1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for initializers.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/DeclObjC.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/AST/ExprObjC.h"
17 #include "clang/AST/ExprOpenMP.h"
18 #include "clang/AST/TypeLoc.h"
19 #include "clang/Basic/CharInfo.h"
20 #include "clang/Basic/SourceManager.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "clang/Sema/Designator.h"
23 #include "clang/Sema/Initialization.h"
24 #include "clang/Sema/Lookup.h"
25 #include "clang/Sema/SemaInternal.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/SmallString.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/raw_ostream.h"
30 
31 using namespace clang;
32 
33 //===----------------------------------------------------------------------===//
34 // Sema Initialization Checking
35 //===----------------------------------------------------------------------===//
36 
37 /// Check whether T is compatible with a wide character type (wchar_t,
38 /// char16_t or char32_t).
39 static bool IsWideCharCompatible(QualType T, ASTContext &Context) {
40   if (Context.typesAreCompatible(Context.getWideCharType(), T))
41     return true;
42   if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) {
43     return Context.typesAreCompatible(Context.Char16Ty, T) ||
44            Context.typesAreCompatible(Context.Char32Ty, T);
45   }
46   return false;
47 }
48 
49 enum StringInitFailureKind {
50   SIF_None,
51   SIF_NarrowStringIntoWideChar,
52   SIF_WideStringIntoChar,
53   SIF_IncompatWideStringIntoWideChar,
54   SIF_UTF8StringIntoPlainChar,
55   SIF_PlainStringIntoUTF8Char,
56   SIF_Other
57 };
58 
59 /// Check whether the array of type AT can be initialized by the Init
60 /// expression by means of string initialization. Returns SIF_None if so,
61 /// otherwise returns a StringInitFailureKind that describes why the
62 /// initialization would not work.
63 static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT,
64                                           ASTContext &Context) {
65   if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
66     return SIF_Other;
67 
68   // See if this is a string literal or @encode.
69   Init = Init->IgnoreParens();
70 
71   // Handle @encode, which is a narrow string.
72   if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
73     return SIF_None;
74 
75   // Otherwise we can only handle string literals.
76   StringLiteral *SL = dyn_cast<StringLiteral>(Init);
77   if (!SL)
78     return SIF_Other;
79 
80   const QualType ElemTy =
81       Context.getCanonicalType(AT->getElementType()).getUnqualifiedType();
82 
83   switch (SL->getKind()) {
84   case StringLiteral::UTF8:
85     // char8_t array can be initialized with a UTF-8 string.
86     if (ElemTy->isChar8Type())
87       return SIF_None;
88     LLVM_FALLTHROUGH;
89   case StringLiteral::Ascii:
90     // char array can be initialized with a narrow string.
91     // Only allow char x[] = "foo";  not char x[] = L"foo";
92     if (ElemTy->isCharType())
93       return (SL->getKind() == StringLiteral::UTF8 &&
94               Context.getLangOpts().Char8)
95                  ? SIF_UTF8StringIntoPlainChar
96                  : SIF_None;
97     if (ElemTy->isChar8Type())
98       return SIF_PlainStringIntoUTF8Char;
99     if (IsWideCharCompatible(ElemTy, Context))
100       return SIF_NarrowStringIntoWideChar;
101     return SIF_Other;
102   // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15:
103   // "An array with element type compatible with a qualified or unqualified
104   // version of wchar_t, char16_t, or char32_t may be initialized by a wide
105   // string literal with the corresponding encoding prefix (L, u, or U,
106   // respectively), optionally enclosed in braces.
107   case StringLiteral::UTF16:
108     if (Context.typesAreCompatible(Context.Char16Ty, ElemTy))
109       return SIF_None;
110     if (ElemTy->isCharType() || ElemTy->isChar8Type())
111       return SIF_WideStringIntoChar;
112     if (IsWideCharCompatible(ElemTy, Context))
113       return SIF_IncompatWideStringIntoWideChar;
114     return SIF_Other;
115   case StringLiteral::UTF32:
116     if (Context.typesAreCompatible(Context.Char32Ty, ElemTy))
117       return SIF_None;
118     if (ElemTy->isCharType() || ElemTy->isChar8Type())
119       return SIF_WideStringIntoChar;
120     if (IsWideCharCompatible(ElemTy, Context))
121       return SIF_IncompatWideStringIntoWideChar;
122     return SIF_Other;
123   case StringLiteral::Wide:
124     if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy))
125       return SIF_None;
126     if (ElemTy->isCharType() || ElemTy->isChar8Type())
127       return SIF_WideStringIntoChar;
128     if (IsWideCharCompatible(ElemTy, Context))
129       return SIF_IncompatWideStringIntoWideChar;
130     return SIF_Other;
131   }
132 
133   llvm_unreachable("missed a StringLiteral kind?");
134 }
135 
136 static StringInitFailureKind IsStringInit(Expr *init, QualType declType,
137                                           ASTContext &Context) {
138   const ArrayType *arrayType = Context.getAsArrayType(declType);
139   if (!arrayType)
140     return SIF_Other;
141   return IsStringInit(init, arrayType, Context);
142 }
143 
144 bool Sema::IsStringInit(Expr *Init, const ArrayType *AT) {
145   return ::IsStringInit(Init, AT, Context) == SIF_None;
146 }
147 
148 /// Update the type of a string literal, including any surrounding parentheses,
149 /// to match the type of the object which it is initializing.
150 static void updateStringLiteralType(Expr *E, QualType Ty) {
151   while (true) {
152     E->setType(Ty);
153     E->setValueKind(VK_RValue);
154     if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E)) {
155       break;
156     } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
157       E = PE->getSubExpr();
158     } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
159       assert(UO->getOpcode() == UO_Extension);
160       E = UO->getSubExpr();
161     } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) {
162       E = GSE->getResultExpr();
163     } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) {
164       E = CE->getChosenSubExpr();
165     } else {
166       llvm_unreachable("unexpected expr in string literal init");
167     }
168   }
169 }
170 
171 /// Fix a compound literal initializing an array so it's correctly marked
172 /// as an rvalue.
173 static void updateGNUCompoundLiteralRValue(Expr *E) {
174   while (true) {
175     E->setValueKind(VK_RValue);
176     if (isa<CompoundLiteralExpr>(E)) {
177       break;
178     } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
179       E = PE->getSubExpr();
180     } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
181       assert(UO->getOpcode() == UO_Extension);
182       E = UO->getSubExpr();
183     } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) {
184       E = GSE->getResultExpr();
185     } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) {
186       E = CE->getChosenSubExpr();
187     } else {
188       llvm_unreachable("unexpected expr in array compound literal init");
189     }
190   }
191 }
192 
193 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
194                             Sema &S) {
195   // Get the length of the string as parsed.
196   auto *ConstantArrayTy =
197       cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe());
198   uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue();
199 
200   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
201     // C99 6.7.8p14. We have an array of character type with unknown size
202     // being initialized to a string literal.
203     llvm::APInt ConstVal(32, StrLength);
204     // Return a new array type (C99 6.7.8p22).
205     DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
206                                            ConstVal, nullptr,
207                                            ArrayType::Normal, 0);
208     updateStringLiteralType(Str, DeclT);
209     return;
210   }
211 
212   const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
213 
214   // We have an array of character type with known size.  However,
215   // the size may be smaller or larger than the string we are initializing.
216   // FIXME: Avoid truncation for 64-bit length strings.
217   if (S.getLangOpts().CPlusPlus) {
218     if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
219       // For Pascal strings it's OK to strip off the terminating null character,
220       // so the example below is valid:
221       //
222       // unsigned char a[2] = "\pa";
223       if (SL->isPascal())
224         StrLength--;
225     }
226 
227     // [dcl.init.string]p2
228     if (StrLength > CAT->getSize().getZExtValue())
229       S.Diag(Str->getBeginLoc(),
230              diag::err_initializer_string_for_char_array_too_long)
231           << Str->getSourceRange();
232   } else {
233     // C99 6.7.8p14.
234     if (StrLength-1 > CAT->getSize().getZExtValue())
235       S.Diag(Str->getBeginLoc(),
236              diag::ext_initializer_string_for_char_array_too_long)
237           << Str->getSourceRange();
238   }
239 
240   // Set the type to the actual size that we are initializing.  If we have
241   // something like:
242   //   char x[1] = "foo";
243   // then this will set the string literal's type to char[1].
244   updateStringLiteralType(Str, DeclT);
245 }
246 
247 //===----------------------------------------------------------------------===//
248 // Semantic checking for initializer lists.
249 //===----------------------------------------------------------------------===//
250 
251 namespace {
252 
253 /// Semantic checking for initializer lists.
254 ///
255 /// The InitListChecker class contains a set of routines that each
256 /// handle the initialization of a certain kind of entity, e.g.,
257 /// arrays, vectors, struct/union types, scalars, etc. The
258 /// InitListChecker itself performs a recursive walk of the subobject
259 /// structure of the type to be initialized, while stepping through
260 /// the initializer list one element at a time. The IList and Index
261 /// parameters to each of the Check* routines contain the active
262 /// (syntactic) initializer list and the index into that initializer
263 /// list that represents the current initializer. Each routine is
264 /// responsible for moving that Index forward as it consumes elements.
265 ///
266 /// Each Check* routine also has a StructuredList/StructuredIndex
267 /// arguments, which contains the current "structured" (semantic)
268 /// initializer list and the index into that initializer list where we
269 /// are copying initializers as we map them over to the semantic
270 /// list. Once we have completed our recursive walk of the subobject
271 /// structure, we will have constructed a full semantic initializer
272 /// list.
273 ///
274 /// C99 designators cause changes in the initializer list traversal,
275 /// because they make the initialization "jump" into a specific
276 /// subobject and then continue the initialization from that
277 /// point. CheckDesignatedInitializer() recursively steps into the
278 /// designated subobject and manages backing out the recursion to
279 /// initialize the subobjects after the one designated.
280 ///
281 /// If an initializer list contains any designators, we build a placeholder
282 /// structured list even in 'verify only' mode, so that we can track which
283 /// elements need 'empty' initializtion.
284 class InitListChecker {
285   Sema &SemaRef;
286   bool hadError = false;
287   bool VerifyOnly; // No diagnostics.
288   bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode.
289   bool InOverloadResolution;
290   InitListExpr *FullyStructuredList = nullptr;
291   NoInitExpr *DummyExpr = nullptr;
292 
293   NoInitExpr *getDummyInit() {
294     if (!DummyExpr)
295       DummyExpr = new (SemaRef.Context) NoInitExpr(SemaRef.Context.VoidTy);
296     return DummyExpr;
297   }
298 
299   void CheckImplicitInitList(const InitializedEntity &Entity,
300                              InitListExpr *ParentIList, QualType T,
301                              unsigned &Index, InitListExpr *StructuredList,
302                              unsigned &StructuredIndex);
303   void CheckExplicitInitList(const InitializedEntity &Entity,
304                              InitListExpr *IList, QualType &T,
305                              InitListExpr *StructuredList,
306                              bool TopLevelObject = false);
307   void CheckListElementTypes(const InitializedEntity &Entity,
308                              InitListExpr *IList, QualType &DeclType,
309                              bool SubobjectIsDesignatorContext,
310                              unsigned &Index,
311                              InitListExpr *StructuredList,
312                              unsigned &StructuredIndex,
313                              bool TopLevelObject = false);
314   void CheckSubElementType(const InitializedEntity &Entity,
315                            InitListExpr *IList, QualType ElemType,
316                            unsigned &Index,
317                            InitListExpr *StructuredList,
318                            unsigned &StructuredIndex);
319   void CheckComplexType(const InitializedEntity &Entity,
320                         InitListExpr *IList, QualType DeclType,
321                         unsigned &Index,
322                         InitListExpr *StructuredList,
323                         unsigned &StructuredIndex);
324   void CheckScalarType(const InitializedEntity &Entity,
325                        InitListExpr *IList, QualType DeclType,
326                        unsigned &Index,
327                        InitListExpr *StructuredList,
328                        unsigned &StructuredIndex);
329   void CheckReferenceType(const InitializedEntity &Entity,
330                           InitListExpr *IList, QualType DeclType,
331                           unsigned &Index,
332                           InitListExpr *StructuredList,
333                           unsigned &StructuredIndex);
334   void CheckVectorType(const InitializedEntity &Entity,
335                        InitListExpr *IList, QualType DeclType, unsigned &Index,
336                        InitListExpr *StructuredList,
337                        unsigned &StructuredIndex);
338   void CheckStructUnionTypes(const InitializedEntity &Entity,
339                              InitListExpr *IList, QualType DeclType,
340                              CXXRecordDecl::base_class_range Bases,
341                              RecordDecl::field_iterator Field,
342                              bool SubobjectIsDesignatorContext, unsigned &Index,
343                              InitListExpr *StructuredList,
344                              unsigned &StructuredIndex,
345                              bool TopLevelObject = false);
346   void CheckArrayType(const InitializedEntity &Entity,
347                       InitListExpr *IList, QualType &DeclType,
348                       llvm::APSInt elementIndex,
349                       bool SubobjectIsDesignatorContext, unsigned &Index,
350                       InitListExpr *StructuredList,
351                       unsigned &StructuredIndex);
352   bool CheckDesignatedInitializer(const InitializedEntity &Entity,
353                                   InitListExpr *IList, DesignatedInitExpr *DIE,
354                                   unsigned DesigIdx,
355                                   QualType &CurrentObjectType,
356                                   RecordDecl::field_iterator *NextField,
357                                   llvm::APSInt *NextElementIndex,
358                                   unsigned &Index,
359                                   InitListExpr *StructuredList,
360                                   unsigned &StructuredIndex,
361                                   bool FinishSubobjectInit,
362                                   bool TopLevelObject);
363   InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
364                                            QualType CurrentObjectType,
365                                            InitListExpr *StructuredList,
366                                            unsigned StructuredIndex,
367                                            SourceRange InitRange,
368                                            bool IsFullyOverwritten = false);
369   void UpdateStructuredListElement(InitListExpr *StructuredList,
370                                    unsigned &StructuredIndex,
371                                    Expr *expr);
372   InitListExpr *createInitListExpr(QualType CurrentObjectType,
373                                    SourceRange InitRange,
374                                    unsigned ExpectedNumInits);
375   int numArrayElements(QualType DeclType);
376   int numStructUnionElements(QualType DeclType);
377 
378   ExprResult PerformEmptyInit(SourceLocation Loc,
379                               const InitializedEntity &Entity);
380 
381   /// Diagnose that OldInit (or part thereof) has been overridden by NewInit.
382   void diagnoseInitOverride(Expr *OldInit, SourceRange NewInitRange,
383                             bool FullyOverwritten = true) {
384     // Overriding an initializer via a designator is valid with C99 designated
385     // initializers, but ill-formed with C++20 designated initializers.
386     unsigned DiagID = SemaRef.getLangOpts().CPlusPlus
387                           ? diag::ext_initializer_overrides
388                           : diag::warn_initializer_overrides;
389 
390     if (InOverloadResolution && SemaRef.getLangOpts().CPlusPlus) {
391       // In overload resolution, we have to strictly enforce the rules, and so
392       // don't allow any overriding of prior initializers. This matters for a
393       // case such as:
394       //
395       //   union U { int a, b; };
396       //   struct S { int a, b; };
397       //   void f(U), f(S);
398       //
399       // Here, f({.a = 1, .b = 2}) is required to call the struct overload. For
400       // consistency, we disallow all overriding of prior initializers in
401       // overload resolution, not only overriding of union members.
402       hadError = true;
403     } else if (OldInit->getType().isDestructedType() && !FullyOverwritten) {
404       // If we'll be keeping around the old initializer but overwriting part of
405       // the object it initialized, and that object is not trivially
406       // destructible, this can leak. Don't allow that, not even as an
407       // extension.
408       //
409       // FIXME: It might be reasonable to allow this in cases where the part of
410       // the initializer that we're overriding has trivial destruction.
411       DiagID = diag::err_initializer_overrides_destructed;
412     } else if (!OldInit->getSourceRange().isValid()) {
413       // We need to check on source range validity because the previous
414       // initializer does not have to be an explicit initializer. e.g.,
415       //
416       // struct P { int a, b; };
417       // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
418       //
419       // There is an overwrite taking place because the first braced initializer
420       // list "{ .a = 2 }" already provides value for .p.b (which is zero).
421       //
422       // Such overwrites are harmless, so we don't diagnose them. (Note that in
423       // C++, this cannot be reached unless we've already seen and diagnosed a
424       // different conformance issue, such as a mixture of designated and
425       // non-designated initializers or a multi-level designator.)
426       return;
427     }
428 
429     if (!VerifyOnly) {
430       SemaRef.Diag(NewInitRange.getBegin(), DiagID)
431           << NewInitRange << FullyOverwritten << OldInit->getType();
432       SemaRef.Diag(OldInit->getBeginLoc(), diag::note_previous_initializer)
433           << (OldInit->HasSideEffects(SemaRef.Context) && FullyOverwritten)
434           << OldInit->getSourceRange();
435     }
436   }
437 
438   // Explanation on the "FillWithNoInit" mode:
439   //
440   // Assume we have the following definitions (Case#1):
441   // struct P { char x[6][6]; } xp = { .x[1] = "bar" };
442   // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' };
443   //
444   // l.lp.x[1][0..1] should not be filled with implicit initializers because the
445   // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf".
446   //
447   // But if we have (Case#2):
448   // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } };
449   //
450   // l.lp.x[1][0..1] are implicitly initialized and do not use values from the
451   // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0".
452   //
453   // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes"
454   // in the InitListExpr, the "holes" in Case#1 are filled not with empty
455   // initializers but with special "NoInitExpr" place holders, which tells the
456   // CodeGen not to generate any initializers for these parts.
457   void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base,
458                               const InitializedEntity &ParentEntity,
459                               InitListExpr *ILE, bool &RequiresSecondPass,
460                               bool FillWithNoInit);
461   void FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
462                                const InitializedEntity &ParentEntity,
463                                InitListExpr *ILE, bool &RequiresSecondPass,
464                                bool FillWithNoInit = false);
465   void FillInEmptyInitializations(const InitializedEntity &Entity,
466                                   InitListExpr *ILE, bool &RequiresSecondPass,
467                                   InitListExpr *OuterILE, unsigned OuterIndex,
468                                   bool FillWithNoInit = false);
469   bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
470                               Expr *InitExpr, FieldDecl *Field,
471                               bool TopLevelObject);
472   void CheckEmptyInitializable(const InitializedEntity &Entity,
473                                SourceLocation Loc);
474 
475 public:
476   InitListChecker(Sema &S, const InitializedEntity &Entity, InitListExpr *IL,
477                   QualType &T, bool VerifyOnly, bool TreatUnavailableAsInvalid,
478                   bool InOverloadResolution = false);
479   bool HadError() { return hadError; }
480 
481   // Retrieves the fully-structured initializer list used for
482   // semantic analysis and code generation.
483   InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
484 };
485 
486 } // end anonymous namespace
487 
488 ExprResult InitListChecker::PerformEmptyInit(SourceLocation Loc,
489                                              const InitializedEntity &Entity) {
490   InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
491                                                             true);
492   MultiExprArg SubInit;
493   Expr *InitExpr;
494   InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc);
495 
496   // C++ [dcl.init.aggr]p7:
497   //   If there are fewer initializer-clauses in the list than there are
498   //   members in the aggregate, then each member not explicitly initialized
499   //   ...
500   bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 &&
501       Entity.getType()->getBaseElementTypeUnsafe()->isRecordType();
502   if (EmptyInitList) {
503     // C++1y / DR1070:
504     //   shall be initialized [...] from an empty initializer list.
505     //
506     // We apply the resolution of this DR to C++11 but not C++98, since C++98
507     // does not have useful semantics for initialization from an init list.
508     // We treat this as copy-initialization, because aggregate initialization
509     // always performs copy-initialization on its elements.
510     //
511     // Only do this if we're initializing a class type, to avoid filling in
512     // the initializer list where possible.
513     InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context)
514                    InitListExpr(SemaRef.Context, Loc, None, Loc);
515     InitExpr->setType(SemaRef.Context.VoidTy);
516     SubInit = InitExpr;
517     Kind = InitializationKind::CreateCopy(Loc, Loc);
518   } else {
519     // C++03:
520     //   shall be value-initialized.
521   }
522 
523   InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit);
524   // libstdc++4.6 marks the vector default constructor as explicit in
525   // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case.
526   // stlport does so too. Look for std::__debug for libstdc++, and for
527   // std:: for stlport.  This is effectively a compiler-side implementation of
528   // LWG2193.
529   if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() ==
530           InitializationSequence::FK_ExplicitConstructor) {
531     OverloadCandidateSet::iterator Best;
532     OverloadingResult O =
533         InitSeq.getFailedCandidateSet()
534             .BestViableFunction(SemaRef, Kind.getLocation(), Best);
535     (void)O;
536     assert(O == OR_Success && "Inconsistent overload resolution");
537     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
538     CXXRecordDecl *R = CtorDecl->getParent();
539 
540     if (CtorDecl->getMinRequiredArguments() == 0 &&
541         CtorDecl->isExplicit() && R->getDeclName() &&
542         SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) {
543       bool IsInStd = false;
544       for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext());
545            ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) {
546         if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND))
547           IsInStd = true;
548       }
549 
550       if (IsInStd && llvm::StringSwitch<bool>(R->getName())
551               .Cases("basic_string", "deque", "forward_list", true)
552               .Cases("list", "map", "multimap", "multiset", true)
553               .Cases("priority_queue", "queue", "set", "stack", true)
554               .Cases("unordered_map", "unordered_set", "vector", true)
555               .Default(false)) {
556         InitSeq.InitializeFrom(
557             SemaRef, Entity,
558             InitializationKind::CreateValue(Loc, Loc, Loc, true),
559             MultiExprArg(), /*TopLevelOfInitList=*/false,
560             TreatUnavailableAsInvalid);
561         // Emit a warning for this.  System header warnings aren't shown
562         // by default, but people working on system headers should see it.
563         if (!VerifyOnly) {
564           SemaRef.Diag(CtorDecl->getLocation(),
565                        diag::warn_invalid_initializer_from_system_header);
566           if (Entity.getKind() == InitializedEntity::EK_Member)
567             SemaRef.Diag(Entity.getDecl()->getLocation(),
568                          diag::note_used_in_initialization_here);
569           else if (Entity.getKind() == InitializedEntity::EK_ArrayElement)
570             SemaRef.Diag(Loc, diag::note_used_in_initialization_here);
571         }
572       }
573     }
574   }
575   if (!InitSeq) {
576     if (!VerifyOnly) {
577       InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit);
578       if (Entity.getKind() == InitializedEntity::EK_Member)
579         SemaRef.Diag(Entity.getDecl()->getLocation(),
580                      diag::note_in_omitted_aggregate_initializer)
581           << /*field*/1 << Entity.getDecl();
582       else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) {
583         bool IsTrailingArrayNewMember =
584             Entity.getParent() &&
585             Entity.getParent()->isVariableLengthArrayNew();
586         SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer)
587           << (IsTrailingArrayNewMember ? 2 : /*array element*/0)
588           << Entity.getElementIndex();
589       }
590     }
591     hadError = true;
592     return ExprError();
593   }
594 
595   return VerifyOnly ? ExprResult()
596                     : InitSeq.Perform(SemaRef, Entity, Kind, SubInit);
597 }
598 
599 void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity,
600                                               SourceLocation Loc) {
601   // If we're building a fully-structured list, we'll check this at the end
602   // once we know which elements are actually initialized. Otherwise, we know
603   // that there are no designators so we can just check now.
604   if (FullyStructuredList)
605     return;
606   PerformEmptyInit(Loc, Entity);
607 }
608 
609 void InitListChecker::FillInEmptyInitForBase(
610     unsigned Init, const CXXBaseSpecifier &Base,
611     const InitializedEntity &ParentEntity, InitListExpr *ILE,
612     bool &RequiresSecondPass, bool FillWithNoInit) {
613   InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
614       SemaRef.Context, &Base, false, &ParentEntity);
615 
616   if (Init >= ILE->getNumInits() || !ILE->getInit(Init)) {
617     ExprResult BaseInit = FillWithNoInit
618                               ? new (SemaRef.Context) NoInitExpr(Base.getType())
619                               : PerformEmptyInit(ILE->getEndLoc(), BaseEntity);
620     if (BaseInit.isInvalid()) {
621       hadError = true;
622       return;
623     }
624 
625     if (!VerifyOnly) {
626       assert(Init < ILE->getNumInits() && "should have been expanded");
627       ILE->setInit(Init, BaseInit.getAs<Expr>());
628     }
629   } else if (InitListExpr *InnerILE =
630                  dyn_cast<InitListExpr>(ILE->getInit(Init))) {
631     FillInEmptyInitializations(BaseEntity, InnerILE, RequiresSecondPass,
632                                ILE, Init, FillWithNoInit);
633   } else if (DesignatedInitUpdateExpr *InnerDIUE =
634                dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
635     FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(),
636                                RequiresSecondPass, ILE, Init,
637                                /*FillWithNoInit =*/true);
638   }
639 }
640 
641 void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
642                                         const InitializedEntity &ParentEntity,
643                                               InitListExpr *ILE,
644                                               bool &RequiresSecondPass,
645                                               bool FillWithNoInit) {
646   SourceLocation Loc = ILE->getEndLoc();
647   unsigned NumInits = ILE->getNumInits();
648   InitializedEntity MemberEntity
649     = InitializedEntity::InitializeMember(Field, &ParentEntity);
650 
651   if (Init >= NumInits || !ILE->getInit(Init)) {
652     if (const RecordType *RType = ILE->getType()->getAs<RecordType>())
653       if (!RType->getDecl()->isUnion())
654         assert((Init < NumInits || VerifyOnly) &&
655                "This ILE should have been expanded");
656 
657     if (FillWithNoInit) {
658       assert(!VerifyOnly && "should not fill with no-init in verify-only mode");
659       Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType());
660       if (Init < NumInits)
661         ILE->setInit(Init, Filler);
662       else
663         ILE->updateInit(SemaRef.Context, Init, Filler);
664       return;
665     }
666     // C++1y [dcl.init.aggr]p7:
667     //   If there are fewer initializer-clauses in the list than there are
668     //   members in the aggregate, then each member not explicitly initialized
669     //   shall be initialized from its brace-or-equal-initializer [...]
670     if (Field->hasInClassInitializer()) {
671       if (VerifyOnly)
672         return;
673 
674       ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field);
675       if (DIE.isInvalid()) {
676         hadError = true;
677         return;
678       }
679       SemaRef.checkInitializerLifetime(MemberEntity, DIE.get());
680       if (Init < NumInits)
681         ILE->setInit(Init, DIE.get());
682       else {
683         ILE->updateInit(SemaRef.Context, Init, DIE.get());
684         RequiresSecondPass = true;
685       }
686       return;
687     }
688 
689     if (Field->getType()->isReferenceType()) {
690       if (!VerifyOnly) {
691         // C++ [dcl.init.aggr]p9:
692         //   If an incomplete or empty initializer-list leaves a
693         //   member of reference type uninitialized, the program is
694         //   ill-formed.
695         SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
696           << Field->getType()
697           << ILE->getSyntacticForm()->getSourceRange();
698         SemaRef.Diag(Field->getLocation(),
699                      diag::note_uninit_reference_member);
700       }
701       hadError = true;
702       return;
703     }
704 
705     ExprResult MemberInit = PerformEmptyInit(Loc, MemberEntity);
706     if (MemberInit.isInvalid()) {
707       hadError = true;
708       return;
709     }
710 
711     if (hadError || VerifyOnly) {
712       // Do nothing
713     } else if (Init < NumInits) {
714       ILE->setInit(Init, MemberInit.getAs<Expr>());
715     } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) {
716       // Empty initialization requires a constructor call, so
717       // extend the initializer list to include the constructor
718       // call and make a note that we'll need to take another pass
719       // through the initializer list.
720       ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>());
721       RequiresSecondPass = true;
722     }
723   } else if (InitListExpr *InnerILE
724                = dyn_cast<InitListExpr>(ILE->getInit(Init))) {
725     FillInEmptyInitializations(MemberEntity, InnerILE,
726                                RequiresSecondPass, ILE, Init, FillWithNoInit);
727   } else if (DesignatedInitUpdateExpr *InnerDIUE =
728                  dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
729     FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(),
730                                RequiresSecondPass, ILE, Init,
731                                /*FillWithNoInit =*/true);
732   }
733 }
734 
735 /// Recursively replaces NULL values within the given initializer list
736 /// with expressions that perform value-initialization of the
737 /// appropriate type, and finish off the InitListExpr formation.
738 void
739 InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity,
740                                             InitListExpr *ILE,
741                                             bool &RequiresSecondPass,
742                                             InitListExpr *OuterILE,
743                                             unsigned OuterIndex,
744                                             bool FillWithNoInit) {
745   assert((ILE->getType() != SemaRef.Context.VoidTy) &&
746          "Should not have void type");
747 
748   // We don't need to do any checks when just filling NoInitExprs; that can't
749   // fail.
750   if (FillWithNoInit && VerifyOnly)
751     return;
752 
753   // If this is a nested initializer list, we might have changed its contents
754   // (and therefore some of its properties, such as instantiation-dependence)
755   // while filling it in. Inform the outer initializer list so that its state
756   // can be updated to match.
757   // FIXME: We should fully build the inner initializers before constructing
758   // the outer InitListExpr instead of mutating AST nodes after they have
759   // been used as subexpressions of other nodes.
760   struct UpdateOuterILEWithUpdatedInit {
761     InitListExpr *Outer;
762     unsigned OuterIndex;
763     ~UpdateOuterILEWithUpdatedInit() {
764       if (Outer)
765         Outer->setInit(OuterIndex, Outer->getInit(OuterIndex));
766     }
767   } UpdateOuterRAII = {OuterILE, OuterIndex};
768 
769   // A transparent ILE is not performing aggregate initialization and should
770   // not be filled in.
771   if (ILE->isTransparent())
772     return;
773 
774   if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
775     const RecordDecl *RDecl = RType->getDecl();
776     if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
777       FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(),
778                               Entity, ILE, RequiresSecondPass, FillWithNoInit);
779     else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
780              cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
781       for (auto *Field : RDecl->fields()) {
782         if (Field->hasInClassInitializer()) {
783           FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass,
784                                   FillWithNoInit);
785           break;
786         }
787       }
788     } else {
789       // The fields beyond ILE->getNumInits() are default initialized, so in
790       // order to leave them uninitialized, the ILE is expanded and the extra
791       // fields are then filled with NoInitExpr.
792       unsigned NumElems = numStructUnionElements(ILE->getType());
793       if (RDecl->hasFlexibleArrayMember())
794         ++NumElems;
795       if (!VerifyOnly && ILE->getNumInits() < NumElems)
796         ILE->resizeInits(SemaRef.Context, NumElems);
797 
798       unsigned Init = 0;
799 
800       if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) {
801         for (auto &Base : CXXRD->bases()) {
802           if (hadError)
803             return;
804 
805           FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass,
806                                  FillWithNoInit);
807           ++Init;
808         }
809       }
810 
811       for (auto *Field : RDecl->fields()) {
812         if (Field->isUnnamedBitfield())
813           continue;
814 
815         if (hadError)
816           return;
817 
818         FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass,
819                                 FillWithNoInit);
820         if (hadError)
821           return;
822 
823         ++Init;
824 
825         // Only look at the first initialization of a union.
826         if (RDecl->isUnion())
827           break;
828       }
829     }
830 
831     return;
832   }
833 
834   QualType ElementType;
835 
836   InitializedEntity ElementEntity = Entity;
837   unsigned NumInits = ILE->getNumInits();
838   unsigned NumElements = NumInits;
839   if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
840     ElementType = AType->getElementType();
841     if (const auto *CAType = dyn_cast<ConstantArrayType>(AType))
842       NumElements = CAType->getSize().getZExtValue();
843     // For an array new with an unknown bound, ask for one additional element
844     // in order to populate the array filler.
845     if (Entity.isVariableLengthArrayNew())
846       ++NumElements;
847     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
848                                                          0, Entity);
849   } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
850     ElementType = VType->getElementType();
851     NumElements = VType->getNumElements();
852     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
853                                                          0, Entity);
854   } else
855     ElementType = ILE->getType();
856 
857   bool SkipEmptyInitChecks = false;
858   for (unsigned Init = 0; Init != NumElements; ++Init) {
859     if (hadError)
860       return;
861 
862     if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
863         ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
864       ElementEntity.setElementIndex(Init);
865 
866     if (Init >= NumInits && (ILE->hasArrayFiller() || SkipEmptyInitChecks))
867       return;
868 
869     Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr);
870     if (!InitExpr && Init < NumInits && ILE->hasArrayFiller())
871       ILE->setInit(Init, ILE->getArrayFiller());
872     else if (!InitExpr && !ILE->hasArrayFiller()) {
873       // In VerifyOnly mode, there's no point performing empty initialization
874       // more than once.
875       if (SkipEmptyInitChecks)
876         continue;
877 
878       Expr *Filler = nullptr;
879 
880       if (FillWithNoInit)
881         Filler = new (SemaRef.Context) NoInitExpr(ElementType);
882       else {
883         ExprResult ElementInit =
884             PerformEmptyInit(ILE->getEndLoc(), ElementEntity);
885         if (ElementInit.isInvalid()) {
886           hadError = true;
887           return;
888         }
889 
890         Filler = ElementInit.getAs<Expr>();
891       }
892 
893       if (hadError) {
894         // Do nothing
895       } else if (VerifyOnly) {
896         SkipEmptyInitChecks = true;
897       } else if (Init < NumInits) {
898         // For arrays, just set the expression used for value-initialization
899         // of the "holes" in the array.
900         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
901           ILE->setArrayFiller(Filler);
902         else
903           ILE->setInit(Init, Filler);
904       } else {
905         // For arrays, just set the expression used for value-initialization
906         // of the rest of elements and exit.
907         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
908           ILE->setArrayFiller(Filler);
909           return;
910         }
911 
912         if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) {
913           // Empty initialization requires a constructor call, so
914           // extend the initializer list to include the constructor
915           // call and make a note that we'll need to take another pass
916           // through the initializer list.
917           ILE->updateInit(SemaRef.Context, Init, Filler);
918           RequiresSecondPass = true;
919         }
920       }
921     } else if (InitListExpr *InnerILE
922                  = dyn_cast_or_null<InitListExpr>(InitExpr)) {
923       FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass,
924                                  ILE, Init, FillWithNoInit);
925     } else if (DesignatedInitUpdateExpr *InnerDIUE =
926                    dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr)) {
927       FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(),
928                                  RequiresSecondPass, ILE, Init,
929                                  /*FillWithNoInit =*/true);
930     }
931   }
932 }
933 
934 static bool hasAnyDesignatedInits(const InitListExpr *IL) {
935   for (const Stmt *Init : *IL)
936     if (Init && isa<DesignatedInitExpr>(Init))
937       return true;
938   return false;
939 }
940 
941 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
942                                  InitListExpr *IL, QualType &T, bool VerifyOnly,
943                                  bool TreatUnavailableAsInvalid,
944                                  bool InOverloadResolution)
945     : SemaRef(S), VerifyOnly(VerifyOnly),
946       TreatUnavailableAsInvalid(TreatUnavailableAsInvalid),
947       InOverloadResolution(InOverloadResolution) {
948   if (!VerifyOnly || hasAnyDesignatedInits(IL)) {
949     FullyStructuredList =
950         createInitListExpr(T, IL->getSourceRange(), IL->getNumInits());
951 
952     // FIXME: Check that IL isn't already the semantic form of some other
953     // InitListExpr. If it is, we'd create a broken AST.
954     if (!VerifyOnly)
955       FullyStructuredList->setSyntacticForm(IL);
956   }
957 
958   CheckExplicitInitList(Entity, IL, T, FullyStructuredList,
959                         /*TopLevelObject=*/true);
960 
961   if (!hadError && FullyStructuredList) {
962     bool RequiresSecondPass = false;
963     FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass,
964                                /*OuterILE=*/nullptr, /*OuterIndex=*/0);
965     if (RequiresSecondPass && !hadError)
966       FillInEmptyInitializations(Entity, FullyStructuredList,
967                                  RequiresSecondPass, nullptr, 0);
968   }
969   if (hadError && FullyStructuredList)
970     FullyStructuredList->markError();
971 }
972 
973 int InitListChecker::numArrayElements(QualType DeclType) {
974   // FIXME: use a proper constant
975   int maxElements = 0x7FFFFFFF;
976   if (const ConstantArrayType *CAT =
977         SemaRef.Context.getAsConstantArrayType(DeclType)) {
978     maxElements = static_cast<int>(CAT->getSize().getZExtValue());
979   }
980   return maxElements;
981 }
982 
983 int InitListChecker::numStructUnionElements(QualType DeclType) {
984   RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl();
985   int InitializableMembers = 0;
986   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl))
987     InitializableMembers += CXXRD->getNumBases();
988   for (const auto *Field : structDecl->fields())
989     if (!Field->isUnnamedBitfield())
990       ++InitializableMembers;
991 
992   if (structDecl->isUnion())
993     return std::min(InitializableMembers, 1);
994   return InitializableMembers - structDecl->hasFlexibleArrayMember();
995 }
996 
997 /// Determine whether Entity is an entity for which it is idiomatic to elide
998 /// the braces in aggregate initialization.
999 static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) {
1000   // Recursive initialization of the one and only field within an aggregate
1001   // class is considered idiomatic. This case arises in particular for
1002   // initialization of std::array, where the C++ standard suggests the idiom of
1003   //
1004   //   std::array<T, N> arr = {1, 2, 3};
1005   //
1006   // (where std::array is an aggregate struct containing a single array field.
1007 
1008   // FIXME: Should aggregate initialization of a struct with a single
1009   // base class and no members also suppress the warning?
1010   if (Entity.getKind() != InitializedEntity::EK_Member || !Entity.getParent())
1011     return false;
1012 
1013   auto *ParentRD =
1014       Entity.getParent()->getType()->castAs<RecordType>()->getDecl();
1015   if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(ParentRD))
1016     if (CXXRD->getNumBases())
1017       return false;
1018 
1019   auto FieldIt = ParentRD->field_begin();
1020   assert(FieldIt != ParentRD->field_end() &&
1021          "no fields but have initializer for member?");
1022   return ++FieldIt == ParentRD->field_end();
1023 }
1024 
1025 /// Check whether the range of the initializer \p ParentIList from element
1026 /// \p Index onwards can be used to initialize an object of type \p T. Update
1027 /// \p Index to indicate how many elements of the list were consumed.
1028 ///
1029 /// This also fills in \p StructuredList, from element \p StructuredIndex
1030 /// onwards, with the fully-braced, desugared form of the initialization.
1031 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
1032                                             InitListExpr *ParentIList,
1033                                             QualType T, unsigned &Index,
1034                                             InitListExpr *StructuredList,
1035                                             unsigned &StructuredIndex) {
1036   int maxElements = 0;
1037 
1038   if (T->isArrayType())
1039     maxElements = numArrayElements(T);
1040   else if (T->isRecordType())
1041     maxElements = numStructUnionElements(T);
1042   else if (T->isVectorType())
1043     maxElements = T->castAs<VectorType>()->getNumElements();
1044   else
1045     llvm_unreachable("CheckImplicitInitList(): Illegal type");
1046 
1047   if (maxElements == 0) {
1048     if (!VerifyOnly)
1049       SemaRef.Diag(ParentIList->getInit(Index)->getBeginLoc(),
1050                    diag::err_implicit_empty_initializer);
1051     ++Index;
1052     hadError = true;
1053     return;
1054   }
1055 
1056   // Build a structured initializer list corresponding to this subobject.
1057   InitListExpr *StructuredSubobjectInitList = getStructuredSubobjectInit(
1058       ParentIList, Index, T, StructuredList, StructuredIndex,
1059       SourceRange(ParentIList->getInit(Index)->getBeginLoc(),
1060                   ParentIList->getSourceRange().getEnd()));
1061   unsigned StructuredSubobjectInitIndex = 0;
1062 
1063   // Check the element types and build the structural subobject.
1064   unsigned StartIndex = Index;
1065   CheckListElementTypes(Entity, ParentIList, T,
1066                         /*SubobjectIsDesignatorContext=*/false, Index,
1067                         StructuredSubobjectInitList,
1068                         StructuredSubobjectInitIndex);
1069 
1070   if (StructuredSubobjectInitList) {
1071     StructuredSubobjectInitList->setType(T);
1072 
1073     unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
1074     // Update the structured sub-object initializer so that it's ending
1075     // range corresponds with the end of the last initializer it used.
1076     if (EndIndex < ParentIList->getNumInits() &&
1077         ParentIList->getInit(EndIndex)) {
1078       SourceLocation EndLoc
1079         = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
1080       StructuredSubobjectInitList->setRBraceLoc(EndLoc);
1081     }
1082 
1083     // Complain about missing braces.
1084     if (!VerifyOnly && (T->isArrayType() || T->isRecordType()) &&
1085         !ParentIList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) &&
1086         !isIdiomaticBraceElisionEntity(Entity)) {
1087       SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
1088                    diag::warn_missing_braces)
1089           << StructuredSubobjectInitList->getSourceRange()
1090           << FixItHint::CreateInsertion(
1091                  StructuredSubobjectInitList->getBeginLoc(), "{")
1092           << FixItHint::CreateInsertion(
1093                  SemaRef.getLocForEndOfToken(
1094                      StructuredSubobjectInitList->getEndLoc()),
1095                  "}");
1096     }
1097 
1098     // Warn if this type won't be an aggregate in future versions of C++.
1099     auto *CXXRD = T->getAsCXXRecordDecl();
1100     if (!VerifyOnly && CXXRD && CXXRD->hasUserDeclaredConstructor()) {
1101       SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
1102                    diag::warn_cxx20_compat_aggregate_init_with_ctors)
1103           << StructuredSubobjectInitList->getSourceRange() << T;
1104     }
1105   }
1106 }
1107 
1108 /// Warn that \p Entity was of scalar type and was initialized by a
1109 /// single-element braced initializer list.
1110 static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity,
1111                                  SourceRange Braces) {
1112   // Don't warn during template instantiation. If the initialization was
1113   // non-dependent, we warned during the initial parse; otherwise, the
1114   // type might not be scalar in some uses of the template.
1115   if (S.inTemplateInstantiation())
1116     return;
1117 
1118   unsigned DiagID = 0;
1119 
1120   switch (Entity.getKind()) {
1121   case InitializedEntity::EK_VectorElement:
1122   case InitializedEntity::EK_ComplexElement:
1123   case InitializedEntity::EK_ArrayElement:
1124   case InitializedEntity::EK_Parameter:
1125   case InitializedEntity::EK_Parameter_CF_Audited:
1126   case InitializedEntity::EK_Result:
1127     // Extra braces here are suspicious.
1128     DiagID = diag::warn_braces_around_init;
1129     break;
1130 
1131   case InitializedEntity::EK_Member:
1132     // Warn on aggregate initialization but not on ctor init list or
1133     // default member initializer.
1134     if (Entity.getParent())
1135       DiagID = diag::warn_braces_around_init;
1136     break;
1137 
1138   case InitializedEntity::EK_Variable:
1139   case InitializedEntity::EK_LambdaCapture:
1140     // No warning, might be direct-list-initialization.
1141     // FIXME: Should we warn for copy-list-initialization in these cases?
1142     break;
1143 
1144   case InitializedEntity::EK_New:
1145   case InitializedEntity::EK_Temporary:
1146   case InitializedEntity::EK_CompoundLiteralInit:
1147     // No warning, braces are part of the syntax of the underlying construct.
1148     break;
1149 
1150   case InitializedEntity::EK_RelatedResult:
1151     // No warning, we already warned when initializing the result.
1152     break;
1153 
1154   case InitializedEntity::EK_Exception:
1155   case InitializedEntity::EK_Base:
1156   case InitializedEntity::EK_Delegating:
1157   case InitializedEntity::EK_BlockElement:
1158   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
1159   case InitializedEntity::EK_Binding:
1160   case InitializedEntity::EK_StmtExprResult:
1161     llvm_unreachable("unexpected braced scalar init");
1162   }
1163 
1164   if (DiagID) {
1165     S.Diag(Braces.getBegin(), DiagID)
1166         << Entity.getType()->isSizelessBuiltinType() << Braces
1167         << FixItHint::CreateRemoval(Braces.getBegin())
1168         << FixItHint::CreateRemoval(Braces.getEnd());
1169   }
1170 }
1171 
1172 /// Check whether the initializer \p IList (that was written with explicit
1173 /// braces) can be used to initialize an object of type \p T.
1174 ///
1175 /// This also fills in \p StructuredList with the fully-braced, desugared
1176 /// form of the initialization.
1177 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
1178                                             InitListExpr *IList, QualType &T,
1179                                             InitListExpr *StructuredList,
1180                                             bool TopLevelObject) {
1181   unsigned Index = 0, StructuredIndex = 0;
1182   CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
1183                         Index, StructuredList, StructuredIndex, TopLevelObject);
1184   if (StructuredList) {
1185     QualType ExprTy = T;
1186     if (!ExprTy->isArrayType())
1187       ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
1188     if (!VerifyOnly)
1189       IList->setType(ExprTy);
1190     StructuredList->setType(ExprTy);
1191   }
1192   if (hadError)
1193     return;
1194 
1195   // Don't complain for incomplete types, since we'll get an error elsewhere.
1196   if (Index < IList->getNumInits() && !T->isIncompleteType()) {
1197     // We have leftover initializers
1198     bool ExtraInitsIsError = SemaRef.getLangOpts().CPlusPlus ||
1199           (SemaRef.getLangOpts().OpenCL && T->isVectorType());
1200     hadError = ExtraInitsIsError;
1201     if (VerifyOnly) {
1202       return;
1203     } else if (StructuredIndex == 1 &&
1204                IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) ==
1205                    SIF_None) {
1206       unsigned DK =
1207           ExtraInitsIsError
1208               ? diag::err_excess_initializers_in_char_array_initializer
1209               : diag::ext_excess_initializers_in_char_array_initializer;
1210       SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1211           << IList->getInit(Index)->getSourceRange();
1212     } else if (T->isSizelessBuiltinType()) {
1213       unsigned DK = ExtraInitsIsError
1214                         ? diag::err_excess_initializers_for_sizeless_type
1215                         : diag::ext_excess_initializers_for_sizeless_type;
1216       SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1217           << T << IList->getInit(Index)->getSourceRange();
1218     } else {
1219       int initKind = T->isArrayType() ? 0 :
1220                      T->isVectorType() ? 1 :
1221                      T->isScalarType() ? 2 :
1222                      T->isUnionType() ? 3 :
1223                      4;
1224 
1225       unsigned DK = ExtraInitsIsError ? diag::err_excess_initializers
1226                                       : diag::ext_excess_initializers;
1227       SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1228           << initKind << IList->getInit(Index)->getSourceRange();
1229     }
1230   }
1231 
1232   if (!VerifyOnly) {
1233     if (T->isScalarType() && IList->getNumInits() == 1 &&
1234         !isa<InitListExpr>(IList->getInit(0)))
1235       warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange());
1236 
1237     // Warn if this is a class type that won't be an aggregate in future
1238     // versions of C++.
1239     auto *CXXRD = T->getAsCXXRecordDecl();
1240     if (CXXRD && CXXRD->hasUserDeclaredConstructor()) {
1241       // Don't warn if there's an equivalent default constructor that would be
1242       // used instead.
1243       bool HasEquivCtor = false;
1244       if (IList->getNumInits() == 0) {
1245         auto *CD = SemaRef.LookupDefaultConstructor(CXXRD);
1246         HasEquivCtor = CD && !CD->isDeleted();
1247       }
1248 
1249       if (!HasEquivCtor) {
1250         SemaRef.Diag(IList->getBeginLoc(),
1251                      diag::warn_cxx20_compat_aggregate_init_with_ctors)
1252             << IList->getSourceRange() << T;
1253       }
1254     }
1255   }
1256 }
1257 
1258 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
1259                                             InitListExpr *IList,
1260                                             QualType &DeclType,
1261                                             bool SubobjectIsDesignatorContext,
1262                                             unsigned &Index,
1263                                             InitListExpr *StructuredList,
1264                                             unsigned &StructuredIndex,
1265                                             bool TopLevelObject) {
1266   if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
1267     // Explicitly braced initializer for complex type can be real+imaginary
1268     // parts.
