owner to avoid the following false positive:
7392         //   int &p = *localUniquePtr;
7393         //   someContainer.add(std::move(localUniquePtr));
7394         //   return p;
7395         IsLocalGslOwner = isRecordWithAttr<OwnerAttr>(L->getType());
7396         if (pathContainsInit(Path) || !IsLocalGslOwner)
7397           return false;
7398       } else {
7399         IsGslPtrInitWithGslTempOwner = MTE && !MTE->getExtendingDecl() &&
7400                             isRecordWithAttr<OwnerAttr>(MTE->getType());
7401         // Skipping a chain of initializing gsl::Pointer annotated objects.
7402         // We are looking only for the final source to find out if it was
7403         // a local or temporary owner or the address of a local variable/param.
7404         if (!IsGslPtrInitWithGslTempOwner)
7405           return true;
7406       }
7407     }
7408 
7409     switch (LK) {
7410     case LK_FullExpression:
7411       llvm_unreachable("already handled this");
7412 
7413     case LK_Extended: {
7414       if (!MTE) {
7415         // The initialized entity has lifetime beyond the full-expression,
7416         // and the local entity does too, so don't warn.
7417         //
7418         // FIXME: We should consider warning if a static / thread storage
7419         // duration variable retains an automatic storage duration local.
7420         return false;
7421       }
7422 
7423       if (IsGslPtrInitWithGslTempOwner && DiagLoc.isValid()) {
7424         Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange;
7425         return false;
7426       }
7427 
7428       // Lifetime-extend the temporary.
7429       if (Path.empty()) {
7430         // Update the storage duration of the materialized temporary.
7431         // FIXME: Rebuild the expression instead of mutating it.
7432         MTE->setExtendingDecl(ExtendingEntity->getDecl(),
7433                               ExtendingEntity->allocateManglingNumber());
7434         // Also visit the temporaries lifetime-extended by this initializer.
7435         return true;
7436       }
7437 
7438       if (shouldLifetimeExtendThroughPath(Path)) {
7439         // We're supposed to lifetime-extend the temporary along this path (per
7440         // the resolution of DR1815), but we don't support that yet.
7441         //
7442         // FIXME: Properly handle this situation. Perhaps the easiest approach
7443         // would be to clone the initializer expression on each use that would
7444         // lifetime extend its temporaries.
7445         Diag(DiagLoc, diag::warn_unsupported_lifetime_extension)
7446             << RK << DiagRange;
7447       } else {
7448         // If the path goes through the initialization of a variable or field,
7449         // it can't possibly reach a temporary created in this full-expression.
7450         // We will have already diagnosed any problems with the initializer.
7451         if (pathContainsInit(Path))
7452           return false;
7453 
7454         Diag(DiagLoc, diag::warn_dangling_variable)
7455             << RK << !Entity.getParent()
7456             << ExtendingEntity->getDecl()->isImplicit()
7457             << ExtendingEntity->getDecl() << Init->isGLValue() << DiagRange;
7458       }
7459       break;
7460     }
7461 
7462     case LK_MemInitializer: {
7463       if (isa<MaterializeTemporaryExpr>(L)) {
7464         // Under C++ DR1696, if a mem-initializer (or a default member
7465         // initializer used by the absence of one) would lifetime-extend a
7466         // temporary, the program is ill-formed.
7467         if (auto *ExtendingDecl =
7468                 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
7469           if (IsGslPtrInitWithGslTempOwner) {
7470             Diag(DiagLoc, diag::warn_dangling_lifetime_pointer_member)
7471                 << ExtendingDecl << DiagRange;
7472             Diag(ExtendingDecl->getLocation(),
7473                  diag::note_ref_or_ptr_member_declared_here)
7474                 << true;
7475             return false;
7476           }
7477           bool IsSubobjectMember = ExtendingEntity != &Entity;
7478           Diag(DiagLoc, shouldLifetimeExtendThroughPath(Path)
7479                             ? diag::err_dangling_member
7480                             : diag::warn_dangling_member)
7481               << ExtendingDecl << IsSubobjectMember << RK << DiagRange;
7482           // Don't bother adding a note pointing to the field if we're inside
7483           // its default member initializer; our primary diagnostic points to
7484           // the same place in that case.
7485           if (Path.empty() ||
7486               Path.back().Kind != IndirectLocalPathEntry::DefaultInit) {
7487             Diag(ExtendingDecl->getLocation(),
7488                  diag::note_lifetime_extending_member_declared_here)
7489                 << RK << IsSubobjectMember;
7490           }
7491         } else {
7492           // We have a mem-initializer but no particular field within it; this
7493           // is either a base class or a delegating initializer directly
7494           // initializing the base-class from something that doesn't live long
7495           // enough.
7496           //
7497           // FIXME: Warn on this.
7498           return false;
7499         }
7500       } else {
7501         // Paths via a default initializer can only occur during error recovery
7502         // (there's no other way that a default initializer can refer to a
7503         // local). Don't produce a bogus warning on those cases.
7504         if (pathContainsInit(Path))
7505           return false;
7506 
7507         // Suppress false positives for code like the one below:
7508         //   Ctor(unique_ptr<T> up) : member(*up), member2(move(up)) {}
7509         if (IsLocalGslOwner && pathOnlyInitializesGslPointer(Path))
7510           return false;
7511 
7512         auto *DRE = dyn_cast<DeclRefExpr>(L);
7513         auto *VD = DRE ? dyn_cast<VarDecl>(DRE->getDecl()) : nullptr;
7514         if (!VD) {
7515           // A member was initialized to a local block.
7516           // FIXME: Warn on this.
7517           return false;
7518         }
7519 
7520         if (auto *Member =
7521                 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
7522           bool IsPointer = !Member->getType()->isReferenceType();
7523           Diag(DiagLoc, IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
7524                                   : diag::warn_bind_ref_member_to_parameter)
7525               << Member << VD << isa<ParmVarDecl>(VD) << DiagRange;
7526           Diag(Member->getLocation(),
7527                diag::note_ref_or_ptr_member_declared_here)
7528               << (unsigned)IsPointer;
7529         }
7530       }
7531       break;
7532     }
7533 
7534     case LK_New:
7535       if (isa<MaterializeTemporaryExpr>(L)) {
7536         if (IsGslPtrInitWithGslTempOwner)
7537           Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange;
7538         else
7539           Diag(DiagLoc, RK == RK_ReferenceBinding
7540                             ? diag::warn_new_dangling_reference
7541                             : diag::warn_new_dangling_initializer_list)
7542               << !Entity.getParent() << DiagRange;
7543       } else {
7544         // We can't determine if the allocation outlives the local declaration.
7545         return false;
7546       }
7547       break;
7548 
7549     case LK_Return:
7550     case LK_StmtExprResult:
7551       if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
7552         // We can't determine if the local variable outlives the statement
7553         // expression.
7554         if (LK == LK_StmtExprResult)
7555           return false;
7556         Diag(DiagLoc, diag::warn_ret_stack_addr_ref)
7557             << Entity.getType()->isReferenceType() << DRE->getDecl()
7558             << isa<ParmVarDecl>(DRE->getDecl()) << DiagRange;
7559       } else if (isa<BlockExpr>(L)) {
7560         Diag(DiagLoc, diag::err_ret_local_block) << DiagRange;
7561       } else if (isa<AddrLabelExpr>(L)) {
7562         // Don't warn when returning a label from a statement expression.
7563         // Leaving the scope doesn't end its lifetime.
7564         if (LK == LK_StmtExprResult)
7565           return false;
7566         Diag(DiagLoc, diag::warn_ret_addr_label) << DiagRange;
7567       } else {
7568         Diag(DiagLoc, diag::warn_ret_local_temp_addr_ref)
7569          << Entity.getType()->isReferenceType() << DiagRange;
7570       }
7571       break;
7572     }
7573 
7574     for (unsigned I = 0; I != Path.size(); ++I) {
7575       auto Elem = Path[I];
7576 
7577       switch (Elem.Kind) {
7578       case IndirectLocalPathEntry::AddressOf:
7579       case IndirectLocalPathEntry::LValToRVal:
7580         // These exist primarily to mark the path as not permitting or
7581         // supporting lifetime extension.
7582         break;
7583 
7584       case IndirectLocalPathEntry::LifetimeBoundCall:
7585       case IndirectLocalPathEntry::GslPointerInit:
7586       case IndirectLocalPathEntry::GslReferenceInit:
7587         // FIXME: Consider adding a note for these.
7588         break;
7589 
7590       case IndirectLocalPathEntry::DefaultInit: {
7591         auto *FD = cast<FieldDecl>(Elem.D);
7592         Diag(FD->getLocation(), diag::note_init_with_default_member_initalizer)
7593             << FD << nextPathEntryRange(Path, I + 1, L);
7594         break;
7595       }
7596 
7597       case IndirectLocalPathEntry::VarInit:
7598         const VarDecl *VD = cast<VarDecl>(Elem.D);
7599         Diag(VD->getLocation(), diag::note_local_var_initializer)
7600             << VD->getType()->isReferenceType()
7601             << VD->isImplicit() << VD->getDeclName()
7602             << nextPathEntryRange(Path, I + 1, L);
7603         break;
7604       }
7605     }
7606 
7607     // We didn't lifetime-extend, so don't go any further; we don't need more
7608     // warnings or errors on inner temporaries within this one's initializer.
7609     return false;
7610   };
7611 
7612   bool EnableLifetimeWarnings = !getDiagnostics().isIgnored(
7613       diag::warn_dangling_lifetime_pointer, SourceLocation());
7614   llvm::SmallVector<IndirectLocalPathEntry, 8> Path;
7615   if (Init->isGLValue())
7616     visitLocalsRetainedByReferenceBinding(Path, Init, RK_ReferenceBinding,
7617                                           TemporaryVisitor,
7618                                           EnableLifetimeWarnings);
7619   else
7620     visitLocalsRetainedByInitializer(Path, Init, TemporaryVisitor, false,
7621                                      EnableLifetimeWarnings);
7622 }
7623 
7624 static void DiagnoseNarrowingInInitList(Sema &S,
7625                                         const ImplicitConversionSequence &ICS,
7626                                         QualType PreNarrowingType,
7627                                         QualType EntityType,
7628                                         const Expr *PostInit);
7629 
7630 /// Provide warnings when std::move is used on construction.
7631 static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr,
7632                                     bool IsReturnStmt) {
7633   if (!InitExpr)
7634     return;
7635 
7636   if (S.inTemplateInstantiation())
7637     return;
7638 
7639   QualType DestType = InitExpr->getType();
7640   if (!DestType->isRecordType())
7641     return;
7642 
7643   unsigned DiagID = 0;
7644   if (IsReturnStmt) {
7645     const CXXConstructExpr *CCE =
7646         dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens());
7647     if (!CCE || CCE->getNumArgs() != 1)
7648       return;
7649 
7650     if (!CCE->getConstructor()->isCopyOrMoveConstructor())
7651       return;
7652 
7653     InitExpr = CCE->getArg(0)->IgnoreImpCasts();
7654   }
7655 
7656   // Find the std::move call and get the argument.
7657   const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens());
7658   if (!CE || !CE->isCallToStdMove())
7659     return;
7660 
7661   const Expr *Arg = CE->getArg(0)->IgnoreImplicit();
7662 
7663   if (IsReturnStmt) {
7664     const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts());
7665     if (!DRE || DRE->refersToEnclosingVariableOrCapture())
7666       return;
7667 
7668     const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
7669     if (!VD || !VD->hasLocalStorage())
7670       return;
7671 
7672     // __block variables are not moved implicitly.
7673     if (VD->hasAttr<BlocksAttr>())
7674       return;
7675 
7676     QualType SourceType = VD->getType();
7677     if (!SourceType->isRecordType())
7678       return;
7679 
7680     if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) {
7681       return;
7682     }
7683 
7684     // If we're returning a function parameter, copy elision
7685     // is not possible.
7686     if (isa<ParmVarDecl>(VD))
7687       DiagID = diag::warn_redundant_move_on_return;
7688     else
7689       DiagID = diag::warn_pessimizing_move_on_return;
7690   } else {
7691     DiagID = diag::warn_pessimizing_move_on_initialization;
7692     const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens();
7693     if (!ArgStripped->isRValue() || !ArgStripped->getType()->isRecordType())
7694       return;
7695   }
7696 
7697   S.Diag(CE->getBeginLoc(), DiagID);
7698 
7699   // Get all the locations for a fix-it.  Don't emit the fix-it if any location
7700   // is within a macro.
7701   SourceLocation CallBegin = CE->getCallee()->getBeginLoc();
7702   if (CallBegin.isMacroID())
7703     return;
7704   SourceLocation RParen = CE->getRParenLoc();
7705   if (RParen.isMacroID())
7706     return;
7707   SourceLocation LParen;
7708   SourceLocation ArgLoc = Arg->getBeginLoc();
7709 
7710   // Special testing for the argument location.  Since the fix-it needs the
7711   // location right before the argument, the argument location can be in a
7712   // macro only if it is at the beginning of the macro.
