1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for initializers.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/DeclObjC.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/AST/ExprObjC.h"
17 #include "clang/AST/ExprOpenMP.h"
18 #include "clang/AST/TypeLoc.h"
19 #include "clang/Basic/CharInfo.h"
20 #include "clang/Basic/SourceManager.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "clang/Sema/Designator.h"
23 #include "clang/Sema/Initialization.h"
24 #include "clang/Sema/Lookup.h"
25 #include "clang/Sema/SemaInternal.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/PointerIntPair.h"
28 #include "llvm/ADT/SmallString.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/raw_ostream.h"
31 
32 using namespace clang;
33 
34 //===----------------------------------------------------------------------===//
35 // Sema Initialization Checking
36 //===----------------------------------------------------------------------===//
37 
38 /// Check whether T is compatible with a wide character type (wchar_t,
39 /// char16_t or char32_t).
40 static bool IsWideCharCompatible(QualType T, ASTContext &Context) {
41   if (Context.typesAreCompatible(Context.getWideCharType(), T))
42     return true;
43   if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) {
44     return Context.typesAreCompatible(Context.Char16Ty, T) ||
45            Context.typesAreCompatible(Context.Char32Ty, T);
46   }
47   return false;
48 }
49 
50 enum StringInitFailureKind {
51   SIF_None,
52   SIF_NarrowStringIntoWideChar,
53   SIF_WideStringIntoChar,
54   SIF_IncompatWideStringIntoWideChar,
55   SIF_UTF8StringIntoPlainChar,
56   SIF_PlainStringIntoUTF8Char,
57   SIF_Other
58 };
59 
60 /// Check whether the array of type AT can be initialized by the Init
61 /// expression by means of string initialization. Returns SIF_None if so,
62 /// otherwise returns a StringInitFailureKind that describes why the
63 /// initialization would not work.
64 static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT,
65                                           ASTContext &Context) {
66   if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
67     return SIF_Other;
68 
69   // See if this is a string literal or @encode.
70   Init = Init->IgnoreParens();
71 
72   // Handle @encode, which is a narrow string.
73   if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
74     return SIF_None;
75 
76   // Otherwise we can only handle string literals.
77   StringLiteral *SL = dyn_cast<StringLiteral>(Init);
78   if (!SL)
79     return SIF_Other;
80 
81   const QualType ElemTy =
82       Context.getCanonicalType(AT->getElementType()).getUnqualifiedType();
83 
84   switch (SL->getKind()) {
85   case StringLiteral::UTF8:
86     // char8_t array can be initialized with a UTF-8 string.
87     if (ElemTy->isChar8Type())
88       return SIF_None;
89     LLVM_FALLTHROUGH;
90   case StringLiteral::Ascii:
91     // char array can be initialized with a narrow string.
92     // Only allow char x[] = "foo";  not char x[] = L"foo";
93     if (ElemTy->isCharType())
94       return (SL->getKind() == StringLiteral::UTF8 &&
95               Context.getLangOpts().Char8)
96                  ? SIF_UTF8StringIntoPlainChar
97                  : SIF_None;
98     if (ElemTy->isChar8Type())
99       return SIF_PlainStringIntoUTF8Char;
100     if (IsWideCharCompatible(ElemTy, Context))
101       return SIF_NarrowStringIntoWideChar;
102     return SIF_Other;
103   // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15:
104   // "An array with element type compatible with a qualified or unqualified
105   // version of wchar_t, char16_t, or char32_t may be initialized by a wide
106   // string literal with the corresponding encoding prefix (L, u, or U,
107   // respectively), optionally enclosed in braces.
108   case StringLiteral::UTF16:
109     if (Context.typesAreCompatible(Context.Char16Ty, ElemTy))
110       return SIF_None;
111     if (ElemTy->isCharType() || ElemTy->isChar8Type())
112       return SIF_WideStringIntoChar;
113     if (IsWideCharCompatible(ElemTy, Context))
114       return SIF_IncompatWideStringIntoWideChar;
115     return SIF_Other;
116   case StringLiteral::UTF32:
117     if (Context.typesAreCompatible(Context.Char32Ty, ElemTy))
118       return SIF_None;
119     if (ElemTy->isCharType() || ElemTy->isChar8Type())
120       return SIF_WideStringIntoChar;
121     if (IsWideCharCompatible(ElemTy, Context))
122       return SIF_IncompatWideStringIntoWideChar;
123     return SIF_Other;
124   case StringLiteral::Wide:
125     if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy))
126       return SIF_None;
127     if (ElemTy->isCharType() || ElemTy->isChar8Type())
128       return SIF_WideStringIntoChar;
129     if (IsWideCharCompatible(ElemTy, Context))
130       return SIF_IncompatWideStringIntoWideChar;
131     return SIF_Other;
132   }
133 
134   llvm_unreachable("missed a StringLiteral kind?");
135 }
136 
137 static StringInitFailureKind IsStringInit(Expr *init, QualType declType,
138                                           ASTContext &Context) {
139   const ArrayType *arrayType = Context.getAsArrayType(declType);
140   if (!arrayType)
141     return SIF_Other;
142   return IsStringInit(init, arrayType, Context);
143 }
144 
145 bool Sema::IsStringInit(Expr *Init, const ArrayType *AT) {
146   return ::IsStringInit(Init, AT, Context) == SIF_None;
147 }
148 
149 /// Update the type of a string literal, including any surrounding parentheses,
150 /// to match the type of the object which it is initializing.
151 static void updateStringLiteralType(Expr *E, QualType Ty) {
152   while (true) {
153     E->setType(Ty);
154     E->setValueKind(VK_PRValue);
155     if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E)) {
156       break;
157     } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
158       E = PE->getSubExpr();
159     } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
160       assert(UO->getOpcode() == UO_Extension);
161       E = UO->getSubExpr();
162     } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) {
163       E = GSE->getResultExpr();
164     } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) {
165       E = CE->getChosenSubExpr();
166     } else {
167       llvm_unreachable("unexpected expr in string literal init");
168     }
169   }
170 }
171 
172 /// Fix a compound literal initializing an array so it's correctly marked
173 /// as an rvalue.
174 static void updateGNUCompoundLiteralRValue(Expr *E) {
175   while (true) {
176     E->setValueKind(VK_PRValue);
177     if (isa<CompoundLiteralExpr>(E)) {
178       break;
179     } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
180       E = PE->getSubExpr();
181     } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
182       assert(UO->getOpcode() == UO_Extension);
183       E = UO->getSubExpr();
184     } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) {
185       E = GSE->getResultExpr();
186     } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) {
187       E = CE->getChosenSubExpr();
188     } else {
189       llvm_unreachable("unexpected expr in array compound literal init");
190     }
191   }
192 }
193 
194 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
195                             Sema &S) {
196   // Get the length of the string as parsed.
197   auto *ConstantArrayTy =
198       cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe());
199   uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue();
200 
201   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
202     // C99 6.7.8p14. We have an array of character type with unknown size
203     // being initialized to a string literal.
204     llvm::APInt ConstVal(32, StrLength);
205     // Return a new array type (C99 6.7.8p22).
206     DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
207                                            ConstVal, nullptr,
208                                            ArrayType::Normal, 0);
209     updateStringLiteralType(Str, DeclT);
210     return;
211   }
212 
213   const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
214 
215   // We have an array of character type with known size.  However,
216   // the size may be smaller or larger than the string we are initializing.
217   // FIXME: Avoid truncation for 64-bit length strings.
218   if (S.getLangOpts().CPlusPlus) {
219     if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
220       // For Pascal strings it's OK to strip off the terminating null character,
221       // so the example below is valid:
222       //
223       // unsigned char a[2] = "\pa";
224       if (SL->isPascal())
225         StrLength--;
226     }
227 
228     // [dcl.init.string]p2
229     if (StrLength > CAT->getSize().getZExtValue())
230       S.Diag(Str->getBeginLoc(),
231              diag::err_initializer_string_for_char_array_too_long)
232           << Str->getSourceRange();
233   } else {
234     // C99 6.7.8p14.
235     if (StrLength-1 > CAT->getSize().getZExtValue())
236       S.Diag(Str->getBeginLoc(),
237              diag::ext_initializer_string_for_char_array_too_long)
238           << Str->getSourceRange();
239   }
240 
241   // Set the type to the actual size that we are initializing.  If we have
242   // something like:
243   //   char x[1] = "foo";
244   // then this will set the string literal's type to char[1].
245   updateStringLiteralType(Str, DeclT);
246 }
247 
248 //===----------------------------------------------------------------------===//
249 // Semantic checking for initializer lists.
250 //===----------------------------------------------------------------------===//
251 
252 namespace {
253 
254 /// Semantic checking for initializer lists.
255 ///
256 /// The InitListChecker class contains a set of routines that each
257 /// handle the initialization of a certain kind of entity, e.g.,
258 /// arrays, vectors, struct/union types, scalars, etc. The
259 /// InitListChecker itself performs a recursive walk of the subobject
260 /// structure of the type to be initialized, while stepping through
261 /// the initializer list one element at a time. The IList and Index
262 /// parameters to each of the Check* routines contain the active
263 /// (syntactic) initializer list and the index into that initializer
264 /// list that represents the current initializer. Each routine is
265 /// responsible for moving that Index forward as it consumes elements.
266 ///
267 /// Each Check* routine also has a StructuredList/StructuredIndex
268 /// arguments, which contains the current "structured" (semantic)
269 /// initializer list and the index into that initializer list where we
270 /// are copying initializers as we map them over to the semantic
271 /// list. Once we have completed our recursive walk of the subobject
272 /// structure, we will have constructed a full semantic initializer
273 /// list.
274 ///
275 /// C99 designators cause changes in the initializer list traversal,
276 /// because they make the initialization "jump" into a specific
277 /// subobject and then continue the initialization from that
278 /// point. CheckDesignatedInitializer() recursively steps into the
279 /// designated subobject and manages backing out the recursion to
280 /// initialize the subobjects after the one designated.
281 ///
282 /// If an initializer list contains any designators, we build a placeholder
283 /// structured list even in 'verify only' mode, so that we can track which
284 /// elements need 'empty' initializtion.
285 class InitListChecker {
286   Sema &SemaRef;
287   bool hadError = false;
288   bool VerifyOnly; // No diagnostics.
289   bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode.
290   bool InOverloadResolution;
291   InitListExpr *FullyStructuredList = nullptr;
292   NoInitExpr *DummyExpr = nullptr;
293 
294   NoInitExpr *getDummyInit() {
295     if (!DummyExpr)
296       DummyExpr = new (SemaRef.Context) NoInitExpr(SemaRef.Context.VoidTy);
297     return DummyExpr;
298   }
299 
300   void CheckImplicitInitList(const InitializedEntity &Entity,
301                              InitListExpr *ParentIList, QualType T,
302                              unsigned &Index, InitListExpr *StructuredList,
303                              unsigned &StructuredIndex);
304   void CheckExplicitInitList(const InitializedEntity &Entity,
305                              InitListExpr *IList, QualType &T,
306                              InitListExpr *StructuredList,
307                              bool TopLevelObject = false);
308   void CheckListElementTypes(const InitializedEntity &Entity,
309                              InitListExpr *IList, QualType &DeclType,
310                              bool SubobjectIsDesignatorContext,
311                              unsigned &Index,
312                              InitListExpr *StructuredList,
313                              unsigned &StructuredIndex,
314                              bool TopLevelObject = false);
315   void CheckSubElementType(const InitializedEntity &Entity,
316                            InitListExpr *IList, QualType ElemType,
317                            unsigned &Index,
318                            InitListExpr *StructuredList,
319                            unsigned &StructuredIndex,
320                            bool DirectlyDesignated = false);
321   void CheckComplexType(const InitializedEntity &Entity,
322                         InitListExpr *IList, QualType DeclType,
323                         unsigned &Index,
324                         InitListExpr *StructuredList,
325                         unsigned &StructuredIndex);
326   void CheckScalarType(const InitializedEntity &Entity,
327                        InitListExpr *IList, QualType DeclType,
328                        unsigned &Index,
329                        InitListExpr *StructuredList,
330                        unsigned &StructuredIndex);
331   void CheckReferenceType(const InitializedEntity &Entity,
332                           InitListExpr *IList, QualType DeclType,
333                           unsigned &Index,
334                           InitListExpr *StructuredList,
335                           unsigned &StructuredIndex);
336   void CheckVectorType(const InitializedEntity &Entity,
337                        InitListExpr *IList, QualType DeclType, unsigned &Index,
338                        InitListExpr *StructuredList,
339                        unsigned &StructuredIndex);
340   void CheckStructUnionTypes(const InitializedEntity &Entity,
341                              InitListExpr *IList, QualType DeclType,
342                              CXXRecordDecl::base_class_range Bases,
343                              RecordDecl::field_iterator Field,
344                              bool SubobjectIsDesignatorContext, unsigned &Index,
345                              InitListExpr *StructuredList,
346                              unsigned &StructuredIndex,
347                              bool TopLevelObject = false);
348   void CheckArrayType(const InitializedEntity &Entity,
349                       InitListExpr *IList, QualType &DeclType,
350                       llvm::APSInt elementIndex,
351                       bool SubobjectIsDesignatorContext, unsigned &Index,
352                       InitListExpr *StructuredList,
353                       unsigned &StructuredIndex);
354   bool CheckDesignatedInitializer(const InitializedEntity &Entity,
355                                   InitListExpr *IList, DesignatedInitExpr *DIE,
356                                   unsigned DesigIdx,
357                                   QualType &CurrentObjectType,
358                                   RecordDecl::field_iterator *NextField,
359                                   llvm::APSInt *NextElementIndex,
360                                   unsigned &Index,
361                                   InitListExpr *StructuredList,
362                                   unsigned &StructuredIndex,
363                                   bool FinishSubobjectInit,
364                                   bool TopLevelObject);
365   InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
366                                            QualType CurrentObjectType,
367                                            InitListExpr *StructuredList,
368                                            unsigned StructuredIndex,
369                                            SourceRange InitRange,
370                                            bool IsFullyOverwritten = false);
371   void UpdateStructuredListElement(InitListExpr *StructuredList,
372                                    unsigned &StructuredIndex,
373                                    Expr *expr);
374   InitListExpr *createInitListExpr(QualType CurrentObjectType,
375                                    SourceRange InitRange,
376                                    unsigned ExpectedNumInits);
377   int numArrayElements(QualType DeclType);
378   int numStructUnionElements(QualType DeclType);
379 
380   ExprResult PerformEmptyInit(SourceLocation Loc,
381                               const InitializedEntity &Entity);
382 
383   /// Diagnose that OldInit (or part thereof) has been overridden by NewInit.
384   void diagnoseInitOverride(Expr *OldInit, SourceRange NewInitRange,
385                             bool FullyOverwritten = true) {
386     // Overriding an initializer via a designator is valid with C99 designated
387     // initializers, but ill-formed with C++20 designated initializers.
388     unsigned DiagID = SemaRef.getLangOpts().CPlusPlus
389                           ? diag::ext_initializer_overrides
390                           : diag::warn_initializer_overrides;
391 
392     if (InOverloadResolution && SemaRef.getLangOpts().CPlusPlus) {
393       // In overload resolution, we have to strictly enforce the rules, and so
394       // don't allow any overriding of prior initializers. This matters for a
395       // case such as:
396       //
397       //   union U { int a, b; };
398       //   struct S { int a, b; };
399       //   void f(U), f(S);
400       //
401       // Here, f({.a = 1, .b = 2}) is required to call the struct overload. For
402       // consistency, we disallow all overriding of prior initializers in
403       // overload resolution, not only overriding of union members.
404       hadError = true;
405     } else if (OldInit->getType().isDestructedType() && !FullyOverwritten) {
406       // If we'll be keeping around the old initializer but overwriting part of
407       // the object it initialized, and that object is not trivially
408       // destructible, this can leak. Don't allow that, not even as an
409       // extension.
410       //
411       // FIXME: It might be reasonable to allow this in cases where the part of
412       // the initializer that we're overriding has trivial destruction.
413       DiagID = diag::err_initializer_overrides_destructed;
414     } else if (!OldInit->getSourceRange().isValid()) {
415       // We need to check on source range validity because the previous
416       // initializer does not have to be an explicit initializer. e.g.,
417       //
418       // struct P { int a, b; };
419       // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
420       //
421       // There is an overwrite taking place because the first braced initializer
422       // list "{ .a = 2 }" already provides value for .p.b (which is zero).
423       //
424       // Such overwrites are harmless, so we don't diagnose them. (Note that in
425       // C++, this cannot be reached unless we've already seen and diagnosed a
426       // different conformance issue, such as a mixture of designated and
427       // non-designated initializers or a multi-level designator.)
428       return;
429     }
430 
431     if (!VerifyOnly) {
432       SemaRef.Diag(NewInitRange.getBegin(), DiagID)
433           << NewInitRange << FullyOverwritten << OldInit->getType();
434       SemaRef.Diag(OldInit->getBeginLoc(), diag::note_previous_initializer)
435           << (OldInit->HasSideEffects(SemaRef.Context) && FullyOverwritten)
436           << OldInit->getSourceRange();
437     }
438   }
439 
440   // Explanation on the "FillWithNoInit" mode:
441   //
442   // Assume we have the following definitions (Case#1):
443   // struct P { char x[6][6]; } xp = { .x[1] = "bar" };
444   // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' };
445   //
446   // l.lp.x[1][0..1] should not be filled with implicit initializers because the
447   // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf".
448   //
449   // But if we have (Case#2):
450   // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } };
451   //
452   // l.lp.x[1][0..1] are implicitly initialized and do not use values from the
453   // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0".
454   //
455   // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes"
456   // in the InitListExpr, the "holes" in Case#1 are filled not with empty
457   // initializers but with special "NoInitExpr" place holders, which tells the
458   // CodeGen not to generate any initializers for these parts.
459   void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base,
460                               const InitializedEntity &ParentEntity,
461                               InitListExpr *ILE, bool &RequiresSecondPass,
462                               bool FillWithNoInit);
463   void FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
464                                const InitializedEntity &ParentEntity,
465                                InitListExpr *ILE, bool &RequiresSecondPass,
466                                bool FillWithNoInit = false);
467   void FillInEmptyInitializations(const InitializedEntity &Entity,
468                                   InitListExpr *ILE, bool &RequiresSecondPass,
469                                   InitListExpr *OuterILE, unsigned OuterIndex,
470                                   bool FillWithNoInit = false);
471   bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
472                               Expr *InitExpr, FieldDecl *Field,
473                               bool TopLevelObject);
474   void CheckEmptyInitializable(const InitializedEntity &Entity,
475                                SourceLocation Loc);
476 
477 public:
478   InitListChecker(Sema &S, const InitializedEntity &Entity, InitListExpr *IL,
479                   QualType &T, bool VerifyOnly, bool TreatUnavailableAsInvalid,
480                   bool InOverloadResolution = false);
481   bool HadError() { return hadError; }
482 
483   // Retrieves the fully-structured initializer list used for
484   // semantic analysis and code generation.
485   InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
486 };
487 
488 } // end anonymous namespace
489 
490 ExprResult InitListChecker::PerformEmptyInit(SourceLocation Loc,
491                                              const InitializedEntity &Entity) {
492   InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
493                                                             true);
494   MultiExprArg SubInit;
495   Expr *InitExpr;
496   InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc);
497 
498   // C++ [dcl.init.aggr]p7:
499   //   If there are fewer initializer-clauses in the list than there are
500   //   members in the aggregate, then each member not explicitly initialized
501   //   ...
502   bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 &&
503       Entity.getType()->getBaseElementTypeUnsafe()->isRecordType();
504   if (EmptyInitList) {
505     // C++1y / DR1070:
506     //   shall be initialized [...] from an empty initializer list.
507     //
508     // We apply the resolution of this DR to C++11 but not C++98, since C++98
509     // does not have useful semantics for initialization from an init list.
510     // We treat this as copy-initialization, because aggregate initialization
511     // always performs copy-initialization on its elements.
512     //
513     // Only do this if we're initializing a class type, to avoid filling in
514     // the initializer list where possible.
515     InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context)
516                    InitListExpr(SemaRef.Context, Loc, None, Loc);
517     InitExpr->setType(SemaRef.Context.VoidTy);
518     SubInit = InitExpr;
519     Kind = InitializationKind::CreateCopy(Loc, Loc);
520   } else {
521     // C++03:
522     //   shall be value-initialized.
523   }
524 
525   InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit);
526   // libstdc++4.6 marks the vector default constructor as explicit in
527   // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case.
528   // stlport does so too. Look for std::__debug for libstdc++, and for
529   // std:: for stlport.  This is effectively a compiler-side implementation of
530   // LWG2193.
531   if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() ==
532           InitializationSequence::FK_ExplicitConstructor) {
533     OverloadCandidateSet::iterator Best;
534     OverloadingResult O =
535         InitSeq.getFailedCandidateSet()
536             .BestViableFunction(SemaRef, Kind.getLocation(), Best);
537     (void)O;
538     assert(O == OR_Success && "Inconsistent overload resolution");
539     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
540     CXXRecordDecl *R = CtorDecl->getParent();
541 
542     if (CtorDecl->getMinRequiredArguments() == 0 &&
543         CtorDecl->isExplicit() && R->getDeclName() &&
544         SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) {
545       bool IsInStd = false;
546       for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext());
547            ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) {
548         if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND))
549           IsInStd = true;
550       }
551 
552       if (IsInStd && llvm::StringSwitch<bool>(R->getName())
553               .Cases("basic_string", "deque", "forward_list", true)
554               .Cases("list", "map", "multimap", "multiset", true)
555               .Cases("priority_queue", "queue", "set", "stack", true)
556               .Cases("unordered_map", "unordered_set", "vector", true)
557               .Default(false)) {
558         InitSeq.InitializeFrom(
559             SemaRef, Entity,
560             InitializationKind::CreateValue(Loc, Loc, Loc, true),
561             MultiExprArg(), /*TopLevelOfInitList=*/false,
562             TreatUnavailableAsInvalid);
563         // Emit a warning for this.  System header warnings aren't shown
564         // by default, but people working on system headers should see it.
565         if (!VerifyOnly) {
566           SemaRef.Diag(CtorDecl->getLocation(),
567                        diag::warn_invalid_initializer_from_system_header);
568           if (Entity.getKind() == InitializedEntity::EK_Member)
569             SemaRef.Diag(Entity.getDecl()->getLocation(),
570                          diag::note_used_in_initialization_here);
571           else if (Entity.getKind() == InitializedEntity::EK_ArrayElement)
572             SemaRef.Diag(Loc, diag::note_used_in_initialization_here);
573         }
574       }
575     }
576   }
577   if (!InitSeq) {
578     if (!VerifyOnly) {
579       InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit);
580       if (Entity.getKind() == InitializedEntity::EK_Member)
581         SemaRef.Diag(Entity.getDecl()->getLocation(),
582                      diag::note_in_omitted_aggregate_initializer)
583           << /*field*/1 << Entity.getDecl();
584       else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) {
585         bool IsTrailingArrayNewMember =
586             Entity.getParent() &&
587             Entity.getParent()->isVariableLengthArrayNew();
588         SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer)
589           << (IsTrailingArrayNewMember ? 2 : /*array element*/0)
590           << Entity.getElementIndex();
591       }
592     }
593     hadError = true;
594     return ExprError();
595   }
596 
597   return VerifyOnly ? ExprResult()
598                     : InitSeq.Perform(SemaRef, Entity, Kind, SubInit);
599 }
600 
601 void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity,
602                                               SourceLocation Loc) {
603   // If we're building a fully-structured list, we'll check this at the end
604   // once we know which elements are actually initialized. Otherwise, we know
605   // that there are no designators so we can just check now.
606   if (FullyStructuredList)
607     return;
608   PerformEmptyInit(Loc, Entity);
609 }
610 
611 void InitListChecker::FillInEmptyInitForBase(
612     unsigned Init, const CXXBaseSpecifier &Base,
613     const InitializedEntity &ParentEntity, InitListExpr *ILE,
614     bool &RequiresSecondPass, bool FillWithNoInit) {
615   InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
616       SemaRef.Context, &Base, false, &ParentEntity);
617 
618   if (Init >= ILE->getNumInits() || !ILE->getInit(Init)) {
619     ExprResult BaseInit = FillWithNoInit
620                               ? new (SemaRef.Context) NoInitExpr(Base.getType())
621                               : PerformEmptyInit(ILE->getEndLoc(), BaseEntity);
622     if (BaseInit.isInvalid()) {
623       hadError = true;
624       return;
625     }
626 
627     if (!VerifyOnly) {
628       assert(Init < ILE->getNumInits() && "should have been expanded");
629       ILE->setInit(Init, BaseInit.getAs<Expr>());
630     }
631   } else if (InitListExpr *InnerILE =
632                  dyn_cast<InitListExpr>(ILE->getInit(Init))) {
633     FillInEmptyInitializations(BaseEntity, InnerILE, RequiresSecondPass,
634                                ILE, Init, FillWithNoInit);
635   } else if (DesignatedInitUpdateExpr *InnerDIUE =
636                dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
637     FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(),
638                                RequiresSecondPass, ILE, Init,
639                                /*FillWithNoInit =*/true);
640   }
641 }
642 
643 void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
644                                         const InitializedEntity &ParentEntity,
645                                               InitListExpr *ILE,
646                                               bool &RequiresSecondPass,
647                                               bool FillWithNoInit) {
648   SourceLocation Loc = ILE->getEndLoc();
649   unsigned NumInits = ILE->getNumInits();
650   InitializedEntity MemberEntity
651     = InitializedEntity::InitializeMember(Field, &ParentEntity);
652 
653   if (Init >= NumInits || !ILE->getInit(Init)) {
654     if (const RecordType *RType = ILE->getType()->getAs<RecordType>())
655       if (!RType->getDecl()->isUnion())
656         assert((Init < NumInits || VerifyOnly) &&
657                "This ILE should have been expanded");
658 
659     if (FillWithNoInit) {
660       assert(!VerifyOnly && "should not fill with no-init in verify-only mode");
661       Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType());
662       if (Init < NumInits)
663         ILE->setInit(Init, Filler);
664       else
665         ILE->updateInit(SemaRef.Context, Init, Filler);
666       return;
667     }
668     // C++1y [dcl.init.aggr]p7:
669     //   If there are fewer initializer-clauses in the list than there are
670     //   members in the aggregate, then each member not explicitly initialized
671     //   shall be initialized from its brace-or-equal-initializer [...]
672     if (Field->hasInClassInitializer()) {
673       if (VerifyOnly)
674         return;
675 
676       ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field);
677       if (DIE.isInvalid()) {
678         hadError = true;
679         return;
680       }
681       SemaRef.checkInitializerLifetime(MemberEntity, DIE.get());
682       if (Init < NumInits)
683         ILE->setInit(Init, DIE.get());
684       else {
685         ILE->updateInit(SemaRef.Context, Init, DIE.get());
686         RequiresSecondPass = true;
687       }
688       return;
689     }
690 
691     if (Field->getType()->isReferenceType()) {
692       if (!VerifyOnly) {
693         // C++ [dcl.init.aggr]p9:
694         //   If an incomplete or empty initializer-list leaves a
695         //   member of reference type uninitialized, the program is
696         //   ill-formed.
697         SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
698           << Field->getType()
699           << ILE->getSyntacticForm()->getSourceRange();
700         SemaRef.Diag(Field->getLocation(),
701                      diag::note_uninit_reference_member);
702       }
703       hadError = true;
704       return;
705     }
706 
707     ExprResult MemberInit = PerformEmptyInit(Loc, MemberEntity);
708     if (MemberInit.isInvalid()) {
709       hadError = true;
710       return;
711     }
712 
713     if (hadError || VerifyOnly) {
714       // Do nothing
715     } else if (Init < NumInits) {
716       ILE->setInit(Init, MemberInit.getAs<Expr>());
717     } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) {
718       // Empty initialization requires a constructor call, so
719       // extend the initializer list to include the constructor
720       // call and make a note that we'll need to take another pass
721       // through the initializer list.
722       ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>());
723       RequiresSecondPass = true;
724     }
725   } else if (InitListExpr *InnerILE
726                = dyn_cast<InitListExpr>(ILE->getInit(Init))) {
727     FillInEmptyInitializations(MemberEntity, InnerILE,
728                                RequiresSecondPass, ILE, Init, FillWithNoInit);
729   } else if (DesignatedInitUpdateExpr *InnerDIUE =
730                  dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
731     FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(),
732                                RequiresSecondPass, ILE, Init,
733                                /*FillWithNoInit =*/true);
734   }
735 }
736 
737 /// Recursively replaces NULL values within the given initializer list
738 /// with expressions that perform value-initialization of the
739 /// appropriate type, and finish off the InitListExpr formation.
740 void
741 InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity,
742                                             InitListExpr *ILE,
743                                             bool &RequiresSecondPass,
744                                             InitListExpr *OuterILE,
745                                             unsigned OuterIndex,
746                                             bool FillWithNoInit) {
747   assert((ILE->getType() != SemaRef.Context.VoidTy) &&
748          "Should not have void type");
749 
750   // We don't need to do any checks when just filling NoInitExprs; that can't
751   // fail.
752   if (FillWithNoInit && VerifyOnly)
753     return;
754 
755   // If this is a nested initializer list, we might have changed its contents
756   // (and therefore some of its properties, such as instantiation-dependence)
757   // while filling it in. Inform the outer initializer list so that its state
758   // can be updated to match.
759   // FIXME: We should fully build the inner initializers before constructing
760   // the outer InitListExpr instead of mutating AST nodes after they have
761   // been used as subexpressions of other nodes.
762   struct UpdateOuterILEWithUpdatedInit {
763     InitListExpr *Outer;
764     unsigned OuterIndex;
765     ~UpdateOuterILEWithUpdatedInit() {
766       if (Outer)
767         Outer->setInit(OuterIndex, Outer->getInit(OuterIndex));
768     }
769   } UpdateOuterRAII = {OuterILE, OuterIndex};
770 
771   // A transparent ILE is not performing aggregate initialization and should
772   // not be filled in.
773   if (ILE->isTransparent())
774     return;
775 
776   if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
777     const RecordDecl *RDecl = RType->getDecl();
778     if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
779       FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(),
780                               Entity, ILE, RequiresSecondPass, FillWithNoInit);
781     else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
782              cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
783       for (auto *Field : RDecl->fields()) {
784         if (Field->hasInClassInitializer()) {
785           FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass,
786                                   FillWithNoInit);
787           break;
788         }
789       }
790     } else {
791       // The fields beyond ILE->getNumInits() are default initialized, so in
792       // order to leave them uninitialized, the ILE is expanded and the extra
793       // fields are then filled with NoInitExpr.
794       unsigned NumElems = numStructUnionElements(ILE->getType());
795       if (RDecl->hasFlexibleArrayMember())
796         ++NumElems;
797       if (!VerifyOnly && ILE->getNumInits() < NumElems)
798         ILE->resizeInits(SemaRef.Context, NumElems);
799 
800       unsigned Init = 0;
801 
802       if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) {
803         for (auto &Base : CXXRD->bases()) {
804           if (hadError)
805             return;
806 
807           FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass,
808                                  FillWithNoInit);
809           ++Init;
810         }
811       }
812 
813       for (auto *Field : RDecl->fields()) {
814         if (Field->isUnnamedBitfield())
815           continue;
816 
817         if (hadError)
818           return;
819 
820         FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass,
821                                 FillWithNoInit);
822         if (hadError)
823           return;
824 
825         ++Init;
826 
827         // Only look at the first initialization of a union.
828         if (RDecl->isUnion())
829           break;
830       }
831     }
832 
833     return;
834   }
835 
836   QualType ElementType;
837 
838   InitializedEntity ElementEntity = Entity;
839   unsigned NumInits = ILE->getNumInits();
840   unsigned NumElements = NumInits;
841   if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
842     ElementType = AType->getElementType();
843     if (const auto *CAType = dyn_cast<ConstantArrayType>(AType))
844       NumElements = CAType->getSize().getZExtValue();
845     // For an array new with an unknown bound, ask for one additional element
846     // in order to populate the array filler.
847     if (Entity.isVariableLengthArrayNew())
848       ++NumElements;
849     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
850                                                          0, Entity);
851   } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
852     ElementType = VType->getElementType();
853     NumElements = VType->getNumElements();
854     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
855                                                          0, Entity);
856   } else
857     ElementType = ILE->getType();
858 
859   bool SkipEmptyInitChecks = false;
860   for (unsigned Init = 0; Init != NumElements; ++Init) {
861     if (hadError)
862       return;
863 
864     if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
865         ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
866       ElementEntity.setElementIndex(Init);
867 
868     if (Init >= NumInits && (ILE->hasArrayFiller() || SkipEmptyInitChecks))
869       return;
870 
871     Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr);
872     if (!InitExpr && Init < NumInits && ILE->hasArrayFiller())
873       ILE->setInit(Init, ILE->getArrayFiller());
874     else if (!InitExpr && !ILE->hasArrayFiller()) {
875       // In VerifyOnly mode, there's no point performing empty initialization
876       // more than once.
877       if (SkipEmptyInitChecks)
878         continue;
879 
880       Expr *Filler = nullptr;
881 
882       if (FillWithNoInit)
883         Filler = new (SemaRef.Context) NoInitExpr(ElementType);
884       else {
885         ExprResult ElementInit =
886             PerformEmptyInit(ILE->getEndLoc(), ElementEntity);
887         if (ElementInit.isInvalid()) {
888           hadError = true;
889           return;
890         }
891 
892         Filler = ElementInit.getAs<Expr>();
893       }
894 
895       if (hadError) {
896         // Do nothing
897       } else if (VerifyOnly) {
898         SkipEmptyInitChecks = true;
899       } else if (Init < NumInits) {
900         // For arrays, just set the expression used for value-initialization
901         // of the "holes" in the array.
902         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
903           ILE->setArrayFiller(Filler);
904         else
905           ILE->setInit(Init, Filler);
906       } else {
907         // For arrays, just set the expression used for value-initialization
908         // of the rest of elements and exit.
909         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
910           ILE->setArrayFiller(Filler);
911           return;
912         }
913 
914         if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) {
915           // Empty initialization requires a constructor call, so
916           // extend the initializer list to include the constructor
917           // call and make a note that we'll need to take another pass
918           // through the initializer list.
919           ILE->updateInit(SemaRef.Context, Init, Filler);
920           RequiresSecondPass = true;
921         }
922       }
923     } else if (InitListExpr *InnerILE
924                  = dyn_cast_or_null<InitListExpr>(InitExpr)) {
925       FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass,
926                                  ILE, Init, FillWithNoInit);
927     } else if (DesignatedInitUpdateExpr *InnerDIUE =
928                    dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr)) {
929       FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(),
930                                  RequiresSecondPass, ILE, Init,
931                                  /*FillWithNoInit =*/true);
932     }
933   }
934 }
935 
936 static bool hasAnyDesignatedInits(const InitListExpr *IL) {
937   for (const Stmt *Init : *IL)
938     if (Init && isa<DesignatedInitExpr>(Init))
939       return true;
940   return false;
941 }
942 
943 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
944                                  InitListExpr *IL, QualType &T, bool VerifyOnly,
945                                  bool TreatUnavailableAsInvalid,
946                                  bool InOverloadResolution)
947     : SemaRef(S), VerifyOnly(VerifyOnly),
948       TreatUnavailableAsInvalid(TreatUnavailableAsInvalid),
949       InOverloadResolution(InOverloadResolution) {
950   if (!VerifyOnly || hasAnyDesignatedInits(IL)) {
951     FullyStructuredList =
952         createInitListExpr(T, IL->getSourceRange(), IL->getNumInits());
953 
954     // FIXME: Check that IL isn't already the semantic form of some other
955     // InitListExpr. If it is, we'd create a broken AST.
956     if (!VerifyOnly)
957       FullyStructuredList->setSyntacticForm(IL);
958   }
959 
960   CheckExplicitInitList(Entity, IL, T, FullyStructuredList,
961                         /*TopLevelObject=*/true);
962 
963   if (!hadError && FullyStructuredList) {
964     bool RequiresSecondPass = false;
965     FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass,
966                                /*OuterILE=*/nullptr, /*OuterIndex=*/0);
967     if (RequiresSecondPass && !hadError)
968       FillInEmptyInitializations(Entity, FullyStructuredList,
969                                  RequiresSecondPass, nullptr, 0);
970   }
971   if (hadError && FullyStructuredList)
972     FullyStructuredList->markError();
973 }
974 
975 int InitListChecker::numArrayElements(QualType DeclType) {
976   // FIXME: use a proper constant
977   int maxElements = 0x7FFFFFFF;
978   if (const ConstantArrayType *CAT =
979         SemaRef.Context.getAsConstantArrayType(DeclType)) {
980     maxElements = static_cast<int>(CAT->getSize().getZExtValue());
981   }
982   return maxElements;
983 }
984 
985 int InitListChecker::numStructUnionElements(QualType DeclType) {
986   RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl();
987   int InitializableMembers = 0;
988   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl))
989     InitializableMembers += CXXRD->getNumBases();
990   for (const auto *Field : structDecl->fields())
991     if (!Field->isUnnamedBitfield())
992       ++InitializableMembers;
993 
994   if (structDecl->isUnion())
995     return std::min(InitializableMembers, 1);
996   return InitializableMembers - structDecl->hasFlexibleArrayMember();
997 }
998 
999 /// Determine whether Entity is an entity for which it is idiomatic to elide
1000 /// the braces in aggregate initialization.
1001 static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) {
1002   // Recursive initialization of the one and only field within an aggregate
1003   // class is considered idiomatic. This case arises in particular for
1004   // initialization of std::array, where the C++ standard suggests the idiom of
1005   //
1006   //   std::array<T, N> arr = {1, 2, 3};
1007   //
1008   // (where std::array is an aggregate struct containing a single array field.
1009 
1010   if (!Entity.getParent())
1011     return false;
1012 
1013   // Allows elide brace initialization for aggregates with empty base.
1014   if (Entity.getKind() == InitializedEntity::EK_Base) {
1015     auto *ParentRD =
1016         Entity.getParent()->getType()->castAs<RecordType>()->getDecl();
1017     CXXRecordDecl *CXXRD = cast<CXXRecordDecl>(ParentRD);
1018     return CXXRD->getNumBases() == 1 && CXXRD->field_empty();
1019   }
1020 
1021   // Allow brace elision if the only subobject is a field.
1022   if (Entity.getKind() == InitializedEntity::EK_Member) {
1023     auto *ParentRD =
1024         Entity.getParent()->getType()->castAs<RecordType>()->getDecl();
1025     if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(ParentRD)) {
1026       if (CXXRD->getNumBases()) {
1027         return false;
1028       }
1029     }
1030     auto FieldIt = ParentRD->field_begin();
1031     assert(FieldIt != ParentRD->field_end() &&
1032            "no fields but have initializer for member?");
1033     return ++FieldIt == ParentRD->field_end();
1034   }
1035 
1036   return false;
1037 }
1038 
1039 /// Check whether the range of the initializer \p ParentIList from element
1040 /// \p Index onwards can be used to initialize an object of type \p T. Update
1041 /// \p Index to indicate how many elements of the list were consumed.
1042 ///
1043 /// This also fills in \p StructuredList, from element \p StructuredIndex
1044 /// onwards, with the fully-braced, desugared form of the initialization.
1045 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
1046                                             InitListExpr *ParentIList,
1047                                             QualType T, unsigned &Index,
1048                                             InitListExpr *StructuredList,
1049                                             unsigned &StructuredIndex) {
1050   int maxElements = 0;
1051 
1052   if (T->isArrayType())
1053     maxElements = numArrayElements(T);
1054   else if (T->isRecordType())
1055     maxElements = numStructUnionElements(T);
1056   else if (T->isVectorType())
1057     maxElements = T->castAs<VectorType>()->getNumElements();
1058   else
1059     llvm_unreachable("CheckImplicitInitList(): Illegal type");
1060 
1061   if (maxElements == 0) {
1062     if (!VerifyOnly)
1063       SemaRef.Diag(ParentIList->getInit(Index)->getBeginLoc(),
1064                    diag::err_implicit_empty_initializer);
1065     ++Index;
1066     hadError = true;
1067     return;
1068   }
1069 
1070   // Build a structured initializer list corresponding to this subobject.
1071   InitListExpr *StructuredSubobjectInitList = getStructuredSubobjectInit(
1072       ParentIList, Index, T, StructuredList, StructuredIndex,
1073       SourceRange(ParentIList->getInit(Index)->getBeginLoc(),
1074                   ParentIList->getSourceRange().getEnd()));
1075   unsigned StructuredSubobjectInitIndex = 0;
1076 
1077   // Check the element types and build the structural subobject.
1078   unsigned StartIndex = Index;
1079   CheckListElementTypes(Entity, ParentIList, T,
1080                         /*SubobjectIsDesignatorContext=*/false, Index,
1081                         StructuredSubobjectInitList,
1082                         StructuredSubobjectInitIndex);
1083 
1084   if (StructuredSubobjectInitList) {
1085     StructuredSubobjectInitList->setType(T);
1086 
1087     unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
1088     // Update the structured sub-object initializer so that it's ending
1089     // range corresponds with the end of the last initializer it used.
1090     if (EndIndex < ParentIList->getNumInits() &&
1091         ParentIList->getInit(EndIndex)) {
1092       SourceLocation EndLoc
1093         = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
1094       StructuredSubobjectInitList->setRBraceLoc(EndLoc);
1095     }
1096 
1097     // Complain about missing braces.
1098     if (!VerifyOnly && (T->isArrayType() || T->isRecordType()) &&
1099         !ParentIList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) &&
1100         !isIdiomaticBraceElisionEntity(Entity)) {
1101       SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
1102                    diag::warn_missing_braces)
1103           << StructuredSubobjectInitList->getSourceRange()
1104           << FixItHint::CreateInsertion(
1105                  StructuredSubobjectInitList->getBeginLoc(), "{")
1106           << FixItHint::CreateInsertion(
1107                  SemaRef.getLocForEndOfToken(
1108                      StructuredSubobjectInitList->getEndLoc()),
1109                  "}");
1110     }
1111 
1112     // Warn if this type won't be an aggregate in future versions of C++.
1113     auto *CXXRD = T->getAsCXXRecordDecl();
1114     if (!VerifyOnly && CXXRD && CXXRD->hasUserDeclaredConstructor()) {
1115       SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
1116                    diag::warn_cxx20_compat_aggregate_init_with_ctors)
1117           << StructuredSubobjectInitList->getSourceRange() << T;
1118     }
1119   }
1120 }
1121 
1122 /// Warn that \p Entity was of scalar type and was initialized by a
1123 /// single-element braced initializer list.
1124 static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity,
1125                                  SourceRange Braces) {
1126   // Don't warn during template instantiation. If the initialization was
1127   // non-dependent, we warned during the initial parse; otherwise, the
1128   // type might not be scalar in some uses of the template.
1129   if (S.inTemplateInstantiation())
1130     return;
1131 
1132   unsigned DiagID = 0;
1133 
1134   switch (Entity.getKind()) {
1135   case InitializedEntity::EK_VectorElement:
1136   case InitializedEntity::EK_ComplexElement:
1137   case InitializedEntity::EK_ArrayElement:
1138   case InitializedEntity::EK_Parameter:
1139   case InitializedEntity::EK_Parameter_CF_Audited:
1140   case InitializedEntity::EK_TemplateParameter:
1141   case InitializedEntity::EK_Result:
1142     // Extra braces here are suspicious.
1143     DiagID = diag::warn_braces_around_init;
1144     break;
1145 
1146   case InitializedEntity::EK_Member:
1147     // Warn on aggregate initialization but not on ctor init list or
1148     // default member initializer.
1149     if (Entity.getParent())
1150       DiagID = diag::warn_braces_around_init;
1151     break;
1152 
1153   case InitializedEntity::EK_Variable:
1154   case InitializedEntity::EK_LambdaCapture:
1155     // No warning, might be direct-list-initialization.
1156     // FIXME: Should we warn for copy-list-initialization in these cases?
1157     break;
1158 
1159   case InitializedEntity::EK_New:
1160   case InitializedEntity::EK_Temporary:
1161   case InitializedEntity::EK_CompoundLiteralInit:
1162     // No warning, braces are part of the syntax of the underlying construct.
1163     break;
1164 
1165   case InitializedEntity::EK_RelatedResult:
1166     // No warning, we already warned when initializing the result.
1167     break;
1168 
1169   case InitializedEntity::EK_Exception:
1170   case InitializedEntity::EK_Base:
1171   case InitializedEntity::EK_Delegating:
1172   case InitializedEntity::EK_BlockElement:
1173   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
1174   case InitializedEntity::EK_Binding:
1175   case InitializedEntity::EK_StmtExprResult:
1176     llvm_unreachable("unexpected braced scalar init");
1177   }
1178 
1179   if (DiagID) {
1180     S.Diag(Braces.getBegin(), DiagID)
1181         << Entity.getType()->isSizelessBuiltinType() << Braces
1182         << FixItHint::CreateRemoval(Braces.getBegin())
1183         << FixItHint::CreateRemoval(Braces.getEnd());
1184   }
1185 }
1186 
1187 /// Check whether the initializer \p IList (that was written with explicit
1188 /// braces) can be used to initialize an object of type \p T.
1189 ///
1190 /// This also fills in \p StructuredList with the fully-braced, desugared
1191 /// form of the initialization.
1192 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
1193                                             InitListExpr *IList, QualType &T,
1194                                             InitListExpr *StructuredList,
1195                                             bool TopLevelObject) {
1196   unsigned Index = 0, StructuredIndex = 0;
1197   CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
1198                         Index, StructuredList, StructuredIndex, TopLevelObject);
1199   if (StructuredList) {
1200     QualType ExprTy = T;
1201     if (!ExprTy->isArrayType())
1202       ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
1203     if (!VerifyOnly)
1204       IList->setType(ExprTy);
1205     StructuredList->setType(ExprTy);
1206   }
1207   if (hadError)
1208     return;
1209 
1210   // Don't complain for incomplete types, since we'll get an error elsewhere.
1211   if (Index < IList->getNumInits() && !T->isIncompleteType()) {
1212     // We have leftover initializers
1213     bool ExtraInitsIsError = SemaRef.getLangOpts().CPlusPlus ||
1214           (SemaRef.getLangOpts().OpenCL && T->isVectorType());
1215     hadError = ExtraInitsIsError;
1216     if (VerifyOnly) {
1217       return;
1218     } else if (StructuredIndex == 1 &&
1219                IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) ==
1220                    SIF_None) {
1221       unsigned DK =
1222           ExtraInitsIsError
1223               ? diag::err_excess_initializers_in_char_array_initializer
1224               : diag::ext_excess_initializers_in_char_array_initializer;
1225       SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1226           << IList->getInit(Index)->getSourceRange();
1227     } else if (T->isSizelessBuiltinType()) {
1228       unsigned DK = ExtraInitsIsError
1229                         ? diag::err_excess_initializers_for_sizeless_type
1230                         : diag::ext_excess_initializers_for_sizeless_type;
1231       SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1232           << T << IList->getInit(Index)->getSourceRange();
1233     } else {
1234       int initKind = T->isArrayType() ? 0 :
1235                      T->isVectorType() ? 1 :
1236                      T->isScalarType() ? 2 :
1237                      T->isUnionType() ? 3 :
1238                      4;
1239 
1240       unsigned DK = ExtraInitsIsError ? diag::err_excess_initializers
1241                                       : diag::ext_excess_initializers;
1242       SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1243           << initKind << IList->getInit(Index)->getSourceRange();
1244     }
1245   }
1246 
1247   if (!VerifyOnly) {
1248     if (T->isScalarType() && IList->getNumInits() == 1 &&
1249         !isa<InitListExpr>(IList->getInit(0)))
1250       warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange());
1251 
1252     // Warn if this is a class type that won't be an aggregate in future
1253     // versions of C++.
1254     auto *CXXRD = T->getAsCXXRecordDecl();
1255     if (CXXRD && CXXRD->hasUserDeclaredConstructor()) {
1256       // Don't warn if there's an equivalent default constructor that would be
1257       // used instead.
1258       bool HasEquivCtor = false;
1259       if (IList->getNumInits() == 0) {
1260         auto *CD = SemaRef.LookupDefaultConstructor(CXXRD);
1261         HasEquivCtor = CD && !CD->isDeleted();
1262       }
1263 
1264       if (!HasEquivCtor) {
1265         SemaRef.Diag(IList->getBeginLoc(),
1266                      diag::warn_cxx20_compat_aggregate_init_with_ctors)
1267             << IList->getSourceRange() << T;
1268       }
1269     }
1270   }
1271 }
1272 
1273 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
1274                                             InitListExpr *IList,
1275                                             QualType &DeclType,
1276                                             bool SubobjectIsDesignatorContext,
1277                                             unsigned &Index,
1278                                             InitListExpr *StructuredList,
1279                                             unsigned &StructuredIndex,
1280                                             bool TopLevelObject) {
1281   if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
1282     // Explicitly braced initializer for complex type can be real+imaginary
1283     // parts.
1284     CheckComplexType(Entity, IList, DeclType, Index,
1285                      StructuredList, StructuredIndex);
1286   } else if (DeclType->isScalarType()) {
1287     CheckScalarType(Entity, IList, DeclType, Index,
1288                     StructuredList, StructuredIndex);
1289   } else if (DeclType->isVectorType()) {
1290     CheckVectorType(Entity, IList, DeclType, Index,
1291                     StructuredList, StructuredIndex);
1292   } else if (DeclType->isRecordType()) {
1293     assert(DeclType->isAggregateType() &&
1294            "non-aggregate records should be handed in CheckSubElementType");
1295     RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl();
1296     auto Bases =
1297         CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
1298                                         CXXRecordDecl::base_class_iterator());
1299     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1300       Bases = CXXRD->bases();
1301     CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(),
1302                           SubobjectIsDesignatorContext, Index, StructuredList,
1303                           StructuredIndex, TopLevelObject);
1304   } else if (DeclType->isArrayType()) {
1305     llvm::APSInt Zero(
1306                     SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
1307                     false);
1308     CheckArrayType(Entity, IList, DeclType, Zero,
1309                    SubobjectIsDesignatorContext, Index,
1310                    StructuredList, StructuredIndex);
1311   } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
1312     // This type is invalid, issue a diagnostic.
