1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for initializers.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/DeclObjC.h"
16 #include "clang/AST/ExprCXX.h"
17 #include "clang/AST/ExprObjC.h"
18 #include "clang/AST/TypeLoc.h"
19 #include "clang/Basic/TargetInfo.h"
20 #include "clang/Sema/Designator.h"
21 #include "clang/Sema/Initialization.h"
22 #include "clang/Sema/Lookup.h"
23 #include "clang/Sema/SemaInternal.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/raw_ostream.h"
28 
29 using namespace clang;
30 
31 //===----------------------------------------------------------------------===//
32 // Sema Initialization Checking
33 //===----------------------------------------------------------------------===//
34 
35 /// Check whether T is compatible with a wide character type (wchar_t,
36 /// char16_t or char32_t).
37 static bool IsWideCharCompatible(QualType T, ASTContext &Context) {
38   if (Context.typesAreCompatible(Context.getWideCharType(), T))
39     return true;
40   if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) {
41     return Context.typesAreCompatible(Context.Char16Ty, T) ||
42            Context.typesAreCompatible(Context.Char32Ty, T);
43   }
44   return false;
45 }
46 
47 enum StringInitFailureKind {
48   SIF_None,
49   SIF_NarrowStringIntoWideChar,
50   SIF_WideStringIntoChar,
51   SIF_IncompatWideStringIntoWideChar,
52   SIF_UTF8StringIntoPlainChar,
53   SIF_PlainStringIntoUTF8Char,
54   SIF_Other
55 };
56 
57 /// Check whether the array of type AT can be initialized by the Init
58 /// expression by means of string initialization. Returns SIF_None if so,
59 /// otherwise returns a StringInitFailureKind that describes why the
60 /// initialization would not work.
61 static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT,
62                                           ASTContext &Context) {
63   if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
64     return SIF_Other;
65 
66   // See if this is a string literal or @encode.
67   Init = Init->IgnoreParens();
68 
69   // Handle @encode, which is a narrow string.
70   if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
71     return SIF_None;
72 
73   // Otherwise we can only handle string literals.
74   StringLiteral *SL = dyn_cast<StringLiteral>(Init);
75   if (!SL)
76     return SIF_Other;
77 
78   const QualType ElemTy =
79       Context.getCanonicalType(AT->getElementType()).getUnqualifiedType();
80 
81   switch (SL->getKind()) {
82   case StringLiteral::UTF8:
83     // char8_t array can be initialized with a UTF-8 string.
84     if (ElemTy->isChar8Type())
85       return SIF_None;
86     LLVM_FALLTHROUGH;
87   case StringLiteral::Ascii:
88     // char array can be initialized with a narrow string.
89     // Only allow char x[] = "foo";  not char x[] = L"foo";
90     if (ElemTy->isCharType())
91       return (SL->getKind() == StringLiteral::UTF8 &&
92               Context.getLangOpts().Char8)
93                  ? SIF_UTF8StringIntoPlainChar
94                  : SIF_None;
95     if (ElemTy->isChar8Type())
96       return SIF_PlainStringIntoUTF8Char;
97     if (IsWideCharCompatible(ElemTy, Context))
98       return SIF_NarrowStringIntoWideChar;
99     return SIF_Other;
100   // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15:
101   // "An array with element type compatible with a qualified or unqualified
102   // version of wchar_t, char16_t, or char32_t may be initialized by a wide
103   // string literal with the corresponding encoding prefix (L, u, or U,
104   // respectively), optionally enclosed in braces.
105   case StringLiteral::UTF16:
106     if (Context.typesAreCompatible(Context.Char16Ty, ElemTy))
107       return SIF_None;
108     if (ElemTy->isCharType() || ElemTy->isChar8Type())
109       return SIF_WideStringIntoChar;
110     if (IsWideCharCompatible(ElemTy, Context))
111       return SIF_IncompatWideStringIntoWideChar;
112     return SIF_Other;
113   case StringLiteral::UTF32:
114     if (Context.typesAreCompatible(Context.Char32Ty, ElemTy))
115       return SIF_None;
116     if (ElemTy->isCharType() || ElemTy->isChar8Type())
117       return SIF_WideStringIntoChar;
118     if (IsWideCharCompatible(ElemTy, Context))
119       return SIF_IncompatWideStringIntoWideChar;
120     return SIF_Other;
121   case StringLiteral::Wide:
122     if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy))
123       return SIF_None;
124     if (ElemTy->isCharType() || ElemTy->isChar8Type())
125       return SIF_WideStringIntoChar;
126     if (IsWideCharCompatible(ElemTy, Context))
127       return SIF_IncompatWideStringIntoWideChar;
128     return SIF_Other;
129   }
130 
131   llvm_unreachable("missed a StringLiteral kind?");
132 }
133 
134 static StringInitFailureKind IsStringInit(Expr *init, QualType declType,
135                                           ASTContext &Context) {
136   const ArrayType *arrayType = Context.getAsArrayType(declType);
137   if (!arrayType)
138     return SIF_Other;
139   return IsStringInit(init, arrayType, Context);
140 }
141 
142 /// Update the type of a string literal, including any surrounding parentheses,
143 /// to match the type of the object which it is initializing.
144 static void updateStringLiteralType(Expr *E, QualType Ty) {
145   while (true) {
146     E->setType(Ty);
147     if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E))
148       break;
149     else if (ParenExpr *PE = dyn_cast<ParenExpr>(E))
150       E = PE->getSubExpr();
151     else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
152       E = UO->getSubExpr();
153     else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E))
154       E = GSE->getResultExpr();
155     else
156       llvm_unreachable("unexpected expr in string literal init");
157   }
158 }
159 
160 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
161                             Sema &S) {
162   // Get the length of the string as parsed.
163   auto *ConstantArrayTy =
164       cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe());
165   uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue();
166 
167   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
168     // C99 6.7.8p14. We have an array of character type with unknown size
169     // being initialized to a string literal.
170     llvm::APInt ConstVal(32, StrLength);
171     // Return a new array type (C99 6.7.8p22).
172     DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
173                                            ConstVal,
174                                            ArrayType::Normal, 0);
175     updateStringLiteralType(Str, DeclT);
176     return;
177   }
178 
179   const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
180 
181   // We have an array of character type with known size.  However,
182   // the size may be smaller or larger than the string we are initializing.
183   // FIXME: Avoid truncation for 64-bit length strings.
184   if (S.getLangOpts().CPlusPlus) {
185     if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
186       // For Pascal strings it's OK to strip off the terminating null character,
187       // so the example below is valid:
188       //
189       // unsigned char a[2] = "\pa";
190       if (SL->isPascal())
191         StrLength--;
192     }
193 
194     // [dcl.init.string]p2
195     if (StrLength > CAT->getSize().getZExtValue())
196       S.Diag(Str->getLocStart(),
197              diag::err_initializer_string_for_char_array_too_long)
198         << Str->getSourceRange();
199   } else {
200     // C99 6.7.8p14.
201     if (StrLength-1 > CAT->getSize().getZExtValue())
202       S.Diag(Str->getLocStart(),
203              diag::ext_initializer_string_for_char_array_too_long)
204         << Str->getSourceRange();
205   }
206 
207   // Set the type to the actual size that we are initializing.  If we have
208   // something like:
209   //   char x[1] = "foo";
210   // then this will set the string literal's type to char[1].
211   updateStringLiteralType(Str, DeclT);
212 }
213 
214 //===----------------------------------------------------------------------===//
215 // Semantic checking for initializer lists.
216 //===----------------------------------------------------------------------===//
217 
218 namespace {
219 
220 /// Semantic checking for initializer lists.
221 ///
222 /// The InitListChecker class contains a set of routines that each
223 /// handle the initialization of a certain kind of entity, e.g.,
224 /// arrays, vectors, struct/union types, scalars, etc. The
225 /// InitListChecker itself performs a recursive walk of the subobject
226 /// structure of the type to be initialized, while stepping through
227 /// the initializer list one element at a time. The IList and Index
228 /// parameters to each of the Check* routines contain the active
229 /// (syntactic) initializer list and the index into that initializer
230 /// list that represents the current initializer. Each routine is
231 /// responsible for moving that Index forward as it consumes elements.
232 ///
233 /// Each Check* routine also has a StructuredList/StructuredIndex
234 /// arguments, which contains the current "structured" (semantic)
235 /// initializer list and the index into that initializer list where we
236 /// are copying initializers as we map them over to the semantic
237 /// list. Once we have completed our recursive walk of the subobject
238 /// structure, we will have constructed a full semantic initializer
239 /// list.
240 ///
241 /// C99 designators cause changes in the initializer list traversal,
242 /// because they make the initialization "jump" into a specific
243 /// subobject and then continue the initialization from that
244 /// point. CheckDesignatedInitializer() recursively steps into the
245 /// designated subobject and manages backing out the recursion to
246 /// initialize the subobjects after the one designated.
247 class InitListChecker {
248   Sema &SemaRef;
249   bool hadError;
250   bool VerifyOnly; // no diagnostics, no structure building
251   bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode.
252   llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic;
253   InitListExpr *FullyStructuredList;
254 
255   void CheckImplicitInitList(const InitializedEntity &Entity,
256                              InitListExpr *ParentIList, QualType T,
257                              unsigned &Index, InitListExpr *StructuredList,
258                              unsigned &StructuredIndex);
259   void CheckExplicitInitList(const InitializedEntity &Entity,
260                              InitListExpr *IList, QualType &T,
261                              InitListExpr *StructuredList,
262                              bool TopLevelObject = false);
263   void CheckListElementTypes(const InitializedEntity &Entity,
264                              InitListExpr *IList, QualType &DeclType,
265                              bool SubobjectIsDesignatorContext,
266                              unsigned &Index,
267                              InitListExpr *StructuredList,
268                              unsigned &StructuredIndex,
269                              bool TopLevelObject = false);
270   void CheckSubElementType(const InitializedEntity &Entity,
271                            InitListExpr *IList, QualType ElemType,
272                            unsigned &Index,
273                            InitListExpr *StructuredList,
274                            unsigned &StructuredIndex);
275   void CheckComplexType(const InitializedEntity &Entity,
276                         InitListExpr *IList, QualType DeclType,
277                         unsigned &Index,
278                         InitListExpr *StructuredList,
279                         unsigned &StructuredIndex);
280   void CheckScalarType(const InitializedEntity &Entity,
281                        InitListExpr *IList, QualType DeclType,
282                        unsigned &Index,
283                        InitListExpr *StructuredList,
284                        unsigned &StructuredIndex);
285   void CheckReferenceType(const InitializedEntity &Entity,
286                           InitListExpr *IList, QualType DeclType,
287                           unsigned &Index,
288                           InitListExpr *StructuredList,
289                           unsigned &StructuredIndex);
290   void CheckVectorType(const InitializedEntity &Entity,
291                        InitListExpr *IList, QualType DeclType, unsigned &Index,
292                        InitListExpr *StructuredList,
293                        unsigned &StructuredIndex);
294   void CheckStructUnionTypes(const InitializedEntity &Entity,
295                              InitListExpr *IList, QualType DeclType,
296                              CXXRecordDecl::base_class_range Bases,
297                              RecordDecl::field_iterator Field,
298                              bool SubobjectIsDesignatorContext, unsigned &Index,
299                              InitListExpr *StructuredList,
300                              unsigned &StructuredIndex,
301                              bool TopLevelObject = false);
302   void CheckArrayType(const InitializedEntity &Entity,
303                       InitListExpr *IList, QualType &DeclType,
304                       llvm::APSInt elementIndex,
305                       bool SubobjectIsDesignatorContext, unsigned &Index,
306                       InitListExpr *StructuredList,
307                       unsigned &StructuredIndex);
308   bool CheckDesignatedInitializer(const InitializedEntity &Entity,
309                                   InitListExpr *IList, DesignatedInitExpr *DIE,
310                                   unsigned DesigIdx,
311                                   QualType &CurrentObjectType,
312                                   RecordDecl::field_iterator *NextField,
313                                   llvm::APSInt *NextElementIndex,
314                                   unsigned &Index,
315                                   InitListExpr *StructuredList,
316                                   unsigned &StructuredIndex,
317                                   bool FinishSubobjectInit,
318                                   bool TopLevelObject);
319   InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
320                                            QualType CurrentObjectType,
321                                            InitListExpr *StructuredList,
322                                            unsigned StructuredIndex,
323                                            SourceRange InitRange,
324                                            bool IsFullyOverwritten = false);
325   void UpdateStructuredListElement(InitListExpr *StructuredList,
326                                    unsigned &StructuredIndex,
327                                    Expr *expr);
328   int numArrayElements(QualType DeclType);
329   int numStructUnionElements(QualType DeclType);
330 
331   static ExprResult PerformEmptyInit(Sema &SemaRef,
332                                      SourceLocation Loc,
333                                      const InitializedEntity &Entity,
334                                      bool VerifyOnly,
335                                      bool TreatUnavailableAsInvalid);
336 
337   // Explanation on the "FillWithNoInit" mode:
338   //
339   // Assume we have the following definitions (Case#1):
340   // struct P { char x[6][6]; } xp = { .x[1] = "bar" };
341   // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' };
342   //
343   // l.lp.x[1][0..1] should not be filled with implicit initializers because the
344   // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf".
345   //
346   // But if we have (Case#2):
347   // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } };
348   //
349   // l.lp.x[1][0..1] are implicitly initialized and do not use values from the
350   // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0".
351   //
352   // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes"
353   // in the InitListExpr, the "holes" in Case#1 are filled not with empty
354   // initializers but with special "NoInitExpr" place holders, which tells the
355   // CodeGen not to generate any initializers for these parts.
356   void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base,
357                               const InitializedEntity &ParentEntity,
358                               InitListExpr *ILE, bool &RequiresSecondPass,
359                               bool FillWithNoInit);
360   void FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
361                                const InitializedEntity &ParentEntity,
362                                InitListExpr *ILE, bool &RequiresSecondPass,
363                                bool FillWithNoInit = false);
364   void FillInEmptyInitializations(const InitializedEntity &Entity,
365                                   InitListExpr *ILE, bool &RequiresSecondPass,
366                                   InitListExpr *OuterILE, unsigned OuterIndex,
367                                   bool FillWithNoInit = false);
368   bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
369                               Expr *InitExpr, FieldDecl *Field,
370                               bool TopLevelObject);
371   void CheckEmptyInitializable(const InitializedEntity &Entity,
372                                SourceLocation Loc);
373 
374 public:
375   InitListChecker(Sema &S, const InitializedEntity &Entity,
376                   InitListExpr *IL, QualType &T, bool VerifyOnly,
377                   bool TreatUnavailableAsInvalid);
378   bool HadError() { return hadError; }
379 
380   // Retrieves the fully-structured initializer list used for
381   // semantic analysis and code generation.
382   InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
383 };
384 
385 } // end anonymous namespace
386 
387 ExprResult InitListChecker::PerformEmptyInit(Sema &SemaRef,
388                                              SourceLocation Loc,
389                                              const InitializedEntity &Entity,
390                                              bool VerifyOnly,
391                                              bool TreatUnavailableAsInvalid) {
392   InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
393                                                             true);
394   MultiExprArg SubInit;
395   Expr *InitExpr;
396   InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc);
397 
398   // C++ [dcl.init.aggr]p7:
399   //   If there are fewer initializer-clauses in the list than there are
400   //   members in the aggregate, then each member not explicitly initialized
401   //   ...
402   bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 &&
403       Entity.getType()->getBaseElementTypeUnsafe()->isRecordType();
404   if (EmptyInitList) {
405     // C++1y / DR1070:
406     //   shall be initialized [...] from an empty initializer list.
407     //
408     // We apply the resolution of this DR to C++11 but not C++98, since C++98
409     // does not have useful semantics for initialization from an init list.
410     // We treat this as copy-initialization, because aggregate initialization
411     // always performs copy-initialization on its elements.
412     //
413     // Only do this if we're initializing a class type, to avoid filling in
414     // the initializer list where possible.
415     InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context)
416                    InitListExpr(SemaRef.Context, Loc, None, Loc);
417     InitExpr->setType(SemaRef.Context.VoidTy);
418     SubInit = InitExpr;
419     Kind = InitializationKind::CreateCopy(Loc, Loc);
420   } else {
421     // C++03:
422     //   shall be value-initialized.
423   }
424 
425   InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit);
426   // libstdc++4.6 marks the vector default constructor as explicit in
427   // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case.
428   // stlport does so too. Look for std::__debug for libstdc++, and for
429   // std:: for stlport.  This is effectively a compiler-side implementation of
430   // LWG2193.
431   if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() ==
432           InitializationSequence::FK_ExplicitConstructor) {
433     OverloadCandidateSet::iterator Best;
434     OverloadingResult O =
435         InitSeq.getFailedCandidateSet()
436             .BestViableFunction(SemaRef, Kind.getLocation(), Best);
437     (void)O;
438     assert(O == OR_Success && "Inconsistent overload resolution");
439     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
440     CXXRecordDecl *R = CtorDecl->getParent();
441 
442     if (CtorDecl->getMinRequiredArguments() == 0 &&
443         CtorDecl->isExplicit() && R->getDeclName() &&
444         SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) {
445       bool IsInStd = false;
446       for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext());
447            ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) {
448         if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND))
449           IsInStd = true;
450       }
451 
452       if (IsInStd && llvm::StringSwitch<bool>(R->getName())
453               .Cases("basic_string", "deque", "forward_list", true)
454               .Cases("list", "map", "multimap", "multiset", true)
455               .Cases("priority_queue", "queue", "set", "stack", true)
456               .Cases("unordered_map", "unordered_set", "vector", true)
457               .Default(false)) {
458         InitSeq.InitializeFrom(
459             SemaRef, Entity,
460             InitializationKind::CreateValue(Loc, Loc, Loc, true),
461             MultiExprArg(), /*TopLevelOfInitList=*/false,
462             TreatUnavailableAsInvalid);
463         // Emit a warning for this.  System header warnings aren't shown
464         // by default, but people working on system headers should see it.
465         if (!VerifyOnly) {
466           SemaRef.Diag(CtorDecl->getLocation(),
467                        diag::warn_invalid_initializer_from_system_header);
468           if (Entity.getKind() == InitializedEntity::EK_Member)
469             SemaRef.Diag(Entity.getDecl()->getLocation(),
470                          diag::note_used_in_initialization_here);
471           else if (Entity.getKind() == InitializedEntity::EK_ArrayElement)
472             SemaRef.Diag(Loc, diag::note_used_in_initialization_here);
473         }
474       }
475     }
476   }
477   if (!InitSeq) {
478     if (!VerifyOnly) {
479       InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit);
480       if (Entity.getKind() == InitializedEntity::EK_Member)
481         SemaRef.Diag(Entity.getDecl()->getLocation(),
482                      diag::note_in_omitted_aggregate_initializer)
483           << /*field*/1 << Entity.getDecl();
484       else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) {
485         bool IsTrailingArrayNewMember =
486             Entity.getParent() &&
487             Entity.getParent()->isVariableLengthArrayNew();
488         SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer)
489           << (IsTrailingArrayNewMember ? 2 : /*array element*/0)
490           << Entity.getElementIndex();
491       }
492     }
493     return ExprError();
494   }
495 
496   return VerifyOnly ? ExprResult(static_cast<Expr *>(nullptr))
497                     : InitSeq.Perform(SemaRef, Entity, Kind, SubInit);
498 }
499 
500 void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity,
501                                               SourceLocation Loc) {
502   assert(VerifyOnly &&
503          "CheckEmptyInitializable is only inteded for verification mode.");
504   if (PerformEmptyInit(SemaRef, Loc, Entity, /*VerifyOnly*/true,
505                        TreatUnavailableAsInvalid).isInvalid())
506     hadError = true;
507 }
508 
509 void InitListChecker::FillInEmptyInitForBase(
510     unsigned Init, const CXXBaseSpecifier &Base,
511     const InitializedEntity &ParentEntity, InitListExpr *ILE,
512     bool &RequiresSecondPass, bool FillWithNoInit) {
513   assert(Init < ILE->getNumInits() && "should have been expanded");
514 
515   InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
516       SemaRef.Context, &Base, false, &ParentEntity);
517 
518   if (!ILE->getInit(Init)) {
519     ExprResult BaseInit =
520         FillWithNoInit ? new (SemaRef.Context) NoInitExpr(Base.getType())
521                        : PerformEmptyInit(SemaRef, ILE->getLocEnd(), BaseEntity,
522                                           /*VerifyOnly*/ false,
523                                           TreatUnavailableAsInvalid);
524     if (BaseInit.isInvalid()) {
525       hadError = true;
526       return;
527     }
528 
529     ILE->setInit(Init, BaseInit.getAs<Expr>());
530   } else if (InitListExpr *InnerILE =
531                  dyn_cast<InitListExpr>(ILE->getInit(Init))) {
532     FillInEmptyInitializations(BaseEntity, InnerILE, RequiresSecondPass,
533                                ILE, Init, FillWithNoInit);
534   } else if (DesignatedInitUpdateExpr *InnerDIUE =
535                dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
536     FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(),
537                                RequiresSecondPass, ILE, Init,
538                                /*FillWithNoInit =*/true);
539   }
540 }
541 
542 void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
543                                         const InitializedEntity &ParentEntity,
544                                               InitListExpr *ILE,
545                                               bool &RequiresSecondPass,
546                                               bool FillWithNoInit) {
547   SourceLocation Loc = ILE->getLocEnd();
548   unsigned NumInits = ILE->getNumInits();
549   InitializedEntity MemberEntity
550     = InitializedEntity::InitializeMember(Field, &ParentEntity);
551 
552   if (const RecordType *RType = ILE->getType()->getAs<RecordType>())
553     if (!RType->getDecl()->isUnion())
554       assert(Init < NumInits && "This ILE should have been expanded");
555 
556   if (Init >= NumInits || !ILE->getInit(Init)) {
557     if (FillWithNoInit) {
558       Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType());
559       if (Init < NumInits)
560         ILE->setInit(Init, Filler);
561       else
562         ILE->updateInit(SemaRef.Context, Init, Filler);
563       return;
564     }
565     // C++1y [dcl.init.aggr]p7:
566     //   If there are fewer initializer-clauses in the list than there are
567     //   members in the aggregate, then each member not explicitly initialized
568     //   shall be initialized from its brace-or-equal-initializer [...]