7713   while (ArgLoc.isMacroID() &&
7714          S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) {
7715     ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).getBegin();
7716   }
7717 
7718   if (LParen.isMacroID())
7719     return;
7720 
7721   LParen = ArgLoc.getLocWithOffset(-1);
7722 
7723   S.Diag(CE->getBeginLoc(), diag::note_remove_move)
7724       << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen))
7725       << FixItHint::CreateRemoval(SourceRange(RParen, RParen));
7726 }
7727 
7728 static void CheckForNullPointerDereference(Sema &S, const Expr *E) {
7729   // Check to see if we are dereferencing a null pointer.  If so, this is
7730   // undefined behavior, so warn about it.  This only handles the pattern
7731   // "*null", which is a very syntactic check.
7732   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
7733     if (UO->getOpcode() == UO_Deref &&
7734         UO->getSubExpr()->IgnoreParenCasts()->
7735         isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) {
7736     S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
7737                           S.PDiag(diag::warn_binding_null_to_reference)
7738                             << UO->getSubExpr()->getSourceRange());
7739   }
7740 }
7741 
7742 MaterializeTemporaryExpr *
7743 Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary,
7744                                      bool BoundToLvalueReference) {
7745   auto MTE = new (Context)
7746       MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference);
7747 
7748   // Order an ExprWithCleanups for lifetime marks.
7749   //
7750   // TODO: It'll be good to have a single place to check the access of the
7751   // destructor and generate ExprWithCleanups for various uses. Currently these
7752   // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary,
7753   // but there may be a chance to merge them.
7754   Cleanup.setExprNeedsCleanups(false);
7755   return MTE;
7756 }
7757 
7758 ExprResult Sema::TemporaryMaterializationConversion(Expr *E) {
7759   // In C++98, we don't want to implicitly create an xvalue.
7760   // FIXME: This means that AST consumers need to deal with "prvalues" that
7761   // denote materialized temporaries. Maybe we should add another ValueKind
7762   // for "xvalue pretending to be a prvalue" for C++98 support.
7763   if (!E->isRValue() || !getLangOpts().CPlusPlus11)
7764     return E;
7765 
7766   // C++1z [conv.rval]/1: T shall be a complete type.
7767   // FIXME: Does this ever matter (can we form a prvalue of incomplete type)?
7768   // If so, we should check for a non-abstract class type here too.
7769   QualType T = E->getType();
7770   if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type))
7771     return ExprError();
7772 
7773   return CreateMaterializeTemporaryExpr(E->getType(), E, false);
7774 }
7775 
7776 ExprResult Sema::PerformQualificationConversion(Expr *E, QualType Ty,
7777                                                 ExprValueKind VK,
7778                                                 CheckedConversionKind CCK) {
7779 
7780   CastKind CK = CK_NoOp;
7781 
7782   if (VK == VK_RValue) {
7783     auto PointeeTy = Ty->getPointeeType();
7784     auto ExprPointeeTy = E->getType()->getPointeeType();
7785     if (!PointeeTy.isNull() &&
7786         PointeeTy.getAddressSpace() != ExprPointeeTy.getAddressSpace())
7787       CK = CK_AddressSpaceConversion;
7788   } else if (Ty.getAddressSpace() != E->getType().getAddressSpace()) {
7789     CK = CK_AddressSpaceConversion;
7790   }
7791 
7792   return ImpCastExprToType(E, Ty, CK, VK, /*BasePath=*/nullptr, CCK);
7793 }
7794 
7795 ExprResult InitializationSequence::Perform(Sema &S,
7796                                            const InitializedEntity &Entity,
7797                                            const InitializationKind &Kind,
7798                                            MultiExprArg Args,
7799                                            QualType *ResultType) {
7800   if (Failed()) {
7801     Diagnose(S, Entity, Kind, Args);
7802     return ExprError();
7803   }
7804   if (!ZeroInitializationFixit.empty()) {
7805     unsigned DiagID = diag::err_default_init_const;
7806     if (Decl *D = Entity.getDecl())
7807       if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>())
7808         DiagID = diag::ext_default_init_const;
7809 
7810     // The initialization would have succeeded with this fixit. Since the fixit
7811     // is on the error, we need to build a valid AST in this case, so this isn't
7812     // handled in the Failed() branch above.
7813     QualType DestType = Entity.getType();
7814     S.Diag(Kind.getLocation(), DiagID)
7815         << DestType << (bool)DestType->getAs<RecordType>()
7816         << FixItHint::CreateInsertion(ZeroInitializationFixitLoc,
7817                                       ZeroInitializationFixit);
7818   }
7819 
7820   if (getKind() == DependentSequence) {
7821     // If the declaration is a non-dependent, incomplete array type
7822     // that has an initializer, then its type will be completed once
7823     // the initializer is instantiated.
7824     if (ResultType && !Entity.getType()->isDependentType() &&
7825         Args.size() == 1) {
7826       QualType DeclType = Entity.getType();
7827       if (const IncompleteArrayType *ArrayT
7828                            = S.Context.getAsIncompleteArrayType(DeclType)) {
7829         // FIXME: We don't currently have the ability to accurately
7830         // compute the length of an initializer list without
7831         // performing full type-checking of the initializer list
7832         // (since we have to determine where braces are implicitly
7833         // introduced and such).  So, we fall back to making the array
7834         // type a dependently-sized array type with no specified
7835         // bound.
7836         if (isa<InitListExpr>((Expr *)Args[0])) {
7837           SourceRange Brackets;
7838 
7839           // Scavange the location of the brackets from the entity, if we can.
7840           if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Entity.getDecl())) {
7841             if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
7842               TypeLoc TL = TInfo->getTypeLoc();
7843               if (IncompleteArrayTypeLoc ArrayLoc =
7844                       TL.getAs<IncompleteArrayTypeLoc>())
7845                 Brackets = ArrayLoc.getBracketsRange();
7846             }
7847           }
7848 
7849           *ResultType
7850             = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
7851                                                    /*NumElts=*/nullptr,
7852                                                    ArrayT->getSizeModifier(),
7853                                        ArrayT->getIndexTypeCVRQualifiers(),
7854                                                    Brackets);
7855         }
7856 
7857       }
7858     }
7859     if (Kind.getKind() == InitializationKind::IK_Direct &&
7860         !Kind.isExplicitCast()) {
7861       // Rebuild the ParenListExpr.
7862       SourceRange ParenRange = Kind.getParenOrBraceRange();
7863       return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
7864                                   Args);
7865     }
7866     assert(Kind.getKind() == InitializationKind::IK_Copy ||
7867            Kind.isExplicitCast() ||
7868            Kind.getKind() == InitializationKind::IK_DirectList);
7869     return ExprResult(Args[0]);
7870   }
7871 
7872   // No steps means no initialization.
7873   if (Steps.empty())
7874     return ExprResult((Expr *)nullptr);
7875 
7876   if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
7877       Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
7878       !Entity.isParameterKind()) {
7879     // Produce a C++98 compatibility warning if we are initializing a reference
7880     // from an initializer list. For parameters, we produce a better warning
7881     // elsewhere.
7882     Expr *Init = Args[0];
7883     S.Diag(Init->getBeginLoc(), diag::warn_cxx98_compat_reference_list_init)
7884         << Init->getSourceRange();
7885   }
7886 
7887   // OpenCL v2.0 s6.13.11.1. atomic variables can be initialized in global scope
7888   QualType ETy = Entity.getType();
7889   bool HasGlobalAS = ETy.hasAddressSpace() &&
7890                      ETy.getAddressSpace() == LangAS::opencl_global;
7891 
7892   if (S.getLangOpts().OpenCLVersion >= 200 &&
7893       ETy->isAtomicType() && !HasGlobalAS &&
7894       Entity.getKind() == InitializedEntity::EK_Variable && Args.size() > 0) {
7895     S.Diag(Args[0]->getBeginLoc(), diag::err_opencl_atomic_init)
7896         << 1
7897         << SourceRange(Entity.getDecl()->getBeginLoc(), Args[0]->getEndLoc());
7898     return ExprError();
7899   }
7900 
7901   QualType DestType = Entity.getType().getNonReferenceType();
7902   // FIXME: Ugly hack around the fact that Entity.getType() is not
7903   // the same as Entity.getDecl()->getType() in cases involving type merging,
7904   //  and we want latter when it makes sense.
7905   if (ResultType)
7906     *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
7907                                      Entity.getType();
7908 
7909   ExprResult CurInit((Expr *)nullptr);
7910   SmallVector<Expr*, 4> ArrayLoopCommonExprs;
7911 
7912   // For initialization steps that start with a single initializer,
7913   // grab the only argument out the Args and place it into the "current"
7914   // initializer.
7915   switch (Steps.front().Kind) {
7916   case SK_ResolveAddressOfOverloadedFunction:
7917   case SK_CastDerivedToBaseRValue:
7918   case SK_CastDerivedToBaseXValue:
7919   case SK_CastDerivedToBaseLValue:
7920   case SK_BindReference:
7921   case SK_BindReferenceToTemporary:
7922   case SK_FinalCopy:
7923   case SK_ExtraneousCopyToTemporary:
7924   case SK_UserConversion:
7925   case SK_QualificationConversionLValue:
7926   case SK_QualificationConversionXValue:
7927   case SK_QualificationConversionRValue:
7928   case SK_AtomicConversion:
7929   case SK_ConversionSequence:
7930   case SK_ConversionSequenceNoNarrowing:
7931   case SK_ListInitialization:
7932   case SK_UnwrapInitList:
7933   case SK_RewrapInitList:
7934   case SK_CAssignment:
7935   case SK_StringInit:
7936   case SK_ObjCObjectConversion:
7937   case SK_ArrayLoopIndex:
7938   case SK_ArrayLoopInit:
7939   case SK_ArrayInit:
7940   case SK_GNUArrayInit:
7941   case SK_ParenthesizedArrayInit:
7942   case SK_PassByIndirectCopyRestore:
7943   case SK_PassByIndirectRestore:
7944   case SK_ProduceObjCObject:
7945   case SK_StdInitializerList:
7946   case SK_OCLSamplerInit:
7947   case SK_OCLZeroOpaqueType: {
7948     assert(Args.size() == 1);
7949     CurInit = Args[0];
7950     if (!CurInit.get()) return ExprError();
7951     break;
7952   }
7953 
7954   case SK_ConstructorInitialization:
7955   case SK_ConstructorInitializationFromList:
7956   case SK_StdInitializerListConstructorCall:
7957   case SK_ZeroInitialization:
7958     break;
7959   }
7960 
7961   // Promote from an unevaluated context to an unevaluated list context in
7962   // C++11 list-initialization; we need to instantiate entities usable in
7963   // constant expressions here in order to perform narrowing checks =(
7964   EnterExpressionEvaluationContext Evaluated(
7965       S, EnterExpressionEvaluationContext::InitList,
7966       CurInit.get() && isa<InitListExpr>(CurInit.get()));
7967 
7968   // C++ [class.abstract]p2:
7969   //   no objects of an abstract class can be created except as subobjects
7970   //   of a class derived from it
7971   auto checkAbstractType = [&](QualType T) -> bool {
7972     if (Entity.getKind() == InitializedEntity::EK_Base ||
7973         Entity.getKind() == InitializedEntity::EK_Delegating)
7974       return false;
7975     return S.RequireNonAbstractType(Kind.getLocation(), T,
7976                                     diag::err_allocation_of_abstract_type);
7977   };
7978 
7979   // Walk through the computed steps for the initialization sequence,
7980   // performing the specified conversions along the way.
7981   bool ConstructorInitRequiresZeroInit = false;
7982   for (step_iterator Step = step_begin(), StepEnd = step_end();
7983        Step != StepEnd; ++Step) {
7984     if (CurInit.isInvalid())
7985       return ExprError();
7986 
7987     QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
7988 
7989     switch (Step->Kind) {
7990     case SK_ResolveAddressOfOverloadedFunction:
7991       // Overload resolution determined which function invoke; update the
7992       // initializer to reflect that choice.
7993       S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
7994       if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()))
7995         return ExprError();
7996       CurInit = S.FixOverloadedFunctionReference(CurInit,
7997                                                  Step->Function.FoundDecl,
7998                                                  Step->Function.Function);
7999       break;
8000 
8001     case SK_CastDerivedToBaseRValue:
8002     case SK_CastDerivedToBaseXValue:
8003     case SK_CastDerivedToBaseLValue: {
8004       // We have a derived-to-base cast that produces either an rvalue or an
8005       // lvalue. Perform that cast.
8006 
8007       CXXCastPath BasePath;
8008 
8009       // Casts to inaccessible base classes are allowed with C-style casts.
8010       bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
8011       if (S.CheckDerivedToBaseConversion(
8012               SourceType, Step->Type, CurInit.get()->getBeginLoc(),
8013               CurInit.get()->getSourceRange(), &BasePath, IgnoreBaseAccess))
8014         return ExprError();
8015 
8016       ExprValueKind VK =
8017           Step->Kind == SK_CastDerivedToBaseLValue ?
8018               VK_LValue :
8019               (Step->Kind == SK_CastDerivedToBaseXValue ?
