1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for initializers. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ASTContext.h" 14 #include "clang/AST/DeclObjC.h" 15 #include "clang/AST/ExprCXX.h" 16 #include "clang/AST/ExprObjC.h" 17 #include "clang/AST/ExprOpenMP.h" 18 #include "clang/AST/TypeLoc.h" 19 #include "clang/Basic/CharInfo.h" 20 #include "clang/Basic/SourceManager.h" 21 #include "clang/Basic/TargetInfo.h" 22 #include "clang/Sema/Designator.h" 23 #include "clang/Sema/Initialization.h" 24 #include "clang/Sema/Lookup.h" 25 #include "clang/Sema/SemaInternal.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/PointerIntPair.h" 28 #include "llvm/ADT/SmallString.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/raw_ostream.h" 31 32 using namespace clang; 33 34 //===----------------------------------------------------------------------===// 35 // Sema Initialization Checking 36 //===----------------------------------------------------------------------===// 37 38 /// Check whether T is compatible with a wide character type (wchar_t, 39 /// char16_t or char32_t). 40 static bool IsWideCharCompatible(QualType T, ASTContext &Context) { 41 if (Context.typesAreCompatible(Context.getWideCharType(), T)) 42 return true; 43 if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) { 44 return Context.typesAreCompatible(Context.Char16Ty, T) || 45 Context.typesAreCompatible(Context.Char32Ty, T); 46 } 47 return false; 48 } 49 50 enum StringInitFailureKind { 51 SIF_None, 52 SIF_NarrowStringIntoWideChar, 53 SIF_WideStringIntoChar, 54 SIF_IncompatWideStringIntoWideChar, 55 SIF_UTF8StringIntoPlainChar, 56 SIF_PlainStringIntoUTF8Char, 57 SIF_Other 58 }; 59 60 /// Check whether the array of type AT can be initialized by the Init 61 /// expression by means of string initialization. Returns SIF_None if so, 62 /// otherwise returns a StringInitFailureKind that describes why the 63 /// initialization would not work. 64 static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT, 65 ASTContext &Context) { 66 if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT)) 67 return SIF_Other; 68 69 // See if this is a string literal or @encode. 70 Init = Init->IgnoreParens(); 71 72 // Handle @encode, which is a narrow string. 73 if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType()) 74 return SIF_None; 75 76 // Otherwise we can only handle string literals. 77 StringLiteral *SL = dyn_cast<StringLiteral>(Init); 78 if (!SL) 79 return SIF_Other; 80 81 const QualType ElemTy = 82 Context.getCanonicalType(AT->getElementType()).getUnqualifiedType(); 83 84 switch (SL->getKind()) { 85 case StringLiteral::UTF8: 86 // char8_t array can be initialized with a UTF-8 string. 87 if (ElemTy->isChar8Type()) 88 return SIF_None; 89 LLVM_FALLTHROUGH; 90 case StringLiteral::Ascii: 91 // char array can be initialized with a narrow string. 92 // Only allow char x[] = "foo"; not char x[] = L"foo"; 93 if (ElemTy->isCharType()) 94 return (SL->getKind() == StringLiteral::UTF8 && 95 Context.getLangOpts().Char8) 96 ? SIF_UTF8StringIntoPlainChar 97 : SIF_None; 98 if (ElemTy->isChar8Type()) 99 return SIF_PlainStringIntoUTF8Char; 100 if (IsWideCharCompatible(ElemTy, Context)) 101 return SIF_NarrowStringIntoWideChar; 102 return SIF_Other; 103 // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15: 104 // "An array with element type compatible with a qualified or unqualified 105 // version of wchar_t, char16_t, or char32_t may be initialized by a wide 106 // string literal with the corresponding encoding prefix (L, u, or U, 107 // respectively), optionally enclosed in braces. 108 case StringLiteral::UTF16: 109 if (Context.typesAreCompatible(Context.Char16Ty, ElemTy)) 110 return SIF_None; 111 if (ElemTy->isCharType() || ElemTy->isChar8Type()) 112 return SIF_WideStringIntoChar; 113 if (IsWideCharCompatible(ElemTy, Context)) 114 return SIF_IncompatWideStringIntoWideChar; 115 return SIF_Other; 116 case StringLiteral::UTF32: 117 if (Context.typesAreCompatible(Context.Char32Ty, ElemTy)) 118 return SIF_None; 119 if (ElemTy->isCharType() || ElemTy->isChar8Type()) 120 return SIF_WideStringIntoChar; 121 if (IsWideCharCompatible(ElemTy, Context)) 122 return SIF_IncompatWideStringIntoWideChar; 123 return SIF_Other; 124 case StringLiteral::Wide: 125 if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy)) 126 return SIF_None; 127 if (ElemTy->isCharType() || ElemTy->isChar8Type()) 128 return SIF_WideStringIntoChar; 129 if (IsWideCharCompatible(ElemTy, Context)) 130 return SIF_IncompatWideStringIntoWideChar; 131 return SIF_Other; 132 } 133 134 llvm_unreachable("missed a StringLiteral kind?"); 135 } 136 137 static StringInitFailureKind IsStringInit(Expr *init, QualType declType, 138 ASTContext &Context) { 139 const ArrayType *arrayType = Context.getAsArrayType(declType); 140 if (!arrayType) 141 return SIF_Other; 142 return IsStringInit(init, arrayType, Context); 143 } 144 145 bool Sema::IsStringInit(Expr *Init, const ArrayType *AT) { 146 return ::IsStringInit(Init, AT, Context) == SIF_None; 147 } 148 149 /// Update the type of a string literal, including any surrounding parentheses, 150 /// to match the type of the object which it is initializing. 151 static void updateStringLiteralType(Expr *E, QualType Ty) { 152 while (true) { 153 E->setType(Ty); 154 E->setValueKind(VK_PRValue); 155 if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E)) { 156 break; 157 } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 158 E = PE->getSubExpr(); 159 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 160 assert(UO->getOpcode() == UO_Extension); 161 E = UO->getSubExpr(); 162 } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) { 163 E = GSE->getResultExpr(); 164 } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) { 165 E = CE->getChosenSubExpr(); 166 } else { 167 llvm_unreachable("unexpected expr in string literal init"); 168 } 169 } 170 } 171 172 /// Fix a compound literal initializing an array so it's correctly marked 173 /// as an rvalue. 174 static void updateGNUCompoundLiteralRValue(Expr *E) { 175 while (true) { 176 E->setValueKind(VK_PRValue); 177 if (isa<CompoundLiteralExpr>(E)) { 178 break; 179 } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 180 E = PE->getSubExpr(); 181 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 182 assert(UO->getOpcode() == UO_Extension); 183 E = UO->getSubExpr(); 184 } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) { 185 E = GSE->getResultExpr(); 186 } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) { 187 E = CE->getChosenSubExpr(); 188 } else { 189 llvm_unreachable("unexpected expr in array compound literal init"); 190 } 191 } 192 } 193 194 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT, 195 Sema &S) { 196 // Get the length of the string as parsed. 197 auto *ConstantArrayTy = 198 cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe()); 199 uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue(); 200 201 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) { 202 // C99 6.7.8p14. We have an array of character type with unknown size 203 // being initialized to a string literal. 204 llvm::APInt ConstVal(32, StrLength); 205 // Return a new array type (C99 6.7.8p22). 206 DeclT = S.Context.getConstantArrayType(IAT->getElementType(), 207 ConstVal, nullptr, 208 ArrayType::Normal, 0); 209 updateStringLiteralType(Str, DeclT); 210 return; 211 } 212 213 const ConstantArrayType *CAT = cast<ConstantArrayType>(AT); 214 215 // We have an array of character type with known size. However, 216 // the size may be smaller or larger than the string we are initializing. 217 // FIXME: Avoid truncation for 64-bit length strings. 218 if (S.getLangOpts().CPlusPlus) { 219 if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) { 220 // For Pascal strings it's OK to strip off the terminating null character, 221 // so the example below is valid: 222 // 223 // unsigned char a[2] = "\pa"; 224 if (SL->isPascal()) 225 StrLength--; 226 } 227 228 // [dcl.init.string]p2 229 if (StrLength > CAT->getSize().getZExtValue()) 230 S.Diag(Str->getBeginLoc(), 231 diag::err_initializer_string_for_char_array_too_long) 232 << Str->getSourceRange(); 233 } else { 234 // C99 6.7.8p14. 235 if (StrLength-1 > CAT->getSize().getZExtValue()) 236 S.Diag(Str->getBeginLoc(), 237 diag::ext_initializer_string_for_char_array_too_long) 238 << Str->getSourceRange(); 239 } 240 241 // Set the type to the actual size that we are initializing. If we have 242 // something like: 243 // char x[1] = "foo"; 244 // then this will set the string literal's type to char[1]. 245 updateStringLiteralType(Str, DeclT); 246 } 247 248 //===----------------------------------------------------------------------===// 249 // Semantic checking for initializer lists. 250 //===----------------------------------------------------------------------===// 251 252 namespace { 253 254 /// Semantic checking for initializer lists. 255 /// 256 /// The InitListChecker class contains a set of routines that each 257 /// handle the initialization of a certain kind of entity, e.g., 258 /// arrays, vectors, struct/union types, scalars, etc. The 259 /// InitListChecker itself performs a recursive walk of the subobject 260 /// structure of the type to be initialized, while stepping through 261 /// the initializer list one element at a time. The IList and Index 262 /// parameters to each of the Check* routines contain the active 263 /// (syntactic) initializer list and the index into that initializer 264 /// list that represents the current initializer. Each routine is 265 /// responsible for moving that Index forward as it consumes elements. 266 /// 267 /// Each Check* routine also has a StructuredList/StructuredIndex 268 /// arguments, which contains the current "structured" (semantic) 269 /// initializer list and the index into that initializer list where we 270 /// are copying initializers as we map them over to the semantic 271 /// list. Once we have completed our recursive walk of the subobject 272 /// structure, we will have constructed a full semantic initializer 273 /// list. 274 /// 275 /// C99 designators cause changes in the initializer list traversal, 276 /// because they make the initialization "jump" into a specific 277 /// subobject and then continue the initialization from that 278 /// point. CheckDesignatedInitializer() recursively steps into the 279 /// designated subobject and manages backing out the recursion to 280 /// initialize the subobjects after the one designated. 281 /// 282 /// If an initializer list contains any designators, we build a placeholder 283 /// structured list even in 'verify only' mode, so that we can track which 284 /// elements need 'empty' initializtion. 285 class InitListChecker { 286 Sema &SemaRef; 287 bool hadError = false; 288 bool VerifyOnly; // No diagnostics. 289 bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode. 290 bool InOverloadResolution; 291 InitListExpr *FullyStructuredList = nullptr; 292 NoInitExpr *DummyExpr = nullptr; 293 294 NoInitExpr *getDummyInit() { 295 if (!DummyExpr) 296 DummyExpr = new (SemaRef.Context) NoInitExpr(SemaRef.Context.VoidTy); 297 return DummyExpr; 298 } 299 300 void CheckImplicitInitList(const InitializedEntity &Entity, 301 InitListExpr *ParentIList, QualType T, 302 unsigned &Index, InitListExpr *StructuredList, 303 unsigned &StructuredIndex); 304 void CheckExplicitInitList(const InitializedEntity &Entity, 305 InitListExpr *IList, QualType &T, 306 InitListExpr *StructuredList, 307 bool TopLevelObject = false); 308 void CheckListElementTypes(const InitializedEntity &Entity, 309 InitListExpr *IList, QualType &DeclType, 310 bool SubobjectIsDesignatorContext, 311 unsigned &Index, 312 InitListExpr *StructuredList, 313 unsigned &StructuredIndex, 314 bool TopLevelObject = false); 315 void CheckSubElementType(const InitializedEntity &Entity, 316 InitListExpr *IList, QualType ElemType, 317 unsigned &Index, 318 InitListExpr *StructuredList, 319 unsigned &StructuredIndex, 320 bool DirectlyDesignated = false); 321 void CheckComplexType(const InitializedEntity &Entity, 322 InitListExpr *IList, QualType DeclType, 323 unsigned &Index, 324 InitListExpr *StructuredList, 325 unsigned &StructuredIndex); 326 void CheckScalarType(const InitializedEntity &Entity, 327 InitListExpr *IList, QualType DeclType, 328 unsigned &Index, 329 InitListExpr *StructuredList, 330 unsigned &StructuredIndex); 331 void CheckReferenceType(const InitializedEntity &Entity, 332 InitListExpr *IList, QualType DeclType, 333 unsigned &Index, 334 InitListExpr *StructuredList, 335 unsigned &StructuredIndex); 336 void CheckVectorType(const InitializedEntity &Entity, 337 InitListExpr *IList, QualType DeclType, unsigned &Index, 338 InitListExpr *StructuredList, 339 unsigned &StructuredIndex); 340 void CheckStructUnionTypes(const InitializedEntity &Entity, 341 InitListExpr *IList, QualType DeclType, 342 CXXRecordDecl::base_class_range Bases, 343 RecordDecl::field_iterator Field, 344 bool SubobjectIsDesignatorContext, unsigned &Index, 345 InitListExpr *StructuredList, 346 unsigned &StructuredIndex, 347 bool TopLevelObject = false); 348 void CheckArrayType(const InitializedEntity &Entity, 349 InitListExpr *IList, QualType &DeclType, 350 llvm::APSInt elementIndex, 351 bool SubobjectIsDesignatorContext, unsigned &Index, 352 InitListExpr *StructuredList, 353 unsigned &StructuredIndex); 354 bool CheckDesignatedInitializer(const InitializedEntity &Entity, 355 InitListExpr *IList, DesignatedInitExpr *DIE, 356 unsigned DesigIdx, 357 QualType &CurrentObjectType, 358 RecordDecl::field_iterator *NextField, 359 llvm::APSInt *NextElementIndex, 360 unsigned &Index, 361 InitListExpr *StructuredList, 362 unsigned &StructuredIndex, 363 bool FinishSubobjectInit, 364 bool TopLevelObject); 365 InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, 366 QualType CurrentObjectType, 367 InitListExpr *StructuredList, 368 unsigned StructuredIndex, 369 SourceRange InitRange, 370 bool IsFullyOverwritten = false); 371 void UpdateStructuredListElement(InitListExpr *StructuredList, 372 unsigned &StructuredIndex, 373 Expr *expr); 374 InitListExpr *createInitListExpr(QualType CurrentObjectType, 375 SourceRange InitRange, 376 unsigned ExpectedNumInits); 377 int numArrayElements(QualType DeclType); 378 int numStructUnionElements(QualType DeclType); 379 380 ExprResult PerformEmptyInit(SourceLocation Loc, 381 const InitializedEntity &Entity); 382 383 /// Diagnose that OldInit (or part thereof) has been overridden by NewInit. 384 void diagnoseInitOverride(Expr *OldInit, SourceRange NewInitRange, 385 bool FullyOverwritten = true) { 386 // Overriding an initializer via a designator is valid with C99 designated 387 // initializers, but ill-formed with C++20 designated initializers. 388 unsigned DiagID = SemaRef.getLangOpts().CPlusPlus 389 ? diag::ext_initializer_overrides 390 : diag::warn_initializer_overrides; 391 392 if (InOverloadResolution && SemaRef.getLangOpts().CPlusPlus) { 393 // In overload resolution, we have to strictly enforce the rules, and so 394 // don't allow any overriding of prior initializers. This matters for a 395 // case such as: 396 // 397 // union U { int a, b; }; 398 // struct S { int a, b; }; 399 // void f(U), f(S); 400 // 401 // Here, f({.a = 1, .b = 2}) is required to call the struct overload. For 402 // consistency, we disallow all overriding of prior initializers in 403 // overload resolution, not only overriding of union members. 404 hadError = true; 405 } else if (OldInit->getType().isDestructedType() && !FullyOverwritten) { 406 // If we'll be keeping around the old initializer but overwriting part of 407 // the object it initialized, and that object is not trivially 408 // destructible, this can leak. Don't allow that, not even as an 409 // extension. 410 // 411 // FIXME: It might be reasonable to allow this in cases where the part of 412 // the initializer that we're overriding has trivial destruction. 413 DiagID = diag::err_initializer_overrides_destructed; 414 } else if (!OldInit->getSourceRange().isValid()) { 415 // We need to check on source range validity because the previous 416 // initializer does not have to be an explicit initializer. e.g., 417 // 418 // struct P { int a, b; }; 419 // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 }; 420 // 421 // There is an overwrite taking place because the first braced initializer 422 // list "{ .a = 2 }" already provides value for .p.b (which is zero). 423 // 424 // Such overwrites are harmless, so we don't diagnose them. (Note that in 425 // C++, this cannot be reached unless we've already seen and diagnosed a 426 // different conformance issue, such as a mixture of designated and 427 // non-designated initializers or a multi-level designator.) 428 return; 429 } 430 431 if (!VerifyOnly) { 432 SemaRef.Diag(NewInitRange.getBegin(), DiagID) 433 << NewInitRange << FullyOverwritten << OldInit->getType(); 434 SemaRef.Diag(OldInit->getBeginLoc(), diag::note_previous_initializer) 435 << (OldInit->HasSideEffects(SemaRef.Context) && FullyOverwritten) 436 << OldInit->getSourceRange(); 437 } 438 } 439 440 // Explanation on the "FillWithNoInit" mode: 441 // 442 // Assume we have the following definitions (Case#1): 443 // struct P { char x[6][6]; } xp = { .x[1] = "bar" }; 444 // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' }; 445 // 446 // l.lp.x[1][0..1] should not be filled with implicit initializers because the 447 // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf". 448 // 449 // But if we have (Case#2): 450 // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } }; 451 // 452 // l.lp.x[1][0..1] are implicitly initialized and do not use values from the 453 // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0". 454 // 455 // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes" 456 // in the InitListExpr, the "holes" in Case#1 are filled not with empty 457 // initializers but with special "NoInitExpr" place holders, which tells the 458 // CodeGen not to generate any initializers for these parts. 459 void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base, 460 const InitializedEntity &ParentEntity, 461 InitListExpr *ILE, bool &RequiresSecondPass, 462 bool FillWithNoInit); 463 void FillInEmptyInitForField(unsigned Init, FieldDecl *Field, 464 const InitializedEntity &ParentEntity, 465 InitListExpr *ILE, bool &RequiresSecondPass, 466 bool FillWithNoInit = false); 467 void FillInEmptyInitializations(const InitializedEntity &Entity, 468 InitListExpr *ILE, bool &RequiresSecondPass, 469 InitListExpr *OuterILE, unsigned OuterIndex, 470 bool FillWithNoInit = false); 471 bool CheckFlexibleArrayInit(const InitializedEntity &Entity, 472 Expr *InitExpr, FieldDecl *Field, 473 bool TopLevelObject); 474 void CheckEmptyInitializable(const InitializedEntity &Entity, 475 SourceLocation Loc); 476 477 public: 478 InitListChecker(Sema &S, const InitializedEntity &Entity, InitListExpr *IL, 479 QualType &T, bool VerifyOnly, bool TreatUnavailableAsInvalid, 480 bool InOverloadResolution = false); 481 bool HadError() { return hadError; } 482 483 // Retrieves the fully-structured initializer list used for 484 // semantic analysis and code generation. 485 InitListExpr *getFullyStructuredList() const { return FullyStructuredList; } 486 }; 487 488 } // end anonymous namespace 489 490 ExprResult InitListChecker::PerformEmptyInit(SourceLocation Loc, 491 const InitializedEntity &Entity) { 492 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc, 493 true); 494 MultiExprArg SubInit; 495 Expr *InitExpr; 496 InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc); 497 498 // C++ [dcl.init.aggr]p7: 499 // If there are fewer initializer-clauses in the list than there are 500 // members in the aggregate, then each member not explicitly initialized 501 // ... 502 bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 && 503 Entity.getType()->getBaseElementTypeUnsafe()->isRecordType(); 504 if (EmptyInitList) { 505 // C++1y / DR1070: 506 // shall be initialized [...] from an empty initializer list. 507 // 508 // We apply the resolution of this DR to C++11 but not C++98, since C++98 509 // does not have useful semantics for initialization from an init list. 510 // We treat this as copy-initialization, because aggregate initialization 511 // always performs copy-initialization on its elements. 512 // 513 // Only do this if we're initializing a class type, to avoid filling in 514 // the initializer list where possible. 515 InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context) 516 InitListExpr(SemaRef.Context, Loc, None, Loc); 517 InitExpr->setType(SemaRef.Context.VoidTy); 518 SubInit = InitExpr; 519 Kind = InitializationKind::CreateCopy(Loc, Loc); 520 } else { 521 // C++03: 522 // shall be value-initialized. 523 } 524 525 InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit); 526 // libstdc++4.6 marks the vector default constructor as explicit in 527 // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case. 528 // stlport does so too. Look for std::__debug for libstdc++, and for 529 // std:: for stlport. This is effectively a compiler-side implementation of 530 // LWG2193. 531 if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() == 532 InitializationSequence::FK_ExplicitConstructor) { 533 OverloadCandidateSet::iterator Best; 534 OverloadingResult O = 535 InitSeq.getFailedCandidateSet() 536 .BestViableFunction(SemaRef, Kind.getLocation(), Best); 537 (void)O; 538 assert(O == OR_Success && "Inconsistent overload resolution"); 539 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 540 CXXRecordDecl *R = CtorDecl->getParent(); 541 542 if (CtorDecl->getMinRequiredArguments() == 0 && 543 CtorDecl->isExplicit() && R->getDeclName() && 544 SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) { 545 bool IsInStd = false; 546 for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext()); 547 ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) { 548 if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND)) 549 IsInStd = true; 550 } 551 552 if (IsInStd && llvm::StringSwitch<bool>(R->getName()) 553 .Cases("basic_string", "deque", "forward_list", true) 554 .Cases("list", "map", "multimap", "multiset", true) 555 .Cases("priority_queue", "queue", "set", "stack", true) 556 .Cases("unordered_map", "unordered_set", "vector", true) 557 .Default(false)) { 558 InitSeq.InitializeFrom( 559 SemaRef, Entity, 560 InitializationKind::CreateValue(Loc, Loc, Loc, true), 561 MultiExprArg(), /*TopLevelOfInitList=*/false, 562 TreatUnavailableAsInvalid); 563 // Emit a warning for this. System header warnings aren't shown 564 // by default, but people working on system headers should see it. 565 if (!VerifyOnly) { 566 SemaRef.Diag(CtorDecl->getLocation(), 567 diag::warn_invalid_initializer_from_system_header); 568 if (Entity.getKind() == InitializedEntity::EK_Member) 569 SemaRef.Diag(Entity.getDecl()->getLocation(), 570 diag::note_used_in_initialization_here); 571 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) 572 SemaRef.Diag(Loc, diag::note_used_in_initialization_here); 573 } 574 } 575 } 576 } 577 if (!InitSeq) { 578 if (!VerifyOnly) { 579 InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit); 580 if (Entity.getKind() == InitializedEntity::EK_Member) 581 SemaRef.Diag(Entity.getDecl()->getLocation(), 582 diag::note_in_omitted_aggregate_initializer) 583 << /*field*/1 << Entity.getDecl(); 584 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) { 585 bool IsTrailingArrayNewMember = 586 Entity.getParent() && 587 Entity.getParent()->isVariableLengthArrayNew(); 588 SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer) 589 << (IsTrailingArrayNewMember ? 2 : /*array element*/0) 590 << Entity.getElementIndex(); 591 } 592 } 593 hadError = true; 594 return ExprError(); 595 } 596 597 return VerifyOnly ? ExprResult() 598 : InitSeq.Perform(SemaRef, Entity, Kind, SubInit); 599 } 600 601 void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity, 602 SourceLocation Loc) { 603 // If we're building a fully-structured list, we'll check this at the end 604 // once we know which elements are actually initialized. Otherwise, we know 605 // that there are no designators so we can just check now. 606 if (FullyStructuredList) 607 return; 608 PerformEmptyInit(Loc, Entity); 609 } 610 611 void InitListChecker::FillInEmptyInitForBase( 612 unsigned Init, const CXXBaseSpecifier &Base, 613 const InitializedEntity &ParentEntity, InitListExpr *ILE, 614 bool &RequiresSecondPass, bool FillWithNoInit) { 615 InitializedEntity BaseEntity = InitializedEntity::InitializeBase( 616 SemaRef.Context, &Base, false, &ParentEntity); 617 618 if (Init >= ILE->getNumInits() || !ILE->getInit(Init)) { 619 ExprResult BaseInit = FillWithNoInit 620 ? new (SemaRef.Context) NoInitExpr(Base.getType()) 621 : PerformEmptyInit(ILE->getEndLoc(), BaseEntity); 622 if (BaseInit.isInvalid()) { 623 hadError = true; 624 return; 625 } 626 627 if (!VerifyOnly) { 628 assert(Init < ILE->getNumInits() && "should have been expanded"); 629 ILE->setInit(Init, BaseInit.getAs<Expr>()); 630 } 631 } else if (InitListExpr *InnerILE = 632 dyn_cast<InitListExpr>(ILE->getInit(Init))) { 633 FillInEmptyInitializations(BaseEntity, InnerILE, RequiresSecondPass, 634 ILE, Init, FillWithNoInit); 635 } else if (DesignatedInitUpdateExpr *InnerDIUE = 636 dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) { 637 FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(), 638 RequiresSecondPass, ILE, Init, 639 /*FillWithNoInit =*/true); 640 } 641 } 642 643 void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field, 644 const InitializedEntity &ParentEntity, 645 InitListExpr *ILE, 646 bool &RequiresSecondPass, 647 bool FillWithNoInit) { 648 SourceLocation Loc = ILE->getEndLoc(); 649 unsigned NumInits = ILE->getNumInits(); 650 InitializedEntity MemberEntity 651 = InitializedEntity::InitializeMember(Field, &ParentEntity); 652 653 if (Init >= NumInits || !ILE->getInit(Init)) { 654 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) 655 if (!RType->getDecl()->isUnion()) 656 assert((Init < NumInits || VerifyOnly) && 657 "This ILE should have been expanded"); 658 659 if (FillWithNoInit) { 660 assert(!VerifyOnly && "should not fill with no-init in verify-only mode"); 661 Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType()); 662 if (Init < NumInits) 663 ILE->setInit(Init, Filler); 664 else 665 ILE->updateInit(SemaRef.Context, Init, Filler); 666 return; 667 } 668 // C++1y [dcl.init.aggr]p7: 669 // If there are fewer initializer-clauses in the list than there are 670 // members in the aggregate, then each member not explicitly initialized 671 // shall be initialized from its brace-or-equal-initializer [...] 672 if (Field->hasInClassInitializer()) { 673 if (VerifyOnly) 674 return; 675 676 ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field); 677 if (DIE.isInvalid()) { 678 hadError = true; 679 return; 680 } 681 SemaRef.checkInitializerLifetime(MemberEntity, DIE.get()); 682 if (Init < NumInits) 683 ILE->setInit(Init, DIE.get()); 684 else { 685 ILE->updateInit(SemaRef.Context, Init, DIE.get()); 686 RequiresSecondPass = true; 687 } 688 return; 689 } 690 691 if (Field->getType()->isReferenceType()) { 692 if (!VerifyOnly) { 693 // C++ [dcl.init.aggr]p9: 694 // If an incomplete or empty initializer-list leaves a 695 // member of reference type uninitialized, the program is 696 // ill-formed. 697 SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized) 698 << Field->getType() 699 << ILE->getSyntacticForm()->getSourceRange(); 700 SemaRef.Diag(Field->getLocation(), 701 diag::note_uninit_reference_member); 702 } 703 hadError = true; 704 return; 705 } 706 707 ExprResult MemberInit = PerformEmptyInit(Loc, MemberEntity); 708 if (MemberInit.isInvalid()) { 709 hadError = true; 710 return; 711 } 712 713 if (hadError || VerifyOnly) { 714 // Do nothing 715 } else if (Init < NumInits) { 716 ILE->setInit(Init, MemberInit.getAs<Expr>()); 717 } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) { 718 // Empty initialization requires a constructor call, so 719 // extend the initializer list to include the constructor 720 // call and make a note that we'll need to take another pass 721 // through the initializer list. 722 ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>()); 723 RequiresSecondPass = true; 724 } 725 } else if (InitListExpr *InnerILE 726 = dyn_cast<InitListExpr>(ILE->getInit(Init))) { 727 FillInEmptyInitializations(MemberEntity, InnerILE, 728 RequiresSecondPass, ILE, Init, FillWithNoInit); 729 } else if (DesignatedInitUpdateExpr *InnerDIUE = 730 dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) { 731 FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(), 732 RequiresSecondPass, ILE, Init, 733 /*FillWithNoInit =*/true); 734 } 735 } 736 737 /// Recursively replaces NULL values within the given initializer list 738 /// with expressions that perform value-initialization of the 739 /// appropriate type, and finish off the InitListExpr formation. 740 void 741 InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity, 742 InitListExpr *ILE, 743 bool &RequiresSecondPass, 744 InitListExpr *OuterILE, 745 unsigned OuterIndex, 746 bool FillWithNoInit) { 747 assert((ILE->getType() != SemaRef.Context.VoidTy) && 748 "Should not have void type"); 749 750 // We don't need to do any checks when just filling NoInitExprs; that can't 751 // fail. 752 if (FillWithNoInit && VerifyOnly) 753 return; 754 755 // If this is a nested initializer list, we might have changed its contents 756 // (and therefore some of its properties, such as instantiation-dependence) 757 // while filling it in. Inform the outer initializer list so that its state 758 // can be updated to match. 759 // FIXME: We should fully build the inner initializers before constructing 760 // the outer InitListExpr instead of mutating AST nodes after they have 761 // been used as subexpressions of other nodes. 762 struct UpdateOuterILEWithUpdatedInit { 763 InitListExpr *Outer; 764 unsigned OuterIndex; 765 ~UpdateOuterILEWithUpdatedInit() { 766 if (Outer) 767 Outer->setInit(OuterIndex, Outer->getInit(OuterIndex)); 768 } 769 } UpdateOuterRAII = {OuterILE, OuterIndex}; 770 771 // A transparent ILE is not performing aggregate initialization and should 772 // not be filled in. 773 if (ILE->isTransparent()) 774 return; 775 776 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 777 const RecordDecl *RDecl = RType->getDecl(); 778 if (RDecl->isUnion() && ILE->getInitializedFieldInUnion()) 779 FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(), 780 Entity, ILE, RequiresSecondPass, FillWithNoInit); 781 else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) && 782 cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) { 783 for (auto *Field : RDecl->fields()) { 784 if (Field->hasInClassInitializer()) { 785 FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass, 786 FillWithNoInit); 787 break; 788 } 789 } 790 } else { 791 // The fields beyond ILE->getNumInits() are default initialized, so in 792 // order to leave them uninitialized, the ILE is expanded and the extra 793 // fields are then filled with NoInitExpr. 794 unsigned NumElems = numStructUnionElements(ILE->getType()); 795 if (RDecl->hasFlexibleArrayMember()) 796 ++NumElems; 797 if (!VerifyOnly && ILE->getNumInits() < NumElems) 798 ILE->resizeInits(SemaRef.Context, NumElems); 799 800 unsigned Init = 0; 801 802 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) { 803 for (auto &Base : CXXRD->bases()) { 804 if (hadError) 805 return; 806 807 FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass, 808 FillWithNoInit); 809 ++Init; 810 } 811 } 812 813 for (auto *Field : RDecl->fields()) { 814 if (Field->isUnnamedBitfield()) 815 continue; 816 817 if (hadError) 818 return; 819 820 FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass, 821 FillWithNoInit); 822 if (hadError) 823 return; 824 825 ++Init; 826 827 // Only look at the first initialization of a union. 828 if (RDecl->isUnion()) 829 break; 830 } 831 } 832 833 return; 834 } 835 836 QualType ElementType; 837 838 InitializedEntity ElementEntity = Entity; 839 unsigned NumInits = ILE->getNumInits(); 840 unsigned NumElements = NumInits; 841 if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) { 842 ElementType = AType->getElementType(); 843 if (const auto *CAType = dyn_cast<ConstantArrayType>(AType)) 844 NumElements = CAType->getSize().getZExtValue(); 845 // For an array new with an unknown bound, ask for one additional element 846 // in order to populate the array filler. 847 if (Entity.isVariableLengthArrayNew()) 848 ++NumElements; 849 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, 850 0, Entity); 851 } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) { 852 ElementType = VType->getElementType(); 853 NumElements = VType->getNumElements(); 854 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, 855 0, Entity); 856 } else 857 ElementType = ILE->getType(); 858 859 bool SkipEmptyInitChecks = false; 860 for (unsigned Init = 0; Init != NumElements; ++Init) { 861 if (hadError) 862 return; 863 864 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement || 865 ElementEntity.getKind() == InitializedEntity::EK_VectorElement) 866 ElementEntity.setElementIndex(Init); 867 868 if (Init >= NumInits && (ILE->hasArrayFiller() || SkipEmptyInitChecks)) 869 return; 870 871 Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr); 872 if (!InitExpr && Init < NumInits && ILE->hasArrayFiller()) 873 ILE->setInit(Init, ILE->getArrayFiller()); 874 else if (!InitExpr && !ILE->hasArrayFiller()) { 875 // In VerifyOnly mode, there's no point performing empty initialization 876 // more than once. 877 if (SkipEmptyInitChecks) 878 continue; 879 880 Expr *Filler = nullptr; 881 882 if (FillWithNoInit) 883 Filler = new (SemaRef.Context) NoInitExpr(ElementType); 884 else { 885 ExprResult ElementInit = 886 PerformEmptyInit(ILE->getEndLoc(), ElementEntity); 887 if (ElementInit.isInvalid()) { 888 hadError = true; 889 return; 890 } 891 892 Filler = ElementInit.getAs<Expr>(); 893 } 894 895 if (hadError) { 896 // Do nothing 897 } else if (VerifyOnly) { 898 SkipEmptyInitChecks = true; 899 } else if (Init < NumInits) { 900 // For arrays, just set the expression used for value-initialization 901 // of the "holes" in the array. 902 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) 903 ILE->setArrayFiller(Filler); 904 else 905 ILE->setInit(Init, Filler); 906 } else { 907 // For arrays, just set the expression used for value-initialization 908 // of the rest of elements and exit. 909 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) { 910 ILE->setArrayFiller(Filler); 911 return; 912 } 913 914 if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) { 915 // Empty initialization requires a constructor call, so 916 // extend the initializer list to include the constructor 917 // call and make a note that we'll need to take another pass 918 // through the initializer list. 919 ILE->updateInit(SemaRef.Context, Init, Filler); 920 RequiresSecondPass = true; 921 } 922 } 923 } else if (InitListExpr *InnerILE 924 = dyn_cast_or_null<InitListExpr>(InitExpr)) { 925 FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass, 926 ILE, Init, FillWithNoInit); 927 } else if (DesignatedInitUpdateExpr *InnerDIUE = 928 dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr)) { 929 FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(), 930 RequiresSecondPass, ILE, Init, 931 /*FillWithNoInit =*/true); 932 } 933 } 934 } 935 936 static bool hasAnyDesignatedInits(const InitListExpr *IL) { 937 for (const Stmt *Init : *IL) 938 if (Init && isa<DesignatedInitExpr>(Init)) 939 return true; 940 return false; 941 } 942 943 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity, 944 InitListExpr *IL, QualType &T, bool VerifyOnly, 945 bool TreatUnavailableAsInvalid, 946 bool InOverloadResolution) 947 : SemaRef(S), VerifyOnly(VerifyOnly), 948 TreatUnavailableAsInvalid(TreatUnavailableAsInvalid), 949 InOverloadResolution(InOverloadResolution) { 950 if (!VerifyOnly || hasAnyDesignatedInits(IL)) { 951 FullyStructuredList = 952 createInitListExpr(T, IL->getSourceRange(), IL->getNumInits()); 953 954 // FIXME: Check that IL isn't already the semantic form of some other 955 // InitListExpr. If it is, we'd create a broken AST. 956 if (!VerifyOnly) 957 FullyStructuredList->setSyntacticForm(IL); 958 } 959 960 CheckExplicitInitList(Entity, IL, T, FullyStructuredList, 961 /*TopLevelObject=*/true); 962 963 if (!hadError && FullyStructuredList) { 964 bool RequiresSecondPass = false; 965 FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass, 966 /*OuterILE=*/nullptr, /*OuterIndex=*/0); 967 if (RequiresSecondPass && !hadError) 968 FillInEmptyInitializations(Entity, FullyStructuredList, 969 RequiresSecondPass, nullptr, 0); 970 } 971 if (hadError && FullyStructuredList) 972 FullyStructuredList->markError(); 973 } 974 975 int InitListChecker::numArrayElements(QualType DeclType) { 976 // FIXME: use a proper constant 977 int maxElements = 0x7FFFFFFF; 978 if (const ConstantArrayType *CAT = 979 SemaRef.Context.getAsConstantArrayType(DeclType)) { 980 maxElements = static_cast<int>(CAT->getSize().getZExtValue()); 981 } 982 return maxElements; 983 } 984 985 int InitListChecker::numStructUnionElements(QualType DeclType) { 986 RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl(); 987 int InitializableMembers = 0; 988 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl)) 989 InitializableMembers += CXXRD->getNumBases(); 990 for (const auto *Field : structDecl->fields()) 991 if (!Field->isUnnamedBitfield()) 992 ++InitializableMembers; 993 994 if (structDecl->isUnion()) 995 return std::min(InitializableMembers, 1); 996 return InitializableMembers - structDecl->hasFlexibleArrayMember(); 997 } 998 999 /// Determine whether Entity is an entity for which it is idiomatic to elide 1000 /// the braces in aggregate initialization. 1001 static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) { 1002 // Recursive initialization of the one and only field within an aggregate 1003 // class is considered idiomatic. This case arises in particular for 1004 // initialization of std::array, where the C++ standard suggests the idiom of 1005 // 1006 // std::array<T, N> arr = {1, 2, 3}; 1007 // 1008 // (where std::array is an aggregate struct containing a single array field. 1009 1010 if (!Entity.getParent()) 1011 return false; 1012 1013 // Allows elide brace initialization for aggregates with empty base. 1014 if (Entity.getKind() == InitializedEntity::EK_Base) { 1015 auto *ParentRD = 1016 Entity.getParent()->getType()->castAs<RecordType>()->getDecl(); 1017 CXXRecordDecl *CXXRD = cast<CXXRecordDecl>(ParentRD); 1018 return CXXRD->getNumBases() == 1 && CXXRD->field_empty(); 1019 } 1020 1021 // Allow brace elision if the only subobject is a field. 1022 if (Entity.getKind() == InitializedEntity::EK_Member) { 1023 auto *ParentRD = 1024 Entity.getParent()->getType()->castAs<RecordType>()->getDecl(); 1025 if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(ParentRD)) { 1026 if (CXXRD->getNumBases()) { 1027 return false; 1028 } 1029 } 1030 auto FieldIt = ParentRD->field_begin(); 1031 assert(FieldIt != ParentRD->field_end() && 1032 "no fields but have initializer for member?"); 1033 return ++FieldIt == ParentRD->field_end(); 1034 } 1035 1036 return false; 1037 } 1038 1039 /// Check whether the range of the initializer \p ParentIList from element 1040 /// \p Index onwards can be used to initialize an object of type \p T. Update 1041 /// \p Index to indicate how many elements of the list were consumed. 1042 /// 1043 /// This also fills in \p StructuredList, from element \p StructuredIndex 1044 /// onwards, with the fully-braced, desugared form of the initialization. 1045 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity, 1046 InitListExpr *ParentIList, 1047 QualType T, unsigned &Index, 1048 InitListExpr *StructuredList, 1049 unsigned &StructuredIndex) { 1050 int maxElements = 0; 1051 1052 if (T->isArrayType()) 1053 maxElements = numArrayElements(T); 1054 else if (T->isRecordType()) 1055 maxElements = numStructUnionElements(T); 1056 else if (T->isVectorType()) 1057 maxElements = T->castAs<VectorType>()->getNumElements(); 1058 else 1059 llvm_unreachable("CheckImplicitInitList(): Illegal type"); 1060 1061 if (maxElements == 0) { 1062 if (!VerifyOnly) 1063 SemaRef.Diag(ParentIList->getInit(Index)->getBeginLoc(), 1064 diag::err_implicit_empty_initializer); 1065 ++Index; 1066 hadError = true; 1067 return; 1068 } 1069 1070 // Build a structured initializer list corresponding to this subobject. 1071 InitListExpr *StructuredSubobjectInitList = getStructuredSubobjectInit( 1072 ParentIList, Index, T, StructuredList, StructuredIndex, 1073 SourceRange(ParentIList->getInit(Index)->getBeginLoc(), 1074 ParentIList->getSourceRange().getEnd())); 1075 unsigned StructuredSubobjectInitIndex = 0; 1076 1077 // Check the element types and build the structural subobject. 1078 unsigned StartIndex = Index; 1079 CheckListElementTypes(Entity, ParentIList, T, 1080 /*SubobjectIsDesignatorContext=*/false, Index, 1081 StructuredSubobjectInitList, 1082 StructuredSubobjectInitIndex); 1083 1084 if (StructuredSubobjectInitList) { 1085 StructuredSubobjectInitList->setType(T); 1086 1087 unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1); 1088 // Update the structured sub-object initializer so that it's ending 1089 // range corresponds with the end of the last initializer it used. 1090 if (EndIndex < ParentIList->getNumInits() && 1091 ParentIList->getInit(EndIndex)) { 1092 SourceLocation EndLoc 1093 = ParentIList->getInit(EndIndex)->getSourceRange().getEnd(); 1094 StructuredSubobjectInitList->setRBraceLoc(EndLoc); 1095 } 1096 1097 // Complain about missing braces. 1098 if (!VerifyOnly && (T->isArrayType() || T->isRecordType()) && 1099 !ParentIList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) && 1100 !isIdiomaticBraceElisionEntity(Entity)) { 1101 SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(), 1102 diag::warn_missing_braces) 1103 << StructuredSubobjectInitList->getSourceRange() 1104 << FixItHint::CreateInsertion( 1105 StructuredSubobjectInitList->getBeginLoc(), "{") 1106 << FixItHint::CreateInsertion( 1107 SemaRef.getLocForEndOfToken( 1108 StructuredSubobjectInitList->getEndLoc()), 1109 "}"); 1110 } 1111 1112 // Warn if this type won't be an aggregate in future versions of C++. 1113 auto *CXXRD = T->getAsCXXRecordDecl(); 1114 if (!VerifyOnly && CXXRD && CXXRD->hasUserDeclaredConstructor()) { 1115 SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(), 1116 diag::warn_cxx20_compat_aggregate_init_with_ctors) 1117 << StructuredSubobjectInitList->getSourceRange() << T; 1118 } 1119 } 1120 } 1121 1122 /// Warn that \p Entity was of scalar type and was initialized by a 1123 /// single-element braced initializer list. 1124 static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity, 1125 SourceRange Braces) { 1126 // Don't warn during template instantiation. If the initialization was 1127 // non-dependent, we warned during the initial parse; otherwise, the 1128 // type might not be scalar in some uses of the template. 1129 if (S.inTemplateInstantiation()) 1130 return; 1131 1132 unsigned DiagID = 0; 1133 1134 switch (Entity.getKind()) { 1135 case InitializedEntity::EK_VectorElement: 1136 case InitializedEntity::EK_ComplexElement: 1137 case InitializedEntity::EK_ArrayElement: 1138 case InitializedEntity::EK_Parameter: 1139 case InitializedEntity::EK_Parameter_CF_Audited: 1140 case InitializedEntity::EK_TemplateParameter: 1141 case InitializedEntity::EK_Result: 1142 // Extra braces here are suspicious. 1143 DiagID = diag::warn_braces_around_init; 1144 break; 1145 1146 case InitializedEntity::EK_Member: 1147 // Warn on aggregate initialization but not on ctor init list or 1148 // default member initializer. 1149 if (Entity.getParent()) 1150 DiagID = diag::warn_braces_around_init; 1151 break; 1152 1153 case InitializedEntity::EK_Variable: 1154 case InitializedEntity::EK_LambdaCapture: 1155 // No warning, might be direct-list-initialization. 1156 // FIXME: Should we warn for copy-list-initialization in these cases? 1157 break; 1158 1159 case InitializedEntity::EK_New: 1160 case InitializedEntity::EK_Temporary: 1161 case InitializedEntity::EK_CompoundLiteralInit: 1162 // No warning, braces are part of the syntax of the underlying construct. 1163 break; 1164 1165 case InitializedEntity::EK_RelatedResult: 1166 // No warning, we already warned when initializing the result. 1167 break; 1168 1169 case InitializedEntity::EK_Exception: 1170 case InitializedEntity::EK_Base: 1171 case InitializedEntity::EK_Delegating: 1172 case InitializedEntity::EK_BlockElement: 1173 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 1174 case InitializedEntity::EK_Binding: 1175 case InitializedEntity::EK_StmtExprResult: 1176 llvm_unreachable("unexpected braced scalar init"); 1177 } 1178 1179 if (DiagID) { 1180 S.Diag(Braces.getBegin(), DiagID) 1181 << Entity.getType()->isSizelessBuiltinType() << Braces 1182 << FixItHint::CreateRemoval(Braces.getBegin()) 1183 << FixItHint::CreateRemoval(Braces.getEnd()); 1184 } 1185 } 1186 1187 /// Check whether the initializer \p IList (that was written with explicit 1188 /// braces) can be used to initialize an object of type \p T. 1189 /// 1190 /// This also fills in \p StructuredList with the fully-braced, desugared 1191 /// form of the initialization. 1192 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity, 1193 InitListExpr *IList, QualType &T, 1194 InitListExpr *StructuredList, 1195 bool TopLevelObject) { 1196 unsigned Index = 0, StructuredIndex = 0; 1197 CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true, 1198 Index, StructuredList, StructuredIndex, TopLevelObject); 1199 if (StructuredList) { 1200 QualType ExprTy = T; 1201 if (!ExprTy->isArrayType()) 1202 ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context); 1203 if (!VerifyOnly) 1204 IList->setType(ExprTy); 1205 StructuredList->setType(ExprTy); 1206 } 1207 if (hadError) 1208 return; 1209 1210 // Don't complain for incomplete types, since we'll get an error elsewhere. 1211 if (Index < IList->getNumInits() && !T->isIncompleteType()) { 1212 // We have leftover initializers 1213 bool ExtraInitsIsError = SemaRef.getLangOpts().CPlusPlus || 1214 (SemaRef.getLangOpts().OpenCL && T->isVectorType()); 1215 hadError = ExtraInitsIsError; 1216 if (VerifyOnly) { 1217 return; 1218 } else if (StructuredIndex == 1 && 1219 IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) == 1220 SIF_None) { 1221 unsigned DK = 1222 ExtraInitsIsError 1223 ? diag::err_excess_initializers_in_char_array_initializer 1224 : diag::ext_excess_initializers_in_char_array_initializer; 1225 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK) 1226 << IList->getInit(Index)->getSourceRange(); 1227 } else if (T->isSizelessBuiltinType()) { 1228 unsigned DK = ExtraInitsIsError 1229 ? diag::err_excess_initializers_for_sizeless_type 1230 : diag::ext_excess_initializers_for_sizeless_type; 1231 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK) 1232 << T << IList->getInit(Index)->getSourceRange(); 1233 } else { 1234 int initKind = T->isArrayType() ? 0 : 1235 T->isVectorType() ? 1 : 1236 T->isScalarType() ? 2 : 1237 T->isUnionType() ? 3 : 1238 4; 1239 1240 unsigned DK = ExtraInitsIsError ? diag::err_excess_initializers 1241 : diag::ext_excess_initializers; 1242 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK) 1243 << initKind << IList->getInit(Index)->getSourceRange(); 1244 } 1245 } 1246 1247 if (!VerifyOnly) { 1248 if (T->isScalarType() && IList->getNumInits() == 1 && 1249 !isa<InitListExpr>(IList->getInit(0))) 1250 warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange()); 1251 1252 // Warn if this is a class type that won't be an aggregate in future 1253 // versions of C++. 1254 auto *CXXRD = T->getAsCXXRecordDecl(); 1255 if (CXXRD && CXXRD->hasUserDeclaredConstructor()) { 1256 // Don't warn if there's an equivalent default constructor that would be 1257 // used instead. 