1313     ++Index;
1314     if (!VerifyOnly)
1315       SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
1316           << DeclType;
1317     hadError = true;
1318   } else if (DeclType->isReferenceType()) {
1319     CheckReferenceType(Entity, IList, DeclType, Index,
1320                        StructuredList, StructuredIndex);
1321   } else if (DeclType->isObjCObjectType()) {
1322     if (!VerifyOnly)
1323       SemaRef.Diag(IList->getBeginLoc(), diag::err_init_objc_class) << DeclType;
1324     hadError = true;
1325   } else if (DeclType->isOCLIntelSubgroupAVCType() ||
1326              DeclType->isSizelessBuiltinType()) {
1327     // Checks for scalar type are sufficient for these types too.
1328     CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1329                     StructuredIndex);
1330   } else {
1331     if (!VerifyOnly)
1332       SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
1333           << DeclType;
1334     hadError = true;
1335   }
1336 }
1337 
1338 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
1339                                           InitListExpr *IList,
1340                                           QualType ElemType,
1341                                           unsigned &Index,
1342                                           InitListExpr *StructuredList,
1343                                           unsigned &StructuredIndex,
1344                                           bool DirectlyDesignated) {
1345   Expr *expr = IList->getInit(Index);
1346 
1347   if (ElemType->isReferenceType())
1348     return CheckReferenceType(Entity, IList, ElemType, Index,
1349                               StructuredList, StructuredIndex);
1350 
1351   if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
1352     if (SubInitList->getNumInits() == 1 &&
1353         IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) ==
1354         SIF_None) {
1355       // FIXME: It would be more faithful and no less correct to include an
1356       // InitListExpr in the semantic form of the initializer list in this case.
1357       expr = SubInitList->getInit(0);
1358     }
1359     // Nested aggregate initialization and C++ initialization are handled later.
1360   } else if (isa<ImplicitValueInitExpr>(expr)) {
1361     // This happens during template instantiation when we see an InitListExpr
1362     // that we've already checked once.
1363     assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) &&
1364            "found implicit initialization for the wrong type");
1365     UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1366     ++Index;
1367     return;
1368   }
1369 
1370   if (SemaRef.getLangOpts().CPlusPlus || isa<InitListExpr>(expr)) {
1371     // C++ [dcl.init.aggr]p2:
1372     //   Each member is copy-initialized from the corresponding
1373     //   initializer-clause.
1374 
1375     // FIXME: Better EqualLoc?
1376     InitializationKind Kind =
1377         InitializationKind::CreateCopy(expr->getBeginLoc(), SourceLocation());
1378 
1379     // Vector elements can be initialized from other vectors in which case
1380     // we need initialization entity with a type of a vector (and not a vector
1381     // element!) initializing multiple vector elements.
1382     auto TmpEntity =
1383         (ElemType->isExtVectorType() && !Entity.getType()->isExtVectorType())
1384             ? InitializedEntity::InitializeTemporary(ElemType)
1385             : Entity;
1386 
1387     InitializationSequence Seq(SemaRef, TmpEntity, Kind, expr,
1388                                /*TopLevelOfInitList*/ true);
1389 
1390     // C++14 [dcl.init.aggr]p13:
1391     //   If the assignment-expression can initialize a member, the member is
1392     //   initialized. Otherwise [...] brace elision is assumed
1393     //
1394     // Brace elision is never performed if the element is not an
1395     // assignment-expression.
1396     if (Seq || isa<InitListExpr>(expr)) {
1397       if (!VerifyOnly) {
1398         ExprResult Result = Seq.Perform(SemaRef, TmpEntity, Kind, expr);
1399         if (Result.isInvalid())
1400           hadError = true;
1401 
1402         UpdateStructuredListElement(StructuredList, StructuredIndex,
1403                                     Result.getAs<Expr>());
1404       } else if (!Seq) {
1405         hadError = true;
1406       } else if (StructuredList) {
1407         UpdateStructuredListElement(StructuredList, StructuredIndex,
1408                                     getDummyInit());
1409       }
1410       ++Index;
1411       return;
1412     }
1413 
1414     // Fall through for subaggregate initialization
1415   } else if (ElemType->isScalarType() || ElemType->isAtomicType()) {
1416     // FIXME: Need to handle atomic aggregate types with implicit init lists.
1417     return CheckScalarType(Entity, IList, ElemType, Index,
1418                            StructuredList, StructuredIndex);
1419   } else if (const ArrayType *arrayType =
1420                  SemaRef.Context.getAsArrayType(ElemType)) {
1421     // arrayType can be incomplete if we're initializing a flexible
1422     // array member.  There's nothing we can do with the completed
1423     // type here, though.
1424 
1425     if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) {
1426       // FIXME: Should we do this checking in verify-only mode?
1427       if (!VerifyOnly)
1428         CheckStringInit(expr, ElemType, arrayType, SemaRef);
1429       if (StructuredList)
1430         UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1431       ++Index;
1432       return;
1433     }
1434 
1435     // Fall through for subaggregate initialization.
1436 
1437   } else {
1438     assert((ElemType->isRecordType() || ElemType->isVectorType() ||
1439             ElemType->isOpenCLSpecificType()) && "Unexpected type");
1440 
1441     // C99 6.7.8p13:
1442     //
1443     //   The initializer for a structure or union object that has
1444     //   automatic storage duration shall be either an initializer
1445     //   list as described below, or a single expression that has
1446     //   compatible structure or union type. In the latter case, the
1447     //   initial value of the object, including unnamed members, is
1448     //   that of the expression.
1449     ExprResult ExprRes = expr;
1450     if (SemaRef.CheckSingleAssignmentConstraints(
1451             ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) {
1452       if (ExprRes.isInvalid())
1453         hadError = true;
1454       else {
1455         ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get());
1456         if (ExprRes.isInvalid())
1457           hadError = true;
1458       }
1459       UpdateStructuredListElement(StructuredList, StructuredIndex,
1460                                   ExprRes.getAs<Expr>());
1461       ++Index;
1462       return;
1463     }
1464     ExprRes.get();
1465     // Fall through for subaggregate initialization
1466   }
1467 
1468   // C++ [dcl.init.aggr]p12:
1469   //
1470   //   [...] Otherwise, if the member is itself a non-empty
1471   //   subaggregate, brace elision is assumed and the initializer is
1472   //   considered for the initialization of the first member of
1473   //   the subaggregate.
1474   // OpenCL vector initializer is handled elsewhere.
1475   if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) ||
1476       ElemType->isAggregateType()) {
1477     CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
1478                           StructuredIndex);
1479     ++StructuredIndex;
1480 
1481     // In C++20, brace elision is not permitted for a designated initializer.
1482     if (DirectlyDesignated && SemaRef.getLangOpts().CPlusPlus && !hadError) {
1483       if (InOverloadResolution)
1484         hadError = true;
1485       if (!VerifyOnly) {
1486         SemaRef.Diag(expr->getBeginLoc(),
1487                      diag::ext_designated_init_brace_elision)
1488             << expr->getSourceRange()
1489             << FixItHint::CreateInsertion(expr->getBeginLoc(), "{")
1490             << FixItHint::CreateInsertion(
1491                    SemaRef.getLocForEndOfToken(expr->getEndLoc()), "}");
1492       }
1493     }
1494   } else {
1495     if (!VerifyOnly) {
1496       // We cannot initialize this element, so let PerformCopyInitialization
1497       // produce the appropriate diagnostic. We already checked that this
1498       // initialization will fail.
1499       ExprResult Copy =
1500           SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr,
1501                                             /*TopLevelOfInitList=*/true);
1502       (void)Copy;
1503       assert(Copy.isInvalid() &&
1504              "expected non-aggregate initialization to fail");
1505     }
1506     hadError = true;
1507     ++Index;
1508     ++StructuredIndex;
1509   }
1510 }
1511 
1512 void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
1513                                        InitListExpr *IList, QualType DeclType,
1514                                        unsigned &Index,
1515                                        InitListExpr *StructuredList,
1516                                        unsigned &StructuredIndex) {
1517   assert(Index == 0 && "Index in explicit init list must be zero");
1518 
1519   // As an extension, clang supports complex initializers, which initialize
1520   // a complex number component-wise.  When an explicit initializer list for
1521   // a complex number contains two two initializers, this extension kicks in:
1522   // it exepcts the initializer list to contain two elements convertible to
1523   // the element type of the complex type. The first element initializes
1524   // the real part, and the second element intitializes the imaginary part.
1525 
1526   if (IList->getNumInits() != 2)
1527     return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1528                            StructuredIndex);
1529 
1530   // This is an extension in C.  (The builtin _Complex type does not exist
1531   // in the C++ standard.)
1532   if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
1533     SemaRef.Diag(IList->getBeginLoc(), diag::ext_complex_component_init)
1534         << IList->getSourceRange();
1535 
1536   // Initialize the complex number.
1537   QualType elementType = DeclType->castAs<ComplexType>()->getElementType();
1538   InitializedEntity ElementEntity =
1539     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1540 
1541   for (unsigned i = 0; i < 2; ++i) {
1542     ElementEntity.setElementIndex(Index);
1543     CheckSubElementType(ElementEntity, IList, elementType, Index,
1544                         StructuredList, StructuredIndex);
1545   }
1546 }
1547 
1548 void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
1549                                       InitListExpr *IList, QualType DeclType,
1550                                       unsigned &Index,
1551                                       InitListExpr *StructuredList,
1552                                       unsigned &StructuredIndex) {
1553   if (Index >= IList->getNumInits()) {
1554     if (!VerifyOnly) {
1555       if (DeclType->isSizelessBuiltinType())
1556         SemaRef.Diag(IList->getBeginLoc(),
1557                      SemaRef.getLangOpts().CPlusPlus11
1558                          ? diag::warn_cxx98_compat_empty_sizeless_initializer
1559                          : diag::err_empty_sizeless_initializer)
1560             << DeclType << IList->getSourceRange();
1561       else
1562         SemaRef.Diag(IList->getBeginLoc(),
1563                      SemaRef.getLangOpts().CPlusPlus11
1564                          ? diag::warn_cxx98_compat_empty_scalar_initializer
1565                          : diag::err_empty_scalar_initializer)
1566             << IList->getSourceRange();
1567     }
1568     hadError = !SemaRef.getLangOpts().CPlusPlus11;
1569     ++Index;
1570     ++StructuredIndex;
1571     return;
1572   }
1573 
1574   Expr *expr = IList->getInit(Index);
1575   if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
1576     // FIXME: This is invalid, and accepting it causes overload resolution
1577     // to pick the wrong overload in some corner cases.
1578     if (!VerifyOnly)
1579       SemaRef.Diag(SubIList->getBeginLoc(), diag::ext_many_braces_around_init)
1580           << DeclType->isSizelessBuiltinType() << SubIList->getSourceRange();
1581 
1582     CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
1583                     StructuredIndex);
1584     return;
1585   } else if (isa<DesignatedInitExpr>(expr)) {
1586     if (!VerifyOnly)
1587       SemaRef.Diag(expr->getBeginLoc(),
1588                    diag::err_designator_for_scalar_or_sizeless_init)
1589           << DeclType->isSizelessBuiltinType() << DeclType
1590           << expr->getSourceRange();
1591     hadError = true;
1592     ++Index;
1593     ++StructuredIndex;
1594     return;
1595   }
1596 
1597   ExprResult Result;
1598   if (VerifyOnly) {
1599     if (SemaRef.CanPerformCopyInitialization(Entity, expr))
1600       Result = getDummyInit();
1601     else
1602       Result = ExprError();
1603   } else {
1604     Result =
1605         SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
1606                                           /*TopLevelOfInitList=*/true);
1607   }
1608 
1609   Expr *ResultExpr = nullptr;
1610 
1611   if (Result.isInvalid())
1612     hadError = true; // types weren't compatible.
1613   else {
1614     ResultExpr = Result.getAs<Expr>();
1615 
1616     if (ResultExpr != expr && !VerifyOnly) {
1617       // The type was promoted, update initializer list.
1618       // FIXME: Why are we updating the syntactic init list?
1619       IList->setInit(Index, ResultExpr);
1620     }
1621   }
1622   UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1623   ++Index;
1624 }
1625 
1626 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
1627                                          InitListExpr *IList, QualType DeclType,
1628                                          unsigned &Index,
1629                                          InitListExpr *StructuredList,
1630                                          unsigned &StructuredIndex) {
1631   if (Index >= IList->getNumInits()) {
1632     // FIXME: It would be wonderful if we could point at the actual member. In
1633     // general, it would be useful to pass location information down the stack,
1634     // so that we know the location (or decl) of the "current object" being
1635     // initialized.
1636     if (!VerifyOnly)
1637       SemaRef.Diag(IList->getBeginLoc(),
1638                    diag::err_init_reference_member_uninitialized)
1639           << DeclType << IList->getSourceRange();
1640     hadError = true;
1641     ++Index;
1642     ++StructuredIndex;
1643     return;
1644   }
1645 
1646   Expr *expr = IList->getInit(Index);
1647   if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
1648     if (!VerifyOnly)
1649       SemaRef.Diag(IList->getBeginLoc(), diag::err_init_non_aggr_init_list)
1650           << DeclType << IList->getSourceRange();
1651     hadError = true;
1652     ++Index;
1653     ++StructuredIndex;
1654     return;
1655   }
1656 
1657   ExprResult Result;
1658   if (VerifyOnly) {
1659     if (SemaRef.CanPerformCopyInitialization(Entity,expr))
1660       Result = getDummyInit();
1661     else
1662       Result = ExprError();
1663   } else {
1664     Result =
1665         SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
1666                                           /*TopLevelOfInitList=*/true);
1667   }
1668 
1669   if (Result.isInvalid())
1670     hadError = true;
1671 
1672   expr = Result.getAs<Expr>();
1673   // FIXME: Why are we updating the syntactic init list?
1674   if (!VerifyOnly && expr)
1675     IList->setInit(Index, expr);
1676 
1677   UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1678   ++Index;
1679 }
1680 
1681 void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1682                                       InitListExpr *IList, QualType DeclType,
1683                                       unsigned &Index,
1684                                       InitListExpr *StructuredList,
1685                                       unsigned &StructuredIndex) {
1686   const VectorType *VT = DeclType->castAs<VectorType>();
1687   unsigned maxElements = VT->getNumElements();
1688   unsigned numEltsInit = 0;
1689   QualType elementType = VT->getElementType();
1690 
1691   if (Index >= IList->getNumInits()) {
1692     // Make sure the element type can be value-initialized.
1693     CheckEmptyInitializable(
1694         InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1695         IList->getEndLoc());
1696     return;
1697   }
1698 
1699   if (!SemaRef.getLangOpts().OpenCL) {
1700     // If the initializing element is a vector, try to copy-initialize
1701     // instead of breaking it apart (which is doomed to failure anyway).
1702     Expr *Init = IList->getInit(Index);
1703     if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1704       ExprResult Result;
1705       if (VerifyOnly) {
1706         if (SemaRef.CanPerformCopyInitialization(Entity, Init))
1707           Result = getDummyInit();
1708         else
1709           Result = ExprError();
1710       } else {
1711         Result =
1712             SemaRef.PerformCopyInitialization(Entity, Init->getBeginLoc(), Init,
1713                                               /*TopLevelOfInitList=*/true);
1714       }
1715 
1716       Expr *ResultExpr = nullptr;
1717       if (Result.isInvalid())
1718         hadError = true; // types weren't compatible.
1719       else {
1720         ResultExpr = Result.getAs<Expr>();
1721 
1722         if (ResultExpr != Init && !VerifyOnly) {
1723           // The type was promoted, update initializer list.
1724           // FIXME: Why are we updating the syntactic init list?
1725           IList->setInit(Index, ResultExpr);
1726         }
1727       }
1728       UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1729       ++Index;
1730       return;
1731     }
1732 
1733     InitializedEntity ElementEntity =
1734       InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1735 
1736     for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1737       // Don't attempt to go past the end of the init list
1738       if (Index >= IList->getNumInits()) {
1739         CheckEmptyInitializable(ElementEntity, IList->getEndLoc());
1740         break;
1741       }
1742 
1743       ElementEntity.setElementIndex(Index);
1744       CheckSubElementType(ElementEntity, IList, elementType, Index,
1745                           StructuredList, StructuredIndex);
1746     }
1747 
1748     if (VerifyOnly)
1749       return;
1750 
1751     bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian();
1752     const VectorType *T = Entity.getType()->castAs<VectorType>();
1753     if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector ||
1754                         T->getVectorKind() == VectorType::NeonPolyVector)) {
1755       // The ability to use vector initializer lists is a GNU vector extension
1756       // and is unrelated to the NEON intrinsics in arm_neon.h. On little
1757       // endian machines it works fine, however on big endian machines it
1758       // exhibits surprising behaviour:
1759       //
1760       //   uint32x2_t x = {42, 64};
1761       //   return vget_lane_u32(x, 0); // Will return 64.
1762       //
1763       // Because of this, explicitly call out that it is non-portable.
1764       //
1765       SemaRef.Diag(IList->getBeginLoc(),
1766                    diag::warn_neon_vector_initializer_non_portable);
1767 
1768       const char *typeCode;
1769       unsigned typeSize = SemaRef.Context.getTypeSize(elementType);
1770 
1771       if (elementType->isFloatingType())
1772         typeCode = "f";
1773       else if (elementType->isSignedIntegerType())
1774         typeCode = "s";
1775       else if (elementType->isUnsignedIntegerType())
1776         typeCode = "u";
1777       else
1778         llvm_unreachable("Invalid element type!");
1779 
1780       SemaRef.Diag(IList->getBeginLoc(),
1781                    SemaRef.Context.getTypeSize(VT) > 64
1782                        ? diag::note_neon_vector_initializer_non_portable_q
1783                        : diag::note_neon_vector_initializer_non_portable)
1784           << typeCode << typeSize;
1785     }
1786 
1787     return;
1788   }
1789 
1790   InitializedEntity ElementEntity =
1791     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1792 
1793   // OpenCL initializers allows vectors to be constructed from vectors.
1794   for (unsigned i = 0; i < maxElements; ++i) {
1795     // Don't attempt to go past the end of the init list
1796     if (Index >= IList->getNumInits())
1797       break;
1798 
1799     ElementEntity.setElementIndex(Index);
1800 
1801     QualType IType = IList->getInit(Index)->getType();
1802     if (!IType->isVectorType()) {
1803       CheckSubElementType(ElementEntity, IList, elementType, Index,
1804                           StructuredList, StructuredIndex);
1805       ++numEltsInit;
1806     } else {
1807       QualType VecType;
1808       const VectorType *IVT = IType->castAs<VectorType>();
1809       unsigned numIElts = IVT->getNumElements();
1810 
1811       if (IType->isExtVectorType())
1812         VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1813       else
1814         VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1815                                                 IVT->getVectorKind());
1816       CheckSubElementType(ElementEntity, IList, VecType, Index,
1817                           StructuredList, StructuredIndex);
1818       numEltsInit += numIElts;
1819     }
1820   }
1821 
1822   // OpenCL requires all elements to be initialized.
1823   if (numEltsInit != maxElements) {
1824     if (!VerifyOnly)
1825       SemaRef.Diag(IList->getBeginLoc(),
1826                    diag::err_vector_incorrect_num_initializers)
1827           << (numEltsInit < maxElements) << maxElements << numEltsInit;
1828     hadError = true;
1829   }
1830 }
1831 
1832 /// Check if the type of a class element has an accessible destructor, and marks
1833 /// it referenced. Returns true if we shouldn't form a reference to the
1834 /// destructor.
1835 ///
1836 /// Aggregate initialization requires a class element's destructor be
1837 /// accessible per 11.6.1 [dcl.init.aggr]:
1838 ///
1839 /// The destructor for each element of class type is potentially invoked
1840 /// (15.4 [class.dtor]) from the context where the aggregate initialization
1841 /// occurs.
1842 static bool checkDestructorReference(QualType ElementType, SourceLocation Loc,
1843                                      Sema &SemaRef) {
1844   auto *CXXRD = ElementType->getAsCXXRecordDecl();
1845   if (!CXXRD)
1846     return false;
1847 
1848   CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(CXXRD);
1849   SemaRef.CheckDestructorAccess(Loc, Destructor,
1850                                 SemaRef.PDiag(diag::err_access_dtor_temp)
1851                                 << ElementType);
1852   SemaRef.MarkFunctionReferenced(Loc, Destructor);
1853   return SemaRef.DiagnoseUseOfDecl(Destructor, Loc);
1854 }
1855 
1856 void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1857                                      InitListExpr *IList, QualType &DeclType,
1858                                      llvm::APSInt elementIndex,
1859                                      bool SubobjectIsDesignatorContext,
1860                                      unsigned &Index,
1861                                      InitListExpr *StructuredList,
1862                                      unsigned &StructuredIndex) {
1863   const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1864 
1865   if (!VerifyOnly) {
1866     if (checkDestructorReference(arrayType->getElementType(),
1867                                  IList->getEndLoc(), SemaRef)) {
1868       hadError = true;
1869       return;
1870     }
1871   }
1872 
1873   // Check for the special-case of initializing an array with a string.
1874   if (Index < IList->getNumInits()) {
1875     if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) ==
1876         SIF_None) {
1877       // We place the string literal directly into the resulting
1878       // initializer list. This is the only place where the structure
1879       // of the structured initializer list doesn't match exactly,
1880       // because doing so would involve allocating one character
1881       // constant for each string.
1882       // FIXME: Should we do these checks in verify-only mode too?
1883       if (!VerifyOnly)
1884         CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef);
1885       if (StructuredList) {
1886         UpdateStructuredListElement(StructuredList, StructuredIndex,
1887                                     IList->getInit(Index));
1888         StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1889       }
1890       ++Index;
1891       return;
1892     }
1893   }
1894   if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1895     // Check for VLAs; in standard C it would be possible to check this
1896     // earlier, but I don't know where clang accepts VLAs (gcc accepts
1897     // them in all sorts of strange places).
1898     if (!VerifyOnly)
1899       SemaRef.Diag(VAT->getSizeExpr()->getBeginLoc(),
1900                    diag::err_variable_object_no_init)
1901           << VAT->getSizeExpr()->getSourceRange();
1902     hadError = true;
1903     ++Index;
1904     ++StructuredIndex;
1905     return;
1906   }
1907 
1908   // We might know the maximum number of elements in advance.
1909   llvm::APSInt maxElements(elementIndex.getBitWidth(),
1910                            elementIndex.isUnsigned());
1911   bool maxElementsKnown = false;
1912   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1913     maxElements = CAT->getSize();
1914     elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1915     elementIndex.setIsUnsigned(maxElements.isUnsigned());
1916     maxElementsKnown = true;
1917   }
1918 
1919   QualType elementType = arrayType->getElementType();
1920   while (Index < IList->getNumInits()) {
1921     Expr *Init = IList->getInit(Index);
1922     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1923       // If we're not the subobject that matches up with the '{' for
1924       // the designator, we shouldn't be handling the
1925       // designator. Return immediately.
1926       if (!SubobjectIsDesignatorContext)
1927         return;
1928 
1929       // Handle this designated initializer. elementIndex will be
1930       // updated to be the next array element we'll initialize.
1931       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1932                                      DeclType, nullptr, &elementIndex, Index,
1933                                      StructuredList, StructuredIndex, true,
1934                                      false)) {
1935         hadError = true;
1936         continue;
1937       }
1938 
1939       if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1940         maxElements = maxElements.extend(elementIndex.getBitWidth());
1941       else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1942         elementIndex = elementIndex.extend(maxElements.getBitWidth());
1943       elementIndex.setIsUnsigned(maxElements.isUnsigned());
1944 
1945       // If the array is of incomplete type, keep track of the number of
1946       // elements in the initializer.
1947       if (!maxElementsKnown && elementIndex > maxElements)
1948         maxElements = elementIndex;
1949 
1950       continue;
1951     }
1952 
1953     // If we know the maximum number of elements, and we've already
1954     // hit it, stop consuming elements in the initializer list.
1955     if (maxElementsKnown && elementIndex == maxElements)
1956       break;
1957 
1958     InitializedEntity ElementEntity =
1959       InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1960                                            Entity);
1961     // Check this element.
1962     CheckSubElementType(ElementEntity, IList, elementType, Index,
1963                         StructuredList, StructuredIndex);
1964     ++elementIndex;
1965 
1966     // If the array is of incomplete type, keep track of the number of
1967     // elements in the initializer.
1968     if (!maxElementsKnown && elementIndex > maxElements)
1969       maxElements = elementIndex;
1970   }
1971   if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1972     // If this is an incomplete array type, the actual type needs to
1973     // be calculated here.
1974     llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1975     if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) {
1976       // Sizing an array implicitly to zero is not allowed by ISO C,
1977       // but is supported by GNU.
1978       SemaRef.Diag(IList->getBeginLoc(), diag::ext_typecheck_zero_array_size);
1979     }
1980 
1981     DeclType = SemaRef.Context.getConstantArrayType(
1982         elementType, maxElements, nullptr, ArrayType::Normal, 0);
1983   }
1984   if (!hadError) {
1985     // If there are any members of the array that get value-initialized, check
1986     // that is possible. That happens if we know the bound and don't have
1987     // enough elements, or if we're performing an array new with an unknown
1988     // bound.
1989     if ((maxElementsKnown && elementIndex < maxElements) ||
1990         Entity.isVariableLengthArrayNew())
1991       CheckEmptyInitializable(
1992           InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1993           IList->getEndLoc());
1994   }
1995 }
1996 
1997 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1998                                              Expr *InitExpr,
1999                                              FieldDecl *Field,
2000                                              bool TopLevelObject) {
2001   // Handle GNU flexible array initializers.
2002   unsigned FlexArrayDiag;
2003   if (isa<InitListExpr>(InitExpr) &&
2004       cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
2005     // Empty flexible array init always allowed as an extension
2006     FlexArrayDiag = diag::ext_flexible_array_init;
2007   } else if (!TopLevelObject) {
2008     // Disallow flexible array init on non-top-level object
2009     FlexArrayDiag = diag::err_flexible_array_init;
2010   } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
2011     // Disallow flexible array init on anything which is not a variable.
2012     FlexArrayDiag = diag::err_flexible_array_init;
2013   } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
2014     // Disallow flexible array init on local variables.
2015     FlexArrayDiag = diag::err_flexible_array_init;
2016   } else {
2017     // Allow other cases.
2018     FlexArrayDiag = diag::ext_flexible_array_init;
2019   }
2020 
2021   if (!VerifyOnly) {
2022     SemaRef.Diag(InitExpr->getBeginLoc(), FlexArrayDiag)
2023         << InitExpr->getBeginLoc();
2024     SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2025       << Field;
2026   }
2027 
2028   return FlexArrayDiag != diag::ext_flexible_array_init;
2029 }
2030 
2031 void InitListChecker::CheckStructUnionTypes(
2032     const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType,
2033     CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field,
2034     bool SubobjectIsDesignatorContext, unsigned &Index,
2035     InitListExpr *StructuredList, unsigned &StructuredIndex,
2036     bool TopLevelObject) {
2037   RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl();
2038 
2039   // If the record is invalid, some of it's members are invalid. To avoid
2040   // confusion, we forgo checking the initializer for the entire record.
2041   if (structDecl->isInvalidDecl()) {
2042     // Assume it was supposed to consume a single initializer.
2043     ++Index;
2044     hadError = true;
2045     return;
2046   }
2047 
2048   if (DeclType->isUnionType() && IList->getNumInits() == 0) {
2049     RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl();
2050 
2051     if (!VerifyOnly)
2052       for (FieldDecl *FD : RD->fields()) {
2053         QualType ET = SemaRef.Context.getBaseElementType(FD->getType());
2054         if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) {
2055           hadError = true;
2056           return;
2057         }
2058       }
2059 
2060     // If there's a default initializer, use it.
2061     if (isa<CXXRecordDecl>(RD) &&
2062         cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
2063       if (!StructuredList)
2064         return;
2065       for (RecordDecl::field_iterator FieldEnd = RD->field_end();
2066            Field != FieldEnd; ++Field) {
2067         if (Field->hasInClassInitializer()) {
2068           StructuredList->setInitializedFieldInUnion(*Field);
2069           // FIXME: Actually build a CXXDefaultInitExpr?
2070           return;
2071         }
2072       }
2073     }
2074 
2075     // Value-initialize the first member of the union that isn't an unnamed
2076     // bitfield.
2077     for (RecordDecl::field_iterator FieldEnd = RD->field_end();
2078          Field != FieldEnd; ++Field) {
2079       if (!Field->isUnnamedBitfield()) {
2080         CheckEmptyInitializable(
2081             InitializedEntity::InitializeMember(*Field, &Entity),
2082             IList->getEndLoc());
2083         if (StructuredList)
2084           StructuredList->setInitializedFieldInUnion(*Field);
2085         break;
2086       }
2087     }
2088     return;
2089   }
2090 
2091   bool InitializedSomething = false;
2092 
2093   // If we have any base classes, they are initialized prior to the fields.
2094   for (auto &Base : Bases) {
2095     Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr;
2096 
2097     // Designated inits always initialize fields, so if we see one, all
2098     // remaining base classes have no explicit initializer.
2099     if (Init && isa<DesignatedInitExpr>(Init))
2100       Init = nullptr;
2101 
2102     SourceLocation InitLoc = Init ? Init->getBeginLoc() : IList->getEndLoc();
2103     InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
2104         SemaRef.Context, &Base, false, &Entity);
2105     if (Init) {
2106       CheckSubElementType(BaseEntity, IList, Base.getType(), Index,
2107                           StructuredList, StructuredIndex);
2108       InitializedSomething = true;
2109     } else {
2110       CheckEmptyInitializable(BaseEntity, InitLoc);
2111     }
2112 
2113     if (!VerifyOnly)
2114       if (checkDestructorReference(Base.getType(), InitLoc, SemaRef)) {
2115         hadError = true;
2116         return;
2117       }
2118   }
2119 
2120   // If structDecl is a forward declaration, this loop won't do
2121   // anything except look at designated initializers; That's okay,
2122   // because an error should get printed out elsewhere. It might be
2123   // worthwhile to skip over the rest of the initializer, though.
2124   RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl();
2125   RecordDecl::field_iterator FieldEnd = RD->field_end();
2126   size_t NumRecordFields = std::distance(RD->field_begin(), RD->field_end());
2127   bool CheckForMissingFields =
2128     !IList->isIdiomaticZeroInitializer(SemaRef.getLangOpts());
2129   bool HasDesignatedInit = false;
2130 
2131   while (Index < IList->getNumInits()) {
2132     Expr *Init = IList->getInit(Index);
2133     SourceLocation InitLoc = Init->getBeginLoc();
2134 
2135     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
2136       // If we're not the subobject that matches up with the '{' for
2137       // the designator, we shouldn't be handling the
2138       // designator. Return immediately.
2139       if (!SubobjectIsDesignatorContext)
2140         return;
2141 
2142       HasDesignatedInit = true;
2143 
2144       // Handle this designated initializer. Field will be updated to
2145       // the next field that we'll be initializing.
2146       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
2147                                      DeclType, &Field, nullptr, Index,
2148                                      StructuredList, StructuredIndex,
2149                                      true, TopLevelObject))
2150         hadError = true;
2151       else if (!VerifyOnly) {
2152         // Find the field named by the designated initializer.
2153         RecordDecl::field_iterator F = RD->field_begin();
2154         while (std::next(F) != Field)
2155           ++F;
2156         QualType ET = SemaRef.Context.getBaseElementType(F->getType());
2157         if (checkDestructorReference(ET, InitLoc, SemaRef)) {
2158           hadError = true;
2159           return;
2160         }
2161       }
2162 
2163       InitializedSomething = true;
2164 
2165       // Disable check for missing fields when designators are used.
2166       // This matches gcc behaviour.
2167       CheckForMissingFields = false;
2168       continue;
2169     }
2170 
2171     if (Field == FieldEnd) {
2172       // We've run out of fields. We're done.
2173       break;
2174     }
2175 
2176     // Check if this is an initializer of forms:
2177     //
2178     //   struct foo f = {};
2179     //   struct foo g = {0};
2180     //
2181     // These are okay for randomized structures. [C99 6.7.8p19]
2182     //
2183     // Also, if there is only one element in the structure, we allow something
2184     // like this, because it's really not randomized in the tranditional sense.
2185     //
2186     //   struct foo h = {bar};
2187     auto IsZeroInitializer = [&](const Expr *I) {
2188       if (IList->getNumInits() == 1) {
2189         if (NumRecordFields == 1)
2190           return true;
2191         if (const auto *IL = dyn_cast<IntegerLiteral>(I))
2192           return IL->getValue().isZero();
2193       }
2194       return false;
2195     };
2196 
2197     // Don't allow non-designated initializers on randomized structures.
2198     if (RD->isRandomized() && !IsZeroInitializer(Init)) {
2199       if (!VerifyOnly)
2200         SemaRef.Diag(InitLoc, diag::err_non_designated_init_used);
2201       hadError = true;
2202       break;
2203     }
2204 
2205     // We've already initialized a member of a union. We're done.
2206     if (InitializedSomething && DeclType->isUnionType())
2207       break;
2208 
2209     // If we've hit the flexible array member at the end, we're done.
2210     if (Field->getType()->isIncompleteArrayType())
2211       break;
2212 
2213     if (Field->isUnnamedBitfield()) {
2214       // Don't initialize unnamed bitfields, e.g. "int : 20;"
2215       ++Field;
2216       continue;
2217     }
2218 
2219     // Make sure we can use this declaration.
2220     bool InvalidUse;
2221     if (VerifyOnly)
2222       InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2223     else
2224       InvalidUse = SemaRef.DiagnoseUseOfDecl(
2225           *Field, IList->getInit(Index)->getBeginLoc());
2226     if (InvalidUse) {
2227       ++Index;
2228       ++Field;
2229       hadError = true;
2230       continue;
2231     }
2232 
2233     if (!VerifyOnly) {
2234       QualType ET = SemaRef.Context.getBaseElementType(Field->getType());
2235       if (checkDestructorReference(ET, InitLoc, SemaRef)) {
2236         hadError = true;
2237         return;
2238       }
2239     }
2240 
2241     InitializedEntity MemberEntity =
2242       InitializedEntity::InitializeMember(*Field, &Entity);
2243     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2244                         StructuredList, StructuredIndex);
2245     InitializedSomething = true;
2246 
2247     if (DeclType->isUnionType() && StructuredList) {
2248       // Initialize the first field within the union.
2249       StructuredList->setInitializedFieldInUnion(*Field);
2250     }
2251 
2252     ++Field;
2253   }
2254 
2255   // Emit warnings for missing struct field initializers.
2256   if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
2257       Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
2258       !DeclType->isUnionType()) {
2259     // It is possible we have one or more unnamed bitfields remaining.
2260     // Find first (if any) named field and emit warning.
2261     for (RecordDecl::field_iterator it = Field, end = RD->field_end();
2262          it != end; ++it) {
2263       if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
2264         SemaRef.Diag(IList->getSourceRange().getEnd(),
2265                      diag::warn_missing_field_initializers) << *it;
2266         break;
2267       }
2268     }
2269   }
2270 
2271   // Check that any remaining fields can be value-initialized if we're not
2272   // building a structured list. (If we are, we'll check this later.)
2273   if (!StructuredList && Field != FieldEnd && !DeclType->isUnionType() &&
2274       !Field->getType()->isIncompleteArrayType()) {
2275     for (; Field != FieldEnd && !hadError; ++Field) {
2276       if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
2277         CheckEmptyInitializable(
2278             InitializedEntity::InitializeMember(*Field, &Entity),
2279             IList->getEndLoc());
2280     }
2281   }
2282 
2283   // Check that the types of the remaining fields have accessible destructors.
2284   if (!VerifyOnly) {
2285     // If the initializer expression has a designated initializer, check the
2286     // elements for which a designated initializer is not provided too.
2287     RecordDecl::field_iterator I = HasDesignatedInit ? RD->field_begin()
2288                                                      : Field;
2289     for (RecordDecl::field_iterator E = RD->field_end(); I != E; ++I) {
2290       QualType ET = SemaRef.Context.getBaseElementType(I->getType());
2291       if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) {
2292         hadError = true;
2293         return;
2294       }
2295     }
2296   }
2297 
2298   if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
2299       Index >= IList->getNumInits())
2300     return;
2301 
2302   if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
2303                              TopLevelObject)) {
2304     hadError = true;
2305     ++Index;
2306     return;
2307   }
2308 
2309   InitializedEntity MemberEntity =
2310     InitializedEntity::InitializeMember(*Field, &Entity);
2311 
2312   if (isa<InitListExpr>(IList->getInit(Index)))
2313     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2314                         StructuredList, StructuredIndex);
2315   else
2316     CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
2317                           StructuredList, StructuredIndex);
2318 }
2319 
2320 /// Expand a field designator that refers to a member of an
2321 /// anonymous struct or union into a series of field designators that
2322 /// refers to the field within the appropriate subobject.
2323 ///
2324 static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
2325                                            DesignatedInitExpr *DIE,
2326                                            unsigned DesigIdx,
2327                                            IndirectFieldDecl *IndirectField) {
2328   typedef DesignatedInitExpr::Designator Designator;
2329 
2330   // Build the replacement designators.
2331   SmallVector<Designator, 4> Replacements;
2332   for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
2333        PE = IndirectField->chain_end(); PI != PE; ++PI) {
2334     if (PI + 1 == PE)
2335       Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2336                                     DIE->getDesignator(DesigIdx)->getDotLoc(),
2337                                 DIE->getDesignator(DesigIdx)->getFieldLoc()));
2338     else
2339       Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2340                                         SourceLocation(), SourceLocation()));
2341     assert(isa<FieldDecl>(*PI));
2342     Replacements.back().setField(cast<FieldDecl>(*PI));
2343   }
2344 
2345   // Expand the current designator into the set of replacement
2346   // designators, so we have a full subobject path down to where the
2347   // member of the anonymous struct/union is actually stored.
2348   DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
2349                         &Replacements[0] + Replacements.size());
2350 }
2351 
2352 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
2353                                                    DesignatedInitExpr *DIE) {
2354   unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
2355   SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
2356   for (unsigned I = 0; I < NumIndexExprs; ++I)
2357     IndexExprs[I] = DIE->getSubExpr(I + 1);
2358   return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(),
2359                                     IndexExprs,
2360                                     DIE->getEqualOrColonLoc(),
2361                                     DIE->usesGNUSyntax(), DIE->getInit());
2362 }
2363 
2364 namespace {
2365 
2366 // Callback to only accept typo corrections that are for field members of
2367 // the given struct or union.
2368 class FieldInitializerValidatorCCC final : public CorrectionCandidateCallback {
2369  public:
2370   explicit FieldInitializerValidatorCCC(RecordDecl *RD)
2371       : Record(RD) {}
2372 
2373   bool ValidateCandidate(const TypoCorrection &candidate) override {
2374     FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
2375     return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
2376   }
2377 
2378   std::unique_ptr<CorrectionCandidateCallback> clone() override {
2379     return std::make_unique<FieldInitializerValidatorCCC>(*this);
2380   }
2381 
2382  private:
2383   RecordDecl *Record;
2384 };
2385 
2386 } // end anonymous namespace
2387 
2388 /// Check the well-formedness of a C99 designated initializer.
2389 ///
2390 /// Determines whether the designated initializer @p DIE, which
2391 /// resides at the given @p Index within the initializer list @p
2392 /// IList, is well-formed for a current object of type @p DeclType
2393 /// (C99 6.7.8). The actual subobject that this designator refers to
2394 /// within the current subobject is returned in either
2395 /// @p NextField or @p NextElementIndex (whichever is appropriate).
2396 ///
2397 /// @param IList  The initializer list in which this designated
2398 /// initializer occurs.
2399 ///
2400 /// @param DIE The designated initializer expression.
2401 ///
2402 /// @param DesigIdx  The index of the current designator.
2403 ///
2404 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
2405 /// into which the designation in @p DIE should refer.
2406 ///
2407 /// @param NextField  If non-NULL and the first designator in @p DIE is
2408 /// a field, this will be set to the field declaration corresponding
2409 /// to the field named by the designator. On input, this is expected to be
2410 /// the next field that would be initialized in the absence of designation,
2411 /// if the complete object being initialized is a struct.
2412 ///
2413 /// @param NextElementIndex  If non-NULL and the first designator in @p
2414 /// DIE is an array designator or GNU array-range designator, this
2415 /// will be set to the last index initialized by this designator.
2416 ///
2417 /// @param Index  Index into @p IList where the designated initializer
2418 /// @p DIE occurs.
2419 ///
2420 /// @param StructuredList  The initializer list expression that
2421 /// describes all of the subobject initializers in the order they'll
2422 /// actually be initialized.
2423 ///
2424 /// @returns true if there was an error, false otherwise.
2425 bool
2426 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
2427                                             InitListExpr *IList,
2428                                             DesignatedInitExpr *DIE,
2429                                             unsigned DesigIdx,
2430                                             QualType &CurrentObjectType,
2431                                           RecordDecl::field_iterator *NextField,
2432                                             llvm::APSInt *NextElementIndex,
2433                                             unsigned &Index,
2434                                             InitListExpr *StructuredList,
2435                                             unsigned &StructuredIndex,
2436                                             bool FinishSubobjectInit,
2437                                             bool TopLevelObject) {
2438   if (DesigIdx == DIE->size()) {
2439     // C++20 designated initialization can result in direct-list-initialization
2440     // of the designated subobject. This is the only way that we can end up
2441     // performing direct initialization as part of aggregate initialization, so
2442     // it needs special handling.
2443     if (DIE->isDirectInit()) {
2444       Expr *Init = DIE->getInit();
2445       assert(isa<InitListExpr>(Init) &&
2446              "designator result in direct non-list initialization?");
2447       InitializationKind Kind = InitializationKind::CreateDirectList(
2448           DIE->getBeginLoc(), Init->getBeginLoc(), Init->getEndLoc());
2449       InitializationSequence Seq(SemaRef, Entity, Kind, Init,
2450                                  /*TopLevelOfInitList*/ true);
2451       if (StructuredList) {
2452         ExprResult Result = VerifyOnly
2453                                 ? getDummyInit()
2454                                 : Seq.Perform(SemaRef, Entity, Kind, Init);
2455         UpdateStructuredListElement(StructuredList, StructuredIndex,
2456                                     Result.get());
2457       }
2458       ++Index;
2459       return !Seq;
2460     }
2461 
2462     // Check the actual initialization for the designated object type.
2463     bool prevHadError = hadError;
2464 
2465     // Temporarily remove the designator expression from the
2466     // initializer list that the child calls see, so that we don't try
2467     // to re-process the designator.
2468     unsigned OldIndex = Index;
2469     IList->setInit(OldIndex, DIE->getInit());
2470 
2471     CheckSubElementType(Entity, IList, CurrentObjectType, Index, StructuredList,
2472                         StructuredIndex, /*DirectlyDesignated=*/true);
2473 
2474     // Restore the designated initializer expression in the syntactic
2475     // form of the initializer list.
2476     if (IList->getInit(OldIndex) != DIE->getInit())
2477       DIE->setInit(IList->getInit(OldIndex));
2478     IList->setInit(OldIndex, DIE);
2479 
2480     return hadError && !prevHadError;
2481   }
2482 
2483   DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
2484   bool IsFirstDesignator = (DesigIdx == 0);
2485   if (IsFirstDesignator ? FullyStructuredList : StructuredList) {
2486     // Determine the structural initializer list that corresponds to the
2487     // current subobject.
2488     if (IsFirstDesignator)
2489       StructuredList = FullyStructuredList;
2490     else {
2491       Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ?
2492           StructuredList->getInit(StructuredIndex) : nullptr;
2493       if (!ExistingInit && StructuredList->hasArrayFiller())
2494         ExistingInit = StructuredList->getArrayFiller();
2495 
2496       if (!ExistingInit)
2497         StructuredList = getStructuredSubobjectInit(
2498             IList, Index, CurrentObjectType, StructuredList, StructuredIndex,
2499             SourceRange(D->getBeginLoc(), DIE->getEndLoc()));
2500       else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit))
2501         StructuredList = Result;
2502       else {
2503         // We are creating an initializer list that initializes the
2504         // subobjects of the current object, but there was already an
2505         // initialization that completely initialized the current
2506         // subobject, e.g., by a compound literal:
2507         //
2508         // struct X { int a, b; };
2509         // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2510         //
2511         // Here, xs[0].a == 1 and xs[0].b == 3, since the second,
2512         // designated initializer re-initializes only its current object
2513         // subobject [0].b.
2514         diagnoseInitOverride(ExistingInit,
2515                              SourceRange(D->getBeginLoc(), DIE->getEndLoc()),
2516                              /*FullyOverwritten=*/false);
2517 
2518         if (!VerifyOnly) {
2519           if (DesignatedInitUpdateExpr *E =
2520                   dyn_cast<DesignatedInitUpdateExpr>(ExistingInit))
2521             StructuredList = E->getUpdater();
2522           else {
2523             DesignatedInitUpdateExpr *DIUE = new (SemaRef.Context)
2524                 DesignatedInitUpdateExpr(SemaRef.Context, D->getBeginLoc(),
2525                                          ExistingInit, DIE->getEndLoc());
2526             StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE);
2527             StructuredList = DIUE->getUpdater();
2528           }
2529         } else {
2530           // We don't need to track the structured representation of a
2531           // designated init update of an already-fully-initialized object in
2532           // verify-only mode. The only reason we would need the structure is
2533           // to determine where the uninitialized "holes" are, and in this
2534           // case, we know there aren't any and we can't introduce any.
2535           StructuredList = nullptr;
2536         }
2537       }
2538     }
2539   }
2540 
2541   if (D->isFieldDesignator()) {
2542     // C99 6.7.8p7:
2543     //
2544     //   If a designator has the form
2545     //
2546     //      . identifier
2547     //
2548     //   then the current object (defined below) shall have
2549     //   structure or union type and the identifier shall be the
2550     //   name of a member of that type.
2551     const RecordType *RT = CurrentObjectType->getAs<RecordType>();
2552     if (!RT) {
2553       SourceLocation Loc = D->getDotLoc();
2554       if (Loc.isInvalid())
2555         Loc = D->getFieldLoc();
2556       if (!VerifyOnly)
2557         SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
2558           << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
2559       ++Index;
2560       return true;
2561     }
2562 
2563     FieldDecl *KnownField = D->getField();
2564     if (!KnownField) {
2565       IdentifierInfo *FieldName = D->getFieldName();
2566       DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
2567       for (NamedDecl *ND : Lookup) {
2568         if (auto *FD = dyn_cast<FieldDecl>(ND)) {
2569           KnownField = FD;
2570           break;
2571         }
2572         if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) {
2573           // In verify mode, don't modify the original.
2574           if (VerifyOnly)
2575             DIE = CloneDesignatedInitExpr(SemaRef, DIE);
2576           ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD);
2577           D = DIE->getDesignator(DesigIdx);
2578           KnownField = cast<FieldDecl>(*IFD->chain_begin());
2579           break;
2580         }
2581       }
2582       if (!KnownField) {
2583         if (VerifyOnly) {
2584           ++Index;
2585           return true;  // No typo correction when just trying this out.
2586         }
2587 
2588         // Name lookup found something, but it wasn't a field.
2589         if (!Lookup.empty()) {
2590           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
2591             << FieldName;
2592           SemaRef.Diag(Lookup.front()->getLocation(),
2593                        diag::note_field_designator_found);
2594           ++Index;
2595           return true;
2596         }
2597 
2598         // Name lookup didn't find anything.
2599         // Determine whether this was a typo for another field name.
2600         FieldInitializerValidatorCCC CCC(RT->getDecl());
2601         if (TypoCorrection Corrected = SemaRef.CorrectTypo(
2602                 DeclarationNameInfo(FieldName, D->getFieldLoc()),
2603                 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr, CCC,
2604                 Sema::CTK_ErrorRecovery, RT->getDecl())) {
2605           SemaRef.diagnoseTypo(
2606               Corrected,
2607               SemaRef.PDiag(diag::err_field_designator_unknown_suggest)
2608                 << FieldName << CurrentObjectType);
2609           KnownField = Corrected.getCorrectionDeclAs<FieldDecl>();
2610           hadError = true;
2611         } else {
2612           // Typo correction didn't find anything.
2613           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
2614             << FieldName << CurrentObjectType;
2615           ++Index;
2616           return true;
2617         }
2618       }
2619     }
2620 
2621     unsigned NumBases = 0;
2622     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2623       NumBases = CXXRD->getNumBases();
2624 
2625     unsigned FieldIndex = NumBases;
2626 
2627     for (auto *FI : RT->getDecl()->fields()) {
2628       if (FI->isUnnamedBitfield())
2629         continue;
2630       if (declaresSameEntity(KnownField, FI)) {
2631         KnownField = FI;
2632         break;
2633       }
2634       ++FieldIndex;
2635     }
2636 
2637     RecordDecl::field_iterator Field =
2638         RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField));
2639 
2640     // All of the fields of a union are located at the same place in
2641     // the initializer list.
2642     if (RT->getDecl()->isUnion()) {
2643       FieldIndex = 0;
2644       if (StructuredList) {
2645         FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion();
2646         if (CurrentField && !declaresSameEntity(CurrentField, *Field)) {
2647           assert(StructuredList->getNumInits() == 1
2648                  && "A union should never have more than one initializer!");
2649 
2650           Expr *ExistingInit = StructuredList->getInit(0);
2651           if (ExistingInit) {
2652             // We're about to throw away an initializer, emit warning.
2653             diagnoseInitOverride(
2654                 ExistingInit, SourceRange(D->getBeginLoc(), DIE->getEndLoc()));
2655           }
2656 
2657           // remove existing initializer
2658           StructuredList->resizeInits(SemaRef.Context, 0);
2659           StructuredList->setInitializedFieldInUnion(nullptr);
2660         }
2661 
2662         StructuredList->setInitializedFieldInUnion(*Field);
2663       }
2664     }
2665 
2666     // Make sure we can use this declaration.