8020                    VK_XValue :
8021                    VK_RValue);
8022       CurInit =
8023           ImplicitCastExpr::Create(S.Context, Step->Type, CK_DerivedToBase,
8024                                    CurInit.get(), &BasePath, VK);
8025       break;
8026     }
8027 
8028     case SK_BindReference:
8029       // Reference binding does not have any corresponding ASTs.
8030 
8031       // Check exception specifications
8032       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
8033         return ExprError();
8034 
8035       // We don't check for e.g. function pointers here, since address
8036       // availability checks should only occur when the function first decays
8037       // into a pointer or reference.
8038       if (CurInit.get()->getType()->isFunctionProtoType()) {
8039         if (auto *DRE = dyn_cast<DeclRefExpr>(CurInit.get()->IgnoreParens())) {
8040           if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
8041             if (!S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
8042                                                      DRE->getBeginLoc()))
8043               return ExprError();
8044           }
8045         }
8046       }
8047 
8048       CheckForNullPointerDereference(S, CurInit.get());
8049       break;
8050 
8051     case SK_BindReferenceToTemporary: {
8052       // Make sure the "temporary" is actually an rvalue.
8053       assert(CurInit.get()->isRValue() && "not a temporary");
8054 
8055       // Check exception specifications
8056       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
8057         return ExprError();
8058 
8059       // Materialize the temporary into memory.
8060       MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
8061           Step->Type, CurInit.get(), Entity.getType()->isLValueReferenceType());
8062       CurInit = MTE;
8063 
8064       // If we're extending this temporary to automatic storage duration -- we
8065       // need to register its cleanup during the full-expression's cleanups.
8066       if (MTE->getStorageDuration() == SD_Automatic &&
8067           MTE->getType().isDestructedType())
8068         S.Cleanup.setExprNeedsCleanups(true);
8069       break;
8070     }
8071 
8072     case SK_FinalCopy:
8073       if (checkAbstractType(Step->Type))
8074         return ExprError();
8075 
8076       // If the overall initialization is initializing a temporary, we already
8077       // bound our argument if it was necessary to do so. If not (if we're
8078       // ultimately initializing a non-temporary), our argument needs to be
8079       // bound since it's initializing a function parameter.
8080       // FIXME: This is a mess. Rationalize temporary destruction.
8081       if (!shouldBindAsTemporary(Entity))
8082         CurInit = S.MaybeBindToTemporary(CurInit.get());
8083       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
8084                            /*IsExtraneousCopy=*/false);
8085       break;
8086 
8087     case SK_ExtraneousCopyToTemporary:
8088       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
8089                            /*IsExtraneousCopy=*/true);
8090       break;
8091 
8092     case SK_UserConversion: {
8093       // We have a user-defined conversion that invokes either a constructor
8094       // or a conversion function.
8095       CastKind CastKind;
8096       FunctionDecl *Fn = Step->Function.Function;
8097       DeclAccessPair FoundFn = Step->Function.FoundDecl;
8098       bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
8099       bool CreatedObject = false;
8100       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
8101         // Build a call to the selected constructor.
8102         SmallVector<Expr*, 8> ConstructorArgs;
8103         SourceLocation Loc = CurInit.get()->getBeginLoc();
8104 
8105         // Determine the arguments required to actually perform the constructor
8106         // call.
8107         Expr *Arg = CurInit.get();
8108         if (S.CompleteConstructorCall(Constructor,
8109                                       MultiExprArg(&Arg, 1),
8110                                       Loc, ConstructorArgs))
8111           return ExprError();
8112 
8113         // Build an expression that constructs a temporary.
8114         CurInit = S.BuildCXXConstructExpr(Loc, Step->Type,
8115                                           FoundFn, Constructor,
8116                                           ConstructorArgs,
8117                                           HadMultipleCandidates,
8118                                           /*ListInit*/ false,
8119                                           /*StdInitListInit*/ false,
8120                                           /*ZeroInit*/ false,
8121                                           CXXConstructExpr::CK_Complete,
8122                                           SourceRange());
8123         if (CurInit.isInvalid())
8124           return ExprError();
8125 
8126         S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn,
8127                                  Entity);
8128         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
8129           return ExprError();
8130 
8131         CastKind = CK_ConstructorConversion;
8132         CreatedObject = true;
8133       } else {
8134         // Build a call to the conversion function.
8135         CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
8136         S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr,
8137                                     FoundFn);
8138         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
8139           return ExprError();
8140 
8141         CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
8142                                            HadMultipleCandidates);
8143         if (CurInit.isInvalid())
8144           return ExprError();
8145 
8146         CastKind = CK_UserDefinedConversion;
8147         CreatedObject = Conversion->getReturnType()->isRecordType();
8148       }
8149 
8150       if (CreatedObject && checkAbstractType(CurInit.get()->getType()))
8151         return ExprError();
8152 
8153       CurInit = ImplicitCastExpr::Create(S.Context, CurInit.get()->getType(),
8154                                          CastKind, CurInit.get(), nullptr,
8155                                          CurInit.get()->getValueKind());
8156 
8157       if (shouldBindAsTemporary(Entity))
8158         // The overall entity is temporary, so this expression should be
8159         // destroyed at the end of its full-expression.
8160         CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
8161       else if (CreatedObject && shouldDestroyEntity(Entity)) {
8162         // The object outlasts the full-expression, but we need to prepare for
8163         // a destructor being run on it.
8164         // FIXME: It makes no sense to do this here. This should happen
8165         // regardless of how we initialized the entity.
8166         QualType T = CurInit.get()->getType();
8167         if (const RecordType *Record = T->getAs<RecordType>()) {
8168           CXXDestructorDecl *Destructor
8169             = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
8170           S.CheckDestructorAccess(CurInit.get()->getBeginLoc(), Destructor,
8171                                   S.PDiag(diag::err_access_dtor_temp) << T);
8172           S.MarkFunctionReferenced(CurInit.get()->getBeginLoc(), Destructor);
8173           if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getBeginLoc()))
8174             return ExprError();
8175         }
8176       }
8177       break;
8178     }
8179 
8180     case SK_QualificationConversionLValue:
8181     case SK_QualificationConversionXValue:
8182     case SK_QualificationConversionRValue: {
8183       // Perform a qualification conversion; these can never go wrong.
8184       ExprValueKind VK =
8185           Step->Kind == SK_QualificationConversionLValue
8186               ? VK_LValue
8187               : (Step->Kind == SK_QualificationConversionXValue ? VK_XValue
8188                                                                 : VK_RValue);
8189       CurInit = S.PerformQualificationConversion(CurInit.get(), Step->Type, VK);
8190       break;
8191     }
8192 
8193     case SK_AtomicConversion: {
8194       assert(CurInit.get()->isRValue() && "cannot convert glvalue to atomic");
8195       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8196                                     CK_NonAtomicToAtomic, VK_RValue);
8197       break;
8198     }
8199 
8200     case SK_ConversionSequence:
8201     case SK_ConversionSequenceNoNarrowing: {
8202       if (const auto *FromPtrType =
8203               CurInit.get()->getType()->getAs<PointerType>()) {
8204         if (const auto *ToPtrType = Step->Type->getAs<PointerType>()) {
8205           if (FromPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
8206               !ToPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
8207             // Do not check static casts here because they are checked earlier
8208             // in Sema::ActOnCXXNamedCast()
8209             if (!Kind.isStaticCast()) {
8210               S.Diag(CurInit.get()->getExprLoc(),
8211                      diag::warn_noderef_to_dereferenceable_pointer)
8212                   << CurInit.get()->getSourceRange();
8213             }
8214           }
8215         }
8216       }
8217 
8218       Sema::CheckedConversionKind CCK
8219         = Kind.isCStyleCast()? Sema::CCK_CStyleCast
8220         : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
8221         : Kind.isExplicitCast()? Sema::CCK_OtherCast
8222         : Sema::CCK_ImplicitConversion;
8223       ExprResult CurInitExprRes =
8224         S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
8225                                     getAssignmentAction(Entity), CCK);
8226       if (CurInitExprRes.isInvalid())
8227         return ExprError();
8228 
8229       S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), CurInit.get());
8230 
8231       CurInit = CurInitExprRes;
8232 
8233       if (Step->Kind == SK_ConversionSequenceNoNarrowing &&
8234           S.getLangOpts().CPlusPlus)
8235         DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(),
8236                                     CurInit.get());
8237 
8238       break;
8239     }
8240 
8241     case SK_ListInitialization: {
8242       if (checkAbstractType(Step->Type))
8243         return ExprError();
8244 
8245       InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
8246       // If we're not initializing the top-level entity, we need to create an
8247       // InitializeTemporary entity for our target type.
8248       QualType Ty = Step->Type;
8249       bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty);
8250       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
8251       InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
8252       InitListChecker PerformInitList(S, InitEntity,
8253           InitList, Ty, /*VerifyOnly=*/false,
8254           /*TreatUnavailableAsInvalid=*/false);
8255       if (PerformInitList.HadError())
8256         return ExprError();
8257 
8258       // Hack: We must update *ResultType if available in order to set the
8259       // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
8260       // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
8261       if (ResultType &&
8262           ResultType->getNonReferenceType()->isIncompleteArrayType()) {
8263         if ((*ResultType)->isRValueReferenceType())
8264           Ty = S.Context.getRValueReferenceType(Ty);
8265         else if ((*ResultType)->isLValueReferenceType())
8266           Ty = S.Context.getLValueReferenceType(Ty,
8267             (*ResultType)->castAs<LValueReferenceType>()->isSpelledAsLValue());
8268         *ResultType = Ty;
8269       }
8270 
8271       InitListExpr *StructuredInitList =
8272           PerformInitList.getFullyStructuredList();
8273       CurInit.get();
8274       CurInit = shouldBindAsTemporary(InitEntity)
8275           ? S.MaybeBindToTemporary(StructuredInitList)
8276           : StructuredInitList;
8277       break;
8278     }
8279 
8280     case SK_ConstructorInitializationFromList: {
8281       if (checkAbstractType(Step->Type))
8282         return ExprError();
8283 
8284       // When an initializer list is passed for a parameter of type "reference
8285       // to object", we don't get an EK_Temporary entity, but instead an
8286       // EK_Parameter entity with reference type.
8287       // FIXME: This is a hack. What we really should do is create a user
8288       // conversion step for this case, but this makes it considerably more
8289       // complicated. For now, this will do.
8290       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
8291                                         Entity.getType().getNonReferenceType());
8292       bool UseTemporary = Entity.getType()->isReferenceType();
8293       assert(Args.size() == 1 && "expected a single argument for list init");
8294       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
8295       S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
8296         << InitList->getSourceRange();
8297       MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
8298       CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
8299                                                                    Entity,
8300                                                  Kind, Arg, *Step,
8301                                                ConstructorInitRequiresZeroInit,
8302                                                /*IsListInitialization*/true,
8303                                                /*IsStdInitListInit*/false,
8304                                                InitList->getLBraceLoc(),
8305                                                InitList->getRBraceLoc());
8306       break;
8307     }
8308 
8309     case SK_UnwrapInitList:
8310       CurInit = cast<InitListExpr>(CurInit.get())->getInit(0);
8311       break;
8312 
8313     case SK_RewrapInitList: {
8314       Expr *E = CurInit.get();
8315       InitListExpr *Syntactic = Step->WrappingSyntacticList;
8316       InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
8317           Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
8318       ILE->setSyntacticForm(Syntactic);
8319       ILE->setType(E->getType());
8320       ILE->setValueKind(E->getValueKind());
8321       CurInit = ILE;
8322       break;
8323     }
8324 
8325     case SK_ConstructorInitialization:
8326     case SK_StdInitializerListConstructorCall: {
8327       if (checkAbstractType(Step->Type))
8328         return ExprError();
8329 
8330       // When an initializer list is passed for a parameter of type "reference
8331       // to object", we don't get an EK_Temporary entity, but instead an
8332       // EK_Parameter entity with reference type.
8333       // FIXME: This is a hack. What we really should do is create a user
8334       // conversion step for this case, but this makes it considerably more
8335       // complicated. For now, this will do.