1269     CheckComplexType(Entity, IList, DeclType, Index,
1270                      StructuredList, StructuredIndex);
1271   } else if (DeclType->isScalarType()) {
1272     CheckScalarType(Entity, IList, DeclType, Index,
1273                     StructuredList, StructuredIndex);
1274   } else if (DeclType->isVectorType()) {
1275     CheckVectorType(Entity, IList, DeclType, Index,
1276                     StructuredList, StructuredIndex);
1277   } else if (DeclType->isRecordType()) {
1278     assert(DeclType->isAggregateType() &&
1279            "non-aggregate records should be handed in CheckSubElementType");
1280     RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl();
1281     auto Bases =
1282         CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
1283                                         CXXRecordDecl::base_class_iterator());
1284     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1285       Bases = CXXRD->bases();
1286     CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(),
1287                           SubobjectIsDesignatorContext, Index, StructuredList,
1288                           StructuredIndex, TopLevelObject);
1289   } else if (DeclType->isArrayType()) {
1290     llvm::APSInt Zero(
1291                     SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
1292                     false);
1293     CheckArrayType(Entity, IList, DeclType, Zero,
1294                    SubobjectIsDesignatorContext, Index,
1295                    StructuredList, StructuredIndex);
1296   } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
1297     // This type is invalid, issue a diagnostic.
1298     ++Index;
1299     if (!VerifyOnly)
1300       SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
1301           << DeclType;
1302     hadError = true;
1303   } else if (DeclType->isReferenceType()) {
1304     CheckReferenceType(Entity, IList, DeclType, Index,
1305                        StructuredList, StructuredIndex);
1306   } else if (DeclType->isObjCObjectType()) {
1307     if (!VerifyOnly)
1308       SemaRef.Diag(IList->getBeginLoc(), diag::err_init_objc_class) << DeclType;
1309     hadError = true;
1310   } else if (DeclType->isOCLIntelSubgroupAVCType() ||
1311              DeclType->isSizelessBuiltinType()) {
1312     // Checks for scalar type are sufficient for these types too.
1313     CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1314                     StructuredIndex);
1315   } else {
1316     if (!VerifyOnly)
1317       SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
1318           << DeclType;
1319     hadError = true;
1320   }
1321 }
1322 
1323 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
1324                                           InitListExpr *IList,
1325                                           QualType ElemType,
1326                                           unsigned &Index,
1327                                           InitListExpr *StructuredList,
1328                                           unsigned &StructuredIndex) {
1329   Expr *expr = IList->getInit(Index);
1330 
1331   if (ElemType->isReferenceType())
1332     return CheckReferenceType(Entity, IList, ElemType, Index,
1333                               StructuredList, StructuredIndex);
1334 
1335   if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
1336     if (SubInitList->getNumInits() == 1 &&
1337         IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) ==
1338         SIF_None) {
1339       // FIXME: It would be more faithful and no less correct to include an
1340       // InitListExpr in the semantic form of the initializer list in this case.
1341       expr = SubInitList->getInit(0);
1342     }
1343     // Nested aggregate initialization and C++ initialization are handled later.
1344   } else if (isa<ImplicitValueInitExpr>(expr)) {
1345     // This happens during template instantiation when we see an InitListExpr
1346     // that we've already checked once.
1347     assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) &&
1348            "found implicit initialization for the wrong type");
1349     UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1350     ++Index;
1351     return;
1352   }
1353 
1354   if (SemaRef.getLangOpts().CPlusPlus || isa<InitListExpr>(expr)) {
1355     // C++ [dcl.init.aggr]p2:
1356     //   Each member is copy-initialized from the corresponding
1357     //   initializer-clause.
1358 
1359     // FIXME: Better EqualLoc?
1360     InitializationKind Kind =
1361         InitializationKind::CreateCopy(expr->getBeginLoc(), SourceLocation());
1362 
1363     // Vector elements can be initialized from other vectors in which case
1364     // we need initialization entity with a type of a vector (and not a vector
1365     // element!) initializing multiple vector elements.
1366     auto TmpEntity =
1367         (ElemType->isExtVectorType() && !Entity.getType()->isExtVectorType())
1368             ? InitializedEntity::InitializeTemporary(ElemType)
1369             : Entity;
1370 
1371     InitializationSequence Seq(SemaRef, TmpEntity, Kind, expr,
1372                                /*TopLevelOfInitList*/ true);
1373 
1374     // C++14 [dcl.init.aggr]p13:
1375     //   If the assignment-expression can initialize a member, the member is
1376     //   initialized. Otherwise [...] brace elision is assumed
1377     //
1378     // Brace elision is never performed if the element is not an
1379     // assignment-expression.
1380     if (Seq || isa<InitListExpr>(expr)) {
1381       if (!VerifyOnly) {
1382         ExprResult Result = Seq.Perform(SemaRef, TmpEntity, Kind, expr);
1383         if (Result.isInvalid())
1384           hadError = true;
1385 
1386         UpdateStructuredListElement(StructuredList, StructuredIndex,
1387                                     Result.getAs<Expr>());
1388       } else if (!Seq) {
1389         hadError = true;
1390       } else if (StructuredList) {
1391         UpdateStructuredListElement(StructuredList, StructuredIndex,
1392                                     getDummyInit());
1393       }
1394       ++Index;
1395       return;
1396     }
1397 
1398     // Fall through for subaggregate initialization
1399   } else if (ElemType->isScalarType() || ElemType->isAtomicType()) {
1400     // FIXME: Need to handle atomic aggregate types with implicit init lists.
1401     return CheckScalarType(Entity, IList, ElemType, Index,
1402                            StructuredList, StructuredIndex);
1403   } else if (const ArrayType *arrayType =
1404                  SemaRef.Context.getAsArrayType(ElemType)) {
1405     // arrayType can be incomplete if we're initializing a flexible
1406     // array member.  There's nothing we can do with the completed
1407     // type here, though.
1408 
1409     if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) {
1410       // FIXME: Should we do this checking in verify-only mode?
1411       if (!VerifyOnly)
1412         CheckStringInit(expr, ElemType, arrayType, SemaRef);
1413       if (StructuredList)
1414         UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1415       ++Index;
1416       return;
1417     }
1418 
1419     // Fall through for subaggregate initialization.
1420 
1421   } else {
1422     assert((ElemType->isRecordType() || ElemType->isVectorType() ||
1423             ElemType->isOpenCLSpecificType()) && "Unexpected type");
1424 
1425     // C99 6.7.8p13:
1426     //
1427     //   The initializer for a structure or union object that has
1428     //   automatic storage duration shall be either an initializer
1429     //   list as described below, or a single expression that has
1430     //   compatible structure or union type. In the latter case, the
1431     //   initial value of the object, including unnamed members, is
1432     //   that of the expression.
1433     ExprResult ExprRes = expr;
1434     if (SemaRef.CheckSingleAssignmentConstraints(
1435             ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) {
1436       if (ExprRes.isInvalid())
1437         hadError = true;
1438       else {
1439         ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get());
1440         if (ExprRes.isInvalid())
1441           hadError = true;
1442       }
1443       UpdateStructuredListElement(StructuredList, StructuredIndex,
1444                                   ExprRes.getAs<Expr>());
1445       ++Index;
1446       return;
1447     }
1448     ExprRes.get();
1449     // Fall through for subaggregate initialization
1450   }
1451 
1452   // C++ [dcl.init.aggr]p12:
1453   //
1454   //   [...] Otherwise, if the member is itself a non-empty
1455   //   subaggregate, brace elision is assumed and the initializer is
1456   //   considered for the initialization of the first member of
1457   //   the subaggregate.
1458   // OpenCL vector initializer is handled elsewhere.
1459   if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) ||
1460       ElemType->isAggregateType()) {
1461     CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
1462                           StructuredIndex);
1463     ++StructuredIndex;
1464   } else {
1465     if (!VerifyOnly) {
1466       // We cannot initialize this element, so let PerformCopyInitialization
1467       // produce the appropriate diagnostic. We already checked that this
1468       // initialization will fail.
1469       ExprResult Copy =
1470           SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr,
1471                                             /*TopLevelOfInitList=*/true);
1472       (void)Copy;
1473       assert(Copy.isInvalid() &&
1474              "expected non-aggregate initialization to fail");
1475     }
1476     hadError = true;
1477     ++Index;
1478     ++StructuredIndex;
1479   }
1480 }
1481 
1482 void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
1483                                        InitListExpr *IList, QualType DeclType,
1484                                        unsigned &Index,
1485                                        InitListExpr *StructuredList,
1486                                        unsigned &StructuredIndex) {
1487   assert(Index == 0 && "Index in explicit init list must be zero");
1488 
1489   // As an extension, clang supports complex initializers, which initialize
1490   // a complex number component-wise.  When an explicit initializer list for
1491   // a complex number contains two two initializers, this extension kicks in:
1492   // it exepcts the initializer list to contain two elements convertible to
1493   // the element type of the complex type. The first element initializes
1494   // the real part, and the second element intitializes the imaginary part.
1495 
1496   if (IList->getNumInits() != 2)
1497     return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1498                            StructuredIndex);
1499 
1500   // This is an extension in C.  (The builtin _Complex type does not exist
1501   // in the C++ standard.)
1502   if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
1503     SemaRef.Diag(IList->getBeginLoc(), diag::ext_complex_component_init)
1504         << IList->getSourceRange();
1505 
1506   // Initialize the complex number.
1507   QualType elementType = DeclType->castAs<ComplexType>()->getElementType();
1508   InitializedEntity ElementEntity =
1509     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1510 
1511   for (unsigned i = 0; i < 2; ++i) {
1512     ElementEntity.setElementIndex(Index);
1513     CheckSubElementType(ElementEntity, IList, elementType, Index,
1514                         StructuredList, StructuredIndex);
1515   }
1516 }
1517 
1518 void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
1519                                       InitListExpr *IList, QualType DeclType,
1520                                       unsigned &Index,
1521                                       InitListExpr *StructuredList,
1522                                       unsigned &StructuredIndex) {
1523   if (Index >= IList->getNumInits()) {
1524     if (!VerifyOnly) {
1525       if (DeclType->isSizelessBuiltinType())
1526         SemaRef.Diag(IList->getBeginLoc(),
1527                      SemaRef.getLangOpts().CPlusPlus11
1528                          ? diag::warn_cxx98_compat_empty_sizeless_initializer
1529                          : diag::err_empty_sizeless_initializer)
1530             << DeclType << IList->getSourceRange();
1531       else
1532         SemaRef.Diag(IList->getBeginLoc(),
1533                      SemaRef.getLangOpts().CPlusPlus11
1534                          ? diag::warn_cxx98_compat_empty_scalar_initializer
1535                          : diag::err_empty_scalar_initializer)
1536             << IList->getSourceRange();
1537     }
1538     hadError = !SemaRef.getLangOpts().CPlusPlus11;
1539     ++Index;
1540     ++StructuredIndex;
1541     return;
1542   }
1543 
1544   Expr *expr = IList->getInit(Index);
1545   if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
1546     // FIXME: This is invalid, and accepting it causes overload resolution
1547     // to pick the wrong overload in some corner cases.
1548     if (!VerifyOnly)
1549       SemaRef.Diag(SubIList->getBeginLoc(), diag::ext_many_braces_around_init)
1550           << DeclType->isSizelessBuiltinType() << SubIList->getSourceRange();
1551 
1552     CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
1553                     StructuredIndex);
1554     return;
1555   } else if (isa<DesignatedInitExpr>(expr)) {
1556     if (!VerifyOnly)
1557       SemaRef.Diag(expr->getBeginLoc(),
1558                    diag::err_designator_for_scalar_or_sizeless_init)
1559           << DeclType->isSizelessBuiltinType() << DeclType
1560           << expr->getSourceRange();
1561     hadError = true;
1562     ++Index;
1563     ++StructuredIndex;
1564     return;
1565   }
1566 
1567   ExprResult Result;
1568   if (VerifyOnly) {
1569     if (SemaRef.CanPerformCopyInitialization(Entity, expr))
1570       Result = getDummyInit();
1571     else
1572       Result = ExprError();
1573   } else {
1574     Result =
1575         SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
1576                                           /*TopLevelOfInitList=*/true);
1577   }
1578 
1579   Expr *ResultExpr = nullptr;
1580 
1581   if (Result.isInvalid())
1582     hadError = true; // types weren't compatible.
1583   else {
1584     ResultExpr = Result.getAs<Expr>();
1585 
1586     if (ResultExpr != expr && !VerifyOnly) {
1587       // The type was promoted, update initializer list.
1588       // FIXME: Why are we updating the syntactic init list?
1589       IList->setInit(Index, ResultExpr);
1590     }
1591   }
1592   UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1593   ++Index;
1594 }
1595 
1596 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
1597                                          InitListExpr *IList, QualType DeclType,
1598                                          unsigned &Index,
1599                                          InitListExpr *StructuredList,
1600                                          unsigned &StructuredIndex) {
1601   if (Index >= IList->getNumInits()) {
1602     // FIXME: It would be wonderful if we could point at the actual member. In
1603     // general, it would be useful to pass location information down the stack,
1604     // so that we know the location (or decl) of the "current object" being
1605     // initialized.
1606     if (!VerifyOnly)
1607       SemaRef.Diag(IList->getBeginLoc(),
1608                    diag::err_init_reference_member_uninitialized)
1609           << DeclType << IList->getSourceRange();
1610     hadError = true;
1611     ++Index;
1612     ++StructuredIndex;
1613     return;
1614   }
1615 
1616   Expr *expr = IList->getInit(Index);
1617   if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
1618     if (!VerifyOnly)
1619       SemaRef.Diag(IList->getBeginLoc(), diag::err_init_non_aggr_init_list)
1620           << DeclType << IList->getSourceRange();
1621     hadError = true;
1622     ++Index;
1623     ++StructuredIndex;
1624     return;
1625   }
1626 
1627   ExprResult Result;
1628   if (VerifyOnly) {
1629     if (SemaRef.CanPerformCopyInitialization(Entity,expr))
1630       Result = getDummyInit();
1631     else
1632       Result = ExprError();
1633   } else {
1634     Result =
1635         SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
1636                                           /*TopLevelOfInitList=*/true);
1637   }
1638 
1639   if (Result.isInvalid())
1640     hadError = true;
1641 
1642   expr = Result.getAs<Expr>();
1643   // FIXME: Why are we updating the syntactic init list?
1644   if (!VerifyOnly && expr)
1645     IList->setInit(Index, expr);
1646 
1647   UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1648   ++Index;
1649 }
1650 
1651 void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1652                                       InitListExpr *IList, QualType DeclType,
1653                                       unsigned &Index,
1654                                       InitListExpr *StructuredList,
1655                                       unsigned &StructuredIndex) {
1656   const VectorType *VT = DeclType->castAs<VectorType>();
1657   unsigned maxElements = VT->getNumElements();
1658   unsigned numEltsInit = 0;
1659   QualType elementType = VT->getElementType();
1660 
1661   if (Index >= IList->getNumInits()) {
1662     // Make sure the element type can be value-initialized.
1663     CheckEmptyInitializable(
1664         InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1665         IList->getEndLoc());
1666     return;
1667   }
1668 
1669   if (!SemaRef.getLangOpts().OpenCL) {
1670     // If the initializing element is a vector, try to copy-initialize
1671     // instead of breaking it apart (which is doomed to failure anyway).
1672     Expr *Init = IList->getInit(Index);
1673     if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1674       ExprResult Result;
1675       if (VerifyOnly) {
1676         if (SemaRef.CanPerformCopyInitialization(Entity, Init))
1677           Result = getDummyInit();
1678         else
1679           Result = ExprError();
1680       } else {
1681         Result =
1682             SemaRef.PerformCopyInitialization(Entity, Init->getBeginLoc(), Init,
1683                                               /*TopLevelOfInitList=*/true);
1684       }
1685 
1686       Expr *ResultExpr = nullptr;
1687       if (Result.isInvalid())
1688         hadError = true; // types weren't compatible.
1689       else {
1690         ResultExpr = Result.getAs<Expr>();
1691 
1692         if (ResultExpr != Init && !VerifyOnly) {
1693           // The type was promoted, update initializer list.
1694           // FIXME: Why are we updating the syntactic init list?
1695           IList->setInit(Index, ResultExpr);
1696         }
1697       }
1698       UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1699       ++Index;
1700       return;
1701     }
1702 
1703     InitializedEntity ElementEntity =
1704       InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1705 
1706     for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1707       // Don't attempt to go past the end of the init list
1708       if (Index >= IList->getNumInits()) {
1709         CheckEmptyInitializable(ElementEntity, IList->getEndLoc());
1710         break;
1711       }
1712 
1713       ElementEntity.setElementIndex(Index);
1714       CheckSubElementType(ElementEntity, IList, elementType, Index,
1715                           StructuredList, StructuredIndex);
1716     }
1717 
1718     if (VerifyOnly)
1719       return;
1720 
1721     bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian();
1722     const VectorType *T = Entity.getType()->castAs<VectorType>();
1723     if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector ||
1724                         T->getVectorKind() == VectorType::NeonPolyVector)) {
1725       // The ability to use vector initializer lists is a GNU vector extension
1726       // and is unrelated to the NEON intrinsics in arm_neon.h. On little
1727       // endian machines it works fine, however on big endian machines it
1728       // exhibits surprising behaviour:
1729       //
1730       //   uint32x2_t x = {42, 64};
1731       //   return vget_lane_u32(x, 0); // Will return 64.
1732       //
1733       // Because of this, explicitly call out that it is non-portable.
1734       //
1735       SemaRef.Diag(IList->getBeginLoc(),
1736                    diag::warn_neon_vector_initializer_non_portable);
1737 
1738       const char *typeCode;
1739       unsigned typeSize = SemaRef.Context.getTypeSize(elementType);
1740 
1741       if (elementType->isFloatingType())
1742         typeCode = "f";
1743       else if (elementType->isSignedIntegerType())
1744         typeCode = "s";
1745       else if (elementType->isUnsignedIntegerType())
1746         typeCode = "u";
1747       else
1748         llvm_unreachable("Invalid element type!");
1749 
1750       SemaRef.Diag(IList->getBeginLoc(),
1751                    SemaRef.Context.getTypeSize(VT) > 64
1752                        ? diag::note_neon_vector_initializer_non_portable_q
1753                        : diag::note_neon_vector_initializer_non_portable)
1754           << typeCode << typeSize;
1755     }
1756 
1757     return;
1758   }
1759 
1760   InitializedEntity ElementEntity =
1761     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1762 
1763   // OpenCL initializers allows vectors to be constructed from vectors.
1764   for (unsigned i = 0; i < maxElements; ++i) {
1765     // Don't attempt to go past the end of the init list
1766     if (Index >= IList->getNumInits())
1767       break;
1768 
1769     ElementEntity.setElementIndex(Index);
1770 
1771     QualType IType = IList->getInit(Index)->getType();
1772     if (!IType->isVectorType()) {
1773       CheckSubElementType(ElementEntity, IList, elementType, Index,
1774                           StructuredList, StructuredIndex);
1775       ++numEltsInit;
1776     } else {
1777       QualType VecType;
1778       const VectorType *IVT = IType->castAs<VectorType>();
1779       unsigned numIElts = IVT->getNumElements();
1780 
1781       if (IType->isExtVectorType())
1782         VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1783       else
1784         VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1785                                                 IVT->getVectorKind());
1786       CheckSubElementType(ElementEntity, IList, VecType, Index,
1787                           StructuredList, StructuredIndex);
1788       numEltsInit += numIElts;
1789     }
1790   }
1791 
1792   // OpenCL requires all elements to be initialized.
1793   if (numEltsInit != maxElements) {
1794     if (!VerifyOnly)
1795       SemaRef.Diag(IList->getBeginLoc(),
1796                    diag::err_vector_incorrect_num_initializers)
1797           << (numEltsInit < maxElements) << maxElements << numEltsInit;
1798     hadError = true;
1799   }
1800 }
1801 
1802 /// Check if the type of a class element has an accessible destructor, and marks
1803 /// it referenced. Returns true if we shouldn't form a reference to the
1804 /// destructor.
1805 ///
1806 /// Aggregate initialization requires a class element's destructor be
1807 /// accessible per 11.6.1 [dcl.init.aggr]:
1808 ///
1809 /// The destructor for each element of class type is potentially invoked
1810 /// (15.4 [class.dtor]) from the context where the aggregate initialization
1811 /// occurs.
1812 static bool checkDestructorReference(QualType ElementType, SourceLocation Loc,
1813                                      Sema &SemaRef) {
1814   auto *CXXRD = ElementType->getAsCXXRecordDecl();
1815   if (!CXXRD)
1816     return false;
1817 
1818   CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(CXXRD);
1819   SemaRef.CheckDestructorAccess(Loc, Destructor,
1820                                 SemaRef.PDiag(diag::err_access_dtor_temp)
1821                                 << ElementType);
1822   SemaRef.MarkFunctionReferenced(Loc, Destructor);
1823   return SemaRef.DiagnoseUseOfDecl(Destructor, Loc);
1824 }
1825 
1826 void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1827                                      InitListExpr *IList, QualType &DeclType,
1828                                      llvm::APSInt elementIndex,
1829                                      bool SubobjectIsDesignatorContext,
1830                                      unsigned &Index,
1831                                      InitListExpr *StructuredList,
1832                                      unsigned &StructuredIndex) {
1833   const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1834 
1835   if (!VerifyOnly) {
1836     if (checkDestructorReference(arrayType->getElementType(),
1837                                  IList->getEndLoc(), SemaRef)) {
1838       hadError = true;
1839       return;
1840     }
1841   }
1842 
1843   // Check for the special-case of initializing an array with a string.
1844   if (Index < IList->getNumInits()) {
1845     if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) ==
1846         SIF_None) {
1847       // We place the string literal directly into the resulting
1848       // initializer list. This is the only place where the structure
1849       // of the structured initializer list doesn't match exactly,
1850       // because doing so would involve allocating one character
1851       // constant for each string.
1852       // FIXME: Should we do these checks in verify-only mode too?
1853       if (!VerifyOnly)
1854         CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef);
1855       if (StructuredList) {
1856         UpdateStructuredListElement(StructuredList, StructuredIndex,
1857                                     IList->getInit(Index));
1858         StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1859       }
1860       ++Index;
1861       return;
1862     }
1863   }
1864   if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1865     // Check for VLAs; in standard C it would be possible to check this
1866     // earlier, but I don't know where clang accepts VLAs (gcc accepts
1867     // them in all sorts of strange places).
1868     if (!VerifyOnly)
1869       SemaRef.Diag(VAT->getSizeExpr()->getBeginLoc(),
1870                    diag::err_variable_object_no_init)
1871           << VAT->getSizeExpr()->getSourceRange();
1872     hadError = true;
1873     ++Index;
1874     ++StructuredIndex;
1875     return;
1876   }
1877 
1878   // We might know the maximum number of elements in advance.
1879   llvm::APSInt maxElements(elementIndex.getBitWidth(),
1880                            elementIndex.isUnsigned());
1881   bool maxElementsKnown = false;
1882   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1883     maxElements = CAT->getSize();
1884     elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1885     elementIndex.setIsUnsigned(maxElements.isUnsigned());
1886     maxElementsKnown = true;
1887   }
1888 
1889   QualType elementType = arrayType->getElementType();
1890   while (Index < IList->getNumInits()) {
1891     Expr *Init = IList->getInit(Index);
1892     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1893       // If we're not the subobject that matches up with the '{' for
1894       // the designator, we shouldn't be handling the
1895       // designator. Return immediately.
1896       if (!SubobjectIsDesignatorContext)
1897         return;
1898 
1899       // Handle this designated initializer. elementIndex will be
1900       // updated to be the next array element we'll initialize.
1901       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1902                                      DeclType, nullptr, &elementIndex, Index,
1903                                      StructuredList, StructuredIndex, true,
1904                                      false)) {
1905         hadError = true;
1906         continue;
1907       }
1908 
1909       if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1910         maxElements = maxElements.extend(elementIndex.getBitWidth());
1911       else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1912         elementIndex = elementIndex.extend(maxElements.getBitWidth());
1913       elementIndex.setIsUnsigned(maxElements.isUnsigned());
1914 
1915       // If the array is of incomplete type, keep track of the number of
1916       // elements in the initializer.
1917       if (!maxElementsKnown && elementIndex > maxElements)
1918         maxElements = elementIndex;
1919 
1920       continue;
1921     }
1922 
1923     // If we know the maximum number of elements, and we've already
1924     // hit it, stop consuming elements in the initializer list.
1925     if (maxElementsKnown && elementIndex == maxElements)
1926       break;
1927 
1928     InitializedEntity ElementEntity =
1929       InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1930                                            Entity);
1931     // Check this element.
1932     CheckSubElementType(ElementEntity, IList, elementType, Index,
1933                         StructuredList, StructuredIndex);
1934     ++elementIndex;
1935 
1936     // If the array is of incomplete type, keep track of the number of
1937     // elements in the initializer.
1938     if (!maxElementsKnown && elementIndex > maxElements)
1939       maxElements = elementIndex;
1940   }
1941   if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1942     // If this is an incomplete array type, the actual type needs to
1943     // be calculated here.
1944     llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1945     if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) {
1946       // Sizing an array implicitly to zero is not allowed by ISO C,
1947       // but is supported by GNU.
1948       SemaRef.Diag(IList->getBeginLoc(), diag::ext_typecheck_zero_array_size);
1949     }
1950 
1951     DeclType = SemaRef.Context.getConstantArrayType(
1952         elementType, maxElements, nullptr, ArrayType::Normal, 0);
1953   }
1954   if (!hadError) {
1955     // If there are any members of the array that get value-initialized, check
1956     // that is possible. That happens if we know the bound and don't have
1957     // enough elements, or if we're performing an array new with an unknown
1958     // bound.
1959     if ((maxElementsKnown && elementIndex < maxElements) ||
1960         Entity.isVariableLengthArrayNew())
1961       CheckEmptyInitializable(
1962           InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1963           IList->getEndLoc());
1964   }
1965 }
1966 
1967 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1968                                              Expr *InitExpr,
1969                                              FieldDecl *Field,
1970                                              bool TopLevelObject) {
1971   // Handle GNU flexible array initializers.
1972   unsigned FlexArrayDiag;
1973   if (isa<InitListExpr>(InitExpr) &&
1974       cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
1975     // Empty flexible array init always allowed as an extension
1976     FlexArrayDiag = diag::ext_flexible_array_init;
1977   } else if (SemaRef.getLangOpts().CPlusPlus) {
1978     // Disallow flexible array init in C++; it is not required for gcc
1979     // compatibility, and it needs work to IRGen correctly in general.
1980     FlexArrayDiag = diag::err_flexible_array_init;
1981   } else if (!TopLevelObject) {
1982     // Disallow flexible array init on non-top-level object
1983     FlexArrayDiag = diag::err_flexible_array_init;
1984   } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
1985     // Disallow flexible array init on anything which is not a variable.
1986     FlexArrayDiag = diag::err_flexible_array_init;
1987   } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
1988     // Disallow flexible array init on local variables.
1989     FlexArrayDiag = diag::err_flexible_array_init;
1990   } else {
1991     // Allow other cases.
1992     FlexArrayDiag = diag::ext_flexible_array_init;
1993   }
1994 
1995   if (!VerifyOnly) {
1996     SemaRef.Diag(InitExpr->getBeginLoc(), FlexArrayDiag)
1997         << InitExpr->getBeginLoc();
1998     SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1999       << Field;
2000   }
2001 
2002   return FlexArrayDiag != diag::ext_flexible_array_init;
2003 }
2004 
2005 void InitListChecker::CheckStructUnionTypes(
2006     const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType,
2007     CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field,
2008     bool SubobjectIsDesignatorContext, unsigned &Index,
2009     InitListExpr *StructuredList, unsigned &StructuredIndex,
2010     bool TopLevelObject) {
2011   RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl();
2012 
2013   // If the record is invalid, some of it's members are invalid. To avoid
2014   // confusion, we forgo checking the intializer for the entire record.
2015   if (structDecl->isInvalidDecl()) {
2016     // Assume it was supposed to consume a single initializer.
2017     ++Index;
2018     hadError = true;
2019     return;
2020   }
2021 
2022   if (DeclType->isUnionType() && IList->getNumInits() == 0) {
2023     RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl();
2024 
2025     if (!VerifyOnly)
2026       for (FieldDecl *FD : RD->fields()) {
2027         QualType ET = SemaRef.Context.getBaseElementType(FD->getType());
2028         if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) {
2029           hadError = true;
2030           return;
2031         }
2032       }
2033 
2034     // If there's a default initializer, use it.
2035     if (isa<CXXRecordDecl>(RD) &&
2036         cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
2037       if (!StructuredList)
2038         return;
2039       for (RecordDecl::field_iterator FieldEnd = RD->field_end();
2040            Field != FieldEnd; ++Field) {
2041         if (Field->hasInClassInitializer()) {
2042           StructuredList->setInitializedFieldInUnion(*Field);
2043           // FIXME: Actually build a CXXDefaultInitExpr?
2044           return;
2045         }
2046       }
2047     }
2048 
2049     // Value-initialize the first member of the union that isn't an unnamed
2050     // bitfield.
2051     for (RecordDecl::field_iterator FieldEnd = RD->field_end();
2052          Field != FieldEnd; ++Field) {
2053       if (!Field->isUnnamedBitfield()) {
2054         CheckEmptyInitializable(
2055             InitializedEntity::InitializeMember(*Field, &Entity),
2056             IList->getEndLoc());
2057         if (StructuredList)
2058           StructuredList->setInitializedFieldInUnion(*Field);
2059         break;
2060       }
2061     }
2062     return;
2063   }
2064 
2065   bool InitializedSomething = false;
2066 
2067   // If we have any base classes, they are initialized prior to the fields.
2068   for (auto &Base : Bases) {
2069     Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr;
2070 
2071     // Designated inits always initialize fields, so if we see one, all
2072     // remaining base classes have no explicit initializer.
2073     if (Init && isa<DesignatedInitExpr>(Init))
2074       Init = nullptr;
2075 
2076     SourceLocation InitLoc = Init ? Init->getBeginLoc() : IList->getEndLoc();
2077     InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
2078         SemaRef.Context, &Base, false, &Entity);
2079     if (Init) {
2080       CheckSubElementType(BaseEntity, IList, Base.getType(), Index,
2081                           StructuredList, StructuredIndex);
2082       InitializedSomething = true;
2083     } else {
2084       CheckEmptyInitializable(BaseEntity, InitLoc);
2085     }
2086 
2087     if (!VerifyOnly)
2088       if (checkDestructorReference(Base.getType(), InitLoc, SemaRef)) {
2089         hadError = true;
2090         return;
2091       }
2092   }
2093 
2094   // If structDecl is a forward declaration, this loop won't do
2095   // anything except look at designated initializers; That's okay,
2096   // because an error should get printed out elsewhere. It might be
2097   // worthwhile to skip over the rest of the initializer, though.
2098   RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl();
2099   RecordDecl::field_iterator FieldEnd = RD->field_end();
2100   bool CheckForMissingFields =
2101     !IList->isIdiomaticZeroInitializer(SemaRef.getLangOpts());
2102   bool HasDesignatedInit = false;
2103 
2104   while (Index < IList->getNumInits()) {
2105     Expr *Init = IList->getInit(Index);
2106     SourceLocation InitLoc = Init->getBeginLoc();
2107 
2108     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
2109       // If we're not the subobject that matches up with the '{' for
2110       // the designator, we shouldn't be handling the
2111       // designator. Return immediately.
2112       if (!SubobjectIsDesignatorContext)
2113         return;
2114 
2115       HasDesignatedInit = true;
2116 
2117       // Handle this designated initializer. Field will be updated to
2118       // the next field that we'll be initializing.
2119       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
2120                                      DeclType, &Field, nullptr, Index,
2121                                      StructuredList, StructuredIndex,
2122                                      true, TopLevelObject))
2123         hadError = true;
2124       else if (!VerifyOnly) {
2125         // Find the field named by the designated initializer.
2126         RecordDecl::field_iterator F = RD->field_begin();
2127         while (std::next(F) != Field)
2128           ++F;
2129         QualType ET = SemaRef.Context.getBaseElementType(F->getType());
2130         if (checkDestructorReference(ET, InitLoc, SemaRef)) {
2131           hadError = true;
2132           return;
2133         }
2134       }
2135 
2136       InitializedSomething = true;
2137 
2138       // Disable check for missing fields when designators are used.
2139       // This matches gcc behaviour.
2140       CheckForMissingFields = false;
2141       continue;
2142     }
2143 
2144     if (Field == FieldEnd) {
2145       // We've run out of fields. We're done.
2146       break;
2147     }
2148 
2149     // We've already initialized a member of a union. We're done.
2150     if (InitializedSomething && DeclType->isUnionType())
2151       break;
2152 
2153     // If we've hit the flexible array member at the end, we're done.
2154     if (Field->getType()->isIncompleteArrayType())
2155       break;
2156 
2157     if (Field->isUnnamedBitfield()) {
2158       // Don't initialize unnamed bitfields, e.g. "int : 20;"
2159       ++Field;
2160       continue;
2161     }
2162 
2163     // Make sure we can use this declaration.
2164     bool InvalidUse;
2165     if (VerifyOnly)
2166       InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2167     else
2168       InvalidUse = SemaRef.DiagnoseUseOfDecl(
2169           *Field, IList->getInit(Index)->getBeginLoc());
2170     if (InvalidUse) {
2171       ++Index;
2172       ++Field;
2173       hadError = true;
2174       continue;
2175     }
2176 
2177     if (!VerifyOnly) {
2178       QualType ET = SemaRef.Context.getBaseElementType(Field->getType());
2179       if (checkDestructorReference(ET, InitLoc, SemaRef)) {
2180         hadError = true;
2181         return;
2182       }
2183     }
2184 
2185     InitializedEntity MemberEntity =
2186       InitializedEntity::InitializeMember(*Field, &Entity);
2187     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2188                         StructuredList, StructuredIndex);
2189     InitializedSomething = true;
2190 
2191     if (DeclType->isUnionType() && StructuredList) {
2192       // Initialize the first field within the union.
2193       StructuredList->setInitializedFieldInUnion(*Field);
2194     }
2195 
2196     ++Field;
2197   }
2198 
2199   // Emit warnings for missing struct field initializers.
2200   if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
2201       Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
2202       !DeclType->isUnionType()) {
2203     // It is possible we have one or more unnamed bitfields remaining.
2204     // Find first (if any) named field and emit warning.
2205     for (RecordDecl::field_iterator it = Field, end = RD->field_end();
2206          it != end; ++it) {
2207       if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
2208         SemaRef.Diag(IList->getSourceRange().getEnd(),
2209                      diag::warn_missing_field_initializers) << *it;
2210         break;
2211       }
2212     }
2213   }
2214 
2215   // Check that any remaining fields can be value-initialized if we're not
2216   // building a structured list. (If we are, we'll check this later.)
2217   if (!StructuredList && Field != FieldEnd && !DeclType->isUnionType() &&
2218       !Field->getType()->isIncompleteArrayType()) {
2219     for (; Field != FieldEnd && !hadError; ++Field) {
2220       if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
2221         CheckEmptyInitializable(
2222             InitializedEntity::InitializeMember(*Field, &Entity),
2223             IList->getEndLoc());
2224     }
2225   }
2226 
2227   // Check that the types of the remaining fields have accessible destructors.
2228   if (!VerifyOnly) {
2229     // If the initializer expression has a designated initializer, check the
2230     // elements for which a designated initializer is not provided too.
2231     RecordDecl::field_iterator I = HasDesignatedInit ? RD->field_begin()
2232                                                      : Field;
2233     for (RecordDecl::field_iterator E = RD->field_end(); I != E; ++I) {
2234       QualType ET = SemaRef.Context.getBaseElementType(I->getType());
2235       if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) {
2236         hadError = true;
2237         return;
2238       }
2239     }
2240   }
2241 
2242   if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
2243       Index >= IList->getNumInits())
2244     return;
2245 
2246   if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
2247                              TopLevelObject)) {
2248     hadError = true;
2249     ++Index;
2250     return;
2251   }
2252 
2253   InitializedEntity MemberEntity =
2254     InitializedEntity::InitializeMember(*Field, &Entity);
2255 
2256   if (isa<InitListExpr>(IList->getInit(Index)))
2257     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2258                         StructuredList, StructuredIndex);
2259   else
2260     CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
2261                           StructuredList, StructuredIndex);
2262 }
2263 
2264 /// Expand a field designator that refers to a member of an
2265 /// anonymous struct or union into a series of field designators that
2266 /// refers to the field within the appropriate subobject.
2267 ///
2268 static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
2269                                            DesignatedInitExpr *DIE,
2270                                            unsigned DesigIdx,
2271                                            IndirectFieldDecl *IndirectField) {
2272   typedef DesignatedInitExpr::Designator Designator;
2273 
2274   // Build the replacement designators.
2275   SmallVector<Designator, 4> Replacements;
2276   for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
2277        PE = IndirectField->chain_end(); PI != PE; ++PI) {
2278     if (PI + 1 == PE)
2279       Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2280                                     DIE->getDesignator(DesigIdx)->getDotLoc(),
2281                                 DIE->getDesignator(DesigIdx)->getFieldLoc()));
2282     else
2283       Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2284                                         SourceLocation(), SourceLocation()));
2285     assert(isa<FieldDecl>(*PI));
2286     Replacements.back().setField(cast<FieldDecl>(*PI));
2287   }
2288 
2289   // Expand the current designator into the set of replacement
2290   // designators, so we have a full subobject path down to where the
2291   // member of the anonymous struct/union is actually stored.
2292   DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
2293                         &Replacements[0] + Replacements.size());
2294 }
2295 
2296 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
2297                                                    DesignatedInitExpr *DIE) {
2298   unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
2299   SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
2300   for (unsigned I = 0; I < NumIndexExprs; ++I)
2301     IndexExprs[I] = DIE->getSubExpr(I + 1);
2302   return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(),
2303                                     IndexExprs,
2304                                     DIE->getEqualOrColonLoc(),
2305                                     DIE->usesGNUSyntax(), DIE->getInit());
2306 }
2307 
2308 namespace {
2309 
2310 // Callback to only accept typo corrections that are for field members of
2311 // the given struct or union.
2312 class FieldInitializerValidatorCCC final : public CorrectionCandidateCallback {
2313  public:
2314   explicit FieldInitializerValidatorCCC(RecordDecl *RD)
2315       : Record(RD) {}
2316 
2317   bool ValidateCandidate(const TypoCorrection &candidate) override {
2318     FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
2319     return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
2320   }
2321 
2322   std::unique_ptr<CorrectionCandidateCallback> clone() override {
2323     return std::make_unique<FieldInitializerValidatorCCC>(*this);
2324   }
2325 
2326  private:
2327   RecordDecl *Record;
2328 };
2329 
2330 } // end anonymous namespace
2331 
2332 /// Check the well-formedness of a C99 designated initializer.
2333 ///
2334 /// Determines whether the designated initializer @p DIE, which
2335 /// resides at the given @p Index within the initializer list @p
2336 /// IList, is well-formed for a current object of type @p DeclType
2337 /// (C99 6.7.8). The actual subobject that this designator refers to
2338 /// within the current subobject is returned in either
2339 /// @p NextField or @p NextElementIndex (whichever is appropriate).
2340 ///
2341 /// @param IList  The initializer list in which this designated
2342 /// initializer occurs.
2343 ///
2344 /// @param DIE The designated initializer expression.
2345 ///
2346 /// @param DesigIdx  The index of the current designator.
2347 ///
2348 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
2349 /// into which the designation in @p DIE should refer.
2350 ///
2351 /// @param NextField  If non-NULL and the first designator in @p DIE is
2352 /// a field, this will be set to the field declaration corresponding
2353 /// to the field named by the designator. On input, this is expected to be
2354 /// the next field that would be initialized in the absence of designation,
2355 /// if the complete object being initialized is a struct.
2356 ///
2357 /// @param NextElementIndex  If non-NULL and the first designator in @p
2358 /// DIE is an array designator or GNU array-range designator, this
2359 /// will be set to the last index initialized by this designator.
2360 ///
2361 /// @param Index  Index into @p IList where the designated initializer
2362 /// @p DIE occurs.
2363 ///
2364 /// @param StructuredList  The initializer list expression that
2365 /// describes all of the subobject initializers in the order they'll
2366 /// actually be initialized.
2367 ///
2368 /// @returns true if there was an error, false otherwise.
2369 bool
2370 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
2371                                             InitListExpr *IList,
2372                                             DesignatedInitExpr *DIE,
2373                                             unsigned DesigIdx,
2374                                             QualType &CurrentObjectType,
2375                                           RecordDecl::field_iterator *NextField,
2376                                             llvm::APSInt *NextElementIndex,
2377                                             unsigned &Index,
2378                                             InitListExpr *StructuredList,
2379                                             unsigned &StructuredIndex,
2380                                             bool FinishSubobjectInit,
2381                                             bool TopLevelObject) {
2382   if (DesigIdx == DIE->size()) {
2383     // C++20 designated initialization can result in direct-list-initialization
2384     // of the designated subobject. This is the only way that we can end up
2385     // performing direct initialization as part of aggregate initialization, so
2386     // it needs special handling.
2387     if (DIE->isDirectInit()) {
2388       Expr *Init = DIE->getInit();
2389       assert(isa<InitListExpr>(Init) &&
2390              "designator result in direct non-list initialization?");
2391       InitializationKind Kind = InitializationKind::CreateDirectList(
2392           DIE->getBeginLoc(), Init->getBeginLoc(), Init->getEndLoc());
2393       InitializationSequence Seq(SemaRef, Entity, Kind, Init,
2394                                  /*TopLevelOfInitList*/ true);
2395       if (StructuredList) {
2396         ExprResult Result = VerifyOnly
2397                                 ? getDummyInit()
2398                                 : Seq.Perform(SemaRef, Entity, Kind, Init);
2399         UpdateStructuredListElement(StructuredList, StructuredIndex,
2400                                     Result.get());
2401       }
2402       ++Index;
2403       return !Seq;
2404     }
2405 
2406     // Check the actual initialization for the designated object type.
2407     bool prevHadError = hadError;
2408 
2409     // Temporarily remove the designator expression from the
2410     // initializer list that the child calls see, so that we don't try
2411     // to re-process the designator.
2412     unsigned OldIndex = Index;
2413     IList->setInit(OldIndex, DIE->getInit());
2414 
2415     CheckSubElementType(Entity, IList, CurrentObjectType, Index,
2416                         StructuredList, StructuredIndex);
2417 
2418     // Restore the designated initializer expression in the syntactic
2419     // form of the initializer list.
2420     if (IList->getInit(OldIndex) != DIE->getInit())
2421       DIE->setInit(IList->getInit(OldIndex));
2422     IList->setInit(OldIndex, DIE);
2423 
2424     return hadError && !prevHadError;
2425   }
2426 
2427   DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
2428   bool IsFirstDesignator = (DesigIdx == 0);
2429   if (IsFirstDesignator ? FullyStructuredList : StructuredList) {
2430     // Determine the structural initializer list that corresponds to the
2431     // current subobject.
2432     if (IsFirstDesignator)
2433       StructuredList = FullyStructuredList;
2434     else {
2435       Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ?
2436           StructuredList->getInit(StructuredIndex) : nullptr;
2437       if (!ExistingInit && StructuredList->hasArrayFiller())
2438         ExistingInit = StructuredList->getArrayFiller();
2439 
2440       if (!ExistingInit)
2441         StructuredList = getStructuredSubobjectInit(
2442             IList, Index, CurrentObjectType, StructuredList, StructuredIndex,
2443             SourceRange(D->getBeginLoc(), DIE->getEndLoc()));
2444       else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit))
2445         StructuredList = Result;
2446       else {
2447         // We are creating an initializer list that initializes the
2448         // subobjects of the current object, but there was already an
2449         // initialization that completely initialized the current
2450         // subobject, e.g., by a compound literal:
2451         //
2452         // struct X { int a, b; };
2453         // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2454         //
2455         // Here, xs[0].a == 1 and xs[0].b == 3, since the second,
2456         // designated initializer re-initializes only its current object
2457         // subobject [0].b.
2458         diagnoseInitOverride(ExistingInit,
2459                              SourceRange(D->getBeginLoc(), DIE->getEndLoc()),
2460                              /*FullyOverwritten=*/false);
2461 
2462         if (!VerifyOnly) {
2463           if (DesignatedInitUpdateExpr *E =
2464                   dyn_cast<DesignatedInitUpdateExpr>(ExistingInit))
2465             StructuredList = E->getUpdater();
2466           else {
2467             DesignatedInitUpdateExpr *DIUE = new (SemaRef.Context)
2468                 DesignatedInitUpdateExpr(SemaRef.Context, D->getBeginLoc(),
2469                                          ExistingInit, DIE->getEndLoc());
2470             StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE);
2471             StructuredList = DIUE->getUpdater();
2472           }
2473         } else {
2474           // We don't need to track the structured representation of a
2475           // designated init update of an already-fully-initialized object in
2476           // verify-only mode. The only reason we would need the structure is
2477           // to determine where the uninitialized "holes" are, and in this
2478           // case, we know there aren't any and we can't introduce any.
2479           StructuredList = nullptr;
2480         }
2481       }
2482     }
2483   }
2484 
2485   if (D->isFieldDesignator()) {
2486     // C99 6.7.8p7:
2487     //
2488     //   If a designator has the form
2489     //
2490     //      . identifier
2491     //
2492     //   then the current object (defined below) shall have
2493     //   structure or union type and the identifier shall be the
2494     //   name of a member of that type.
2495     const RecordType *RT = CurrentObjectType->getAs<RecordType>();
2496     if (!RT) {
2497       SourceLocation Loc = D->getDotLoc();
2498       if (Loc.isInvalid())
2499         Loc = D->getFieldLoc();
2500       if (!VerifyOnly)
2501         SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
2502           << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
2503       ++Index;
2504       return true;
2505     }
2506 
2507     FieldDecl *KnownField = D->getField();
2508     if (!KnownField) {
2509       IdentifierInfo *FieldName = D->getFieldName();
2510       DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
2511       for (NamedDecl *ND : Lookup) {
2512         if (auto *FD = dyn_cast<FieldDecl>(ND)) {
2513           KnownField = FD;
2514           break;
2515         }
2516         if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) {
2517           // In verify mode, don't modify the original.
2518           if (VerifyOnly)
2519             DIE = CloneDesignatedInitExpr(SemaRef, DIE);
2520           ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD);
2521           D = DIE->getDesignator(DesigIdx);
2522           KnownField = cast<FieldDecl>(*IFD->chain_begin());
2523           break;
2524         }
2525       }
2526       if (!KnownField) {
2527         if (VerifyOnly) {
2528           ++Index;
2529           return true;  // No typo correction when just trying this out.
2530         }
2531 
2532         // Name lookup found something, but it wasn't a field.
2533         if (!Lookup.empty()) {
2534           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
2535             << FieldName;
2536           SemaRef.Diag(Lookup.front()->getLocation(),
2537                        diag::note_field_designator_found);
2538           ++Index;
2539           return true;
2540         }
2541 
2542         // Name lookup didn't find anything.
2543         // Determine whether this was a typo for another field name.
2544         FieldInitializerValidatorCCC CCC(RT->getDecl());
2545         if (TypoCorrection Corrected = SemaRef.CorrectTypo(
2546                 DeclarationNameInfo(FieldName, D->getFieldLoc()),
2547                 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr, CCC,
2548                 Sema::CTK_ErrorRecovery, RT->getDecl())) {
2549           SemaRef.diagnoseTypo(
2550               Corrected,
2551               SemaRef.PDiag(diag::err_field_designator_unknown_suggest)
2552                 << FieldName << CurrentObjectType);
2553           KnownField = Corrected.getCorrectionDeclAs<FieldDecl>();
2554           hadError = true;
2555         } else {
2556           // Typo correction didn't find anything.
2557           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
2558             << FieldName << CurrentObjectType;
2559           ++Index;
2560           return true;
2561         }
2562       }
2563     }
2564 
2565     unsigned NumBases = 0;
2566     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2567       NumBases = CXXRD->getNumBases();
2568 
2569     unsigned FieldIndex = NumBases;
2570 
2571     for (auto *FI : RT->getDecl()->fields()) {
2572       if (FI->isUnnamedBitfield())
2573         continue;
2574       if (declaresSameEntity(KnownField, FI)) {
2575         KnownField = FI;
2576         break;
2577       }
2578       ++FieldIndex;
2579     }
2580 
2581     RecordDecl::field_iterator Field =
2582         RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField));
2583 
2584     // All of the fields of a union are located at the same place in
2585     // the initializer list.