1258 bool HasEquivCtor = false; 1259 if (IList->getNumInits() == 0) { 1260 auto *CD = SemaRef.LookupDefaultConstructor(CXXRD); 1261 HasEquivCtor = CD && !CD->isDeleted(); 1262 } 1263 1264 if (!HasEquivCtor) { 1265 SemaRef.Diag(IList->getBeginLoc(), 1266 diag::warn_cxx20_compat_aggregate_init_with_ctors) 1267 << IList->getSourceRange() << T; 1268 } 1269 } 1270 } 1271 } 1272 1273 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity, 1274 InitListExpr *IList, 1275 QualType &DeclType, 1276 bool SubobjectIsDesignatorContext, 1277 unsigned &Index, 1278 InitListExpr *StructuredList, 1279 unsigned &StructuredIndex, 1280 bool TopLevelObject) { 1281 if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) { 1282 // Explicitly braced initializer for complex type can be real+imaginary 1283 // parts. 1284 CheckComplexType(Entity, IList, DeclType, Index, 1285 StructuredList, StructuredIndex); 1286 } else if (DeclType->isScalarType()) { 1287 CheckScalarType(Entity, IList, DeclType, Index, 1288 StructuredList, StructuredIndex); 1289 } else if (DeclType->isVectorType()) { 1290 CheckVectorType(Entity, IList, DeclType, Index, 1291 StructuredList, StructuredIndex); 1292 } else if (DeclType->isRecordType()) { 1293 assert(DeclType->isAggregateType() && 1294 "non-aggregate records should be handed in CheckSubElementType"); 1295 RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl(); 1296 auto Bases = 1297 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(), 1298 CXXRecordDecl::base_class_iterator()); 1299 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1300 Bases = CXXRD->bases(); 1301 CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(), 1302 SubobjectIsDesignatorContext, Index, StructuredList, 1303 StructuredIndex, TopLevelObject); 1304 } else if (DeclType->isArrayType()) { 1305 llvm::APSInt Zero( 1306 SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()), 1307 false); 1308 CheckArrayType(Entity, IList, DeclType, Zero, 1309 SubobjectIsDesignatorContext, Index, 1310 StructuredList, StructuredIndex); 1311 } else if (DeclType->isVoidType() || DeclType->isFunctionType()) { 1312 // This type is invalid, issue a diagnostic. 1313 ++Index; 1314 if (!VerifyOnly) 1315 SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type) 1316 << DeclType; 1317 hadError = true; 1318 } else if (DeclType->isReferenceType()) { 1319 CheckReferenceType(Entity, IList, DeclType, Index, 1320 StructuredList, StructuredIndex); 1321 } else if (DeclType->isObjCObjectType()) { 1322 if (!VerifyOnly) 1323 SemaRef.Diag(IList->getBeginLoc(), diag::err_init_objc_class) << DeclType; 1324 hadError = true; 1325 } else if (DeclType->isOCLIntelSubgroupAVCType() || 1326 DeclType->isSizelessBuiltinType()) { 1327 // Checks for scalar type are sufficient for these types too. 1328 CheckScalarType(Entity, IList, DeclType, Index, StructuredList, 1329 StructuredIndex); 1330 } else { 1331 if (!VerifyOnly) 1332 SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type) 1333 << DeclType; 1334 hadError = true; 1335 } 1336 } 1337 1338 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity, 1339 InitListExpr *IList, 1340 QualType ElemType, 1341 unsigned &Index, 1342 InitListExpr *StructuredList, 1343 unsigned &StructuredIndex, 1344 bool DirectlyDesignated) { 1345 Expr *expr = IList->getInit(Index); 1346 1347 if (ElemType->isReferenceType()) 1348 return CheckReferenceType(Entity, IList, ElemType, Index, 1349 StructuredList, StructuredIndex); 1350 1351 if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) { 1352 if (SubInitList->getNumInits() == 1 && 1353 IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) == 1354 SIF_None) { 1355 // FIXME: It would be more faithful and no less correct to include an 1356 // InitListExpr in the semantic form of the initializer list in this case. 1357 expr = SubInitList->getInit(0); 1358 } 1359 // Nested aggregate initialization and C++ initialization are handled later. 1360 } else if (isa<ImplicitValueInitExpr>(expr)) { 1361 // This happens during template instantiation when we see an InitListExpr 1362 // that we've already checked once. 1363 assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) && 1364 "found implicit initialization for the wrong type"); 1365 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1366 ++Index; 1367 return; 1368 } 1369 1370 if (SemaRef.getLangOpts().CPlusPlus || isa<InitListExpr>(expr)) { 1371 // C++ [dcl.init.aggr]p2: 1372 // Each member is copy-initialized from the corresponding 1373 // initializer-clause. 1374 1375 // FIXME: Better EqualLoc? 1376 InitializationKind Kind = 1377 InitializationKind::CreateCopy(expr->getBeginLoc(), SourceLocation()); 1378 1379 // Vector elements can be initialized from other vectors in which case 1380 // we need initialization entity with a type of a vector (and not a vector 1381 // element!) initializing multiple vector elements. 1382 auto TmpEntity = 1383 (ElemType->isExtVectorType() && !Entity.getType()->isExtVectorType()) 1384 ? InitializedEntity::InitializeTemporary(ElemType) 1385 : Entity; 1386 1387 InitializationSequence Seq(SemaRef, TmpEntity, Kind, expr, 1388 /*TopLevelOfInitList*/ true); 1389 1390 // C++14 [dcl.init.aggr]p13: 1391 // If the assignment-expression can initialize a member, the member is 1392 // initialized. Otherwise [...] brace elision is assumed 1393 // 1394 // Brace elision is never performed if the element is not an 1395 // assignment-expression. 1396 if (Seq || isa<InitListExpr>(expr)) { 1397 if (!VerifyOnly) { 1398 ExprResult Result = Seq.Perform(SemaRef, TmpEntity, Kind, expr); 1399 if (Result.isInvalid()) 1400 hadError = true; 1401 1402 UpdateStructuredListElement(StructuredList, StructuredIndex, 1403 Result.getAs<Expr>()); 1404 } else if (!Seq) { 1405 hadError = true; 1406 } else if (StructuredList) { 1407 UpdateStructuredListElement(StructuredList, StructuredIndex, 1408 getDummyInit()); 1409 } 1410 ++Index; 1411 return; 1412 } 1413 1414 // Fall through for subaggregate initialization 1415 } else if (ElemType->isScalarType() || ElemType->isAtomicType()) { 1416 // FIXME: Need to handle atomic aggregate types with implicit init lists. 1417 return CheckScalarType(Entity, IList, ElemType, Index, 1418 StructuredList, StructuredIndex); 1419 } else if (const ArrayType *arrayType = 1420 SemaRef.Context.getAsArrayType(ElemType)) { 1421 // arrayType can be incomplete if we're initializing a flexible 1422 // array member. There's nothing we can do with the completed 1423 // type here, though. 1424 1425 if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) { 1426 // FIXME: Should we do this checking in verify-only mode? 1427 if (!VerifyOnly) 1428 CheckStringInit(expr, ElemType, arrayType, SemaRef); 1429 if (StructuredList) 1430 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1431 ++Index; 1432 return; 1433 } 1434 1435 // Fall through for subaggregate initialization. 1436 1437 } else { 1438 assert((ElemType->isRecordType() || ElemType->isVectorType() || 1439 ElemType->isOpenCLSpecificType()) && "Unexpected type"); 1440 1441 // C99 6.7.8p13: 1442 // 1443 // The initializer for a structure or union object that has 1444 // automatic storage duration shall be either an initializer 1445 // list as described below, or a single expression that has 1446 // compatible structure or union type. In the latter case, the 1447 // initial value of the object, including unnamed members, is 1448 // that of the expression. 1449 ExprResult ExprRes = expr; 1450 if (SemaRef.CheckSingleAssignmentConstraints( 1451 ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) { 1452 if (ExprRes.isInvalid()) 1453 hadError = true; 1454 else { 1455 ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get()); 1456 if (ExprRes.isInvalid()) 1457 hadError = true; 1458 } 1459 UpdateStructuredListElement(StructuredList, StructuredIndex, 1460 ExprRes.getAs<Expr>()); 1461 ++Index; 1462 return; 1463 } 1464 ExprRes.get(); 1465 // Fall through for subaggregate initialization 1466 } 1467 1468 // C++ [dcl.init.aggr]p12: 1469 // 1470 // [...] Otherwise, if the member is itself a non-empty 1471 // subaggregate, brace elision is assumed and the initializer is 1472 // considered for the initialization of the first member of 1473 // the subaggregate. 1474 // OpenCL vector initializer is handled elsewhere. 1475 if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) || 1476 ElemType->isAggregateType()) { 1477 CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList, 1478 StructuredIndex); 1479 ++StructuredIndex; 1480 1481 // In C++20, brace elision is not permitted for a designated initializer. 1482 if (DirectlyDesignated && SemaRef.getLangOpts().CPlusPlus && !hadError) { 1483 if (InOverloadResolution) 1484 hadError = true; 1485 if (!VerifyOnly) { 1486 SemaRef.Diag(expr->getBeginLoc(), 1487 diag::ext_designated_init_brace_elision) 1488 << expr->getSourceRange() 1489 << FixItHint::CreateInsertion(expr->getBeginLoc(), "{") 1490 << FixItHint::CreateInsertion( 1491 SemaRef.getLocForEndOfToken(expr->getEndLoc()), "}"); 1492 } 1493 } 1494 } else { 1495 if (!VerifyOnly) { 1496 // We cannot initialize this element, so let PerformCopyInitialization 1497 // produce the appropriate diagnostic. We already checked that this 1498 // initialization will fail. 1499 ExprResult Copy = 1500 SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr, 1501 /*TopLevelOfInitList=*/true); 1502 (void)Copy; 1503 assert(Copy.isInvalid() && 1504 "expected non-aggregate initialization to fail"); 1505 } 1506 hadError = true; 1507 ++Index; 1508 ++StructuredIndex; 1509 } 1510 } 1511 1512 void InitListChecker::CheckComplexType(const InitializedEntity &Entity, 1513 InitListExpr *IList, QualType DeclType, 1514 unsigned &Index, 1515 InitListExpr *StructuredList, 1516 unsigned &StructuredIndex) { 1517 assert(Index == 0 && "Index in explicit init list must be zero"); 1518 1519 // As an extension, clang supports complex initializers, which initialize 1520 // a complex number component-wise. When an explicit initializer list for 1521 // a complex number contains two two initializers, this extension kicks in: 1522 // it exepcts the initializer list to contain two elements convertible to 1523 // the element type of the complex type. The first element initializes 1524 // the real part, and the second element intitializes the imaginary part. 1525 1526 if (IList->getNumInits() != 2) 1527 return CheckScalarType(Entity, IList, DeclType, Index, StructuredList, 1528 StructuredIndex); 1529 1530 // This is an extension in C. (The builtin _Complex type does not exist 1531 // in the C++ standard.) 1532 if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly) 1533 SemaRef.Diag(IList->getBeginLoc(), diag::ext_complex_component_init) 1534 << IList->getSourceRange(); 1535 1536 // Initialize the complex number. 1537 QualType elementType = DeclType->castAs<ComplexType>()->getElementType(); 1538 InitializedEntity ElementEntity = 1539 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1540 1541 for (unsigned i = 0; i < 2; ++i) { 1542 ElementEntity.setElementIndex(Index); 1543 CheckSubElementType(ElementEntity, IList, elementType, Index, 1544 StructuredList, StructuredIndex); 1545 } 1546 } 1547 1548 void InitListChecker::CheckScalarType(const InitializedEntity &Entity, 1549 InitListExpr *IList, QualType DeclType, 1550 unsigned &Index, 1551 InitListExpr *StructuredList, 1552 unsigned &StructuredIndex) { 1553 if (Index >= IList->getNumInits()) { 1554 if (!VerifyOnly) { 1555 if (DeclType->isSizelessBuiltinType()) 1556 SemaRef.Diag(IList->getBeginLoc(), 1557 SemaRef.getLangOpts().CPlusPlus11 1558 ? diag::warn_cxx98_compat_empty_sizeless_initializer 1559 : diag::err_empty_sizeless_initializer) 1560 << DeclType << IList->getSourceRange(); 1561 else 1562 SemaRef.Diag(IList->getBeginLoc(), 1563 SemaRef.getLangOpts().CPlusPlus11 1564 ? diag::warn_cxx98_compat_empty_scalar_initializer 1565 : diag::err_empty_scalar_initializer) 1566 << IList->getSourceRange(); 1567 } 1568 hadError = !SemaRef.getLangOpts().CPlusPlus11; 1569 ++Index; 1570 ++StructuredIndex; 1571 return; 1572 } 1573 1574 Expr *expr = IList->getInit(Index); 1575 if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) { 1576 // FIXME: This is invalid, and accepting it causes overload resolution 1577 // to pick the wrong overload in some corner cases. 1578 if (!VerifyOnly) 1579 SemaRef.Diag(SubIList->getBeginLoc(), diag::ext_many_braces_around_init) 1580 << DeclType->isSizelessBuiltinType() << SubIList->getSourceRange(); 1581 1582 CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList, 1583 StructuredIndex); 1584 return; 1585 } else if (isa<DesignatedInitExpr>(expr)) { 1586 if (!VerifyOnly) 1587 SemaRef.Diag(expr->getBeginLoc(), 1588 diag::err_designator_for_scalar_or_sizeless_init) 1589 << DeclType->isSizelessBuiltinType() << DeclType 1590 << expr->getSourceRange(); 1591 hadError = true; 1592 ++Index; 1593 ++StructuredIndex; 1594 return; 1595 } 1596 1597 ExprResult Result; 1598 if (VerifyOnly) { 1599 if (SemaRef.CanPerformCopyInitialization(Entity, expr)) 1600 Result = getDummyInit(); 1601 else 1602 Result = ExprError(); 1603 } else { 1604 Result = 1605 SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr, 1606 /*TopLevelOfInitList=*/true); 1607 } 1608 1609 Expr *ResultExpr = nullptr; 1610 1611 if (Result.isInvalid()) 1612 hadError = true; // types weren't compatible. 1613 else { 1614 ResultExpr = Result.getAs<Expr>(); 1615 1616 if (ResultExpr != expr && !VerifyOnly) { 1617 // The type was promoted, update initializer list. 1618 // FIXME: Why are we updating the syntactic init list? 1619 IList->setInit(Index, ResultExpr); 1620 } 1621 } 1622 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr); 1623 ++Index; 1624 } 1625 1626 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity, 1627 InitListExpr *IList, QualType DeclType, 1628 unsigned &Index, 1629 InitListExpr *StructuredList, 1630 unsigned &StructuredIndex) { 1631 if (Index >= IList->getNumInits()) { 1632 // FIXME: It would be wonderful if we could point at the actual member. In 1633 // general, it would be useful to pass location information down the stack, 1634 // so that we know the location (or decl) of the "current object" being 1635 // initialized. 1636 if (!VerifyOnly) 1637 SemaRef.Diag(IList->getBeginLoc(), 1638 diag::err_init_reference_member_uninitialized) 1639 << DeclType << IList->getSourceRange(); 1640 hadError = true; 1641 ++Index; 1642 ++StructuredIndex; 1643 return; 1644 } 1645 1646 Expr *expr = IList->getInit(Index); 1647 if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) { 1648 if (!VerifyOnly) 1649 SemaRef.Diag(IList->getBeginLoc(), diag::err_init_non_aggr_init_list) 1650 << DeclType << IList->getSourceRange(); 1651 hadError = true; 1652 ++Index; 1653 ++StructuredIndex; 1654 return; 1655 } 1656 1657 ExprResult Result; 1658 if (VerifyOnly) { 1659 if (SemaRef.CanPerformCopyInitialization(Entity,expr)) 1660 Result = getDummyInit(); 1661 else 1662 Result = ExprError(); 1663 } else { 1664 Result = 1665 SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr, 1666 /*TopLevelOfInitList=*/true); 1667 } 1668 1669 if (Result.isInvalid()) 1670 hadError = true; 1671 1672 expr = Result.getAs<Expr>(); 1673 // FIXME: Why are we updating the syntactic init list? 1674 if (!VerifyOnly && expr) 1675 IList->setInit(Index, expr); 1676 1677 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1678 ++Index; 1679 } 1680 1681 void InitListChecker::CheckVectorType(const InitializedEntity &Entity, 1682 InitListExpr *IList, QualType DeclType, 1683 unsigned &Index, 1684 InitListExpr *StructuredList, 1685 unsigned &StructuredIndex) { 1686 const VectorType *VT = DeclType->castAs<VectorType>(); 1687 unsigned maxElements = VT->getNumElements(); 1688 unsigned numEltsInit = 0; 1689 QualType elementType = VT->getElementType(); 1690 1691 if (Index >= IList->getNumInits()) { 1692 // Make sure the element type can be value-initialized. 1693 CheckEmptyInitializable( 1694 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity), 1695 IList->getEndLoc()); 1696 return; 1697 } 1698 1699 if (!SemaRef.getLangOpts().OpenCL) { 1700 // If the initializing element is a vector, try to copy-initialize 1701 // instead of breaking it apart (which is doomed to failure anyway). 1702 Expr *Init = IList->getInit(Index); 1703 if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) { 1704 ExprResult Result; 1705 if (VerifyOnly) { 1706 if (SemaRef.CanPerformCopyInitialization(Entity, Init)) 1707 Result = getDummyInit(); 1708 else 1709 Result = ExprError(); 1710 } else { 1711 Result = 1712 SemaRef.PerformCopyInitialization(Entity, Init->getBeginLoc(), Init, 1713 /*TopLevelOfInitList=*/true); 1714 } 1715 1716 Expr *ResultExpr = nullptr; 1717 if (Result.isInvalid()) 1718 hadError = true; // types weren't compatible. 1719 else { 1720 ResultExpr = Result.getAs<Expr>(); 1721 1722 if (ResultExpr != Init && !VerifyOnly) { 1723 // The type was promoted, update initializer list. 1724 // FIXME: Why are we updating the syntactic init list? 1725 IList->setInit(Index, ResultExpr); 1726 } 1727 } 1728 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr); 1729 ++Index; 1730 return; 1731 } 1732 1733 InitializedEntity ElementEntity = 1734 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1735 1736 for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) { 1737 // Don't attempt to go past the end of the init list 1738 if (Index >= IList->getNumInits()) { 1739 CheckEmptyInitializable(ElementEntity, IList->getEndLoc()); 1740 break; 1741 } 1742 1743 ElementEntity.setElementIndex(Index); 1744 CheckSubElementType(ElementEntity, IList, elementType, Index, 1745 StructuredList, StructuredIndex); 1746 } 1747 1748 if (VerifyOnly) 1749 return; 1750 1751 bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian(); 1752 const VectorType *T = Entity.getType()->castAs<VectorType>(); 1753 if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector || 1754 T->getVectorKind() == VectorType::NeonPolyVector)) { 1755 // The ability to use vector initializer lists is a GNU vector extension 1756 // and is unrelated to the NEON intrinsics in arm_neon.h. On little 1757 // endian machines it works fine, however on big endian machines it 1758 // exhibits surprising behaviour: 1759 // 1760 // uint32x2_t x = {42, 64}; 1761 // return vget_lane_u32(x, 0); // Will return 64. 1762 // 1763 // Because of this, explicitly call out that it is non-portable. 1764 // 1765 SemaRef.Diag(IList->getBeginLoc(), 1766 diag::warn_neon_vector_initializer_non_portable); 1767 1768 const char *typeCode; 1769 unsigned typeSize = SemaRef.Context.getTypeSize(elementType); 1770 1771 if (elementType->isFloatingType()) 1772 typeCode = "f"; 1773 else if (elementType->isSignedIntegerType()) 1774 typeCode = "s"; 1775 else if (elementType->isUnsignedIntegerType()) 1776 typeCode = "u"; 1777 else 1778 llvm_unreachable("Invalid element type!"); 1779 1780 SemaRef.Diag(IList->getBeginLoc(), 1781 SemaRef.Context.getTypeSize(VT) > 64 1782 ? diag::note_neon_vector_initializer_non_portable_q 1783 : diag::note_neon_vector_initializer_non_portable) 1784 << typeCode << typeSize; 1785 } 1786 1787 return; 1788 } 1789 1790 InitializedEntity ElementEntity = 1791 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1792 1793 // OpenCL initializers allows vectors to be constructed from vectors. 1794 for (unsigned i = 0; i < maxElements; ++i) { 1795 // Don't attempt to go past the end of the init list 1796 if (Index >= IList->getNumInits()) 1797 break; 1798 1799 ElementEntity.setElementIndex(Index); 1800 1801 QualType IType = IList->getInit(Index)->getType(); 1802 if (!IType->isVectorType()) { 1803 CheckSubElementType(ElementEntity, IList, elementType, Index, 1804 StructuredList, StructuredIndex); 1805 ++numEltsInit; 1806 } else { 1807 QualType VecType; 1808 const VectorType *IVT = IType->castAs<VectorType>(); 1809 unsigned numIElts = IVT->getNumElements(); 1810 1811 if (IType->isExtVectorType()) 1812 VecType = SemaRef.Context.getExtVectorType(elementType, numIElts); 1813 else 1814 VecType = SemaRef.Context.getVectorType(elementType, numIElts, 1815 IVT->getVectorKind()); 1816 CheckSubElementType(ElementEntity, IList, VecType, Index, 1817 StructuredList, StructuredIndex); 1818 numEltsInit += numIElts; 1819 } 1820 } 1821 1822 // OpenCL requires all elements to be initialized. 1823 if (numEltsInit != maxElements) { 1824 if (!VerifyOnly) 1825 SemaRef.Diag(IList->getBeginLoc(), 1826 diag::err_vector_incorrect_num_initializers) 1827 << (numEltsInit < maxElements) << maxElements << numEltsInit; 1828 hadError = true; 1829 } 1830 } 1831 1832 /// Check if the type of a class element has an accessible destructor, and marks 1833 /// it referenced. Returns true if we shouldn't form a reference to the 1834 /// destructor. 1835 /// 1836 /// Aggregate initialization requires a class element's destructor be 1837 /// accessible per 11.6.1 [dcl.init.aggr]: 1838 /// 1839 /// The destructor for each element of class type is potentially invoked 1840 /// (15.4 [class.dtor]) from the context where the aggregate initialization 1841 /// occurs. 1842 static bool checkDestructorReference(QualType ElementType, SourceLocation Loc, 1843 Sema &SemaRef) { 1844 auto *CXXRD = ElementType->getAsCXXRecordDecl(); 1845 if (!CXXRD) 1846 return false; 1847 1848 CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(CXXRD); 1849 SemaRef.CheckDestructorAccess(Loc, Destructor, 1850 SemaRef.PDiag(diag::err_access_dtor_temp) 1851 << ElementType); 1852 SemaRef.MarkFunctionReferenced(Loc, Destructor); 1853 return SemaRef.DiagnoseUseOfDecl(Destructor, Loc); 1854 } 1855 1856 void InitListChecker::CheckArrayType(const InitializedEntity &Entity, 1857 InitListExpr *IList, QualType &DeclType, 1858 llvm::APSInt elementIndex, 1859 bool SubobjectIsDesignatorContext, 1860 unsigned &Index, 1861 InitListExpr *StructuredList, 1862 unsigned &StructuredIndex) { 1863 const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType); 1864 1865 if (!VerifyOnly) { 1866 if (checkDestructorReference(arrayType->getElementType(), 1867 IList->getEndLoc(), SemaRef)) { 1868 hadError = true; 1869 return; 1870 } 1871 } 1872 1873 // Check for the special-case of initializing an array with a string. 1874 if (Index < IList->getNumInits()) { 1875 if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) == 1876 SIF_None) { 1877 // We place the string literal directly into the resulting 1878 // initializer list. This is the only place where the structure 1879 // of the structured initializer list doesn't match exactly, 1880 // because doing so would involve allocating one character 1881 // constant for each string. 1882 // FIXME: Should we do these checks in verify-only mode too? 1883 if (!VerifyOnly) 1884 CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef); 1885 if (StructuredList) { 1886 UpdateStructuredListElement(StructuredList, StructuredIndex, 1887 IList->getInit(Index)); 1888 StructuredList->resizeInits(SemaRef.Context, StructuredIndex); 1889 } 1890 ++Index; 1891 return; 1892 } 1893 } 1894 if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) { 1895 // Check for VLAs; in standard C it would be possible to check this 1896 // earlier, but I don't know where clang accepts VLAs (gcc accepts 1897 // them in all sorts of strange places). 1898 if (!VerifyOnly) 1899 SemaRef.Diag(VAT->getSizeExpr()->getBeginLoc(), 1900 diag::err_variable_object_no_init) 1901 << VAT->getSizeExpr()->getSourceRange(); 1902 hadError = true; 1903 ++Index; 1904 ++StructuredIndex; 1905 return; 1906 } 1907 1908 // We might know the maximum number of elements in advance. 1909 llvm::APSInt maxElements(elementIndex.getBitWidth(), 1910 elementIndex.isUnsigned()); 1911 bool maxElementsKnown = false; 1912 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) { 1913 maxElements = CAT->getSize(); 1914 elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth()); 1915 elementIndex.setIsUnsigned(maxElements.isUnsigned()); 1916 maxElementsKnown = true; 1917 } 1918 1919 QualType elementType = arrayType->getElementType(); 1920 while (Index < IList->getNumInits()) { 1921 Expr *Init = IList->getInit(Index); 1922 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { 1923 // If we're not the subobject that matches up with the '{' for 1924 // the designator, we shouldn't be handling the 1925 // designator. Return immediately. 1926 if (!SubobjectIsDesignatorContext) 1927 return; 1928 1929 // Handle this designated initializer. elementIndex will be 1930 // updated to be the next array element we'll initialize. 1931 if (CheckDesignatedInitializer(Entity, IList, DIE, 0, 1932 DeclType, nullptr, &elementIndex, Index, 1933 StructuredList, StructuredIndex, true, 1934 false)) { 1935 hadError = true; 1936 continue; 1937 } 1938 1939 if (elementIndex.getBitWidth() > maxElements.getBitWidth()) 1940 maxElements = maxElements.extend(elementIndex.getBitWidth()); 1941 else if (elementIndex.getBitWidth() < maxElements.getBitWidth()) 1942 elementIndex = elementIndex.extend(maxElements.getBitWidth()); 1943 elementIndex.setIsUnsigned(maxElements.isUnsigned()); 1944 1945 // If the array is of incomplete type, keep track of the number of 1946 // elements in the initializer. 1947 if (!maxElementsKnown && elementIndex > maxElements) 1948 maxElements = elementIndex; 1949 1950 continue; 1951 } 1952 1953 // If we know the maximum number of elements, and we've already 1954 // hit it, stop consuming elements in the initializer list. 1955 if (maxElementsKnown && elementIndex == maxElements) 1956 break; 1957 1958 InitializedEntity ElementEntity = 1959 InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex, 1960 Entity); 1961 // Check this element. 1962 CheckSubElementType(ElementEntity, IList, elementType, Index, 1963 StructuredList, StructuredIndex); 1964 ++elementIndex; 1965 1966 // If the array is of incomplete type, keep track of the number of 1967 // elements in the initializer. 1968 if (!maxElementsKnown && elementIndex > maxElements) 1969 maxElements = elementIndex; 1970 } 1971 if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) { 1972 // If this is an incomplete array type, the actual type needs to 1973 // be calculated here. 1974 llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned()); 1975 if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) { 1976 // Sizing an array implicitly to zero is not allowed by ISO C, 1977 // but is supported by GNU. 1978 SemaRef.Diag(IList->getBeginLoc(), diag::ext_typecheck_zero_array_size); 1979 } 1980 1981 DeclType = SemaRef.Context.getConstantArrayType( 1982 elementType, maxElements, nullptr, ArrayType::Normal, 0); 1983 } 1984 if (!hadError) { 1985 // If there are any members of the array that get value-initialized, check 1986 // that is possible. That happens if we know the bound and don't have 1987 // enough elements, or if we're performing an array new with an unknown 1988 // bound. 1989 if ((maxElementsKnown && elementIndex < maxElements) || 1990 Entity.isVariableLengthArrayNew()) 1991 CheckEmptyInitializable( 1992 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity), 1993 IList->getEndLoc()); 1994 } 1995 } 1996 1997 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity, 1998 Expr *InitExpr, 1999 FieldDecl *Field, 2000 bool TopLevelObject) { 2001 // Handle GNU flexible array initializers. 2002 unsigned FlexArrayDiag; 2003 if (isa<InitListExpr>(InitExpr) && 2004 cast<InitListExpr>(InitExpr)->getNumInits() == 0) { 2005 // Empty flexible array init always allowed as an extension 2006 FlexArrayDiag = diag::ext_flexible_array_init; 2007 } else if (!TopLevelObject) { 2008 // Disallow flexible array init on non-top-level object 2009 FlexArrayDiag = diag::err_flexible_array_init; 2010 } else if (Entity.getKind() != InitializedEntity::EK_Variable) { 2011 // Disallow flexible array init on anything which is not a variable. 2012 FlexArrayDiag = diag::err_flexible_array_init; 2013 } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) { 2014 // Disallow flexible array init on local variables. 2015 FlexArrayDiag = diag::err_flexible_array_init; 2016 } else { 2017 // Allow other cases. 2018 FlexArrayDiag = diag::ext_flexible_array_init; 2019 } 2020 2021 if (!VerifyOnly) { 2022 SemaRef.Diag(InitExpr->getBeginLoc(), FlexArrayDiag) 2023 << InitExpr->getBeginLoc(); 2024 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 2025 << Field; 2026 } 2027 2028 return FlexArrayDiag != diag::ext_flexible_array_init; 2029 } 2030 2031 void InitListChecker::CheckStructUnionTypes( 2032 const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType, 2033 CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field, 2034 bool SubobjectIsDesignatorContext, unsigned &Index, 2035 InitListExpr *StructuredList, unsigned &StructuredIndex, 2036 bool TopLevelObject) { 2037 RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl(); 2038 2039 // If the record is invalid, some of it's members are invalid. To avoid 2040 // confusion, we forgo checking the initializer for the entire record. 2041 if (structDecl->isInvalidDecl()) { 2042 // Assume it was supposed to consume a single initializer. 2043 ++Index; 2044 hadError = true; 2045 return; 2046 } 2047 2048 if (DeclType->isUnionType() && IList->getNumInits() == 0) { 2049 RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl(); 2050 2051 if (!VerifyOnly) 2052 for (FieldDecl *FD : RD->fields()) { 2053 QualType ET = SemaRef.Context.getBaseElementType(FD->getType()); 2054 if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) { 2055 hadError = true; 2056 return; 2057 } 2058 } 2059 2060 // If there's a default initializer, use it. 2061 if (isa<CXXRecordDecl>(RD) && 2062 cast<CXXRecordDecl>(RD)->hasInClassInitializer()) { 2063 if (!StructuredList) 2064 return; 2065 for (RecordDecl::field_iterator FieldEnd = RD->field_end(); 2066 Field != FieldEnd; ++Field) { 2067 if (Field->hasInClassInitializer()) { 2068 StructuredList->setInitializedFieldInUnion(*Field); 2069 // FIXME: Actually build a CXXDefaultInitExpr? 2070 return; 2071 } 2072 } 2073 } 2074 2075 // Value-initialize the first member of the union that isn't an unnamed 2076 // bitfield. 2077 for (RecordDecl::field_iterator FieldEnd = RD->field_end(); 2078 Field != FieldEnd; ++Field) { 2079 if (!Field->isUnnamedBitfield()) { 2080 CheckEmptyInitializable( 2081 InitializedEntity::InitializeMember(*Field, &Entity), 2082 IList->getEndLoc()); 2083 if (StructuredList) 2084 StructuredList->setInitializedFieldInUnion(*Field); 2085 break; 2086 } 2087 } 2088 return; 2089 } 2090 2091 bool InitializedSomething = false; 2092 2093 // If we have any base classes, they are initialized prior to the fields. 2094 for (auto &Base : Bases) { 2095 Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr; 2096 2097 // Designated inits always initialize fields, so if we see one, all 2098 // remaining base classes have no explicit initializer. 2099 if (Init && isa<DesignatedInitExpr>(Init)) 2100 Init = nullptr; 2101 2102 SourceLocation InitLoc = Init ? Init->getBeginLoc() : IList->getEndLoc(); 2103 InitializedEntity BaseEntity = InitializedEntity::InitializeBase( 2104 SemaRef.Context, &Base, false, &Entity); 2105 if (Init) { 2106 CheckSubElementType(BaseEntity, IList, Base.getType(), Index, 2107 StructuredList, StructuredIndex); 2108 InitializedSomething = true; 2109 } else { 2110 CheckEmptyInitializable(BaseEntity, InitLoc); 2111 } 2112 2113 if (!VerifyOnly) 2114 if (checkDestructorReference(Base.getType(), InitLoc, SemaRef)) { 2115 hadError = true; 2116 return; 2117 } 2118 } 2119 2120 // If structDecl is a forward declaration, this loop won't do 2121 // anything except look at designated initializers; That's okay, 2122 // because an error should get printed out elsewhere. It might be 2123 // worthwhile to skip over the rest of the initializer, though. 2124 RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl(); 2125 RecordDecl::field_iterator FieldEnd = RD->field_end(); 2126 size_t NumRecordFields = std::distance(RD->field_begin(), RD->field_end()); 2127 bool CheckForMissingFields = 2128 !IList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()); 2129 bool HasDesignatedInit = false; 2130 2131 while (Index < IList->getNumInits()) { 2132 Expr *Init = IList->getInit(Index); 2133 SourceLocation InitLoc = Init->getBeginLoc(); 2134 2135 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { 2136 // If we're not the subobject that matches up with the '{' for 2137 // the designator, we shouldn't be handling the 2138 // designator. Return immediately. 2139 if (!SubobjectIsDesignatorContext) 2140 return; 2141 2142 HasDesignatedInit = true; 2143 2144 // Handle this designated initializer. Field will be updated to 2145 // the next field that we'll be initializing. 2146 if (CheckDesignatedInitializer(Entity, IList, DIE, 0, 2147 DeclType, &Field, nullptr, Index, 2148 StructuredList, StructuredIndex, 2149 true, TopLevelObject)) 2150 hadError = true; 2151 else if (!VerifyOnly) { 2152 // Find the field named by the designated initializer. 2153 RecordDecl::field_iterator F = RD->field_begin(); 2154 while (std::next(F) != Field) 2155 ++F; 2156 QualType ET = SemaRef.Context.getBaseElementType(F->getType()); 2157 if (checkDestructorReference(ET, InitLoc, SemaRef)) { 2158 hadError = true; 2159 return; 2160 } 2161 } 2162 2163 InitializedSomething = true; 2164 2165 // Disable check for missing fields when designators are used. 2166 // This matches gcc behaviour. 2167 CheckForMissingFields = false; 2168 continue; 2169 } 2170 2171 if (Field == FieldEnd) { 2172 // We've run out of fields. We're done. 2173 break; 2174 } 2175 2176 // Check if this is an initializer of forms: 2177 // 2178 // struct foo f = {}; 2179 // struct foo g = {0}; 2180 // 2181 // These are okay for randomized structures. [C99 6.7.8p19] 2182 // 2183 // Also, if there is only one element in the structure, we allow something 2184 // like this, because it's really not randomized in the tranditional sense. 2185 // 2186 // struct foo h = {bar}; 2187 auto IsZeroInitializer = [&](const Expr *I) { 2188 if (IList->getNumInits() == 1) { 2189 if (NumRecordFields == 1) 2190 return true; 2191 if (const auto *IL = dyn_cast<IntegerLiteral>(I)) 2192 return IL->getValue().isZero(); 2193 } 2194 return false; 2195 }; 2196 2197 // Don't allow non-designated initializers on randomized structures. 2198 if (RD->isRandomized() && !IsZeroInitializer(Init)) { 2199 if (!VerifyOnly) 2200 SemaRef.Diag(InitLoc, diag::err_non_designated_init_used); 2201 hadError = true; 2202 break; 2203 } 2204 2205 // We've already initialized a member of a union. We're done. 2206 if (InitializedSomething && DeclType->isUnionType()) 2207 break; 2208 2209 // If we've hit the flexible array member at the end, we're done. 2210 if (Field->getType()->isIncompleteArrayType()) 2211 break; 2212 2213 if (Field->isUnnamedBitfield()) { 2214 // Don't initialize unnamed bitfields, e.g. "int : 20;" 2215 ++Field; 2216 continue; 2217 } 2218 2219 // Make sure we can use this declaration. 2220 bool InvalidUse; 2221 if (VerifyOnly) 2222 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid); 2223 else 2224 InvalidUse = SemaRef.DiagnoseUseOfDecl( 2225 *Field, IList->getInit(Index)->getBeginLoc()); 2226 if (InvalidUse) { 2227 ++Index; 2228 ++Field; 2229 hadError = true; 2230 continue; 2231 } 2232 2233 if (!VerifyOnly) { 2234 QualType ET = SemaRef.Context.getBaseElementType(Field->getType()); 2235 if (checkDestructorReference(ET, InitLoc, SemaRef)) { 2236 hadError = true; 2237 return; 2238 } 2239 } 2240 2241 InitializedEntity MemberEntity = 2242 InitializedEntity::InitializeMember(*Field, &Entity); 2243 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 2244 StructuredList, StructuredIndex); 2245 InitializedSomething = true; 2246 2247 if (DeclType->isUnionType() && StructuredList) { 2248 // Initialize the first field within the union. 2249 StructuredList->setInitializedFieldInUnion(*Field); 2250 } 2251 2252 ++Field; 2253 } 2254 2255 // Emit warnings for missing struct field initializers. 2256 if (!VerifyOnly && InitializedSomething && CheckForMissingFields && 2257 Field != FieldEnd && !Field->getType()->isIncompleteArrayType() && 2258 !DeclType->isUnionType()) { 2259 // It is possible we have one or more unnamed bitfields remaining. 2260 // Find first (if any) named field and emit warning. 2261 for (RecordDecl::field_iterator it = Field, end = RD->field_end(); 2262 it != end; ++it) { 2263 if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) { 2264 SemaRef.Diag(IList->getSourceRange().getEnd(), 2265 diag::warn_missing_field_initializers) << *it; 2266 break; 2267 } 2268 } 2269 } 2270 2271 // Check that any remaining fields can be value-initialized if we're not 2272 // building a structured list. (If we are, we'll check this later.) 2273 if (!StructuredList && Field != FieldEnd && !DeclType->isUnionType() && 2274 !Field->getType()->isIncompleteArrayType()) { 2275 for (; Field != FieldEnd && !hadError; ++Field) { 2276 if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer()) 2277 CheckEmptyInitializable( 2278 InitializedEntity::InitializeMember(*Field, &Entity), 2279 IList->getEndLoc()); 2280 } 2281 } 2282 2283 // Check that the types of the remaining fields have accessible destructors. 2284 if (!VerifyOnly) { 2285 // If the initializer expression has a designated initializer, check the 2286 // elements for which a designated initializer is not provided too. 2287 RecordDecl::field_iterator I = HasDesignatedInit ? RD->field_begin() 2288 : Field; 2289 for (RecordDecl::field_iterator E = RD->field_end(); I != E; ++I) { 2290 QualType ET = SemaRef.Context.getBaseElementType(I->getType()); 2291 if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) { 2292 hadError = true; 2293 return; 2294 } 2295 } 2296 } 2297 2298 if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() || 2299 Index >= IList->getNumInits()) 2300 return; 2301 2302 if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field, 2303 TopLevelObject)) { 2304 hadError = true; 2305 ++Index; 2306 return; 2307 } 2308 2309 InitializedEntity MemberEntity = 2310 InitializedEntity::InitializeMember(*Field, &Entity); 2311 2312 if (isa<InitListExpr>(IList->getInit(Index))) 2313 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 2314 StructuredList, StructuredIndex); 2315 else 2316 CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index, 2317 StructuredList, StructuredIndex); 2318 } 2319 2320 /// Expand a field designator that refers to a member of an 2321 /// anonymous struct or union into a series of field designators that 2322 /// refers to the field within the appropriate subobject. 2323 /// 2324 static void ExpandAnonymousFieldDesignator(Sema &SemaRef, 2325 DesignatedInitExpr *DIE, 2326 unsigned DesigIdx, 2327 IndirectFieldDecl *IndirectField) { 2328 typedef DesignatedInitExpr::Designator Designator; 2329 2330 // Build the replacement designators. 2331 SmallVector<Designator, 4> Replacements; 2332 for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(), 2333 PE = IndirectField->chain_end(); PI != PE; ++PI) { 2334 if (PI + 1 == PE) 2335 Replacements.push_back(Designator((IdentifierInfo *)nullptr, 2336 DIE->getDesignator(DesigIdx)->getDotLoc(), 2337 DIE->getDesignator(DesigIdx)->getFieldLoc())); 2338 else 2339 Replacements.push_back(Designator((IdentifierInfo *)nullptr, 2340 SourceLocation(), SourceLocation())); 2341 assert(isa<FieldDecl>(*PI)); 2342 Replacements.back().setField(cast<FieldDecl>(*PI)); 2343 } 2344 2345 // Expand the current designator into the set of replacement 2346 // designators, so we have a full subobject path down to where the 2347 // member of the anonymous struct/union is actually stored. 2348 DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0], 2349 &Replacements[0] + Replacements.size()); 2350 } 2351 2352 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef, 2353 DesignatedInitExpr *DIE) { 2354 unsigned NumIndexExprs = DIE->getNumSubExprs() - 1; 2355 SmallVector<Expr*, 4> IndexExprs(NumIndexExprs); 2356 for (unsigned I = 0; I < NumIndexExprs; ++I) 2357 IndexExprs[I] = DIE->getSubExpr(I + 1); 2358 return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(), 2359 IndexExprs, 2360 DIE->getEqualOrColonLoc(), 2361 DIE->usesGNUSyntax(), DIE->getInit()); 2362 } 2363 2364 namespace { 2365 2366 // Callback to only accept typo corrections that are for field members of 2367 // the given struct or union. 2368 class FieldInitializerValidatorCCC final : public CorrectionCandidateCallback { 2369 public: 2370 explicit FieldInitializerValidatorCCC(RecordDecl *RD) 2371 : Record(RD) {} 2372 2373 bool ValidateCandidate(const TypoCorrection &candidate) override { 2374 FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>(); 2375 return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record); 2376 } 2377 2378 std::unique_ptr<CorrectionCandidateCallback> clone() override { 2379 return std::make_unique<FieldInitializerValidatorCCC>(*this); 2380 } 2381 2382 private: 2383 RecordDecl *Record; 2384 }; 2385 2386 } // end anonymous namespace 2387 2388 /// Check the well-formedness of a C99 designated initializer. 2389 /// 2390 /// Determines whether the designated initializer @p DIE, which 2391 /// resides at the given @p Index within the initializer list @p 2392 /// IList, is well-formed for a current object of type @p DeclType 2393 /// (C99 6.7.8). The actual subobject that this designator refers to 2394 /// within the current subobject is returned in either 2395 /// @p NextField or @p NextElementIndex (whichever is appropriate). 2396 /// 2397 /// @param IList The initializer list in which this designated 2398 /// initializer occurs. 2399 /// 2400 /// @param DIE The designated initializer expression. 2401 /// 2402 /// @param DesigIdx The index of the current designator. 2403 /// 2404 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17), 2405 /// into which the designation in @p DIE should refer. 2406 /// 2407 /// @param NextField If non-NULL and the first designator in @p DIE is 2408 /// a field, this will be set to the field declaration corresponding 2409 /// to the field named by the designator. On input, this is expected to be 2410 /// the next field that would be initialized in the absence of designation, 2411 /// if the complete object being initialized is a struct. 2412 /// 2413 /// @param NextElementIndex If non-NULL and the first designator in @p 2414 /// DIE is an array designator or GNU array-range designator, this 2415 /// will be set to the last index initialized by this designator. 2416 /// 2417 /// @param Index Index into @p IList where the designated initializer 2418 /// @p DIE occurs. 2419 /// 2420 /// @param StructuredList The initializer list expression that 2421 /// describes all of the subobject initializers in the order they'll 2422 /// actually be initialized. 2423 /// 2424 /// @returns true if there was an error, false otherwise. 2425 bool 2426 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity, 2427 InitListExpr *IList, 2428 DesignatedInitExpr *DIE, 2429 unsigned DesigIdx, 2430 QualType &CurrentObjectType, 2431 RecordDecl::field_iterator *NextField, 2432 llvm::APSInt *NextElementIndex, 2433 unsigned &Index, 2434 InitListExpr *StructuredList, 2435 unsigned &StructuredIndex, 2436 bool FinishSubobjectInit, 2437 bool TopLevelObject) { 2438 if (DesigIdx == DIE->size()) { 2439 // C++20 designated initialization can result in direct-list-initialization 2440 // of the designated subobject. This is the only way that we can end up 2441 // performing direct initialization as part of aggregate initialization, so 2442 // it needs special handling. 2443 if (DIE->isDirectInit()) { 2444 Expr *Init = DIE->getInit(); 2445 assert(isa<InitListExpr>(Init) && 2446 "designator result in direct non-list initialization?"); 2447 InitializationKind Kind = InitializationKind::CreateDirectList( 2448 DIE->getBeginLoc(), Init->getBeginLoc(), Init->getEndLoc()); 2449 InitializationSequence Seq(SemaRef, Entity, Kind, Init, 2450 /*TopLevelOfInitList*/ true); 2451 if (StructuredList) { 2452 ExprResult Result = VerifyOnly 2453 ? getDummyInit() 2454 : Seq.Perform(SemaRef, Entity, Kind, Init); 2455 UpdateStructuredListElement(StructuredList, StructuredIndex, 2456 Result.get()); 2457 } 2458 ++Index; 2459 return !Seq; 2460 } 2461 2462 // Check the actual initialization for the designated object type. 2463 bool prevHadError = hadError; 2464 2465 // Temporarily remove the designator expression from the 2466 // initializer list that the child calls see, so that we don't try 2467 // to re-process the designator. 2468 unsigned OldIndex = Index; 2469 IList->setInit(OldIndex, DIE->getInit()); 2470 2471 CheckSubElementType(Entity, IList, CurrentObjectType, Index, StructuredList, 2472 StructuredIndex, /*DirectlyDesignated=*/true); 2473 2474 // Restore the designated initializer expression in the syntactic 2475 // form of the initializer list. 2476 if (IList->getInit(OldIndex) != DIE->getInit()) 2477 DIE->setInit(IList->getInit(OldIndex)); 2478 IList->setInit(OldIndex, DIE); 2479 2480 return hadError && !prevHadError; 2481 } 2482 2483 DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx); 2484 bool IsFirstDesignator = (DesigIdx == 0); 2485 if (IsFirstDesignator ? FullyStructuredList : StructuredList) { 2486 // Determine the structural initializer list that corresponds to the 2487 // current subobject. 2488 if (IsFirstDesignator) 2489 StructuredList = FullyStructuredList; 2490 else { 2491 Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ? 2492 StructuredList->getInit(StructuredIndex) : nullptr; 2493 if (!ExistingInit && StructuredList->hasArrayFiller()) 2494 ExistingInit = StructuredList->getArrayFiller(); 2495 2496 if (!ExistingInit) 2497 StructuredList = getStructuredSubobjectInit( 2498 IList, Index, CurrentObjectType, StructuredList, StructuredIndex, 2499 SourceRange(D->getBeginLoc(), DIE->getEndLoc())); 2500 else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit)) 2501 StructuredList = Result; 2502 else { 2503 // We are creating an initializer list that initializes the 2504 // subobjects of the current object, but there was already an 2505 // initialization that completely initialized the current 2506 // subobject, e.g., by a compound literal: 2507 // 2508 // struct X { int a, b; }; 2509 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; 2510 // 2511 // Here, xs[0].a == 1 and xs[0].b == 3, since the second, 2512 // designated initializer re-initializes only its current object 2513 // subobject [0].b. 2514 diagnoseInitOverride(ExistingInit, 2515 SourceRange(D->getBeginLoc(), DIE->getEndLoc()), 2516 /*FullyOverwritten=*/false); 2517 2518 if (!VerifyOnly) { 2519 if (DesignatedInitUpdateExpr *E = 2520 dyn_cast<DesignatedInitUpdateExpr>(ExistingInit)) 2521 StructuredList = E->getUpdater(); 2522 else { 2523 DesignatedInitUpdateExpr *DIUE = new (SemaRef.Context) 2524 DesignatedInitUpdateExpr(SemaRef.Context, D->getBeginLoc(), 2525 ExistingInit, DIE->getEndLoc()); 2526 StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE); 2527 StructuredList = DIUE->getUpdater(); 2528 } 2529 } else { 2530 // We don't need to track the structured representation of a 2531 // designated init update of an already-fully-initialized object in 2532 // verify-only mode. The only reason we would need the structure is 2533 // to determine where the uninitialized "holes" are, and in this 2534 // case, we know there aren't any and we can't introduce any. 2535 StructuredList = nullptr; 2536 } 2537 } 2538 } 2539 } 2540 2541 if (D->isFieldDesignator()) { 2542 // C99 6.7.8p7: 2543 // 2544 // If a designator has the form 2545 // 2546 // . identifier 2547 // 2548 // then the current object (defined below) shall have 2549 // structure or union type and the identifier shall be the 2550 // name of a member of that type. 2551 const RecordType *RT = CurrentObjectType->getAs<RecordType>(); 2552 if (!RT) { 2553 SourceLocation Loc = D->getDotLoc(); 2554 if (Loc.isInvalid()) 2555 Loc = D->getFieldLoc(); 2556 if (!VerifyOnly) 2557 SemaRef.Diag(Loc, diag::err_field_designator_non_aggr) 2558 << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType; 2559 ++Index; 2560 return true; 2561 } 2562 2563 FieldDecl *KnownField = D->getField(); 2564 if (!KnownField) { 2565 IdentifierInfo *FieldName = D->getFieldName(); 2566 DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName); 2567 for (NamedDecl *ND : Lookup) { 2568 if (auto *FD = dyn_cast<FieldDecl>(ND)) { 2569 KnownField = FD; 2570 break; 2571 } 2572 if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) { 2573 // In verify mode, don't modify the original. 