569     if (Field->hasInClassInitializer()) {
570       ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field);
571       if (DIE.isInvalid()) {
572         hadError = true;
573         return;
574       }
575       if (Init < NumInits)
576         ILE->setInit(Init, DIE.get());
577       else {
578         ILE->updateInit(SemaRef.Context, Init, DIE.get());
579         RequiresSecondPass = true;
580       }
581       return;
582     }
583 
584     if (Field->getType()->isReferenceType()) {
585       // C++ [dcl.init.aggr]p9:
586       //   If an incomplete or empty initializer-list leaves a
587       //   member of reference type uninitialized, the program is
588       //   ill-formed.
589       SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
590         << Field->getType()
591         << ILE->getSyntacticForm()->getSourceRange();
592       SemaRef.Diag(Field->getLocation(),
593                    diag::note_uninit_reference_member);
594       hadError = true;
595       return;
596     }
597 
598     ExprResult MemberInit = PerformEmptyInit(SemaRef, Loc, MemberEntity,
599                                              /*VerifyOnly*/false,
600                                              TreatUnavailableAsInvalid);
601     if (MemberInit.isInvalid()) {
602       hadError = true;
603       return;
604     }
605 
606     if (hadError) {
607       // Do nothing
608     } else if (Init < NumInits) {
609       ILE->setInit(Init, MemberInit.getAs<Expr>());
610     } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) {
611       // Empty initialization requires a constructor call, so
612       // extend the initializer list to include the constructor
613       // call and make a note that we'll need to take another pass
614       // through the initializer list.
615       ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>());
616       RequiresSecondPass = true;
617     }
618   } else if (InitListExpr *InnerILE
619                = dyn_cast<InitListExpr>(ILE->getInit(Init)))
620     FillInEmptyInitializations(MemberEntity, InnerILE,
621                                RequiresSecondPass, ILE, Init, FillWithNoInit);
622   else if (DesignatedInitUpdateExpr *InnerDIUE
623                = dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init)))
624     FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(),
625                                RequiresSecondPass, ILE, Init,
626                                /*FillWithNoInit =*/true);
627 }
628 
629 /// Recursively replaces NULL values within the given initializer list
630 /// with expressions that perform value-initialization of the
631 /// appropriate type, and finish off the InitListExpr formation.
632 void
633 InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity,
634                                             InitListExpr *ILE,
635                                             bool &RequiresSecondPass,
636                                             InitListExpr *OuterILE,
637                                             unsigned OuterIndex,
638                                             bool FillWithNoInit) {
639   assert((ILE->getType() != SemaRef.Context.VoidTy) &&
640          "Should not have void type");
641 
642   // If this is a nested initializer list, we might have changed its contents
643   // (and therefore some of its properties, such as instantiation-dependence)
644   // while filling it in. Inform the outer initializer list so that its state
645   // can be updated to match.
646   // FIXME: We should fully build the inner initializers before constructing
647   // the outer InitListExpr instead of mutating AST nodes after they have
648   // been used as subexpressions of other nodes.
649   struct UpdateOuterILEWithUpdatedInit {
650     InitListExpr *Outer;
651     unsigned OuterIndex;
652     ~UpdateOuterILEWithUpdatedInit() {
653       if (Outer)
654         Outer->setInit(OuterIndex, Outer->getInit(OuterIndex));
655     }
656   } UpdateOuterRAII = {OuterILE, OuterIndex};
657 
658   // A transparent ILE is not performing aggregate initialization and should
659   // not be filled in.
660   if (ILE->isTransparent())
661     return;
662 
663   if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
664     const RecordDecl *RDecl = RType->getDecl();
665     if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
666       FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(),
667                               Entity, ILE, RequiresSecondPass, FillWithNoInit);
668     else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
669              cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
670       for (auto *Field : RDecl->fields()) {
671         if (Field->hasInClassInitializer()) {
672           FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass,
673                                   FillWithNoInit);
674           break;
675         }
676       }
677     } else {
678       // The fields beyond ILE->getNumInits() are default initialized, so in
679       // order to leave them uninitialized, the ILE is expanded and the extra
680       // fields are then filled with NoInitExpr.
681       unsigned NumElems = numStructUnionElements(ILE->getType());
682       if (RDecl->hasFlexibleArrayMember())
683         ++NumElems;
684       if (ILE->getNumInits() < NumElems)
685         ILE->resizeInits(SemaRef.Context, NumElems);
686 
687       unsigned Init = 0;
688 
689       if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) {
690         for (auto &Base : CXXRD->bases()) {
691           if (hadError)
692             return;
693 
694           FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass,
695                                  FillWithNoInit);
696           ++Init;
697         }
698       }
699 
700       for (auto *Field : RDecl->fields()) {
701         if (Field->isUnnamedBitfield())
702           continue;
703 
704         if (hadError)
705           return;
706 
707         FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass,
708                                 FillWithNoInit);
709         if (hadError)
710           return;
711 
712         ++Init;
713 
714         // Only look at the first initialization of a union.
715         if (RDecl->isUnion())
716           break;
717       }
718     }
719 
720     return;
721   }
722 
723   QualType ElementType;
724 
725   InitializedEntity ElementEntity = Entity;
726   unsigned NumInits = ILE->getNumInits();
727   unsigned NumElements = NumInits;
728   if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
729     ElementType = AType->getElementType();
730     if (const auto *CAType = dyn_cast<ConstantArrayType>(AType))
731       NumElements = CAType->getSize().getZExtValue();
732     // For an array new with an unknown bound, ask for one additional element
733     // in order to populate the array filler.
734     if (Entity.isVariableLengthArrayNew())
735       ++NumElements;
736     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
737                                                          0, Entity);
738   } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
739     ElementType = VType->getElementType();
740     NumElements = VType->getNumElements();
741     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
742                                                          0, Entity);
743   } else
744     ElementType = ILE->getType();
745 
746   for (unsigned Init = 0; Init != NumElements; ++Init) {
747     if (hadError)
748       return;
749 
750     if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
751         ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
752       ElementEntity.setElementIndex(Init);
753 
754     Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr);
755     if (!InitExpr && Init < NumInits && ILE->hasArrayFiller())
756       ILE->setInit(Init, ILE->getArrayFiller());
757     else if (!InitExpr && !ILE->hasArrayFiller()) {
758       Expr *Filler = nullptr;
759 
760       if (FillWithNoInit)
761         Filler = new (SemaRef.Context) NoInitExpr(ElementType);
762       else {
763         ExprResult ElementInit = PerformEmptyInit(SemaRef, ILE->getLocEnd(),
764                                                   ElementEntity,
765                                                   /*VerifyOnly*/false,
766                                                   TreatUnavailableAsInvalid);
767         if (ElementInit.isInvalid()) {
768           hadError = true;
769           return;
770         }
771 
772         Filler = ElementInit.getAs<Expr>();
773       }
774 
775       if (hadError) {
776         // Do nothing
777       } else if (Init < NumInits) {
778         // For arrays, just set the expression used for value-initialization
779         // of the "holes" in the array.
780         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
781           ILE->setArrayFiller(Filler);
782         else
783           ILE->setInit(Init, Filler);
784       } else {
785         // For arrays, just set the expression used for value-initialization
786         // of the rest of elements and exit.
787         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
788           ILE->setArrayFiller(Filler);
789           return;
790         }
791 
792         if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) {
793           // Empty initialization requires a constructor call, so
794           // extend the initializer list to include the constructor
795           // call and make a note that we'll need to take another pass
796           // through the initializer list.
797           ILE->updateInit(SemaRef.Context, Init, Filler);
798           RequiresSecondPass = true;
799         }
800       }
801     } else if (InitListExpr *InnerILE
802                  = dyn_cast_or_null<InitListExpr>(InitExpr))
803       FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass,
804                                  ILE, Init, FillWithNoInit);
805     else if (DesignatedInitUpdateExpr *InnerDIUE
806                  = dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr))
807       FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(),
808                                  RequiresSecondPass, ILE, Init,
809                                  /*FillWithNoInit =*/true);
810   }
811 }
812 
813 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
814                                  InitListExpr *IL, QualType &T,
815                                  bool VerifyOnly,
816                                  bool TreatUnavailableAsInvalid)
817   : SemaRef(S), VerifyOnly(VerifyOnly),
818     TreatUnavailableAsInvalid(TreatUnavailableAsInvalid) {
819   // FIXME: Check that IL isn't already the semantic form of some other
820   // InitListExpr. If it is, we'd create a broken AST.
821 
822   hadError = false;
823 
824   FullyStructuredList =
825       getStructuredSubobjectInit(IL, 0, T, nullptr, 0, IL->getSourceRange());
826   CheckExplicitInitList(Entity, IL, T, FullyStructuredList,
827                         /*TopLevelObject=*/true);
828 
829   if (!hadError && !VerifyOnly) {
830     bool RequiresSecondPass = false;
831     FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass,
832                                /*OuterILE=*/nullptr, /*OuterIndex=*/0);
833     if (RequiresSecondPass && !hadError)
834       FillInEmptyInitializations(Entity, FullyStructuredList,
835                                  RequiresSecondPass, nullptr, 0);
836   }
837 }
838 
839 int InitListChecker::numArrayElements(QualType DeclType) {
840   // FIXME: use a proper constant
841   int maxElements = 0x7FFFFFFF;
842   if (const ConstantArrayType *CAT =
843         SemaRef.Context.getAsConstantArrayType(DeclType)) {
844     maxElements = static_cast<int>(CAT->getSize().getZExtValue());
845   }
846   return maxElements;
847 }
848 
849 int InitListChecker::numStructUnionElements(QualType DeclType) {
850   RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
851   int InitializableMembers = 0;
852   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl))
853     InitializableMembers += CXXRD->getNumBases();
854   for (const auto *Field : structDecl->fields())
855     if (!Field->isUnnamedBitfield())
856       ++InitializableMembers;
857 
858   if (structDecl->isUnion())
859     return std::min(InitializableMembers, 1);
860   return InitializableMembers - structDecl->hasFlexibleArrayMember();
861 }
862 
863 /// Determine whether Entity is an entity for which it is idiomatic to elide
864 /// the braces in aggregate initialization.
865 static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) {
866   // Recursive initialization of the one and only field within an aggregate
867   // class is considered idiomatic. This case arises in particular for
868   // initialization of std::array, where the C++ standard suggests the idiom of
869   //
870   //   std::array<T, N> arr = {1, 2, 3};
871   //
872   // (where std::array is an aggregate struct containing a single array field.
873 
874   // FIXME: Should aggregate initialization of a struct with a single
875   // base class and no members also suppress the warning?
876   if (Entity.getKind() != InitializedEntity::EK_Member || !Entity.getParent())
877     return false;
878 
879   auto *ParentRD =
880       Entity.getParent()->getType()->castAs<RecordType>()->getDecl();
881   if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(ParentRD))
882     if (CXXRD->getNumBases())
883       return false;
884 
885   auto FieldIt = ParentRD->field_begin();
886   assert(FieldIt != ParentRD->field_end() &&
887          "no fields but have initializer for member?");
888   return ++FieldIt == ParentRD->field_end();
889 }
890 
891 /// Check whether the range of the initializer \p ParentIList from element
892 /// \p Index onwards can be used to initialize an object of type \p T. Update
893 /// \p Index to indicate how many elements of the list were consumed.
894 ///
895 /// This also fills in \p StructuredList, from element \p StructuredIndex
896 /// onwards, with the fully-braced, desugared form of the initialization.
897 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
898                                             InitListExpr *ParentIList,
899                                             QualType T, unsigned &Index,
900                                             InitListExpr *StructuredList,
901                                             unsigned &StructuredIndex) {
902   int maxElements = 0;
903 
904   if (T->isArrayType())
905     maxElements = numArrayElements(T);
906   else if (T->isRecordType())
907     maxElements = numStructUnionElements(T);
908   else if (T->isVectorType())
909     maxElements = T->getAs<VectorType>()->getNumElements();
910   else
911     llvm_unreachable("CheckImplicitInitList(): Illegal type");
912 
913   if (maxElements == 0) {
914     if (!VerifyOnly)
915       SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
916                    diag::err_implicit_empty_initializer);
917     ++Index;
918     hadError = true;
919     return;
920   }
921 
922   // Build a structured initializer list corresponding to this subobject.
923   InitListExpr *StructuredSubobjectInitList
924     = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
925                                  StructuredIndex,
926           SourceRange(ParentIList->getInit(Index)->getLocStart(),
927                       ParentIList->getSourceRange().getEnd()));
928   unsigned StructuredSubobjectInitIndex = 0;
929 
930   // Check the element types and build the structural subobject.
931   unsigned StartIndex = Index;
932   CheckListElementTypes(Entity, ParentIList, T,
933                         /*SubobjectIsDesignatorContext=*/false, Index,
934                         StructuredSubobjectInitList,
935                         StructuredSubobjectInitIndex);
936 
937   if (!VerifyOnly) {
938     StructuredSubobjectInitList->setType(T);
939 
940     unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
941     // Update the structured sub-object initializer so that it's ending
942     // range corresponds with the end of the last initializer it used.
943     if (EndIndex < ParentIList->getNumInits() &&
944         ParentIList->getInit(EndIndex)) {
945       SourceLocation EndLoc
946         = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
947       StructuredSubobjectInitList->setRBraceLoc(EndLoc);
948     }
949 
950     // Complain about missing braces.
951     if ((T->isArrayType() || T->isRecordType()) &&
952         !ParentIList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) &&
953         !isIdiomaticBraceElisionEntity(Entity)) {
954       SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
955                    diag::warn_missing_braces)
956           << StructuredSubobjectInitList->getSourceRange()
957           << FixItHint::CreateInsertion(
958                  StructuredSubobjectInitList->getLocStart(), "{")
959           << FixItHint::CreateInsertion(
960                  SemaRef.getLocForEndOfToken(
961                      StructuredSubobjectInitList->getLocEnd()),
962                  "}");
963     }
964   }
965 }
966 
967 /// Warn that \p Entity was of scalar type and was initialized by a
968 /// single-element braced initializer list.
969 static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity,
970                                  SourceRange Braces) {
971   // Don't warn during template instantiation. If the initialization was
972   // non-dependent, we warned during the initial parse; otherwise, the
973   // type might not be scalar in some uses of the template.
974   if (S.inTemplateInstantiation())
975     return;
976 
977   unsigned DiagID = 0;
978 
979   switch (Entity.getKind()) {
980   case InitializedEntity::EK_VectorElement:
981   case InitializedEntity::EK_ComplexElement:
982   case InitializedEntity::EK_ArrayElement:
983   case InitializedEntity::EK_Parameter:
984   case InitializedEntity::EK_Parameter_CF_Audited:
985   case InitializedEntity::EK_Result:
986     // Extra braces here are suspicious.
987     DiagID = diag::warn_braces_around_scalar_init;
988     break;
989 
990   case InitializedEntity::EK_Member:
991     // Warn on aggregate initialization but not on ctor init list or
992     // default member initializer.
993     if (Entity.getParent())
994       DiagID = diag::warn_braces_around_scalar_init;
995     break;
996 
997   case InitializedEntity::EK_Variable:
998   case InitializedEntity::EK_LambdaCapture:
999     // No warning, might be direct-list-initialization.
1000     // FIXME: Should we warn for copy-list-initialization in these cases?
1001     break;
1002 
1003   case InitializedEntity::EK_New:
1004   case InitializedEntity::EK_Temporary:
1005   case InitializedEntity::EK_CompoundLiteralInit:
1006     // No warning, braces are part of the syntax of the underlying construct.
1007     break;
1008 
1009   case InitializedEntity::EK_RelatedResult:
1010     // No warning, we already warned when initializing the result.
1011     break;
1012 
1013   case InitializedEntity::EK_Exception:
1014   case InitializedEntity::EK_Base:
1015   case InitializedEntity::EK_Delegating:
1016   case InitializedEntity::EK_BlockElement:
1017   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
1018   case InitializedEntity::EK_Binding:
1019     llvm_unreachable("unexpected braced scalar init");
1020   }
1021 
1022   if (DiagID) {
1023     S.Diag(Braces.getBegin(), DiagID)
1024       << Braces
1025       << FixItHint::CreateRemoval(Braces.getBegin())
1026       << FixItHint::CreateRemoval(Braces.getEnd());
1027   }
1028 }
1029 
1030 /// Check whether the initializer \p IList (that was written with explicit
1031 /// braces) can be used to initialize an object of type \p T.
1032 ///
1033 /// This also fills in \p StructuredList with the fully-braced, desugared
1034 /// form of the initialization.
1035 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
1036                                             InitListExpr *IList, QualType &T,
1037                                             InitListExpr *StructuredList,
1038                                             bool TopLevelObject) {
1039   if (!VerifyOnly) {
1040     SyntacticToSemantic[IList] = StructuredList;
1041     StructuredList->setSyntacticForm(IList);
1042   }
1043 
1044   unsigned Index = 0, StructuredIndex = 0;
1045   CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
1046                         Index, StructuredList, StructuredIndex, TopLevelObject);
1047   if (!VerifyOnly) {
1048     QualType ExprTy = T;
1049     if (!ExprTy->isArrayType())
1050       ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
1051     IList->setType(ExprTy);
1052     StructuredList->setType(ExprTy);
1053   }
1054   if (hadError)
1055     return;
1056 
1057   if (Index < IList->getNumInits()) {
1058     // We have leftover initializers
1059     if (VerifyOnly) {
1060       if (SemaRef.getLangOpts().CPlusPlus ||
1061           (SemaRef.getLangOpts().OpenCL &&
1062            IList->getType()->isVectorType())) {
1063         hadError = true;
1064       }
1065       return;
1066     }
1067 
1068     if (StructuredIndex == 1 &&
1069         IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) ==
1070             SIF_None) {
1071       unsigned DK = diag::ext_excess_initializers_in_char_array_initializer;
1072       if (SemaRef.getLangOpts().CPlusPlus) {
1073         DK = diag::err_excess_initializers_in_char_array_initializer;
1074         hadError = true;
1075       }
1076       // Special-case
1077       SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
1078         << IList->getInit(Index)->getSourceRange();
1079     } else if (!T->isIncompleteType()) {
1080       // Don't complain for incomplete types, since we'll get an error
1081       // elsewhere
1082       QualType CurrentObjectType = StructuredList->getType();
1083       int initKind =
1084         CurrentObjectType->isArrayType()? 0 :
1085         CurrentObjectType->isVectorType()? 1 :
1086         CurrentObjectType->isScalarType()? 2 :
1087         CurrentObjectType->isUnionType()? 3 :
1088         4;
1089 
1090       unsigned DK = diag::ext_excess_initializers;
1091       if (SemaRef.getLangOpts().CPlusPlus) {
1092         DK = diag::err_excess_initializers;
1093         hadError = true;
1094       }
1095       if (SemaRef.getLangOpts().OpenCL && initKind == 1) {
1096         DK = diag::err_excess_initializers;
1097         hadError = true;
1098       }
1099 
1100       SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
1101         << initKind << IList->getInit(Index)->getSourceRange();
1102     }
1103   }
1104 
1105   if (!VerifyOnly && T->isScalarType() &&
1106       IList->getNumInits() == 1 && !isa<InitListExpr>(IList->getInit(0)))
1107     warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange());
1108 }
1109 
1110 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
1111                                             InitListExpr *IList,
1112                                             QualType &DeclType,
1113                                             bool SubobjectIsDesignatorContext,
1114                                             unsigned &Index,
1115                                             InitListExpr *StructuredList,
1116                                             unsigned &StructuredIndex,
1117                                             bool TopLevelObject) {
1118   if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
1119     // Explicitly braced initializer for complex type can be real+imaginary
1120     // parts.
1121     CheckComplexType(Entity, IList, DeclType, Index,
1122                      StructuredList, StructuredIndex);
1123   } else if (DeclType->isScalarType()) {
1124     CheckScalarType(Entity, IList, DeclType, Index,
1125                     StructuredList, StructuredIndex);
1126   } else if (DeclType->isVectorType()) {
1127     CheckVectorType(Entity, IList, DeclType, Index,
1128                     StructuredList, StructuredIndex);
1129   } else if (DeclType->isRecordType()) {
1130     assert(DeclType->isAggregateType() &&
1131            "non-aggregate records should be handed in CheckSubElementType");
1132     RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1133     auto Bases =
1134         CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
1135                                         CXXRecordDecl::base_class_iterator());
1136     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1137       Bases = CXXRD->bases();
1138     CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(),
1139                           SubobjectIsDesignatorContext, Index, StructuredList,
1140                           StructuredIndex, TopLevelObject);
1141   } else if (DeclType->isArrayType()) {
1142     llvm::APSInt Zero(
1143                     SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
1144                     false);
1145     CheckArrayType(Entity, IList, DeclType, Zero,
1146                    SubobjectIsDesignatorContext, Index,
1147                    StructuredList, StructuredIndex);
1148   } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
1149     // This type is invalid, issue a diagnostic.