2586     if (RT->getDecl()->isUnion()) {
2587       FieldIndex = 0;
2588       if (StructuredList) {
2589         FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion();
2590         if (CurrentField && !declaresSameEntity(CurrentField, *Field)) {
2591           assert(StructuredList->getNumInits() == 1
2592                  && "A union should never have more than one initializer!");
2593 
2594           Expr *ExistingInit = StructuredList->getInit(0);
2595           if (ExistingInit) {
2596             // We're about to throw away an initializer, emit warning.
2597             diagnoseInitOverride(
2598                 ExistingInit, SourceRange(D->getBeginLoc(), DIE->getEndLoc()));
2599           }
2600 
2601           // remove existing initializer
2602           StructuredList->resizeInits(SemaRef.Context, 0);
2603           StructuredList->setInitializedFieldInUnion(nullptr);
2604         }
2605 
2606         StructuredList->setInitializedFieldInUnion(*Field);
2607       }
2608     }
2609 
2610     // Make sure we can use this declaration.
2611     bool InvalidUse;
2612     if (VerifyOnly)
2613       InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2614     else
2615       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
2616     if (InvalidUse) {
2617       ++Index;
2618       return true;
2619     }
2620 
2621     // C++20 [dcl.init.list]p3:
2622     //   The ordered identifiers in the designators of the designated-
2623     //   initializer-list shall form a subsequence of the ordered identifiers
2624     //   in the direct non-static data members of T.
2625     //
2626     // Note that this is not a condition on forming the aggregate
2627     // initialization, only on actually performing initialization,
2628     // so it is not checked in VerifyOnly mode.
2629     //
2630     // FIXME: This is the only reordering diagnostic we produce, and it only
2631     // catches cases where we have a top-level field designator that jumps
2632     // backwards. This is the only such case that is reachable in an
2633     // otherwise-valid C++20 program, so is the only case that's required for
2634     // conformance, but for consistency, we should diagnose all the other
2635     // cases where a designator takes us backwards too.
2636     if (IsFirstDesignator && !VerifyOnly && SemaRef.getLangOpts().CPlusPlus &&
2637         NextField &&
2638         (*NextField == RT->getDecl()->field_end() ||
2639          (*NextField)->getFieldIndex() > Field->getFieldIndex() + 1)) {
2640       // Find the field that we just initialized.
2641       FieldDecl *PrevField = nullptr;
2642       for (auto FI = RT->getDecl()->field_begin();
2643            FI != RT->getDecl()->field_end(); ++FI) {
2644         if (FI->isUnnamedBitfield())
2645           continue;
2646         if (*NextField != RT->getDecl()->field_end() &&
2647             declaresSameEntity(*FI, **NextField))
2648           break;
2649         PrevField = *FI;
2650       }
2651 
2652       if (PrevField &&
2653           PrevField->getFieldIndex() > KnownField->getFieldIndex()) {
2654         SemaRef.Diag(DIE->getBeginLoc(), diag::ext_designated_init_reordered)
2655             << KnownField << PrevField << DIE->getSourceRange();
2656 
2657         unsigned OldIndex = NumBases + PrevField->getFieldIndex();
2658         if (StructuredList && OldIndex <= StructuredList->getNumInits()) {
2659           if (Expr *PrevInit = StructuredList->getInit(OldIndex)) {
2660             SemaRef.Diag(PrevInit->getBeginLoc(),
2661                          diag::note_previous_field_init)
2662                 << PrevField << PrevInit->getSourceRange();
2663           }
2664         }
2665       }
2666     }
2667 
2668 
2669     // Update the designator with the field declaration.
2670     if (!VerifyOnly)
2671       D->setField(*Field);
2672 
2673     // Make sure that our non-designated initializer list has space
2674     // for a subobject corresponding to this field.
2675     if (StructuredList && FieldIndex >= StructuredList->getNumInits())
2676       StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
2677 
2678     // This designator names a flexible array member.
2679     if (Field->getType()->isIncompleteArrayType()) {
2680       bool Invalid = false;
2681       if ((DesigIdx + 1) != DIE->size()) {
2682         // We can't designate an object within the flexible array
2683         // member (because GCC doesn't allow it).
2684         if (!VerifyOnly) {
2685           DesignatedInitExpr::Designator *NextD
2686             = DIE->getDesignator(DesigIdx + 1);
2687           SemaRef.Diag(NextD->getBeginLoc(),
2688                        diag::err_designator_into_flexible_array_member)
2689               << SourceRange(NextD->getBeginLoc(), DIE->getEndLoc());
2690           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2691             << *Field;
2692         }
2693         Invalid = true;
2694       }
2695 
2696       if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
2697           !isa<StringLiteral>(DIE->getInit())) {
2698         // The initializer is not an initializer list.
2699         if (!VerifyOnly) {
2700           SemaRef.Diag(DIE->getInit()->getBeginLoc(),
2701                        diag::err_flexible_array_init_needs_braces)
2702               << DIE->getInit()->getSourceRange();
2703           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2704             << *Field;
2705         }
2706         Invalid = true;
2707       }
2708 
2709       // Check GNU flexible array initializer.
2710       if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
2711                                              TopLevelObject))
2712         Invalid = true;
2713 
2714       if (Invalid) {
2715         ++Index;
2716         return true;
2717       }
2718 
2719       // Initialize the array.
2720       bool prevHadError = hadError;
2721       unsigned newStructuredIndex = FieldIndex;
2722       unsigned OldIndex = Index;
2723       IList->setInit(Index, DIE->getInit());
2724 
2725       InitializedEntity MemberEntity =
2726         InitializedEntity::InitializeMember(*Field, &Entity);
2727       CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2728                           StructuredList, newStructuredIndex);
2729 
2730       IList->setInit(OldIndex, DIE);
2731       if (hadError && !prevHadError) {
2732         ++Field;
2733         ++FieldIndex;
2734         if (NextField)
2735           *NextField = Field;
2736         StructuredIndex = FieldIndex;
2737         return true;
2738       }
2739     } else {
2740       // Recurse to check later designated subobjects.
2741       QualType FieldType = Field->getType();
2742       unsigned newStructuredIndex = FieldIndex;
2743 
2744       InitializedEntity MemberEntity =
2745         InitializedEntity::InitializeMember(*Field, &Entity);
2746       if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
2747                                      FieldType, nullptr, nullptr, Index,
2748                                      StructuredList, newStructuredIndex,
2749                                      FinishSubobjectInit, false))
2750         return true;
2751     }
2752 
2753     // Find the position of the next field to be initialized in this
2754     // subobject.
2755     ++Field;
2756     ++FieldIndex;
2757 
2758     // If this the first designator, our caller will continue checking
2759     // the rest of this struct/class/union subobject.
2760     if (IsFirstDesignator) {
2761       if (NextField)
2762         *NextField = Field;
2763       StructuredIndex = FieldIndex;
2764       return false;
2765     }
2766 
2767     if (!FinishSubobjectInit)
2768       return false;
2769 
2770     // We've already initialized something in the union; we're done.
2771     if (RT->getDecl()->isUnion())
2772       return hadError;
2773 
2774     // Check the remaining fields within this class/struct/union subobject.
2775     bool prevHadError = hadError;
2776 
2777     auto NoBases =
2778         CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
2779                                         CXXRecordDecl::base_class_iterator());
2780     CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field,
2781                           false, Index, StructuredList, FieldIndex);
2782     return hadError && !prevHadError;
2783   }
2784 
2785   // C99 6.7.8p6:
2786   //
2787   //   If a designator has the form
2788   //
2789   //      [ constant-expression ]
2790   //
2791   //   then the current object (defined below) shall have array
2792   //   type and the expression shall be an integer constant
2793   //   expression. If the array is of unknown size, any
2794   //   nonnegative value is valid.
2795   //
2796   // Additionally, cope with the GNU extension that permits
2797   // designators of the form
2798   //
2799   //      [ constant-expression ... constant-expression ]
2800   const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
2801   if (!AT) {
2802     if (!VerifyOnly)
2803       SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
2804         << CurrentObjectType;
2805     ++Index;
2806     return true;
2807   }
2808 
2809   Expr *IndexExpr = nullptr;
2810   llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
2811   if (D->isArrayDesignator()) {
2812     IndexExpr = DIE->getArrayIndex(*D);
2813     DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
2814     DesignatedEndIndex = DesignatedStartIndex;
2815   } else {
2816     assert(D->isArrayRangeDesignator() && "Need array-range designator");
2817 
2818     DesignatedStartIndex =
2819       DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
2820     DesignatedEndIndex =
2821       DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
2822     IndexExpr = DIE->getArrayRangeEnd(*D);
2823 
2824     // Codegen can't handle evaluating array range designators that have side
2825     // effects, because we replicate the AST value for each initialized element.
2826     // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
2827     // elements with something that has a side effect, so codegen can emit an
2828     // "error unsupported" error instead of miscompiling the app.
2829     if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
2830         DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
2831       FullyStructuredList->sawArrayRangeDesignator();
2832   }
2833 
2834   if (isa<ConstantArrayType>(AT)) {
2835     llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
2836     DesignatedStartIndex
2837       = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
2838     DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
2839     DesignatedEndIndex
2840       = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
2841     DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
2842     if (DesignatedEndIndex >= MaxElements) {
2843       if (!VerifyOnly)
2844         SemaRef.Diag(IndexExpr->getBeginLoc(),
2845                      diag::err_array_designator_too_large)
2846             << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
2847             << IndexExpr->getSourceRange();
2848       ++Index;
2849       return true;
2850     }
2851   } else {
2852     unsigned DesignatedIndexBitWidth =
2853       ConstantArrayType::getMaxSizeBits(SemaRef.Context);
2854     DesignatedStartIndex =
2855       DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth);
2856     DesignatedEndIndex =
2857       DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth);
2858     DesignatedStartIndex.setIsUnsigned(true);
2859     DesignatedEndIndex.setIsUnsigned(true);
2860   }
2861 
2862   bool IsStringLiteralInitUpdate =
2863       StructuredList && StructuredList->isStringLiteralInit();
2864   if (IsStringLiteralInitUpdate && VerifyOnly) {
2865     // We're just verifying an update to a string literal init. We don't need
2866     // to split the string up into individual characters to do that.
2867     StructuredList = nullptr;
2868   } else if (IsStringLiteralInitUpdate) {
2869     // We're modifying a string literal init; we have to decompose the string
2870     // so we can modify the individual characters.
2871     ASTContext &Context = SemaRef.Context;
2872     Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens();
2873 
2874     // Compute the character type
2875     QualType CharTy = AT->getElementType();
2876 
2877     // Compute the type of the integer literals.
2878     QualType PromotedCharTy = CharTy;
2879     if (CharTy->isPromotableIntegerType())
2880       PromotedCharTy = Context.getPromotedIntegerType(CharTy);
2881     unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy);
2882 
2883     if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) {
2884       // Get the length of the string.
2885       uint64_t StrLen = SL->getLength();
2886       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2887         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2888       StructuredList->resizeInits(Context, StrLen);
2889 
2890       // Build a literal for each character in the string, and put them into
2891       // the init list.
2892       for (unsigned i = 0, e = StrLen; i != e; ++i) {
2893         llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i));
2894         Expr *Init = new (Context) IntegerLiteral(
2895             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2896         if (CharTy != PromotedCharTy)
2897           Init =
2898               ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, Init,
2899                                        nullptr, VK_RValue, FPOptionsOverride());
2900         StructuredList->updateInit(Context, i, Init);
2901       }
2902     } else {
2903       ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr);
2904       std::string Str;
2905       Context.getObjCEncodingForType(E->getEncodedType(), Str);
2906 
2907       // Get the length of the string.
2908       uint64_t StrLen = Str.size();
2909       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2910         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2911       StructuredList->resizeInits(Context, StrLen);
2912 
2913       // Build a literal for each character in the string, and put them into
2914       // the init list.
2915       for (unsigned i = 0, e = StrLen; i != e; ++i) {
2916         llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]);
2917         Expr *Init = new (Context) IntegerLiteral(
2918             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2919         if (CharTy != PromotedCharTy)
2920           Init =
2921               ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, Init,
2922                                        nullptr, VK_RValue, FPOptionsOverride());
2923         StructuredList->updateInit(Context, i, Init);
2924       }
2925     }
2926   }
2927 
2928   // Make sure that our non-designated initializer list has space
2929   // for a subobject corresponding to this array element.
2930   if (StructuredList &&
2931       DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
2932     StructuredList->resizeInits(SemaRef.Context,
2933                                 DesignatedEndIndex.getZExtValue() + 1);
2934 
2935   // Repeatedly perform subobject initializations in the range
2936   // [DesignatedStartIndex, DesignatedEndIndex].
2937 
2938   // Move to the next designator
2939   unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
2940   unsigned OldIndex = Index;
2941 
2942   InitializedEntity ElementEntity =
2943     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
2944 
2945   while (DesignatedStartIndex <= DesignatedEndIndex) {
2946     // Recurse to check later designated subobjects.
2947     QualType ElementType = AT->getElementType();
2948     Index = OldIndex;
2949 
2950     ElementEntity.setElementIndex(ElementIndex);
2951     if (CheckDesignatedInitializer(
2952             ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr,
2953             nullptr, Index, StructuredList, ElementIndex,
2954             FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex),
2955             false))
2956       return true;
2957 
2958     // Move to the next index in the array that we'll be initializing.
2959     ++DesignatedStartIndex;
2960     ElementIndex = DesignatedStartIndex.getZExtValue();
2961   }
2962 
2963   // If this the first designator, our caller will continue checking
2964   // the rest of this array subobject.
2965   if (IsFirstDesignator) {
2966     if (NextElementIndex)
2967       *NextElementIndex = DesignatedStartIndex;
2968     StructuredIndex = ElementIndex;
2969     return false;
2970   }
2971 
2972   if (!FinishSubobjectInit)
2973     return false;
2974 
2975   // Check the remaining elements within this array subobject.
2976   bool prevHadError = hadError;
2977   CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
2978                  /*SubobjectIsDesignatorContext=*/false, Index,
2979                  StructuredList, ElementIndex);
2980   return hadError && !prevHadError;
2981 }
2982 
2983 // Get the structured initializer list for a subobject of type
2984 // @p CurrentObjectType.
2985 InitListExpr *
2986 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
2987                                             QualType CurrentObjectType,
2988                                             InitListExpr *StructuredList,
2989                                             unsigned StructuredIndex,
2990                                             SourceRange InitRange,
2991                                             bool IsFullyOverwritten) {
2992   if (!StructuredList)
2993     return nullptr;
2994 
2995   Expr *ExistingInit = nullptr;
2996   if (StructuredIndex < StructuredList->getNumInits())
2997     ExistingInit = StructuredList->getInit(StructuredIndex);
2998 
2999   if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
3000     // There might have already been initializers for subobjects of the current
3001     // object, but a subsequent initializer list will overwrite the entirety
3002     // of the current object. (See DR 253 and C99 6.7.8p21). e.g.,
3003     //
3004     // struct P { char x[6]; };
3005     // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } };
3006     //
3007     // The first designated initializer is ignored, and l.x is just "f".
3008     if (!IsFullyOverwritten)
3009       return Result;
3010 
3011   if (ExistingInit) {
3012     // We are creating an initializer list that initializes the
3013     // subobjects of the current object, but there was already an
3014     // initialization that completely initialized the current
3015     // subobject:
3016     //
3017     // struct X { int a, b; };
3018     // struct X xs[] = { [0] = { 1, 2 }, [0].b = 3 };
3019     //
3020     // Here, xs[0].a == 1 and xs[0].b == 3, since the second,
3021     // designated initializer overwrites the [0].b initializer
3022     // from the prior initialization.
3023     //
3024     // When the existing initializer is an expression rather than an
3025     // initializer list, we cannot decompose and update it in this way.
3026     // For example:
3027     //
3028     // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
3029     //
3030     // This case is handled by CheckDesignatedInitializer.
3031     diagnoseInitOverride(ExistingInit, InitRange);
3032   }
3033 
3034   unsigned ExpectedNumInits = 0;
3035   if (Index < IList->getNumInits()) {
3036     if (auto *Init = dyn_cast_or_null<InitListExpr>(IList->getInit(Index)))
3037       ExpectedNumInits = Init->getNumInits();
3038     else
3039       ExpectedNumInits = IList->getNumInits() - Index;
3040   }
3041 
3042   InitListExpr *Result =
3043       createInitListExpr(CurrentObjectType, InitRange, ExpectedNumInits);
3044 
3045   // Link this new initializer list into the structured initializer
3046   // lists.
3047   StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
3048   return Result;
3049 }
3050 
3051 InitListExpr *
3052 InitListChecker::createInitListExpr(QualType CurrentObjectType,
3053                                     SourceRange InitRange,
3054                                     unsigned ExpectedNumInits) {
3055   InitListExpr *Result
3056     = new (SemaRef.Context) InitListExpr(SemaRef.Context,
3057                                          InitRange.getBegin(), None,
3058                                          InitRange.getEnd());
3059 
3060   QualType ResultType = CurrentObjectType;
3061   if (!ResultType->isArrayType())
3062     ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
3063   Result->setType(ResultType);
3064 
3065   // Pre-allocate storage for the structured initializer list.
3066   unsigned NumElements = 0;
3067 
3068   if (const ArrayType *AType
3069       = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
3070     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
3071       NumElements = CAType->getSize().getZExtValue();
3072       // Simple heuristic so that we don't allocate a very large
3073       // initializer with many empty entries at the end.
3074       if (NumElements > ExpectedNumInits)
3075         NumElements = 0;
3076     }
3077   } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>()) {
3078     NumElements = VType->getNumElements();
3079   } else if (CurrentObjectType->isRecordType()) {
3080     NumElements = numStructUnionElements(CurrentObjectType);
3081   }
3082 
3083   Result->reserveInits(SemaRef.Context, NumElements);
3084 
3085   return Result;
3086 }
3087 
3088 /// Update the initializer at index @p StructuredIndex within the
3089 /// structured initializer list to the value @p expr.
3090 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
3091                                                   unsigned &StructuredIndex,
3092                                                   Expr *expr) {
3093   // No structured initializer list to update
3094   if (!StructuredList)
3095     return;
3096 
3097   if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
3098                                                   StructuredIndex, expr)) {
3099     // This initializer overwrites a previous initializer.
3100     // No need to diagnose when `expr` is nullptr because a more relevant
3101     // diagnostic has already been issued and this diagnostic is potentially
3102     // noise.
3103     if (expr)
3104       diagnoseInitOverride(PrevInit, expr->getSourceRange());
3105   }
3106 
3107   ++StructuredIndex;
3108 }
3109 
3110 /// Determine whether we can perform aggregate initialization for the purposes
3111 /// of overload resolution.
3112 bool Sema::CanPerformAggregateInitializationForOverloadResolution(
3113     const InitializedEntity &Entity, InitListExpr *From) {
3114   QualType Type = Entity.getType();
3115   InitListChecker Check(*this, Entity, From, Type, /*VerifyOnly=*/true,
3116                         /*TreatUnavailableAsInvalid=*/false,
3117                         /*InOverloadResolution=*/true);
3118   return !Check.HadError();
3119 }
3120 
3121 /// Check that the given Index expression is a valid array designator
3122 /// value. This is essentially just a wrapper around
3123 /// VerifyIntegerConstantExpression that also checks for negative values
3124 /// and produces a reasonable diagnostic if there is a
3125 /// failure. Returns the index expression, possibly with an implicit cast
3126 /// added, on success.  If everything went okay, Value will receive the
3127 /// value of the constant expression.
3128 static ExprResult
3129 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
3130   SourceLocation Loc = Index->getBeginLoc();
3131 
3132   // Make sure this is an integer constant expression.
3133   ExprResult Result =
3134       S.VerifyIntegerConstantExpression(Index, &Value, Sema::AllowFold);
3135   if (Result.isInvalid())
3136     return Result;
3137 
3138   if (Value.isSigned() && Value.isNegative())
3139     return S.Diag(Loc, diag::err_array_designator_negative)
3140       << Value.toString(10) << Index->getSourceRange();
3141 
3142   Value.setIsUnsigned(true);
3143   return Result;
3144 }
3145 
3146 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
3147                                             SourceLocation EqualOrColonLoc,
3148                                             bool GNUSyntax,
3149                                             ExprResult Init) {
3150   typedef DesignatedInitExpr::Designator ASTDesignator;
3151 
3152   bool Invalid = false;
3153   SmallVector<ASTDesignator, 32> Designators;
3154   SmallVector<Expr *, 32> InitExpressions;
3155 
3156   // Build designators and check array designator expressions.
3157   for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
3158     const Designator &D = Desig.getDesignator(Idx);
3159     switch (D.getKind()) {
3160     case Designator::FieldDesignator:
3161       Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
3162                                           D.getFieldLoc()));
3163       break;
3164 
3165     case Designator::ArrayDesignator: {
3166       Expr *Index = static_cast<Expr *>(D.getArrayIndex());
3167       llvm::APSInt IndexValue;
3168       if (!Index->isTypeDependent() && !Index->isValueDependent())
3169         Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get();
3170       if (!Index)
3171         Invalid = true;
3172       else {
3173         Designators.push_back(ASTDesignator(InitExpressions.size(),
3174                                             D.getLBracketLoc(),
3175                                             D.getRBracketLoc()));
3176         InitExpressions.push_back(Index);
3177       }
3178       break;
3179     }
3180 
3181     case Designator::ArrayRangeDesignator: {
3182       Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
3183       Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
3184       llvm::APSInt StartValue;
3185       llvm::APSInt EndValue;
3186       bool StartDependent = StartIndex->isTypeDependent() ||
3187                             StartIndex->isValueDependent();
3188       bool EndDependent = EndIndex->isTypeDependent() ||
3189                           EndIndex->isValueDependent();
3190       if (!StartDependent)
3191         StartIndex =
3192             CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get();
3193       if (!EndDependent)
3194         EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get();
3195 
3196       if (!StartIndex || !EndIndex)
3197         Invalid = true;
3198       else {
3199         // Make sure we're comparing values with the same bit width.
3200         if (StartDependent || EndDependent) {
3201           // Nothing to compute.
3202         } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
3203           EndValue = EndValue.extend(StartValue.getBitWidth());
3204         else if (StartValue.getBitWidth() < EndValue.getBitWidth())
3205           StartValue = StartValue.extend(EndValue.getBitWidth());
3206 
3207         if (!StartDependent && !EndDependent && EndValue < StartValue) {
3208           Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
3209             << StartValue.toString(10) << EndValue.toString(10)
3210             << StartIndex->getSourceRange() << EndIndex->getSourceRange();
3211           Invalid = true;
3212         } else {
3213           Designators.push_back(ASTDesignator(InitExpressions.size(),
3214                                               D.getLBracketLoc(),
3215                                               D.getEllipsisLoc(),
3216                                               D.getRBracketLoc()));
3217           InitExpressions.push_back(StartIndex);
3218           InitExpressions.push_back(EndIndex);
3219         }
3220       }
3221       break;
3222     }
3223     }
3224   }
3225 
3226   if (Invalid || Init.isInvalid())
3227     return ExprError();
3228 
3229   // Clear out the expressions within the designation.
3230   Desig.ClearExprs(*this);
3231 
3232   return DesignatedInitExpr::Create(Context, Designators, InitExpressions,
3233                                     EqualOrColonLoc, GNUSyntax,
3234                                     Init.getAs<Expr>());
3235 }
3236 
3237 //===----------------------------------------------------------------------===//
3238 // Initialization entity
3239 //===----------------------------------------------------------------------===//
3240 
3241 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
3242                                      const InitializedEntity &Parent)
3243   : Parent(&Parent), Index(Index)
3244 {
3245   if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
3246     Kind = EK_ArrayElement;
3247     Type = AT->getElementType();
3248   } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
3249     Kind = EK_VectorElement;
3250     Type = VT->getElementType();
3251   } else {
3252     const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
3253     assert(CT && "Unexpected type");
3254     Kind = EK_ComplexElement;
3255     Type = CT->getElementType();
3256   }
3257 }
3258 
3259 InitializedEntity
3260 InitializedEntity::InitializeBase(ASTContext &Context,
3261                                   const CXXBaseSpecifier *Base,
3262                                   bool IsInheritedVirtualBase,
3263                                   const InitializedEntity *Parent) {
3264   InitializedEntity Result;
3265   Result.Kind = EK_Base;
3266   Result.Parent = Parent;
3267   Result.Base = reinterpret_cast<uintptr_t>(Base);
3268   if (IsInheritedVirtualBase)
3269     Result.Base |= 0x01;
3270 
3271   Result.Type = Base->getType();
3272   return Result;
3273 }
3274 
3275 DeclarationName InitializedEntity::getName() const {
3276   switch (getKind()) {
3277   case EK_Parameter:
3278   case EK_Parameter_CF_Audited: {
3279     ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
3280     return (D ? D->getDeclName() : DeclarationName());
3281   }
3282 
3283   case EK_Variable:
3284   case EK_Member:
3285   case EK_Binding:
3286     return Variable.VariableOrMember->getDeclName();
3287 
3288   case EK_LambdaCapture:
3289     return DeclarationName(Capture.VarID);
3290 
3291   case EK_Result:
3292   case EK_StmtExprResult:
3293   case EK_Exception:
3294   case EK_New:
3295   case EK_Temporary:
3296   case EK_Base:
3297   case EK_Delegating:
3298   case EK_ArrayElement:
3299   case EK_VectorElement:
3300   case EK_ComplexElement:
3301   case EK_BlockElement:
3302   case EK_LambdaToBlockConversionBlockElement:
3303   case EK_CompoundLiteralInit:
3304   case EK_RelatedResult:
3305     return DeclarationName();
3306   }
3307 
3308   llvm_unreachable("Invalid EntityKind!");
3309 }
3310 
3311 ValueDecl *InitializedEntity::getDecl() const {
3312   switch (getKind()) {
3313   case EK_Variable:
3314   case EK_Member:
3315   case EK_Binding:
3316     return Variable.VariableOrMember;
3317 
3318   case EK_Parameter:
3319   case EK_Parameter_CF_Audited:
3320     return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
3321 
3322   case EK_Result:
3323   case EK_StmtExprResult:
3324   case EK_Exception:
3325   case EK_New:
3326   case EK_Temporary:
3327   case EK_Base:
3328   case EK_Delegating:
3329   case EK_ArrayElement:
3330   case EK_VectorElement:
3331   case EK_ComplexElement:
3332   case EK_BlockElement:
3333   case EK_LambdaToBlockConversionBlockElement:
3334   case EK_LambdaCapture:
3335   case EK_CompoundLiteralInit:
3336   case EK_RelatedResult:
3337     return nullptr;
3338   }
3339 
3340   llvm_unreachable("Invalid EntityKind!");
3341 }
3342 
3343 bool InitializedEntity::allowsNRVO() const {
3344   switch (getKind()) {
3345   case EK_Result:
3346   case EK_Exception:
3347     return LocAndNRVO.NRVO;
3348 
3349   case EK_StmtExprResult:
3350   case EK_Variable:
3351   case EK_Parameter:
3352   case EK_Parameter_CF_Audited:
3353   case EK_Member:
3354   case EK_Binding:
3355   case EK_New:
3356   case EK_Temporary:
3357   case EK_CompoundLiteralInit:
3358   case EK_Base:
3359   case EK_Delegating:
3360   case EK_ArrayElement:
3361   case EK_VectorElement:
3362   case EK_ComplexElement:
3363   case EK_BlockElement:
3364   case EK_LambdaToBlockConversionBlockElement:
3365   case EK_LambdaCapture:
3366   case EK_RelatedResult:
3367     break;
3368   }
3369 
3370   return false;
3371 }
3372 
3373 unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const {
3374   assert(getParent() != this);
3375   unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0;
3376   for (unsigned I = 0; I != Depth; ++I)
3377     OS << "`-";
3378 
3379   switch (getKind()) {
3380   case EK_Variable: OS << "Variable"; break;
3381   case EK_Parameter: OS << "Parameter"; break;
3382   case EK_Parameter_CF_Audited: OS << "CF audited function Parameter";
3383     break;
3384   case EK_Result: OS << "Result"; break;
3385   case EK_StmtExprResult: OS << "StmtExprResult"; break;
3386   case EK_Exception: OS << "Exception"; break;
3387   case EK_Member: OS << "Member"; break;
3388   case EK_Binding: OS << "Binding"; break;
3389   case EK_New: OS << "New"; break;
3390   case EK_Temporary: OS << "Temporary"; break;
3391   case EK_CompoundLiteralInit: OS << "CompoundLiteral";break;
3392   case EK_RelatedResult: OS << "RelatedResult"; break;
3393   case EK_Base: OS << "Base"; break;
3394   case EK_Delegating: OS << "Delegating"; break;
3395   case EK_ArrayElement: OS << "ArrayElement " << Index; break;
3396   case EK_VectorElement: OS << "VectorElement " << Index; break;
3397   case EK_ComplexElement: OS << "ComplexElement " << Index; break;
3398   case EK_BlockElement: OS << "Block"; break;
3399   case EK_LambdaToBlockConversionBlockElement:
3400     OS << "Block (lambda)";
3401     break;
3402   case EK_LambdaCapture:
3403     OS << "LambdaCapture ";
3404     OS << DeclarationName(Capture.VarID);
3405     break;
3406   }
3407 
3408   if (auto *D = getDecl()) {
3409     OS << " ";
3410     D->printQualifiedName(OS);
3411   }
3412 
3413   OS << " '" << getType().getAsString() << "'\n";
3414 
3415   return Depth + 1;
3416 }
3417 
3418 LLVM_DUMP_METHOD void InitializedEntity::dump() const {
3419   dumpImpl(llvm::errs());
3420 }
3421 
3422 //===----------------------------------------------------------------------===//
3423 // Initialization sequence
3424 //===----------------------------------------------------------------------===//
3425 
3426 void InitializationSequence::Step::Destroy() {
3427   switch (Kind) {
3428   case SK_ResolveAddressOfOverloadedFunction:
3429   case SK_CastDerivedToBaseRValue:
3430   case SK_CastDerivedToBaseXValue:
3431   case SK_CastDerivedToBaseLValue:
3432   case SK_BindReference:
3433   case SK_BindReferenceToTemporary:
3434   case SK_FinalCopy:
3435   case SK_ExtraneousCopyToTemporary:
3436   case SK_UserConversion:
3437   case SK_QualificationConversionRValue:
3438   case SK_QualificationConversionXValue:
3439   case SK_QualificationConversionLValue:
3440   case SK_AtomicConversion:
3441   case SK_ListInitialization:
3442   case SK_UnwrapInitList:
3443   case SK_RewrapInitList:
3444   case SK_ConstructorInitialization:
3445   case SK_ConstructorInitializationFromList:
3446   case SK_ZeroInitialization:
3447   case SK_CAssignment:
3448   case SK_StringInit:
3449   case SK_ObjCObjectConversion:
3450   case SK_ArrayLoopIndex:
3451   case SK_ArrayLoopInit:
3452   case SK_ArrayInit:
3453   case SK_GNUArrayInit:
3454   case SK_ParenthesizedArrayInit:
3455   case SK_PassByIndirectCopyRestore:
3456   case SK_PassByIndirectRestore:
3457   case SK_ProduceObjCObject:
3458   case SK_StdInitializerList:
3459   case SK_StdInitializerListConstructorCall:
3460   case SK_OCLSamplerInit:
3461   case SK_OCLZeroOpaqueType:
3462     break;
3463 
3464   case SK_ConversionSequence:
3465   case SK_ConversionSequenceNoNarrowing:
3466     delete ICS;
3467   }
3468 }
3469 
3470 bool InitializationSequence::isDirectReferenceBinding() const {
3471   // There can be some lvalue adjustments after the SK_BindReference step.
3472   for (auto I = Steps.rbegin(); I != Steps.rend(); ++I) {
3473     if (I->Kind == SK_BindReference)
3474       return true;
3475     if (I->Kind == SK_BindReferenceToTemporary)
3476       return false;
3477   }
3478   return false;
3479 }
3480 
3481 bool InitializationSequence::isAmbiguous() const {
3482   if (!Failed())
3483     return false;
3484 
3485   switch (getFailureKind()) {
3486   case FK_TooManyInitsForReference:
3487   case FK_ParenthesizedListInitForReference:
3488   case FK_ArrayNeedsInitList:
3489   case FK_ArrayNeedsInitListOrStringLiteral:
3490   case FK_ArrayNeedsInitListOrWideStringLiteral:
3491   case FK_NarrowStringIntoWideCharArray:
3492   case FK_WideStringIntoCharArray:
3493   case FK_IncompatWideStringIntoWideChar:
3494   case FK_PlainStringIntoUTF8Char:
3495   case FK_UTF8StringIntoPlainChar:
3496   case FK_AddressOfOverloadFailed: // FIXME: Could do better
3497   case FK_NonConstLValueReferenceBindingToTemporary:
3498   case FK_NonConstLValueReferenceBindingToBitfield:
3499   case FK_NonConstLValueReferenceBindingToVectorElement:
3500   case FK_NonConstLValueReferenceBindingToMatrixElement:
3501   case FK_NonConstLValueReferenceBindingToUnrelated:
3502   case FK_RValueReferenceBindingToLValue:
3503   case FK_ReferenceAddrspaceMismatchTemporary:
3504   case FK_ReferenceInitDropsQualifiers:
3505   case FK_ReferenceInitFailed:
3506   case FK_ConversionFailed:
3507   case FK_ConversionFromPropertyFailed:
3508   case FK_TooManyInitsForScalar:
3509   case FK_ParenthesizedListInitForScalar:
3510   case FK_ReferenceBindingToInitList:
3511   case FK_InitListBadDestinationType:
3512   case FK_DefaultInitOfConst:
3513   case FK_Incomplete:
3514   case FK_ArrayTypeMismatch:
3515   case FK_NonConstantArrayInit:
3516   case FK_ListInitializationFailed:
3517   case FK_VariableLengthArrayHasInitializer:
3518   case FK_PlaceholderType:
3519   case FK_ExplicitConstructor:
3520   case FK_AddressOfUnaddressableFunction:
3521     return false;
3522 
3523   case FK_ReferenceInitOverloadFailed:
3524   case FK_UserConversionOverloadFailed:
3525   case FK_ConstructorOverloadFailed:
3526   case FK_ListConstructorOverloadFailed:
3527     return FailedOverloadResult == OR_Ambiguous;
3528   }
3529 
3530   llvm_unreachable("Invalid EntityKind!");
3531 }
3532 
3533 bool InitializationSequence::isConstructorInitialization() const {
3534   return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
3535 }
3536 
3537 void
3538 InitializationSequence
3539 ::AddAddressOverloadResolutionStep(FunctionDecl *Function,
3540                                    DeclAccessPair Found,
3541                                    bool HadMultipleCandidates) {
3542   Step S;
3543   S.Kind = SK_ResolveAddressOfOverloadedFunction;
3544   S.Type = Function->getType();
3545   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3546   S.Function.Function = Function;
3547   S.Function.FoundDecl = Found;
3548   Steps.push_back(S);
3549 }
3550 
3551 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
3552                                                       ExprValueKind VK) {
3553   Step S;
3554   switch (VK) {
3555   case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
3556   case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
3557   case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
3558   }
3559   S.Type = BaseType;
3560   Steps.push_back(S);
3561 }
3562 
3563 void InitializationSequence::AddReferenceBindingStep(QualType T,
3564                                                      bool BindingTemporary) {
3565   Step S;
3566   S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
3567   S.Type = T;
3568   Steps.push_back(S);
3569 }
3570 
3571 void InitializationSequence::AddFinalCopy(QualType T) {
3572   Step S;
3573   S.Kind = SK_FinalCopy;
3574   S.Type = T;
3575   Steps.push_back(S);
3576 }
3577 
3578 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
3579   Step S;
3580   S.Kind = SK_ExtraneousCopyToTemporary;
3581   S.Type = T;
3582   Steps.push_back(S);
3583 }
3584 
3585 void
3586 InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
3587                                               DeclAccessPair FoundDecl,
3588                                               QualType T,
3589                                               bool HadMultipleCandidates) {
3590   Step S;
3591   S.Kind = SK_UserConversion;
3592   S.Type = T;
3593   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3594   S.Function.Function = Function;
3595   S.Function.FoundDecl = FoundDecl;
3596   Steps.push_back(S);
3597 }
3598 
3599 void InitializationSequence::AddQualificationConversionStep(QualType Ty,
3600                                                             ExprValueKind VK) {
3601   Step S;
3602   S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
3603   switch (VK) {
3604   case VK_RValue:
3605     S.Kind = SK_QualificationConversionRValue;
3606     break;
3607   case VK_XValue:
3608     S.Kind = SK_QualificationConversionXValue;
3609     break;
3610   case VK_LValue:
3611     S.Kind = SK_QualificationConversionLValue;
3612     break;
3613   }
3614   S.Type = Ty;
3615   Steps.push_back(S);
3616 }
3617 
3618 void InitializationSequence::AddAtomicConversionStep(QualType Ty) {
3619   Step S;
3620   S.Kind = SK_AtomicConversion;
3621   S.Type = Ty;
3622   Steps.push_back(S);
3623 }
3624 
3625 void InitializationSequence::AddConversionSequenceStep(
3626     const ImplicitConversionSequence &ICS, QualType T,
3627     bool TopLevelOfInitList) {
3628   Step S;
3629   S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing
3630                               : SK_ConversionSequence;
3631   S.Type = T;
3632   S.ICS = new ImplicitConversionSequence(ICS);
3633   Steps.push_back(S);
3634 }
3635 
3636 void InitializationSequence::AddListInitializationStep(QualType T) {
3637   Step S;
3638   S.Kind = SK_ListInitialization;
3639   S.Type = T;
3640   Steps.push_back(S);
3641 }
3642 
3643 void InitializationSequence::AddConstructorInitializationStep(
3644     DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T,
3645     bool HadMultipleCandidates, bool FromInitList, bool AsInitList) {
3646   Step S;
3647   S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall
3648                                      : SK_ConstructorInitializationFromList
3649                         : SK_ConstructorInitialization;
3650   S.Type = T;
3651   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3652   S.Function.Function = Constructor;
3653   S.Function.FoundDecl = FoundDecl;
3654   Steps.push_back(S);
3655 }
3656 
3657 void InitializationSequence::AddZeroInitializationStep(QualType T) {
3658   Step S;
3659   S.Kind = SK_ZeroInitialization;
3660   S.Type = T;
3661   Steps.push_back(S);
3662 }
3663 
3664 void InitializationSequence::AddCAssignmentStep(QualType T) {
3665   Step S;
3666   S.Kind = SK_CAssignment;
3667   S.Type = T;
3668   Steps.push_back(S);
3669 }
3670 
3671 void InitializationSequence::AddStringInitStep(QualType T) {
3672   Step S;
3673   S.Kind = SK_StringInit;
3674   S.Type = T;
3675   Steps.push_back(S);
3676 }
3677 
3678 void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
3679   Step S;
3680   S.Kind = SK_ObjCObjectConversion;
3681   S.Type = T;
3682   Steps.push_back(S);
3683 }
3684 
3685 void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) {
3686   Step S;
3687   S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit;
3688   S.Type = T;
3689   Steps.push_back(S);
3690 }
3691 
3692 void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) {
3693   Step S;
3694   S.Kind = SK_ArrayLoopIndex;
3695   S.Type = EltT;
3696   Steps.insert(Steps.begin(), S);
3697 
3698   S.Kind = SK_ArrayLoopInit;
3699   S.Type = T;
3700   Steps.push_back(S);
3701 }
3702 
3703 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
3704   Step S;
3705   S.Kind = SK_ParenthesizedArrayInit;
3706   S.Type = T;
3707   Steps.push_back(S);
3708 }
3709 
3710 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
3711                                                               bool shouldCopy) {
3712   Step s;
3713   s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
3714                        : SK_PassByIndirectRestore);
3715   s.Type = type;
3716   Steps.push_back(s);
3717 }
3718 
3719 void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
3720   Step S;
3721   S.Kind = SK_ProduceObjCObject;
3722   S.Type = T;
3723   Steps.push_back(S);
3724 }
3725 
3726 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
3727   Step S;
3728   S.Kind = SK_StdInitializerList;
3729   S.Type = T;
3730   Steps.push_back(S);
3731 }
3732 
3733 void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
3734   Step S;
3735   S.Kind = SK_OCLSamplerInit;
3736   S.Type = T;
3737   Steps.push_back(S);
3738 }
3739 
3740 void InitializationSequence::AddOCLZeroOpaqueTypeStep(QualType T) {
3741   Step S;
3742   S.Kind = SK_OCLZeroOpaqueType;
3743   S.Type = T;
3744   Steps.push_back(S);
3745 }
3746 
3747 void InitializationSequence::RewrapReferenceInitList(QualType T,
3748                                                      InitListExpr *Syntactic) {
3749   assert(Syntactic->getNumInits() == 1 &&
3750          "Can only rewrap trivial init lists.");
3751   Step S;
3752   S.Kind = SK_UnwrapInitList;
3753   S.Type = Syntactic->getInit(0)->getType();
3754   Steps.insert(Steps.begin(), S);
3755 
3756   S.Kind = SK_RewrapInitList;
3757   S.Type = T;
3758   S.WrappingSyntacticList = Syntactic;
3759   Steps.push_back(S);
3760 }
3761 
3762 void InitializationSequence::SetOverloadFailure(FailureKind Failure,
3763                                                 OverloadingResult Result) {
3764   setSequenceKind(FailedSequence);
3765   this->Failure = Failure;
3766   this->FailedOverloadResult = Result;
3767 }
3768 
3769 //===----------------------------------------------------------------------===//
3770 // Attempt initialization
3771 //===----------------------------------------------------------------------===//
3772 
3773 /// Tries to add a zero initializer. Returns true if that worked.
3774 static bool
3775 maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence,
3776                                    const InitializedEntity &Entity) {
3777   if (Entity.getKind() != InitializedEntity::EK_Variable)
3778     return false;
3779 
3780   VarDecl *VD = cast<VarDecl>(Entity.getDecl());
3781   if (VD->getInit() || VD->getEndLoc().isMacroID())
3782     return false;
3783 
3784   QualType VariableTy = VD->getType().getCanonicalType();
3785   SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc());
3786   std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
3787   if (!Init.empty()) {
3788     Sequence.AddZeroInitializationStep(Entity.getType());
3789     Sequence.SetZeroInitializationFixit(Init, Loc);
3790     return true;
3791   }
3792   return false;
3793 }
3794 
3795 static void MaybeProduceObjCObject(Sema &S,
3796                                    InitializationSequence &Sequence,
3797                                    const InitializedEntity &Entity) {
3798   if (!S.getLangOpts().ObjCAutoRefCount) return;
3799 
3800   /// When initializing a parameter, produce the value if it's marked
3801   /// __attribute__((ns_consumed)).
3802   if (Entity.isParameterKind()) {
3803     if (!Entity.isParameterConsumed())
3804       return;
3805 
3806     assert(Entity.getType()->isObjCRetainableType() &&
3807            "consuming an object of unretainable type?");
3808     Sequence.AddProduceObjCObjectStep(Entity.getType());
3809 
3810   /// When initializing a return value, if the return type is a
3811   /// retainable type, then returns need to immediately retain the
3812   /// object.  If an autorelease is required, it will be done at the
3813   /// last instant.
3814   } else if (Entity.getKind() == InitializedEntity::EK_Result ||
3815              Entity.getKind() == InitializedEntity::EK_StmtExprResult) {
3816     if (!Entity.getType()->isObjCRetainableType())
3817       return;
3818 
3819     Sequence.AddProduceObjCObjectStep(Entity.getType());
3820   }
3821 }
3822 
3823 static void TryListInitialization(Sema &S,
3824                                   const InitializedEntity &Entity,
3825                                   const InitializationKind &Kind,
3826                                   InitListExpr *InitList,
3827                                   InitializationSequence &Sequence,
3828                                   bool TreatUnavailableAsInvalid);
3829 
3830 /// When initializing from init list via constructor, handle
3831 /// initialization of an object of type std::initializer_list<T>.
3832 ///
3833 /// \return true if we have handled initialization of an object of type
3834 /// std::initializer_list<T>, false otherwise.
3835 static bool TryInitializerListConstruction(Sema &S,
3836                                            InitListExpr *List,
3837                                            QualType DestType,
3838                                            InitializationSequence &Sequence,
3839                                            bool TreatUnavailableAsInvalid) {
3840   QualType E;
3841   if (!S.isStdInitializerList(DestType, &E))
3842     return false;
3843 
3844   if (!S.isCompleteType(List->getExprLoc(), E)) {
3845     Sequence.setIncompleteTypeFailure(E);
3846     return true;
3847   }
3848 
3849   // Try initializing a temporary array from the init list.
3850   QualType ArrayType = S.Context.getConstantArrayType(
3851       E.withConst(),
3852       llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
3853                   List->getNumInits()),
3854       nullptr, clang::ArrayType::Normal, 0);
3855   InitializedEntity HiddenArray =
3856       InitializedEntity::InitializeTemporary(ArrayType);
3857   InitializationKind Kind = InitializationKind::CreateDirectList(
3858       List->getExprLoc(), List->getBeginLoc(), List->getEndLoc());
3859   TryListInitialization(S, HiddenArray, Kind, List, Sequence,
3860                         TreatUnavailableAsInvalid);
3861   if (Sequence)
3862     Sequence.AddStdInitializerListConstructionStep(DestType);
3863   return true;
3864 }
3865 
3866 /// Determine if the constructor has the signature of a copy or move
3867 /// constructor for the type T of the class in which it was found. That is,
3868 /// determine if its first parameter is of type T or reference to (possibly
3869 /// cv-qualified) T.
3870 static bool hasCopyOrMoveCtorParam(ASTContext &Ctx,
3871                                    const ConstructorInfo &Info) {
3872   if (Info.Constructor->getNumParams() == 0)
3873     return false;
3874 
3875   QualType ParmT =
3876       Info.Constructor->getParamDecl(0)->getType().getNonReferenceType();
3877   QualType ClassT =
3878       Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext()));
3879 
3880   return Ctx.hasSameUnqualifiedType(ParmT, ClassT);
3881 }
3882 
3883 static OverloadingResult
3884 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
3885                            MultiExprArg Args,
3886                            OverloadCandidateSet &CandidateSet,
3887                            QualType DestType,
3888                            DeclContext::lookup_result Ctors,
3889                            OverloadCandidateSet::iterator &Best,
3890                            bool CopyInitializing, bool AllowExplicit,
3891                            bool OnlyListConstructors, bool IsListInit,
3892                            bool SecondStepOfCopyInit = false) {
3893   CandidateSet.clear(OverloadCandidateSet::CSK_InitByConstructor);
3894   CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace());
3895 
3896   for (NamedDecl *D : Ctors) {
3897     auto Info = getConstructorInfo(D);
3898     if (!Info.Constructor || Info.Constructor->isInvalidDecl())
3899       continue;
3900 
3901     if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor))
3902       continue;
3903 
3904     // C++11 [over.best.ics]p4:
3905     //   ... and the constructor or user-defined conversion function is a
3906     //   candidate by
3907     //   - 13.3.1.3, when the argument is the temporary in the second step
3908     //     of a class copy-initialization, or
3909     //   - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here]
3910     //   - the second phase of 13.3.1.7 when the initializer list has exactly
3911     //     one element that is itself an initializer list, and the target is
3912     //     the first parameter of a constructor of class X, and the conversion
3913     //     is to X or reference to (possibly cv-qualified X),
3914     //   user-defined conversion sequences are not considered.
3915     bool SuppressUserConversions =
3916         SecondStepOfCopyInit ||
3917         (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
3918          hasCopyOrMoveCtorParam(S.Context, Info));
3919 
3920     if (Info.ConstructorTmpl)
3921       S.AddTemplateOverloadCandidate(
3922           Info.ConstructorTmpl, Info.FoundDecl,
3923           /*ExplicitArgs*/ nullptr, Args, CandidateSet, SuppressUserConversions,
3924           /*PartialOverloading=*/false, AllowExplicit);
3925     else {
3926       // C++ [over.match.copy]p1:
3927       //   - When initializing a temporary to be bound to the first parameter
3928       //     of a constructor [for type T] that takes a reference to possibly
3929       //     cv-qualified T as its first argument, called with a single
3930       //     argument in the context of direct-initialization, explicit
3931       //     conversion functions are also considered.
3932       // FIXME: What if a constructor template instantiates to such a signature?
3933       bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
3934                                Args.size() == 1 &&
3935                                hasCopyOrMoveCtorParam(S.Context, Info);
3936       S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args,
3937                              CandidateSet, SuppressUserConversions,
3938                              /*PartialOverloading=*/false, AllowExplicit,
3939                              AllowExplicitConv);
3940     }
3941   }
3942 
3943   // FIXME: Work around a bug in C++17 guaranteed copy elision.