2574 if (VerifyOnly) 2575 DIE = CloneDesignatedInitExpr(SemaRef, DIE); 2576 ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD); 2577 D = DIE->getDesignator(DesigIdx); 2578 KnownField = cast<FieldDecl>(*IFD->chain_begin()); 2579 break; 2580 } 2581 } 2582 if (!KnownField) { 2583 if (VerifyOnly) { 2584 ++Index; 2585 return true; // No typo correction when just trying this out. 2586 } 2587 2588 // Name lookup found something, but it wasn't a field. 2589 if (!Lookup.empty()) { 2590 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield) 2591 << FieldName; 2592 SemaRef.Diag(Lookup.front()->getLocation(), 2593 diag::note_field_designator_found); 2594 ++Index; 2595 return true; 2596 } 2597 2598 // Name lookup didn't find anything. 2599 // Determine whether this was a typo for another field name. 2600 FieldInitializerValidatorCCC CCC(RT->getDecl()); 2601 if (TypoCorrection Corrected = SemaRef.CorrectTypo( 2602 DeclarationNameInfo(FieldName, D->getFieldLoc()), 2603 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr, CCC, 2604 Sema::CTK_ErrorRecovery, RT->getDecl())) { 2605 SemaRef.diagnoseTypo( 2606 Corrected, 2607 SemaRef.PDiag(diag::err_field_designator_unknown_suggest) 2608 << FieldName << CurrentObjectType); 2609 KnownField = Corrected.getCorrectionDeclAs<FieldDecl>(); 2610 hadError = true; 2611 } else { 2612 // Typo correction didn't find anything. 2613 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown) 2614 << FieldName << CurrentObjectType; 2615 ++Index; 2616 return true; 2617 } 2618 } 2619 } 2620 2621 unsigned NumBases = 0; 2622 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2623 NumBases = CXXRD->getNumBases(); 2624 2625 unsigned FieldIndex = NumBases; 2626 2627 for (auto *FI : RT->getDecl()->fields()) { 2628 if (FI->isUnnamedBitfield()) 2629 continue; 2630 if (declaresSameEntity(KnownField, FI)) { 2631 KnownField = FI; 2632 break; 2633 } 2634 ++FieldIndex; 2635 } 2636 2637 RecordDecl::field_iterator Field = 2638 RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField)); 2639 2640 // All of the fields of a union are located at the same place in 2641 // the initializer list. 2642 if (RT->getDecl()->isUnion()) { 2643 FieldIndex = 0; 2644 if (StructuredList) { 2645 FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion(); 2646 if (CurrentField && !declaresSameEntity(CurrentField, *Field)) { 2647 assert(StructuredList->getNumInits() == 1 2648 && "A union should never have more than one initializer!"); 2649 2650 Expr *ExistingInit = StructuredList->getInit(0); 2651 if (ExistingInit) { 2652 // We're about to throw away an initializer, emit warning. 2653 diagnoseInitOverride( 2654 ExistingInit, SourceRange(D->getBeginLoc(), DIE->getEndLoc())); 2655 } 2656 2657 // remove existing initializer 2658 StructuredList->resizeInits(SemaRef.Context, 0); 2659 StructuredList->setInitializedFieldInUnion(nullptr); 2660 } 2661 2662 StructuredList->setInitializedFieldInUnion(*Field); 2663 } 2664 } 2665 2666 // Make sure we can use this declaration. 2667 bool InvalidUse; 2668 if (VerifyOnly) 2669 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid); 2670 else 2671 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc()); 2672 if (InvalidUse) { 2673 ++Index; 2674 return true; 2675 } 2676 2677 // C++20 [dcl.init.list]p3: 2678 // The ordered identifiers in the designators of the designated- 2679 // initializer-list shall form a subsequence of the ordered identifiers 2680 // in the direct non-static data members of T. 2681 // 2682 // Note that this is not a condition on forming the aggregate 2683 // initialization, only on actually performing initialization, 2684 // so it is not checked in VerifyOnly mode. 2685 // 2686 // FIXME: This is the only reordering diagnostic we produce, and it only 2687 // catches cases where we have a top-level field designator that jumps 2688 // backwards. This is the only such case that is reachable in an 2689 // otherwise-valid C++20 program, so is the only case that's required for 2690 // conformance, but for consistency, we should diagnose all the other 2691 // cases where a designator takes us backwards too. 2692 if (IsFirstDesignator && !VerifyOnly && SemaRef.getLangOpts().CPlusPlus && 2693 NextField && 2694 (*NextField == RT->getDecl()->field_end() || 2695 (*NextField)->getFieldIndex() > Field->getFieldIndex() + 1)) { 2696 // Find the field that we just initialized. 2697 FieldDecl *PrevField = nullptr; 2698 for (auto FI = RT->getDecl()->field_begin(); 2699 FI != RT->getDecl()->field_end(); ++FI) { 2700 if (FI->isUnnamedBitfield()) 2701 continue; 2702 if (*NextField != RT->getDecl()->field_end() && 2703 declaresSameEntity(*FI, **NextField)) 2704 break; 2705 PrevField = *FI; 2706 } 2707 2708 if (PrevField && 2709 PrevField->getFieldIndex() > KnownField->getFieldIndex()) { 2710 SemaRef.Diag(DIE->getBeginLoc(), diag::ext_designated_init_reordered) 2711 << KnownField << PrevField << DIE->getSourceRange(); 2712 2713 unsigned OldIndex = NumBases + PrevField->getFieldIndex(); 2714 if (StructuredList && OldIndex <= StructuredList->getNumInits()) { 2715 if (Expr *PrevInit = StructuredList->getInit(OldIndex)) { 2716 SemaRef.Diag(PrevInit->getBeginLoc(), 2717 diag::note_previous_field_init) 2718 << PrevField << PrevInit->getSourceRange(); 2719 } 2720 } 2721 } 2722 } 2723 2724 2725 // Update the designator with the field declaration. 2726 if (!VerifyOnly) 2727 D->setField(*Field); 2728 2729 // Make sure that our non-designated initializer list has space 2730 // for a subobject corresponding to this field. 2731 if (StructuredList && FieldIndex >= StructuredList->getNumInits()) 2732 StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1); 2733 2734 // This designator names a flexible array member. 2735 if (Field->getType()->isIncompleteArrayType()) { 2736 bool Invalid = false; 2737 if ((DesigIdx + 1) != DIE->size()) { 2738 // We can't designate an object within the flexible array 2739 // member (because GCC doesn't allow it). 2740 if (!VerifyOnly) { 2741 DesignatedInitExpr::Designator *NextD 2742 = DIE->getDesignator(DesigIdx + 1); 2743 SemaRef.Diag(NextD->getBeginLoc(), 2744 diag::err_designator_into_flexible_array_member) 2745 << SourceRange(NextD->getBeginLoc(), DIE->getEndLoc()); 2746 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 2747 << *Field; 2748 } 2749 Invalid = true; 2750 } 2751 2752 if (!hadError && !isa<InitListExpr>(DIE->getInit()) && 2753 !isa<StringLiteral>(DIE->getInit())) { 2754 // The initializer is not an initializer list. 2755 if (!VerifyOnly) { 2756 SemaRef.Diag(DIE->getInit()->getBeginLoc(), 2757 diag::err_flexible_array_init_needs_braces) 2758 << DIE->getInit()->getSourceRange(); 2759 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 2760 << *Field; 2761 } 2762 Invalid = true; 2763 } 2764 2765 // Check GNU flexible array initializer. 2766 if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field, 2767 TopLevelObject)) 2768 Invalid = true; 2769 2770 if (Invalid) { 2771 ++Index; 2772 return true; 2773 } 2774 2775 // Initialize the array. 2776 bool prevHadError = hadError; 2777 unsigned newStructuredIndex = FieldIndex; 2778 unsigned OldIndex = Index; 2779 IList->setInit(Index, DIE->getInit()); 2780 2781 InitializedEntity MemberEntity = 2782 InitializedEntity::InitializeMember(*Field, &Entity); 2783 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 2784 StructuredList, newStructuredIndex); 2785 2786 IList->setInit(OldIndex, DIE); 2787 if (hadError && !prevHadError) { 2788 ++Field; 2789 ++FieldIndex; 2790 if (NextField) 2791 *NextField = Field; 2792 StructuredIndex = FieldIndex; 2793 return true; 2794 } 2795 } else { 2796 // Recurse to check later designated subobjects. 2797 QualType FieldType = Field->getType(); 2798 unsigned newStructuredIndex = FieldIndex; 2799 2800 InitializedEntity MemberEntity = 2801 InitializedEntity::InitializeMember(*Field, &Entity); 2802 if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1, 2803 FieldType, nullptr, nullptr, Index, 2804 StructuredList, newStructuredIndex, 2805 FinishSubobjectInit, false)) 2806 return true; 2807 } 2808 2809 // Find the position of the next field to be initialized in this 2810 // subobject. 2811 ++Field; 2812 ++FieldIndex; 2813 2814 // If this the first designator, our caller will continue checking 2815 // the rest of this struct/class/union subobject. 2816 if (IsFirstDesignator) { 2817 if (NextField) 2818 *NextField = Field; 2819 StructuredIndex = FieldIndex; 2820 return false; 2821 } 2822 2823 if (!FinishSubobjectInit) 2824 return false; 2825 2826 // We've already initialized something in the union; we're done. 2827 if (RT->getDecl()->isUnion()) 2828 return hadError; 2829 2830 // Check the remaining fields within this class/struct/union subobject. 2831 bool prevHadError = hadError; 2832 2833 auto NoBases = 2834 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(), 2835 CXXRecordDecl::base_class_iterator()); 2836 CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field, 2837 false, Index, StructuredList, FieldIndex); 2838 return hadError && !prevHadError; 2839 } 2840 2841 // C99 6.7.8p6: 2842 // 2843 // If a designator has the form 2844 // 2845 // [ constant-expression ] 2846 // 2847 // then the current object (defined below) shall have array 2848 // type and the expression shall be an integer constant 2849 // expression. If the array is of unknown size, any 2850 // nonnegative value is valid. 2851 // 2852 // Additionally, cope with the GNU extension that permits 2853 // designators of the form 2854 // 2855 // [ constant-expression ... constant-expression ] 2856 const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType); 2857 if (!AT) { 2858 if (!VerifyOnly) 2859 SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array) 2860 << CurrentObjectType; 2861 ++Index; 2862 return true; 2863 } 2864 2865 Expr *IndexExpr = nullptr; 2866 llvm::APSInt DesignatedStartIndex, DesignatedEndIndex; 2867 if (D->isArrayDesignator()) { 2868 IndexExpr = DIE->getArrayIndex(*D); 2869 DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context); 2870 DesignatedEndIndex = DesignatedStartIndex; 2871 } else { 2872 assert(D->isArrayRangeDesignator() && "Need array-range designator"); 2873 2874 DesignatedStartIndex = 2875 DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context); 2876 DesignatedEndIndex = 2877 DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context); 2878 IndexExpr = DIE->getArrayRangeEnd(*D); 2879 2880 // Codegen can't handle evaluating array range designators that have side 2881 // effects, because we replicate the AST value for each initialized element. 2882 // As such, set the sawArrayRangeDesignator() bit if we initialize multiple 2883 // elements with something that has a side effect, so codegen can emit an 2884 // "error unsupported" error instead of miscompiling the app. 2885 if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&& 2886 DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly) 2887 FullyStructuredList->sawArrayRangeDesignator(); 2888 } 2889 2890 if (isa<ConstantArrayType>(AT)) { 2891 llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false); 2892 DesignatedStartIndex 2893 = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth()); 2894 DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned()); 2895 DesignatedEndIndex 2896 = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth()); 2897 DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned()); 2898 if (DesignatedEndIndex >= MaxElements) { 2899 if (!VerifyOnly) 2900 SemaRef.Diag(IndexExpr->getBeginLoc(), 2901 diag::err_array_designator_too_large) 2902 << toString(DesignatedEndIndex, 10) << toString(MaxElements, 10) 2903 << IndexExpr->getSourceRange(); 2904 ++Index; 2905 return true; 2906 } 2907 } else { 2908 unsigned DesignatedIndexBitWidth = 2909 ConstantArrayType::getMaxSizeBits(SemaRef.Context); 2910 DesignatedStartIndex = 2911 DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth); 2912 DesignatedEndIndex = 2913 DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth); 2914 DesignatedStartIndex.setIsUnsigned(true); 2915 DesignatedEndIndex.setIsUnsigned(true); 2916 } 2917 2918 bool IsStringLiteralInitUpdate = 2919 StructuredList && StructuredList->isStringLiteralInit(); 2920 if (IsStringLiteralInitUpdate && VerifyOnly) { 2921 // We're just verifying an update to a string literal init. We don't need 2922 // to split the string up into individual characters to do that. 2923 StructuredList = nullptr; 2924 } else if (IsStringLiteralInitUpdate) { 2925 // We're modifying a string literal init; we have to decompose the string 2926 // so we can modify the individual characters. 2927 ASTContext &Context = SemaRef.Context; 2928 Expr *SubExpr = StructuredList->getInit(0)->IgnoreParenImpCasts(); 2929 2930 // Compute the character type 2931 QualType CharTy = AT->getElementType(); 2932 2933 // Compute the type of the integer literals. 2934 QualType PromotedCharTy = CharTy; 2935 if (CharTy->isPromotableIntegerType()) 2936 PromotedCharTy = Context.getPromotedIntegerType(CharTy); 2937 unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy); 2938 2939 if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) { 2940 // Get the length of the string. 2941 uint64_t StrLen = SL->getLength(); 2942 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen)) 2943 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue(); 2944 StructuredList->resizeInits(Context, StrLen); 2945 2946 // Build a literal for each character in the string, and put them into 2947 // the init list. 2948 for (unsigned i = 0, e = StrLen; i != e; ++i) { 2949 llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i)); 2950 Expr *Init = new (Context) IntegerLiteral( 2951 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); 2952 if (CharTy != PromotedCharTy) 2953 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, 2954 Init, nullptr, VK_PRValue, 2955 FPOptionsOverride()); 2956 StructuredList->updateInit(Context, i, Init); 2957 } 2958 } else { 2959 ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr); 2960 std::string Str; 2961 Context.getObjCEncodingForType(E->getEncodedType(), Str); 2962 2963 // Get the length of the string. 2964 uint64_t StrLen = Str.size(); 2965 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen)) 2966 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue(); 2967 StructuredList->resizeInits(Context, StrLen); 2968 2969 // Build a literal for each character in the string, and put them into 2970 // the init list. 2971 for (unsigned i = 0, e = StrLen; i != e; ++i) { 2972 llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]); 2973 Expr *Init = new (Context) IntegerLiteral( 2974 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); 2975 if (CharTy != PromotedCharTy) 2976 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, 2977 Init, nullptr, VK_PRValue, 2978 FPOptionsOverride()); 2979 StructuredList->updateInit(Context, i, Init); 2980 } 2981 } 2982 } 2983 2984 // Make sure that our non-designated initializer list has space 2985 // for a subobject corresponding to this array element. 2986 if (StructuredList && 2987 DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits()) 2988 StructuredList->resizeInits(SemaRef.Context, 2989 DesignatedEndIndex.getZExtValue() + 1); 2990 2991 // Repeatedly perform subobject initializations in the range 2992 // [DesignatedStartIndex, DesignatedEndIndex]. 2993 2994 // Move to the next designator 2995 unsigned ElementIndex = DesignatedStartIndex.getZExtValue(); 2996 unsigned OldIndex = Index; 2997 2998 InitializedEntity ElementEntity = 2999 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 3000 3001 while (DesignatedStartIndex <= DesignatedEndIndex) { 3002 // Recurse to check later designated subobjects. 3003 QualType ElementType = AT->getElementType(); 3004 Index = OldIndex; 3005 3006 ElementEntity.setElementIndex(ElementIndex); 3007 if (CheckDesignatedInitializer( 3008 ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr, 3009 nullptr, Index, StructuredList, ElementIndex, 3010 FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex), 3011 false)) 3012 return true; 3013 3014 // Move to the next index in the array that we'll be initializing. 3015 ++DesignatedStartIndex; 3016 ElementIndex = DesignatedStartIndex.getZExtValue(); 3017 } 3018 3019 // If this the first designator, our caller will continue checking 3020 // the rest of this array subobject. 3021 if (IsFirstDesignator) { 3022 if (NextElementIndex) 3023 *NextElementIndex = DesignatedStartIndex; 3024 StructuredIndex = ElementIndex; 3025 return false; 3026 } 3027 3028 if (!FinishSubobjectInit) 3029 return false; 3030 3031 // Check the remaining elements within this array subobject. 3032 bool prevHadError = hadError; 3033 CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex, 3034 /*SubobjectIsDesignatorContext=*/false, Index, 3035 StructuredList, ElementIndex); 3036 return hadError && !prevHadError; 3037 } 3038 3039 // Get the structured initializer list for a subobject of type 3040 // @p CurrentObjectType. 3041 InitListExpr * 3042 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, 3043 QualType CurrentObjectType, 3044 InitListExpr *StructuredList, 3045 unsigned StructuredIndex, 3046 SourceRange InitRange, 3047 bool IsFullyOverwritten) { 3048 if (!StructuredList) 3049 return nullptr; 3050 3051 Expr *ExistingInit = nullptr; 3052 if (StructuredIndex < StructuredList->getNumInits()) 3053 ExistingInit = StructuredList->getInit(StructuredIndex); 3054 3055 if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit)) 3056 // There might have already been initializers for subobjects of the current 3057 // object, but a subsequent initializer list will overwrite the entirety 3058 // of the current object. (See DR 253 and C99 6.7.8p21). e.g., 3059 // 3060 // struct P { char x[6]; }; 3061 // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } }; 3062 // 3063 // The first designated initializer is ignored, and l.x is just "f". 3064 if (!IsFullyOverwritten) 3065 return Result; 3066 3067 if (ExistingInit) { 3068 // We are creating an initializer list that initializes the 3069 // subobjects of the current object, but there was already an 3070 // initialization that completely initialized the current 3071 // subobject: 3072 // 3073 // struct X { int a, b; }; 3074 // struct X xs[] = { [0] = { 1, 2 }, [0].b = 3 }; 3075 // 3076 // Here, xs[0].a == 1 and xs[0].b == 3, since the second, 3077 // designated initializer overwrites the [0].b initializer 3078 // from the prior initialization. 3079 // 3080 // When the existing initializer is an expression rather than an 3081 // initializer list, we cannot decompose and update it in this way. 3082 // For example: 3083 // 3084 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; 3085 // 3086 // This case is handled by CheckDesignatedInitializer. 3087 diagnoseInitOverride(ExistingInit, InitRange); 3088 } 3089 3090 unsigned ExpectedNumInits = 0; 3091 if (Index < IList->getNumInits()) { 3092 if (auto *Init = dyn_cast_or_null<InitListExpr>(IList->getInit(Index))) 3093 ExpectedNumInits = Init->getNumInits(); 3094 else 3095 ExpectedNumInits = IList->getNumInits() - Index; 3096 } 3097 3098 InitListExpr *Result = 3099 createInitListExpr(CurrentObjectType, InitRange, ExpectedNumInits); 3100 3101 // Link this new initializer list into the structured initializer 3102 // lists. 3103 StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result); 3104 return Result; 3105 } 3106 3107 InitListExpr * 3108 InitListChecker::createInitListExpr(QualType CurrentObjectType, 3109 SourceRange InitRange, 3110 unsigned ExpectedNumInits) { 3111 InitListExpr *Result 3112 = new (SemaRef.Context) InitListExpr(SemaRef.Context, 3113 InitRange.getBegin(), None, 3114 InitRange.getEnd()); 3115 3116 QualType ResultType = CurrentObjectType; 3117 if (!ResultType->isArrayType()) 3118 ResultType = ResultType.getNonLValueExprType(SemaRef.Context); 3119 Result->setType(ResultType); 3120 3121 // Pre-allocate storage for the structured initializer list. 3122 unsigned NumElements = 0; 3123 3124 if (const ArrayType *AType 3125 = SemaRef.Context.getAsArrayType(CurrentObjectType)) { 3126 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) { 3127 NumElements = CAType->getSize().getZExtValue(); 3128 // Simple heuristic so that we don't allocate a very large 3129 // initializer with many empty entries at the end. 3130 if (NumElements > ExpectedNumInits) 3131 NumElements = 0; 3132 } 3133 } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>()) { 3134 NumElements = VType->getNumElements(); 3135 } else if (CurrentObjectType->isRecordType()) { 3136 NumElements = numStructUnionElements(CurrentObjectType); 3137 } 3138 3139 Result->reserveInits(SemaRef.Context, NumElements); 3140 3141 return Result; 3142 } 3143 3144 /// Update the initializer at index @p StructuredIndex within the 3145 /// structured initializer list to the value @p expr. 3146 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList, 3147 unsigned &StructuredIndex, 3148 Expr *expr) { 3149 // No structured initializer list to update 3150 if (!StructuredList) 3151 return; 3152 3153 if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context, 3154 StructuredIndex, expr)) { 3155 // This initializer overwrites a previous initializer. 3156 // No need to diagnose when `expr` is nullptr because a more relevant 3157 // diagnostic has already been issued and this diagnostic is potentially 3158 // noise. 3159 if (expr) 3160 diagnoseInitOverride(PrevInit, expr->getSourceRange()); 3161 } 3162 3163 ++StructuredIndex; 3164 } 3165 3166 /// Determine whether we can perform aggregate initialization for the purposes 3167 /// of overload resolution. 3168 bool Sema::CanPerformAggregateInitializationForOverloadResolution( 3169 const InitializedEntity &Entity, InitListExpr *From) { 3170 QualType Type = Entity.getType(); 3171 InitListChecker Check(*this, Entity, From, Type, /*VerifyOnly=*/true, 3172 /*TreatUnavailableAsInvalid=*/false, 3173 /*InOverloadResolution=*/true); 3174 return !Check.HadError(); 3175 } 3176 3177 /// Check that the given Index expression is a valid array designator 3178 /// value. This is essentially just a wrapper around 3179 /// VerifyIntegerConstantExpression that also checks for negative values 3180 /// and produces a reasonable diagnostic if there is a 3181 /// failure. Returns the index expression, possibly with an implicit cast 3182 /// added, on success. If everything went okay, Value will receive the 3183 /// value of the constant expression. 3184 static ExprResult 3185 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) { 3186 SourceLocation Loc = Index->getBeginLoc(); 3187 3188 // Make sure this is an integer constant expression. 3189 ExprResult Result = 3190 S.VerifyIntegerConstantExpression(Index, &Value, Sema::AllowFold); 3191 if (Result.isInvalid()) 3192 return Result; 3193 3194 if (Value.isSigned() && Value.isNegative()) 3195 return S.Diag(Loc, diag::err_array_designator_negative) 3196 << toString(Value, 10) << Index->getSourceRange(); 3197 3198 Value.setIsUnsigned(true); 3199 return Result; 3200 } 3201 3202 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig, 3203 SourceLocation EqualOrColonLoc, 3204 bool GNUSyntax, 3205 ExprResult Init) { 3206 typedef DesignatedInitExpr::Designator ASTDesignator; 3207 3208 bool Invalid = false; 3209 SmallVector<ASTDesignator, 32> Designators; 3210 SmallVector<Expr *, 32> InitExpressions; 3211 3212 // Build designators and check array designator expressions. 3213 for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) { 3214 const Designator &D = Desig.getDesignator(Idx); 3215 switch (D.getKind()) { 3216 case Designator::FieldDesignator: 3217 Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(), 3218 D.getFieldLoc())); 3219 break; 3220 3221 case Designator::ArrayDesignator: { 3222 Expr *Index = static_cast<Expr *>(D.getArrayIndex()); 3223 llvm::APSInt IndexValue; 3224 if (!Index->isTypeDependent() && !Index->isValueDependent()) 3225 Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get(); 3226 if (!Index) 3227 Invalid = true; 3228 else { 3229 Designators.push_back(ASTDesignator(InitExpressions.size(), 3230 D.getLBracketLoc(), 3231 D.getRBracketLoc())); 3232 InitExpressions.push_back(Index); 3233 } 3234 break; 3235 } 3236 3237 case Designator::ArrayRangeDesignator: { 3238 Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart()); 3239 Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd()); 3240 llvm::APSInt StartValue; 3241 llvm::APSInt EndValue; 3242 bool StartDependent = StartIndex->isTypeDependent() || 3243 StartIndex->isValueDependent(); 3244 bool EndDependent = EndIndex->isTypeDependent() || 3245 EndIndex->isValueDependent(); 3246 if (!StartDependent) 3247 StartIndex = 3248 CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get(); 3249 if (!EndDependent) 3250 EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get(); 3251 3252 if (!StartIndex || !EndIndex) 3253 Invalid = true; 3254 else { 3255 // Make sure we're comparing values with the same bit width. 3256 if (StartDependent || EndDependent) { 3257 // Nothing to compute. 3258 } else if (StartValue.getBitWidth() > EndValue.getBitWidth()) 3259 EndValue = EndValue.extend(StartValue.getBitWidth()); 3260 else if (StartValue.getBitWidth() < EndValue.getBitWidth()) 3261 StartValue = StartValue.extend(EndValue.getBitWidth()); 3262 3263 if (!StartDependent && !EndDependent && EndValue < StartValue) { 3264 Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range) 3265 << toString(StartValue, 10) << toString(EndValue, 10) 3266 << StartIndex->getSourceRange() << EndIndex->getSourceRange(); 3267 Invalid = true; 3268 } else { 3269 Designators.push_back(ASTDesignator(InitExpressions.size(), 3270 D.getLBracketLoc(), 3271 D.getEllipsisLoc(), 3272 D.getRBracketLoc())); 3273 InitExpressions.push_back(StartIndex); 3274 InitExpressions.push_back(EndIndex); 3275 } 3276 } 3277 break; 3278 } 3279 } 3280 } 3281 3282 if (Invalid || Init.isInvalid()) 3283 return ExprError(); 3284 3285 // Clear out the expressions within the designation. 3286 Desig.ClearExprs(*this); 3287 3288 return DesignatedInitExpr::Create(Context, Designators, InitExpressions, 3289 EqualOrColonLoc, GNUSyntax, 3290 Init.getAs<Expr>()); 3291 } 3292 3293 //===----------------------------------------------------------------------===// 3294 // Initialization entity 3295 //===----------------------------------------------------------------------===// 3296 3297 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index, 3298 const InitializedEntity &Parent) 3299 : Parent(&Parent), Index(Index) 3300 { 3301 if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) { 3302 Kind = EK_ArrayElement; 3303 Type = AT->getElementType(); 3304 } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) { 3305 Kind = EK_VectorElement; 3306 Type = VT->getElementType(); 3307 } else { 3308 const ComplexType *CT = Parent.getType()->getAs<ComplexType>(); 3309 assert(CT && "Unexpected type"); 3310 Kind = EK_ComplexElement; 3311 Type = CT->getElementType(); 3312 } 3313 } 3314 3315 InitializedEntity 3316 InitializedEntity::InitializeBase(ASTContext &Context, 3317 const CXXBaseSpecifier *Base, 3318 bool IsInheritedVirtualBase, 3319 const InitializedEntity *Parent) { 3320 InitializedEntity Result; 3321 Result.Kind = EK_Base; 3322 Result.Parent = Parent; 3323 Result.Base = {Base, IsInheritedVirtualBase}; 3324 Result.Type = Base->getType(); 3325 return Result; 3326 } 3327 3328 DeclarationName InitializedEntity::getName() const { 3329 switch (getKind()) { 3330 case EK_Parameter: 3331 case EK_Parameter_CF_Audited: { 3332 ParmVarDecl *D = Parameter.getPointer(); 3333 return (D ? D->getDeclName() : DeclarationName()); 3334 } 3335 3336 case EK_Variable: 3337 case EK_Member: 3338 case EK_Binding: 3339 case EK_TemplateParameter: 3340 return Variable.VariableOrMember->getDeclName(); 3341 3342 case EK_LambdaCapture: 3343 return DeclarationName(Capture.VarID); 3344 3345 case EK_Result: 3346 case EK_StmtExprResult: 3347 case EK_Exception: 3348 case EK_New: 3349 case EK_Temporary: 3350 case EK_Base: 3351 case EK_Delegating: 3352 case EK_ArrayElement: 3353 case EK_VectorElement: 3354 case EK_ComplexElement: 3355 case EK_BlockElement: 3356 case EK_LambdaToBlockConversionBlockElement: 3357 case EK_CompoundLiteralInit: 3358 case EK_RelatedResult: 3359 return DeclarationName(); 3360 } 3361 3362 llvm_unreachable("Invalid EntityKind!"); 3363 } 3364 3365 ValueDecl *InitializedEntity::getDecl() const { 3366 switch (getKind()) { 3367 case EK_Variable: 3368 case EK_Member: 3369 case EK_Binding: 3370 case EK_TemplateParameter: 3371 return Variable.VariableOrMember; 3372 3373 case EK_Parameter: 3374 case EK_Parameter_CF_Audited: 3375 return Parameter.getPointer(); 3376 3377 case EK_Result: 3378 case EK_StmtExprResult: 3379 case EK_Exception: 3380 case EK_New: 3381 case EK_Temporary: 3382 case EK_Base: 3383 case EK_Delegating: 3384 case EK_ArrayElement: 3385 case EK_VectorElement: 3386 case EK_ComplexElement: 3387 case EK_BlockElement: 3388 case EK_LambdaToBlockConversionBlockElement: 3389 case EK_LambdaCapture: 3390 case EK_CompoundLiteralInit: 3391 case EK_RelatedResult: 3392 return nullptr; 3393 } 3394 3395 llvm_unreachable("Invalid EntityKind!"); 3396 } 3397 3398 bool InitializedEntity::allowsNRVO() const { 3399 switch (getKind()) { 3400 case EK_Result: 3401 case EK_Exception: 3402 return LocAndNRVO.NRVO; 3403 3404 case EK_StmtExprResult: 3405 case EK_Variable: 3406 case EK_Parameter: 3407 case EK_Parameter_CF_Audited: 3408 case EK_TemplateParameter: 3409 case EK_Member: 3410 case EK_Binding: 3411 case EK_New: 3412 case EK_Temporary: 3413 case EK_CompoundLiteralInit: 3414 case EK_Base: 3415 case EK_Delegating: 3416 case EK_ArrayElement: 3417 case EK_VectorElement: 3418 case EK_ComplexElement: 3419 case EK_BlockElement: 3420 case EK_LambdaToBlockConversionBlockElement: 3421 case EK_LambdaCapture: 3422 case EK_RelatedResult: 3423 break; 3424 } 3425 3426 return false; 3427 } 3428 3429 unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const { 3430 assert(getParent() != this); 3431 unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0; 3432 for (unsigned I = 0; I != Depth; ++I) 3433 OS << "`-"; 3434 3435 switch (getKind()) { 3436 case EK_Variable: OS << "Variable"; break; 3437 case EK_Parameter: OS << "Parameter"; break; 3438 case EK_Parameter_CF_Audited: OS << "CF audited function Parameter"; 3439 break; 3440 case EK_TemplateParameter: OS << "TemplateParameter"; break; 3441 case EK_Result: OS << "Result"; break; 3442 case EK_StmtExprResult: OS << "StmtExprResult"; break; 3443 case EK_Exception: OS << "Exception"; break; 3444 case EK_Member: OS << "Member"; break; 3445 case EK_Binding: OS << "Binding"; break; 3446 case EK_New: OS << "New"; break; 3447 case EK_Temporary: OS << "Temporary"; break; 3448 case EK_CompoundLiteralInit: OS << "CompoundLiteral";break; 3449 case EK_RelatedResult: OS << "RelatedResult"; break; 3450 case EK_Base: OS << "Base"; break; 3451 case EK_Delegating: OS << "Delegating"; break; 3452 case EK_ArrayElement: OS << "ArrayElement " << Index; break; 3453 case EK_VectorElement: OS << "VectorElement " << Index; break; 3454 case EK_ComplexElement: OS << "ComplexElement " << Index; break; 3455 case EK_BlockElement: OS << "Block"; break; 3456 case EK_LambdaToBlockConversionBlockElement: 3457 OS << "Block (lambda)"; 3458 break; 3459 case EK_LambdaCapture: 3460 OS << "LambdaCapture "; 3461 OS << DeclarationName(Capture.VarID); 3462 break; 3463 } 3464 3465 if (auto *D = getDecl()) { 3466 OS << " "; 3467 D->printQualifiedName(OS); 3468 } 3469 3470 OS << " '" << getType().getAsString() << "'\n"; 3471 3472 return Depth + 1; 3473 } 3474 3475 LLVM_DUMP_METHOD void InitializedEntity::dump() const { 3476 dumpImpl(llvm::errs()); 3477 } 3478 3479 //===----------------------------------------------------------------------===// 3480 // Initialization sequence 3481 //===----------------------------------------------------------------------===// 3482 3483 void InitializationSequence::Step::Destroy() { 3484 switch (Kind) { 3485 case SK_ResolveAddressOfOverloadedFunction: 3486 case SK_CastDerivedToBasePRValue: 3487 case SK_CastDerivedToBaseXValue: 3488 case SK_CastDerivedToBaseLValue: 3489 case SK_BindReference: 3490 case SK_BindReferenceToTemporary: 3491 case SK_FinalCopy: 3492 case SK_ExtraneousCopyToTemporary: 3493 case SK_UserConversion: 3494 case SK_QualificationConversionPRValue: 3495 case SK_QualificationConversionXValue: 3496 case SK_QualificationConversionLValue: 3497 case SK_FunctionReferenceConversion: 3498 case SK_AtomicConversion: 3499 case SK_ListInitialization: 3500 case SK_UnwrapInitList: 3501 case SK_RewrapInitList: 3502 case SK_ConstructorInitialization: 3503 case SK_ConstructorInitializationFromList: 3504 case SK_ZeroInitialization: 3505 case SK_CAssignment: 3506 case SK_StringInit: 3507 case SK_ObjCObjectConversion: 3508 case SK_ArrayLoopIndex: 3509 case SK_ArrayLoopInit: 3510 case SK_ArrayInit: 3511 case SK_GNUArrayInit: 3512 case SK_ParenthesizedArrayInit: 3513 case SK_PassByIndirectCopyRestore: 3514 case SK_PassByIndirectRestore: 3515 case SK_ProduceObjCObject: 3516 case SK_StdInitializerList: 3517 case SK_StdInitializerListConstructorCall: 3518 case SK_OCLSamplerInit: 3519 case SK_OCLZeroOpaqueType: 3520 break; 3521 3522 case SK_ConversionSequence: 3523 case SK_ConversionSequenceNoNarrowing: 3524 delete ICS; 3525 } 3526 } 3527 3528 bool InitializationSequence::isDirectReferenceBinding() const { 3529 // There can be some lvalue adjustments after the SK_BindReference step. 3530 for (const Step &S : llvm::reverse(Steps)) { 3531 if (S.Kind == SK_BindReference) 3532 return true; 3533 if (S.Kind == SK_BindReferenceToTemporary) 3534 return false; 3535 } 3536 return false; 3537 } 3538 3539 bool InitializationSequence::isAmbiguous() const { 3540 if (!Failed()) 3541 return false; 3542 3543 switch (getFailureKind()) { 3544 case FK_TooManyInitsForReference: 3545 case FK_ParenthesizedListInitForReference: 3546 case FK_ArrayNeedsInitList: 3547 case FK_ArrayNeedsInitListOrStringLiteral: 3548 case FK_ArrayNeedsInitListOrWideStringLiteral: 3549 case FK_NarrowStringIntoWideCharArray: 3550 case FK_WideStringIntoCharArray: 3551 case FK_IncompatWideStringIntoWideChar: 3552 case FK_PlainStringIntoUTF8Char: 3553 case FK_UTF8StringIntoPlainChar: 3554 case FK_AddressOfOverloadFailed: // FIXME: Could do better 3555 case FK_NonConstLValueReferenceBindingToTemporary: 3556 case FK_NonConstLValueReferenceBindingToBitfield: 3557 case FK_NonConstLValueReferenceBindingToVectorElement: 3558 case FK_NonConstLValueReferenceBindingToMatrixElement: 3559 case FK_NonConstLValueReferenceBindingToUnrelated: 3560 case FK_RValueReferenceBindingToLValue: 3561 case FK_ReferenceAddrspaceMismatchTemporary: 3562 case FK_ReferenceInitDropsQualifiers: 3563 case FK_ReferenceInitFailed: 3564 case FK_ConversionFailed: 3565 case FK_ConversionFromPropertyFailed: 3566 case FK_TooManyInitsForScalar: 3567 case FK_ParenthesizedListInitForScalar: 3568 case FK_ReferenceBindingToInitList: 3569 case FK_InitListBadDestinationType: 3570 case FK_DefaultInitOfConst: 3571 case FK_Incomplete: 3572 case FK_ArrayTypeMismatch: 3573 case FK_NonConstantArrayInit: 3574 case FK_ListInitializationFailed: 3575 case FK_VariableLengthArrayHasInitializer: 3576 case FK_PlaceholderType: 3577 case FK_ExplicitConstructor: 3578 case FK_AddressOfUnaddressableFunction: 3579 return false; 3580 3581 case FK_ReferenceInitOverloadFailed: 3582 case FK_UserConversionOverloadFailed: 3583 case FK_ConstructorOverloadFailed: 3584 case FK_ListConstructorOverloadFailed: 3585 return FailedOverloadResult == OR_Ambiguous; 3586 } 3587 3588 llvm_unreachable("Invalid EntityKind!"); 3589 } 3590 3591 bool InitializationSequence::isConstructorInitialization() const { 3592 return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization; 3593 } 3594 3595 void 3596 InitializationSequence 3597 ::AddAddressOverloadResolutionStep(FunctionDecl *Function, 3598 DeclAccessPair Found, 3599 bool HadMultipleCandidates) { 3600 Step S; 3601 S.Kind = SK_ResolveAddressOfOverloadedFunction; 3602 S.Type = Function->getType(); 3603 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3604 S.Function.Function = Function; 3605 S.Function.FoundDecl = Found; 3606 Steps.push_back(S); 3607 } 3608 3609 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType, 3610 ExprValueKind VK) { 3611 Step S; 3612 switch (VK) { 3613 case VK_PRValue: 3614 S.Kind = SK_CastDerivedToBasePRValue; 3615 break; 3616 case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break; 3617 case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break; 3618 } 3619 S.Type = BaseType; 3620 Steps.push_back(S); 3621 } 3622 3623 void InitializationSequence::AddReferenceBindingStep(QualType T, 3624 bool BindingTemporary) { 3625 Step S; 3626 S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference; 3627 S.Type = T; 3628 Steps.push_back(S); 3629 } 3630 3631 void InitializationSequence::AddFinalCopy(QualType T) { 3632 Step S; 3633 S.Kind = SK_FinalCopy; 3634 S.Type = T; 3635 Steps.push_back(S); 3636 } 3637 3638 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) { 3639 Step S; 3640 S.Kind = SK_ExtraneousCopyToTemporary; 3641 S.Type = T; 3642 Steps.push_back(S); 3643 } 3644 3645 void 3646 InitializationSequence::AddUserConversionStep(FunctionDecl *Function, 3647 DeclAccessPair FoundDecl, 3648 QualType T, 3649 bool HadMultipleCandidates) { 3650 Step S; 3651 S.Kind = SK_UserConversion; 3652 S.Type = T; 3653 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3654 S.Function.Function = Function; 3655 S.Function.FoundDecl = FoundDecl; 3656 Steps.push_back(S); 3657 } 3658 3659 void InitializationSequence::AddQualificationConversionStep(QualType Ty, 3660 ExprValueKind VK) { 3661 Step S; 3662 S.Kind = SK_QualificationConversionPRValue; // work around a gcc warning 3663 switch (VK) { 3664 case VK_PRValue: 3665 S.Kind = SK_QualificationConversionPRValue; 3666 break; 3667 case VK_XValue: 3668 S.Kind = SK_QualificationConversionXValue; 3669 break; 3670 case VK_LValue: 3671 S.Kind = SK_QualificationConversionLValue; 3672 break; 3673 } 3674 S.Type = Ty; 3675 Steps.push_back(S); 3676 } 3677 3678 void InitializationSequence::AddFunctionReferenceConversionStep(QualType Ty) { 3679 Step S; 3680 S.Kind = SK_FunctionReferenceConversion; 3681 S.Type = Ty; 3682 Steps.push_back(S); 3683 } 3684 3685 void InitializationSequence::AddAtomicConversionStep(QualType Ty) { 3686 Step S; 3687 S.Kind = SK_AtomicConversion; 3688 S.Type = Ty; 3689 Steps.push_back(S); 3690 } 3691 3692 void InitializationSequence::AddConversionSequenceStep( 3693 const ImplicitConversionSequence &ICS, QualType T, 3694 bool TopLevelOfInitList) { 3695 Step S; 3696 S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing 3697 : SK_ConversionSequence; 3698 S.Type = T; 3699 S.ICS = new ImplicitConversionSequence(ICS); 3700 Steps.push_back(S); 3701 } 3702 3703 void InitializationSequence::AddListInitializationStep(QualType T) { 3704 Step S; 3705 S.Kind = SK_ListInitialization; 3706 S.Type = T; 3707 Steps.push_back(S); 3708 } 3709 3710 void InitializationSequence::AddConstructorInitializationStep( 3711 DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T, 3712 bool HadMultipleCandidates, bool FromInitList, bool AsInitList) { 3713 Step S; 3714 S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall 3715 : SK_ConstructorInitializationFromList 3716 : SK_ConstructorInitialization; 3717 S.Type = T; 3718 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3719 S.Function.Function = Constructor; 3720 S.Function.FoundDecl = FoundDecl; 3721 Steps.push_back(S); 3722 } 3723 3724 void InitializationSequence::AddZeroInitializationStep(QualType T) { 3725 Step S; 3726 S.Kind = SK_ZeroInitialization; 3727 S.Type = T; 3728 Steps.push_back(S); 3729 } 3730 3731 void InitializationSequence::AddCAssignmentStep(QualType T) { 3732 Step S; 3733 S.Kind = SK_CAssignment; 3734 S.Type = T; 3735 Steps.push_back(S); 3736 } 3737 3738 void InitializationSequence::AddStringInitStep(QualType T) { 3739 Step S; 3740 S.Kind = SK_StringInit; 3741 S.Type = T; 3742 Steps.push_back(S); 3743 } 3744 3745 void InitializationSequence::AddObjCObjectConversionStep(QualType T) { 3746 Step S; 3747 S.Kind = SK_ObjCObjectConversion; 3748 S.Type = T; 3749 Steps.push_back(S); 3750 } 3751 3752 void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) { 3753 Step S; 3754 S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit; 3755 S.Type = T; 3756 Steps.push_back(S); 3757 } 3758 3759 void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) { 3760 Step S; 3761 S.Kind = SK_ArrayLoopIndex; 3762 S.Type = EltT; 3763 Steps.insert(Steps.begin(), S); 3764 3765 S.Kind = SK_ArrayLoopInit; 3766 S.Type = T; 3767 Steps.push_back(S); 3768 } 3769 3770 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) { 3771 Step S; 3772 S.Kind = SK_ParenthesizedArrayInit; 3773 S.Type = T; 3774 Steps.push_back(S); 3775 } 3776 3777 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type, 3778 bool shouldCopy) { 3779 Step s; 3780 s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore 3781 : SK_PassByIndirectRestore); 3782 s.Type = type; 3783 Steps.push_back(s); 3784 } 3785 3786 void InitializationSequence::AddProduceObjCObjectStep(QualType T) { 3787 Step S; 3788 S.Kind = SK_ProduceObjCObject; 3789 S.Type = T; 3790 Steps.push_back(S); 3791 } 3792 3793 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) { 3794 Step S; 3795 S.Kind = SK_StdInitializerList; 3796 S.Type = T; 3797 Steps.push_back(S); 3798 } 3799 3800 void InitializationSequence::AddOCLSamplerInitStep(QualType T) { 3801 Step S; 3802 S.Kind = SK_OCLSamplerInit; 3803 S.Type = T; 3804 Steps.push_back(S); 3805 } 3806 3807 void InitializationSequence::AddOCLZeroOpaqueTypeStep(QualType T) { 3808 Step S; 3809 S.Kind = SK_OCLZeroOpaqueType; 3810 S.Type = T; 3811 Steps.push_back(S); 3812 } 3813 3814 void InitializationSequence::RewrapReferenceInitList(QualType T, 3815 InitListExpr *Syntactic) { 3816 assert(Syntactic->getNumInits() == 1 && 3817 "Can only rewrap trivial init lists."); 3818 Step S; 3819 S.Kind = SK_UnwrapInitList; 3820 S.Type = Syntactic->getInit(0)->getType(); 3821 Steps.insert(Steps.begin(), S); 3822 3823 S.Kind = SK_RewrapInitList; 3824 S.Type = T; 3825 S.WrappingSyntacticList = Syntactic; 3826 Steps.push_back(S); 3827 } 3828 3829 void InitializationSequence::SetOverloadFailure(FailureKind Failure, 3830 OverloadingResult Result) { 3831 setSequenceKind(FailedSequence); 3832 this->Failure = Failure; 3833 this->FailedOverloadResult = Result; 3834 } 3835 3836 //===----------------------------------------------------------------------===// 3837 // Attempt initialization 3838 //===----------------------------------------------------------------------===// 3839 3840 /// Tries to add a zero initializer. Returns true if that worked. 3841 static bool 3842 maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence, 3843 const InitializedEntity &Entity) { 3844 if (Entity.getKind() != InitializedEntity::EK_Variable) 3845 return false; 3846 3847 VarDecl *VD = cast<VarDecl>(Entity.getDecl()); 3848 if (VD->getInit() || VD->getEndLoc().isMacroID()) 3849 return false; 3850 3851 QualType VariableTy = VD->getType().getCanonicalType(); 3852 SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc()); 3853 std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc); 3854 if (!Init.empty()) { 3855 Sequence.AddZeroInitializationStep(Entity.getType()); 3856 Sequence.SetZeroInitializationFixit(Init, Loc); 3857 return true; 3858 } 3859 return false; 3860 } 3861 3862 static void MaybeProduceObjCObject(Sema &S, 3863 InitializationSequence &Sequence, 3864 const InitializedEntity &Entity) { 3865 if (!S.getLangOpts().ObjCAutoRefCount) return; 3866 3867 /// When initializing a parameter, produce the value if it's marked 3868 /// __attribute__((ns_consumed)). 3869 if (Entity.isParameterKind()) { 3870 if (!Entity.isParameterConsumed()) 3871 return; 3872 3873 assert(Entity.getType()->isObjCRetainableType() && 3874 "consuming an object of unretainable type?"); 3875 Sequence.AddProduceObjCObjectStep(Entity.getType()); 3876 3877 /// When initializing a return value, if the return type is a 3878 /// retainable type, then returns need to immediately retain the 3879 /// object. If an autorelease is required, it will be done at the 3880 /// last instant. 3881 } else if (Entity.getKind() == InitializedEntity::EK_Result || 3882 Entity.getKind() == InitializedEntity::EK_StmtExprResult) { 3883 if (!Entity.getType()->isObjCRetainableType()) 3884 return; 3885 3886 Sequence.AddProduceObjCObjectStep(Entity.getType()); 3887 } 3888 } 3889 3890 static void TryListInitialization(Sema &S, 3891 const InitializedEntity &Entity, 3892 const InitializationKind &Kind, 3893 InitListExpr *InitList, 3894 InitializationSequence &Sequence, 3895 bool TreatUnavailableAsInvalid); 3896 3897 /// When initializing from init list via constructor, handle 3898 /// initialization of an object of type std::initializer_list<T>. 3899 /// 3900 /// \return true if we have handled initialization of an object of type 3901 /// std::initializer_list<T>, false otherwise. 3902 static bool TryInitializerListConstruction(Sema &S, 3903 InitListExpr *List, 3904 QualType DestType, 3905 InitializationSequence &Sequence, 3906 bool TreatUnavailableAsInvalid) { 3907 QualType E; 3908 if (!S.isStdInitializerList(DestType, &E)) 3909 return false; 3910 3911 if (!S.isCompleteType(List->getExprLoc(), E)) { 3912 Sequence.setIncompleteTypeFailure(E); 3913 return true; 3914 } 3915 3916 // Try initializing a temporary array from the init list. 3917 QualType ArrayType = S.Context.getConstantArrayType( 3918 E.withConst(), 3919 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()), 3920 List->getNumInits()), 3921 nullptr, clang::ArrayType::Normal, 0); 3922 InitializedEntity HiddenArray = 3923 InitializedEntity::InitializeTemporary(ArrayType); 3924 InitializationKind Kind = InitializationKind::CreateDirectList( 3925 List->getExprLoc(), List->getBeginLoc(), List->getEndLoc()); 3926 TryListInitialization(S, HiddenArray, Kind, List, Sequence, 3927 TreatUnavailableAsInvalid); 3928 if (Sequence) 3929 Sequence.AddStdInitializerListConstructionStep(DestType); 3930 return true; 3931 } 3932 3933 /// Determine if the constructor has the signature of a copy or move 3934 /// constructor for the type T of the class in which it was found. That is, 3935 /// determine if its first parameter is of type T or reference to (possibly 3936 /// cv-qualified) T. 3937 static bool hasCopyOrMoveCtorParam(ASTContext &Ctx, 3938 const ConstructorInfo &Info) { 3939 if (Info.Constructor->getNumParams() == 0) 3940 return false; 3941 3942 QualType ParmT = 3943 Info.Constructor->getParamDecl(0)->getType().getNonReferenceType(); 3944 QualType ClassT = 3945 Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext())); 3946 3947 return Ctx.hasSameUnqualifiedType(ParmT, ClassT); 3948 } 3949 3950 static OverloadingResult 3951 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc, 3952 MultiExprArg Args, 3953 OverloadCandidateSet &CandidateSet, 3954 QualType DestType, 3955 DeclContext::lookup_result Ctors, 3956 OverloadCandidateSet::iterator &Best, 3957 bool CopyInitializing, bool AllowExplicit, 3958 bool OnlyListConstructors, bool IsListInit, 3959 bool SecondStepOfCopyInit = false) { 3960 CandidateSet.clear(OverloadCandidateSet::CSK_InitByConstructor); 3961 CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace()); 3962 3963 for (NamedDecl *D : Ctors) { 3964 auto Info = getConstructorInfo(D); 3965 if (!Info.Constructor || Info.Constructor->isInvalidDecl()) 3966 continue; 3967 3968 if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor)) 3969 continue; 3970 3971 // C++11 [over.best.ics]p4: 3972 // ... and the constructor or user-defined conversion function is a 3973 // candidate by 3974 // - 13.3.1.3, when the argument is the temporary in the second step 3975 // of a class copy-initialization, or 3976 // - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here] 3977 // - the second phase of 13.3.1.7 when the initializer list has exactly 3978 // one element that is itself an initializer list, and the target is 3979 // the first parameter of a constructor of class X, and the conversion 3980 // is to X or reference to (possibly cv-qualified X), 3981 // user-defined conversion sequences are not considered. 