1150     ++Index;
1151     if (!VerifyOnly)
1152       SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
1153         << DeclType;
1154     hadError = true;
1155   } else if (DeclType->isReferenceType()) {
1156     CheckReferenceType(Entity, IList, DeclType, Index,
1157                        StructuredList, StructuredIndex);
1158   } else if (DeclType->isObjCObjectType()) {
1159     if (!VerifyOnly)
1160       SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class)
1161         << DeclType;
1162     hadError = true;
1163   } else {
1164     if (!VerifyOnly)
1165       SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
1166         << DeclType;
1167     hadError = true;
1168   }
1169 }
1170 
1171 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
1172                                           InitListExpr *IList,
1173                                           QualType ElemType,
1174                                           unsigned &Index,
1175                                           InitListExpr *StructuredList,
1176                                           unsigned &StructuredIndex) {
1177   Expr *expr = IList->getInit(Index);
1178 
1179   if (ElemType->isReferenceType())
1180     return CheckReferenceType(Entity, IList, ElemType, Index,
1181                               StructuredList, StructuredIndex);
1182 
1183   if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
1184     if (SubInitList->getNumInits() == 1 &&
1185         IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) ==
1186         SIF_None) {
1187       expr = SubInitList->getInit(0);
1188     } else if (!SemaRef.getLangOpts().CPlusPlus) {
1189       InitListExpr *InnerStructuredList
1190         = getStructuredSubobjectInit(IList, Index, ElemType,
1191                                      StructuredList, StructuredIndex,
1192                                      SubInitList->getSourceRange(), true);
1193       CheckExplicitInitList(Entity, SubInitList, ElemType,
1194                             InnerStructuredList);
1195 
1196       if (!hadError && !VerifyOnly) {
1197         bool RequiresSecondPass = false;
1198         FillInEmptyInitializations(Entity, InnerStructuredList,
1199                                    RequiresSecondPass, StructuredList,
1200                                    StructuredIndex);
1201         if (RequiresSecondPass && !hadError)
1202           FillInEmptyInitializations(Entity, InnerStructuredList,
1203                                      RequiresSecondPass, StructuredList,
1204                                      StructuredIndex);
1205       }
1206       ++StructuredIndex;
1207       ++Index;
1208       return;
1209     }
1210     // C++ initialization is handled later.
1211   } else if (isa<ImplicitValueInitExpr>(expr)) {
1212     // This happens during template instantiation when we see an InitListExpr
1213     // that we've already checked once.
1214     assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) &&
1215            "found implicit initialization for the wrong type");
1216     if (!VerifyOnly)
1217       UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1218     ++Index;
1219     return;
1220   }
1221 
1222   if (SemaRef.getLangOpts().CPlusPlus) {
1223     // C++ [dcl.init.aggr]p2:
1224     //   Each member is copy-initialized from the corresponding
1225     //   initializer-clause.
1226 
1227     // FIXME: Better EqualLoc?
1228     InitializationKind Kind =
1229       InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
1230     InitializationSequence Seq(SemaRef, Entity, Kind, expr,
1231                                /*TopLevelOfInitList*/ true);
1232 
1233     // C++14 [dcl.init.aggr]p13:
1234     //   If the assignment-expression can initialize a member, the member is
1235     //   initialized. Otherwise [...] brace elision is assumed
1236     //
1237     // Brace elision is never performed if the element is not an
1238     // assignment-expression.
1239     if (Seq || isa<InitListExpr>(expr)) {
1240       if (!VerifyOnly) {
1241         ExprResult Result =
1242           Seq.Perform(SemaRef, Entity, Kind, expr);
1243         if (Result.isInvalid())
1244           hadError = true;
1245 
1246         UpdateStructuredListElement(StructuredList, StructuredIndex,
1247                                     Result.getAs<Expr>());
1248       } else if (!Seq)
1249         hadError = true;
1250       ++Index;
1251       return;
1252     }
1253 
1254     // Fall through for subaggregate initialization
1255   } else if (ElemType->isScalarType() || ElemType->isAtomicType()) {
1256     // FIXME: Need to handle atomic aggregate types with implicit init lists.
1257     return CheckScalarType(Entity, IList, ElemType, Index,
1258                            StructuredList, StructuredIndex);
1259   } else if (const ArrayType *arrayType =
1260                  SemaRef.Context.getAsArrayType(ElemType)) {
1261     // arrayType can be incomplete if we're initializing a flexible
1262     // array member.  There's nothing we can do with the completed
1263     // type here, though.
1264 
1265     if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) {
1266       if (!VerifyOnly) {
1267         CheckStringInit(expr, ElemType, arrayType, SemaRef);
1268         UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1269       }
1270       ++Index;
1271       return;
1272     }
1273 
1274     // Fall through for subaggregate initialization.
1275 
1276   } else {
1277     assert((ElemType->isRecordType() || ElemType->isVectorType() ||
1278             ElemType->isOpenCLSpecificType()) && "Unexpected type");
1279 
1280     // C99 6.7.8p13:
1281     //
1282     //   The initializer for a structure or union object that has
1283     //   automatic storage duration shall be either an initializer
1284     //   list as described below, or a single expression that has
1285     //   compatible structure or union type. In the latter case, the
1286     //   initial value of the object, including unnamed members, is
1287     //   that of the expression.
1288     ExprResult ExprRes = expr;
1289     if (SemaRef.CheckSingleAssignmentConstraints(
1290             ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) {
1291       if (ExprRes.isInvalid())
1292         hadError = true;
1293       else {
1294         ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get());
1295           if (ExprRes.isInvalid())
1296             hadError = true;
1297       }
1298       UpdateStructuredListElement(StructuredList, StructuredIndex,
1299                                   ExprRes.getAs<Expr>());
1300       ++Index;
1301       return;
1302     }
1303     ExprRes.get();
1304     // Fall through for subaggregate initialization
1305   }
1306 
1307   // C++ [dcl.init.aggr]p12:
1308   //
1309   //   [...] Otherwise, if the member is itself a non-empty
1310   //   subaggregate, brace elision is assumed and the initializer is
1311   //   considered for the initialization of the first member of
1312   //   the subaggregate.
1313   // OpenCL vector initializer is handled elsewhere.
1314   if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) ||
1315       ElemType->isAggregateType()) {
1316     CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
1317                           StructuredIndex);
1318     ++StructuredIndex;
1319   } else {
1320     if (!VerifyOnly) {
1321       // We cannot initialize this element, so let
1322       // PerformCopyInitialization produce the appropriate diagnostic.
1323       SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr,
1324                                         /*TopLevelOfInitList=*/true);
1325     }
1326     hadError = true;
1327     ++Index;
1328     ++StructuredIndex;
1329   }
1330 }
1331 
1332 void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
1333                                        InitListExpr *IList, QualType DeclType,
1334                                        unsigned &Index,
1335                                        InitListExpr *StructuredList,
1336                                        unsigned &StructuredIndex) {
1337   assert(Index == 0 && "Index in explicit init list must be zero");
1338 
1339   // As an extension, clang supports complex initializers, which initialize
1340   // a complex number component-wise.  When an explicit initializer list for
1341   // a complex number contains two two initializers, this extension kicks in:
1342   // it exepcts the initializer list to contain two elements convertible to
1343   // the element type of the complex type. The first element initializes
1344   // the real part, and the second element intitializes the imaginary part.
1345 
1346   if (IList->getNumInits() != 2)
1347     return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1348                            StructuredIndex);
1349 
1350   // This is an extension in C.  (The builtin _Complex type does not exist
1351   // in the C++ standard.)
1352   if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
1353     SemaRef.Diag(IList->getLocStart(), diag::ext_complex_component_init)
1354       << IList->getSourceRange();
1355 
1356   // Initialize the complex number.
1357   QualType elementType = DeclType->getAs<ComplexType>()->getElementType();
1358   InitializedEntity ElementEntity =
1359     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1360 
1361   for (unsigned i = 0; i < 2; ++i) {
1362     ElementEntity.setElementIndex(Index);
1363     CheckSubElementType(ElementEntity, IList, elementType, Index,
1364                         StructuredList, StructuredIndex);
1365   }
1366 }
1367 
1368 void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
1369                                       InitListExpr *IList, QualType DeclType,
1370                                       unsigned &Index,
1371                                       InitListExpr *StructuredList,
1372                                       unsigned &StructuredIndex) {
1373   if (Index >= IList->getNumInits()) {
1374     if (!VerifyOnly)
1375       SemaRef.Diag(IList->getLocStart(),
1376                    SemaRef.getLangOpts().CPlusPlus11 ?
1377                      diag::warn_cxx98_compat_empty_scalar_initializer :
1378                      diag::err_empty_scalar_initializer)
1379         << IList->getSourceRange();
1380     hadError = !SemaRef.getLangOpts().CPlusPlus11;
1381     ++Index;
1382     ++StructuredIndex;
1383     return;
1384   }
1385 
1386   Expr *expr = IList->getInit(Index);
1387   if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
1388     // FIXME: This is invalid, and accepting it causes overload resolution
1389     // to pick the wrong overload in some corner cases.
1390     if (!VerifyOnly)
1391       SemaRef.Diag(SubIList->getLocStart(),
1392                    diag::ext_many_braces_around_scalar_init)
1393         << SubIList->getSourceRange();
1394 
1395     CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
1396                     StructuredIndex);
1397     return;
1398   } else if (isa<DesignatedInitExpr>(expr)) {
1399     if (!VerifyOnly)
1400       SemaRef.Diag(expr->getLocStart(),
1401                    diag::err_designator_for_scalar_init)
1402         << DeclType << expr->getSourceRange();
1403     hadError = true;
1404     ++Index;
1405     ++StructuredIndex;
1406     return;
1407   }
1408 
1409   if (VerifyOnly) {
1410     if (!SemaRef.CanPerformCopyInitialization(Entity,expr))
1411       hadError = true;
1412     ++Index;
1413     return;
1414   }
1415 
1416   ExprResult Result =
1417     SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(), expr,
1418                                       /*TopLevelOfInitList=*/true);
1419 
1420   Expr *ResultExpr = nullptr;
1421 
1422   if (Result.isInvalid())
1423     hadError = true; // types weren't compatible.
1424   else {
1425     ResultExpr = Result.getAs<Expr>();
1426 
1427     if (ResultExpr != expr) {
1428       // The type was promoted, update initializer list.
1429       IList->setInit(Index, ResultExpr);
1430     }
1431   }
1432   if (hadError)
1433     ++StructuredIndex;
1434   else
1435     UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1436   ++Index;
1437 }
1438 
1439 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
1440                                          InitListExpr *IList, QualType DeclType,
1441                                          unsigned &Index,
1442                                          InitListExpr *StructuredList,
1443                                          unsigned &StructuredIndex) {
1444   if (Index >= IList->getNumInits()) {
1445     // FIXME: It would be wonderful if we could point at the actual member. In
1446     // general, it would be useful to pass location information down the stack,
1447     // so that we know the location (or decl) of the "current object" being
1448     // initialized.
1449     if (!VerifyOnly)
1450       SemaRef.Diag(IList->getLocStart(),
1451                     diag::err_init_reference_member_uninitialized)
1452         << DeclType
1453         << IList->getSourceRange();
1454     hadError = true;
1455     ++Index;
1456     ++StructuredIndex;
1457     return;
1458   }
1459 
1460   Expr *expr = IList->getInit(Index);
1461   if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
1462     if (!VerifyOnly)
1463       SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
1464         << DeclType << IList->getSourceRange();
1465     hadError = true;
1466     ++Index;
1467     ++StructuredIndex;
1468     return;
1469   }
1470 
1471   if (VerifyOnly) {
1472     if (!SemaRef.CanPerformCopyInitialization(Entity,expr))
1473       hadError = true;
1474     ++Index;
1475     return;
1476   }
1477 
1478   ExprResult Result =
1479       SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(), expr,
1480                                         /*TopLevelOfInitList=*/true);
1481 
1482   if (Result.isInvalid())
1483     hadError = true;
1484 
1485   expr = Result.getAs<Expr>();
1486   IList->setInit(Index, expr);
1487 
1488   if (hadError)
1489     ++StructuredIndex;
1490   else
1491     UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1492   ++Index;
1493 }
1494 
1495 void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1496                                       InitListExpr *IList, QualType DeclType,
1497                                       unsigned &Index,
1498                                       InitListExpr *StructuredList,
1499                                       unsigned &StructuredIndex) {
1500   const VectorType *VT = DeclType->getAs<VectorType>();
1501   unsigned maxElements = VT->getNumElements();
1502   unsigned numEltsInit = 0;
1503   QualType elementType = VT->getElementType();
1504 
1505   if (Index >= IList->getNumInits()) {
1506     // Make sure the element type can be value-initialized.
1507     if (VerifyOnly)
1508       CheckEmptyInitializable(
1509           InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1510           IList->getLocEnd());
1511     return;
1512   }
1513 
1514   if (!SemaRef.getLangOpts().OpenCL) {
1515     // If the initializing element is a vector, try to copy-initialize
1516     // instead of breaking it apart (which is doomed to failure anyway).
1517     Expr *Init = IList->getInit(Index);
1518     if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1519       if (VerifyOnly) {
1520         if (!SemaRef.CanPerformCopyInitialization(Entity, Init))
1521           hadError = true;
1522         ++Index;
1523         return;
1524       }
1525 
1526   ExprResult Result =
1527       SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(), Init,
1528                                         /*TopLevelOfInitList=*/true);
1529 
1530       Expr *ResultExpr = nullptr;
1531       if (Result.isInvalid())
1532         hadError = true; // types weren't compatible.
1533       else {
1534         ResultExpr = Result.getAs<Expr>();
1535 
1536         if (ResultExpr != Init) {
1537           // The type was promoted, update initializer list.
1538           IList->setInit(Index, ResultExpr);
1539         }
1540       }
1541       if (hadError)
1542         ++StructuredIndex;
1543       else
1544         UpdateStructuredListElement(StructuredList, StructuredIndex,
1545                                     ResultExpr);
1546       ++Index;
1547       return;
1548     }
1549 
1550     InitializedEntity ElementEntity =
1551       InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1552 
1553     for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1554       // Don't attempt to go past the end of the init list
1555       if (Index >= IList->getNumInits()) {
1556         if (VerifyOnly)
1557           CheckEmptyInitializable(ElementEntity, IList->getLocEnd());
1558         break;
1559       }
1560 
1561       ElementEntity.setElementIndex(Index);
1562       CheckSubElementType(ElementEntity, IList, elementType, Index,
1563                           StructuredList, StructuredIndex);
1564     }
1565 
1566     if (VerifyOnly)
1567       return;
1568 
1569     bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian();
1570     const VectorType *T = Entity.getType()->getAs<VectorType>();
1571     if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector ||
1572                         T->getVectorKind() == VectorType::NeonPolyVector)) {
1573       // The ability to use vector initializer lists is a GNU vector extension
1574       // and is unrelated to the NEON intrinsics in arm_neon.h. On little
1575       // endian machines it works fine, however on big endian machines it
1576       // exhibits surprising behaviour:
1577       //
1578       //   uint32x2_t x = {42, 64};
1579       //   return vget_lane_u32(x, 0); // Will return 64.
1580       //
1581       // Because of this, explicitly call out that it is non-portable.
1582       //
1583       SemaRef.Diag(IList->getLocStart(),
1584                    diag::warn_neon_vector_initializer_non_portable);
1585 
1586       const char *typeCode;
1587       unsigned typeSize = SemaRef.Context.getTypeSize(elementType);
1588 
1589       if (elementType->isFloatingType())
1590         typeCode = "f";
1591       else if (elementType->isSignedIntegerType())
1592         typeCode = "s";
1593       else if (elementType->isUnsignedIntegerType())
1594         typeCode = "u";
1595       else
1596         llvm_unreachable("Invalid element type!");
1597 
1598       SemaRef.Diag(IList->getLocStart(),
1599                    SemaRef.Context.getTypeSize(VT) > 64 ?
1600                    diag::note_neon_vector_initializer_non_portable_q :
1601                    diag::note_neon_vector_initializer_non_portable)
1602         << typeCode << typeSize;
1603     }
1604 
1605     return;
1606   }
1607 
1608   InitializedEntity ElementEntity =
1609     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1610 
1611   // OpenCL initializers allows vectors to be constructed from vectors.
1612   for (unsigned i = 0; i < maxElements; ++i) {
1613     // Don't attempt to go past the end of the init list
1614     if (Index >= IList->getNumInits())
1615       break;
1616 
1617     ElementEntity.setElementIndex(Index);
1618 
1619     QualType IType = IList->getInit(Index)->getType();
1620     if (!IType->isVectorType()) {
1621       CheckSubElementType(ElementEntity, IList, elementType, Index,
1622                           StructuredList, StructuredIndex);
1623       ++numEltsInit;
1624     } else {
1625       QualType VecType;
1626       const VectorType *IVT = IType->getAs<VectorType>();
1627       unsigned numIElts = IVT->getNumElements();
1628 
1629       if (IType->isExtVectorType())
1630         VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1631       else
1632         VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1633                                                 IVT->getVectorKind());
1634       CheckSubElementType(ElementEntity, IList, VecType, Index,
1635                           StructuredList, StructuredIndex);
1636       numEltsInit += numIElts;
1637     }
1638   }
1639 
1640   // OpenCL requires all elements to be initialized.
1641   if (numEltsInit != maxElements) {
1642     if (!VerifyOnly)
1643       SemaRef.Diag(IList->getLocStart(),
1644                    diag::err_vector_incorrect_num_initializers)
1645         << (numEltsInit < maxElements) << maxElements << numEltsInit;
1646     hadError = true;
1647   }
1648 }
1649 
1650 void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1651                                      InitListExpr *IList, QualType &DeclType,
1652                                      llvm::APSInt elementIndex,
1653                                      bool SubobjectIsDesignatorContext,
1654                                      unsigned &Index,
1655                                      InitListExpr *StructuredList,
1656                                      unsigned &StructuredIndex) {
1657   const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1658 
1659   // Check for the special-case of initializing an array with a string.
1660   if (Index < IList->getNumInits()) {
1661     if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) ==
1662         SIF_None) {
1663       // We place the string literal directly into the resulting
1664       // initializer list. This is the only place where the structure
1665       // of the structured initializer list doesn't match exactly,
1666       // because doing so would involve allocating one character
1667       // constant for each string.
1668       if (!VerifyOnly) {
1669         CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef);
1670         UpdateStructuredListElement(StructuredList, StructuredIndex,
1671                                     IList->getInit(Index));
1672         StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1673       }
1674       ++Index;
1675       return;
1676     }
1677   }
1678   if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1679     // Check for VLAs; in standard C it would be possible to check this
1680     // earlier, but I don't know where clang accepts VLAs (gcc accepts
1681     // them in all sorts of strange places).
1682     if (!VerifyOnly)
1683       SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
1684                     diag::err_variable_object_no_init)
1685         << VAT->getSizeExpr()->getSourceRange();
1686     hadError = true;
1687     ++Index;
1688     ++StructuredIndex;
1689     return;
1690   }
1691 
1692   // We might know the maximum number of elements in advance.
1693   llvm::APSInt maxElements(elementIndex.getBitWidth(),
1694                            elementIndex.isUnsigned());
1695   bool maxElementsKnown = false;
1696   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1697     maxElements = CAT->getSize();
1698     elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1699     elementIndex.setIsUnsigned(maxElements.isUnsigned());
1700     maxElementsKnown = true;
1701   }
1702 
1703   QualType elementType = arrayType->getElementType();
1704   while (Index < IList->getNumInits()) {
1705     Expr *Init = IList->getInit(Index);
1706     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1707       // If we're not the subobject that matches up with the '{' for
1708       // the designator, we shouldn't be handling the
1709       // designator. Return immediately.
1710       if (!SubobjectIsDesignatorContext)
1711         return;
1712 
1713       // Handle this designated initializer. elementIndex will be
1714       // updated to be the next array element we'll initialize.
1715       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1716                                      DeclType, nullptr, &elementIndex, Index,
1717                                      StructuredList, StructuredIndex, true,
1718                                      false)) {
1719         hadError = true;
1720         continue;
1721       }
1722 
1723       if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1724         maxElements = maxElements.extend(elementIndex.getBitWidth());
1725       else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1726         elementIndex = elementIndex.extend(maxElements.getBitWidth());
1727       elementIndex.setIsUnsigned(maxElements.isUnsigned());
1728 
1729       // If the array is of incomplete type, keep track of the number of
1730       // elements in the initializer.
1731       if (!maxElementsKnown && elementIndex > maxElements)
1732         maxElements = elementIndex;
1733 
1734       continue;
1735     }
1736 
1737     // If we know the maximum number of elements, and we've already
1738     // hit it, stop consuming elements in the initializer list.
1739     if (maxElementsKnown && elementIndex == maxElements)
1740       break;
1741 
1742     InitializedEntity ElementEntity =
1743       InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1744                                            Entity);
1745     // Check this element.
1746     CheckSubElementType(ElementEntity, IList, elementType, Index,
1747                         StructuredList, StructuredIndex);
1748     ++elementIndex;
1749 
1750     // If the array is of incomplete type, keep track of the number of
1751     // elements in the initializer.
1752     if (!maxElementsKnown && elementIndex > maxElements)
1753       maxElements = elementIndex;
1754   }
1755   if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1756     // If this is an incomplete array type, the actual type needs to
1757     // be calculated here.
1758     llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1759     if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) {
1760       // Sizing an array implicitly to zero is not allowed by ISO C,
1761       // but is supported by GNU.
1762       SemaRef.Diag(IList->getLocStart(),
1763                     diag::ext_typecheck_zero_array_size);
1764     }
1765 
1766     DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1767                                                      ArrayType::Normal, 0);
1768   }
1769   if (!hadError && VerifyOnly) {
1770     // If there are any members of the array that get value-initialized, check
1771     // that is possible. That happens if we know the bound and don't have
1772     // enough elements, or if we're performing an array new with an unknown
1773     // bound.
1774     // FIXME: This needs to detect holes left by designated initializers too.
1775     if ((maxElementsKnown && elementIndex < maxElements) ||
1776         Entity.isVariableLengthArrayNew())
1777       CheckEmptyInitializable(InitializedEntity::InitializeElement(
1778                                                   SemaRef.Context, 0, Entity),
1779                               IList->getLocEnd());
1780   }
1781 }
1782 
1783 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1784                                              Expr *InitExpr,
1785                                              FieldDecl *Field,
1786                                              bool TopLevelObject) {
1787   // Handle GNU flexible array initializers.
1788   unsigned FlexArrayDiag;
1789   if (isa<InitListExpr>(InitExpr) &&
1790       cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
1791     // Empty flexible array init always allowed as an extension
1792     FlexArrayDiag = diag::ext_flexible_array_init;
1793   } else if (SemaRef.getLangOpts().CPlusPlus) {
1794     // Disallow flexible array init in C++; it is not required for gcc
1795     // compatibility, and it needs work to IRGen correctly in general.