2667     bool InvalidUse;
2668     if (VerifyOnly)
2669       InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2670     else
2671       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
2672     if (InvalidUse) {
2673       ++Index;
2674       return true;
2675     }
2676 
2677     // C++20 [dcl.init.list]p3:
2678     //   The ordered identifiers in the designators of the designated-
2679     //   initializer-list shall form a subsequence of the ordered identifiers
2680     //   in the direct non-static data members of T.
2681     //
2682     // Note that this is not a condition on forming the aggregate
2683     // initialization, only on actually performing initialization,
2684     // so it is not checked in VerifyOnly mode.
2685     //
2686     // FIXME: This is the only reordering diagnostic we produce, and it only
2687     // catches cases where we have a top-level field designator that jumps
2688     // backwards. This is the only such case that is reachable in an
2689     // otherwise-valid C++20 program, so is the only case that's required for
2690     // conformance, but for consistency, we should diagnose all the other
2691     // cases where a designator takes us backwards too.
2692     if (IsFirstDesignator && !VerifyOnly && SemaRef.getLangOpts().CPlusPlus &&
2693         NextField &&
2694         (*NextField == RT->getDecl()->field_end() ||
2695          (*NextField)->getFieldIndex() > Field->getFieldIndex() + 1)) {
2696       // Find the field that we just initialized.
2697       FieldDecl *PrevField = nullptr;
2698       for (auto FI = RT->getDecl()->field_begin();
2699            FI != RT->getDecl()->field_end(); ++FI) {
2700         if (FI->isUnnamedBitfield())
2701           continue;
2702         if (*NextField != RT->getDecl()->field_end() &&
2703             declaresSameEntity(*FI, **NextField))
2704           break;
2705         PrevField = *FI;
2706       }
2707 
2708       if (PrevField &&
2709           PrevField->getFieldIndex() > KnownField->getFieldIndex()) {
2710         SemaRef.Diag(DIE->getBeginLoc(), diag::ext_designated_init_reordered)
2711             << KnownField << PrevField << DIE->getSourceRange();
2712 
2713         unsigned OldIndex = NumBases + PrevField->getFieldIndex();
2714         if (StructuredList && OldIndex <= StructuredList->getNumInits()) {
2715           if (Expr *PrevInit = StructuredList->getInit(OldIndex)) {
2716             SemaRef.Diag(PrevInit->getBeginLoc(),
2717                          diag::note_previous_field_init)
2718                 << PrevField << PrevInit->getSourceRange();
2719           }
2720         }
2721       }
2722     }
2723 
2724 
2725     // Update the designator with the field declaration.
2726     if (!VerifyOnly)
2727       D->setField(*Field);
2728 
2729     // Make sure that our non-designated initializer list has space
2730     // for a subobject corresponding to this field.
2731     if (StructuredList && FieldIndex >= StructuredList->getNumInits())
2732       StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
2733 
2734     // This designator names a flexible array member.
2735     if (Field->getType()->isIncompleteArrayType()) {
2736       bool Invalid = false;
2737       if ((DesigIdx + 1) != DIE->size()) {
2738         // We can't designate an object within the flexible array
2739         // member (because GCC doesn't allow it).
2740         if (!VerifyOnly) {
2741           DesignatedInitExpr::Designator *NextD
2742             = DIE->getDesignator(DesigIdx + 1);
2743           SemaRef.Diag(NextD->getBeginLoc(),
2744                        diag::err_designator_into_flexible_array_member)
2745               << SourceRange(NextD->getBeginLoc(), DIE->getEndLoc());
2746           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2747             << *Field;
2748         }
2749         Invalid = true;
2750       }
2751 
2752       if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
2753           !isa<StringLiteral>(DIE->getInit())) {
2754         // The initializer is not an initializer list.
2755         if (!VerifyOnly) {
2756           SemaRef.Diag(DIE->getInit()->getBeginLoc(),
2757                        diag::err_flexible_array_init_needs_braces)
2758               << DIE->getInit()->getSourceRange();
2759           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2760             << *Field;
2761         }
2762         Invalid = true;
2763       }
2764 
2765       // Check GNU flexible array initializer.
2766       if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
2767                                              TopLevelObject))
2768         Invalid = true;
2769 
2770       if (Invalid) {
2771         ++Index;
2772         return true;
2773       }
2774 
2775       // Initialize the array.
2776       bool prevHadError = hadError;
2777       unsigned newStructuredIndex = FieldIndex;
2778       unsigned OldIndex = Index;
2779       IList->setInit(Index, DIE->getInit());
2780 
2781       InitializedEntity MemberEntity =
2782         InitializedEntity::InitializeMember(*Field, &Entity);
2783       CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2784                           StructuredList, newStructuredIndex);
2785 
2786       IList->setInit(OldIndex, DIE);
2787       if (hadError && !prevHadError) {
2788         ++Field;
2789         ++FieldIndex;
2790         if (NextField)
2791           *NextField = Field;
2792         StructuredIndex = FieldIndex;
2793         return true;
2794       }
2795     } else {
2796       // Recurse to check later designated subobjects.
2797       QualType FieldType = Field->getType();
2798       unsigned newStructuredIndex = FieldIndex;
2799 
2800       InitializedEntity MemberEntity =
2801         InitializedEntity::InitializeMember(*Field, &Entity);
2802       if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
2803                                      FieldType, nullptr, nullptr, Index,
2804                                      StructuredList, newStructuredIndex,
2805                                      FinishSubobjectInit, false))
2806         return true;
2807     }
2808 
2809     // Find the position of the next field to be initialized in this
2810     // subobject.
2811     ++Field;
2812     ++FieldIndex;
2813 
2814     // If this the first designator, our caller will continue checking
2815     // the rest of this struct/class/union subobject.
2816     if (IsFirstDesignator) {
2817       if (NextField)
2818         *NextField = Field;
2819       StructuredIndex = FieldIndex;
2820       return false;
2821     }
2822 
2823     if (!FinishSubobjectInit)
2824       return false;
2825 
2826     // We've already initialized something in the union; we're done.
2827     if (RT->getDecl()->isUnion())
2828       return hadError;
2829 
2830     // Check the remaining fields within this class/struct/union subobject.
2831     bool prevHadError = hadError;
2832 
2833     auto NoBases =
2834         CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
2835                                         CXXRecordDecl::base_class_iterator());
2836     CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field,
2837                           false, Index, StructuredList, FieldIndex);
2838     return hadError && !prevHadError;
2839   }
2840 
2841   // C99 6.7.8p6:
2842   //
2843   //   If a designator has the form
2844   //
2845   //      [ constant-expression ]
2846   //
2847   //   then the current object (defined below) shall have array
2848   //   type and the expression shall be an integer constant
2849   //   expression. If the array is of unknown size, any
2850   //   nonnegative value is valid.
2851   //
2852   // Additionally, cope with the GNU extension that permits
2853   // designators of the form
2854   //
2855   //      [ constant-expression ... constant-expression ]
2856   const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
2857   if (!AT) {
2858     if (!VerifyOnly)
2859       SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
2860         << CurrentObjectType;
2861     ++Index;
2862     return true;
2863   }
2864 
2865   Expr *IndexExpr = nullptr;
2866   llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
2867   if (D->isArrayDesignator()) {
2868     IndexExpr = DIE->getArrayIndex(*D);
2869     DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
2870     DesignatedEndIndex = DesignatedStartIndex;
2871   } else {
2872     assert(D->isArrayRangeDesignator() && "Need array-range designator");
2873 
2874     DesignatedStartIndex =
2875       DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
2876     DesignatedEndIndex =
2877       DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
2878     IndexExpr = DIE->getArrayRangeEnd(*D);
2879 
2880     // Codegen can't handle evaluating array range designators that have side
2881     // effects, because we replicate the AST value for each initialized element.
2882     // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
2883     // elements with something that has a side effect, so codegen can emit an
2884     // "error unsupported" error instead of miscompiling the app.
2885     if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
2886         DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
2887       FullyStructuredList->sawArrayRangeDesignator();
2888   }
2889 
2890   if (isa<ConstantArrayType>(AT)) {
2891     llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
2892     DesignatedStartIndex
2893       = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
2894     DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
2895     DesignatedEndIndex
2896       = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
2897     DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
2898     if (DesignatedEndIndex >= MaxElements) {
2899       if (!VerifyOnly)
2900         SemaRef.Diag(IndexExpr->getBeginLoc(),
2901                      diag::err_array_designator_too_large)
2902             << toString(DesignatedEndIndex, 10) << toString(MaxElements, 10)
2903             << IndexExpr->getSourceRange();
2904       ++Index;
2905       return true;
2906     }
2907   } else {
2908     unsigned DesignatedIndexBitWidth =
2909       ConstantArrayType::getMaxSizeBits(SemaRef.Context);
2910     DesignatedStartIndex =
2911       DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth);
2912     DesignatedEndIndex =
2913       DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth);
2914     DesignatedStartIndex.setIsUnsigned(true);
2915     DesignatedEndIndex.setIsUnsigned(true);
2916   }
2917 
2918   bool IsStringLiteralInitUpdate =
2919       StructuredList && StructuredList->isStringLiteralInit();
2920   if (IsStringLiteralInitUpdate && VerifyOnly) {
2921     // We're just verifying an update to a string literal init. We don't need
2922     // to split the string up into individual characters to do that.
2923     StructuredList = nullptr;
2924   } else if (IsStringLiteralInitUpdate) {
2925     // We're modifying a string literal init; we have to decompose the string
2926     // so we can modify the individual characters.
2927     ASTContext &Context = SemaRef.Context;
2928     Expr *SubExpr = StructuredList->getInit(0)->IgnoreParenImpCasts();
2929 
2930     // Compute the character type
2931     QualType CharTy = AT->getElementType();
2932 
2933     // Compute the type of the integer literals.
2934     QualType PromotedCharTy = CharTy;
2935     if (CharTy->isPromotableIntegerType())
2936       PromotedCharTy = Context.getPromotedIntegerType(CharTy);
2937     unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy);
2938 
2939     if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) {
2940       // Get the length of the string.
2941       uint64_t StrLen = SL->getLength();
2942       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2943         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2944       StructuredList->resizeInits(Context, StrLen);
2945 
2946       // Build a literal for each character in the string, and put them into
2947       // the init list.
2948       for (unsigned i = 0, e = StrLen; i != e; ++i) {
2949         llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i));
2950         Expr *Init = new (Context) IntegerLiteral(
2951             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2952         if (CharTy != PromotedCharTy)
2953           Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2954                                           Init, nullptr, VK_PRValue,
2955                                           FPOptionsOverride());
2956         StructuredList->updateInit(Context, i, Init);
2957       }
2958     } else {
2959       ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr);
2960       std::string Str;
2961       Context.getObjCEncodingForType(E->getEncodedType(), Str);
2962 
2963       // Get the length of the string.
2964       uint64_t StrLen = Str.size();
2965       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2966         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2967       StructuredList->resizeInits(Context, StrLen);
2968 
2969       // Build a literal for each character in the string, and put them into
2970       // the init list.
2971       for (unsigned i = 0, e = StrLen; i != e; ++i) {
2972         llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]);
2973         Expr *Init = new (Context) IntegerLiteral(
2974             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2975         if (CharTy != PromotedCharTy)
2976           Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2977                                           Init, nullptr, VK_PRValue,
2978                                           FPOptionsOverride());
2979         StructuredList->updateInit(Context, i, Init);
2980       }
2981     }
2982   }
2983 
2984   // Make sure that our non-designated initializer list has space
2985   // for a subobject corresponding to this array element.
2986   if (StructuredList &&
2987       DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
2988     StructuredList->resizeInits(SemaRef.Context,
2989                                 DesignatedEndIndex.getZExtValue() + 1);
2990 
2991   // Repeatedly perform subobject initializations in the range
2992   // [DesignatedStartIndex, DesignatedEndIndex].
2993 
2994   // Move to the next designator
2995   unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
2996   unsigned OldIndex = Index;
2997 
2998   InitializedEntity ElementEntity =
2999     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
3000 
3001   while (DesignatedStartIndex <= DesignatedEndIndex) {
3002     // Recurse to check later designated subobjects.
3003     QualType ElementType = AT->getElementType();
3004     Index = OldIndex;
3005 
3006     ElementEntity.setElementIndex(ElementIndex);
3007     if (CheckDesignatedInitializer(
3008             ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr,
3009             nullptr, Index, StructuredList, ElementIndex,
3010             FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex),
3011             false))
3012       return true;
3013 
3014     // Move to the next index in the array that we'll be initializing.
3015     ++DesignatedStartIndex;
3016     ElementIndex = DesignatedStartIndex.getZExtValue();
3017   }
3018 
3019   // If this the first designator, our caller will continue checking
3020   // the rest of this array subobject.
3021   if (IsFirstDesignator) {
3022     if (NextElementIndex)
3023       *NextElementIndex = DesignatedStartIndex;
3024     StructuredIndex = ElementIndex;
3025     return false;
3026   }
3027 
3028   if (!FinishSubobjectInit)
3029     return false;
3030 
3031   // Check the remaining elements within this array subobject.
3032   bool prevHadError = hadError;
3033   CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
3034                  /*SubobjectIsDesignatorContext=*/false, Index,
3035                  StructuredList, ElementIndex);
3036   return hadError && !prevHadError;
3037 }
3038 
3039 // Get the structured initializer list for a subobject of type
3040 // @p CurrentObjectType.
3041 InitListExpr *
3042 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
3043                                             QualType CurrentObjectType,
3044                                             InitListExpr *StructuredList,
3045                                             unsigned StructuredIndex,
3046                                             SourceRange InitRange,
3047                                             bool IsFullyOverwritten) {
3048   if (!StructuredList)
3049     return nullptr;
3050 
3051   Expr *ExistingInit = nullptr;
3052   if (StructuredIndex < StructuredList->getNumInits())
3053     ExistingInit = StructuredList->getInit(StructuredIndex);
3054 
3055   if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
3056     // There might have already been initializers for subobjects of the current
3057     // object, but a subsequent initializer list will overwrite the entirety
3058     // of the current object. (See DR 253 and C99 6.7.8p21). e.g.,
3059     //
3060     // struct P { char x[6]; };
3061     // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } };
3062     //
3063     // The first designated initializer is ignored, and l.x is just "f".
3064     if (!IsFullyOverwritten)
3065       return Result;
3066 
3067   if (ExistingInit) {
3068     // We are creating an initializer list that initializes the
3069     // subobjects of the current object, but there was already an
3070     // initialization that completely initialized the current
3071     // subobject:
3072     //
3073     // struct X { int a, b; };
3074     // struct X xs[] = { [0] = { 1, 2 }, [0].b = 3 };
3075     //
3076     // Here, xs[0].a == 1 and xs[0].b == 3, since the second,
3077     // designated initializer overwrites the [0].b initializer
3078     // from the prior initialization.
3079     //
3080     // When the existing initializer is an expression rather than an
3081     // initializer list, we cannot decompose and update it in this way.
3082     // For example:
3083     //
3084     // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
3085     //
3086     // This case is handled by CheckDesignatedInitializer.
3087     diagnoseInitOverride(ExistingInit, InitRange);
3088   }
3089 
3090   unsigned ExpectedNumInits = 0;
3091   if (Index < IList->getNumInits()) {
3092     if (auto *Init = dyn_cast_or_null<InitListExpr>(IList->getInit(Index)))
3093       ExpectedNumInits = Init->getNumInits();
3094     else
3095       ExpectedNumInits = IList->getNumInits() - Index;
3096   }
3097 
3098   InitListExpr *Result =
3099       createInitListExpr(CurrentObjectType, InitRange, ExpectedNumInits);
3100 
3101   // Link this new initializer list into the structured initializer
3102   // lists.
3103   StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
3104   return Result;
3105 }
3106 
3107 InitListExpr *
3108 InitListChecker::createInitListExpr(QualType CurrentObjectType,
3109                                     SourceRange InitRange,
3110                                     unsigned ExpectedNumInits) {
3111   InitListExpr *Result
3112     = new (SemaRef.Context) InitListExpr(SemaRef.Context,
3113                                          InitRange.getBegin(), None,
3114                                          InitRange.getEnd());
3115 
3116   QualType ResultType = CurrentObjectType;
3117   if (!ResultType->isArrayType())
3118     ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
3119   Result->setType(ResultType);
3120 
3121   // Pre-allocate storage for the structured initializer list.
3122   unsigned NumElements = 0;
3123 
3124   if (const ArrayType *AType
3125       = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
3126     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
3127       NumElements = CAType->getSize().getZExtValue();
3128       // Simple heuristic so that we don't allocate a very large
3129       // initializer with many empty entries at the end.
3130       if (NumElements > ExpectedNumInits)
3131         NumElements = 0;
3132     }
3133   } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>()) {
3134     NumElements = VType->getNumElements();
3135   } else if (CurrentObjectType->isRecordType()) {
3136     NumElements = numStructUnionElements(CurrentObjectType);
3137   }
3138 
3139   Result->reserveInits(SemaRef.Context, NumElements);
3140 
3141   return Result;
3142 }
3143 
3144 /// Update the initializer at index @p StructuredIndex within the
3145 /// structured initializer list to the value @p expr.
3146 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
3147                                                   unsigned &StructuredIndex,
3148                                                   Expr *expr) {
3149   // No structured initializer list to update
3150   if (!StructuredList)
3151     return;
3152 
3153   if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
3154                                                   StructuredIndex, expr)) {
3155     // This initializer overwrites a previous initializer.
3156     // No need to diagnose when `expr` is nullptr because a more relevant
3157     // diagnostic has already been issued and this diagnostic is potentially
3158     // noise.
3159     if (expr)
3160       diagnoseInitOverride(PrevInit, expr->getSourceRange());
3161   }
3162 
3163   ++StructuredIndex;
3164 }
3165 
3166 /// Determine whether we can perform aggregate initialization for the purposes
3167 /// of overload resolution.
3168 bool Sema::CanPerformAggregateInitializationForOverloadResolution(
3169     const InitializedEntity &Entity, InitListExpr *From) {
3170   QualType Type = Entity.getType();
3171   InitListChecker Check(*this, Entity, From, Type, /*VerifyOnly=*/true,
3172                         /*TreatUnavailableAsInvalid=*/false,
3173                         /*InOverloadResolution=*/true);
3174   return !Check.HadError();
3175 }
3176 
3177 /// Check that the given Index expression is a valid array designator
3178 /// value. This is essentially just a wrapper around
3179 /// VerifyIntegerConstantExpression that also checks for negative values
3180 /// and produces a reasonable diagnostic if there is a
3181 /// failure. Returns the index expression, possibly with an implicit cast
3182 /// added, on success.  If everything went okay, Value will receive the
3183 /// value of the constant expression.
3184 static ExprResult
3185 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
3186   SourceLocation Loc = Index->getBeginLoc();
3187 
3188   // Make sure this is an integer constant expression.
3189   ExprResult Result =
3190       S.VerifyIntegerConstantExpression(Index, &Value, Sema::AllowFold);
3191   if (Result.isInvalid())
3192     return Result;
3193 
3194   if (Value.isSigned() && Value.isNegative())
3195     return S.Diag(Loc, diag::err_array_designator_negative)
3196            << toString(Value, 10) << Index->getSourceRange();
3197 
3198   Value.setIsUnsigned(true);
3199   return Result;
3200 }
3201 
3202 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
3203                                             SourceLocation EqualOrColonLoc,
3204                                             bool GNUSyntax,
3205                                             ExprResult Init) {
3206   typedef DesignatedInitExpr::Designator ASTDesignator;
3207 
3208   bool Invalid = false;
3209   SmallVector<ASTDesignator, 32> Designators;
3210   SmallVector<Expr *, 32> InitExpressions;
3211 
3212   // Build designators and check array designator expressions.
3213   for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
3214     const Designator &D = Desig.getDesignator(Idx);
3215     switch (D.getKind()) {
3216     case Designator::FieldDesignator:
3217       Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
3218                                           D.getFieldLoc()));
3219       break;
3220 
3221     case Designator::ArrayDesignator: {
3222       Expr *Index = static_cast<Expr *>(D.getArrayIndex());
3223       llvm::APSInt IndexValue;
3224       if (!Index->isTypeDependent() && !Index->isValueDependent())
3225         Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get();
3226       if (!Index)
3227         Invalid = true;
3228       else {
3229         Designators.push_back(ASTDesignator(InitExpressions.size(),
3230                                             D.getLBracketLoc(),
3231                                             D.getRBracketLoc()));
3232         InitExpressions.push_back(Index);
3233       }
3234       break;
3235     }
3236 
3237     case Designator::ArrayRangeDesignator: {
3238       Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
3239       Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
3240       llvm::APSInt StartValue;
3241       llvm::APSInt EndValue;
3242       bool StartDependent = StartIndex->isTypeDependent() ||
3243                             StartIndex->isValueDependent();
3244       bool EndDependent = EndIndex->isTypeDependent() ||
3245                           EndIndex->isValueDependent();
3246       if (!StartDependent)
3247         StartIndex =
3248             CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get();
3249       if (!EndDependent)
3250         EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get();
3251 
3252       if (!StartIndex || !EndIndex)
3253         Invalid = true;
3254       else {
3255         // Make sure we're comparing values with the same bit width.
3256         if (StartDependent || EndDependent) {
3257           // Nothing to compute.
3258         } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
3259           EndValue = EndValue.extend(StartValue.getBitWidth());
3260         else if (StartValue.getBitWidth() < EndValue.getBitWidth())
3261           StartValue = StartValue.extend(EndValue.getBitWidth());
3262 
3263         if (!StartDependent && !EndDependent && EndValue < StartValue) {
3264           Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
3265             << toString(StartValue, 10) << toString(EndValue, 10)
3266             << StartIndex->getSourceRange() << EndIndex->getSourceRange();
3267           Invalid = true;
3268         } else {
3269           Designators.push_back(ASTDesignator(InitExpressions.size(),
3270                                               D.getLBracketLoc(),
3271                                               D.getEllipsisLoc(),
3272                                               D.getRBracketLoc()));
3273           InitExpressions.push_back(StartIndex);
3274           InitExpressions.push_back(EndIndex);
3275         }
3276       }
3277       break;
3278     }
3279     }
3280   }
3281 
3282   if (Invalid || Init.isInvalid())
3283     return ExprError();
3284 
3285   // Clear out the expressions within the designation.
3286   Desig.ClearExprs(*this);
3287 
3288   return DesignatedInitExpr::Create(Context, Designators, InitExpressions,
3289                                     EqualOrColonLoc, GNUSyntax,
3290                                     Init.getAs<Expr>());
3291 }
3292 
3293 //===----------------------------------------------------------------------===//
3294 // Initialization entity
3295 //===----------------------------------------------------------------------===//
3296 
3297 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
3298                                      const InitializedEntity &Parent)
3299   : Parent(&Parent), Index(Index)
3300 {
3301   if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
3302     Kind = EK_ArrayElement;
3303     Type = AT->getElementType();
3304   } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
3305     Kind = EK_VectorElement;
3306     Type = VT->getElementType();
3307   } else {
3308     const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
3309     assert(CT && "Unexpected type");
3310     Kind = EK_ComplexElement;
3311     Type = CT->getElementType();
3312   }
3313 }
3314 
3315 InitializedEntity
3316 InitializedEntity::InitializeBase(ASTContext &Context,
3317                                   const CXXBaseSpecifier *Base,
3318                                   bool IsInheritedVirtualBase,
3319                                   const InitializedEntity *Parent) {
3320   InitializedEntity Result;
3321   Result.Kind = EK_Base;
3322   Result.Parent = Parent;
3323   Result.Base = {Base, IsInheritedVirtualBase};
3324   Result.Type = Base->getType();
3325   return Result;
3326 }
3327 
3328 DeclarationName InitializedEntity::getName() const {
3329   switch (getKind()) {
3330   case EK_Parameter:
3331   case EK_Parameter_CF_Audited: {
3332     ParmVarDecl *D = Parameter.getPointer();
3333     return (D ? D->getDeclName() : DeclarationName());
3334   }
3335 
3336   case EK_Variable:
3337   case EK_Member:
3338   case EK_Binding:
3339   case EK_TemplateParameter:
3340     return Variable.VariableOrMember->getDeclName();
3341 
3342   case EK_LambdaCapture:
3343     return DeclarationName(Capture.VarID);
3344 
3345   case EK_Result:
3346   case EK_StmtExprResult:
3347   case EK_Exception:
3348   case EK_New:
3349   case EK_Temporary:
3350   case EK_Base:
3351   case EK_Delegating:
3352   case EK_ArrayElement:
3353   case EK_VectorElement:
3354   case EK_ComplexElement:
3355   case EK_BlockElement:
3356   case EK_LambdaToBlockConversionBlockElement:
3357   case EK_CompoundLiteralInit:
3358   case EK_RelatedResult:
3359     return DeclarationName();
3360   }
3361 
3362   llvm_unreachable("Invalid EntityKind!");
3363 }
3364 
3365 ValueDecl *InitializedEntity::getDecl() const {
3366   switch (getKind()) {
3367   case EK_Variable:
3368   case EK_Member:
3369   case EK_Binding:
3370   case EK_TemplateParameter:
3371     return Variable.VariableOrMember;
3372 
3373   case EK_Parameter:
3374   case EK_Parameter_CF_Audited:
3375     return Parameter.getPointer();
3376 
3377   case EK_Result:
3378   case EK_StmtExprResult:
3379   case EK_Exception:
3380   case EK_New:
3381   case EK_Temporary:
3382   case EK_Base:
3383   case EK_Delegating:
3384   case EK_ArrayElement:
3385   case EK_VectorElement:
3386   case EK_ComplexElement:
3387   case EK_BlockElement:
3388   case EK_LambdaToBlockConversionBlockElement:
3389   case EK_LambdaCapture:
3390   case EK_CompoundLiteralInit:
3391   case EK_RelatedResult:
3392     return nullptr;
3393   }
3394 
3395   llvm_unreachable("Invalid EntityKind!");
3396 }
3397 
3398 bool InitializedEntity::allowsNRVO() const {
3399   switch (getKind()) {
3400   case EK_Result:
3401   case EK_Exception:
3402     return LocAndNRVO.NRVO;
3403 
3404   case EK_StmtExprResult:
3405   case EK_Variable:
3406   case EK_Parameter:
3407   case EK_Parameter_CF_Audited:
3408   case EK_TemplateParameter:
3409   case EK_Member:
3410   case EK_Binding:
3411   case EK_New:
3412   case EK_Temporary:
3413   case EK_CompoundLiteralInit:
3414   case EK_Base:
3415   case EK_Delegating:
3416   case EK_ArrayElement:
3417   case EK_VectorElement:
3418   case EK_ComplexElement:
3419   case EK_BlockElement:
3420   case EK_LambdaToBlockConversionBlockElement:
3421   case EK_LambdaCapture:
3422   case EK_RelatedResult:
3423     break;
3424   }
3425 
3426   return false;
3427 }
3428 
3429 unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const {
3430   assert(getParent() != this);
3431   unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0;
3432   for (unsigned I = 0; I != Depth; ++I)
3433     OS << "`-";
3434 
3435   switch (getKind()) {
3436   case EK_Variable: OS << "Variable"; break;
3437   case EK_Parameter: OS << "Parameter"; break;
3438   case EK_Parameter_CF_Audited: OS << "CF audited function Parameter";
3439     break;
3440   case EK_TemplateParameter: OS << "TemplateParameter"; break;
3441   case EK_Result: OS << "Result"; break;
3442   case EK_StmtExprResult: OS << "StmtExprResult"; break;
3443   case EK_Exception: OS << "Exception"; break;
3444   case EK_Member: OS << "Member"; break;
3445   case EK_Binding: OS << "Binding"; break;
3446   case EK_New: OS << "New"; break;
3447   case EK_Temporary: OS << "Temporary"; break;
3448   case EK_CompoundLiteralInit: OS << "CompoundLiteral";break;
3449   case EK_RelatedResult: OS << "RelatedResult"; break;
3450   case EK_Base: OS << "Base"; break;
3451   case EK_Delegating: OS << "Delegating"; break;
3452   case EK_ArrayElement: OS << "ArrayElement " << Index; break;
3453   case EK_VectorElement: OS << "VectorElement " << Index; break;
3454   case EK_ComplexElement: OS << "ComplexElement " << Index; break;
3455   case EK_BlockElement: OS << "Block"; break;
3456   case EK_LambdaToBlockConversionBlockElement:
3457     OS << "Block (lambda)";
3458     break;
3459   case EK_LambdaCapture:
3460     OS << "LambdaCapture ";
3461     OS << DeclarationName(Capture.VarID);
3462     break;
3463   }
3464 
3465   if (auto *D = getDecl()) {
3466     OS << " ";
3467     D->printQualifiedName(OS);
3468   }
3469 
3470   OS << " '" << getType().getAsString() << "'\n";
3471 
3472   return Depth + 1;
3473 }
3474 
3475 LLVM_DUMP_METHOD void InitializedEntity::dump() const {
3476   dumpImpl(llvm::errs());
3477 }
3478 
3479 //===----------------------------------------------------------------------===//
3480 // Initialization sequence
3481 //===----------------------------------------------------------------------===//
3482 
3483 void InitializationSequence::Step::Destroy() {
3484   switch (Kind) {
3485   case SK_ResolveAddressOfOverloadedFunction:
3486   case SK_CastDerivedToBasePRValue:
3487   case SK_CastDerivedToBaseXValue:
3488   case SK_CastDerivedToBaseLValue:
3489   case SK_BindReference:
3490   case SK_BindReferenceToTemporary:
3491   case SK_FinalCopy:
3492   case SK_ExtraneousCopyToTemporary:
3493   case SK_UserConversion:
3494   case SK_QualificationConversionPRValue:
3495   case SK_QualificationConversionXValue:
3496   case SK_QualificationConversionLValue:
3497   case SK_FunctionReferenceConversion:
3498   case SK_AtomicConversion:
3499   case SK_ListInitialization:
3500   case SK_UnwrapInitList:
3501   case SK_RewrapInitList:
3502   case SK_ConstructorInitialization:
3503   case SK_ConstructorInitializationFromList:
3504   case SK_ZeroInitialization:
3505   case SK_CAssignment:
3506   case SK_StringInit:
3507   case SK_ObjCObjectConversion:
3508   case SK_ArrayLoopIndex:
3509   case SK_ArrayLoopInit:
3510   case SK_ArrayInit:
3511   case SK_GNUArrayInit:
3512   case SK_ParenthesizedArrayInit:
3513   case SK_PassByIndirectCopyRestore:
3514   case SK_PassByIndirectRestore:
3515   case SK_ProduceObjCObject:
3516   case SK_StdInitializerList:
3517   case SK_StdInitializerListConstructorCall:
3518   case SK_OCLSamplerInit:
3519   case SK_OCLZeroOpaqueType:
3520     break;
3521 
3522   case SK_ConversionSequence:
3523   case SK_ConversionSequenceNoNarrowing:
3524     delete ICS;
3525   }
3526 }
3527 
3528 bool InitializationSequence::isDirectReferenceBinding() const {
3529   // There can be some lvalue adjustments after the SK_BindReference step.
3530   for (const Step &S : llvm::reverse(Steps)) {
3531     if (S.Kind == SK_BindReference)
3532       return true;
3533     if (S.Kind == SK_BindReferenceToTemporary)
3534       return false;
3535   }
3536   return false;
3537 }
3538 
3539 bool InitializationSequence::isAmbiguous() const {
3540   if (!Failed())
3541     return false;
3542 
3543   switch (getFailureKind()) {
3544   case FK_TooManyInitsForReference:
3545   case FK_ParenthesizedListInitForReference:
3546   case FK_ArrayNeedsInitList:
3547   case FK_ArrayNeedsInitListOrStringLiteral:
3548   case FK_ArrayNeedsInitListOrWideStringLiteral:
3549   case FK_NarrowStringIntoWideCharArray:
3550   case FK_WideStringIntoCharArray:
3551   case FK_IncompatWideStringIntoWideChar:
3552   case FK_PlainStringIntoUTF8Char:
3553   case FK_UTF8StringIntoPlainChar:
3554   case FK_AddressOfOverloadFailed: // FIXME: Could do better
3555   case FK_NonConstLValueReferenceBindingToTemporary:
3556   case FK_NonConstLValueReferenceBindingToBitfield:
3557   case FK_NonConstLValueReferenceBindingToVectorElement:
3558   case FK_NonConstLValueReferenceBindingToMatrixElement:
3559   case FK_NonConstLValueReferenceBindingToUnrelated:
3560   case FK_RValueReferenceBindingToLValue:
3561   case FK_ReferenceAddrspaceMismatchTemporary:
3562   case FK_ReferenceInitDropsQualifiers:
3563   case FK_ReferenceInitFailed:
3564   case FK_ConversionFailed:
3565   case FK_ConversionFromPropertyFailed:
3566   case FK_TooManyInitsForScalar:
3567   case FK_ParenthesizedListInitForScalar:
3568   case FK_ReferenceBindingToInitList:
3569   case FK_InitListBadDestinationType:
3570   case FK_DefaultInitOfConst:
3571   case FK_Incomplete:
3572   case FK_ArrayTypeMismatch:
3573   case FK_NonConstantArrayInit:
3574   case FK_ListInitializationFailed:
3575   case FK_VariableLengthArrayHasInitializer:
3576   case FK_PlaceholderType:
3577   case FK_ExplicitConstructor:
3578   case FK_AddressOfUnaddressableFunction:
3579     return false;
3580 
3581   case FK_ReferenceInitOverloadFailed:
3582   case FK_UserConversionOverloadFailed:
3583   case FK_ConstructorOverloadFailed:
3584   case FK_ListConstructorOverloadFailed:
3585     return FailedOverloadResult == OR_Ambiguous;
3586   }
3587 
3588   llvm_unreachable("Invalid EntityKind!");
3589 }
3590 
3591 bool InitializationSequence::isConstructorInitialization() const {
3592   return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
3593 }
3594 
3595 void
3596 InitializationSequence
3597 ::AddAddressOverloadResolutionStep(FunctionDecl *Function,
3598                                    DeclAccessPair Found,
3599                                    bool HadMultipleCandidates) {
3600   Step S;
3601   S.Kind = SK_ResolveAddressOfOverloadedFunction;
3602   S.Type = Function->getType();
3603   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3604   S.Function.Function = Function;
3605   S.Function.FoundDecl = Found;
3606   Steps.push_back(S);
3607 }
3608 
3609 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
3610                                                       ExprValueKind VK) {
3611   Step S;
3612   switch (VK) {
3613   case VK_PRValue:
3614     S.Kind = SK_CastDerivedToBasePRValue;
3615     break;
3616   case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
3617   case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
3618   }
3619   S.Type = BaseType;
3620   Steps.push_back(S);
3621 }
3622 
3623 void InitializationSequence::AddReferenceBindingStep(QualType T,
3624                                                      bool BindingTemporary) {
3625   Step S;
3626   S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
3627   S.Type = T;
3628   Steps.push_back(S);
3629 }
3630 
3631 void InitializationSequence::AddFinalCopy(QualType T) {
3632   Step S;
3633   S.Kind = SK_FinalCopy;
3634   S.Type = T;
3635   Steps.push_back(S);
3636 }
3637 
3638 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
3639   Step S;
3640   S.Kind = SK_ExtraneousCopyToTemporary;
3641   S.Type = T;
3642   Steps.push_back(S);
3643 }
3644 
3645 void
3646 InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
3647                                               DeclAccessPair FoundDecl,
3648                                               QualType T,
3649                                               bool HadMultipleCandidates) {
3650   Step S;
3651   S.Kind = SK_UserConversion;
3652   S.Type = T;
3653   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3654   S.Function.Function = Function;
3655   S.Function.FoundDecl = FoundDecl;
3656   Steps.push_back(S);
3657 }
3658 
3659 void InitializationSequence::AddQualificationConversionStep(QualType Ty,
3660                                                             ExprValueKind VK) {
3661   Step S;
3662   S.Kind = SK_QualificationConversionPRValue; // work around a gcc warning
3663   switch (VK) {
3664   case VK_PRValue:
3665     S.Kind = SK_QualificationConversionPRValue;
3666     break;
3667   case VK_XValue:
3668     S.Kind = SK_QualificationConversionXValue;
3669     break;
3670   case VK_LValue:
3671     S.Kind = SK_QualificationConversionLValue;
3672     break;
3673   }
3674   S.Type = Ty;
3675   Steps.push_back(S);
3676 }
3677 
3678 void InitializationSequence::AddFunctionReferenceConversionStep(QualType Ty) {
3679   Step S;
3680   S.Kind = SK_FunctionReferenceConversion;
3681   S.Type = Ty;
3682   Steps.push_back(S);
3683 }
3684 
3685 void InitializationSequence::AddAtomicConversionStep(QualType Ty) {
3686   Step S;
3687   S.Kind = SK_AtomicConversion;
3688   S.Type = Ty;
3689   Steps.push_back(S);
3690 }
3691 
3692 void InitializationSequence::AddConversionSequenceStep(
3693     const ImplicitConversionSequence &ICS, QualType T,
3694     bool TopLevelOfInitList) {
3695   Step S;
3696   S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing
3697                               : SK_ConversionSequence;
3698   S.Type = T;
3699   S.ICS = new ImplicitConversionSequence(ICS);
3700   Steps.push_back(S);
3701 }
3702 
3703 void InitializationSequence::AddListInitializationStep(QualType T) {
3704   Step S;
3705   S.Kind = SK_ListInitialization;
3706   S.Type = T;
3707   Steps.push_back(S);
3708 }
3709 
3710 void InitializationSequence::AddConstructorInitializationStep(
3711     DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T,
3712     bool HadMultipleCandidates, bool FromInitList, bool AsInitList) {
3713   Step S;
3714   S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall
3715                                      : SK_ConstructorInitializationFromList
3716                         : SK_ConstructorInitialization;
3717   S.Type = T;
3718   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3719   S.Function.Function = Constructor;
3720   S.Function.FoundDecl = FoundDecl;
3721   Steps.push_back(S);
3722 }
3723 
3724 void InitializationSequence::AddZeroInitializationStep(QualType T) {
3725   Step S;
3726   S.Kind = SK_ZeroInitialization;
3727   S.Type = T;
3728   Steps.push_back(S);
3729 }
3730 
3731 void InitializationSequence::AddCAssignmentStep(QualType T) {
3732   Step S;
3733   S.Kind = SK_CAssignment;
3734   S.Type = T;
3735   Steps.push_back(S);
3736 }
3737 
3738 void InitializationSequence::AddStringInitStep(QualType T) {
3739   Step S;
3740   S.Kind = SK_StringInit;
3741   S.Type = T;
3742   Steps.push_back(S);
3743 }
3744 
3745 void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
3746   Step S;
3747   S.Kind = SK_ObjCObjectConversion;
3748   S.Type = T;
3749   Steps.push_back(S);
3750 }
3751 
3752 void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) {
3753   Step S;
3754   S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit;
3755   S.Type = T;
3756   Steps.push_back(S);
3757 }
3758 
3759 void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) {
3760   Step S;
3761   S.Kind = SK_ArrayLoopIndex;
3762   S.Type = EltT;
3763   Steps.insert(Steps.begin(), S);
3764 
3765   S.Kind = SK_ArrayLoopInit;
3766   S.Type = T;
3767   Steps.push_back(S);
3768 }
3769 
3770 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
3771   Step S;
3772   S.Kind = SK_ParenthesizedArrayInit;
3773   S.Type = T;
3774   Steps.push_back(S);
3775 }
3776 
3777 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
3778                                                               bool shouldCopy) {
3779   Step s;
3780   s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
3781                        : SK_PassByIndirectRestore);
3782   s.Type = type;
3783   Steps.push_back(s);
3784 }
3785 
3786 void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
3787   Step S;
3788   S.Kind = SK_ProduceObjCObject;
3789   S.Type = T;
3790   Steps.push_back(S);
3791 }
3792 
3793 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
3794   Step S;
3795   S.Kind = SK_StdInitializerList;
3796   S.Type = T;
3797   Steps.push_back(S);
3798 }
3799 
3800 void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
3801   Step S;
3802   S.Kind = SK_OCLSamplerInit;
3803   S.Type = T;
3804   Steps.push_back(S);
3805 }
3806 
3807 void InitializationSequence::AddOCLZeroOpaqueTypeStep(QualType T) {
3808   Step S;
3809   S.Kind = SK_OCLZeroOpaqueType;
3810   S.Type = T;
3811   Steps.push_back(S);
3812 }
3813 
3814 void InitializationSequence::RewrapReferenceInitList(QualType T,
3815                                                      InitListExpr *Syntactic) {
3816   assert(Syntactic->getNumInits() == 1 &&
3817          "Can only rewrap trivial init lists.");
3818   Step S;
3819   S.Kind = SK_UnwrapInitList;
3820   S.Type = Syntactic->getInit(0)->getType();
3821   Steps.insert(Steps.begin(), S);
3822 
3823   S.Kind = SK_RewrapInitList;
3824   S.Type = T;
3825   S.WrappingSyntacticList = Syntactic;
3826   Steps.push_back(S);
3827 }
3828 
3829 void InitializationSequence::SetOverloadFailure(FailureKind Failure,
3830                                                 OverloadingResult Result) {
3831   setSequenceKind(FailedSequence);
3832   this->Failure = Failure;
3833   this->FailedOverloadResult = Result;
3834 }
3835 
3836 //===----------------------------------------------------------------------===//
3837 // Attempt initialization
3838 //===----------------------------------------------------------------------===//
3839 
3840 /// Tries to add a zero initializer. Returns true if that worked.
3841 static bool
3842 maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence,
3843                                    const InitializedEntity &Entity) {
3844   if (Entity.getKind() != InitializedEntity::EK_Variable)
3845     return false;
3846 
3847   VarDecl *VD = cast<VarDecl>(Entity.getDecl());
3848   if (VD->getInit() || VD->getEndLoc().isMacroID())
3849     return false;
3850 
3851   QualType VariableTy = VD->getType().getCanonicalType();
3852   SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc());
3853   std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
3854   if (!Init.empty()) {
3855     Sequence.AddZeroInitializationStep(Entity.getType());
3856     Sequence.SetZeroInitializationFixit(Init, Loc);
3857     return true;
3858   }
3859   return false;
3860 }
3861 
3862 static void MaybeProduceObjCObject(Sema &S,
3863                                    InitializationSequence &Sequence,
3864                                    const InitializedEntity &Entity) {
3865   if (!S.getLangOpts().ObjCAutoRefCount) return;
3866 
3867   /// When initializing a parameter, produce the value if it's marked
3868   /// __attribute__((ns_consumed)).
3869   if (Entity.isParameterKind()) {
3870     if (!Entity.isParameterConsumed())
3871       return;
3872 
3873     assert(Entity.getType()->isObjCRetainableType() &&
3874            "consuming an object of unretainable type?");
3875     Sequence.AddProduceObjCObjectStep(Entity.getType());
3876 
3877   /// When initializing a return value, if the return type is a
3878   /// retainable type, then returns need to immediately retain the
3879   /// object.  If an autorelease is required, it will be done at the
3880   /// last instant.
3881   } else if (Entity.getKind() == InitializedEntity::EK_Result ||
3882              Entity.getKind() == InitializedEntity::EK_StmtExprResult) {
3883     if (!Entity.getType()->isObjCRetainableType())
3884       return;
3885 
3886     Sequence.AddProduceObjCObjectStep(Entity.getType());
3887   }
3888 }
3889 
3890 static void TryListInitialization(Sema &S,
3891                                   const InitializedEntity &Entity,
3892                                   const InitializationKind &Kind,
3893                                   InitListExpr *InitList,
3894                                   InitializationSequence &Sequence,
3895                                   bool TreatUnavailableAsInvalid);
3896 
3897 /// When initializing from init list via constructor, handle
3898 /// initialization of an object of type std::initializer_list<T>.
3899 ///
3900 /// \return true if we have handled initialization of an object of type
3901 /// std::initializer_list<T>, false otherwise.
3902 static bool TryInitializerListConstruction(Sema &S,
3903                                            InitListExpr *List,
3904                                            QualType DestType,
3905                                            InitializationSequence &Sequence,
3906                                            bool TreatUnavailableAsInvalid) {
3907   QualType E;
3908   if (!S.isStdInitializerList(DestType, &E))
3909     return false;
3910 
3911   if (!S.isCompleteType(List->getExprLoc(), E)) {
3912     Sequence.setIncompleteTypeFailure(E);
3913     return true;
3914   }
3915 
3916   // Try initializing a temporary array from the init list.
3917   QualType ArrayType = S.Context.getConstantArrayType(
3918       E.withConst(),
3919       llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
3920                   List->getNumInits()),
3921       nullptr, clang::ArrayType::Normal, 0);
3922   InitializedEntity HiddenArray =
3923       InitializedEntity::InitializeTemporary(ArrayType);
3924   InitializationKind Kind = InitializationKind::CreateDirectList(
3925       List->getExprLoc(), List->getBeginLoc(), List->getEndLoc());
3926   TryListInitialization(S, HiddenArray, Kind, List, Sequence,
3927                         TreatUnavailableAsInvalid);
3928   if (Sequence)
3929     Sequence.AddStdInitializerListConstructionStep(DestType);
3930   return true;
3931 }
3932 
3933 /// Determine if the constructor has the signature of a copy or move
3934 /// constructor for the type T of the class in which it was found. That is,
3935 /// determine if its first parameter is of type T or reference to (possibly
3936 /// cv-qualified) T.
3937 static bool hasCopyOrMoveCtorParam(ASTContext &Ctx,
3938                                    const ConstructorInfo &Info) {
3939   if (Info.Constructor->getNumParams() == 0)
3940     return false;
3941 
3942   QualType ParmT =
3943       Info.Constructor->getParamDecl(0)->getType().getNonReferenceType();
3944   QualType ClassT =
3945       Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext()));
3946 
3947   return Ctx.hasSameUnqualifiedType(ParmT, ClassT);
3948 }
3949 
3950 static OverloadingResult
3951 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
3952                            MultiExprArg Args,
3953                            OverloadCandidateSet &CandidateSet,
3954                            QualType DestType,
3955                            DeclContext::lookup_result Ctors,
3956                            OverloadCandidateSet::iterator &Best,
3957                            bool CopyInitializing, bool AllowExplicit,
3958                            bool OnlyListConstructors, bool IsListInit,
3959                            bool SecondStepOfCopyInit = false) {
3960   CandidateSet.clear(OverloadCandidateSet::CSK_InitByConstructor);
3961   CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace());
3962 
3963   for (NamedDecl *D : Ctors) {
3964     auto Info = getConstructorInfo(D);
3965     if (!Info.Constructor || Info.Constructor->isInvalidDecl())
3966       continue;
3967 
3968     if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor))
3969       continue;
3970 
3971     // C++11 [over.best.ics]p4:
3972     //   ... and the constructor or user-defined conversion function is a
3973     //   candidate by
3974     //   - 13.3.1.3, when the argument is the temporary in the second step
3975     //     of a class copy-initialization, or
3976     //   - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here]
3977     //   - the second phase of 13.3.1.7 when the initializer list has exactly
3978     //     one element that is itself an initializer list, and the target is
3979     //     the first parameter of a constructor of class X, and the conversion
3980     //     is to X or reference to (possibly cv-qualified X),
3981     //   user-defined conversion sequences are not considered.
3982     bool SuppressUserConversions =
3983         SecondStepOfCopyInit ||
3984         (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
3985          hasCopyOrMoveCtorParam(S.Context, Info));
3986 
3987     if (Info.ConstructorTmpl)
3988       S.AddTemplateOverloadCandidate(
3989           Info.ConstructorTmpl, Info.FoundDecl,
3990           /*ExplicitArgs*/ nullptr, Args, CandidateSet, SuppressUserConversions,
3991           /*PartialOverloading=*/false, AllowExplicit);
3992     else {
3993       // C++ [over.match.copy]p1:
3994       //   - When initializing a temporary to be bound to the first parameter
3995       //     of a constructor [for type T] that takes a reference to possibly
3996       //     cv-qualified T as its first argument, called with a single
3997       //     argument in the context of direct-initialization, explicit
3998       //     conversion functions are also considered.
3999       // FIXME: What if a constructor template instantiates to such a signature?
4000       bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
4001                                Args.size() == 1 &&
4002                                hasCopyOrMoveCtorParam(S.Context, Info);
4003       S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args,
4004                              CandidateSet, SuppressUserConversions,
4005                              /*PartialOverloading=*/false, AllowExplicit,
4006                              AllowExplicitConv);
4007     }
4008   }
4009 
4010   // FIXME: Work around a bug in C++17 guaranteed copy elision.
4011   //
4012   // When initializing an object of class type T by constructor
4013   // ([over.match.ctor]) or by list-initialization ([over.match.list])
4014   // from a single expression of class type U, conversion functions of
4015   // U that convert to the non-reference type cv T are candidates.
4016   // Explicit conversion functions are only candidates during
4017   // direct-initialization.
4018   //
4019   // Note: SecondStepOfCopyInit is only ever true in this case when
4020   // evaluating whether to produce a C++98 compatibility warning.
4021   if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 &&
4022       !SecondStepOfCopyInit) {
4023     Expr *Initializer = Args[0];
4024     auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl();
4025     if (SourceRD && S.isCompleteType(DeclLoc, Initializer->getType())) {
4026       const auto &Conversions = SourceRD->getVisibleConversionFunctions();
4027       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4028         NamedDecl *D = *I;
4029         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4030         D = D->getUnderlyingDecl();
4031 
4032         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4033         CXXConversionDecl *Conv;
4034         if (ConvTemplate)
4035           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4036         else
4037           Conv = cast<CXXConversionDecl>(D);
4038 
4039         if (ConvTemplate)
4040           S.AddTemplateConversionCandidate(
4041               ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
4042               CandidateSet, AllowExplicit, AllowExplicit,
4043               /*AllowResultConversion*/ false);
4044         else
4045           S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer,
4046                                    DestType, CandidateSet, AllowExplicit,
4047                                    AllowExplicit,
4048                                    /*AllowResultConversion*/ false);
4049       }
4050     }
4051   }
4052 
4053   // Perform overload resolution and return the result.