3982 bool SuppressUserConversions = 3983 SecondStepOfCopyInit || 3984 (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) && 3985 hasCopyOrMoveCtorParam(S.Context, Info)); 3986 3987 if (Info.ConstructorTmpl) 3988 S.AddTemplateOverloadCandidate( 3989 Info.ConstructorTmpl, Info.FoundDecl, 3990 /*ExplicitArgs*/ nullptr, Args, CandidateSet, SuppressUserConversions, 3991 /*PartialOverloading=*/false, AllowExplicit); 3992 else { 3993 // C++ [over.match.copy]p1: 3994 // - When initializing a temporary to be bound to the first parameter 3995 // of a constructor [for type T] that takes a reference to possibly 3996 // cv-qualified T as its first argument, called with a single 3997 // argument in the context of direct-initialization, explicit 3998 // conversion functions are also considered. 3999 // FIXME: What if a constructor template instantiates to such a signature? 4000 bool AllowExplicitConv = AllowExplicit && !CopyInitializing && 4001 Args.size() == 1 && 4002 hasCopyOrMoveCtorParam(S.Context, Info); 4003 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args, 4004 CandidateSet, SuppressUserConversions, 4005 /*PartialOverloading=*/false, AllowExplicit, 4006 AllowExplicitConv); 4007 } 4008 } 4009 4010 // FIXME: Work around a bug in C++17 guaranteed copy elision. 4011 // 4012 // When initializing an object of class type T by constructor 4013 // ([over.match.ctor]) or by list-initialization ([over.match.list]) 4014 // from a single expression of class type U, conversion functions of 4015 // U that convert to the non-reference type cv T are candidates. 4016 // Explicit conversion functions are only candidates during 4017 // direct-initialization. 4018 // 4019 // Note: SecondStepOfCopyInit is only ever true in this case when 4020 // evaluating whether to produce a C++98 compatibility warning. 4021 if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 && 4022 !SecondStepOfCopyInit) { 4023 Expr *Initializer = Args[0]; 4024 auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl(); 4025 if (SourceRD && S.isCompleteType(DeclLoc, Initializer->getType())) { 4026 const auto &Conversions = SourceRD->getVisibleConversionFunctions(); 4027 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 4028 NamedDecl *D = *I; 4029 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 4030 D = D->getUnderlyingDecl(); 4031 4032 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 4033 CXXConversionDecl *Conv; 4034 if (ConvTemplate) 4035 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 4036 else 4037 Conv = cast<CXXConversionDecl>(D); 4038 4039 if (ConvTemplate) 4040 S.AddTemplateConversionCandidate( 4041 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, 4042 CandidateSet, AllowExplicit, AllowExplicit, 4043 /*AllowResultConversion*/ false); 4044 else 4045 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer, 4046 DestType, CandidateSet, AllowExplicit, 4047 AllowExplicit, 4048 /*AllowResultConversion*/ false); 4049 } 4050 } 4051 } 4052 4053 // Perform overload resolution and return the result. 4054 return CandidateSet.BestViableFunction(S, DeclLoc, Best); 4055 } 4056 4057 /// Attempt initialization by constructor (C++ [dcl.init]), which 4058 /// enumerates the constructors of the initialized entity and performs overload 4059 /// resolution to select the best. 4060 /// \param DestType The destination class type. 4061 /// \param DestArrayType The destination type, which is either DestType or 4062 /// a (possibly multidimensional) array of DestType. 4063 /// \param IsListInit Is this list-initialization? 4064 /// \param IsInitListCopy Is this non-list-initialization resulting from a 4065 /// list-initialization from {x} where x is the same 4066 /// type as the entity? 4067 static void TryConstructorInitialization(Sema &S, 4068 const InitializedEntity &Entity, 4069 const InitializationKind &Kind, 4070 MultiExprArg Args, QualType DestType, 4071 QualType DestArrayType, 4072 InitializationSequence &Sequence, 4073 bool IsListInit = false, 4074 bool IsInitListCopy = false) { 4075 assert(((!IsListInit && !IsInitListCopy) || 4076 (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && 4077 "IsListInit/IsInitListCopy must come with a single initializer list " 4078 "argument."); 4079 InitListExpr *ILE = 4080 (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr; 4081 MultiExprArg UnwrappedArgs = 4082 ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args; 4083 4084 // The type we're constructing needs to be complete. 4085 if (!S.isCompleteType(Kind.getLocation(), DestType)) { 4086 Sequence.setIncompleteTypeFailure(DestType); 4087 return; 4088 } 4089 4090 // C++17 [dcl.init]p17: 4091 // - If the initializer expression is a prvalue and the cv-unqualified 4092 // version of the source type is the same class as the class of the 4093 // destination, the initializer expression is used to initialize the 4094 // destination object. 4095 // Per DR (no number yet), this does not apply when initializing a base 4096 // class or delegating to another constructor from a mem-initializer. 4097 // ObjC++: Lambda captured by the block in the lambda to block conversion 4098 // should avoid copy elision. 4099 if (S.getLangOpts().CPlusPlus17 && 4100 Entity.getKind() != InitializedEntity::EK_Base && 4101 Entity.getKind() != InitializedEntity::EK_Delegating && 4102 Entity.getKind() != 4103 InitializedEntity::EK_LambdaToBlockConversionBlockElement && 4104 UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isPRValue() && 4105 S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) { 4106 // Convert qualifications if necessary. 4107 Sequence.AddQualificationConversionStep(DestType, VK_PRValue); 4108 if (ILE) 4109 Sequence.RewrapReferenceInitList(DestType, ILE); 4110 return; 4111 } 4112 4113 const RecordType *DestRecordType = DestType->getAs<RecordType>(); 4114 assert(DestRecordType && "Constructor initialization requires record type"); 4115 CXXRecordDecl *DestRecordDecl 4116 = cast<CXXRecordDecl>(DestRecordType->getDecl()); 4117 4118 // Build the candidate set directly in the initialization sequence 4119 // structure, so that it will persist if we fail. 4120 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 4121 4122 // Determine whether we are allowed to call explicit constructors or 4123 // explicit conversion operators. 4124 bool AllowExplicit = Kind.AllowExplicit() || IsListInit; 4125 bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy; 4126 4127 // - Otherwise, if T is a class type, constructors are considered. The 4128 // applicable constructors are enumerated, and the best one is chosen 4129 // through overload resolution. 4130 DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl); 4131 4132 OverloadingResult Result = OR_No_Viable_Function; 4133 OverloadCandidateSet::iterator Best; 4134 bool AsInitializerList = false; 4135 4136 // C++11 [over.match.list]p1, per DR1467: 4137 // When objects of non-aggregate type T are list-initialized, such that 4138 // 8.5.4 [dcl.init.list] specifies that overload resolution is performed 4139 // according to the rules in this section, overload resolution selects 4140 // the constructor in two phases: 4141 // 4142 // - Initially, the candidate functions are the initializer-list 4143 // constructors of the class T and the argument list consists of the 4144 // initializer list as a single argument. 4145 if (IsListInit) { 4146 AsInitializerList = true; 4147 4148 // If the initializer list has no elements and T has a default constructor, 4149 // the first phase is omitted. 4150 if (!(UnwrappedArgs.empty() && S.LookupDefaultConstructor(DestRecordDecl))) 4151 Result = ResolveConstructorOverload(S, Kind.getLocation(), Args, 4152 CandidateSet, DestType, Ctors, Best, 4153 CopyInitialization, AllowExplicit, 4154 /*OnlyListConstructors=*/true, 4155 IsListInit); 4156 } 4157 4158 // C++11 [over.match.list]p1: 4159 // - If no viable initializer-list constructor is found, overload resolution 4160 // is performed again, where the candidate functions are all the 4161 // constructors of the class T and the argument list consists of the 4162 // elements of the initializer list. 4163 if (Result == OR_No_Viable_Function) { 4164 AsInitializerList = false; 4165 Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs, 4166 CandidateSet, DestType, Ctors, Best, 4167 CopyInitialization, AllowExplicit, 4168 /*OnlyListConstructors=*/false, 4169 IsListInit); 4170 } 4171 if (Result) { 4172 Sequence.SetOverloadFailure( 4173 IsListInit ? InitializationSequence::FK_ListConstructorOverloadFailed 4174 : InitializationSequence::FK_ConstructorOverloadFailed, 4175 Result); 4176 4177 if (Result != OR_Deleted) 4178 return; 4179 } 4180 4181 bool HadMultipleCandidates = (CandidateSet.size() > 1); 4182 4183 // In C++17, ResolveConstructorOverload can select a conversion function 4184 // instead of a constructor. 4185 if (auto *CD = dyn_cast<CXXConversionDecl>(Best->Function)) { 4186 // Add the user-defined conversion step that calls the conversion function. 4187 QualType ConvType = CD->getConversionType(); 4188 assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) && 4189 "should not have selected this conversion function"); 4190 Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType, 4191 HadMultipleCandidates); 4192 if (!S.Context.hasSameType(ConvType, DestType)) 4193 Sequence.AddQualificationConversionStep(DestType, VK_PRValue); 4194 if (IsListInit) 4195 Sequence.RewrapReferenceInitList(Entity.getType(), ILE); 4196 return; 4197 } 4198 4199 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 4200 if (Result != OR_Deleted) { 4201 // C++11 [dcl.init]p6: 4202 // If a program calls for the default initialization of an object 4203 // of a const-qualified type T, T shall be a class type with a 4204 // user-provided default constructor. 4205 // C++ core issue 253 proposal: 4206 // If the implicit default constructor initializes all subobjects, no 4207 // initializer should be required. 4208 // The 253 proposal is for example needed to process libstdc++ headers 4209 // in 5.x. 4210 if (Kind.getKind() == InitializationKind::IK_Default && 4211 Entity.getType().isConstQualified()) { 4212 if (!CtorDecl->getParent()->allowConstDefaultInit()) { 4213 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity)) 4214 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); 4215 return; 4216 } 4217 } 4218 4219 // C++11 [over.match.list]p1: 4220 // In copy-list-initialization, if an explicit constructor is chosen, the 4221 // initializer is ill-formed. 4222 if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) { 4223 Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor); 4224 return; 4225 } 4226 } 4227 4228 // [class.copy.elision]p3: 4229 // In some copy-initialization contexts, a two-stage overload resolution 4230 // is performed. 4231 // If the first overload resolution selects a deleted function, we also 4232 // need the initialization sequence to decide whether to perform the second 4233 // overload resolution. 4234 // For deleted functions in other contexts, there is no need to get the 4235 // initialization sequence. 4236 if (Result == OR_Deleted && Kind.getKind() != InitializationKind::IK_Copy) 4237 return; 4238 4239 // Add the constructor initialization step. Any cv-qualification conversion is 4240 // subsumed by the initialization. 4241 Sequence.AddConstructorInitializationStep( 4242 Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates, 4243 IsListInit | IsInitListCopy, AsInitializerList); 4244 } 4245 4246 static bool 4247 ResolveOverloadedFunctionForReferenceBinding(Sema &S, 4248 Expr *Initializer, 4249 QualType &SourceType, 4250 QualType &UnqualifiedSourceType, 4251 QualType UnqualifiedTargetType, 4252 InitializationSequence &Sequence) { 4253 if (S.Context.getCanonicalType(UnqualifiedSourceType) == 4254 S.Context.OverloadTy) { 4255 DeclAccessPair Found; 4256 bool HadMultipleCandidates = false; 4257 if (FunctionDecl *Fn 4258 = S.ResolveAddressOfOverloadedFunction(Initializer, 4259 UnqualifiedTargetType, 4260 false, Found, 4261 &HadMultipleCandidates)) { 4262 Sequence.AddAddressOverloadResolutionStep(Fn, Found, 4263 HadMultipleCandidates); 4264 SourceType = Fn->getType(); 4265 UnqualifiedSourceType = SourceType.getUnqualifiedType(); 4266 } else if (!UnqualifiedTargetType->isRecordType()) { 4267 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 4268 return true; 4269 } 4270 } 4271 return false; 4272 } 4273 4274 static void TryReferenceInitializationCore(Sema &S, 4275 const InitializedEntity &Entity, 4276 const InitializationKind &Kind, 4277 Expr *Initializer, 4278 QualType cv1T1, QualType T1, 4279 Qualifiers T1Quals, 4280 QualType cv2T2, QualType T2, 4281 Qualifiers T2Quals, 4282 InitializationSequence &Sequence); 4283 4284 static void TryValueInitialization(Sema &S, 4285 const InitializedEntity &Entity, 4286 const InitializationKind &Kind, 4287 InitializationSequence &Sequence, 4288 InitListExpr *InitList = nullptr); 4289 4290 /// Attempt list initialization of a reference. 4291 static void TryReferenceListInitialization(Sema &S, 4292 const InitializedEntity &Entity, 4293 const InitializationKind &Kind, 4294 InitListExpr *InitList, 4295 InitializationSequence &Sequence, 4296 bool TreatUnavailableAsInvalid) { 4297 // First, catch C++03 where this isn't possible. 4298 if (!S.getLangOpts().CPlusPlus11) { 4299 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); 4300 return; 4301 } 4302 // Can't reference initialize a compound literal. 4303 if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) { 4304 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); 4305 return; 4306 } 4307 4308 QualType DestType = Entity.getType(); 4309 QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); 4310 Qualifiers T1Quals; 4311 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); 4312 4313 // Reference initialization via an initializer list works thus: 4314 // If the initializer list consists of a single element that is 4315 // reference-related to the referenced type, bind directly to that element 4316 // (possibly creating temporaries). 4317 // Otherwise, initialize a temporary with the initializer list and 4318 // bind to that. 4319 if (InitList->getNumInits() == 1) { 4320 Expr *Initializer = InitList->getInit(0); 4321 QualType cv2T2 = S.getCompletedType(Initializer); 4322 Qualifiers T2Quals; 4323 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); 4324 4325 // If this fails, creating a temporary wouldn't work either. 4326 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, 4327 T1, Sequence)) 4328 return; 4329 4330 SourceLocation DeclLoc = Initializer->getBeginLoc(); 4331 Sema::ReferenceCompareResult RefRelationship 4332 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2); 4333 if (RefRelationship >= Sema::Ref_Related) { 4334 // Try to bind the reference here. 4335 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, 4336 T1Quals, cv2T2, T2, T2Quals, Sequence); 4337 if (Sequence) 4338 Sequence.RewrapReferenceInitList(cv1T1, InitList); 4339 return; 4340 } 4341 4342 // Update the initializer if we've resolved an overloaded function. 4343 if (Sequence.step_begin() != Sequence.step_end()) 4344 Sequence.RewrapReferenceInitList(cv1T1, InitList); 4345 } 4346 // Perform address space compatibility check. 4347 QualType cv1T1IgnoreAS = cv1T1; 4348 if (T1Quals.hasAddressSpace()) { 4349 Qualifiers T2Quals; 4350 (void)S.Context.getUnqualifiedArrayType(InitList->getType(), T2Quals); 4351 if (!T1Quals.isAddressSpaceSupersetOf(T2Quals)) { 4352 Sequence.SetFailed( 4353 InitializationSequence::FK_ReferenceInitDropsQualifiers); 4354 return; 4355 } 4356 // Ignore address space of reference type at this point and perform address 4357 // space conversion after the reference binding step. 4358 cv1T1IgnoreAS = 4359 S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace()); 4360 } 4361 // Not reference-related. Create a temporary and bind to that. 4362 InitializedEntity TempEntity = 4363 InitializedEntity::InitializeTemporary(cv1T1IgnoreAS); 4364 4365 TryListInitialization(S, TempEntity, Kind, InitList, Sequence, 4366 TreatUnavailableAsInvalid); 4367 if (Sequence) { 4368 if (DestType->isRValueReferenceType() || 4369 (T1Quals.hasConst() && !T1Quals.hasVolatile())) { 4370 Sequence.AddReferenceBindingStep(cv1T1IgnoreAS, 4371 /*BindingTemporary=*/true); 4372 if (T1Quals.hasAddressSpace()) 4373 Sequence.AddQualificationConversionStep( 4374 cv1T1, DestType->isRValueReferenceType() ? VK_XValue : VK_LValue); 4375 } else 4376 Sequence.SetFailed( 4377 InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary); 4378 } 4379 } 4380 4381 /// Attempt list initialization (C++0x [dcl.init.list]) 4382 static void TryListInitialization(Sema &S, 4383 const InitializedEntity &Entity, 4384 const InitializationKind &Kind, 4385 InitListExpr *InitList, 4386 InitializationSequence &Sequence, 4387 bool TreatUnavailableAsInvalid) { 4388 QualType DestType = Entity.getType(); 4389 4390 // C++ doesn't allow scalar initialization with more than one argument. 4391 // But C99 complex numbers are scalars and it makes sense there. 4392 if (S.getLangOpts().CPlusPlus && DestType->isScalarType() && 4393 !DestType->isAnyComplexType() && InitList->getNumInits() > 1) { 4394 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar); 4395 return; 4396 } 4397 if (DestType->isReferenceType()) { 4398 TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence, 4399 TreatUnavailableAsInvalid); 4400 return; 4401 } 4402 4403 if (DestType->isRecordType() && 4404 !S.isCompleteType(InitList->getBeginLoc(), DestType)) { 4405 Sequence.setIncompleteTypeFailure(DestType); 4406 return; 4407 } 4408 4409 // C++11 [dcl.init.list]p3, per DR1467: 4410 // - If T is a class type and the initializer list has a single element of 4411 // type cv U, where U is T or a class derived from T, the object is 4412 // initialized from that element (by copy-initialization for 4413 // copy-list-initialization, or by direct-initialization for 4414 // direct-list-initialization). 4415 // - Otherwise, if T is a character array and the initializer list has a 4416 // single element that is an appropriately-typed string literal 4417 // (8.5.2 [dcl.init.string]), initialization is performed as described 4418 // in that section. 4419 // - Otherwise, if T is an aggregate, [...] (continue below). 4420 if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) { 4421 if (DestType->isRecordType()) { 4422 QualType InitType = InitList->getInit(0)->getType(); 4423 if (S.Context.hasSameUnqualifiedType(InitType, DestType) || 4424 S.IsDerivedFrom(InitList->getBeginLoc(), InitType, DestType)) { 4425 Expr *InitListAsExpr = InitList; 4426 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType, 4427 DestType, Sequence, 4428 /*InitListSyntax*/false, 4429 /*IsInitListCopy*/true); 4430 return; 4431 } 4432 } 4433 if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) { 4434 Expr *SubInit[1] = {InitList->getInit(0)}; 4435 if (!isa<VariableArrayType>(DestAT) && 4436 IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) { 4437 InitializationKind SubKind = 4438 Kind.getKind() == InitializationKind::IK_DirectList 4439 ? InitializationKind::CreateDirect(Kind.getLocation(), 4440 InitList->getLBraceLoc(), 4441 InitList->getRBraceLoc()) 4442 : Kind; 4443 Sequence.InitializeFrom(S, Entity, SubKind, SubInit, 4444 /*TopLevelOfInitList*/ true, 4445 TreatUnavailableAsInvalid); 4446 4447 // TryStringLiteralInitialization() (in InitializeFrom()) will fail if 4448 // the element is not an appropriately-typed string literal, in which 4449 // case we should proceed as in C++11 (below). 4450 if (Sequence) { 4451 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 4452 return; 4453 } 4454 } 4455 } 4456 } 4457 4458 // C++11 [dcl.init.list]p3: 4459 // - If T is an aggregate, aggregate initialization is performed. 4460 if ((DestType->isRecordType() && !DestType->isAggregateType()) || 4461 (S.getLangOpts().CPlusPlus11 && 4462 S.isStdInitializerList(DestType, nullptr))) { 4463 if (S.getLangOpts().CPlusPlus11) { 4464 // - Otherwise, if the initializer list has no elements and T is a 4465 // class type with a default constructor, the object is 4466 // value-initialized. 4467 if (InitList->getNumInits() == 0) { 4468 CXXRecordDecl *RD = DestType->getAsCXXRecordDecl(); 4469 if (S.LookupDefaultConstructor(RD)) { 4470 TryValueInitialization(S, Entity, Kind, Sequence, InitList); 4471 return; 4472 } 4473 } 4474 4475 // - Otherwise, if T is a specialization of std::initializer_list<E>, 4476 // an initializer_list object constructed [...] 4477 if (TryInitializerListConstruction(S, InitList, DestType, Sequence, 4478 TreatUnavailableAsInvalid)) 4479 return; 4480 4481 // - Otherwise, if T is a class type, constructors are considered. 4482 Expr *InitListAsExpr = InitList; 4483 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType, 4484 DestType, Sequence, /*InitListSyntax*/true); 4485 } else 4486 Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType); 4487 return; 4488 } 4489 4490 if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() && 4491 InitList->getNumInits() == 1) { 4492 Expr *E = InitList->getInit(0); 4493 4494 // - Otherwise, if T is an enumeration with a fixed underlying type, 4495 // the initializer-list has a single element v, and the initialization 4496 // is direct-list-initialization, the object is initialized with the 4497 // value T(v); if a narrowing conversion is required to convert v to 4498 // the underlying type of T, the program is ill-formed. 4499 auto *ET = DestType->getAs<EnumType>(); 4500 if (S.getLangOpts().CPlusPlus17 && 4501 Kind.getKind() == InitializationKind::IK_DirectList && 4502 ET && ET->getDecl()->isFixed() && 4503 !S.Context.hasSameUnqualifiedType(E->getType(), DestType) && 4504 (E->getType()->isIntegralOrEnumerationType() || 4505 E->getType()->isFloatingType())) { 4506 // There are two ways that T(v) can work when T is an enumeration type. 4507 // If there is either an implicit conversion sequence from v to T or 4508 // a conversion function that can convert from v to T, then we use that. 4509 // Otherwise, if v is of integral, enumeration, or floating-point type, 4510 // it is converted to the enumeration type via its underlying type. 4511 // There is no overlap possible between these two cases (except when the 4512 // source value is already of the destination type), and the first 4513 // case is handled by the general case for single-element lists below. 4514 ImplicitConversionSequence ICS; 4515 ICS.setStandard(); 4516 ICS.Standard.setAsIdentityConversion(); 4517 if (!E->isPRValue()) 4518 ICS.Standard.First = ICK_Lvalue_To_Rvalue; 4519 // If E is of a floating-point type, then the conversion is ill-formed 4520 // due to narrowing, but go through the motions in order to produce the 4521 // right diagnostic. 4522 ICS.Standard.Second = E->getType()->isFloatingType() 4523 ? ICK_Floating_Integral 4524 : ICK_Integral_Conversion; 4525 ICS.Standard.setFromType(E->getType()); 4526 ICS.Standard.setToType(0, E->getType()); 4527 ICS.Standard.setToType(1, DestType); 4528 ICS.Standard.setToType(2, DestType); 4529 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2), 4530 /*TopLevelOfInitList*/true); 4531 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 4532 return; 4533 } 4534 4535 // - Otherwise, if the initializer list has a single element of type E 4536 // [...references are handled above...], the object or reference is 4537 // initialized from that element (by copy-initialization for 4538 // copy-list-initialization, or by direct-initialization for 4539 // direct-list-initialization); if a narrowing conversion is required 4540 // to convert the element to T, the program is ill-formed. 4541 // 4542 // Per core-24034, this is direct-initialization if we were performing 4543 // direct-list-initialization and copy-initialization otherwise. 4544 // We can't use InitListChecker for this, because it always performs 4545 // copy-initialization. This only matters if we might use an 'explicit' 4546 // conversion operator, or for the special case conversion of nullptr_t to 4547 // bool, so we only need to handle those cases. 4548 // 4549 // FIXME: Why not do this in all cases? 4550 Expr *Init = InitList->getInit(0); 4551 if (Init->getType()->isRecordType() || 4552 (Init->getType()->isNullPtrType() && DestType->isBooleanType())) { 4553 InitializationKind SubKind = 4554 Kind.getKind() == InitializationKind::IK_DirectList 4555 ? InitializationKind::CreateDirect(Kind.getLocation(), 4556 InitList->getLBraceLoc(), 4557 InitList->getRBraceLoc()) 4558 : Kind; 4559 Expr *SubInit[1] = { Init }; 4560 Sequence.InitializeFrom(S, Entity, SubKind, SubInit, 4561 /*TopLevelOfInitList*/true, 4562 TreatUnavailableAsInvalid); 4563 if (Sequence) 4564 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 4565 return; 4566 } 4567 } 4568 4569 InitListChecker CheckInitList(S, Entity, InitList, 4570 DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid); 4571 if (CheckInitList.HadError()) { 4572 Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed); 4573 return; 4574 } 4575 4576 // Add the list initialization step with the built init list. 4577 Sequence.AddListInitializationStep(DestType); 4578 } 4579 4580 /// Try a reference initialization that involves calling a conversion 4581 /// function. 4582 static OverloadingResult TryRefInitWithConversionFunction( 4583 Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, 4584 Expr *Initializer, bool AllowRValues, bool IsLValueRef, 4585 InitializationSequence &Sequence) { 4586 QualType DestType = Entity.getType(); 4587 QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); 4588 QualType T1 = cv1T1.getUnqualifiedType(); 4589 QualType cv2T2 = Initializer->getType(); 4590 QualType T2 = cv2T2.getUnqualifiedType(); 4591 4592 assert(!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2) && 4593 "Must have incompatible references when binding via conversion"); 4594 4595 // Build the candidate set directly in the initialization sequence 4596 // structure, so that it will persist if we fail. 4597 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 4598 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); 4599 4600 // Determine whether we are allowed to call explicit conversion operators. 4601 // Note that none of [over.match.copy], [over.match.conv], nor 4602 // [over.match.ref] permit an explicit constructor to be chosen when 4603 // initializing a reference, not even for direct-initialization. 4604 bool AllowExplicitCtors = false; 4605 bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding(); 4606 4607 const RecordType *T1RecordType = nullptr; 4608 if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) && 4609 S.isCompleteType(Kind.getLocation(), T1)) { 4610 // The type we're converting to is a class type. Enumerate its constructors 4611 // to see if there is a suitable conversion. 4612 CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl()); 4613 4614 for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) { 4615 auto Info = getConstructorInfo(D); 4616 if (!Info.Constructor) 4617 continue; 4618 4619 if (!Info.Constructor->isInvalidDecl() && 4620 Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) { 4621 if (Info.ConstructorTmpl) 4622 S.AddTemplateOverloadCandidate( 4623 Info.ConstructorTmpl, Info.FoundDecl, 4624 /*ExplicitArgs*/ nullptr, Initializer, CandidateSet, 4625 /*SuppressUserConversions=*/true, 4626 /*PartialOverloading*/ false, AllowExplicitCtors); 4627 else 4628 S.AddOverloadCandidate( 4629 Info.Constructor, Info.FoundDecl, Initializer, CandidateSet, 4630 /*SuppressUserConversions=*/true, 4631 /*PartialOverloading*/ false, AllowExplicitCtors); 4632 } 4633 } 4634 } 4635 if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl()) 4636 return OR_No_Viable_Function; 4637 4638 const RecordType *T2RecordType = nullptr; 4639 if ((T2RecordType = T2->getAs<RecordType>()) && 4640 S.isCompleteType(Kind.getLocation(), T2)) { 4641 // The type we're converting from is a class type, enumerate its conversion 4642 // functions. 4643 CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl()); 4644 4645 const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions(); 4646 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 4647 NamedDecl *D = *I; 4648 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 4649 if (isa<UsingShadowDecl>(D)) 4650 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 4651 4652 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 4653 CXXConversionDecl *Conv; 4654 if (ConvTemplate) 4655 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 4656 else 4657 Conv = cast<CXXConversionDecl>(D); 4658 4659 // If the conversion function doesn't return a reference type, 4660 // it can't be considered for this conversion unless we're allowed to 4661 // consider rvalues. 4662 // FIXME: Do we need to make sure that we only consider conversion 4663 // candidates with reference-compatible results? That might be needed to 4664 // break recursion. 4665 if ((AllowRValues || 4666 Conv->getConversionType()->isLValueReferenceType())) { 4667 if (ConvTemplate) 4668 S.AddTemplateConversionCandidate( 4669 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, 4670 CandidateSet, 4671 /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs); 4672 else 4673 S.AddConversionCandidate( 4674 Conv, I.getPair(), ActingDC, Initializer, DestType, CandidateSet, 4675 /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs); 4676 } 4677 } 4678 } 4679 if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl()) 4680 return OR_No_Viable_Function; 4681 4682 SourceLocation DeclLoc = Initializer->getBeginLoc(); 4683 4684 // Perform overload resolution. If it fails, return the failed result. 4685 OverloadCandidateSet::iterator Best; 4686 if (OverloadingResult Result 4687 = CandidateSet.BestViableFunction(S, DeclLoc, Best)) 4688 return Result; 4689 4690 FunctionDecl *Function = Best->Function; 4691 // This is the overload that will be used for this initialization step if we 4692 // use this initialization. Mark it as referenced. 4693 Function->setReferenced(); 4694 4695 // Compute the returned type and value kind of the conversion. 4696 QualType cv3T3; 4697 if (isa<CXXConversionDecl>(Function)) 4698 cv3T3 = Function->getReturnType(); 4699 else 4700 cv3T3 = T1; 4701 4702 ExprValueKind VK = VK_PRValue; 4703 if (cv3T3->isLValueReferenceType()) 4704 VK = VK_LValue; 4705 else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>()) 4706 VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue; 4707 cv3T3 = cv3T3.getNonLValueExprType(S.Context); 4708 4709 // Add the user-defined conversion step. 4710 bool HadMultipleCandidates = (CandidateSet.size() > 1); 4711 Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3, 4712 HadMultipleCandidates); 4713 4714 // Determine whether we'll need to perform derived-to-base adjustments or 4715 // other conversions. 4716 Sema::ReferenceConversions RefConv; 4717 Sema::ReferenceCompareResult NewRefRelationship = 4718 S.CompareReferenceRelationship(DeclLoc, T1, cv3T3, &RefConv); 4719 4720 // Add the final conversion sequence, if necessary. 4721 if (NewRefRelationship == Sema::Ref_Incompatible) { 4722 assert(!isa<CXXConstructorDecl>(Function) && 4723 "should not have conversion after constructor"); 4724 4725 ImplicitConversionSequence ICS; 4726 ICS.setStandard(); 4727 ICS.Standard = Best->FinalConversion; 4728 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2)); 4729 4730 // Every implicit conversion results in a prvalue, except for a glvalue 4731 // derived-to-base conversion, which we handle below. 4732 cv3T3 = ICS.Standard.getToType(2); 4733 VK = VK_PRValue; 4734 } 4735 4736 // If the converted initializer is a prvalue, its type T4 is adjusted to 4737 // type "cv1 T4" and the temporary materialization conversion is applied. 4738 // 4739 // We adjust the cv-qualifications to match the reference regardless of 4740 // whether we have a prvalue so that the AST records the change. In this 4741 // case, T4 is "cv3 T3". 4742 QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers()); 4743 if (cv1T4.getQualifiers() != cv3T3.getQualifiers()) 4744 Sequence.AddQualificationConversionStep(cv1T4, VK); 4745 Sequence.AddReferenceBindingStep(cv1T4, VK == VK_PRValue); 4746 VK = IsLValueRef ? VK_LValue : VK_XValue; 4747 4748 if (RefConv & Sema::ReferenceConversions::DerivedToBase) 4749 Sequence.AddDerivedToBaseCastStep(cv1T1, VK); 4750 else if (RefConv & Sema::ReferenceConversions::ObjC) 4751 Sequence.AddObjCObjectConversionStep(cv1T1); 4752 else if (RefConv & Sema::ReferenceConversions::Function) 4753 Sequence.AddFunctionReferenceConversionStep(cv1T1); 4754 else if (RefConv & Sema::ReferenceConversions::Qualification) { 4755 if (!S.Context.hasSameType(cv1T4, cv1T1)) 4756 Sequence.AddQualificationConversionStep(cv1T1, VK); 4757 } 4758 4759 return OR_Success; 4760 } 4761 4762 static void CheckCXX98CompatAccessibleCopy(Sema &S, 4763 const InitializedEntity &Entity, 4764 Expr *CurInitExpr); 4765 4766 /// Attempt reference initialization (C++0x [dcl.init.ref]) 4767 static void TryReferenceInitialization(Sema &S, 4768 const InitializedEntity &Entity, 4769 const InitializationKind &Kind, 4770 Expr *Initializer, 4771 InitializationSequence &Sequence) { 4772 QualType DestType = Entity.getType(); 4773 QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); 4774 Qualifiers T1Quals; 4775 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); 4776 QualType cv2T2 = S.getCompletedType(Initializer); 4777 Qualifiers T2Quals; 4778 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); 4779 4780 // If the initializer is the address of an overloaded function, try 4781 // to resolve the overloaded function. If all goes well, T2 is the 4782 // type of the resulting function. 4783 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, 4784 T1, Sequence)) 4785 return; 4786 4787 // Delegate everything else to a subfunction. 4788 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, 4789 T1Quals, cv2T2, T2, T2Quals, Sequence); 4790 } 4791 4792 /// Determine whether an expression is a non-referenceable glvalue (one to 4793 /// which a reference can never bind). Attempting to bind a reference to 4794 /// such a glvalue will always create a temporary. 4795 static bool isNonReferenceableGLValue(Expr *E) { 4796 return E->refersToBitField() || E->refersToVectorElement() || 4797 E->refersToMatrixElement(); 4798 } 4799 4800 /// Reference initialization without resolving overloaded functions. 4801 /// 4802 /// We also can get here in C if we call a builtin which is declared as 4803 /// a function with a parameter of reference type (such as __builtin_va_end()). 4804 static void TryReferenceInitializationCore(Sema &S, 4805 const InitializedEntity &Entity, 4806 const InitializationKind &Kind, 4807 Expr *Initializer, 4808 QualType cv1T1, QualType T1, 4809 Qualifiers T1Quals, 4810 QualType cv2T2, QualType T2, 4811 Qualifiers T2Quals, 4812 InitializationSequence &Sequence) { 4813 QualType DestType = Entity.getType(); 4814 SourceLocation DeclLoc = Initializer->getBeginLoc(); 4815 4816 // Compute some basic properties of the types and the initializer. 4817 bool isLValueRef = DestType->isLValueReferenceType(); 4818 bool isRValueRef = !isLValueRef; 4819 Expr::Classification InitCategory = Initializer->Classify(S.Context); 4820 4821 Sema::ReferenceConversions RefConv; 4822 Sema::ReferenceCompareResult RefRelationship = 4823 S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, &RefConv); 4824 4825 // C++0x [dcl.init.ref]p5: 4826 // A reference to type "cv1 T1" is initialized by an expression of type 4827 // "cv2 T2" as follows: 4828 // 4829 // - If the reference is an lvalue reference and the initializer 4830 // expression 4831 // Note the analogous bullet points for rvalue refs to functions. Because 4832 // there are no function rvalues in C++, rvalue refs to functions are treated 4833 // like lvalue refs. 4834 OverloadingResult ConvOvlResult = OR_Success; 4835 bool T1Function = T1->isFunctionType(); 4836 if (isLValueRef || T1Function) { 4837 if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) && 4838 (RefRelationship == Sema::Ref_Compatible || 4839 (Kind.isCStyleOrFunctionalCast() && 4840 RefRelationship == Sema::Ref_Related))) { 4841 // - is an lvalue (but is not a bit-field), and "cv1 T1" is 4842 // reference-compatible with "cv2 T2," or 4843 if (RefConv & (Sema::ReferenceConversions::DerivedToBase | 4844 Sema::ReferenceConversions::ObjC)) { 4845 // If we're converting the pointee, add any qualifiers first; 4846 // these qualifiers must all be top-level, so just convert to "cv1 T2". 4847 if (RefConv & (Sema::ReferenceConversions::Qualification)) 4848 Sequence.AddQualificationConversionStep( 4849 S.Context.getQualifiedType(T2, T1Quals), 4850 Initializer->getValueKind()); 4851 if (RefConv & Sema::ReferenceConversions::DerivedToBase) 4852 Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue); 4853 else 4854 Sequence.AddObjCObjectConversionStep(cv1T1); 4855 } else if (RefConv & Sema::ReferenceConversions::Qualification) { 4856 // Perform a (possibly multi-level) qualification conversion. 4857 Sequence.AddQualificationConversionStep(cv1T1, 4858 Initializer->getValueKind()); 4859 } else if (RefConv & Sema::ReferenceConversions::Function) { 4860 Sequence.AddFunctionReferenceConversionStep(cv1T1); 4861 } 4862 4863 // We only create a temporary here when binding a reference to a 4864 // bit-field or vector element. Those cases are't supposed to be 4865 // handled by this bullet, but the outcome is the same either way. 4866 Sequence.AddReferenceBindingStep(cv1T1, false); 4867 return; 4868 } 4869 4870 // - has a class type (i.e., T2 is a class type), where T1 is not 4871 // reference-related to T2, and can be implicitly converted to an 4872 // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible 4873 // with "cv3 T3" (this conversion is selected by enumerating the 4874 // applicable conversion functions (13.3.1.6) and choosing the best 4875 // one through overload resolution (13.3)), 4876 // If we have an rvalue ref to function type here, the rhs must be 4877 // an rvalue. DR1287 removed the "implicitly" here. 4878 if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() && 4879 (isLValueRef || InitCategory.isRValue())) { 4880 if (S.getLangOpts().CPlusPlus) { 4881 // Try conversion functions only for C++. 4882 ConvOvlResult = TryRefInitWithConversionFunction( 4883 S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef, 4884 /*IsLValueRef*/ isLValueRef, Sequence); 4885 if (ConvOvlResult == OR_Success) 4886 return; 4887 if (ConvOvlResult != OR_No_Viable_Function) 4888 Sequence.SetOverloadFailure( 4889 InitializationSequence::FK_ReferenceInitOverloadFailed, 4890 ConvOvlResult); 4891 } else { 4892 ConvOvlResult = OR_No_Viable_Function; 4893 } 4894 } 4895 } 4896 4897 // - Otherwise, the reference shall be an lvalue reference to a 4898 // non-volatile const type (i.e., cv1 shall be const), or the reference 4899 // shall be an rvalue reference. 4900 // For address spaces, we interpret this to mean that an addr space 4901 // of a reference "cv1 T1" is a superset of addr space of "cv2 T2". 4902 if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile() && 4903 T1Quals.isAddressSpaceSupersetOf(T2Quals))) { 4904 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) 4905 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 4906 else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) 4907 Sequence.SetOverloadFailure( 4908 InitializationSequence::FK_ReferenceInitOverloadFailed, 4909 ConvOvlResult); 4910 else if (!InitCategory.isLValue()) 4911 Sequence.SetFailed( 4912 T1Quals.isAddressSpaceSupersetOf(T2Quals) 4913 ? InitializationSequence:: 4914 FK_NonConstLValueReferenceBindingToTemporary 4915 : InitializationSequence::FK_ReferenceInitDropsQualifiers); 4916 else { 4917 InitializationSequence::FailureKind FK; 4918 switch (RefRelationship) { 4919 case Sema::Ref_Compatible: 4920 if (Initializer->refersToBitField()) 4921 FK = InitializationSequence:: 4922 FK_NonConstLValueReferenceBindingToBitfield; 4923 else if (Initializer->refersToVectorElement()) 4924 FK = InitializationSequence:: 4925 FK_NonConstLValueReferenceBindingToVectorElement; 4926 else if (Initializer->refersToMatrixElement()) 4927 FK = InitializationSequence:: 4928 FK_NonConstLValueReferenceBindingToMatrixElement; 4929 else 4930 llvm_unreachable("unexpected kind of compatible initializer"); 4931 break; 4932 case Sema::Ref_Related: 4933 FK = InitializationSequence::FK_ReferenceInitDropsQualifiers; 4934 break; 4935 case Sema::Ref_Incompatible: 4936 FK = InitializationSequence:: 4937 FK_NonConstLValueReferenceBindingToUnrelated; 4938 break; 4939 } 4940 Sequence.SetFailed(FK); 4941 } 4942 return; 4943 } 4944 4945 // - If the initializer expression 4946 // - is an 4947 // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or 4948 // [1z] rvalue (but not a bit-field) or 4949 // function lvalue and "cv1 T1" is reference-compatible with "cv2 T2" 4950 // 4951 // Note: functions are handled above and below rather than here... 4952 if (!T1Function && 4953 (RefRelationship == Sema::Ref_Compatible || 4954 (Kind.isCStyleOrFunctionalCast() && 4955 RefRelationship == Sema::Ref_Related)) && 4956 ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) || 4957 (InitCategory.isPRValue() && 4958 (S.getLangOpts().CPlusPlus17 || T2->isRecordType() || 4959 T2->isArrayType())))) { 4960 ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_PRValue; 4961 if (InitCategory.isPRValue() && T2->isRecordType()) { 4962 // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the 4963 // compiler the freedom to perform a copy here or bind to the 4964 // object, while C++0x requires that we bind directly to the 4965 // object. Hence, we always bind to the object without making an 4966 // extra copy. However, in C++03 requires that we check for the 4967 // presence of a suitable copy constructor: 4968 // 4969 // The constructor that would be used to make the copy shall 4970 // be callable whether or not the copy is actually done. 4971 if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt) 4972 Sequence.AddExtraneousCopyToTemporary(cv2T2); 4973 else if (S.getLangOpts().CPlusPlus11) 4974 CheckCXX98CompatAccessibleCopy(S, Entity, Initializer); 4975 } 4976 4977 // C++1z [dcl.init.ref]/5.2.1.2: 4978 // If the converted initializer is a prvalue, its type T4 is adjusted 4979 // to type "cv1 T4" and the temporary materialization conversion is 4980 // applied. 4981 // Postpone address space conversions to after the temporary materialization 4982 // conversion to allow creating temporaries in the alloca address space. 4983 auto T1QualsIgnoreAS = T1Quals; 4984 auto T2QualsIgnoreAS = T2Quals; 4985 if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) { 4986 T1QualsIgnoreAS.removeAddressSpace(); 4987 T2QualsIgnoreAS.removeAddressSpace(); 4988 } 4989 QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1QualsIgnoreAS); 4990 if (T1QualsIgnoreAS != T2QualsIgnoreAS) 4991 Sequence.AddQualificationConversionStep(cv1T4, ValueKind); 4992 Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_PRValue); 4993 ValueKind = isLValueRef ? VK_LValue : VK_XValue; 4994 // Add addr space conversion if required. 4995 if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) { 4996 auto T4Quals = cv1T4.getQualifiers(); 4997 T4Quals.addAddressSpace(T1Quals.getAddressSpace()); 4998 QualType cv1T4WithAS = S.Context.getQualifiedType(T2, T4Quals); 4999 Sequence.AddQualificationConversionStep(cv1T4WithAS, ValueKind); 5000 cv1T4 = cv1T4WithAS; 5001 } 5002 5003 // In any case, the reference is bound to the resulting glvalue (or to 5004 // an appropriate base class subobject). 5005 if (RefConv & Sema::ReferenceConversions::DerivedToBase) 5006 Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind); 5007 else if (RefConv & Sema::ReferenceConversions::ObjC) 5008 Sequence.AddObjCObjectConversionStep(cv1T1); 5009 else if (RefConv & Sema::ReferenceConversions::Qualification) { 5010 if (!S.Context.hasSameType(cv1T4, cv1T1)) 5011 Sequence.AddQualificationConversionStep(cv1T1, ValueKind); 5012 } 5013 return; 5014 } 5015 5016 // - has a class type (i.e., T2 is a class type), where T1 is not 5017 // reference-related to T2, and can be implicitly converted to an 5018 // xvalue, class prvalue, or function lvalue of type "cv3 T3", 5019 // where "cv1 T1" is reference-compatible with "cv3 T3", 5020 // 5021 // DR1287 removes the "implicitly" here. 5022 if (T2->isRecordType()) { 5023 if (RefRelationship == Sema::Ref_Incompatible) { 5024 ConvOvlResult = TryRefInitWithConversionFunction( 5025 S, Entity, Kind, Initializer, /*AllowRValues*/ true, 5026 /*IsLValueRef*/ isLValueRef, Sequence); 5027 if (ConvOvlResult) 5028 Sequence.SetOverloadFailure( 5029 InitializationSequence::FK_ReferenceInitOverloadFailed, 5030 ConvOvlResult); 5031 5032 return; 5033 } 5034 5035 if (RefRelationship == Sema::Ref_Compatible && 5036 isRValueRef && InitCategory.isLValue()) { 5037 Sequence.SetFailed( 5038 InitializationSequence::FK_RValueReferenceBindingToLValue); 5039 return; 5040 } 5041 5042 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); 5043 return; 5044 } 5045 5046 // - Otherwise, a temporary of type "cv1 T1" is created and initialized 5047 // from the initializer expression using the rules for a non-reference 5048 // copy-initialization (8.5). The reference is then bound to the 5049 // temporary. [...] 5050 5051 // Ignore address space of reference type at this point and perform address 5052 // space conversion after the reference binding step. 5053 QualType cv1T1IgnoreAS = 5054 T1Quals.hasAddressSpace() 5055 ? S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace()) 5056 : cv1T1; 5057 5058 InitializedEntity TempEntity = 5059 InitializedEntity::InitializeTemporary(cv1T1IgnoreAS); 5060 5061 // FIXME: Why do we use an implicit conversion here rather than trying 5062 // copy-initialization? 5063 ImplicitConversionSequence ICS 5064 = S.TryImplicitConversion(Initializer, TempEntity.getType(), 5065 /*SuppressUserConversions=*/false, 5066 Sema::AllowedExplicit::None, 5067 /*FIXME:InOverloadResolution=*/false, 5068 /*CStyle=*/Kind.isCStyleOrFunctionalCast(), 5069 /*AllowObjCWritebackConversion=*/false); 5070 5071 if (ICS.isBad()) { 5072 // FIXME: Use the conversion function set stored in ICS to turn 5073 // this into an overloading ambiguity diagnostic. However, we need 5074 // to keep that set as an OverloadCandidateSet rather than as some 5075 // other kind of set. 5076 if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) 5077 Sequence.SetOverloadFailure( 5078 InitializationSequence::FK_ReferenceInitOverloadFailed, 5079 ConvOvlResult); 5080 else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) 5081 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 5082 else 5083 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed); 5084 return; 5085 } else { 5086 Sequence.AddConversionSequenceStep(ICS, TempEntity.getType()); 5087 } 5088 5089 // [...] If T1 is reference-related to T2, cv1 must be the 5090 // same cv-qualification as, or greater cv-qualification 5091 // than, cv2; otherwise, the program is ill-formed. 5092 unsigned T1CVRQuals = T1Quals.getCVRQualifiers(); 5093 unsigned T2CVRQuals = T2Quals.getCVRQualifiers(); 5094 if (RefRelationship == Sema::Ref_Related && 5095 ((T1CVRQuals | T2CVRQuals) != T1CVRQuals || 5096 !T1Quals.isAddressSpaceSupersetOf(T2Quals))) { 5097 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); 5098 return; 5099 } 5100 5101 // [...] If T1 is reference-related to T2 and the reference is an rvalue 5102 // reference, the initializer expression shall not be an lvalue. 