1796     FlexArrayDiag = diag::err_flexible_array_init;
1797   } else if (!TopLevelObject) {
1798     // Disallow flexible array init on non-top-level object
1799     FlexArrayDiag = diag::err_flexible_array_init;
1800   } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
1801     // Disallow flexible array init on anything which is not a variable.
1802     FlexArrayDiag = diag::err_flexible_array_init;
1803   } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
1804     // Disallow flexible array init on local variables.
1805     FlexArrayDiag = diag::err_flexible_array_init;
1806   } else {
1807     // Allow other cases.
1808     FlexArrayDiag = diag::ext_flexible_array_init;
1809   }
1810 
1811   if (!VerifyOnly) {
1812     SemaRef.Diag(InitExpr->getLocStart(),
1813                  FlexArrayDiag)
1814       << InitExpr->getLocStart();
1815     SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1816       << Field;
1817   }
1818 
1819   return FlexArrayDiag != diag::ext_flexible_array_init;
1820 }
1821 
1822 void InitListChecker::CheckStructUnionTypes(
1823     const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType,
1824     CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field,
1825     bool SubobjectIsDesignatorContext, unsigned &Index,
1826     InitListExpr *StructuredList, unsigned &StructuredIndex,
1827     bool TopLevelObject) {
1828   RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
1829 
1830   // If the record is invalid, some of it's members are invalid. To avoid
1831   // confusion, we forgo checking the intializer for the entire record.
1832   if (structDecl->isInvalidDecl()) {
1833     // Assume it was supposed to consume a single initializer.
1834     ++Index;
1835     hadError = true;
1836     return;
1837   }
1838 
1839   if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1840     RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1841 
1842     // If there's a default initializer, use it.
1843     if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
1844       if (VerifyOnly)
1845         return;
1846       for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1847            Field != FieldEnd; ++Field) {
1848         if (Field->hasInClassInitializer()) {
1849           StructuredList->setInitializedFieldInUnion(*Field);
1850           // FIXME: Actually build a CXXDefaultInitExpr?
1851           return;
1852         }
1853       }
1854     }
1855 
1856     // Value-initialize the first member of the union that isn't an unnamed
1857     // bitfield.
1858     for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1859          Field != FieldEnd; ++Field) {
1860       if (!Field->isUnnamedBitfield()) {
1861         if (VerifyOnly)
1862           CheckEmptyInitializable(
1863               InitializedEntity::InitializeMember(*Field, &Entity),
1864               IList->getLocEnd());
1865         else
1866           StructuredList->setInitializedFieldInUnion(*Field);
1867         break;
1868       }
1869     }
1870     return;
1871   }
1872 
1873   bool InitializedSomething = false;
1874 
1875   // If we have any base classes, they are initialized prior to the fields.
1876   for (auto &Base : Bases) {
1877     Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr;
1878     SourceLocation InitLoc = Init ? Init->getLocStart() : IList->getLocEnd();
1879 
1880     // Designated inits always initialize fields, so if we see one, all
1881     // remaining base classes have no explicit initializer.
1882     if (Init && isa<DesignatedInitExpr>(Init))
1883       Init = nullptr;
1884 
1885     InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
1886         SemaRef.Context, &Base, false, &Entity);
1887     if (Init) {
1888       CheckSubElementType(BaseEntity, IList, Base.getType(), Index,
1889                           StructuredList, StructuredIndex);
1890       InitializedSomething = true;
1891     } else if (VerifyOnly) {
1892       CheckEmptyInitializable(BaseEntity, InitLoc);
1893     }
1894   }
1895 
1896   // If structDecl is a forward declaration, this loop won't do
1897   // anything except look at designated initializers; That's okay,
1898   // because an error should get printed out elsewhere. It might be
1899   // worthwhile to skip over the rest of the initializer, though.
1900   RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1901   RecordDecl::field_iterator FieldEnd = RD->field_end();
1902   bool CheckForMissingFields =
1903     !IList->isIdiomaticZeroInitializer(SemaRef.getLangOpts());
1904 
1905   while (Index < IList->getNumInits()) {
1906     Expr *Init = IList->getInit(Index);
1907 
1908     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1909       // If we're not the subobject that matches up with the '{' for
1910       // the designator, we shouldn't be handling the
1911       // designator. Return immediately.
1912       if (!SubobjectIsDesignatorContext)
1913         return;
1914 
1915       // Handle this designated initializer. Field will be updated to
1916       // the next field that we'll be initializing.
1917       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1918                                      DeclType, &Field, nullptr, Index,
1919                                      StructuredList, StructuredIndex,
1920                                      true, TopLevelObject))
1921         hadError = true;
1922 
1923       InitializedSomething = true;
1924 
1925       // Disable check for missing fields when designators are used.
1926       // This matches gcc behaviour.
1927       CheckForMissingFields = false;
1928       continue;
1929     }
1930 
1931     if (Field == FieldEnd) {
1932       // We've run out of fields. We're done.
1933       break;
1934     }
1935 
1936     // We've already initialized a member of a union. We're done.
1937     if (InitializedSomething && DeclType->isUnionType())
1938       break;
1939 
1940     // If we've hit the flexible array member at the end, we're done.
1941     if (Field->getType()->isIncompleteArrayType())
1942       break;
1943 
1944     if (Field->isUnnamedBitfield()) {
1945       // Don't initialize unnamed bitfields, e.g. "int : 20;"
1946       ++Field;
1947       continue;
1948     }
1949 
1950     // Make sure we can use this declaration.
1951     bool InvalidUse;
1952     if (VerifyOnly)
1953       InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
1954     else
1955       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field,
1956                                           IList->getInit(Index)->getLocStart());
1957     if (InvalidUse) {
1958       ++Index;
1959       ++Field;
1960       hadError = true;
1961       continue;
1962     }
1963 
1964     InitializedEntity MemberEntity =
1965       InitializedEntity::InitializeMember(*Field, &Entity);
1966     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1967                         StructuredList, StructuredIndex);
1968     InitializedSomething = true;
1969 
1970     if (DeclType->isUnionType() && !VerifyOnly) {
1971       // Initialize the first field within the union.
1972       StructuredList->setInitializedFieldInUnion(*Field);
1973     }
1974 
1975     ++Field;
1976   }
1977 
1978   // Emit warnings for missing struct field initializers.
1979   if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
1980       Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
1981       !DeclType->isUnionType()) {
1982     // It is possible we have one or more unnamed bitfields remaining.
1983     // Find first (if any) named field and emit warning.
1984     for (RecordDecl::field_iterator it = Field, end = RD->field_end();
1985          it != end; ++it) {
1986       if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
1987         SemaRef.Diag(IList->getSourceRange().getEnd(),
1988                      diag::warn_missing_field_initializers) << *it;
1989         break;
1990       }
1991     }
1992   }
1993 
1994   // Check that any remaining fields can be value-initialized.
1995   if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() &&
1996       !Field->getType()->isIncompleteArrayType()) {
1997     // FIXME: Should check for holes left by designated initializers too.
1998     for (; Field != FieldEnd && !hadError; ++Field) {
1999       if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
2000         CheckEmptyInitializable(
2001             InitializedEntity::InitializeMember(*Field, &Entity),
2002             IList->getLocEnd());
2003     }
2004   }
2005 
2006   if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
2007       Index >= IList->getNumInits())
2008     return;
2009 
2010   if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
2011                              TopLevelObject)) {
2012     hadError = true;
2013     ++Index;
2014     return;
2015   }
2016 
2017   InitializedEntity MemberEntity =
2018     InitializedEntity::InitializeMember(*Field, &Entity);
2019 
2020   if (isa<InitListExpr>(IList->getInit(Index)))
2021     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2022                         StructuredList, StructuredIndex);
2023   else
2024     CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
2025                           StructuredList, StructuredIndex);
2026 }
2027 
2028 /// Expand a field designator that refers to a member of an
2029 /// anonymous struct or union into a series of field designators that
2030 /// refers to the field within the appropriate subobject.
2031 ///
2032 static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
2033                                            DesignatedInitExpr *DIE,
2034                                            unsigned DesigIdx,
2035                                            IndirectFieldDecl *IndirectField) {
2036   typedef DesignatedInitExpr::Designator Designator;
2037 
2038   // Build the replacement designators.
2039   SmallVector<Designator, 4> Replacements;
2040   for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
2041        PE = IndirectField->chain_end(); PI != PE; ++PI) {
2042     if (PI + 1 == PE)
2043       Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2044                                     DIE->getDesignator(DesigIdx)->getDotLoc(),
2045                                 DIE->getDesignator(DesigIdx)->getFieldLoc()));
2046     else
2047       Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2048                                         SourceLocation(), SourceLocation()));
2049     assert(isa<FieldDecl>(*PI));
2050     Replacements.back().setField(cast<FieldDecl>(*PI));
2051   }
2052 
2053   // Expand the current designator into the set of replacement
2054   // designators, so we have a full subobject path down to where the
2055   // member of the anonymous struct/union is actually stored.
2056   DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
2057                         &Replacements[0] + Replacements.size());
2058 }
2059 
2060 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
2061                                                    DesignatedInitExpr *DIE) {
2062   unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
2063   SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
2064   for (unsigned I = 0; I < NumIndexExprs; ++I)
2065     IndexExprs[I] = DIE->getSubExpr(I + 1);
2066   return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(),
2067                                     IndexExprs,
2068                                     DIE->getEqualOrColonLoc(),
2069                                     DIE->usesGNUSyntax(), DIE->getInit());
2070 }
2071 
2072 namespace {
2073 
2074 // Callback to only accept typo corrections that are for field members of
2075 // the given struct or union.
2076 class FieldInitializerValidatorCCC : public CorrectionCandidateCallback {
2077  public:
2078   explicit FieldInitializerValidatorCCC(RecordDecl *RD)
2079       : Record(RD) {}
2080 
2081   bool ValidateCandidate(const TypoCorrection &candidate) override {
2082     FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
2083     return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
2084   }
2085 
2086  private:
2087   RecordDecl *Record;
2088 };
2089 
2090 } // end anonymous namespace
2091 
2092 /// Check the well-formedness of a C99 designated initializer.
2093 ///
2094 /// Determines whether the designated initializer @p DIE, which
2095 /// resides at the given @p Index within the initializer list @p
2096 /// IList, is well-formed for a current object of type @p DeclType
2097 /// (C99 6.7.8). The actual subobject that this designator refers to
2098 /// within the current subobject is returned in either
2099 /// @p NextField or @p NextElementIndex (whichever is appropriate).
2100 ///
2101 /// @param IList  The initializer list in which this designated
2102 /// initializer occurs.
2103 ///
2104 /// @param DIE The designated initializer expression.
2105 ///
2106 /// @param DesigIdx  The index of the current designator.
2107 ///
2108 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
2109 /// into which the designation in @p DIE should refer.
2110 ///
2111 /// @param NextField  If non-NULL and the first designator in @p DIE is
2112 /// a field, this will be set to the field declaration corresponding
2113 /// to the field named by the designator.
2114 ///
2115 /// @param NextElementIndex  If non-NULL and the first designator in @p
2116 /// DIE is an array designator or GNU array-range designator, this
2117 /// will be set to the last index initialized by this designator.
2118 ///
2119 /// @param Index  Index into @p IList where the designated initializer
2120 /// @p DIE occurs.
2121 ///
2122 /// @param StructuredList  The initializer list expression that
2123 /// describes all of the subobject initializers in the order they'll
2124 /// actually be initialized.
2125 ///
2126 /// @returns true if there was an error, false otherwise.
2127 bool
2128 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
2129                                             InitListExpr *IList,
2130                                             DesignatedInitExpr *DIE,
2131                                             unsigned DesigIdx,
2132                                             QualType &CurrentObjectType,
2133                                           RecordDecl::field_iterator *NextField,
2134                                             llvm::APSInt *NextElementIndex,
2135                                             unsigned &Index,
2136                                             InitListExpr *StructuredList,
2137                                             unsigned &StructuredIndex,
2138                                             bool FinishSubobjectInit,
2139                                             bool TopLevelObject) {
2140   if (DesigIdx == DIE->size()) {
2141     // Check the actual initialization for the designated object type.
2142     bool prevHadError = hadError;
2143 
2144     // Temporarily remove the designator expression from the
2145     // initializer list that the child calls see, so that we don't try
2146     // to re-process the designator.
2147     unsigned OldIndex = Index;
2148     IList->setInit(OldIndex, DIE->getInit());
2149 
2150     CheckSubElementType(Entity, IList, CurrentObjectType, Index,
2151                         StructuredList, StructuredIndex);
2152 
2153     // Restore the designated initializer expression in the syntactic
2154     // form of the initializer list.
2155     if (IList->getInit(OldIndex) != DIE->getInit())
2156       DIE->setInit(IList->getInit(OldIndex));
2157     IList->setInit(OldIndex, DIE);
2158 
2159     return hadError && !prevHadError;
2160   }
2161 
2162   DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
2163   bool IsFirstDesignator = (DesigIdx == 0);
2164   if (!VerifyOnly) {
2165     assert((IsFirstDesignator || StructuredList) &&
2166            "Need a non-designated initializer list to start from");
2167 
2168     // Determine the structural initializer list that corresponds to the
2169     // current subobject.
2170     if (IsFirstDesignator)
2171       StructuredList = SyntacticToSemantic.lookup(IList);
2172     else {
2173       Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ?
2174           StructuredList->getInit(StructuredIndex) : nullptr;
2175       if (!ExistingInit && StructuredList->hasArrayFiller())
2176         ExistingInit = StructuredList->getArrayFiller();
2177 
2178       if (!ExistingInit)
2179         StructuredList =
2180           getStructuredSubobjectInit(IList, Index, CurrentObjectType,
2181                                      StructuredList, StructuredIndex,
2182                                      SourceRange(D->getLocStart(),
2183                                                  DIE->getLocEnd()));
2184       else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit))
2185         StructuredList = Result;
2186       else {
2187         if (DesignatedInitUpdateExpr *E =
2188                 dyn_cast<DesignatedInitUpdateExpr>(ExistingInit))
2189           StructuredList = E->getUpdater();
2190         else {
2191           DesignatedInitUpdateExpr *DIUE =
2192               new (SemaRef.Context) DesignatedInitUpdateExpr(SemaRef.Context,
2193                                         D->getLocStart(), ExistingInit,
2194                                         DIE->getLocEnd());
2195           StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE);
2196           StructuredList = DIUE->getUpdater();
2197         }
2198 
2199         // We need to check on source range validity because the previous
2200         // initializer does not have to be an explicit initializer. e.g.,
2201         //
2202         // struct P { int a, b; };
2203         // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
2204         //
2205         // There is an overwrite taking place because the first braced initializer
2206         // list "{ .a = 2 }" already provides value for .p.b (which is zero).
2207         if (ExistingInit->getSourceRange().isValid()) {
2208           // We are creating an initializer list that initializes the
2209           // subobjects of the current object, but there was already an
2210           // initialization that completely initialized the current
2211           // subobject, e.g., by a compound literal:
2212           //
2213           // struct X { int a, b; };
2214           // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2215           //
2216           // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2217           // designated initializer re-initializes the whole
2218           // subobject [0], overwriting previous initializers.
2219           SemaRef.Diag(D->getLocStart(),
2220                        diag::warn_subobject_initializer_overrides)
2221             << SourceRange(D->getLocStart(), DIE->getLocEnd());
2222 
2223           SemaRef.Diag(ExistingInit->getLocStart(),
2224                        diag::note_previous_initializer)
2225             << /*FIXME:has side effects=*/0
2226             << ExistingInit->getSourceRange();
2227         }
2228       }
2229     }
2230     assert(StructuredList && "Expected a structured initializer list");
2231   }
2232 
2233   if (D->isFieldDesignator()) {
2234     // C99 6.7.8p7:
2235     //
2236     //   If a designator has the form
2237     //
2238     //      . identifier
2239     //
2240     //   then the current object (defined below) shall have
2241     //   structure or union type and the identifier shall be the
2242     //   name of a member of that type.
2243     const RecordType *RT = CurrentObjectType->getAs<RecordType>();
2244     if (!RT) {
2245       SourceLocation Loc = D->getDotLoc();
2246       if (Loc.isInvalid())
2247         Loc = D->getFieldLoc();
2248       if (!VerifyOnly)
2249         SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
2250           << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
2251       ++Index;
2252       return true;
2253     }
2254 
2255     FieldDecl *KnownField = D->getField();
2256     if (!KnownField) {
2257       IdentifierInfo *FieldName = D->getFieldName();
2258       DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
2259       for (NamedDecl *ND : Lookup) {
2260         if (auto *FD = dyn_cast<FieldDecl>(ND)) {
2261           KnownField = FD;
2262           break;
2263         }
2264         if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) {
2265           // In verify mode, don't modify the original.
2266           if (VerifyOnly)
2267             DIE = CloneDesignatedInitExpr(SemaRef, DIE);
2268           ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD);
2269           D = DIE->getDesignator(DesigIdx);
2270           KnownField = cast<FieldDecl>(*IFD->chain_begin());
2271           break;
2272         }
2273       }
2274       if (!KnownField) {
2275         if (VerifyOnly) {
2276           ++Index;
2277           return true;  // No typo correction when just trying this out.
2278         }
2279 
2280         // Name lookup found something, but it wasn't a field.
2281         if (!Lookup.empty()) {
2282           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
2283             << FieldName;
2284           SemaRef.Diag(Lookup.front()->getLocation(),
2285                        diag::note_field_designator_found);
2286           ++Index;
2287           return true;
2288         }
2289 
2290         // Name lookup didn't find anything.
2291         // Determine whether this was a typo for another field name.
2292         if (TypoCorrection Corrected = SemaRef.CorrectTypo(
2293                 DeclarationNameInfo(FieldName, D->getFieldLoc()),
2294                 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr,
2295                 llvm::make_unique<FieldInitializerValidatorCCC>(RT->getDecl()),
2296                 Sema::CTK_ErrorRecovery, RT->getDecl())) {
2297           SemaRef.diagnoseTypo(
2298               Corrected,
2299               SemaRef.PDiag(diag::err_field_designator_unknown_suggest)
2300                 << FieldName << CurrentObjectType);
2301           KnownField = Corrected.getCorrectionDeclAs<FieldDecl>();
2302           hadError = true;
2303         } else {
2304           // Typo correction didn't find anything.
2305           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
2306             << FieldName << CurrentObjectType;
2307           ++Index;
2308           return true;
2309         }
2310       }
2311     }
2312 
2313     unsigned FieldIndex = 0;
2314 
2315     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2316       FieldIndex = CXXRD->getNumBases();
2317 
2318     for (auto *FI : RT->getDecl()->fields()) {
2319       if (FI->isUnnamedBitfield())
2320         continue;
2321       if (declaresSameEntity(KnownField, FI)) {
2322         KnownField = FI;
2323         break;
2324       }
2325       ++FieldIndex;
2326     }
2327 
2328     RecordDecl::field_iterator Field =
2329         RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField));
2330 
2331     // All of the fields of a union are located at the same place in
2332     // the initializer list.
2333     if (RT->getDecl()->isUnion()) {
2334       FieldIndex = 0;
2335       if (!VerifyOnly) {
2336         FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion();
2337         if (CurrentField && !declaresSameEntity(CurrentField, *Field)) {
2338           assert(StructuredList->getNumInits() == 1
2339                  && "A union should never have more than one initializer!");
2340 
2341           Expr *ExistingInit = StructuredList->getInit(0);
2342           if (ExistingInit) {
2343             // We're about to throw away an initializer, emit warning.
2344             SemaRef.Diag(D->getFieldLoc(),
2345                          diag::warn_initializer_overrides)
2346               << D->getSourceRange();
2347             SemaRef.Diag(ExistingInit->getLocStart(),
2348                          diag::note_previous_initializer)
2349               << /*FIXME:has side effects=*/0
2350               << ExistingInit->getSourceRange();
2351           }
2352 
2353           // remove existing initializer
2354           StructuredList->resizeInits(SemaRef.Context, 0);
2355           StructuredList->setInitializedFieldInUnion(nullptr);
2356         }
2357 
2358         StructuredList->setInitializedFieldInUnion(*Field);
2359       }
2360     }
2361 
2362     // Make sure we can use this declaration.
2363     bool InvalidUse;
2364     if (VerifyOnly)
2365       InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2366     else
2367       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
2368     if (InvalidUse) {
2369       ++Index;
2370       return true;
2371     }
2372 
2373     if (!VerifyOnly) {
2374       // Update the designator with the field declaration.
2375       D->setField(*Field);
2376 
2377       // Make sure that our non-designated initializer list has space
2378       // for a subobject corresponding to this field.
2379       if (FieldIndex >= StructuredList->getNumInits())
2380         StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
2381     }
2382 
2383     // This designator names a flexible array member.
2384     if (Field->getType()->isIncompleteArrayType()) {
2385       bool Invalid = false;
2386       if ((DesigIdx + 1) != DIE->size()) {
2387         // We can't designate an object within the flexible array
2388         // member (because GCC doesn't allow it).
2389         if (!VerifyOnly) {
2390           DesignatedInitExpr::Designator *NextD
2391             = DIE->getDesignator(DesigIdx + 1);
2392           SemaRef.Diag(NextD->getLocStart(),
2393                         diag::err_designator_into_flexible_array_member)
2394             << SourceRange(NextD->getLocStart(),
2395                            DIE->getLocEnd());
2396           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2397             << *Field;
2398         }
2399         Invalid = true;
2400       }
2401 
2402       if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
2403           !isa<StringLiteral>(DIE->getInit())) {
2404         // The initializer is not an initializer list.
2405         if (!VerifyOnly) {
2406           SemaRef.Diag(DIE->getInit()->getLocStart(),
2407                         diag::err_flexible_array_init_needs_braces)
2408             << DIE->getInit()->getSourceRange();
2409           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2410             << *Field;
2411         }
2412         Invalid = true;
2413       }
2414 
2415       // Check GNU flexible array initializer.
2416       if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
2417                                              TopLevelObject))
2418         Invalid = true;
2419 
2420       if (Invalid) {
2421         ++Index;
2422         return true;
2423       }
2424 
2425       // Initialize the array.