3944   //
3945   // When initializing an object of class type T by constructor
3946   // ([over.match.ctor]) or by list-initialization ([over.match.list])
3947   // from a single expression of class type U, conversion functions of
3948   // U that convert to the non-reference type cv T are candidates.
3949   // Explicit conversion functions are only candidates during
3950   // direct-initialization.
3951   //
3952   // Note: SecondStepOfCopyInit is only ever true in this case when
3953   // evaluating whether to produce a C++98 compatibility warning.
3954   if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 &&
3955       !SecondStepOfCopyInit) {
3956     Expr *Initializer = Args[0];
3957     auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl();
3958     if (SourceRD && S.isCompleteType(DeclLoc, Initializer->getType())) {
3959       const auto &Conversions = SourceRD->getVisibleConversionFunctions();
3960       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
3961         NamedDecl *D = *I;
3962         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3963         D = D->getUnderlyingDecl();
3964 
3965         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3966         CXXConversionDecl *Conv;
3967         if (ConvTemplate)
3968           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3969         else
3970           Conv = cast<CXXConversionDecl>(D);
3971 
3972         if (ConvTemplate)
3973           S.AddTemplateConversionCandidate(
3974               ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
3975               CandidateSet, AllowExplicit, AllowExplicit,
3976               /*AllowResultConversion*/ false);
3977         else
3978           S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer,
3979                                    DestType, CandidateSet, AllowExplicit,
3980                                    AllowExplicit,
3981                                    /*AllowResultConversion*/ false);
3982       }
3983     }
3984   }
3985 
3986   // Perform overload resolution and return the result.
3987   return CandidateSet.BestViableFunction(S, DeclLoc, Best);
3988 }
3989 
3990 /// Attempt initialization by constructor (C++ [dcl.init]), which
3991 /// enumerates the constructors of the initialized entity and performs overload
3992 /// resolution to select the best.
3993 /// \param DestType       The destination class type.
3994 /// \param DestArrayType  The destination type, which is either DestType or
3995 ///                       a (possibly multidimensional) array of DestType.
3996 /// \param IsListInit     Is this list-initialization?
3997 /// \param IsInitListCopy Is this non-list-initialization resulting from a
3998 ///                       list-initialization from {x} where x is the same
3999 ///                       type as the entity?
4000 static void TryConstructorInitialization(Sema &S,
4001                                          const InitializedEntity &Entity,
4002                                          const InitializationKind &Kind,
4003                                          MultiExprArg Args, QualType DestType,
4004                                          QualType DestArrayType,
4005                                          InitializationSequence &Sequence,
4006                                          bool IsListInit = false,
4007                                          bool IsInitListCopy = false) {
4008   assert(((!IsListInit && !IsInitListCopy) ||
4009           (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&
4010          "IsListInit/IsInitListCopy must come with a single initializer list "
4011          "argument.");
4012   InitListExpr *ILE =
4013       (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr;
4014   MultiExprArg UnwrappedArgs =
4015       ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args;
4016 
4017   // The type we're constructing needs to be complete.
4018   if (!S.isCompleteType(Kind.getLocation(), DestType)) {
4019     Sequence.setIncompleteTypeFailure(DestType);
4020     return;
4021   }
4022 
4023   // C++17 [dcl.init]p17:
4024   //     - If the initializer expression is a prvalue and the cv-unqualified
4025   //       version of the source type is the same class as the class of the
4026   //       destination, the initializer expression is used to initialize the
4027   //       destination object.
4028   // Per DR (no number yet), this does not apply when initializing a base
4029   // class or delegating to another constructor from a mem-initializer.
4030   // ObjC++: Lambda captured by the block in the lambda to block conversion
4031   // should avoid copy elision.
4032   if (S.getLangOpts().CPlusPlus17 &&
4033       Entity.getKind() != InitializedEntity::EK_Base &&
4034       Entity.getKind() != InitializedEntity::EK_Delegating &&
4035       Entity.getKind() !=
4036           InitializedEntity::EK_LambdaToBlockConversionBlockElement &&
4037       UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isRValue() &&
4038       S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) {
4039     // Convert qualifications if necessary.
4040     Sequence.AddQualificationConversionStep(DestType, VK_RValue);
4041     if (ILE)
4042       Sequence.RewrapReferenceInitList(DestType, ILE);
4043     return;
4044   }
4045 
4046   const RecordType *DestRecordType = DestType->getAs<RecordType>();
4047   assert(DestRecordType && "Constructor initialization requires record type");
4048   CXXRecordDecl *DestRecordDecl
4049     = cast<CXXRecordDecl>(DestRecordType->getDecl());
4050 
4051   // Build the candidate set directly in the initialization sequence
4052   // structure, so that it will persist if we fail.
4053   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4054 
4055   // Determine whether we are allowed to call explicit constructors or
4056   // explicit conversion operators.
4057   bool AllowExplicit = Kind.AllowExplicit() || IsListInit;
4058   bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
4059 
4060   //   - Otherwise, if T is a class type, constructors are considered. The
4061   //     applicable constructors are enumerated, and the best one is chosen
4062   //     through overload resolution.
4063   DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl);
4064 
4065   OverloadingResult Result = OR_No_Viable_Function;
4066   OverloadCandidateSet::iterator Best;
4067   bool AsInitializerList = false;
4068 
4069   // C++11 [over.match.list]p1, per DR1467:
4070   //   When objects of non-aggregate type T are list-initialized, such that
4071   //   8.5.4 [dcl.init.list] specifies that overload resolution is performed
4072   //   according to the rules in this section, overload resolution selects
4073   //   the constructor in two phases:
4074   //
4075   //   - Initially, the candidate functions are the initializer-list
4076   //     constructors of the class T and the argument list consists of the
4077   //     initializer list as a single argument.
4078   if (IsListInit) {
4079     AsInitializerList = true;
4080 
4081     // If the initializer list has no elements and T has a default constructor,
4082     // the first phase is omitted.
4083     if (!(UnwrappedArgs.empty() && S.LookupDefaultConstructor(DestRecordDecl)))
4084       Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
4085                                           CandidateSet, DestType, Ctors, Best,
4086                                           CopyInitialization, AllowExplicit,
4087                                           /*OnlyListConstructors=*/true,
4088                                           IsListInit);
4089   }
4090 
4091   // C++11 [over.match.list]p1:
4092   //   - If no viable initializer-list constructor is found, overload resolution
4093   //     is performed again, where the candidate functions are all the
4094   //     constructors of the class T and the argument list consists of the
4095   //     elements of the initializer list.
4096   if (Result == OR_No_Viable_Function) {
4097     AsInitializerList = false;
4098     Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs,
4099                                         CandidateSet, DestType, Ctors, Best,
4100                                         CopyInitialization, AllowExplicit,
4101                                         /*OnlyListConstructors=*/false,
4102                                         IsListInit);
4103   }
4104   if (Result) {
4105     Sequence.SetOverloadFailure(IsListInit ?
4106                       InitializationSequence::FK_ListConstructorOverloadFailed :
4107                       InitializationSequence::FK_ConstructorOverloadFailed,
4108                                 Result);
4109     return;
4110   }
4111 
4112   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4113 
4114   // In C++17, ResolveConstructorOverload can select a conversion function
4115   // instead of a constructor.
4116   if (auto *CD = dyn_cast<CXXConversionDecl>(Best->Function)) {
4117     // Add the user-defined conversion step that calls the conversion function.
4118     QualType ConvType = CD->getConversionType();
4119     assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) &&
4120            "should not have selected this conversion function");
4121     Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType,
4122                                    HadMultipleCandidates);
4123     if (!S.Context.hasSameType(ConvType, DestType))
4124       Sequence.AddQualificationConversionStep(DestType, VK_RValue);
4125     if (IsListInit)
4126       Sequence.RewrapReferenceInitList(Entity.getType(), ILE);
4127     return;
4128   }
4129 
4130   // C++11 [dcl.init]p6:
4131   //   If a program calls for the default initialization of an object
4132   //   of a const-qualified type T, T shall be a class type with a
4133   //   user-provided default constructor.
4134   // C++ core issue 253 proposal:
4135   //   If the implicit default constructor initializes all subobjects, no
4136   //   initializer should be required.
4137   // The 253 proposal is for example needed to process libstdc++ headers in 5.x.
4138   CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
4139   if (Kind.getKind() == InitializationKind::IK_Default &&
4140       Entity.getType().isConstQualified()) {
4141     if (!CtorDecl->getParent()->allowConstDefaultInit()) {
4142       if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
4143         Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
4144       return;
4145     }
4146   }
4147 
4148   // C++11 [over.match.list]p1:
4149   //   In copy-list-initialization, if an explicit constructor is chosen, the
4150   //   initializer is ill-formed.
4151   if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
4152     Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
4153     return;
4154   }
4155 
4156   // Add the constructor initialization step. Any cv-qualification conversion is
4157   // subsumed by the initialization.
4158   Sequence.AddConstructorInitializationStep(
4159       Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates,
4160       IsListInit | IsInitListCopy, AsInitializerList);
4161 }
4162 
4163 static bool
4164 ResolveOverloadedFunctionForReferenceBinding(Sema &S,
4165                                              Expr *Initializer,
4166                                              QualType &SourceType,
4167                                              QualType &UnqualifiedSourceType,
4168                                              QualType UnqualifiedTargetType,
4169                                              InitializationSequence &Sequence) {
4170   if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
4171         S.Context.OverloadTy) {
4172     DeclAccessPair Found;
4173     bool HadMultipleCandidates = false;
4174     if (FunctionDecl *Fn
4175         = S.ResolveAddressOfOverloadedFunction(Initializer,
4176                                                UnqualifiedTargetType,
4177                                                false, Found,
4178                                                &HadMultipleCandidates)) {
4179       Sequence.AddAddressOverloadResolutionStep(Fn, Found,
4180                                                 HadMultipleCandidates);
4181       SourceType = Fn->getType();
4182       UnqualifiedSourceType = SourceType.getUnqualifiedType();
4183     } else if (!UnqualifiedTargetType->isRecordType()) {
4184       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4185       return true;
4186     }
4187   }
4188   return false;
4189 }
4190 
4191 static void TryReferenceInitializationCore(Sema &S,
4192                                            const InitializedEntity &Entity,
4193                                            const InitializationKind &Kind,
4194                                            Expr *Initializer,
4195                                            QualType cv1T1, QualType T1,
4196                                            Qualifiers T1Quals,
4197                                            QualType cv2T2, QualType T2,
4198                                            Qualifiers T2Quals,
4199                                            InitializationSequence &Sequence);
4200 
4201 static void TryValueInitialization(Sema &S,
4202                                    const InitializedEntity &Entity,
4203                                    const InitializationKind &Kind,
4204                                    InitializationSequence &Sequence,
4205                                    InitListExpr *InitList = nullptr);
4206 
4207 /// Attempt list initialization of a reference.
4208 static void TryReferenceListInitialization(Sema &S,
4209                                            const InitializedEntity &Entity,
4210                                            const InitializationKind &Kind,
4211                                            InitListExpr *InitList,
4212                                            InitializationSequence &Sequence,
4213                                            bool TreatUnavailableAsInvalid) {
4214   // First, catch C++03 where this isn't possible.
4215   if (!S.getLangOpts().CPlusPlus11) {
4216     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
4217     return;
4218   }
4219   // Can't reference initialize a compound literal.
4220   if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) {
4221     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
4222     return;
4223   }
4224 
4225   QualType DestType = Entity.getType();
4226   QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
4227   Qualifiers T1Quals;
4228   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4229 
4230   // Reference initialization via an initializer list works thus:
4231   // If the initializer list consists of a single element that is
4232   // reference-related to the referenced type, bind directly to that element
4233   // (possibly creating temporaries).
4234   // Otherwise, initialize a temporary with the initializer list and
4235   // bind to that.
4236   if (InitList->getNumInits() == 1) {
4237     Expr *Initializer = InitList->getInit(0);
4238     QualType cv2T2 = Initializer->getType();
4239     Qualifiers T2Quals;
4240     QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4241 
4242     // If this fails, creating a temporary wouldn't work either.
4243     if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4244                                                      T1, Sequence))
4245       return;
4246 
4247     SourceLocation DeclLoc = Initializer->getBeginLoc();
4248     Sema::ReferenceCompareResult RefRelationship
4249       = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2);
4250     if (RefRelationship >= Sema::Ref_Related) {
4251       // Try to bind the reference here.
4252       TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4253                                      T1Quals, cv2T2, T2, T2Quals, Sequence);
4254       if (Sequence)
4255         Sequence.RewrapReferenceInitList(cv1T1, InitList);
4256       return;
4257     }
4258 
4259     // Update the initializer if we've resolved an overloaded function.
4260     if (Sequence.step_begin() != Sequence.step_end())
4261       Sequence.RewrapReferenceInitList(cv1T1, InitList);
4262   }
4263 
4264   // Not reference-related. Create a temporary and bind to that.
4265   InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
4266 
4267   TryListInitialization(S, TempEntity, Kind, InitList, Sequence,
4268                         TreatUnavailableAsInvalid);
4269   if (Sequence) {
4270     if (DestType->isRValueReferenceType() ||
4271         (T1Quals.hasConst() && !T1Quals.hasVolatile()))
4272       Sequence.AddReferenceBindingStep(cv1T1, /*BindingTemporary=*/true);
4273     else
4274       Sequence.SetFailed(
4275           InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
4276   }
4277 }
4278 
4279 /// Attempt list initialization (C++0x [dcl.init.list])
4280 static void TryListInitialization(Sema &S,
4281                                   const InitializedEntity &Entity,
4282                                   const InitializationKind &Kind,
4283                                   InitListExpr *InitList,
4284                                   InitializationSequence &Sequence,
4285                                   bool TreatUnavailableAsInvalid) {
4286   QualType DestType = Entity.getType();
4287 
4288   // C++ doesn't allow scalar initialization with more than one argument.
4289   // But C99 complex numbers are scalars and it makes sense there.
4290   if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
4291       !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
4292     Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
4293     return;
4294   }
4295   if (DestType->isReferenceType()) {
4296     TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence,
4297                                    TreatUnavailableAsInvalid);
4298     return;
4299   }
4300 
4301   if (DestType->isRecordType() &&
4302       !S.isCompleteType(InitList->getBeginLoc(), DestType)) {
4303     Sequence.setIncompleteTypeFailure(DestType);
4304     return;
4305   }
4306 
4307   // C++11 [dcl.init.list]p3, per DR1467:
4308   // - If T is a class type and the initializer list has a single element of
4309   //   type cv U, where U is T or a class derived from T, the object is
4310   //   initialized from that element (by copy-initialization for
4311   //   copy-list-initialization, or by direct-initialization for
4312   //   direct-list-initialization).
4313   // - Otherwise, if T is a character array and the initializer list has a
4314   //   single element that is an appropriately-typed string literal
4315   //   (8.5.2 [dcl.init.string]), initialization is performed as described
4316   //   in that section.
4317   // - Otherwise, if T is an aggregate, [...] (continue below).
4318   if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) {
4319     if (DestType->isRecordType()) {
4320       QualType InitType = InitList->getInit(0)->getType();
4321       if (S.Context.hasSameUnqualifiedType(InitType, DestType) ||
4322           S.IsDerivedFrom(InitList->getBeginLoc(), InitType, DestType)) {
4323         Expr *InitListAsExpr = InitList;
4324         TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4325                                      DestType, Sequence,
4326                                      /*InitListSyntax*/false,
4327                                      /*IsInitListCopy*/true);
4328         return;
4329       }
4330     }
4331     if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) {
4332       Expr *SubInit[1] = {InitList->getInit(0)};
4333       if (!isa<VariableArrayType>(DestAT) &&
4334           IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) {
4335         InitializationKind SubKind =
4336             Kind.getKind() == InitializationKind::IK_DirectList
4337                 ? InitializationKind::CreateDirect(Kind.getLocation(),
4338                                                    InitList->getLBraceLoc(),
4339                                                    InitList->getRBraceLoc())
4340                 : Kind;
4341         Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4342                                 /*TopLevelOfInitList*/ true,
4343                                 TreatUnavailableAsInvalid);
4344 
4345         // TryStringLiteralInitialization() (in InitializeFrom()) will fail if
4346         // the element is not an appropriately-typed string literal, in which
4347         // case we should proceed as in C++11 (below).
4348         if (Sequence) {
4349           Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4350           return;
4351         }
4352       }
4353     }
4354   }
4355 
4356   // C++11 [dcl.init.list]p3:
4357   //   - If T is an aggregate, aggregate initialization is performed.
4358   if ((DestType->isRecordType() && !DestType->isAggregateType()) ||
4359       (S.getLangOpts().CPlusPlus11 &&
4360        S.isStdInitializerList(DestType, nullptr))) {
4361     if (S.getLangOpts().CPlusPlus11) {
4362       //   - Otherwise, if the initializer list has no elements and T is a
4363       //     class type with a default constructor, the object is
4364       //     value-initialized.
4365       if (InitList->getNumInits() == 0) {
4366         CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
4367         if (S.LookupDefaultConstructor(RD)) {
4368           TryValueInitialization(S, Entity, Kind, Sequence, InitList);
4369           return;
4370         }
4371       }
4372 
4373       //   - Otherwise, if T is a specialization of std::initializer_list<E>,
4374       //     an initializer_list object constructed [...]
4375       if (TryInitializerListConstruction(S, InitList, DestType, Sequence,
4376                                          TreatUnavailableAsInvalid))
4377         return;
4378 
4379       //   - Otherwise, if T is a class type, constructors are considered.
4380       Expr *InitListAsExpr = InitList;
4381       TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4382                                    DestType, Sequence, /*InitListSyntax*/true);
4383     } else
4384       Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
4385     return;
4386   }
4387 
4388   if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() &&
4389       InitList->getNumInits() == 1) {
4390     Expr *E = InitList->getInit(0);
4391 
4392     //   - Otherwise, if T is an enumeration with a fixed underlying type,
4393     //     the initializer-list has a single element v, and the initialization
4394     //     is direct-list-initialization, the object is initialized with the
4395     //     value T(v); if a narrowing conversion is required to convert v to
4396     //     the underlying type of T, the program is ill-formed.
4397     auto *ET = DestType->getAs<EnumType>();
4398     if (S.getLangOpts().CPlusPlus17 &&
4399         Kind.getKind() == InitializationKind::IK_DirectList &&
4400         ET && ET->getDecl()->isFixed() &&
4401         !S.Context.hasSameUnqualifiedType(E->getType(), DestType) &&
4402         (E->getType()->isIntegralOrEnumerationType() ||
4403          E->getType()->isFloatingType())) {
4404       // There are two ways that T(v) can work when T is an enumeration type.
4405       // If there is either an implicit conversion sequence from v to T or
4406       // a conversion function that can convert from v to T, then we use that.
4407       // Otherwise, if v is of integral, enumeration, or floating-point type,
4408       // it is converted to the enumeration type via its underlying type.
4409       // There is no overlap possible between these two cases (except when the
4410       // source value is already of the destination type), and the first
4411       // case is handled by the general case for single-element lists below.
4412       ImplicitConversionSequence ICS;
4413       ICS.setStandard();
4414       ICS.Standard.setAsIdentityConversion();
4415       if (!E->isRValue())
4416         ICS.Standard.First = ICK_Lvalue_To_Rvalue;
4417       // If E is of a floating-point type, then the conversion is ill-formed
4418       // due to narrowing, but go through the motions in order to produce the
4419       // right diagnostic.
4420       ICS.Standard.Second = E->getType()->isFloatingType()
4421                                 ? ICK_Floating_Integral
4422                                 : ICK_Integral_Conversion;
4423       ICS.Standard.setFromType(E->getType());
4424       ICS.Standard.setToType(0, E->getType());
4425       ICS.Standard.setToType(1, DestType);
4426       ICS.Standard.setToType(2, DestType);
4427       Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2),
4428                                          /*TopLevelOfInitList*/true);
4429       Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4430       return;
4431     }
4432 
4433     //   - Otherwise, if the initializer list has a single element of type E
4434     //     [...references are handled above...], the object or reference is
4435     //     initialized from that element (by copy-initialization for
4436     //     copy-list-initialization, or by direct-initialization for
4437     //     direct-list-initialization); if a narrowing conversion is required
4438     //     to convert the element to T, the program is ill-formed.
4439     //
4440     // Per core-24034, this is direct-initialization if we were performing
4441     // direct-list-initialization and copy-initialization otherwise.
4442     // We can't use InitListChecker for this, because it always performs
4443     // copy-initialization. This only matters if we might use an 'explicit'
4444     // conversion operator, or for the special case conversion of nullptr_t to
4445     // bool, so we only need to handle those cases.
4446     //
4447     // FIXME: Why not do this in all cases?
4448     Expr *Init = InitList->getInit(0);
4449     if (Init->getType()->isRecordType() ||
4450         (Init->getType()->isNullPtrType() && DestType->isBooleanType())) {
4451       InitializationKind SubKind =
4452           Kind.getKind() == InitializationKind::IK_DirectList
4453               ? InitializationKind::CreateDirect(Kind.getLocation(),
4454                                                  InitList->getLBraceLoc(),
4455                                                  InitList->getRBraceLoc())
4456               : Kind;
4457       Expr *SubInit[1] = { Init };
4458       Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4459                               /*TopLevelOfInitList*/true,
4460                               TreatUnavailableAsInvalid);
4461       if (Sequence)
4462         Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4463       return;
4464     }
4465   }
4466 
4467   InitListChecker CheckInitList(S, Entity, InitList,
4468           DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid);
4469   if (CheckInitList.HadError()) {
4470     Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
4471     return;
4472   }
4473 
4474   // Add the list initialization step with the built init list.
4475   Sequence.AddListInitializationStep(DestType);
4476 }
4477 
4478 /// Try a reference initialization that involves calling a conversion
4479 /// function.
4480 static OverloadingResult TryRefInitWithConversionFunction(
4481     Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind,
4482     Expr *Initializer, bool AllowRValues, bool IsLValueRef,
4483     InitializationSequence &Sequence) {
4484   QualType DestType = Entity.getType();
4485   QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
4486   QualType T1 = cv1T1.getUnqualifiedType();
4487   QualType cv2T2 = Initializer->getType();
4488   QualType T2 = cv2T2.getUnqualifiedType();
4489 
4490   assert(!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2) &&
4491          "Must have incompatible references when binding via conversion");
4492 
4493   // Build the candidate set directly in the initialization sequence
4494   // structure, so that it will persist if we fail.
4495   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4496   CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4497 
4498   // Determine whether we are allowed to call explicit conversion operators.
4499   // Note that none of [over.match.copy], [over.match.conv], nor
4500   // [over.match.ref] permit an explicit constructor to be chosen when
4501   // initializing a reference, not even for direct-initialization.
4502   bool AllowExplicitCtors = false;
4503   bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding();
4504 
4505   const RecordType *T1RecordType = nullptr;
4506   if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
4507       S.isCompleteType(Kind.getLocation(), T1)) {
4508     // The type we're converting to is a class type. Enumerate its constructors
4509     // to see if there is a suitable conversion.
4510     CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
4511 
4512     for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) {
4513       auto Info = getConstructorInfo(D);
4514       if (!Info.Constructor)
4515         continue;
4516 
4517       if (!Info.Constructor->isInvalidDecl() &&
4518           Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) {
4519         if (Info.ConstructorTmpl)
4520           S.AddTemplateOverloadCandidate(
4521               Info.ConstructorTmpl, Info.FoundDecl,
4522               /*ExplicitArgs*/ nullptr, Initializer, CandidateSet,
4523               /*SuppressUserConversions=*/true,
4524               /*PartialOverloading*/ false, AllowExplicitCtors);
4525         else
4526           S.AddOverloadCandidate(
4527               Info.Constructor, Info.FoundDecl, Initializer, CandidateSet,
4528               /*SuppressUserConversions=*/true,
4529               /*PartialOverloading*/ false, AllowExplicitCtors);
4530       }
4531     }
4532   }
4533   if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
4534     return OR_No_Viable_Function;
4535 
4536   const RecordType *T2RecordType = nullptr;
4537   if ((T2RecordType = T2->getAs<RecordType>()) &&
4538       S.isCompleteType(Kind.getLocation(), T2)) {
4539     // The type we're converting from is a class type, enumerate its conversion
4540     // functions.
4541     CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
4542 
4543     const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4544     for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4545       NamedDecl *D = *I;
4546       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4547       if (isa<UsingShadowDecl>(D))
4548         D = cast<UsingShadowDecl>(D)->getTargetDecl();
4549 
4550       FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4551       CXXConversionDecl *Conv;
4552       if (ConvTemplate)
4553         Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4554       else
4555         Conv = cast<CXXConversionDecl>(D);
4556 
4557       // If the conversion function doesn't return a reference type,
4558       // it can't be considered for this conversion unless we're allowed to
4559       // consider rvalues.
4560       // FIXME: Do we need to make sure that we only consider conversion
4561       // candidates with reference-compatible results? That might be needed to
4562       // break recursion.
4563       if ((AllowRValues ||
4564            Conv->getConversionType()->isLValueReferenceType())) {
4565         if (ConvTemplate)
4566           S.AddTemplateConversionCandidate(
4567               ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
4568               CandidateSet,
4569               /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs);
4570         else
4571           S.AddConversionCandidate(
4572               Conv, I.getPair(), ActingDC, Initializer, DestType, CandidateSet,
4573               /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs);
4574       }
4575     }
4576   }
4577   if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
4578     return OR_No_Viable_Function;
4579 
4580   SourceLocation DeclLoc = Initializer->getBeginLoc();
4581 
4582   // Perform overload resolution. If it fails, return the failed result.
4583   OverloadCandidateSet::iterator Best;
4584   if (OverloadingResult Result
4585         = CandidateSet.BestViableFunction(S, DeclLoc, Best))
4586     return Result;
4587 
4588   FunctionDecl *Function = Best->Function;
4589   // This is the overload that will be used for this initialization step if we
4590   // use this initialization. Mark it as referenced.
4591   Function->setReferenced();
4592 
4593   // Compute the returned type and value kind of the conversion.
4594   QualType cv3T3;
4595   if (isa<CXXConversionDecl>(Function))
4596     cv3T3 = Function->getReturnType();
4597   else
4598     cv3T3 = T1;
4599 
4600   ExprValueKind VK = VK_RValue;
4601   if (cv3T3->isLValueReferenceType())
4602     VK = VK_LValue;
4603   else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>())
4604     VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
4605   cv3T3 = cv3T3.getNonLValueExprType(S.Context);
4606 
4607   // Add the user-defined conversion step.
4608   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4609   Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3,
4610                                  HadMultipleCandidates);
4611 
4612   // Determine whether we'll need to perform derived-to-base adjustments or
4613   // other conversions.
4614   Sema::ReferenceConversions RefConv;
4615   Sema::ReferenceCompareResult NewRefRelationship =
4616       S.CompareReferenceRelationship(DeclLoc, T1, cv3T3, &RefConv);
4617 
4618   // Add the final conversion sequence, if necessary.
4619   if (NewRefRelationship == Sema::Ref_Incompatible) {
4620     assert(!isa<CXXConstructorDecl>(Function) &&
4621            "should not have conversion after constructor");
4622 
4623     ImplicitConversionSequence ICS;
4624     ICS.setStandard();
4625     ICS.Standard = Best->FinalConversion;
4626     Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2));
4627 
4628     // Every implicit conversion results in a prvalue, except for a glvalue
4629     // derived-to-base conversion, which we handle below.
4630     cv3T3 = ICS.Standard.getToType(2);
4631     VK = VK_RValue;
4632   }
4633 
4634   //   If the converted initializer is a prvalue, its type T4 is adjusted to
4635   //   type "cv1 T4" and the temporary materialization conversion is applied.
4636   //
4637   // We adjust the cv-qualifications to match the reference regardless of
4638   // whether we have a prvalue so that the AST records the change. In this
4639   // case, T4 is "cv3 T3".
4640   QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers());
4641   if (cv1T4.getQualifiers() != cv3T3.getQualifiers())
4642     Sequence.AddQualificationConversionStep(cv1T4, VK);
4643   Sequence.AddReferenceBindingStep(cv1T4, VK == VK_RValue);
4644   VK = IsLValueRef ? VK_LValue : VK_XValue;
4645 
4646   if (RefConv & Sema::ReferenceConversions::DerivedToBase)
4647     Sequence.AddDerivedToBaseCastStep(cv1T1, VK);
4648   else if (RefConv & Sema::ReferenceConversions::ObjC)
4649     Sequence.AddObjCObjectConversionStep(cv1T1);
4650   else if (RefConv & Sema::ReferenceConversions::Function)
4651     Sequence.AddQualificationConversionStep(cv1T1, VK);
4652   else if (RefConv & Sema::ReferenceConversions::Qualification) {
4653     if (!S.Context.hasSameType(cv1T4, cv1T1))
4654       Sequence.AddQualificationConversionStep(cv1T1, VK);
4655   }
4656 
4657   return OR_Success;
4658 }
4659 
4660 static void CheckCXX98CompatAccessibleCopy(Sema &S,
4661                                            const InitializedEntity &Entity,
4662                                            Expr *CurInitExpr);
4663 
4664 /// Attempt reference initialization (C++0x [dcl.init.ref])
4665 static void TryReferenceInitialization(Sema &S,
4666                                        const InitializedEntity &Entity,
4667                                        const InitializationKind &Kind,
4668                                        Expr *Initializer,
4669                                        InitializationSequence &Sequence) {
4670   QualType DestType = Entity.getType();
4671   QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
4672   Qualifiers T1Quals;
4673   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4674   QualType cv2T2 = Initializer->getType();
4675   Qualifiers T2Quals;
4676   QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4677 
4678   // If the initializer is the address of an overloaded function, try
4679   // to resolve the overloaded function. If all goes well, T2 is the
4680   // type of the resulting function.
4681   if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4682                                                    T1, Sequence))
4683     return;
4684 
4685   // Delegate everything else to a subfunction.
4686   TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4687                                  T1Quals, cv2T2, T2, T2Quals, Sequence);
4688 }
4689 
4690 /// Determine whether an expression is a non-referenceable glvalue (one to
4691 /// which a reference can never bind). Attempting to bind a reference to
4692 /// such a glvalue will always create a temporary.
4693 static bool isNonReferenceableGLValue(Expr *E) {
4694   return E->refersToBitField() || E->refersToVectorElement() ||
4695          E->refersToMatrixElement();
4696 }
4697 
4698 /// Reference initialization without resolving overloaded functions.
4699 ///
4700 /// We also can get here in C if we call a builtin which is declared as
4701 /// a function with a parameter of reference type (such as __builtin_va_end()).
4702 static void TryReferenceInitializationCore(Sema &S,
4703                                            const InitializedEntity &Entity,
4704                                            const InitializationKind &Kind,
4705                                            Expr *Initializer,
4706                                            QualType cv1T1, QualType T1,
4707                                            Qualifiers T1Quals,
4708                                            QualType cv2T2, QualType T2,
4709                                            Qualifiers T2Quals,
4710                                            InitializationSequence &Sequence) {
4711   QualType DestType = Entity.getType();
4712   SourceLocation DeclLoc = Initializer->getBeginLoc();
4713 
4714   // Compute some basic properties of the types and the initializer.
4715   bool isLValueRef = DestType->isLValueReferenceType();
4716   bool isRValueRef = !isLValueRef;
4717   Expr::Classification InitCategory = Initializer->Classify(S.Context);
4718 
4719   Sema::ReferenceConversions RefConv;
4720   Sema::ReferenceCompareResult RefRelationship =
4721       S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, &RefConv);
4722 
4723   // C++0x [dcl.init.ref]p5:
4724   //   A reference to type "cv1 T1" is initialized by an expression of type
4725   //   "cv2 T2" as follows:
4726   //
4727   //     - If the reference is an lvalue reference and the initializer
4728   //       expression
4729   // Note the analogous bullet points for rvalue refs to functions. Because
4730   // there are no function rvalues in C++, rvalue refs to functions are treated
4731   // like lvalue refs.
4732   OverloadingResult ConvOvlResult = OR_Success;
4733   bool T1Function = T1->isFunctionType();
4734   if (isLValueRef || T1Function) {
4735     if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) &&
4736         (RefRelationship == Sema::Ref_Compatible ||
4737          (Kind.isCStyleOrFunctionalCast() &&
4738           RefRelationship == Sema::Ref_Related))) {
4739       //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
4740       //     reference-compatible with "cv2 T2," or
4741       if (RefConv & (Sema::ReferenceConversions::DerivedToBase |
4742                      Sema::ReferenceConversions::ObjC)) {
4743         // If we're converting the pointee, add any qualifiers first;
4744         // these qualifiers must all be top-level, so just convert to "cv1 T2".
4745         if (RefConv & (Sema::ReferenceConversions::Qualification))
4746           Sequence.AddQualificationConversionStep(
4747               S.Context.getQualifiedType(T2, T1Quals),
4748               Initializer->getValueKind());
4749         if (RefConv & Sema::ReferenceConversions::DerivedToBase)
4750           Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue);
4751         else
4752           Sequence.AddObjCObjectConversionStep(cv1T1);
4753       } else if (RefConv & (Sema::ReferenceConversions::Qualification |
4754                             Sema::ReferenceConversions::Function)) {
4755         // Perform a (possibly multi-level) qualification conversion.
4756         // FIXME: Should we use a different step kind for function conversions?
4757         Sequence.AddQualificationConversionStep(cv1T1,
4758                                                 Initializer->getValueKind());
4759       }
4760 
4761       // We only create a temporary here when binding a reference to a
4762       // bit-field or vector element. Those cases are't supposed to be
4763       // handled by this bullet, but the outcome is the same either way.
4764       Sequence.AddReferenceBindingStep(cv1T1, false);
4765       return;
4766     }
4767 
4768     //     - has a class type (i.e., T2 is a class type), where T1 is not
4769     //       reference-related to T2, and can be implicitly converted to an
4770     //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
4771     //       with "cv3 T3" (this conversion is selected by enumerating the
4772     //       applicable conversion functions (13.3.1.6) and choosing the best
4773     //       one through overload resolution (13.3)),
4774     // If we have an rvalue ref to function type here, the rhs must be
4775     // an rvalue. DR1287 removed the "implicitly" here.
4776     if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
4777         (isLValueRef || InitCategory.isRValue())) {
4778       if (S.getLangOpts().CPlusPlus) {
4779         // Try conversion functions only for C++.
4780         ConvOvlResult = TryRefInitWithConversionFunction(
4781             S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef,
4782             /*IsLValueRef*/ isLValueRef, Sequence);
4783         if (ConvOvlResult == OR_Success)
4784           return;
4785         if (ConvOvlResult != OR_No_Viable_Function)
4786           Sequence.SetOverloadFailure(
4787               InitializationSequence::FK_ReferenceInitOverloadFailed,
4788               ConvOvlResult);
4789       } else {
4790         ConvOvlResult = OR_No_Viable_Function;
4791       }
4792     }
4793   }
4794 
4795   //     - Otherwise, the reference shall be an lvalue reference to a
4796   //       non-volatile const type (i.e., cv1 shall be const), or the reference
4797   //       shall be an rvalue reference.
4798   //       For address spaces, we interpret this to mean that an addr space
4799   //       of a reference "cv1 T1" is a superset of addr space of "cv2 T2".
4800   if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile() &&
4801                        T1Quals.isAddressSpaceSupersetOf(T2Quals))) {
4802     if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4803       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4804     else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4805       Sequence.SetOverloadFailure(
4806                         InitializationSequence::FK_ReferenceInitOverloadFailed,
4807                                   ConvOvlResult);
4808     else if (!InitCategory.isLValue())
4809       Sequence.SetFailed(
4810           T1Quals.isAddressSpaceSupersetOf(T2Quals)
4811               ? InitializationSequence::
4812                     FK_NonConstLValueReferenceBindingToTemporary
4813               : InitializationSequence::FK_ReferenceInitDropsQualifiers);
4814     else {
4815       InitializationSequence::FailureKind FK;
4816       switch (RefRelationship) {
4817       case Sema::Ref_Compatible:
4818         if (Initializer->refersToBitField())
4819           FK = InitializationSequence::
4820               FK_NonConstLValueReferenceBindingToBitfield;
4821         else if (Initializer->refersToVectorElement())
4822           FK = InitializationSequence::
4823               FK_NonConstLValueReferenceBindingToVectorElement;
4824         else if (Initializer->refersToMatrixElement())
4825           FK = InitializationSequence::
4826               FK_NonConstLValueReferenceBindingToMatrixElement;
4827         else
4828           llvm_unreachable("unexpected kind of compatible initializer");
4829         break;
4830       case Sema::Ref_Related:
4831         FK = InitializationSequence::FK_ReferenceInitDropsQualifiers;
4832         break;
4833       case Sema::Ref_Incompatible:
4834         FK = InitializationSequence::
4835             FK_NonConstLValueReferenceBindingToUnrelated;
4836         break;
4837       }
4838       Sequence.SetFailed(FK);
4839     }
4840     return;
4841   }
4842 
4843   //    - If the initializer expression
4844   //      - is an
4845   // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or
4846   // [1z]   rvalue (but not a bit-field) or
4847   //        function lvalue and "cv1 T1" is reference-compatible with "cv2 T2"
4848   //
4849   // Note: functions are handled above and below rather than here...
4850   if (!T1Function &&
4851       (RefRelationship == Sema::Ref_Compatible ||
4852        (Kind.isCStyleOrFunctionalCast() &&
4853         RefRelationship == Sema::Ref_Related)) &&
4854       ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) ||
4855        (InitCategory.isPRValue() &&
4856         (S.getLangOpts().CPlusPlus17 || T2->isRecordType() ||
4857          T2->isArrayType())))) {
4858     ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_RValue;
4859     if (InitCategory.isPRValue() && T2->isRecordType()) {
4860       // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
4861       // compiler the freedom to perform a copy here or bind to the
4862       // object, while C++0x requires that we bind directly to the
4863       // object. Hence, we always bind to the object without making an
4864       // extra copy. However, in C++03 requires that we check for the
4865       // presence of a suitable copy constructor:
4866       //
4867       //   The constructor that would be used to make the copy shall
4868       //   be callable whether or not the copy is actually done.
4869       if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
4870         Sequence.AddExtraneousCopyToTemporary(cv2T2);
4871       else if (S.getLangOpts().CPlusPlus11)
4872         CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
4873     }
4874 
4875     // C++1z [dcl.init.ref]/5.2.1.2:
4876     //   If the converted initializer is a prvalue, its type T4 is adjusted
4877     //   to type "cv1 T4" and the temporary materialization conversion is
4878     //   applied.
4879     // Postpone address space conversions to after the temporary materialization
4880     // conversion to allow creating temporaries in the alloca address space.
4881     auto T1QualsIgnoreAS = T1Quals;
4882     auto T2QualsIgnoreAS = T2Quals;
4883     if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) {
4884       T1QualsIgnoreAS.removeAddressSpace();
4885       T2QualsIgnoreAS.removeAddressSpace();
4886     }
4887     QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1QualsIgnoreAS);
4888     if (T1QualsIgnoreAS != T2QualsIgnoreAS)
4889       Sequence.AddQualificationConversionStep(cv1T4, ValueKind);
4890     Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_RValue);
4891     ValueKind = isLValueRef ? VK_LValue : VK_XValue;
4892     // Add addr space conversion if required.
4893     if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) {
4894       auto T4Quals = cv1T4.getQualifiers();
4895       T4Quals.addAddressSpace(T1Quals.getAddressSpace());
4896       QualType cv1T4WithAS = S.Context.getQualifiedType(T2, T4Quals);
4897       Sequence.AddQualificationConversionStep(cv1T4WithAS, ValueKind);
4898       cv1T4 = cv1T4WithAS;
4899     }
4900 
4901     //   In any case, the reference is bound to the resulting glvalue (or to
4902     //   an appropriate base class subobject).
4903     if (RefConv & Sema::ReferenceConversions::DerivedToBase)
4904       Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind);
4905     else if (RefConv & Sema::ReferenceConversions::ObjC)
4906       Sequence.AddObjCObjectConversionStep(cv1T1);
4907     else if (RefConv & Sema::ReferenceConversions::Qualification) {
4908       if (!S.Context.hasSameType(cv1T4, cv1T1))
4909         Sequence.AddQualificationConversionStep(cv1T1, ValueKind);
4910     }
4911     return;
4912   }
4913 
4914   //       - has a class type (i.e., T2 is a class type), where T1 is not
4915   //         reference-related to T2, and can be implicitly converted to an
4916   //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
4917   //         where "cv1 T1" is reference-compatible with "cv3 T3",
4918   //
4919   // DR1287 removes the "implicitly" here.
4920   if (T2->isRecordType()) {
4921     if (RefRelationship == Sema::Ref_Incompatible) {
4922       ConvOvlResult = TryRefInitWithConversionFunction(
4923           S, Entity, Kind, Initializer, /*AllowRValues*/ true,
4924           /*IsLValueRef*/ isLValueRef, Sequence);
4925       if (ConvOvlResult)
4926         Sequence.SetOverloadFailure(
4927             InitializationSequence::FK_ReferenceInitOverloadFailed,
4928             ConvOvlResult);
4929 
4930       return;
4931     }
4932 
4933     if (RefRelationship == Sema::Ref_Compatible &&
4934         isRValueRef && InitCategory.isLValue()) {
4935       Sequence.SetFailed(
4936         InitializationSequence::FK_RValueReferenceBindingToLValue);
4937       return;
4938     }
4939 
4940     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4941     return;
4942   }
4943 
4944   //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
4945   //        from the initializer expression using the rules for a non-reference
4946   //        copy-initialization (8.5). The reference is then bound to the
4947   //        temporary. [...]
4948 
4949   // Ignore address space of reference type at this point and perform address
4950   // space conversion after the reference binding step.
4951   QualType cv1T1IgnoreAS =
4952       T1Quals.hasAddressSpace()
4953           ? S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace())
4954           : cv1T1;
4955 
4956   InitializedEntity TempEntity =
4957       InitializedEntity::InitializeTemporary(cv1T1IgnoreAS);
4958 
4959   // FIXME: Why do we use an implicit conversion here rather than trying
4960   // copy-initialization?
4961   ImplicitConversionSequence ICS
4962     = S.TryImplicitConversion(Initializer, TempEntity.getType(),
4963                               /*SuppressUserConversions=*/false,
4964                               Sema::AllowedExplicit::None,
4965                               /*FIXME:InOverloadResolution=*/false,
4966                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
4967                               /*AllowObjCWritebackConversion=*/false);
4968 
4969   if (ICS.isBad()) {
4970     // FIXME: Use the conversion function set stored in ICS to turn
4971     // this into an overloading ambiguity diagnostic. However, we need
4972     // to keep that set as an OverloadCandidateSet rather than as some
4973     // other kind of set.
4974     if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4975       Sequence.SetOverloadFailure(
4976                         InitializationSequence::FK_ReferenceInitOverloadFailed,
4977                                   ConvOvlResult);
4978     else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4979       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4980     else
4981       Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
4982     return;
4983   } else {
4984     Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
4985   }
4986 
4987   //        [...] If T1 is reference-related to T2, cv1 must be the
4988   //        same cv-qualification as, or greater cv-qualification
4989   //        than, cv2; otherwise, the program is ill-formed.
4990   unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
4991   unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
4992   if ((RefRelationship == Sema::Ref_Related &&
4993        (T1CVRQuals | T2CVRQuals) != T1CVRQuals) ||
4994       !T1Quals.isAddressSpaceSupersetOf(T2Quals)) {
4995     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4996     return;
4997   }
4998 
4999   //   [...] If T1 is reference-related to T2 and the reference is an rvalue
5000   //   reference, the initializer expression shall not be an lvalue.
5001   if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
5002       InitCategory.isLValue()) {
5003     Sequence.SetFailed(
5004                     InitializationSequence::FK_RValueReferenceBindingToLValue);
5005     return;
5006   }
5007 
5008   Sequence.AddReferenceBindingStep(cv1T1IgnoreAS, /*BindingTemporary=*/true);
5009 
5010   if (T1Quals.hasAddressSpace()) {
5011     if (!Qualifiers::isAddressSpaceSupersetOf(T1Quals.getAddressSpace(),
5012                                               LangAS::Default)) {
5013       Sequence.SetFailed(
5014           InitializationSequence::FK_ReferenceAddrspaceMismatchTemporary);
5015       return;
5016     }
5017     Sequence.AddQualificationConversionStep(cv1T1, isLValueRef ? VK_LValue
5018                                                                : VK_XValue);
5019   }
5020 }
5021 
5022 /// Attempt character array initialization from a string literal
5023 /// (C++ [dcl.init.string], C99 6.7.8).
5024 static void TryStringLiteralInitialization(Sema &S,
5025                                            const InitializedEntity &Entity,
5026                                            const InitializationKind &Kind,
5027                                            Expr *Initializer,
5028                                        InitializationSequence &Sequence) {
5029   Sequence.AddStringInitStep(Entity.getType());
5030 }
5031 
5032 /// Attempt value initialization (C++ [dcl.init]p7).
5033 static void TryValueInitialization(Sema &S,
5034                                    const InitializedEntity &Entity,
5035                                    const InitializationKind &Kind,
5036                                    InitializationSequence &Sequence,
5037                                    InitListExpr *InitList) {
5038   assert((!InitList || InitList->getNumInits() == 0) &&
5039          "Shouldn't use value-init for non-empty init lists");
5040 
5041   // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
5042   //
5043   //   To value-initialize an object of type T means:
5044   QualType T = Entity.getType();
5045 
5046   //     -- if T is an array type, then each element is value-initialized;
5047   T = S.Context.getBaseElementType(T);
5048 
5049   if (const RecordType *RT = T->getAs<RecordType>()) {
5050     if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
5051       bool NeedZeroInitialization = true;
5052       // C++98:
5053       // -- if T is a class type (clause 9) with a user-declared constructor
5054       //    (12.1), then the default constructor for T is called (and the
5055       //    initialization is ill-formed if T has no accessible default
5056       //    constructor);
5057       // C++11:
5058       // -- if T is a class type (clause 9) with either no default constructor
5059       //    (12.1 [class.ctor]) or a default constructor that is user-provided
5060       //    or deleted, then the object is default-initialized;
5061       //
5062       // Note that the C++11 rule is the same as the C++98 rule if there are no
5063       // defaulted or deleted constructors, so we just use it unconditionally.
5064       CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
5065       if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
5066         NeedZeroInitialization = false;
5067 
5068       // -- if T is a (possibly cv-qualified) non-union class type without a
5069       //    user-provided or deleted default constructor, then the object is
5070       //    zero-initialized and, if T has a non-trivial default constructor,
5071       //    default-initialized;
5072       // The 'non-union' here was removed by DR1502. The 'non-trivial default
5073       // constructor' part was removed by DR1507.
5074       if (NeedZeroInitialization)
5075         Sequence.AddZeroInitializationStep(Entity.getType());
5076 
5077       // C++03:
5078       // -- if T is a non-union class type without a user-declared constructor,
5079       //    then every non-static data member and base class component of T is
5080       //    value-initialized;
5081       // [...] A program that calls for [...] value-initialization of an
5082       // entity of reference type is ill-formed.
5083       //
5084       // C++11 doesn't need this handling, because value-initialization does not
5085       // occur recursively there, and the implicit default constructor is
5086       // defined as deleted in the problematic cases.
5087       if (!S.getLangOpts().CPlusPlus11 &&
5088           ClassDecl->hasUninitializedReferenceMember()) {
5089         Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
5090         return;
5091       }
5092 
5093       // If this is list-value-initialization, pass the empty init list on when
5094       // building the constructor call. This affects the semantics of a few
5095       // things (such as whether an explicit default constructor can be called).
5096       Expr *InitListAsExpr = InitList;
5097       MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
5098       bool InitListSyntax = InitList;
5099 
5100       // FIXME: Instead of creating a CXXConstructExpr of array type here,
5101       // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr.
5102       return TryConstructorInitialization(
5103           S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax);
5104     }
5105   }
5106 
5107   Sequence.AddZeroInitializationStep(Entity.getType());
5108 }
5109 
5110 /// Attempt default initialization (C++ [dcl.init]p6).