5103 if (RefRelationship >= Sema::Ref_Related && !isLValueRef && 5104 InitCategory.isLValue()) { 5105 Sequence.SetFailed( 5106 InitializationSequence::FK_RValueReferenceBindingToLValue); 5107 return; 5108 } 5109 5110 Sequence.AddReferenceBindingStep(cv1T1IgnoreAS, /*BindingTemporary=*/true); 5111 5112 if (T1Quals.hasAddressSpace()) { 5113 if (!Qualifiers::isAddressSpaceSupersetOf(T1Quals.getAddressSpace(), 5114 LangAS::Default)) { 5115 Sequence.SetFailed( 5116 InitializationSequence::FK_ReferenceAddrspaceMismatchTemporary); 5117 return; 5118 } 5119 Sequence.AddQualificationConversionStep(cv1T1, isLValueRef ? VK_LValue 5120 : VK_XValue); 5121 } 5122 } 5123 5124 /// Attempt character array initialization from a string literal 5125 /// (C++ [dcl.init.string], C99 6.7.8). 5126 static void TryStringLiteralInitialization(Sema &S, 5127 const InitializedEntity &Entity, 5128 const InitializationKind &Kind, 5129 Expr *Initializer, 5130 InitializationSequence &Sequence) { 5131 Sequence.AddStringInitStep(Entity.getType()); 5132 } 5133 5134 /// Attempt value initialization (C++ [dcl.init]p7). 5135 static void TryValueInitialization(Sema &S, 5136 const InitializedEntity &Entity, 5137 const InitializationKind &Kind, 5138 InitializationSequence &Sequence, 5139 InitListExpr *InitList) { 5140 assert((!InitList || InitList->getNumInits() == 0) && 5141 "Shouldn't use value-init for non-empty init lists"); 5142 5143 // C++98 [dcl.init]p5, C++11 [dcl.init]p7: 5144 // 5145 // To value-initialize an object of type T means: 5146 QualType T = Entity.getType(); 5147 5148 // -- if T is an array type, then each element is value-initialized; 5149 T = S.Context.getBaseElementType(T); 5150 5151 if (const RecordType *RT = T->getAs<RecordType>()) { 5152 if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 5153 bool NeedZeroInitialization = true; 5154 // C++98: 5155 // -- if T is a class type (clause 9) with a user-declared constructor 5156 // (12.1), then the default constructor for T is called (and the 5157 // initialization is ill-formed if T has no accessible default 5158 // constructor); 5159 // C++11: 5160 // -- if T is a class type (clause 9) with either no default constructor 5161 // (12.1 [class.ctor]) or a default constructor that is user-provided 5162 // or deleted, then the object is default-initialized; 5163 // 5164 // Note that the C++11 rule is the same as the C++98 rule if there are no 5165 // defaulted or deleted constructors, so we just use it unconditionally. 5166 CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl); 5167 if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted()) 5168 NeedZeroInitialization = false; 5169 5170 // -- if T is a (possibly cv-qualified) non-union class type without a 5171 // user-provided or deleted default constructor, then the object is 5172 // zero-initialized and, if T has a non-trivial default constructor, 5173 // default-initialized; 5174 // The 'non-union' here was removed by DR1502. The 'non-trivial default 5175 // constructor' part was removed by DR1507. 5176 if (NeedZeroInitialization) 5177 Sequence.AddZeroInitializationStep(Entity.getType()); 5178 5179 // C++03: 5180 // -- if T is a non-union class type without a user-declared constructor, 5181 // then every non-static data member and base class component of T is 5182 // value-initialized; 5183 // [...] A program that calls for [...] value-initialization of an 5184 // entity of reference type is ill-formed. 5185 // 5186 // C++11 doesn't need this handling, because value-initialization does not 5187 // occur recursively there, and the implicit default constructor is 5188 // defined as deleted in the problematic cases. 5189 if (!S.getLangOpts().CPlusPlus11 && 5190 ClassDecl->hasUninitializedReferenceMember()) { 5191 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference); 5192 return; 5193 } 5194 5195 // If this is list-value-initialization, pass the empty init list on when 5196 // building the constructor call. This affects the semantics of a few 5197 // things (such as whether an explicit default constructor can be called). 5198 Expr *InitListAsExpr = InitList; 5199 MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0); 5200 bool InitListSyntax = InitList; 5201 5202 // FIXME: Instead of creating a CXXConstructExpr of array type here, 5203 // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr. 5204 return TryConstructorInitialization( 5205 S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax); 5206 } 5207 } 5208 5209 Sequence.AddZeroInitializationStep(Entity.getType()); 5210 } 5211 5212 /// Attempt default initialization (C++ [dcl.init]p6). 5213 static void TryDefaultInitialization(Sema &S, 5214 const InitializedEntity &Entity, 5215 const InitializationKind &Kind, 5216 InitializationSequence &Sequence) { 5217 assert(Kind.getKind() == InitializationKind::IK_Default); 5218 5219 // C++ [dcl.init]p6: 5220 // To default-initialize an object of type T means: 5221 // - if T is an array type, each element is default-initialized; 5222 QualType DestType = S.Context.getBaseElementType(Entity.getType()); 5223 5224 // - if T is a (possibly cv-qualified) class type (Clause 9), the default 5225 // constructor for T is called (and the initialization is ill-formed if 5226 // T has no accessible default constructor); 5227 if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) { 5228 TryConstructorInitialization(S, Entity, Kind, None, DestType, 5229 Entity.getType(), Sequence); 5230 return; 5231 } 5232 5233 // - otherwise, no initialization is performed. 5234 5235 // If a program calls for the default initialization of an object of 5236 // a const-qualified type T, T shall be a class type with a user-provided 5237 // default constructor. 5238 if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) { 5239 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity)) 5240 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); 5241 return; 5242 } 5243 5244 // If the destination type has a lifetime property, zero-initialize it. 5245 if (DestType.getQualifiers().hasObjCLifetime()) { 5246 Sequence.AddZeroInitializationStep(Entity.getType()); 5247 return; 5248 } 5249 } 5250 5251 /// Attempt a user-defined conversion between two types (C++ [dcl.init]), 5252 /// which enumerates all conversion functions and performs overload resolution 5253 /// to select the best. 5254 static void TryUserDefinedConversion(Sema &S, 5255 QualType DestType, 5256 const InitializationKind &Kind, 5257 Expr *Initializer, 5258 InitializationSequence &Sequence, 5259 bool TopLevelOfInitList) { 5260 assert(!DestType->isReferenceType() && "References are handled elsewhere"); 5261 QualType SourceType = Initializer->getType(); 5262 assert((DestType->isRecordType() || SourceType->isRecordType()) && 5263 "Must have a class type to perform a user-defined conversion"); 5264 5265 // Build the candidate set directly in the initialization sequence 5266 // structure, so that it will persist if we fail. 5267 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 5268 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); 5269 CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace()); 5270 5271 // Determine whether we are allowed to call explicit constructors or 5272 // explicit conversion operators. 5273 bool AllowExplicit = Kind.AllowExplicit(); 5274 5275 if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) { 5276 // The type we're converting to is a class type. Enumerate its constructors 5277 // to see if there is a suitable conversion. 5278 CXXRecordDecl *DestRecordDecl 5279 = cast<CXXRecordDecl>(DestRecordType->getDecl()); 5280 5281 // Try to complete the type we're converting to. 5282 if (S.isCompleteType(Kind.getLocation(), DestType)) { 5283 for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) { 5284 auto Info = getConstructorInfo(D); 5285 if (!Info.Constructor) 5286 continue; 5287 5288 if (!Info.Constructor->isInvalidDecl() && 5289 Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) { 5290 if (Info.ConstructorTmpl) 5291 S.AddTemplateOverloadCandidate( 5292 Info.ConstructorTmpl, Info.FoundDecl, 5293 /*ExplicitArgs*/ nullptr, Initializer, CandidateSet, 5294 /*SuppressUserConversions=*/true, 5295 /*PartialOverloading*/ false, AllowExplicit); 5296 else 5297 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, 5298 Initializer, CandidateSet, 5299 /*SuppressUserConversions=*/true, 5300 /*PartialOverloading*/ false, AllowExplicit); 5301 } 5302 } 5303 } 5304 } 5305 5306 SourceLocation DeclLoc = Initializer->getBeginLoc(); 5307 5308 if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) { 5309 // The type we're converting from is a class type, enumerate its conversion 5310 // functions. 5311 5312 // We can only enumerate the conversion functions for a complete type; if 5313 // the type isn't complete, simply skip this step. 5314 if (S.isCompleteType(DeclLoc, SourceType)) { 5315 CXXRecordDecl *SourceRecordDecl 5316 = cast<CXXRecordDecl>(SourceRecordType->getDecl()); 5317 5318 const auto &Conversions = 5319 SourceRecordDecl->getVisibleConversionFunctions(); 5320 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 5321 NamedDecl *D = *I; 5322 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 5323 if (isa<UsingShadowDecl>(D)) 5324 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 5325 5326 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 5327 CXXConversionDecl *Conv; 5328 if (ConvTemplate) 5329 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 5330 else 5331 Conv = cast<CXXConversionDecl>(D); 5332 5333 if (ConvTemplate) 5334 S.AddTemplateConversionCandidate( 5335 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, 5336 CandidateSet, AllowExplicit, AllowExplicit); 5337 else 5338 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer, 5339 DestType, CandidateSet, AllowExplicit, 5340 AllowExplicit); 5341 } 5342 } 5343 } 5344 5345 // Perform overload resolution. If it fails, return the failed result. 5346 OverloadCandidateSet::iterator Best; 5347 if (OverloadingResult Result 5348 = CandidateSet.BestViableFunction(S, DeclLoc, Best)) { 5349 Sequence.SetOverloadFailure( 5350 InitializationSequence::FK_UserConversionOverloadFailed, Result); 5351 5352 // [class.copy.elision]p3: 5353 // In some copy-initialization contexts, a two-stage overload resolution 5354 // is performed. 5355 // If the first overload resolution selects a deleted function, we also 5356 // need the initialization sequence to decide whether to perform the second 5357 // overload resolution. 5358 if (!(Result == OR_Deleted && 5359 Kind.getKind() == InitializationKind::IK_Copy)) 5360 return; 5361 } 5362 5363 FunctionDecl *Function = Best->Function; 5364 Function->setReferenced(); 5365 bool HadMultipleCandidates = (CandidateSet.size() > 1); 5366 5367 if (isa<CXXConstructorDecl>(Function)) { 5368 // Add the user-defined conversion step. Any cv-qualification conversion is 5369 // subsumed by the initialization. Per DR5, the created temporary is of the 5370 // cv-unqualified type of the destination. 5371 Sequence.AddUserConversionStep(Function, Best->FoundDecl, 5372 DestType.getUnqualifiedType(), 5373 HadMultipleCandidates); 5374 5375 // C++14 and before: 5376 // - if the function is a constructor, the call initializes a temporary 5377 // of the cv-unqualified version of the destination type. The [...] 5378 // temporary [...] is then used to direct-initialize, according to the 5379 // rules above, the object that is the destination of the 5380 // copy-initialization. 5381 // Note that this just performs a simple object copy from the temporary. 5382 // 5383 // C++17: 5384 // - if the function is a constructor, the call is a prvalue of the 5385 // cv-unqualified version of the destination type whose return object 5386 // is initialized by the constructor. The call is used to 5387 // direct-initialize, according to the rules above, the object that 5388 // is the destination of the copy-initialization. 5389 // Therefore we need to do nothing further. 5390 // 5391 // FIXME: Mark this copy as extraneous. 5392 if (!S.getLangOpts().CPlusPlus17) 5393 Sequence.AddFinalCopy(DestType); 5394 else if (DestType.hasQualifiers()) 5395 Sequence.AddQualificationConversionStep(DestType, VK_PRValue); 5396 return; 5397 } 5398 5399 // Add the user-defined conversion step that calls the conversion function. 5400 QualType ConvType = Function->getCallResultType(); 5401 Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType, 5402 HadMultipleCandidates); 5403 5404 if (ConvType->getAs<RecordType>()) { 5405 // The call is used to direct-initialize [...] the object that is the 5406 // destination of the copy-initialization. 5407 // 5408 // In C++17, this does not call a constructor if we enter /17.6.1: 5409 // - If the initializer expression is a prvalue and the cv-unqualified 5410 // version of the source type is the same as the class of the 5411 // destination [... do not make an extra copy] 5412 // 5413 // FIXME: Mark this copy as extraneous. 5414 if (!S.getLangOpts().CPlusPlus17 || 5415 Function->getReturnType()->isReferenceType() || 5416 !S.Context.hasSameUnqualifiedType(ConvType, DestType)) 5417 Sequence.AddFinalCopy(DestType); 5418 else if (!S.Context.hasSameType(ConvType, DestType)) 5419 Sequence.AddQualificationConversionStep(DestType, VK_PRValue); 5420 return; 5421 } 5422 5423 // If the conversion following the call to the conversion function 5424 // is interesting, add it as a separate step. 5425 if (Best->FinalConversion.First || Best->FinalConversion.Second || 5426 Best->FinalConversion.Third) { 5427 ImplicitConversionSequence ICS; 5428 ICS.setStandard(); 5429 ICS.Standard = Best->FinalConversion; 5430 Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList); 5431 } 5432 } 5433 5434 /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>, 5435 /// a function with a pointer return type contains a 'return false;' statement. 5436 /// In C++11, 'false' is not a null pointer, so this breaks the build of any 5437 /// code using that header. 5438 /// 5439 /// Work around this by treating 'return false;' as zero-initializing the result 5440 /// if it's used in a pointer-returning function in a system header. 5441 static bool isLibstdcxxPointerReturnFalseHack(Sema &S, 5442 const InitializedEntity &Entity, 5443 const Expr *Init) { 5444 return S.getLangOpts().CPlusPlus11 && 5445 Entity.getKind() == InitializedEntity::EK_Result && 5446 Entity.getType()->isPointerType() && 5447 isa<CXXBoolLiteralExpr>(Init) && 5448 !cast<CXXBoolLiteralExpr>(Init)->getValue() && 5449 S.getSourceManager().isInSystemHeader(Init->getExprLoc()); 5450 } 5451 5452 /// The non-zero enum values here are indexes into diagnostic alternatives. 5453 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar }; 5454 5455 /// Determines whether this expression is an acceptable ICR source. 5456 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e, 5457 bool isAddressOf, bool &isWeakAccess) { 5458 // Skip parens. 5459 e = e->IgnoreParens(); 5460 5461 // Skip address-of nodes. 5462 if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) { 5463 if (op->getOpcode() == UO_AddrOf) 5464 return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true, 5465 isWeakAccess); 5466 5467 // Skip certain casts. 5468 } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) { 5469 switch (ce->getCastKind()) { 5470 case CK_Dependent: 5471 case CK_BitCast: 5472 case CK_LValueBitCast: 5473 case CK_NoOp: 5474 return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess); 5475 5476 case CK_ArrayToPointerDecay: 5477 return IIK_nonscalar; 5478 5479 case CK_NullToPointer: 5480 return IIK_okay; 5481 5482 default: 5483 break; 5484 } 5485 5486 // If we have a declaration reference, it had better be a local variable. 5487 } else if (isa<DeclRefExpr>(e)) { 5488 // set isWeakAccess to true, to mean that there will be an implicit 5489 // load which requires a cleanup. 5490 if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak) 5491 isWeakAccess = true; 5492 5493 if (!isAddressOf) return IIK_nonlocal; 5494 5495 VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl()); 5496 if (!var) return IIK_nonlocal; 5497 5498 return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal); 5499 5500 // If we have a conditional operator, check both sides. 5501 } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) { 5502 if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf, 5503 isWeakAccess)) 5504 return iik; 5505 5506 return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess); 5507 5508 // These are never scalar. 5509 } else if (isa<ArraySubscriptExpr>(e)) { 5510 return IIK_nonscalar; 5511 5512 // Otherwise, it needs to be a null pointer constant. 5513 } else { 5514 return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull) 5515 ? IIK_okay : IIK_nonlocal); 5516 } 5517 5518 return IIK_nonlocal; 5519 } 5520 5521 /// Check whether the given expression is a valid operand for an 5522 /// indirect copy/restore. 5523 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) { 5524 assert(src->isPRValue()); 5525 bool isWeakAccess = false; 5526 InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess); 5527 // If isWeakAccess to true, there will be an implicit 5528 // load which requires a cleanup. 5529 if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess) 5530 S.Cleanup.setExprNeedsCleanups(true); 5531 5532 if (iik == IIK_okay) return; 5533 5534 S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback) 5535 << ((unsigned) iik - 1) // shift index into diagnostic explanations 5536 << src->getSourceRange(); 5537 } 5538 5539 /// Determine whether we have compatible array types for the 5540 /// purposes of GNU by-copy array initialization. 5541 static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest, 5542 const ArrayType *Source) { 5543 // If the source and destination array types are equivalent, we're 5544 // done. 5545 if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0))) 5546 return true; 5547 5548 // Make sure that the element types are the same. 5549 if (!Context.hasSameType(Dest->getElementType(), Source->getElementType())) 5550 return false; 5551 5552 // The only mismatch we allow is when the destination is an 5553 // incomplete array type and the source is a constant array type. 5554 return Source->isConstantArrayType() && Dest->isIncompleteArrayType(); 5555 } 5556 5557 static bool tryObjCWritebackConversion(Sema &S, 5558 InitializationSequence &Sequence, 5559 const InitializedEntity &Entity, 5560 Expr *Initializer) { 5561 bool ArrayDecay = false; 5562 QualType ArgType = Initializer->getType(); 5563 QualType ArgPointee; 5564 if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) { 5565 ArrayDecay = true; 5566 ArgPointee = ArgArrayType->getElementType(); 5567 ArgType = S.Context.getPointerType(ArgPointee); 5568 } 5569 5570 // Handle write-back conversion. 5571 QualType ConvertedArgType; 5572 if (!S.isObjCWritebackConversion(ArgType, Entity.getType(), 5573 ConvertedArgType)) 5574 return false; 5575 5576 // We should copy unless we're passing to an argument explicitly 5577 // marked 'out'. 5578 bool ShouldCopy = true; 5579 if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl())) 5580 ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); 5581 5582 // Do we need an lvalue conversion? 5583 if (ArrayDecay || Initializer->isGLValue()) { 5584 ImplicitConversionSequence ICS; 5585 ICS.setStandard(); 5586 ICS.Standard.setAsIdentityConversion(); 5587 5588 QualType ResultType; 5589 if (ArrayDecay) { 5590 ICS.Standard.First = ICK_Array_To_Pointer; 5591 ResultType = S.Context.getPointerType(ArgPointee); 5592 } else { 5593 ICS.Standard.First = ICK_Lvalue_To_Rvalue; 5594 ResultType = Initializer->getType().getNonLValueExprType(S.Context); 5595 } 5596 5597 Sequence.AddConversionSequenceStep(ICS, ResultType); 5598 } 5599 5600 Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy); 5601 return true; 5602 } 5603 5604 static bool TryOCLSamplerInitialization(Sema &S, 5605 InitializationSequence &Sequence, 5606 QualType DestType, 5607 Expr *Initializer) { 5608 if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() || 5609 (!Initializer->isIntegerConstantExpr(S.Context) && 5610 !Initializer->getType()->isSamplerT())) 5611 return false; 5612 5613 Sequence.AddOCLSamplerInitStep(DestType); 5614 return true; 5615 } 5616 5617 static bool IsZeroInitializer(Expr *Initializer, Sema &S) { 5618 return Initializer->isIntegerConstantExpr(S.getASTContext()) && 5619 (Initializer->EvaluateKnownConstInt(S.getASTContext()) == 0); 5620 } 5621 5622 static bool TryOCLZeroOpaqueTypeInitialization(Sema &S, 5623 InitializationSequence &Sequence, 5624 QualType DestType, 5625 Expr *Initializer) { 5626 if (!S.getLangOpts().OpenCL) 5627 return false; 5628 5629 // 5630 // OpenCL 1.2 spec, s6.12.10 5631 // 5632 // The event argument can also be used to associate the 5633 // async_work_group_copy with a previous async copy allowing 5634 // an event to be shared by multiple async copies; otherwise 5635 // event should be zero. 5636 // 5637 if (DestType->isEventT() || DestType->isQueueT()) { 5638 if (!IsZeroInitializer(Initializer, S)) 5639 return false; 5640 5641 Sequence.AddOCLZeroOpaqueTypeStep(DestType); 5642 return true; 5643 } 5644 5645 // We should allow zero initialization for all types defined in the 5646 // cl_intel_device_side_avc_motion_estimation extension, except 5647 // intel_sub_group_avc_mce_payload_t and intel_sub_group_avc_mce_result_t. 5648 if (S.getOpenCLOptions().isAvailableOption( 5649 "cl_intel_device_side_avc_motion_estimation", S.getLangOpts()) && 5650 DestType->isOCLIntelSubgroupAVCType()) { 5651 if (DestType->isOCLIntelSubgroupAVCMcePayloadType() || 5652 DestType->isOCLIntelSubgroupAVCMceResultType()) 5653 return false; 5654 if (!IsZeroInitializer(Initializer, S)) 5655 return false; 5656 5657 Sequence.AddOCLZeroOpaqueTypeStep(DestType); 5658 return true; 5659 } 5660 5661 return false; 5662 } 5663 5664 InitializationSequence::InitializationSequence( 5665 Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, 5666 MultiExprArg Args, bool TopLevelOfInitList, bool TreatUnavailableAsInvalid) 5667 : FailedOverloadResult(OR_Success), 5668 FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) { 5669 InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList, 5670 TreatUnavailableAsInvalid); 5671 } 5672 5673 /// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the 5674 /// address of that function, this returns true. Otherwise, it returns false. 5675 static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) { 5676 auto *DRE = dyn_cast<DeclRefExpr>(E); 5677 if (!DRE || !isa<FunctionDecl>(DRE->getDecl())) 5678 return false; 5679 5680 return !S.checkAddressOfFunctionIsAvailable( 5681 cast<FunctionDecl>(DRE->getDecl())); 5682 } 5683 5684 /// Determine whether we can perform an elementwise array copy for this kind 5685 /// of entity. 5686 static bool canPerformArrayCopy(const InitializedEntity &Entity) { 5687 switch (Entity.getKind()) { 5688 case InitializedEntity::EK_LambdaCapture: 5689 // C++ [expr.prim.lambda]p24: 5690 // For array members, the array elements are direct-initialized in 5691 // increasing subscript order. 5692 return true; 5693 5694 case InitializedEntity::EK_Variable: 5695 // C++ [dcl.decomp]p1: 5696 // [...] each element is copy-initialized or direct-initialized from the 5697 // corresponding element of the assignment-expression [...] 5698 return isa<DecompositionDecl>(Entity.getDecl()); 5699 5700 case InitializedEntity::EK_Member: 5701 // C++ [class.copy.ctor]p14: 5702 // - if the member is an array, each element is direct-initialized with 5703 // the corresponding subobject of x 5704 return Entity.isImplicitMemberInitializer(); 5705 5706 case InitializedEntity::EK_ArrayElement: 5707 // All the above cases are intended to apply recursively, even though none 5708 // of them actually say that. 5709 if (auto *E = Entity.getParent()) 5710 return canPerformArrayCopy(*E); 5711 break; 5712 5713 default: 5714 break; 5715 } 5716 5717 return false; 5718 } 5719 5720 void InitializationSequence::InitializeFrom(Sema &S, 5721 const InitializedEntity &Entity, 5722 const InitializationKind &Kind, 5723 MultiExprArg Args, 5724 bool TopLevelOfInitList, 5725 bool TreatUnavailableAsInvalid) { 5726 ASTContext &Context = S.Context; 5727 5728 // Eliminate non-overload placeholder types in the arguments. We 5729 // need to do this before checking whether types are dependent 5730 // because lowering a pseudo-object expression might well give us 5731 // something of dependent type. 5732 for (unsigned I = 0, E = Args.size(); I != E; ++I) 5733 if (Args[I]->getType()->isNonOverloadPlaceholderType()) { 5734 // FIXME: should we be doing this here? 5735 ExprResult result = S.CheckPlaceholderExpr(Args[I]); 5736 if (result.isInvalid()) { 5737 SetFailed(FK_PlaceholderType); 5738 return; 5739 } 5740 Args[I] = result.get(); 5741 } 5742 5743 // C++0x [dcl.init]p16: 5744 // The semantics of initializers are as follows. The destination type is 5745 // the type of the object or reference being initialized and the source 5746 // type is the type of the initializer expression. The source type is not 5747 // defined when the initializer is a braced-init-list or when it is a 5748 // parenthesized list of expressions. 5749 QualType DestType = Entity.getType(); 5750 5751 if (DestType->isDependentType() || 5752 Expr::hasAnyTypeDependentArguments(Args)) { 5753 SequenceKind = DependentSequence; 5754 return; 5755 } 5756 5757 // Almost everything is a normal sequence. 5758 setSequenceKind(NormalSequence); 5759 5760 QualType SourceType; 5761 Expr *Initializer = nullptr; 5762 if (Args.size() == 1) { 5763 Initializer = Args[0]; 5764 if (S.getLangOpts().ObjC) { 5765 if (S.CheckObjCBridgeRelatedConversions(Initializer->getBeginLoc(), 5766 DestType, Initializer->getType(), 5767 Initializer) || 5768 S.CheckConversionToObjCLiteral(DestType, Initializer)) 5769 Args[0] = Initializer; 5770 } 5771 if (!isa<InitListExpr>(Initializer)) 5772 SourceType = Initializer->getType(); 5773 } 5774 5775 // - If the initializer is a (non-parenthesized) braced-init-list, the 5776 // object is list-initialized (8.5.4). 5777 if (Kind.getKind() != InitializationKind::IK_Direct) { 5778 if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) { 5779 TryListInitialization(S, Entity, Kind, InitList, *this, 5780 TreatUnavailableAsInvalid); 5781 return; 5782 } 5783 } 5784 5785 // - If the destination type is a reference type, see 8.5.3. 5786 if (DestType->isReferenceType()) { 5787 // C++0x [dcl.init.ref]p1: 5788 // A variable declared to be a T& or T&&, that is, "reference to type T" 5789 // (8.3.2), shall be initialized by an object, or function, of type T or 5790 // by an object that can be converted into a T. 5791 // (Therefore, multiple arguments are not permitted.) 5792 if (Args.size() != 1) 5793 SetFailed(FK_TooManyInitsForReference); 5794 // C++17 [dcl.init.ref]p5: 5795 // A reference [...] is initialized by an expression [...] as follows: 5796 // If the initializer is not an expression, presumably we should reject, 5797 // but the standard fails to actually say so. 5798 else if (isa<InitListExpr>(Args[0])) 5799 SetFailed(FK_ParenthesizedListInitForReference); 5800 else 5801 TryReferenceInitialization(S, Entity, Kind, Args[0], *this); 5802 return; 5803 } 5804 5805 // - If the initializer is (), the object is value-initialized. 5806 if (Kind.getKind() == InitializationKind::IK_Value || 5807 (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) { 5808 TryValueInitialization(S, Entity, Kind, *this); 5809 return; 5810 } 5811 5812 // Handle default initialization. 5813 if (Kind.getKind() == InitializationKind::IK_Default) { 5814 TryDefaultInitialization(S, Entity, Kind, *this); 5815 return; 5816 } 5817 5818 // - If the destination type is an array of characters, an array of 5819 // char16_t, an array of char32_t, or an array of wchar_t, and the 5820 // initializer is a string literal, see 8.5.2. 5821 // - Otherwise, if the destination type is an array, the program is 5822 // ill-formed. 5823 if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) { 5824 if (Initializer && isa<VariableArrayType>(DestAT)) { 5825 SetFailed(FK_VariableLengthArrayHasInitializer); 5826 return; 5827 } 5828 5829 if (Initializer) { 5830 switch (IsStringInit(Initializer, DestAT, Context)) { 5831 case SIF_None: 5832 TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this); 5833 return; 5834 case SIF_NarrowStringIntoWideChar: 5835 SetFailed(FK_NarrowStringIntoWideCharArray); 5836 return; 5837 case SIF_WideStringIntoChar: 5838 SetFailed(FK_WideStringIntoCharArray); 5839 return; 5840 case SIF_IncompatWideStringIntoWideChar: 5841 SetFailed(FK_IncompatWideStringIntoWideChar); 5842 return; 5843 case SIF_PlainStringIntoUTF8Char: 5844 SetFailed(FK_PlainStringIntoUTF8Char); 5845 return; 5846 case SIF_UTF8StringIntoPlainChar: 5847 SetFailed(FK_UTF8StringIntoPlainChar); 5848 return; 5849 case SIF_Other: 5850 break; 5851 } 5852 } 5853 5854 // Some kinds of initialization permit an array to be initialized from 5855 // another array of the same type, and perform elementwise initialization. 5856 if (Initializer && isa<ConstantArrayType>(DestAT) && 5857 S.Context.hasSameUnqualifiedType(Initializer->getType(), 5858 Entity.getType()) && 5859 canPerformArrayCopy(Entity)) { 5860 // If source is a prvalue, use it directly. 5861 if (Initializer->isPRValue()) { 5862 AddArrayInitStep(DestType, /*IsGNUExtension*/false); 5863 return; 5864 } 5865 5866 // Emit element-at-a-time copy loop. 5867 InitializedEntity Element = 5868 InitializedEntity::InitializeElement(S.Context, 0, Entity); 5869 QualType InitEltT = 5870 Context.getAsArrayType(Initializer->getType())->getElementType(); 5871 OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT, 5872 Initializer->getValueKind(), 5873 Initializer->getObjectKind()); 5874 Expr *OVEAsExpr = &OVE; 5875 InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList, 5876 TreatUnavailableAsInvalid); 5877 if (!Failed()) 5878 AddArrayInitLoopStep(Entity.getType(), InitEltT); 5879 return; 5880 } 5881 5882 // Note: as an GNU C extension, we allow initialization of an 5883 // array from a compound literal that creates an array of the same 5884 // type, so long as the initializer has no side effects. 5885 if (!S.getLangOpts().CPlusPlus && Initializer && 5886 isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) && 5887 Initializer->getType()->isArrayType()) { 5888 const ArrayType *SourceAT 5889 = Context.getAsArrayType(Initializer->getType()); 5890 if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT)) 5891 SetFailed(FK_ArrayTypeMismatch); 5892 else if (Initializer->HasSideEffects(S.Context)) 5893 SetFailed(FK_NonConstantArrayInit); 5894 else { 5895 AddArrayInitStep(DestType, /*IsGNUExtension*/true); 5896 } 5897 } 5898 // Note: as a GNU C++ extension, we allow list-initialization of a 5899 // class member of array type from a parenthesized initializer list. 5900 else if (S.getLangOpts().CPlusPlus && 5901 Entity.getKind() == InitializedEntity::EK_Member && 5902 Initializer && isa<InitListExpr>(Initializer)) { 5903 TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer), 5904 *this, TreatUnavailableAsInvalid); 5905 AddParenthesizedArrayInitStep(DestType); 5906 } else if (DestAT->getElementType()->isCharType()) 5907 SetFailed(FK_ArrayNeedsInitListOrStringLiteral); 5908 else if (IsWideCharCompatible(DestAT->getElementType(), Context)) 5909 SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral); 5910 else 5911 SetFailed(FK_ArrayNeedsInitList); 5912 5913 return; 5914 } 5915 5916 // Determine whether we should consider writeback conversions for 5917 // Objective-C ARC. 5918 bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount && 5919 Entity.isParameterKind(); 5920 5921 if (TryOCLSamplerInitialization(S, *this, DestType, Initializer)) 5922 return; 5923 5924 // We're at the end of the line for C: it's either a write-back conversion 5925 // or it's a C assignment. There's no need to check anything else. 5926 if (!S.getLangOpts().CPlusPlus) { 5927 // If allowed, check whether this is an Objective-C writeback conversion. 5928 if (allowObjCWritebackConversion && 5929 tryObjCWritebackConversion(S, *this, Entity, Initializer)) { 5930 return; 5931 } 5932 5933 if (TryOCLZeroOpaqueTypeInitialization(S, *this, DestType, Initializer)) 5934 return; 5935 5936 // Handle initialization in C 5937 AddCAssignmentStep(DestType); 5938 MaybeProduceObjCObject(S, *this, Entity); 5939 return; 5940 } 5941 5942 assert(S.getLangOpts().CPlusPlus); 5943 5944 // - If the destination type is a (possibly cv-qualified) class type: 5945 if (DestType->isRecordType()) { 5946 // - If the initialization is direct-initialization, or if it is 5947 // copy-initialization where the cv-unqualified version of the 5948 // source type is the same class as, or a derived class of, the 5949 // class of the destination, constructors are considered. [...] 5950 if (Kind.getKind() == InitializationKind::IK_Direct || 5951 (Kind.getKind() == InitializationKind::IK_Copy && 5952 (Context.hasSameUnqualifiedType(SourceType, DestType) || 5953 S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, DestType)))) 5954 TryConstructorInitialization(S, Entity, Kind, Args, 5955 DestType, DestType, *this); 5956 // - Otherwise (i.e., for the remaining copy-initialization cases), 5957 // user-defined conversion sequences that can convert from the source 5958 // type to the destination type or (when a conversion function is 5959 // used) to a derived class thereof are enumerated as described in 5960 // 13.3.1.4, and the best one is chosen through overload resolution 5961 // (13.3). 5962 else 5963 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this, 5964 TopLevelOfInitList); 5965 return; 5966 } 5967 5968 assert(Args.size() >= 1 && "Zero-argument case handled above"); 5969 5970 // The remaining cases all need a source type. 5971 if (Args.size() > 1) { 5972 SetFailed(FK_TooManyInitsForScalar); 5973 return; 5974 } else if (isa<InitListExpr>(Args[0])) { 5975 SetFailed(FK_ParenthesizedListInitForScalar); 5976 return; 5977 } 5978 5979 // - Otherwise, if the source type is a (possibly cv-qualified) class 5980 // type, conversion functions are considered. 5981 if (!SourceType.isNull() && SourceType->isRecordType()) { 5982 // For a conversion to _Atomic(T) from either T or a class type derived 5983 // from T, initialize the T object then convert to _Atomic type. 5984 bool NeedAtomicConversion = false; 5985 if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) { 5986 if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) || 5987 S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, 5988 Atomic->getValueType())) { 5989 DestType = Atomic->getValueType(); 5990 NeedAtomicConversion = true; 5991 } 5992 } 5993 5994 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this, 5995 TopLevelOfInitList); 5996 MaybeProduceObjCObject(S, *this, Entity); 5997 if (!Failed() && NeedAtomicConversion) 5998 AddAtomicConversionStep(Entity.getType()); 5999 return; 6000 } 6001 6002 // - Otherwise, if the initialization is direct-initialization, the source 6003 // type is std::nullptr_t, and the destination type is bool, the initial 6004 // value of the object being initialized is false. 6005 if (!SourceType.isNull() && SourceType->isNullPtrType() && 6006 DestType->isBooleanType() && 6007 Kind.getKind() == InitializationKind::IK_Direct) { 6008 AddConversionSequenceStep( 6009 ImplicitConversionSequence::getNullptrToBool(SourceType, DestType, 6010 Initializer->isGLValue()), 6011 DestType); 6012 return; 6013 } 6014 6015 // - Otherwise, the initial value of the object being initialized is the 6016 // (possibly converted) value of the initializer expression. Standard 6017 // conversions (Clause 4) will be used, if necessary, to convert the 6018 // initializer expression to the cv-unqualified version of the 6019 // destination type; no user-defined conversions are considered. 6020 6021 ImplicitConversionSequence ICS 6022 = S.TryImplicitConversion(Initializer, DestType, 6023 /*SuppressUserConversions*/true, 6024 Sema::AllowedExplicit::None, 6025 /*InOverloadResolution*/ false, 6026 /*CStyle=*/Kind.isCStyleOrFunctionalCast(), 6027 allowObjCWritebackConversion); 6028 6029 if (ICS.isStandard() && 6030 ICS.Standard.Second == ICK_Writeback_Conversion) { 6031 // Objective-C ARC writeback conversion. 6032 6033 // We should copy unless we're passing to an argument explicitly 6034 // marked 'out'. 6035 bool ShouldCopy = true; 6036 if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl())) 6037 ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); 6038 6039 // If there was an lvalue adjustment, add it as a separate conversion. 6040 if (ICS.Standard.First == ICK_Array_To_Pointer || 6041 ICS.Standard.First == ICK_Lvalue_To_Rvalue) { 6042 ImplicitConversionSequence LvalueICS; 6043 LvalueICS.setStandard(); 6044 LvalueICS.Standard.setAsIdentityConversion(); 6045 LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0)); 6046 LvalueICS.Standard.First = ICS.Standard.First; 6047 AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0)); 6048 } 6049 6050 AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy); 6051 } else if (ICS.isBad()) { 6052 DeclAccessPair dap; 6053 if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) { 6054 AddZeroInitializationStep(Entity.getType()); 6055 } else if (Initializer->getType() == Context.OverloadTy && 6056 !S.ResolveAddressOfOverloadedFunction(Initializer, DestType, 6057 false, dap)) 6058 SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 6059 else if (Initializer->getType()->isFunctionType() && 6060 isExprAnUnaddressableFunction(S, Initializer)) 6061 SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction); 6062 else 6063 SetFailed(InitializationSequence::FK_ConversionFailed); 6064 } else { 6065 AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList); 6066 6067 MaybeProduceObjCObject(S, *this, Entity); 6068 } 6069 } 6070 6071 InitializationSequence::~InitializationSequence() { 6072 for (auto &S : Steps) 6073 S.Destroy(); 6074 } 6075 6076 //===----------------------------------------------------------------------===// 6077 // Perform initialization 6078 //===----------------------------------------------------------------------===// 6079 static Sema::AssignmentAction 6080 getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) { 6081 switch(Entity.getKind()) { 6082 case InitializedEntity::EK_Variable: 6083 case InitializedEntity::EK_New: 6084 case InitializedEntity::EK_Exception: 6085 case InitializedEntity::EK_Base: 6086 case InitializedEntity::EK_Delegating: 6087 return Sema::AA_Initializing; 6088 6089 case InitializedEntity::EK_Parameter: 6090 if (Entity.getDecl() && 6091 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) 6092 return Sema::AA_Sending; 6093 6094 return Sema::AA_Passing; 6095 6096 case InitializedEntity::EK_Parameter_CF_Audited: 6097 if (Entity.getDecl() && 6098 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) 6099 return Sema::AA_Sending; 6100 6101 return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited; 6102 6103 case InitializedEntity::EK_Result: 6104 case InitializedEntity::EK_StmtExprResult: // FIXME: Not quite right. 6105 return Sema::AA_Returning; 6106 6107 case InitializedEntity::EK_Temporary: 6108 case InitializedEntity::EK_RelatedResult: 6109 // FIXME: Can we tell apart casting vs. converting? 6110 return Sema::AA_Casting; 6111 6112 case InitializedEntity::EK_TemplateParameter: 6113 // This is really initialization, but refer to it as conversion for 6114 // consistency with CheckConvertedConstantExpression. 6115 return Sema::AA_Converting; 6116 6117 case InitializedEntity::EK_Member: 6118 case InitializedEntity::EK_Binding: 6119 case InitializedEntity::EK_ArrayElement: 6120 case InitializedEntity::EK_VectorElement: 6121 case InitializedEntity::EK_ComplexElement: 6122 case InitializedEntity::EK_BlockElement: 6123 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 6124 case InitializedEntity::EK_LambdaCapture: 6125 case InitializedEntity::EK_CompoundLiteralInit: 6126 return Sema::AA_Initializing; 6127 } 6128 6129 llvm_unreachable("Invalid EntityKind!"); 6130 } 6131 6132 /// Whether we should bind a created object as a temporary when 6133 /// initializing the given entity. 6134 static bool shouldBindAsTemporary(const InitializedEntity &Entity) { 6135 switch (Entity.getKind()) { 6136 case InitializedEntity::EK_ArrayElement: 6137 case InitializedEntity::EK_Member: 6138 case InitializedEntity::EK_Result: 6139 case InitializedEntity::EK_StmtExprResult: 6140 case InitializedEntity::EK_New: 6141 case InitializedEntity::EK_Variable: 6142 case InitializedEntity::EK_Base: 6143 case InitializedEntity::EK_Delegating: 6144 case InitializedEntity::EK_VectorElement: 6145 case InitializedEntity::EK_ComplexElement: 6146 case InitializedEntity::EK_Exception: 6147 case InitializedEntity::EK_BlockElement: 6148 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 6149 case InitializedEntity::EK_LambdaCapture: 6150 case InitializedEntity::EK_CompoundLiteralInit: 6151 case InitializedEntity::EK_TemplateParameter: 6152 return false; 6153 6154 case InitializedEntity::EK_Parameter: 6155 case InitializedEntity::EK_Parameter_CF_Audited: 6156 case InitializedEntity::EK_Temporary: 6157 case InitializedEntity::EK_RelatedResult: 6158 case InitializedEntity::EK_Binding: 6159 return true; 6160 } 6161 6162 llvm_unreachable("missed an InitializedEntity kind?"); 6163 } 6164 6165 /// Whether the given entity, when initialized with an object 6166 /// created for that initialization, requires destruction. 6167 static bool shouldDestroyEntity(const InitializedEntity &Entity) { 6168 switch (Entity.getKind()) { 6169 case InitializedEntity::EK_Result: 6170 case InitializedEntity::EK_StmtExprResult: 6171 case InitializedEntity::EK_New: 6172 case InitializedEntity::EK_Base: 6173 case InitializedEntity::EK_Delegating: 6174 case InitializedEntity::EK_VectorElement: 6175 case InitializedEntity::EK_ComplexElement: 6176 case InitializedEntity::EK_BlockElement: 6177 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 6178 case InitializedEntity::EK_LambdaCapture: 6179 return false; 6180 6181 case InitializedEntity::EK_Member: 6182 case InitializedEntity::EK_Binding: 6183 case InitializedEntity::EK_Variable: 6184 case InitializedEntity::EK_Parameter: 6185 case InitializedEntity::EK_Parameter_CF_Audited: 6186 case InitializedEntity::EK_TemplateParameter: 6187 case InitializedEntity::EK_Temporary: 6188 case InitializedEntity::EK_ArrayElement: 6189 case InitializedEntity::EK_Exception: 6190 case InitializedEntity::EK_CompoundLiteralInit: 6191 case InitializedEntity::EK_RelatedResult: 6192 return true; 6193 } 6194 6195 llvm_unreachable("missed an InitializedEntity kind?"); 6196 } 6197 6198 /// Get the location at which initialization diagnostics should appear. 6199 static SourceLocation getInitializationLoc(const InitializedEntity &Entity, 6200 Expr *Initializer) { 6201 switch (Entity.getKind()) { 6202 case InitializedEntity::EK_Result: 6203 case InitializedEntity::EK_StmtExprResult: 6204 return Entity.getReturnLoc(); 6205 6206 case InitializedEntity::EK_Exception: 6207 return Entity.getThrowLoc(); 6208 6209 case InitializedEntity::EK_Variable: 6210 case InitializedEntity::EK_Binding: 6211 return Entity.getDecl()->getLocation(); 6212 6213 case InitializedEntity::EK_LambdaCapture: 6214 return Entity.getCaptureLoc(); 6215 6216 case InitializedEntity::EK_ArrayElement: 6217 case InitializedEntity::EK_Member: 6218 case InitializedEntity::EK_Parameter: 6219 case InitializedEntity::EK_Parameter_CF_Audited: 6220 case InitializedEntity::EK_TemplateParameter: 6221 case InitializedEntity::EK_Temporary: 6222 case InitializedEntity::EK_New: 6223 case InitializedEntity::EK_Base: 6224 case InitializedEntity::EK_Delegating: 6225 case InitializedEntity::EK_VectorElement: 6226 case InitializedEntity::EK_ComplexElement: 6227 case InitializedEntity::EK_BlockElement: 6228 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 6229 case InitializedEntity::EK_CompoundLiteralInit: 6230 case InitializedEntity::EK_RelatedResult: 6231 return Initializer->getBeginLoc(); 6232 } 6233 llvm_unreachable("missed an InitializedEntity kind?"); 6234 } 6235 6236 /// Make a (potentially elidable) temporary copy of the object 6237 /// provided by the given initializer by calling the appropriate copy 6238 /// constructor. 6239 /// 6240 /// \param S The Sema object used for type-checking. 6241 /// 6242 /// \param T The type of the temporary object, which must either be 6243 /// the type of the initializer expression or a superclass thereof. 6244 /// 6245 /// \param Entity The entity being initialized. 6246 /// 6247 /// \param CurInit The initializer expression. 6248 /// 6249 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that 6250 /// is permitted in C++03 (but not C++0x) when binding a reference to 6251 /// an rvalue. 6252 /// 6253 /// \returns An expression that copies the initializer expression into 6254 /// a temporary object, or an error expression if a copy could not be 6255 /// created. 6256 static ExprResult CopyObject(Sema &S, 6257 QualType T, 6258 const InitializedEntity &Entity, 6259 ExprResult CurInit, 6260 bool IsExtraneousCopy) { 6261 if (CurInit.isInvalid()) 6262 return CurInit; 6263 // Determine which class type we're copying to. 6264 Expr *CurInitExpr = (Expr *)CurInit.get(); 6265 CXXRecordDecl *Class = nullptr; 6266 if (const RecordType *Record = T->getAs<RecordType>()) 6267 Class = cast<CXXRecordDecl>(Record->getDecl()); 6268 if (!Class) 6269 return CurInit; 6270 6271 SourceLocation Loc = getInitializationLoc(Entity, CurInit.get()); 6272 6273 // Make sure that the type we are copying is complete. 6274 if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete)) 6275 return CurInit; 6276 6277 // Perform overload resolution using the class's constructors. Per 6278 // C++11 [dcl.init]p16, second bullet for class types, this initialization 6279 // is direct-initialization. 6280 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); 6281 DeclContext::lookup_result Ctors = S.LookupConstructors(Class); 6282 6283 OverloadCandidateSet::iterator Best; 6284 switch (ResolveConstructorOverload( 6285 S, Loc, CurInitExpr, CandidateSet, T, Ctors, Best, 6286 /*CopyInitializing=*/false, /*AllowExplicit=*/true, 6287 /*OnlyListConstructors=*/false, /*IsListInit=*/false, 6288 /*SecondStepOfCopyInit=*/true)) { 6289 case OR_Success: 6290 break; 6291 6292 case OR_No_Viable_Function: 6293 CandidateSet.NoteCandidates( 6294 PartialDiagnosticAt( 6295 Loc, S.PDiag(IsExtraneousCopy && !S.isSFINAEContext() 6296 ? diag::ext_rvalue_to_reference_temp_copy_no_viable 6297 : diag::err_temp_copy_no_viable) 6298 << (int)Entity.getKind() << CurInitExpr->getType() 6299 << CurInitExpr->getSourceRange()), 6300 S, OCD_AllCandidates, CurInitExpr); 6301 if (!IsExtraneousCopy || S.isSFINAEContext()) 6302 return ExprError(); 6303 return CurInit; 6304 6305 case OR_Ambiguous: 6306 CandidateSet.NoteCandidates( 6307 PartialDiagnosticAt(Loc, S.PDiag(diag::err_temp_copy_ambiguous) 6308 << (int)Entity.getKind() 6309 << CurInitExpr->getType() 6310 << CurInitExpr->getSourceRange()), 6311 S, OCD_AmbiguousCandidates, CurInitExpr); 6312 return ExprError(); 6313 6314 case OR_Deleted: 6315 S.Diag(Loc, diag::err_temp_copy_deleted) 6316 << (int)Entity.getKind() << CurInitExpr->getType() 6317 << CurInitExpr->getSourceRange(); 6318 S.NoteDeletedFunction(Best->Function); 6319 return ExprError(); 6320 } 6321 6322 bool HadMultipleCandidates = CandidateSet.size() > 1; 6323 6324 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function); 6325 SmallVector<Expr*, 8> ConstructorArgs; 6326 CurInit.get(); // Ownership transferred into MultiExprArg, below. 6327 6328 S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity, 6329 IsExtraneousCopy); 6330 6331 if (IsExtraneousCopy) { 6332 // If this is a totally extraneous copy for C++03 reference 6333 // binding purposes, just return the original initialization 6334 // expression. We don't generate an (elided) copy operation here 6335 // because doing so would require us to pass down a flag to avoid 6336 // infinite recursion, where each step adds another extraneous, 6337 // elidable copy. 6338 6339 // Instantiate the default arguments of any extra parameters in 6340 // the selected copy constructor, as if we were going to create a 6341 // proper call to the copy constructor. 