8336       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
8337                                         Entity.getType().getNonReferenceType());
8338       bool UseTemporary = Entity.getType()->isReferenceType();
8339       bool IsStdInitListInit =
8340           Step->Kind == SK_StdInitializerListConstructorCall;
8341       Expr *Source = CurInit.get();
8342       SourceRange Range = Kind.hasParenOrBraceRange()
8343                               ? Kind.getParenOrBraceRange()
8344                               : SourceRange();
8345       CurInit = PerformConstructorInitialization(
8346           S, UseTemporary ? TempEntity : Entity, Kind,
8347           Source ? MultiExprArg(Source) : Args, *Step,
8348           ConstructorInitRequiresZeroInit,
8349           /*IsListInitialization*/ IsStdInitListInit,
8350           /*IsStdInitListInitialization*/ IsStdInitListInit,
8351           /*LBraceLoc*/ Range.getBegin(),
8352           /*RBraceLoc*/ Range.getEnd());
8353       break;
8354     }
8355 
8356     case SK_ZeroInitialization: {
8357       step_iterator NextStep = Step;
8358       ++NextStep;
8359       if (NextStep != StepEnd &&
8360           (NextStep->Kind == SK_ConstructorInitialization ||
8361            NextStep->Kind == SK_ConstructorInitializationFromList)) {
8362         // The need for zero-initialization is recorded directly into
8363         // the call to the object's constructor within the next step.
8364         ConstructorInitRequiresZeroInit = true;
8365       } else if (Kind.getKind() == InitializationKind::IK_Value &&
8366                  S.getLangOpts().CPlusPlus &&
8367                  !Kind.isImplicitValueInit()) {
8368         TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
8369         if (!TSInfo)
8370           TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
8371                                                     Kind.getRange().getBegin());
8372 
8373         CurInit = new (S.Context) CXXScalarValueInitExpr(
8374             Entity.getType().getNonLValueExprType(S.Context), TSInfo,
8375             Kind.getRange().getEnd());
8376       } else {
8377         CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type);
8378       }
8379       break;
8380     }
8381 
8382     case SK_CAssignment: {
8383       QualType SourceType = CurInit.get()->getType();
8384 
8385       // Save off the initial CurInit in case we need to emit a diagnostic
8386       ExprResult InitialCurInit = CurInit;
8387       ExprResult Result = CurInit;
8388       Sema::AssignConvertType ConvTy =
8389         S.CheckSingleAssignmentConstraints(Step->Type, Result, true,
8390             Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited);
8391       if (Result.isInvalid())
8392         return ExprError();
8393       CurInit = Result;
8394 
8395       // If this is a call, allow conversion to a transparent union.
8396       ExprResult CurInitExprRes = CurInit;
8397       if (ConvTy != Sema::Compatible &&
8398           Entity.isParameterKind() &&
8399           S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
8400             == Sema::Compatible)
8401         ConvTy = Sema::Compatible;
8402       if (CurInitExprRes.isInvalid())
8403         return ExprError();
8404       CurInit = CurInitExprRes;
8405 
8406       bool Complained;
8407       if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
8408                                      Step->Type, SourceType,
8409                                      InitialCurInit.get(),
8410                                      getAssignmentAction(Entity, true),
8411                                      &Complained)) {
8412         PrintInitLocationNote(S, Entity);
8413         return ExprError();
8414       } else if (Complained)
8415         PrintInitLocationNote(S, Entity);
8416       break;
8417     }
8418 
8419     case SK_StringInit: {
8420       QualType Ty = Step->Type;
8421       CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
8422                       S.Context.getAsArrayType(Ty), S);
8423       break;
8424     }
8425 
8426     case SK_ObjCObjectConversion:
8427       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8428                           CK_ObjCObjectLValueCast,
8429                           CurInit.get()->getValueKind());
8430       break;
8431 
8432     case SK_ArrayLoopIndex: {
8433       Expr *Cur = CurInit.get();
8434       Expr *BaseExpr = new (S.Context)
8435           OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(),
8436                           Cur->getValueKind(), Cur->getObjectKind(), Cur);
8437       Expr *IndexExpr =
8438           new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType());
8439       CurInit = S.CreateBuiltinArraySubscriptExpr(
8440           BaseExpr, Kind.getLocation(), IndexExpr, Kind.getLocation());
8441       ArrayLoopCommonExprs.push_back(BaseExpr);
8442       break;
8443     }
8444 
8445     case SK_ArrayLoopInit: {
8446       assert(!ArrayLoopCommonExprs.empty() &&
8447              "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit");
8448       Expr *Common = ArrayLoopCommonExprs.pop_back_val();
8449       CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common,
8450                                                   CurInit.get());
8451       break;
8452     }
8453 
8454     case SK_GNUArrayInit:
8455       // Okay: we checked everything before creating this step. Note that
8456       // this is a GNU extension.
8457       S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
8458         << Step->Type << CurInit.get()->getType()
8459         << CurInit.get()->getSourceRange();
8460       updateGNUCompoundLiteralRValue(CurInit.get());
8461       LLVM_FALLTHROUGH;
8462     case SK_ArrayInit:
8463       // If the destination type is an incomplete array type, update the
8464       // type accordingly.
8465       if (ResultType) {
8466         if (const IncompleteArrayType *IncompleteDest
8467                            = S.Context.getAsIncompleteArrayType(Step->Type)) {
8468           if (const ConstantArrayType *ConstantSource
8469                  = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
8470             *ResultType = S.Context.getConstantArrayType(
8471                                              IncompleteDest->getElementType(),
8472                                              ConstantSource->getSize(),
8473                                              ConstantSource->getSizeExpr(),
8474                                              ArrayType::Normal, 0);
8475           }
8476         }
8477       }
8478       break;
8479 
8480     case SK_ParenthesizedArrayInit:
8481       // Okay: we checked everything before creating this step. Note that
8482       // this is a GNU extension.
8483       S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
8484         << CurInit.get()->getSourceRange();
8485       break;
8486 
8487     case SK_PassByIndirectCopyRestore:
8488     case SK_PassByIndirectRestore:
8489       checkIndirectCopyRestoreSource(S, CurInit.get());
8490       CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr(
8491           CurInit.get(), Step->Type,
8492           Step->Kind == SK_PassByIndirectCopyRestore);
8493       break;
8494 
8495     case SK_ProduceObjCObject:
8496       CurInit =
8497           ImplicitCastExpr::Create(S.Context, Step->Type, CK_ARCProduceObject,
8498                                    CurInit.get(), nullptr, VK_RValue);
8499       break;
8500 
8501     case SK_StdInitializerList: {
8502       S.Diag(CurInit.get()->getExprLoc(),
8503              diag::warn_cxx98_compat_initializer_list_init)
8504         << CurInit.get()->getSourceRange();
8505 
8506       // Materialize the temporary into memory.
8507       MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
8508           CurInit.get()->getType(), CurInit.get(),
8509           /*BoundToLvalueReference=*/false);
8510 
8511       // Wrap it in a construction of a std::initializer_list<T>.
8512       CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE);
8513 
8514       // Bind the result, in case the library has given initializer_list a
8515       // non-trivial destructor.
8516       if (shouldBindAsTemporary(Entity))
8517         CurInit = S.MaybeBindToTemporary(CurInit.get());
8518       break;
8519     }
8520 
8521     case SK_OCLSamplerInit: {
8522       // Sampler initialization have 5 cases:
8523       //   1. function argument passing
8524       //      1a. argument is a file-scope variable
8525       //      1b. argument is a function-scope variable
8526       //      1c. argument is one of caller function's parameters
8527       //   2. variable initialization
8528       //      2a. initializing a file-scope variable
8529       //      2b. initializing a function-scope variable
8530       //
8531       // For file-scope variables, since they cannot be initialized by function
8532       // call of __translate_sampler_initializer in LLVM IR, their references
8533       // need to be replaced by a cast from their literal initializers to
8534       // sampler type. Since sampler variables can only be used in function
8535       // calls as arguments, we only need to replace them when handling the
8536       // argument passing.
8537       assert(Step->Type->isSamplerT() &&
8538              "Sampler initialization on non-sampler type.");
8539       Expr *Init = CurInit.get()->IgnoreParens();
8540       QualType SourceType = Init->getType();
8541       // Case 1
8542       if (Entity.isParameterKind()) {
8543         if (!SourceType->isSamplerT() && !SourceType->isIntegerType()) {
8544           S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
8545             << SourceType;
8546           break;
8547         } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init)) {
8548           auto Var = cast<VarDecl>(DRE->getDecl());
8549           // Case 1b and 1c
8550           // No cast from integer to sampler is needed.
8551           if (!Var->hasGlobalStorage()) {
8552             CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
8553                                                CK_LValueToRValue, Init,
8554                                                /*BasePath=*/nullptr, VK_RValue);
8555             break;
8556           }
8557           // Case 1a
8558           // For function call with a file-scope sampler variable as argument,
8559           // get the integer literal.
8560           // Do not diagnose if the file-scope variable does not have initializer
8561           // since this has already been diagnosed when parsing the variable
8562           // declaration.
8563           if (!Var->getInit() || !isa<ImplicitCastExpr>(Var->getInit()))
8564             break;
8565           Init = cast<ImplicitCastExpr>(const_cast<Expr*>(
8566             Var->getInit()))->getSubExpr();
8567           SourceType = Init->getType();
8568         }
8569       } else {
8570         // Case 2
8571         // Check initializer is 32 bit integer constant.
8572         // If the initializer is taken from global variable, do not diagnose since
8573         // this has already been done when parsing the variable declaration.
8574         if (!Init->isConstantInitializer(S.Context, false))
8575           break;
8576 
8577         if (!SourceType->isIntegerType() ||
8578             32 != S.Context.getIntWidth(SourceType)) {
8579           S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer)
8580             << SourceType;
8581           break;
8582         }
8583 
8584         Expr::EvalResult EVResult;
8585         Init->EvaluateAsInt(EVResult, S.Context);
8586         llvm::APSInt Result = EVResult.Val.getInt();
8587         const uint64_t SamplerValue = Result.getLimitedValue();
8588         // 32-bit value of sampler's initializer is interpreted as
8589         // bit-field with the following structure:
8590         // |unspecified|Filter|Addressing Mode| Normalized Coords|
8591         // |31        6|5    4|3             1|                 0|
8592         // This structure corresponds to enum values of sampler properties
8593         // defined in SPIR spec v1.2 and also opencl-c.h
8594         unsigned AddressingMode  = (0x0E & SamplerValue) >> 1;
8595         unsigned FilterMode      = (0x30 & SamplerValue) >> 4;
8596         if (FilterMode != 1 && FilterMode != 2 &&
8597             !S.getOpenCLOptions().isEnabled(
8598                 "cl_intel_device_side_avc_motion_estimation"))
8599           S.Diag(Kind.getLocation(),
8600                  diag::warn_sampler_initializer_invalid_bits)
8601                  << "Filter Mode";
8602         if (AddressingMode > 4)
8603           S.Diag(Kind.getLocation(),
8604                  diag::warn_sampler_initializer_invalid_bits)
8605                  << "Addressing Mode";
8606       }
8607 
8608       // Cases 1a, 2a and 2b
8609       // Insert cast from integer to sampler.
8610       CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy,
8611                                       CK_IntToOCLSampler);
8612       break;
8613     }
8614     case SK_OCLZeroOpaqueType: {
8615       assert((Step->Type->isEventT() || Step->Type->isQueueT() ||
8616               Step->Type->isOCLIntelSubgroupAVCType()) &&
8617              "Wrong type for initialization of OpenCL opaque type.");
8618 
8619       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8620                                     CK_ZeroToOCLOpaqueType,
8621                                     CurInit.get()->getValueKind());
8622       break;
8623     }
8624     }
8625   }
8626 
8627   // Check whether the initializer has a shorter lifetime than the initialized
8628   // entity, and if not, either lifetime-extend or warn as appropriate.
8629   if (auto *Init = CurInit.get())
8630     S.checkInitializerLifetime(Entity, Init);
8631 
8632   // Diagnose non-fatal problems with the completed initialization.
8633   if (Entity.getKind() == InitializedEntity::EK_Member &&
8634       cast<FieldDecl>(Entity.getDecl())->isBitField())
8635     S.CheckBitFieldInitialization(Kind.getLocation(),
8636                                   cast<FieldDecl>(Entity.getDecl()),
8637                                   CurInit.get());
8638 
8639   // Check for std::move on construction.
8640   if (const Expr *E = CurInit.get()) {
8641     CheckMoveOnConstruction(S, E,
8642                             Entity.getKind() == InitializedEntity::EK_Result);
8643   }
8644 
8645   return CurInit;
8646 }
8647 
8648 /// Somewhere within T there is an uninitialized reference subobject.
8649 /// Dig it out and diagnose it.
8650 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
8651                                            QualType T) {
8652   if (T->isReferenceType()) {
8653     S.Diag(Loc, diag::err_reference_without_init)
8654       << T.getNonReferenceType();
8655     return true;
8656   }
8657 
8658   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
8659   if (!RD || !RD->hasUninitializedReferenceMember())
8660     return false;
8661 
8662   for (const auto *FI : RD->fields()) {
8663     if (FI->isUnnamedBitfield())
8664       continue;
8665 
8666     if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
8667       S.Diag(Loc, diag::note_value_initialization_here) << RD;
8668       return true;
8669     }
8670   }
8671 
8672   for (const auto &BI : RD->bases()) {
8673     if (DiagnoseUninitializedReference(S, BI.getBeginLoc(), BI.getType())) {
8674       S.Diag(Loc, diag::note_value_initialization_here) << RD;
8675       return true;
8676     }
8677   }
8678 
8679   return false;
8680 }
8681 
8682 
8683 //===----------------------------------------------------------------------===//
8684 // Diagnose initialization failures
8685 //===----------------------------------------------------------------------===//
8686 
8687 /// Emit notes associated with an initialization that failed due to a
8688 /// "simple" conversion failure.