2426       bool prevHadError = hadError;
2427       unsigned newStructuredIndex = FieldIndex;
2428       unsigned OldIndex = Index;
2429       IList->setInit(Index, DIE->getInit());
2430 
2431       InitializedEntity MemberEntity =
2432         InitializedEntity::InitializeMember(*Field, &Entity);
2433       CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2434                           StructuredList, newStructuredIndex);
2435 
2436       IList->setInit(OldIndex, DIE);
2437       if (hadError && !prevHadError) {
2438         ++Field;
2439         ++FieldIndex;
2440         if (NextField)
2441           *NextField = Field;
2442         StructuredIndex = FieldIndex;
2443         return true;
2444       }
2445     } else {
2446       // Recurse to check later designated subobjects.
2447       QualType FieldType = Field->getType();
2448       unsigned newStructuredIndex = FieldIndex;
2449 
2450       InitializedEntity MemberEntity =
2451         InitializedEntity::InitializeMember(*Field, &Entity);
2452       if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
2453                                      FieldType, nullptr, nullptr, Index,
2454                                      StructuredList, newStructuredIndex,
2455                                      FinishSubobjectInit, false))
2456         return true;
2457     }
2458 
2459     // Find the position of the next field to be initialized in this
2460     // subobject.
2461     ++Field;
2462     ++FieldIndex;
2463 
2464     // If this the first designator, our caller will continue checking
2465     // the rest of this struct/class/union subobject.
2466     if (IsFirstDesignator) {
2467       if (NextField)
2468         *NextField = Field;
2469       StructuredIndex = FieldIndex;
2470       return false;
2471     }
2472 
2473     if (!FinishSubobjectInit)
2474       return false;
2475 
2476     // We've already initialized something in the union; we're done.
2477     if (RT->getDecl()->isUnion())
2478       return hadError;
2479 
2480     // Check the remaining fields within this class/struct/union subobject.
2481     bool prevHadError = hadError;
2482 
2483     auto NoBases =
2484         CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
2485                                         CXXRecordDecl::base_class_iterator());
2486     CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field,
2487                           false, Index, StructuredList, FieldIndex);
2488     return hadError && !prevHadError;
2489   }
2490 
2491   // C99 6.7.8p6:
2492   //
2493   //   If a designator has the form
2494   //
2495   //      [ constant-expression ]
2496   //
2497   //   then the current object (defined below) shall have array
2498   //   type and the expression shall be an integer constant
2499   //   expression. If the array is of unknown size, any
2500   //   nonnegative value is valid.
2501   //
2502   // Additionally, cope with the GNU extension that permits
2503   // designators of the form
2504   //
2505   //      [ constant-expression ... constant-expression ]
2506   const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
2507   if (!AT) {
2508     if (!VerifyOnly)
2509       SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
2510         << CurrentObjectType;
2511     ++Index;
2512     return true;
2513   }
2514 
2515   Expr *IndexExpr = nullptr;
2516   llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
2517   if (D->isArrayDesignator()) {
2518     IndexExpr = DIE->getArrayIndex(*D);
2519     DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
2520     DesignatedEndIndex = DesignatedStartIndex;
2521   } else {
2522     assert(D->isArrayRangeDesignator() && "Need array-range designator");
2523 
2524     DesignatedStartIndex =
2525       DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
2526     DesignatedEndIndex =
2527       DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
2528     IndexExpr = DIE->getArrayRangeEnd(*D);
2529 
2530     // Codegen can't handle evaluating array range designators that have side
2531     // effects, because we replicate the AST value for each initialized element.
2532     // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
2533     // elements with something that has a side effect, so codegen can emit an
2534     // "error unsupported" error instead of miscompiling the app.
2535     if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
2536         DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
2537       FullyStructuredList->sawArrayRangeDesignator();
2538   }
2539 
2540   if (isa<ConstantArrayType>(AT)) {
2541     llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
2542     DesignatedStartIndex
2543       = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
2544     DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
2545     DesignatedEndIndex
2546       = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
2547     DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
2548     if (DesignatedEndIndex >= MaxElements) {
2549       if (!VerifyOnly)
2550         SemaRef.Diag(IndexExpr->getLocStart(),
2551                       diag::err_array_designator_too_large)
2552           << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
2553           << IndexExpr->getSourceRange();
2554       ++Index;
2555       return true;
2556     }
2557   } else {
2558     unsigned DesignatedIndexBitWidth =
2559       ConstantArrayType::getMaxSizeBits(SemaRef.Context);
2560     DesignatedStartIndex =
2561       DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth);
2562     DesignatedEndIndex =
2563       DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth);
2564     DesignatedStartIndex.setIsUnsigned(true);
2565     DesignatedEndIndex.setIsUnsigned(true);
2566   }
2567 
2568   if (!VerifyOnly && StructuredList->isStringLiteralInit()) {
2569     // We're modifying a string literal init; we have to decompose the string
2570     // so we can modify the individual characters.
2571     ASTContext &Context = SemaRef.Context;
2572     Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens();
2573 
2574     // Compute the character type
2575     QualType CharTy = AT->getElementType();
2576 
2577     // Compute the type of the integer literals.
2578     QualType PromotedCharTy = CharTy;
2579     if (CharTy->isPromotableIntegerType())
2580       PromotedCharTy = Context.getPromotedIntegerType(CharTy);
2581     unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy);
2582 
2583     if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) {
2584       // Get the length of the string.
2585       uint64_t StrLen = SL->getLength();
2586       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2587         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2588       StructuredList->resizeInits(Context, StrLen);
2589 
2590       // Build a literal for each character in the string, and put them into
2591       // the init list.
2592       for (unsigned i = 0, e = StrLen; i != e; ++i) {
2593         llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i));
2594         Expr *Init = new (Context) IntegerLiteral(
2595             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2596         if (CharTy != PromotedCharTy)
2597           Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2598                                           Init, nullptr, VK_RValue);
2599         StructuredList->updateInit(Context, i, Init);
2600       }
2601     } else {
2602       ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr);
2603       std::string Str;
2604       Context.getObjCEncodingForType(E->getEncodedType(), Str);
2605 
2606       // Get the length of the string.
2607       uint64_t StrLen = Str.size();
2608       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2609         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2610       StructuredList->resizeInits(Context, StrLen);
2611 
2612       // Build a literal for each character in the string, and put them into
2613       // the init list.
2614       for (unsigned i = 0, e = StrLen; i != e; ++i) {
2615         llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]);
2616         Expr *Init = new (Context) IntegerLiteral(
2617             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2618         if (CharTy != PromotedCharTy)
2619           Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2620                                           Init, nullptr, VK_RValue);
2621         StructuredList->updateInit(Context, i, Init);
2622       }
2623     }
2624   }
2625 
2626   // Make sure that our non-designated initializer list has space
2627   // for a subobject corresponding to this array element.
2628   if (!VerifyOnly &&
2629       DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
2630     StructuredList->resizeInits(SemaRef.Context,
2631                                 DesignatedEndIndex.getZExtValue() + 1);
2632 
2633   // Repeatedly perform subobject initializations in the range
2634   // [DesignatedStartIndex, DesignatedEndIndex].
2635 
2636   // Move to the next designator
2637   unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
2638   unsigned OldIndex = Index;
2639 
2640   InitializedEntity ElementEntity =
2641     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
2642 
2643   while (DesignatedStartIndex <= DesignatedEndIndex) {
2644     // Recurse to check later designated subobjects.
2645     QualType ElementType = AT->getElementType();
2646     Index = OldIndex;
2647 
2648     ElementEntity.setElementIndex(ElementIndex);
2649     if (CheckDesignatedInitializer(
2650             ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr,
2651             nullptr, Index, StructuredList, ElementIndex,
2652             FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex),
2653             false))
2654       return true;
2655 
2656     // Move to the next index in the array that we'll be initializing.
2657     ++DesignatedStartIndex;
2658     ElementIndex = DesignatedStartIndex.getZExtValue();
2659   }
2660 
2661   // If this the first designator, our caller will continue checking
2662   // the rest of this array subobject.
2663   if (IsFirstDesignator) {
2664     if (NextElementIndex)
2665       *NextElementIndex = DesignatedStartIndex;
2666     StructuredIndex = ElementIndex;
2667     return false;
2668   }
2669 
2670   if (!FinishSubobjectInit)
2671     return false;
2672 
2673   // Check the remaining elements within this array subobject.
2674   bool prevHadError = hadError;
2675   CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
2676                  /*SubobjectIsDesignatorContext=*/false, Index,
2677                  StructuredList, ElementIndex);
2678   return hadError && !prevHadError;
2679 }
2680 
2681 // Get the structured initializer list for a subobject of type
2682 // @p CurrentObjectType.
2683 InitListExpr *
2684 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
2685                                             QualType CurrentObjectType,
2686                                             InitListExpr *StructuredList,
2687                                             unsigned StructuredIndex,
2688                                             SourceRange InitRange,
2689                                             bool IsFullyOverwritten) {
2690   if (VerifyOnly)
2691     return nullptr; // No structured list in verification-only mode.
2692   Expr *ExistingInit = nullptr;
2693   if (!StructuredList)
2694     ExistingInit = SyntacticToSemantic.lookup(IList);
2695   else if (StructuredIndex < StructuredList->getNumInits())
2696     ExistingInit = StructuredList->getInit(StructuredIndex);
2697 
2698   if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
2699     // There might have already been initializers for subobjects of the current
2700     // object, but a subsequent initializer list will overwrite the entirety
2701     // of the current object. (See DR 253 and C99 6.7.8p21). e.g.,
2702     //
2703     // struct P { char x[6]; };
2704     // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } };
2705     //
2706     // The first designated initializer is ignored, and l.x is just "f".
2707     if (!IsFullyOverwritten)
2708       return Result;
2709 
2710   if (ExistingInit) {
2711     // We are creating an initializer list that initializes the
2712     // subobjects of the current object, but there was already an
2713     // initialization that completely initialized the current
2714     // subobject, e.g., by a compound literal:
2715     //
2716     // struct X { int a, b; };
2717     // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2718     //
2719     // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2720     // designated initializer re-initializes the whole
2721     // subobject [0], overwriting previous initializers.
2722     SemaRef.Diag(InitRange.getBegin(),
2723                  diag::warn_subobject_initializer_overrides)
2724       << InitRange;
2725     SemaRef.Diag(ExistingInit->getLocStart(),
2726                   diag::note_previous_initializer)
2727       << /*FIXME:has side effects=*/0
2728       << ExistingInit->getSourceRange();
2729   }
2730 
2731   InitListExpr *Result
2732     = new (SemaRef.Context) InitListExpr(SemaRef.Context,
2733                                          InitRange.getBegin(), None,
2734                                          InitRange.getEnd());
2735 
2736   QualType ResultType = CurrentObjectType;
2737   if (!ResultType->isArrayType())
2738     ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
2739   Result->setType(ResultType);
2740 
2741   // Pre-allocate storage for the structured initializer list.
2742   unsigned NumElements = 0;
2743   unsigned NumInits = 0;
2744   bool GotNumInits = false;
2745   if (!StructuredList) {
2746     NumInits = IList->getNumInits();
2747     GotNumInits = true;
2748   } else if (Index < IList->getNumInits()) {
2749     if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
2750       NumInits = SubList->getNumInits();
2751       GotNumInits = true;
2752     }
2753   }
2754 
2755   if (const ArrayType *AType
2756       = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
2757     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
2758       NumElements = CAType->getSize().getZExtValue();
2759       // Simple heuristic so that we don't allocate a very large
2760       // initializer with many empty entries at the end.
2761       if (GotNumInits && NumElements > NumInits)
2762         NumElements = 0;
2763     }
2764   } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
2765     NumElements = VType->getNumElements();
2766   else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
2767     RecordDecl *RDecl = RType->getDecl();
2768     if (RDecl->isUnion())
2769       NumElements = 1;
2770     else
2771       NumElements = std::distance(RDecl->field_begin(), RDecl->field_end());
2772   }
2773 
2774   Result->reserveInits(SemaRef.Context, NumElements);
2775 
2776   // Link this new initializer list into the structured initializer
2777   // lists.
2778   if (StructuredList)
2779     StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
2780   else {
2781     Result->setSyntacticForm(IList);
2782     SyntacticToSemantic[IList] = Result;
2783   }
2784 
2785   return Result;
2786 }
2787 
2788 /// Update the initializer at index @p StructuredIndex within the
2789 /// structured initializer list to the value @p expr.
2790 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
2791                                                   unsigned &StructuredIndex,
2792                                                   Expr *expr) {
2793   // No structured initializer list to update
2794   if (!StructuredList)
2795     return;
2796 
2797   if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
2798                                                   StructuredIndex, expr)) {
2799     // This initializer overwrites a previous initializer. Warn.
2800     // We need to check on source range validity because the previous
2801     // initializer does not have to be an explicit initializer.
2802     // struct P { int a, b; };
2803     // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
2804     // There is an overwrite taking place because the first braced initializer
2805     // list "{ .a = 2 }' already provides value for .p.b (which is zero).
2806     if (PrevInit->getSourceRange().isValid()) {
2807       SemaRef.Diag(expr->getLocStart(),
2808                    diag::warn_initializer_overrides)
2809         << expr->getSourceRange();
2810 
2811       SemaRef.Diag(PrevInit->getLocStart(),
2812                    diag::note_previous_initializer)
2813         << /*FIXME:has side effects=*/0
2814         << PrevInit->getSourceRange();
2815     }
2816   }
2817 
2818   ++StructuredIndex;
2819 }
2820 
2821 /// Check that the given Index expression is a valid array designator
2822 /// value. This is essentially just a wrapper around
2823 /// VerifyIntegerConstantExpression that also checks for negative values
2824 /// and produces a reasonable diagnostic if there is a
2825 /// failure. Returns the index expression, possibly with an implicit cast
2826 /// added, on success.  If everything went okay, Value will receive the
2827 /// value of the constant expression.
2828 static ExprResult
2829 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
2830   SourceLocation Loc = Index->getLocStart();
2831 
2832   // Make sure this is an integer constant expression.
2833   ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value);
2834   if (Result.isInvalid())
2835     return Result;
2836 
2837   if (Value.isSigned() && Value.isNegative())
2838     return S.Diag(Loc, diag::err_array_designator_negative)
2839       << Value.toString(10) << Index->getSourceRange();
2840 
2841   Value.setIsUnsigned(true);
2842   return Result;
2843 }
2844 
2845 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
2846                                             SourceLocation Loc,
2847                                             bool GNUSyntax,
2848                                             ExprResult Init) {
2849   typedef DesignatedInitExpr::Designator ASTDesignator;
2850 
2851   bool Invalid = false;
2852   SmallVector<ASTDesignator, 32> Designators;
2853   SmallVector<Expr *, 32> InitExpressions;
2854 
2855   // Build designators and check array designator expressions.
2856   for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
2857     const Designator &D = Desig.getDesignator(Idx);
2858     switch (D.getKind()) {
2859     case Designator::FieldDesignator:
2860       Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
2861                                           D.getFieldLoc()));
2862       break;
2863 
2864     case Designator::ArrayDesignator: {
2865       Expr *Index = static_cast<Expr *>(D.getArrayIndex());
2866       llvm::APSInt IndexValue;
2867       if (!Index->isTypeDependent() && !Index->isValueDependent())
2868         Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get();
2869       if (!Index)
2870         Invalid = true;
2871       else {
2872         Designators.push_back(ASTDesignator(InitExpressions.size(),
2873                                             D.getLBracketLoc(),
2874                                             D.getRBracketLoc()));
2875         InitExpressions.push_back(Index);
2876       }
2877       break;
2878     }
2879 
2880     case Designator::ArrayRangeDesignator: {
2881       Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
2882       Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
2883       llvm::APSInt StartValue;
2884       llvm::APSInt EndValue;
2885       bool StartDependent = StartIndex->isTypeDependent() ||
2886                             StartIndex->isValueDependent();
2887       bool EndDependent = EndIndex->isTypeDependent() ||
2888                           EndIndex->isValueDependent();
2889       if (!StartDependent)
2890         StartIndex =
2891             CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get();
2892       if (!EndDependent)
2893         EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get();
2894 
2895       if (!StartIndex || !EndIndex)
2896         Invalid = true;
2897       else {
2898         // Make sure we're comparing values with the same bit width.
2899         if (StartDependent || EndDependent) {
2900           // Nothing to compute.
2901         } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
2902           EndValue = EndValue.extend(StartValue.getBitWidth());
2903         else if (StartValue.getBitWidth() < EndValue.getBitWidth())
2904           StartValue = StartValue.extend(EndValue.getBitWidth());
2905 
2906         if (!StartDependent && !EndDependent && EndValue < StartValue) {
2907           Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
2908             << StartValue.toString(10) << EndValue.toString(10)
2909             << StartIndex->getSourceRange() << EndIndex->getSourceRange();
2910           Invalid = true;
2911         } else {
2912           Designators.push_back(ASTDesignator(InitExpressions.size(),
2913                                               D.getLBracketLoc(),
2914                                               D.getEllipsisLoc(),
2915                                               D.getRBracketLoc()));
2916           InitExpressions.push_back(StartIndex);
2917           InitExpressions.push_back(EndIndex);
2918         }
2919       }
2920       break;
2921     }
2922     }
2923   }
2924 
2925   if (Invalid || Init.isInvalid())
2926     return ExprError();
2927 
2928   // Clear out the expressions within the designation.
2929   Desig.ClearExprs(*this);
2930 
2931   DesignatedInitExpr *DIE
2932     = DesignatedInitExpr::Create(Context,
2933                                  Designators,
2934                                  InitExpressions, Loc, GNUSyntax,
2935                                  Init.getAs<Expr>());
2936 
2937   if (!getLangOpts().C99)
2938     Diag(DIE->getLocStart(), diag::ext_designated_init)
2939       << DIE->getSourceRange();
2940 
2941   return DIE;
2942 }
2943 
2944 //===----------------------------------------------------------------------===//
2945 // Initialization entity
2946 //===----------------------------------------------------------------------===//
2947 
2948 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
2949                                      const InitializedEntity &Parent)
2950   : Parent(&Parent), Index(Index)
2951 {
2952   if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
2953     Kind = EK_ArrayElement;
2954     Type = AT->getElementType();
2955   } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
2956     Kind = EK_VectorElement;
2957     Type = VT->getElementType();
2958   } else {
2959     const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
2960     assert(CT && "Unexpected type");
2961     Kind = EK_ComplexElement;
2962     Type = CT->getElementType();
2963   }
2964 }
2965 
2966 InitializedEntity
2967 InitializedEntity::InitializeBase(ASTContext &Context,
2968                                   const CXXBaseSpecifier *Base,
2969                                   bool IsInheritedVirtualBase,
2970                                   const InitializedEntity *Parent) {
2971   InitializedEntity Result;
2972   Result.Kind = EK_Base;
2973   Result.Parent = Parent;
2974   Result.Base = reinterpret_cast<uintptr_t>(Base);
2975   if (IsInheritedVirtualBase)
2976     Result.Base |= 0x01;
2977 
2978   Result.Type = Base->getType();
2979   return Result;
2980 }
2981 
2982 DeclarationName InitializedEntity::getName() const {
2983   switch (getKind()) {
2984   case EK_Parameter:
2985   case EK_Parameter_CF_Audited: {
2986     ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2987     return (D ? D->getDeclName() : DeclarationName());
2988   }
2989 
2990   case EK_Variable:
2991   case EK_Member:
2992   case EK_Binding:
2993     return Variable.VariableOrMember->getDeclName();
2994 
2995   case EK_LambdaCapture:
2996     return DeclarationName(Capture.VarID);
2997 
2998   case EK_Result:
2999   case EK_Exception:
3000   case EK_New:
3001   case EK_Temporary:
3002   case EK_Base:
3003   case EK_Delegating:
3004   case EK_ArrayElement:
3005   case EK_VectorElement:
3006   case EK_ComplexElement:
3007   case EK_BlockElement:
3008   case EK_LambdaToBlockConversionBlockElement:
3009   case EK_CompoundLiteralInit:
3010   case EK_RelatedResult:
3011     return DeclarationName();
3012   }
3013 
3014   llvm_unreachable("Invalid EntityKind!");
3015 }
3016 
3017 ValueDecl *InitializedEntity::getDecl() const {
3018   switch (getKind()) {
3019   case EK_Variable:
3020   case EK_Member:
3021   case EK_Binding:
3022     return Variable.VariableOrMember;
3023 
3024   case EK_Parameter:
3025   case EK_Parameter_CF_Audited:
3026     return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
3027 
3028   case EK_Result:
3029   case EK_Exception:
3030   case EK_New:
3031   case EK_Temporary:
3032   case EK_Base:
3033   case EK_Delegating:
3034   case EK_ArrayElement:
3035   case EK_VectorElement:
3036   case EK_ComplexElement:
3037   case EK_BlockElement:
3038   case EK_LambdaToBlockConversionBlockElement:
3039   case EK_LambdaCapture:
3040   case EK_CompoundLiteralInit:
3041   case EK_RelatedResult:
3042     return nullptr;
3043   }
3044 
3045   llvm_unreachable("Invalid EntityKind!");
3046 }
3047 
3048 bool InitializedEntity::allowsNRVO() const {
3049   switch (getKind()) {
3050   case EK_Result:
3051   case EK_Exception:
3052     return LocAndNRVO.NRVO;
3053 
3054   case EK_Variable:
3055   case EK_Parameter:
3056   case EK_Parameter_CF_Audited:
3057   case EK_Member:
3058   case EK_Binding:
3059   case EK_New:
3060   case EK_Temporary:
3061   case EK_CompoundLiteralInit:
3062   case EK_Base:
3063   case EK_Delegating:
3064   case EK_ArrayElement:
3065   case EK_VectorElement:
3066   case EK_ComplexElement:
3067   case EK_BlockElement:
3068   case EK_LambdaToBlockConversionBlockElement:
3069   case EK_LambdaCapture:
3070   case EK_RelatedResult:
3071     break;
3072   }
3073 
3074   return false;
3075 }
3076 
3077 unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const {
3078   assert(getParent() != this);
3079   unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0;
3080   for (unsigned I = 0; I != Depth; ++I)
3081     OS << "`-";
3082 
3083   switch (getKind()) {
3084   case EK_Variable: OS << "Variable"; break;
3085   case EK_Parameter: OS << "Parameter"; break;
3086   case EK_Parameter_CF_Audited: OS << "CF audited function Parameter";
3087     break;
3088   case EK_Result: OS << "Result"; break;
3089   case EK_Exception: OS << "Exception"; break;
3090   case EK_Member: OS << "Member"; break;
3091   case EK_Binding: OS << "Binding"; break;
3092   case EK_New: OS << "New"; break;
3093   case EK_Temporary: OS << "Temporary"; break;
3094   case EK_CompoundLiteralInit: OS << "CompoundLiteral";break;
3095   case EK_RelatedResult: OS << "RelatedResult"; break;
3096   case EK_Base: OS << "Base"; break;
3097   case EK_Delegating: OS << "Delegating"; break;
3098   case EK_ArrayElement: OS << "ArrayElement " << Index; break;
3099   case EK_VectorElement: OS << "VectorElement " << Index; break;
3100   case EK_ComplexElement: OS << "ComplexElement " << Index; break;
3101   case EK_BlockElement: OS << "Block"; break;
3102   case EK_LambdaToBlockConversionBlockElement:
3103     OS << "Block (lambda)";
3104     break;
3105   case EK_LambdaCapture:
3106     OS << "LambdaCapture ";
3107     OS << DeclarationName(Capture.VarID);
3108     break;
3109   }
3110 
3111   if (auto *D = getDecl()) {
3112     OS << " ";
3113     D->printQualifiedName(OS);
3114   }
3115 
3116   OS << " '" << getType().getAsString() << "'\n";
3117 
3118   return Depth + 1;
3119 }
3120 
3121 LLVM_DUMP_METHOD void InitializedEntity::dump() const {
3122   dumpImpl(llvm::errs());
3123 }
3124 
3125 //===----------------------------------------------------------------------===//
3126 // Initialization sequence
3127 //===----------------------------------------------------------------------===//
3128 
3129 void InitializationSequence::Step::Destroy() {
3130   switch (Kind) {
3131   case SK_ResolveAddressOfOverloadedFunction:
3132   case SK_CastDerivedToBaseRValue:
3133   case SK_CastDerivedToBaseXValue:
3134   case SK_CastDerivedToBaseLValue:
3135   case SK_BindReference:
3136   case SK_BindReferenceToTemporary:
3137   case SK_FinalCopy:
3138   case SK_ExtraneousCopyToTemporary:
3139   case SK_UserConversion:
3140   case SK_QualificationConversionRValue:
3141   case SK_QualificationConversionXValue:
3142   case SK_QualificationConversionLValue:
3143   case SK_AtomicConversion:
3144   case SK_LValueToRValue:
3145   case SK_ListInitialization:
3146   case SK_UnwrapInitList:
3147   case SK_RewrapInitList:
3148   case SK_ConstructorInitialization:
3149   case SK_ConstructorInitializationFromList:
3150   case SK_ZeroInitialization:
3151   case SK_CAssignment:
3152   case SK_StringInit:
3153   case SK_ObjCObjectConversion:
3154   case SK_ArrayLoopIndex:
3155   case SK_ArrayLoopInit:
3156   case SK_ArrayInit:
3157   case SK_GNUArrayInit:
3158   case SK_ParenthesizedArrayInit:
3159   case SK_PassByIndirectCopyRestore:
3160   case SK_PassByIndirectRestore:
3161   case SK_ProduceObjCObject:
3162   case SK_StdInitializerList:
3163   case SK_StdInitializerListConstructorCall:
3164   case SK_OCLSamplerInit:
3165   case SK_OCLZeroEvent:
3166   case SK_OCLZeroQueue:
3167     break;
3168 
3169   case SK_ConversionSequence:
3170   case SK_ConversionSequenceNoNarrowing:
3171     delete ICS;
3172   }
3173 }
3174 
3175 bool InitializationSequence::isDirectReferenceBinding() const {
3176   // There can be some lvalue adjustments after the SK_BindReference step.