6342 for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) { 6343 ParmVarDecl *Parm = Constructor->getParamDecl(I); 6344 if (S.RequireCompleteType(Loc, Parm->getType(), 6345 diag::err_call_incomplete_argument)) 6346 break; 6347 6348 // Build the default argument expression; we don't actually care 6349 // if this succeeds or not, because this routine will complain 6350 // if there was a problem. 6351 S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm); 6352 } 6353 6354 return CurInitExpr; 6355 } 6356 6357 // Determine the arguments required to actually perform the 6358 // constructor call (we might have derived-to-base conversions, or 6359 // the copy constructor may have default arguments). 6360 if (S.CompleteConstructorCall(Constructor, T, CurInitExpr, Loc, 6361 ConstructorArgs)) 6362 return ExprError(); 6363 6364 // C++0x [class.copy]p32: 6365 // When certain criteria are met, an implementation is allowed to 6366 // omit the copy/move construction of a class object, even if the 6367 // copy/move constructor and/or destructor for the object have 6368 // side effects. [...] 6369 // - when a temporary class object that has not been bound to a 6370 // reference (12.2) would be copied/moved to a class object 6371 // with the same cv-unqualified type, the copy/move operation 6372 // can be omitted by constructing the temporary object 6373 // directly into the target of the omitted copy/move 6374 // 6375 // Note that the other three bullets are handled elsewhere. Copy 6376 // elision for return statements and throw expressions are handled as part 6377 // of constructor initialization, while copy elision for exception handlers 6378 // is handled by the run-time. 6379 // 6380 // FIXME: If the function parameter is not the same type as the temporary, we 6381 // should still be able to elide the copy, but we don't have a way to 6382 // represent in the AST how much should be elided in this case. 6383 bool Elidable = 6384 CurInitExpr->isTemporaryObject(S.Context, Class) && 6385 S.Context.hasSameUnqualifiedType( 6386 Best->Function->getParamDecl(0)->getType().getNonReferenceType(), 6387 CurInitExpr->getType()); 6388 6389 // Actually perform the constructor call. 6390 CurInit = S.BuildCXXConstructExpr(Loc, T, Best->FoundDecl, Constructor, 6391 Elidable, 6392 ConstructorArgs, 6393 HadMultipleCandidates, 6394 /*ListInit*/ false, 6395 /*StdInitListInit*/ false, 6396 /*ZeroInit*/ false, 6397 CXXConstructExpr::CK_Complete, 6398 SourceRange()); 6399 6400 // If we're supposed to bind temporaries, do so. 6401 if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity)) 6402 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>()); 6403 return CurInit; 6404 } 6405 6406 /// Check whether elidable copy construction for binding a reference to 6407 /// a temporary would have succeeded if we were building in C++98 mode, for 6408 /// -Wc++98-compat. 6409 static void CheckCXX98CompatAccessibleCopy(Sema &S, 6410 const InitializedEntity &Entity, 6411 Expr *CurInitExpr) { 6412 assert(S.getLangOpts().CPlusPlus11); 6413 6414 const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>(); 6415 if (!Record) 6416 return; 6417 6418 SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr); 6419 if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc)) 6420 return; 6421 6422 // Find constructors which would have been considered. 6423 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); 6424 DeclContext::lookup_result Ctors = 6425 S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl())); 6426 6427 // Perform overload resolution. 6428 OverloadCandidateSet::iterator Best; 6429 OverloadingResult OR = ResolveConstructorOverload( 6430 S, Loc, CurInitExpr, CandidateSet, CurInitExpr->getType(), Ctors, Best, 6431 /*CopyInitializing=*/false, /*AllowExplicit=*/true, 6432 /*OnlyListConstructors=*/false, /*IsListInit=*/false, 6433 /*SecondStepOfCopyInit=*/true); 6434 6435 PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy) 6436 << OR << (int)Entity.getKind() << CurInitExpr->getType() 6437 << CurInitExpr->getSourceRange(); 6438 6439 switch (OR) { 6440 case OR_Success: 6441 S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function), 6442 Best->FoundDecl, Entity, Diag); 6443 // FIXME: Check default arguments as far as that's possible. 6444 break; 6445 6446 case OR_No_Viable_Function: 6447 CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S, 6448 OCD_AllCandidates, CurInitExpr); 6449 break; 6450 6451 case OR_Ambiguous: 6452 CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S, 6453 OCD_AmbiguousCandidates, CurInitExpr); 6454 break; 6455 6456 case OR_Deleted: 6457 S.Diag(Loc, Diag); 6458 S.NoteDeletedFunction(Best->Function); 6459 break; 6460 } 6461 } 6462 6463 void InitializationSequence::PrintInitLocationNote(Sema &S, 6464 const InitializedEntity &Entity) { 6465 if (Entity.isParamOrTemplateParamKind() && Entity.getDecl()) { 6466 if (Entity.getDecl()->getLocation().isInvalid()) 6467 return; 6468 6469 if (Entity.getDecl()->getDeclName()) 6470 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here) 6471 << Entity.getDecl()->getDeclName(); 6472 else 6473 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here); 6474 } 6475 else if (Entity.getKind() == InitializedEntity::EK_RelatedResult && 6476 Entity.getMethodDecl()) 6477 S.Diag(Entity.getMethodDecl()->getLocation(), 6478 diag::note_method_return_type_change) 6479 << Entity.getMethodDecl()->getDeclName(); 6480 } 6481 6482 /// Returns true if the parameters describe a constructor initialization of 6483 /// an explicit temporary object, e.g. "Point(x, y)". 6484 static bool isExplicitTemporary(const InitializedEntity &Entity, 6485 const InitializationKind &Kind, 6486 unsigned NumArgs) { 6487 switch (Entity.getKind()) { 6488 case InitializedEntity::EK_Temporary: 6489 case InitializedEntity::EK_CompoundLiteralInit: 6490 case InitializedEntity::EK_RelatedResult: 6491 break; 6492 default: 6493 return false; 6494 } 6495 6496 switch (Kind.getKind()) { 6497 case InitializationKind::IK_DirectList: 6498 return true; 6499 // FIXME: Hack to work around cast weirdness. 6500 case InitializationKind::IK_Direct: 6501 case InitializationKind::IK_Value: 6502 return NumArgs != 1; 6503 default: 6504 return false; 6505 } 6506 } 6507 6508 static ExprResult 6509 PerformConstructorInitialization(Sema &S, 6510 const InitializedEntity &Entity, 6511 const InitializationKind &Kind, 6512 MultiExprArg Args, 6513 const InitializationSequence::Step& Step, 6514 bool &ConstructorInitRequiresZeroInit, 6515 bool IsListInitialization, 6516 bool IsStdInitListInitialization, 6517 SourceLocation LBraceLoc, 6518 SourceLocation RBraceLoc) { 6519 unsigned NumArgs = Args.size(); 6520 CXXConstructorDecl *Constructor 6521 = cast<CXXConstructorDecl>(Step.Function.Function); 6522 bool HadMultipleCandidates = Step.Function.HadMultipleCandidates; 6523 6524 // Build a call to the selected constructor. 6525 SmallVector<Expr*, 8> ConstructorArgs; 6526 SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid()) 6527 ? Kind.getEqualLoc() 6528 : Kind.getLocation(); 6529 6530 if (Kind.getKind() == InitializationKind::IK_Default) { 6531 // Force even a trivial, implicit default constructor to be 6532 // semantically checked. We do this explicitly because we don't build 6533 // the definition for completely trivial constructors. 6534 assert(Constructor->getParent() && "No parent class for constructor."); 6535 if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() && 6536 Constructor->isTrivial() && !Constructor->isUsed(false)) { 6537 S.runWithSufficientStackSpace(Loc, [&] { 6538 S.DefineImplicitDefaultConstructor(Loc, Constructor); 6539 }); 6540 } 6541 } 6542 6543 ExprResult CurInit((Expr *)nullptr); 6544 6545 // C++ [over.match.copy]p1: 6546 // - When initializing a temporary to be bound to the first parameter 6547 // of a constructor that takes a reference to possibly cv-qualified 6548 // T as its first argument, called with a single argument in the 6549 // context of direct-initialization, explicit conversion functions 6550 // are also considered. 6551 bool AllowExplicitConv = 6552 Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 && 6553 hasCopyOrMoveCtorParam(S.Context, 6554 getConstructorInfo(Step.Function.FoundDecl)); 6555 6556 // Determine the arguments required to actually perform the constructor 6557 // call. 6558 if (S.CompleteConstructorCall(Constructor, Step.Type, Args, Loc, 6559 ConstructorArgs, AllowExplicitConv, 6560 IsListInitialization)) 6561 return ExprError(); 6562 6563 if (isExplicitTemporary(Entity, Kind, NumArgs)) { 6564 // An explicitly-constructed temporary, e.g., X(1, 2). 6565 if (S.DiagnoseUseOfDecl(Constructor, Loc)) 6566 return ExprError(); 6567 6568 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); 6569 if (!TSInfo) 6570 TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc); 6571 SourceRange ParenOrBraceRange = 6572 (Kind.getKind() == InitializationKind::IK_DirectList) 6573 ? SourceRange(LBraceLoc, RBraceLoc) 6574 : Kind.getParenOrBraceRange(); 6575 6576 CXXConstructorDecl *CalleeDecl = Constructor; 6577 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>( 6578 Step.Function.FoundDecl.getDecl())) { 6579 CalleeDecl = S.findInheritingConstructor(Loc, Constructor, Shadow); 6580 if (S.DiagnoseUseOfDecl(CalleeDecl, Loc)) 6581 return ExprError(); 6582 } 6583 S.MarkFunctionReferenced(Loc, CalleeDecl); 6584 6585 CurInit = S.CheckForImmediateInvocation( 6586 CXXTemporaryObjectExpr::Create( 6587 S.Context, CalleeDecl, 6588 Entity.getType().getNonLValueExprType(S.Context), TSInfo, 6589 ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates, 6590 IsListInitialization, IsStdInitListInitialization, 6591 ConstructorInitRequiresZeroInit), 6592 CalleeDecl); 6593 } else { 6594 CXXConstructExpr::ConstructionKind ConstructKind = 6595 CXXConstructExpr::CK_Complete; 6596 6597 if (Entity.getKind() == InitializedEntity::EK_Base) { 6598 ConstructKind = Entity.getBaseSpecifier()->isVirtual() ? 6599 CXXConstructExpr::CK_VirtualBase : 6600 CXXConstructExpr::CK_NonVirtualBase; 6601 } else if (Entity.getKind() == InitializedEntity::EK_Delegating) { 6602 ConstructKind = CXXConstructExpr::CK_Delegating; 6603 } 6604 6605 // Only get the parenthesis or brace range if it is a list initialization or 6606 // direct construction. 6607 SourceRange ParenOrBraceRange; 6608 if (IsListInitialization) 6609 ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc); 6610 else if (Kind.getKind() == InitializationKind::IK_Direct) 6611 ParenOrBraceRange = Kind.getParenOrBraceRange(); 6612 6613 // If the entity allows NRVO, mark the construction as elidable 6614 // unconditionally. 6615 if (Entity.allowsNRVO()) 6616 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type, 6617 Step.Function.FoundDecl, 6618 Constructor, /*Elidable=*/true, 6619 ConstructorArgs, 6620 HadMultipleCandidates, 6621 IsListInitialization, 6622 IsStdInitListInitialization, 6623 ConstructorInitRequiresZeroInit, 6624 ConstructKind, 6625 ParenOrBraceRange); 6626 else 6627 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type, 6628 Step.Function.FoundDecl, 6629 Constructor, 6630 ConstructorArgs, 6631 HadMultipleCandidates, 6632 IsListInitialization, 6633 IsStdInitListInitialization, 6634 ConstructorInitRequiresZeroInit, 6635 ConstructKind, 6636 ParenOrBraceRange); 6637 } 6638 if (CurInit.isInvalid()) 6639 return ExprError(); 6640 6641 // Only check access if all of that succeeded. 6642 S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity); 6643 if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc)) 6644 return ExprError(); 6645 6646 if (const ArrayType *AT = S.Context.getAsArrayType(Entity.getType())) 6647 if (checkDestructorReference(S.Context.getBaseElementType(AT), Loc, S)) 6648 return ExprError(); 6649 6650 if (shouldBindAsTemporary(Entity)) 6651 CurInit = S.MaybeBindToTemporary(CurInit.get()); 6652 6653 return CurInit; 6654 } 6655 6656 namespace { 6657 enum LifetimeKind { 6658 /// The lifetime of a temporary bound to this entity ends at the end of the 6659 /// full-expression, and that's (probably) fine. 6660 LK_FullExpression, 6661 6662 /// The lifetime of a temporary bound to this entity is extended to the 6663 /// lifeitme of the entity itself. 6664 LK_Extended, 6665 6666 /// The lifetime of a temporary bound to this entity probably ends too soon, 6667 /// because the entity is allocated in a new-expression. 6668 LK_New, 6669 6670 /// The lifetime of a temporary bound to this entity ends too soon, because 6671 /// the entity is a return object. 6672 LK_Return, 6673 6674 /// The lifetime of a temporary bound to this entity ends too soon, because 6675 /// the entity is the result of a statement expression. 6676 LK_StmtExprResult, 6677 6678 /// This is a mem-initializer: if it would extend a temporary (other than via 6679 /// a default member initializer), the program is ill-formed. 6680 LK_MemInitializer, 6681 }; 6682 using LifetimeResult = 6683 llvm::PointerIntPair<const InitializedEntity *, 3, LifetimeKind>; 6684 } 6685 6686 /// Determine the declaration which an initialized entity ultimately refers to, 6687 /// for the purpose of lifetime-extending a temporary bound to a reference in 6688 /// the initialization of \p Entity. 6689 static LifetimeResult getEntityLifetime( 6690 const InitializedEntity *Entity, 6691 const InitializedEntity *InitField = nullptr) { 6692 // C++11 [class.temporary]p5: 6693 switch (Entity->getKind()) { 6694 case InitializedEntity::EK_Variable: 6695 // The temporary [...] persists for the lifetime of the reference 6696 return {Entity, LK_Extended}; 6697 6698 case InitializedEntity::EK_Member: 6699 // For subobjects, we look at the complete object. 6700 if (Entity->getParent()) 6701 return getEntityLifetime(Entity->getParent(), Entity); 6702 6703 // except: 6704 // C++17 [class.base.init]p8: 6705 // A temporary expression bound to a reference member in a 6706 // mem-initializer is ill-formed. 6707 // C++17 [class.base.init]p11: 6708 // A temporary expression bound to a reference member from a 6709 // default member initializer is ill-formed. 6710 // 6711 // The context of p11 and its example suggest that it's only the use of a 6712 // default member initializer from a constructor that makes the program 6713 // ill-formed, not its mere existence, and that it can even be used by 6714 // aggregate initialization. 6715 return {Entity, Entity->isDefaultMemberInitializer() ? LK_Extended 6716 : LK_MemInitializer}; 6717 6718 case InitializedEntity::EK_Binding: 6719 // Per [dcl.decomp]p3, the binding is treated as a variable of reference 6720 // type. 6721 return {Entity, LK_Extended}; 6722 6723 case InitializedEntity::EK_Parameter: 6724 case InitializedEntity::EK_Parameter_CF_Audited: 6725 // -- A temporary bound to a reference parameter in a function call 6726 // persists until the completion of the full-expression containing 6727 // the call. 6728 return {nullptr, LK_FullExpression}; 6729 6730 case InitializedEntity::EK_TemplateParameter: 6731 // FIXME: This will always be ill-formed; should we eagerly diagnose it here? 6732 return {nullptr, LK_FullExpression}; 6733 6734 case InitializedEntity::EK_Result: 6735 // -- The lifetime of a temporary bound to the returned value in a 6736 // function return statement is not extended; the temporary is 6737 // destroyed at the end of the full-expression in the return statement. 6738 return {nullptr, LK_Return}; 6739 6740 case InitializedEntity::EK_StmtExprResult: 6741 // FIXME: Should we lifetime-extend through the result of a statement 6742 // expression? 6743 return {nullptr, LK_StmtExprResult}; 6744 6745 case InitializedEntity::EK_New: 6746 // -- A temporary bound to a reference in a new-initializer persists 6747 // until the completion of the full-expression containing the 6748 // new-initializer. 6749 return {nullptr, LK_New}; 6750 6751 case InitializedEntity::EK_Temporary: 6752 case InitializedEntity::EK_CompoundLiteralInit: 6753 case InitializedEntity::EK_RelatedResult: 6754 // We don't yet know the storage duration of the surrounding temporary. 6755 // Assume it's got full-expression duration for now, it will patch up our 6756 // storage duration if that's not correct. 6757 return {nullptr, LK_FullExpression}; 6758 6759 case InitializedEntity::EK_ArrayElement: 6760 // For subobjects, we look at the complete object. 6761 return getEntityLifetime(Entity->getParent(), InitField); 6762 6763 case InitializedEntity::EK_Base: 6764 // For subobjects, we look at the complete object. 6765 if (Entity->getParent()) 6766 return getEntityLifetime(Entity->getParent(), InitField); 6767 return {InitField, LK_MemInitializer}; 6768 6769 case InitializedEntity::EK_Delegating: 6770 // We can reach this case for aggregate initialization in a constructor: 6771 // struct A { int &&r; }; 6772 // struct B : A { B() : A{0} {} }; 6773 // In this case, use the outermost field decl as the context. 6774 return {InitField, LK_MemInitializer}; 6775 6776 case InitializedEntity::EK_BlockElement: 6777 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 6778 case InitializedEntity::EK_LambdaCapture: 6779 case InitializedEntity::EK_VectorElement: 6780 case InitializedEntity::EK_ComplexElement: 6781 return {nullptr, LK_FullExpression}; 6782 6783 case InitializedEntity::EK_Exception: 6784 // FIXME: Can we diagnose lifetime problems with exceptions? 6785 return {nullptr, LK_FullExpression}; 6786 } 6787 llvm_unreachable("unknown entity kind"); 6788 } 6789 6790 namespace { 6791 enum ReferenceKind { 6792 /// Lifetime would be extended by a reference binding to a temporary. 6793 RK_ReferenceBinding, 6794 /// Lifetime would be extended by a std::initializer_list object binding to 6795 /// its backing array. 6796 RK_StdInitializerList, 6797 }; 6798 6799 /// A temporary or local variable. This will be one of: 6800 /// * A MaterializeTemporaryExpr. 6801 /// * A DeclRefExpr whose declaration is a local. 6802 /// * An AddrLabelExpr. 6803 /// * A BlockExpr for a block with captures. 6804 using Local = Expr*; 6805 6806 /// Expressions we stepped over when looking for the local state. Any steps 6807 /// that would inhibit lifetime extension or take us out of subexpressions of 6808 /// the initializer are included. 6809 struct IndirectLocalPathEntry { 6810 enum EntryKind { 6811 DefaultInit, 6812 AddressOf, 6813 VarInit, 6814 LValToRVal, 6815 LifetimeBoundCall, 6816 TemporaryCopy, 6817 LambdaCaptureInit, 6818 GslReferenceInit, 6819 GslPointerInit 6820 } Kind; 6821 Expr *E; 6822 union { 6823 const Decl *D = nullptr; 6824 const LambdaCapture *Capture; 6825 }; 6826 IndirectLocalPathEntry() {} 6827 IndirectLocalPathEntry(EntryKind K, Expr *E) : Kind(K), E(E) {} 6828 IndirectLocalPathEntry(EntryKind K, Expr *E, const Decl *D) 6829 : Kind(K), E(E), D(D) {} 6830 IndirectLocalPathEntry(EntryKind K, Expr *E, const LambdaCapture *Capture) 6831 : Kind(K), E(E), Capture(Capture) {} 6832 }; 6833 6834 using IndirectLocalPath = llvm::SmallVectorImpl<IndirectLocalPathEntry>; 6835 6836 struct RevertToOldSizeRAII { 6837 IndirectLocalPath &Path; 6838 unsigned OldSize = Path.size(); 6839 RevertToOldSizeRAII(IndirectLocalPath &Path) : Path(Path) {} 6840 ~RevertToOldSizeRAII() { Path.resize(OldSize); } 6841 }; 6842 6843 using LocalVisitor = llvm::function_ref<bool(IndirectLocalPath &Path, Local L, 6844 ReferenceKind RK)>; 6845 } 6846 6847 static bool isVarOnPath(IndirectLocalPath &Path, VarDecl *VD) { 6848 for (auto E : Path) 6849 if (E.Kind == IndirectLocalPathEntry::VarInit && E.D == VD) 6850 return true; 6851 return false; 6852 } 6853 6854 static bool pathContainsInit(IndirectLocalPath &Path) { 6855 return llvm::any_of(Path, [=](IndirectLocalPathEntry E) { 6856 return E.Kind == IndirectLocalPathEntry::DefaultInit || 6857 E.Kind == IndirectLocalPathEntry::VarInit; 6858 }); 6859 } 6860 6861 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path, 6862 Expr *Init, LocalVisitor Visit, 6863 bool RevisitSubinits, 6864 bool EnableLifetimeWarnings); 6865 6866 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path, 6867 Expr *Init, ReferenceKind RK, 6868 LocalVisitor Visit, 6869 bool EnableLifetimeWarnings); 6870 6871 template <typename T> static bool isRecordWithAttr(QualType Type) { 6872 if (auto *RD = Type->getAsCXXRecordDecl()) 6873 return RD->hasAttr<T>(); 6874 return false; 6875 } 6876 6877 // Decl::isInStdNamespace will return false for iterators in some STL 6878 // implementations due to them being defined in a namespace outside of the std 6879 // namespace. 6880 static bool isInStlNamespace(const Decl *D) { 6881 const DeclContext *DC = D->getDeclContext(); 6882 if (!DC) 6883 return false; 6884 if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) 6885 if (const IdentifierInfo *II = ND->getIdentifier()) { 6886 StringRef Name = II->getName(); 6887 if (Name.size() >= 2 && Name.front() == '_' && 6888 (Name[1] == '_' || isUppercase(Name[1]))) 6889 return true; 6890 } 6891 6892 return DC->isStdNamespace(); 6893 } 6894 6895 static bool shouldTrackImplicitObjectArg(const CXXMethodDecl *Callee) { 6896 if (auto *Conv = dyn_cast_or_null<CXXConversionDecl>(Callee)) 6897 if (isRecordWithAttr<PointerAttr>(Conv->getConversionType())) 6898 return true; 6899 if (!isInStlNamespace(Callee->getParent())) 6900 return false; 6901 if (!isRecordWithAttr<PointerAttr>(Callee->getThisObjectType()) && 6902 !isRecordWithAttr<OwnerAttr>(Callee->getThisObjectType())) 6903 return false; 6904 if (Callee->getReturnType()->isPointerType() || 6905 isRecordWithAttr<PointerAttr>(Callee->getReturnType())) { 6906 if (!Callee->getIdentifier()) 6907 return false; 6908 return llvm::StringSwitch<bool>(Callee->getName()) 6909 .Cases("begin", "rbegin", "cbegin", "crbegin", true) 6910 .Cases("end", "rend", "cend", "crend", true) 6911 .Cases("c_str", "data", "get", true) 6912 // Map and set types. 6913 .Cases("find", "equal_range", "lower_bound", "upper_bound", true) 6914 .Default(false); 6915 } else if (Callee->getReturnType()->isReferenceType()) { 6916 if (!Callee->getIdentifier()) { 6917 auto OO = Callee->getOverloadedOperator(); 6918 return OO == OverloadedOperatorKind::OO_Subscript || 6919 OO == OverloadedOperatorKind::OO_Star; 6920 } 6921 return llvm::StringSwitch<bool>(Callee->getName()) 6922 .Cases("front", "back", "at", "top", "value", true) 6923 .Default(false); 6924 } 6925 return false; 6926 } 6927 6928 static bool shouldTrackFirstArgument(const FunctionDecl *FD) { 6929 if (!FD->getIdentifier() || FD->getNumParams() != 1) 6930 return false; 6931 const auto *RD = FD->getParamDecl(0)->getType()->getPointeeCXXRecordDecl(); 6932 if (!FD->isInStdNamespace() || !RD || !RD->isInStdNamespace()) 6933 return false; 6934 if (!isRecordWithAttr<PointerAttr>(QualType(RD->getTypeForDecl(), 0)) && 6935 !isRecordWithAttr<OwnerAttr>(QualType(RD->getTypeForDecl(), 0))) 6936 return false; 6937 if (FD->getReturnType()->isPointerType() || 6938 isRecordWithAttr<PointerAttr>(FD->getReturnType())) { 6939 return llvm::StringSwitch<bool>(FD->getName()) 6940 .Cases("begin", "rbegin", "cbegin", "crbegin", true) 6941 .Cases("end", "rend", "cend", "crend", true) 6942 .Case("data", true) 6943 .Default(false); 6944 } else if (FD->getReturnType()->isReferenceType()) { 6945 return llvm::StringSwitch<bool>(FD->getName()) 6946 .Cases("get", "any_cast", true) 6947 .Default(false); 6948 } 6949 return false; 6950 } 6951 6952 static void handleGslAnnotatedTypes(IndirectLocalPath &Path, Expr *Call, 6953 LocalVisitor Visit) { 6954 auto VisitPointerArg = [&](const Decl *D, Expr *Arg, bool Value) { 6955 // We are not interested in the temporary base objects of gsl Pointers: 6956 // Temp().ptr; // Here ptr might not dangle. 6957 if (isa<MemberExpr>(Arg->IgnoreImpCasts())) 6958 return; 6959 // Once we initialized a value with a reference, it can no longer dangle. 6960 if (!Value) { 6961 for (const IndirectLocalPathEntry &PE : llvm::reverse(Path)) { 6962 if (PE.Kind == IndirectLocalPathEntry::GslReferenceInit) 6963 continue; 6964 if (PE.Kind == IndirectLocalPathEntry::GslPointerInit) 6965 return; 6966 break; 6967 } 6968 } 6969 Path.push_back({Value ? IndirectLocalPathEntry::GslPointerInit 6970 : IndirectLocalPathEntry::GslReferenceInit, 6971 Arg, D}); 6972 if (Arg->isGLValue()) 6973 visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding, 6974 Visit, 6975 /*EnableLifetimeWarnings=*/true); 6976 else 6977 visitLocalsRetainedByInitializer(Path, Arg, Visit, true, 6978 /*EnableLifetimeWarnings=*/true); 6979 Path.pop_back(); 6980 }; 6981 6982 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) { 6983 const auto *MD = cast_or_null<CXXMethodDecl>(MCE->getDirectCallee()); 6984 if (MD && shouldTrackImplicitObjectArg(MD)) 6985 VisitPointerArg(MD, MCE->getImplicitObjectArgument(), 6986 !MD->getReturnType()->isReferenceType()); 6987 return; 6988 } else if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(Call)) { 6989 FunctionDecl *Callee = OCE->getDirectCallee(); 6990 if (Callee && Callee->isCXXInstanceMember() && 6991 shouldTrackImplicitObjectArg(cast<CXXMethodDecl>(Callee))) 6992 VisitPointerArg(Callee, OCE->getArg(0), 6993 !Callee->getReturnType()->isReferenceType()); 6994 return; 6995 } else if (auto *CE = dyn_cast<CallExpr>(Call)) { 6996 FunctionDecl *Callee = CE->getDirectCallee(); 6997 if (Callee && shouldTrackFirstArgument(Callee)) 6998 VisitPointerArg(Callee, CE->getArg(0), 6999 !Callee->getReturnType()->isReferenceType()); 7000 return; 7001 } 7002 7003 if (auto *CCE = dyn_cast<CXXConstructExpr>(Call)) { 7004 const auto *Ctor = CCE->getConstructor(); 7005 const CXXRecordDecl *RD = Ctor->getParent(); 7006 if (CCE->getNumArgs() > 0 && RD->hasAttr<PointerAttr>()) 7007 VisitPointerArg(Ctor->getParamDecl(0), CCE->getArgs()[0], true); 7008 } 7009 } 7010 7011 static bool implicitObjectParamIsLifetimeBound(const FunctionDecl *FD) { 7012 const TypeSourceInfo *TSI = FD->getTypeSourceInfo(); 7013 if (!TSI) 7014 return false; 7015 // Don't declare this variable in the second operand of the for-statement; 7016 // GCC miscompiles that by ending its lifetime before evaluating the 7017 // third operand. See gcc.gnu.org/PR86769. 7018 AttributedTypeLoc ATL; 7019 for (TypeLoc TL = TSI->getTypeLoc(); 7020 (ATL = TL.getAsAdjusted<AttributedTypeLoc>()); 7021 TL = ATL.getModifiedLoc()) { 7022 if (ATL.getAttrAs<LifetimeBoundAttr>()) 7023 return true; 7024 } 7025 7026 // Assume that all assignment operators with a "normal" return type return 7027 // *this, that is, an lvalue reference that is the same type as the implicit 7028 // object parameter (or the LHS for a non-member operator$=). 7029 OverloadedOperatorKind OO = FD->getDeclName().getCXXOverloadedOperator(); 7030 if (OO == OO_Equal || isCompoundAssignmentOperator(OO)) { 7031 QualType RetT = FD->getReturnType(); 7032 if (RetT->isLValueReferenceType()) { 7033 ASTContext &Ctx = FD->getASTContext(); 7034 QualType LHST; 7035 auto *MD = dyn_cast<CXXMethodDecl>(FD); 7036 if (MD && MD->isCXXInstanceMember()) 7037 LHST = Ctx.getLValueReferenceType(MD->getThisObjectType()); 7038 else 7039 LHST = MD->getParamDecl(0)->getType(); 7040 if (Ctx.hasSameType(RetT, LHST)) 7041 return true; 7042 } 7043 } 7044 7045 return false; 7046 } 7047 7048 static void visitLifetimeBoundArguments(IndirectLocalPath &Path, Expr *Call, 7049 LocalVisitor Visit) { 7050 const FunctionDecl *Callee; 7051 ArrayRef<Expr*> Args; 7052 7053 if (auto *CE = dyn_cast<CallExpr>(Call)) { 7054 Callee = CE->getDirectCallee(); 7055 Args = llvm::makeArrayRef(CE->getArgs(), CE->getNumArgs()); 7056 } else { 7057 auto *CCE = cast<CXXConstructExpr>(Call); 7058 Callee = CCE->getConstructor(); 7059 Args = llvm::makeArrayRef(CCE->getArgs(), CCE->getNumArgs()); 7060 } 7061 if (!Callee) 7062 return; 7063 7064 Expr *ObjectArg = nullptr; 7065 if (isa<CXXOperatorCallExpr>(Call) && Callee->isCXXInstanceMember()) { 7066 ObjectArg = Args[0]; 7067 Args = Args.slice(1); 7068 } else if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) { 7069 ObjectArg = MCE->getImplicitObjectArgument(); 7070 } 7071 7072 auto VisitLifetimeBoundArg = [&](const Decl *D, Expr *Arg) { 7073 Path.push_back({IndirectLocalPathEntry::LifetimeBoundCall, Arg, D}); 7074 if (Arg->isGLValue()) 7075 visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding, 7076 Visit, 7077 /*EnableLifetimeWarnings=*/false); 7078 else 7079 visitLocalsRetainedByInitializer(Path, Arg, Visit, true, 7080 /*EnableLifetimeWarnings=*/false); 7081 Path.pop_back(); 7082 }; 7083 7084 if (ObjectArg && implicitObjectParamIsLifetimeBound(Callee)) 7085 VisitLifetimeBoundArg(Callee, ObjectArg); 7086 7087 for (unsigned I = 0, 7088 N = std::min<unsigned>(Callee->getNumParams(), Args.size()); 7089 I != N; ++I) { 7090 if (Callee->getParamDecl(I)->hasAttr<LifetimeBoundAttr>()) 7091 VisitLifetimeBoundArg(Callee->getParamDecl(I), Args[I]); 7092 } 7093 } 7094 7095 /// Visit the locals that would be reachable through a reference bound to the 7096 /// glvalue expression \c Init. 7097 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path, 7098 Expr *Init, ReferenceKind RK, 7099 LocalVisitor Visit, 7100 bool EnableLifetimeWarnings) { 7101 RevertToOldSizeRAII RAII(Path); 7102 7103 // Walk past any constructs which we can lifetime-extend across. 7104 Expr *Old; 7105 do { 7106 Old = Init; 7107 7108 if (auto *FE = dyn_cast<FullExpr>(Init)) 7109 Init = FE->getSubExpr(); 7110 7111 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 7112 // If this is just redundant braces around an initializer, step over it. 7113 if (ILE->isTransparent()) 7114 Init = ILE->getInit(0); 7115 } 7116 7117 // Step over any subobject adjustments; we may have a materialized 7118 // temporary inside them. 7119 Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments()); 7120 7121 // Per current approach for DR1376, look through casts to reference type 7122 // when performing lifetime extension. 7123 if (CastExpr *CE = dyn_cast<CastExpr>(Init)) 7124 if (CE->getSubExpr()->isGLValue()) 7125 Init = CE->getSubExpr(); 7126 7127 // Per the current approach for DR1299, look through array element access 7128 // on array glvalues when performing lifetime extension. 7129 if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Init)) { 7130 Init = ASE->getBase(); 7131 auto *ICE = dyn_cast<ImplicitCastExpr>(Init); 7132 if (ICE && ICE->getCastKind() == CK_ArrayToPointerDecay) 7133 Init = ICE->getSubExpr(); 7134 else 7135 // We can't lifetime extend through this but we might still find some 7136 // retained temporaries. 7137 return visitLocalsRetainedByInitializer(Path, Init, Visit, true, 7138 EnableLifetimeWarnings); 7139 } 7140 7141 // Step into CXXDefaultInitExprs so we can diagnose cases where a 7142 // constructor inherits one as an implicit mem-initializer. 7143 if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) { 7144 Path.push_back( 7145 {IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()}); 7146 Init = DIE->getExpr(); 7147 } 7148 } while (Init != Old); 7149 7150 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Init)) { 7151 if (Visit(Path, Local(MTE), RK)) 7152 visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit, true, 7153 EnableLifetimeWarnings); 7154 } 7155 7156 if (isa<CallExpr>(Init)) { 7157 if (EnableLifetimeWarnings) 7158 handleGslAnnotatedTypes(Path, Init, Visit); 7159 return visitLifetimeBoundArguments(Path, Init, Visit); 7160 } 7161 7162 switch (Init->getStmtClass()) { 7163 case Stmt::DeclRefExprClass: { 7164 // If we find the name of a local non-reference parameter, we could have a 7165 // lifetime problem. 7166 auto *DRE = cast<DeclRefExpr>(Init); 7167 auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); 7168 if (VD && VD->hasLocalStorage() && 7169 !DRE->refersToEnclosingVariableOrCapture()) { 7170 if (!VD->getType()->isReferenceType()) { 7171 Visit(Path, Local(DRE), RK); 7172 } else if (isa<ParmVarDecl>(DRE->getDecl())) { 7173 // The lifetime of a reference parameter is unknown; assume it's OK 7174 // for now. 7175 break; 7176 } else if (VD->getInit() && !isVarOnPath(Path, VD)) { 7177 Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD}); 7178 visitLocalsRetainedByReferenceBinding(Path, VD->getInit(), 7179 RK_ReferenceBinding, Visit, 7180 EnableLifetimeWarnings); 7181 } 7182 } 7183 break; 7184 } 7185 7186 case Stmt::UnaryOperatorClass: { 7187 // The only unary operator that make sense to handle here 7188 // is Deref. All others don't resolve to a "name." This includes 7189 // handling all sorts of rvalues passed to a unary operator. 7190 const UnaryOperator *U = cast<UnaryOperator>(Init); 7191 if (U->getOpcode() == UO_Deref) 7192 visitLocalsRetainedByInitializer(Path, U->getSubExpr(), Visit, true, 7193 EnableLifetimeWarnings); 7194 break; 7195 } 7196 7197 case Stmt::OMPArraySectionExprClass: { 7198 visitLocalsRetainedByInitializer(Path, 7199 cast<OMPArraySectionExpr>(Init)->getBase(), 7200 Visit, true, EnableLifetimeWarnings); 7201 break; 7202 } 7203 7204 case Stmt::ConditionalOperatorClass: 7205 case Stmt::BinaryConditionalOperatorClass: { 7206 auto *C = cast<AbstractConditionalOperator>(Init); 7207 if (!C->getTrueExpr()->getType()->isVoidType()) 7208 visitLocalsRetainedByReferenceBinding(Path, C->getTrueExpr(), RK, Visit, 7209 EnableLifetimeWarnings); 7210 if (!C->getFalseExpr()->getType()->isVoidType()) 7211 visitLocalsRetainedByReferenceBinding(Path, C->getFalseExpr(), RK, Visit, 7212 EnableLifetimeWarnings); 7213 break; 7214 } 7215 7216 // FIXME: Visit the left-hand side of an -> or ->*. 7217 7218 default: 7219 break; 7220 } 7221 } 7222 7223 /// Visit the locals that would be reachable through an object initialized by 7224 /// the prvalue expression \c Init. 7225 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path, 7226 Expr *Init, LocalVisitor Visit, 7227 bool RevisitSubinits, 7228 bool EnableLifetimeWarnings) { 7229 RevertToOldSizeRAII RAII(Path); 7230 7231 Expr *Old; 7232 do { 7233 Old = Init; 7234 7235 // Step into CXXDefaultInitExprs so we can diagnose cases where a 7236 // constructor inherits one as an implicit mem-initializer. 7237 if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) { 7238 Path.push_back({IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()}); 7239 Init = DIE->getExpr(); 7240 } 7241 7242 if (auto *FE = dyn_cast<FullExpr>(Init)) 7243 Init = FE->getSubExpr(); 7244 7245 // Dig out the expression which constructs the extended temporary. 7246 Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments()); 7247 7248 if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init)) 7249 Init = BTE->getSubExpr(); 7250 7251 Init = Init->IgnoreParens(); 7252 7253 // Step over value-preserving rvalue casts. 7254 if (auto *CE = dyn_cast<CastExpr>(Init)) { 7255 switch (CE->getCastKind()) { 7256 case CK_LValueToRValue: 7257 // If we can match the lvalue to a const object, we can look at its 7258 // initializer. 7259 Path.push_back({IndirectLocalPathEntry::LValToRVal, CE}); 7260 return visitLocalsRetainedByReferenceBinding( 7261 Path, Init, RK_ReferenceBinding, 7262 [&](IndirectLocalPath &Path, Local L, ReferenceKind RK) -> bool { 7263 if (auto *DRE = dyn_cast<DeclRefExpr>(L)) { 7264 auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); 7265 if (VD && VD->getType().isConstQualified() && VD->getInit() && 7266 !isVarOnPath(Path, VD)) { 7267 Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD}); 7268 visitLocalsRetainedByInitializer(Path, VD->getInit(), Visit, true, 7269 EnableLifetimeWarnings); 7270 } 7271 } else if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L)) { 7272 if (MTE->getType().isConstQualified()) 7273 visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit, 7274 true, EnableLifetimeWarnings); 7275 } 7276 return false; 7277 }, EnableLifetimeWarnings); 7278 7279 // We assume that objects can be retained by pointers cast to integers, 7280 // but not if the integer is cast to floating-point type or to _Complex. 7281 // We assume that casts to 'bool' do not preserve enough information to 7282 // retain a local object. 7283 case CK_NoOp: 7284 case CK_BitCast: 7285 case CK_BaseToDerived: 7286 case CK_DerivedToBase: 7287 case CK_UncheckedDerivedToBase: 7288 case CK_Dynamic: 7289 case CK_ToUnion: 7290 case CK_UserDefinedConversion: 7291 case CK_ConstructorConversion: 7292 case CK_IntegralToPointer: 7293 case CK_PointerToIntegral: 7294 case CK_VectorSplat: 7295 case CK_IntegralCast: 7296 case CK_CPointerToObjCPointerCast: 7297 case CK_BlockPointerToObjCPointerCast: 7298 case CK_AnyPointerToBlockPointerCast: 7299 case CK_AddressSpaceConversion: 7300 break; 7301 7302 case CK_ArrayToPointerDecay: 7303 // Model array-to-pointer decay as taking the address of the array 7304 // lvalue. 7305 Path.push_back({IndirectLocalPathEntry::AddressOf, CE}); 7306 return visitLocalsRetainedByReferenceBinding(Path, CE->getSubExpr(), 7307 RK_ReferenceBinding, Visit, 7308 EnableLifetimeWarnings); 7309 7310 default: 7311 return; 7312 } 7313 7314 Init = CE->getSubExpr(); 7315 } 7316 } while (Old != Init); 7317 7318 // C++17 [dcl.init.list]p6: 7319 // initializing an initializer_list object from the array extends the 7320 // lifetime of the array exactly like binding a reference to a temporary. 7321 if (auto *ILE = dyn_cast<CXXStdInitializerListExpr>(Init)) 7322 return visitLocalsRetainedByReferenceBinding(Path, ILE->getSubExpr(), 7323 RK_StdInitializerList, Visit, 7324 EnableLifetimeWarnings); 7325 7326 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 7327 // We already visited the elements of this initializer list while 7328 // performing the initialization. Don't visit them again unless we've 7329 // changed the lifetime of the initialized entity. 7330 if (!RevisitSubinits) 7331 return; 7332 7333 if (ILE->isTransparent()) 7334 return visitLocalsRetainedByInitializer(Path, ILE->getInit(0), Visit, 7335 RevisitSubinits, 7336 EnableLifetimeWarnings); 7337 7338 if (ILE->getType()->isArrayType()) { 7339 for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I) 7340 visitLocalsRetainedByInitializer(Path, ILE->getInit(I), Visit, 7341 RevisitSubinits, 7342 EnableLifetimeWarnings); 7343 return; 7344 } 7345 7346 if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) { 7347 assert(RD->isAggregate() && "aggregate init on non-aggregate"); 7348 7349 // If we lifetime-extend a braced initializer which is initializing an 7350 // aggregate, and that aggregate contains reference members which are 7351 // bound to temporaries, those temporaries are also lifetime-extended. 7352 if (RD->isUnion() && ILE->getInitializedFieldInUnion() && 7353 ILE->getInitializedFieldInUnion()->getType()->isReferenceType()) 7354 visitLocalsRetainedByReferenceBinding(Path, ILE->getInit(0), 7355 RK_ReferenceBinding, Visit, 7356 EnableLifetimeWarnings); 7357 else { 7358 unsigned Index = 0; 7359 for (; Index < RD->getNumBases() && Index < ILE->getNumInits(); ++Index) 7360 visitLocalsRetainedByInitializer(Path, ILE->getInit(Index), Visit, 7361 RevisitSubinits, 7362 EnableLifetimeWarnings); 7363 for (const auto *I : RD->fields()) { 7364 if (Index >= ILE->getNumInits()) 7365 break; 7366 if (I->isUnnamedBitfield()) 7367 continue; 7368 Expr *SubInit = ILE->getInit(Index); 7369 if (I->getType()->isReferenceType()) 7370 visitLocalsRetainedByReferenceBinding(Path, SubInit, 7371 RK_ReferenceBinding, Visit, 7372 EnableLifetimeWarnings); 7373 else 7374 // This might be either aggregate-initialization of a member or 7375 // initialization of a std::initializer_list object. Regardless, 7376 // we should recursively lifetime-extend that initializer. 7377 visitLocalsRetainedByInitializer(Path, SubInit, Visit, 7378 RevisitSubinits, 7379 EnableLifetimeWarnings); 7380 ++Index; 7381 } 7382 } 7383 } 7384 return; 7385 } 7386 7387 // The lifetime of an init-capture is that of the closure object constructed 7388 // by a lambda-expression. 7389 if (auto *LE = dyn_cast<LambdaExpr>(Init)) { 7390 LambdaExpr::capture_iterator CapI = LE->capture_begin(); 7391 for (Expr *E : LE->capture_inits()) { 7392 assert(CapI != LE->capture_end()); 7393 const LambdaCapture &Cap = *CapI++; 7394 if (!E) 7395 continue; 7396 if (Cap.capturesVariable()) 7397 Path.push_back({IndirectLocalPathEntry::LambdaCaptureInit, E, &Cap}); 7398 if (E->isGLValue()) 7399 visitLocalsRetainedByReferenceBinding(Path, E, RK_ReferenceBinding, 7400 Visit, EnableLifetimeWarnings); 7401 else 7402 visitLocalsRetainedByInitializer(Path, E, Visit, true, 7403 EnableLifetimeWarnings); 7404 if (Cap.capturesVariable()) 7405 Path.pop_back(); 7406 } 7407 } 7408 7409 // Assume that a copy or move from a temporary references the same objects 7410 // that the temporary does. 7411 if (auto *CCE = dyn_cast<CXXConstructExpr>(Init)) { 7412 if (CCE->getConstructor()->isCopyOrMoveConstructor()) { 7413 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(CCE->getArg(0))) { 7414 Expr *Arg = MTE->getSubExpr(); 7415 Path.push_back({IndirectLocalPathEntry::TemporaryCopy, Arg, 7416 CCE->getConstructor()}); 7417 visitLocalsRetainedByInitializer(Path, Arg, Visit, true, 7418 /*EnableLifetimeWarnings*/false); 7419 Path.pop_back(); 7420 } 7421 } 7422 } 7423 7424 if (isa<CallExpr>(Init) || isa<CXXConstructExpr>(Init)) { 7425 if (EnableLifetimeWarnings) 7426 handleGslAnnotatedTypes(Path, Init, Visit); 7427 return visitLifetimeBoundArguments(Path, Init, Visit); 7428 } 7429 7430 switch (Init->getStmtClass()) { 7431 case Stmt::UnaryOperatorClass: { 7432 auto *UO = cast<UnaryOperator>(Init); 7433 // If the initializer is the address of a local, we could have a lifetime 7434 // problem. 7435 if (UO->getOpcode() == UO_AddrOf) { 7436 // If this is &rvalue, then it's ill-formed and we have already diagnosed 7437 // it. Don't produce a redundant warning about the lifetime of the 7438 // temporary. 7439 if (isa<MaterializeTemporaryExpr>(UO->getSubExpr())) 7440 return; 7441 7442 Path.push_back({IndirectLocalPathEntry::AddressOf, UO}); 7443 visitLocalsRetainedByReferenceBinding(Path, UO->getSubExpr(), 7444 RK_ReferenceBinding, Visit, 7445 EnableLifetimeWarnings); 7446 } 7447 break; 7448 } 7449 7450 case Stmt::BinaryOperatorClass: { 7451 // Handle pointer arithmetic. 7452 auto *BO = cast<BinaryOperator>(Init); 7453 BinaryOperatorKind BOK = BO->getOpcode(); 7454 if (!BO->getType()->isPointerType() || (BOK != BO_Add && BOK != BO_Sub)) 7455 break; 7456 7457 if (BO->getLHS()->getType()->isPointerType()) 7458 visitLocalsRetainedByInitializer(Path, BO->getLHS(), Visit, true, 7459 EnableLifetimeWarnings); 7460 else if (BO->getRHS()->getType()->isPointerType()) 7461 visitLocalsRetainedByInitializer(Path, BO->getRHS(), Visit, true, 7462 EnableLifetimeWarnings); 7463 break; 7464 } 7465 7466 case Stmt::ConditionalOperatorClass: 7467 case Stmt::BinaryConditionalOperatorClass: { 7468 auto *C = cast<AbstractConditionalOperator>(Init); 7469 // In C++, we can have a throw-expression operand, which has 'void' type 7470 // and isn't interesting from a lifetime perspective. 7471 if (!C->getTrueExpr()->getType()->isVoidType()) 7472 visitLocalsRetainedByInitializer(Path, C->getTrueExpr(), Visit, true, 7473 EnableLifetimeWarnings); 7474 if (!C->getFalseExpr()->getType()->isVoidType()) 7475 visitLocalsRetainedByInitializer(Path, C->getFalseExpr(), Visit, true, 7476 EnableLifetimeWarnings); 7477 break; 7478 } 7479 7480 case Stmt::BlockExprClass: 7481 if (cast<BlockExpr>(Init)->getBlockDecl()->hasCaptures()) { 7482 // This is a local block, whose lifetime is that of the function. 7483 Visit(Path, Local(cast<BlockExpr>(Init)), RK_ReferenceBinding); 7484 } 7485 break; 7486 7487 case Stmt::AddrLabelExprClass: 7488 // We want to warn if the address of a label would escape the function. 7489 Visit(Path, Local(cast<AddrLabelExpr>(Init)), RK_ReferenceBinding); 7490 break; 7491 7492 default: 7493 break; 7494 } 7495 } 7496 7497 /// Whether a path to an object supports lifetime extension. 7498 enum PathLifetimeKind { 7499 /// Lifetime-extend along this path. 7500 Extend, 7501 /// We should lifetime-extend, but we don't because (due to technical 7502 /// limitations) we can't. This happens for default member initializers, 7503 /// which we don't clone for every use, so we don't have a unique 7504 /// MaterializeTemporaryExpr to update. 7505 ShouldExtend, 7506 /// Do not lifetime extend along this path. 7507 NoExtend 7508 }; 7509 7510 /// Determine whether this is an indirect path to a temporary that we are 7511 /// supposed to lifetime-extend along. 7512 static PathLifetimeKind 7513 shouldLifetimeExtendThroughPath(const IndirectLocalPath &Path) { 7514 PathLifetimeKind Kind = PathLifetimeKind::Extend; 7515 for (auto Elem : Path) { 7516 if (Elem.Kind == IndirectLocalPathEntry::DefaultInit) 7517 Kind = PathLifetimeKind::ShouldExtend; 7518 else if (Elem.Kind != IndirectLocalPathEntry::LambdaCaptureInit) 7519 return PathLifetimeKind::NoExtend; 7520 } 7521 return Kind; 7522 } 7523 7524 /// Find the range for the first interesting entry in the path at or after I. 7525 static SourceRange nextPathEntryRange(const IndirectLocalPath &Path, unsigned I, 7526 Expr *E) { 7527 for (unsigned N = Path.size(); I != N; ++I) { 7528 switch (Path[I].Kind) { 7529 case IndirectLocalPathEntry::AddressOf: 7530 case IndirectLocalPathEntry::LValToRVal: 7531 case IndirectLocalPathEntry::LifetimeBoundCall: 7532 case IndirectLocalPathEntry::TemporaryCopy: 7533 case IndirectLocalPathEntry::GslReferenceInit: 7534 case IndirectLocalPathEntry::GslPointerInit: 7535 // These exist primarily to mark the path as not permitting or 7536 // supporting lifetime extension. 7537 break; 7538 7539 case IndirectLocalPathEntry::VarInit: 7540 if (cast<VarDecl>(Path[I].D)->isImplicit()) 7541 return SourceRange(); 7542 LLVM_FALLTHROUGH; 7543 case IndirectLocalPathEntry::DefaultInit: 7544 return Path[I].E->getSourceRange(); 7545 7546 case IndirectLocalPathEntry::LambdaCaptureInit: 7547 if (!Path[I].Capture->capturesVariable()) 7548 continue; 7549 return Path[I].E->getSourceRange(); 7550 } 7551 } 7552 return E->getSourceRange(); 7553 } 7554 7555 static bool pathOnlyInitializesGslPointer(IndirectLocalPath &Path) { 7556 for (auto It = Path.rbegin(), End = Path.rend(); It != End; ++It) { 7557 if (It->Kind == IndirectLocalPathEntry::VarInit) 7558 continue; 7559 if (It->Kind == IndirectLocalPathEntry::AddressOf) 7560 continue; 7561 if (It->Kind == IndirectLocalPathEntry::LifetimeBoundCall) 7562 continue; 7563 return It->Kind == IndirectLocalPathEntry::GslPointerInit || 7564 It->Kind == IndirectLocalPathEntry::GslReferenceInit; 7565 } 7566 return false; 7567 } 7568 7569 void Sema::checkInitializerLifetime(const InitializedEntity &Entity, 7570 Expr *Init) { 7571 LifetimeResult LR = getEntityLifetime(&Entity); 7572 LifetimeKind LK = LR.getInt(); 7573 const InitializedEntity *ExtendingEntity = LR.getPointer(); 7574 7575 // If this entity doesn't have an interesting lifetime, don't bother looking 7576 // for temporaries within its initializer. 7577 if (LK == LK_FullExpression) 7578 return; 7579 7580 auto TemporaryVisitor = [&](IndirectLocalPath &Path, Local L, 7581 ReferenceKind RK) -> bool { 7582 SourceRange DiagRange = nextPathEntryRange(Path, 0, L); 7583 SourceLocation DiagLoc = DiagRange.getBegin(); 7584 7585 auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L); 7586 7587 bool IsGslPtrInitWithGslTempOwner = false; 7588 bool IsLocalGslOwner = false; 7589 if (pathOnlyInitializesGslPointer(Path)) { 7590 if (isa<DeclRefExpr>(L)) { 7591 // We do not want to follow the references when returning a pointer originating 7592 // from a local owner to avoid the following false positive: 7593 // int &p = *localUniquePtr; 7594 // someContainer.add(std::move(localUniquePtr)); 7595 // return p; 7596 IsLocalGslOwner = isRecordWithAttr<OwnerAttr>(L->getType()); 7597 if (pathContainsInit(Path) || !IsLocalGslOwner) 7598 return false; 7599 } else { 7600 IsGslPtrInitWithGslTempOwner = MTE && !MTE->getExtendingDecl() && 7601 isRecordWithAttr<OwnerAttr>(MTE->getType()); 7602 // Skipping a chain of initializing gsl::Pointer annotated objects. 7603 // We are looking only for the final source to find out if it was 7604 // a local or temporary owner or the address of a local variable/param. 