4054   return CandidateSet.BestViableFunction(S, DeclLoc, Best);
4055 }
4056 
4057 /// Attempt initialization by constructor (C++ [dcl.init]), which
4058 /// enumerates the constructors of the initialized entity and performs overload
4059 /// resolution to select the best.
4060 /// \param DestType       The destination class type.
4061 /// \param DestArrayType  The destination type, which is either DestType or
4062 ///                       a (possibly multidimensional) array of DestType.
4063 /// \param IsListInit     Is this list-initialization?
4064 /// \param IsInitListCopy Is this non-list-initialization resulting from a
4065 ///                       list-initialization from {x} where x is the same
4066 ///                       type as the entity?
4067 static void TryConstructorInitialization(Sema &S,
4068                                          const InitializedEntity &Entity,
4069                                          const InitializationKind &Kind,
4070                                          MultiExprArg Args, QualType DestType,
4071                                          QualType DestArrayType,
4072                                          InitializationSequence &Sequence,
4073                                          bool IsListInit = false,
4074                                          bool IsInitListCopy = false) {
4075   assert(((!IsListInit && !IsInitListCopy) ||
4076           (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&
4077          "IsListInit/IsInitListCopy must come with a single initializer list "
4078          "argument.");
4079   InitListExpr *ILE =
4080       (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr;
4081   MultiExprArg UnwrappedArgs =
4082       ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args;
4083 
4084   // The type we're constructing needs to be complete.
4085   if (!S.isCompleteType(Kind.getLocation(), DestType)) {
4086     Sequence.setIncompleteTypeFailure(DestType);
4087     return;
4088   }
4089 
4090   // C++17 [dcl.init]p17:
4091   //     - If the initializer expression is a prvalue and the cv-unqualified
4092   //       version of the source type is the same class as the class of the
4093   //       destination, the initializer expression is used to initialize the
4094   //       destination object.
4095   // Per DR (no number yet), this does not apply when initializing a base
4096   // class or delegating to another constructor from a mem-initializer.
4097   // ObjC++: Lambda captured by the block in the lambda to block conversion
4098   // should avoid copy elision.
4099   if (S.getLangOpts().CPlusPlus17 &&
4100       Entity.getKind() != InitializedEntity::EK_Base &&
4101       Entity.getKind() != InitializedEntity::EK_Delegating &&
4102       Entity.getKind() !=
4103           InitializedEntity::EK_LambdaToBlockConversionBlockElement &&
4104       UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isPRValue() &&
4105       S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) {
4106     // Convert qualifications if necessary.
4107     Sequence.AddQualificationConversionStep(DestType, VK_PRValue);
4108     if (ILE)
4109       Sequence.RewrapReferenceInitList(DestType, ILE);
4110     return;
4111   }
4112 
4113   const RecordType *DestRecordType = DestType->getAs<RecordType>();
4114   assert(DestRecordType && "Constructor initialization requires record type");
4115   CXXRecordDecl *DestRecordDecl
4116     = cast<CXXRecordDecl>(DestRecordType->getDecl());
4117 
4118   // Build the candidate set directly in the initialization sequence
4119   // structure, so that it will persist if we fail.
4120   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4121 
4122   // Determine whether we are allowed to call explicit constructors or
4123   // explicit conversion operators.
4124   bool AllowExplicit = Kind.AllowExplicit() || IsListInit;
4125   bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
4126 
4127   //   - Otherwise, if T is a class type, constructors are considered. The
4128   //     applicable constructors are enumerated, and the best one is chosen
4129   //     through overload resolution.
4130   DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl);
4131 
4132   OverloadingResult Result = OR_No_Viable_Function;
4133   OverloadCandidateSet::iterator Best;
4134   bool AsInitializerList = false;
4135 
4136   // C++11 [over.match.list]p1, per DR1467:
4137   //   When objects of non-aggregate type T are list-initialized, such that
4138   //   8.5.4 [dcl.init.list] specifies that overload resolution is performed
4139   //   according to the rules in this section, overload resolution selects
4140   //   the constructor in two phases:
4141   //
4142   //   - Initially, the candidate functions are the initializer-list
4143   //     constructors of the class T and the argument list consists of the
4144   //     initializer list as a single argument.
4145   if (IsListInit) {
4146     AsInitializerList = true;
4147 
4148     // If the initializer list has no elements and T has a default constructor,
4149     // the first phase is omitted.
4150     if (!(UnwrappedArgs.empty() && S.LookupDefaultConstructor(DestRecordDecl)))
4151       Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
4152                                           CandidateSet, DestType, Ctors, Best,
4153                                           CopyInitialization, AllowExplicit,
4154                                           /*OnlyListConstructors=*/true,
4155                                           IsListInit);
4156   }
4157 
4158   // C++11 [over.match.list]p1:
4159   //   - If no viable initializer-list constructor is found, overload resolution
4160   //     is performed again, where the candidate functions are all the
4161   //     constructors of the class T and the argument list consists of the
4162   //     elements of the initializer list.
4163   if (Result == OR_No_Viable_Function) {
4164     AsInitializerList = false;
4165     Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs,
4166                                         CandidateSet, DestType, Ctors, Best,
4167                                         CopyInitialization, AllowExplicit,
4168                                         /*OnlyListConstructors=*/false,
4169                                         IsListInit);
4170   }
4171   if (Result) {
4172     Sequence.SetOverloadFailure(
4173         IsListInit ? InitializationSequence::FK_ListConstructorOverloadFailed
4174                    : InitializationSequence::FK_ConstructorOverloadFailed,
4175         Result);
4176 
4177     if (Result != OR_Deleted)
4178       return;
4179   }
4180 
4181   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4182 
4183   // In C++17, ResolveConstructorOverload can select a conversion function
4184   // instead of a constructor.
4185   if (auto *CD = dyn_cast<CXXConversionDecl>(Best->Function)) {
4186     // Add the user-defined conversion step that calls the conversion function.
4187     QualType ConvType = CD->getConversionType();
4188     assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) &&
4189            "should not have selected this conversion function");
4190     Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType,
4191                                    HadMultipleCandidates);
4192     if (!S.Context.hasSameType(ConvType, DestType))
4193       Sequence.AddQualificationConversionStep(DestType, VK_PRValue);
4194     if (IsListInit)
4195       Sequence.RewrapReferenceInitList(Entity.getType(), ILE);
4196     return;
4197   }
4198 
4199   CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
4200   if (Result != OR_Deleted) {
4201     // C++11 [dcl.init]p6:
4202     //   If a program calls for the default initialization of an object
4203     //   of a const-qualified type T, T shall be a class type with a
4204     //   user-provided default constructor.
4205     // C++ core issue 253 proposal:
4206     //   If the implicit default constructor initializes all subobjects, no
4207     //   initializer should be required.
4208     // The 253 proposal is for example needed to process libstdc++ headers
4209     // in 5.x.
4210     if (Kind.getKind() == InitializationKind::IK_Default &&
4211         Entity.getType().isConstQualified()) {
4212       if (!CtorDecl->getParent()->allowConstDefaultInit()) {
4213         if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
4214           Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
4215         return;
4216       }
4217     }
4218 
4219     // C++11 [over.match.list]p1:
4220     //   In copy-list-initialization, if an explicit constructor is chosen, the
4221     //   initializer is ill-formed.
4222     if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
4223       Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
4224       return;
4225     }
4226   }
4227 
4228   // [class.copy.elision]p3:
4229   // In some copy-initialization contexts, a two-stage overload resolution
4230   // is performed.
4231   // If the first overload resolution selects a deleted function, we also
4232   // need the initialization sequence to decide whether to perform the second
4233   // overload resolution.
4234   // For deleted functions in other contexts, there is no need to get the
4235   // initialization sequence.
4236   if (Result == OR_Deleted && Kind.getKind() != InitializationKind::IK_Copy)
4237     return;
4238 
4239   // Add the constructor initialization step. Any cv-qualification conversion is
4240   // subsumed by the initialization.
4241   Sequence.AddConstructorInitializationStep(
4242       Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates,
4243       IsListInit | IsInitListCopy, AsInitializerList);
4244 }
4245 
4246 static bool
4247 ResolveOverloadedFunctionForReferenceBinding(Sema &S,
4248                                              Expr *Initializer,
4249                                              QualType &SourceType,
4250                                              QualType &UnqualifiedSourceType,
4251                                              QualType UnqualifiedTargetType,
4252                                              InitializationSequence &Sequence) {
4253   if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
4254         S.Context.OverloadTy) {
4255     DeclAccessPair Found;
4256     bool HadMultipleCandidates = false;
4257     if (FunctionDecl *Fn
4258         = S.ResolveAddressOfOverloadedFunction(Initializer,
4259                                                UnqualifiedTargetType,
4260                                                false, Found,
4261                                                &HadMultipleCandidates)) {
4262       Sequence.AddAddressOverloadResolutionStep(Fn, Found,
4263                                                 HadMultipleCandidates);
4264       SourceType = Fn->getType();
4265       UnqualifiedSourceType = SourceType.getUnqualifiedType();
4266     } else if (!UnqualifiedTargetType->isRecordType()) {
4267       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4268       return true;
4269     }
4270   }
4271   return false;
4272 }
4273 
4274 static void TryReferenceInitializationCore(Sema &S,
4275                                            const InitializedEntity &Entity,
4276                                            const InitializationKind &Kind,
4277                                            Expr *Initializer,
4278                                            QualType cv1T1, QualType T1,
4279                                            Qualifiers T1Quals,
4280                                            QualType cv2T2, QualType T2,
4281                                            Qualifiers T2Quals,
4282                                            InitializationSequence &Sequence);
4283 
4284 static void TryValueInitialization(Sema &S,
4285                                    const InitializedEntity &Entity,
4286                                    const InitializationKind &Kind,
4287                                    InitializationSequence &Sequence,
4288                                    InitListExpr *InitList = nullptr);
4289 
4290 /// Attempt list initialization of a reference.
4291 static void TryReferenceListInitialization(Sema &S,
4292                                            const InitializedEntity &Entity,
4293                                            const InitializationKind &Kind,
4294                                            InitListExpr *InitList,
4295                                            InitializationSequence &Sequence,
4296                                            bool TreatUnavailableAsInvalid) {
4297   // First, catch C++03 where this isn't possible.
4298   if (!S.getLangOpts().CPlusPlus11) {
4299     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
4300     return;
4301   }
4302   // Can't reference initialize a compound literal.
4303   if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) {
4304     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
4305     return;
4306   }
4307 
4308   QualType DestType = Entity.getType();
4309   QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
4310   Qualifiers T1Quals;
4311   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4312 
4313   // Reference initialization via an initializer list works thus:
4314   // If the initializer list consists of a single element that is
4315   // reference-related to the referenced type, bind directly to that element
4316   // (possibly creating temporaries).
4317   // Otherwise, initialize a temporary with the initializer list and
4318   // bind to that.
4319   if (InitList->getNumInits() == 1) {
4320     Expr *Initializer = InitList->getInit(0);
4321     QualType cv2T2 = S.getCompletedType(Initializer);
4322     Qualifiers T2Quals;
4323     QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4324 
4325     // If this fails, creating a temporary wouldn't work either.
4326     if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4327                                                      T1, Sequence))
4328       return;
4329 
4330     SourceLocation DeclLoc = Initializer->getBeginLoc();
4331     Sema::ReferenceCompareResult RefRelationship
4332       = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2);
4333     if (RefRelationship >= Sema::Ref_Related) {
4334       // Try to bind the reference here.
4335       TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4336                                      T1Quals, cv2T2, T2, T2Quals, Sequence);
4337       if (Sequence)
4338         Sequence.RewrapReferenceInitList(cv1T1, InitList);
4339       return;
4340     }
4341 
4342     // Update the initializer if we've resolved an overloaded function.
4343     if (Sequence.step_begin() != Sequence.step_end())
4344       Sequence.RewrapReferenceInitList(cv1T1, InitList);
4345   }
4346   // Perform address space compatibility check.
4347   QualType cv1T1IgnoreAS = cv1T1;
4348   if (T1Quals.hasAddressSpace()) {
4349     Qualifiers T2Quals;
4350     (void)S.Context.getUnqualifiedArrayType(InitList->getType(), T2Quals);
4351     if (!T1Quals.isAddressSpaceSupersetOf(T2Quals)) {
4352       Sequence.SetFailed(
4353           InitializationSequence::FK_ReferenceInitDropsQualifiers);
4354       return;
4355     }
4356     // Ignore address space of reference type at this point and perform address
4357     // space conversion after the reference binding step.
4358     cv1T1IgnoreAS =
4359         S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace());
4360   }
4361   // Not reference-related. Create a temporary and bind to that.
4362   InitializedEntity TempEntity =
4363       InitializedEntity::InitializeTemporary(cv1T1IgnoreAS);
4364 
4365   TryListInitialization(S, TempEntity, Kind, InitList, Sequence,
4366                         TreatUnavailableAsInvalid);
4367   if (Sequence) {
4368     if (DestType->isRValueReferenceType() ||
4369         (T1Quals.hasConst() && !T1Quals.hasVolatile())) {
4370       Sequence.AddReferenceBindingStep(cv1T1IgnoreAS,
4371                                        /*BindingTemporary=*/true);
4372       if (T1Quals.hasAddressSpace())
4373         Sequence.AddQualificationConversionStep(
4374             cv1T1, DestType->isRValueReferenceType() ? VK_XValue : VK_LValue);
4375     } else
4376       Sequence.SetFailed(
4377           InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
4378   }
4379 }
4380 
4381 /// Attempt list initialization (C++0x [dcl.init.list])
4382 static void TryListInitialization(Sema &S,
4383                                   const InitializedEntity &Entity,
4384                                   const InitializationKind &Kind,
4385                                   InitListExpr *InitList,
4386                                   InitializationSequence &Sequence,
4387                                   bool TreatUnavailableAsInvalid) {
4388   QualType DestType = Entity.getType();
4389 
4390   // C++ doesn't allow scalar initialization with more than one argument.
4391   // But C99 complex numbers are scalars and it makes sense there.
4392   if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
4393       !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
4394     Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
4395     return;
4396   }
4397   if (DestType->isReferenceType()) {
4398     TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence,
4399                                    TreatUnavailableAsInvalid);
4400     return;
4401   }
4402 
4403   if (DestType->isRecordType() &&
4404       !S.isCompleteType(InitList->getBeginLoc(), DestType)) {
4405     Sequence.setIncompleteTypeFailure(DestType);
4406     return;
4407   }
4408 
4409   // C++11 [dcl.init.list]p3, per DR1467:
4410   // - If T is a class type and the initializer list has a single element of
4411   //   type cv U, where U is T or a class derived from T, the object is
4412   //   initialized from that element (by copy-initialization for
4413   //   copy-list-initialization, or by direct-initialization for
4414   //   direct-list-initialization).
4415   // - Otherwise, if T is a character array and the initializer list has a
4416   //   single element that is an appropriately-typed string literal
4417   //   (8.5.2 [dcl.init.string]), initialization is performed as described
4418   //   in that section.
4419   // - Otherwise, if T is an aggregate, [...] (continue below).
4420   if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) {
4421     if (DestType->isRecordType()) {
4422       QualType InitType = InitList->getInit(0)->getType();
4423       if (S.Context.hasSameUnqualifiedType(InitType, DestType) ||
4424           S.IsDerivedFrom(InitList->getBeginLoc(), InitType, DestType)) {
4425         Expr *InitListAsExpr = InitList;
4426         TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4427                                      DestType, Sequence,
4428                                      /*InitListSyntax*/false,
4429                                      /*IsInitListCopy*/true);
4430         return;
4431       }
4432     }
4433     if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) {
4434       Expr *SubInit[1] = {InitList->getInit(0)};
4435       if (!isa<VariableArrayType>(DestAT) &&
4436           IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) {
4437         InitializationKind SubKind =
4438             Kind.getKind() == InitializationKind::IK_DirectList
4439                 ? InitializationKind::CreateDirect(Kind.getLocation(),
4440                                                    InitList->getLBraceLoc(),
4441                                                    InitList->getRBraceLoc())
4442                 : Kind;
4443         Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4444                                 /*TopLevelOfInitList*/ true,
4445                                 TreatUnavailableAsInvalid);
4446 
4447         // TryStringLiteralInitialization() (in InitializeFrom()) will fail if
4448         // the element is not an appropriately-typed string literal, in which
4449         // case we should proceed as in C++11 (below).
4450         if (Sequence) {
4451           Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4452           return;
4453         }
4454       }
4455     }
4456   }
4457 
4458   // C++11 [dcl.init.list]p3:
4459   //   - If T is an aggregate, aggregate initialization is performed.
4460   if ((DestType->isRecordType() && !DestType->isAggregateType()) ||
4461       (S.getLangOpts().CPlusPlus11 &&
4462        S.isStdInitializerList(DestType, nullptr))) {
4463     if (S.getLangOpts().CPlusPlus11) {
4464       //   - Otherwise, if the initializer list has no elements and T is a
4465       //     class type with a default constructor, the object is
4466       //     value-initialized.
4467       if (InitList->getNumInits() == 0) {
4468         CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
4469         if (S.LookupDefaultConstructor(RD)) {
4470           TryValueInitialization(S, Entity, Kind, Sequence, InitList);
4471           return;
4472         }
4473       }
4474 
4475       //   - Otherwise, if T is a specialization of std::initializer_list<E>,
4476       //     an initializer_list object constructed [...]
4477       if (TryInitializerListConstruction(S, InitList, DestType, Sequence,
4478                                          TreatUnavailableAsInvalid))
4479         return;
4480 
4481       //   - Otherwise, if T is a class type, constructors are considered.
4482       Expr *InitListAsExpr = InitList;
4483       TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4484                                    DestType, Sequence, /*InitListSyntax*/true);
4485     } else
4486       Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
4487     return;
4488   }
4489 
4490   if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() &&
4491       InitList->getNumInits() == 1) {
4492     Expr *E = InitList->getInit(0);
4493 
4494     //   - Otherwise, if T is an enumeration with a fixed underlying type,
4495     //     the initializer-list has a single element v, and the initialization
4496     //     is direct-list-initialization, the object is initialized with the
4497     //     value T(v); if a narrowing conversion is required to convert v to
4498     //     the underlying type of T, the program is ill-formed.
4499     auto *ET = DestType->getAs<EnumType>();
4500     if (S.getLangOpts().CPlusPlus17 &&
4501         Kind.getKind() == InitializationKind::IK_DirectList &&
4502         ET && ET->getDecl()->isFixed() &&
4503         !S.Context.hasSameUnqualifiedType(E->getType(), DestType) &&
4504         (E->getType()->isIntegralOrEnumerationType() ||
4505          E->getType()->isFloatingType())) {
4506       // There are two ways that T(v) can work when T is an enumeration type.
4507       // If there is either an implicit conversion sequence from v to T or
4508       // a conversion function that can convert from v to T, then we use that.
4509       // Otherwise, if v is of integral, enumeration, or floating-point type,
4510       // it is converted to the enumeration type via its underlying type.
4511       // There is no overlap possible between these two cases (except when the
4512       // source value is already of the destination type), and the first
4513       // case is handled by the general case for single-element lists below.
4514       ImplicitConversionSequence ICS;
4515       ICS.setStandard();
4516       ICS.Standard.setAsIdentityConversion();
4517       if (!E->isPRValue())
4518         ICS.Standard.First = ICK_Lvalue_To_Rvalue;
4519       // If E is of a floating-point type, then the conversion is ill-formed
4520       // due to narrowing, but go through the motions in order to produce the
4521       // right diagnostic.
4522       ICS.Standard.Second = E->getType()->isFloatingType()
4523                                 ? ICK_Floating_Integral
4524                                 : ICK_Integral_Conversion;
4525       ICS.Standard.setFromType(E->getType());
4526       ICS.Standard.setToType(0, E->getType());
4527       ICS.Standard.setToType(1, DestType);
4528       ICS.Standard.setToType(2, DestType);
4529       Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2),
4530                                          /*TopLevelOfInitList*/true);
4531       Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4532       return;
4533     }
4534 
4535     //   - Otherwise, if the initializer list has a single element of type E
4536     //     [...references are handled above...], the object or reference is
4537     //     initialized from that element (by copy-initialization for
4538     //     copy-list-initialization, or by direct-initialization for
4539     //     direct-list-initialization); if a narrowing conversion is required
4540     //     to convert the element to T, the program is ill-formed.
4541     //
4542     // Per core-24034, this is direct-initialization if we were performing
4543     // direct-list-initialization and copy-initialization otherwise.
4544     // We can't use InitListChecker for this, because it always performs
4545     // copy-initialization. This only matters if we might use an 'explicit'
4546     // conversion operator, or for the special case conversion of nullptr_t to
4547     // bool, so we only need to handle those cases.
4548     //
4549     // FIXME: Why not do this in all cases?
4550     Expr *Init = InitList->getInit(0);
4551     if (Init->getType()->isRecordType() ||
4552         (Init->getType()->isNullPtrType() && DestType->isBooleanType())) {
4553       InitializationKind SubKind =
4554           Kind.getKind() == InitializationKind::IK_DirectList
4555               ? InitializationKind::CreateDirect(Kind.getLocation(),
4556                                                  InitList->getLBraceLoc(),
4557                                                  InitList->getRBraceLoc())
4558               : Kind;
4559       Expr *SubInit[1] = { Init };
4560       Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4561                               /*TopLevelOfInitList*/true,
4562                               TreatUnavailableAsInvalid);
4563       if (Sequence)
4564         Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4565       return;
4566     }
4567   }
4568 
4569   InitListChecker CheckInitList(S, Entity, InitList,
4570           DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid);
4571   if (CheckInitList.HadError()) {
4572     Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
4573     return;
4574   }
4575 
4576   // Add the list initialization step with the built init list.
4577   Sequence.AddListInitializationStep(DestType);
4578 }
4579 
4580 /// Try a reference initialization that involves calling a conversion
4581 /// function.
4582 static OverloadingResult TryRefInitWithConversionFunction(
4583     Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind,
4584     Expr *Initializer, bool AllowRValues, bool IsLValueRef,
4585     InitializationSequence &Sequence) {
4586   QualType DestType = Entity.getType();
4587   QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
4588   QualType T1 = cv1T1.getUnqualifiedType();
4589   QualType cv2T2 = Initializer->getType();
4590   QualType T2 = cv2T2.getUnqualifiedType();
4591 
4592   assert(!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2) &&
4593          "Must have incompatible references when binding via conversion");
4594 
4595   // Build the candidate set directly in the initialization sequence
4596   // structure, so that it will persist if we fail.
4597   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4598   CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4599 
4600   // Determine whether we are allowed to call explicit conversion operators.
4601   // Note that none of [over.match.copy], [over.match.conv], nor
4602   // [over.match.ref] permit an explicit constructor to be chosen when
4603   // initializing a reference, not even for direct-initialization.
4604   bool AllowExplicitCtors = false;
4605   bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding();
4606 
4607   const RecordType *T1RecordType = nullptr;
4608   if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
4609       S.isCompleteType(Kind.getLocation(), T1)) {
4610     // The type we're converting to is a class type. Enumerate its constructors
4611     // to see if there is a suitable conversion.
4612     CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
4613 
4614     for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) {
4615       auto Info = getConstructorInfo(D);
4616       if (!Info.Constructor)
4617         continue;
4618 
4619       if (!Info.Constructor->isInvalidDecl() &&
4620           Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) {
4621         if (Info.ConstructorTmpl)
4622           S.AddTemplateOverloadCandidate(
4623               Info.ConstructorTmpl, Info.FoundDecl,
4624               /*ExplicitArgs*/ nullptr, Initializer, CandidateSet,
4625               /*SuppressUserConversions=*/true,
4626               /*PartialOverloading*/ false, AllowExplicitCtors);
4627         else
4628           S.AddOverloadCandidate(
4629               Info.Constructor, Info.FoundDecl, Initializer, CandidateSet,
4630               /*SuppressUserConversions=*/true,
4631               /*PartialOverloading*/ false, AllowExplicitCtors);
4632       }
4633     }
4634   }
4635   if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
4636     return OR_No_Viable_Function;
4637 
4638   const RecordType *T2RecordType = nullptr;
4639   if ((T2RecordType = T2->getAs<RecordType>()) &&
4640       S.isCompleteType(Kind.getLocation(), T2)) {
4641     // The type we're converting from is a class type, enumerate its conversion
4642     // functions.
4643     CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
4644 
4645     const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4646     for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4647       NamedDecl *D = *I;
4648       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4649       if (isa<UsingShadowDecl>(D))
4650         D = cast<UsingShadowDecl>(D)->getTargetDecl();
4651 
4652       FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4653       CXXConversionDecl *Conv;
4654       if (ConvTemplate)
4655         Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4656       else
4657         Conv = cast<CXXConversionDecl>(D);
4658 
4659       // If the conversion function doesn't return a reference type,
4660       // it can't be considered for this conversion unless we're allowed to
4661       // consider rvalues.
4662       // FIXME: Do we need to make sure that we only consider conversion
4663       // candidates with reference-compatible results? That might be needed to
4664       // break recursion.
4665       if ((AllowRValues ||
4666            Conv->getConversionType()->isLValueReferenceType())) {
4667         if (ConvTemplate)
4668           S.AddTemplateConversionCandidate(
4669               ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
4670               CandidateSet,
4671               /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs);
4672         else
4673           S.AddConversionCandidate(
4674               Conv, I.getPair(), ActingDC, Initializer, DestType, CandidateSet,
4675               /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs);
4676       }
4677     }
4678   }
4679   if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
4680     return OR_No_Viable_Function;
4681 
4682   SourceLocation DeclLoc = Initializer->getBeginLoc();
4683 
4684   // Perform overload resolution. If it fails, return the failed result.
4685   OverloadCandidateSet::iterator Best;
4686   if (OverloadingResult Result
4687         = CandidateSet.BestViableFunction(S, DeclLoc, Best))
4688     return Result;
4689 
4690   FunctionDecl *Function = Best->Function;
4691   // This is the overload that will be used for this initialization step if we
4692   // use this initialization. Mark it as referenced.
4693   Function->setReferenced();
4694 
4695   // Compute the returned type and value kind of the conversion.
4696   QualType cv3T3;
4697   if (isa<CXXConversionDecl>(Function))
4698     cv3T3 = Function->getReturnType();
4699   else
4700     cv3T3 = T1;
4701 
4702   ExprValueKind VK = VK_PRValue;
4703   if (cv3T3->isLValueReferenceType())
4704     VK = VK_LValue;
4705   else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>())
4706     VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
4707   cv3T3 = cv3T3.getNonLValueExprType(S.Context);
4708 
4709   // Add the user-defined conversion step.
4710   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4711   Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3,
4712                                  HadMultipleCandidates);
4713 
4714   // Determine whether we'll need to perform derived-to-base adjustments or
4715   // other conversions.
4716   Sema::ReferenceConversions RefConv;
4717   Sema::ReferenceCompareResult NewRefRelationship =
4718       S.CompareReferenceRelationship(DeclLoc, T1, cv3T3, &RefConv);
4719 
4720   // Add the final conversion sequence, if necessary.
4721   if (NewRefRelationship == Sema::Ref_Incompatible) {
4722     assert(!isa<CXXConstructorDecl>(Function) &&
4723            "should not have conversion after constructor");
4724 
4725     ImplicitConversionSequence ICS;
4726     ICS.setStandard();
4727     ICS.Standard = Best->FinalConversion;
4728     Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2));
4729 
4730     // Every implicit conversion results in a prvalue, except for a glvalue
4731     // derived-to-base conversion, which we handle below.
4732     cv3T3 = ICS.Standard.getToType(2);
4733     VK = VK_PRValue;
4734   }
4735 
4736   //   If the converted initializer is a prvalue, its type T4 is adjusted to
4737   //   type "cv1 T4" and the temporary materialization conversion is applied.
4738   //
4739   // We adjust the cv-qualifications to match the reference regardless of
4740   // whether we have a prvalue so that the AST records the change. In this
4741   // case, T4 is "cv3 T3".
4742   QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers());
4743   if (cv1T4.getQualifiers() != cv3T3.getQualifiers())
4744     Sequence.AddQualificationConversionStep(cv1T4, VK);
4745   Sequence.AddReferenceBindingStep(cv1T4, VK == VK_PRValue);
4746   VK = IsLValueRef ? VK_LValue : VK_XValue;
4747 
4748   if (RefConv & Sema::ReferenceConversions::DerivedToBase)
4749     Sequence.AddDerivedToBaseCastStep(cv1T1, VK);
4750   else if (RefConv & Sema::ReferenceConversions::ObjC)
4751     Sequence.AddObjCObjectConversionStep(cv1T1);
4752   else if (RefConv & Sema::ReferenceConversions::Function)
4753     Sequence.AddFunctionReferenceConversionStep(cv1T1);
4754   else if (RefConv & Sema::ReferenceConversions::Qualification) {
4755     if (!S.Context.hasSameType(cv1T4, cv1T1))
4756       Sequence.AddQualificationConversionStep(cv1T1, VK);
4757   }
4758 
4759   return OR_Success;
4760 }
4761 
4762 static void CheckCXX98CompatAccessibleCopy(Sema &S,
4763                                            const InitializedEntity &Entity,
4764                                            Expr *CurInitExpr);
4765 
4766 /// Attempt reference initialization (C++0x [dcl.init.ref])
4767 static void TryReferenceInitialization(Sema &S,
4768                                        const InitializedEntity &Entity,
4769                                        const InitializationKind &Kind,
4770                                        Expr *Initializer,
4771                                        InitializationSequence &Sequence) {
4772   QualType DestType = Entity.getType();
4773   QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
4774   Qualifiers T1Quals;
4775   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4776   QualType cv2T2 = S.getCompletedType(Initializer);
4777   Qualifiers T2Quals;
4778   QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4779 
4780   // If the initializer is the address of an overloaded function, try
4781   // to resolve the overloaded function. If all goes well, T2 is the
4782   // type of the resulting function.
4783   if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4784                                                    T1, Sequence))
4785     return;
4786 
4787   // Delegate everything else to a subfunction.
4788   TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4789                                  T1Quals, cv2T2, T2, T2Quals, Sequence);
4790 }
4791 
4792 /// Determine whether an expression is a non-referenceable glvalue (one to
4793 /// which a reference can never bind). Attempting to bind a reference to
4794 /// such a glvalue will always create a temporary.
4795 static bool isNonReferenceableGLValue(Expr *E) {
4796   return E->refersToBitField() || E->refersToVectorElement() ||
4797          E->refersToMatrixElement();
4798 }
4799 
4800 /// Reference initialization without resolving overloaded functions.
4801 ///
4802 /// We also can get here in C if we call a builtin which is declared as
4803 /// a function with a parameter of reference type (such as __builtin_va_end()).
4804 static void TryReferenceInitializationCore(Sema &S,
4805                                            const InitializedEntity &Entity,
4806                                            const InitializationKind &Kind,
4807                                            Expr *Initializer,
4808                                            QualType cv1T1, QualType T1,
4809                                            Qualifiers T1Quals,
4810                                            QualType cv2T2, QualType T2,
4811                                            Qualifiers T2Quals,
4812                                            InitializationSequence &Sequence) {
4813   QualType DestType = Entity.getType();
4814   SourceLocation DeclLoc = Initializer->getBeginLoc();
4815 
4816   // Compute some basic properties of the types and the initializer.
4817   bool isLValueRef = DestType->isLValueReferenceType();
4818   bool isRValueRef = !isLValueRef;
4819   Expr::Classification InitCategory = Initializer->Classify(S.Context);
4820 
4821   Sema::ReferenceConversions RefConv;
4822   Sema::ReferenceCompareResult RefRelationship =
4823       S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, &RefConv);
4824 
4825   // C++0x [dcl.init.ref]p5:
4826   //   A reference to type "cv1 T1" is initialized by an expression of type
4827   //   "cv2 T2" as follows:
4828   //
4829   //     - If the reference is an lvalue reference and the initializer
4830   //       expression
4831   // Note the analogous bullet points for rvalue refs to functions. Because
4832   // there are no function rvalues in C++, rvalue refs to functions are treated
4833   // like lvalue refs.
4834   OverloadingResult ConvOvlResult = OR_Success;
4835   bool T1Function = T1->isFunctionType();
4836   if (isLValueRef || T1Function) {
4837     if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) &&
4838         (RefRelationship == Sema::Ref_Compatible ||
4839          (Kind.isCStyleOrFunctionalCast() &&
4840           RefRelationship == Sema::Ref_Related))) {
4841       //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
4842       //     reference-compatible with "cv2 T2," or
4843       if (RefConv & (Sema::ReferenceConversions::DerivedToBase |
4844                      Sema::ReferenceConversions::ObjC)) {
4845         // If we're converting the pointee, add any qualifiers first;
4846         // these qualifiers must all be top-level, so just convert to "cv1 T2".
4847         if (RefConv & (Sema::ReferenceConversions::Qualification))
4848           Sequence.AddQualificationConversionStep(
4849               S.Context.getQualifiedType(T2, T1Quals),
4850               Initializer->getValueKind());
4851         if (RefConv & Sema::ReferenceConversions::DerivedToBase)
4852           Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue);
4853         else
4854           Sequence.AddObjCObjectConversionStep(cv1T1);
4855       } else if (RefConv & Sema::ReferenceConversions::Qualification) {
4856         // Perform a (possibly multi-level) qualification conversion.
4857         Sequence.AddQualificationConversionStep(cv1T1,
4858                                                 Initializer->getValueKind());
4859       } else if (RefConv & Sema::ReferenceConversions::Function) {
4860         Sequence.AddFunctionReferenceConversionStep(cv1T1);
4861       }
4862 
4863       // We only create a temporary here when binding a reference to a
4864       // bit-field or vector element. Those cases are't supposed to be
4865       // handled by this bullet, but the outcome is the same either way.
4866       Sequence.AddReferenceBindingStep(cv1T1, false);
4867       return;
4868     }
4869 
4870     //     - has a class type (i.e., T2 is a class type), where T1 is not
4871     //       reference-related to T2, and can be implicitly converted to an
4872     //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
4873     //       with "cv3 T3" (this conversion is selected by enumerating the
4874     //       applicable conversion functions (13.3.1.6) and choosing the best
4875     //       one through overload resolution (13.3)),
4876     // If we have an rvalue ref to function type here, the rhs must be
4877     // an rvalue. DR1287 removed the "implicitly" here.
4878     if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
4879         (isLValueRef || InitCategory.isRValue())) {
4880       if (S.getLangOpts().CPlusPlus) {
4881         // Try conversion functions only for C++.
4882         ConvOvlResult = TryRefInitWithConversionFunction(
4883             S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef,
4884             /*IsLValueRef*/ isLValueRef, Sequence);
4885         if (ConvOvlResult == OR_Success)
4886           return;
4887         if (ConvOvlResult != OR_No_Viable_Function)
4888           Sequence.SetOverloadFailure(
4889               InitializationSequence::FK_ReferenceInitOverloadFailed,
4890               ConvOvlResult);
4891       } else {
4892         ConvOvlResult = OR_No_Viable_Function;
4893       }
4894     }
4895   }
4896 
4897   //     - Otherwise, the reference shall be an lvalue reference to a
4898   //       non-volatile const type (i.e., cv1 shall be const), or the reference
4899   //       shall be an rvalue reference.
4900   //       For address spaces, we interpret this to mean that an addr space
4901   //       of a reference "cv1 T1" is a superset of addr space of "cv2 T2".
4902   if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile() &&
4903                        T1Quals.isAddressSpaceSupersetOf(T2Quals))) {
4904     if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4905       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4906     else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4907       Sequence.SetOverloadFailure(
4908                         InitializationSequence::FK_ReferenceInitOverloadFailed,
4909                                   ConvOvlResult);
4910     else if (!InitCategory.isLValue())
4911       Sequence.SetFailed(
4912           T1Quals.isAddressSpaceSupersetOf(T2Quals)
4913               ? InitializationSequence::
4914                     FK_NonConstLValueReferenceBindingToTemporary
4915               : InitializationSequence::FK_ReferenceInitDropsQualifiers);
4916     else {
4917       InitializationSequence::FailureKind FK;
4918       switch (RefRelationship) {
4919       case Sema::Ref_Compatible:
4920         if (Initializer->refersToBitField())
4921           FK = InitializationSequence::
4922               FK_NonConstLValueReferenceBindingToBitfield;
4923         else if (Initializer->refersToVectorElement())
4924           FK = InitializationSequence::
4925               FK_NonConstLValueReferenceBindingToVectorElement;
4926         else if (Initializer->refersToMatrixElement())
4927           FK = InitializationSequence::
4928               FK_NonConstLValueReferenceBindingToMatrixElement;
4929         else
4930           llvm_unreachable("unexpected kind of compatible initializer");
4931         break;
4932       case Sema::Ref_Related:
4933         FK = InitializationSequence::FK_ReferenceInitDropsQualifiers;
4934         break;
4935       case Sema::Ref_Incompatible:
4936         FK = InitializationSequence::
4937             FK_NonConstLValueReferenceBindingToUnrelated;
4938         break;
4939       }
4940       Sequence.SetFailed(FK);
4941     }
4942     return;
4943   }
4944 
4945   //    - If the initializer expression
4946   //      - is an
4947   // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or
4948   // [1z]   rvalue (but not a bit-field) or
4949   //        function lvalue and "cv1 T1" is reference-compatible with "cv2 T2"
4950   //
4951   // Note: functions are handled above and below rather than here...
4952   if (!T1Function &&
4953       (RefRelationship == Sema::Ref_Compatible ||
4954        (Kind.isCStyleOrFunctionalCast() &&
4955         RefRelationship == Sema::Ref_Related)) &&
4956       ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) ||
4957        (InitCategory.isPRValue() &&
4958         (S.getLangOpts().CPlusPlus17 || T2->isRecordType() ||
4959          T2->isArrayType())))) {
4960     ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_PRValue;
4961     if (InitCategory.isPRValue() && T2->isRecordType()) {
4962       // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
4963       // compiler the freedom to perform a copy here or bind to the
4964       // object, while C++0x requires that we bind directly to the
4965       // object. Hence, we always bind to the object without making an
4966       // extra copy. However, in C++03 requires that we check for the
4967       // presence of a suitable copy constructor:
4968       //
4969       //   The constructor that would be used to make the copy shall
4970       //   be callable whether or not the copy is actually done.
4971       if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
4972         Sequence.AddExtraneousCopyToTemporary(cv2T2);
4973       else if (S.getLangOpts().CPlusPlus11)
4974         CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
4975     }
4976 
4977     // C++1z [dcl.init.ref]/5.2.1.2:
4978     //   If the converted initializer is a prvalue, its type T4 is adjusted
4979     //   to type "cv1 T4" and the temporary materialization conversion is
4980     //   applied.
4981     // Postpone address space conversions to after the temporary materialization
4982     // conversion to allow creating temporaries in the alloca address space.
4983     auto T1QualsIgnoreAS = T1Quals;
4984     auto T2QualsIgnoreAS = T2Quals;
4985     if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) {
4986       T1QualsIgnoreAS.removeAddressSpace();
4987       T2QualsIgnoreAS.removeAddressSpace();
4988     }
4989     QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1QualsIgnoreAS);
4990     if (T1QualsIgnoreAS != T2QualsIgnoreAS)
4991       Sequence.AddQualificationConversionStep(cv1T4, ValueKind);
4992     Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_PRValue);
4993     ValueKind = isLValueRef ? VK_LValue : VK_XValue;
4994     // Add addr space conversion if required.
4995     if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) {
4996       auto T4Quals = cv1T4.getQualifiers();
4997       T4Quals.addAddressSpace(T1Quals.getAddressSpace());
4998       QualType cv1T4WithAS = S.Context.getQualifiedType(T2, T4Quals);
4999       Sequence.AddQualificationConversionStep(cv1T4WithAS, ValueKind);
5000       cv1T4 = cv1T4WithAS;
5001     }
5002 
5003     //   In any case, the reference is bound to the resulting glvalue (or to
5004     //   an appropriate base class subobject).
5005     if (RefConv & Sema::ReferenceConversions::DerivedToBase)
5006       Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind);
5007     else if (RefConv & Sema::ReferenceConversions::ObjC)
5008       Sequence.AddObjCObjectConversionStep(cv1T1);
5009     else if (RefConv & Sema::ReferenceConversions::Qualification) {
5010       if (!S.Context.hasSameType(cv1T4, cv1T1))
5011         Sequence.AddQualificationConversionStep(cv1T1, ValueKind);
5012     }
5013     return;
5014   }
5015 
5016   //       - has a class type (i.e., T2 is a class type), where T1 is not
5017   //         reference-related to T2, and can be implicitly converted to an
5018   //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
5019   //         where "cv1 T1" is reference-compatible with "cv3 T3",
5020   //
5021   // DR1287 removes the "implicitly" here.
5022   if (T2->isRecordType()) {
5023     if (RefRelationship == Sema::Ref_Incompatible) {
5024       ConvOvlResult = TryRefInitWithConversionFunction(
5025           S, Entity, Kind, Initializer, /*AllowRValues*/ true,
5026           /*IsLValueRef*/ isLValueRef, Sequence);
5027       if (ConvOvlResult)
5028         Sequence.SetOverloadFailure(
5029             InitializationSequence::FK_ReferenceInitOverloadFailed,
5030             ConvOvlResult);
5031 
5032       return;
5033     }
5034 
5035     if (RefRelationship == Sema::Ref_Compatible &&
5036         isRValueRef && InitCategory.isLValue()) {
5037       Sequence.SetFailed(
5038         InitializationSequence::FK_RValueReferenceBindingToLValue);
5039       return;
5040     }
5041 
5042     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
5043     return;
5044   }
5045 
5046   //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
5047   //        from the initializer expression using the rules for a non-reference
5048   //        copy-initialization (8.5). The reference is then bound to the
5049   //        temporary. [...]
5050 
5051   // Ignore address space of reference type at this point and perform address
5052   // space conversion after the reference binding step.
5053   QualType cv1T1IgnoreAS =
5054       T1Quals.hasAddressSpace()
5055           ? S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace())
5056           : cv1T1;
5057 
5058   InitializedEntity TempEntity =
5059       InitializedEntity::InitializeTemporary(cv1T1IgnoreAS);
5060 
5061   // FIXME: Why do we use an implicit conversion here rather than trying
5062   // copy-initialization?
5063   ImplicitConversionSequence ICS
5064     = S.TryImplicitConversion(Initializer, TempEntity.getType(),
5065                               /*SuppressUserConversions=*/false,
5066                               Sema::AllowedExplicit::None,
5067                               /*FIXME:InOverloadResolution=*/false,
5068                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
5069                               /*AllowObjCWritebackConversion=*/false);
5070 
5071   if (ICS.isBad()) {
5072     // FIXME: Use the conversion function set stored in ICS to turn
5073     // this into an overloading ambiguity diagnostic. However, we need
5074     // to keep that set as an OverloadCandidateSet rather than as some
5075     // other kind of set.
5076     if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
5077       Sequence.SetOverloadFailure(
5078                         InitializationSequence::FK_ReferenceInitOverloadFailed,
5079                                   ConvOvlResult);
5080     else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
5081       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
5082     else
5083       Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
5084     return;
5085   } else {
5086     Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
5087   }
5088 
5089   //        [...] If T1 is reference-related to T2, cv1 must be the
5090   //        same cv-qualification as, or greater cv-qualification
5091   //        than, cv2; otherwise, the program is ill-formed.
5092   unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
5093   unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
5094   if (RefRelationship == Sema::Ref_Related &&
5095       ((T1CVRQuals | T2CVRQuals) != T1CVRQuals ||
5096        !T1Quals.isAddressSpaceSupersetOf(T2Quals))) {
5097     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
5098     return;
5099   }
5100 
5101   //   [...] If T1 is reference-related to T2 and the reference is an rvalue
5102   //   reference, the initializer expression shall not be an lvalue.
5103   if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
5104       InitCategory.isLValue()) {
5105     Sequence.SetFailed(
5106                     InitializationSequence::FK_RValueReferenceBindingToLValue);
5107     return;
5108   }
5109 
5110   Sequence.AddReferenceBindingStep(cv1T1IgnoreAS, /*BindingTemporary=*/true);
5111 
5112   if (T1Quals.hasAddressSpace()) {
5113     if (!Qualifiers::isAddressSpaceSupersetOf(T1Quals.getAddressSpace(),
5114                                               LangAS::Default)) {
5115       Sequence.SetFailed(
5116           InitializationSequence::FK_ReferenceAddrspaceMismatchTemporary);
5117       return;
5118     }
5119     Sequence.AddQualificationConversionStep(cv1T1, isLValueRef ? VK_LValue
5120                                                                : VK_XValue);
5121   }
5122 }
5123 
5124 /// Attempt character array initialization from a string literal
5125 /// (C++ [dcl.init.string], C99 6.7.8).
5126 static void TryStringLiteralInitialization(Sema &S,
5127                                            const InitializedEntity &Entity,
5128                                            const InitializationKind &Kind,
5129                                            Expr *Initializer,
5130                                        InitializationSequence &Sequence) {
5131   Sequence.AddStringInitStep(Entity.getType());
5132 }
5133 
5134 /// Attempt value initialization (C++ [dcl.init]p7).
5135 static void TryValueInitialization(Sema &S,
5136                                    const InitializedEntity &Entity,
5137                                    const InitializationKind &Kind,
5138                                    InitializationSequence &Sequence,
5139                                    InitListExpr *InitList) {
5140   assert((!InitList || InitList->getNumInits() == 0) &&
5141          "Shouldn't use value-init for non-empty init lists");
5142 
5143   // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
5144   //
5145   //   To value-initialize an object of type T means:
5146   QualType T = Entity.getType();
5147 
5148   //     -- if T is an array type, then each element is value-initialized;
5149   T = S.Context.getBaseElementType(T);
5150 
5151   if (const RecordType *RT = T->getAs<RecordType>()) {
5152     if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
5153       bool NeedZeroInitialization = true;
5154       // C++98:
5155       // -- if T is a class type (clause 9) with a user-declared constructor
5156       //    (12.1), then the default constructor for T is called (and the
5157       //    initialization is ill-formed if T has no accessible default
5158       //    constructor);
5159       // C++11:
5160       // -- if T is a class type (clause 9) with either no default constructor
5161       //    (12.1 [class.ctor]) or a default constructor that is user-provided
5162       //    or deleted, then the object is default-initialized;
5163       //
5164       // Note that the C++11 rule is the same as the C++98 rule if there are no
5165       // defaulted or deleted constructors, so we just use it unconditionally.
5166       CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
5167       if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
5168         NeedZeroInitialization = false;
5169 
5170       // -- if T is a (possibly cv-qualified) non-union class type without a
5171       //    user-provided or deleted default constructor, then the object is
5172       //    zero-initialized and, if T has a non-trivial default constructor,
5173       //    default-initialized;
5174       // The 'non-union' here was removed by DR1502. The 'non-trivial default
5175       // constructor' part was removed by DR1507.
5176       if (NeedZeroInitialization)
5177         Sequence.AddZeroInitializationStep(Entity.getType());
5178 
5179       // C++03:
5180       // -- if T is a non-union class type without a user-declared constructor,
5181       //    then every non-static data member and base class component of T is
5182       //    value-initialized;
5183       // [...] A program that calls for [...] value-initialization of an
5184       // entity of reference type is ill-formed.
5185       //
5186       // C++11 doesn't need this handling, because value-initialization does not
5187       // occur recursively there, and the implicit default constructor is
5188       // defined as deleted in the problematic cases.
5189       if (!S.getLangOpts().CPlusPlus11 &&
5190           ClassDecl->hasUninitializedReferenceMember()) {
5191         Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
5192         return;
5193       }
5194 
5195       // If this is list-value-initialization, pass the empty init list on when
5196       // building the constructor call. This affects the semantics of a few
5197       // things (such as whether an explicit default constructor can be called).
5198       Expr *InitListAsExpr = InitList;
5199       MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
5200       bool InitListSyntax = InitList;
5201 
5202       // FIXME: Instead of creating a CXXConstructExpr of array type here,
5203       // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr.
5204       return TryConstructorInitialization(
5205           S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax);
5206     }
5207   }
5208 
5209   Sequence.AddZeroInitializationStep(Entity.getType());
5210 }
5211 
5212 /// Attempt default initialization (C++ [dcl.init]p6).
5213 static void TryDefaultInitialization(Sema &S,
5214                                      const InitializedEntity &Entity,
5215                                      const InitializationKind &Kind,
5216                                      InitializationSequence &Sequence) {
5217   assert(Kind.getKind() == InitializationKind::IK_Default);
5218 
5219   // C++ [dcl.init]p6:
5220   //   To default-initialize an object of type T means:
5221   //     - if T is an array type, each element is default-initialized;
5222   QualType DestType = S.Context.getBaseElementType(Entity.getType());
5223 
5224   //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
5225   //       constructor for T is called (and the initialization is ill-formed if
5226   //       T has no accessible default constructor);
5227   if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
5228     TryConstructorInitialization(S, Entity, Kind, None, DestType,
5229                                  Entity.getType(), Sequence);
5230     return;
5231   }
5232 
5233   //     - otherwise, no initialization is performed.
5234 
5235   //   If a program calls for the default initialization of an object of
5236   //   a const-qualified type T, T shall be a class type with a user-provided
5237   //   default constructor.
5238   if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
5239     if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
5240       Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
5241     return;
5242   }
5243 
5244   // If the destination type has a lifetime property, zero-initialize it.
5245   if (DestType.getQualifiers().hasObjCLifetime()) {
5246     Sequence.AddZeroInitializationStep(Entity.getType());
5247     return;
5248   }
5249 }
5250 
5251 /// Attempt a user-defined conversion between two types (C++ [dcl.init]),
5252 /// which enumerates all conversion functions and performs overload resolution
5253 /// to select the best.