5111 static void TryDefaultInitialization(Sema &S,
5112                                      const InitializedEntity &Entity,
5113                                      const InitializationKind &Kind,
5114                                      InitializationSequence &Sequence) {
5115   assert(Kind.getKind() == InitializationKind::IK_Default);
5116 
5117   // C++ [dcl.init]p6:
5118   //   To default-initialize an object of type T means:
5119   //     - if T is an array type, each element is default-initialized;
5120   QualType DestType = S.Context.getBaseElementType(Entity.getType());
5121 
5122   //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
5123   //       constructor for T is called (and the initialization is ill-formed if
5124   //       T has no accessible default constructor);
5125   if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
5126     TryConstructorInitialization(S, Entity, Kind, None, DestType,
5127                                  Entity.getType(), Sequence);
5128     return;
5129   }
5130 
5131   //     - otherwise, no initialization is performed.
5132 
5133   //   If a program calls for the default initialization of an object of
5134   //   a const-qualified type T, T shall be a class type with a user-provided
5135   //   default constructor.
5136   if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
5137     if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
5138       Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
5139     return;
5140   }
5141 
5142   // If the destination type has a lifetime property, zero-initialize it.
5143   if (DestType.getQualifiers().hasObjCLifetime()) {
5144     Sequence.AddZeroInitializationStep(Entity.getType());
5145     return;
5146   }
5147 }
5148 
5149 /// Attempt a user-defined conversion between two types (C++ [dcl.init]),
5150 /// which enumerates all conversion functions and performs overload resolution
5151 /// to select the best.
5152 static void TryUserDefinedConversion(Sema &S,
5153                                      QualType DestType,
5154                                      const InitializationKind &Kind,
5155                                      Expr *Initializer,
5156                                      InitializationSequence &Sequence,
5157                                      bool TopLevelOfInitList) {
5158   assert(!DestType->isReferenceType() && "References are handled elsewhere");
5159   QualType SourceType = Initializer->getType();
5160   assert((DestType->isRecordType() || SourceType->isRecordType()) &&
5161          "Must have a class type to perform a user-defined conversion");
5162 
5163   // Build the candidate set directly in the initialization sequence
5164   // structure, so that it will persist if we fail.
5165   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
5166   CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
5167   CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace());
5168 
5169   // Determine whether we are allowed to call explicit constructors or
5170   // explicit conversion operators.
5171   bool AllowExplicit = Kind.AllowExplicit();
5172 
5173   if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
5174     // The type we're converting to is a class type. Enumerate its constructors
5175     // to see if there is a suitable conversion.
5176     CXXRecordDecl *DestRecordDecl
5177       = cast<CXXRecordDecl>(DestRecordType->getDecl());
5178 
5179     // Try to complete the type we're converting to.
5180     if (S.isCompleteType(Kind.getLocation(), DestType)) {
5181       for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) {
5182         auto Info = getConstructorInfo(D);
5183         if (!Info.Constructor)
5184           continue;
5185 
5186         if (!Info.Constructor->isInvalidDecl() &&
5187             Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) {
5188           if (Info.ConstructorTmpl)
5189             S.AddTemplateOverloadCandidate(
5190                 Info.ConstructorTmpl, Info.FoundDecl,
5191                 /*ExplicitArgs*/ nullptr, Initializer, CandidateSet,
5192                 /*SuppressUserConversions=*/true,
5193                 /*PartialOverloading*/ false, AllowExplicit);
5194           else
5195             S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
5196                                    Initializer, CandidateSet,
5197                                    /*SuppressUserConversions=*/true,
5198                                    /*PartialOverloading*/ false, AllowExplicit);
5199         }
5200       }
5201     }
5202   }
5203 
5204   SourceLocation DeclLoc = Initializer->getBeginLoc();
5205 
5206   if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
5207     // The type we're converting from is a class type, enumerate its conversion
5208     // functions.
5209 
5210     // We can only enumerate the conversion functions for a complete type; if
5211     // the type isn't complete, simply skip this step.
5212     if (S.isCompleteType(DeclLoc, SourceType)) {
5213       CXXRecordDecl *SourceRecordDecl
5214         = cast<CXXRecordDecl>(SourceRecordType->getDecl());
5215 
5216       const auto &Conversions =
5217           SourceRecordDecl->getVisibleConversionFunctions();
5218       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
5219         NamedDecl *D = *I;
5220         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
5221         if (isa<UsingShadowDecl>(D))
5222           D = cast<UsingShadowDecl>(D)->getTargetDecl();
5223 
5224         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
5225         CXXConversionDecl *Conv;
5226         if (ConvTemplate)
5227           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5228         else
5229           Conv = cast<CXXConversionDecl>(D);
5230 
5231         if (ConvTemplate)
5232           S.AddTemplateConversionCandidate(
5233               ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
5234               CandidateSet, AllowExplicit, AllowExplicit);
5235         else
5236           S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer,
5237                                    DestType, CandidateSet, AllowExplicit,
5238                                    AllowExplicit);
5239       }
5240     }
5241   }
5242 
5243   // Perform overload resolution. If it fails, return the failed result.
5244   OverloadCandidateSet::iterator Best;
5245   if (OverloadingResult Result
5246         = CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
5247     Sequence.SetOverloadFailure(
5248                         InitializationSequence::FK_UserConversionOverloadFailed,
5249                                 Result);
5250     return;
5251   }
5252 
5253   FunctionDecl *Function = Best->Function;
5254   Function->setReferenced();
5255   bool HadMultipleCandidates = (CandidateSet.size() > 1);
5256 
5257   if (isa<CXXConstructorDecl>(Function)) {
5258     // Add the user-defined conversion step. Any cv-qualification conversion is
5259     // subsumed by the initialization. Per DR5, the created temporary is of the
5260     // cv-unqualified type of the destination.
5261     Sequence.AddUserConversionStep(Function, Best->FoundDecl,
5262                                    DestType.getUnqualifiedType(),
5263                                    HadMultipleCandidates);
5264 
5265     // C++14 and before:
5266     //   - if the function is a constructor, the call initializes a temporary
5267     //     of the cv-unqualified version of the destination type. The [...]
5268     //     temporary [...] is then used to direct-initialize, according to the
5269     //     rules above, the object that is the destination of the
5270     //     copy-initialization.
5271     // Note that this just performs a simple object copy from the temporary.
5272     //
5273     // C++17:
5274     //   - if the function is a constructor, the call is a prvalue of the
5275     //     cv-unqualified version of the destination type whose return object
5276     //     is initialized by the constructor. The call is used to
5277     //     direct-initialize, according to the rules above, the object that
5278     //     is the destination of the copy-initialization.
5279     // Therefore we need to do nothing further.
5280     //
5281     // FIXME: Mark this copy as extraneous.
5282     if (!S.getLangOpts().CPlusPlus17)
5283       Sequence.AddFinalCopy(DestType);
5284     else if (DestType.hasQualifiers())
5285       Sequence.AddQualificationConversionStep(DestType, VK_RValue);
5286     return;
5287   }
5288 
5289   // Add the user-defined conversion step that calls the conversion function.
5290   QualType ConvType = Function->getCallResultType();
5291   Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
5292                                  HadMultipleCandidates);
5293 
5294   if (ConvType->getAs<RecordType>()) {
5295     //   The call is used to direct-initialize [...] the object that is the
5296     //   destination of the copy-initialization.
5297     //
5298     // In C++17, this does not call a constructor if we enter /17.6.1:
5299     //   - If the initializer expression is a prvalue and the cv-unqualified
5300     //     version of the source type is the same as the class of the
5301     //     destination [... do not make an extra copy]
5302     //
5303     // FIXME: Mark this copy as extraneous.
5304     if (!S.getLangOpts().CPlusPlus17 ||
5305         Function->getReturnType()->isReferenceType() ||
5306         !S.Context.hasSameUnqualifiedType(ConvType, DestType))
5307       Sequence.AddFinalCopy(DestType);
5308     else if (!S.Context.hasSameType(ConvType, DestType))
5309       Sequence.AddQualificationConversionStep(DestType, VK_RValue);
5310     return;
5311   }
5312 
5313   // If the conversion following the call to the conversion function
5314   // is interesting, add it as a separate step.
5315   if (Best->FinalConversion.First || Best->FinalConversion.Second ||
5316       Best->FinalConversion.Third) {
5317     ImplicitConversionSequence ICS;
5318     ICS.setStandard();
5319     ICS.Standard = Best->FinalConversion;
5320     Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5321   }
5322 }
5323 
5324 /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>,
5325 /// a function with a pointer return type contains a 'return false;' statement.
5326 /// In C++11, 'false' is not a null pointer, so this breaks the build of any
5327 /// code using that header.
5328 ///
5329 /// Work around this by treating 'return false;' as zero-initializing the result
5330 /// if it's used in a pointer-returning function in a system header.
5331 static bool isLibstdcxxPointerReturnFalseHack(Sema &S,
5332                                               const InitializedEntity &Entity,
5333                                               const Expr *Init) {
5334   return S.getLangOpts().CPlusPlus11 &&
5335          Entity.getKind() == InitializedEntity::EK_Result &&
5336          Entity.getType()->isPointerType() &&
5337          isa<CXXBoolLiteralExpr>(Init) &&
5338          !cast<CXXBoolLiteralExpr>(Init)->getValue() &&
5339          S.getSourceManager().isInSystemHeader(Init->getExprLoc());
5340 }
5341 
5342 /// The non-zero enum values here are indexes into diagnostic alternatives.
5343 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
5344 
5345 /// Determines whether this expression is an acceptable ICR source.
5346 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
5347                                          bool isAddressOf, bool &isWeakAccess) {
5348   // Skip parens.
5349   e = e->IgnoreParens();
5350 
5351   // Skip address-of nodes.
5352   if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
5353     if (op->getOpcode() == UO_AddrOf)
5354       return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
5355                                 isWeakAccess);
5356 
5357   // Skip certain casts.
5358   } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
5359     switch (ce->getCastKind()) {
5360     case CK_Dependent:
5361     case CK_BitCast:
5362     case CK_LValueBitCast:
5363     case CK_NoOp:
5364       return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
5365 
5366     case CK_ArrayToPointerDecay:
5367       return IIK_nonscalar;
5368 
5369     case CK_NullToPointer:
5370       return IIK_okay;
5371 
5372     default:
5373       break;
5374     }
5375 
5376   // If we have a declaration reference, it had better be a local variable.
5377   } else if (isa<DeclRefExpr>(e)) {
5378     // set isWeakAccess to true, to mean that there will be an implicit
5379     // load which requires a cleanup.
5380     if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
5381       isWeakAccess = true;
5382 
5383     if (!isAddressOf) return IIK_nonlocal;
5384 
5385     VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
5386     if (!var) return IIK_nonlocal;
5387 
5388     return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
5389 
5390   // If we have a conditional operator, check both sides.
5391   } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
5392     if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
5393                                                 isWeakAccess))
5394       return iik;
5395 
5396     return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
5397 
5398   // These are never scalar.
5399   } else if (isa<ArraySubscriptExpr>(e)) {
5400     return IIK_nonscalar;
5401 
5402   // Otherwise, it needs to be a null pointer constant.
5403   } else {
5404     return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
5405             ? IIK_okay : IIK_nonlocal);
5406   }
5407 
5408   return IIK_nonlocal;
5409 }
5410 
5411 /// Check whether the given expression is a valid operand for an
5412 /// indirect copy/restore.
5413 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
5414   assert(src->isRValue());
5415   bool isWeakAccess = false;
5416   InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
5417   // If isWeakAccess to true, there will be an implicit
5418   // load which requires a cleanup.
5419   if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
5420     S.Cleanup.setExprNeedsCleanups(true);
5421 
5422   if (iik == IIK_okay) return;
5423 
5424   S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
5425     << ((unsigned) iik - 1)  // shift index into diagnostic explanations
5426     << src->getSourceRange();
5427 }
5428 
5429 /// Determine whether we have compatible array types for the
5430 /// purposes of GNU by-copy array initialization.
5431 static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest,
5432                                     const ArrayType *Source) {
5433   // If the source and destination array types are equivalent, we're
5434   // done.
5435   if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
5436     return true;
5437 
5438   // Make sure that the element types are the same.
5439   if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
5440     return false;
5441 
5442   // The only mismatch we allow is when the destination is an
5443   // incomplete array type and the source is a constant array type.
5444   return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
5445 }
5446 
5447 static bool tryObjCWritebackConversion(Sema &S,
5448                                        InitializationSequence &Sequence,
5449                                        const InitializedEntity &Entity,
5450                                        Expr *Initializer) {
5451   bool ArrayDecay = false;
5452   QualType ArgType = Initializer->getType();
5453   QualType ArgPointee;
5454   if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
5455     ArrayDecay = true;
5456     ArgPointee = ArgArrayType->getElementType();
5457     ArgType = S.Context.getPointerType(ArgPointee);
5458   }
5459 
5460   // Handle write-back conversion.
5461   QualType ConvertedArgType;
5462   if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
5463                                    ConvertedArgType))
5464     return false;
5465 
5466   // We should copy unless we're passing to an argument explicitly
5467   // marked 'out'.
5468   bool ShouldCopy = true;
5469   if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5470     ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5471 
5472   // Do we need an lvalue conversion?
5473   if (ArrayDecay || Initializer->isGLValue()) {
5474     ImplicitConversionSequence ICS;
5475     ICS.setStandard();
5476     ICS.Standard.setAsIdentityConversion();
5477 
5478     QualType ResultType;
5479     if (ArrayDecay) {
5480       ICS.Standard.First = ICK_Array_To_Pointer;
5481       ResultType = S.Context.getPointerType(ArgPointee);
5482     } else {
5483       ICS.Standard.First = ICK_Lvalue_To_Rvalue;
5484       ResultType = Initializer->getType().getNonLValueExprType(S.Context);
5485     }
5486 
5487     Sequence.AddConversionSequenceStep(ICS, ResultType);
5488   }
5489 
5490   Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
5491   return true;
5492 }
5493 
5494 static bool TryOCLSamplerInitialization(Sema &S,
5495                                         InitializationSequence &Sequence,
5496                                         QualType DestType,
5497                                         Expr *Initializer) {
5498   if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
5499       (!Initializer->isIntegerConstantExpr(S.Context) &&
5500       !Initializer->getType()->isSamplerT()))
5501     return false;
5502 
5503   Sequence.AddOCLSamplerInitStep(DestType);
5504   return true;
5505 }
5506 
5507 static bool IsZeroInitializer(Expr *Initializer, Sema &S) {
5508   return Initializer->isIntegerConstantExpr(S.getASTContext()) &&
5509     (Initializer->EvaluateKnownConstInt(S.getASTContext()) == 0);
5510 }
5511 
5512 static bool TryOCLZeroOpaqueTypeInitialization(Sema &S,
5513                                                InitializationSequence &Sequence,
5514                                                QualType DestType,
5515                                                Expr *Initializer) {
5516   if (!S.getLangOpts().OpenCL)
5517     return false;
5518 
5519   //
5520   // OpenCL 1.2 spec, s6.12.10
5521   //
5522   // The event argument can also be used to associate the
5523   // async_work_group_copy with a previous async copy allowing
5524   // an event to be shared by multiple async copies; otherwise
5525   // event should be zero.
5526   //
5527   if (DestType->isEventT() || DestType->isQueueT()) {
5528     if (!IsZeroInitializer(Initializer, S))
5529       return false;
5530 
5531     Sequence.AddOCLZeroOpaqueTypeStep(DestType);
5532     return true;
5533   }
5534 
5535   // We should allow zero initialization for all types defined in the
5536   // cl_intel_device_side_avc_motion_estimation extension, except
5537   // intel_sub_group_avc_mce_payload_t and intel_sub_group_avc_mce_result_t.
5538   if (S.getOpenCLOptions().isEnabled(
5539           "cl_intel_device_side_avc_motion_estimation") &&
5540       DestType->isOCLIntelSubgroupAVCType()) {
5541     if (DestType->isOCLIntelSubgroupAVCMcePayloadType() ||
5542         DestType->isOCLIntelSubgroupAVCMceResultType())
5543       return false;
5544     if (!IsZeroInitializer(Initializer, S))
5545       return false;
5546 
5547     Sequence.AddOCLZeroOpaqueTypeStep(DestType);
5548     return true;
5549   }
5550 
5551   return false;
5552 }
5553 
5554 InitializationSequence::InitializationSequence(Sema &S,
5555                                                const InitializedEntity &Entity,
5556                                                const InitializationKind &Kind,
5557                                                MultiExprArg Args,
5558                                                bool TopLevelOfInitList,
5559                                                bool TreatUnavailableAsInvalid)
5560     : FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) {
5561   InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList,
5562                  TreatUnavailableAsInvalid);
5563 }
5564 
5565 /// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the
5566 /// address of that function, this returns true. Otherwise, it returns false.
5567 static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) {
5568   auto *DRE = dyn_cast<DeclRefExpr>(E);
5569   if (!DRE || !isa<FunctionDecl>(DRE->getDecl()))
5570     return false;
5571 
5572   return !S.checkAddressOfFunctionIsAvailable(
5573       cast<FunctionDecl>(DRE->getDecl()));
5574 }
5575 
5576 /// Determine whether we can perform an elementwise array copy for this kind
5577 /// of entity.
5578 static bool canPerformArrayCopy(const InitializedEntity &Entity) {
5579   switch (Entity.getKind()) {
5580   case InitializedEntity::EK_LambdaCapture:
5581     // C++ [expr.prim.lambda]p24:
5582     //   For array members, the array elements are direct-initialized in
5583     //   increasing subscript order.
5584     return true;
5585 
5586   case InitializedEntity::EK_Variable:
5587     // C++ [dcl.decomp]p1:
5588     //   [...] each element is copy-initialized or direct-initialized from the
5589     //   corresponding element of the assignment-expression [...]
5590     return isa<DecompositionDecl>(Entity.getDecl());
5591 
5592   case InitializedEntity::EK_Member:
5593     // C++ [class.copy.ctor]p14:
5594     //   - if the member is an array, each element is direct-initialized with
5595     //     the corresponding subobject of x
5596     return Entity.isImplicitMemberInitializer();
5597 
5598   case InitializedEntity::EK_ArrayElement:
5599     // All the above cases are intended to apply recursively, even though none
5600     // of them actually say that.
5601     if (auto *E = Entity.getParent())
5602       return canPerformArrayCopy(*E);
5603     break;
5604 
5605   default:
5606     break;
5607   }
5608 
5609   return false;
5610 }
5611 
5612 void InitializationSequence::InitializeFrom(Sema &S,
5613                                             const InitializedEntity &Entity,
5614                                             const InitializationKind &Kind,
5615                                             MultiExprArg Args,
5616                                             bool TopLevelOfInitList,
5617                                             bool TreatUnavailableAsInvalid) {
5618   ASTContext &Context = S.Context;
5619 
5620   // Eliminate non-overload placeholder types in the arguments.  We
5621   // need to do this before checking whether types are dependent
5622   // because lowering a pseudo-object expression might well give us
5623   // something of dependent type.
5624   for (unsigned I = 0, E = Args.size(); I != E; ++I)
5625     if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
5626       // FIXME: should we be doing this here?
5627       ExprResult result = S.CheckPlaceholderExpr(Args[I]);
5628       if (result.isInvalid()) {
5629         SetFailed(FK_PlaceholderType);
5630         return;
5631       }
5632       Args[I] = result.get();
5633     }
5634 
5635   // C++0x [dcl.init]p16:
5636   //   The semantics of initializers are as follows. The destination type is
5637   //   the type of the object or reference being initialized and the source
5638   //   type is the type of the initializer expression. The source type is not
5639   //   defined when the initializer is a braced-init-list or when it is a
5640   //   parenthesized list of expressions.
5641   QualType DestType = Entity.getType();
5642 
5643   if (DestType->isDependentType() ||
5644       Expr::hasAnyTypeDependentArguments(Args)) {
5645     SequenceKind = DependentSequence;
5646     return;
5647   }
5648 
5649   // Almost everything is a normal sequence.
5650   setSequenceKind(NormalSequence);
5651 
5652   QualType SourceType;
5653   Expr *Initializer = nullptr;
5654   if (Args.size() == 1) {
5655     Initializer = Args[0];
5656     if (S.getLangOpts().ObjC) {
5657       if (S.CheckObjCBridgeRelatedConversions(Initializer->getBeginLoc(),
5658                                               DestType, Initializer->getType(),
5659                                               Initializer) ||
5660           S.CheckConversionToObjCLiteral(DestType, Initializer))
5661         Args[0] = Initializer;
5662     }
5663     if (!isa<InitListExpr>(Initializer))
5664       SourceType = Initializer->getType();
5665   }
5666 
5667   //     - If the initializer is a (non-parenthesized) braced-init-list, the
5668   //       object is list-initialized (8.5.4).
5669   if (Kind.getKind() != InitializationKind::IK_Direct) {
5670     if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
5671       TryListInitialization(S, Entity, Kind, InitList, *this,
5672                             TreatUnavailableAsInvalid);
5673       return;
5674     }
5675   }
5676 
5677   //     - If the destination type is a reference type, see 8.5.3.
5678   if (DestType->isReferenceType()) {
5679     // C++0x [dcl.init.ref]p1:
5680     //   A variable declared to be a T& or T&&, that is, "reference to type T"
5681     //   (8.3.2), shall be initialized by an object, or function, of type T or
5682     //   by an object that can be converted into a T.
5683     // (Therefore, multiple arguments are not permitted.)
5684     if (Args.size() != 1)
5685       SetFailed(FK_TooManyInitsForReference);
5686     // C++17 [dcl.init.ref]p5:
5687     //   A reference [...] is initialized by an expression [...] as follows:
5688     // If the initializer is not an expression, presumably we should reject,
5689     // but the standard fails to actually say so.
5690     else if (isa<InitListExpr>(Args[0]))
5691       SetFailed(FK_ParenthesizedListInitForReference);
5692     else
5693       TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
5694     return;
5695   }
5696 
5697   //     - If the initializer is (), the object is value-initialized.
5698   if (Kind.getKind() == InitializationKind::IK_Value ||
5699       (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
5700     TryValueInitialization(S, Entity, Kind, *this);
5701     return;
5702   }
5703 
5704   // Handle default initialization.
5705   if (Kind.getKind() == InitializationKind::IK_Default) {
5706     TryDefaultInitialization(S, Entity, Kind, *this);
5707     return;
5708   }
5709 
5710   //     - If the destination type is an array of characters, an array of
5711   //       char16_t, an array of char32_t, or an array of wchar_t, and the
5712   //       initializer is a string literal, see 8.5.2.
5713   //     - Otherwise, if the destination type is an array, the program is
5714   //       ill-formed.
5715   if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
5716     if (Initializer && isa<VariableArrayType>(DestAT)) {
5717       SetFailed(FK_VariableLengthArrayHasInitializer);
5718       return;
5719     }
5720 
5721     if (Initializer) {
5722       switch (IsStringInit(Initializer, DestAT, Context)) {
5723       case SIF_None:
5724         TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
5725         return;
5726       case SIF_NarrowStringIntoWideChar:
5727         SetFailed(FK_NarrowStringIntoWideCharArray);
5728         return;
5729       case SIF_WideStringIntoChar:
5730         SetFailed(FK_WideStringIntoCharArray);
5731         return;
5732       case SIF_IncompatWideStringIntoWideChar:
5733         SetFailed(FK_IncompatWideStringIntoWideChar);
5734         return;
5735       case SIF_PlainStringIntoUTF8Char:
5736         SetFailed(FK_PlainStringIntoUTF8Char);
5737         return;
5738       case SIF_UTF8StringIntoPlainChar:
5739         SetFailed(FK_UTF8StringIntoPlainChar);
5740         return;
5741       case SIF_Other:
5742         break;
5743       }
5744     }
5745 
5746     // Some kinds of initialization permit an array to be initialized from
5747     // another array of the same type, and perform elementwise initialization.
5748     if (Initializer && isa<ConstantArrayType>(DestAT) &&
5749         S.Context.hasSameUnqualifiedType(Initializer->getType(),
5750                                          Entity.getType()) &&
5751         canPerformArrayCopy(Entity)) {
5752       // If source is a prvalue, use it directly.
5753       if (Initializer->getValueKind() == VK_RValue) {
5754         AddArrayInitStep(DestType, /*IsGNUExtension*/false);
5755         return;
5756       }
5757 
5758       // Emit element-at-a-time copy loop.
5759       InitializedEntity Element =
5760           InitializedEntity::InitializeElement(S.Context, 0, Entity);
5761       QualType InitEltT =
5762           Context.getAsArrayType(Initializer->getType())->getElementType();
5763       OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT,
5764                           Initializer->getValueKind(),
5765                           Initializer->getObjectKind());
5766       Expr *OVEAsExpr = &OVE;
5767       InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList,
5768                      TreatUnavailableAsInvalid);
5769       if (!Failed())
5770         AddArrayInitLoopStep(Entity.getType(), InitEltT);
5771       return;
5772     }
5773 
5774     // Note: as an GNU C extension, we allow initialization of an
5775     // array from a compound literal that creates an array of the same
5776     // type, so long as the initializer has no side effects.
5777     if (!S.getLangOpts().CPlusPlus && Initializer &&
5778         isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
5779         Initializer->getType()->isArrayType()) {
5780       const ArrayType *SourceAT
5781         = Context.getAsArrayType(Initializer->getType());
5782       if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
5783         SetFailed(FK_ArrayTypeMismatch);
5784       else if (Initializer->HasSideEffects(S.Context))
5785         SetFailed(FK_NonConstantArrayInit);
5786       else {
5787         AddArrayInitStep(DestType, /*IsGNUExtension*/true);
5788       }
5789     }
5790     // Note: as a GNU C++ extension, we allow list-initialization of a
5791     // class member of array type from a parenthesized initializer list.
5792     else if (S.getLangOpts().CPlusPlus &&
5793              Entity.getKind() == InitializedEntity::EK_Member &&
5794              Initializer && isa<InitListExpr>(Initializer)) {
5795       TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
5796                             *this, TreatUnavailableAsInvalid);
5797       AddParenthesizedArrayInitStep(DestType);
5798     } else if (DestAT->getElementType()->isCharType())
5799       SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
5800     else if (IsWideCharCompatible(DestAT->getElementType(), Context))
5801       SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral);
5802     else
5803       SetFailed(FK_ArrayNeedsInitList);
5804 
5805     return;
5806   }
5807 
5808   // Determine whether we should consider writeback conversions for
5809   // Objective-C ARC.
5810   bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
5811          Entity.isParameterKind();
5812 
5813   if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
5814     return;
5815 
5816   // We're at the end of the line for C: it's either a write-back conversion
5817   // or it's a C assignment. There's no need to check anything else.
5818   if (!S.getLangOpts().CPlusPlus) {
5819     // If allowed, check whether this is an Objective-C writeback conversion.
5820     if (allowObjCWritebackConversion &&
5821         tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
5822       return;
5823     }
5824 
5825     if (TryOCLZeroOpaqueTypeInitialization(S, *this, DestType, Initializer))
5826       return;
5827 
5828     // Handle initialization in C
5829     AddCAssignmentStep(DestType);
5830     MaybeProduceObjCObject(S, *this, Entity);
5831     return;
5832   }
5833 
5834   assert(S.getLangOpts().CPlusPlus);
5835 
5836   //     - If the destination type is a (possibly cv-qualified) class type:
5837   if (DestType->isRecordType()) {
5838     //     - If the initialization is direct-initialization, or if it is
5839     //       copy-initialization where the cv-unqualified version of the
5840     //       source type is the same class as, or a derived class of, the
5841     //       class of the destination, constructors are considered. [...]
5842     if (Kind.getKind() == InitializationKind::IK_Direct ||
5843         (Kind.getKind() == InitializationKind::IK_Copy &&
5844          (Context.hasSameUnqualifiedType(SourceType, DestType) ||
5845           S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, DestType))))
5846       TryConstructorInitialization(S, Entity, Kind, Args,
5847                                    DestType, DestType, *this);
5848     //     - Otherwise (i.e., for the remaining copy-initialization cases),
5849     //       user-defined conversion sequences that can convert from the source
5850     //       type to the destination type or (when a conversion function is
5851     //       used) to a derived class thereof are enumerated as described in
5852     //       13.3.1.4, and the best one is chosen through overload resolution
5853     //       (13.3).
5854     else
5855       TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5856                                TopLevelOfInitList);
5857     return;
5858   }
5859 
5860   assert(Args.size() >= 1 && "Zero-argument case handled above");
5861 
5862   // The remaining cases all need a source type.
5863   if (Args.size() > 1) {
5864     SetFailed(FK_TooManyInitsForScalar);
5865     return;
5866   } else if (isa<InitListExpr>(Args[0])) {
5867     SetFailed(FK_ParenthesizedListInitForScalar);
5868     return;
5869   }
5870 
5871   //    - Otherwise, if the source type is a (possibly cv-qualified) class
5872   //      type, conversion functions are considered.
5873   if (!SourceType.isNull() && SourceType->isRecordType()) {
5874     // For a conversion to _Atomic(T) from either T or a class type derived
5875     // from T, initialize the T object then convert to _Atomic type.
5876     bool NeedAtomicConversion = false;
5877     if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) {
5878       if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) ||
5879           S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType,
5880                           Atomic->getValueType())) {
5881         DestType = Atomic->getValueType();
5882         NeedAtomicConversion = true;
5883       }
5884     }
5885 
5886     TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5887                              TopLevelOfInitList);
5888     MaybeProduceObjCObject(S, *this, Entity);
5889     if (!Failed() && NeedAtomicConversion)
5890       AddAtomicConversionStep(Entity.getType());
5891     return;
5892   }
5893 
5894   //    - Otherwise, if the initialization is direct-initialization, the source
5895   //    type is std::nullptr_t, and the destination type is bool, the initial
5896   //    value of the object being initialized is false.
5897   if (!SourceType.isNull() && SourceType->isNullPtrType() &&
5898       DestType->isBooleanType() &&
5899       Kind.getKind() == InitializationKind::IK_Direct) {
5900     AddConversionSequenceStep(
5901         ImplicitConversionSequence::getNullptrToBool(SourceType, DestType,
5902                                                      Initializer->isGLValue()),
5903         DestType);
5904     return;
5905   }
5906 
5907   //    - Otherwise, the initial value of the object being initialized is the
5908   //      (possibly converted) value of the initializer expression. Standard
5909   //      conversions (Clause 4) will be used, if necessary, to convert the
5910   //      initializer expression to the cv-unqualified version of the
5911   //      destination type; no user-defined conversions are considered.
5912 
5913   ImplicitConversionSequence ICS
5914     = S.TryImplicitConversion(Initializer, DestType,
5915                               /*SuppressUserConversions*/true,
5916                               Sema::AllowedExplicit::None,
5917                               /*InOverloadResolution*/ false,
5918                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
5919                               allowObjCWritebackConversion);
5920 
5921   if (ICS.isStandard() &&
5922       ICS.Standard.Second == ICK_Writeback_Conversion) {
5923     // Objective-C ARC writeback conversion.
5924 
5925     // We should copy unless we're passing to an argument explicitly
5926     // marked 'out'.
5927     bool ShouldCopy = true;
5928     if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5929       ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5930 
5931     // If there was an lvalue adjustment, add it as a separate conversion.
5932     if (ICS.Standard.First == ICK_Array_To_Pointer ||
5933         ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
5934       ImplicitConversionSequence LvalueICS;
5935       LvalueICS.setStandard();
5936       LvalueICS.Standard.setAsIdentityConversion();
5937       LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
5938       LvalueICS.Standard.First = ICS.Standard.First;
5939       AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
5940     }
5941 
5942     AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy);
5943   } else if (ICS.isBad()) {
5944     DeclAccessPair dap;
5945     if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) {
5946       AddZeroInitializationStep(Entity.getType());
5947     } else if (Initializer->getType() == Context.OverloadTy &&
5948                !S.ResolveAddressOfOverloadedFunction(Initializer, DestType,
5949                                                      false, dap))
5950       SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
5951     else if (Initializer->getType()->isFunctionType() &&
5952              isExprAnUnaddressableFunction(S, Initializer))
5953       SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction);
5954     else
5955       SetFailed(InitializationSequence::FK_ConversionFailed);
5956   } else {
5957     AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5958 
5959     MaybeProduceObjCObject(S, *this, Entity);
5960   }
5961 }
5962 
5963 InitializationSequence::~InitializationSequence() {
5964   for (auto &S : Steps)
5965     S.Destroy();
5966 }
5967 
5968 //===----------------------------------------------------------------------===//
5969 // Perform initialization
5970 //===----------------------------------------------------------------------===//
5971 static Sema::AssignmentAction
5972 getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) {
5973   switch(Entity.getKind()) {
5974   case InitializedEntity::EK_Variable:
5975   case InitializedEntity::EK_New:
5976   case InitializedEntity::EK_Exception:
5977   case InitializedEntity::EK_Base:
5978   case InitializedEntity::EK_Delegating:
5979     return Sema::AA_Initializing;
5980 
5981   case InitializedEntity::EK_Parameter:
5982     if (Entity.getDecl() &&
5983         isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5984       return Sema::AA_Sending;
5985 
5986     return Sema::AA_Passing;
5987 
5988   case InitializedEntity::EK_Parameter_CF_Audited:
5989     if (Entity.getDecl() &&
5990       isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5991       return Sema::AA_Sending;
5992 
5993     return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited;
5994 
5995   case InitializedEntity::EK_Result:
5996   case InitializedEntity::EK_StmtExprResult: // FIXME: Not quite right.
5997     return Sema::AA_Returning;
5998 
5999   case InitializedEntity::EK_Temporary:
6000   case InitializedEntity::EK_RelatedResult:
6001     // FIXME: Can we tell apart casting vs. converting?
6002     return Sema::AA_Casting;
6003 
6004   case InitializedEntity::EK_Member:
6005   case InitializedEntity::EK_Binding:
6006   case InitializedEntity::EK_ArrayElement:
6007   case InitializedEntity::EK_VectorElement:
6008   case InitializedEntity::EK_ComplexElement:
6009   case InitializedEntity::EK_BlockElement:
6010   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6011   case InitializedEntity::EK_LambdaCapture:
6012   case InitializedEntity::EK_CompoundLiteralInit:
6013     return Sema::AA_Initializing;
6014   }
6015 
6016   llvm_unreachable("Invalid EntityKind!");
6017 }
6018 
6019 /// Whether we should bind a created object as a temporary when
6020 /// initializing the given entity.
6021 static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
6022   switch (Entity.getKind()) {
6023   case InitializedEntity::EK_ArrayElement:
6024   case InitializedEntity::EK_Member:
6025   case InitializedEntity::EK_Result:
6026   case InitializedEntity::EK_StmtExprResult:
6027   case InitializedEntity::EK_New:
6028   case InitializedEntity::EK_Variable:
6029   case InitializedEntity::EK_Base:
6030   case InitializedEntity::EK_Delegating:
6031   case InitializedEntity::EK_VectorElement:
6032   case InitializedEntity::EK_ComplexElement:
6033   case InitializedEntity::EK_Exception:
6034   case InitializedEntity::EK_BlockElement:
6035   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6036   case InitializedEntity::EK_LambdaCapture:
6037   case InitializedEntity::EK_CompoundLiteralInit:
6038     return false;
6039 
6040   case InitializedEntity::EK_Parameter:
6041   case InitializedEntity::EK_Parameter_CF_Audited:
6042   case InitializedEntity::EK_Temporary:
6043   case InitializedEntity::EK_RelatedResult:
6044   case InitializedEntity::EK_Binding:
6045     return true;
6046   }
6047 
6048   llvm_unreachable("missed an InitializedEntity kind?");
6049 }
6050 
6051 /// Whether the given entity, when initialized with an object
6052 /// created for that initialization, requires destruction.
6053 static bool shouldDestroyEntity(const InitializedEntity &Entity) {
6054   switch (Entity.getKind()) {
6055     case InitializedEntity::EK_Result:
6056     case InitializedEntity::EK_StmtExprResult:
6057     case InitializedEntity::EK_New:
6058     case InitializedEntity::EK_Base:
6059     case InitializedEntity::EK_Delegating:
6060     case InitializedEntity::EK_VectorElement:
6061     case InitializedEntity::EK_ComplexElement:
6062     case InitializedEntity::EK_BlockElement:
6063     case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6064     case InitializedEntity::EK_LambdaCapture:
6065       return false;
6066 
6067     case InitializedEntity::EK_Member:
6068     case InitializedEntity::EK_Binding:
6069     case InitializedEntity::EK_Variable:
6070     case InitializedEntity::EK_Parameter:
6071     case InitializedEntity::EK_Parameter_CF_Audited:
6072     case InitializedEntity::EK_Temporary:
6073     case InitializedEntity::EK_ArrayElement:
6074     case InitializedEntity::EK_Exception:
6075     case InitializedEntity::EK_CompoundLiteralInit:
6076     case InitializedEntity::EK_RelatedResult:
6077       return true;
6078   }
6079 
6080   llvm_unreachable("missed an InitializedEntity kind?");
6081 }
6082 
6083 /// Get the location at which initialization diagnostics should appear.
6084 static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
6085                                            Expr *Initializer) {
6086   switch (Entity.getKind()) {
6087   case InitializedEntity::EK_Result:
6088   case InitializedEntity::EK_StmtExprResult:
6089     return Entity.getReturnLoc();
6090 
6091   case InitializedEntity::EK_Exception:
6092     return Entity.getThrowLoc();
6093 
6094   case InitializedEntity::EK_Variable:
6095   case InitializedEntity::EK_Binding:
6096     return Entity.getDecl()->getLocation();
6097 
6098   case InitializedEntity::EK_LambdaCapture:
6099     return Entity.getCaptureLoc();
6100 
6101   case InitializedEntity::EK_ArrayElement:
6102   case InitializedEntity::EK_Member:
6103   case InitializedEntity::EK_Parameter:
6104   case InitializedEntity::EK_Parameter_CF_Audited:
6105   case InitializedEntity::EK_Temporary:
6106   case InitializedEntity::EK_New:
6107   case InitializedEntity::EK_Base:
6108   case InitializedEntity::EK_Delegating:
6109   case InitializedEntity::EK_VectorElement:
6110   case InitializedEntity::EK_ComplexElement:
6111   case InitializedEntity::EK_BlockElement:
6112   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6113   case InitializedEntity::EK_CompoundLiteralInit:
6114   case InitializedEntity::EK_RelatedResult:
6115     return Initializer->getBeginLoc();
6116   }
6117   llvm_unreachable("missed an InitializedEntity kind?");
6118 }
6119 
6120 /// Make a (potentially elidable) temporary copy of the object
6121 /// provided by the given initializer by calling the appropriate copy
6122 /// constructor.
6123 ///
6124 /// \param S The Sema object used for type-checking.
6125 ///
6126 /// \param T The type of the temporary object, which must either be
6127 /// the type of the initializer expression or a superclass thereof.
6128 ///
6129 /// \param Entity The entity being initialized.
6130 ///
6131 /// \param CurInit The initializer expression.
6132 ///
6133 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that
6134 /// is permitted in C++03 (but not C++0x) when binding a reference to
6135 /// an rvalue.
6136 ///
6137 /// \returns An expression that copies the initializer expression into
6138 /// a temporary object, or an error expression if a copy could not be
6139 /// created.
6140 static ExprResult CopyObject(Sema &S,
6141                              QualType T,
6142                              const InitializedEntity &Entity,
6143                              ExprResult CurInit,
6144                              bool IsExtraneousCopy) {
6145   if (CurInit.isInvalid())
6146     return CurInit;
6147   // Determine which class type we're copying to.
6148   Expr *CurInitExpr = (Expr *)CurInit.get();
6149   CXXRecordDecl *Class = nullptr;
6150   if (const RecordType *Record = T->getAs<RecordType>())
6151     Class = cast<CXXRecordDecl>(Record->getDecl());
6152   if (!Class)
6153     return CurInit;
6154 
6155   SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
6156 
6157   // Make sure that the type we are copying is complete.
6158   if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
6159     return CurInit;
6160 
6161   // Perform overload resolution using the class's constructors. Per
6162   // C++11 [dcl.init]p16, second bullet for class types, this initialization
6163   // is direct-initialization.
6164   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
6165   DeclContext::lookup_result Ctors = S.LookupConstructors(Class);
6166 
6167   OverloadCandidateSet::iterator Best;
6168   switch (ResolveConstructorOverload(
6169       S, Loc, CurInitExpr, CandidateSet, T, Ctors, Best,
6170       /*CopyInitializing=*/false, /*AllowExplicit=*/true,
6171       /*OnlyListConstructors=*/false, /*IsListInit=*/false,
6172       /*SecondStepOfCopyInit=*/true)) {
6173   case OR_Success:
6174     break;
6175 
6176   case OR_No_Viable_Function:
6177     CandidateSet.NoteCandidates(
6178         PartialDiagnosticAt(
6179             Loc, S.PDiag(IsExtraneousCopy && !S.isSFINAEContext()
6180                              ? diag::ext_rvalue_to_reference_temp_copy_no_viable
6181                              : diag::err_temp_copy_no_viable)
6182                      << (int)Entity.getKind() << CurInitExpr->getType()
6183                      << CurInitExpr->getSourceRange()),
6184         S, OCD_AllCandidates, CurInitExpr);
6185     if (!IsExtraneousCopy || S.isSFINAEContext())
6186       return ExprError();
6187     return CurInit;
6188 
6189   case OR_Ambiguous:
6190     CandidateSet.NoteCandidates(
6191         PartialDiagnosticAt(Loc, S.PDiag(diag::err_temp_copy_ambiguous)
6192                                      << (int)Entity.getKind()
6193                                      << CurInitExpr->getType()
6194                                      << CurInitExpr->getSourceRange()),
6195         S, OCD_AmbiguousCandidates, CurInitExpr);
6196     return ExprError();
6197 
6198   case OR_Deleted:
6199     S.Diag(Loc, diag::err_temp_copy_deleted)
6200       << (int)Entity.getKind() << CurInitExpr->getType()
6201       << CurInitExpr->getSourceRange();
6202     S.NoteDeletedFunction(Best->Function);
6203     return ExprError();
6204   }
6205 
6206   bool HadMultipleCandidates = CandidateSet.size() > 1;
6207 
6208   CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
6209   SmallVector<Expr*, 8> ConstructorArgs;
6210   CurInit.get(); // Ownership transferred into MultiExprArg, below.
6211 
6212   S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity,
6213                            IsExtraneousCopy);
6214 
6215   if (IsExtraneousCopy) {
6216     // If this is a totally extraneous copy for C++03 reference
6217     // binding purposes, just return the original initialization
6218     // expression. We don't generate an (elided) copy operation here
6219     // because doing so would require us to pass down a flag to avoid
6220     // infinite recursion, where each step adds another extraneous,
6221     // elidable copy.
6222 
6223     // Instantiate the default arguments of any extra parameters in
6224     // the selected copy constructor, as if we were going to create a
6225     // proper call to the copy constructor.
6226     for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
6227       ParmVarDecl *Parm = Constructor->getParamDecl(I);
6228       if (S.RequireCompleteType(Loc, Parm->getType(),
6229                                 diag::err_call_incomplete_argument))
6230         break;
6231 
6232       // Build the default argument expression; we don't actually care
6233       // if this succeeds or not, because this routine will complain
6234       // if there was a problem.
6235       S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
6236     }
6237 
6238     return CurInitExpr;
6239   }
6240 
6241   // Determine the arguments required to actually perform the
6242   // constructor call (we might have derived-to-base conversions, or
6243   // the copy constructor may have default arguments).
6244   if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs))
6245     return ExprError();
6246 
6247   // C++0x [class.copy]p32:
6248   //   When certain criteria are met, an implementation is allowed to
6249   //   omit the copy/move construction of a class object, even if the
6250   //   copy/move constructor and/or destructor for the object have
6251   //   side effects. [...]
6252   //     - when a temporary class object that has not been bound to a
6253   //       reference (12.2) would be copied/moved to a class object
6254   //       with the same cv-unqualified type, the copy/move operation
6255   //       can be omitted by constructing the temporary object
6256   //       directly into the target of the omitted copy/move
6257   //
6258   // Note that the other three bullets are handled elsewhere. Copy
6259   // elision for return statements and throw expressions are handled as part
6260   // of constructor initialization, while copy elision for exception handlers
6261   // is handled by the run-time.
6262   //
6263   // FIXME: If the function parameter is not the same type as the temporary, we
6264   // should still be able to elide the copy, but we don't have a way to
6265   // represent in the AST how much should be elided in this case.
6266   bool Elidable =
6267       CurInitExpr->isTemporaryObject(S.Context, Class) &&
6268       S.Context.hasSameUnqualifiedType(
6269           Best->Function->getParamDecl(0)->getType().getNonReferenceType(),
6270           CurInitExpr->getType());
6271 
6272   // Actually perform the constructor call.
6273   CurInit = S.BuildCXXConstructExpr(Loc, T, Best->FoundDecl, Constructor,
6274                                     Elidable,
6275                                     ConstructorArgs,
6276                                     HadMultipleCandidates,
6277                                     /*ListInit*/ false,
6278                                     /*StdInitListInit*/ false,
6279                                     /*ZeroInit*/ false,
6280                                     CXXConstructExpr::CK_Complete,
6281                                     SourceRange());
6282 
6283   // If we're supposed to bind temporaries, do so.
6284   if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
6285     CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
6286   return CurInit;
6287 }
6288 
6289 /// Check whether elidable copy construction for binding a reference to
6290 /// a temporary would have succeeded if we were building in C++98 mode, for
6291 /// -Wc++98-compat.
6292 static void CheckCXX98CompatAccessibleCopy(Sema &S,
6293                                            const InitializedEntity &Entity,
6294                                            Expr *CurInitExpr) {
6295   assert(S.getLangOpts().CPlusPlus11);
6296 
6297   const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
6298   if (!Record)
6299     return;
6300 
6301   SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
6302   if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc))
6303     return;
6304 
6305   // Find constructors which would have been considered.
6306   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
6307   DeclContext::lookup_result Ctors =
6308       S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl()));
6309 
6310   // Perform overload resolution.
6311   OverloadCandidateSet::iterator Best;
6312   OverloadingResult OR = ResolveConstructorOverload(
6313       S, Loc, CurInitExpr, CandidateSet, CurInitExpr->getType(), Ctors, Best,
6314       /*CopyInitializing=*/false, /*AllowExplicit=*/true,
6315       /*OnlyListConstructors=*/false, /*IsListInit=*/false,
6316       /*SecondStepOfCopyInit=*/true);
6317 
6318   PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
6319     << OR << (int)Entity.getKind() << CurInitExpr->getType()
6320     << CurInitExpr->getSourceRange();
6321 
6322   switch (OR) {
6323   case OR_Success:
6324     S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
6325                              Best->FoundDecl, Entity, Diag);
6326     // FIXME: Check default arguments as far as that's possible.
6327     break;
6328 
6329   case OR_No_Viable_Function:
6330     CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S,
6331                                 OCD_AllCandidates, CurInitExpr);
6332     break;
6333 
6334   case OR_Ambiguous:
6335     CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S,
6336                                 OCD_AmbiguousCandidates, CurInitExpr);
6337     break;
6338 
6339   case OR_Deleted:
6340     S.Diag(Loc, Diag);
6341     S.NoteDeletedFunction(Best->Function);
6342     break;
6343   }
6344 }
6345 
6346 void InitializationSequence::PrintInitLocationNote(Sema &S,
6347                                               const InitializedEntity &Entity) {
6348   if (Entity.isParameterKind() && Entity.getDecl()) {
6349     if (Entity.getDecl()->getLocation().isInvalid())
6350       return;
6351 
6352     if (Entity.getDecl()->getDeclName())
6353       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
6354         << Entity.getDecl()->getDeclName();
6355     else
6356       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
6357   }
6358   else if (Entity.getKind() == InitializedEntity::EK_RelatedResult &&
6359            Entity.getMethodDecl())
6360     S.Diag(Entity.getMethodDecl()->getLocation(),
6361            diag::note_method_return_type_change)
6362       << Entity.getMethodDecl()->getDeclName();
6363 }
6364 
6365 /// Returns true if the parameters describe a constructor initialization of
6366 /// an explicit temporary object, e.g. "Point(x, y)".
6367 static bool isExplicitTemporary(const InitializedEntity &Entity,
6368                                 const InitializationKind &Kind,
6369                                 unsigned NumArgs) {
6370   switch (Entity.getKind()) {
6371   case InitializedEntity::EK_Temporary:
6372   case InitializedEntity::EK_CompoundLiteralInit:
6373   case InitializedEntity::EK_RelatedResult:
6374     break;
6375   default:
6376     return false;
6377   }
6378 
6379   switch (Kind.getKind()) {
6380   case InitializationKind::IK_DirectList:
6381     return true;
6382   // FIXME: Hack to work around cast weirdness.