8689 static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity,
8690                                    Expr *op) {
8691   QualType destType = entity.getType();
8692   if (destType.getNonReferenceType()->isObjCObjectPointerType() &&
8693       op->getType()->isObjCObjectPointerType()) {
8694 
8695     // Emit a possible note about the conversion failing because the
8696     // operand is a message send with a related result type.
8697     S.EmitRelatedResultTypeNote(op);
8698 
8699     // Emit a possible note about a return failing because we're
8700     // expecting a related result type.
8701     if (entity.getKind() == InitializedEntity::EK_Result)
8702       S.EmitRelatedResultTypeNoteForReturn(destType);
8703   }
8704   QualType fromType = op->getType();
8705   auto *fromDecl = fromType.getTypePtr()->getPointeeCXXRecordDecl();
8706   auto *destDecl = destType.getTypePtr()->getPointeeCXXRecordDecl();
8707   if (fromDecl && destDecl && fromDecl->getDeclKind() == Decl::CXXRecord &&
8708       destDecl->getDeclKind() == Decl::CXXRecord &&
8709       !fromDecl->isInvalidDecl() && !destDecl->isInvalidDecl() &&
8710       !fromDecl->hasDefinition())
8711     S.Diag(fromDecl->getLocation(), diag::note_forward_class_conversion)
8712         << S.getASTContext().getTagDeclType(fromDecl)
8713         << S.getASTContext().getTagDeclType(destDecl);
8714 }
8715 
8716 static void diagnoseListInit(Sema &S, const InitializedEntity &Entity,
8717                              InitListExpr *InitList) {
8718   QualType DestType = Entity.getType();
8719 
8720   QualType E;
8721   if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) {
8722     QualType ArrayType = S.Context.getConstantArrayType(
8723         E.withConst(),
8724         llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
8725                     InitList->getNumInits()),
8726         nullptr, clang::ArrayType::Normal, 0);
8727     InitializedEntity HiddenArray =
8728         InitializedEntity::InitializeTemporary(ArrayType);
8729     return diagnoseListInit(S, HiddenArray, InitList);
8730   }
8731 
8732   if (DestType->isReferenceType()) {
8733     // A list-initialization failure for a reference means that we tried to
8734     // create a temporary of the inner type (per [dcl.init.list]p3.6) and the
8735     // inner initialization failed.
8736     QualType T = DestType->castAs<ReferenceType>()->getPointeeType();
8737     diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList);
8738     SourceLocation Loc = InitList->getBeginLoc();
8739     if (auto *D = Entity.getDecl())
8740       Loc = D->getLocation();
8741     S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T;
8742     return;
8743   }
8744 
8745   InitListChecker DiagnoseInitList(S, Entity, InitList, DestType,
8746                                    /*VerifyOnly=*/false,
8747                                    /*TreatUnavailableAsInvalid=*/false);
8748   assert(DiagnoseInitList.HadError() &&
8749          "Inconsistent init list check result.");
8750 }
8751 
8752 bool InitializationSequence::Diagnose(Sema &S,
8753                                       const InitializedEntity &Entity,
8754                                       const InitializationKind &Kind,
8755                                       ArrayRef<Expr *> Args) {
8756   if (!Failed())
8757     return false;
8758 
8759   // When we want to diagnose only one element of a braced-init-list,
8760   // we need to factor it out.
8761   Expr *OnlyArg;
8762   if (Args.size() == 1) {
8763     auto *List = dyn_cast<InitListExpr>(Args[0]);
8764     if (List && List->getNumInits() == 1)
8765       OnlyArg = List->getInit(0);
8766     else
8767       OnlyArg = Args[0];
8768   }
8769   else
8770     OnlyArg = nullptr;
8771 
8772   QualType DestType = Entity.getType();
8773   switch (Failure) {
8774   case FK_TooManyInitsForReference:
8775     // FIXME: Customize for the initialized entity?
8776     if (Args.empty()) {
8777       // Dig out the reference subobject which is uninitialized and diagnose it.
8778       // If this is value-initialization, this could be nested some way within
8779       // the target type.
8780       assert(Kind.getKind() == InitializationKind::IK_Value ||
8781              DestType->isReferenceType());
8782       bool Diagnosed =
8783         DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
8784       assert(Diagnosed && "couldn't find uninitialized reference to diagnose");
8785       (void)Diagnosed;
8786     } else  // FIXME: diagnostic below could be better!
8787       S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
8788           << SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
8789     break;
8790   case FK_ParenthesizedListInitForReference:
8791     S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
8792       << 1 << Entity.getType() << Args[0]->getSourceRange();
8793     break;
8794 
8795   case FK_ArrayNeedsInitList:
8796     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0;
8797     break;
8798   case FK_ArrayNeedsInitListOrStringLiteral:
8799     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1;
8800     break;
8801   case FK_ArrayNeedsInitListOrWideStringLiteral:
8802     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2;
8803     break;
8804   case FK_NarrowStringIntoWideCharArray:
8805     S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar);
8806     break;
8807   case FK_WideStringIntoCharArray:
8808     S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char);
8809     break;
8810   case FK_IncompatWideStringIntoWideChar:
8811     S.Diag(Kind.getLocation(),
8812            diag::err_array_init_incompat_wide_string_into_wchar);
8813     break;
8814   case FK_PlainStringIntoUTF8Char:
8815     S.Diag(Kind.getLocation(),
8816            diag::err_array_init_plain_string_into_char8_t);
8817     S.Diag(Args.front()->getBeginLoc(),
8818            diag::note_array_init_plain_string_into_char8_t)
8819         << FixItHint::CreateInsertion(Args.front()->getBeginLoc(), "u8");
8820     break;
8821   case FK_UTF8StringIntoPlainChar:
8822     S.Diag(Kind.getLocation(),
8823            diag::err_array_init_utf8_string_into_char)
8824       << S.getLangOpts().CPlusPlus20;
8825     break;
8826   case FK_ArrayTypeMismatch:
8827   case FK_NonConstantArrayInit:
8828     S.Diag(Kind.getLocation(),
8829            (Failure == FK_ArrayTypeMismatch
8830               ? diag::err_array_init_different_type
8831               : diag::err_array_init_non_constant_array))
8832       << DestType.getNonReferenceType()
8833       << OnlyArg->getType()
8834       << Args[0]->getSourceRange();
8835     break;
8836 
8837   case FK_VariableLengthArrayHasInitializer:
8838     S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
8839       << Args[0]->getSourceRange();
8840     break;
8841 
8842   case FK_AddressOfOverloadFailed: {
8843     DeclAccessPair Found;
8844     S.ResolveAddressOfOverloadedFunction(OnlyArg,
8845                                          DestType.getNonReferenceType(),
8846                                          true,
8847                                          Found);
8848     break;
8849   }
8850 
8851   case FK_AddressOfUnaddressableFunction: {
8852     auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(OnlyArg)->getDecl());
8853     S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
8854                                         OnlyArg->getBeginLoc());
8855     break;
8856   }
8857 
8858   case FK_ReferenceInitOverloadFailed:
8859   case FK_UserConversionOverloadFailed:
8860     switch (FailedOverloadResult) {
8861     case OR_Ambiguous:
8862 
8863       FailedCandidateSet.NoteCandidates(
8864           PartialDiagnosticAt(
8865               Kind.getLocation(),
8866               Failure == FK_UserConversionOverloadFailed
8867                   ? (S.PDiag(diag::err_typecheck_ambiguous_condition)
8868                      << OnlyArg->getType() << DestType
8869                      << Args[0]->getSourceRange())
8870                   : (S.PDiag(diag::err_ref_init_ambiguous)
8871                      << DestType << OnlyArg->getType()
8872                      << Args[0]->getSourceRange())),
8873           S, OCD_AmbiguousCandidates, Args);
8874       break;
8875 
8876     case OR_No_Viable_Function: {
8877       auto Cands = FailedCandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args);
8878       if (!S.RequireCompleteType(Kind.getLocation(),
8879                                  DestType.getNonReferenceType(),
8880                           diag::err_typecheck_nonviable_condition_incomplete,
8881                                OnlyArg->getType(), Args[0]->getSourceRange()))
8882         S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
8883           << (Entity.getKind() == InitializedEntity::EK_Result)
8884           << OnlyArg->getType() << Args[0]->getSourceRange()
8885           << DestType.getNonReferenceType();
8886 
8887       FailedCandidateSet.NoteCandidates(S, Args, Cands);
8888       break;
8889     }
8890     case OR_Deleted: {
8891       S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
8892         << OnlyArg->getType() << DestType.getNonReferenceType()
8893         << Args[0]->getSourceRange();
8894       OverloadCandidateSet::iterator Best;
8895       OverloadingResult Ovl
8896         = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
8897       if (Ovl == OR_Deleted) {
8898         S.NoteDeletedFunction(Best->Function);
8899       } else {
8900         llvm_unreachable("Inconsistent overload resolution?");
8901       }
8902       break;
8903     }
8904 
8905     case OR_Success:
8906       llvm_unreachable("Conversion did not fail!");
8907     }
8908     break;
8909 
8910   case FK_NonConstLValueReferenceBindingToTemporary:
8911     if (isa<InitListExpr>(Args[0])) {
8912       S.Diag(Kind.getLocation(),
8913              diag::err_lvalue_reference_bind_to_initlist)
8914       << DestType.getNonReferenceType().isVolatileQualified()
8915       << DestType.getNonReferenceType()
8916       << Args[0]->getSourceRange();
8917       break;
8918     }
8919     LLVM_FALLTHROUGH;
8920 
8921   case FK_NonConstLValueReferenceBindingToUnrelated:
8922     S.Diag(Kind.getLocation(),
8923            Failure == FK_NonConstLValueReferenceBindingToTemporary
8924              ? diag::err_lvalue_reference_bind_to_temporary
8925              : diag::err_lvalue_reference_bind_to_unrelated)
8926       << DestType.getNonReferenceType().isVolatileQualified()
8927       << DestType.getNonReferenceType()
8928       << OnlyArg->getType()
8929       << Args[0]->getSourceRange();
8930     break;
8931 
8932   case FK_NonConstLValueReferenceBindingToBitfield: {
8933     // We don't necessarily have an unambiguous source bit-field.
8934     FieldDecl *BitField = Args[0]->getSourceBitField();
8935     S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
8936       << DestType.isVolatileQualified()
8937       << (BitField ? BitField->getDeclName() : DeclarationName())
8938       << (BitField != nullptr)
8939       << Args[0]->getSourceRange();
8940     if (BitField)
8941       S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
8942     break;
8943   }
8944 
8945   case FK_NonConstLValueReferenceBindingToVectorElement:
8946     S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
8947       << DestType.isVolatileQualified()
8948       << Args[0]->getSourceRange();
8949     break;
8950 
8951   case FK_NonConstLValueReferenceBindingToMatrixElement:
8952     S.Diag(Kind.getLocation(), diag::err_reference_bind_to_matrix_element)
8953         << DestType.isVolatileQualified() << Args[0]->getSourceRange();
8954     break;
8955 
8956   case FK_RValueReferenceBindingToLValue:
8957     S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
8958       << DestType.getNonReferenceType() << OnlyArg->getType()
8959       << Args[0]->getSourceRange();
8960     break;
8961 
8962   case FK_ReferenceAddrspaceMismatchTemporary:
8963     S.Diag(Kind.getLocation(), diag::err_reference_bind_temporary_addrspace)
8964         << DestType << Args[0]->getSourceRange();
8965     break;
8966 
8967   case FK_ReferenceInitDropsQualifiers: {
8968     QualType SourceType = OnlyArg->getType();
8969     QualType NonRefType = DestType.getNonReferenceType();
8970     Qualifiers DroppedQualifiers =
8971         SourceType.getQualifiers() - NonRefType.getQualifiers();
8972 
8973     if (!NonRefType.getQualifiers().isAddressSpaceSupersetOf(
8974             SourceType.getQualifiers()))
8975       S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
8976           << NonRefType << SourceType << 1 /*addr space*/
8977           << Args[0]->getSourceRange();
8978     else if (DroppedQualifiers.hasQualifiers())
8979       S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
8980           << NonRefType << SourceType << 0 /*cv quals*/
8981           << Qualifiers::fromCVRMask(DroppedQualifiers.getCVRQualifiers())
8982           << DroppedQualifiers.getCVRQualifiers() << Args[0]->getSourceRange();
8983     else
8984       // FIXME: Consider decomposing the type and explaining which qualifiers
8985       // were dropped where, or on which level a 'const' is missing, etc.