5254 static void TryUserDefinedConversion(Sema &S,
5255                                      QualType DestType,
5256                                      const InitializationKind &Kind,
5257                                      Expr *Initializer,
5258                                      InitializationSequence &Sequence,
5259                                      bool TopLevelOfInitList) {
5260   assert(!DestType->isReferenceType() && "References are handled elsewhere");
5261   QualType SourceType = Initializer->getType();
5262   assert((DestType->isRecordType() || SourceType->isRecordType()) &&
5263          "Must have a class type to perform a user-defined conversion");
5264 
5265   // Build the candidate set directly in the initialization sequence
5266   // structure, so that it will persist if we fail.
5267   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
5268   CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
5269   CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace());
5270 
5271   // Determine whether we are allowed to call explicit constructors or
5272   // explicit conversion operators.
5273   bool AllowExplicit = Kind.AllowExplicit();
5274 
5275   if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
5276     // The type we're converting to is a class type. Enumerate its constructors
5277     // to see if there is a suitable conversion.
5278     CXXRecordDecl *DestRecordDecl
5279       = cast<CXXRecordDecl>(DestRecordType->getDecl());
5280 
5281     // Try to complete the type we're converting to.
5282     if (S.isCompleteType(Kind.getLocation(), DestType)) {
5283       for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) {
5284         auto Info = getConstructorInfo(D);
5285         if (!Info.Constructor)
5286           continue;
5287 
5288         if (!Info.Constructor->isInvalidDecl() &&
5289             Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) {
5290           if (Info.ConstructorTmpl)
5291             S.AddTemplateOverloadCandidate(
5292                 Info.ConstructorTmpl, Info.FoundDecl,
5293                 /*ExplicitArgs*/ nullptr, Initializer, CandidateSet,
5294                 /*SuppressUserConversions=*/true,
5295                 /*PartialOverloading*/ false, AllowExplicit);
5296           else
5297             S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
5298                                    Initializer, CandidateSet,
5299                                    /*SuppressUserConversions=*/true,
5300                                    /*PartialOverloading*/ false, AllowExplicit);
5301         }
5302       }
5303     }
5304   }
5305 
5306   SourceLocation DeclLoc = Initializer->getBeginLoc();
5307 
5308   if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
5309     // The type we're converting from is a class type, enumerate its conversion
5310     // functions.
5311 
5312     // We can only enumerate the conversion functions for a complete type; if
5313     // the type isn't complete, simply skip this step.
5314     if (S.isCompleteType(DeclLoc, SourceType)) {
5315       CXXRecordDecl *SourceRecordDecl
5316         = cast<CXXRecordDecl>(SourceRecordType->getDecl());
5317 
5318       const auto &Conversions =
5319           SourceRecordDecl->getVisibleConversionFunctions();
5320       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
5321         NamedDecl *D = *I;
5322         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
5323         if (isa<UsingShadowDecl>(D))
5324           D = cast<UsingShadowDecl>(D)->getTargetDecl();
5325 
5326         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
5327         CXXConversionDecl *Conv;
5328         if (ConvTemplate)
5329           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5330         else
5331           Conv = cast<CXXConversionDecl>(D);
5332 
5333         if (ConvTemplate)
5334           S.AddTemplateConversionCandidate(
5335               ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
5336               CandidateSet, AllowExplicit, AllowExplicit);
5337         else
5338           S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer,
5339                                    DestType, CandidateSet, AllowExplicit,
5340                                    AllowExplicit);
5341       }
5342     }
5343   }
5344 
5345   // Perform overload resolution. If it fails, return the failed result.
5346   OverloadCandidateSet::iterator Best;
5347   if (OverloadingResult Result
5348         = CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
5349     Sequence.SetOverloadFailure(
5350         InitializationSequence::FK_UserConversionOverloadFailed, Result);
5351 
5352     // [class.copy.elision]p3:
5353     // In some copy-initialization contexts, a two-stage overload resolution
5354     // is performed.
5355     // If the first overload resolution selects a deleted function, we also
5356     // need the initialization sequence to decide whether to perform the second
5357     // overload resolution.
5358     if (!(Result == OR_Deleted &&
5359           Kind.getKind() == InitializationKind::IK_Copy))
5360       return;
5361   }
5362 
5363   FunctionDecl *Function = Best->Function;
5364   Function->setReferenced();
5365   bool HadMultipleCandidates = (CandidateSet.size() > 1);
5366 
5367   if (isa<CXXConstructorDecl>(Function)) {
5368     // Add the user-defined conversion step. Any cv-qualification conversion is
5369     // subsumed by the initialization. Per DR5, the created temporary is of the
5370     // cv-unqualified type of the destination.
5371     Sequence.AddUserConversionStep(Function, Best->FoundDecl,
5372                                    DestType.getUnqualifiedType(),
5373                                    HadMultipleCandidates);
5374 
5375     // C++14 and before:
5376     //   - if the function is a constructor, the call initializes a temporary
5377     //     of the cv-unqualified version of the destination type. The [...]
5378     //     temporary [...] is then used to direct-initialize, according to the
5379     //     rules above, the object that is the destination of the
5380     //     copy-initialization.
5381     // Note that this just performs a simple object copy from the temporary.
5382     //
5383     // C++17:
5384     //   - if the function is a constructor, the call is a prvalue of the
5385     //     cv-unqualified version of the destination type whose return object
5386     //     is initialized by the constructor. The call is used to
5387     //     direct-initialize, according to the rules above, the object that
5388     //     is the destination of the copy-initialization.
5389     // Therefore we need to do nothing further.
5390     //
5391     // FIXME: Mark this copy as extraneous.
5392     if (!S.getLangOpts().CPlusPlus17)
5393       Sequence.AddFinalCopy(DestType);
5394     else if (DestType.hasQualifiers())
5395       Sequence.AddQualificationConversionStep(DestType, VK_PRValue);
5396     return;
5397   }
5398 
5399   // Add the user-defined conversion step that calls the conversion function.
5400   QualType ConvType = Function->getCallResultType();
5401   Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
5402                                  HadMultipleCandidates);
5403 
5404   if (ConvType->getAs<RecordType>()) {
5405     //   The call is used to direct-initialize [...] the object that is the
5406     //   destination of the copy-initialization.
5407     //
5408     // In C++17, this does not call a constructor if we enter /17.6.1:
5409     //   - If the initializer expression is a prvalue and the cv-unqualified
5410     //     version of the source type is the same as the class of the
5411     //     destination [... do not make an extra copy]
5412     //
5413     // FIXME: Mark this copy as extraneous.
5414     if (!S.getLangOpts().CPlusPlus17 ||
5415         Function->getReturnType()->isReferenceType() ||
5416         !S.Context.hasSameUnqualifiedType(ConvType, DestType))
5417       Sequence.AddFinalCopy(DestType);
5418     else if (!S.Context.hasSameType(ConvType, DestType))
5419       Sequence.AddQualificationConversionStep(DestType, VK_PRValue);
5420     return;
5421   }
5422 
5423   // If the conversion following the call to the conversion function
5424   // is interesting, add it as a separate step.
5425   if (Best->FinalConversion.First || Best->FinalConversion.Second ||
5426       Best->FinalConversion.Third) {
5427     ImplicitConversionSequence ICS;
5428     ICS.setStandard();
5429     ICS.Standard = Best->FinalConversion;
5430     Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5431   }
5432 }
5433 
5434 /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>,
5435 /// a function with a pointer return type contains a 'return false;' statement.
5436 /// In C++11, 'false' is not a null pointer, so this breaks the build of any
5437 /// code using that header.
5438 ///
5439 /// Work around this by treating 'return false;' as zero-initializing the result
5440 /// if it's used in a pointer-returning function in a system header.
5441 static bool isLibstdcxxPointerReturnFalseHack(Sema &S,
5442                                               const InitializedEntity &Entity,
5443                                               const Expr *Init) {
5444   return S.getLangOpts().CPlusPlus11 &&
5445          Entity.getKind() == InitializedEntity::EK_Result &&
5446          Entity.getType()->isPointerType() &&
5447          isa<CXXBoolLiteralExpr>(Init) &&
5448          !cast<CXXBoolLiteralExpr>(Init)->getValue() &&
5449          S.getSourceManager().isInSystemHeader(Init->getExprLoc());
5450 }
5451 
5452 /// The non-zero enum values here are indexes into diagnostic alternatives.
5453 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
5454 
5455 /// Determines whether this expression is an acceptable ICR source.
5456 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
5457                                          bool isAddressOf, bool &isWeakAccess) {
5458   // Skip parens.
5459   e = e->IgnoreParens();
5460 
5461   // Skip address-of nodes.
5462   if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
5463     if (op->getOpcode() == UO_AddrOf)
5464       return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
5465                                 isWeakAccess);
5466 
5467   // Skip certain casts.
5468   } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
5469     switch (ce->getCastKind()) {
5470     case CK_Dependent:
5471     case CK_BitCast:
5472     case CK_LValueBitCast:
5473     case CK_NoOp:
5474       return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
5475 
5476     case CK_ArrayToPointerDecay:
5477       return IIK_nonscalar;
5478 
5479     case CK_NullToPointer:
5480       return IIK_okay;
5481 
5482     default:
5483       break;
5484     }
5485 
5486   // If we have a declaration reference, it had better be a local variable.
5487   } else if (isa<DeclRefExpr>(e)) {
5488     // set isWeakAccess to true, to mean that there will be an implicit
5489     // load which requires a cleanup.
5490     if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
5491       isWeakAccess = true;
5492 
5493     if (!isAddressOf) return IIK_nonlocal;
5494 
5495     VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
5496     if (!var) return IIK_nonlocal;
5497 
5498     return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
5499 
5500   // If we have a conditional operator, check both sides.
5501   } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
5502     if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
5503                                                 isWeakAccess))
5504       return iik;
5505 
5506     return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
5507 
5508   // These are never scalar.
5509   } else if (isa<ArraySubscriptExpr>(e)) {
5510     return IIK_nonscalar;
5511 
5512   // Otherwise, it needs to be a null pointer constant.
5513   } else {
5514     return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
5515             ? IIK_okay : IIK_nonlocal);
5516   }
5517 
5518   return IIK_nonlocal;
5519 }
5520 
5521 /// Check whether the given expression is a valid operand for an
5522 /// indirect copy/restore.
5523 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
5524   assert(src->isPRValue());
5525   bool isWeakAccess = false;
5526   InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
5527   // If isWeakAccess to true, there will be an implicit
5528   // load which requires a cleanup.
5529   if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
5530     S.Cleanup.setExprNeedsCleanups(true);
5531 
5532   if (iik == IIK_okay) return;
5533 
5534   S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
5535     << ((unsigned) iik - 1)  // shift index into diagnostic explanations
5536     << src->getSourceRange();
5537 }
5538 
5539 /// Determine whether we have compatible array types for the
5540 /// purposes of GNU by-copy array initialization.
5541 static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest,
5542                                     const ArrayType *Source) {
5543   // If the source and destination array types are equivalent, we're
5544   // done.
5545   if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
5546     return true;
5547 
5548   // Make sure that the element types are the same.
5549   if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
5550     return false;
5551 
5552   // The only mismatch we allow is when the destination is an
5553   // incomplete array type and the source is a constant array type.
5554   return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
5555 }
5556 
5557 static bool tryObjCWritebackConversion(Sema &S,
5558                                        InitializationSequence &Sequence,
5559                                        const InitializedEntity &Entity,
5560                                        Expr *Initializer) {
5561   bool ArrayDecay = false;
5562   QualType ArgType = Initializer->getType();
5563   QualType ArgPointee;
5564   if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
5565     ArrayDecay = true;
5566     ArgPointee = ArgArrayType->getElementType();
5567     ArgType = S.Context.getPointerType(ArgPointee);
5568   }
5569 
5570   // Handle write-back conversion.
5571   QualType ConvertedArgType;
5572   if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
5573                                    ConvertedArgType))
5574     return false;
5575 
5576   // We should copy unless we're passing to an argument explicitly
5577   // marked 'out'.
5578   bool ShouldCopy = true;
5579   if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5580     ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5581 
5582   // Do we need an lvalue conversion?
5583   if (ArrayDecay || Initializer->isGLValue()) {
5584     ImplicitConversionSequence ICS;
5585     ICS.setStandard();
5586     ICS.Standard.setAsIdentityConversion();
5587 
5588     QualType ResultType;
5589     if (ArrayDecay) {
5590       ICS.Standard.First = ICK_Array_To_Pointer;
5591       ResultType = S.Context.getPointerType(ArgPointee);
5592     } else {
5593       ICS.Standard.First = ICK_Lvalue_To_Rvalue;
5594       ResultType = Initializer->getType().getNonLValueExprType(S.Context);
5595     }
5596 
5597     Sequence.AddConversionSequenceStep(ICS, ResultType);
5598   }
5599 
5600   Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
5601   return true;
5602 }
5603 
5604 static bool TryOCLSamplerInitialization(Sema &S,
5605                                         InitializationSequence &Sequence,
5606                                         QualType DestType,
5607                                         Expr *Initializer) {
5608   if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
5609       (!Initializer->isIntegerConstantExpr(S.Context) &&
5610       !Initializer->getType()->isSamplerT()))
5611     return false;
5612 
5613   Sequence.AddOCLSamplerInitStep(DestType);
5614   return true;
5615 }
5616 
5617 static bool IsZeroInitializer(Expr *Initializer, Sema &S) {
5618   return Initializer->isIntegerConstantExpr(S.getASTContext()) &&
5619     (Initializer->EvaluateKnownConstInt(S.getASTContext()) == 0);
5620 }
5621 
5622 static bool TryOCLZeroOpaqueTypeInitialization(Sema &S,
5623                                                InitializationSequence &Sequence,
5624                                                QualType DestType,
5625                                                Expr *Initializer) {
5626   if (!S.getLangOpts().OpenCL)
5627     return false;
5628 
5629   //
5630   // OpenCL 1.2 spec, s6.12.10
5631   //
5632   // The event argument can also be used to associate the
5633   // async_work_group_copy with a previous async copy allowing
5634   // an event to be shared by multiple async copies; otherwise
5635   // event should be zero.
5636   //
5637   if (DestType->isEventT() || DestType->isQueueT()) {
5638     if (!IsZeroInitializer(Initializer, S))
5639       return false;
5640 
5641     Sequence.AddOCLZeroOpaqueTypeStep(DestType);
5642     return true;
5643   }
5644 
5645   // We should allow zero initialization for all types defined in the
5646   // cl_intel_device_side_avc_motion_estimation extension, except
5647   // intel_sub_group_avc_mce_payload_t and intel_sub_group_avc_mce_result_t.
5648   if (S.getOpenCLOptions().isAvailableOption(
5649           "cl_intel_device_side_avc_motion_estimation", S.getLangOpts()) &&
5650       DestType->isOCLIntelSubgroupAVCType()) {
5651     if (DestType->isOCLIntelSubgroupAVCMcePayloadType() ||
5652         DestType->isOCLIntelSubgroupAVCMceResultType())
5653       return false;
5654     if (!IsZeroInitializer(Initializer, S))
5655       return false;
5656 
5657     Sequence.AddOCLZeroOpaqueTypeStep(DestType);
5658     return true;
5659   }
5660 
5661   return false;
5662 }
5663 
5664 InitializationSequence::InitializationSequence(
5665     Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind,
5666     MultiExprArg Args, bool TopLevelOfInitList, bool TreatUnavailableAsInvalid)
5667     : FailedOverloadResult(OR_Success),
5668       FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) {
5669   InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList,
5670                  TreatUnavailableAsInvalid);
5671 }
5672 
5673 /// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the
5674 /// address of that function, this returns true. Otherwise, it returns false.
5675 static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) {
5676   auto *DRE = dyn_cast<DeclRefExpr>(E);
5677   if (!DRE || !isa<FunctionDecl>(DRE->getDecl()))
5678     return false;
5679 
5680   return !S.checkAddressOfFunctionIsAvailable(
5681       cast<FunctionDecl>(DRE->getDecl()));
5682 }
5683 
5684 /// Determine whether we can perform an elementwise array copy for this kind
5685 /// of entity.
5686 static bool canPerformArrayCopy(const InitializedEntity &Entity) {
5687   switch (Entity.getKind()) {
5688   case InitializedEntity::EK_LambdaCapture:
5689     // C++ [expr.prim.lambda]p24:
5690     //   For array members, the array elements are direct-initialized in
5691     //   increasing subscript order.
5692     return true;
5693 
5694   case InitializedEntity::EK_Variable:
5695     // C++ [dcl.decomp]p1:
5696     //   [...] each element is copy-initialized or direct-initialized from the
5697     //   corresponding element of the assignment-expression [...]
5698     return isa<DecompositionDecl>(Entity.getDecl());
5699 
5700   case InitializedEntity::EK_Member:
5701     // C++ [class.copy.ctor]p14:
5702     //   - if the member is an array, each element is direct-initialized with
5703     //     the corresponding subobject of x
5704     return Entity.isImplicitMemberInitializer();
5705 
5706   case InitializedEntity::EK_ArrayElement:
5707     // All the above cases are intended to apply recursively, even though none
5708     // of them actually say that.
5709     if (auto *E = Entity.getParent())
5710       return canPerformArrayCopy(*E);
5711     break;
5712 
5713   default:
5714     break;
5715   }
5716 
5717   return false;
5718 }
5719 
5720 void InitializationSequence::InitializeFrom(Sema &S,
5721                                             const InitializedEntity &Entity,
5722                                             const InitializationKind &Kind,
5723                                             MultiExprArg Args,
5724                                             bool TopLevelOfInitList,
5725                                             bool TreatUnavailableAsInvalid) {
5726   ASTContext &Context = S.Context;
5727 
5728   // Eliminate non-overload placeholder types in the arguments.  We
5729   // need to do this before checking whether types are dependent
5730   // because lowering a pseudo-object expression might well give us
5731   // something of dependent type.
5732   for (unsigned I = 0, E = Args.size(); I != E; ++I)
5733     if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
5734       // FIXME: should we be doing this here?
5735       ExprResult result = S.CheckPlaceholderExpr(Args[I]);
5736       if (result.isInvalid()) {
5737         SetFailed(FK_PlaceholderType);
5738         return;
5739       }
5740       Args[I] = result.get();
5741     }
5742 
5743   // C++0x [dcl.init]p16:
5744   //   The semantics of initializers are as follows. The destination type is
5745   //   the type of the object or reference being initialized and the source
5746   //   type is the type of the initializer expression. The source type is not
5747   //   defined when the initializer is a braced-init-list or when it is a
5748   //   parenthesized list of expressions.
5749   QualType DestType = Entity.getType();
5750 
5751   if (DestType->isDependentType() ||
5752       Expr::hasAnyTypeDependentArguments(Args)) {
5753     SequenceKind = DependentSequence;
5754     return;
5755   }
5756 
5757   // Almost everything is a normal sequence.
5758   setSequenceKind(NormalSequence);
5759 
5760   QualType SourceType;
5761   Expr *Initializer = nullptr;
5762   if (Args.size() == 1) {
5763     Initializer = Args[0];
5764     if (S.getLangOpts().ObjC) {
5765       if (S.CheckObjCBridgeRelatedConversions(Initializer->getBeginLoc(),
5766                                               DestType, Initializer->getType(),
5767                                               Initializer) ||
5768           S.CheckConversionToObjCLiteral(DestType, Initializer))
5769         Args[0] = Initializer;
5770     }
5771     if (!isa<InitListExpr>(Initializer))
5772       SourceType = Initializer->getType();
5773   }
5774 
5775   //     - If the initializer is a (non-parenthesized) braced-init-list, the
5776   //       object is list-initialized (8.5.4).
5777   if (Kind.getKind() != InitializationKind::IK_Direct) {
5778     if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
5779       TryListInitialization(S, Entity, Kind, InitList, *this,
5780                             TreatUnavailableAsInvalid);
5781       return;
5782     }
5783   }
5784 
5785   //     - If the destination type is a reference type, see 8.5.3.
5786   if (DestType->isReferenceType()) {
5787     // C++0x [dcl.init.ref]p1:
5788     //   A variable declared to be a T& or T&&, that is, "reference to type T"
5789     //   (8.3.2), shall be initialized by an object, or function, of type T or
5790     //   by an object that can be converted into a T.
5791     // (Therefore, multiple arguments are not permitted.)
5792     if (Args.size() != 1)
5793       SetFailed(FK_TooManyInitsForReference);
5794     // C++17 [dcl.init.ref]p5:
5795     //   A reference [...] is initialized by an expression [...] as follows:
5796     // If the initializer is not an expression, presumably we should reject,
5797     // but the standard fails to actually say so.
5798     else if (isa<InitListExpr>(Args[0]))
5799       SetFailed(FK_ParenthesizedListInitForReference);
5800     else
5801       TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
5802     return;
5803   }
5804 
5805   //     - If the initializer is (), the object is value-initialized.
5806   if (Kind.getKind() == InitializationKind::IK_Value ||
5807       (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
5808     TryValueInitialization(S, Entity, Kind, *this);
5809     return;
5810   }
5811 
5812   // Handle default initialization.
5813   if (Kind.getKind() == InitializationKind::IK_Default) {
5814     TryDefaultInitialization(S, Entity, Kind, *this);
5815     return;
5816   }
5817 
5818   //     - If the destination type is an array of characters, an array of
5819   //       char16_t, an array of char32_t, or an array of wchar_t, and the
5820   //       initializer is a string literal, see 8.5.2.
5821   //     - Otherwise, if the destination type is an array, the program is
5822   //       ill-formed.
5823   if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
5824     if (Initializer && isa<VariableArrayType>(DestAT)) {
5825       SetFailed(FK_VariableLengthArrayHasInitializer);
5826       return;
5827     }
5828 
5829     if (Initializer) {
5830       switch (IsStringInit(Initializer, DestAT, Context)) {
5831       case SIF_None:
5832         TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
5833         return;
5834       case SIF_NarrowStringIntoWideChar:
5835         SetFailed(FK_NarrowStringIntoWideCharArray);
5836         return;
5837       case SIF_WideStringIntoChar:
5838         SetFailed(FK_WideStringIntoCharArray);
5839         return;
5840       case SIF_IncompatWideStringIntoWideChar:
5841         SetFailed(FK_IncompatWideStringIntoWideChar);
5842         return;
5843       case SIF_PlainStringIntoUTF8Char:
5844         SetFailed(FK_PlainStringIntoUTF8Char);
5845         return;
5846       case SIF_UTF8StringIntoPlainChar:
5847         SetFailed(FK_UTF8StringIntoPlainChar);
5848         return;
5849       case SIF_Other:
5850         break;
5851       }
5852     }
5853 
5854     // Some kinds of initialization permit an array to be initialized from
5855     // another array of the same type, and perform elementwise initialization.
5856     if (Initializer && isa<ConstantArrayType>(DestAT) &&
5857         S.Context.hasSameUnqualifiedType(Initializer->getType(),
5858                                          Entity.getType()) &&
5859         canPerformArrayCopy(Entity)) {
5860       // If source is a prvalue, use it directly.
5861       if (Initializer->isPRValue()) {
5862         AddArrayInitStep(DestType, /*IsGNUExtension*/false);
5863         return;
5864       }
5865 
5866       // Emit element-at-a-time copy loop.
5867       InitializedEntity Element =
5868           InitializedEntity::InitializeElement(S.Context, 0, Entity);
5869       QualType InitEltT =
5870           Context.getAsArrayType(Initializer->getType())->getElementType();
5871       OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT,
5872                           Initializer->getValueKind(),
5873                           Initializer->getObjectKind());
5874       Expr *OVEAsExpr = &OVE;
5875       InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList,
5876                      TreatUnavailableAsInvalid);
5877       if (!Failed())
5878         AddArrayInitLoopStep(Entity.getType(), InitEltT);
5879       return;
5880     }
5881 
5882     // Note: as an GNU C extension, we allow initialization of an
5883     // array from a compound literal that creates an array of the same
5884     // type, so long as the initializer has no side effects.
5885     if (!S.getLangOpts().CPlusPlus && Initializer &&
5886         isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
5887         Initializer->getType()->isArrayType()) {
5888       const ArrayType *SourceAT
5889         = Context.getAsArrayType(Initializer->getType());
5890       if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
5891         SetFailed(FK_ArrayTypeMismatch);
5892       else if (Initializer->HasSideEffects(S.Context))
5893         SetFailed(FK_NonConstantArrayInit);
5894       else {
5895         AddArrayInitStep(DestType, /*IsGNUExtension*/true);
5896       }
5897     }
5898     // Note: as a GNU C++ extension, we allow list-initialization of a
5899     // class member of array type from a parenthesized initializer list.
5900     else if (S.getLangOpts().CPlusPlus &&
5901              Entity.getKind() == InitializedEntity::EK_Member &&
5902              Initializer && isa<InitListExpr>(Initializer)) {
5903       TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
5904                             *this, TreatUnavailableAsInvalid);
5905       AddParenthesizedArrayInitStep(DestType);
5906     } else if (DestAT->getElementType()->isCharType())
5907       SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
5908     else if (IsWideCharCompatible(DestAT->getElementType(), Context))
5909       SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral);
5910     else
5911       SetFailed(FK_ArrayNeedsInitList);
5912 
5913     return;
5914   }
5915 
5916   // Determine whether we should consider writeback conversions for
5917   // Objective-C ARC.
5918   bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
5919          Entity.isParameterKind();
5920 
5921   if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
5922     return;
5923 
5924   // We're at the end of the line for C: it's either a write-back conversion
5925   // or it's a C assignment. There's no need to check anything else.
5926   if (!S.getLangOpts().CPlusPlus) {
5927     // If allowed, check whether this is an Objective-C writeback conversion.
5928     if (allowObjCWritebackConversion &&
5929         tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
5930       return;
5931     }
5932 
5933     if (TryOCLZeroOpaqueTypeInitialization(S, *this, DestType, Initializer))
5934       return;
5935 
5936     // Handle initialization in C
5937     AddCAssignmentStep(DestType);
5938     MaybeProduceObjCObject(S, *this, Entity);
5939     return;
5940   }
5941 
5942   assert(S.getLangOpts().CPlusPlus);
5943 
5944   //     - If the destination type is a (possibly cv-qualified) class type:
5945   if (DestType->isRecordType()) {
5946     //     - If the initialization is direct-initialization, or if it is
5947     //       copy-initialization where the cv-unqualified version of the
5948     //       source type is the same class as, or a derived class of, the
5949     //       class of the destination, constructors are considered. [...]
5950     if (Kind.getKind() == InitializationKind::IK_Direct ||
5951         (Kind.getKind() == InitializationKind::IK_Copy &&
5952          (Context.hasSameUnqualifiedType(SourceType, DestType) ||
5953           S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, DestType))))
5954       TryConstructorInitialization(S, Entity, Kind, Args,
5955                                    DestType, DestType, *this);
5956     //     - Otherwise (i.e., for the remaining copy-initialization cases),
5957     //       user-defined conversion sequences that can convert from the source
5958     //       type to the destination type or (when a conversion function is
5959     //       used) to a derived class thereof are enumerated as described in
5960     //       13.3.1.4, and the best one is chosen through overload resolution
5961     //       (13.3).
5962     else
5963       TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5964                                TopLevelOfInitList);
5965     return;
5966   }
5967 
5968   assert(Args.size() >= 1 && "Zero-argument case handled above");
5969 
5970   // The remaining cases all need a source type.
5971   if (Args.size() > 1) {
5972     SetFailed(FK_TooManyInitsForScalar);
5973     return;
5974   } else if (isa<InitListExpr>(Args[0])) {
5975     SetFailed(FK_ParenthesizedListInitForScalar);
5976     return;
5977   }
5978 
5979   //    - Otherwise, if the source type is a (possibly cv-qualified) class
5980   //      type, conversion functions are considered.
5981   if (!SourceType.isNull() && SourceType->isRecordType()) {
5982     // For a conversion to _Atomic(T) from either T or a class type derived
5983     // from T, initialize the T object then convert to _Atomic type.
5984     bool NeedAtomicConversion = false;
5985     if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) {
5986       if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) ||
5987           S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType,
5988                           Atomic->getValueType())) {
5989         DestType = Atomic->getValueType();
5990         NeedAtomicConversion = true;
5991       }
5992     }
5993 
5994     TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5995                              TopLevelOfInitList);
5996     MaybeProduceObjCObject(S, *this, Entity);
5997     if (!Failed() && NeedAtomicConversion)
5998       AddAtomicConversionStep(Entity.getType());
5999     return;
6000   }
6001 
6002   //    - Otherwise, if the initialization is direct-initialization, the source
6003   //    type is std::nullptr_t, and the destination type is bool, the initial
6004   //    value of the object being initialized is false.
6005   if (!SourceType.isNull() && SourceType->isNullPtrType() &&
6006       DestType->isBooleanType() &&
6007       Kind.getKind() == InitializationKind::IK_Direct) {
6008     AddConversionSequenceStep(
6009         ImplicitConversionSequence::getNullptrToBool(SourceType, DestType,
6010                                                      Initializer->isGLValue()),
6011         DestType);
6012     return;
6013   }
6014 
6015   //    - Otherwise, the initial value of the object being initialized is the
6016   //      (possibly converted) value of the initializer expression. Standard
6017   //      conversions (Clause 4) will be used, if necessary, to convert the
6018   //      initializer expression to the cv-unqualified version of the
6019   //      destination type; no user-defined conversions are considered.
6020 
6021   ImplicitConversionSequence ICS
6022     = S.TryImplicitConversion(Initializer, DestType,
6023                               /*SuppressUserConversions*/true,
6024                               Sema::AllowedExplicit::None,
6025                               /*InOverloadResolution*/ false,
6026                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
6027                               allowObjCWritebackConversion);
6028 
6029   if (ICS.isStandard() &&
6030       ICS.Standard.Second == ICK_Writeback_Conversion) {
6031     // Objective-C ARC writeback conversion.
6032 
6033     // We should copy unless we're passing to an argument explicitly
6034     // marked 'out'.
6035     bool ShouldCopy = true;
6036     if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
6037       ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
6038 
6039     // If there was an lvalue adjustment, add it as a separate conversion.
6040     if (ICS.Standard.First == ICK_Array_To_Pointer ||
6041         ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
6042       ImplicitConversionSequence LvalueICS;
6043       LvalueICS.setStandard();
6044       LvalueICS.Standard.setAsIdentityConversion();
6045       LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
6046       LvalueICS.Standard.First = ICS.Standard.First;
6047       AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
6048     }
6049 
6050     AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy);
6051   } else if (ICS.isBad()) {
6052     DeclAccessPair dap;
6053     if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) {
6054       AddZeroInitializationStep(Entity.getType());
6055     } else if (Initializer->getType() == Context.OverloadTy &&
6056                !S.ResolveAddressOfOverloadedFunction(Initializer, DestType,
6057                                                      false, dap))
6058       SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
6059     else if (Initializer->getType()->isFunctionType() &&
6060              isExprAnUnaddressableFunction(S, Initializer))
6061       SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction);
6062     else
6063       SetFailed(InitializationSequence::FK_ConversionFailed);
6064   } else {
6065     AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
6066 
6067     MaybeProduceObjCObject(S, *this, Entity);
6068   }
6069 }
6070 
6071 InitializationSequence::~InitializationSequence() {
6072   for (auto &S : Steps)
6073     S.Destroy();
6074 }
6075 
6076 //===----------------------------------------------------------------------===//
6077 // Perform initialization
6078 //===----------------------------------------------------------------------===//
6079 static Sema::AssignmentAction
6080 getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) {
6081   switch(Entity.getKind()) {
6082   case InitializedEntity::EK_Variable:
6083   case InitializedEntity::EK_New:
6084   case InitializedEntity::EK_Exception:
6085   case InitializedEntity::EK_Base:
6086   case InitializedEntity::EK_Delegating:
6087     return Sema::AA_Initializing;
6088 
6089   case InitializedEntity::EK_Parameter:
6090     if (Entity.getDecl() &&
6091         isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
6092       return Sema::AA_Sending;
6093 
6094     return Sema::AA_Passing;
6095 
6096   case InitializedEntity::EK_Parameter_CF_Audited:
6097     if (Entity.getDecl() &&
6098       isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
6099       return Sema::AA_Sending;
6100 
6101     return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited;
6102 
6103   case InitializedEntity::EK_Result:
6104   case InitializedEntity::EK_StmtExprResult: // FIXME: Not quite right.
6105     return Sema::AA_Returning;
6106 
6107   case InitializedEntity::EK_Temporary:
6108   case InitializedEntity::EK_RelatedResult:
6109     // FIXME: Can we tell apart casting vs. converting?
6110     return Sema::AA_Casting;
6111 
6112   case InitializedEntity::EK_TemplateParameter:
6113     // This is really initialization, but refer to it as conversion for
6114     // consistency with CheckConvertedConstantExpression.
6115     return Sema::AA_Converting;
6116 
6117   case InitializedEntity::EK_Member:
6118   case InitializedEntity::EK_Binding:
6119   case InitializedEntity::EK_ArrayElement:
6120   case InitializedEntity::EK_VectorElement:
6121   case InitializedEntity::EK_ComplexElement:
6122   case InitializedEntity::EK_BlockElement:
6123   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6124   case InitializedEntity::EK_LambdaCapture:
6125   case InitializedEntity::EK_CompoundLiteralInit:
6126     return Sema::AA_Initializing;
6127   }
6128 
6129   llvm_unreachable("Invalid EntityKind!");
6130 }
6131 
6132 /// Whether we should bind a created object as a temporary when
6133 /// initializing the given entity.
6134 static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
6135   switch (Entity.getKind()) {
6136   case InitializedEntity::EK_ArrayElement:
6137   case InitializedEntity::EK_Member:
6138   case InitializedEntity::EK_Result:
6139   case InitializedEntity::EK_StmtExprResult:
6140   case InitializedEntity::EK_New:
6141   case InitializedEntity::EK_Variable:
6142   case InitializedEntity::EK_Base:
6143   case InitializedEntity::EK_Delegating:
6144   case InitializedEntity::EK_VectorElement:
6145   case InitializedEntity::EK_ComplexElement:
6146   case InitializedEntity::EK_Exception:
6147   case InitializedEntity::EK_BlockElement:
6148   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6149   case InitializedEntity::EK_LambdaCapture:
6150   case InitializedEntity::EK_CompoundLiteralInit:
6151   case InitializedEntity::EK_TemplateParameter:
6152     return false;
6153 
6154   case InitializedEntity::EK_Parameter:
6155   case InitializedEntity::EK_Parameter_CF_Audited:
6156   case InitializedEntity::EK_Temporary:
6157   case InitializedEntity::EK_RelatedResult:
6158   case InitializedEntity::EK_Binding:
6159     return true;
6160   }
6161 
6162   llvm_unreachable("missed an InitializedEntity kind?");
6163 }
6164 
6165 /// Whether the given entity, when initialized with an object
6166 /// created for that initialization, requires destruction.
6167 static bool shouldDestroyEntity(const InitializedEntity &Entity) {
6168   switch (Entity.getKind()) {
6169     case InitializedEntity::EK_Result:
6170     case InitializedEntity::EK_StmtExprResult:
6171     case InitializedEntity::EK_New:
6172     case InitializedEntity::EK_Base:
6173     case InitializedEntity::EK_Delegating:
6174     case InitializedEntity::EK_VectorElement:
6175     case InitializedEntity::EK_ComplexElement:
6176     case InitializedEntity::EK_BlockElement:
6177     case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6178     case InitializedEntity::EK_LambdaCapture:
6179       return false;
6180 
6181     case InitializedEntity::EK_Member:
6182     case InitializedEntity::EK_Binding:
6183     case InitializedEntity::EK_Variable:
6184     case InitializedEntity::EK_Parameter:
6185     case InitializedEntity::EK_Parameter_CF_Audited:
6186     case InitializedEntity::EK_TemplateParameter:
6187     case InitializedEntity::EK_Temporary:
6188     case InitializedEntity::EK_ArrayElement:
6189     case InitializedEntity::EK_Exception:
6190     case InitializedEntity::EK_CompoundLiteralInit:
6191     case InitializedEntity::EK_RelatedResult:
6192       return true;
6193   }
6194 
6195   llvm_unreachable("missed an InitializedEntity kind?");
6196 }
6197 
6198 /// Get the location at which initialization diagnostics should appear.
6199 static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
6200                                            Expr *Initializer) {
6201   switch (Entity.getKind()) {
6202   case InitializedEntity::EK_Result:
6203   case InitializedEntity::EK_StmtExprResult:
6204     return Entity.getReturnLoc();
6205 
6206   case InitializedEntity::EK_Exception:
6207     return Entity.getThrowLoc();
6208 
6209   case InitializedEntity::EK_Variable:
6210   case InitializedEntity::EK_Binding:
6211     return Entity.getDecl()->getLocation();
6212 
6213   case InitializedEntity::EK_LambdaCapture:
6214     return Entity.getCaptureLoc();
6215 
6216   case InitializedEntity::EK_ArrayElement:
6217   case InitializedEntity::EK_Member:
6218   case InitializedEntity::EK_Parameter:
6219   case InitializedEntity::EK_Parameter_CF_Audited:
6220   case InitializedEntity::EK_TemplateParameter:
6221   case InitializedEntity::EK_Temporary:
6222   case InitializedEntity::EK_New:
6223   case InitializedEntity::EK_Base:
6224   case InitializedEntity::EK_Delegating:
6225   case InitializedEntity::EK_VectorElement:
6226   case InitializedEntity::EK_ComplexElement:
6227   case InitializedEntity::EK_BlockElement:
6228   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6229   case InitializedEntity::EK_CompoundLiteralInit:
6230   case InitializedEntity::EK_RelatedResult:
6231     return Initializer->getBeginLoc();
6232   }
6233   llvm_unreachable("missed an InitializedEntity kind?");
6234 }
6235 
6236 /// Make a (potentially elidable) temporary copy of the object
6237 /// provided by the given initializer by calling the appropriate copy
6238 /// constructor.
6239 ///
6240 /// \param S The Sema object used for type-checking.
6241 ///
6242 /// \param T The type of the temporary object, which must either be
6243 /// the type of the initializer expression or a superclass thereof.
6244 ///
6245 /// \param Entity The entity being initialized.
6246 ///
6247 /// \param CurInit The initializer expression.
6248 ///
6249 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that
6250 /// is permitted in C++03 (but not C++0x) when binding a reference to
6251 /// an rvalue.
6252 ///
6253 /// \returns An expression that copies the initializer expression into
6254 /// a temporary object, or an error expression if a copy could not be
6255 /// created.
6256 static ExprResult CopyObject(Sema &S,
6257                              QualType T,
6258                              const InitializedEntity &Entity,
6259                              ExprResult CurInit,
6260                              bool IsExtraneousCopy) {
6261   if (CurInit.isInvalid())
6262     return CurInit;
6263   // Determine which class type we're copying to.
6264   Expr *CurInitExpr = (Expr *)CurInit.get();
6265   CXXRecordDecl *Class = nullptr;
6266   if (const RecordType *Record = T->getAs<RecordType>())
6267     Class = cast<CXXRecordDecl>(Record->getDecl());
6268   if (!Class)
6269     return CurInit;
6270 
6271   SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
6272 
6273   // Make sure that the type we are copying is complete.
6274   if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
6275     return CurInit;
6276 
6277   // Perform overload resolution using the class's constructors. Per
6278   // C++11 [dcl.init]p16, second bullet for class types, this initialization
6279   // is direct-initialization.
6280   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
6281   DeclContext::lookup_result Ctors = S.LookupConstructors(Class);
6282 
6283   OverloadCandidateSet::iterator Best;
6284   switch (ResolveConstructorOverload(
6285       S, Loc, CurInitExpr, CandidateSet, T, Ctors, Best,
6286       /*CopyInitializing=*/false, /*AllowExplicit=*/true,
6287       /*OnlyListConstructors=*/false, /*IsListInit=*/false,
6288       /*SecondStepOfCopyInit=*/true)) {
6289   case OR_Success:
6290     break;
6291 
6292   case OR_No_Viable_Function:
6293     CandidateSet.NoteCandidates(
6294         PartialDiagnosticAt(
6295             Loc, S.PDiag(IsExtraneousCopy && !S.isSFINAEContext()
6296                              ? diag::ext_rvalue_to_reference_temp_copy_no_viable
6297                              : diag::err_temp_copy_no_viable)
6298                      << (int)Entity.getKind() << CurInitExpr->getType()
6299                      << CurInitExpr->getSourceRange()),
6300         S, OCD_AllCandidates, CurInitExpr);
6301     if (!IsExtraneousCopy || S.isSFINAEContext())
6302       return ExprError();
6303     return CurInit;
6304 
6305   case OR_Ambiguous:
6306     CandidateSet.NoteCandidates(
6307         PartialDiagnosticAt(Loc, S.PDiag(diag::err_temp_copy_ambiguous)
6308                                      << (int)Entity.getKind()
6309                                      << CurInitExpr->getType()
6310                                      << CurInitExpr->getSourceRange()),
6311         S, OCD_AmbiguousCandidates, CurInitExpr);
6312     return ExprError();
6313 
6314   case OR_Deleted:
6315     S.Diag(Loc, diag::err_temp_copy_deleted)
6316       << (int)Entity.getKind() << CurInitExpr->getType()
6317       << CurInitExpr->getSourceRange();
6318     S.NoteDeletedFunction(Best->Function);
6319     return ExprError();
6320   }
6321 
6322   bool HadMultipleCandidates = CandidateSet.size() > 1;
6323 
6324   CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
6325   SmallVector<Expr*, 8> ConstructorArgs;
6326   CurInit.get(); // Ownership transferred into MultiExprArg, below.
6327 
6328   S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity,
6329                            IsExtraneousCopy);
6330 
6331   if (IsExtraneousCopy) {
6332     // If this is a totally extraneous copy for C++03 reference
6333     // binding purposes, just return the original initialization
6334     // expression. We don't generate an (elided) copy operation here
6335     // because doing so would require us to pass down a flag to avoid
6336     // infinite recursion, where each step adds another extraneous,
6337     // elidable copy.
6338 
6339     // Instantiate the default arguments of any extra parameters in
6340     // the selected copy constructor, as if we were going to create a
6341     // proper call to the copy constructor.
6342     for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
6343       ParmVarDecl *Parm = Constructor->getParamDecl(I);
6344       if (S.RequireCompleteType(Loc, Parm->getType(),
6345                                 diag::err_call_incomplete_argument))
6346         break;
6347 
6348       // Build the default argument expression; we don't actually care
6349       // if this succeeds or not, because this routine will complain
6350       // if there was a problem.
6351       S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
6352     }
6353 
6354     return CurInitExpr;
6355   }
6356 
6357   // Determine the arguments required to actually perform the
6358   // constructor call (we might have derived-to-base conversions, or
6359   // the copy constructor may have default arguments).
6360   if (S.CompleteConstructorCall(Constructor, T, CurInitExpr, Loc,
6361                                 ConstructorArgs))
6362     return ExprError();
6363 
6364   // C++0x [class.copy]p32:
6365   //   When certain criteria are met, an implementation is allowed to
6366   //   omit the copy/move construction of a class object, even if the
6367   //   copy/move constructor and/or destructor for the object have
6368   //   side effects. [...]
6369   //     - when a temporary class object that has not been bound to a
6370   //       reference (12.2) would be copied/moved to a class object
6371   //       with the same cv-unqualified type, the copy/move operation
6372   //       can be omitted by constructing the temporary object
6373   //       directly into the target of the omitted copy/move
6374   //
6375   // Note that the other three bullets are handled elsewhere. Copy
6376   // elision for return statements and throw expressions are handled as part
6377   // of constructor initialization, while copy elision for exception handlers
6378   // is handled by the run-time.
6379   //
6380   // FIXME: If the function parameter is not the same type as the temporary, we
6381   // should still be able to elide the copy, but we don't have a way to
6382   // represent in the AST how much should be elided in this case.
6383   bool Elidable =
6384       CurInitExpr->isTemporaryObject(S.Context, Class) &&
6385       S.Context.hasSameUnqualifiedType(
6386           Best->Function->getParamDecl(0)->getType().getNonReferenceType(),
6387           CurInitExpr->getType());
6388 
6389   // Actually perform the constructor call.
6390   CurInit = S.BuildCXXConstructExpr(Loc, T, Best->FoundDecl, Constructor,
6391                                     Elidable,
6392                                     ConstructorArgs,
6393                                     HadMultipleCandidates,
6394                                     /*ListInit*/ false,
6395                                     /*StdInitListInit*/ false,
6396                                     /*ZeroInit*/ false,
6397                                     CXXConstructExpr::CK_Complete,
6398                                     SourceRange());
6399 
6400   // If we're supposed to bind temporaries, do so.
6401   if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
6402     CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
6403   return CurInit;
6404 }
6405 
6406 /// Check whether elidable copy construction for binding a reference to
6407 /// a temporary would have succeeded if we were building in C++98 mode, for
6408 /// -Wc++98-compat.
6409 static void CheckCXX98CompatAccessibleCopy(Sema &S,
6410                                            const InitializedEntity &Entity,
6411                                            Expr *CurInitExpr) {
6412   assert(S.getLangOpts().CPlusPlus11);
6413 
6414   const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
6415   if (!Record)
6416     return;
6417 
6418   SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
6419   if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc))
6420     return;
6421 
6422   // Find constructors which would have been considered.
6423   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
6424   DeclContext::lookup_result Ctors =
6425       S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl()));
6426 
6427   // Perform overload resolution.
6428   OverloadCandidateSet::iterator Best;
6429   OverloadingResult OR = ResolveConstructorOverload(
6430       S, Loc, CurInitExpr, CandidateSet, CurInitExpr->getType(), Ctors, Best,
6431       /*CopyInitializing=*/false, /*AllowExplicit=*/true,
6432       /*OnlyListConstructors=*/false, /*IsListInit=*/false,
6433       /*SecondStepOfCopyInit=*/true);
6434 
6435   PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
6436     << OR << (int)Entity.getKind() << CurInitExpr->getType()
6437     << CurInitExpr->getSourceRange();
6438 
6439   switch (OR) {
6440   case OR_Success:
6441     S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
6442                              Best->FoundDecl, Entity, Diag);
6443     // FIXME: Check default arguments as far as that's possible.
6444     break;
6445 
6446   case OR_No_Viable_Function:
6447     CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S,
6448                                 OCD_AllCandidates, CurInitExpr);
6449     break;
6450 
6451   case OR_Ambiguous:
6452     CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S,
6453                                 OCD_AmbiguousCandidates, CurInitExpr);
6454     break;
6455 
6456   case OR_Deleted:
6457     S.Diag(Loc, Diag);
6458     S.NoteDeletedFunction(Best->Function);
6459     break;
6460   }
6461 }
6462 
6463 void InitializationSequence::PrintInitLocationNote(Sema &S,
6464                                               const InitializedEntity &Entity) {
6465   if (Entity.isParamOrTemplateParamKind() && Entity.getDecl()) {
6466     if (Entity.getDecl()->getLocation().isInvalid())
6467       return;
6468 
6469     if (Entity.getDecl()->getDeclName())
6470       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
6471         << Entity.getDecl()->getDeclName();
6472     else
6473       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
6474   }
6475   else if (Entity.getKind() == InitializedEntity::EK_RelatedResult &&
6476            Entity.getMethodDecl())
6477     S.Diag(Entity.getMethodDecl()->getLocation(),
6478            diag::note_method_return_type_change)
6479       << Entity.getMethodDecl()->getDeclName();
6480 }
6481 
6482 /// Returns true if the parameters describe a constructor initialization of
6483 /// an explicit temporary object, e.g. "Point(x, y)".
6484 static bool isExplicitTemporary(const InitializedEntity &Entity,
6485                                 const InitializationKind &Kind,
6486                                 unsigned NumArgs) {
6487   switch (Entity.getKind()) {
6488   case InitializedEntity::EK_Temporary:
6489   case InitializedEntity::EK_CompoundLiteralInit:
6490   case InitializedEntity::EK_RelatedResult:
6491     break;
6492   default:
6493     return false;
6494   }
6495 
6496   switch (Kind.getKind()) {
6497   case InitializationKind::IK_DirectList:
6498     return true;
6499   // FIXME: Hack to work around cast weirdness.
6500   case InitializationKind::IK_Direct:
6501   case InitializationKind::IK_Value:
6502     return NumArgs != 1;
6503   default:
6504     return false;
6505   }
6506 }
6507 
6508 static ExprResult
6509 PerformConstructorInitialization(Sema &S,
6510                                  const InitializedEntity &Entity,
6511                                  const InitializationKind &Kind,
6512                                  MultiExprArg Args,
6513                                  const InitializationSequence::Step& Step,
6514                                  bool &ConstructorInitRequiresZeroInit,
6515                                  bool IsListInitialization,
6516                                  bool IsStdInitListInitialization,
6517                                  SourceLocation LBraceLoc,
6518                                  SourceLocation RBraceLoc) {
6519   unsigned NumArgs = Args.size();
6520   CXXConstructorDecl *Constructor
6521     = cast<CXXConstructorDecl>(Step.Function.Function);
6522   bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
6523 
6524   // Build a call to the selected constructor.
6525   SmallVector<Expr*, 8> ConstructorArgs;
6526   SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
6527                          ? Kind.getEqualLoc()
6528                          : Kind.getLocation();
6529 
6530   if (Kind.getKind() == InitializationKind::IK_Default) {
6531     // Force even a trivial, implicit default constructor to be
6532     // semantically checked. We do this explicitly because we don't build
6533     // the definition for completely trivial constructors.
6534     assert(Constructor->getParent() && "No parent class for constructor.");
6535     if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6536         Constructor->isTrivial() && !Constructor->isUsed(false)) {
6537       S.runWithSufficientStackSpace(Loc, [&] {
6538         S.DefineImplicitDefaultConstructor(Loc, Constructor);
6539       });
6540     }
6541   }
6542 
6543   ExprResult CurInit((Expr *)nullptr);
6544 
6545   // C++ [over.match.copy]p1:
6546   //   - When initializing a temporary to be bound to the first parameter
6547   //     of a constructor that takes a reference to possibly cv-qualified
6548   //     T as its first argument, called with a single argument in the
6549   //     context of direct-initialization, explicit conversion functions
6550   //     are also considered.