6383   case InitializationKind::IK_Direct:
6384   case InitializationKind::IK_Value:
6385     return NumArgs != 1;
6386   default:
6387     return false;
6388   }
6389 }
6390 
6391 static ExprResult
6392 PerformConstructorInitialization(Sema &S,
6393                                  const InitializedEntity &Entity,
6394                                  const InitializationKind &Kind,
6395                                  MultiExprArg Args,
6396                                  const InitializationSequence::Step& Step,
6397                                  bool &ConstructorInitRequiresZeroInit,
6398                                  bool IsListInitialization,
6399                                  bool IsStdInitListInitialization,
6400                                  SourceLocation LBraceLoc,
6401                                  SourceLocation RBraceLoc) {
6402   unsigned NumArgs = Args.size();
6403   CXXConstructorDecl *Constructor
6404     = cast<CXXConstructorDecl>(Step.Function.Function);
6405   bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
6406 
6407   // Build a call to the selected constructor.
6408   SmallVector<Expr*, 8> ConstructorArgs;
6409   SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
6410                          ? Kind.getEqualLoc()
6411                          : Kind.getLocation();
6412 
6413   if (Kind.getKind() == InitializationKind::IK_Default) {
6414     // Force even a trivial, implicit default constructor to be
6415     // semantically checked. We do this explicitly because we don't build
6416     // the definition for completely trivial constructors.
6417     assert(Constructor->getParent() && "No parent class for constructor.");
6418     if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6419         Constructor->isTrivial() && !Constructor->isUsed(false)) {
6420       S.runWithSufficientStackSpace(Loc, [&] {
6421         S.DefineImplicitDefaultConstructor(Loc, Constructor);
6422       });
6423     }
6424   }
6425 
6426   ExprResult CurInit((Expr *)nullptr);
6427 
6428   // C++ [over.match.copy]p1:
6429   //   - When initializing a temporary to be bound to the first parameter
6430   //     of a constructor that takes a reference to possibly cv-qualified
6431   //     T as its first argument, called with a single argument in the
6432   //     context of direct-initialization, explicit conversion functions
6433   //     are also considered.
6434   bool AllowExplicitConv =
6435       Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 &&
6436       hasCopyOrMoveCtorParam(S.Context,
6437                              getConstructorInfo(Step.Function.FoundDecl));
6438 
6439   // Determine the arguments required to actually perform the constructor
6440   // call.
6441   if (S.CompleteConstructorCall(Constructor, Args,
6442                                 Loc, ConstructorArgs,
6443                                 AllowExplicitConv,
6444                                 IsListInitialization))
6445     return ExprError();
6446 
6447 
6448   if (isExplicitTemporary(Entity, Kind, NumArgs)) {
6449     // An explicitly-constructed temporary, e.g., X(1, 2).
6450     if (S.DiagnoseUseOfDecl(Constructor, Loc))
6451       return ExprError();
6452 
6453     TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
6454     if (!TSInfo)
6455       TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
6456     SourceRange ParenOrBraceRange =
6457         (Kind.getKind() == InitializationKind::IK_DirectList)
6458         ? SourceRange(LBraceLoc, RBraceLoc)
6459         : Kind.getParenOrBraceRange();
6460 
6461     if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(
6462             Step.Function.FoundDecl.getDecl())) {
6463       Constructor = S.findInheritingConstructor(Loc, Constructor, Shadow);
6464       if (S.DiagnoseUseOfDecl(Constructor, Loc))
6465         return ExprError();
6466     }
6467     S.MarkFunctionReferenced(Loc, Constructor);
6468 
6469     CurInit = S.CheckForImmediateInvocation(
6470         CXXTemporaryObjectExpr::Create(
6471             S.Context, Constructor,
6472             Entity.getType().getNonLValueExprType(S.Context), TSInfo,
6473             ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates,
6474             IsListInitialization, IsStdInitListInitialization,
6475             ConstructorInitRequiresZeroInit),
6476         Constructor);
6477   } else {
6478     CXXConstructExpr::ConstructionKind ConstructKind =
6479       CXXConstructExpr::CK_Complete;
6480 
6481     if (Entity.getKind() == InitializedEntity::EK_Base) {
6482       ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
6483         CXXConstructExpr::CK_VirtualBase :
6484         CXXConstructExpr::CK_NonVirtualBase;
6485     } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
6486       ConstructKind = CXXConstructExpr::CK_Delegating;
6487     }
6488 
6489     // Only get the parenthesis or brace range if it is a list initialization or
6490     // direct construction.
6491     SourceRange ParenOrBraceRange;
6492     if (IsListInitialization)
6493       ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc);
6494     else if (Kind.getKind() == InitializationKind::IK_Direct)
6495       ParenOrBraceRange = Kind.getParenOrBraceRange();
6496 
6497     // If the entity allows NRVO, mark the construction as elidable
6498     // unconditionally.
6499     if (Entity.allowsNRVO())
6500       CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
6501                                         Step.Function.FoundDecl,
6502                                         Constructor, /*Elidable=*/true,
6503                                         ConstructorArgs,
6504                                         HadMultipleCandidates,
6505                                         IsListInitialization,
6506                                         IsStdInitListInitialization,
6507                                         ConstructorInitRequiresZeroInit,
6508                                         ConstructKind,
6509                                         ParenOrBraceRange);
6510     else
6511       CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
6512                                         Step.Function.FoundDecl,
6513                                         Constructor,
6514                                         ConstructorArgs,
6515                                         HadMultipleCandidates,
6516                                         IsListInitialization,
6517                                         IsStdInitListInitialization,
6518                                         ConstructorInitRequiresZeroInit,
6519                                         ConstructKind,
6520                                         ParenOrBraceRange);
6521   }
6522   if (CurInit.isInvalid())
6523     return ExprError();
6524 
6525   // Only check access if all of that succeeded.
6526   S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity);
6527   if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc))
6528     return ExprError();
6529 
6530   if (const ArrayType *AT = S.Context.getAsArrayType(Entity.getType()))
6531     if (checkDestructorReference(S.Context.getBaseElementType(AT), Loc, S))
6532       return ExprError();
6533 
6534   if (shouldBindAsTemporary(Entity))
6535     CurInit = S.MaybeBindToTemporary(CurInit.get());
6536 
6537   return CurInit;
6538 }
6539 
6540 namespace {
6541 enum LifetimeKind {
6542   /// The lifetime of a temporary bound to this entity ends at the end of the
6543   /// full-expression, and that's (probably) fine.
6544   LK_FullExpression,
6545 
6546   /// The lifetime of a temporary bound to this entity is extended to the
6547   /// lifeitme of the entity itself.
6548   LK_Extended,
6549 
6550   /// The lifetime of a temporary bound to this entity probably ends too soon,
6551   /// because the entity is allocated in a new-expression.
6552   LK_New,
6553 
6554   /// The lifetime of a temporary bound to this entity ends too soon, because
6555   /// the entity is a return object.
6556   LK_Return,
6557 
6558   /// The lifetime of a temporary bound to this entity ends too soon, because
6559   /// the entity is the result of a statement expression.
6560   LK_StmtExprResult,
6561 
6562   /// This is a mem-initializer: if it would extend a temporary (other than via
6563   /// a default member initializer), the program is ill-formed.
6564   LK_MemInitializer,
6565 };
6566 using LifetimeResult =
6567     llvm::PointerIntPair<const InitializedEntity *, 3, LifetimeKind>;
6568 }
6569 
6570 /// Determine the declaration which an initialized entity ultimately refers to,
6571 /// for the purpose of lifetime-extending a temporary bound to a reference in
6572 /// the initialization of \p Entity.
6573 static LifetimeResult getEntityLifetime(
6574     const InitializedEntity *Entity,
6575     const InitializedEntity *InitField = nullptr) {
6576   // C++11 [class.temporary]p5:
6577   switch (Entity->getKind()) {
6578   case InitializedEntity::EK_Variable:
6579     //   The temporary [...] persists for the lifetime of the reference
6580     return {Entity, LK_Extended};
6581 
6582   case InitializedEntity::EK_Member:
6583     // For subobjects, we look at the complete object.
6584     if (Entity->getParent())
6585       return getEntityLifetime(Entity->getParent(), Entity);
6586 
6587     //   except:
6588     // C++17 [class.base.init]p8:
6589     //   A temporary expression bound to a reference member in a
6590     //   mem-initializer is ill-formed.
6591     // C++17 [class.base.init]p11:
6592     //   A temporary expression bound to a reference member from a
6593     //   default member initializer is ill-formed.
6594     //
6595     // The context of p11 and its example suggest that it's only the use of a
6596     // default member initializer from a constructor that makes the program
6597     // ill-formed, not its mere existence, and that it can even be used by
6598     // aggregate initialization.
6599     return {Entity, Entity->isDefaultMemberInitializer() ? LK_Extended
6600                                                          : LK_MemInitializer};
6601 
6602   case InitializedEntity::EK_Binding:
6603     // Per [dcl.decomp]p3, the binding is treated as a variable of reference
6604     // type.
6605     return {Entity, LK_Extended};
6606 
6607   case InitializedEntity::EK_Parameter:
6608   case InitializedEntity::EK_Parameter_CF_Audited:
6609     //   -- A temporary bound to a reference parameter in a function call
6610     //      persists until the completion of the full-expression containing
6611     //      the call.
6612     return {nullptr, LK_FullExpression};
6613 
6614   case InitializedEntity::EK_Result:
6615     //   -- The lifetime of a temporary bound to the returned value in a
6616     //      function return statement is not extended; the temporary is
6617     //      destroyed at the end of the full-expression in the return statement.
6618     return {nullptr, LK_Return};
6619 
6620   case InitializedEntity::EK_StmtExprResult:
6621     // FIXME: Should we lifetime-extend through the result of a statement
6622     // expression?
6623     return {nullptr, LK_StmtExprResult};
6624 
6625   case InitializedEntity::EK_New:
6626     //   -- A temporary bound to a reference in a new-initializer persists
6627     //      until the completion of the full-expression containing the
6628     //      new-initializer.
6629     return {nullptr, LK_New};
6630 
6631   case InitializedEntity::EK_Temporary:
6632   case InitializedEntity::EK_CompoundLiteralInit:
6633   case InitializedEntity::EK_RelatedResult:
6634     // We don't yet know the storage duration of the surrounding temporary.
6635     // Assume it's got full-expression duration for now, it will patch up our
6636     // storage duration if that's not correct.
6637     return {nullptr, LK_FullExpression};
6638 
6639   case InitializedEntity::EK_ArrayElement:
6640     // For subobjects, we look at the complete object.
6641     return getEntityLifetime(Entity->getParent(), InitField);
6642 
6643   case InitializedEntity::EK_Base:
6644     // For subobjects, we look at the complete object.
6645     if (Entity->getParent())
6646       return getEntityLifetime(Entity->getParent(), InitField);
6647     return {InitField, LK_MemInitializer};
6648 
6649   case InitializedEntity::EK_Delegating:
6650     // We can reach this case for aggregate initialization in a constructor:
6651     //   struct A { int &&r; };
6652     //   struct B : A { B() : A{0} {} };
6653     // In this case, use the outermost field decl as the context.
6654     return {InitField, LK_MemInitializer};
6655 
6656   case InitializedEntity::EK_BlockElement:
6657   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6658   case InitializedEntity::EK_LambdaCapture:
6659   case InitializedEntity::EK_VectorElement:
6660   case InitializedEntity::EK_ComplexElement:
6661     return {nullptr, LK_FullExpression};
6662 
6663   case InitializedEntity::EK_Exception:
6664     // FIXME: Can we diagnose lifetime problems with exceptions?
6665     return {nullptr, LK_FullExpression};
6666   }
6667   llvm_unreachable("unknown entity kind");
6668 }
6669 
6670 namespace {
6671 enum ReferenceKind {
6672   /// Lifetime would be extended by a reference binding to a temporary.
6673   RK_ReferenceBinding,
6674   /// Lifetime would be extended by a std::initializer_list object binding to
6675   /// its backing array.
6676   RK_StdInitializerList,
6677 };
6678 
6679 /// A temporary or local variable. This will be one of:
6680 ///  * A MaterializeTemporaryExpr.
6681 ///  * A DeclRefExpr whose declaration is a local.
6682 ///  * An AddrLabelExpr.
6683 ///  * A BlockExpr for a block with captures.
6684 using Local = Expr*;
6685 
6686 /// Expressions we stepped over when looking for the local state. Any steps
6687 /// that would inhibit lifetime extension or take us out of subexpressions of
6688 /// the initializer are included.
6689 struct IndirectLocalPathEntry {
6690   enum EntryKind {
6691     DefaultInit,
6692     AddressOf,
6693     VarInit,
6694     LValToRVal,
6695     LifetimeBoundCall,
6696     GslReferenceInit,
6697     GslPointerInit
6698   } Kind;
6699   Expr *E;
6700   const Decl *D = nullptr;
6701   IndirectLocalPathEntry() {}
6702   IndirectLocalPathEntry(EntryKind K, Expr *E) : Kind(K), E(E) {}
6703   IndirectLocalPathEntry(EntryKind K, Expr *E, const Decl *D)
6704       : Kind(K), E(E), D(D) {}
6705 };
6706 
6707 using IndirectLocalPath = llvm::SmallVectorImpl<IndirectLocalPathEntry>;
6708 
6709 struct RevertToOldSizeRAII {
6710   IndirectLocalPath &Path;
6711   unsigned OldSize = Path.size();
6712   RevertToOldSizeRAII(IndirectLocalPath &Path) : Path(Path) {}
6713   ~RevertToOldSizeRAII() { Path.resize(OldSize); }
6714 };
6715 
6716 using LocalVisitor = llvm::function_ref<bool(IndirectLocalPath &Path, Local L,
6717                                              ReferenceKind RK)>;
6718 }
6719 
6720 static bool isVarOnPath(IndirectLocalPath &Path, VarDecl *VD) {
6721   for (auto E : Path)
6722     if (E.Kind == IndirectLocalPathEntry::VarInit && E.D == VD)
6723       return true;
6724   return false;
6725 }
6726 
6727 static bool pathContainsInit(IndirectLocalPath &Path) {
6728   return llvm::any_of(Path, [=](IndirectLocalPathEntry E) {
6729     return E.Kind == IndirectLocalPathEntry::DefaultInit ||
6730            E.Kind == IndirectLocalPathEntry::VarInit;
6731   });
6732 }
6733 
6734 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
6735                                              Expr *Init, LocalVisitor Visit,
6736                                              bool RevisitSubinits,
6737                                              bool EnableLifetimeWarnings);
6738 
6739 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
6740                                                   Expr *Init, ReferenceKind RK,
6741                                                   LocalVisitor Visit,
6742                                                   bool EnableLifetimeWarnings);
6743 
6744 template <typename T> static bool isRecordWithAttr(QualType Type) {
6745   if (auto *RD = Type->getAsCXXRecordDecl())
6746     return RD->hasAttr<T>();
6747   return false;
6748 }
6749 
6750 // Decl::isInStdNamespace will return false for iterators in some STL
6751 // implementations due to them being defined in a namespace outside of the std
6752 // namespace.
6753 static bool isInStlNamespace(const Decl *D) {
6754   const DeclContext *DC = D->getDeclContext();
6755   if (!DC)
6756     return false;
6757   if (const auto *ND = dyn_cast<NamespaceDecl>(DC))
6758     if (const IdentifierInfo *II = ND->getIdentifier()) {
6759       StringRef Name = II->getName();
6760       if (Name.size() >= 2 && Name.front() == '_' &&
6761           (Name[1] == '_' || isUppercase(Name[1])))
6762         return true;
6763     }
6764 
6765   return DC->isStdNamespace();
6766 }
6767 
6768 static bool shouldTrackImplicitObjectArg(const CXXMethodDecl *Callee) {
6769   if (auto *Conv = dyn_cast_or_null<CXXConversionDecl>(Callee))
6770     if (isRecordWithAttr<PointerAttr>(Conv->getConversionType()))
6771       return true;
6772   if (!isInStlNamespace(Callee->getParent()))
6773     return false;
6774   if (!isRecordWithAttr<PointerAttr>(Callee->getThisObjectType()) &&
6775       !isRecordWithAttr<OwnerAttr>(Callee->getThisObjectType()))
6776     return false;
6777   if (Callee->getReturnType()->isPointerType() ||
6778       isRecordWithAttr<PointerAttr>(Callee->getReturnType())) {
6779     if (!Callee->getIdentifier())
6780       return false;
6781     return llvm::StringSwitch<bool>(Callee->getName())
6782         .Cases("begin", "rbegin", "cbegin", "crbegin", true)
6783         .Cases("end", "rend", "cend", "crend", true)
6784         .Cases("c_str", "data", "get", true)
6785         // Map and set types.
6786         .Cases("find", "equal_range", "lower_bound", "upper_bound", true)
6787         .Default(false);
6788   } else if (Callee->getReturnType()->isReferenceType()) {
6789     if (!Callee->getIdentifier()) {
6790       auto OO = Callee->getOverloadedOperator();
6791       return OO == OverloadedOperatorKind::OO_Subscript ||
6792              OO == OverloadedOperatorKind::OO_Star;
6793     }
6794     return llvm::StringSwitch<bool>(Callee->getName())
6795         .Cases("front", "back", "at", "top", "value", true)
6796         .Default(false);
6797   }
6798   return false;
6799 }
6800 
6801 static bool shouldTrackFirstArgument(const FunctionDecl *FD) {
6802   if (!FD->getIdentifier() || FD->getNumParams() != 1)
6803     return false;
6804   const auto *RD = FD->getParamDecl(0)->getType()->getPointeeCXXRecordDecl();
6805   if (!FD->isInStdNamespace() || !RD || !RD->isInStdNamespace())
6806     return false;
6807   if (!isRecordWithAttr<PointerAttr>(QualType(RD->getTypeForDecl(), 0)) &&
6808       !isRecordWithAttr<OwnerAttr>(QualType(RD->getTypeForDecl(), 0)))
6809     return false;
6810   if (FD->getReturnType()->isPointerType() ||
6811       isRecordWithAttr<PointerAttr>(FD->getReturnType())) {
6812     return llvm::StringSwitch<bool>(FD->getName())
6813         .Cases("begin", "rbegin", "cbegin", "crbegin", true)
6814         .Cases("end", "rend", "cend", "crend", true)
6815         .Case("data", true)
6816         .Default(false);
6817   } else if (FD->getReturnType()->isReferenceType()) {
6818     return llvm::StringSwitch<bool>(FD->getName())
6819         .Cases("get", "any_cast", true)
6820         .Default(false);
6821   }
6822   return false;
6823 }
6824 
6825 static void handleGslAnnotatedTypes(IndirectLocalPath &Path, Expr *Call,
6826                                     LocalVisitor Visit) {
6827   auto VisitPointerArg = [&](const Decl *D, Expr *Arg, bool Value) {
6828     // We are not interested in the temporary base objects of gsl Pointers:
6829     //   Temp().ptr; // Here ptr might not dangle.
6830     if (isa<MemberExpr>(Arg->IgnoreImpCasts()))
6831       return;
6832     // Once we initialized a value with a reference, it can no longer dangle.
6833     if (!Value) {
6834       for (auto It = Path.rbegin(), End = Path.rend(); It != End; ++It) {
6835         if (It->Kind == IndirectLocalPathEntry::GslReferenceInit)
6836           continue;
6837         if (It->Kind == IndirectLocalPathEntry::GslPointerInit)
6838           return;
6839         break;
6840       }
6841     }
6842     Path.push_back({Value ? IndirectLocalPathEntry::GslPointerInit
6843                           : IndirectLocalPathEntry::GslReferenceInit,
6844                     Arg, D});
6845     if (Arg->isGLValue())
6846       visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding,
6847                                             Visit,
6848                                             /*EnableLifetimeWarnings=*/true);
6849     else
6850       visitLocalsRetainedByInitializer(Path, Arg, Visit, true,
6851                                        /*EnableLifetimeWarnings=*/true);
6852     Path.pop_back();
6853   };
6854 
6855   if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) {
6856     const auto *MD = cast_or_null<CXXMethodDecl>(MCE->getDirectCallee());
6857     if (MD && shouldTrackImplicitObjectArg(MD))
6858       VisitPointerArg(MD, MCE->getImplicitObjectArgument(),
6859                       !MD->getReturnType()->isReferenceType());
6860     return;
6861   } else if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(Call)) {
6862     FunctionDecl *Callee = OCE->getDirectCallee();
6863     if (Callee && Callee->isCXXInstanceMember() &&
6864         shouldTrackImplicitObjectArg(cast<CXXMethodDecl>(Callee)))
6865       VisitPointerArg(Callee, OCE->getArg(0),
6866                       !Callee->getReturnType()->isReferenceType());
6867     return;
6868   } else if (auto *CE = dyn_cast<CallExpr>(Call)) {
6869     FunctionDecl *Callee = CE->getDirectCallee();
6870     if (Callee && shouldTrackFirstArgument(Callee))
6871       VisitPointerArg(Callee, CE->getArg(0),
6872                       !Callee->getReturnType()->isReferenceType());
6873     return;
6874   }
6875 
6876   if (auto *CCE = dyn_cast<CXXConstructExpr>(Call)) {
6877     const auto *Ctor = CCE->getConstructor();
6878     const CXXRecordDecl *RD = Ctor->getParent();
6879     if (CCE->getNumArgs() > 0 && RD->hasAttr<PointerAttr>())
6880       VisitPointerArg(Ctor->getParamDecl(0), CCE->getArgs()[0], true);
6881   }
6882 }
6883 
6884 static bool implicitObjectParamIsLifetimeBound(const FunctionDecl *FD) {
6885   const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
6886   if (!TSI)
6887     return false;
6888   // Don't declare this variable in the second operand of the for-statement;
6889   // GCC miscompiles that by ending its lifetime before evaluating the
6890   // third operand. See gcc.gnu.org/PR86769.
6891   AttributedTypeLoc ATL;
6892   for (TypeLoc TL = TSI->getTypeLoc();
6893        (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
6894        TL = ATL.getModifiedLoc()) {
6895     if (ATL.getAttrAs<LifetimeBoundAttr>())
6896       return true;
6897   }
6898   return false;
6899 }
6900 
6901 static void visitLifetimeBoundArguments(IndirectLocalPath &Path, Expr *Call,
6902                                         LocalVisitor Visit) {
6903   const FunctionDecl *Callee;
6904   ArrayRef<Expr*> Args;
6905 
6906   if (auto *CE = dyn_cast<CallExpr>(Call)) {
6907     Callee = CE->getDirectCallee();
6908     Args = llvm::makeArrayRef(CE->getArgs(), CE->getNumArgs());
6909   } else {
6910     auto *CCE = cast<CXXConstructExpr>(Call);
6911     Callee = CCE->getConstructor();
6912     Args = llvm::makeArrayRef(CCE->getArgs(), CCE->getNumArgs());
6913   }
6914   if (!Callee)
6915     return;
6916 
6917   Expr *ObjectArg = nullptr;
6918   if (isa<CXXOperatorCallExpr>(Call) && Callee->isCXXInstanceMember()) {
6919     ObjectArg = Args[0];
6920     Args = Args.slice(1);
6921   } else if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) {
6922     ObjectArg = MCE->getImplicitObjectArgument();
6923   }
6924 
6925   auto VisitLifetimeBoundArg = [&](const Decl *D, Expr *Arg) {
6926     Path.push_back({IndirectLocalPathEntry::LifetimeBoundCall, Arg, D});
6927     if (Arg->isGLValue())
6928       visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding,
6929                                             Visit,
6930                                             /*EnableLifetimeWarnings=*/false);
6931     else
6932       visitLocalsRetainedByInitializer(Path, Arg, Visit, true,
6933                                        /*EnableLifetimeWarnings=*/false);
6934     Path.pop_back();
6935   };
6936 
6937   if (ObjectArg && implicitObjectParamIsLifetimeBound(Callee))
6938     VisitLifetimeBoundArg(Callee, ObjectArg);
6939 
6940   for (unsigned I = 0,
6941                 N = std::min<unsigned>(Callee->getNumParams(), Args.size());
6942        I != N; ++I) {
6943     if (Callee->getParamDecl(I)->hasAttr<LifetimeBoundAttr>())
6944       VisitLifetimeBoundArg(Callee->getParamDecl(I), Args[I]);
6945   }
6946 }
6947 
6948 /// Visit the locals that would be reachable through a reference bound to the
6949 /// glvalue expression \c Init.
6950 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
6951                                                   Expr *Init, ReferenceKind RK,
6952                                                   LocalVisitor Visit,
6953                                                   bool EnableLifetimeWarnings) {
6954   RevertToOldSizeRAII RAII(Path);
6955 
6956   // Walk past any constructs which we can lifetime-extend across.
6957   Expr *Old;
6958   do {
6959     Old = Init;
6960 
6961     if (auto *FE = dyn_cast<FullExpr>(Init))
6962       Init = FE->getSubExpr();
6963 
6964     if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
6965       // If this is just redundant braces around an initializer, step over it.
6966       if (ILE->isTransparent())
6967         Init = ILE->getInit(0);
6968     }
6969 
6970     // Step over any subobject adjustments; we may have a materialized
6971     // temporary inside them.
6972     Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
6973 
6974     // Per current approach for DR1376, look through casts to reference type
6975     // when performing lifetime extension.
6976     if (CastExpr *CE = dyn_cast<CastExpr>(Init))
6977       if (CE->getSubExpr()->isGLValue())
6978         Init = CE->getSubExpr();
6979 
6980     // Per the current approach for DR1299, look through array element access
6981     // on array glvalues when performing lifetime extension.
6982     if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Init)) {
6983       Init = ASE->getBase();
6984       auto *ICE = dyn_cast<ImplicitCastExpr>(Init);
6985       if (ICE && ICE->getCastKind() == CK_ArrayToPointerDecay)
6986         Init = ICE->getSubExpr();
6987       else
6988         // We can't lifetime extend through this but we might still find some
6989         // retained temporaries.
6990         return visitLocalsRetainedByInitializer(Path, Init, Visit, true,
6991                                                 EnableLifetimeWarnings);
6992     }
6993 
6994     // Step into CXXDefaultInitExprs so we can diagnose cases where a
6995     // constructor inherits one as an implicit mem-initializer.
6996     if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
6997       Path.push_back(
6998           {IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
6999       Init = DIE->getExpr();
7000     }
7001   } while (Init != Old);
7002 
7003   if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Init)) {
7004     if (Visit(Path, Local(MTE), RK))
7005       visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit, true,
7006                                        EnableLifetimeWarnings);
7007   }
7008 
7009   if (isa<CallExpr>(Init)) {
7010     if (EnableLifetimeWarnings)
7011       handleGslAnnotatedTypes(Path, Init, Visit);
7012     return visitLifetimeBoundArguments(Path, Init, Visit);
7013   }
7014 
7015   switch (Init->getStmtClass()) {
7016   case Stmt::DeclRefExprClass: {
7017     // If we find the name of a local non-reference parameter, we could have a
7018     // lifetime problem.
7019     auto *DRE = cast<DeclRefExpr>(Init);
7020     auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
7021     if (VD && VD->hasLocalStorage() &&
7022         !DRE->refersToEnclosingVariableOrCapture()) {
7023       if (!VD->getType()->isReferenceType()) {
7024         Visit(Path, Local(DRE), RK);
7025       } else if (isa<ParmVarDecl>(DRE->getDecl())) {
7026         // The lifetime of a reference parameter is unknown; assume it's OK
7027         // for now.
7028         break;
7029       } else if (VD->getInit() && !isVarOnPath(Path, VD)) {
7030         Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
7031         visitLocalsRetainedByReferenceBinding(Path, VD->getInit(),
7032                                               RK_ReferenceBinding, Visit,
7033                                               EnableLifetimeWarnings);
7034       }
7035     }
7036     break;
7037   }
7038 
7039   case Stmt::UnaryOperatorClass: {
7040     // The only unary operator that make sense to handle here
7041     // is Deref.  All others don't resolve to a "name."  This includes
7042     // handling all sorts of rvalues passed to a unary operator.
7043     const UnaryOperator *U = cast<UnaryOperator>(Init);
7044     if (U->getOpcode() == UO_Deref)
7045       visitLocalsRetainedByInitializer(Path, U->getSubExpr(), Visit, true,
7046                                        EnableLifetimeWarnings);
7047     break;
7048   }
7049 
7050   case Stmt::OMPArraySectionExprClass: {
7051     visitLocalsRetainedByInitializer(Path,
7052                                      cast<OMPArraySectionExpr>(Init)->getBase(),
7053                                      Visit, true, EnableLifetimeWarnings);
7054     break;
7055   }
7056 
7057   case Stmt::ConditionalOperatorClass:
7058   case Stmt::BinaryConditionalOperatorClass: {
7059     auto *C = cast<AbstractConditionalOperator>(Init);
7060     if (!C->getTrueExpr()->getType()->isVoidType())
7061       visitLocalsRetainedByReferenceBinding(Path, C->getTrueExpr(), RK, Visit,
7062                                             EnableLifetimeWarnings);
7063     if (!C->getFalseExpr()->getType()->isVoidType())
7064       visitLocalsRetainedByReferenceBinding(Path, C->getFalseExpr(), RK, Visit,
7065                                             EnableLifetimeWarnings);
7066     break;
7067   }
7068 
7069   // FIXME: Visit the left-hand side of an -> or ->*.
7070 
7071   default:
7072     break;
7073   }
7074 }
7075 
7076 /// Visit the locals that would be reachable through an object initialized by
7077 /// the prvalue expression \c Init.
7078 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
7079                                              Expr *Init, LocalVisitor Visit,
7080                                              bool RevisitSubinits,
7081                                              bool EnableLifetimeWarnings) {
7082   RevertToOldSizeRAII RAII(Path);
7083 
7084   Expr *Old;
7085   do {
7086     Old = Init;
7087 
7088     // Step into CXXDefaultInitExprs so we can diagnose cases where a
7089     // constructor inherits one as an implicit mem-initializer.
7090     if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
7091       Path.push_back({IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
7092       Init = DIE->getExpr();
7093     }
7094 
7095     if (auto *FE = dyn_cast<FullExpr>(Init))
7096       Init = FE->getSubExpr();
7097 
7098     // Dig out the expression which constructs the extended temporary.
7099     Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
7100 
7101     if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init))
7102       Init = BTE->getSubExpr();
7103 
7104     Init = Init->IgnoreParens();
7105 
7106     // Step over value-preserving rvalue casts.
7107     if (auto *CE = dyn_cast<CastExpr>(Init)) {
7108       switch (CE->getCastKind()) {
7109       case CK_LValueToRValue:
7110         // If we can match the lvalue to a const object, we can look at its
7111         // initializer.
7112         Path.push_back({IndirectLocalPathEntry::LValToRVal, CE});
7113         return visitLocalsRetainedByReferenceBinding(
7114             Path, Init, RK_ReferenceBinding,
7115             [&](IndirectLocalPath &Path, Local L, ReferenceKind RK) -> bool {
7116           if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
7117             auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
7118             if (VD && VD->getType().isConstQualified() && VD->getInit() &&
7119                 !isVarOnPath(Path, VD)) {
7120               Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
7121               visitLocalsRetainedByInitializer(Path, VD->getInit(), Visit, true,
7122                                                EnableLifetimeWarnings);
7123             }
7124           } else if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L)) {
7125             if (MTE->getType().isConstQualified())
7126               visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit,
7127                                                true, EnableLifetimeWarnings);
7128           }
7129           return false;
7130         }, EnableLifetimeWarnings);
7131 
7132         // We assume that objects can be retained by pointers cast to integers,
7133         // but not if the integer is cast to floating-point type or to _Complex.
7134         // We assume that casts to 'bool' do not preserve enough information to
7135         // retain a local object.
7136       case CK_NoOp:
7137       case CK_BitCast:
7138       case CK_BaseToDerived:
7139       case CK_DerivedToBase:
7140       case CK_UncheckedDerivedToBase:
7141       case CK_Dynamic:
7142       case CK_ToUnion:
7143       case CK_UserDefinedConversion:
7144       case CK_ConstructorConversion:
7145       case CK_IntegralToPointer:
7146       case CK_PointerToIntegral:
7147       case CK_VectorSplat:
7148       case CK_IntegralCast:
7149       case CK_CPointerToObjCPointerCast:
7150       case CK_BlockPointerToObjCPointerCast:
7151       case CK_AnyPointerToBlockPointerCast:
7152       case CK_AddressSpaceConversion:
7153         break;
7154 
7155       case CK_ArrayToPointerDecay:
7156         // Model array-to-pointer decay as taking the address of the array
7157         // lvalue.
7158         Path.push_back({IndirectLocalPathEntry::AddressOf, CE});
7159         return visitLocalsRetainedByReferenceBinding(Path, CE->getSubExpr(),
7160                                                      RK_ReferenceBinding, Visit,
7161                                                      EnableLifetimeWarnings);
7162 
7163       default:
7164         return;
7165       }
7166 
7167       Init = CE->getSubExpr();
7168     }
7169   } while (Old != Init);
7170 
7171   // C++17 [dcl.init.list]p6:
7172   //   initializing an initializer_list object from the array extends the
7173   //   lifetime of the array exactly like binding a reference to a temporary.
7174   if (auto *ILE = dyn_cast<CXXStdInitializerListExpr>(Init))
7175     return visitLocalsRetainedByReferenceBinding(Path, ILE->getSubExpr(),
7176                                                  RK_StdInitializerList, Visit,
7177                                                  EnableLifetimeWarnings);
7178 
7179   if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
7180     // We already visited the elements of this initializer list while
7181     // performing the initialization. Don't visit them again unless we've
7182     // changed the lifetime of the initialized entity.
7183     if (!RevisitSubinits)
7184       return;
7185 
7186     if (ILE->isTransparent())
7187       return visitLocalsRetainedByInitializer(Path, ILE->getInit(0), Visit,
7188                                               RevisitSubinits,
7189                                               EnableLifetimeWarnings);
7190 
7191     if (ILE->getType()->isArrayType()) {
7192       for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I)
7193         visitLocalsRetainedByInitializer(Path, ILE->getInit(I), Visit,
7194                                          RevisitSubinits,
7195                                          EnableLifetimeWarnings);
7196       return;
7197     }
7198 
7199     if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) {
7200       assert(RD->isAggregate() && "aggregate init on non-aggregate");
7201 
7202       // If we lifetime-extend a braced initializer which is initializing an
7203       // aggregate, and that aggregate contains reference members which are
7204       // bound to temporaries, those temporaries are also lifetime-extended.
7205       if (RD->isUnion() && ILE->getInitializedFieldInUnion() &&
7206           ILE->getInitializedFieldInUnion()->getType()->isReferenceType())
7207         visitLocalsRetainedByReferenceBinding(Path, ILE->getInit(0),
7208                                               RK_ReferenceBinding, Visit,
7209                                               EnableLifetimeWarnings);
7210       else {
7211         unsigned Index = 0;
7212         for (; Index < RD->getNumBases() && Index < ILE->getNumInits(); ++Index)
7213           visitLocalsRetainedByInitializer(Path, ILE->getInit(Index), Visit,
7214                                            RevisitSubinits,
7215                                            EnableLifetimeWarnings);
7216         for (const auto *I : RD->fields()) {
7217           if (Index >= ILE->getNumInits())
7218             break;
7219           if (I->isUnnamedBitfield())
7220             continue;
7221           Expr *SubInit = ILE->getInit(Index);
7222           if (I->getType()->isReferenceType())
7223             visitLocalsRetainedByReferenceBinding(Path, SubInit,
7224                                                   RK_ReferenceBinding, Visit,
7225                                                   EnableLifetimeWarnings);
7226           else
7227             // This might be either aggregate-initialization of a member or
7228             // initialization of a std::initializer_list object. Regardless,
7229             // we should recursively lifetime-extend that initializer.
7230             visitLocalsRetainedByInitializer(Path, SubInit, Visit,
7231                                              RevisitSubinits,
7232                                              EnableLifetimeWarnings);
7233           ++Index;
7234         }
7235       }
7236     }
7237     return;
7238   }
7239 
7240   // The lifetime of an init-capture is that of the closure object constructed
7241   // by a lambda-expression.
7242   if (auto *LE = dyn_cast<LambdaExpr>(Init)) {
7243     for (Expr *E : LE->capture_inits()) {
7244       if (!E)
7245         continue;
7246       if (E->isGLValue())
7247         visitLocalsRetainedByReferenceBinding(Path, E, RK_ReferenceBinding,
7248                                               Visit, EnableLifetimeWarnings);
7249       else
7250         visitLocalsRetainedByInitializer(Path, E, Visit, true,
7251                                          EnableLifetimeWarnings);
7252     }
7253   }
7254 
7255   if (isa<CallExpr>(Init) || isa<CXXConstructExpr>(Init)) {
7256     if (EnableLifetimeWarnings)
7257       handleGslAnnotatedTypes(Path, Init, Visit);
7258     return visitLifetimeBoundArguments(Path, Init, Visit);
7259   }
7260 
7261   switch (Init->getStmtClass()) {
7262   case Stmt::UnaryOperatorClass: {
7263     auto *UO = cast<UnaryOperator>(Init);
7264     // If the initializer is the address of a local, we could have a lifetime
7265     // problem.
7266     if (UO->getOpcode() == UO_AddrOf) {
7267       // If this is &rvalue, then it's ill-formed and we have already diagnosed
7268       // it. Don't produce a redundant warning about the lifetime of the
7269       // temporary.
7270       if (isa<MaterializeTemporaryExpr>(UO->getSubExpr()))
7271         return;
7272 
7273       Path.push_back({IndirectLocalPathEntry::AddressOf, UO});
7274       visitLocalsRetainedByReferenceBinding(Path, UO->getSubExpr(),
7275                                             RK_ReferenceBinding, Visit,
7276                                             EnableLifetimeWarnings);
7277     }
7278     break;
7279   }
7280 
7281   case Stmt::BinaryOperatorClass: {
7282     // Handle pointer arithmetic.
7283     auto *BO = cast<BinaryOperator>(Init);
7284     BinaryOperatorKind BOK = BO->getOpcode();
7285     if (!BO->getType()->isPointerType() || (BOK != BO_Add && BOK != BO_Sub))
7286       break;
7287 
7288     if (BO->getLHS()->getType()->isPointerType())
7289       visitLocalsRetainedByInitializer(Path, BO->getLHS(), Visit, true,
7290                                        EnableLifetimeWarnings);
7291     else if (BO->getRHS()->getType()->isPointerType())
7292       visitLocalsRetainedByInitializer(Path, BO->getRHS(), Visit, true,
7293                                        EnableLifetimeWarnings);
7294     break;
7295   }
7296 
7297   case Stmt::ConditionalOperatorClass:
7298   case Stmt::BinaryConditionalOperatorClass: {
7299     auto *C = cast<AbstractConditionalOperator>(Init);
7300     // In C++, we can have a throw-expression operand, which has 'void' type
7301     // and isn't interesting from a lifetime perspective.
7302     if (!C->getTrueExpr()->getType()->isVoidType())
7303       visitLocalsRetainedByInitializer(Path, C->getTrueExpr(), Visit, true,
7304                                        EnableLifetimeWarnings);
7305     if (!C->getFalseExpr()->getType()->isVoidType())
7306       visitLocalsRetainedByInitializer(Path, C->getFalseExpr(), Visit, true,
7307                                        EnableLifetimeWarnings);
7308     break;
7309   }
7310 
7311   case Stmt::BlockExprClass:
7312     if (cast<BlockExpr>(Init)->getBlockDecl()->hasCaptures()) {
7313       // This is a local block, whose lifetime is that of the function.
7314       Visit(Path, Local(cast<BlockExpr>(Init)), RK_ReferenceBinding);
7315     }
7316     break;
7317 
7318   case Stmt::AddrLabelExprClass:
7319     // We want to warn if the address of a label would escape the function.
7320     Visit(Path, Local(cast<AddrLabelExpr>(Init)), RK_ReferenceBinding);
7321     break;
7322 
7323   default:
7324     break;
7325   }
7326 }
7327 
7328 /// Determine whether this is an indirect path to a temporary that we are
7329 /// supposed to lifetime-extend along (but don't).
7330 static bool shouldLifetimeExtendThroughPath(const IndirectLocalPath &Path) {
7331   for (auto Elem : Path) {
7332     if (Elem.Kind != IndirectLocalPathEntry::DefaultInit)
7333       return false;
7334   }
7335   return true;
7336 }
7337 
7338 /// Find the range for the first interesting entry in the path at or after I.
7339 static SourceRange nextPathEntryRange(const IndirectLocalPath &Path, unsigned I,
7340                                       Expr *E) {
7341   for (unsigned N = Path.size(); I != N; ++I) {
7342     switch (Path[I].Kind) {
7343     case IndirectLocalPathEntry::AddressOf:
7344     case IndirectLocalPathEntry::LValToRVal:
7345     case IndirectLocalPathEntry::LifetimeBoundCall:
7346     case IndirectLocalPathEntry::GslReferenceInit:
7347     case IndirectLocalPathEntry::GslPointerInit:
7348       // These exist primarily to mark the path as not permitting or
7349       // supporting lifetime extension.
7350       break;
7351 
7352     case IndirectLocalPathEntry::VarInit:
7353       if (cast<VarDecl>(Path[I].D)->isImplicit())
7354         return SourceRange();
7355       LLVM_FALLTHROUGH;
7356     case IndirectLocalPathEntry::DefaultInit:
7357       return Path[I].E->getSourceRange();
7358     }
7359   }
7360   return E->getSourceRange();
7361 }
7362 
7363 static bool pathOnlyInitializesGslPointer(IndirectLocalPath &Path) {
7364   for (auto It = Path.rbegin(), End = Path.rend(); It != End; ++It) {
7365     if (It->Kind == IndirectLocalPathEntry::VarInit)
7366       continue;
7367     if (It->Kind == IndirectLocalPathEntry::AddressOf)
7368       continue;
7369     return It->Kind == IndirectLocalPathEntry::GslPointerInit ||
7370            It->Kind == IndirectLocalPathEntry::GslReferenceInit;
7371   }
7372   return false;
7373 }
7374 
7375 void Sema::checkInitializerLifetime(const InitializedEntity &Entity,
7376                                     Expr *Init) {
7377   LifetimeResult LR = getEntityLifetime(&Entity);
7378   LifetimeKind LK = LR.getInt();
7379   const InitializedEntity *ExtendingEntity = LR.getPointer();
7380 
7381   // If this entity doesn't have an interesting lifetime, don't bother looking
7382   // for temporaries within its initializer.
7383   if (LK == LK_FullExpression)
7384     return;
7385 
7386   auto TemporaryVisitor = [&](IndirectLocalPath &Path, Local L,
7387                               ReferenceKind RK) -> bool {
7388     SourceRange DiagRange = nextPathEntryRange(Path, 0, L);
7389     SourceLocation DiagLoc = DiagRange.getBegin();
7390 
7391     auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L);
7392 
7393     bool IsGslPtrInitWithGslTempOwner = false;
7394     bool IsLocalGslOwner = false;
7395     if (pathOnlyInitializesGslPointer(Path)) {
7396       if (isa<DeclRefExpr>(L)) {
7397         // We do not want to follow the references when returning a pointer originating
7398         // from a local owner to avoid the following false positive:
7399         //   int &p = *localUniquePtr;
7400         //   someContainer.add(std::move(localUniquePtr));
7401         //   return p;
7402         IsLocalGslOwner = isRecordWithAttr<OwnerAttr>(L->getType());
7403         if (pathContainsInit(Path) || !IsLocalGslOwner)
7404           return false;
7405       } else {
7406         IsGslPtrInitWithGslTempOwner = MTE && !MTE->getExtendingDecl() &&
7407                             isRecordWithAttr<OwnerAttr>(MTE->getType());
7408         // Skipping a chain of initializing gsl::Pointer annotated objects.
7409         // We are looking only for the final source to find out if it was
7410         // a local or temporary owner or the address of a local variable/param.
7411         if (!IsGslPtrInitWithGslTempOwner)
7412           return true;
7413       }
7414     }
7415 
7416     switch (LK) {
7417     case LK_FullExpression:
7418       llvm_unreachable("already handled this");
7419 
7420     case LK_Extended: {
7421       if (!MTE) {
7422         // The initialized entity has lifetime beyond the full-expression,
7423         // and the local entity does too, so don't warn.
7424         //
7425         // FIXME: We should consider warning if a static / thread storage
7426         // duration variable retains an automatic storage duration local.
7427         return false;
7428       }
7429 
7430       if (IsGslPtrInitWithGslTempOwner && DiagLoc.isValid()) {
7431         Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange;
7432         return false;
7433       }
7434 
7435       // Lifetime-extend the temporary.
7436       if (Path.empty()) {
7437         // Update the storage duration of the materialized temporary.
7438         // FIXME: Rebuild the expression instead of mutating it.
7439         MTE->setExtendingDecl(ExtendingEntity->getDecl(),
7440                               ExtendingEntity->allocateManglingNumber());
7441         // Also visit the temporaries lifetime-extended by this initializer.
7442         return true;
7443       }
7444 
7445       if (shouldLifetimeExtendThroughPath(Path)) {
7446         // We're supposed to lifetime-extend the temporary along this path (per
7447         // the resolution of DR1815), but we don't support that yet.
7448         //
7449         // FIXME: Properly handle this situation. Perhaps the easiest approach
7450         // would be to clone the initializer expression on each use that would
7451         // lifetime extend its temporaries.
7452         Diag(DiagLoc, diag::warn_unsupported_lifetime_extension)
7453             << RK << DiagRange;
7454       } else {
7455         // If the path goes through the initialization of a variable or field,
7456         // it can't possibly reach a temporary created in this full-expression.
7457         // We will have already diagnosed any problems with the initializer.
7458         if (pathContainsInit(Path))
7459           return false;
7460 
7461         Diag(DiagLoc, diag::warn_dangling_variable)
7462             << RK << !Entity.getParent()
7463             << ExtendingEntity->getDecl()->isImplicit()
7464             << ExtendingEntity->getDecl() << Init->isGLValue() << DiagRange;
7465       }
7466       break;
7467     }
7468 
7469     case LK_MemInitializer: {
7470       if (isa<MaterializeTemporaryExpr>(L)) {
7471         // Under C++ DR1696, if a mem-initializer (or a default member
7472         // initializer used by the absence of one) would lifetime-extend a
7473         // temporary, the program is ill-formed.
7474         if (auto *ExtendingDecl =
7475                 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
7476           if (IsGslPtrInitWithGslTempOwner) {
7477             Diag(DiagLoc, diag::warn_dangling_lifetime_pointer_member)
7478                 << ExtendingDecl << DiagRange;
7479             Diag(ExtendingDecl->getLocation(),
7480                  diag::note_ref_or_ptr_member_declared_here)
7481                 << true;
7482             return false;
7483           }
7484           bool IsSubobjectMember = ExtendingEntity != &Entity;
7485           Diag(DiagLoc, shouldLifetimeExtendThroughPath(Path)
7486                             ? diag::err_dangling_member
7487                             : diag::warn_dangling_member)
7488               << ExtendingDecl << IsSubobjectMember << RK << DiagRange;
7489           // Don't bother adding a note pointing to the field if we're inside
7490           // its default member initializer; our primary diagnostic points to
7491           // the same place in that case.
7492           if (Path.empty() ||
7493               Path.back().Kind != IndirectLocalPathEntry::DefaultInit) {
7494             Diag(ExtendingDecl->getLocation(),
7495                  diag::note_lifetime_extending_member_declared_here)
7496                 << RK << IsSubobjectMember;
7497           }
7498         } else {
7499           // We have a mem-initializer but no particular field within it; this
7500           // is either a base class or a delegating initializer directly
7501           // initializing the base-class from something that doesn't live long
7502           // enough.
7503           //
7504           // FIXME: Warn on this.
7505           return false;
7506         }
7507       } else {
7508         // Paths via a default initializer can only occur during error recovery
7509         // (there's no other way that a default initializer can refer to a
7510         // local). Don't produce a bogus warning on those cases.
7511         if (pathContainsInit(Path))
7512           return false;
7513 
7514         // Suppress false positives for code like the one below:
7515         //   Ctor(unique_ptr<T> up) : member(*up), member2(move(up)) {}
7516         if (IsLocalGslOwner && pathOnlyInitializesGslPointer(Path))
7517           return false;
7518 
7519         auto *DRE = dyn_cast<DeclRefExpr>(L);
7520         auto *VD = DRE ? dyn_cast<VarDecl>(DRE->getDecl()) : nullptr;
7521         if (!VD) {
7522           // A member was initialized to a local block.
7523           // FIXME: Warn on this.