8986       S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
8987           << NonRefType << SourceType << 2 /*incompatible quals*/
8988           << Args[0]->getSourceRange();
8989     break;
8990   }
8991 
8992   case FK_ReferenceInitFailed:
8993     S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
8994       << DestType.getNonReferenceType()
8995       << DestType.getNonReferenceType()->isIncompleteType()
8996       << OnlyArg->isLValue()
8997       << OnlyArg->getType()
8998       << Args[0]->getSourceRange();
8999     emitBadConversionNotes(S, Entity, Args[0]);
9000     break;
9001 
9002   case FK_ConversionFailed: {
9003     QualType FromType = OnlyArg->getType();
9004     PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
9005       << (int)Entity.getKind()
9006       << DestType
9007       << OnlyArg->isLValue()
9008       << FromType
9009       << Args[0]->getSourceRange();
9010     S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
9011     S.Diag(Kind.getLocation(), PDiag);
9012     emitBadConversionNotes(S, Entity, Args[0]);
9013     break;
9014   }
9015 
9016   case FK_ConversionFromPropertyFailed:
9017     // No-op. This error has already been reported.
9018     break;
9019 
9020   case FK_TooManyInitsForScalar: {
9021     SourceRange R;
9022 
9023     auto *InitList = dyn_cast<InitListExpr>(Args[0]);
9024     if (InitList && InitList->getNumInits() >= 1) {
9025       R = SourceRange(InitList->getInit(0)->getEndLoc(), InitList->getEndLoc());
9026     } else {
9027       assert(Args.size() > 1 && "Expected multiple initializers!");
9028       R = SourceRange(Args.front()->getEndLoc(), Args.back()->getEndLoc());
9029     }
9030 
9031     R.setBegin(S.getLocForEndOfToken(R.getBegin()));
9032     if (Kind.isCStyleOrFunctionalCast())
9033       S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
9034         << R;
9035     else
9036       S.Diag(Kind.getLocation(), diag::err_excess_initializers)
9037         << /*scalar=*/2 << R;
9038     break;
9039   }
9040 
9041   case FK_ParenthesizedListInitForScalar:
9042     S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
9043       << 0 << Entity.getType() << Args[0]->getSourceRange();
9044     break;
9045 
9046   case FK_ReferenceBindingToInitList:
9047     S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
9048       << DestType.getNonReferenceType() << Args[0]->getSourceRange();
9049     break;
9050 
9051   case FK_InitListBadDestinationType:
9052     S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
9053       << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
9054     break;
9055 
9056   case FK_ListConstructorOverloadFailed:
9057   case FK_ConstructorOverloadFailed: {
9058     SourceRange ArgsRange;
9059     if (Args.size())
9060       ArgsRange =
9061           SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
9062 
9063     if (Failure == FK_ListConstructorOverloadFailed) {
9064       assert(Args.size() == 1 &&
9065              "List construction from other than 1 argument.");
9066       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
9067       Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
9068     }
9069 
9070     // FIXME: Using "DestType" for the entity we're printing is probably
9071     // bad.
9072     switch (FailedOverloadResult) {
9073       case OR_Ambiguous:
9074         FailedCandidateSet.NoteCandidates(
9075             PartialDiagnosticAt(Kind.getLocation(),
9076                                 S.PDiag(diag::err_ovl_ambiguous_init)
9077                                     << DestType << ArgsRange),
9078             S, OCD_AmbiguousCandidates, Args);
9079         break;
9080 
9081       case OR_No_Viable_Function:
9082         if (Kind.getKind() == InitializationKind::IK_Default &&
9083             (Entity.getKind() == InitializedEntity::EK_Base ||
9084              Entity.getKind() == InitializedEntity::EK_Member) &&
9085             isa<CXXConstructorDecl>(S.CurContext)) {
9086           // This is implicit default initialization of a member or
9087           // base within a constructor. If no viable function was
9088           // found, notify the user that they need to explicitly
9089           // initialize this base/member.
9090           CXXConstructorDecl *Constructor
9091             = cast<CXXConstructorDecl>(S.CurContext);
9092           const CXXRecordDecl *InheritedFrom = nullptr;
9093           if (auto Inherited = Constructor->getInheritedConstructor())
9094             InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass();
9095           if (Entity.getKind() == InitializedEntity::EK_Base) {
9096             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
9097               << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
9098               << S.Context.getTypeDeclType(Constructor->getParent())
9099               << /*base=*/0
9100               << Entity.getType()
9101               << InheritedFrom;
9102 
9103             RecordDecl *BaseDecl
9104               = Entity.getBaseSpecifier()->getType()->castAs<RecordType>()
9105                                                                   ->getDecl();
9106             S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
9107               << S.Context.getTagDeclType(BaseDecl);
9108           } else {
9109             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
9110               << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
9111               << S.Context.getTypeDeclType(Constructor->getParent())
9112               << /*member=*/1
9113               << Entity.getName()
9114               << InheritedFrom;
9115             S.Diag(Entity.getDecl()->getLocation(),
9116                    diag::note_member_declared_at);
9117 
9118             if (const RecordType *Record
9119                                  = Entity.getType()->getAs<RecordType>())
9120               S.Diag(Record->getDecl()->getLocation(),
9121                      diag::note_previous_decl)
9122                 << S.Context.getTagDeclType(Record->getDecl());
9123           }
9124           break;
9125         }
9126 
9127         FailedCandidateSet.NoteCandidates(
9128             PartialDiagnosticAt(
9129                 Kind.getLocation(),
9130                 S.PDiag(diag::err_ovl_no_viable_function_in_init)
9131                     << DestType << ArgsRange),
9132             S, OCD_AllCandidates, Args);
9133         break;
9134 
9135       case OR_Deleted: {
9136         OverloadCandidateSet::iterator Best;
9137         OverloadingResult Ovl
9138           = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
9139         if (Ovl != OR_Deleted) {
9140           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
9141               << DestType << ArgsRange;
9142           llvm_unreachable("Inconsistent overload resolution?");
9143           break;
9144         }
9145 
9146         // If this is a defaulted or implicitly-declared function, then
9147         // it was implicitly deleted. Make it clear that the deletion was
9148         // implicit.
9149         if (S.isImplicitlyDeleted(Best->Function))
9150           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
9151             << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
9152             << DestType << ArgsRange;
9153         else
9154           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
9155               << DestType << ArgsRange;
9156 
9157         S.NoteDeletedFunction(Best->Function);
9158         break;
9159       }
9160 
9161       case OR_Success:
9162         llvm_unreachable("Conversion did not fail!");
9163     }
9164   }
9165   break;
9166 
9167   case FK_DefaultInitOfConst:
9168     if (Entity.getKind() == InitializedEntity::EK_Member &&
9169         isa<CXXConstructorDecl>(S.CurContext)) {
9170       // This is implicit default-initialization of a const member in
9171       // a constructor. Complain that it needs to be explicitly
9172       // initialized.
9173       CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
9174       S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
9175         << (Constructor->getInheritedConstructor() ? 2 :
9176             Constructor->isImplicit() ? 1 : 0)
9177         << S.Context.getTypeDeclType(Constructor->getParent())
9178         << /*const=*/1
9179         << Entity.getName();
9180       S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
9181         << Entity.getName();
9182     } else {
9183       S.Diag(Kind.getLocation(), diag::err_default_init_const)
9184           << DestType << (bool)DestType->getAs<RecordType>();
9185     }
9186     break;
9187 
9188   case FK_Incomplete:
9189     S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
9190                           diag::err_init_incomplete_type);
9191     break;
9192 
9193   case FK_ListInitializationFailed: {
9194     // Run the init list checker again to emit diagnostics.
9195     InitListExpr *InitList = cast<InitListExpr>(Args[0]);
9196     diagnoseListInit(S, Entity, InitList);
9197     break;
9198   }
9199 
9200   case FK_PlaceholderType: {
9201     // FIXME: Already diagnosed!
9202     break;
9203   }
9204 
9205   case FK_ExplicitConstructor: {
9206     S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
9207       << Args[0]->getSourceRange();
9208     OverloadCandidateSet::iterator Best;
9209     OverloadingResult Ovl
9210       = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
9211     (void)Ovl;
9212     assert(Ovl == OR_Success && "Inconsistent overload resolution");
9213     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
9214     S.Diag(CtorDecl->getLocation(),
9215            diag::note_explicit_ctor_deduction_guide_here) << false;
9216     break;
9217   }
9218   }
9219 
9220   PrintInitLocationNote(S, Entity);
9221   return true;
9222 }
9223 
9224 void InitializationSequence::dump(raw_ostream &OS) const {
9225   switch (SequenceKind) {
9226   case FailedSequence: {
9227     OS << "Failed sequence: ";
9228     switch (Failure) {
9229     case FK_TooManyInitsForReference:
9230       OS << "too many initializers for reference";
9231       break;
9232 
9233     case FK_ParenthesizedListInitForReference:
9234       OS << "parenthesized list init for reference";
9235       break;
9236 
9237     case FK_ArrayNeedsInitList:
9238       OS << "array requires initializer list";
9239       break;
9240 
9241     case FK_AddressOfUnaddressableFunction:
9242       OS << "address of unaddressable function was taken";
9243       break;
9244 
9245     case FK_ArrayNeedsInitListOrStringLiteral:
9246       OS << "array requires initializer list or string literal";
9247       break;
9248 
9249     case FK_ArrayNeedsInitListOrWideStringLiteral:
9250       OS << "array requires initializer list or wide string literal";
9251       break;
9252 
9253     case FK_NarrowStringIntoWideCharArray:
9254       OS << "narrow string into wide char array";
9255       break;
9256 
9257     case FK_WideStringIntoCharArray:
9258       OS << "wide string into char array";
9259       break;
9260 
9261     case FK_IncompatWideStringIntoWideChar:
9262       OS << "incompatible wide string into wide char array";
9263       break;
9264 
9265     case FK_PlainStringIntoUTF8Char:
9266       OS << "plain string literal into char8_t array";
9267       break;
9268 
9269     case FK_UTF8StringIntoPlainChar:
9270       OS << "u8 string literal into char array";
9271       break;
9272 
9273     case FK_ArrayTypeMismatch:
9274       OS << "array type mismatch";
9275       break;
9276 
9277     case FK_NonConstantArrayInit:
9278       OS << "non-constant array initializer";
9279       break;
9280 
9281     case FK_AddressOfOverloadFailed:
9282       OS << "address of overloaded function failed";
9283       break;
9284 
9285     case FK_ReferenceInitOverloadFailed:
9286       OS << "overload resolution for reference initialization failed";
9287       break;
9288 
9289     case FK_NonConstLValueReferenceBindingToTemporary:
9290       OS << "non-const lvalue reference bound to temporary";
9291       break;
9292 
9293     case FK_NonConstLValueReferenceBindingToBitfield:
9294       OS << "non-const lvalue reference bound to bit-field";
9295       break;
9296 
9297     case FK_NonConstLValueReferenceBindingToVectorElement:
9298       OS << "non-const lvalue reference bound to vector element";
9299       break;
9300 
9301     case FK_NonConstLValueReferenceBindingToMatrixElement:
9302       OS << "non-const lvalue reference bound to matrix element";
9303       break;
9304 
9305     case FK_NonConstLValueReferenceBindingToUnrelated:
9306       OS << "non-const lvalue reference bound to unrelated type";
9307       break;
9308 
9309     case FK_RValueReferenceBindingToLValue:
9310       OS << "rvalue reference bound to an lvalue";
9311       break;
9312 
9313     case FK_ReferenceInitDropsQualifiers:
9314       OS << "reference initialization drops qualifiers";
9315       break;
9316 
9317     case FK_ReferenceAddrspaceMismatchTemporary:
9318       OS << "reference with mismatching address space bound to temporary";
9319       break;
9320 
9321     case FK_ReferenceInitFailed:
9322       OS << "reference initialization failed";
9323       break;
9324 
9325     case FK_ConversionFailed:
9326       OS << "conversion failed";
9327       break;
9328 
9329     case FK_ConversionFromPropertyFailed:
9330       OS << "conversion from property failed";
9331       break;
9332 
9333     case FK_TooManyInitsForScalar:
9334       OS << "too many initializers for scalar";
9335       break;
9336 
9337     case FK_ParenthesizedListInitForScalar:
9338       OS << "parenthesized list init for reference";
9339       break;
9340 
9341     case FK_ReferenceBindingToInitList:
9342       OS << "referencing binding to initializer list";
9343       break;