6551   bool AllowExplicitConv =
6552       Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 &&
6553       hasCopyOrMoveCtorParam(S.Context,
6554                              getConstructorInfo(Step.Function.FoundDecl));
6555 
6556   // Determine the arguments required to actually perform the constructor
6557   // call.
6558   if (S.CompleteConstructorCall(Constructor, Step.Type, Args, Loc,
6559                                 ConstructorArgs, AllowExplicitConv,
6560                                 IsListInitialization))
6561     return ExprError();
6562 
6563   if (isExplicitTemporary(Entity, Kind, NumArgs)) {
6564     // An explicitly-constructed temporary, e.g., X(1, 2).
6565     if (S.DiagnoseUseOfDecl(Constructor, Loc))
6566       return ExprError();
6567 
6568     TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
6569     if (!TSInfo)
6570       TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
6571     SourceRange ParenOrBraceRange =
6572         (Kind.getKind() == InitializationKind::IK_DirectList)
6573         ? SourceRange(LBraceLoc, RBraceLoc)
6574         : Kind.getParenOrBraceRange();
6575 
6576     CXXConstructorDecl *CalleeDecl = Constructor;
6577     if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(
6578             Step.Function.FoundDecl.getDecl())) {
6579       CalleeDecl = S.findInheritingConstructor(Loc, Constructor, Shadow);
6580       if (S.DiagnoseUseOfDecl(CalleeDecl, Loc))
6581         return ExprError();
6582     }
6583     S.MarkFunctionReferenced(Loc, CalleeDecl);
6584 
6585     CurInit = S.CheckForImmediateInvocation(
6586         CXXTemporaryObjectExpr::Create(
6587             S.Context, CalleeDecl,
6588             Entity.getType().getNonLValueExprType(S.Context), TSInfo,
6589             ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates,
6590             IsListInitialization, IsStdInitListInitialization,
6591             ConstructorInitRequiresZeroInit),
6592         CalleeDecl);
6593   } else {
6594     CXXConstructExpr::ConstructionKind ConstructKind =
6595       CXXConstructExpr::CK_Complete;
6596 
6597     if (Entity.getKind() == InitializedEntity::EK_Base) {
6598       ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
6599         CXXConstructExpr::CK_VirtualBase :
6600         CXXConstructExpr::CK_NonVirtualBase;
6601     } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
6602       ConstructKind = CXXConstructExpr::CK_Delegating;
6603     }
6604 
6605     // Only get the parenthesis or brace range if it is a list initialization or
6606     // direct construction.
6607     SourceRange ParenOrBraceRange;
6608     if (IsListInitialization)
6609       ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc);
6610     else if (Kind.getKind() == InitializationKind::IK_Direct)
6611       ParenOrBraceRange = Kind.getParenOrBraceRange();
6612 
6613     // If the entity allows NRVO, mark the construction as elidable
6614     // unconditionally.
6615     if (Entity.allowsNRVO())
6616       CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
6617                                         Step.Function.FoundDecl,
6618                                         Constructor, /*Elidable=*/true,
6619                                         ConstructorArgs,
6620                                         HadMultipleCandidates,
6621                                         IsListInitialization,
6622                                         IsStdInitListInitialization,
6623                                         ConstructorInitRequiresZeroInit,
6624                                         ConstructKind,
6625                                         ParenOrBraceRange);
6626     else
6627       CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
6628                                         Step.Function.FoundDecl,
6629                                         Constructor,
6630                                         ConstructorArgs,
6631                                         HadMultipleCandidates,
6632                                         IsListInitialization,
6633                                         IsStdInitListInitialization,
6634                                         ConstructorInitRequiresZeroInit,
6635                                         ConstructKind,
6636                                         ParenOrBraceRange);
6637   }
6638   if (CurInit.isInvalid())
6639     return ExprError();
6640 
6641   // Only check access if all of that succeeded.
6642   S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity);
6643   if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc))
6644     return ExprError();
6645 
6646   if (const ArrayType *AT = S.Context.getAsArrayType(Entity.getType()))
6647     if (checkDestructorReference(S.Context.getBaseElementType(AT), Loc, S))
6648       return ExprError();
6649 
6650   if (shouldBindAsTemporary(Entity))
6651     CurInit = S.MaybeBindToTemporary(CurInit.get());
6652 
6653   return CurInit;
6654 }
6655 
6656 namespace {
6657 enum LifetimeKind {
6658   /// The lifetime of a temporary bound to this entity ends at the end of the
6659   /// full-expression, and that's (probably) fine.
6660   LK_FullExpression,
6661 
6662   /// The lifetime of a temporary bound to this entity is extended to the
6663   /// lifeitme of the entity itself.
6664   LK_Extended,
6665 
6666   /// The lifetime of a temporary bound to this entity probably ends too soon,
6667   /// because the entity is allocated in a new-expression.
6668   LK_New,
6669 
6670   /// The lifetime of a temporary bound to this entity ends too soon, because
6671   /// the entity is a return object.
6672   LK_Return,
6673 
6674   /// The lifetime of a temporary bound to this entity ends too soon, because
6675   /// the entity is the result of a statement expression.
6676   LK_StmtExprResult,
6677 
6678   /// This is a mem-initializer: if it would extend a temporary (other than via
6679   /// a default member initializer), the program is ill-formed.
6680   LK_MemInitializer,
6681 };
6682 using LifetimeResult =
6683     llvm::PointerIntPair<const InitializedEntity *, 3, LifetimeKind>;
6684 }
6685 
6686 /// Determine the declaration which an initialized entity ultimately refers to,
6687 /// for the purpose of lifetime-extending a temporary bound to a reference in
6688 /// the initialization of \p Entity.
6689 static LifetimeResult getEntityLifetime(
6690     const InitializedEntity *Entity,
6691     const InitializedEntity *InitField = nullptr) {
6692   // C++11 [class.temporary]p5:
6693   switch (Entity->getKind()) {
6694   case InitializedEntity::EK_Variable:
6695     //   The temporary [...] persists for the lifetime of the reference
6696     return {Entity, LK_Extended};
6697 
6698   case InitializedEntity::EK_Member:
6699     // For subobjects, we look at the complete object.
6700     if (Entity->getParent())
6701       return getEntityLifetime(Entity->getParent(), Entity);
6702 
6703     //   except:
6704     // C++17 [class.base.init]p8:
6705     //   A temporary expression bound to a reference member in a
6706     //   mem-initializer is ill-formed.
6707     // C++17 [class.base.init]p11:
6708     //   A temporary expression bound to a reference member from a
6709     //   default member initializer is ill-formed.
6710     //
6711     // The context of p11 and its example suggest that it's only the use of a
6712     // default member initializer from a constructor that makes the program
6713     // ill-formed, not its mere existence, and that it can even be used by
6714     // aggregate initialization.
6715     return {Entity, Entity->isDefaultMemberInitializer() ? LK_Extended
6716                                                          : LK_MemInitializer};
6717 
6718   case InitializedEntity::EK_Binding:
6719     // Per [dcl.decomp]p3, the binding is treated as a variable of reference
6720     // type.
6721     return {Entity, LK_Extended};
6722 
6723   case InitializedEntity::EK_Parameter:
6724   case InitializedEntity::EK_Parameter_CF_Audited:
6725     //   -- A temporary bound to a reference parameter in a function call
6726     //      persists until the completion of the full-expression containing
6727     //      the call.
6728     return {nullptr, LK_FullExpression};
6729 
6730   case InitializedEntity::EK_TemplateParameter:
6731     // FIXME: This will always be ill-formed; should we eagerly diagnose it here?
6732     return {nullptr, LK_FullExpression};
6733 
6734   case InitializedEntity::EK_Result:
6735     //   -- The lifetime of a temporary bound to the returned value in a
6736     //      function return statement is not extended; the temporary is
6737     //      destroyed at the end of the full-expression in the return statement.
6738     return {nullptr, LK_Return};
6739 
6740   case InitializedEntity::EK_StmtExprResult:
6741     // FIXME: Should we lifetime-extend through the result of a statement
6742     // expression?
6743     return {nullptr, LK_StmtExprResult};
6744 
6745   case InitializedEntity::EK_New:
6746     //   -- A temporary bound to a reference in a new-initializer persists
6747     //      until the completion of the full-expression containing the
6748     //      new-initializer.
6749     return {nullptr, LK_New};
6750 
6751   case InitializedEntity::EK_Temporary:
6752   case InitializedEntity::EK_CompoundLiteralInit:
6753   case InitializedEntity::EK_RelatedResult:
6754     // We don't yet know the storage duration of the surrounding temporary.
6755     // Assume it's got full-expression duration for now, it will patch up our
6756     // storage duration if that's not correct.
6757     return {nullptr, LK_FullExpression};
6758 
6759   case InitializedEntity::EK_ArrayElement:
6760     // For subobjects, we look at the complete object.
6761     return getEntityLifetime(Entity->getParent(), InitField);
6762 
6763   case InitializedEntity::EK_Base:
6764     // For subobjects, we look at the complete object.
6765     if (Entity->getParent())
6766       return getEntityLifetime(Entity->getParent(), InitField);
6767     return {InitField, LK_MemInitializer};
6768 
6769   case InitializedEntity::EK_Delegating:
6770     // We can reach this case for aggregate initialization in a constructor:
6771     //   struct A { int &&r; };
6772     //   struct B : A { B() : A{0} {} };
6773     // In this case, use the outermost field decl as the context.
6774     return {InitField, LK_MemInitializer};
6775 
6776   case InitializedEntity::EK_BlockElement:
6777   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6778   case InitializedEntity::EK_LambdaCapture:
6779   case InitializedEntity::EK_VectorElement:
6780   case InitializedEntity::EK_ComplexElement:
6781     return {nullptr, LK_FullExpression};
6782 
6783   case InitializedEntity::EK_Exception:
6784     // FIXME: Can we diagnose lifetime problems with exceptions?
6785     return {nullptr, LK_FullExpression};
6786   }
6787   llvm_unreachable("unknown entity kind");
6788 }
6789 
6790 namespace {
6791 enum ReferenceKind {
6792   /// Lifetime would be extended by a reference binding to a temporary.
6793   RK_ReferenceBinding,
6794   /// Lifetime would be extended by a std::initializer_list object binding to
6795   /// its backing array.
6796   RK_StdInitializerList,
6797 };
6798 
6799 /// A temporary or local variable. This will be one of:
6800 ///  * A MaterializeTemporaryExpr.
6801 ///  * A DeclRefExpr whose declaration is a local.
6802 ///  * An AddrLabelExpr.
6803 ///  * A BlockExpr for a block with captures.
6804 using Local = Expr*;
6805 
6806 /// Expressions we stepped over when looking for the local state. Any steps
6807 /// that would inhibit lifetime extension or take us out of subexpressions of
6808 /// the initializer are included.
6809 struct IndirectLocalPathEntry {
6810   enum EntryKind {
6811     DefaultInit,
6812     AddressOf,
6813     VarInit,
6814     LValToRVal,
6815     LifetimeBoundCall,
6816     TemporaryCopy,
6817     LambdaCaptureInit,
6818     GslReferenceInit,
6819     GslPointerInit
6820   } Kind;
6821   Expr *E;
6822   union {
6823     const Decl *D = nullptr;
6824     const LambdaCapture *Capture;
6825   };
6826   IndirectLocalPathEntry() {}
6827   IndirectLocalPathEntry(EntryKind K, Expr *E) : Kind(K), E(E) {}
6828   IndirectLocalPathEntry(EntryKind K, Expr *E, const Decl *D)
6829       : Kind(K), E(E), D(D) {}
6830   IndirectLocalPathEntry(EntryKind K, Expr *E, const LambdaCapture *Capture)
6831       : Kind(K), E(E), Capture(Capture) {}
6832 };
6833 
6834 using IndirectLocalPath = llvm::SmallVectorImpl<IndirectLocalPathEntry>;
6835 
6836 struct RevertToOldSizeRAII {
6837   IndirectLocalPath &Path;
6838   unsigned OldSize = Path.size();
6839   RevertToOldSizeRAII(IndirectLocalPath &Path) : Path(Path) {}
6840   ~RevertToOldSizeRAII() { Path.resize(OldSize); }
6841 };
6842 
6843 using LocalVisitor = llvm::function_ref<bool(IndirectLocalPath &Path, Local L,
6844                                              ReferenceKind RK)>;
6845 }
6846 
6847 static bool isVarOnPath(IndirectLocalPath &Path, VarDecl *VD) {
6848   for (auto E : Path)
6849     if (E.Kind == IndirectLocalPathEntry::VarInit && E.D == VD)
6850       return true;
6851   return false;
6852 }
6853 
6854 static bool pathContainsInit(IndirectLocalPath &Path) {
6855   return llvm::any_of(Path, [=](IndirectLocalPathEntry E) {
6856     return E.Kind == IndirectLocalPathEntry::DefaultInit ||
6857            E.Kind == IndirectLocalPathEntry::VarInit;
6858   });
6859 }
6860 
6861 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
6862                                              Expr *Init, LocalVisitor Visit,
6863                                              bool RevisitSubinits,
6864                                              bool EnableLifetimeWarnings);
6865 
6866 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
6867                                                   Expr *Init, ReferenceKind RK,
6868                                                   LocalVisitor Visit,
6869                                                   bool EnableLifetimeWarnings);
6870 
6871 template <typename T> static bool isRecordWithAttr(QualType Type) {
6872   if (auto *RD = Type->getAsCXXRecordDecl())
6873     return RD->hasAttr<T>();
6874   return false;
6875 }
6876 
6877 // Decl::isInStdNamespace will return false for iterators in some STL
6878 // implementations due to them being defined in a namespace outside of the std
6879 // namespace.
6880 static bool isInStlNamespace(const Decl *D) {
6881   const DeclContext *DC = D->getDeclContext();
6882   if (!DC)
6883     return false;
6884   if (const auto *ND = dyn_cast<NamespaceDecl>(DC))
6885     if (const IdentifierInfo *II = ND->getIdentifier()) {
6886       StringRef Name = II->getName();
6887       if (Name.size() >= 2 && Name.front() == '_' &&
6888           (Name[1] == '_' || isUppercase(Name[1])))
6889         return true;
6890     }
6891 
6892   return DC->isStdNamespace();
6893 }
6894 
6895 static bool shouldTrackImplicitObjectArg(const CXXMethodDecl *Callee) {
6896   if (auto *Conv = dyn_cast_or_null<CXXConversionDecl>(Callee))
6897     if (isRecordWithAttr<PointerAttr>(Conv->getConversionType()))
6898       return true;
6899   if (!isInStlNamespace(Callee->getParent()))
6900     return false;
6901   if (!isRecordWithAttr<PointerAttr>(Callee->getThisObjectType()) &&
6902       !isRecordWithAttr<OwnerAttr>(Callee->getThisObjectType()))
6903     return false;
6904   if (Callee->getReturnType()->isPointerType() ||
6905       isRecordWithAttr<PointerAttr>(Callee->getReturnType())) {
6906     if (!Callee->getIdentifier())
6907       return false;
6908     return llvm::StringSwitch<bool>(Callee->getName())
6909         .Cases("begin", "rbegin", "cbegin", "crbegin", true)
6910         .Cases("end", "rend", "cend", "crend", true)
6911         .Cases("c_str", "data", "get", true)
6912         // Map and set types.
6913         .Cases("find", "equal_range", "lower_bound", "upper_bound", true)
6914         .Default(false);
6915   } else if (Callee->getReturnType()->isReferenceType()) {
6916     if (!Callee->getIdentifier()) {
6917       auto OO = Callee->getOverloadedOperator();
6918       return OO == OverloadedOperatorKind::OO_Subscript ||
6919              OO == OverloadedOperatorKind::OO_Star;
6920     }
6921     return llvm::StringSwitch<bool>(Callee->getName())
6922         .Cases("front", "back", "at", "top", "value", true)
6923         .Default(false);
6924   }
6925   return false;
6926 }
6927 
6928 static bool shouldTrackFirstArgument(const FunctionDecl *FD) {
6929   if (!FD->getIdentifier() || FD->getNumParams() != 1)
6930     return false;
6931   const auto *RD = FD->getParamDecl(0)->getType()->getPointeeCXXRecordDecl();
6932   if (!FD->isInStdNamespace() || !RD || !RD->isInStdNamespace())
6933     return false;
6934   if (!isRecordWithAttr<PointerAttr>(QualType(RD->getTypeForDecl(), 0)) &&
6935       !isRecordWithAttr<OwnerAttr>(QualType(RD->getTypeForDecl(), 0)))
6936     return false;
6937   if (FD->getReturnType()->isPointerType() ||
6938       isRecordWithAttr<PointerAttr>(FD->getReturnType())) {
6939     return llvm::StringSwitch<bool>(FD->getName())
6940         .Cases("begin", "rbegin", "cbegin", "crbegin", true)
6941         .Cases("end", "rend", "cend", "crend", true)
6942         .Case("data", true)
6943         .Default(false);
6944   } else if (FD->getReturnType()->isReferenceType()) {
6945     return llvm::StringSwitch<bool>(FD->getName())
6946         .Cases("get", "any_cast", true)
6947         .Default(false);
6948   }
6949   return false;
6950 }
6951 
6952 static void handleGslAnnotatedTypes(IndirectLocalPath &Path, Expr *Call,
6953                                     LocalVisitor Visit) {
6954   auto VisitPointerArg = [&](const Decl *D, Expr *Arg, bool Value) {
6955     // We are not interested in the temporary base objects of gsl Pointers:
6956     //   Temp().ptr; // Here ptr might not dangle.
6957     if (isa<MemberExpr>(Arg->IgnoreImpCasts()))
6958       return;
6959     // Once we initialized a value with a reference, it can no longer dangle.
6960     if (!Value) {
6961       for (const IndirectLocalPathEntry &PE : llvm::reverse(Path)) {
6962         if (PE.Kind == IndirectLocalPathEntry::GslReferenceInit)
6963           continue;
6964         if (PE.Kind == IndirectLocalPathEntry::GslPointerInit)
6965           return;
6966         break;
6967       }
6968     }
6969     Path.push_back({Value ? IndirectLocalPathEntry::GslPointerInit
6970                           : IndirectLocalPathEntry::GslReferenceInit,
6971                     Arg, D});
6972     if (Arg->isGLValue())
6973       visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding,
6974                                             Visit,
6975                                             /*EnableLifetimeWarnings=*/true);
6976     else
6977       visitLocalsRetainedByInitializer(Path, Arg, Visit, true,
6978                                        /*EnableLifetimeWarnings=*/true);
6979     Path.pop_back();
6980   };
6981 
6982   if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) {
6983     const auto *MD = cast_or_null<CXXMethodDecl>(MCE->getDirectCallee());
6984     if (MD && shouldTrackImplicitObjectArg(MD))
6985       VisitPointerArg(MD, MCE->getImplicitObjectArgument(),
6986                       !MD->getReturnType()->isReferenceType());
6987     return;
6988   } else if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(Call)) {
6989     FunctionDecl *Callee = OCE->getDirectCallee();
6990     if (Callee && Callee->isCXXInstanceMember() &&
6991         shouldTrackImplicitObjectArg(cast<CXXMethodDecl>(Callee)))
6992       VisitPointerArg(Callee, OCE->getArg(0),
6993                       !Callee->getReturnType()->isReferenceType());
6994     return;
6995   } else if (auto *CE = dyn_cast<CallExpr>(Call)) {
6996     FunctionDecl *Callee = CE->getDirectCallee();
6997     if (Callee && shouldTrackFirstArgument(Callee))
6998       VisitPointerArg(Callee, CE->getArg(0),
6999                       !Callee->getReturnType()->isReferenceType());
7000     return;
7001   }
7002 
7003   if (auto *CCE = dyn_cast<CXXConstructExpr>(Call)) {
7004     const auto *Ctor = CCE->getConstructor();
7005     const CXXRecordDecl *RD = Ctor->getParent();
7006     if (CCE->getNumArgs() > 0 && RD->hasAttr<PointerAttr>())
7007       VisitPointerArg(Ctor->getParamDecl(0), CCE->getArgs()[0], true);
7008   }
7009 }
7010 
7011 static bool implicitObjectParamIsLifetimeBound(const FunctionDecl *FD) {
7012   const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
7013   if (!TSI)
7014     return false;
7015   // Don't declare this variable in the second operand of the for-statement;
7016   // GCC miscompiles that by ending its lifetime before evaluating the
7017   // third operand. See gcc.gnu.org/PR86769.
7018   AttributedTypeLoc ATL;
7019   for (TypeLoc TL = TSI->getTypeLoc();
7020        (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
7021        TL = ATL.getModifiedLoc()) {
7022     if (ATL.getAttrAs<LifetimeBoundAttr>())
7023       return true;
7024   }
7025 
7026   // Assume that all assignment operators with a "normal" return type return
7027   // *this, that is, an lvalue reference that is the same type as the implicit
7028   // object parameter (or the LHS for a non-member operator$=).
7029   OverloadedOperatorKind OO = FD->getDeclName().getCXXOverloadedOperator();
7030   if (OO == OO_Equal || isCompoundAssignmentOperator(OO)) {
7031     QualType RetT = FD->getReturnType();
7032     if (RetT->isLValueReferenceType()) {
7033       ASTContext &Ctx = FD->getASTContext();
7034       QualType LHST;
7035       auto *MD = dyn_cast<CXXMethodDecl>(FD);
7036       if (MD && MD->isCXXInstanceMember())
7037         LHST = Ctx.getLValueReferenceType(MD->getThisObjectType());
7038       else
7039         LHST = MD->getParamDecl(0)->getType();
7040       if (Ctx.hasSameType(RetT, LHST))
7041         return true;
7042     }
7043   }
7044 
7045   return false;
7046 }
7047 
7048 static void visitLifetimeBoundArguments(IndirectLocalPath &Path, Expr *Call,
7049                                         LocalVisitor Visit) {
7050   const FunctionDecl *Callee;
7051   ArrayRef<Expr*> Args;
7052 
7053   if (auto *CE = dyn_cast<CallExpr>(Call)) {
7054     Callee = CE->getDirectCallee();
7055     Args = llvm::makeArrayRef(CE->getArgs(), CE->getNumArgs());
7056   } else {
7057     auto *CCE = cast<CXXConstructExpr>(Call);
7058     Callee = CCE->getConstructor();
7059     Args = llvm::makeArrayRef(CCE->getArgs(), CCE->getNumArgs());
7060   }
7061   if (!Callee)
7062     return;
7063 
7064   Expr *ObjectArg = nullptr;
7065   if (isa<CXXOperatorCallExpr>(Call) && Callee->isCXXInstanceMember()) {
7066     ObjectArg = Args[0];
7067     Args = Args.slice(1);
7068   } else if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) {
7069     ObjectArg = MCE->getImplicitObjectArgument();
7070   }
7071 
7072   auto VisitLifetimeBoundArg = [&](const Decl *D, Expr *Arg) {
7073     Path.push_back({IndirectLocalPathEntry::LifetimeBoundCall, Arg, D});
7074     if (Arg->isGLValue())
7075       visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding,
7076                                             Visit,
7077                                             /*EnableLifetimeWarnings=*/false);
7078     else
7079       visitLocalsRetainedByInitializer(Path, Arg, Visit, true,
7080                                        /*EnableLifetimeWarnings=*/false);
7081     Path.pop_back();
7082   };
7083 
7084   if (ObjectArg && implicitObjectParamIsLifetimeBound(Callee))
7085     VisitLifetimeBoundArg(Callee, ObjectArg);
7086 
7087   for (unsigned I = 0,
7088                 N = std::min<unsigned>(Callee->getNumParams(), Args.size());
7089        I != N; ++I) {
7090     if (Callee->getParamDecl(I)->hasAttr<LifetimeBoundAttr>())
7091       VisitLifetimeBoundArg(Callee->getParamDecl(I), Args[I]);
7092   }
7093 }
7094 
7095 /// Visit the locals that would be reachable through a reference bound to the
7096 /// glvalue expression \c Init.
7097 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
7098                                                   Expr *Init, ReferenceKind RK,
7099                                                   LocalVisitor Visit,
7100                                                   bool EnableLifetimeWarnings) {
7101   RevertToOldSizeRAII RAII(Path);
7102 
7103   // Walk past any constructs which we can lifetime-extend across.
7104   Expr *Old;
7105   do {
7106     Old = Init;
7107 
7108     if (auto *FE = dyn_cast<FullExpr>(Init))
7109       Init = FE->getSubExpr();
7110 
7111     if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
7112       // If this is just redundant braces around an initializer, step over it.
7113       if (ILE->isTransparent())
7114         Init = ILE->getInit(0);
7115     }
7116 
7117     // Step over any subobject adjustments; we may have a materialized
7118     // temporary inside them.
7119     Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
7120 
7121     // Per current approach for DR1376, look through casts to reference type
7122     // when performing lifetime extension.
7123     if (CastExpr *CE = dyn_cast<CastExpr>(Init))
7124       if (CE->getSubExpr()->isGLValue())
7125         Init = CE->getSubExpr();
7126 
7127     // Per the current approach for DR1299, look through array element access
7128     // on array glvalues when performing lifetime extension.
7129     if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Init)) {
7130       Init = ASE->getBase();
7131       auto *ICE = dyn_cast<ImplicitCastExpr>(Init);
7132       if (ICE && ICE->getCastKind() == CK_ArrayToPointerDecay)
7133         Init = ICE->getSubExpr();
7134       else
7135         // We can't lifetime extend through this but we might still find some
7136         // retained temporaries.
7137         return visitLocalsRetainedByInitializer(Path, Init, Visit, true,
7138                                                 EnableLifetimeWarnings);
7139     }
7140 
7141     // Step into CXXDefaultInitExprs so we can diagnose cases where a
7142     // constructor inherits one as an implicit mem-initializer.
7143     if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
7144       Path.push_back(
7145           {IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
7146       Init = DIE->getExpr();
7147     }
7148   } while (Init != Old);
7149 
7150   if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Init)) {
7151     if (Visit(Path, Local(MTE), RK))
7152       visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit, true,
7153                                        EnableLifetimeWarnings);
7154   }
7155 
7156   if (isa<CallExpr>(Init)) {
7157     if (EnableLifetimeWarnings)
7158       handleGslAnnotatedTypes(Path, Init, Visit);
7159     return visitLifetimeBoundArguments(Path, Init, Visit);
7160   }
7161 
7162   switch (Init->getStmtClass()) {
7163   case Stmt::DeclRefExprClass: {
7164     // If we find the name of a local non-reference parameter, we could have a
7165     // lifetime problem.
7166     auto *DRE = cast<DeclRefExpr>(Init);
7167     auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
7168     if (VD && VD->hasLocalStorage() &&
7169         !DRE->refersToEnclosingVariableOrCapture()) {
7170       if (!VD->getType()->isReferenceType()) {
7171         Visit(Path, Local(DRE), RK);
7172       } else if (isa<ParmVarDecl>(DRE->getDecl())) {
7173         // The lifetime of a reference parameter is unknown; assume it's OK
7174         // for now.
7175         break;
7176       } else if (VD->getInit() && !isVarOnPath(Path, VD)) {
7177         Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
7178         visitLocalsRetainedByReferenceBinding(Path, VD->getInit(),
7179                                               RK_ReferenceBinding, Visit,
7180                                               EnableLifetimeWarnings);
7181       }
7182     }
7183     break;
7184   }
7185 
7186   case Stmt::UnaryOperatorClass: {
7187     // The only unary operator that make sense to handle here
7188     // is Deref.  All others don't resolve to a "name."  This includes
7189     // handling all sorts of rvalues passed to a unary operator.
7190     const UnaryOperator *U = cast<UnaryOperator>(Init);
7191     if (U->getOpcode() == UO_Deref)
7192       visitLocalsRetainedByInitializer(Path, U->getSubExpr(), Visit, true,
7193                                        EnableLifetimeWarnings);
7194     break;
7195   }
7196 
7197   case Stmt::OMPArraySectionExprClass: {
7198     visitLocalsRetainedByInitializer(Path,
7199                                      cast<OMPArraySectionExpr>(Init)->getBase(),
7200                                      Visit, true, EnableLifetimeWarnings);
7201     break;
7202   }
7203 
7204   case Stmt::ConditionalOperatorClass:
7205   case Stmt::BinaryConditionalOperatorClass: {
7206     auto *C = cast<AbstractConditionalOperator>(Init);
7207     if (!C->getTrueExpr()->getType()->isVoidType())
7208       visitLocalsRetainedByReferenceBinding(Path, C->getTrueExpr(), RK, Visit,
7209                                             EnableLifetimeWarnings);
7210     if (!C->getFalseExpr()->getType()->isVoidType())
7211       visitLocalsRetainedByReferenceBinding(Path, C->getFalseExpr(), RK, Visit,
7212                                             EnableLifetimeWarnings);
7213     break;
7214   }
7215 
7216   // FIXME: Visit the left-hand side of an -> or ->*.
7217 
7218   default:
7219     break;
7220   }
7221 }
7222 
7223 /// Visit the locals that would be reachable through an object initialized by
7224 /// the prvalue expression \c Init.
7225 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
7226                                              Expr *Init, LocalVisitor Visit,
7227                                              bool RevisitSubinits,
7228                                              bool EnableLifetimeWarnings) {
7229   RevertToOldSizeRAII RAII(Path);
7230 
7231   Expr *Old;
7232   do {
7233     Old = Init;
7234 
7235     // Step into CXXDefaultInitExprs so we can diagnose cases where a
7236     // constructor inherits one as an implicit mem-initializer.
7237     if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
7238       Path.push_back({IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
7239       Init = DIE->getExpr();
7240     }
7241 
7242     if (auto *FE = dyn_cast<FullExpr>(Init))
7243       Init = FE->getSubExpr();
7244 
7245     // Dig out the expression which constructs the extended temporary.
7246     Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
7247 
7248     if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init))
7249       Init = BTE->getSubExpr();
7250 
7251     Init = Init->IgnoreParens();
7252 
7253     // Step over value-preserving rvalue casts.
7254     if (auto *CE = dyn_cast<CastExpr>(Init)) {
7255       switch (CE->getCastKind()) {
7256       case CK_LValueToRValue:
7257         // If we can match the lvalue to a const object, we can look at its
7258         // initializer.
7259         Path.push_back({IndirectLocalPathEntry::LValToRVal, CE});
7260         return visitLocalsRetainedByReferenceBinding(
7261             Path, Init, RK_ReferenceBinding,
7262             [&](IndirectLocalPath &Path, Local L, ReferenceKind RK) -> bool {
7263           if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
7264             auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
7265             if (VD && VD->getType().isConstQualified() && VD->getInit() &&
7266                 !isVarOnPath(Path, VD)) {
7267               Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
7268               visitLocalsRetainedByInitializer(Path, VD->getInit(), Visit, true,
7269                                                EnableLifetimeWarnings);
7270             }
7271           } else if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L)) {
7272             if (MTE->getType().isConstQualified())
7273               visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit,
7274                                                true, EnableLifetimeWarnings);
7275           }
7276           return false;
7277         }, EnableLifetimeWarnings);
7278 
7279         // We assume that objects can be retained by pointers cast to integers,
7280         // but not if the integer is cast to floating-point type or to _Complex.
7281         // We assume that casts to 'bool' do not preserve enough information to
7282         // retain a local object.
7283       case CK_NoOp:
7284       case CK_BitCast:
7285       case CK_BaseToDerived:
7286       case CK_DerivedToBase:
7287       case CK_UncheckedDerivedToBase:
7288       case CK_Dynamic:
7289       case CK_ToUnion:
7290       case CK_UserDefinedConversion:
7291       case CK_ConstructorConversion:
7292       case CK_IntegralToPointer:
7293       case CK_PointerToIntegral:
7294       case CK_VectorSplat:
7295       case CK_IntegralCast:
7296       case CK_CPointerToObjCPointerCast:
7297       case CK_BlockPointerToObjCPointerCast:
7298       case CK_AnyPointerToBlockPointerCast:
7299       case CK_AddressSpaceConversion:
7300         break;
7301 
7302       case CK_ArrayToPointerDecay:
7303         // Model array-to-pointer decay as taking the address of the array
7304         // lvalue.
7305         Path.push_back({IndirectLocalPathEntry::AddressOf, CE});
7306         return visitLocalsRetainedByReferenceBinding(Path, CE->getSubExpr(),
7307                                                      RK_ReferenceBinding, Visit,
7308                                                      EnableLifetimeWarnings);
7309 
7310       default:
7311         return;
7312       }
7313 
7314       Init = CE->getSubExpr();
7315     }
7316   } while (Old != Init);
7317 
7318   // C++17 [dcl.init.list]p6:
7319   //   initializing an initializer_list object from the array extends the
7320   //   lifetime of the array exactly like binding a reference to a temporary.
7321   if (auto *ILE = dyn_cast<CXXStdInitializerListExpr>(Init))
7322     return visitLocalsRetainedByReferenceBinding(Path, ILE->getSubExpr(),
7323                                                  RK_StdInitializerList, Visit,
7324                                                  EnableLifetimeWarnings);
7325 
7326   if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
7327     // We already visited the elements of this initializer list while
7328     // performing the initialization. Don't visit them again unless we've
7329     // changed the lifetime of the initialized entity.
7330     if (!RevisitSubinits)
7331       return;
7332 
7333     if (ILE->isTransparent())
7334       return visitLocalsRetainedByInitializer(Path, ILE->getInit(0), Visit,
7335                                               RevisitSubinits,
7336                                               EnableLifetimeWarnings);
7337 
7338     if (ILE->getType()->isArrayType()) {
7339       for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I)
7340         visitLocalsRetainedByInitializer(Path, ILE->getInit(I), Visit,
7341                                          RevisitSubinits,
7342                                          EnableLifetimeWarnings);
7343       return;
7344     }
7345 
7346     if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) {
7347       assert(RD->isAggregate() && "aggregate init on non-aggregate");
7348 
7349       // If we lifetime-extend a braced initializer which is initializing an
7350       // aggregate, and that aggregate contains reference members which are
7351       // bound to temporaries, those temporaries are also lifetime-extended.
7352       if (RD->isUnion() && ILE->getInitializedFieldInUnion() &&
7353           ILE->getInitializedFieldInUnion()->getType()->isReferenceType())
7354         visitLocalsRetainedByReferenceBinding(Path, ILE->getInit(0),
7355                                               RK_ReferenceBinding, Visit,
7356                                               EnableLifetimeWarnings);
7357       else {
7358         unsigned Index = 0;
7359         for (; Index < RD->getNumBases() && Index < ILE->getNumInits(); ++Index)
7360           visitLocalsRetainedByInitializer(Path, ILE->getInit(Index), Visit,
7361                                            RevisitSubinits,
7362                                            EnableLifetimeWarnings);
7363         for (const auto *I : RD->fields()) {
7364           if (Index >= ILE->getNumInits())
7365             break;
7366           if (I->isUnnamedBitfield())
7367             continue;
7368           Expr *SubInit = ILE->getInit(Index);
7369           if (I->getType()->isReferenceType())
7370             visitLocalsRetainedByReferenceBinding(Path, SubInit,
7371                                                   RK_ReferenceBinding, Visit,
7372                                                   EnableLifetimeWarnings);
7373           else
7374             // This might be either aggregate-initialization of a member or
7375             // initialization of a std::initializer_list object. Regardless,
7376             // we should recursively lifetime-extend that initializer.
7377             visitLocalsRetainedByInitializer(Path, SubInit, Visit,
7378                                              RevisitSubinits,
7379                                              EnableLifetimeWarnings);
7380           ++Index;
7381         }
7382       }
7383     }
7384     return;
7385   }
7386 
7387   // The lifetime of an init-capture is that of the closure object constructed
7388   // by a lambda-expression.
7389   if (auto *LE = dyn_cast<LambdaExpr>(Init)) {
7390     LambdaExpr::capture_iterator CapI = LE->capture_begin();
7391     for (Expr *E : LE->capture_inits()) {
7392       assert(CapI != LE->capture_end());
7393       const LambdaCapture &Cap = *CapI++;
7394       if (!E)
7395         continue;
7396       if (Cap.capturesVariable())
7397         Path.push_back({IndirectLocalPathEntry::LambdaCaptureInit, E, &Cap});
7398       if (E->isGLValue())
7399         visitLocalsRetainedByReferenceBinding(Path, E, RK_ReferenceBinding,
7400                                               Visit, EnableLifetimeWarnings);
7401       else
7402         visitLocalsRetainedByInitializer(Path, E, Visit, true,
7403                                          EnableLifetimeWarnings);
7404       if (Cap.capturesVariable())
7405         Path.pop_back();
7406     }
7407   }
7408 
7409   // Assume that a copy or move from a temporary references the same objects
7410   // that the temporary does.
7411   if (auto *CCE = dyn_cast<CXXConstructExpr>(Init)) {
7412     if (CCE->getConstructor()->isCopyOrMoveConstructor()) {
7413       if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(CCE->getArg(0))) {
7414         Expr *Arg = MTE->getSubExpr();
7415         Path.push_back({IndirectLocalPathEntry::TemporaryCopy, Arg,
7416                         CCE->getConstructor()});
7417         visitLocalsRetainedByInitializer(Path, Arg, Visit, true,
7418                                          /*EnableLifetimeWarnings*/false);
7419         Path.pop_back();
7420       }
7421     }
7422   }
7423 
7424   if (isa<CallExpr>(Init) || isa<CXXConstructExpr>(Init)) {
7425     if (EnableLifetimeWarnings)
7426       handleGslAnnotatedTypes(Path, Init, Visit);
7427     return visitLifetimeBoundArguments(Path, Init, Visit);
7428   }
7429 
7430   switch (Init->getStmtClass()) {
7431   case Stmt::UnaryOperatorClass: {
7432     auto *UO = cast<UnaryOperator>(Init);
7433     // If the initializer is the address of a local, we could have a lifetime
7434     // problem.
7435     if (UO->getOpcode() == UO_AddrOf) {
7436       // If this is &rvalue, then it's ill-formed and we have already diagnosed
7437       // it. Don't produce a redundant warning about the lifetime of the
7438       // temporary.
7439       if (isa<MaterializeTemporaryExpr>(UO->getSubExpr()))
7440         return;
7441 
7442       Path.push_back({IndirectLocalPathEntry::AddressOf, UO});
7443       visitLocalsRetainedByReferenceBinding(Path, UO->getSubExpr(),
7444                                             RK_ReferenceBinding, Visit,
7445                                             EnableLifetimeWarnings);
7446     }
7447     break;
7448   }
7449 
7450   case Stmt::BinaryOperatorClass: {
7451     // Handle pointer arithmetic.
7452     auto *BO = cast<BinaryOperator>(Init);
7453     BinaryOperatorKind BOK = BO->getOpcode();
7454     if (!BO->getType()->isPointerType() || (BOK != BO_Add && BOK != BO_Sub))
7455       break;
7456 
7457     if (BO->getLHS()->getType()->isPointerType())
7458       visitLocalsRetainedByInitializer(Path, BO->getLHS(), Visit, true,
7459                                        EnableLifetimeWarnings);
7460     else if (BO->getRHS()->getType()->isPointerType())
7461       visitLocalsRetainedByInitializer(Path, BO->getRHS(), Visit, true,
7462                                        EnableLifetimeWarnings);
7463     break;
7464   }
7465 
7466   case Stmt::ConditionalOperatorClass:
7467   case Stmt::BinaryConditionalOperatorClass: {
7468     auto *C = cast<AbstractConditionalOperator>(Init);
7469     // In C++, we can have a throw-expression operand, which has 'void' type
7470     // and isn't interesting from a lifetime perspective.
7471     if (!C->getTrueExpr()->getType()->isVoidType())
7472       visitLocalsRetainedByInitializer(Path, C->getTrueExpr(), Visit, true,
7473                                        EnableLifetimeWarnings);
7474     if (!C->getFalseExpr()->getType()->isVoidType())
7475       visitLocalsRetainedByInitializer(Path, C->getFalseExpr(), Visit, true,
7476                                        EnableLifetimeWarnings);
7477     break;
7478   }
7479 
7480   case Stmt::BlockExprClass:
7481     if (cast<BlockExpr>(Init)->getBlockDecl()->hasCaptures()) {
7482       // This is a local block, whose lifetime is that of the function.
7483       Visit(Path, Local(cast<BlockExpr>(Init)), RK_ReferenceBinding);
7484     }
7485     break;
7486 
7487   case Stmt::AddrLabelExprClass:
7488     // We want to warn if the address of a label would escape the function.
7489     Visit(Path, Local(cast<AddrLabelExpr>(Init)), RK_ReferenceBinding);
7490     break;
7491 
7492   default:
7493     break;
7494   }
7495 }
7496 
7497 /// Whether a path to an object supports lifetime extension.
7498 enum PathLifetimeKind {
7499   /// Lifetime-extend along this path.
7500   Extend,
7501   /// We should lifetime-extend, but we don't because (due to technical
7502   /// limitations) we can't. This happens for default member initializers,
7503   /// which we don't clone for every use, so we don't have a unique
7504   /// MaterializeTemporaryExpr to update.
7505   ShouldExtend,
7506   /// Do not lifetime extend along this path.
7507   NoExtend
7508 };
7509 
7510 /// Determine whether this is an indirect path to a temporary that we are
7511 /// supposed to lifetime-extend along.
7512 static PathLifetimeKind
7513 shouldLifetimeExtendThroughPath(const IndirectLocalPath &Path) {
7514   PathLifetimeKind Kind = PathLifetimeKind::Extend;
7515   for (auto Elem : Path) {
7516     if (Elem.Kind == IndirectLocalPathEntry::DefaultInit)
7517       Kind = PathLifetimeKind::ShouldExtend;
7518     else if (Elem.Kind != IndirectLocalPathEntry::LambdaCaptureInit)
7519       return PathLifetimeKind::NoExtend;
7520   }
7521   return Kind;
7522 }
7523 
7524 /// Find the range for the first interesting entry in the path at or after I.
7525 static SourceRange nextPathEntryRange(const IndirectLocalPath &Path, unsigned I,
7526                                       Expr *E) {
7527   for (unsigned N = Path.size(); I != N; ++I) {
7528     switch (Path[I].Kind) {
7529     case IndirectLocalPathEntry::AddressOf:
7530     case IndirectLocalPathEntry::LValToRVal:
7531     case IndirectLocalPathEntry::LifetimeBoundCall:
7532     case IndirectLocalPathEntry::TemporaryCopy:
7533     case IndirectLocalPathEntry::GslReferenceInit:
7534     case IndirectLocalPathEntry::GslPointerInit:
7535       // These exist primarily to mark the path as not permitting or
7536       // supporting lifetime extension.
7537       break;
7538 
7539     case IndirectLocalPathEntry::VarInit:
7540       if (cast<VarDecl>(Path[I].D)->isImplicit())
7541         return SourceRange();
7542       LLVM_FALLTHROUGH;
7543     case IndirectLocalPathEntry::DefaultInit:
7544       return Path[I].E->getSourceRange();
7545 
7546     case IndirectLocalPathEntry::LambdaCaptureInit:
7547       if (!Path[I].Capture->capturesVariable())
7548         continue;
7549       return Path[I].E->getSourceRange();
7550     }
7551   }
7552   return E->getSourceRange();
7553 }
7554 
7555 static bool pathOnlyInitializesGslPointer(IndirectLocalPath &Path) {
7556   for (auto It = Path.rbegin(), End = Path.rend(); It != End; ++It) {
7557     if (It->Kind == IndirectLocalPathEntry::VarInit)
7558       continue;
7559     if (It->Kind == IndirectLocalPathEntry::AddressOf)
7560       continue;
7561     if (It->Kind == IndirectLocalPathEntry::LifetimeBoundCall)
7562       continue;
7563     return It->Kind == IndirectLocalPathEntry::GslPointerInit ||
7564            It->Kind == IndirectLocalPathEntry::GslReferenceInit;
7565   }
7566   return false;
7567 }
7568 
7569 void Sema::checkInitializerLifetime(const InitializedEntity &Entity,
7570                                     Expr *Init) {
7571   LifetimeResult LR = getEntityLifetime(&Entity);
7572   LifetimeKind LK = LR.getInt();
7573   const InitializedEntity *ExtendingEntity = LR.getPointer();
7574 
7575   // If this entity doesn't have an interesting lifetime, don't bother looking
7576   // for temporaries within its initializer.
7577   if (LK == LK_FullExpression)
7578     return;
7579 
7580   auto TemporaryVisitor = [&](IndirectLocalPath &Path, Local L,
7581                               ReferenceKind RK) -> bool {
7582     SourceRange DiagRange = nextPathEntryRange(Path, 0, L);
7583     SourceLocation DiagLoc = DiagRange.getBegin();
7584 
7585     auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L);
7586 
7587     bool IsGslPtrInitWithGslTempOwner = false;
7588     bool IsLocalGslOwner = false;
7589     if (pathOnlyInitializesGslPointer(Path)) {
7590       if (isa<DeclRefExpr>(L)) {
7591         // We do not want to follow the references when returning a pointer originating
7592         // from a local owner to avoid the following false positive:
7593         //   int &p = *localUniquePtr;
7594         //   someContainer.add(std::move(localUniquePtr));
7595         //   return p;
7596         IsLocalGslOwner = isRecordWithAttr<OwnerAttr>(L->getType());
7597         if (pathContainsInit(Path) || !IsLocalGslOwner)
7598           return false;
7599       } else {
7600         IsGslPtrInitWithGslTempOwner = MTE && !MTE->getExtendingDecl() &&
7601                             isRecordWithAttr<OwnerAttr>(MTE->getType());
7602         // Skipping a chain of initializing gsl::Pointer annotated objects.
7603         // We are looking only for the final source to find out if it was
7604         // a local or temporary owner or the address of a local variable/param.
7605         if (!IsGslPtrInitWithGslTempOwner)
7606           return true;
7607       }
7608     }
7609 
7610     switch (LK) {
7611     case LK_FullExpression:
7612       llvm_unreachable("already handled this");
7613 
7614     case LK_Extended: {
7615       if (!MTE) {
7616         // The initialized entity has lifetime beyond the full-expression,
7617         // and the local entity does too, so don't warn.
7618         //
7619         // FIXME: We should consider warning if a static / thread storage
7620         // duration variable retains an automatic storage duration local.
7621         return false;
7622       }
7623 
7624       if (IsGslPtrInitWithGslTempOwner && DiagLoc.isValid()) {
7625         Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange;
7626         return false;
7627       }
7628 
7629       switch (shouldLifetimeExtendThroughPath(Path)) {
7630       case PathLifetimeKind::Extend:
7631         // Update the storage duration of the materialized temporary.
7632         // FIXME: Rebuild the expression instead of mutating it.
7633         MTE->setExtendingDecl(ExtendingEntity->getDecl(),
7634                               ExtendingEntity->allocateManglingNumber());
7635         // Also visit the temporaries lifetime-extended by this initializer.
7636         return true;
7637 
7638       case PathLifetimeKind::ShouldExtend:
7639         // We're supposed to lifetime-extend the temporary along this path (per
7640         // the resolution of DR1815), but we don't support that yet.
7641         //
7642         // FIXME: Properly handle this situation. Perhaps the easiest approach
7643         // would be to clone the initializer expression on each use that would
7644         // lifetime extend its temporaries.
7645         Diag(DiagLoc, diag::warn_unsupported_lifetime_extension)
7646             << RK << DiagRange;
7647         break;
7648 
7649       case PathLifetimeKind::NoExtend:
7650         // If the path goes through the initialization of a variable or field,
7651         // it can't possibly reach a temporary created in this full-expression.
7652         // We will have already diagnosed any problems with the initializer.
7653         if (pathContainsInit(Path))
7654           return false;
7655 
7656         Diag(DiagLoc, diag::warn_dangling_variable)
7657             << RK << !Entity.getParent()
7658             << ExtendingEntity->getDecl()->isImplicit()
7659             << ExtendingEntity->getDecl() << Init->isGLValue() << DiagRange;
7660         break;
7661       }
7662       break;
7663     }
7664 
7665     case LK_MemInitializer: {
7666       if (isa<MaterializeTemporaryExpr>(L)) {
7667         // Under C++ DR1696, if a mem-initializer (or a default member
7668         // initializer used by the absence of one) would lifetime-extend a
7669         // temporary, the program is ill-formed.
7670         if (auto *ExtendingDecl =
7671                 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
7672           if (IsGslPtrInitWithGslTempOwner) {
7673             Diag(DiagLoc, diag::warn_dangling_lifetime_pointer_member)
7674                 << ExtendingDecl << DiagRange;
7675             Diag(ExtendingDecl->getLocation(),
7676                  diag::note_ref_or_ptr_member_declared_here)
7677                 << true;
7678             return false;
7679           }
7680           bool IsSubobjectMember = ExtendingEntity != &Entity;
7681           Diag(DiagLoc, shouldLifetimeExtendThroughPath(Path) !=
7682                                 PathLifetimeKind::NoExtend
7683                             ? diag::err_dangling_member
7684                             : diag::warn_dangling_member)
7685               << ExtendingDecl << IsSubobjectMember << RK << DiagRange;
7686           // Don't bother adding a note pointing to the field if we're inside
7687           // its default member initializer; our primary diagnostic points to
7688           // the same place in that case.
7689           if (Path.empty() ||
7690               Path.back().Kind != IndirectLocalPathEntry::DefaultInit) {
7691             Diag(ExtendingDecl->getLocation(),
7692                  diag::note_lifetime_extending_member_declared_here)
7693                 << RK << IsSubobjectMember;
7694           }
7695         } else {
7696           // We have a mem-initializer but no particular field within it; this
7697           // is either a base class or a delegating initializer directly
7698           // initializing the base-class from something that doesn't live long
7699           // enough.
7700           //
7701           // FIXME: Warn on this.