7605 if (!IsGslPtrInitWithGslTempOwner) 7606 return true; 7607 } 7608 } 7609 7610 switch (LK) { 7611 case LK_FullExpression: 7612 llvm_unreachable("already handled this"); 7613 7614 case LK_Extended: { 7615 if (!MTE) { 7616 // The initialized entity has lifetime beyond the full-expression, 7617 // and the local entity does too, so don't warn. 7618 // 7619 // FIXME: We should consider warning if a static / thread storage 7620 // duration variable retains an automatic storage duration local. 7621 return false; 7622 } 7623 7624 if (IsGslPtrInitWithGslTempOwner && DiagLoc.isValid()) { 7625 Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange; 7626 return false; 7627 } 7628 7629 switch (shouldLifetimeExtendThroughPath(Path)) { 7630 case PathLifetimeKind::Extend: 7631 // Update the storage duration of the materialized temporary. 7632 // FIXME: Rebuild the expression instead of mutating it. 7633 MTE->setExtendingDecl(ExtendingEntity->getDecl(), 7634 ExtendingEntity->allocateManglingNumber()); 7635 // Also visit the temporaries lifetime-extended by this initializer. 7636 return true; 7637 7638 case PathLifetimeKind::ShouldExtend: 7639 // We're supposed to lifetime-extend the temporary along this path (per 7640 // the resolution of DR1815), but we don't support that yet. 7641 // 7642 // FIXME: Properly handle this situation. Perhaps the easiest approach 7643 // would be to clone the initializer expression on each use that would 7644 // lifetime extend its temporaries. 7645 Diag(DiagLoc, diag::warn_unsupported_lifetime_extension) 7646 << RK << DiagRange; 7647 break; 7648 7649 case PathLifetimeKind::NoExtend: 7650 // If the path goes through the initialization of a variable or field, 7651 // it can't possibly reach a temporary created in this full-expression. 7652 // We will have already diagnosed any problems with the initializer. 7653 if (pathContainsInit(Path)) 7654 return false; 7655 7656 Diag(DiagLoc, diag::warn_dangling_variable) 7657 << RK << !Entity.getParent() 7658 << ExtendingEntity->getDecl()->isImplicit() 7659 << ExtendingEntity->getDecl() << Init->isGLValue() << DiagRange; 7660 break; 7661 } 7662 break; 7663 } 7664 7665 case LK_MemInitializer: { 7666 if (isa<MaterializeTemporaryExpr>(L)) { 7667 // Under C++ DR1696, if a mem-initializer (or a default member 7668 // initializer used by the absence of one) would lifetime-extend a 7669 // temporary, the program is ill-formed. 7670 if (auto *ExtendingDecl = 7671 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) { 7672 if (IsGslPtrInitWithGslTempOwner) { 7673 Diag(DiagLoc, diag::warn_dangling_lifetime_pointer_member) 7674 << ExtendingDecl << DiagRange; 7675 Diag(ExtendingDecl->getLocation(), 7676 diag::note_ref_or_ptr_member_declared_here) 7677 << true; 7678 return false; 7679 } 7680 bool IsSubobjectMember = ExtendingEntity != &Entity; 7681 Diag(DiagLoc, shouldLifetimeExtendThroughPath(Path) != 7682 PathLifetimeKind::NoExtend 7683 ? diag::err_dangling_member 7684 : diag::warn_dangling_member) 7685 << ExtendingDecl << IsSubobjectMember << RK << DiagRange; 7686 // Don't bother adding a note pointing to the field if we're inside 7687 // its default member initializer; our primary diagnostic points to 7688 // the same place in that case. 7689 if (Path.empty() || 7690 Path.back().Kind != IndirectLocalPathEntry::DefaultInit) { 7691 Diag(ExtendingDecl->getLocation(), 7692 diag::note_lifetime_extending_member_declared_here) 7693 << RK << IsSubobjectMember; 7694 } 7695 } else { 7696 // We have a mem-initializer but no particular field within it; this 7697 // is either a base class or a delegating initializer directly 7698 // initializing the base-class from something that doesn't live long 7699 // enough. 7700 // 7701 // FIXME: Warn on this. 7702 return false; 7703 } 7704 } else { 7705 // Paths via a default initializer can only occur during error recovery 7706 // (there's no other way that a default initializer can refer to a 7707 // local). Don't produce a bogus warning on those cases. 7708 if (pathContainsInit(Path)) 7709 return false; 7710 7711 // Suppress false positives for code like the one below: 7712 // Ctor(unique_ptr<T> up) : member(*up), member2(move(up)) {} 7713 if (IsLocalGslOwner && pathOnlyInitializesGslPointer(Path)) 7714 return false; 7715 7716 auto *DRE = dyn_cast<DeclRefExpr>(L); 7717 auto *VD = DRE ? dyn_cast<VarDecl>(DRE->getDecl()) : nullptr; 7718 if (!VD) { 7719 // A member was initialized to a local block. 7720 // FIXME: Warn on this. 7721 return false; 7722 } 7723 7724 if (auto *Member = 7725 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) { 7726 bool IsPointer = !Member->getType()->isReferenceType(); 7727 Diag(DiagLoc, IsPointer ? diag::warn_init_ptr_member_to_parameter_addr 7728 : diag::warn_bind_ref_member_to_parameter) 7729 << Member << VD << isa<ParmVarDecl>(VD) << DiagRange; 7730 Diag(Member->getLocation(), 7731 diag::note_ref_or_ptr_member_declared_here) 7732 << (unsigned)IsPointer; 7733 } 7734 } 7735 break; 7736 } 7737 7738 case LK_New: 7739 if (isa<MaterializeTemporaryExpr>(L)) { 7740 if (IsGslPtrInitWithGslTempOwner) 7741 Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange; 7742 else 7743 Diag(DiagLoc, RK == RK_ReferenceBinding 7744 ? diag::warn_new_dangling_reference 7745 : diag::warn_new_dangling_initializer_list) 7746 << !Entity.getParent() << DiagRange; 7747 } else { 7748 // We can't determine if the allocation outlives the local declaration. 7749 return false; 7750 } 7751 break; 7752 7753 case LK_Return: 7754 case LK_StmtExprResult: 7755 if (auto *DRE = dyn_cast<DeclRefExpr>(L)) { 7756 // We can't determine if the local variable outlives the statement 7757 // expression. 7758 if (LK == LK_StmtExprResult) 7759 return false; 7760 Diag(DiagLoc, diag::warn_ret_stack_addr_ref) 7761 << Entity.getType()->isReferenceType() << DRE->getDecl() 7762 << isa<ParmVarDecl>(DRE->getDecl()) << DiagRange; 7763 } else if (isa<BlockExpr>(L)) { 7764 Diag(DiagLoc, diag::err_ret_local_block) << DiagRange; 7765 } else if (isa<AddrLabelExpr>(L)) { 7766 // Don't warn when returning a label from a statement expression. 7767 // Leaving the scope doesn't end its lifetime. 7768 if (LK == LK_StmtExprResult) 7769 return false; 7770 Diag(DiagLoc, diag::warn_ret_addr_label) << DiagRange; 7771 } else { 7772 Diag(DiagLoc, diag::warn_ret_local_temp_addr_ref) 7773 << Entity.getType()->isReferenceType() << DiagRange; 7774 } 7775 break; 7776 } 7777 7778 for (unsigned I = 0; I != Path.size(); ++I) { 7779 auto Elem = Path[I]; 7780 7781 switch (Elem.Kind) { 7782 case IndirectLocalPathEntry::AddressOf: 7783 case IndirectLocalPathEntry::LValToRVal: 7784 // These exist primarily to mark the path as not permitting or 7785 // supporting lifetime extension. 7786 break; 7787 7788 case IndirectLocalPathEntry::LifetimeBoundCall: 7789 case IndirectLocalPathEntry::TemporaryCopy: 7790 case IndirectLocalPathEntry::GslPointerInit: 7791 case IndirectLocalPathEntry::GslReferenceInit: 7792 // FIXME: Consider adding a note for these. 7793 break; 7794 7795 case IndirectLocalPathEntry::DefaultInit: { 7796 auto *FD = cast<FieldDecl>(Elem.D); 7797 Diag(FD->getLocation(), diag::note_init_with_default_member_initalizer) 7798 << FD << nextPathEntryRange(Path, I + 1, L); 7799 break; 7800 } 7801 7802 case IndirectLocalPathEntry::VarInit: { 7803 const VarDecl *VD = cast<VarDecl>(Elem.D); 7804 Diag(VD->getLocation(), diag::note_local_var_initializer) 7805 << VD->getType()->isReferenceType() 7806 << VD->isImplicit() << VD->getDeclName() 7807 << nextPathEntryRange(Path, I + 1, L); 7808 break; 7809 } 7810 7811 case IndirectLocalPathEntry::LambdaCaptureInit: 7812 if (!Elem.Capture->capturesVariable()) 7813 break; 7814 // FIXME: We can't easily tell apart an init-capture from a nested 7815 // capture of an init-capture. 7816 const VarDecl *VD = Elem.Capture->getCapturedVar(); 7817 Diag(Elem.Capture->getLocation(), diag::note_lambda_capture_initializer) 7818 << VD << VD->isInitCapture() << Elem.Capture->isExplicit() 7819 << (Elem.Capture->getCaptureKind() == LCK_ByRef) << VD 7820 << nextPathEntryRange(Path, I + 1, L); 7821 break; 7822 } 7823 } 7824 7825 // We didn't lifetime-extend, so don't go any further; we don't need more 7826 // warnings or errors on inner temporaries within this one's initializer. 7827 return false; 7828 }; 7829 7830 bool EnableLifetimeWarnings = !getDiagnostics().isIgnored( 7831 diag::warn_dangling_lifetime_pointer, SourceLocation()); 7832 llvm::SmallVector<IndirectLocalPathEntry, 8> Path; 7833 if (Init->isGLValue()) 7834 visitLocalsRetainedByReferenceBinding(Path, Init, RK_ReferenceBinding, 7835 TemporaryVisitor, 7836 EnableLifetimeWarnings); 7837 else 7838 visitLocalsRetainedByInitializer(Path, Init, TemporaryVisitor, false, 7839 EnableLifetimeWarnings); 7840 } 7841 7842 static void DiagnoseNarrowingInInitList(Sema &S, 7843 const ImplicitConversionSequence &ICS, 7844 QualType PreNarrowingType, 7845 QualType EntityType, 7846 const Expr *PostInit); 7847 7848 /// Provide warnings when std::move is used on construction. 7849 static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr, 7850 bool IsReturnStmt) { 7851 if (!InitExpr) 7852 return; 7853 7854 if (S.inTemplateInstantiation()) 7855 return; 7856 7857 QualType DestType = InitExpr->getType(); 7858 if (!DestType->isRecordType()) 7859 return; 7860 7861 unsigned DiagID = 0; 7862 if (IsReturnStmt) { 7863 const CXXConstructExpr *CCE = 7864 dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens()); 7865 if (!CCE || CCE->getNumArgs() != 1) 7866 return; 7867 7868 if (!CCE->getConstructor()->isCopyOrMoveConstructor()) 7869 return; 7870 7871 InitExpr = CCE->getArg(0)->IgnoreImpCasts(); 7872 } 7873 7874 // Find the std::move call and get the argument. 7875 const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens()); 7876 if (!CE || !CE->isCallToStdMove()) 7877 return; 7878 7879 const Expr *Arg = CE->getArg(0)->IgnoreImplicit(); 7880 7881 if (IsReturnStmt) { 7882 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts()); 7883 if (!DRE || DRE->refersToEnclosingVariableOrCapture()) 7884 return; 7885 7886 const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()); 7887 if (!VD || !VD->hasLocalStorage()) 7888 return; 7889 7890 // __block variables are not moved implicitly. 7891 if (VD->hasAttr<BlocksAttr>()) 7892 return; 7893 7894 QualType SourceType = VD->getType(); 7895 if (!SourceType->isRecordType()) 7896 return; 7897 7898 if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) { 7899 return; 7900 } 7901 7902 // If we're returning a function parameter, copy elision 7903 // is not possible. 7904 if (isa<ParmVarDecl>(VD)) 7905 DiagID = diag::warn_redundant_move_on_return; 7906 else 7907 DiagID = diag::warn_pessimizing_move_on_return; 7908 } else { 7909 DiagID = diag::warn_pessimizing_move_on_initialization; 7910 const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens(); 7911 if (!ArgStripped->isPRValue() || !ArgStripped->getType()->isRecordType()) 7912 return; 7913 } 7914 7915 S.Diag(CE->getBeginLoc(), DiagID); 7916 7917 // Get all the locations for a fix-it. Don't emit the fix-it if any location 7918 // is within a macro. 7919 SourceLocation CallBegin = CE->getCallee()->getBeginLoc(); 7920 if (CallBegin.isMacroID()) 7921 return; 7922 SourceLocation RParen = CE->getRParenLoc(); 7923 if (RParen.isMacroID()) 7924 return; 7925 SourceLocation LParen; 7926 SourceLocation ArgLoc = Arg->getBeginLoc(); 7927 7928 // Special testing for the argument location. Since the fix-it needs the 7929 // location right before the argument, the argument location can be in a 7930 // macro only if it is at the beginning of the macro. 7931 while (ArgLoc.isMacroID() && 7932 S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) { 7933 ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).getBegin(); 7934 } 7935 7936 if (LParen.isMacroID()) 7937 return; 7938 7939 LParen = ArgLoc.getLocWithOffset(-1); 7940 7941 S.Diag(CE->getBeginLoc(), diag::note_remove_move) 7942 << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen)) 7943 << FixItHint::CreateRemoval(SourceRange(RParen, RParen)); 7944 } 7945 7946 static void CheckForNullPointerDereference(Sema &S, const Expr *E) { 7947 // Check to see if we are dereferencing a null pointer. If so, this is 7948 // undefined behavior, so warn about it. This only handles the pattern 7949 // "*null", which is a very syntactic check. 7950 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts())) 7951 if (UO->getOpcode() == UO_Deref && 7952 UO->getSubExpr()->IgnoreParenCasts()-> 7953 isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) { 7954 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO, 7955 S.PDiag(diag::warn_binding_null_to_reference) 7956 << UO->getSubExpr()->getSourceRange()); 7957 } 7958 } 7959 7960 MaterializeTemporaryExpr * 7961 Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary, 7962 bool BoundToLvalueReference) { 7963 auto MTE = new (Context) 7964 MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference); 7965 7966 // Order an ExprWithCleanups for lifetime marks. 7967 // 7968 // TODO: It'll be good to have a single place to check the access of the 7969 // destructor and generate ExprWithCleanups for various uses. Currently these 7970 // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary, 7971 // but there may be a chance to merge them. 7972 Cleanup.setExprNeedsCleanups(false); 7973 return MTE; 7974 } 7975 7976 ExprResult Sema::TemporaryMaterializationConversion(Expr *E) { 7977 // In C++98, we don't want to implicitly create an xvalue. 7978 // FIXME: This means that AST consumers need to deal with "prvalues" that 7979 // denote materialized temporaries. Maybe we should add another ValueKind 7980 // for "xvalue pretending to be a prvalue" for C++98 support. 7981 if (!E->isPRValue() || !getLangOpts().CPlusPlus11) 7982 return E; 7983 7984 // C++1z [conv.rval]/1: T shall be a complete type. 7985 // FIXME: Does this ever matter (can we form a prvalue of incomplete type)? 7986 // If so, we should check for a non-abstract class type here too. 7987 QualType T = E->getType(); 7988 if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type)) 7989 return ExprError(); 7990 7991 return CreateMaterializeTemporaryExpr(E->getType(), E, false); 7992 } 7993 7994 ExprResult Sema::PerformQualificationConversion(Expr *E, QualType Ty, 7995 ExprValueKind VK, 7996 CheckedConversionKind CCK) { 7997 7998 CastKind CK = CK_NoOp; 7999 8000 if (VK == VK_PRValue) { 8001 auto PointeeTy = Ty->getPointeeType(); 8002 auto ExprPointeeTy = E->getType()->getPointeeType(); 8003 if (!PointeeTy.isNull() && 8004 PointeeTy.getAddressSpace() != ExprPointeeTy.getAddressSpace()) 8005 CK = CK_AddressSpaceConversion; 8006 } else if (Ty.getAddressSpace() != E->getType().getAddressSpace()) { 8007 CK = CK_AddressSpaceConversion; 8008 } 8009 8010 return ImpCastExprToType(E, Ty, CK, VK, /*BasePath=*/nullptr, CCK); 8011 } 8012 8013 ExprResult InitializationSequence::Perform(Sema &S, 8014 const InitializedEntity &Entity, 8015 const InitializationKind &Kind, 8016 MultiExprArg Args, 8017 QualType *ResultType) { 8018 if (Failed()) { 8019 Diagnose(S, Entity, Kind, Args); 8020 return ExprError(); 8021 } 8022 if (!ZeroInitializationFixit.empty()) { 8023 unsigned DiagID = diag::err_default_init_const; 8024 if (Decl *D = Entity.getDecl()) 8025 if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>()) 8026 DiagID = diag::ext_default_init_const; 8027 8028 // The initialization would have succeeded with this fixit. Since the fixit 8029 // is on the error, we need to build a valid AST in this case, so this isn't 8030 // handled in the Failed() branch above. 8031 QualType DestType = Entity.getType(); 8032 S.Diag(Kind.getLocation(), DiagID) 8033 << DestType << (bool)DestType->getAs<RecordType>() 8034 << FixItHint::CreateInsertion(ZeroInitializationFixitLoc, 8035 ZeroInitializationFixit); 8036 } 8037 8038 if (getKind() == DependentSequence) { 8039 // If the declaration is a non-dependent, incomplete array type 8040 // that has an initializer, then its type will be completed once 8041 // the initializer is instantiated. 8042 if (ResultType && !Entity.getType()->isDependentType() && 8043 Args.size() == 1) { 8044 QualType DeclType = Entity.getType(); 8045 if (const IncompleteArrayType *ArrayT 8046 = S.Context.getAsIncompleteArrayType(DeclType)) { 8047 // FIXME: We don't currently have the ability to accurately 8048 // compute the length of an initializer list without 8049 // performing full type-checking of the initializer list 8050 // (since we have to determine where braces are implicitly 8051 // introduced and such). So, we fall back to making the array 8052 // type a dependently-sized array type with no specified 8053 // bound. 8054 if (isa<InitListExpr>((Expr *)Args[0])) { 8055 SourceRange Brackets; 8056 8057 // Scavange the location of the brackets from the entity, if we can. 8058 if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Entity.getDecl())) { 8059 if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) { 8060 TypeLoc TL = TInfo->getTypeLoc(); 8061 if (IncompleteArrayTypeLoc ArrayLoc = 8062 TL.getAs<IncompleteArrayTypeLoc>()) 8063 Brackets = ArrayLoc.getBracketsRange(); 8064 } 8065 } 8066 8067 *ResultType 8068 = S.Context.getDependentSizedArrayType(ArrayT->getElementType(), 8069 /*NumElts=*/nullptr, 8070 ArrayT->getSizeModifier(), 8071 ArrayT->getIndexTypeCVRQualifiers(), 8072 Brackets); 8073 } 8074 8075 } 8076 } 8077 if (Kind.getKind() == InitializationKind::IK_Direct && 8078 !Kind.isExplicitCast()) { 8079 // Rebuild the ParenListExpr. 8080 SourceRange ParenRange = Kind.getParenOrBraceRange(); 8081 return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(), 8082 Args); 8083 } 8084 assert(Kind.getKind() == InitializationKind::IK_Copy || 8085 Kind.isExplicitCast() || 8086 Kind.getKind() == InitializationKind::IK_DirectList); 8087 return ExprResult(Args[0]); 8088 } 8089 8090 // No steps means no initialization. 8091 if (Steps.empty()) 8092 return ExprResult((Expr *)nullptr); 8093 8094 if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() && 8095 Args.size() == 1 && isa<InitListExpr>(Args[0]) && 8096 !Entity.isParamOrTemplateParamKind()) { 8097 // Produce a C++98 compatibility warning if we are initializing a reference 8098 // from an initializer list. For parameters, we produce a better warning 8099 // elsewhere. 8100 Expr *Init = Args[0]; 8101 S.Diag(Init->getBeginLoc(), diag::warn_cxx98_compat_reference_list_init) 8102 << Init->getSourceRange(); 8103 } 8104 8105 // OpenCL v2.0 s6.13.11.1. atomic variables can be initialized in global scope 8106 QualType ETy = Entity.getType(); 8107 bool HasGlobalAS = ETy.hasAddressSpace() && 8108 ETy.getAddressSpace() == LangAS::opencl_global; 8109 8110 if (S.getLangOpts().OpenCLVersion >= 200 && 8111 ETy->isAtomicType() && !HasGlobalAS && 8112 Entity.getKind() == InitializedEntity::EK_Variable && Args.size() > 0) { 8113 S.Diag(Args[0]->getBeginLoc(), diag::err_opencl_atomic_init) 8114 << 1 8115 << SourceRange(Entity.getDecl()->getBeginLoc(), Args[0]->getEndLoc()); 8116 return ExprError(); 8117 } 8118 8119 QualType DestType = Entity.getType().getNonReferenceType(); 8120 // FIXME: Ugly hack around the fact that Entity.getType() is not 8121 // the same as Entity.getDecl()->getType() in cases involving type merging, 8122 // and we want latter when it makes sense. 8123 if (ResultType) 8124 *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() : 8125 Entity.getType(); 8126 8127 ExprResult CurInit((Expr *)nullptr); 8128 SmallVector<Expr*, 4> ArrayLoopCommonExprs; 8129 8130 // For initialization steps that start with a single initializer, 8131 // grab the only argument out the Args and place it into the "current" 8132 // initializer. 8133 switch (Steps.front().Kind) { 8134 case SK_ResolveAddressOfOverloadedFunction: 8135 case SK_CastDerivedToBasePRValue: 8136 case SK_CastDerivedToBaseXValue: 8137 case SK_CastDerivedToBaseLValue: 8138 case SK_BindReference: 8139 case SK_BindReferenceToTemporary: 8140 case SK_FinalCopy: 8141 case SK_ExtraneousCopyToTemporary: 8142 case SK_UserConversion: 8143 case SK_QualificationConversionLValue: 8144 case SK_QualificationConversionXValue: 8145 case SK_QualificationConversionPRValue: 8146 case SK_FunctionReferenceConversion: 8147 case SK_AtomicConversion: 8148 case SK_ConversionSequence: 8149 case SK_ConversionSequenceNoNarrowing: 8150 case SK_ListInitialization: 8151 case SK_UnwrapInitList: 8152 case SK_RewrapInitList: 8153 case SK_CAssignment: 8154 case SK_StringInit: 8155 case SK_ObjCObjectConversion: 8156 case SK_ArrayLoopIndex: 8157 case SK_ArrayLoopInit: 8158 case SK_ArrayInit: 8159 case SK_GNUArrayInit: 8160 case SK_ParenthesizedArrayInit: 8161 case SK_PassByIndirectCopyRestore: 8162 case SK_PassByIndirectRestore: 8163 case SK_ProduceObjCObject: 8164 case SK_StdInitializerList: 8165 case SK_OCLSamplerInit: 8166 case SK_OCLZeroOpaqueType: { 8167 assert(Args.size() == 1); 8168 CurInit = Args[0]; 8169 if (!CurInit.get()) return ExprError(); 8170 break; 8171 } 8172 8173 case SK_ConstructorInitialization: 8174 case SK_ConstructorInitializationFromList: 8175 case SK_StdInitializerListConstructorCall: 8176 case SK_ZeroInitialization: 8177 break; 8178 } 8179 8180 // Promote from an unevaluated context to an unevaluated list context in 8181 // C++11 list-initialization; we need to instantiate entities usable in 8182 // constant expressions here in order to perform narrowing checks =( 8183 EnterExpressionEvaluationContext Evaluated( 8184 S, EnterExpressionEvaluationContext::InitList, 8185 CurInit.get() && isa<InitListExpr>(CurInit.get())); 8186 8187 // C++ [class.abstract]p2: 8188 // no objects of an abstract class can be created except as subobjects 8189 // of a class derived from it 8190 auto checkAbstractType = [&](QualType T) -> bool { 8191 if (Entity.getKind() == InitializedEntity::EK_Base || 8192 Entity.getKind() == InitializedEntity::EK_Delegating) 8193 return false; 8194 return S.RequireNonAbstractType(Kind.getLocation(), T, 8195 diag::err_allocation_of_abstract_type); 8196 }; 8197 8198 // Walk through the computed steps for the initialization sequence, 8199 // performing the specified conversions along the way. 8200 bool ConstructorInitRequiresZeroInit = false; 8201 for (step_iterator Step = step_begin(), StepEnd = step_end(); 8202 Step != StepEnd; ++Step) { 8203 if (CurInit.isInvalid()) 8204 return ExprError(); 8205 8206 QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType(); 8207 8208 switch (Step->Kind) { 8209 case SK_ResolveAddressOfOverloadedFunction: 8210 // Overload resolution determined which function invoke; update the 8211 // initializer to reflect that choice. 8212 S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl); 8213 if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation())) 8214 return ExprError(); 8215 CurInit = S.FixOverloadedFunctionReference(CurInit, 8216 Step->Function.FoundDecl, 8217 Step->Function.Function); 8218 // We might get back another placeholder expression if we resolved to a 8219 // builtin. 8220 if (!CurInit.isInvalid()) 8221 CurInit = S.CheckPlaceholderExpr(CurInit.get()); 8222 break; 8223 8224 case SK_CastDerivedToBasePRValue: 8225 case SK_CastDerivedToBaseXValue: 8226 case SK_CastDerivedToBaseLValue: { 8227 // We have a derived-to-base cast that produces either an rvalue or an 8228 // lvalue. Perform that cast. 8229 8230 CXXCastPath BasePath; 8231 8232 // Casts to inaccessible base classes are allowed with C-style casts. 8233 bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast(); 8234 if (S.CheckDerivedToBaseConversion( 8235 SourceType, Step->Type, CurInit.get()->getBeginLoc(), 8236 CurInit.get()->getSourceRange(), &BasePath, IgnoreBaseAccess)) 8237 return ExprError(); 8238 8239 ExprValueKind VK = 8240 Step->Kind == SK_CastDerivedToBaseLValue 8241 ? VK_LValue 8242 : (Step->Kind == SK_CastDerivedToBaseXValue ? VK_XValue 8243 : VK_PRValue); 8244 CurInit = ImplicitCastExpr::Create(S.Context, Step->Type, 8245 CK_DerivedToBase, CurInit.get(), 8246 &BasePath, VK, FPOptionsOverride()); 8247 break; 8248 } 8249 8250 case SK_BindReference: 8251 // Reference binding does not have any corresponding ASTs. 8252 8253 // Check exception specifications 8254 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType)) 8255 return ExprError(); 8256 8257 // We don't check for e.g. function pointers here, since address 8258 // availability checks should only occur when the function first decays 8259 // into a pointer or reference. 8260 if (CurInit.get()->getType()->isFunctionProtoType()) { 8261 if (auto *DRE = dyn_cast<DeclRefExpr>(CurInit.get()->IgnoreParens())) { 8262 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 8263 if (!S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, 8264 DRE->getBeginLoc())) 8265 return ExprError(); 8266 } 8267 } 8268 } 8269 8270 CheckForNullPointerDereference(S, CurInit.get()); 8271 break; 8272 8273 case SK_BindReferenceToTemporary: { 8274 // Make sure the "temporary" is actually an rvalue. 8275 assert(CurInit.get()->isPRValue() && "not a temporary"); 8276 8277 // Check exception specifications 8278 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType)) 8279 return ExprError(); 8280 8281 QualType MTETy = Step->Type; 8282 8283 // When this is an incomplete array type (such as when this is 8284 // initializing an array of unknown bounds from an init list), use THAT 8285 // type instead so that we propagate the array bounds. 8286 if (MTETy->isIncompleteArrayType() && 8287 !CurInit.get()->getType()->isIncompleteArrayType() && 8288 S.Context.hasSameType( 8289 MTETy->getPointeeOrArrayElementType(), 8290 CurInit.get()->getType()->getPointeeOrArrayElementType())) 8291 MTETy = CurInit.get()->getType(); 8292 8293 // Materialize the temporary into memory. 8294 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr( 8295 MTETy, CurInit.get(), Entity.getType()->isLValueReferenceType()); 8296 CurInit = MTE; 8297 8298 // If we're extending this temporary to automatic storage duration -- we 8299 // need to register its cleanup during the full-expression's cleanups. 8300 if (MTE->getStorageDuration() == SD_Automatic && 8301 MTE->getType().isDestructedType()) 8302 S.Cleanup.setExprNeedsCleanups(true); 8303 break; 8304 } 8305 8306 case SK_FinalCopy: 8307 if (checkAbstractType(Step->Type)) 8308 return ExprError(); 8309 8310 // If the overall initialization is initializing a temporary, we already 8311 // bound our argument if it was necessary to do so. If not (if we're 8312 // ultimately initializing a non-temporary), our argument needs to be 8313 // bound since it's initializing a function parameter. 8314 // FIXME: This is a mess. Rationalize temporary destruction. 8315 if (!shouldBindAsTemporary(Entity)) 8316 CurInit = S.MaybeBindToTemporary(CurInit.get()); 8317 CurInit = CopyObject(S, Step->Type, Entity, CurInit, 8318 /*IsExtraneousCopy=*/false); 8319 break; 8320 8321 case SK_ExtraneousCopyToTemporary: 8322 CurInit = CopyObject(S, Step->Type, Entity, CurInit, 8323 /*IsExtraneousCopy=*/true); 8324 break; 8325 8326 case SK_UserConversion: { 8327 // We have a user-defined conversion that invokes either a constructor 8328 // or a conversion function. 8329 CastKind CastKind; 8330 FunctionDecl *Fn = Step->Function.Function; 8331 DeclAccessPair FoundFn = Step->Function.FoundDecl; 8332 bool HadMultipleCandidates = Step->Function.HadMultipleCandidates; 8333 bool CreatedObject = false; 8334 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) { 8335 // Build a call to the selected constructor. 8336 SmallVector<Expr*, 8> ConstructorArgs; 8337 SourceLocation Loc = CurInit.get()->getBeginLoc(); 8338 8339 // Determine the arguments required to actually perform the constructor 8340 // call. 8341 Expr *Arg = CurInit.get(); 8342 if (S.CompleteConstructorCall(Constructor, Step->Type, 8343 MultiExprArg(&Arg, 1), Loc, 8344 ConstructorArgs)) 8345 return ExprError(); 8346 8347 // Build an expression that constructs a temporary. 8348 CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, 8349 FoundFn, Constructor, 8350 ConstructorArgs, 8351 HadMultipleCandidates, 8352 /*ListInit*/ false, 8353 /*StdInitListInit*/ false, 8354 /*ZeroInit*/ false, 8355 CXXConstructExpr::CK_Complete, 8356 SourceRange()); 8357 if (CurInit.isInvalid()) 8358 return ExprError(); 8359 8360 S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn, 8361 Entity); 8362 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation())) 8363 return ExprError(); 8364 8365 CastKind = CK_ConstructorConversion; 8366 CreatedObject = true; 8367 } else { 8368 // Build a call to the conversion function. 8369 CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn); 8370 S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr, 8371 FoundFn); 8372 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation())) 8373 return ExprError(); 8374 8375 CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion, 8376 HadMultipleCandidates); 8377 if (CurInit.isInvalid()) 8378 return ExprError(); 8379 8380 CastKind = CK_UserDefinedConversion; 8381 CreatedObject = Conversion->getReturnType()->isRecordType(); 8382 } 8383 8384 if (CreatedObject && checkAbstractType(CurInit.get()->getType())) 8385 return ExprError(); 8386 8387 CurInit = ImplicitCastExpr::Create( 8388 S.Context, CurInit.get()->getType(), CastKind, CurInit.get(), nullptr, 8389 CurInit.get()->getValueKind(), S.CurFPFeatureOverrides()); 8390 8391 if (shouldBindAsTemporary(Entity)) 8392 // The overall entity is temporary, so this expression should be 8393 // destroyed at the end of its full-expression. 8394 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>()); 8395 else if (CreatedObject && shouldDestroyEntity(Entity)) { 8396 // The object outlasts the full-expression, but we need to prepare for 8397 // a destructor being run on it. 8398 // FIXME: It makes no sense to do this here. This should happen 8399 // regardless of how we initialized the entity. 8400 QualType T = CurInit.get()->getType(); 8401 if (const RecordType *Record = T->getAs<RecordType>()) { 8402 CXXDestructorDecl *Destructor 8403 = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl())); 8404 S.CheckDestructorAccess(CurInit.get()->getBeginLoc(), Destructor, 8405 S.PDiag(diag::err_access_dtor_temp) << T); 8406 S.MarkFunctionReferenced(CurInit.get()->getBeginLoc(), Destructor); 8407 if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getBeginLoc())) 8408 return ExprError(); 8409 } 8410 } 8411 break; 8412 } 8413 8414 case SK_QualificationConversionLValue: 8415 case SK_QualificationConversionXValue: 8416 case SK_QualificationConversionPRValue: { 8417 // Perform a qualification conversion; these can never go wrong. 8418 ExprValueKind VK = 8419 Step->Kind == SK_QualificationConversionLValue 8420 ? VK_LValue 8421 : (Step->Kind == SK_QualificationConversionXValue ? VK_XValue 8422 : VK_PRValue); 8423 CurInit = S.PerformQualificationConversion(CurInit.get(), Step->Type, VK); 8424 break; 8425 } 8426 8427 case SK_FunctionReferenceConversion: 8428 assert(CurInit.get()->isLValue() && 8429 "function reference should be lvalue"); 8430 CurInit = 8431 S.ImpCastExprToType(CurInit.get(), Step->Type, CK_NoOp, VK_LValue); 8432 break; 8433 8434 case SK_AtomicConversion: { 8435 assert(CurInit.get()->isPRValue() && "cannot convert glvalue to atomic"); 8436 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 8437 CK_NonAtomicToAtomic, VK_PRValue); 8438 break; 8439 } 8440 8441 case SK_ConversionSequence: 8442 case SK_ConversionSequenceNoNarrowing: { 8443 if (const auto *FromPtrType = 8444 CurInit.get()->getType()->getAs<PointerType>()) { 8445 if (const auto *ToPtrType = Step->Type->getAs<PointerType>()) { 8446 if (FromPtrType->getPointeeType()->hasAttr(attr::NoDeref) && 8447 !ToPtrType->getPointeeType()->hasAttr(attr::NoDeref)) { 8448 // Do not check static casts here because they are checked earlier 8449 // in Sema::ActOnCXXNamedCast() 8450 if (!Kind.isStaticCast()) { 8451 S.Diag(CurInit.get()->getExprLoc(), 8452 diag::warn_noderef_to_dereferenceable_pointer) 8453 << CurInit.get()->getSourceRange(); 8454 } 8455 } 8456 } 8457 } 8458 8459 Sema::CheckedConversionKind CCK 8460 = Kind.isCStyleCast()? Sema::CCK_CStyleCast 8461 : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast 8462 : Kind.isExplicitCast()? Sema::CCK_OtherCast 8463 : Sema::CCK_ImplicitConversion; 8464 ExprResult CurInitExprRes = 8465 S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS, 8466 getAssignmentAction(Entity), CCK); 8467 if (CurInitExprRes.isInvalid()) 8468 return ExprError(); 8469 8470 S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), CurInit.get()); 8471 8472 CurInit = CurInitExprRes; 8473 8474 if (Step->Kind == SK_ConversionSequenceNoNarrowing && 8475 S.getLangOpts().CPlusPlus) 8476 DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(), 8477 CurInit.get()); 8478 8479 break; 8480 } 8481 8482 case SK_ListInitialization: { 8483 if (checkAbstractType(Step->Type)) 8484 return ExprError(); 8485 8486 InitListExpr *InitList = cast<InitListExpr>(CurInit.get()); 8487 // If we're not initializing the top-level entity, we need to create an 8488 // InitializeTemporary entity for our target type. 8489 QualType Ty = Step->Type; 8490 bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty); 8491 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty); 8492 InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity; 8493 InitListChecker PerformInitList(S, InitEntity, 8494 InitList, Ty, /*VerifyOnly=*/false, 8495 /*TreatUnavailableAsInvalid=*/false); 8496 if (PerformInitList.HadError()) 8497 return ExprError(); 8498 8499 // Hack: We must update *ResultType if available in order to set the 8500 // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'. 8501 // Worst case: 'const int (&arref)[] = {1, 2, 3};'. 8502 if (ResultType && 8503 ResultType->getNonReferenceType()->isIncompleteArrayType()) { 8504 if ((*ResultType)->isRValueReferenceType()) 8505 Ty = S.Context.getRValueReferenceType(Ty); 8506 else if ((*ResultType)->isLValueReferenceType()) 8507 Ty = S.Context.getLValueReferenceType(Ty, 8508 (*ResultType)->castAs<LValueReferenceType>()->isSpelledAsLValue()); 8509 *ResultType = Ty; 8510 } 8511 8512 InitListExpr *StructuredInitList = 8513 PerformInitList.getFullyStructuredList(); 8514 CurInit.get(); 8515 CurInit = shouldBindAsTemporary(InitEntity) 8516 ? S.MaybeBindToTemporary(StructuredInitList) 8517 : StructuredInitList; 8518 break; 8519 } 8520 8521 case SK_ConstructorInitializationFromList: { 8522 if (checkAbstractType(Step->Type)) 8523 return ExprError(); 8524 8525 // When an initializer list is passed for a parameter of type "reference 8526 // to object", we don't get an EK_Temporary entity, but instead an 8527 // EK_Parameter entity with reference type. 8528 // FIXME: This is a hack. What we really should do is create a user 8529 // conversion step for this case, but this makes it considerably more 8530 // complicated. For now, this will do. 8531 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( 8532 Entity.getType().getNonReferenceType()); 8533 bool UseTemporary = Entity.getType()->isReferenceType(); 8534 assert(Args.size() == 1 && "expected a single argument for list init"); 8535 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 8536 S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init) 8537 << InitList->getSourceRange(); 8538 MultiExprArg Arg(InitList->getInits(), InitList->getNumInits()); 8539 CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity : 8540 Entity, 8541 Kind, Arg, *Step, 8542 ConstructorInitRequiresZeroInit, 8543 /*IsListInitialization*/true, 8544 /*IsStdInitListInit*/false, 8545 InitList->getLBraceLoc(), 8546 InitList->getRBraceLoc()); 8547 break; 8548 } 8549 8550 case SK_UnwrapInitList: 8551 CurInit = cast<InitListExpr>(CurInit.get())->getInit(0); 8552 break; 8553 8554 case SK_RewrapInitList: { 8555 Expr *E = CurInit.get(); 8556 InitListExpr *Syntactic = Step->WrappingSyntacticList; 8557 InitListExpr *ILE = new (S.Context) InitListExpr(S.Context, 8558 Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc()); 8559 ILE->setSyntacticForm(Syntactic); 8560 ILE->setType(E->getType()); 8561 ILE->setValueKind(E->getValueKind()); 8562 CurInit = ILE; 8563 break; 8564 } 8565 8566 case SK_ConstructorInitialization: 8567 case SK_StdInitializerListConstructorCall: { 8568 if (checkAbstractType(Step->Type)) 8569 return ExprError(); 8570 8571 // When an initializer list is passed for a parameter of type "reference 8572 // to object", we don't get an EK_Temporary entity, but instead an 8573 // EK_Parameter entity with reference type. 8574 // FIXME: This is a hack. What we really should do is create a user 8575 // conversion step for this case, but this makes it considerably more 8576 // complicated. For now, this will do. 8577 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( 8578 Entity.getType().getNonReferenceType()); 8579 bool UseTemporary = Entity.getType()->isReferenceType(); 8580 bool IsStdInitListInit = 8581 Step->Kind == SK_StdInitializerListConstructorCall; 8582 Expr *Source = CurInit.get(); 8583 SourceRange Range = Kind.hasParenOrBraceRange() 8584 ? Kind.getParenOrBraceRange() 8585 : SourceRange(); 8586 CurInit = PerformConstructorInitialization( 8587 S, UseTemporary ? TempEntity : Entity, Kind, 8588 Source ? MultiExprArg(Source) : Args, *Step, 8589 ConstructorInitRequiresZeroInit, 8590 /*IsListInitialization*/ IsStdInitListInit, 8591 /*IsStdInitListInitialization*/ IsStdInitListInit, 8592 /*LBraceLoc*/ Range.getBegin(), 8593 /*RBraceLoc*/ Range.getEnd()); 8594 break; 8595 } 8596 8597 case SK_ZeroInitialization: { 8598 step_iterator NextStep = Step; 8599 ++NextStep; 8600 if (NextStep != StepEnd && 8601 (NextStep->Kind == SK_ConstructorInitialization || 8602 NextStep->Kind == SK_ConstructorInitializationFromList)) { 8603 // The need for zero-initialization is recorded directly into 8604 // the call to the object's constructor within the next step. 8605 ConstructorInitRequiresZeroInit = true; 8606 } else if (Kind.getKind() == InitializationKind::IK_Value && 8607 S.getLangOpts().CPlusPlus && 8608 !Kind.isImplicitValueInit()) { 8609 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); 8610 if (!TSInfo) 8611 TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type, 8612 Kind.getRange().getBegin()); 8613 8614 CurInit = new (S.Context) CXXScalarValueInitExpr( 8615 Entity.getType().getNonLValueExprType(S.Context), TSInfo, 8616 Kind.getRange().getEnd()); 8617 } else { 8618 CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type); 8619 } 8620 break; 8621 } 8622 8623 case SK_CAssignment: { 8624 QualType SourceType = CurInit.get()->getType(); 8625 8626 // Save off the initial CurInit in case we need to emit a diagnostic 8627 ExprResult InitialCurInit = CurInit; 8628 ExprResult Result = CurInit; 8629 Sema::AssignConvertType ConvTy = 8630 S.CheckSingleAssignmentConstraints(Step->Type, Result, true, 8631 Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited); 8632 if (Result.isInvalid()) 8633 return ExprError(); 8634 CurInit = Result; 8635 8636 // If this is a call, allow conversion to a transparent union. 8637 ExprResult CurInitExprRes = CurInit; 8638 if (ConvTy != Sema::Compatible && 8639 Entity.isParameterKind() && 8640 S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes) 8641 == Sema::Compatible) 8642 ConvTy = Sema::Compatible; 8643 if (CurInitExprRes.isInvalid()) 8644 return ExprError(); 8645 CurInit = CurInitExprRes; 8646 8647 bool Complained; 8648 if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(), 8649 Step->Type, SourceType, 8650 InitialCurInit.get(), 8651 getAssignmentAction(Entity, true), 8652 &Complained)) { 8653 PrintInitLocationNote(S, Entity); 8654 return ExprError(); 8655 } else if (Complained) 8656 PrintInitLocationNote(S, Entity); 8657 break; 8658 } 8659 8660 case SK_StringInit: { 8661 QualType Ty = Step->Type; 8662 bool UpdateType = ResultType && Entity.getType()->isIncompleteArrayType(); 8663 CheckStringInit(CurInit.get(), UpdateType ? *ResultType : Ty, 8664 S.Context.getAsArrayType(Ty), S); 8665 break; 8666 } 8667 8668 case SK_ObjCObjectConversion: 8669 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 8670 CK_ObjCObjectLValueCast, 8671 CurInit.get()->getValueKind()); 8672 break; 8673 8674 case SK_ArrayLoopIndex: { 8675 Expr *Cur = CurInit.get(); 8676 Expr *BaseExpr = new (S.Context) 8677 OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(), 8678 Cur->getValueKind(), Cur->getObjectKind(), Cur); 8679 Expr *IndexExpr = 8680 new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType()); 8681 CurInit = S.CreateBuiltinArraySubscriptExpr( 8682 BaseExpr, Kind.getLocation(), IndexExpr, Kind.getLocation()); 8683 ArrayLoopCommonExprs.push_back(BaseExpr); 8684 break; 8685 } 8686 8687 case SK_ArrayLoopInit: { 8688 assert(!ArrayLoopCommonExprs.empty() && 8689 "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit"); 8690 Expr *Common = ArrayLoopCommonExprs.pop_back_val(); 8691 CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common, 8692 CurInit.get()); 8693 break; 8694 } 8695 8696 case SK_GNUArrayInit: 8697 // Okay: we checked everything before creating this step. Note that 8698 // this is a GNU extension. 8699 S.Diag(Kind.getLocation(), diag::ext_array_init_copy) 8700 << Step->Type << CurInit.get()->getType() 8701 << CurInit.get()->getSourceRange(); 8702 updateGNUCompoundLiteralRValue(CurInit.get()); 8703 LLVM_FALLTHROUGH; 8704 case SK_ArrayInit: 8705 // If the destination type is an incomplete array type, update the 8706 // type accordingly. 8707 if (ResultType) { 8708 if (const IncompleteArrayType *IncompleteDest 8709 = S.Context.getAsIncompleteArrayType(Step->Type)) { 8710 if (const ConstantArrayType *ConstantSource 8711 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) { 8712 *ResultType = S.Context.getConstantArrayType( 8713 IncompleteDest->getElementType(), 8714 ConstantSource->getSize(), 8715 ConstantSource->getSizeExpr(), 8716 ArrayType::Normal, 0); 8717 } 8718 } 8719 } 8720 break; 8721 8722 case SK_ParenthesizedArrayInit: 8723 // Okay: we checked everything before creating this step. Note that 8724 // this is a GNU extension. 8725 S.Diag(Kind.getLocation(), diag::ext_array_init_parens) 8726 << CurInit.get()->getSourceRange(); 8727 break; 8728 8729 case SK_PassByIndirectCopyRestore: 8730 case SK_PassByIndirectRestore: 8731 checkIndirectCopyRestoreSource(S, CurInit.get()); 8732 CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr( 8733 CurInit.get(), Step->Type, 8734 Step->Kind == SK_PassByIndirectCopyRestore); 8735 break; 8736 8737 case SK_ProduceObjCObject: 8738 CurInit = ImplicitCastExpr::Create( 8739 S.Context, Step->Type, CK_ARCProduceObject, CurInit.get(), nullptr, 8740 VK_PRValue, FPOptionsOverride()); 8741 break; 8742 8743 case SK_StdInitializerList: { 8744 S.Diag(CurInit.get()->getExprLoc(), 8745 diag::warn_cxx98_compat_initializer_list_init) 8746 << CurInit.get()->getSourceRange(); 8747 8748 // Materialize the temporary into memory. 8749 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr( 8750 CurInit.get()->getType(), CurInit.get(), 8751 /*BoundToLvalueReference=*/false); 8752 8753 // Wrap it in a construction of a std::initializer_list<T>. 8754 CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE); 8755 8756 // Bind the result, in case the library has given initializer_list a 8757 // non-trivial destructor. 8758 if (shouldBindAsTemporary(Entity)) 8759 CurInit = S.MaybeBindToTemporary(CurInit.get()); 8760 break; 8761 } 8762 8763 case SK_OCLSamplerInit: { 8764 // Sampler initialization have 5 cases: 8765 // 1. function argument passing 8766 // 1a. argument is a file-scope variable 8767 // 1b. argument is a function-scope variable 8768 // 1c. argument is one of caller function's parameters 8769 // 2. variable initialization 8770 // 2a. initializing a file-scope variable 8771 // 2b. initializing a function-scope variable 8772 // 8773 // For file-scope variables, since they cannot be initialized by function 8774 // call of __translate_sampler_initializer in LLVM IR, their references 8775 // need to be replaced by a cast from their literal initializers to 8776 // sampler type. Since sampler variables can only be used in function 8777 // calls as arguments, we only need to replace them when handling the 8778 // argument passing. 8779 assert(Step->Type->isSamplerT() && 8780 "Sampler initialization on non-sampler type."); 8781 Expr *Init = CurInit.get()->IgnoreParens(); 8782 QualType SourceType = Init->getType(); 8783 // Case 1 8784 if (Entity.isParameterKind()) { 8785 if (!SourceType->isSamplerT() && !SourceType->isIntegerType()) { 8786 S.Diag(Kind.getLocation(), diag::err_sampler_argument_required) 8787 << SourceType; 8788 break; 8789 } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init)) { 8790 auto Var = cast<VarDecl>(DRE->getDecl()); 8791 // Case 1b and 1c 8792 // No cast from integer to sampler is needed. 8793 if (!Var->hasGlobalStorage()) { 8794 CurInit = ImplicitCastExpr::Create( 8795 S.Context, Step->Type, CK_LValueToRValue, Init, 8796 /*BasePath=*/nullptr, VK_PRValue, FPOptionsOverride()); 8797 break; 8798 } 8799 // Case 1a 8800 // For function call with a file-scope sampler variable as argument, 8801 // get the integer literal. 8802 // Do not diagnose if the file-scope variable does not have initializer 8803 // since this has already been diagnosed when parsing the variable 8804 // declaration. 8805 if (!Var->getInit() || !isa<ImplicitCastExpr>(Var->getInit())) 8806 break; 8807 Init = cast<ImplicitCastExpr>(const_cast<Expr*>( 8808 Var->getInit()))->getSubExpr(); 8809 SourceType = Init->getType(); 8810 } 8811 } else { 8812 // Case 2 8813 // Check initializer is 32 bit integer constant. 8814 // If the initializer is taken from global variable, do not diagnose since 8815 // this has already been done when parsing the variable declaration. 8816 if (!Init->isConstantInitializer(S.Context, false)) 8817 break; 8818 8819 if (!SourceType->isIntegerType() || 8820 32 != S.Context.getIntWidth(SourceType)) { 8821 S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer) 8822 << SourceType; 8823 break; 8824 } 8825 8826 Expr::EvalResult EVResult; 8827 Init->EvaluateAsInt(EVResult, S.Context); 8828 llvm::APSInt Result = EVResult.Val.getInt(); 8829 const uint64_t SamplerValue = Result.getLimitedValue(); 8830 // 32-bit value of sampler's initializer is interpreted as 8831 // bit-field with the following structure: 8832 // |unspecified|Filter|Addressing Mode| Normalized Coords| 8833 // |31 6|5 4|3 1| 0| 8834 // This structure corresponds to enum values of sampler properties 8835 // defined in SPIR spec v1.2 and also opencl-c.h 8836 unsigned AddressingMode = (0x0E & SamplerValue) >> 1; 8837 unsigned FilterMode = (0x30 & SamplerValue) >> 4; 8838 if (FilterMode != 1 && FilterMode != 2 && 8839 !S.getOpenCLOptions().isAvailableOption( 8840 "cl_intel_device_side_avc_motion_estimation", S.getLangOpts())) 8841 S.Diag(Kind.getLocation(), 8842 diag::warn_sampler_initializer_invalid_bits) 8843 << "Filter Mode"; 8844 if (AddressingMode > 4) 8845 S.Diag(Kind.getLocation(), 8846 diag::warn_sampler_initializer_invalid_bits) 8847 << "Addressing Mode"; 8848 } 8849 8850 // Cases 1a, 2a and 2b 8851 // Insert cast from integer to sampler. 8852 CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy, 8853 CK_IntToOCLSampler); 8854 break; 8855 } 8856 case SK_OCLZeroOpaqueType: { 8857 assert((Step->Type->isEventT() || Step->Type->isQueueT() || 8858 Step->Type->isOCLIntelSubgroupAVCType()) && 8859 "Wrong type for initialization of OpenCL opaque type."); 8860 8861 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 8862 CK_ZeroToOCLOpaqueType, 8863 CurInit.get()->getValueKind()); 8864 break; 8865 } 8866 } 8867 } 8868 8869 // Check whether the initializer has a shorter lifetime than the initialized 8870 // entity, and if not, either lifetime-extend or warn as appropriate. 8871 if (auto *Init = CurInit.get()) 8872 S.checkInitializerLifetime(Entity, Init); 8873 8874 // Diagnose non-fatal problems with the completed initialization. 8875 if (Entity.getKind() == InitializedEntity::EK_Member && 8876 cast<FieldDecl>(Entity.getDecl())->isBitField()) 8877 S.CheckBitFieldInitialization(Kind.getLocation(), 8878 cast<FieldDecl>(Entity.getDecl()), 8879 CurInit.get()); 8880 8881 // Check for std::move on construction. 8882 if (const Expr *E = CurInit.get()) { 8883 CheckMoveOnConstruction(S, E, 8884 Entity.getKind() == InitializedEntity::EK_Result); 8885 } 8886 8887 return CurInit; 8888 } 8889 8890 /// Somewhere within T there is an uninitialized reference subobject. 