7524           return false;
7525         }
7526 
7527         if (auto *Member =
7528                 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
7529           bool IsPointer = !Member->getType()->isReferenceType();
7530           Diag(DiagLoc, IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
7531                                   : diag::warn_bind_ref_member_to_parameter)
7532               << Member << VD << isa<ParmVarDecl>(VD) << DiagRange;
7533           Diag(Member->getLocation(),
7534                diag::note_ref_or_ptr_member_declared_here)
7535               << (unsigned)IsPointer;
7536         }
7537       }
7538       break;
7539     }
7540 
7541     case LK_New:
7542       if (isa<MaterializeTemporaryExpr>(L)) {
7543         if (IsGslPtrInitWithGslTempOwner)
7544           Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange;
7545         else
7546           Diag(DiagLoc, RK == RK_ReferenceBinding
7547                             ? diag::warn_new_dangling_reference
7548                             : diag::warn_new_dangling_initializer_list)
7549               << !Entity.getParent() << DiagRange;
7550       } else {
7551         // We can't determine if the allocation outlives the local declaration.
7552         return false;
7553       }
7554       break;
7555 
7556     case LK_Return:
7557     case LK_StmtExprResult:
7558       if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
7559         // We can't determine if the local variable outlives the statement
7560         // expression.
7561         if (LK == LK_StmtExprResult)
7562           return false;
7563         Diag(DiagLoc, diag::warn_ret_stack_addr_ref)
7564             << Entity.getType()->isReferenceType() << DRE->getDecl()
7565             << isa<ParmVarDecl>(DRE->getDecl()) << DiagRange;
7566       } else if (isa<BlockExpr>(L)) {
7567         Diag(DiagLoc, diag::err_ret_local_block) << DiagRange;
7568       } else if (isa<AddrLabelExpr>(L)) {
7569         // Don't warn when returning a label from a statement expression.
7570         // Leaving the scope doesn't end its lifetime.
7571         if (LK == LK_StmtExprResult)
7572           return false;
7573         Diag(DiagLoc, diag::warn_ret_addr_label) << DiagRange;
7574       } else {
7575         Diag(DiagLoc, diag::warn_ret_local_temp_addr_ref)
7576          << Entity.getType()->isReferenceType() << DiagRange;
7577       }
7578       break;
7579     }
7580 
7581     for (unsigned I = 0; I != Path.size(); ++I) {
7582       auto Elem = Path[I];
7583 
7584       switch (Elem.Kind) {
7585       case IndirectLocalPathEntry::AddressOf:
7586       case IndirectLocalPathEntry::LValToRVal:
7587         // These exist primarily to mark the path as not permitting or
7588         // supporting lifetime extension.
7589         break;
7590 
7591       case IndirectLocalPathEntry::LifetimeBoundCall:
7592       case IndirectLocalPathEntry::GslPointerInit:
7593       case IndirectLocalPathEntry::GslReferenceInit:
7594         // FIXME: Consider adding a note for these.
7595         break;
7596 
7597       case IndirectLocalPathEntry::DefaultInit: {
7598         auto *FD = cast<FieldDecl>(Elem.D);
7599         Diag(FD->getLocation(), diag::note_init_with_default_member_initalizer)
7600             << FD << nextPathEntryRange(Path, I + 1, L);
7601         break;
7602       }
7603 
7604       case IndirectLocalPathEntry::VarInit:
7605         const VarDecl *VD = cast<VarDecl>(Elem.D);
7606         Diag(VD->getLocation(), diag::note_local_var_initializer)
7607             << VD->getType()->isReferenceType()
7608             << VD->isImplicit() << VD->getDeclName()
7609             << nextPathEntryRange(Path, I + 1, L);
7610         break;
7611       }
7612     }
7613 
7614     // We didn't lifetime-extend, so don't go any further; we don't need more
7615     // warnings or errors on inner temporaries within this one's initializer.
7616     return false;
7617   };
7618 
7619   bool EnableLifetimeWarnings = !getDiagnostics().isIgnored(
7620       diag::warn_dangling_lifetime_pointer, SourceLocation());
7621   llvm::SmallVector<IndirectLocalPathEntry, 8> Path;
7622   if (Init->isGLValue())
7623     visitLocalsRetainedByReferenceBinding(Path, Init, RK_ReferenceBinding,
7624                                           TemporaryVisitor,
7625                                           EnableLifetimeWarnings);
7626   else
7627     visitLocalsRetainedByInitializer(Path, Init, TemporaryVisitor, false,
7628                                      EnableLifetimeWarnings);
7629 }
7630 
7631 static void DiagnoseNarrowingInInitList(Sema &S,
7632                                         const ImplicitConversionSequence &ICS,
7633                                         QualType PreNarrowingType,
7634                                         QualType EntityType,
7635                                         const Expr *PostInit);
7636 
7637 /// Provide warnings when std::move is used on construction.
7638 static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr,
7639                                     bool IsReturnStmt) {
7640   if (!InitExpr)
7641     return;
7642 
7643   if (S.inTemplateInstantiation())
7644     return;
7645 
7646   QualType DestType = InitExpr->getType();
7647   if (!DestType->isRecordType())
7648     return;
7649 
7650   unsigned DiagID = 0;
7651   if (IsReturnStmt) {
7652     const CXXConstructExpr *CCE =
7653         dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens());
7654     if (!CCE || CCE->getNumArgs() != 1)
7655       return;
7656 
7657     if (!CCE->getConstructor()->isCopyOrMoveConstructor())
7658       return;
7659 
7660     InitExpr = CCE->getArg(0)->IgnoreImpCasts();
7661   }
7662 
7663   // Find the std::move call and get the argument.
7664   const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens());
7665   if (!CE || !CE->isCallToStdMove())
7666     return;
7667 
7668   const Expr *Arg = CE->getArg(0)->IgnoreImplicit();
7669 
7670   if (IsReturnStmt) {
7671     const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts());
7672     if (!DRE || DRE->refersToEnclosingVariableOrCapture())
7673       return;
7674 
7675     const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
7676     if (!VD || !VD->hasLocalStorage())
7677       return;
7678 
7679     // __block variables are not moved implicitly.
7680     if (VD->hasAttr<BlocksAttr>())
7681       return;
7682 
7683     QualType SourceType = VD->getType();
7684     if (!SourceType->isRecordType())
7685       return;
7686 
7687     if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) {
7688       return;
7689     }
7690 
7691     // If we're returning a function parameter, copy elision
7692     // is not possible.
7693     if (isa<ParmVarDecl>(VD))
7694       DiagID = diag::warn_redundant_move_on_return;
7695     else
7696       DiagID = diag::warn_pessimizing_move_on_return;
7697   } else {
7698     DiagID = diag::warn_pessimizing_move_on_initialization;
7699     const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens();
7700     if (!ArgStripped->isRValue() || !ArgStripped->getType()->isRecordType())
7701       return;
7702   }
7703 
7704   S.Diag(CE->getBeginLoc(), DiagID);
7705 
7706   // Get all the locations for a fix-it.  Don't emit the fix-it if any location
7707   // is within a macro.
7708   SourceLocation CallBegin = CE->getCallee()->getBeginLoc();
7709   if (CallBegin.isMacroID())
7710     return;
7711   SourceLocation RParen = CE->getRParenLoc();
7712   if (RParen.isMacroID())
7713     return;
7714   SourceLocation LParen;
7715   SourceLocation ArgLoc = Arg->getBeginLoc();
7716 
7717   // Special testing for the argument location.  Since the fix-it needs the
7718   // location right before the argument, the argument location can be in a
7719   // macro only if it is at the beginning of the macro.
7720   while (ArgLoc.isMacroID() &&
7721          S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) {
7722     ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).getBegin();
7723   }
7724 
7725   if (LParen.isMacroID())
7726     return;
7727 
7728   LParen = ArgLoc.getLocWithOffset(-1);
7729 
7730   S.Diag(CE->getBeginLoc(), diag::note_remove_move)
7731       << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen))
7732       << FixItHint::CreateRemoval(SourceRange(RParen, RParen));
7733 }
7734 
7735 static void CheckForNullPointerDereference(Sema &S, const Expr *E) {
7736   // Check to see if we are dereferencing a null pointer.  If so, this is
7737   // undefined behavior, so warn about it.  This only handles the pattern
7738   // "*null", which is a very syntactic check.
7739   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
7740     if (UO->getOpcode() == UO_Deref &&
7741         UO->getSubExpr()->IgnoreParenCasts()->
7742         isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) {
7743     S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
7744                           S.PDiag(diag::warn_binding_null_to_reference)
7745                             << UO->getSubExpr()->getSourceRange());
7746   }
7747 }
7748 
7749 MaterializeTemporaryExpr *
7750 Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary,
7751                                      bool BoundToLvalueReference) {
7752   auto MTE = new (Context)
7753       MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference);
7754 
7755   // Order an ExprWithCleanups for lifetime marks.
7756   //
7757   // TODO: It'll be good to have a single place to check the access of the
7758   // destructor and generate ExprWithCleanups for various uses. Currently these
7759   // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary,
7760   // but there may be a chance to merge them.
7761   Cleanup.setExprNeedsCleanups(false);
7762   return MTE;
7763 }
7764 
7765 ExprResult Sema::TemporaryMaterializationConversion(Expr *E) {
7766   // In C++98, we don't want to implicitly create an xvalue.
7767   // FIXME: This means that AST consumers need to deal with "prvalues" that
7768   // denote materialized temporaries. Maybe we should add another ValueKind
7769   // for "xvalue pretending to be a prvalue" for C++98 support.
7770   if (!E->isRValue() || !getLangOpts().CPlusPlus11)
7771     return E;
7772 
7773   // C++1z [conv.rval]/1: T shall be a complete type.
7774   // FIXME: Does this ever matter (can we form a prvalue of incomplete type)?
7775   // If so, we should check for a non-abstract class type here too.
7776   QualType T = E->getType();
7777   if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type))
7778     return ExprError();
7779 
7780   return CreateMaterializeTemporaryExpr(E->getType(), E, false);
7781 }
7782 
7783 ExprResult Sema::PerformQualificationConversion(Expr *E, QualType Ty,
7784                                                 ExprValueKind VK,
7785                                                 CheckedConversionKind CCK) {
7786 
7787   CastKind CK = CK_NoOp;
7788 
7789   if (VK == VK_RValue) {
7790     auto PointeeTy = Ty->getPointeeType();
7791     auto ExprPointeeTy = E->getType()->getPointeeType();
7792     if (!PointeeTy.isNull() &&
7793         PointeeTy.getAddressSpace() != ExprPointeeTy.getAddressSpace())
7794       CK = CK_AddressSpaceConversion;
7795   } else if (Ty.getAddressSpace() != E->getType().getAddressSpace()) {
7796     CK = CK_AddressSpaceConversion;
7797   }
7798 
7799   return ImpCastExprToType(E, Ty, CK, VK, /*BasePath=*/nullptr, CCK);
7800 }
7801 
7802 ExprResult InitializationSequence::Perform(Sema &S,
7803                                            const InitializedEntity &Entity,
7804                                            const InitializationKind &Kind,
7805                                            MultiExprArg Args,
7806                                            QualType *ResultType) {
7807   if (Failed()) {
7808     Diagnose(S, Entity, Kind, Args);
7809     return ExprError();
7810   }
7811   if (!ZeroInitializationFixit.empty()) {
7812     unsigned DiagID = diag::err_default_init_const;
7813     if (Decl *D = Entity.getDecl())
7814       if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>())
7815         DiagID = diag::ext_default_init_const;
7816 
7817     // The initialization would have succeeded with this fixit. Since the fixit
7818     // is on the error, we need to build a valid AST in this case, so this isn't
7819     // handled in the Failed() branch above.
7820     QualType DestType = Entity.getType();
7821     S.Diag(Kind.getLocation(), DiagID)
7822         << DestType << (bool)DestType->getAs<RecordType>()
7823         << FixItHint::CreateInsertion(ZeroInitializationFixitLoc,
7824                                       ZeroInitializationFixit);
7825   }
7826 
7827   if (getKind() == DependentSequence) {
7828     // If the declaration is a non-dependent, incomplete array type
7829     // that has an initializer, then its type will be completed once
7830     // the initializer is instantiated.
7831     if (ResultType && !Entity.getType()->isDependentType() &&
7832         Args.size() == 1) {
7833       QualType DeclType = Entity.getType();
7834       if (const IncompleteArrayType *ArrayT
7835                            = S.Context.getAsIncompleteArrayType(DeclType)) {
7836         // FIXME: We don't currently have the ability to accurately
7837         // compute the length of an initializer list without
7838         // performing full type-checking of the initializer list
7839         // (since we have to determine where braces are implicitly
7840         // introduced and such).  So, we fall back to making the array
7841         // type a dependently-sized array type with no specified
7842         // bound.
7843         if (isa<InitListExpr>((Expr *)Args[0])) {
7844           SourceRange Brackets;
7845 
7846           // Scavange the location of the brackets from the entity, if we can.
7847           if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Entity.getDecl())) {
7848             if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
7849               TypeLoc TL = TInfo->getTypeLoc();
7850               if (IncompleteArrayTypeLoc ArrayLoc =
7851                       TL.getAs<IncompleteArrayTypeLoc>())
7852                 Brackets = ArrayLoc.getBracketsRange();
7853             }
7854           }
7855 
7856           *ResultType
7857             = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
7858                                                    /*NumElts=*/nullptr,
7859                                                    ArrayT->getSizeModifier(),
7860                                        ArrayT->getIndexTypeCVRQualifiers(),
7861                                                    Brackets);
7862         }
7863 
7864       }
7865     }
7866     if (Kind.getKind() == InitializationKind::IK_Direct &&
7867         !Kind.isExplicitCast()) {
7868       // Rebuild the ParenListExpr.
7869       SourceRange ParenRange = Kind.getParenOrBraceRange();
7870       return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
7871                                   Args);
7872     }
7873     assert(Kind.getKind() == InitializationKind::IK_Copy ||
7874            Kind.isExplicitCast() ||
7875            Kind.getKind() == InitializationKind::IK_DirectList);
7876     return ExprResult(Args[0]);
7877   }
7878 
7879   // No steps means no initialization.
7880   if (Steps.empty())
7881     return ExprResult((Expr *)nullptr);
7882 
7883   if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
7884       Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
7885       !Entity.isParameterKind()) {
7886     // Produce a C++98 compatibility warning if we are initializing a reference
7887     // from an initializer list. For parameters, we produce a better warning
7888     // elsewhere.
7889     Expr *Init = Args[0];
7890     S.Diag(Init->getBeginLoc(), diag::warn_cxx98_compat_reference_list_init)
7891         << Init->getSourceRange();
7892   }
7893 
7894   // OpenCL v2.0 s6.13.11.1. atomic variables can be initialized in global scope
7895   QualType ETy = Entity.getType();
7896   bool HasGlobalAS = ETy.hasAddressSpace() &&
7897                      ETy.getAddressSpace() == LangAS::opencl_global;
7898 
7899   if (S.getLangOpts().OpenCLVersion >= 200 &&
7900       ETy->isAtomicType() && !HasGlobalAS &&
7901       Entity.getKind() == InitializedEntity::EK_Variable && Args.size() > 0) {
7902     S.Diag(Args[0]->getBeginLoc(), diag::err_opencl_atomic_init)
7903         << 1
7904         << SourceRange(Entity.getDecl()->getBeginLoc(), Args[0]->getEndLoc());
7905     return ExprError();
7906   }
7907 
7908   QualType DestType = Entity.getType().getNonReferenceType();
7909   // FIXME: Ugly hack around the fact that Entity.getType() is not
7910   // the same as Entity.getDecl()->getType() in cases involving type merging,
7911   //  and we want latter when it makes sense.
7912   if (ResultType)
7913     *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
7914                                      Entity.getType();
7915 
7916   ExprResult CurInit((Expr *)nullptr);
7917   SmallVector<Expr*, 4> ArrayLoopCommonExprs;
7918 
7919   // For initialization steps that start with a single initializer,
7920   // grab the only argument out the Args and place it into the "current"
7921   // initializer.
7922   switch (Steps.front().Kind) {
7923   case SK_ResolveAddressOfOverloadedFunction:
7924   case SK_CastDerivedToBaseRValue:
7925   case SK_CastDerivedToBaseXValue:
7926   case SK_CastDerivedToBaseLValue:
7927   case SK_BindReference:
7928   case SK_BindReferenceToTemporary:
7929   case SK_FinalCopy:
7930   case SK_ExtraneousCopyToTemporary:
7931   case SK_UserConversion:
7932   case SK_QualificationConversionLValue:
7933   case SK_QualificationConversionXValue:
7934   case SK_QualificationConversionRValue:
7935   case SK_AtomicConversion:
7936   case SK_ConversionSequence:
7937   case SK_ConversionSequenceNoNarrowing:
7938   case SK_ListInitialization:
7939   case SK_UnwrapInitList:
7940   case SK_RewrapInitList:
7941   case SK_CAssignment:
7942   case SK_StringInit:
7943   case SK_ObjCObjectConversion:
7944   case SK_ArrayLoopIndex:
7945   case SK_ArrayLoopInit:
7946   case SK_ArrayInit:
7947   case SK_GNUArrayInit:
7948   case SK_ParenthesizedArrayInit:
7949   case SK_PassByIndirectCopyRestore:
7950   case SK_PassByIndirectRestore:
7951   case SK_ProduceObjCObject:
7952   case SK_StdInitializerList:
7953   case SK_OCLSamplerInit:
7954   case SK_OCLZeroOpaqueType: {
7955     assert(Args.size() == 1);
7956     CurInit = Args[0];
7957     if (!CurInit.get()) return ExprError();
7958     break;
7959   }
7960 
7961   case SK_ConstructorInitialization:
7962   case SK_ConstructorInitializationFromList:
7963   case SK_StdInitializerListConstructorCall:
7964   case SK_ZeroInitialization:
7965     break;
7966   }
7967 
7968   // Promote from an unevaluated context to an unevaluated list context in
7969   // C++11 list-initialization; we need to instantiate entities usable in
7970   // constant expressions here in order to perform narrowing checks =(
7971   EnterExpressionEvaluationContext Evaluated(
7972       S, EnterExpressionEvaluationContext::InitList,
7973       CurInit.get() && isa<InitListExpr>(CurInit.get()));
7974 
7975   // C++ [class.abstract]p2:
7976   //   no objects of an abstract class can be created except as subobjects
7977   //   of a class derived from it
7978   auto checkAbstractType = [&](QualType T) -> bool {
7979     if (Entity.getKind() == InitializedEntity::EK_Base ||
7980         Entity.getKind() == InitializedEntity::EK_Delegating)
7981       return false;
7982     return S.RequireNonAbstractType(Kind.getLocation(), T,
7983                                     diag::err_allocation_of_abstract_type);
7984   };
7985 
7986   // Walk through the computed steps for the initialization sequence,
7987   // performing the specified conversions along the way.
7988   bool ConstructorInitRequiresZeroInit = false;
7989   for (step_iterator Step = step_begin(), StepEnd = step_end();
7990        Step != StepEnd; ++Step) {
7991     if (CurInit.isInvalid())
7992       return ExprError();
7993 
7994     QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
7995 
7996     switch (Step->Kind) {
7997     case SK_ResolveAddressOfOverloadedFunction:
7998       // Overload resolution determined which function invoke; update the
7999       // initializer to reflect that choice.
8000       S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
8001       if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()))
8002         return ExprError();
8003       CurInit = S.FixOverloadedFunctionReference(CurInit,
8004                                                  Step->Function.FoundDecl,
8005                                                  Step->Function.Function);
8006       break;
8007 
8008     case SK_CastDerivedToBaseRValue:
8009     case SK_CastDerivedToBaseXValue:
8010     case SK_CastDerivedToBaseLValue: {
8011       // We have a derived-to-base cast that produces either an rvalue or an
8012       // lvalue. Perform that cast.
8013 
8014       CXXCastPath BasePath;
8015 
8016       // Casts to inaccessible base classes are allowed with C-style casts.
8017       bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
8018       if (S.CheckDerivedToBaseConversion(
8019               SourceType, Step->Type, CurInit.get()->getBeginLoc(),
8020               CurInit.get()->getSourceRange(), &BasePath, IgnoreBaseAccess))
8021         return ExprError();
8022 
8023       ExprValueKind VK =
8024           Step->Kind == SK_CastDerivedToBaseLValue ?
8025               VK_LValue :
8026               (Step->Kind == SK_CastDerivedToBaseXValue ?
8027                    VK_XValue :
8028                    VK_RValue);
8029       CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
8030                                          CK_DerivedToBase, CurInit.get(),
8031                                          &BasePath, VK, FPOptionsOverride());
8032       break;
8033     }
8034 
8035     case SK_BindReference:
8036       // Reference binding does not have any corresponding ASTs.
8037 
8038       // Check exception specifications
8039       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
8040         return ExprError();
8041 
8042       // We don't check for e.g. function pointers here, since address
8043       // availability checks should only occur when the function first decays
8044       // into a pointer or reference.
8045       if (CurInit.get()->getType()->isFunctionProtoType()) {
8046         if (auto *DRE = dyn_cast<DeclRefExpr>(CurInit.get()->IgnoreParens())) {
8047           if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
8048             if (!S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
8049                                                      DRE->getBeginLoc()))
8050               return ExprError();
8051           }
8052         }
8053       }
8054 
8055       CheckForNullPointerDereference(S, CurInit.get());
8056       break;
8057 
8058     case SK_BindReferenceToTemporary: {
8059       // Make sure the "temporary" is actually an rvalue.
8060       assert(CurInit.get()->isRValue() && "not a temporary");
8061 
8062       // Check exception specifications
8063       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
8064         return ExprError();
8065 
8066       // Materialize the temporary into memory.
8067       MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
8068           Step->Type, CurInit.get(), Entity.getType()->isLValueReferenceType());
8069       CurInit = MTE;
8070 
8071       // If we're extending this temporary to automatic storage duration -- we
8072       // need to register its cleanup during the full-expression's cleanups.
8073       if (MTE->getStorageDuration() == SD_Automatic &&
8074           MTE->getType().isDestructedType())
8075         S.Cleanup.setExprNeedsCleanups(true);
8076       break;
8077     }
8078 
8079     case SK_FinalCopy:
8080       if (checkAbstractType(Step->Type))
8081         return ExprError();
8082 
8083       // If the overall initialization is initializing a temporary, we already
8084       // bound our argument if it was necessary to do so. If not (if we're
8085       // ultimately initializing a non-temporary), our argument needs to be
8086       // bound since it's initializing a function parameter.
8087       // FIXME: This is a mess. Rationalize temporary destruction.
8088       if (!shouldBindAsTemporary(Entity))
8089         CurInit = S.MaybeBindToTemporary(CurInit.get());
8090       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
8091                            /*IsExtraneousCopy=*/false);
8092       break;
8093 
8094     case SK_ExtraneousCopyToTemporary:
8095       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
8096                            /*IsExtraneousCopy=*/true);
8097       break;
8098 
8099     case SK_UserConversion: {
8100       // We have a user-defined conversion that invokes either a constructor
8101       // or a conversion function.
8102       CastKind CastKind;
8103       FunctionDecl *Fn = Step->Function.Function;
8104       DeclAccessPair FoundFn = Step->Function.FoundDecl;
8105       bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
8106       bool CreatedObject = false;
8107       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
8108         // Build a call to the selected constructor.
8109         SmallVector<Expr*, 8> ConstructorArgs;
8110         SourceLocation Loc = CurInit.get()->getBeginLoc();
8111 
8112         // Determine the arguments required to actually perform the constructor
8113         // call.
8114         Expr *Arg = CurInit.get();
8115         if (S.CompleteConstructorCall(Constructor,
8116                                       MultiExprArg(&Arg, 1),
8117                                       Loc, ConstructorArgs))
8118           return ExprError();
8119 
8120         // Build an expression that constructs a temporary.
8121         CurInit = S.BuildCXXConstructExpr(Loc, Step->Type,
8122                                           FoundFn, Constructor,
8123                                           ConstructorArgs,
8124                                           HadMultipleCandidates,
8125                                           /*ListInit*/ false,
8126                                           /*StdInitListInit*/ false,
8127                                           /*ZeroInit*/ false,
8128                                           CXXConstructExpr::CK_Complete,
8129                                           SourceRange());
8130         if (CurInit.isInvalid())
8131           return ExprError();
8132 
8133         S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn,
8134                                  Entity);
8135         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
8136           return ExprError();
8137 
8138         CastKind = CK_ConstructorConversion;
8139         CreatedObject = true;
8140       } else {
8141         // Build a call to the conversion function.
8142         CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
8143         S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr,
8144                                     FoundFn);
8145         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
8146           return ExprError();
8147 
8148         CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
8149                                            HadMultipleCandidates);
8150         if (CurInit.isInvalid())
8151           return ExprError();
8152 
8153         CastKind = CK_UserDefinedConversion;
8154         CreatedObject = Conversion->getReturnType()->isRecordType();
8155       }
8156 
8157       if (CreatedObject && checkAbstractType(CurInit.get()->getType()))
8158         return ExprError();
8159 
8160       CurInit = ImplicitCastExpr::Create(
8161           S.Context, CurInit.get()->getType(), CastKind, CurInit.get(), nullptr,
8162           CurInit.get()->getValueKind(), S.CurFPFeatureOverrides());
8163 
8164       if (shouldBindAsTemporary(Entity))
8165         // The overall entity is temporary, so this expression should be
8166         // destroyed at the end of its full-expression.
8167         CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
8168       else if (CreatedObject && shouldDestroyEntity(Entity)) {
8169         // The object outlasts the full-expression, but we need to prepare for
8170         // a destructor being run on it.
8171         // FIXME: It makes no sense to do this here. This should happen
8172         // regardless of how we initialized the entity.
8173         QualType T = CurInit.get()->getType();
8174         if (const RecordType *Record = T->getAs<RecordType>()) {
8175           CXXDestructorDecl *Destructor
8176             = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
8177           S.CheckDestructorAccess(CurInit.get()->getBeginLoc(), Destructor,
8178                                   S.PDiag(diag::err_access_dtor_temp) << T);
8179           S.MarkFunctionReferenced(CurInit.get()->getBeginLoc(), Destructor);
8180           if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getBeginLoc()))
8181             return ExprError();
8182         }
8183       }
8184       break;
8185     }
8186 
8187     case SK_QualificationConversionLValue:
8188     case SK_QualificationConversionXValue:
8189     case SK_QualificationConversionRValue: {
8190       // Perform a qualification conversion; these can never go wrong.
8191       ExprValueKind VK =
8192           Step->Kind == SK_QualificationConversionLValue
8193               ? VK_LValue
8194               : (Step->Kind == SK_QualificationConversionXValue ? VK_XValue
8195                                                                 : VK_RValue);
8196       CurInit = S.PerformQualificationConversion(CurInit.get(), Step->Type, VK);
8197       break;
8198     }
8199 
8200     case SK_AtomicConversion: {
8201       assert(CurInit.get()->isRValue() && "cannot convert glvalue to atomic");
8202       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8203                                     CK_NonAtomicToAtomic, VK_RValue);
8204       break;
8205     }
8206 
8207     case SK_ConversionSequence:
8208     case SK_ConversionSequenceNoNarrowing: {
8209       if (const auto *FromPtrType =
8210               CurInit.get()->getType()->getAs<PointerType>()) {
8211         if (const auto *ToPtrType = Step->Type->getAs<PointerType>()) {
8212           if (FromPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
8213               !ToPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
8214             // Do not check static casts here because they are checked earlier
8215             // in Sema::ActOnCXXNamedCast()
8216             if (!Kind.isStaticCast()) {
8217               S.Diag(CurInit.get()->getExprLoc(),
8218                      diag::warn_noderef_to_dereferenceable_pointer)
8219                   << CurInit.get()->getSourceRange();
8220             }
8221           }
8222         }
8223       }
8224 
8225       Sema::CheckedConversionKind CCK
8226         = Kind.isCStyleCast()? Sema::CCK_CStyleCast
8227         : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
8228         : Kind.isExplicitCast()? Sema::CCK_OtherCast
8229         : Sema::CCK_ImplicitConversion;
8230       ExprResult CurInitExprRes =
8231         S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
8232                                     getAssignmentAction(Entity), CCK);
8233       if (CurInitExprRes.isInvalid())
8234         return ExprError();
8235 
8236       S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), CurInit.get());
8237 
8238       CurInit = CurInitExprRes;
8239 
8240       if (Step->Kind == SK_ConversionSequenceNoNarrowing &&
8241           S.getLangOpts().CPlusPlus)
8242         DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(),
8243                                     CurInit.get());
8244 
8245       break;
8246     }
8247 
8248     case SK_ListInitialization: {
8249       if (checkAbstractType(Step->Type))
8250         return ExprError();
8251 
8252       InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
8253       // If we're not initializing the top-level entity, we need to create an
8254       // InitializeTemporary entity for our target type.
8255       QualType Ty = Step->Type;
8256       bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty);
8257       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
8258       InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
8259       InitListChecker PerformInitList(S, InitEntity,
8260           InitList, Ty, /*VerifyOnly=*/false,
8261           /*TreatUnavailableAsInvalid=*/false);
8262       if (PerformInitList.HadError())
8263         return ExprError();
8264 
8265       // Hack: We must update *ResultType if available in order to set the
8266       // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
8267       // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
8268       if (ResultType &&
8269           ResultType->getNonReferenceType()->isIncompleteArrayType()) {
8270         if ((*ResultType)->isRValueReferenceType())
8271           Ty = S.Context.getRValueReferenceType(Ty);
8272         else if ((*ResultType)->isLValueReferenceType())
8273           Ty = S.Context.getLValueReferenceType(Ty,
8274             (*ResultType)->castAs<LValueReferenceType>()->isSpelledAsLValue());
8275         *ResultType = Ty;
8276       }
8277 
8278       InitListExpr *StructuredInitList =
8279           PerformInitList.getFullyStructuredList();
8280       CurInit.get();
8281       CurInit = shouldBindAsTemporary(InitEntity)
8282           ? S.MaybeBindToTemporary(StructuredInitList)
8283           : StructuredInitList;
8284       break;
8285     }
8286 
8287     case SK_ConstructorInitializationFromList: {
8288       if (checkAbstractType(Step->Type))
8289         return ExprError();
8290 
8291       // When an initializer list is passed for a parameter of type "reference
8292       // to object", we don't get an EK_Temporary entity, but instead an
8293       // EK_Parameter entity with reference type.
8294       // FIXME: This is a hack. What we really should do is create a user
8295       // conversion step for this case, but this makes it considerably more
8296       // complicated. For now, this will do.
8297       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
8298                                         Entity.getType().getNonReferenceType());
8299       bool UseTemporary = Entity.getType()->isReferenceType();
8300       assert(Args.size() == 1 && "expected a single argument for list init");
8301       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
8302       S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
8303         << InitList->getSourceRange();
8304       MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
8305       CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
8306                                                                    Entity,
8307                                                  Kind, Arg, *Step,
8308                                                ConstructorInitRequiresZeroInit,
8309                                                /*IsListInitialization*/true,
8310                                                /*IsStdInitListInit*/false,
8311                                                InitList->getLBraceLoc(),
8312                                                InitList->getRBraceLoc());
8313       break;
8314     }
8315 
8316     case SK_UnwrapInitList:
8317       CurInit = cast<InitListExpr>(CurInit.get())->getInit(0);
8318       break;
8319 
8320     case SK_RewrapInitList: {
8321       Expr *E = CurInit.get();
8322       InitListExpr *Syntactic = Step->WrappingSyntacticList;
8323       InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
8324           Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
8325       ILE->setSyntacticForm(Syntactic);
8326       ILE->setType(E->getType());
8327       ILE->setValueKind(E->getValueKind());
8328       CurInit = ILE;
8329       break;
8330     }
8331 
8332     case SK_ConstructorInitialization:
8333     case SK_StdInitializerListConstructorCall: {
8334       if (checkAbstractType(Step->Type))
8335         return ExprError();
8336 
8337       // When an initializer list is passed for a parameter of type "reference
8338       // to object", we don't get an EK_Temporary entity, but instead an
8339       // EK_Parameter entity with reference type.
8340       // FIXME: This is a hack. What we really should do is create a user
8341       // conversion step for this case, but this makes it considerably more
8342       // complicated. For now, this will do.
8343       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
8344                                         Entity.getType().getNonReferenceType());
8345       bool UseTemporary = Entity.getType()->isReferenceType();
8346       bool IsStdInitListInit =
8347           Step->Kind == SK_StdInitializerListConstructorCall;
8348       Expr *Source = CurInit.get();
8349       SourceRange Range = Kind.hasParenOrBraceRange()
8350                               ? Kind.getParenOrBraceRange()
8351                               : SourceRange();
8352       CurInit = PerformConstructorInitialization(
8353           S, UseTemporary ? TempEntity : Entity, Kind,
8354           Source ? MultiExprArg(Source) : Args, *Step,
8355           ConstructorInitRequiresZeroInit,
8356           /*IsListInitialization*/ IsStdInitListInit,
8357           /*IsStdInitListInitialization*/ IsStdInitListInit,
8358           /*LBraceLoc*/ Range.getBegin(),
8359           /*RBraceLoc*/ Range.getEnd());
8360       break;
8361     }
8362 
8363     case SK_ZeroInitialization: {
8364       step_iterator NextStep = Step;
8365       ++NextStep;
8366       if (NextStep != StepEnd &&
8367           (NextStep->Kind == SK_ConstructorInitialization ||
8368            NextStep->Kind == SK_ConstructorInitializationFromList)) {
8369         // The need for zero-initialization is recorded directly into
8370         // the call to the object's constructor within the next step.
8371         ConstructorInitRequiresZeroInit = true;
8372       } else if (Kind.getKind() == InitializationKind::IK_Value &&
8373                  S.getLangOpts().CPlusPlus &&
8374                  !Kind.isImplicitValueInit()) {
8375         TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
8376         if (!TSInfo)
8377           TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
8378                                                     Kind.getRange().getBegin());
8379 
8380         CurInit = new (S.Context) CXXScalarValueInitExpr(
8381             Entity.getType().getNonLValueExprType(S.Context), TSInfo,
8382             Kind.getRange().getEnd());
8383       } else {
8384         CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type);
8385       }
8386       break;
8387     }
8388 
8389     case SK_CAssignment: {
8390       QualType SourceType = CurInit.get()->getType();
8391 
8392       // Save off the initial CurInit in case we need to emit a diagnostic
8393       ExprResult InitialCurInit = CurInit;
8394       ExprResult Result = CurInit;
8395       Sema::AssignConvertType ConvTy =
8396         S.CheckSingleAssignmentConstraints(Step->Type, Result, true,
8397             Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited);
8398       if (Result.isInvalid())
8399         return ExprError();
8400       CurInit = Result;
8401 
8402       // If this is a call, allow conversion to a transparent union.
8403       ExprResult CurInitExprRes = CurInit;
8404       if (ConvTy != Sema::Compatible &&
8405           Entity.isParameterKind() &&
8406           S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
8407             == Sema::Compatible)
8408         ConvTy = Sema::Compatible;
8409       if (CurInitExprRes.isInvalid())
8410         return ExprError();
8411       CurInit = CurInitExprRes;
8412 
8413       bool Complained;
8414       if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
8415                                      Step->Type, SourceType,
8416                                      InitialCurInit.get(),
8417                                      getAssignmentAction(Entity, true),
8418                                      &Complained)) {
8419         PrintInitLocationNote(S, Entity);
8420         return ExprError();
8421       } else if (Complained)
8422         PrintInitLocationNote(S, Entity);
8423       break;
8424     }
8425 
8426     case SK_StringInit: {
8427       QualType Ty = Step->Type;
8428       bool UpdateType = ResultType && Entity.getType()->isIncompleteArrayType();
8429       CheckStringInit(CurInit.get(), UpdateType ? *ResultType : Ty,
8430                       S.Context.getAsArrayType(Ty), S);
8431       break;
8432     }
8433 
8434     case SK_ObjCObjectConversion:
8435       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8436                           CK_ObjCObjectLValueCast,
8437                           CurInit.get()->getValueKind());
8438       break;
8439 
8440     case SK_ArrayLoopIndex: {
8441       Expr *Cur = CurInit.get();
8442       Expr *BaseExpr = new (S.Context)
8443           OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(),
8444                           Cur->getValueKind(), Cur->getObjectKind(), Cur);
8445       Expr *IndexExpr =
8446           new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType());
8447       CurInit = S.CreateBuiltinArraySubscriptExpr(
8448           BaseExpr, Kind.getLocation(), IndexExpr, Kind.getLocation());
8449       ArrayLoopCommonExprs.push_back(BaseExpr);
8450       break;
8451     }
8452 
8453     case SK_ArrayLoopInit: {
8454       assert(!ArrayLoopCommonExprs.empty() &&
8455              "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit");
8456       Expr *Common = ArrayLoopCommonExprs.pop_back_val();
8457       CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common,
8458                                                   CurInit.get());
8459       break;
8460     }
8461 
8462     case SK_GNUArrayInit:
8463       // Okay: we checked everything before creating this step. Note that
8464       // this is a GNU extension.
8465       S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
8466         << Step->Type << CurInit.get()->getType()
8467         << CurInit.get()->getSourceRange();
8468       updateGNUCompoundLiteralRValue(CurInit.get());
8469       LLVM_FALLTHROUGH;
8470     case SK_ArrayInit:
8471       // If the destination type is an incomplete array type, update the
8472       // type accordingly.
8473       if (ResultType) {
8474         if (const IncompleteArrayType *IncompleteDest
8475                            = S.Context.getAsIncompleteArrayType(Step->Type)) {
8476           if (const ConstantArrayType *ConstantSource
8477                  = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
8478             *ResultType = S.Context.getConstantArrayType(
8479                                              IncompleteDest->getElementType(),
8480                                              ConstantSource->getSize(),
8481                                              ConstantSource->getSizeExpr(),
8482                                              ArrayType::Normal, 0);
8483           }
8484         }
8485       }
8486       break;
8487 
8488     case SK_ParenthesizedArrayInit:
8489       // Okay: we checked everything before creating this step. Note that
8490       // this is a GNU extension.
8491       S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
8492         << CurInit.get()->getSourceRange();
8493       break;
8494 
8495     case SK_PassByIndirectCopyRestore:
8496     case SK_PassByIndirectRestore:
8497       checkIndirectCopyRestoreSource(S, CurInit.get());
8498       CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr(
8499           CurInit.get(), Step->Type,
8500           Step->Kind == SK_PassByIndirectCopyRestore);
8501       break;
8502 
8503     case SK_ProduceObjCObject:
8504       CurInit = ImplicitCastExpr::Create(
8505           S.Context, Step->Type, CK_ARCProduceObject, CurInit.get(), nullptr,
8506           VK_RValue, FPOptionsOverride());
8507       break;
8508 
8509     case SK_StdInitializerList: {
8510       S.Diag(CurInit.get()->getExprLoc(),
8511              diag::warn_cxx98_compat_initializer_list_init)
8512         << CurInit.get()->getSourceRange();
8513 
8514       // Materialize the temporary into memory.
8515       MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
8516           CurInit.get()->getType(), CurInit.get(),
8517           /*BoundToLvalueReference=*/false);
8518 
8519       // Wrap it in a construction of a std::initializer_list<T>.
8520       CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE);
8521 
8522       // Bind the result, in case the library has given initializer_list a
8523       // non-trivial destructor.
8524       if (shouldBindAsTemporary(Entity))
8525         CurInit = S.MaybeBindToTemporary(CurInit.get());
8526       break;
8527     }
8528 
8529     case SK_OCLSamplerInit: {
8530       // Sampler initialization have 5 cases:
8531       //   1. function argument passing
8532       //      1a. argument is a file-scope variable
8533       //      1b. argument is a function-scope variable
8534       //      1c. argument is one of caller function's parameters
8535       //   2. variable initialization
8536       //      2a. initializing a file-scope variable
8537       //      2b. initializing a function-scope variable
8538       //
8539       // For file-scope variables, since they cannot be initialized by function
8540       // call of __translate_sampler_initializer in LLVM IR, their references
8541       // need to be replaced by a cast from their literal initializers to
8542       // sampler type. Since sampler variables can only be used in function
8543       // calls as arguments, we only need to replace them when handling the
8544       // argument passing.
8545       assert(Step->Type->isSamplerT() &&
8546              "Sampler initialization on non-sampler type.");
8547       Expr *Init = CurInit.get()->IgnoreParens();
8548       QualType SourceType = Init->getType();
8549       // Case 1
8550       if (Entity.isParameterKind()) {
8551         if (!SourceType->isSamplerT() && !SourceType->isIntegerType()) {
8552           S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
8553             << SourceType;
8554           break;
8555         } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init)) {
8556           auto Var = cast<VarDecl>(DRE->getDecl());
8557           // Case 1b and 1c
8558           // No cast from integer to sampler is needed.
8559           if (!Var->hasGlobalStorage()) {
8560             CurInit = ImplicitCastExpr::Create(
8561                 S.Context, Step->Type, CK_LValueToRValue, Init,
8562                 /*BasePath=*/nullptr, VK_RValue, FPOptionsOverride());
8563             break;
8564           }
8565           // Case 1a
8566           // For function call with a file-scope sampler variable as argument,
8567           // get the integer literal.
8568           // Do not diagnose if the file-scope variable does not have initializer
8569           // since this has already been diagnosed when parsing the variable
8570           // declaration.
8571           if (!Var->getInit() || !isa<ImplicitCastExpr>(Var->getInit()))
8572             break;
8573           Init = cast<ImplicitCastExpr>(const_cast<Expr*>(
8574             Var->getInit()))->getSubExpr();
8575           SourceType = Init->getType();
8576         }
8577       } else {
8578         // Case 2
8579         // Check initializer is 32 bit integer constant.
8580         // If the initializer is taken from global variable, do not diagnose since
8581         // this has already been done when parsing the variable declaration.
8582         if (!Init->isConstantInitializer(S.Context, false))
8583           break;
8584 
8585         if (!SourceType->isIntegerType() ||
8586             32 != S.Context.getIntWidth(SourceType)) {
8587           S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer)
8588             << SourceType;
8589           break;
8590         }
8591 
8592         Expr::EvalResult EVResult;
8593         Init->EvaluateAsInt(EVResult, S.Context);
8594         llvm::APSInt Result = EVResult.Val.getInt();
8595         const uint64_t SamplerValue = Result.getLimitedValue();
8596         // 32-bit value of sampler's initializer is interpreted as
8597         // bit-field with the following structure:
8598         // |unspecified|Filter|Addressing Mode| Normalized Coords|
8599         // |31        6|5    4|3             1|                 0|
8600         // This structure corresponds to enum values of sampler properties
8601         // defined in SPIR spec v1.2 and also opencl-c.h
8602         unsigned AddressingMode  = (0x0E & SamplerValue) >> 1;
8603         unsigned FilterMode      = (0x30 & SamplerValue) >> 4;
8604         if (FilterMode != 1 && FilterMode != 2 &&
8605             !S.getOpenCLOptions().isEnabled(
8606                 "cl_intel_device_side_avc_motion_estimation"))
8607           S.Diag(Kind.getLocation(),
8608                  diag::warn_sampler_initializer_invalid_bits)
8609                  << "Filter Mode";
8610         if (AddressingMode > 4)
8611           S.Diag(Kind.getLocation(),
8612                  diag::warn_sampler_initializer_invalid_bits)
8613                  << "Addressing Mode";
8614       }
8615 
8616       // Cases 1a, 2a and 2b
8617       // Insert cast from integer to sampler.
8618       CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy,
8619                                       CK_IntToOCLSampler);
8620       break;
8621     }
8622     case SK_OCLZeroOpaqueType: {
8623       assert((Step->Type->isEventT() || Step->Type->isQueueT() ||
8624               Step->Type->isOCLIntelSubgroupAVCType()) &&
8625              "Wrong type for initialization of OpenCL opaque type.");
8626 
8627       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8628                                     CK_ZeroToOCLOpaqueType,
8629                                     CurInit.get()->getValueKind());
8630       break;
8631     }
8632     }
8633   }
8634 
8635   // Check whether the initializer has a shorter lifetime than the initialized
8636   // entity, and if not, either lifetime-extend or warn as appropriate.
8637   if (auto *Init = CurInit.get())
8638     S.checkInitializerLifetime(Entity, Init);
8639 
8640   // Diagnose non-fatal problems with the completed initialization.
8641   if (Entity.getKind() == InitializedEntity::EK_Member &&
8642       cast<FieldDecl>(Entity.getDecl())->isBitField())
8643     S.CheckBitFieldInitialization(Kind.getLocation(),
8644                                   cast<FieldDecl>(Entity.getDecl()),
8645                                   CurInit.get());
8646 
8647   // Check for std::move on construction.
8648   if (const Expr *E = CurInit.get()) {
8649     CheckMoveOnConstruction(S, E,
8650                             Entity.getKind() == InitializedEntity::EK_Result);
8651   }
8652 
8653   return CurInit;
8654 }
8655 
8656 /// Somewhere within T there is an uninitialized reference subobject.
8657 /// Dig it out and diagnose it.
8658 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
8659                                            QualType T) {
8660   if (T->isReferenceType()) {
8661     S.Diag(Loc, diag::err_reference_without_init)
8662       << T.getNonReferenceType();
8663     return true;
8664   }
8665 
8666   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
8667   if (!RD || !RD->hasUninitializedReferenceMember())
8668     return false;
8669 
8670   for (const auto *FI : RD->fields()) {
8671     if (FI->isUnnamedBitfield())
8672       continue;
8673 
8674     if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
8675       S.Diag(Loc, diag::note_value_initialization_here) << RD;
8676       return true;
8677     }
8678   }
8679 
8680   for (const auto &BI : RD->bases()) {
8681     if (DiagnoseUninitializedReference(S, BI.getBeginLoc(), BI.getType())) {
8682       S.Diag(Loc, diag::note_value_initialization_here) << RD;
8683       return true;
8684     }
8685   }
8686 
8687   return false;
8688 }
8689 
8690 
8691 //===----------------------------------------------------------------------===//
8692 // Diagnose initialization failures
8693 //===----------------------------------------------------------------------===//
8694 
8695 /// Emit notes associated with an initialization that failed due to a
8696 /// "simple" conversion failure.
8697 static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity,
8698                                    Expr *op) {
8699   QualType destType = entity.getType();
8700   if (destType.getNonReferenceType()->isObjCObjectPointerType() &&
8701       op->getType()->isObjCObjectPointerType()) {
8702 
8703     // Emit a possible note about the conversion failing because the
8704     // operand is a message send with a related result type.
8705     S.EmitRelatedResultTypeNote(op);
8706 
8707     // Emit a possible note about a return failing because we're
8708     // expecting a related result type.
8709     if (entity.getKind() == InitializedEntity::EK_Result)
8710       S.EmitRelatedResultTypeNoteForReturn(destType);
8711   }
8712   QualType fromType = op->getType();
8713   auto *fromDecl = fromType.getTypePtr()->getPointeeCXXRecordDecl();
8714   auto *destDecl = destType.getTypePtr()->getPointeeCXXRecordDecl();
8715   if (fromDecl && destDecl && fromDecl->getDeclKind() == Decl::CXXRecord &&
8716       destDecl->getDeclKind() == Decl::CXXRecord &&
8717       !fromDecl->isInvalidDecl() && !destDecl->isInvalidDecl() &&
8718       !fromDecl->hasDefinition())
8719     S.Diag(fromDecl->getLocation(), diag::note_forward_class_conversion)
8720         << S.getASTContext().getTagDeclType(fromDecl)
8721         << S.getASTContext().getTagDeclType(destDecl);
8722 }
8723 
8724 static void diagnoseListInit(Sema &S, const InitializedEntity &Entity,
8725                              InitListExpr *InitList) {
8726   QualType DestType = Entity.getType();
8727 
8728   QualType E;
8729   if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) {
8730     QualType ArrayType = S.Context.getConstantArrayType(
8731         E.withConst(),
8732         llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
8733                     InitList->getNumInits()),
8734         nullptr, clang::ArrayType::Normal, 0);
8735     InitializedEntity HiddenArray =
8736         InitializedEntity::InitializeTemporary(ArrayType);
8737     return diagnoseListInit(S, HiddenArray, InitList);
8738   }
8739 
8740   if (DestType->isReferenceType()) {
8741     // A list-initialization failure for a reference means that we tried to
8742     // create a temporary of the inner type (per [dcl.init.list]p3.6) and the
8743     // inner initialization failed.