9344 
9345     case FK_InitListBadDestinationType:
9346       OS << "initializer list for non-aggregate, non-scalar type";
9347       break;
9348 
9349     case FK_UserConversionOverloadFailed:
9350       OS << "overloading failed for user-defined conversion";
9351       break;
9352 
9353     case FK_ConstructorOverloadFailed:
9354       OS << "constructor overloading failed";
9355       break;
9356 
9357     case FK_DefaultInitOfConst:
9358       OS << "default initialization of a const variable";
9359       break;
9360 
9361     case FK_Incomplete:
9362       OS << "initialization of incomplete type";
9363       break;
9364 
9365     case FK_ListInitializationFailed:
9366       OS << "list initialization checker failure";
9367       break;
9368 
9369     case FK_VariableLengthArrayHasInitializer:
9370       OS << "variable length array has an initializer";
9371       break;
9372 
9373     case FK_PlaceholderType:
9374       OS << "initializer expression isn't contextually valid";
9375       break;
9376 
9377     case FK_ListConstructorOverloadFailed:
9378       OS << "list constructor overloading failed";
9379       break;
9380 
9381     case FK_ExplicitConstructor:
9382       OS << "list copy initialization chose explicit constructor";
9383       break;
9384     }
9385     OS << '\n';
9386     return;
9387   }
9388 
9389   case DependentSequence:
9390     OS << "Dependent sequence\n";
9391     return;
9392 
9393   case NormalSequence:
9394     OS << "Normal sequence: ";
9395     break;
9396   }
9397 
9398   for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
9399     if (S != step_begin()) {
9400       OS << " -> ";
9401     }
9402 
9403     switch (S->Kind) {
9404     case SK_ResolveAddressOfOverloadedFunction:
9405       OS << "resolve address of overloaded function";
9406       break;
9407 
9408     case SK_CastDerivedToBaseRValue:
9409       OS << "derived-to-base (rvalue)";
9410       break;
9411 
9412     case SK_CastDerivedToBaseXValue:
9413       OS << "derived-to-base (xvalue)";
9414       break;
9415 
9416     case SK_CastDerivedToBaseLValue:
9417       OS << "derived-to-base (lvalue)";
9418       break;
9419 
9420     case SK_BindReference:
9421       OS << "bind reference to lvalue";
9422       break;
9423 
9424     case SK_BindReferenceToTemporary:
9425       OS << "bind reference to a temporary";
9426       break;
9427 
9428     case SK_FinalCopy:
9429       OS << "final copy in class direct-initialization";
9430       break;
9431 
9432     case SK_ExtraneousCopyToTemporary:
9433       OS << "extraneous C++03 copy to temporary";
9434       break;
9435 
9436     case SK_UserConversion:
9437       OS << "user-defined conversion via " << *S->Function.Function;
9438       break;
9439 
9440     case SK_QualificationConversionRValue:
9441       OS << "qualification conversion (rvalue)";
9442       break;
9443 
9444     case SK_QualificationConversionXValue:
9445       OS << "qualification conversion (xvalue)";
9446       break;
9447 
9448     case SK_QualificationConversionLValue:
9449       OS << "qualification conversion (lvalue)";
9450       break;
9451 
9452     case SK_AtomicConversion:
9453       OS << "non-atomic-to-atomic conversion";
9454       break;
9455 
9456     case SK_ConversionSequence:
9457       OS << "implicit conversion sequence (";
9458       S->ICS->dump(); // FIXME: use OS
9459       OS << ")";
9460       break;
9461 
9462     case SK_ConversionSequenceNoNarrowing:
9463       OS << "implicit conversion sequence with narrowing prohibited (";
9464       S->ICS->dump(); // FIXME: use OS
9465       OS << ")";
9466       break;
9467 
9468     case SK_ListInitialization:
9469       OS << "list aggregate initialization";
9470       break;
9471 
9472     case SK_UnwrapInitList:
9473       OS << "unwrap reference initializer list";
9474       break;
9475 
9476     case SK_RewrapInitList:
9477       OS << "rewrap reference initializer list";
9478       break;
9479 
9480     case SK_ConstructorInitialization:
9481       OS << "constructor initialization";
9482       break;
9483 
9484     case SK_ConstructorInitializationFromList:
9485       OS << "list initialization via constructor";
9486       break;
9487 
9488     case SK_ZeroInitialization:
9489       OS << "zero initialization";
9490       break;
9491 
9492     case SK_CAssignment:
9493       OS << "C assignment";
9494       break;
9495 
9496     case SK_StringInit:
9497       OS << "string initialization";
9498       break;
9499 
9500     case SK_ObjCObjectConversion:
9501       OS << "Objective-C object conversion";
9502       break;
9503 
9504     case SK_ArrayLoopIndex:
9505       OS << "indexing for array initialization loop";
9506       break;
9507 
9508     case SK_ArrayLoopInit:
9509       OS << "array initialization loop";
9510       break;
9511 
9512     case SK_ArrayInit:
9513       OS << "array initialization";
9514       break;
9515 
9516     case SK_GNUArrayInit:
9517       OS << "array initialization (GNU extension)";
9518       break;
9519 
9520     case SK_ParenthesizedArrayInit:
9521       OS << "parenthesized array initialization";
9522       break;
9523 
9524     case SK_PassByIndirectCopyRestore:
9525       OS << "pass by indirect copy and restore";
9526       break;
9527 
9528     case SK_PassByIndirectRestore:
9529       OS << "pass by indirect restore";
9530       break;
9531 
9532     case SK_ProduceObjCObject:
9533       OS << "Objective-C object retension";
9534       break;
9535 
9536     case SK_StdInitializerList:
9537       OS << "std::initializer_list from initializer list";
9538       break;
9539 
9540     case SK_StdInitializerListConstructorCall:
9541       OS << "list initialization from std::initializer_list";
9542       break;
9543 
9544     case SK_OCLSamplerInit:
9545       OS << "OpenCL sampler_t from integer constant";
9546       break;
9547 
9548     case SK_OCLZeroOpaqueType:
9549       OS << "OpenCL opaque type from zero";
9550       break;
9551     }
9552 
9553     OS << " [" << S->Type.getAsString() << ']';
9554   }
9555 
9556   OS << '\n';
9557 }
9558 
9559 void InitializationSequence::dump() const {
9560   dump(llvm::errs());
9561 }
9562 
9563 static bool NarrowingErrs(const LangOptions &L) {
9564   return L.CPlusPlus11 &&
9565          (!L.MicrosoftExt || L.isCompatibleWithMSVC(LangOptions::MSVC2015));
9566 }
9567 
9568 static void DiagnoseNarrowingInInitList(Sema &S,
9569                                         const ImplicitConversionSequence &ICS,
9570                                         QualType PreNarrowingType,
9571                                         QualType EntityType,
9572                                         const Expr *PostInit) {
9573   const StandardConversionSequence *SCS = nullptr;
9574   switch (ICS.getKind()) {
9575   case ImplicitConversionSequence::StandardConversion:
9576     SCS = &ICS.Standard;
9577     break;
9578   case ImplicitConversionSequence::UserDefinedConversion:
9579     SCS = &ICS.UserDefined.After;
9580     break;
9581   case ImplicitConversionSequence::AmbiguousConversion:
9582   case ImplicitConversionSequence::EllipsisConversion:
9583   case ImplicitConversionSequence::BadConversion:
9584     return;
9585   }
9586 
9587   // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
9588   APValue ConstantValue;
9589   QualType ConstantType;
9590   switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
9591                                 ConstantType)) {
9592   case NK_Not_Narrowing:
9593   case NK_Dependent_Narrowing:
9594     // No narrowing occurred.
9595     return;
9596 
9597   case NK_Type_Narrowing:
9598     // This was a floating-to-integer conversion, which is always considered a
9599     // narrowing conversion even if the value is a constant and can be
9600     // represented exactly as an integer.
9601     S.Diag(PostInit->getBeginLoc(), NarrowingErrs(S.getLangOpts())
9602                                         ? diag::ext_init_list_type_narrowing
9603                                         : diag::warn_init_list_type_narrowing)
9604         << PostInit->getSourceRange()
9605         << PreNarrowingType.getLocalUnqualifiedType()
9606         << EntityType.getLocalUnqualifiedType();
9607     break;
9608 
9609   case NK_Constant_Narrowing:
9610     // A constant value was narrowed.
9611     S.Diag(PostInit->getBeginLoc(),
9612            NarrowingErrs(S.getLangOpts())
9613                ? diag::ext_init_list_constant_narrowing
9614                : diag::warn_init_list_constant_narrowing)
9615         << PostInit->getSourceRange()
9616         << ConstantValue.getAsString(S.getASTContext(), ConstantType)
9617         << EntityType.getLocalUnqualifiedType();
9618     break;
9619 
9620   case NK_Variable_Narrowing:
9621     // A variable's value may have been narrowed.
9622     S.Diag(PostInit->getBeginLoc(),
9623            NarrowingErrs(S.getLangOpts())
9624                ? diag::ext_init_list_variable_narrowing
9625                : diag::warn_init_list_variable_narrowing)
9626         << PostInit->getSourceRange()
9627         << PreNarrowingType.getLocalUnqualifiedType()
9628         << EntityType.getLocalUnqualifiedType();
9629     break;
9630   }
9631 
9632   SmallString<128> StaticCast;
9633   llvm::raw_svector_ostream OS(StaticCast);
9634   OS << "static_cast<";
9635   if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
9636     // It's important to use the typedef's name if there is one so that the
9637     // fixit doesn't break code using types like int64_t.
9638     //
9639     // FIXME: This will break if the typedef requires qualification.  But
9640     // getQualifiedNameAsString() includes non-machine-parsable components.
9641     OS << *TT->getDecl();
9642   } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
9643     OS << BT->getName(S.getLangOpts());
9644   else {
9645     // Oops, we didn't find the actual type of the variable.  Don't emit a fixit
9646     // with a broken cast.
9647     return;
9648   }
9649   OS << ">(";
9650   S.Diag(PostInit->getBeginLoc(), diag::note_init_list_narrowing_silence)
9651       << PostInit->getSourceRange()
9652       << FixItHint::CreateInsertion(PostInit->getBeginLoc(), OS.str())
9653       << FixItHint::CreateInsertion(
9654              S.getLocForEndOfToken(PostInit->getEndLoc()), ")");
9655 }
9656 
9657 //===----------------------------------------------------------------------===//
9658 // Initialization helper functions
9659 //===----------------------------------------------------------------------===//
9660 bool
9661 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
9662                                    ExprResult Init) {
9663   if (Init.isInvalid())
9664     return false;
9665 
9666   Expr *InitE = Init.get();
9667   assert(InitE && "No initialization expression");
9668 
9669   InitializationKind Kind =
9670       InitializationKind::CreateCopy(InitE->getBeginLoc(), SourceLocation());
9671   InitializationSequence Seq(*this, Entity, Kind, InitE);
9672   return !Seq.Failed();
9673 }
9674 
9675 ExprResult
9676 Sema::PerformCopyInitialization(const InitializedEntity &Entity,
9677                                 SourceLocation EqualLoc,
9678                                 ExprResult Init,
9679                                 bool TopLevelOfInitList,
9680                                 bool AllowExplicit) {
9681   if (Init.isInvalid())
9682     return ExprError();
9683 
9684   Expr *InitE = Init.get();
9685   assert(InitE && "No initialization expression?");
9686 
9687   if (EqualLoc.isInvalid())
9688     EqualLoc = InitE->getBeginLoc();
9689 
9690   InitializationKind Kind = InitializationKind::CreateCopy(
9691       InitE->getBeginLoc(), EqualLoc, AllowExplicit);
9692   InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList);
9693 
9694   // Prevent infinite recursion when performing parameter copy-initialization.
9695   const bool ShouldTrackCopy =
9696       Entity.isParameterKind() && Seq.isConstructorInitialization();
9697   if (ShouldTrackCopy) {
9698     if (llvm::find(CurrentParameterCopyTypes, Entity.getType()) !=
9699         CurrentParameterCopyTypes.end()) {
9700       Seq.SetOverloadFailure(
9701           InitializationSequence::FK_ConstructorOverloadFailed,
9702           OR_No_Viable_Function);
9703 
9704       // Try to give a meaningful diagnostic note for the problematic
9705       // constructor.
9706       const auto LastStep = Seq.step_end() - 1;
9707       assert(LastStep->Kind ==
9708              InitializationSequence::SK_ConstructorInitialization);
9709       const FunctionDecl *Function = LastStep->Function.Function;
9710       auto Candidate =
9711           llvm::find_if(Seq.getFailedCandidateSet(),
9712                         [Function](const OverloadCandidate &Candidate) -> bool {
9713                           return Candidate.Viable &&
9714                                  Candidate.Function == Function &&
9715                                  Candidate.Conversions.size() > 0;
9716                         });
9717       if (Candidate != Seq.getFailedCandidateSet().end() &&
9718           Function->getNumParams() > 0) {
9719         Candidate->Viable = false;
9720         Candidate->FailureKind = ovl_fail_bad_conversion;
9721         Candidate->Conversions[0].setBad(BadConversionSequence::no_conversion,
9722                                          InitE,
9723                                          Function->getParamDecl(0)->getType());
9724       }
9725     }
9726     CurrentParameterCopyTypes.push_back(Entity.getType());
9727   }
9728 
9729   ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE);
9730 
9731   if (ShouldTrackCopy)
9732     CurrentParameterCopyTypes.pop_back();
9733 
9734   return Result;
9735 }
9736 
9737 /// Determine whether RD is, or is derived from, a specialization of CTD.