7702           return false;
7703         }
7704       } else {
7705         // Paths via a default initializer can only occur during error recovery
7706         // (there's no other way that a default initializer can refer to a
7707         // local). Don't produce a bogus warning on those cases.
7708         if (pathContainsInit(Path))
7709           return false;
7710 
7711         // Suppress false positives for code like the one below:
7712         //   Ctor(unique_ptr<T> up) : member(*up), member2(move(up)) {}
7713         if (IsLocalGslOwner && pathOnlyInitializesGslPointer(Path))
7714           return false;
7715 
7716         auto *DRE = dyn_cast<DeclRefExpr>(L);
7717         auto *VD = DRE ? dyn_cast<VarDecl>(DRE->getDecl()) : nullptr;
7718         if (!VD) {
7719           // A member was initialized to a local block.
7720           // FIXME: Warn on this.
7721           return false;
7722         }
7723 
7724         if (auto *Member =
7725                 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
7726           bool IsPointer = !Member->getType()->isReferenceType();
7727           Diag(DiagLoc, IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
7728                                   : diag::warn_bind_ref_member_to_parameter)
7729               << Member << VD << isa<ParmVarDecl>(VD) << DiagRange;
7730           Diag(Member->getLocation(),
7731                diag::note_ref_or_ptr_member_declared_here)
7732               << (unsigned)IsPointer;
7733         }
7734       }
7735       break;
7736     }
7737 
7738     case LK_New:
7739       if (isa<MaterializeTemporaryExpr>(L)) {
7740         if (IsGslPtrInitWithGslTempOwner)
7741           Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange;
7742         else
7743           Diag(DiagLoc, RK == RK_ReferenceBinding
7744                             ? diag::warn_new_dangling_reference
7745                             : diag::warn_new_dangling_initializer_list)
7746               << !Entity.getParent() << DiagRange;
7747       } else {
7748         // We can't determine if the allocation outlives the local declaration.
7749         return false;
7750       }
7751       break;
7752 
7753     case LK_Return:
7754     case LK_StmtExprResult:
7755       if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
7756         // We can't determine if the local variable outlives the statement
7757         // expression.
7758         if (LK == LK_StmtExprResult)
7759           return false;
7760         Diag(DiagLoc, diag::warn_ret_stack_addr_ref)
7761             << Entity.getType()->isReferenceType() << DRE->getDecl()
7762             << isa<ParmVarDecl>(DRE->getDecl()) << DiagRange;
7763       } else if (isa<BlockExpr>(L)) {
7764         Diag(DiagLoc, diag::err_ret_local_block) << DiagRange;
7765       } else if (isa<AddrLabelExpr>(L)) {
7766         // Don't warn when returning a label from a statement expression.
7767         // Leaving the scope doesn't end its lifetime.
7768         if (LK == LK_StmtExprResult)
7769           return false;
7770         Diag(DiagLoc, diag::warn_ret_addr_label) << DiagRange;
7771       } else {
7772         Diag(DiagLoc, diag::warn_ret_local_temp_addr_ref)
7773          << Entity.getType()->isReferenceType() << DiagRange;
7774       }
7775       break;
7776     }
7777 
7778     for (unsigned I = 0; I != Path.size(); ++I) {
7779       auto Elem = Path[I];
7780 
7781       switch (Elem.Kind) {
7782       case IndirectLocalPathEntry::AddressOf:
7783       case IndirectLocalPathEntry::LValToRVal:
7784         // These exist primarily to mark the path as not permitting or
7785         // supporting lifetime extension.
7786         break;
7787 
7788       case IndirectLocalPathEntry::LifetimeBoundCall:
7789       case IndirectLocalPathEntry::TemporaryCopy:
7790       case IndirectLocalPathEntry::GslPointerInit:
7791       case IndirectLocalPathEntry::GslReferenceInit:
7792         // FIXME: Consider adding a note for these.
7793         break;
7794 
7795       case IndirectLocalPathEntry::DefaultInit: {
7796         auto *FD = cast<FieldDecl>(Elem.D);
7797         Diag(FD->getLocation(), diag::note_init_with_default_member_initalizer)
7798             << FD << nextPathEntryRange(Path, I + 1, L);
7799         break;
7800       }
7801 
7802       case IndirectLocalPathEntry::VarInit: {
7803         const VarDecl *VD = cast<VarDecl>(Elem.D);
7804         Diag(VD->getLocation(), diag::note_local_var_initializer)
7805             << VD->getType()->isReferenceType()
7806             << VD->isImplicit() << VD->getDeclName()
7807             << nextPathEntryRange(Path, I + 1, L);
7808         break;
7809       }
7810 
7811       case IndirectLocalPathEntry::LambdaCaptureInit:
7812         if (!Elem.Capture->capturesVariable())
7813           break;
7814         // FIXME: We can't easily tell apart an init-capture from a nested
7815         // capture of an init-capture.
7816         const VarDecl *VD = Elem.Capture->getCapturedVar();
7817         Diag(Elem.Capture->getLocation(), diag::note_lambda_capture_initializer)
7818             << VD << VD->isInitCapture() << Elem.Capture->isExplicit()
7819             << (Elem.Capture->getCaptureKind() == LCK_ByRef) << VD
7820             << nextPathEntryRange(Path, I + 1, L);
7821         break;
7822       }
7823     }
7824 
7825     // We didn't lifetime-extend, so don't go any further; we don't need more
7826     // warnings or errors on inner temporaries within this one's initializer.
7827     return false;
7828   };
7829 
7830   bool EnableLifetimeWarnings = !getDiagnostics().isIgnored(
7831       diag::warn_dangling_lifetime_pointer, SourceLocation());
7832   llvm::SmallVector<IndirectLocalPathEntry, 8> Path;
7833   if (Init->isGLValue())
7834     visitLocalsRetainedByReferenceBinding(Path, Init, RK_ReferenceBinding,
7835                                           TemporaryVisitor,
7836                                           EnableLifetimeWarnings);
7837   else
7838     visitLocalsRetainedByInitializer(Path, Init, TemporaryVisitor, false,
7839                                      EnableLifetimeWarnings);
7840 }
7841 
7842 static void DiagnoseNarrowingInInitList(Sema &S,
7843                                         const ImplicitConversionSequence &ICS,
7844                                         QualType PreNarrowingType,
7845                                         QualType EntityType,
7846                                         const Expr *PostInit);
7847 
7848 /// Provide warnings when std::move is used on construction.
7849 static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr,
7850                                     bool IsReturnStmt) {
7851   if (!InitExpr)
7852     return;
7853 
7854   if (S.inTemplateInstantiation())
7855     return;
7856 
7857   QualType DestType = InitExpr->getType();
7858   if (!DestType->isRecordType())
7859     return;
7860 
7861   unsigned DiagID = 0;
7862   if (IsReturnStmt) {
7863     const CXXConstructExpr *CCE =
7864         dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens());
7865     if (!CCE || CCE->getNumArgs() != 1)
7866       return;
7867 
7868     if (!CCE->getConstructor()->isCopyOrMoveConstructor())
7869       return;
7870 
7871     InitExpr = CCE->getArg(0)->IgnoreImpCasts();
7872   }
7873 
7874   // Find the std::move call and get the argument.
7875   const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens());
7876   if (!CE || !CE->isCallToStdMove())
7877     return;
7878 
7879   const Expr *Arg = CE->getArg(0)->IgnoreImplicit();
7880 
7881   if (IsReturnStmt) {
7882     const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts());
7883     if (!DRE || DRE->refersToEnclosingVariableOrCapture())
7884       return;
7885 
7886     const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
7887     if (!VD || !VD->hasLocalStorage())
7888       return;
7889 
7890     // __block variables are not moved implicitly.
7891     if (VD->hasAttr<BlocksAttr>())
7892       return;
7893 
7894     QualType SourceType = VD->getType();
7895     if (!SourceType->isRecordType())
7896       return;
7897 
7898     if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) {
7899       return;
7900     }
7901 
7902     // If we're returning a function parameter, copy elision
7903     // is not possible.
7904     if (isa<ParmVarDecl>(VD))
7905       DiagID = diag::warn_redundant_move_on_return;
7906     else
7907       DiagID = diag::warn_pessimizing_move_on_return;
7908   } else {
7909     DiagID = diag::warn_pessimizing_move_on_initialization;
7910     const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens();
7911     if (!ArgStripped->isPRValue() || !ArgStripped->getType()->isRecordType())
7912       return;
7913   }
7914 
7915   S.Diag(CE->getBeginLoc(), DiagID);
7916 
7917   // Get all the locations for a fix-it.  Don't emit the fix-it if any location
7918   // is within a macro.
7919   SourceLocation CallBegin = CE->getCallee()->getBeginLoc();
7920   if (CallBegin.isMacroID())
7921     return;
7922   SourceLocation RParen = CE->getRParenLoc();
7923   if (RParen.isMacroID())
7924     return;
7925   SourceLocation LParen;
7926   SourceLocation ArgLoc = Arg->getBeginLoc();
7927 
7928   // Special testing for the argument location.  Since the fix-it needs the
7929   // location right before the argument, the argument location can be in a
7930   // macro only if it is at the beginning of the macro.
7931   while (ArgLoc.isMacroID() &&
7932          S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) {
7933     ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).getBegin();
7934   }
7935 
7936   if (LParen.isMacroID())
7937     return;
7938 
7939   LParen = ArgLoc.getLocWithOffset(-1);
7940 
7941   S.Diag(CE->getBeginLoc(), diag::note_remove_move)
7942       << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen))
7943       << FixItHint::CreateRemoval(SourceRange(RParen, RParen));
7944 }
7945 
7946 static void CheckForNullPointerDereference(Sema &S, const Expr *E) {
7947   // Check to see if we are dereferencing a null pointer.  If so, this is
7948   // undefined behavior, so warn about it.  This only handles the pattern
7949   // "*null", which is a very syntactic check.
7950   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
7951     if (UO->getOpcode() == UO_Deref &&
7952         UO->getSubExpr()->IgnoreParenCasts()->
7953         isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) {
7954     S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
7955                           S.PDiag(diag::warn_binding_null_to_reference)
7956                             << UO->getSubExpr()->getSourceRange());
7957   }
7958 }
7959 
7960 MaterializeTemporaryExpr *
7961 Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary,
7962                                      bool BoundToLvalueReference) {
7963   auto MTE = new (Context)
7964       MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference);
7965 
7966   // Order an ExprWithCleanups for lifetime marks.
7967   //
7968   // TODO: It'll be good to have a single place to check the access of the
7969   // destructor and generate ExprWithCleanups for various uses. Currently these
7970   // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary,
7971   // but there may be a chance to merge them.
7972   Cleanup.setExprNeedsCleanups(false);
7973   return MTE;
7974 }
7975 
7976 ExprResult Sema::TemporaryMaterializationConversion(Expr *E) {
7977   // In C++98, we don't want to implicitly create an xvalue.
7978   // FIXME: This means that AST consumers need to deal with "prvalues" that
7979   // denote materialized temporaries. Maybe we should add another ValueKind
7980   // for "xvalue pretending to be a prvalue" for C++98 support.
7981   if (!E->isPRValue() || !getLangOpts().CPlusPlus11)
7982     return E;
7983 
7984   // C++1z [conv.rval]/1: T shall be a complete type.
7985   // FIXME: Does this ever matter (can we form a prvalue of incomplete type)?
7986   // If so, we should check for a non-abstract class type here too.
7987   QualType T = E->getType();
7988   if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type))
7989     return ExprError();
7990 
7991   return CreateMaterializeTemporaryExpr(E->getType(), E, false);
7992 }
7993 
7994 ExprResult Sema::PerformQualificationConversion(Expr *E, QualType Ty,
7995                                                 ExprValueKind VK,
7996                                                 CheckedConversionKind CCK) {
7997 
7998   CastKind CK = CK_NoOp;
7999 
8000   if (VK == VK_PRValue) {
8001     auto PointeeTy = Ty->getPointeeType();
8002     auto ExprPointeeTy = E->getType()->getPointeeType();
8003     if (!PointeeTy.isNull() &&
8004         PointeeTy.getAddressSpace() != ExprPointeeTy.getAddressSpace())
8005       CK = CK_AddressSpaceConversion;
8006   } else if (Ty.getAddressSpace() != E->getType().getAddressSpace()) {
8007     CK = CK_AddressSpaceConversion;
8008   }
8009 
8010   return ImpCastExprToType(E, Ty, CK, VK, /*BasePath=*/nullptr, CCK);
8011 }
8012 
8013 ExprResult InitializationSequence::Perform(Sema &S,
8014                                            const InitializedEntity &Entity,
8015                                            const InitializationKind &Kind,
8016                                            MultiExprArg Args,
8017                                            QualType *ResultType) {
8018   if (Failed()) {
8019     Diagnose(S, Entity, Kind, Args);
8020     return ExprError();
8021   }
8022   if (!ZeroInitializationFixit.empty()) {
8023     unsigned DiagID = diag::err_default_init_const;
8024     if (Decl *D = Entity.getDecl())
8025       if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>())
8026         DiagID = diag::ext_default_init_const;
8027 
8028     // The initialization would have succeeded with this fixit. Since the fixit
8029     // is on the error, we need to build a valid AST in this case, so this isn't
8030     // handled in the Failed() branch above.
8031     QualType DestType = Entity.getType();
8032     S.Diag(Kind.getLocation(), DiagID)
8033         << DestType << (bool)DestType->getAs<RecordType>()
8034         << FixItHint::CreateInsertion(ZeroInitializationFixitLoc,
8035                                       ZeroInitializationFixit);
8036   }
8037 
8038   if (getKind() == DependentSequence) {
8039     // If the declaration is a non-dependent, incomplete array type
8040     // that has an initializer, then its type will be completed once
8041     // the initializer is instantiated.
8042     if (ResultType && !Entity.getType()->isDependentType() &&
8043         Args.size() == 1) {
8044       QualType DeclType = Entity.getType();
8045       if (const IncompleteArrayType *ArrayT
8046                            = S.Context.getAsIncompleteArrayType(DeclType)) {
8047         // FIXME: We don't currently have the ability to accurately
8048         // compute the length of an initializer list without
8049         // performing full type-checking of the initializer list
8050         // (since we have to determine where braces are implicitly
8051         // introduced and such).  So, we fall back to making the array
8052         // type a dependently-sized array type with no specified
8053         // bound.
8054         if (isa<InitListExpr>((Expr *)Args[0])) {
8055           SourceRange Brackets;
8056 
8057           // Scavange the location of the brackets from the entity, if we can.
8058           if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Entity.getDecl())) {
8059             if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
8060               TypeLoc TL = TInfo->getTypeLoc();
8061               if (IncompleteArrayTypeLoc ArrayLoc =
8062                       TL.getAs<IncompleteArrayTypeLoc>())
8063                 Brackets = ArrayLoc.getBracketsRange();
8064             }
8065           }
8066 
8067           *ResultType
8068             = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
8069                                                    /*NumElts=*/nullptr,
8070                                                    ArrayT->getSizeModifier(),
8071                                        ArrayT->getIndexTypeCVRQualifiers(),
8072                                                    Brackets);
8073         }
8074 
8075       }
8076     }
8077     if (Kind.getKind() == InitializationKind::IK_Direct &&
8078         !Kind.isExplicitCast()) {
8079       // Rebuild the ParenListExpr.
8080       SourceRange ParenRange = Kind.getParenOrBraceRange();
8081       return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
8082                                   Args);
8083     }
8084     assert(Kind.getKind() == InitializationKind::IK_Copy ||
8085            Kind.isExplicitCast() ||
8086            Kind.getKind() == InitializationKind::IK_DirectList);
8087     return ExprResult(Args[0]);
8088   }
8089 
8090   // No steps means no initialization.
8091   if (Steps.empty())
8092     return ExprResult((Expr *)nullptr);
8093 
8094   if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
8095       Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
8096       !Entity.isParamOrTemplateParamKind()) {
8097     // Produce a C++98 compatibility warning if we are initializing a reference
8098     // from an initializer list. For parameters, we produce a better warning
8099     // elsewhere.
8100     Expr *Init = Args[0];
8101     S.Diag(Init->getBeginLoc(), diag::warn_cxx98_compat_reference_list_init)
8102         << Init->getSourceRange();
8103   }
8104 
8105   // OpenCL v2.0 s6.13.11.1. atomic variables can be initialized in global scope
8106   QualType ETy = Entity.getType();
8107   bool HasGlobalAS = ETy.hasAddressSpace() &&
8108                      ETy.getAddressSpace() == LangAS::opencl_global;
8109 
8110   if (S.getLangOpts().OpenCLVersion >= 200 &&
8111       ETy->isAtomicType() && !HasGlobalAS &&
8112       Entity.getKind() == InitializedEntity::EK_Variable && Args.size() > 0) {
8113     S.Diag(Args[0]->getBeginLoc(), diag::err_opencl_atomic_init)
8114         << 1
8115         << SourceRange(Entity.getDecl()->getBeginLoc(), Args[0]->getEndLoc());
8116     return ExprError();
8117   }
8118 
8119   QualType DestType = Entity.getType().getNonReferenceType();
8120   // FIXME: Ugly hack around the fact that Entity.getType() is not
8121   // the same as Entity.getDecl()->getType() in cases involving type merging,
8122   //  and we want latter when it makes sense.
8123   if (ResultType)
8124     *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
8125                                      Entity.getType();
8126 
8127   ExprResult CurInit((Expr *)nullptr);
8128   SmallVector<Expr*, 4> ArrayLoopCommonExprs;
8129 
8130   // For initialization steps that start with a single initializer,
8131   // grab the only argument out the Args and place it into the "current"
8132   // initializer.
8133   switch (Steps.front().Kind) {
8134   case SK_ResolveAddressOfOverloadedFunction:
8135   case SK_CastDerivedToBasePRValue:
8136   case SK_CastDerivedToBaseXValue:
8137   case SK_CastDerivedToBaseLValue:
8138   case SK_BindReference:
8139   case SK_BindReferenceToTemporary:
8140   case SK_FinalCopy:
8141   case SK_ExtraneousCopyToTemporary:
8142   case SK_UserConversion:
8143   case SK_QualificationConversionLValue:
8144   case SK_QualificationConversionXValue:
8145   case SK_QualificationConversionPRValue:
8146   case SK_FunctionReferenceConversion:
8147   case SK_AtomicConversion:
8148   case SK_ConversionSequence:
8149   case SK_ConversionSequenceNoNarrowing:
8150   case SK_ListInitialization:
8151   case SK_UnwrapInitList:
8152   case SK_RewrapInitList:
8153   case SK_CAssignment:
8154   case SK_StringInit:
8155   case SK_ObjCObjectConversion:
8156   case SK_ArrayLoopIndex:
8157   case SK_ArrayLoopInit:
8158   case SK_ArrayInit:
8159   case SK_GNUArrayInit:
8160   case SK_ParenthesizedArrayInit:
8161   case SK_PassByIndirectCopyRestore:
8162   case SK_PassByIndirectRestore:
8163   case SK_ProduceObjCObject:
8164   case SK_StdInitializerList:
8165   case SK_OCLSamplerInit:
8166   case SK_OCLZeroOpaqueType: {
8167     assert(Args.size() == 1);
8168     CurInit = Args[0];
8169     if (!CurInit.get()) return ExprError();
8170     break;
8171   }
8172 
8173   case SK_ConstructorInitialization:
8174   case SK_ConstructorInitializationFromList:
8175   case SK_StdInitializerListConstructorCall:
8176   case SK_ZeroInitialization:
8177     break;
8178   }
8179 
8180   // Promote from an unevaluated context to an unevaluated list context in
8181   // C++11 list-initialization; we need to instantiate entities usable in
8182   // constant expressions here in order to perform narrowing checks =(
8183   EnterExpressionEvaluationContext Evaluated(
8184       S, EnterExpressionEvaluationContext::InitList,
8185       CurInit.get() && isa<InitListExpr>(CurInit.get()));
8186 
8187   // C++ [class.abstract]p2:
8188   //   no objects of an abstract class can be created except as subobjects
8189   //   of a class derived from it
8190   auto checkAbstractType = [&](QualType T) -> bool {
8191     if (Entity.getKind() == InitializedEntity::EK_Base ||
8192         Entity.getKind() == InitializedEntity::EK_Delegating)
8193       return false;
8194     return S.RequireNonAbstractType(Kind.getLocation(), T,
8195                                     diag::err_allocation_of_abstract_type);
8196   };
8197 
8198   // Walk through the computed steps for the initialization sequence,
8199   // performing the specified conversions along the way.
8200   bool ConstructorInitRequiresZeroInit = false;
8201   for (step_iterator Step = step_begin(), StepEnd = step_end();
8202        Step != StepEnd; ++Step) {
8203     if (CurInit.isInvalid())
8204       return ExprError();
8205 
8206     QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
8207 
8208     switch (Step->Kind) {
8209     case SK_ResolveAddressOfOverloadedFunction:
8210       // Overload resolution determined which function invoke; update the
8211       // initializer to reflect that choice.
8212       S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
8213       if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()))
8214         return ExprError();
8215       CurInit = S.FixOverloadedFunctionReference(CurInit,
8216                                                  Step->Function.FoundDecl,
8217                                                  Step->Function.Function);
8218       // We might get back another placeholder expression if we resolved to a
8219       // builtin.
8220       if (!CurInit.isInvalid())
8221         CurInit = S.CheckPlaceholderExpr(CurInit.get());
8222       break;
8223 
8224     case SK_CastDerivedToBasePRValue:
8225     case SK_CastDerivedToBaseXValue:
8226     case SK_CastDerivedToBaseLValue: {
8227       // We have a derived-to-base cast that produces either an rvalue or an
8228       // lvalue. Perform that cast.
8229 
8230       CXXCastPath BasePath;
8231 
8232       // Casts to inaccessible base classes are allowed with C-style casts.
8233       bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
8234       if (S.CheckDerivedToBaseConversion(
8235               SourceType, Step->Type, CurInit.get()->getBeginLoc(),
8236               CurInit.get()->getSourceRange(), &BasePath, IgnoreBaseAccess))
8237         return ExprError();
8238 
8239       ExprValueKind VK =
8240           Step->Kind == SK_CastDerivedToBaseLValue
8241               ? VK_LValue
8242               : (Step->Kind == SK_CastDerivedToBaseXValue ? VK_XValue
8243                                                           : VK_PRValue);
8244       CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
8245                                          CK_DerivedToBase, CurInit.get(),
8246                                          &BasePath, VK, FPOptionsOverride());
8247       break;
8248     }
8249 
8250     case SK_BindReference:
8251       // Reference binding does not have any corresponding ASTs.
8252 
8253       // Check exception specifications
8254       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
8255         return ExprError();
8256 
8257       // We don't check for e.g. function pointers here, since address
8258       // availability checks should only occur when the function first decays
8259       // into a pointer or reference.
8260       if (CurInit.get()->getType()->isFunctionProtoType()) {
8261         if (auto *DRE = dyn_cast<DeclRefExpr>(CurInit.get()->IgnoreParens())) {
8262           if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
8263             if (!S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
8264                                                      DRE->getBeginLoc()))
8265               return ExprError();
8266           }
8267         }
8268       }
8269 
8270       CheckForNullPointerDereference(S, CurInit.get());
8271       break;
8272 
8273     case SK_BindReferenceToTemporary: {
8274       // Make sure the "temporary" is actually an rvalue.
8275       assert(CurInit.get()->isPRValue() && "not a temporary");
8276 
8277       // Check exception specifications
8278       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
8279         return ExprError();
8280 
8281       QualType MTETy = Step->Type;
8282 
8283       // When this is an incomplete array type (such as when this is
8284       // initializing an array of unknown bounds from an init list), use THAT
8285       // type instead so that we propagate the array bounds.
8286       if (MTETy->isIncompleteArrayType() &&
8287           !CurInit.get()->getType()->isIncompleteArrayType() &&
8288           S.Context.hasSameType(
8289               MTETy->getPointeeOrArrayElementType(),
8290               CurInit.get()->getType()->getPointeeOrArrayElementType()))
8291         MTETy = CurInit.get()->getType();
8292 
8293       // Materialize the temporary into memory.
8294       MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
8295           MTETy, CurInit.get(), Entity.getType()->isLValueReferenceType());
8296       CurInit = MTE;
8297 
8298       // If we're extending this temporary to automatic storage duration -- we
8299       // need to register its cleanup during the full-expression's cleanups.
8300       if (MTE->getStorageDuration() == SD_Automatic &&
8301           MTE->getType().isDestructedType())
8302         S.Cleanup.setExprNeedsCleanups(true);
8303       break;
8304     }
8305 
8306     case SK_FinalCopy:
8307       if (checkAbstractType(Step->Type))
8308         return ExprError();
8309 
8310       // If the overall initialization is initializing a temporary, we already
8311       // bound our argument if it was necessary to do so. If not (if we're
8312       // ultimately initializing a non-temporary), our argument needs to be
8313       // bound since it's initializing a function parameter.
8314       // FIXME: This is a mess. Rationalize temporary destruction.
8315       if (!shouldBindAsTemporary(Entity))
8316         CurInit = S.MaybeBindToTemporary(CurInit.get());
8317       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
8318                            /*IsExtraneousCopy=*/false);
8319       break;
8320 
8321     case SK_ExtraneousCopyToTemporary:
8322       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
8323                            /*IsExtraneousCopy=*/true);
8324       break;
8325 
8326     case SK_UserConversion: {
8327       // We have a user-defined conversion that invokes either a constructor
8328       // or a conversion function.
8329       CastKind CastKind;
8330       FunctionDecl *Fn = Step->Function.Function;
8331       DeclAccessPair FoundFn = Step->Function.FoundDecl;
8332       bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
8333       bool CreatedObject = false;
8334       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
8335         // Build a call to the selected constructor.
8336         SmallVector<Expr*, 8> ConstructorArgs;
8337         SourceLocation Loc = CurInit.get()->getBeginLoc();
8338 
8339         // Determine the arguments required to actually perform the constructor
8340         // call.
8341         Expr *Arg = CurInit.get();
8342         if (S.CompleteConstructorCall(Constructor, Step->Type,
8343                                       MultiExprArg(&Arg, 1), Loc,
8344                                       ConstructorArgs))
8345           return ExprError();
8346 
8347         // Build an expression that constructs a temporary.
8348         CurInit = S.BuildCXXConstructExpr(Loc, Step->Type,
8349                                           FoundFn, Constructor,
8350                                           ConstructorArgs,
8351                                           HadMultipleCandidates,
8352                                           /*ListInit*/ false,
8353                                           /*StdInitListInit*/ false,
8354                                           /*ZeroInit*/ false,
8355                                           CXXConstructExpr::CK_Complete,
8356                                           SourceRange());
8357         if (CurInit.isInvalid())
8358           return ExprError();
8359 
8360         S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn,
8361                                  Entity);
8362         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
8363           return ExprError();
8364 
8365         CastKind = CK_ConstructorConversion;
8366         CreatedObject = true;
8367       } else {
8368         // Build a call to the conversion function.
8369         CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
8370         S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr,
8371                                     FoundFn);
8372         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
8373           return ExprError();
8374 
8375         CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
8376                                            HadMultipleCandidates);
8377         if (CurInit.isInvalid())
8378           return ExprError();
8379 
8380         CastKind = CK_UserDefinedConversion;
8381         CreatedObject = Conversion->getReturnType()->isRecordType();
8382       }
8383 
8384       if (CreatedObject && checkAbstractType(CurInit.get()->getType()))
8385         return ExprError();
8386 
8387       CurInit = ImplicitCastExpr::Create(
8388           S.Context, CurInit.get()->getType(), CastKind, CurInit.get(), nullptr,
8389           CurInit.get()->getValueKind(), S.CurFPFeatureOverrides());
8390 
8391       if (shouldBindAsTemporary(Entity))
8392         // The overall entity is temporary, so this expression should be
8393         // destroyed at the end of its full-expression.
8394         CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
8395       else if (CreatedObject && shouldDestroyEntity(Entity)) {
8396         // The object outlasts the full-expression, but we need to prepare for
8397         // a destructor being run on it.
8398         // FIXME: It makes no sense to do this here. This should happen
8399         // regardless of how we initialized the entity.
8400         QualType T = CurInit.get()->getType();
8401         if (const RecordType *Record = T->getAs<RecordType>()) {
8402           CXXDestructorDecl *Destructor
8403             = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
8404           S.CheckDestructorAccess(CurInit.get()->getBeginLoc(), Destructor,
8405                                   S.PDiag(diag::err_access_dtor_temp) << T);
8406           S.MarkFunctionReferenced(CurInit.get()->getBeginLoc(), Destructor);
8407           if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getBeginLoc()))
8408             return ExprError();
8409         }
8410       }
8411       break;
8412     }
8413 
8414     case SK_QualificationConversionLValue:
8415     case SK_QualificationConversionXValue:
8416     case SK_QualificationConversionPRValue: {
8417       // Perform a qualification conversion; these can never go wrong.
8418       ExprValueKind VK =
8419           Step->Kind == SK_QualificationConversionLValue
8420               ? VK_LValue
8421               : (Step->Kind == SK_QualificationConversionXValue ? VK_XValue
8422                                                                 : VK_PRValue);
8423       CurInit = S.PerformQualificationConversion(CurInit.get(), Step->Type, VK);
8424       break;
8425     }
8426 
8427     case SK_FunctionReferenceConversion:
8428       assert(CurInit.get()->isLValue() &&
8429              "function reference should be lvalue");
8430       CurInit =
8431           S.ImpCastExprToType(CurInit.get(), Step->Type, CK_NoOp, VK_LValue);
8432       break;
8433 
8434     case SK_AtomicConversion: {
8435       assert(CurInit.get()->isPRValue() && "cannot convert glvalue to atomic");
8436       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8437                                     CK_NonAtomicToAtomic, VK_PRValue);
8438       break;
8439     }
8440 
8441     case SK_ConversionSequence:
8442     case SK_ConversionSequenceNoNarrowing: {
8443       if (const auto *FromPtrType =
8444               CurInit.get()->getType()->getAs<PointerType>()) {
8445         if (const auto *ToPtrType = Step->Type->getAs<PointerType>()) {
8446           if (FromPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
8447               !ToPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
8448             // Do not check static casts here because they are checked earlier
8449             // in Sema::ActOnCXXNamedCast()
8450             if (!Kind.isStaticCast()) {
8451               S.Diag(CurInit.get()->getExprLoc(),
8452                      diag::warn_noderef_to_dereferenceable_pointer)
8453                   << CurInit.get()->getSourceRange();
8454             }
8455           }
8456         }
8457       }
8458 
8459       Sema::CheckedConversionKind CCK
8460         = Kind.isCStyleCast()? Sema::CCK_CStyleCast
8461         : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
8462         : Kind.isExplicitCast()? Sema::CCK_OtherCast
8463         : Sema::CCK_ImplicitConversion;
8464       ExprResult CurInitExprRes =
8465         S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
8466                                     getAssignmentAction(Entity), CCK);
8467       if (CurInitExprRes.isInvalid())
8468         return ExprError();
8469 
8470       S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), CurInit.get());
8471 
8472       CurInit = CurInitExprRes;
8473 
8474       if (Step->Kind == SK_ConversionSequenceNoNarrowing &&
8475           S.getLangOpts().CPlusPlus)
8476         DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(),
8477                                     CurInit.get());
8478 
8479       break;
8480     }
8481 
8482     case SK_ListInitialization: {
8483       if (checkAbstractType(Step->Type))
8484         return ExprError();
8485 
8486       InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
8487       // If we're not initializing the top-level entity, we need to create an
8488       // InitializeTemporary entity for our target type.
8489       QualType Ty = Step->Type;
8490       bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty);
8491       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
8492       InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
8493       InitListChecker PerformInitList(S, InitEntity,
8494           InitList, Ty, /*VerifyOnly=*/false,
8495           /*TreatUnavailableAsInvalid=*/false);
8496       if (PerformInitList.HadError())
8497         return ExprError();
8498 
8499       // Hack: We must update *ResultType if available in order to set the
8500       // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
8501       // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
8502       if (ResultType &&
8503           ResultType->getNonReferenceType()->isIncompleteArrayType()) {
8504         if ((*ResultType)->isRValueReferenceType())
8505           Ty = S.Context.getRValueReferenceType(Ty);
8506         else if ((*ResultType)->isLValueReferenceType())
8507           Ty = S.Context.getLValueReferenceType(Ty,
8508             (*ResultType)->castAs<LValueReferenceType>()->isSpelledAsLValue());
8509         *ResultType = Ty;
8510       }
8511 
8512       InitListExpr *StructuredInitList =
8513           PerformInitList.getFullyStructuredList();
8514       CurInit.get();
8515       CurInit = shouldBindAsTemporary(InitEntity)
8516           ? S.MaybeBindToTemporary(StructuredInitList)
8517           : StructuredInitList;
8518       break;
8519     }
8520 
8521     case SK_ConstructorInitializationFromList: {
8522       if (checkAbstractType(Step->Type))
8523         return ExprError();
8524 
8525       // When an initializer list is passed for a parameter of type "reference
8526       // to object", we don't get an EK_Temporary entity, but instead an
8527       // EK_Parameter entity with reference type.
8528       // FIXME: This is a hack. What we really should do is create a user
8529       // conversion step for this case, but this makes it considerably more
8530       // complicated. For now, this will do.
8531       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
8532                                         Entity.getType().getNonReferenceType());
8533       bool UseTemporary = Entity.getType()->isReferenceType();
8534       assert(Args.size() == 1 && "expected a single argument for list init");
8535       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
8536       S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
8537         << InitList->getSourceRange();
8538       MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
8539       CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
8540                                                                    Entity,
8541                                                  Kind, Arg, *Step,
8542                                                ConstructorInitRequiresZeroInit,
8543                                                /*IsListInitialization*/true,
8544                                                /*IsStdInitListInit*/false,
8545                                                InitList->getLBraceLoc(),
8546                                                InitList->getRBraceLoc());
8547       break;
8548     }
8549 
8550     case SK_UnwrapInitList:
8551       CurInit = cast<InitListExpr>(CurInit.get())->getInit(0);
8552       break;
8553 
8554     case SK_RewrapInitList: {
8555       Expr *E = CurInit.get();
8556       InitListExpr *Syntactic = Step->WrappingSyntacticList;
8557       InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
8558           Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
8559       ILE->setSyntacticForm(Syntactic);
8560       ILE->setType(E->getType());
8561       ILE->setValueKind(E->getValueKind());
8562       CurInit = ILE;
8563       break;
8564     }
8565 
8566     case SK_ConstructorInitialization:
8567     case SK_StdInitializerListConstructorCall: {
8568       if (checkAbstractType(Step->Type))
8569         return ExprError();
8570 
8571       // When an initializer list is passed for a parameter of type "reference
8572       // to object", we don't get an EK_Temporary entity, but instead an
8573       // EK_Parameter entity with reference type.
8574       // FIXME: This is a hack. What we really should do is create a user
8575       // conversion step for this case, but this makes it considerably more
8576       // complicated. For now, this will do.
8577       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
8578                                         Entity.getType().getNonReferenceType());
8579       bool UseTemporary = Entity.getType()->isReferenceType();
8580       bool IsStdInitListInit =
8581           Step->Kind == SK_StdInitializerListConstructorCall;
8582       Expr *Source = CurInit.get();
8583       SourceRange Range = Kind.hasParenOrBraceRange()
8584                               ? Kind.getParenOrBraceRange()
8585                               : SourceRange();
8586       CurInit = PerformConstructorInitialization(
8587           S, UseTemporary ? TempEntity : Entity, Kind,
8588           Source ? MultiExprArg(Source) : Args, *Step,
8589           ConstructorInitRequiresZeroInit,
8590           /*IsListInitialization*/ IsStdInitListInit,
8591           /*IsStdInitListInitialization*/ IsStdInitListInit,
8592           /*LBraceLoc*/ Range.getBegin(),
8593           /*RBraceLoc*/ Range.getEnd());
8594       break;
8595     }
8596 
8597     case SK_ZeroInitialization: {
8598       step_iterator NextStep = Step;
8599       ++NextStep;
8600       if (NextStep != StepEnd &&
8601           (NextStep->Kind == SK_ConstructorInitialization ||
8602            NextStep->Kind == SK_ConstructorInitializationFromList)) {
8603         // The need for zero-initialization is recorded directly into
8604         // the call to the object's constructor within the next step.
8605         ConstructorInitRequiresZeroInit = true;
8606       } else if (Kind.getKind() == InitializationKind::IK_Value &&
8607                  S.getLangOpts().CPlusPlus &&
8608                  !Kind.isImplicitValueInit()) {
8609         TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
8610         if (!TSInfo)
8611           TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
8612                                                     Kind.getRange().getBegin());
8613 
8614         CurInit = new (S.Context) CXXScalarValueInitExpr(
8615             Entity.getType().getNonLValueExprType(S.Context), TSInfo,
8616             Kind.getRange().getEnd());
8617       } else {
8618         CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type);
8619       }
8620       break;
8621     }
8622 
8623     case SK_CAssignment: {
8624       QualType SourceType = CurInit.get()->getType();
8625 
8626       // Save off the initial CurInit in case we need to emit a diagnostic
8627       ExprResult InitialCurInit = CurInit;
8628       ExprResult Result = CurInit;
8629       Sema::AssignConvertType ConvTy =
8630         S.CheckSingleAssignmentConstraints(Step->Type, Result, true,
8631             Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited);
8632       if (Result.isInvalid())
8633         return ExprError();
8634       CurInit = Result;
8635 
8636       // If this is a call, allow conversion to a transparent union.
8637       ExprResult CurInitExprRes = CurInit;
8638       if (ConvTy != Sema::Compatible &&
8639           Entity.isParameterKind() &&
8640           S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
8641             == Sema::Compatible)
8642         ConvTy = Sema::Compatible;
8643       if (CurInitExprRes.isInvalid())
8644         return ExprError();
8645       CurInit = CurInitExprRes;
8646 
8647       bool Complained;
8648       if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
8649                                      Step->Type, SourceType,
8650                                      InitialCurInit.get(),
8651                                      getAssignmentAction(Entity, true),
8652                                      &Complained)) {
8653         PrintInitLocationNote(S, Entity);
8654         return ExprError();
8655       } else if (Complained)
8656         PrintInitLocationNote(S, Entity);
8657       break;
8658     }
8659 
8660     case SK_StringInit: {
8661       QualType Ty = Step->Type;
8662       bool UpdateType = ResultType && Entity.getType()->isIncompleteArrayType();
8663       CheckStringInit(CurInit.get(), UpdateType ? *ResultType : Ty,
8664                       S.Context.getAsArrayType(Ty), S);
8665       break;
8666     }
8667 
8668     case SK_ObjCObjectConversion:
8669       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8670                           CK_ObjCObjectLValueCast,
8671                           CurInit.get()->getValueKind());
8672       break;
8673 
8674     case SK_ArrayLoopIndex: {
8675       Expr *Cur = CurInit.get();
8676       Expr *BaseExpr = new (S.Context)
8677           OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(),
8678                           Cur->getValueKind(), Cur->getObjectKind(), Cur);
8679       Expr *IndexExpr =
8680           new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType());
8681       CurInit = S.CreateBuiltinArraySubscriptExpr(
8682           BaseExpr, Kind.getLocation(), IndexExpr, Kind.getLocation());
8683       ArrayLoopCommonExprs.push_back(BaseExpr);
8684       break;
8685     }
8686 
8687     case SK_ArrayLoopInit: {
8688       assert(!ArrayLoopCommonExprs.empty() &&
8689              "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit");
8690       Expr *Common = ArrayLoopCommonExprs.pop_back_val();
8691       CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common,
8692                                                   CurInit.get());
8693       break;
8694     }
8695 
8696     case SK_GNUArrayInit:
8697       // Okay: we checked everything before creating this step. Note that
8698       // this is a GNU extension.
8699       S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
8700         << Step->Type << CurInit.get()->getType()
8701         << CurInit.get()->getSourceRange();
8702       updateGNUCompoundLiteralRValue(CurInit.get());
8703       LLVM_FALLTHROUGH;
8704     case SK_ArrayInit:
8705       // If the destination type is an incomplete array type, update the
8706       // type accordingly.
8707       if (ResultType) {
8708         if (const IncompleteArrayType *IncompleteDest
8709                            = S.Context.getAsIncompleteArrayType(Step->Type)) {
8710           if (const ConstantArrayType *ConstantSource
8711                  = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
8712             *ResultType = S.Context.getConstantArrayType(
8713                                              IncompleteDest->getElementType(),
8714                                              ConstantSource->getSize(),
8715                                              ConstantSource->getSizeExpr(),
8716                                              ArrayType::Normal, 0);
8717           }
8718         }
8719       }
8720       break;
8721 
8722     case SK_ParenthesizedArrayInit:
8723       // Okay: we checked everything before creating this step. Note that
8724       // this is a GNU extension.
8725       S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
8726         << CurInit.get()->getSourceRange();
8727       break;
8728 
8729     case SK_PassByIndirectCopyRestore:
8730     case SK_PassByIndirectRestore:
8731       checkIndirectCopyRestoreSource(S, CurInit.get());
8732       CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr(
8733           CurInit.get(), Step->Type,
8734           Step->Kind == SK_PassByIndirectCopyRestore);
8735       break;
8736 
8737     case SK_ProduceObjCObject:
8738       CurInit = ImplicitCastExpr::Create(
8739           S.Context, Step->Type, CK_ARCProduceObject, CurInit.get(), nullptr,
8740           VK_PRValue, FPOptionsOverride());
8741       break;
8742 
8743     case SK_StdInitializerList: {
8744       S.Diag(CurInit.get()->getExprLoc(),
8745              diag::warn_cxx98_compat_initializer_list_init)
8746         << CurInit.get()->getSourceRange();
8747 
8748       // Materialize the temporary into memory.
8749       MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
8750           CurInit.get()->getType(), CurInit.get(),
8751           /*BoundToLvalueReference=*/false);
8752 
8753       // Wrap it in a construction of a std::initializer_list<T>.
8754       CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE);
8755 
8756       // Bind the result, in case the library has given initializer_list a
8757       // non-trivial destructor.
8758       if (shouldBindAsTemporary(Entity))
8759         CurInit = S.MaybeBindToTemporary(CurInit.get());
8760       break;
8761     }
8762 
8763     case SK_OCLSamplerInit: {
8764       // Sampler initialization have 5 cases:
8765       //   1. function argument passing
8766       //      1a. argument is a file-scope variable
8767       //      1b. argument is a function-scope variable
8768       //      1c. argument is one of caller function's parameters
8769       //   2. variable initialization
8770       //      2a. initializing a file-scope variable
8771       //      2b. initializing a function-scope variable
8772       //
8773       // For file-scope variables, since they cannot be initialized by function
8774       // call of __translate_sampler_initializer in LLVM IR, their references
8775       // need to be replaced by a cast from their literal initializers to
8776       // sampler type. Since sampler variables can only be used in function
8777       // calls as arguments, we only need to replace them when handling the
8778       // argument passing.
8779       assert(Step->Type->isSamplerT() &&
8780              "Sampler initialization on non-sampler type.");
8781       Expr *Init = CurInit.get()->IgnoreParens();
8782       QualType SourceType = Init->getType();
8783       // Case 1
8784       if (Entity.isParameterKind()) {
8785         if (!SourceType->isSamplerT() && !SourceType->isIntegerType()) {
8786           S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
8787             << SourceType;
8788           break;
8789         } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init)) {
8790           auto Var = cast<VarDecl>(DRE->getDecl());
8791           // Case 1b and 1c
8792           // No cast from integer to sampler is needed.
8793           if (!Var->hasGlobalStorage()) {
8794             CurInit = ImplicitCastExpr::Create(
8795                 S.Context, Step->Type, CK_LValueToRValue, Init,
8796                 /*BasePath=*/nullptr, VK_PRValue, FPOptionsOverride());
8797             break;
8798           }
8799           // Case 1a
8800           // For function call with a file-scope sampler variable as argument,
8801           // get the integer literal.
8802           // Do not diagnose if the file-scope variable does not have initializer
8803           // since this has already been diagnosed when parsing the variable
8804           // declaration.
8805           if (!Var->getInit() || !isa<ImplicitCastExpr>(Var->getInit()))
8806             break;
8807           Init = cast<ImplicitCastExpr>(const_cast<Expr*>(
8808             Var->getInit()))->getSubExpr();
8809           SourceType = Init->getType();
8810         }
8811       } else {
8812         // Case 2
8813         // Check initializer is 32 bit integer constant.
8814         // If the initializer is taken from global variable, do not diagnose since
8815         // this has already been done when parsing the variable declaration.
8816         if (!Init->isConstantInitializer(S.Context, false))
8817           break;
8818 
8819         if (!SourceType->isIntegerType() ||
8820             32 != S.Context.getIntWidth(SourceType)) {
8821           S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer)
8822             << SourceType;
8823           break;
8824         }
8825 
8826         Expr::EvalResult EVResult;
8827         Init->EvaluateAsInt(EVResult, S.Context);
8828         llvm::APSInt Result = EVResult.Val.getInt();
8829         const uint64_t SamplerValue = Result.getLimitedValue();
8830         // 32-bit value of sampler's initializer is interpreted as
8831         // bit-field with the following structure:
8832         // |unspecified|Filter|Addressing Mode| Normalized Coords|
8833         // |31        6|5    4|3             1|                 0|
8834         // This structure corresponds to enum values of sampler properties
8835         // defined in SPIR spec v1.2 and also opencl-c.h
8836         unsigned AddressingMode  = (0x0E & SamplerValue) >> 1;
8837         unsigned FilterMode      = (0x30 & SamplerValue) >> 4;
8838         if (FilterMode != 1 && FilterMode != 2 &&
8839             !S.getOpenCLOptions().isAvailableOption(
8840                 "cl_intel_device_side_avc_motion_estimation", S.getLangOpts()))
8841           S.Diag(Kind.getLocation(),
8842                  diag::warn_sampler_initializer_invalid_bits)
8843                  << "Filter Mode";
8844         if (AddressingMode > 4)
8845           S.Diag(Kind.getLocation(),
8846                  diag::warn_sampler_initializer_invalid_bits)
8847                  << "Addressing Mode";
8848       }
8849 
8850       // Cases 1a, 2a and 2b
8851       // Insert cast from integer to sampler.
8852       CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy,
8853                                       CK_IntToOCLSampler);
8854       break;
8855     }
8856     case SK_OCLZeroOpaqueType: {
8857       assert((Step->Type->isEventT() || Step->Type->isQueueT() ||
8858               Step->Type->isOCLIntelSubgroupAVCType()) &&
8859              "Wrong type for initialization of OpenCL opaque type.");
8860 
8861       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8862                                     CK_ZeroToOCLOpaqueType,
8863                                     CurInit.get()->getValueKind());
8864       break;
8865     }
8866     }
8867   }
8868 
8869   // Check whether the initializer has a shorter lifetime than the initialized
8870   // entity, and if not, either lifetime-extend or warn as appropriate.
8871   if (auto *Init = CurInit.get())
8872     S.checkInitializerLifetime(Entity, Init);
8873 
8874   // Diagnose non-fatal problems with the completed initialization.
8875   if (Entity.getKind() == InitializedEntity::EK_Member &&
8876       cast<FieldDecl>(Entity.getDecl())->isBitField())
8877     S.CheckBitFieldInitialization(Kind.getLocation(),
8878                                   cast<FieldDecl>(Entity.getDecl()),
8879                                   CurInit.get());
8880 
8881   // Check for std::move on construction.
8882   if (const Expr *E = CurInit.get()) {
8883     CheckMoveOnConstruction(S, E,
8884                             Entity.getKind() == InitializedEntity::EK_Result);
8885   }
8886 
8887   return CurInit;
8888 }
8889 
8890 /// Somewhere within T there is an uninitialized reference subobject.
8891 /// Dig it out and diagnose it.
8892 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
8893                                            QualType T) {
8894   if (T->isReferenceType()) {
8895     S.Diag(Loc, diag::err_reference_without_init)
8896       << T.getNonReferenceType();
8897     return true;
8898   }
8899 
8900   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
8901   if (!RD || !RD->hasUninitializedReferenceMember())
8902     return false;
8903 
8904   for (const auto *FI : RD->fields()) {
8905     if (FI->isUnnamedBitfield())
8906       continue;
8907 
8908     if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
8909       S.Diag(Loc, diag::note_value_initialization_here) << RD;
8910       return true;
8911     }
8912   }
8913 
8914   for (const auto &BI : RD->bases()) {
8915     if (DiagnoseUninitializedReference(S, BI.getBeginLoc(), BI.getType())) {
8916       S.Diag(Loc, diag::note_value_initialization_here) << RD;
8917       return true;
8918     }
8919   }
8920 
8921   return false;
8922 }
8923 
8924 
8925 //===----------------------------------------------------------------------===//
8926 // Diagnose initialization failures
8927 //===----------------------------------------------------------------------===//
8928 
8929 /// Emit notes associated with an initialization that failed due to a
8930 /// "simple" conversion failure.
8931 static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity,
8932                                    Expr *op) {
8933   QualType destType = entity.getType();
8934   if (destType.getNonReferenceType()->isObjCObjectPointerType() &&
8935       op->getType()->isObjCObjectPointerType()) {
8936 
8937     // Emit a possible note about the conversion failing because the
8938     // operand is a message send with a related result type.
8939     S.EmitRelatedResultTypeNote(op);
8940 
8941     // Emit a possible note about a return failing because we're
8942     // expecting a related result type.