3177   for (auto I = Steps.rbegin(); I != Steps.rend(); ++I) {
3178     if (I->Kind == SK_BindReference)
3179       return true;
3180     if (I->Kind == SK_BindReferenceToTemporary)
3181       return false;
3182   }
3183   return false;
3184 }
3185 
3186 bool InitializationSequence::isAmbiguous() const {
3187   if (!Failed())
3188     return false;
3189 
3190   switch (getFailureKind()) {
3191   case FK_TooManyInitsForReference:
3192   case FK_ParenthesizedListInitForReference:
3193   case FK_ArrayNeedsInitList:
3194   case FK_ArrayNeedsInitListOrStringLiteral:
3195   case FK_ArrayNeedsInitListOrWideStringLiteral:
3196   case FK_NarrowStringIntoWideCharArray:
3197   case FK_WideStringIntoCharArray:
3198   case FK_IncompatWideStringIntoWideChar:
3199   case FK_PlainStringIntoUTF8Char:
3200   case FK_UTF8StringIntoPlainChar:
3201   case FK_AddressOfOverloadFailed: // FIXME: Could do better
3202   case FK_NonConstLValueReferenceBindingToTemporary:
3203   case FK_NonConstLValueReferenceBindingToBitfield:
3204   case FK_NonConstLValueReferenceBindingToVectorElement:
3205   case FK_NonConstLValueReferenceBindingToUnrelated:
3206   case FK_RValueReferenceBindingToLValue:
3207   case FK_ReferenceInitDropsQualifiers:
3208   case FK_ReferenceInitFailed:
3209   case FK_ConversionFailed:
3210   case FK_ConversionFromPropertyFailed:
3211   case FK_TooManyInitsForScalar:
3212   case FK_ParenthesizedListInitForScalar:
3213   case FK_ReferenceBindingToInitList:
3214   case FK_InitListBadDestinationType:
3215   case FK_DefaultInitOfConst:
3216   case FK_Incomplete:
3217   case FK_ArrayTypeMismatch:
3218   case FK_NonConstantArrayInit:
3219   case FK_ListInitializationFailed:
3220   case FK_VariableLengthArrayHasInitializer:
3221   case FK_PlaceholderType:
3222   case FK_ExplicitConstructor:
3223   case FK_AddressOfUnaddressableFunction:
3224     return false;
3225 
3226   case FK_ReferenceInitOverloadFailed:
3227   case FK_UserConversionOverloadFailed:
3228   case FK_ConstructorOverloadFailed:
3229   case FK_ListConstructorOverloadFailed:
3230     return FailedOverloadResult == OR_Ambiguous;
3231   }
3232 
3233   llvm_unreachable("Invalid EntityKind!");
3234 }
3235 
3236 bool InitializationSequence::isConstructorInitialization() const {
3237   return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
3238 }
3239 
3240 void
3241 InitializationSequence
3242 ::AddAddressOverloadResolutionStep(FunctionDecl *Function,
3243                                    DeclAccessPair Found,
3244                                    bool HadMultipleCandidates) {
3245   Step S;
3246   S.Kind = SK_ResolveAddressOfOverloadedFunction;
3247   S.Type = Function->getType();
3248   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3249   S.Function.Function = Function;
3250   S.Function.FoundDecl = Found;
3251   Steps.push_back(S);
3252 }
3253 
3254 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
3255                                                       ExprValueKind VK) {
3256   Step S;
3257   switch (VK) {
3258   case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
3259   case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
3260   case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
3261   }
3262   S.Type = BaseType;
3263   Steps.push_back(S);
3264 }
3265 
3266 void InitializationSequence::AddReferenceBindingStep(QualType T,
3267                                                      bool BindingTemporary) {
3268   Step S;
3269   S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
3270   S.Type = T;
3271   Steps.push_back(S);
3272 }
3273 
3274 void InitializationSequence::AddFinalCopy(QualType T) {
3275   Step S;
3276   S.Kind = SK_FinalCopy;
3277   S.Type = T;
3278   Steps.push_back(S);
3279 }
3280 
3281 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
3282   Step S;
3283   S.Kind = SK_ExtraneousCopyToTemporary;
3284   S.Type = T;
3285   Steps.push_back(S);
3286 }
3287 
3288 void
3289 InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
3290                                               DeclAccessPair FoundDecl,
3291                                               QualType T,
3292                                               bool HadMultipleCandidates) {
3293   Step S;
3294   S.Kind = SK_UserConversion;
3295   S.Type = T;
3296   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3297   S.Function.Function = Function;
3298   S.Function.FoundDecl = FoundDecl;
3299   Steps.push_back(S);
3300 }
3301 
3302 void InitializationSequence::AddQualificationConversionStep(QualType Ty,
3303                                                             ExprValueKind VK) {
3304   Step S;
3305   S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
3306   switch (VK) {
3307   case VK_RValue:
3308     S.Kind = SK_QualificationConversionRValue;
3309     break;
3310   case VK_XValue:
3311     S.Kind = SK_QualificationConversionXValue;
3312     break;
3313   case VK_LValue:
3314     S.Kind = SK_QualificationConversionLValue;
3315     break;
3316   }
3317   S.Type = Ty;
3318   Steps.push_back(S);
3319 }
3320 
3321 void InitializationSequence::AddAtomicConversionStep(QualType Ty) {
3322   Step S;
3323   S.Kind = SK_AtomicConversion;
3324   S.Type = Ty;
3325   Steps.push_back(S);
3326 }
3327 
3328 void InitializationSequence::AddLValueToRValueStep(QualType Ty) {
3329   assert(!Ty.hasQualifiers() && "rvalues may not have qualifiers");
3330 
3331   Step S;
3332   S.Kind = SK_LValueToRValue;
3333   S.Type = Ty;
3334   Steps.push_back(S);
3335 }
3336 
3337 void InitializationSequence::AddConversionSequenceStep(
3338     const ImplicitConversionSequence &ICS, QualType T,
3339     bool TopLevelOfInitList) {
3340   Step S;
3341   S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing
3342                               : SK_ConversionSequence;
3343   S.Type = T;
3344   S.ICS = new ImplicitConversionSequence(ICS);
3345   Steps.push_back(S);
3346 }
3347 
3348 void InitializationSequence::AddListInitializationStep(QualType T) {
3349   Step S;
3350   S.Kind = SK_ListInitialization;
3351   S.Type = T;
3352   Steps.push_back(S);
3353 }
3354 
3355 void InitializationSequence::AddConstructorInitializationStep(
3356     DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T,
3357     bool HadMultipleCandidates, bool FromInitList, bool AsInitList) {
3358   Step S;
3359   S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall
3360                                      : SK_ConstructorInitializationFromList
3361                         : SK_ConstructorInitialization;
3362   S.Type = T;
3363   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3364   S.Function.Function = Constructor;
3365   S.Function.FoundDecl = FoundDecl;
3366   Steps.push_back(S);
3367 }
3368 
3369 void InitializationSequence::AddZeroInitializationStep(QualType T) {
3370   Step S;
3371   S.Kind = SK_ZeroInitialization;
3372   S.Type = T;
3373   Steps.push_back(S);
3374 }
3375 
3376 void InitializationSequence::AddCAssignmentStep(QualType T) {
3377   Step S;
3378   S.Kind = SK_CAssignment;
3379   S.Type = T;
3380   Steps.push_back(S);
3381 }
3382 
3383 void InitializationSequence::AddStringInitStep(QualType T) {
3384   Step S;
3385   S.Kind = SK_StringInit;
3386   S.Type = T;
3387   Steps.push_back(S);
3388 }
3389 
3390 void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
3391   Step S;
3392   S.Kind = SK_ObjCObjectConversion;
3393   S.Type = T;
3394   Steps.push_back(S);
3395 }
3396 
3397 void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) {
3398   Step S;
3399   S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit;
3400   S.Type = T;
3401   Steps.push_back(S);
3402 }
3403 
3404 void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) {
3405   Step S;
3406   S.Kind = SK_ArrayLoopIndex;
3407   S.Type = EltT;
3408   Steps.insert(Steps.begin(), S);
3409 
3410   S.Kind = SK_ArrayLoopInit;
3411   S.Type = T;
3412   Steps.push_back(S);
3413 }
3414 
3415 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
3416   Step S;
3417   S.Kind = SK_ParenthesizedArrayInit;
3418   S.Type = T;
3419   Steps.push_back(S);
3420 }
3421 
3422 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
3423                                                               bool shouldCopy) {
3424   Step s;
3425   s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
3426                        : SK_PassByIndirectRestore);
3427   s.Type = type;
3428   Steps.push_back(s);
3429 }
3430 
3431 void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
3432   Step S;
3433   S.Kind = SK_ProduceObjCObject;
3434   S.Type = T;
3435   Steps.push_back(S);
3436 }
3437 
3438 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
3439   Step S;
3440   S.Kind = SK_StdInitializerList;
3441   S.Type = T;
3442   Steps.push_back(S);
3443 }
3444 
3445 void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
3446   Step S;
3447   S.Kind = SK_OCLSamplerInit;
3448   S.Type = T;
3449   Steps.push_back(S);
3450 }
3451 
3452 void InitializationSequence::AddOCLZeroEventStep(QualType T) {
3453   Step S;
3454   S.Kind = SK_OCLZeroEvent;
3455   S.Type = T;
3456   Steps.push_back(S);
3457 }
3458 
3459 void InitializationSequence::AddOCLZeroQueueStep(QualType T) {
3460   Step S;
3461   S.Kind = SK_OCLZeroQueue;
3462   S.Type = T;
3463   Steps.push_back(S);
3464 }
3465 
3466 void InitializationSequence::RewrapReferenceInitList(QualType T,
3467                                                      InitListExpr *Syntactic) {
3468   assert(Syntactic->getNumInits() == 1 &&
3469          "Can only rewrap trivial init lists.");
3470   Step S;
3471   S.Kind = SK_UnwrapInitList;
3472   S.Type = Syntactic->getInit(0)->getType();
3473   Steps.insert(Steps.begin(), S);
3474 
3475   S.Kind = SK_RewrapInitList;
3476   S.Type = T;
3477   S.WrappingSyntacticList = Syntactic;
3478   Steps.push_back(S);
3479 }
3480 
3481 void InitializationSequence::SetOverloadFailure(FailureKind Failure,
3482                                                 OverloadingResult Result) {
3483   setSequenceKind(FailedSequence);
3484   this->Failure = Failure;
3485   this->FailedOverloadResult = Result;
3486 }
3487 
3488 //===----------------------------------------------------------------------===//
3489 // Attempt initialization
3490 //===----------------------------------------------------------------------===//
3491 
3492 /// Tries to add a zero initializer. Returns true if that worked.
3493 static bool
3494 maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence,
3495                                    const InitializedEntity &Entity) {
3496   if (Entity.getKind() != InitializedEntity::EK_Variable)
3497     return false;
3498 
3499   VarDecl *VD = cast<VarDecl>(Entity.getDecl());
3500   if (VD->getInit() || VD->getLocEnd().isMacroID())
3501     return false;
3502 
3503   QualType VariableTy = VD->getType().getCanonicalType();
3504   SourceLocation Loc = S.getLocForEndOfToken(VD->getLocEnd());
3505   std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
3506   if (!Init.empty()) {
3507     Sequence.AddZeroInitializationStep(Entity.getType());
3508     Sequence.SetZeroInitializationFixit(Init, Loc);
3509     return true;
3510   }
3511   return false;
3512 }
3513 
3514 static void MaybeProduceObjCObject(Sema &S,
3515                                    InitializationSequence &Sequence,
3516                                    const InitializedEntity &Entity) {
3517   if (!S.getLangOpts().ObjCAutoRefCount) return;
3518 
3519   /// When initializing a parameter, produce the value if it's marked
3520   /// __attribute__((ns_consumed)).
3521   if (Entity.isParameterKind()) {
3522     if (!Entity.isParameterConsumed())
3523       return;
3524 
3525     assert(Entity.getType()->isObjCRetainableType() &&
3526            "consuming an object of unretainable type?");
3527     Sequence.AddProduceObjCObjectStep(Entity.getType());
3528 
3529   /// When initializing a return value, if the return type is a
3530   /// retainable type, then returns need to immediately retain the
3531   /// object.  If an autorelease is required, it will be done at the
3532   /// last instant.
3533   } else if (Entity.getKind() == InitializedEntity::EK_Result) {
3534     if (!Entity.getType()->isObjCRetainableType())
3535       return;
3536 
3537     Sequence.AddProduceObjCObjectStep(Entity.getType());
3538   }
3539 }
3540 
3541 static void TryListInitialization(Sema &S,
3542                                   const InitializedEntity &Entity,
3543                                   const InitializationKind &Kind,
3544                                   InitListExpr *InitList,
3545                                   InitializationSequence &Sequence,
3546                                   bool TreatUnavailableAsInvalid);
3547 
3548 /// When initializing from init list via constructor, handle
3549 /// initialization of an object of type std::initializer_list<T>.
3550 ///
3551 /// \return true if we have handled initialization of an object of type
3552 /// std::initializer_list<T>, false otherwise.
3553 static bool TryInitializerListConstruction(Sema &S,
3554                                            InitListExpr *List,
3555                                            QualType DestType,
3556                                            InitializationSequence &Sequence,
3557                                            bool TreatUnavailableAsInvalid) {
3558   QualType E;
3559   if (!S.isStdInitializerList(DestType, &E))
3560     return false;
3561 
3562   if (!S.isCompleteType(List->getExprLoc(), E)) {
3563     Sequence.setIncompleteTypeFailure(E);
3564     return true;
3565   }
3566 
3567   // Try initializing a temporary array from the init list.
3568   QualType ArrayType = S.Context.getConstantArrayType(
3569       E.withConst(), llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
3570                                  List->getNumInits()),
3571       clang::ArrayType::Normal, 0);
3572   InitializedEntity HiddenArray =
3573       InitializedEntity::InitializeTemporary(ArrayType);
3574   InitializationKind Kind = InitializationKind::CreateDirectList(
3575       List->getExprLoc(), List->getLocStart(), List->getLocEnd());
3576   TryListInitialization(S, HiddenArray, Kind, List, Sequence,
3577                         TreatUnavailableAsInvalid);
3578   if (Sequence)
3579     Sequence.AddStdInitializerListConstructionStep(DestType);
3580   return true;
3581 }
3582 
3583 /// Determine if the constructor has the signature of a copy or move
3584 /// constructor for the type T of the class in which it was found. That is,
3585 /// determine if its first parameter is of type T or reference to (possibly
3586 /// cv-qualified) T.
3587 static bool hasCopyOrMoveCtorParam(ASTContext &Ctx,
3588                                    const ConstructorInfo &Info) {
3589   if (Info.Constructor->getNumParams() == 0)
3590     return false;
3591 
3592   QualType ParmT =
3593       Info.Constructor->getParamDecl(0)->getType().getNonReferenceType();
3594   QualType ClassT =
3595       Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext()));
3596 
3597   return Ctx.hasSameUnqualifiedType(ParmT, ClassT);
3598 }
3599 
3600 static OverloadingResult
3601 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
3602                            MultiExprArg Args,
3603                            OverloadCandidateSet &CandidateSet,
3604                            QualType DestType,
3605                            DeclContext::lookup_result Ctors,
3606                            OverloadCandidateSet::iterator &Best,
3607                            bool CopyInitializing, bool AllowExplicit,
3608                            bool OnlyListConstructors, bool IsListInit,
3609                            bool SecondStepOfCopyInit = false) {
3610   CandidateSet.clear(OverloadCandidateSet::CSK_InitByConstructor);
3611 
3612   for (NamedDecl *D : Ctors) {
3613     auto Info = getConstructorInfo(D);
3614     if (!Info.Constructor || Info.Constructor->isInvalidDecl())
3615       continue;
3616 
3617     if (!AllowExplicit && Info.Constructor->isExplicit())
3618       continue;
3619 
3620     if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor))
3621       continue;
3622 
3623     // C++11 [over.best.ics]p4:
3624     //   ... and the constructor or user-defined conversion function is a
3625     //   candidate by
3626     //   - 13.3.1.3, when the argument is the temporary in the second step
3627     //     of a class copy-initialization, or
3628     //   - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here]
3629     //   - the second phase of 13.3.1.7 when the initializer list has exactly
3630     //     one element that is itself an initializer list, and the target is
3631     //     the first parameter of a constructor of class X, and the conversion
3632     //     is to X or reference to (possibly cv-qualified X),
3633     //   user-defined conversion sequences are not considered.
3634     bool SuppressUserConversions =
3635         SecondStepOfCopyInit ||
3636         (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
3637          hasCopyOrMoveCtorParam(S.Context, Info));
3638 
3639     if (Info.ConstructorTmpl)
3640       S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
3641                                      /*ExplicitArgs*/ nullptr, Args,
3642                                      CandidateSet, SuppressUserConversions);
3643     else {
3644       // C++ [over.match.copy]p1:
3645       //   - When initializing a temporary to be bound to the first parameter
3646       //     of a constructor [for type T] that takes a reference to possibly
3647       //     cv-qualified T as its first argument, called with a single
3648       //     argument in the context of direct-initialization, explicit
3649       //     conversion functions are also considered.
3650       // FIXME: What if a constructor template instantiates to such a signature?
3651       bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
3652                                Args.size() == 1 &&
3653                                hasCopyOrMoveCtorParam(S.Context, Info);
3654       S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args,
3655                              CandidateSet, SuppressUserConversions,
3656                              /*PartialOverloading=*/false,
3657                              /*AllowExplicit=*/AllowExplicitConv);
3658     }
3659   }
3660 
3661   // FIXME: Work around a bug in C++17 guaranteed copy elision.
3662   //
3663   // When initializing an object of class type T by constructor
3664   // ([over.match.ctor]) or by list-initialization ([over.match.list])
3665   // from a single expression of class type U, conversion functions of
3666   // U that convert to the non-reference type cv T are candidates.
3667   // Explicit conversion functions are only candidates during
3668   // direct-initialization.
3669   //
3670   // Note: SecondStepOfCopyInit is only ever true in this case when
3671   // evaluating whether to produce a C++98 compatibility warning.