9738 static bool isOrIsDerivedFromSpecializationOf(CXXRecordDecl *RD,
9739                                               ClassTemplateDecl *CTD) {
9740   auto NotSpecialization = [&] (const CXXRecordDecl *Candidate) {
9741     auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Candidate);
9742     return !CTSD || !declaresSameEntity(CTSD->getSpecializedTemplate(), CTD);
9743   };
9744   return !(NotSpecialization(RD) && RD->forallBases(NotSpecialization));
9745 }
9746 
9747 QualType Sema::DeduceTemplateSpecializationFromInitializer(
9748     TypeSourceInfo *TSInfo, const InitializedEntity &Entity,
9749     const InitializationKind &Kind, MultiExprArg Inits) {
9750   auto *DeducedTST = dyn_cast<DeducedTemplateSpecializationType>(
9751       TSInfo->getType()->getContainedDeducedType());
9752   assert(DeducedTST && "not a deduced template specialization type");
9753 
9754   auto TemplateName = DeducedTST->getTemplateName();
9755   if (TemplateName.isDependent())
9756     return Context.DependentTy;
9757 
9758   // We can only perform deduction for class templates.
9759   auto *Template =
9760       dyn_cast_or_null<ClassTemplateDecl>(TemplateName.getAsTemplateDecl());
9761   if (!Template) {
9762     Diag(Kind.getLocation(),
9763          diag::err_deduced_non_class_template_specialization_type)
9764       << (int)getTemplateNameKindForDiagnostics(TemplateName) << TemplateName;
9765     if (auto *TD = TemplateName.getAsTemplateDecl())
9766       Diag(TD->getLocation(), diag::note_template_decl_here);
9767     return QualType();
9768   }
9769 
9770   // Can't deduce from dependent arguments.
9771   if (Expr::hasAnyTypeDependentArguments(Inits)) {
9772     Diag(TSInfo->getTypeLoc().getBeginLoc(),
9773          diag::warn_cxx14_compat_class_template_argument_deduction)
9774         << TSInfo->getTypeLoc().getSourceRange() << 0;
9775     return Context.DependentTy;
9776   }
9777 
9778   // FIXME: Perform "exact type" matching first, per CWG discussion?
9779   //        Or implement this via an implied 'T(T) -> T' deduction guide?
9780 
9781   // FIXME: Do we need/want a std::initializer_list<T> special case?
9782 
9783   // Look up deduction guides, including those synthesized from constructors.
9784   //
9785   // C++1z [over.match.class.deduct]p1:
9786   //   A set of functions and function templates is formed comprising:
9787   //   - For each constructor of the class template designated by the
9788   //     template-name, a function template [...]
9789   //  - For each deduction-guide, a function or function template [...]
9790   DeclarationNameInfo NameInfo(
9791       Context.DeclarationNames.getCXXDeductionGuideName(Template),
9792       TSInfo->getTypeLoc().getEndLoc());
9793   LookupResult Guides(*this, NameInfo, LookupOrdinaryName);
9794   LookupQualifiedName(Guides, Template->getDeclContext());
9795 
9796   // FIXME: Do not diagnose inaccessible deduction guides. The standard isn't
9797   // clear on this, but they're not found by name so access does not apply.
9798   Guides.suppressDiagnostics();
9799 
9800   // Figure out if this is list-initialization.
9801   InitListExpr *ListInit =
9802       (Inits.size() == 1 && Kind.getKind() != InitializationKind::IK_Direct)
9803           ? dyn_cast<InitListExpr>(Inits[0])
9804           : nullptr;
9805 
9806   // C++1z [over.match.class.deduct]p1:
9807   //   Initialization and overload resolution are performed as described in
9808   //   [dcl.init] and [over.match.ctor], [over.match.copy], or [over.match.list]
9809   //   (as appropriate for the type of initialization performed) for an object
9810   //   of a hypothetical class type, where the selected functions and function
9811   //   templates are considered to be the constructors of that class type
9812   //
9813   // Since we know we're initializing a class type of a type unrelated to that
9814   // of the initializer, this reduces to something fairly reasonable.
9815   OverloadCandidateSet Candidates(Kind.getLocation(),
9816                                   OverloadCandidateSet::CSK_Normal);
9817   OverloadCandidateSet::iterator Best;
9818 
9819   bool HasAnyDeductionGuide = false;
9820   bool AllowExplicit = !Kind.isCopyInit() || ListInit;
9821 
9822   auto tryToResolveOverload =
9823       [&](bool OnlyListConstructors) -> OverloadingResult {
9824     Candidates.clear(OverloadCandidateSet::CSK_Normal);
9825     HasAnyDeductionGuide = false;
9826 
9827     for (auto I = Guides.begin(), E = Guides.end(); I != E; ++I) {
9828       NamedDecl *D = (*I)->getUnderlyingDecl();
9829       if (D->isInvalidDecl())
9830         continue;
9831 
9832       auto *TD = dyn_cast<FunctionTemplateDecl>(D);
9833       auto *GD = dyn_cast_or_null<CXXDeductionGuideDecl>(
9834           TD ? TD->getTemplatedDecl() : dyn_cast<FunctionDecl>(D));
9835       if (!GD)
9836         continue;
9837 
9838       if (!GD->isImplicit())
9839         HasAnyDeductionGuide = true;
9840 
9841       // C++ [over.match.ctor]p1: (non-list copy-initialization from non-class)
9842       //   For copy-initialization, the candidate functions are all the
9843       //   converting constructors (12.3.1) of that class.
9844       // C++ [over.match.copy]p1: (non-list copy-initialization from class)
9845       //   The converting constructors of T are candidate functions.
9846       if (!AllowExplicit) {
9847         // Overload resolution checks whether the deduction guide is declared
9848         // explicit for us.
9849 
9850         // When looking for a converting constructor, deduction guides that
9851         // could never be called with one argument are not interesting to
9852         // check or note.
9853         if (GD->getMinRequiredArguments() > 1 ||
9854             (GD->getNumParams() == 0 && !GD->isVariadic()))
9855           continue;
9856       }
9857 
9858       // C++ [over.match.list]p1.1: (first phase list initialization)
9859       //   Initially, the candidate functions are the initializer-list
9860       //   constructors of the class T
9861       if (OnlyListConstructors && !isInitListConstructor(GD))
9862         continue;
9863 
9864       // C++ [over.match.list]p1.2: (second phase list initialization)
9865       //   the candidate functions are all the constructors of the class T
9866       // C++ [over.match.ctor]p1: (all other cases)
9867       //   the candidate functions are all the constructors of the class of
9868       //   the object being initialized
9869 
9870       // C++ [over.best.ics]p4:
9871       //   When [...] the constructor [...] is a candidate by
9872       //    - [over.match.copy] (in all cases)
9873       // FIXME: The "second phase of [over.match.list] case can also
9874       // theoretically happen here, but it's not clear whether we can
9875       // ever have a parameter of the right type.
9876       bool SuppressUserConversions = Kind.isCopyInit();
9877 
9878       if (TD)
9879         AddTemplateOverloadCandidate(TD, I.getPair(), /*ExplicitArgs*/ nullptr,
9880                                      Inits, Candidates, SuppressUserConversions,
9881                                      /*PartialOverloading*/ false,
9882                                      AllowExplicit);
9883       else
9884         AddOverloadCandidate(GD, I.getPair(), Inits, Candidates,
9885                              SuppressUserConversions,
9886                              /*PartialOverloading*/ false, AllowExplicit);
9887     }
9888     return Candidates.BestViableFunction(*this, Kind.getLocation(), Best);
9889   };
9890 
9891   OverloadingResult Result = OR_No_Viable_Function;
9892 
9893   // C++11 [over.match.list]p1, per DR1467: for list-initialization, first
9894   // try initializer-list constructors.
9895   if (ListInit) {
9896     bool TryListConstructors = true;
9897 
9898     // Try list constructors unless the list is empty and the class has one or
9899     // more default constructors, in which case those constructors win.
9900     if (!ListInit->getNumInits()) {
9901       for (NamedDecl *D : Guides) {
9902         auto *FD = dyn_cast<FunctionDecl>(D->getUnderlyingDecl());
9903         if (FD && FD->getMinRequiredArguments() == 0) {
9904           TryListConstructors = false;
9905           break;
9906         }
9907       }
9908     } else if (ListInit->getNumInits() == 1) {
9909       // C++ [over.match.class.deduct]:
9910       //   As an exception, the first phase in [over.match.list] (considering
9911       //   initializer-list constructors) is omitted if the initializer list
9912       //   consists of a single expression of type cv U, where U is a
9913       //   specialization of C or a class derived from a specialization of C.
9914       Expr *E = ListInit->getInit(0);
9915       auto *RD = E->getType()->getAsCXXRecordDecl();
9916       if (!isa<InitListExpr>(E) && RD &&
9917           isCompleteType(Kind.getLocation(), E->getType()) &&
9918           isOrIsDerivedFromSpecializationOf(RD, Template))
9919         TryListConstructors = false;
9920     }
9921 
9922     if (TryListConstructors)
9923       Result = tryToResolveOverload(/*OnlyListConstructor*/true);
9924     // Then unwrap the initializer list and try again considering all
9925     // constructors.
9926     Inits = MultiExprArg(ListInit->getInits(), ListInit->getNumInits());
9927   }
9928 
9929   // If list-initialization fails, or if we're doing any other kind of
9930   // initialization, we (eventually) consider constructors.
9931   if (Result == OR_No_Viable_Function)
9932     Result = tryToResolveOverload(/*OnlyListConstructor*/false);
9933 
9934   switch (Result) {
9935   case OR_Ambiguous:
9936     // FIXME: For list-initialization candidates, it'd usually be better to
9937     // list why they were not viable when given the initializer list itself as
9938     // an argument.
9939     Candidates.NoteCandidates(
9940         PartialDiagnosticAt(
9941             Kind.getLocation(),
9942             PDiag(diag::err_deduced_class_template_ctor_ambiguous)
9943                 << TemplateName),
9944         *this, OCD_AmbiguousCandidates, Inits);
9945     return QualType();
9946 
9947   case OR_No_Viable_Function: {
9948     CXXRecordDecl *Primary =
9949         cast<ClassTemplateDecl>(Template)->getTemplatedDecl();
9950     bool Complete =
9951         isCompleteType(Kind.getLocation(), Context.getTypeDeclType(Primary));
9952     Candidates.NoteCandidates(
9953         PartialDiagnosticAt(
9954             Kind.getLocation(),
9955             PDiag(Complete ? diag::err_deduced_class_template_ctor_no_viable
9956                            : diag::err_deduced_class_template_incomplete)
9957                 << TemplateName << !Guides.empty()),
9958         *this, OCD_AllCandidates, Inits);
9959     return QualType();
9960   }
9961 
9962   case OR_Deleted: {
9963     Diag(Kind.getLocation(), diag::err_deduced_class_template_deleted)
9964       << TemplateName;
9965     NoteDeletedFunction(Best->Function);
9966     return QualType();
9967   }
9968 
9969   case OR_Success:
9970     // C++ [over.match.list]p1:
9971     //   In copy-list-initialization, if an explicit constructor is chosen, the
9972     //   initialization is ill-formed.
9973     if (Kind.isCopyInit() && ListInit &&
9974         cast<CXXDeductionGuideDecl>(Best->Function)->isExplicit()) {
9975       bool IsDeductionGuide = !Best->Function->isImplicit();
9976       Diag(Kind.getLocation(), diag::err_deduced_class_template_explicit)
9977           << TemplateName << IsDeductionGuide;
9978       Diag(Best->Function->getLocation(),
9979            diag::note_explicit_ctor_deduction_guide_here)
9980           << IsDeductionGuide;
9981       return QualType();
9982     }
9983 
9984     // Make sure we didn't select an unusable deduction guide, and mark it
9985     // as referenced.
9986     DiagnoseUseOfDecl(Best->Function, Kind.getLocation());
9987     MarkFunctionReferenced(Kind.getLocation(), Best->Function);
9988     break;
9989   }
9990 
9991   // C++ [dcl.type.class.deduct]p1:
9992   //  The placeholder is replaced by the return type of the function selected
9993   //  by overload resolution for class template deduction.
9994   QualType DeducedType =
9995       SubstAutoType(TSInfo->getType(), Best->Function->getReturnType());
9996   Diag(TSInfo->getTypeLoc().getBeginLoc(),
9997        diag::warn_cxx14_compat_class_template_argument_deduction)
9998       << TSInfo->getTypeLoc().getSourceRange() << 1 << DeducedType;
9999 
10000   // Warn if CTAD was used on a type that does not have any user-defined
10001   // deduction guides.
10002   if (!HasAnyDeductionGuide) {
10003     Diag(TSInfo->getTypeLoc().getBeginLoc(),
10004          diag::warn_ctad_maybe_unsupported)
10005         << TemplateName;
10006     Diag(Template->getLocation(), diag::note_suppress_ctad_maybe_unsupported);
10007   }
10008 
10009   return DeducedType;
10010 }
10011