8744     QualType T = DestType->castAs<ReferenceType>()->getPointeeType();
8745     diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList);
8746     SourceLocation Loc = InitList->getBeginLoc();
8747     if (auto *D = Entity.getDecl())
8748       Loc = D->getLocation();
8749     S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T;
8750     return;
8751   }
8752 
8753   InitListChecker DiagnoseInitList(S, Entity, InitList, DestType,
8754                                    /*VerifyOnly=*/false,
8755                                    /*TreatUnavailableAsInvalid=*/false);
8756   assert(DiagnoseInitList.HadError() &&
8757          "Inconsistent init list check result.");
8758 }
8759 
8760 bool InitializationSequence::Diagnose(Sema &S,
8761                                       const InitializedEntity &Entity,
8762                                       const InitializationKind &Kind,
8763                                       ArrayRef<Expr *> Args) {
8764   if (!Failed())
8765     return false;
8766 
8767   // When we want to diagnose only one element of a braced-init-list,
8768   // we need to factor it out.
8769   Expr *OnlyArg;
8770   if (Args.size() == 1) {
8771     auto *List = dyn_cast<InitListExpr>(Args[0]);
8772     if (List && List->getNumInits() == 1)
8773       OnlyArg = List->getInit(0);
8774     else
8775       OnlyArg = Args[0];
8776   }
8777   else
8778     OnlyArg = nullptr;
8779 
8780   QualType DestType = Entity.getType();
8781   switch (Failure) {
8782   case FK_TooManyInitsForReference:
8783     // FIXME: Customize for the initialized entity?
8784     if (Args.empty()) {
8785       // Dig out the reference subobject which is uninitialized and diagnose it.
8786       // If this is value-initialization, this could be nested some way within
8787       // the target type.
8788       assert(Kind.getKind() == InitializationKind::IK_Value ||
8789              DestType->isReferenceType());
8790       bool Diagnosed =
8791         DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
8792       assert(Diagnosed && "couldn't find uninitialized reference to diagnose");
8793       (void)Diagnosed;
8794     } else  // FIXME: diagnostic below could be better!
8795       S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
8796           << SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
8797     break;
8798   case FK_ParenthesizedListInitForReference:
8799     S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
8800       << 1 << Entity.getType() << Args[0]->getSourceRange();
8801     break;
8802 
8803   case FK_ArrayNeedsInitList:
8804     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0;
8805     break;
8806   case FK_ArrayNeedsInitListOrStringLiteral:
8807     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1;
8808     break;
8809   case FK_ArrayNeedsInitListOrWideStringLiteral:
8810     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2;
8811     break;
8812   case FK_NarrowStringIntoWideCharArray:
8813     S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar);
8814     break;
8815   case FK_WideStringIntoCharArray:
8816     S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char);
8817     break;
8818   case FK_IncompatWideStringIntoWideChar:
8819     S.Diag(Kind.getLocation(),
8820            diag::err_array_init_incompat_wide_string_into_wchar);
8821     break;
8822   case FK_PlainStringIntoUTF8Char:
8823     S.Diag(Kind.getLocation(),
8824            diag::err_array_init_plain_string_into_char8_t);
8825     S.Diag(Args.front()->getBeginLoc(),
8826            diag::note_array_init_plain_string_into_char8_t)
8827         << FixItHint::CreateInsertion(Args.front()->getBeginLoc(), "u8");
8828     break;
8829   case FK_UTF8StringIntoPlainChar:
8830     S.Diag(Kind.getLocation(),
8831            diag::err_array_init_utf8_string_into_char)
8832       << S.getLangOpts().CPlusPlus20;
8833     break;
8834   case FK_ArrayTypeMismatch:
8835   case FK_NonConstantArrayInit:
8836     S.Diag(Kind.getLocation(),
8837            (Failure == FK_ArrayTypeMismatch
8838               ? diag::err_array_init_different_type
8839               : diag::err_array_init_non_constant_array))
8840       << DestType.getNonReferenceType()
8841       << OnlyArg->getType()
8842       << Args[0]->getSourceRange();
8843     break;
8844 
8845   case FK_VariableLengthArrayHasInitializer:
8846     S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
8847       << Args[0]->getSourceRange();
8848     break;
8849 
8850   case FK_AddressOfOverloadFailed: {
8851     DeclAccessPair Found;
8852     S.ResolveAddressOfOverloadedFunction(OnlyArg,
8853                                          DestType.getNonReferenceType(),
8854                                          true,
8855                                          Found);
8856     break;
8857   }
8858 
8859   case FK_AddressOfUnaddressableFunction: {
8860     auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(OnlyArg)->getDecl());
8861     S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
8862                                         OnlyArg->getBeginLoc());
8863     break;
8864   }
8865 
8866   case FK_ReferenceInitOverloadFailed:
8867   case FK_UserConversionOverloadFailed:
8868     switch (FailedOverloadResult) {
8869     case OR_Ambiguous:
8870 
8871       FailedCandidateSet.NoteCandidates(
8872           PartialDiagnosticAt(
8873               Kind.getLocation(),
8874               Failure == FK_UserConversionOverloadFailed
8875                   ? (S.PDiag(diag::err_typecheck_ambiguous_condition)
8876                      << OnlyArg->getType() << DestType
8877                      << Args[0]->getSourceRange())
8878                   : (S.PDiag(diag::err_ref_init_ambiguous)
8879                      << DestType << OnlyArg->getType()
8880                      << Args[0]->getSourceRange())),
8881           S, OCD_AmbiguousCandidates, Args);
8882       break;
8883 
8884     case OR_No_Viable_Function: {
8885       auto Cands = FailedCandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args);
8886       if (!S.RequireCompleteType(Kind.getLocation(),
8887                                  DestType.getNonReferenceType(),
8888                           diag::err_typecheck_nonviable_condition_incomplete,
8889                                OnlyArg->getType(), Args[0]->getSourceRange()))
8890         S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
8891           << (Entity.getKind() == InitializedEntity::EK_Result)
8892           << OnlyArg->getType() << Args[0]->getSourceRange()
8893           << DestType.getNonReferenceType();
8894 
8895       FailedCandidateSet.NoteCandidates(S, Args, Cands);
8896       break;
8897     }
8898     case OR_Deleted: {
8899       S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
8900         << OnlyArg->getType() << DestType.getNonReferenceType()
8901         << Args[0]->getSourceRange();
8902       OverloadCandidateSet::iterator Best;
8903       OverloadingResult Ovl
8904         = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
8905       if (Ovl == OR_Deleted) {
8906         S.NoteDeletedFunction(Best->Function);
8907       } else {
8908         llvm_unreachable("Inconsistent overload resolution?");
8909       }
8910       break;
8911     }
8912 
8913     case OR_Success:
8914       llvm_unreachable("Conversion did not fail!");
8915     }
8916     break;
8917 
8918   case FK_NonConstLValueReferenceBindingToTemporary:
8919     if (isa<InitListExpr>(Args[0])) {
8920       S.Diag(Kind.getLocation(),
8921              diag::err_lvalue_reference_bind_to_initlist)
8922       << DestType.getNonReferenceType().isVolatileQualified()
8923       << DestType.getNonReferenceType()
8924       << Args[0]->getSourceRange();
8925       break;
8926     }
8927     LLVM_FALLTHROUGH;
8928 
8929   case FK_NonConstLValueReferenceBindingToUnrelated:
8930     S.Diag(Kind.getLocation(),
8931            Failure == FK_NonConstLValueReferenceBindingToTemporary
8932              ? diag::err_lvalue_reference_bind_to_temporary
8933              : diag::err_lvalue_reference_bind_to_unrelated)
8934       << DestType.getNonReferenceType().isVolatileQualified()
8935       << DestType.getNonReferenceType()
8936       << OnlyArg->getType()
8937       << Args[0]->getSourceRange();
8938     break;
8939 
8940   case FK_NonConstLValueReferenceBindingToBitfield: {
8941     // We don't necessarily have an unambiguous source bit-field.
8942     FieldDecl *BitField = Args[0]->getSourceBitField();
8943     S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
8944       << DestType.isVolatileQualified()
8945       << (BitField ? BitField->getDeclName() : DeclarationName())
8946       << (BitField != nullptr)
8947       << Args[0]->getSourceRange();
8948     if (BitField)
8949       S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
8950     break;
8951   }
8952 
8953   case FK_NonConstLValueReferenceBindingToVectorElement:
8954     S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
8955       << DestType.isVolatileQualified()
8956       << Args[0]->getSourceRange();
8957     break;
8958 
8959   case FK_NonConstLValueReferenceBindingToMatrixElement:
8960     S.Diag(Kind.getLocation(), diag::err_reference_bind_to_matrix_element)
8961         << DestType.isVolatileQualified() << Args[0]->getSourceRange();
8962     break;
8963 
8964   case FK_RValueReferenceBindingToLValue:
8965     S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
8966       << DestType.getNonReferenceType() << OnlyArg->getType()
8967       << Args[0]->getSourceRange();
8968     break;
8969 
8970   case FK_ReferenceAddrspaceMismatchTemporary:
8971     S.Diag(Kind.getLocation(), diag::err_reference_bind_temporary_addrspace)
8972         << DestType << Args[0]->getSourceRange();
8973     break;
8974 
8975   case FK_ReferenceInitDropsQualifiers: {
8976     QualType SourceType = OnlyArg->getType();
8977     QualType NonRefType = DestType.getNonReferenceType();
8978     Qualifiers DroppedQualifiers =
8979         SourceType.getQualifiers() - NonRefType.getQualifiers();
8980 
8981     if (!NonRefType.getQualifiers().isAddressSpaceSupersetOf(
8982             SourceType.getQualifiers()))
8983       S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
8984           << NonRefType << SourceType << 1 /*addr space*/
8985           << Args[0]->getSourceRange();
8986     else if (DroppedQualifiers.hasQualifiers())
8987       S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
8988           << NonRefType << SourceType << 0 /*cv quals*/
8989           << Qualifiers::fromCVRMask(DroppedQualifiers.getCVRQualifiers())
8990           << DroppedQualifiers.getCVRQualifiers() << Args[0]->getSourceRange();
8991     else
8992       // FIXME: Consider decomposing the type and explaining which qualifiers
8993       // were dropped where, or on which level a 'const' is missing, etc.
8994       S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
8995           << NonRefType << SourceType << 2 /*incompatible quals*/
8996           << Args[0]->getSourceRange();
8997     break;
8998   }
8999 
9000   case FK_ReferenceInitFailed:
9001     S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
9002       << DestType.getNonReferenceType()
9003       << DestType.getNonReferenceType()->isIncompleteType()
9004       << OnlyArg->isLValue()
9005       << OnlyArg->getType()
9006       << Args[0]->getSourceRange();
9007     emitBadConversionNotes(S, Entity, Args[0]);
9008     break;
9009 
9010   case FK_ConversionFailed: {
9011     QualType FromType = OnlyArg->getType();
9012     PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
9013       << (int)Entity.getKind()
9014       << DestType
9015       << OnlyArg->isLValue()
9016       << FromType
9017       << Args[0]->getSourceRange();
9018     S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
9019     S.Diag(Kind.getLocation(), PDiag);
9020     emitBadConversionNotes(S, Entity, Args[0]);
9021     break;
9022   }
9023 
9024   case FK_ConversionFromPropertyFailed:
9025     // No-op. This error has already been reported.
9026     break;
9027 
9028   case FK_TooManyInitsForScalar: {
9029     SourceRange R;
9030 
9031     auto *InitList = dyn_cast<InitListExpr>(Args[0]);
9032     if (InitList && InitList->getNumInits() >= 1) {
9033       R = SourceRange(InitList->getInit(0)->getEndLoc(), InitList->getEndLoc());
9034     } else {
9035       assert(Args.size() > 1 && "Expected multiple initializers!");
9036       R = SourceRange(Args.front()->getEndLoc(), Args.back()->getEndLoc());
9037     }
9038 
9039     R.setBegin(S.getLocForEndOfToken(R.getBegin()));
9040     if (Kind.isCStyleOrFunctionalCast())
9041       S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
9042         << R;
9043     else
9044       S.Diag(Kind.getLocation(), diag::err_excess_initializers)
9045         << /*scalar=*/2 << R;
9046     break;
9047   }
9048 
9049   case FK_ParenthesizedListInitForScalar:
9050     S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
9051       << 0 << Entity.getType() << Args[0]->getSourceRange();
9052     break;
9053 
9054   case FK_ReferenceBindingToInitList:
9055     S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
9056       << DestType.getNonReferenceType() << Args[0]->getSourceRange();
9057     break;
9058 
9059   case FK_InitListBadDestinationType:
9060     S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
9061       << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
9062     break;
9063 
9064   case FK_ListConstructorOverloadFailed:
9065   case FK_ConstructorOverloadFailed: {
9066     SourceRange ArgsRange;
9067     if (Args.size())
9068       ArgsRange =
9069           SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
9070 
9071     if (Failure == FK_ListConstructorOverloadFailed) {
9072       assert(Args.size() == 1 &&
9073              "List construction from other than 1 argument.");
9074       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
9075       Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
9076     }
9077 
9078     // FIXME: Using "DestType" for the entity we're printing is probably
9079     // bad.
9080     switch (FailedOverloadResult) {
9081       case OR_Ambiguous:
9082         FailedCandidateSet.NoteCandidates(
9083             PartialDiagnosticAt(Kind.getLocation(),
9084                                 S.PDiag(diag::err_ovl_ambiguous_init)
9085                                     << DestType << ArgsRange),
9086             S, OCD_AmbiguousCandidates, Args);
9087         break;
9088 
9089       case OR_No_Viable_Function:
9090         if (Kind.getKind() == InitializationKind::IK_Default &&
9091             (Entity.getKind() == InitializedEntity::EK_Base ||
9092              Entity.getKind() == InitializedEntity::EK_Member) &&
9093             isa<CXXConstructorDecl>(S.CurContext)) {
9094           // This is implicit default initialization of a member or
9095           // base within a constructor. If no viable function was
9096           // found, notify the user that they need to explicitly
9097           // initialize this base/member.
9098           CXXConstructorDecl *Constructor
9099             = cast<CXXConstructorDecl>(S.CurContext);
9100           const CXXRecordDecl *InheritedFrom = nullptr;
9101           if (auto Inherited = Constructor->getInheritedConstructor())
9102             InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass();
9103           if (Entity.getKind() == InitializedEntity::EK_Base) {
9104             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
9105               << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
9106               << S.Context.getTypeDeclType(Constructor->getParent())
9107               << /*base=*/0
9108               << Entity.getType()
9109               << InheritedFrom;
9110 
9111             RecordDecl *BaseDecl
9112               = Entity.getBaseSpecifier()->getType()->castAs<RecordType>()
9113                                                                   ->getDecl();
9114             S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
9115               << S.Context.getTagDeclType(BaseDecl);
9116           } else {
9117             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
9118               << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
9119               << S.Context.getTypeDeclType(Constructor->getParent())
9120               << /*member=*/1
9121               << Entity.getName()
9122               << InheritedFrom;
9123             S.Diag(Entity.getDecl()->getLocation(),
9124                    diag::note_member_declared_at);
9125 
9126             if (const RecordType *Record
9127                                  = Entity.getType()->getAs<RecordType>())
9128               S.Diag(Record->getDecl()->getLocation(),
9129                      diag::note_previous_decl)
9130                 << S.Context.getTagDeclType(Record->getDecl());
9131           }
9132           break;
9133         }
9134 
9135         FailedCandidateSet.NoteCandidates(
9136             PartialDiagnosticAt(
9137                 Kind.getLocation(),
9138                 S.PDiag(diag::err_ovl_no_viable_function_in_init)
9139                     << DestType << ArgsRange),
9140             S, OCD_AllCandidates, Args);
9141         break;
9142 
9143       case OR_Deleted: {
9144         OverloadCandidateSet::iterator Best;
9145         OverloadingResult Ovl
9146           = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
9147         if (Ovl != OR_Deleted) {
9148           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
9149               << DestType << ArgsRange;
9150           llvm_unreachable("Inconsistent overload resolution?");
9151           break;
9152         }
9153 
9154         // If this is a defaulted or implicitly-declared function, then
9155         // it was implicitly deleted. Make it clear that the deletion was
9156         // implicit.
9157         if (S.isImplicitlyDeleted(Best->Function))
9158           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
9159             << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
9160             << DestType << ArgsRange;
9161         else
9162           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
9163               << DestType << ArgsRange;
9164 
9165         S.NoteDeletedFunction(Best->Function);
9166         break;
9167       }
9168 
9169       case OR_Success:
9170         llvm_unreachable("Conversion did not fail!");
9171     }
9172   }
9173   break;
9174 
9175   case FK_DefaultInitOfConst:
9176     if (Entity.getKind() == InitializedEntity::EK_Member &&
9177         isa<CXXConstructorDecl>(S.CurContext)) {
9178       // This is implicit default-initialization of a const member in
9179       // a constructor. Complain that it needs to be explicitly
9180       // initialized.
9181       CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
9182       S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
9183         << (Constructor->getInheritedConstructor() ? 2 :
9184             Constructor->isImplicit() ? 1 : 0)
9185         << S.Context.getTypeDeclType(Constructor->getParent())
9186         << /*const=*/1
9187         << Entity.getName();
9188       S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
9189         << Entity.getName();
9190     } else {
9191       S.Diag(Kind.getLocation(), diag::err_default_init_const)
9192           << DestType << (bool)DestType->getAs<RecordType>();
9193     }
9194     break;
9195 
9196   case FK_Incomplete:
9197     S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
9198                           diag::err_init_incomplete_type);
9199     break;
9200 
9201   case FK_ListInitializationFailed: {
9202     // Run the init list checker again to emit diagnostics.
9203     InitListExpr *InitList = cast<InitListExpr>(Args[0]);
9204     diagnoseListInit(S, Entity, InitList);
9205     break;
9206   }
9207 
9208   case FK_PlaceholderType: {
9209     // FIXME: Already diagnosed!
9210     break;
9211   }
9212 
9213   case FK_ExplicitConstructor: {
9214     S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
9215       << Args[0]->getSourceRange();
9216     OverloadCandidateSet::iterator Best;
9217     OverloadingResult Ovl
9218       = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
9219     (void)Ovl;
9220     assert(Ovl == OR_Success && "Inconsistent overload resolution");
9221     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
9222     S.Diag(CtorDecl->getLocation(),
9223            diag::note_explicit_ctor_deduction_guide_here) << false;
9224     break;
9225   }
9226   }
9227 
9228   PrintInitLocationNote(S, Entity);
9229   return true;
9230 }
9231 
9232 void InitializationSequence::dump(raw_ostream &OS) const {
9233   switch (SequenceKind) {
9234   case FailedSequence: {
9235     OS << "Failed sequence: ";
9236     switch (Failure) {
9237     case FK_TooManyInitsForReference:
9238       OS << "too many initializers for reference";
9239       break;
9240 
9241     case FK_ParenthesizedListInitForReference:
9242       OS << "parenthesized list init for reference";
9243       break;
9244 
9245     case FK_ArrayNeedsInitList:
9246       OS << "array requires initializer list";
9247       break;
9248 
9249     case FK_AddressOfUnaddressableFunction:
9250       OS << "address of unaddressable function was taken";
9251       break;
9252 
9253     case FK_ArrayNeedsInitListOrStringLiteral:
9254       OS << "array requires initializer list or string literal";
9255       break;
9256 
9257     case FK_ArrayNeedsInitListOrWideStringLiteral:
9258       OS << "array requires initializer list or wide string literal";
9259       break;
9260 
9261     case FK_NarrowStringIntoWideCharArray:
9262       OS << "narrow string into wide char array";
9263       break;
9264 
9265     case FK_WideStringIntoCharArray:
9266       OS << "wide string into char array";
9267       break;
9268 
9269     case FK_IncompatWideStringIntoWideChar:
9270       OS << "incompatible wide string into wide char array";
9271       break;
9272 
9273     case FK_PlainStringIntoUTF8Char:
9274       OS << "plain string literal into char8_t array";
9275       break;
9276 
9277     case FK_UTF8StringIntoPlainChar:
9278       OS << "u8 string literal into char array";
9279       break;
9280 
9281     case FK_ArrayTypeMismatch:
9282       OS << "array type mismatch";
9283       break;
9284 
9285     case FK_NonConstantArrayInit:
9286       OS << "non-constant array initializer";
9287       break;
9288 
9289     case FK_AddressOfOverloadFailed:
9290       OS << "address of overloaded function failed";
9291       break;
9292 
9293     case FK_ReferenceInitOverloadFailed:
9294       OS << "overload resolution for reference initialization failed";
9295       break;
9296 
9297     case FK_NonConstLValueReferenceBindingToTemporary:
9298       OS << "non-const lvalue reference bound to temporary";
9299       break;
9300 
9301     case FK_NonConstLValueReferenceBindingToBitfield:
9302       OS << "non-const lvalue reference bound to bit-field";
9303       break;
9304 
9305     case FK_NonConstLValueReferenceBindingToVectorElement:
9306       OS << "non-const lvalue reference bound to vector element";
9307       break;
9308 
9309     case FK_NonConstLValueReferenceBindingToMatrixElement:
9310       OS << "non-const lvalue reference bound to matrix element";
9311       break;
9312 
9313     case FK_NonConstLValueReferenceBindingToUnrelated:
9314       OS << "non-const lvalue reference bound to unrelated type";
9315       break;
9316 
9317     case FK_RValueReferenceBindingToLValue:
9318       OS << "rvalue reference bound to an lvalue";
9319       break;
9320 
9321     case FK_ReferenceInitDropsQualifiers:
9322       OS << "reference initialization drops qualifiers";
9323       break;
9324 
9325     case FK_ReferenceAddrspaceMismatchTemporary:
9326       OS << "reference with mismatching address space bound to temporary";
9327       break;
9328 
9329     case FK_ReferenceInitFailed:
9330       OS << "reference initialization failed";
9331       break;
9332 
9333     case FK_ConversionFailed:
9334       OS << "conversion failed";
9335       break;
9336 
9337     case FK_ConversionFromPropertyFailed:
9338       OS << "conversion from property failed";
9339       break;
9340 
9341     case FK_TooManyInitsForScalar:
9342       OS << "too many initializers for scalar";
9343       break;
9344 
9345     case FK_ParenthesizedListInitForScalar:
9346       OS << "parenthesized list init for reference";
9347       break;
9348 
9349     case FK_ReferenceBindingToInitList:
9350       OS << "referencing binding to initializer list";
9351       break;
9352 
9353     case FK_InitListBadDestinationType:
9354       OS << "initializer list for non-aggregate, non-scalar type";
9355       break;
9356 
9357     case FK_UserConversionOverloadFailed:
9358       OS << "overloading failed for user-defined conversion";
9359       break;
9360 
9361     case FK_ConstructorOverloadFailed:
9362       OS << "constructor overloading failed";
9363       break;
9364 
9365     case FK_DefaultInitOfConst:
9366       OS << "default initialization of a const variable";
9367       break;
9368 
9369     case FK_Incomplete:
9370       OS << "initialization of incomplete type";
9371       break;
9372 
9373     case FK_ListInitializationFailed:
9374       OS << "list initialization checker failure";
9375       break;
9376 
9377     case FK_VariableLengthArrayHasInitializer:
9378       OS << "variable length array has an initializer";
9379       break;
9380 
9381     case FK_PlaceholderType:
9382       OS << "initializer expression isn't contextually valid";
9383       break;
9384 
9385     case FK_ListConstructorOverloadFailed:
9386       OS << "list constructor overloading failed";
9387       break;
9388 
9389     case FK_ExplicitConstructor:
9390       OS << "list copy initialization chose explicit constructor";
9391       break;
9392     }
9393     OS << '\n';
9394     return;
9395   }
9396 
9397   case DependentSequence:
9398     OS << "Dependent sequence\n";
9399     return;
9400 
9401   case NormalSequence:
9402     OS << "Normal sequence: ";
9403     break;
9404   }
9405 
9406   for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
9407     if (S != step_begin()) {
9408       OS << " -> ";
9409     }
9410 
9411     switch (S->Kind) {
9412     case SK_ResolveAddressOfOverloadedFunction:
9413       OS << "resolve address of overloaded function";
9414       break;
9415 
9416     case SK_CastDerivedToBaseRValue:
9417       OS << "derived-to-base (rvalue)";
9418       break;
9419 
9420     case SK_CastDerivedToBaseXValue:
9421       OS << "derived-to-base (xvalue)";
9422       break;
9423 
9424     case SK_CastDerivedToBaseLValue:
9425       OS << "derived-to-base (lvalue)";
9426       break;
9427 
9428     case SK_BindReference:
9429       OS << "bind reference to lvalue";
9430       break;
9431 
9432     case SK_BindReferenceToTemporary:
9433       OS << "bind reference to a temporary";
9434       break;
9435 
9436     case SK_FinalCopy:
9437       OS << "final copy in class direct-initialization";
9438       break;
9439 
9440     case SK_ExtraneousCopyToTemporary:
9441       OS << "extraneous C++03 copy to temporary";
9442       break;
9443 
9444     case SK_UserConversion:
9445       OS << "user-defined conversion via " << *S->Function.Function;
9446       break;
9447 
9448     case SK_QualificationConversionRValue:
9449       OS << "qualification conversion (rvalue)";
9450       break;
9451 
9452     case SK_QualificationConversionXValue:
9453       OS << "qualification conversion (xvalue)";
9454       break;
9455 
9456     case SK_QualificationConversionLValue:
9457       OS << "qualification conversion (lvalue)";
9458       break;
9459 
9460     case SK_AtomicConversion:
9461       OS << "non-atomic-to-atomic conversion";
9462       break;
9463 
9464     case SK_ConversionSequence:
9465       OS << "implicit conversion sequence (";
9466       S->ICS->dump(); // FIXME: use OS
9467       OS << ")";
9468       break;
9469 
9470     case SK_ConversionSequenceNoNarrowing:
9471       OS << "implicit conversion sequence with narrowing prohibited (";
9472       S->ICS->dump(); // FIXME: use OS
9473       OS << ")";
9474       break;
9475 
9476     case SK_ListInitialization:
9477       OS << "list aggregate initialization";
9478       break;
9479 
9480     case SK_UnwrapInitList:
9481       OS << "unwrap reference initializer list";
9482       break;
9483 
9484     case SK_RewrapInitList:
9485       OS << "rewrap reference initializer list";
9486       break;
9487 
9488     case SK_ConstructorInitialization:
9489       OS << "constructor initialization";
9490       break;
9491 
9492     case SK_ConstructorInitializationFromList:
9493       OS << "list initialization via constructor";
9494       break;
9495 
9496     case SK_ZeroInitialization:
9497       OS << "zero initialization";
9498       break;
9499 
9500     case SK_CAssignment:
9501       OS << "C assignment";
9502       break;
9503 
9504     case SK_StringInit:
9505       OS << "string initialization";
9506       break;
9507 
9508     case SK_ObjCObjectConversion:
9509       OS << "Objective-C object conversion";
9510       break;
9511 
9512     case SK_ArrayLoopIndex:
9513       OS << "indexing for array initialization loop";
9514       break;
9515 
9516     case SK_ArrayLoopInit:
9517       OS << "array initialization loop";
9518       break;
9519 
9520     case SK_ArrayInit:
9521       OS << "array initialization";
9522       break;
9523 
9524     case SK_GNUArrayInit:
9525       OS << "array initialization (GNU extension)";
9526       break;
9527 
9528     case SK_ParenthesizedArrayInit:
9529       OS << "parenthesized array initialization";
9530       break;
9531 
9532     case SK_PassByIndirectCopyRestore:
9533       OS << "pass by indirect copy and restore";
9534       break;
9535 
9536     case SK_PassByIndirectRestore:
9537       OS << "pass by indirect restore";
9538       break;
9539 
9540     case SK_ProduceObjCObject:
9541       OS << "Objective-C object retension";
9542       break;
9543 
9544     case SK_StdInitializerList:
9545       OS << "std::initializer_list from initializer list";
9546       break;
9547 
9548     case SK_StdInitializerListConstructorCall:
9549       OS << "list initialization from std::initializer_list";
9550       break;
9551 
9552     case SK_OCLSamplerInit:
9553       OS << "OpenCL sampler_t from integer constant";
9554       break;
9555 
9556     case SK_OCLZeroOpaqueType:
9557       OS << "OpenCL opaque type from zero";
9558       break;
9559     }
9560 
9561     OS << " [" << S->Type.getAsString() << ']';
9562   }
9563 
9564   OS << '\n';
9565 }
9566 
9567 void InitializationSequence::dump() const {
9568   dump(llvm::errs());
9569 }
9570 
9571 static bool NarrowingErrs(const LangOptions &L) {
9572   return L.CPlusPlus11 &&
9573          (!L.MicrosoftExt || L.isCompatibleWithMSVC(LangOptions::MSVC2015));
9574 }
9575 
9576 static void DiagnoseNarrowingInInitList(Sema &S,
9577                                         const ImplicitConversionSequence &ICS,
9578                                         QualType PreNarrowingType,
9579                                         QualType EntityType,
9580                                         const Expr *PostInit) {
9581   const StandardConversionSequence *SCS = nullptr;
9582   switch (ICS.getKind()) {
9583   case ImplicitConversionSequence::StandardConversion:
9584     SCS = &ICS.Standard;
9585     break;
9586   case ImplicitConversionSequence::UserDefinedConversion:
9587     SCS = &ICS.UserDefined.After;
9588     break;
9589   case ImplicitConversionSequence::AmbiguousConversion:
9590   case ImplicitConversionSequence::EllipsisConversion:
9591   case ImplicitConversionSequence::BadConversion:
9592     return;
9593   }
9594 
9595   // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
9596   APValue ConstantValue;
9597   QualType ConstantType;
9598   switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
9599                                 ConstantType)) {
9600   case NK_Not_Narrowing:
9601   case NK_Dependent_Narrowing:
9602     // No narrowing occurred.
9603     return;
9604 
9605   case NK_Type_Narrowing:
9606     // This was a floating-to-integer conversion, which is always considered a
9607     // narrowing conversion even if the value is a constant and can be
9608     // represented exactly as an integer.
9609     S.Diag(PostInit->getBeginLoc(), NarrowingErrs(S.getLangOpts())
9610                                         ? diag::ext_init_list_type_narrowing
9611                                         : diag::warn_init_list_type_narrowing)
9612         << PostInit->getSourceRange()
9613         << PreNarrowingType.getLocalUnqualifiedType()
9614         << EntityType.getLocalUnqualifiedType();
9615     break;
9616 
9617   case NK_Constant_Narrowing:
9618     // A constant value was narrowed.
9619     S.Diag(PostInit->getBeginLoc(),
9620            NarrowingErrs(S.getLangOpts())
9621                ? diag::ext_init_list_constant_narrowing
9622                : diag::warn_init_list_constant_narrowing)
9623         << PostInit->getSourceRange()
9624         << ConstantValue.getAsString(S.getASTContext(), ConstantType)
9625         << EntityType.getLocalUnqualifiedType();
9626     break;
9627 
9628   case NK_Variable_Narrowing:
9629     // A variable's value may have been narrowed.
9630     S.Diag(PostInit->getBeginLoc(),
9631            NarrowingErrs(S.getLangOpts())
9632                ? diag::ext_init_list_variable_narrowing
9633                : diag::warn_init_list_variable_narrowing)
9634         << PostInit->getSourceRange()
9635         << PreNarrowingType.getLocalUnqualifiedType()
9636         << EntityType.getLocalUnqualifiedType();
9637     break;
9638   }
9639 
9640   SmallString<128> StaticCast;
9641   llvm::raw_svector_ostream OS(StaticCast);
9642   OS << "static_cast<";
9643   if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
9644     // It's important to use the typedef's name if there is one so that the
9645     // fixit doesn't break code using types like int64_t.
9646     //
9647     // FIXME: This will break if the typedef requires qualification.  But
9648     // getQualifiedNameAsString() includes non-machine-parsable components.
9649     OS << *TT->getDecl();
9650   } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
9651     OS << BT->getName(S.getLangOpts());
9652   else {
9653     // Oops, we didn't find the actual type of the variable.  Don't emit a fixit
9654     // with a broken cast.
9655     return;
9656   }
9657   OS << ">(";
9658   S.Diag(PostInit->getBeginLoc(), diag::note_init_list_narrowing_silence)
9659       << PostInit->getSourceRange()
9660       << FixItHint::CreateInsertion(PostInit->getBeginLoc(), OS.str())
9661       << FixItHint::CreateInsertion(
9662              S.getLocForEndOfToken(PostInit->getEndLoc()), ")");
9663 }
9664 
9665 //===----------------------------------------------------------------------===//
9666 // Initialization helper functions
9667 //===----------------------------------------------------------------------===//
9668 bool
9669 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
9670                                    ExprResult Init) {
9671   if (Init.isInvalid())
9672     return false;
9673 
9674   Expr *InitE = Init.get();
9675   assert(InitE && "No initialization expression");
9676 
9677   InitializationKind Kind =
9678       InitializationKind::CreateCopy(InitE->getBeginLoc(), SourceLocation());
9679   InitializationSequence Seq(*this, Entity, Kind, InitE);
9680   return !Seq.Failed();
9681 }
9682 
9683 ExprResult
9684 Sema::PerformCopyInitialization(const InitializedEntity &Entity,
9685                                 SourceLocation EqualLoc,
9686                                 ExprResult Init,
9687                                 bool TopLevelOfInitList,
9688                                 bool AllowExplicit) {
9689   if (Init.isInvalid())
9690     return ExprError();
9691 
9692   Expr *InitE = Init.get();
9693   assert(InitE && "No initialization expression?");
9694 
9695   if (EqualLoc.isInvalid())
9696     EqualLoc = InitE->getBeginLoc();
9697 
9698   InitializationKind Kind = InitializationKind::CreateCopy(
9699       InitE->getBeginLoc(), EqualLoc, AllowExplicit);
9700   InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList);
9701 
9702   // Prevent infinite recursion when performing parameter copy-initialization.
9703   const bool ShouldTrackCopy =
9704       Entity.isParameterKind() && Seq.isConstructorInitialization();
9705   if (ShouldTrackCopy) {
9706     if (llvm::find(CurrentParameterCopyTypes, Entity.getType()) !=
9707         CurrentParameterCopyTypes.end()) {
9708       Seq.SetOverloadFailure(
9709           InitializationSequence::FK_ConstructorOverloadFailed,
9710           OR_No_Viable_Function);
9711 
9712       // Try to give a meaningful diagnostic note for the problematic
9713       // constructor.
9714       const auto LastStep = Seq.step_end() - 1;
9715       assert(LastStep->Kind ==
9716              InitializationSequence::SK_ConstructorInitialization);
9717       const FunctionDecl *Function = LastStep->Function.Function;
9718       auto Candidate =
9719           llvm::find_if(Seq.getFailedCandidateSet(),
9720                         [Function](const OverloadCandidate &Candidate) -> bool {
9721                           return Candidate.Viable &&
9722                                  Candidate.Function == Function &&
9723                                  Candidate.Conversions.size() > 0;
9724                         });
9725       if (Candidate != Seq.getFailedCandidateSet().end() &&
9726           Function->getNumParams() > 0) {
9727         Candidate->Viable = false;
9728         Candidate->FailureKind = ovl_fail_bad_conversion;
9729         Candidate->Conversions[0].setBad(BadConversionSequence::no_conversion,
9730                                          InitE,
9731                                          Function->getParamDecl(0)->getType());
9732       }
9733     }
9734     CurrentParameterCopyTypes.push_back(Entity.getType());
9735   }
9736 
9737   ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE);
9738 
9739   if (ShouldTrackCopy)
9740     CurrentParameterCopyTypes.pop_back();
9741 
9742   return Result;
9743 }
9744 
9745 /// Determine whether RD is, or is derived from, a specialization of CTD.
9746 static bool isOrIsDerivedFromSpecializationOf(CXXRecordDecl *RD,
9747                                               ClassTemplateDecl *CTD) {
9748   auto NotSpecialization = [&] (const CXXRecordDecl *Candidate) {
9749     auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Candidate);
9750     return !CTSD || !declaresSameEntity(CTSD->getSpecializedTemplate(), CTD);
9751   };
9752   return !(NotSpecialization(RD) && RD->forallBases(NotSpecialization));
9753 }
9754 
9755 QualType Sema::DeduceTemplateSpecializationFromInitializer(
9756     TypeSourceInfo *TSInfo, const InitializedEntity &Entity,
9757     const InitializationKind &Kind, MultiExprArg Inits) {
9758   auto *DeducedTST = dyn_cast<DeducedTemplateSpecializationType>(
9759       TSInfo->getType()->getContainedDeducedType());
9760   assert(DeducedTST && "not a deduced template specialization type");
9761 
9762   auto TemplateName = DeducedTST->getTemplateName();
9763   if (TemplateName.isDependent())
9764     return SubstAutoType(TSInfo->getType(), Context.DependentTy);
9765 
9766   // We can only perform deduction for class templates.
9767   auto *Template =
9768       dyn_cast_or_null<ClassTemplateDecl>(TemplateName.getAsTemplateDecl());
9769   if (!Template) {
9770     Diag(Kind.getLocation(),
9771          diag::err_deduced_non_class_template_specialization_type)
9772       << (int)getTemplateNameKindForDiagnostics(TemplateName) << TemplateName;
9773     if (auto *TD = TemplateName.getAsTemplateDecl())
9774       Diag(TD->getLocation(), diag::note_template_decl_here);
9775     return QualType();
9776   }
9777 
9778   // Can't deduce from dependent arguments.
9779   if (Expr::hasAnyTypeDependentArguments(Inits)) {
9780     Diag(TSInfo->getTypeLoc().getBeginLoc(),
9781          diag::warn_cxx14_compat_class_template_argument_deduction)
9782         << TSInfo->getTypeLoc().getSourceRange() << 0;
9783     return SubstAutoType(TSInfo->getType(), Context.DependentTy);
9784   }
9785 
9786   // FIXME: Perform "exact type" matching first, per CWG discussion?
9787   //        Or implement this via an implied 'T(T) -> T' deduction guide?
9788 
9789   // FIXME: Do we need/want a std::initializer_list<T> special case?
9790 
9791   // Look up deduction guides, including those synthesized from constructors.
9792   //
9793   // C++1z [over.match.class.deduct]p1:
9794   //   A set of functions and function templates is formed comprising:
9795   //   - For each constructor of the class template designated by the
9796   //     template-name, a function template [...]
9797   //  - For each deduction-guide, a function or function template [...]
9798   DeclarationNameInfo NameInfo(
9799       Context.DeclarationNames.getCXXDeductionGuideName(Template),
9800       TSInfo->getTypeLoc().getEndLoc());
9801   LookupResult Guides(*this, NameInfo, LookupOrdinaryName);
9802   LookupQualifiedName(Guides, Template->getDeclContext());
9803 
9804   // FIXME: Do not diagnose inaccessible deduction guides. The standard isn't
9805   // clear on this, but they're not found by name so access does not apply.
9806   Guides.suppressDiagnostics();
9807 
9808   // Figure out if this is list-initialization.
9809   InitListExpr *ListInit =
9810       (Inits.size() == 1 && Kind.getKind() != InitializationKind::IK_Direct)
9811           ? dyn_cast<InitListExpr>(Inits[0])
9812           : nullptr;
9813 
9814   // C++1z [over.match.class.deduct]p1:
9815   //   Initialization and overload resolution are performed as described in
9816   //   [dcl.init] and [over.match.ctor], [over.match.copy], or [over.match.list]
9817   //   (as appropriate for the type of initialization performed) for an object
9818   //   of a hypothetical class type, where the selected functions and function
9819   //   templates are considered to be the constructors of that class type
9820   //
9821   // Since we know we're initializing a class type of a type unrelated to that
9822   // of the initializer, this reduces to something fairly reasonable.
9823   OverloadCandidateSet Candidates(Kind.getLocation(),
9824                                   OverloadCandidateSet::CSK_Normal);
9825   OverloadCandidateSet::iterator Best;
9826 
9827   bool HasAnyDeductionGuide = false;
9828   bool AllowExplicit = !Kind.isCopyInit() || ListInit;
9829 
9830   auto tryToResolveOverload =
9831       [&](bool OnlyListConstructors) -> OverloadingResult {
9832     Candidates.clear(OverloadCandidateSet::CSK_Normal);
9833     HasAnyDeductionGuide = false;
9834 
9835     for (auto I = Guides.begin(), E = Guides.end(); I != E; ++I) {
9836       NamedDecl *D = (*I)->getUnderlyingDecl();
9837       if (D->isInvalidDecl())
9838         continue;
9839 
9840       auto *TD = dyn_cast<FunctionTemplateDecl>(D);
9841       auto *GD = dyn_cast_or_null<CXXDeductionGuideDecl>(
9842           TD ? TD->getTemplatedDecl() : dyn_cast<FunctionDecl>(D));
9843       if (!GD)
9844         continue;
9845 
9846       if (!GD->isImplicit())
9847         HasAnyDeductionGuide = true;
9848 
9849       // C++ [over.match.ctor]p1: (non-list copy-initialization from non-class)
9850       //   For copy-initialization, the candidate functions are all the
9851       //   converting constructors (12.3.1) of that class.
9852       // C++ [over.match.copy]p1: (non-list copy-initialization from class)
9853       //   The converting constructors of T are candidate functions.
9854       if (!AllowExplicit) {
9855         // Overload resolution checks whether the deduction guide is declared
9856         // explicit for us.
9857 
9858         // When looking for a converting constructor, deduction guides that
9859         // could never be called with one argument are not interesting to
9860         // check or note.
9861         if (GD->getMinRequiredArguments() > 1 ||
9862             (GD->getNumParams() == 0 && !GD->isVariadic()))
9863           continue;
9864       }
9865 
9866       // C++ [over.match.list]p1.1: (first phase list initialization)
9867       //   Initially, the candidate functions are the initializer-list
9868       //   constructors of the class T
9869       if (OnlyListConstructors && !isInitListConstructor(GD))
9870         continue;
9871 
9872       // C++ [over.match.list]p1.2: (second phase list initialization)
9873       //   the candidate functions are all the constructors of the class T
9874       // C++ [over.match.ctor]p1: (all other cases)
9875       //   the candidate functions are all the constructors of the class of
9876       //   the object being initialized
9877 
9878       // C++ [over.best.ics]p4:
9879       //   When [...] the constructor [...] is a candidate by
9880       //    - [over.match.copy] (in all cases)
9881       // FIXME: The "second phase of [over.match.list] case can also
9882       // theoretically happen here, but it's not clear whether we can
9883       // ever have a parameter of the right type.
9884       bool SuppressUserConversions = Kind.isCopyInit();
9885 
9886       if (TD)
9887         AddTemplateOverloadCandidate(TD, I.getPair(), /*ExplicitArgs*/ nullptr,
9888                                      Inits, Candidates, SuppressUserConversions,
9889                                      /*PartialOverloading*/ false,
9890                                      AllowExplicit);
9891       else
9892         AddOverloadCandidate(GD, I.getPair(), Inits, Candidates,
9893                              SuppressUserConversions,
9894                              /*PartialOverloading*/ false, AllowExplicit);
9895     }
9896     return Candidates.BestViableFunction(*this, Kind.getLocation(), Best);
9897   };
9898 
9899   OverloadingResult Result = OR_No_Viable_Function;
9900 
9901   // C++11 [over.match.list]p1, per DR1467: for list-initialization, first
9902   // try initializer-list constructors.
9903   if (ListInit) {
9904     bool TryListConstructors = true;
9905 
9906     // Try list constructors unless the list is empty and the class has one or
9907     // more default constructors, in which case those constructors win.
9908     if (!ListInit->getNumInits()) {
9909       for (NamedDecl *D : Guides) {
9910         auto *FD = dyn_cast<FunctionDecl>(D->getUnderlyingDecl());
9911         if (FD && FD->getMinRequiredArguments() == 0) {
9912           TryListConstructors = false;
9913           break;
9914         }
9915       }
9916     } else if (ListInit->getNumInits() == 1) {
9917       // C++ [over.match.class.deduct]:
9918       //   As an exception, the first phase in [over.match.list] (considering
9919       //   initializer-list constructors) is omitted if the initializer list
9920       //   consists of a single expression of type cv U, where U is a
9921       //   specialization of C or a class derived from a specialization of C.
9922       Expr *E = ListInit->getInit(0);
9923       auto *RD = E->getType()->getAsCXXRecordDecl();
9924       if (!isa<InitListExpr>(E) && RD &&
9925           isCompleteType(Kind.getLocation(), E->getType()) &&
9926           isOrIsDerivedFromSpecializationOf(RD, Template))
9927         TryListConstructors = false;
9928     }
9929 
9930     if (TryListConstructors)
9931       Result = tryToResolveOverload(/*OnlyListConstructor*/true);
9932     // Then unwrap the initializer list and try again considering all
9933     // constructors.
9934     Inits = MultiExprArg(ListInit->getInits(), ListInit->getNumInits());
9935   }
9936 
9937   // If list-initialization fails, or if we're doing any other kind of
9938   // initialization, we (eventually) consider constructors.
9939   if (Result == OR_No_Viable_Function)
9940     Result = tryToResolveOverload(/*OnlyListConstructor*/false);
9941 
9942   switch (Result) {
9943   case OR_Ambiguous:
9944     // FIXME: For list-initialization candidates, it'd usually be better to
9945     // list why they were not viable when given the initializer list itself as
9946     // an argument.
9947     Candidates.NoteCandidates(
9948         PartialDiagnosticAt(
9949             Kind.getLocation(),
9950             PDiag(diag::err_deduced_class_template_ctor_ambiguous)
9951                 << TemplateName),
9952         *this, OCD_AmbiguousCandidates, Inits);
9953     return QualType();
9954 
9955   case OR_No_Viable_Function: {
9956     CXXRecordDecl *Primary =
9957         cast<ClassTemplateDecl>(Template)->getTemplatedDecl();
9958     bool Complete =
9959         isCompleteType(Kind.getLocation(), Context.getTypeDeclType(Primary));
9960     Candidates.NoteCandidates(
9961         PartialDiagnosticAt(
9962             Kind.getLocation(),
9963             PDiag(Complete ? diag::err_deduced_class_template_ctor_no_viable
9964                            : diag::err_deduced_class_template_incomplete)
9965                 << TemplateName << !Guides.empty()),
9966         *this, OCD_AllCandidates, Inits);
9967     return QualType();
9968   }
9969 
9970   case OR_Deleted: {
9971     Diag(Kind.getLocation(), diag::err_deduced_class_template_deleted)
9972       << TemplateName;
9973     NoteDeletedFunction(Best->Function);
9974     return QualType();
9975   }
9976 
9977   case OR_Success:
9978     // C++ [over.match.list]p1:
9979     //   In copy-list-initialization, if an explicit constructor is chosen, the
9980     //   initialization is ill-formed.
9981     if (Kind.isCopyInit() && ListInit &&
9982         cast<CXXDeductionGuideDecl>(Best->Function)->isExplicit()) {
9983       bool IsDeductionGuide = !Best->Function->isImplicit();
9984       Diag(Kind.getLocation(), diag::err_deduced_class_template_explicit)
9985           << TemplateName << IsDeductionGuide;
9986       Diag(Best->Function->getLocation(),
9987            diag::note_explicit_ctor_deduction_guide_here)
9988           << IsDeductionGuide;
9989       return QualType();
9990     }
9991 
9992     // Make sure we didn't select an unusable deduction guide, and mark it
9993     // as referenced.
9994     DiagnoseUseOfDecl(Best->Function, Kind.getLocation());
9995     MarkFunctionReferenced(Kind.getLocation(), Best->Function);
9996     break;
9997   }
9998 
9999   // C++ [dcl.type.class.deduct]p1:
10000   //  The placeholder is replaced by the return type of the function selected
10001   //  by overload resolution for class template deduction.
10002   QualType DeducedType =
10003       SubstAutoType(TSInfo->getType(), Best->Function->getReturnType());
10004   Diag(TSInfo->getTypeLoc().getBeginLoc(),
10005        diag::warn_cxx14_compat_class_template_argument_deduction)
10006       << TSInfo->getTypeLoc().getSourceRange() << 1 << DeducedType;
10007 
10008   // Warn if CTAD was used on a type that does not have any user-defined
10009   // deduction guides.
10010   if (!HasAnyDeductionGuide) {
10011     Diag(TSInfo->getTypeLoc().getBeginLoc(),
10012          diag::warn_ctad_maybe_unsupported)
10013         << TemplateName;
10014     Diag(Template->getLocation(), diag::note_suppress_ctad_maybe_unsupported);
10015   }
10016 
10017   return DeducedType;
10018 }
10019