8943     if (entity.getKind() == InitializedEntity::EK_Result)
8944       S.EmitRelatedResultTypeNoteForReturn(destType);
8945   }
8946   QualType fromType = op->getType();
8947   QualType fromPointeeType = fromType.getCanonicalType()->getPointeeType();
8948   QualType destPointeeType = destType.getCanonicalType()->getPointeeType();
8949   auto *fromDecl = fromType->getPointeeCXXRecordDecl();
8950   auto *destDecl = destType->getPointeeCXXRecordDecl();
8951   if (fromDecl && destDecl && fromDecl->getDeclKind() == Decl::CXXRecord &&
8952       destDecl->getDeclKind() == Decl::CXXRecord &&
8953       !fromDecl->isInvalidDecl() && !destDecl->isInvalidDecl() &&
8954       !fromDecl->hasDefinition() &&
8955       destPointeeType.getQualifiers().compatiblyIncludes(
8956           fromPointeeType.getQualifiers()))
8957     S.Diag(fromDecl->getLocation(), diag::note_forward_class_conversion)
8958         << S.getASTContext().getTagDeclType(fromDecl)
8959         << S.getASTContext().getTagDeclType(destDecl);
8960 }
8961 
8962 static void diagnoseListInit(Sema &S, const InitializedEntity &Entity,
8963                              InitListExpr *InitList) {
8964   QualType DestType = Entity.getType();
8965 
8966   QualType E;
8967   if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) {
8968     QualType ArrayType = S.Context.getConstantArrayType(
8969         E.withConst(),
8970         llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
8971                     InitList->getNumInits()),
8972         nullptr, clang::ArrayType::Normal, 0);
8973     InitializedEntity HiddenArray =
8974         InitializedEntity::InitializeTemporary(ArrayType);
8975     return diagnoseListInit(S, HiddenArray, InitList);
8976   }
8977 
8978   if (DestType->isReferenceType()) {
8979     // A list-initialization failure for a reference means that we tried to
8980     // create a temporary of the inner type (per [dcl.init.list]p3.6) and the
8981     // inner initialization failed.
8982     QualType T = DestType->castAs<ReferenceType>()->getPointeeType();
8983     diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList);
8984     SourceLocation Loc = InitList->getBeginLoc();
8985     if (auto *D = Entity.getDecl())
8986       Loc = D->getLocation();
8987     S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T;
8988     return;
8989   }
8990 
8991   InitListChecker DiagnoseInitList(S, Entity, InitList, DestType,
8992                                    /*VerifyOnly=*/false,
8993                                    /*TreatUnavailableAsInvalid=*/false);
8994   assert(DiagnoseInitList.HadError() &&
8995          "Inconsistent init list check result.");
8996 }
8997 
8998 bool InitializationSequence::Diagnose(Sema &S,
8999                                       const InitializedEntity &Entity,
9000                                       const InitializationKind &Kind,
9001                                       ArrayRef<Expr *> Args) {
9002   if (!Failed())
9003     return false;
9004 
9005   // When we want to diagnose only one element of a braced-init-list,
9006   // we need to factor it out.
9007   Expr *OnlyArg;
9008   if (Args.size() == 1) {
9009     auto *List = dyn_cast<InitListExpr>(Args[0]);
9010     if (List && List->getNumInits() == 1)
9011       OnlyArg = List->getInit(0);
9012     else
9013       OnlyArg = Args[0];
9014   }
9015   else
9016     OnlyArg = nullptr;
9017 
9018   QualType DestType = Entity.getType();
9019   switch (Failure) {
9020   case FK_TooManyInitsForReference:
9021     // FIXME: Customize for the initialized entity?
9022     if (Args.empty()) {
9023       // Dig out the reference subobject which is uninitialized and diagnose it.
9024       // If this is value-initialization, this could be nested some way within
9025       // the target type.
9026       assert(Kind.getKind() == InitializationKind::IK_Value ||
9027              DestType->isReferenceType());
9028       bool Diagnosed =
9029         DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
9030       assert(Diagnosed && "couldn't find uninitialized reference to diagnose");
9031       (void)Diagnosed;
9032     } else  // FIXME: diagnostic below could be better!
9033       S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
9034           << SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
9035     break;
9036   case FK_ParenthesizedListInitForReference:
9037     S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
9038       << 1 << Entity.getType() << Args[0]->getSourceRange();
9039     break;
9040 
9041   case FK_ArrayNeedsInitList:
9042     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0;
9043     break;
9044   case FK_ArrayNeedsInitListOrStringLiteral:
9045     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1;
9046     break;
9047   case FK_ArrayNeedsInitListOrWideStringLiteral:
9048     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2;
9049     break;
9050   case FK_NarrowStringIntoWideCharArray:
9051     S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar);
9052     break;
9053   case FK_WideStringIntoCharArray:
9054     S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char);
9055     break;
9056   case FK_IncompatWideStringIntoWideChar:
9057     S.Diag(Kind.getLocation(),
9058            diag::err_array_init_incompat_wide_string_into_wchar);
9059     break;
9060   case FK_PlainStringIntoUTF8Char:
9061     S.Diag(Kind.getLocation(),
9062            diag::err_array_init_plain_string_into_char8_t);
9063     S.Diag(Args.front()->getBeginLoc(),
9064            diag::note_array_init_plain_string_into_char8_t)
9065         << FixItHint::CreateInsertion(Args.front()->getBeginLoc(), "u8");
9066     break;
9067   case FK_UTF8StringIntoPlainChar:
9068     S.Diag(Kind.getLocation(),
9069            diag::err_array_init_utf8_string_into_char)
9070       << S.getLangOpts().CPlusPlus20;
9071     break;
9072   case FK_ArrayTypeMismatch:
9073   case FK_NonConstantArrayInit:
9074     S.Diag(Kind.getLocation(),
9075            (Failure == FK_ArrayTypeMismatch
9076               ? diag::err_array_init_different_type
9077               : diag::err_array_init_non_constant_array))
9078       << DestType.getNonReferenceType()
9079       << OnlyArg->getType()
9080       << Args[0]->getSourceRange();
9081     break;
9082 
9083   case FK_VariableLengthArrayHasInitializer:
9084     S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
9085       << Args[0]->getSourceRange();
9086     break;
9087 
9088   case FK_AddressOfOverloadFailed: {
9089     DeclAccessPair Found;
9090     S.ResolveAddressOfOverloadedFunction(OnlyArg,
9091                                          DestType.getNonReferenceType(),
9092                                          true,
9093                                          Found);
9094     break;
9095   }
9096 
9097   case FK_AddressOfUnaddressableFunction: {
9098     auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(OnlyArg)->getDecl());
9099     S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
9100                                         OnlyArg->getBeginLoc());
9101     break;
9102   }
9103 
9104   case FK_ReferenceInitOverloadFailed:
9105   case FK_UserConversionOverloadFailed:
9106     switch (FailedOverloadResult) {
9107     case OR_Ambiguous:
9108 
9109       FailedCandidateSet.NoteCandidates(
9110           PartialDiagnosticAt(
9111               Kind.getLocation(),
9112               Failure == FK_UserConversionOverloadFailed
9113                   ? (S.PDiag(diag::err_typecheck_ambiguous_condition)
9114                      << OnlyArg->getType() << DestType
9115                      << Args[0]->getSourceRange())
9116                   : (S.PDiag(diag::err_ref_init_ambiguous)
9117                      << DestType << OnlyArg->getType()
9118                      << Args[0]->getSourceRange())),
9119           S, OCD_AmbiguousCandidates, Args);
9120       break;
9121 
9122     case OR_No_Viable_Function: {
9123       auto Cands = FailedCandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args);
9124       if (!S.RequireCompleteType(Kind.getLocation(),
9125                                  DestType.getNonReferenceType(),
9126                           diag::err_typecheck_nonviable_condition_incomplete,
9127                                OnlyArg->getType(), Args[0]->getSourceRange()))
9128         S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
9129           << (Entity.getKind() == InitializedEntity::EK_Result)
9130           << OnlyArg->getType() << Args[0]->getSourceRange()
9131           << DestType.getNonReferenceType();
9132 
9133       FailedCandidateSet.NoteCandidates(S, Args, Cands);
9134       break;
9135     }
9136     case OR_Deleted: {
9137       S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
9138         << OnlyArg->getType() << DestType.getNonReferenceType()
9139         << Args[0]->getSourceRange();
9140       OverloadCandidateSet::iterator Best;
9141       OverloadingResult Ovl
9142         = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
9143       if (Ovl == OR_Deleted) {
9144         S.NoteDeletedFunction(Best->Function);
9145       } else {
9146         llvm_unreachable("Inconsistent overload resolution?");
9147       }
9148       break;
9149     }
9150 
9151     case OR_Success:
9152       llvm_unreachable("Conversion did not fail!");
9153     }
9154     break;
9155 
9156   case FK_NonConstLValueReferenceBindingToTemporary:
9157     if (isa<InitListExpr>(Args[0])) {
9158       S.Diag(Kind.getLocation(),
9159              diag::err_lvalue_reference_bind_to_initlist)
9160       << DestType.getNonReferenceType().isVolatileQualified()
9161       << DestType.getNonReferenceType()
9162       << Args[0]->getSourceRange();
9163       break;
9164     }
9165     LLVM_FALLTHROUGH;
9166 
9167   case FK_NonConstLValueReferenceBindingToUnrelated:
9168     S.Diag(Kind.getLocation(),
9169            Failure == FK_NonConstLValueReferenceBindingToTemporary
9170              ? diag::err_lvalue_reference_bind_to_temporary
9171              : diag::err_lvalue_reference_bind_to_unrelated)
9172       << DestType.getNonReferenceType().isVolatileQualified()
9173       << DestType.getNonReferenceType()
9174       << OnlyArg->getType()
9175       << Args[0]->getSourceRange();
9176     break;
9177 
9178   case FK_NonConstLValueReferenceBindingToBitfield: {
9179     // We don't necessarily have an unambiguous source bit-field.
9180     FieldDecl *BitField = Args[0]->getSourceBitField();
9181     S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
9182       << DestType.isVolatileQualified()
9183       << (BitField ? BitField->getDeclName() : DeclarationName())
9184       << (BitField != nullptr)
9185       << Args[0]->getSourceRange();
9186     if (BitField)
9187       S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
9188     break;
9189   }
9190 
9191   case FK_NonConstLValueReferenceBindingToVectorElement:
9192     S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
9193       << DestType.isVolatileQualified()
9194       << Args[0]->getSourceRange();
9195     break;
9196 
9197   case FK_NonConstLValueReferenceBindingToMatrixElement:
9198     S.Diag(Kind.getLocation(), diag::err_reference_bind_to_matrix_element)
9199         << DestType.isVolatileQualified() << Args[0]->getSourceRange();
9200     break;
9201 
9202   case FK_RValueReferenceBindingToLValue:
9203     S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
9204       << DestType.getNonReferenceType() << OnlyArg->getType()
9205       << Args[0]->getSourceRange();
9206     break;
9207 
9208   case FK_ReferenceAddrspaceMismatchTemporary:
9209     S.Diag(Kind.getLocation(), diag::err_reference_bind_temporary_addrspace)
9210         << DestType << Args[0]->getSourceRange();
9211     break;
9212 
9213   case FK_ReferenceInitDropsQualifiers: {
9214     QualType SourceType = OnlyArg->getType();
9215     QualType NonRefType = DestType.getNonReferenceType();
9216     Qualifiers DroppedQualifiers =
9217         SourceType.getQualifiers() - NonRefType.getQualifiers();
9218 
9219     if (!NonRefType.getQualifiers().isAddressSpaceSupersetOf(
9220             SourceType.getQualifiers()))
9221       S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
9222           << NonRefType << SourceType << 1 /*addr space*/
9223           << Args[0]->getSourceRange();
9224     else if (DroppedQualifiers.hasQualifiers())
9225       S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
9226           << NonRefType << SourceType << 0 /*cv quals*/
9227           << Qualifiers::fromCVRMask(DroppedQualifiers.getCVRQualifiers())
9228           << DroppedQualifiers.getCVRQualifiers() << Args[0]->getSourceRange();
9229     else
9230       // FIXME: Consider decomposing the type and explaining which qualifiers
9231       // were dropped where, or on which level a 'const' is missing, etc.
9232       S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
9233           << NonRefType << SourceType << 2 /*incompatible quals*/
9234           << Args[0]->getSourceRange();
9235     break;
9236   }
9237 
9238   case FK_ReferenceInitFailed:
9239     S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
9240       << DestType.getNonReferenceType()
9241       << DestType.getNonReferenceType()->isIncompleteType()
9242       << OnlyArg->isLValue()
9243       << OnlyArg->getType()
9244       << Args[0]->getSourceRange();
9245     emitBadConversionNotes(S, Entity, Args[0]);
9246     break;
9247 
9248   case FK_ConversionFailed: {
9249     QualType FromType = OnlyArg->getType();
9250     PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
9251       << (int)Entity.getKind()
9252       << DestType
9253       << OnlyArg->isLValue()
9254       << FromType
9255       << Args[0]->getSourceRange();
9256     S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
9257     S.Diag(Kind.getLocation(), PDiag);
9258     emitBadConversionNotes(S, Entity, Args[0]);
9259     break;
9260   }
9261 
9262   case FK_ConversionFromPropertyFailed:
9263     // No-op. This error has already been reported.
9264     break;
9265 
9266   case FK_TooManyInitsForScalar: {
9267     SourceRange R;
9268 
9269     auto *InitList = dyn_cast<InitListExpr>(Args[0]);
9270     if (InitList && InitList->getNumInits() >= 1) {
9271       R = SourceRange(InitList->getInit(0)->getEndLoc(), InitList->getEndLoc());
9272     } else {
9273       assert(Args.size() > 1 && "Expected multiple initializers!");
9274       R = SourceRange(Args.front()->getEndLoc(), Args.back()->getEndLoc());
9275     }
9276 
9277     R.setBegin(S.getLocForEndOfToken(R.getBegin()));
9278     if (Kind.isCStyleOrFunctionalCast())
9279       S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
9280         << R;
9281     else
9282       S.Diag(Kind.getLocation(), diag::err_excess_initializers)
9283         << /*scalar=*/2 << R;
9284     break;
9285   }
9286 
9287   case FK_ParenthesizedListInitForScalar:
9288     S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
9289       << 0 << Entity.getType() << Args[0]->getSourceRange();
9290     break;
9291 
9292   case FK_ReferenceBindingToInitList:
9293     S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
9294       << DestType.getNonReferenceType() << Args[0]->getSourceRange();
9295     break;
9296 
9297   case FK_InitListBadDestinationType:
9298     S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
9299       << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
9300     break;
9301 
9302   case FK_ListConstructorOverloadFailed:
9303   case FK_ConstructorOverloadFailed: {
9304     SourceRange ArgsRange;
9305     if (Args.size())
9306       ArgsRange =
9307           SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
9308 
9309     if (Failure == FK_ListConstructorOverloadFailed) {
9310       assert(Args.size() == 1 &&
9311              "List construction from other than 1 argument.");
9312       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
9313       Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
9314     }
9315 
9316     // FIXME: Using "DestType" for the entity we're printing is probably
9317     // bad.
9318     switch (FailedOverloadResult) {
9319       case OR_Ambiguous:
9320         FailedCandidateSet.NoteCandidates(
9321             PartialDiagnosticAt(Kind.getLocation(),
9322                                 S.PDiag(diag::err_ovl_ambiguous_init)
9323                                     << DestType << ArgsRange),
9324             S, OCD_AmbiguousCandidates, Args);
9325         break;
9326 
9327       case OR_No_Viable_Function:
9328         if (Kind.getKind() == InitializationKind::IK_Default &&
9329             (Entity.getKind() == InitializedEntity::EK_Base ||
9330              Entity.getKind() == InitializedEntity::EK_Member) &&
9331             isa<CXXConstructorDecl>(S.CurContext)) {
9332           // This is implicit default initialization of a member or
9333           // base within a constructor. If no viable function was
9334           // found, notify the user that they need to explicitly
9335           // initialize this base/member.
9336           CXXConstructorDecl *Constructor
9337             = cast<CXXConstructorDecl>(S.CurContext);
9338           const CXXRecordDecl *InheritedFrom = nullptr;
9339           if (auto Inherited = Constructor->getInheritedConstructor())
9340             InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass();
9341           if (Entity.getKind() == InitializedEntity::EK_Base) {
9342             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
9343               << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
9344               << S.Context.getTypeDeclType(Constructor->getParent())
9345               << /*base=*/0
9346               << Entity.getType()
9347               << InheritedFrom;
9348 
9349             RecordDecl *BaseDecl
9350               = Entity.getBaseSpecifier()->getType()->castAs<RecordType>()
9351                                                                   ->getDecl();
9352             S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
9353               << S.Context.getTagDeclType(BaseDecl);
9354           } else {
9355             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
9356               << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
9357               << S.Context.getTypeDeclType(Constructor->getParent())
9358               << /*member=*/1
9359               << Entity.getName()
9360               << InheritedFrom;
9361             S.Diag(Entity.getDecl()->getLocation(),
9362                    diag::note_member_declared_at);
9363 
9364             if (const RecordType *Record
9365                                  = Entity.getType()->getAs<RecordType>())
9366               S.Diag(Record->getDecl()->getLocation(),
9367                      diag::note_previous_decl)
9368                 << S.Context.getTagDeclType(Record->getDecl());
9369           }
9370           break;
9371         }
9372 
9373         FailedCandidateSet.NoteCandidates(
9374             PartialDiagnosticAt(
9375                 Kind.getLocation(),
9376                 S.PDiag(diag::err_ovl_no_viable_function_in_init)
9377                     << DestType << ArgsRange),
9378             S, OCD_AllCandidates, Args);
9379         break;
9380 
9381       case OR_Deleted: {
9382         OverloadCandidateSet::iterator Best;
9383         OverloadingResult Ovl
9384           = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
9385         if (Ovl != OR_Deleted) {
9386           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
9387               << DestType << ArgsRange;
9388           llvm_unreachable("Inconsistent overload resolution?");
9389           break;
9390         }
9391 
9392         // If this is a defaulted or implicitly-declared function, then
9393         // it was implicitly deleted. Make it clear that the deletion was
9394         // implicit.
9395         if (S.isImplicitlyDeleted(Best->Function))
9396           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
9397             << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
9398             << DestType << ArgsRange;
9399         else
9400           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
9401               << DestType << ArgsRange;
9402 
9403         S.NoteDeletedFunction(Best->Function);
9404         break;
9405       }
9406 
9407       case OR_Success:
9408         llvm_unreachable("Conversion did not fail!");
9409     }
9410   }
9411   break;
9412 
9413   case FK_DefaultInitOfConst:
9414     if (Entity.getKind() == InitializedEntity::EK_Member &&
9415         isa<CXXConstructorDecl>(S.CurContext)) {
9416       // This is implicit default-initialization of a const member in
9417       // a constructor. Complain that it needs to be explicitly
9418       // initialized.
9419       CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
9420       S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
9421         << (Constructor->getInheritedConstructor() ? 2 :
9422             Constructor->isImplicit() ? 1 : 0)
9423         << S.Context.getTypeDeclType(Constructor->getParent())
9424         << /*const=*/1
9425         << Entity.getName();
9426       S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
9427         << Entity.getName();
9428     } else {
9429       S.Diag(Kind.getLocation(), diag::err_default_init_const)
9430           << DestType << (bool)DestType->getAs<RecordType>();
9431     }
9432     break;
9433 
9434   case FK_Incomplete:
9435     S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
9436                           diag::err_init_incomplete_type);
9437     break;
9438 
9439   case FK_ListInitializationFailed: {
9440     // Run the init list checker again to emit diagnostics.
9441     InitListExpr *InitList = cast<InitListExpr>(Args[0]);
9442     diagnoseListInit(S, Entity, InitList);
9443     break;
9444   }
9445 
9446   case FK_PlaceholderType: {
9447     // FIXME: Already diagnosed!
9448     break;
9449   }
9450 
9451   case FK_ExplicitConstructor: {
9452     S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
9453       << Args[0]->getSourceRange();
9454     OverloadCandidateSet::iterator Best;
9455     OverloadingResult Ovl
9456       = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
9457     (void)Ovl;
9458     assert(Ovl == OR_Success && "Inconsistent overload resolution");
9459     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
9460     S.Diag(CtorDecl->getLocation(),
9461            diag::note_explicit_ctor_deduction_guide_here) << false;
9462     break;
9463   }
9464   }
9465 
9466   PrintInitLocationNote(S, Entity);
9467   return true;
9468 }
9469 
9470 void InitializationSequence::dump(raw_ostream &OS) const {
9471   switch (SequenceKind) {
9472   case FailedSequence: {
9473     OS << "Failed sequence: ";
9474     switch (Failure) {
9475     case FK_TooManyInitsForReference:
9476       OS << "too many initializers for reference";
9477       break;
9478 
9479     case FK_ParenthesizedListInitForReference:
9480       OS << "parenthesized list init for reference";
9481       break;
9482 
9483     case FK_ArrayNeedsInitList:
9484       OS << "array requires initializer list";
9485       break;
9486 
9487     case FK_AddressOfUnaddressableFunction:
9488       OS << "address of unaddressable function was taken";
9489       break;
9490 
9491     case FK_ArrayNeedsInitListOrStringLiteral:
9492       OS << "array requires initializer list or string literal";
9493       break;
9494 
9495     case FK_ArrayNeedsInitListOrWideStringLiteral:
9496       OS << "array requires initializer list or wide string literal";
9497       break;
9498 
9499     case FK_NarrowStringIntoWideCharArray:
9500       OS << "narrow string into wide char array";
9501       break;
9502 
9503     case FK_WideStringIntoCharArray:
9504       OS << "wide string into char array";
9505       break;
9506 
9507     case FK_IncompatWideStringIntoWideChar:
9508       OS << "incompatible wide string into wide char array";
9509       break;
9510 
9511     case FK_PlainStringIntoUTF8Char:
9512       OS << "plain string literal into char8_t array";
9513       break;
9514 
9515     case FK_UTF8StringIntoPlainChar:
9516       OS << "u8 string literal into char array";
9517       break;
9518 
9519     case FK_ArrayTypeMismatch:
9520       OS << "array type mismatch";
9521       break;
9522 
9523     case FK_NonConstantArrayInit:
9524       OS << "non-constant array initializer";
9525       break;
9526 
9527     case FK_AddressOfOverloadFailed:
9528       OS << "address of overloaded function failed";
9529       break;
9530 
9531     case FK_ReferenceInitOverloadFailed:
9532       OS << "overload resolution for reference initialization failed";
9533       break;
9534 
9535     case FK_NonConstLValueReferenceBindingToTemporary:
9536       OS << "non-const lvalue reference bound to temporary";
9537       break;
9538 
9539     case FK_NonConstLValueReferenceBindingToBitfield:
9540       OS << "non-const lvalue reference bound to bit-field";
9541       break;
9542 
9543     case FK_NonConstLValueReferenceBindingToVectorElement:
9544       OS << "non-const lvalue reference bound to vector element";
9545       break;
9546 
9547     case FK_NonConstLValueReferenceBindingToMatrixElement:
9548       OS << "non-const lvalue reference bound to matrix element";
9549       break;
9550 
9551     case FK_NonConstLValueReferenceBindingToUnrelated:
9552       OS << "non-const lvalue reference bound to unrelated type";
9553       break;
9554 
9555     case FK_RValueReferenceBindingToLValue:
9556       OS << "rvalue reference bound to an lvalue";
9557       break;
9558 
9559     case FK_ReferenceInitDropsQualifiers:
9560       OS << "reference initialization drops qualifiers";
9561       break;
9562 
9563     case FK_ReferenceAddrspaceMismatchTemporary:
9564       OS << "reference with mismatching address space bound to temporary";
9565       break;
9566 
9567     case FK_ReferenceInitFailed:
9568       OS << "reference initialization failed";
9569       break;
9570 
9571     case FK_ConversionFailed:
9572       OS << "conversion failed";
9573       break;
9574 
9575     case FK_ConversionFromPropertyFailed:
9576       OS << "conversion from property failed";
9577       break;
9578 
9579     case FK_TooManyInitsForScalar:
9580       OS << "too many initializers for scalar";
9581       break;
9582 
9583     case FK_ParenthesizedListInitForScalar:
9584       OS << "parenthesized list init for reference";
9585       break;
9586 
9587     case FK_ReferenceBindingToInitList:
9588       OS << "referencing binding to initializer list";
9589       break;
9590 
9591     case FK_InitListBadDestinationType:
9592       OS << "initializer list for non-aggregate, non-scalar type";
9593       break;
9594 
9595     case FK_UserConversionOverloadFailed:
9596       OS << "overloading failed for user-defined conversion";
9597       break;
9598 
9599     case FK_ConstructorOverloadFailed:
9600       OS << "constructor overloading failed";
9601       break;
9602 
9603     case FK_DefaultInitOfConst:
9604       OS << "default initialization of a const variable";
9605       break;
9606 
9607     case FK_Incomplete:
9608       OS << "initialization of incomplete type";
9609       break;
9610 
9611     case FK_ListInitializationFailed:
9612       OS << "list initialization checker failure";
9613       break;
9614 
9615     case FK_VariableLengthArrayHasInitializer:
9616       OS << "variable length array has an initializer";
9617       break;
9618 
9619     case FK_PlaceholderType:
9620       OS << "initializer expression isn't contextually valid";
9621       break;
9622 
9623     case FK_ListConstructorOverloadFailed:
9624       OS << "list constructor overloading failed";
9625       break;
9626 
9627     case FK_ExplicitConstructor:
9628       OS << "list copy initialization chose explicit constructor";
9629       break;
9630     }
9631     OS << '\n';
9632     return;
9633   }
9634 
9635   case DependentSequence:
9636     OS << "Dependent sequence\n";
9637     return;
9638 
9639   case NormalSequence:
9640     OS << "Normal sequence: ";
9641     break;
9642   }
9643 
9644   for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
9645     if (S != step_begin()) {
9646       OS << " -> ";
9647     }
9648 
9649     switch (S->Kind) {
9650     case SK_ResolveAddressOfOverloadedFunction:
9651       OS << "resolve address of overloaded function";
9652       break;
9653 
9654     case SK_CastDerivedToBasePRValue:
9655       OS << "derived-to-base (prvalue)";
9656       break;
9657 
9658     case SK_CastDerivedToBaseXValue:
9659       OS << "derived-to-base (xvalue)";
9660       break;
9661 
9662     case SK_CastDerivedToBaseLValue:
9663       OS << "derived-to-base (lvalue)";
9664       break;
9665 
9666     case SK_BindReference:
9667       OS << "bind reference to lvalue";
9668       break;
9669 
9670     case SK_BindReferenceToTemporary:
9671       OS << "bind reference to a temporary";
9672       break;
9673 
9674     case SK_FinalCopy:
9675       OS << "final copy in class direct-initialization";
9676       break;
9677 
9678     case SK_ExtraneousCopyToTemporary:
9679       OS << "extraneous C++03 copy to temporary";
9680       break;
9681 
9682     case SK_UserConversion:
9683       OS << "user-defined conversion via " << *S->Function.Function;
9684       break;
9685 
9686     case SK_QualificationConversionPRValue:
9687       OS << "qualification conversion (prvalue)";
9688       break;
9689 
9690     case SK_QualificationConversionXValue:
9691       OS << "qualification conversion (xvalue)";
9692       break;
9693 
9694     case SK_QualificationConversionLValue:
9695       OS << "qualification conversion (lvalue)";
9696       break;
9697 
9698     case SK_FunctionReferenceConversion:
9699       OS << "function reference conversion";
9700       break;
9701 
9702     case SK_AtomicConversion:
9703       OS << "non-atomic-to-atomic conversion";
9704       break;
9705 
9706     case SK_ConversionSequence:
9707       OS << "implicit conversion sequence (";
9708       S->ICS->dump(); // FIXME: use OS
9709       OS << ")";
9710       break;
9711 
9712     case SK_ConversionSequenceNoNarrowing:
9713       OS << "implicit conversion sequence with narrowing prohibited (";
9714       S->ICS->dump(); // FIXME: use OS
9715       OS << ")";
9716       break;
9717 
9718     case SK_ListInitialization:
9719       OS << "list aggregate initialization";
9720       break;
9721 
9722     case SK_UnwrapInitList:
9723       OS << "unwrap reference initializer list";
9724       break;
9725 
9726     case SK_RewrapInitList:
9727       OS << "rewrap reference initializer list";
9728       break;
9729 
9730     case SK_ConstructorInitialization:
9731       OS << "constructor initialization";
9732       break;
9733 
9734     case SK_ConstructorInitializationFromList:
9735       OS << "list initialization via constructor";
9736       break;
9737 
9738     case SK_ZeroInitialization:
9739       OS << "zero initialization";
9740       break;
9741 
9742     case SK_CAssignment:
9743       OS << "C assignment";
9744       break;
9745 
9746     case SK_StringInit:
9747       OS << "string initialization";
9748       break;
9749 
9750     case SK_ObjCObjectConversion:
9751       OS << "Objective-C object conversion";
9752       break;
9753 
9754     case SK_ArrayLoopIndex:
9755       OS << "indexing for array initialization loop";
9756       break;
9757 
9758     case SK_ArrayLoopInit:
9759       OS << "array initialization loop";
9760       break;
9761 
9762     case SK_ArrayInit:
9763       OS << "array initialization";
9764       break;
9765 
9766     case SK_GNUArrayInit:
9767       OS << "array initialization (GNU extension)";
9768       break;
9769 
9770     case SK_ParenthesizedArrayInit:
9771       OS << "parenthesized array initialization";
9772       break;
9773 
9774     case SK_PassByIndirectCopyRestore:
9775       OS << "pass by indirect copy and restore";
9776       break;
9777 
9778     case SK_PassByIndirectRestore:
9779       OS << "pass by indirect restore";
9780       break;
9781 
9782     case SK_ProduceObjCObject:
9783       OS << "Objective-C object retension";
9784       break;
9785 
9786     case SK_StdInitializerList:
9787       OS << "std::initializer_list from initializer list";
9788       break;
9789 
9790     case SK_StdInitializerListConstructorCall:
9791       OS << "list initialization from std::initializer_list";
9792       break;
9793 
9794     case SK_OCLSamplerInit:
9795       OS << "OpenCL sampler_t from integer constant";
9796       break;
9797 
9798     case SK_OCLZeroOpaqueType:
9799       OS << "OpenCL opaque type from zero";
9800       break;
9801     }
9802 
9803     OS << " [" << S->Type.getAsString() << ']';
9804   }
9805 
9806   OS << '\n';
9807 }
9808 
9809 void InitializationSequence::dump() const {
9810   dump(llvm::errs());
9811 }
9812 
9813 static bool NarrowingErrs(const LangOptions &L) {
9814   return L.CPlusPlus11 &&
9815          (!L.MicrosoftExt || L.isCompatibleWithMSVC(LangOptions::MSVC2015));
9816 }
9817 
9818 static void DiagnoseNarrowingInInitList(Sema &S,
9819                                         const ImplicitConversionSequence &ICS,
9820                                         QualType PreNarrowingType,
9821                                         QualType EntityType,
9822                                         const Expr *PostInit) {
9823   const StandardConversionSequence *SCS = nullptr;
9824   switch (ICS.getKind()) {
9825   case ImplicitConversionSequence::StandardConversion:
9826     SCS = &ICS.Standard;
9827     break;
9828   case ImplicitConversionSequence::UserDefinedConversion:
9829     SCS = &ICS.UserDefined.After;
9830     break;
9831   case ImplicitConversionSequence::AmbiguousConversion:
9832   case ImplicitConversionSequence::EllipsisConversion:
9833   case ImplicitConversionSequence::BadConversion:
9834     return;
9835   }
9836 
9837   // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
9838   APValue ConstantValue;
9839   QualType ConstantType;
9840   switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
9841                                 ConstantType)) {
9842   case NK_Not_Narrowing:
9843   case NK_Dependent_Narrowing:
9844     // No narrowing occurred.
9845     return;
9846 
9847   case NK_Type_Narrowing:
9848     // This was a floating-to-integer conversion, which is always considered a
9849     // narrowing conversion even if the value is a constant and can be
9850     // represented exactly as an integer.
9851     S.Diag(PostInit->getBeginLoc(), NarrowingErrs(S.getLangOpts())
9852                                         ? diag::ext_init_list_type_narrowing
9853                                         : diag::warn_init_list_type_narrowing)
9854         << PostInit->getSourceRange()
9855         << PreNarrowingType.getLocalUnqualifiedType()
9856         << EntityType.getLocalUnqualifiedType();
9857     break;
9858 
9859   case NK_Constant_Narrowing:
9860     // A constant value was narrowed.
9861     S.Diag(PostInit->getBeginLoc(),
9862            NarrowingErrs(S.getLangOpts())
9863                ? diag::ext_init_list_constant_narrowing
9864                : diag::warn_init_list_constant_narrowing)
9865         << PostInit->getSourceRange()
9866         << ConstantValue.getAsString(S.getASTContext(), ConstantType)
9867         << EntityType.getLocalUnqualifiedType();
9868     break;
9869 
9870   case NK_Variable_Narrowing:
9871     // A variable's value may have been narrowed.
9872     S.Diag(PostInit->getBeginLoc(),
9873            NarrowingErrs(S.getLangOpts())
9874                ? diag::ext_init_list_variable_narrowing
9875                : diag::warn_init_list_variable_narrowing)
9876         << PostInit->getSourceRange()
9877         << PreNarrowingType.getLocalUnqualifiedType()
9878         << EntityType.getLocalUnqualifiedType();
9879     break;
9880   }
9881 
9882   SmallString<128> StaticCast;
9883   llvm::raw_svector_ostream OS(StaticCast);
9884   OS << "static_cast<";
9885   if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
9886     // It's important to use the typedef's name if there is one so that the
9887     // fixit doesn't break code using types like int64_t.
9888     //
9889     // FIXME: This will break if the typedef requires qualification.  But
9890     // getQualifiedNameAsString() includes non-machine-parsable components.
9891     OS << *TT->getDecl();
9892   } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
9893     OS << BT->getName(S.getLangOpts());
9894   else {
9895     // Oops, we didn't find the actual type of the variable.  Don't emit a fixit
9896     // with a broken cast.
9897     return;
9898   }
9899   OS << ">(";
9900   S.Diag(PostInit->getBeginLoc(), diag::note_init_list_narrowing_silence)
9901       << PostInit->getSourceRange()
9902       << FixItHint::CreateInsertion(PostInit->getBeginLoc(), OS.str())
9903       << FixItHint::CreateInsertion(
9904              S.getLocForEndOfToken(PostInit->getEndLoc()), ")");
9905 }
9906 
9907 //===----------------------------------------------------------------------===//
9908 // Initialization helper functions
9909 //===----------------------------------------------------------------------===//
9910 bool
9911 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
9912                                    ExprResult Init) {
9913   if (Init.isInvalid())
9914     return false;
9915 
9916   Expr *InitE = Init.get();
9917   assert(InitE && "No initialization expression");
9918 
9919   InitializationKind Kind =
9920       InitializationKind::CreateCopy(InitE->getBeginLoc(), SourceLocation());
9921   InitializationSequence Seq(*this, Entity, Kind, InitE);
9922   return !Seq.Failed();
9923 }
9924 
9925 ExprResult
9926 Sema::PerformCopyInitialization(const InitializedEntity &Entity,
9927                                 SourceLocation EqualLoc,
9928                                 ExprResult Init,
9929                                 bool TopLevelOfInitList,
9930                                 bool AllowExplicit) {
9931   if (Init.isInvalid())
9932     return ExprError();
9933 
9934   Expr *InitE = Init.get();
9935   assert(InitE && "No initialization expression?");
9936 
9937   if (EqualLoc.isInvalid())
9938     EqualLoc = InitE->getBeginLoc();
9939 
9940   InitializationKind Kind = InitializationKind::CreateCopy(
9941       InitE->getBeginLoc(), EqualLoc, AllowExplicit);
9942   InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList);
9943 
9944   // Prevent infinite recursion when performing parameter copy-initialization.
9945   const bool ShouldTrackCopy =
9946       Entity.isParameterKind() && Seq.isConstructorInitialization();
9947   if (ShouldTrackCopy) {
9948     if (llvm::is_contained(CurrentParameterCopyTypes, Entity.getType())) {
9949       Seq.SetOverloadFailure(
9950           InitializationSequence::FK_ConstructorOverloadFailed,
9951           OR_No_Viable_Function);
9952 
9953       // Try to give a meaningful diagnostic note for the problematic
9954       // constructor.
9955       const auto LastStep = Seq.step_end() - 1;
9956       assert(LastStep->Kind ==
9957              InitializationSequence::SK_ConstructorInitialization);
9958       const FunctionDecl *Function = LastStep->Function.Function;
9959       auto Candidate =
9960           llvm::find_if(Seq.getFailedCandidateSet(),
9961                         [Function](const OverloadCandidate &Candidate) -> bool {
9962                           return Candidate.Viable &&
9963                                  Candidate.Function == Function &&
9964                                  Candidate.Conversions.size() > 0;
9965                         });
9966       if (Candidate != Seq.getFailedCandidateSet().end() &&
9967           Function->getNumParams() > 0) {
9968         Candidate->Viable = false;
9969         Candidate->FailureKind = ovl_fail_bad_conversion;
9970         Candidate->Conversions[0].setBad(BadConversionSequence::no_conversion,
9971                                          InitE,
9972                                          Function->getParamDecl(0)->getType());
9973       }
9974     }
9975     CurrentParameterCopyTypes.push_back(Entity.getType());
9976   }
9977 
9978   ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE);
9979 
9980   if (ShouldTrackCopy)
9981     CurrentParameterCopyTypes.pop_back();
9982 
9983   return Result;
9984 }
9985 
9986 /// Determine whether RD is, or is derived from, a specialization of CTD.
9987 static bool isOrIsDerivedFromSpecializationOf(CXXRecordDecl *RD,
9988                                               ClassTemplateDecl *CTD) {
9989   auto NotSpecialization = [&] (const CXXRecordDecl *Candidate) {
9990     auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Candidate);
9991     return !CTSD || !declaresSameEntity(CTSD->getSpecializedTemplate(), CTD);
9992   };
9993   return !(NotSpecialization(RD) && RD->forallBases(NotSpecialization));
9994 }
9995 
9996 QualType Sema::DeduceTemplateSpecializationFromInitializer(
9997     TypeSourceInfo *TSInfo, const InitializedEntity &Entity,
9998     const InitializationKind &Kind, MultiExprArg Inits) {
9999   auto *DeducedTST = dyn_cast<DeducedTemplateSpecializationType>(
10000       TSInfo->getType()->getContainedDeducedType());
10001   assert(DeducedTST && "not a deduced template specialization type");
10002 
10003   auto TemplateName = DeducedTST->getTemplateName();
10004   if (TemplateName.isDependent())
10005     return SubstAutoTypeDependent(TSInfo->getType());
10006 
10007   // We can only perform deduction for class templates.
10008   auto *Template =
10009       dyn_cast_or_null<ClassTemplateDecl>(TemplateName.getAsTemplateDecl());
10010   if (!Template) {
10011     Diag(Kind.getLocation(),
10012          diag::err_deduced_non_class_template_specialization_type)
10013       << (int)getTemplateNameKindForDiagnostics(TemplateName) << TemplateName;
10014     if (auto *TD = TemplateName.getAsTemplateDecl())
10015       Diag(TD->getLocation(), diag::note_template_decl_here);
10016     return QualType();
10017   }
10018 
10019   // Can't deduce from dependent arguments.
10020   if (Expr::hasAnyTypeDependentArguments(Inits)) {
10021     Diag(TSInfo->getTypeLoc().getBeginLoc(),
10022          diag::warn_cxx14_compat_class_template_argument_deduction)
10023         << TSInfo->getTypeLoc().getSourceRange() << 0;
10024     return SubstAutoTypeDependent(TSInfo->getType());
10025   }
10026 
10027   // FIXME: Perform "exact type" matching first, per CWG discussion?
10028   //        Or implement this via an implied 'T(T) -> T' deduction guide?
10029 
10030   // FIXME: Do we need/want a std::initializer_list<T> special case?
10031 
10032   // Look up deduction guides, including those synthesized from constructors.
10033   //
10034   // C++1z [over.match.class.deduct]p1:
10035   //   A set of functions and function templates is formed comprising:
10036   //   - For each constructor of the class template designated by the
10037   //     template-name, a function template [...]
10038   //  - For each deduction-guide, a function or function template [...]
10039   DeclarationNameInfo NameInfo(
10040       Context.DeclarationNames.getCXXDeductionGuideName(Template),
10041       TSInfo->getTypeLoc().getEndLoc());
10042   LookupResult Guides(*this, NameInfo, LookupOrdinaryName);
10043   LookupQualifiedName(Guides, Template->getDeclContext());
10044 
10045   // FIXME: Do not diagnose inaccessible deduction guides. The standard isn't
10046   // clear on this, but they're not found by name so access does not apply.
10047   Guides.suppressDiagnostics();
10048 
10049   // Figure out if this is list-initialization.
10050   InitListExpr *ListInit =
10051       (Inits.size() == 1 && Kind.getKind() != InitializationKind::IK_Direct)
10052           ? dyn_cast<InitListExpr>(Inits[0])
10053           : nullptr;
10054 
10055   // C++1z [over.match.class.deduct]p1:
10056   //   Initialization and overload resolution are performed as described in
10057   //   [dcl.init] and [over.match.ctor], [over.match.copy], or [over.match.list]
10058   //   (as appropriate for the type of initialization performed) for an object
10059   //   of a hypothetical class type, where the selected functions and function
10060   //   templates are considered to be the constructors of that class type
10061   //
10062   // Since we know we're initializing a class type of a type unrelated to that
10063   // of the initializer, this reduces to something fairly reasonable.
10064   OverloadCandidateSet Candidates(Kind.getLocation(),
10065                                   OverloadCandidateSet::CSK_Normal);
10066   OverloadCandidateSet::iterator Best;
10067 
10068   bool HasAnyDeductionGuide = false;
10069   bool AllowExplicit = !Kind.isCopyInit() || ListInit;
10070 
10071   auto tryToResolveOverload =
10072       [&](bool OnlyListConstructors) -> OverloadingResult {
10073     Candidates.clear(OverloadCandidateSet::CSK_Normal);
10074     HasAnyDeductionGuide = false;
10075 
10076     for (auto I = Guides.begin(), E = Guides.end(); I != E; ++I) {
10077       NamedDecl *D = (*I)->getUnderlyingDecl();
10078       if (D->isInvalidDecl())
10079         continue;
10080 
10081       auto *TD = dyn_cast<FunctionTemplateDecl>(D);
10082       auto *GD = dyn_cast_or_null<CXXDeductionGuideDecl>(
10083           TD ? TD->getTemplatedDecl() : dyn_cast<FunctionDecl>(D));
10084       if (!GD)
10085         continue;
10086 
10087       if (!GD->isImplicit())
10088         HasAnyDeductionGuide = true;
10089 
10090       // C++ [over.match.ctor]p1: (non-list copy-initialization from non-class)
10091       //   For copy-initialization, the candidate functions are all the
10092       //   converting constructors (12.3.1) of that class.
10093       // C++ [over.match.copy]p1: (non-list copy-initialization from class)
10094       //   The converting constructors of T are candidate functions.
10095       if (!AllowExplicit) {
10096         // Overload resolution checks whether the deduction guide is declared
10097         // explicit for us.
10098 
10099         // When looking for a converting constructor, deduction guides that
10100         // could never be called with one argument are not interesting to
10101         // check or note.
10102         if (GD->getMinRequiredArguments() > 1 ||
10103             (GD->getNumParams() == 0 && !GD->isVariadic()))
10104           continue;
10105       }
10106 
10107       // C++ [over.match.list]p1.1: (first phase list initialization)
10108       //   Initially, the candidate functions are the initializer-list
10109       //   constructors of the class T
10110       if (OnlyListConstructors && !isInitListConstructor(GD))
10111         continue;
10112 
10113       // C++ [over.match.list]p1.2: (second phase list initialization)
10114       //   the candidate functions are all the constructors of the class T
10115       // C++ [over.match.ctor]p1: (all other cases)
10116       //   the candidate functions are all the constructors of the class of
10117       //   the object being initialized
10118 
10119       // C++ [over.best.ics]p4:
10120       //   When [...] the constructor [...] is a candidate by
10121       //    - [over.match.copy] (in all cases)
10122       // FIXME: The "second phase of [over.match.list] case can also
10123       // theoretically happen here, but it's not clear whether we can
10124       // ever have a parameter of the right type.
10125       bool SuppressUserConversions = Kind.isCopyInit();
10126 
10127       if (TD)
10128         AddTemplateOverloadCandidate(TD, I.getPair(), /*ExplicitArgs*/ nullptr,
10129                                      Inits, Candidates, SuppressUserConversions,
10130                                      /*PartialOverloading*/ false,
10131                                      AllowExplicit);
10132       else
10133         AddOverloadCandidate(GD, I.getPair(), Inits, Candidates,
10134                              SuppressUserConversions,
10135                              /*PartialOverloading*/ false, AllowExplicit);
10136     }
10137     return Candidates.BestViableFunction(*this, Kind.getLocation(), Best);
10138   };
10139 
10140   OverloadingResult Result = OR_No_Viable_Function;
10141 
10142   // C++11 [over.match.list]p1, per DR1467: for list-initialization, first
10143   // try initializer-list constructors.
10144   if (ListInit) {
10145     bool TryListConstructors = true;
10146 
10147     // Try list constructors unless the list is empty and the class has one or
10148     // more default constructors, in which case those constructors win.
10149     if (!ListInit->getNumInits()) {
10150       for (NamedDecl *D : Guides) {
10151         auto *FD = dyn_cast<FunctionDecl>(D->getUnderlyingDecl());
10152         if (FD && FD->getMinRequiredArguments() == 0) {
10153           TryListConstructors = false;
10154           break;
10155         }
10156       }
10157     } else if (ListInit->getNumInits() == 1) {
10158       // C++ [over.match.class.deduct]:
10159       //   As an exception, the first phase in [over.match.list] (considering
10160       //   initializer-list constructors) is omitted if the initializer list
10161       //   consists of a single expression of type cv U, where U is a
10162       //   specialization of C or a class derived from a specialization of C.
10163       Expr *E = ListInit->getInit(0);
10164       auto *RD = E->getType()->getAsCXXRecordDecl();
10165       if (!isa<InitListExpr>(E) && RD &&
10166           isCompleteType(Kind.getLocation(), E->getType()) &&
10167           isOrIsDerivedFromSpecializationOf(RD, Template))
10168         TryListConstructors = false;
10169     }
10170 
10171     if (TryListConstructors)
10172       Result = tryToResolveOverload(/*OnlyListConstructor*/true);
10173     // Then unwrap the initializer list and try again considering all
10174     // constructors.
10175     Inits = MultiExprArg(ListInit->getInits(), ListInit->getNumInits());
10176   }
10177 
10178   // If list-initialization fails, or if we're doing any other kind of
10179   // initialization, we (eventually) consider constructors.
10180   if (Result == OR_No_Viable_Function)
10181     Result = tryToResolveOverload(/*OnlyListConstructor*/false);
10182 
10183   switch (Result) {
10184   case OR_Ambiguous:
10185     // FIXME: For list-initialization candidates, it'd usually be better to
10186     // list why they were not viable when given the initializer list itself as
10187     // an argument.
10188     Candidates.NoteCandidates(
10189         PartialDiagnosticAt(
10190             Kind.getLocation(),
10191             PDiag(diag::err_deduced_class_template_ctor_ambiguous)
10192                 << TemplateName),
10193         *this, OCD_AmbiguousCandidates, Inits);
10194     return QualType();
10195 
10196   case OR_No_Viable_Function: {
10197     CXXRecordDecl *Primary =
10198         cast<ClassTemplateDecl>(Template)->getTemplatedDecl();
10199     bool Complete =
10200         isCompleteType(Kind.getLocation(), Context.getTypeDeclType(Primary));
10201     Candidates.NoteCandidates(
10202         PartialDiagnosticAt(
10203             Kind.getLocation(),
10204             PDiag(Complete ? diag::err_deduced_class_template_ctor_no_viable
10205                            : diag::err_deduced_class_template_incomplete)
10206                 << TemplateName << !Guides.empty()),
10207         *this, OCD_AllCandidates, Inits);
10208     return QualType();
10209   }
10210 
10211   case OR_Deleted: {
10212     Diag(Kind.getLocation(), diag::err_deduced_class_template_deleted)
10213       << TemplateName;
10214     NoteDeletedFunction(Best->Function);
10215     return QualType();
10216   }
10217 
10218   case OR_Success:
10219     // C++ [over.match.list]p1:
10220     //   In copy-list-initialization, if an explicit constructor is chosen, the
10221     //   initialization is ill-formed.
10222     if (Kind.isCopyInit() && ListInit &&
10223         cast<CXXDeductionGuideDecl>(Best->Function)->isExplicit()) {
10224       bool IsDeductionGuide = !Best->Function->isImplicit();
10225       Diag(Kind.getLocation(), diag::err_deduced_class_template_explicit)
10226           << TemplateName << IsDeductionGuide;
10227       Diag(Best->Function->getLocation(),
10228            diag::note_explicit_ctor_deduction_guide_here)
10229           << IsDeductionGuide;
10230       return QualType();
10231     }
10232 
10233     // Make sure we didn't select an unusable deduction guide, and mark it
10234     // as referenced.
10235     DiagnoseUseOfDecl(Best->Function, Kind.getLocation());
10236     MarkFunctionReferenced(Kind.getLocation(), Best->Function);
10237     break;
10238   }
10239 
10240   // C++ [dcl.type.class.deduct]p1:
10241   //  The placeholder is replaced by the return type of the function selected
10242   //  by overload resolution for class template deduction.
10243   QualType DeducedType =
10244       SubstAutoType(TSInfo->getType(), Best->Function->getReturnType());
10245   Diag(TSInfo->getTypeLoc().getBeginLoc(),
10246        diag::warn_cxx14_compat_class_template_argument_deduction)
10247       << TSInfo->getTypeLoc().getSourceRange() << 1 << DeducedType;
10248 
10249   // Warn if CTAD was used on a type that does not have any user-defined
10250   // deduction guides.
10251   if (!HasAnyDeductionGuide) {
10252     Diag(TSInfo->getTypeLoc().getBeginLoc(),
10253          diag::warn_ctad_maybe_unsupported)
10254         << TemplateName;
10255     Diag(Template->getLocation(), diag::note_suppress_ctad_maybe_unsupported);
10256   }
10257 
10258   return DeducedType;
10259 }
10260