8891 /// Dig it out and diagnose it. 8892 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc, 8893 QualType T) { 8894 if (T->isReferenceType()) { 8895 S.Diag(Loc, diag::err_reference_without_init) 8896 << T.getNonReferenceType(); 8897 return true; 8898 } 8899 8900 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 8901 if (!RD || !RD->hasUninitializedReferenceMember()) 8902 return false; 8903 8904 for (const auto *FI : RD->fields()) { 8905 if (FI->isUnnamedBitfield()) 8906 continue; 8907 8908 if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) { 8909 S.Diag(Loc, diag::note_value_initialization_here) << RD; 8910 return true; 8911 } 8912 } 8913 8914 for (const auto &BI : RD->bases()) { 8915 if (DiagnoseUninitializedReference(S, BI.getBeginLoc(), BI.getType())) { 8916 S.Diag(Loc, diag::note_value_initialization_here) << RD; 8917 return true; 8918 } 8919 } 8920 8921 return false; 8922 } 8923 8924 8925 //===----------------------------------------------------------------------===// 8926 // Diagnose initialization failures 8927 //===----------------------------------------------------------------------===// 8928 8929 /// Emit notes associated with an initialization that failed due to a 8930 /// "simple" conversion failure. 8931 static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity, 8932 Expr *op) { 8933 QualType destType = entity.getType(); 8934 if (destType.getNonReferenceType()->isObjCObjectPointerType() && 8935 op->getType()->isObjCObjectPointerType()) { 8936 8937 // Emit a possible note about the conversion failing because the 8938 // operand is a message send with a related result type. 8939 S.EmitRelatedResultTypeNote(op); 8940 8941 // Emit a possible note about a return failing because we're 8942 // expecting a related result type. 8943 if (entity.getKind() == InitializedEntity::EK_Result) 8944 S.EmitRelatedResultTypeNoteForReturn(destType); 8945 } 8946 QualType fromType = op->getType(); 8947 QualType fromPointeeType = fromType.getCanonicalType()->getPointeeType(); 8948 QualType destPointeeType = destType.getCanonicalType()->getPointeeType(); 8949 auto *fromDecl = fromType->getPointeeCXXRecordDecl(); 8950 auto *destDecl = destType->getPointeeCXXRecordDecl(); 8951 if (fromDecl && destDecl && fromDecl->getDeclKind() == Decl::CXXRecord && 8952 destDecl->getDeclKind() == Decl::CXXRecord && 8953 !fromDecl->isInvalidDecl() && !destDecl->isInvalidDecl() && 8954 !fromDecl->hasDefinition() && 8955 destPointeeType.getQualifiers().compatiblyIncludes( 8956 fromPointeeType.getQualifiers())) 8957 S.Diag(fromDecl->getLocation(), diag::note_forward_class_conversion) 8958 << S.getASTContext().getTagDeclType(fromDecl) 8959 << S.getASTContext().getTagDeclType(destDecl); 8960 } 8961 8962 static void diagnoseListInit(Sema &S, const InitializedEntity &Entity, 8963 InitListExpr *InitList) { 8964 QualType DestType = Entity.getType(); 8965 8966 QualType E; 8967 if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) { 8968 QualType ArrayType = S.Context.getConstantArrayType( 8969 E.withConst(), 8970 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()), 8971 InitList->getNumInits()), 8972 nullptr, clang::ArrayType::Normal, 0); 8973 InitializedEntity HiddenArray = 8974 InitializedEntity::InitializeTemporary(ArrayType); 8975 return diagnoseListInit(S, HiddenArray, InitList); 8976 } 8977 8978 if (DestType->isReferenceType()) { 8979 // A list-initialization failure for a reference means that we tried to 8980 // create a temporary of the inner type (per [dcl.init.list]p3.6) and the 8981 // inner initialization failed. 8982 QualType T = DestType->castAs<ReferenceType>()->getPointeeType(); 8983 diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList); 8984 SourceLocation Loc = InitList->getBeginLoc(); 8985 if (auto *D = Entity.getDecl()) 8986 Loc = D->getLocation(); 8987 S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T; 8988 return; 8989 } 8990 8991 InitListChecker DiagnoseInitList(S, Entity, InitList, DestType, 8992 /*VerifyOnly=*/false, 8993 /*TreatUnavailableAsInvalid=*/false); 8994 assert(DiagnoseInitList.HadError() && 8995 "Inconsistent init list check result."); 8996 } 8997 8998 bool InitializationSequence::Diagnose(Sema &S, 8999 const InitializedEntity &Entity, 9000 const InitializationKind &Kind, 9001 ArrayRef<Expr *> Args) { 9002 if (!Failed()) 9003 return false; 9004 9005 // When we want to diagnose only one element of a braced-init-list, 9006 // we need to factor it out. 9007 Expr *OnlyArg; 9008 if (Args.size() == 1) { 9009 auto *List = dyn_cast<InitListExpr>(Args[0]); 9010 if (List && List->getNumInits() == 1) 9011 OnlyArg = List->getInit(0); 9012 else 9013 OnlyArg = Args[0]; 9014 } 9015 else 9016 OnlyArg = nullptr; 9017 9018 QualType DestType = Entity.getType(); 9019 switch (Failure) { 9020 case FK_TooManyInitsForReference: 9021 // FIXME: Customize for the initialized entity? 9022 if (Args.empty()) { 9023 // Dig out the reference subobject which is uninitialized and diagnose it. 9024 // If this is value-initialization, this could be nested some way within 9025 // the target type. 9026 assert(Kind.getKind() == InitializationKind::IK_Value || 9027 DestType->isReferenceType()); 9028 bool Diagnosed = 9029 DiagnoseUninitializedReference(S, Kind.getLocation(), DestType); 9030 assert(Diagnosed && "couldn't find uninitialized reference to diagnose"); 9031 (void)Diagnosed; 9032 } else // FIXME: diagnostic below could be better! 9033 S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits) 9034 << SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc()); 9035 break; 9036 case FK_ParenthesizedListInitForReference: 9037 S.Diag(Kind.getLocation(), diag::err_list_init_in_parens) 9038 << 1 << Entity.getType() << Args[0]->getSourceRange(); 9039 break; 9040 9041 case FK_ArrayNeedsInitList: 9042 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0; 9043 break; 9044 case FK_ArrayNeedsInitListOrStringLiteral: 9045 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1; 9046 break; 9047 case FK_ArrayNeedsInitListOrWideStringLiteral: 9048 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2; 9049 break; 9050 case FK_NarrowStringIntoWideCharArray: 9051 S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar); 9052 break; 9053 case FK_WideStringIntoCharArray: 9054 S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char); 9055 break; 9056 case FK_IncompatWideStringIntoWideChar: 9057 S.Diag(Kind.getLocation(), 9058 diag::err_array_init_incompat_wide_string_into_wchar); 9059 break; 9060 case FK_PlainStringIntoUTF8Char: 9061 S.Diag(Kind.getLocation(), 9062 diag::err_array_init_plain_string_into_char8_t); 9063 S.Diag(Args.front()->getBeginLoc(), 9064 diag::note_array_init_plain_string_into_char8_t) 9065 << FixItHint::CreateInsertion(Args.front()->getBeginLoc(), "u8"); 9066 break; 9067 case FK_UTF8StringIntoPlainChar: 9068 S.Diag(Kind.getLocation(), 9069 diag::err_array_init_utf8_string_into_char) 9070 << S.getLangOpts().CPlusPlus20; 9071 break; 9072 case FK_ArrayTypeMismatch: 9073 case FK_NonConstantArrayInit: 9074 S.Diag(Kind.getLocation(), 9075 (Failure == FK_ArrayTypeMismatch 9076 ? diag::err_array_init_different_type 9077 : diag::err_array_init_non_constant_array)) 9078 << DestType.getNonReferenceType() 9079 << OnlyArg->getType() 9080 << Args[0]->getSourceRange(); 9081 break; 9082 9083 case FK_VariableLengthArrayHasInitializer: 9084 S.Diag(Kind.getLocation(), diag::err_variable_object_no_init) 9085 << Args[0]->getSourceRange(); 9086 break; 9087 9088 case FK_AddressOfOverloadFailed: { 9089 DeclAccessPair Found; 9090 S.ResolveAddressOfOverloadedFunction(OnlyArg, 9091 DestType.getNonReferenceType(), 9092 true, 9093 Found); 9094 break; 9095 } 9096 9097 case FK_AddressOfUnaddressableFunction: { 9098 auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(OnlyArg)->getDecl()); 9099 S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, 9100 OnlyArg->getBeginLoc()); 9101 break; 9102 } 9103 9104 case FK_ReferenceInitOverloadFailed: 9105 case FK_UserConversionOverloadFailed: 9106 switch (FailedOverloadResult) { 9107 case OR_Ambiguous: 9108 9109 FailedCandidateSet.NoteCandidates( 9110 PartialDiagnosticAt( 9111 Kind.getLocation(), 9112 Failure == FK_UserConversionOverloadFailed 9113 ? (S.PDiag(diag::err_typecheck_ambiguous_condition) 9114 << OnlyArg->getType() << DestType 9115 << Args[0]->getSourceRange()) 9116 : (S.PDiag(diag::err_ref_init_ambiguous) 9117 << DestType << OnlyArg->getType() 9118 << Args[0]->getSourceRange())), 9119 S, OCD_AmbiguousCandidates, Args); 9120 break; 9121 9122 case OR_No_Viable_Function: { 9123 auto Cands = FailedCandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args); 9124 if (!S.RequireCompleteType(Kind.getLocation(), 9125 DestType.getNonReferenceType(), 9126 diag::err_typecheck_nonviable_condition_incomplete, 9127 OnlyArg->getType(), Args[0]->getSourceRange())) 9128 S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition) 9129 << (Entity.getKind() == InitializedEntity::EK_Result) 9130 << OnlyArg->getType() << Args[0]->getSourceRange() 9131 << DestType.getNonReferenceType(); 9132 9133 FailedCandidateSet.NoteCandidates(S, Args, Cands); 9134 break; 9135 } 9136 case OR_Deleted: { 9137 S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function) 9138 << OnlyArg->getType() << DestType.getNonReferenceType() 9139 << Args[0]->getSourceRange(); 9140 OverloadCandidateSet::iterator Best; 9141 OverloadingResult Ovl 9142 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 9143 if (Ovl == OR_Deleted) { 9144 S.NoteDeletedFunction(Best->Function); 9145 } else { 9146 llvm_unreachable("Inconsistent overload resolution?"); 9147 } 9148 break; 9149 } 9150 9151 case OR_Success: 9152 llvm_unreachable("Conversion did not fail!"); 9153 } 9154 break; 9155 9156 case FK_NonConstLValueReferenceBindingToTemporary: 9157 if (isa<InitListExpr>(Args[0])) { 9158 S.Diag(Kind.getLocation(), 9159 diag::err_lvalue_reference_bind_to_initlist) 9160 << DestType.getNonReferenceType().isVolatileQualified() 9161 << DestType.getNonReferenceType() 9162 << Args[0]->getSourceRange(); 9163 break; 9164 } 9165 LLVM_FALLTHROUGH; 9166 9167 case FK_NonConstLValueReferenceBindingToUnrelated: 9168 S.Diag(Kind.getLocation(), 9169 Failure == FK_NonConstLValueReferenceBindingToTemporary 9170 ? diag::err_lvalue_reference_bind_to_temporary 9171 : diag::err_lvalue_reference_bind_to_unrelated) 9172 << DestType.getNonReferenceType().isVolatileQualified() 9173 << DestType.getNonReferenceType() 9174 << OnlyArg->getType() 9175 << Args[0]->getSourceRange(); 9176 break; 9177 9178 case FK_NonConstLValueReferenceBindingToBitfield: { 9179 // We don't necessarily have an unambiguous source bit-field. 9180 FieldDecl *BitField = Args[0]->getSourceBitField(); 9181 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield) 9182 << DestType.isVolatileQualified() 9183 << (BitField ? BitField->getDeclName() : DeclarationName()) 9184 << (BitField != nullptr) 9185 << Args[0]->getSourceRange(); 9186 if (BitField) 9187 S.Diag(BitField->getLocation(), diag::note_bitfield_decl); 9188 break; 9189 } 9190 9191 case FK_NonConstLValueReferenceBindingToVectorElement: 9192 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element) 9193 << DestType.isVolatileQualified() 9194 << Args[0]->getSourceRange(); 9195 break; 9196 9197 case FK_NonConstLValueReferenceBindingToMatrixElement: 9198 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_matrix_element) 9199 << DestType.isVolatileQualified() << Args[0]->getSourceRange(); 9200 break; 9201 9202 case FK_RValueReferenceBindingToLValue: 9203 S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref) 9204 << DestType.getNonReferenceType() << OnlyArg->getType() 9205 << Args[0]->getSourceRange(); 9206 break; 9207 9208 case FK_ReferenceAddrspaceMismatchTemporary: 9209 S.Diag(Kind.getLocation(), diag::err_reference_bind_temporary_addrspace) 9210 << DestType << Args[0]->getSourceRange(); 9211 break; 9212 9213 case FK_ReferenceInitDropsQualifiers: { 9214 QualType SourceType = OnlyArg->getType(); 9215 QualType NonRefType = DestType.getNonReferenceType(); 9216 Qualifiers DroppedQualifiers = 9217 SourceType.getQualifiers() - NonRefType.getQualifiers(); 9218 9219 if (!NonRefType.getQualifiers().isAddressSpaceSupersetOf( 9220 SourceType.getQualifiers())) 9221 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) 9222 << NonRefType << SourceType << 1 /*addr space*/ 9223 << Args[0]->getSourceRange(); 9224 else if (DroppedQualifiers.hasQualifiers()) 9225 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) 9226 << NonRefType << SourceType << 0 /*cv quals*/ 9227 << Qualifiers::fromCVRMask(DroppedQualifiers.getCVRQualifiers()) 9228 << DroppedQualifiers.getCVRQualifiers() << Args[0]->getSourceRange(); 9229 else 9230 // FIXME: Consider decomposing the type and explaining which qualifiers 9231 // were dropped where, or on which level a 'const' is missing, etc. 9232 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) 9233 << NonRefType << SourceType << 2 /*incompatible quals*/ 9234 << Args[0]->getSourceRange(); 9235 break; 9236 } 9237 9238 case FK_ReferenceInitFailed: 9239 S.Diag(Kind.getLocation(), diag::err_reference_bind_failed) 9240 << DestType.getNonReferenceType() 9241 << DestType.getNonReferenceType()->isIncompleteType() 9242 << OnlyArg->isLValue() 9243 << OnlyArg->getType() 9244 << Args[0]->getSourceRange(); 9245 emitBadConversionNotes(S, Entity, Args[0]); 9246 break; 9247 9248 case FK_ConversionFailed: { 9249 QualType FromType = OnlyArg->getType(); 9250 PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed) 9251 << (int)Entity.getKind() 9252 << DestType 9253 << OnlyArg->isLValue() 9254 << FromType 9255 << Args[0]->getSourceRange(); 9256 S.HandleFunctionTypeMismatch(PDiag, FromType, DestType); 9257 S.Diag(Kind.getLocation(), PDiag); 9258 emitBadConversionNotes(S, Entity, Args[0]); 9259 break; 9260 } 9261 9262 case FK_ConversionFromPropertyFailed: 9263 // No-op. This error has already been reported. 9264 break; 9265 9266 case FK_TooManyInitsForScalar: { 9267 SourceRange R; 9268 9269 auto *InitList = dyn_cast<InitListExpr>(Args[0]); 9270 if (InitList && InitList->getNumInits() >= 1) { 9271 R = SourceRange(InitList->getInit(0)->getEndLoc(), InitList->getEndLoc()); 9272 } else { 9273 assert(Args.size() > 1 && "Expected multiple initializers!"); 9274 R = SourceRange(Args.front()->getEndLoc(), Args.back()->getEndLoc()); 9275 } 9276 9277 R.setBegin(S.getLocForEndOfToken(R.getBegin())); 9278 if (Kind.isCStyleOrFunctionalCast()) 9279 S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg) 9280 << R; 9281 else 9282 S.Diag(Kind.getLocation(), diag::err_excess_initializers) 9283 << /*scalar=*/2 << R; 9284 break; 9285 } 9286 9287 case FK_ParenthesizedListInitForScalar: 9288 S.Diag(Kind.getLocation(), diag::err_list_init_in_parens) 9289 << 0 << Entity.getType() << Args[0]->getSourceRange(); 9290 break; 9291 9292 case FK_ReferenceBindingToInitList: 9293 S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list) 9294 << DestType.getNonReferenceType() << Args[0]->getSourceRange(); 9295 break; 9296 9297 case FK_InitListBadDestinationType: 9298 S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type) 9299 << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange(); 9300 break; 9301 9302 case FK_ListConstructorOverloadFailed: 9303 case FK_ConstructorOverloadFailed: { 9304 SourceRange ArgsRange; 9305 if (Args.size()) 9306 ArgsRange = 9307 SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc()); 9308 9309 if (Failure == FK_ListConstructorOverloadFailed) { 9310 assert(Args.size() == 1 && 9311 "List construction from other than 1 argument."); 9312 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 9313 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits()); 9314 } 9315 9316 // FIXME: Using "DestType" for the entity we're printing is probably 9317 // bad. 9318 switch (FailedOverloadResult) { 9319 case OR_Ambiguous: 9320 FailedCandidateSet.NoteCandidates( 9321 PartialDiagnosticAt(Kind.getLocation(), 9322 S.PDiag(diag::err_ovl_ambiguous_init) 9323 << DestType << ArgsRange), 9324 S, OCD_AmbiguousCandidates, Args); 9325 break; 9326 9327 case OR_No_Viable_Function: 9328 if (Kind.getKind() == InitializationKind::IK_Default && 9329 (Entity.getKind() == InitializedEntity::EK_Base || 9330 Entity.getKind() == InitializedEntity::EK_Member) && 9331 isa<CXXConstructorDecl>(S.CurContext)) { 9332 // This is implicit default initialization of a member or 9333 // base within a constructor. If no viable function was 9334 // found, notify the user that they need to explicitly 9335 // initialize this base/member. 9336 CXXConstructorDecl *Constructor 9337 = cast<CXXConstructorDecl>(S.CurContext); 9338 const CXXRecordDecl *InheritedFrom = nullptr; 9339 if (auto Inherited = Constructor->getInheritedConstructor()) 9340 InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass(); 9341 if (Entity.getKind() == InitializedEntity::EK_Base) { 9342 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) 9343 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0) 9344 << S.Context.getTypeDeclType(Constructor->getParent()) 9345 << /*base=*/0 9346 << Entity.getType() 9347 << InheritedFrom; 9348 9349 RecordDecl *BaseDecl 9350 = Entity.getBaseSpecifier()->getType()->castAs<RecordType>() 9351 ->getDecl(); 9352 S.Diag(BaseDecl->getLocation(), diag::note_previous_decl) 9353 << S.Context.getTagDeclType(BaseDecl); 9354 } else { 9355 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) 9356 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0) 9357 << S.Context.getTypeDeclType(Constructor->getParent()) 9358 << /*member=*/1 9359 << Entity.getName() 9360 << InheritedFrom; 9361 S.Diag(Entity.getDecl()->getLocation(), 9362 diag::note_member_declared_at); 9363 9364 if (const RecordType *Record 9365 = Entity.getType()->getAs<RecordType>()) 9366 S.Diag(Record->getDecl()->getLocation(), 9367 diag::note_previous_decl) 9368 << S.Context.getTagDeclType(Record->getDecl()); 9369 } 9370 break; 9371 } 9372 9373 FailedCandidateSet.NoteCandidates( 9374 PartialDiagnosticAt( 9375 Kind.getLocation(), 9376 S.PDiag(diag::err_ovl_no_viable_function_in_init) 9377 << DestType << ArgsRange), 9378 S, OCD_AllCandidates, Args); 9379 break; 9380 9381 case OR_Deleted: { 9382 OverloadCandidateSet::iterator Best; 9383 OverloadingResult Ovl 9384 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 9385 if (Ovl != OR_Deleted) { 9386 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) 9387 << DestType << ArgsRange; 9388 llvm_unreachable("Inconsistent overload resolution?"); 9389 break; 9390 } 9391 9392 // If this is a defaulted or implicitly-declared function, then 9393 // it was implicitly deleted. Make it clear that the deletion was 9394 // implicit. 9395 if (S.isImplicitlyDeleted(Best->Function)) 9396 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init) 9397 << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function)) 9398 << DestType << ArgsRange; 9399 else 9400 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) 9401 << DestType << ArgsRange; 9402 9403 S.NoteDeletedFunction(Best->Function); 9404 break; 9405 } 9406 9407 case OR_Success: 9408 llvm_unreachable("Conversion did not fail!"); 9409 } 9410 } 9411 break; 9412 9413 case FK_DefaultInitOfConst: 9414 if (Entity.getKind() == InitializedEntity::EK_Member && 9415 isa<CXXConstructorDecl>(S.CurContext)) { 9416 // This is implicit default-initialization of a const member in 9417 // a constructor. Complain that it needs to be explicitly 9418 // initialized. 9419 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext); 9420 S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor) 9421 << (Constructor->getInheritedConstructor() ? 2 : 9422 Constructor->isImplicit() ? 1 : 0) 9423 << S.Context.getTypeDeclType(Constructor->getParent()) 9424 << /*const=*/1 9425 << Entity.getName(); 9426 S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl) 9427 << Entity.getName(); 9428 } else { 9429 S.Diag(Kind.getLocation(), diag::err_default_init_const) 9430 << DestType << (bool)DestType->getAs<RecordType>(); 9431 } 9432 break; 9433 9434 case FK_Incomplete: 9435 S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType, 9436 diag::err_init_incomplete_type); 9437 break; 9438 9439 case FK_ListInitializationFailed: { 9440 // Run the init list checker again to emit diagnostics. 9441 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 9442 diagnoseListInit(S, Entity, InitList); 9443 break; 9444 } 9445 9446 case FK_PlaceholderType: { 9447 // FIXME: Already diagnosed! 9448 break; 9449 } 9450 9451 case FK_ExplicitConstructor: { 9452 S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor) 9453 << Args[0]->getSourceRange(); 9454 OverloadCandidateSet::iterator Best; 9455 OverloadingResult Ovl 9456 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 9457 (void)Ovl; 9458 assert(Ovl == OR_Success && "Inconsistent overload resolution"); 9459 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 9460 S.Diag(CtorDecl->getLocation(), 9461 diag::note_explicit_ctor_deduction_guide_here) << false; 9462 break; 9463 } 9464 } 9465 9466 PrintInitLocationNote(S, Entity); 9467 return true; 9468 } 9469 9470 void InitializationSequence::dump(raw_ostream &OS) const { 9471 switch (SequenceKind) { 9472 case FailedSequence: { 9473 OS << "Failed sequence: "; 9474 switch (Failure) { 9475 case FK_TooManyInitsForReference: 9476 OS << "too many initializers for reference"; 9477 break; 9478 9479 case FK_ParenthesizedListInitForReference: 9480 OS << "parenthesized list init for reference"; 9481 break; 9482 9483 case FK_ArrayNeedsInitList: 9484 OS << "array requires initializer list"; 9485 break; 9486 9487 case FK_AddressOfUnaddressableFunction: 9488 OS << "address of unaddressable function was taken"; 9489 break; 9490 9491 case FK_ArrayNeedsInitListOrStringLiteral: 9492 OS << "array requires initializer list or string literal"; 9493 break; 9494 9495 case FK_ArrayNeedsInitListOrWideStringLiteral: 9496 OS << "array requires initializer list or wide string literal"; 9497 break; 9498 9499 case FK_NarrowStringIntoWideCharArray: 9500 OS << "narrow string into wide char array"; 9501 break; 9502 9503 case FK_WideStringIntoCharArray: 9504 OS << "wide string into char array"; 9505 break; 9506 9507 case FK_IncompatWideStringIntoWideChar: 9508 OS << "incompatible wide string into wide char array"; 9509 break; 9510 9511 case FK_PlainStringIntoUTF8Char: 9512 OS << "plain string literal into char8_t array"; 9513 break; 9514 9515 case FK_UTF8StringIntoPlainChar: 9516 OS << "u8 string literal into char array"; 9517 break; 9518 9519 case FK_ArrayTypeMismatch: 9520 OS << "array type mismatch"; 9521 break; 9522 9523 case FK_NonConstantArrayInit: 9524 OS << "non-constant array initializer"; 9525 break; 9526 9527 case FK_AddressOfOverloadFailed: 9528 OS << "address of overloaded function failed"; 9529 break; 9530 9531 case FK_ReferenceInitOverloadFailed: 9532 OS << "overload resolution for reference initialization failed"; 9533 break; 9534 9535 case FK_NonConstLValueReferenceBindingToTemporary: 9536 OS << "non-const lvalue reference bound to temporary"; 9537 break; 9538 9539 case FK_NonConstLValueReferenceBindingToBitfield: 9540 OS << "non-const lvalue reference bound to bit-field"; 9541 break; 9542 9543 case FK_NonConstLValueReferenceBindingToVectorElement: 9544 OS << "non-const lvalue reference bound to vector element"; 9545 break; 9546 9547 case FK_NonConstLValueReferenceBindingToMatrixElement: 9548 OS << "non-const lvalue reference bound to matrix element"; 9549 break; 9550 9551 case FK_NonConstLValueReferenceBindingToUnrelated: 9552 OS << "non-const lvalue reference bound to unrelated type"; 9553 break; 9554 9555 case FK_RValueReferenceBindingToLValue: 9556 OS << "rvalue reference bound to an lvalue"; 9557 break; 9558 9559 case FK_ReferenceInitDropsQualifiers: 9560 OS << "reference initialization drops qualifiers"; 9561 break; 9562 9563 case FK_ReferenceAddrspaceMismatchTemporary: 9564 OS << "reference with mismatching address space bound to temporary"; 9565 break; 9566 9567 case FK_ReferenceInitFailed: 9568 OS << "reference initialization failed"; 9569 break; 9570 9571 case FK_ConversionFailed: 9572 OS << "conversion failed"; 9573 break; 9574 9575 case FK_ConversionFromPropertyFailed: 9576 OS << "conversion from property failed"; 9577 break; 9578 9579 case FK_TooManyInitsForScalar: 9580 OS << "too many initializers for scalar"; 9581 break; 9582 9583 case FK_ParenthesizedListInitForScalar: 9584 OS << "parenthesized list init for reference"; 9585 break; 9586 9587 case FK_ReferenceBindingToInitList: 9588 OS << "referencing binding to initializer list"; 9589 break; 9590 9591 case FK_InitListBadDestinationType: 9592 OS << "initializer list for non-aggregate, non-scalar type"; 9593 break; 9594 9595 case FK_UserConversionOverloadFailed: 9596 OS << "overloading failed for user-defined conversion"; 9597 break; 9598 9599 case FK_ConstructorOverloadFailed: 9600 OS << "constructor overloading failed"; 9601 break; 9602 9603 case FK_DefaultInitOfConst: 9604 OS << "default initialization of a const variable"; 9605 break; 9606 9607 case FK_Incomplete: 9608 OS << "initialization of incomplete type"; 9609 break; 9610 9611 case FK_ListInitializationFailed: 9612 OS << "list initialization checker failure"; 9613 break; 9614 9615 case FK_VariableLengthArrayHasInitializer: 9616 OS << "variable length array has an initializer"; 9617 break; 9618 9619 case FK_PlaceholderType: 9620 OS << "initializer expression isn't contextually valid"; 9621 break; 9622 9623 case FK_ListConstructorOverloadFailed: 9624 OS << "list constructor overloading failed"; 9625 break; 9626 9627 case FK_ExplicitConstructor: 9628 OS << "list copy initialization chose explicit constructor"; 9629 break; 9630 } 9631 OS << '\n'; 9632 return; 9633 } 9634 9635 case DependentSequence: 9636 OS << "Dependent sequence\n"; 9637 return; 9638 9639 case NormalSequence: 9640 OS << "Normal sequence: "; 9641 break; 9642 } 9643 9644 for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) { 9645 if (S != step_begin()) { 9646 OS << " -> "; 9647 } 9648 9649 switch (S->Kind) { 9650 case SK_ResolveAddressOfOverloadedFunction: 9651 OS << "resolve address of overloaded function"; 9652 break; 9653 9654 case SK_CastDerivedToBasePRValue: 9655 OS << "derived-to-base (prvalue)"; 9656 break; 9657 9658 case SK_CastDerivedToBaseXValue: 9659 OS << "derived-to-base (xvalue)"; 9660 break; 9661 9662 case SK_CastDerivedToBaseLValue: 9663 OS << "derived-to-base (lvalue)"; 9664 break; 9665 9666 case SK_BindReference: 9667 OS << "bind reference to lvalue"; 9668 break; 9669 9670 case SK_BindReferenceToTemporary: 9671 OS << "bind reference to a temporary"; 9672 break; 9673 9674 case SK_FinalCopy: 9675 OS << "final copy in class direct-initialization"; 9676 break; 9677 9678 case SK_ExtraneousCopyToTemporary: 9679 OS << "extraneous C++03 copy to temporary"; 9680 break; 9681 9682 case SK_UserConversion: 9683 OS << "user-defined conversion via " << *S->Function.Function; 9684 break; 9685 9686 case SK_QualificationConversionPRValue: 9687 OS << "qualification conversion (prvalue)"; 9688 break; 9689 9690 case SK_QualificationConversionXValue: 9691 OS << "qualification conversion (xvalue)"; 9692 break; 9693 9694 case SK_QualificationConversionLValue: 9695 OS << "qualification conversion (lvalue)"; 9696 break; 9697 9698 case SK_FunctionReferenceConversion: 9699 OS << "function reference conversion"; 9700 break; 9701 9702 case SK_AtomicConversion: 9703 OS << "non-atomic-to-atomic conversion"; 9704 break; 9705 9706 case SK_ConversionSequence: 9707 OS << "implicit conversion sequence ("; 9708 S->ICS->dump(); // FIXME: use OS 9709 OS << ")"; 9710 break; 9711 9712 case SK_ConversionSequenceNoNarrowing: 9713 OS << "implicit conversion sequence with narrowing prohibited ("; 9714 S->ICS->dump(); // FIXME: use OS 9715 OS << ")"; 9716 break; 9717 9718 case SK_ListInitialization: 9719 OS << "list aggregate initialization"; 9720 break; 9721 9722 case SK_UnwrapInitList: 9723 OS << "unwrap reference initializer list"; 9724 break; 9725 9726 case SK_RewrapInitList: 9727 OS << "rewrap reference initializer list"; 9728 break; 9729 9730 case SK_ConstructorInitialization: 9731 OS << "constructor initialization"; 9732 break; 9733 9734 case SK_ConstructorInitializationFromList: 9735 OS << "list initialization via constructor"; 9736 break; 9737 9738 case SK_ZeroInitialization: 9739 OS << "zero initialization"; 9740 break; 9741 9742 case SK_CAssignment: 9743 OS << "C assignment"; 9744 break; 9745 9746 case SK_StringInit: 9747 OS << "string initialization"; 9748 break; 9749 9750 case SK_ObjCObjectConversion: 9751 OS << "Objective-C object conversion"; 9752 break; 9753 9754 case SK_ArrayLoopIndex: 9755 OS << "indexing for array initialization loop"; 9756 break; 9757 9758 case SK_ArrayLoopInit: 9759 OS << "array initialization loop"; 9760 break; 9761 9762 case SK_ArrayInit: 9763 OS << "array initialization"; 9764 break; 9765 9766 case SK_GNUArrayInit: 9767 OS << "array initialization (GNU extension)"; 9768 break; 9769 9770 case SK_ParenthesizedArrayInit: 9771 OS << "parenthesized array initialization"; 9772 break; 9773 9774 case SK_PassByIndirectCopyRestore: 9775 OS << "pass by indirect copy and restore"; 9776 break; 9777 9778 case SK_PassByIndirectRestore: 9779 OS << "pass by indirect restore"; 9780 break; 9781 9782 case SK_ProduceObjCObject: 9783 OS << "Objective-C object retension"; 9784 break; 9785 9786 case SK_StdInitializerList: 9787 OS << "std::initializer_list from initializer list"; 9788 break; 9789 9790 case SK_StdInitializerListConstructorCall: 9791 OS << "list initialization from std::initializer_list"; 9792 break; 9793 9794 case SK_OCLSamplerInit: 9795 OS << "OpenCL sampler_t from integer constant"; 9796 break; 9797 9798 case SK_OCLZeroOpaqueType: 9799 OS << "OpenCL opaque type from zero"; 9800 break; 9801 } 9802 9803 OS << " [" << S->Type.getAsString() << ']'; 9804 } 9805 9806 OS << '\n'; 9807 } 9808 9809 void InitializationSequence::dump() const { 9810 dump(llvm::errs()); 9811 } 9812 9813 static bool NarrowingErrs(const LangOptions &L) { 9814 return L.CPlusPlus11 && 9815 (!L.MicrosoftExt || L.isCompatibleWithMSVC(LangOptions::MSVC2015)); 9816 } 9817 9818 static void DiagnoseNarrowingInInitList(Sema &S, 9819 const ImplicitConversionSequence &ICS, 9820 QualType PreNarrowingType, 9821 QualType EntityType, 9822 const Expr *PostInit) { 9823 const StandardConversionSequence *SCS = nullptr; 9824 switch (ICS.getKind()) { 9825 case ImplicitConversionSequence::StandardConversion: 9826 SCS = &ICS.Standard; 9827 break; 9828 case ImplicitConversionSequence::UserDefinedConversion: 9829 SCS = &ICS.UserDefined.After; 9830 break; 9831 case ImplicitConversionSequence::AmbiguousConversion: 9832 case ImplicitConversionSequence::EllipsisConversion: 9833 case ImplicitConversionSequence::BadConversion: 9834 return; 9835 } 9836 9837 // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion. 9838 APValue ConstantValue; 9839 QualType ConstantType; 9840 switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue, 9841 ConstantType)) { 9842 case NK_Not_Narrowing: 9843 case NK_Dependent_Narrowing: 9844 // No narrowing occurred. 9845 return; 9846 9847 case NK_Type_Narrowing: 9848 // This was a floating-to-integer conversion, which is always considered a 9849 // narrowing conversion even if the value is a constant and can be 9850 // represented exactly as an integer. 9851 S.Diag(PostInit->getBeginLoc(), NarrowingErrs(S.getLangOpts()) 9852 ? diag::ext_init_list_type_narrowing 9853 : diag::warn_init_list_type_narrowing) 9854 << PostInit->getSourceRange() 9855 << PreNarrowingType.getLocalUnqualifiedType() 9856 << EntityType.getLocalUnqualifiedType(); 9857 break; 9858 9859 case NK_Constant_Narrowing: 9860 // A constant value was narrowed. 9861 S.Diag(PostInit->getBeginLoc(), 9862 NarrowingErrs(S.getLangOpts()) 9863 ? diag::ext_init_list_constant_narrowing 9864 : diag::warn_init_list_constant_narrowing) 9865 << PostInit->getSourceRange() 9866 << ConstantValue.getAsString(S.getASTContext(), ConstantType) 9867 << EntityType.getLocalUnqualifiedType(); 9868 break; 9869 9870 case NK_Variable_Narrowing: 9871 // A variable's value may have been narrowed. 9872 S.Diag(PostInit->getBeginLoc(), 9873 NarrowingErrs(S.getLangOpts()) 9874 ? diag::ext_init_list_variable_narrowing 9875 : diag::warn_init_list_variable_narrowing) 9876 << PostInit->getSourceRange() 9877 << PreNarrowingType.getLocalUnqualifiedType() 9878 << EntityType.getLocalUnqualifiedType(); 9879 break; 9880 } 9881 9882 SmallString<128> StaticCast; 9883 llvm::raw_svector_ostream OS(StaticCast); 9884 OS << "static_cast<"; 9885 if (const TypedefType *TT = EntityType->getAs<TypedefType>()) { 9886 // It's important to use the typedef's name if there is one so that the 9887 // fixit doesn't break code using types like int64_t. 9888 // 9889 // FIXME: This will break if the typedef requires qualification. But 9890 // getQualifiedNameAsString() includes non-machine-parsable components. 9891 OS << *TT->getDecl(); 9892 } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>()) 9893 OS << BT->getName(S.getLangOpts()); 9894 else { 9895 // Oops, we didn't find the actual type of the variable. Don't emit a fixit 9896 // with a broken cast. 9897 return; 9898 } 9899 OS << ">("; 9900 S.Diag(PostInit->getBeginLoc(), diag::note_init_list_narrowing_silence) 9901 << PostInit->getSourceRange() 9902 << FixItHint::CreateInsertion(PostInit->getBeginLoc(), OS.str()) 9903 << FixItHint::CreateInsertion( 9904 S.getLocForEndOfToken(PostInit->getEndLoc()), ")"); 9905 } 9906 9907 //===----------------------------------------------------------------------===// 9908 // Initialization helper functions 9909 //===----------------------------------------------------------------------===// 9910 bool 9911 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity, 9912 ExprResult Init) { 9913 if (Init.isInvalid()) 9914 return false; 9915 9916 Expr *InitE = Init.get(); 9917 assert(InitE && "No initialization expression"); 9918 9919 InitializationKind Kind = 9920 InitializationKind::CreateCopy(InitE->getBeginLoc(), SourceLocation()); 9921 InitializationSequence Seq(*this, Entity, Kind, InitE); 9922 return !Seq.Failed(); 9923 } 9924 9925 ExprResult 9926 Sema::PerformCopyInitialization(const InitializedEntity &Entity, 9927 SourceLocation EqualLoc, 9928 ExprResult Init, 9929 bool TopLevelOfInitList, 9930 bool AllowExplicit) { 9931 if (Init.isInvalid()) 9932 return ExprError(); 9933 9934 Expr *InitE = Init.get(); 9935 assert(InitE && "No initialization expression?"); 9936 9937 if (EqualLoc.isInvalid()) 9938 EqualLoc = InitE->getBeginLoc(); 9939 9940 InitializationKind Kind = InitializationKind::CreateCopy( 9941 InitE->getBeginLoc(), EqualLoc, AllowExplicit); 9942 InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList); 9943 9944 // Prevent infinite recursion when performing parameter copy-initialization. 9945 const bool ShouldTrackCopy = 9946 Entity.isParameterKind() && Seq.isConstructorInitialization(); 9947 if (ShouldTrackCopy) { 9948 if (llvm::is_contained(CurrentParameterCopyTypes, Entity.getType())) { 9949 Seq.SetOverloadFailure( 9950 InitializationSequence::FK_ConstructorOverloadFailed, 9951 OR_No_Viable_Function); 9952 9953 // Try to give a meaningful diagnostic note for the problematic 9954 // constructor. 9955 const auto LastStep = Seq.step_end() - 1; 9956 assert(LastStep->Kind == 9957 InitializationSequence::SK_ConstructorInitialization); 9958 const FunctionDecl *Function = LastStep->Function.Function; 9959 auto Candidate = 9960 llvm::find_if(Seq.getFailedCandidateSet(), 9961 [Function](const OverloadCandidate &Candidate) -> bool { 9962 return Candidate.Viable && 9963 Candidate.Function == Function && 9964 Candidate.Conversions.size() > 0; 9965 }); 9966 if (Candidate != Seq.getFailedCandidateSet().end() && 9967 Function->getNumParams() > 0) { 9968 Candidate->Viable = false; 9969 Candidate->FailureKind = ovl_fail_bad_conversion; 9970 Candidate->Conversions[0].setBad(BadConversionSequence::no_conversion, 9971 InitE, 9972 Function->getParamDecl(0)->getType()); 9973 } 9974 } 9975 CurrentParameterCopyTypes.push_back(Entity.getType()); 9976 } 9977 9978 ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE); 9979 9980 if (ShouldTrackCopy) 9981 CurrentParameterCopyTypes.pop_back(); 9982 9983 return Result; 9984 } 9985 9986 /// Determine whether RD is, or is derived from, a specialization of CTD. 9987 static bool isOrIsDerivedFromSpecializationOf(CXXRecordDecl *RD, 9988 ClassTemplateDecl *CTD) { 9989 auto NotSpecialization = [&] (const CXXRecordDecl *Candidate) { 9990 auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Candidate); 9991 return !CTSD || !declaresSameEntity(CTSD->getSpecializedTemplate(), CTD); 9992 }; 9993 return !(NotSpecialization(RD) && RD->forallBases(NotSpecialization)); 9994 } 9995 9996 QualType Sema::DeduceTemplateSpecializationFromInitializer( 9997 TypeSourceInfo *TSInfo, const InitializedEntity &Entity, 9998 const InitializationKind &Kind, MultiExprArg Inits) { 9999 auto *DeducedTST = dyn_cast<DeducedTemplateSpecializationType>( 10000 TSInfo->getType()->getContainedDeducedType()); 10001 assert(DeducedTST && "not a deduced template specialization type"); 10002 10003 auto TemplateName = DeducedTST->getTemplateName(); 10004 if (TemplateName.isDependent()) 10005 return SubstAutoTypeDependent(TSInfo->getType()); 10006 10007 // We can only perform deduction for class templates. 10008 auto *Template = 10009 dyn_cast_or_null<ClassTemplateDecl>(TemplateName.getAsTemplateDecl()); 10010 if (!Template) { 10011 Diag(Kind.getLocation(), 10012 diag::err_deduced_non_class_template_specialization_type) 10013 << (int)getTemplateNameKindForDiagnostics(TemplateName) << TemplateName; 10014 if (auto *TD = TemplateName.getAsTemplateDecl()) 10015 Diag(TD->getLocation(), diag::note_template_decl_here); 10016 return QualType(); 10017 } 10018 10019 // Can't deduce from dependent arguments. 10020 if (Expr::hasAnyTypeDependentArguments(Inits)) { 10021 Diag(TSInfo->getTypeLoc().getBeginLoc(), 10022 diag::warn_cxx14_compat_class_template_argument_deduction) 10023 << TSInfo->getTypeLoc().getSourceRange() << 0; 10024 return SubstAutoTypeDependent(TSInfo->getType()); 10025 } 10026 10027 // FIXME: Perform "exact type" matching first, per CWG discussion? 10028 // Or implement this via an implied 'T(T) -> T' deduction guide? 10029 10030 // FIXME: Do we need/want a std::initializer_list<T> special case? 10031 10032 // Look up deduction guides, including those synthesized from constructors. 10033 // 10034 // C++1z [over.match.class.deduct]p1: 10035 // A set of functions and function templates is formed comprising: 10036 // - For each constructor of the class template designated by the 10037 // template-name, a function template [...] 10038 // - For each deduction-guide, a function or function template [...] 10039 DeclarationNameInfo NameInfo( 10040 Context.DeclarationNames.getCXXDeductionGuideName(Template), 10041 TSInfo->getTypeLoc().getEndLoc()); 10042 LookupResult Guides(*this, NameInfo, LookupOrdinaryName); 10043 LookupQualifiedName(Guides, Template->getDeclContext()); 10044 10045 // FIXME: Do not diagnose inaccessible deduction guides. The standard isn't 10046 // clear on this, but they're not found by name so access does not apply. 10047 Guides.suppressDiagnostics(); 10048 10049 // Figure out if this is list-initialization. 10050 InitListExpr *ListInit = 10051 (Inits.size() == 1 && Kind.getKind() != InitializationKind::IK_Direct) 10052 ? dyn_cast<InitListExpr>(Inits[0]) 10053 : nullptr; 10054 10055 // C++1z [over.match.class.deduct]p1: 10056 // Initialization and overload resolution are performed as described in 10057 // [dcl.init] and [over.match.ctor], [over.match.copy], or [over.match.list] 10058 // (as appropriate for the type of initialization performed) for an object 10059 // of a hypothetical class type, where the selected functions and function 10060 // templates are considered to be the constructors of that class type 10061 // 10062 // Since we know we're initializing a class type of a type unrelated to that 10063 // of the initializer, this reduces to something fairly reasonable. 10064 OverloadCandidateSet Candidates(Kind.getLocation(), 10065 OverloadCandidateSet::CSK_Normal); 10066 OverloadCandidateSet::iterator Best; 10067 10068 bool HasAnyDeductionGuide = false; 10069 bool AllowExplicit = !Kind.isCopyInit() || ListInit; 10070 10071 auto tryToResolveOverload = 10072 [&](bool OnlyListConstructors) -> OverloadingResult { 10073 Candidates.clear(OverloadCandidateSet::CSK_Normal); 10074 HasAnyDeductionGuide = false; 10075 10076 for (auto I = Guides.begin(), E = Guides.end(); I != E; ++I) { 10077 NamedDecl *D = (*I)->getUnderlyingDecl(); 10078 if (D->isInvalidDecl()) 10079 continue; 10080 10081 auto *TD = dyn_cast<FunctionTemplateDecl>(D); 10082 auto *GD = dyn_cast_or_null<CXXDeductionGuideDecl>( 10083 TD ? TD->getTemplatedDecl() : dyn_cast<FunctionDecl>(D)); 10084 if (!GD) 10085 continue; 10086 10087 if (!GD->isImplicit()) 10088 HasAnyDeductionGuide = true; 10089 10090 // C++ [over.match.ctor]p1: (non-list copy-initialization from non-class) 10091 // For copy-initialization, the candidate functions are all the 10092 // converting constructors (12.3.1) of that class. 10093 // C++ [over.match.copy]p1: (non-list copy-initialization from class) 10094 // The converting constructors of T are candidate functions. 10095 if (!AllowExplicit) { 10096 // Overload resolution checks whether the deduction guide is declared 10097 // explicit for us. 10098 10099 // When looking for a converting constructor, deduction guides that 10100 // could never be called with one argument are not interesting to 10101 // check or note. 10102 if (GD->getMinRequiredArguments() > 1 || 10103 (GD->getNumParams() == 0 && !GD->isVariadic())) 10104 continue; 10105 } 10106 10107 // C++ [over.match.list]p1.1: (first phase list initialization) 10108 // Initially, the candidate functions are the initializer-list 10109 // constructors of the class T 10110 if (OnlyListConstructors && !isInitListConstructor(GD)) 10111 continue; 10112 10113 // C++ [over.match.list]p1.2: (second phase list initialization) 10114 // the candidate functions are all the constructors of the class T 10115 // C++ [over.match.ctor]p1: (all other cases) 10116 // the candidate functions are all the constructors of the class of 10117 // the object being initialized 10118 10119 // C++ [over.best.ics]p4: 10120 // When [...] the constructor [...] is a candidate by 10121 // - [over.match.copy] (in all cases) 10122 // FIXME: The "second phase of [over.match.list] case can also 10123 // theoretically happen here, but it's not clear whether we can 10124 // ever have a parameter of the right type. 10125 bool SuppressUserConversions = Kind.isCopyInit(); 10126 10127 if (TD) 10128 AddTemplateOverloadCandidate(TD, I.getPair(), /*ExplicitArgs*/ nullptr, 10129 Inits, Candidates, SuppressUserConversions, 10130 /*PartialOverloading*/ false, 10131 AllowExplicit); 10132 else 10133 AddOverloadCandidate(GD, I.getPair(), Inits, Candidates, 10134 SuppressUserConversions, 10135 /*PartialOverloading*/ false, AllowExplicit); 10136 } 10137 return Candidates.BestViableFunction(*this, Kind.getLocation(), Best); 10138 }; 10139 10140 OverloadingResult Result = OR_No_Viable_Function; 10141 10142 // C++11 [over.match.list]p1, per DR1467: for list-initialization, first 10143 // try initializer-list constructors. 10144 if (ListInit) { 10145 bool TryListConstructors = true; 10146 10147 // Try list constructors unless the list is empty and the class has one or 10148 // more default constructors, in which case those constructors win. 10149 if (!ListInit->getNumInits()) { 10150 for (NamedDecl *D : Guides) { 10151 auto *FD = dyn_cast<FunctionDecl>(D->getUnderlyingDecl()); 10152 if (FD && FD->getMinRequiredArguments() == 0) { 10153 TryListConstructors = false; 10154 break; 10155 } 10156 } 10157 } else if (ListInit->getNumInits() == 1) { 10158 // C++ [over.match.class.deduct]: 10159 // As an exception, the first phase in [over.match.list] (considering 10160 // initializer-list constructors) is omitted if the initializer list 10161 // consists of a single expression of type cv U, where U is a 10162 // specialization of C or a class derived from a specialization of C. 10163 Expr *E = ListInit->getInit(0); 10164 auto *RD = E->getType()->getAsCXXRecordDecl(); 10165 if (!isa<InitListExpr>(E) && RD && 10166 isCompleteType(Kind.getLocation(), E->getType()) && 10167 isOrIsDerivedFromSpecializationOf(RD, Template)) 10168 TryListConstructors = false; 10169 } 10170 10171 if (TryListConstructors) 10172 Result = tryToResolveOverload(/*OnlyListConstructor*/true); 10173 // Then unwrap the initializer list and try again considering all 10174 // constructors. 10175 Inits = MultiExprArg(ListInit->getInits(), ListInit->getNumInits()); 10176 } 10177 10178 // If list-initialization fails, or if we're doing any other kind of 10179 // initialization, we (eventually) consider constructors. 10180 if (Result == OR_No_Viable_Function) 10181 Result = tryToResolveOverload(/*OnlyListConstructor*/false); 10182 10183 switch (Result) { 10184 case OR_Ambiguous: 10185 // FIXME: For list-initialization candidates, it'd usually be better to 10186 // list why they were not viable when given the initializer list itself as 10187 // an argument. 10188 Candidates.NoteCandidates( 10189 PartialDiagnosticAt( 10190 Kind.getLocation(), 10191 PDiag(diag::err_deduced_class_template_ctor_ambiguous) 10192 << TemplateName), 10193 *this, OCD_AmbiguousCandidates, Inits); 10194 return QualType(); 10195 10196 case OR_No_Viable_Function: { 10197 CXXRecordDecl *Primary = 10198 cast<ClassTemplateDecl>(Template)->getTemplatedDecl(); 10199 bool Complete = 10200 isCompleteType(Kind.getLocation(), Context.getTypeDeclType(Primary)); 10201 Candidates.NoteCandidates( 10202 PartialDiagnosticAt( 10203 Kind.getLocation(), 10204 PDiag(Complete ? diag::err_deduced_class_template_ctor_no_viable 10205 : diag::err_deduced_class_template_incomplete) 10206 << TemplateName << !Guides.empty()), 10207 *this, OCD_AllCandidates, Inits); 10208 return QualType(); 10209 } 10210 10211 case OR_Deleted: { 10212 Diag(Kind.getLocation(), diag::err_deduced_class_template_deleted) 10213 << TemplateName; 10214 NoteDeletedFunction(Best->Function); 10215 return QualType(); 10216 } 10217 10218 case OR_Success: 10219 // C++ [over.match.list]p1: 10220 // In copy-list-initialization, if an explicit constructor is chosen, the 10221 // initialization is ill-formed. 10222 if (Kind.isCopyInit() && ListInit && 10223 cast<CXXDeductionGuideDecl>(Best->Function)->isExplicit()) { 10224 bool IsDeductionGuide = !Best->Function->isImplicit(); 10225 Diag(Kind.getLocation(), diag::err_deduced_class_template_explicit) 10226 << TemplateName << IsDeductionGuide; 10227 Diag(Best->Function->getLocation(), 10228 diag::note_explicit_ctor_deduction_guide_here) 10229 << IsDeductionGuide; 10230 return QualType(); 10231 } 10232 10233 // Make sure we didn't select an unusable deduction guide, and mark it 10234 // as referenced. 10235 DiagnoseUseOfDecl(Best->Function, Kind.getLocation()); 10236 MarkFunctionReferenced(Kind.getLocation(), Best->Function); 10237 break; 10238 } 10239 10240 // C++ [dcl.type.class.deduct]p1: 10241 // The placeholder is replaced by the return type of the function selected 10242 // by overload resolution for class template deduction. 10243 QualType DeducedType = 10244 SubstAutoType(TSInfo->getType(), Best->Function->getReturnType()); 10245 Diag(TSInfo->getTypeLoc().getBeginLoc(), 10246 diag::warn_cxx14_compat_class_template_argument_deduction) 10247 << TSInfo->getTypeLoc().getSourceRange() << 1 << DeducedType; 10248 10249 // Warn if CTAD was used on a type that does not have any user-defined 10250 // deduction guides. 10251 if (!HasAnyDeductionGuide) { 10252 Diag(TSInfo->getTypeLoc().getBeginLoc(), 10253 diag::warn_ctad_maybe_unsupported) 10254 << TemplateName; 10255 Diag(Template->getLocation(), diag::note_suppress_ctad_maybe_unsupported); 10256 } 10257 10258 return DeducedType; 10259 } 10260