3672   if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 &&
3673       !SecondStepOfCopyInit) {
3674     Expr *Initializer = Args[0];
3675     auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl();
3676     if (SourceRD && S.isCompleteType(DeclLoc, Initializer->getType())) {
3677       const auto &Conversions = SourceRD->getVisibleConversionFunctions();
3678       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
3679         NamedDecl *D = *I;
3680         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3681         D = D->getUnderlyingDecl();
3682 
3683         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3684         CXXConversionDecl *Conv;
3685         if (ConvTemplate)
3686           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3687         else
3688           Conv = cast<CXXConversionDecl>(D);
3689 
3690         if ((AllowExplicit && !CopyInitializing) || !Conv->isExplicit()) {
3691           if (ConvTemplate)
3692             S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3693                                              ActingDC, Initializer, DestType,
3694                                              CandidateSet, AllowExplicit,
3695                                              /*AllowResultConversion*/false);
3696           else
3697             S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer,
3698                                      DestType, CandidateSet, AllowExplicit,
3699                                      /*AllowResultConversion*/false);
3700         }
3701       }
3702     }
3703   }
3704 
3705   // Perform overload resolution and return the result.
3706   return CandidateSet.BestViableFunction(S, DeclLoc, Best);
3707 }
3708 
3709 /// Attempt initialization by constructor (C++ [dcl.init]), which
3710 /// enumerates the constructors of the initialized entity and performs overload
3711 /// resolution to select the best.
3712 /// \param DestType       The destination class type.
3713 /// \param DestArrayType  The destination type, which is either DestType or
3714 ///                       a (possibly multidimensional) array of DestType.
3715 /// \param IsListInit     Is this list-initialization?
3716 /// \param IsInitListCopy Is this non-list-initialization resulting from a
3717 ///                       list-initialization from {x} where x is the same
3718 ///                       type as the entity?
3719 static void TryConstructorInitialization(Sema &S,
3720                                          const InitializedEntity &Entity,
3721                                          const InitializationKind &Kind,
3722                                          MultiExprArg Args, QualType DestType,
3723                                          QualType DestArrayType,
3724                                          InitializationSequence &Sequence,
3725                                          bool IsListInit = false,
3726                                          bool IsInitListCopy = false) {
3727   assert(((!IsListInit && !IsInitListCopy) ||
3728           (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&
3729          "IsListInit/IsInitListCopy must come with a single initializer list "
3730          "argument.");
3731   InitListExpr *ILE =
3732       (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr;
3733   MultiExprArg UnwrappedArgs =
3734       ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args;
3735 
3736   // The type we're constructing needs to be complete.
3737   if (!S.isCompleteType(Kind.getLocation(), DestType)) {
3738     Sequence.setIncompleteTypeFailure(DestType);
3739     return;
3740   }
3741 
3742   // C++17 [dcl.init]p17:
3743   //     - If the initializer expression is a prvalue and the cv-unqualified
3744   //       version of the source type is the same class as the class of the
3745   //       destination, the initializer expression is used to initialize the
3746   //       destination object.
3747   // Per DR (no number yet), this does not apply when initializing a base
3748   // class or delegating to another constructor from a mem-initializer.
3749   // ObjC++: Lambda captured by the block in the lambda to block conversion
3750   // should avoid copy elision.
3751   if (S.getLangOpts().CPlusPlus17 &&
3752       Entity.getKind() != InitializedEntity::EK_Base &&
3753       Entity.getKind() != InitializedEntity::EK_Delegating &&
3754       Entity.getKind() !=
3755           InitializedEntity::EK_LambdaToBlockConversionBlockElement &&
3756       UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isRValue() &&
3757       S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) {
3758     // Convert qualifications if necessary.
3759     Sequence.AddQualificationConversionStep(DestType, VK_RValue);
3760     if (ILE)
3761       Sequence.RewrapReferenceInitList(DestType, ILE);
3762     return;
3763   }
3764 
3765   const RecordType *DestRecordType = DestType->getAs<RecordType>();
3766   assert(DestRecordType && "Constructor initialization requires record type");
3767   CXXRecordDecl *DestRecordDecl
3768     = cast<CXXRecordDecl>(DestRecordType->getDecl());
3769 
3770   // Build the candidate set directly in the initialization sequence
3771   // structure, so that it will persist if we fail.
3772   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3773 
3774   // Determine whether we are allowed to call explicit constructors or
3775   // explicit conversion operators.
3776   bool AllowExplicit = Kind.AllowExplicit() || IsListInit;
3777   bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
3778 
3779   //   - Otherwise, if T is a class type, constructors are considered. The
3780   //     applicable constructors are enumerated, and the best one is chosen
3781   //     through overload resolution.
3782   DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl);
3783 
3784   OverloadingResult Result = OR_No_Viable_Function;
3785   OverloadCandidateSet::iterator Best;
3786   bool AsInitializerList = false;
3787 
3788   // C++11 [over.match.list]p1, per DR1467:
3789   //   When objects of non-aggregate type T are list-initialized, such that
3790   //   8.5.4 [dcl.init.list] specifies that overload resolution is performed
3791   //   according to the rules in this section, overload resolution selects
3792   //   the constructor in two phases:
3793   //
3794   //   - Initially, the candidate functions are the initializer-list
3795   //     constructors of the class T and the argument list consists of the
3796   //     initializer list as a single argument.
3797   if (IsListInit) {
3798     AsInitializerList = true;
3799 
3800     // If the initializer list has no elements and T has a default constructor,
3801     // the first phase is omitted.
3802     if (!(UnwrappedArgs.empty() && DestRecordDecl->hasDefaultConstructor()))
3803       Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
3804                                           CandidateSet, DestType, Ctors, Best,
3805                                           CopyInitialization, AllowExplicit,
3806                                           /*OnlyListConstructor=*/true,
3807                                           IsListInit);
3808   }
3809 
3810   // C++11 [over.match.list]p1:
3811   //   - If no viable initializer-list constructor is found, overload resolution
3812   //     is performed again, where the candidate functions are all the
3813   //     constructors of the class T and the argument list consists of the
3814   //     elements of the initializer list.
3815   if (Result == OR_No_Viable_Function) {
3816     AsInitializerList = false;
3817     Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs,
3818                                         CandidateSet, DestType, Ctors, Best,
3819                                         CopyInitialization, AllowExplicit,
3820                                         /*OnlyListConstructors=*/false,
3821                                         IsListInit);
3822   }
3823   if (Result) {
3824     Sequence.SetOverloadFailure(IsListInit ?
3825                       InitializationSequence::FK_ListConstructorOverloadFailed :
3826                       InitializationSequence::FK_ConstructorOverloadFailed,
3827                                 Result);
3828     return;
3829   }
3830 
3831   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3832 
3833   // In C++17, ResolveConstructorOverload can select a conversion function
3834   // instead of a constructor.
3835   if (auto *CD = dyn_cast<CXXConversionDecl>(Best->Function)) {
3836     // Add the user-defined conversion step that calls the conversion function.
3837     QualType ConvType = CD->getConversionType();
3838     assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) &&
3839            "should not have selected this conversion function");
3840     Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType,
3841                                    HadMultipleCandidates);
3842     if (!S.Context.hasSameType(ConvType, DestType))
3843       Sequence.AddQualificationConversionStep(DestType, VK_RValue);
3844     if (IsListInit)
3845       Sequence.RewrapReferenceInitList(Entity.getType(), ILE);
3846     return;
3847   }
3848 
3849   // C++11 [dcl.init]p6:
3850   //   If a program calls for the default initialization of an object
3851   //   of a const-qualified type T, T shall be a class type with a
3852   //   user-provided default constructor.
3853   // C++ core issue 253 proposal:
3854   //   If the implicit default constructor initializes all subobjects, no
3855   //   initializer should be required.
3856   // The 253 proposal is for example needed to process libstdc++ headers in 5.x.
3857   CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
3858   if (Kind.getKind() == InitializationKind::IK_Default &&
3859       Entity.getType().isConstQualified()) {
3860     if (!CtorDecl->getParent()->allowConstDefaultInit()) {
3861       if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
3862         Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3863       return;
3864     }
3865   }
3866 
3867   // C++11 [over.match.list]p1:
3868   //   In copy-list-initialization, if an explicit constructor is chosen, the
3869   //   initializer is ill-formed.
3870   if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
3871     Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
3872     return;
3873   }
3874 
3875   // Add the constructor initialization step. Any cv-qualification conversion is
3876   // subsumed by the initialization.
3877   Sequence.AddConstructorInitializationStep(
3878       Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates,
3879       IsListInit | IsInitListCopy, AsInitializerList);
3880 }
3881 
3882 static bool
3883 ResolveOverloadedFunctionForReferenceBinding(Sema &S,
3884                                              Expr *Initializer,
3885                                              QualType &SourceType,
3886                                              QualType &UnqualifiedSourceType,
3887                                              QualType UnqualifiedTargetType,
3888                                              InitializationSequence &Sequence) {
3889   if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
3890         S.Context.OverloadTy) {
3891     DeclAccessPair Found;
3892     bool HadMultipleCandidates = false;
3893     if (FunctionDecl *Fn
3894         = S.ResolveAddressOfOverloadedFunction(Initializer,
3895                                                UnqualifiedTargetType,
3896                                                false, Found,
3897                                                &HadMultipleCandidates)) {
3898       Sequence.AddAddressOverloadResolutionStep(Fn, Found,
3899                                                 HadMultipleCandidates);
3900       SourceType = Fn->getType();
3901       UnqualifiedSourceType = SourceType.getUnqualifiedType();
3902     } else if (!UnqualifiedTargetType->isRecordType()) {
3903       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3904       return true;
3905     }
3906   }
3907   return false;
3908 }
3909 
3910 static void TryReferenceInitializationCore(Sema &S,
3911                                            const InitializedEntity &Entity,
3912                                            const InitializationKind &Kind,
3913                                            Expr *Initializer,
3914                                            QualType cv1T1, QualType T1,
3915                                            Qualifiers T1Quals,
3916                                            QualType cv2T2, QualType T2,
3917                                            Qualifiers T2Quals,
3918                                            InitializationSequence &Sequence);
3919 
3920 static void TryValueInitialization(Sema &S,
3921                                    const InitializedEntity &Entity,
3922                                    const InitializationKind &Kind,
3923                                    InitializationSequence &Sequence,
3924                                    InitListExpr *InitList = nullptr);
3925 
3926 /// Attempt list initialization of a reference.
3927 static void TryReferenceListInitialization(Sema &S,
3928                                            const InitializedEntity &Entity,
3929                                            const InitializationKind &Kind,
3930                                            InitListExpr *InitList,
3931                                            InitializationSequence &Sequence,
3932                                            bool TreatUnavailableAsInvalid) {
3933   // First, catch C++03 where this isn't possible.
3934   if (!S.getLangOpts().CPlusPlus11) {
3935     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
3936     return;
3937   }
3938   // Can't reference initialize a compound literal.
3939   if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) {
3940     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
3941     return;
3942   }
3943 
3944   QualType DestType = Entity.getType();
3945   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3946   Qualifiers T1Quals;
3947   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3948 
3949   // Reference initialization via an initializer list works thus:
3950   // If the initializer list consists of a single element that is
3951   // reference-related to the referenced type, bind directly to that element
3952   // (possibly creating temporaries).
3953   // Otherwise, initialize a temporary with the initializer list and
3954   // bind to that.
3955   if (InitList->getNumInits() == 1) {
3956     Expr *Initializer = InitList->getInit(0);
3957     QualType cv2T2 = Initializer->getType();
3958     Qualifiers T2Quals;
3959     QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3960 
3961     // If this fails, creating a temporary wouldn't work either.
3962     if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3963                                                      T1, Sequence))
3964       return;
3965 
3966     SourceLocation DeclLoc = Initializer->getLocStart();
3967     bool dummy1, dummy2, dummy3;
3968     Sema::ReferenceCompareResult RefRelationship
3969       = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1,
3970                                        dummy2, dummy3);
3971     if (RefRelationship >= Sema::Ref_Related) {
3972       // Try to bind the reference here.
3973       TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3974                                      T1Quals, cv2T2, T2, T2Quals, Sequence);
3975       if (Sequence)
3976         Sequence.RewrapReferenceInitList(cv1T1, InitList);
3977       return;
3978     }
3979 
3980     // Update the initializer if we've resolved an overloaded function.
3981     if (Sequence.step_begin() != Sequence.step_end())
3982       Sequence.RewrapReferenceInitList(cv1T1, InitList);
3983   }
3984 
3985   // Not reference-related. Create a temporary and bind to that.
3986   InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3987 
3988   TryListInitialization(S, TempEntity, Kind, InitList, Sequence,
3989                         TreatUnavailableAsInvalid);
3990   if (Sequence) {
3991     if (DestType->isRValueReferenceType() ||
3992         (T1Quals.hasConst() && !T1Quals.hasVolatile()))
3993       Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3994     else
3995       Sequence.SetFailed(
3996           InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3997   }
3998 }
3999 
4000 /// Attempt list initialization (C++0x [dcl.init.list])
4001 static void TryListInitialization(Sema &S,
4002                                   const InitializedEntity &Entity,
4003                                   const InitializationKind &Kind,
4004                                   InitListExpr *InitList,
4005                                   InitializationSequence &Sequence,
4006                                   bool TreatUnavailableAsInvalid) {
4007   QualType DestType = Entity.getType();
4008 
4009   // C++ doesn't allow scalar initialization with more than one argument.
4010   // But C99 complex numbers are scalars and it makes sense there.
4011   if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
4012       !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
4013     Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
4014     return;
4015   }
4016   if (DestType->isReferenceType()) {
4017     TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence,
4018                                    TreatUnavailableAsInvalid);
4019     return;
4020   }
4021 
4022   if (DestType->isRecordType() &&
4023       !S.isCompleteType(InitList->getLocStart(), DestType)) {
4024     Sequence.setIncompleteTypeFailure(DestType);
4025     return;
4026   }
4027 
4028   // C++11 [dcl.init.list]p3, per DR1467:
4029   // - If T is a class type and the initializer list has a single element of
4030   //   type cv U, where U is T or a class derived from T, the object is
4031   //   initialized from that element (by copy-initialization for
4032   //   copy-list-initialization, or by direct-initialization for
4033   //   direct-list-initialization).
4034   // - Otherwise, if T is a character array and the initializer list has a
4035   //   single element that is an appropriately-typed string literal
4036   //   (8.5.2 [dcl.init.string]), initialization is performed as described
4037   //   in that section.
4038   // - Otherwise, if T is an aggregate, [...] (continue below).
4039   if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) {
4040     if (DestType->isRecordType()) {
4041       QualType InitType = InitList->getInit(0)->getType();
4042       if (S.Context.hasSameUnqualifiedType(InitType, DestType) ||
4043           S.IsDerivedFrom(InitList->getLocStart(), InitType, DestType)) {
4044         Expr *InitListAsExpr = InitList;
4045         TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4046                                      DestType, Sequence,
4047                                      /*InitListSyntax*/false,
4048                                      /*IsInitListCopy*/true);
4049         return;
4050       }
4051     }
4052     if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) {
4053       Expr *SubInit[1] = {InitList->getInit(0)};
4054       if (!isa<VariableArrayType>(DestAT) &&
4055           IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) {
4056         InitializationKind SubKind =
4057             Kind.getKind() == InitializationKind::IK_DirectList
4058                 ? InitializationKind::CreateDirect(Kind.getLocation(),
4059                                                    InitList->getLBraceLoc(),
4060                                                    InitList->getRBraceLoc())
4061                 : Kind;
4062         Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4063                                 /*TopLevelOfInitList*/ true,
4064                                 TreatUnavailableAsInvalid);
4065 
4066         // TryStringLiteralInitialization() (in InitializeFrom()) will fail if
4067         // the element is not an appropriately-typed string literal, in which
4068         // case we should proceed as in C++11 (below).
4069         if (Sequence) {
4070           Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4071           return;
4072         }
4073       }
4074     }
4075   }
4076 
4077   // C++11 [dcl.init.list]p3:
4078   //   - If T is an aggregate, aggregate initialization is performed.
4079   if ((DestType->isRecordType() && !DestType->isAggregateType()) ||
4080       (S.getLangOpts().CPlusPlus11 &&
4081        S.isStdInitializerList(DestType, nullptr))) {
4082     if (S.getLangOpts().CPlusPlus11) {
4083       //   - Otherwise, if the initializer list has no elements and T is a
4084       //     class type with a default constructor, the object is
4085       //     value-initialized.
4086       if (InitList->getNumInits() == 0) {
4087         CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
4088         if (RD->hasDefaultConstructor()) {
4089           TryValueInitialization(S, Entity, Kind, Sequence, InitList);
4090           return;
4091         }
4092       }
4093 
4094       //   - Otherwise, if T is a specialization of std::initializer_list<E>,
4095       //     an initializer_list object constructed [...]
4096       if (TryInitializerListConstruction(S, InitList, DestType, Sequence,
4097                                          TreatUnavailableAsInvalid))
4098         return;
4099 
4100       //   - Otherwise, if T is a class type, constructors are considered.
4101       Expr *InitListAsExpr = InitList;
4102       TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4103                                    DestType, Sequence, /*InitListSyntax*/true);
4104     } else
4105       Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
4106     return;
4107   }
4108 
4109   if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() &&
4110       InitList->getNumInits() == 1) {
4111     Expr *E = InitList->getInit(0);
4112 
4113     //   - Otherwise, if T is an enumeration with a fixed underlying type,
4114     //     the initializer-list has a single element v, and the initialization
4115     //     is direct-list-initialization, the object is initialized with the
4116     //     value T(v); if a narrowing conversion is required to convert v to
4117     //     the underlying type of T, the program is ill-formed.
4118     auto *ET = DestType->getAs<EnumType>();
4119     if (S.getLangOpts().CPlusPlus17 &&
4120         Kind.getKind() == InitializationKind::IK_DirectList &&
4121         ET && ET->getDecl()->isFixed() &&
4122         !S.Context.hasSameUnqualifiedType(E->getType(), DestType) &&
4123         (E->getType()->isIntegralOrEnumerationType() ||
4124          E->getType()->isFloatingType())) {
4125       // There are two ways that T(v) can work when T is an enumeration type.
4126       // If there is either an implicit conversion sequence from v to T or
4127       // a conversion function that can convert from v to T, then we use that.
4128       // Otherwise, if v is of integral, enumeration, or floating-point type,
4129       // it is converted to the enumeration type via its underlying type.
4130       // There is no overlap possible between these two cases (except when the
4131       // source value is already of the destination type), and the first
4132       // case is handled by the general case for single-element lists below.
4133       ImplicitConversionSequence ICS;
4134       ICS.setStandard();
4135       ICS.Standard.setAsIdentityConversion();
4136       if (!E->isRValue())
4137         ICS.Standard.First = ICK_Lvalue_To_Rvalue;
4138       // If E is of a floating-point type, then the conversion is ill-formed
4139       // due to narrowing, but go through the motions in order to produce the
4140       // right diagnostic.
4141       ICS.Standard.Second = E->getType()->isFloatingType()
4142                                 ? ICK_Floating_Integral
4143                                 : ICK_Integral_Conversion;
4144       ICS.Standard.setFromType(E->getType());
4145       ICS.Standard.setToType(0, E->getType());
4146       ICS.Standard.setToType(1, DestType);
4147       ICS.Standard.setToType(2, DestType);
4148       Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2),
4149                                          /*TopLevelOfInitList*/true);
4150       Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4151       return;
4152     }
4153 
4154     //   - Otherwise, if the initializer list has a single element of type E
4155     //     [...references are handled above...], the object or reference is
4156     //     initialized from that element (by copy-initialization for
4157     //     copy-list-initialization, or by direct-initialization for
4158     //     direct-list-initialization); if a narrowing conversion is required
4159     //     to convert the element to T, the program is ill-formed.
4160     //
4161     // Per core-24034, this is direct-initialization if we were performing
4162     // direct-list-initialization and copy-initialization otherwise.
4163     // We can't use InitListChecker for this, because it always performs
4164     // copy-initialization. This only matters if we might use an 'explicit'
4165     // conversion operator, so we only need to handle the cases where the source
4166     // is of record type.
4167     if (InitList->getInit(0)->getType()->isRecordType()) {
4168       InitializationKind SubKind =
4169           Kind.getKind() == InitializationKind::IK_DirectList
4170               ? InitializationKind::CreateDirect(Kind.getLocation(),
4171                                                  InitList->getLBraceLoc(),
4172                                                  InitList->getRBraceLoc())
4173               : Kind;
4174       Expr *SubInit[1] = { InitList->getInit(0) };
4175       Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4176                               /*TopLevelOfInitList*/true,
4177                               TreatUnavailableAsInvalid);
4178       if (Sequence)
4179         Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4180       return;
4181     }
4182   }
4183 
4184   InitListChecker CheckInitList(S, Entity, InitList,
4185           DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid);
4186   if (CheckInitList.HadError()) {
4187     Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
4188     return;
4189   }
4190 
4191   // Add the list initialization step with the built init list.
4192   Sequence.AddListInitializationStep(DestType);
4193 }
4194 
4195 /// Try a reference initialization that involves calling a conversion
4196 /// function.
4197 static OverloadingResult TryRefInitWithConversionFunction(
4198     Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind,
4199     Expr *Initializer, bool AllowRValues, bool IsLValueRef,
4200     InitializationSequence &Sequence) {
4201   QualType DestType = Entity.getType();
4202   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
4203   QualType T1 = cv1T1.getUnqualifiedType();
4204   QualType cv2T2 = Initializer->getType();
4205   QualType T2 = cv2T2.getUnqualifiedType();
4206 
4207   bool DerivedToBase;
4208   bool ObjCConversion;
4209   bool ObjCLifetimeConversion;
4210   assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),
4211                                          T1, T2, DerivedToBase,
4212                                          ObjCConversion,
4213                                          ObjCLifetimeConversion) &&
4214          "Must have incompatible references when binding via conversion");
4215   (void)DerivedToBase;
4216   (void)ObjCConversion;
4217   (void)ObjCLifetimeConversion;
4218 
4219   // Build the candidate set directly in the initialization sequence
4220   // structure, so that it will persist if we fail.
4221   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4222   CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4223 
4224   // Determine whether we are allowed to call explicit constructors or
4225   // explicit conversion operators.
4226   bool AllowExplicit = Kind.AllowExplicit();
4227   bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding();
4228 
4229   const RecordType *T1RecordType = nullptr;
4230   if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
4231       S.isCompleteType(Kind.getLocation(), T1)) {
4232     // The type we're converting to is a class type. Enumerate its constructors
4233     // to see if there is a suitable conversion.
4234     CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
4235 
4236     for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) {
4237       auto Info = getConstructorInfo(D);
4238       if (!Info.Constructor)
4239         continue;
4240 
4241       if (!Info.Constructor->isInvalidDecl() &&
4242           Info.Constructor->isConvertingConstructor(AllowExplicit)) {
4243         if (Info.ConstructorTmpl)
4244           S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
4245                                          /*ExplicitArgs*/ nullptr,
4246                                          Initializer, CandidateSet,
4247                                          /*SuppressUserConversions=*/true);
4248         else
4249           S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
4250                                  Initializer, CandidateSet,
4251                                  /*SuppressUserConversions=*/true);
4252       }
4253     }
4254   }
4255   if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
4256     return OR_No_Viable_Function;
4257 
4258   const RecordType *T2RecordType = nullptr;
4259   if ((T2RecordType = T2->getAs<RecordType>()) &&
4260       S.isCompleteType(Kind.getLocation(), T2)) {
4261     // The type we're converting from is a class type, enumerate its conversion
4262     // functions.
4263     CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
4264 
4265     const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4266     for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4267       NamedDecl *D = *I;
4268       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4269       if (isa<UsingShadowDecl>(D))
4270         D = cast<UsingShadowDecl>(D)->getTargetDecl();
4271 
4272       FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4273       CXXConversionDecl *Conv;
4274       if (ConvTemplate)
4275         Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4276       else
4277         Conv = cast<CXXConversionDecl>(D);
4278 
4279       // If the conversion function doesn't return a reference type,
4280       // it can't be considered for this conversion unless we're allowed to
4281       // consider rvalues.
4282       // FIXME: Do we need to make sure that we only consider conversion
4283       // candidates with reference-compatible results? That might be needed to
4284       // break recursion.
4285       if ((AllowExplicitConvs || !Conv->isExplicit()) &&
4286           (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
4287         if (ConvTemplate)
4288           S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
4289                                            ActingDC, Initializer,
4290                                            DestType, CandidateSet,
4291                                            /*AllowObjCConversionOnExplicit=*/
4292                                              false);
4293         else
4294           S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
4295                                    Initializer, DestType, CandidateSet,
4296                                    /*AllowObjCConversionOnExplicit=*/false);
4297       }
4298     }
4299   }
4300   if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
4301     return OR_No_Viable_Function;
4302 
4303   SourceLocation DeclLoc = Initializer->getLocStart();
4304 
4305   // Perform overload resolution. If it fails, return the failed result.
4306   OverloadCandidateSet::iterator Best;
4307   if (OverloadingResult Result
4308         = CandidateSet.BestViableFunction(S, DeclLoc, Best))
4309     return Result;
4310 
4311   FunctionDecl *Function = Best->Function;
4312   // This is the overload that will be used for this initialization step if we
4313   // use this initialization. Mark it as referenced.
4314   Function->setReferenced();
4315 
4316   // Compute the returned type and value kind of the conversion.
4317   QualType cv3T3;
4318   if (isa<CXXConversionDecl>(Function))
4319     cv3T3 = Function->getReturnType();
4320   else
4321     cv3T3 = T1;
4322 
4323   ExprValueKind VK = VK_RValue;
4324   if (cv3T3->isLValueReferenceType())
4325     VK = VK_LValue;
4326   else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>())
4327     VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
4328   cv3T3 = cv3T3.getNonLValueExprType(S.Context);
4329 
4330   // Add the user-defined conversion step.
4331   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4332   Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3,
4333                                  HadMultipleCandidates);
4334 
4335   // Determine whether we'll need to perform derived-to-base adjustments or
4336   // other conversions.
4337   bool NewDerivedToBase = false;
4338   bool NewObjCConversion = false;
4339   bool NewObjCLifetimeConversion = false;
4340   Sema::ReferenceCompareResult NewRefRelationship
4341     = S.CompareReferenceRelationship(DeclLoc, T1, cv3T3,
4342                                      NewDerivedToBase, NewObjCConversion,
4343                                      NewObjCLifetimeConversion);
4344 
4345   // Add the final conversion sequence, if necessary.
4346   if (NewRefRelationship == Sema::Ref_Incompatible) {
4347     assert(!isa<CXXConstructorDecl>(Function) &&
4348            "should not have conversion after constructor");
4349 
4350     ImplicitConversionSequence ICS;
4351     ICS.setStandard();
4352     ICS.Standard = Best->FinalConversion;
4353     Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2));
4354 
4355     // Every implicit conversion results in a prvalue, except for a glvalue
4356     // derived-to-base conversion, which we handle below.
4357     cv3T3 = ICS.Standard.getToType(2);
4358     VK = VK_RValue;
4359   }
4360 
4361   //   If the converted initializer is a prvalue, its type T4 is adjusted to
4362   //   type "cv1 T4" and the temporary materialization conversion is applied.
4363   //
4364   // We adjust the cv-qualifications to match the reference regardless of
4365   // whether we have a prvalue so that the AST records the change. In this
4366   // case, T4 is "cv3 T3".
4367   QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers());
4368   if (cv1T4.getQualifiers() != cv3T3.getQualifiers())
4369     Sequence.AddQualificationConversionStep(cv1T4, VK);
4370   Sequence.AddReferenceBindingStep(cv1T4, VK == VK_RValue);
4371   VK = IsLValueRef ? VK_LValue : VK_XValue;
4372 
4373   if (NewDerivedToBase)
4374     Sequence.AddDerivedToBaseCastStep(cv1T1, VK);
4375   else if (NewObjCConversion)
4376     Sequence.AddObjCObjectConversionStep(cv1T1);
4377 
4378   return OR_Success;
4379 }
4380 
4381 static void CheckCXX98CompatAccessibleCopy(Sema &S,
4382                                            const InitializedEntity &Entity,
4383                                            Expr *CurInitExpr);
4384 
4385 /// Attempt reference initialization (C++0x [dcl.init.ref])
4386 static void TryReferenceInitialization(Sema &S,
4387                                        const InitializedEntity &Entity,
4388                                        const InitializationKind &Kind,
4389                                        Expr *Initializer,
4390                                        InitializationSequence &Sequence) {
4391   QualType DestType = Entity.getType();
4392   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
4393   Qualifiers T1Quals;
4394   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4395   QualType cv2T2 = Initializer->getType();
4396   Qualifiers T2Quals;
4397   QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4398 
4399   // If the initializer is the address of an overloaded function, try
4400   // to resolve the overloaded function. If all goes well, T2 is the
4401   // type of the resulting function.
4402   if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4403                                                    T1, Sequence))
4404     return;
4405 
4406   // Delegate everything else to a subfunction.
4407   TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4408                                  T1Quals, cv2T2, T2, T2Quals, Sequence);
4409 }
4410 
4411 /// Determine whether an expression is a non-referenceable glvalue (one to
4412 /// which a reference can never bind). Attempting to bind a reference to
4413 /// such a glvalue will always create a temporary.
4414 static bool isNonReferenceableGLValue(Expr *E) {
4415   return E->refersToBitField() || E->refersToVectorElement();
4416 }
4417 
4418 /// Reference initialization without resolving overloaded functions.
4419 static void TryReferenceInitializationCore(Sema &S,
4420                                            const InitializedEntity &Entity,
4421                                            const InitializationKind &Kind,
4422                                            Expr *Initializer,
4423                                            QualType cv1T1, QualType T1,
4424                                            Qualifiers T1Quals,
4425                                            QualType cv2T2, QualType T2,
4426                                            Qualifiers T2Quals,
4427                                            InitializationSequence &Sequence) {
4428   QualType DestType = Entity.getType();
4429   SourceLocation DeclLoc = Initializer->getLocStart();
4430   // Compute some basic properties of the types and the initializer.
4431   bool isLValueRef = DestType->isLValueReferenceType();
4432   bool isRValueRef = !isLValueRef;
4433   bool DerivedToBase = false;
4434   bool ObjCConversion = false;
4435   bool ObjCLifetimeConversion = false;
4436   Expr::Classification InitCategory = Initializer->Classify(S.Context);
4437   Sema::ReferenceCompareResult RefRelationship
4438     = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
4439                                      ObjCConversion, ObjCLifetimeConversion);
4440 
4441   // C++0x [dcl.init.ref]p5:
4442   //   A reference to type "cv1 T1" is initialized by an expression of type
4443   //   "cv2 T2" as follows:
4444   //
4445   //     - If the reference is an lvalue reference and the initializer
4446   //       expression
4447   // Note the analogous bullet points for rvalue refs to functions. Because
4448   // there are no function rvalues in C++, rvalue refs to functions are treated
4449   // like lvalue refs.
4450   OverloadingResult ConvOvlResult = OR_Success;
4451   bool T1Function = T1->isFunctionType();
4452   if (isLValueRef || T1Function) {
4453     if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) &&
4454         (RefRelationship == Sema::Ref_Compatible ||
4455          (Kind.isCStyleOrFunctionalCast() &&
4456           RefRelationship == Sema::Ref_Related))) {
4457       //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
4458       //     reference-compatible with "cv2 T2," or
4459       if (T1Quals != T2Quals)
4460         // Convert to cv1 T2. This should only add qualifiers unless this is a
4461         // c-style cast. The removal of qualifiers in that case notionally
4462         // happens after the reference binding, but that doesn't matter.
4463         Sequence.AddQualificationConversionStep(
4464             S.Context.getQualifiedType(T2, T1Quals),
4465             Initializer->getValueKind());
4466       if (DerivedToBase)
4467         Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue);
4468       else if (ObjCConversion)
4469         Sequence.AddObjCObjectConversionStep(cv1T1);
4470 
4471       // We only create a temporary here when binding a reference to a
4472       // bit-field or vector element. Those cases are't supposed to be
4473       // handled by this bullet, but the outcome is the same either way.
4474       Sequence.AddReferenceBindingStep(cv1T1, false);
4475       return;
4476     }
4477 
4478     //     - has a class type (i.e., T2 is a class type), where T1 is not
4479     //       reference-related to T2, and can be implicitly converted to an
4480     //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
4481     //       with "cv3 T3" (this conversion is selected by enumerating the
4482     //       applicable conversion functions (13.3.1.6) and choosing the best
4483     //       one through overload resolution (13.3)),
4484     // If we have an rvalue ref to function type here, the rhs must be
4485     // an rvalue. DR1287 removed the "implicitly" here.
4486     if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
4487         (isLValueRef || InitCategory.isRValue())) {
4488       ConvOvlResult = TryRefInitWithConversionFunction(
4489           S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef,
4490           /*IsLValueRef*/ isLValueRef, Sequence);
4491       if (ConvOvlResult == OR_Success)
4492         return;
4493       if (ConvOvlResult != OR_No_Viable_Function)
4494         Sequence.SetOverloadFailure(
4495             InitializationSequence::FK_ReferenceInitOverloadFailed,
4496             ConvOvlResult);
4497     }
4498   }
4499 
4500   //     - Otherwise, the reference shall be an lvalue reference to a
4501   //       non-volatile const type (i.e., cv1 shall be const), or the reference
4502   //       shall be an rvalue reference.
4503   if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
4504     if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4505       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4506     else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4507       Sequence.SetOverloadFailure(
4508                         InitializationSequence::FK_ReferenceInitOverloadFailed,
4509                                   ConvOvlResult);
4510     else if (!InitCategory.isLValue())
4511       Sequence.SetFailed(
4512           InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
4513     else {
4514       InitializationSequence::FailureKind FK;
4515       switch (RefRelationship) {
4516       case Sema::Ref_Compatible:
4517         if (Initializer->refersToBitField())
4518           FK = InitializationSequence::
4519               FK_NonConstLValueReferenceBindingToBitfield;
4520         else if (Initializer->refersToVectorElement())
4521           FK = InitializationSequence::
4522               FK_NonConstLValueReferenceBindingToVectorElement;
4523         else
4524           llvm_unreachable("unexpected kind of compatible initializer");
4525         break;
4526       case Sema::Ref_Related:
4527         FK = InitializationSequence::FK_ReferenceInitDropsQualifiers;
4528         break;
4529       case Sema::Ref_Incompatible:
4530         FK = InitializationSequence::
4531             FK_NonConstLValueReferenceBindingToUnrelated;
4532         break;
4533       }
4534       Sequence.SetFailed(FK);
4535     }
4536     return;
4537   }
4538 
4539   //    - If the initializer expression
4540   //      - is an
4541   // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or
4542   // [1z]   rvalue (but not a bit-field) or
4543   //        function lvalue and "cv1 T1" is reference-compatible with "cv2 T2"
4544   //
4545   // Note: functions are handled above and below rather than here...
4546   if (!T1Function &&
4547       (RefRelationship == Sema::Ref_Compatible ||
4548        (Kind.isCStyleOrFunctionalCast() &&
4549         RefRelationship == Sema::Ref_Related)) &&
4550       ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) ||
4551        (InitCategory.isPRValue() &&
4552         (S.getLangOpts().CPlusPlus17 || T2->isRecordType() ||
4553          T2->isArrayType())))) {
4554     ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_RValue;
4555     if (InitCategory.isPRValue() && T2->isRecordType()) {
4556       // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
4557       // compiler the freedom to perform a copy here or bind to the
4558       // object, while C++0x requires that we bind directly to the
4559       // object. Hence, we always bind to the object without making an
4560       // extra copy. However, in C++03 requires that we check for the
4561       // presence of a suitable copy constructor:
4562       //
4563       //   The constructor that would be used to make the copy shall
4564       //   be callable whether or not the copy is actually done.
4565       if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
4566         Sequence.AddExtraneousCopyToTemporary(cv2T2);
4567       else if (S.getLangOpts().CPlusPlus11)
4568         CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
4569     }
4570 
4571     // C++1z [dcl.init.ref]/5.2.1.2:
4572     //   If the converted initializer is a prvalue, its type T4 is adjusted
4573     //   to type "cv1 T4" and the temporary materialization conversion is
4574     //   applied.
4575     QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1Quals);
4576     if (T1Quals != T2Quals)
4577       Sequence.AddQualificationConversionStep(cv1T4, ValueKind);
4578     Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_RValue);
4579     ValueKind = isLValueRef ? VK_LValue : VK_XValue;
4580 
4581     //   In any case, the reference is bound to the resulting glvalue (or to
4582     //   an appropriate base class subobject).
4583     if (DerivedToBase)
4584       Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind);
4585     else if (ObjCConversion)
4586       Sequence.AddObjCObjectConversionStep(cv1T1);
4587     return;
4588   }
4589 
4590   //       - has a class type (i.e., T2 is a class type), where T1 is not
4591   //         reference-related to T2, and can be implicitly converted to an
4592   //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
4593   //         where "cv1 T1" is reference-compatible with "cv3 T3",
4594   //
4595   // DR1287 removes the "implicitly" here.
4596   if (T2->isRecordType()) {
4597     if (RefRelationship == Sema::Ref_Incompatible) {
4598       ConvOvlResult = TryRefInitWithConversionFunction(
4599           S, Entity, Kind, Initializer, /*AllowRValues*/ true,
4600           /*IsLValueRef*/ isLValueRef, Sequence);
4601       if (ConvOvlResult)
4602         Sequence.SetOverloadFailure(
4603             InitializationSequence::FK_ReferenceInitOverloadFailed,
4604             ConvOvlResult);
4605 
4606       return;
4607     }
4608 
4609     if (RefRelationship == Sema::Ref_Compatible &&
4610         isRValueRef && InitCategory.isLValue()) {
4611       Sequence.SetFailed(
4612         InitializationSequence::FK_RValueReferenceBindingToLValue);
4613       return;
4614     }
4615 
4616     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4617     return;
4618   }
4619 
4620   //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
4621   //        from the initializer expression using the rules for a non-reference
4622   //        copy-initialization (8.5). The reference is then bound to the
4623   //        temporary. [...]
4624 
4625   InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
4626 
4627   // FIXME: Why do we use an implicit conversion here rather than trying
4628   // copy-initialization?
4629   ImplicitConversionSequence ICS
4630     = S.TryImplicitConversion(Initializer, TempEntity.getType(),
4631                               /*SuppressUserConversions=*/false,
4632                               /*AllowExplicit=*/false,
4633                               /*FIXME:InOverloadResolution=*/false,
4634                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
4635                               /*AllowObjCWritebackConversion=*/false);
4636 
4637   if (ICS.isBad()) {
4638     // FIXME: Use the conversion function set stored in ICS to turn
4639     // this into an overloading ambiguity diagnostic. However, we need
4640     // to keep that set as an OverloadCandidateSet rather than as some
4641     // other kind of set.
4642     if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4643       Sequence.SetOverloadFailure(
4644                         InitializationSequence::FK_ReferenceInitOverloadFailed,
4645                                   ConvOvlResult);
4646     else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4647       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4648     else
4649       Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
4650     return;
4651   } else {
4652     Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
4653   }
4654 
4655   //        [...] If T1 is reference-related to T2, cv1 must be the
4656   //        same cv-qualification as, or greater cv-qualification
4657   //        than, cv2; otherwise, the program is ill-formed.
4658   unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
4659   unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
4660   if (RefRelationship == Sema::Ref_Related &&
4661       (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
4662     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4663     return;
4664   }
4665 
4666   //   [...] If T1 is reference-related to T2 and the reference is an rvalue
4667   //   reference, the initializer expression shall not be an lvalue.
4668   if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
4669       InitCategory.isLValue()) {
4670     Sequence.SetFailed(
4671                     InitializationSequence::FK_RValueReferenceBindingToLValue);
4672     return;
4673   }
4674 
4675   Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
4676 }
4677 
4678 /// Attempt character array initialization from a string literal
4679 /// (C++ [dcl.init.string], C99 6.7.8).
4680 static void TryStringLiteralInitialization(Sema &S,
4681                                            const InitializedEntity &Entity,
4682                                            const InitializationKind &Kind,
4683                                            Expr *Initializer,
4684                                        InitializationSequence &Sequence) {
4685   Sequence.AddStringInitStep(Entity.getType());
4686 }
4687 
4688 /// Attempt value initialization (C++ [dcl.init]p7).
4689 static void TryValueInitialization(Sema &S,
4690                                    const InitializedEntity &Entity,
4691                                    const InitializationKind &Kind,
4692                                    InitializationSequence &Sequence,
4693                                    InitListExpr *InitList) {
4694   assert((!InitList || InitList->getNumInits() == 0) &&
4695          "Shouldn't use value-init for non-empty init lists");
4696 
4697   // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
4698   //
4699   //   To value-initialize an object of type T means:
4700   QualType T = Entity.getType();
4701 
4702   //     -- if T is an array type, then each element is value-initialized;
4703   T = S.Context.getBaseElementType(T);
4704 
4705   if (const RecordType *RT = T->getAs<RecordType>()) {
4706     if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
4707       bool NeedZeroInitialization = true;
4708       // C++98:
4709       // -- if T is a class type (clause 9) with a user-declared constructor
4710       //    (12.1), then the default constructor for T is called (and the
4711       //    initialization is ill-formed if T has no accessible default
4712       //    constructor);
4713       // C++11:
4714       // -- if T is a class type (clause 9) with either no default constructor
4715       //    (12.1 [class.ctor]) or a default constructor that is user-provided
4716       //    or deleted, then the object is default-initialized;
4717       //
4718       // Note that the C++11 rule is the same as the C++98 rule if there are no
4719       // defaulted or deleted constructors, so we just use it unconditionally.
4720       CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
4721       if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
4722         NeedZeroInitialization = false;
4723 
4724       // -- if T is a (possibly cv-qualified) non-union class type without a
4725       //    user-provided or deleted default constructor, then the object is
4726       //    zero-initialized and, if T has a non-trivial default constructor,
4727       //    default-initialized;
4728       // The 'non-union' here was removed by DR1502. The 'non-trivial default
4729       // constructor' part was removed by DR1507.
4730       if (NeedZeroInitialization)
4731         Sequence.AddZeroInitializationStep(Entity.getType());
4732 
4733       // C++03:
4734       // -- if T is a non-union class type without a user-declared constructor,
4735       //    then every non-static data member and base class component of T is
4736       //    value-initialized;
4737       // [...] A program that calls for [...] value-initialization of an
4738       // entity of reference type is ill-formed.
4739       //
4740       // C++11 doesn't need this handling, because value-initialization does not
4741       // occur recursively there, and the implicit default constructor is
4742       // defined as deleted in the problematic cases.
4743       if (!S.getLangOpts().CPlusPlus11 &&
4744           ClassDecl->hasUninitializedReferenceMember()) {
4745         Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
4746         return;
4747       }
4748 
4749       // If this is list-value-initialization, pass the empty init list on when
4750       // building the constructor call. This affects the semantics of a few
4751       // things (such as whether an explicit default constructor can be called).
4752       Expr *InitListAsExpr = InitList;
4753       MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
4754       bool InitListSyntax = InitList;
4755 
4756       // FIXME: Instead of creating a CXXConstructExpr of array type here,
4757       // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr.
4758       return TryConstructorInitialization(
4759           S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax);
4760     }
4761   }
4762 
4763   Sequence.AddZeroInitializationStep(Entity.getType());
4764 }
4765 
4766 /// Attempt default initialization (C++ [dcl.init]p6).
4767 static void TryDefaultInitialization(Sema &S,
4768                                      const InitializedEntity &Entity,
4769                                      const InitializationKind &Kind,
4770                                      InitializationSequence &Sequence) {
4771   assert(Kind.getKind() == InitializationKind::IK_Default);
4772 
4773   // C++ [dcl.init]p6:
4774   //   To default-initialize an object of type T means:
4775   //     - if T is an array type, each element is default-initialized;
4776   QualType DestType = S.Context.getBaseElementType(Entity.getType());
4777 
4778   //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
4779   //       constructor for T is called (and the initialization is ill-formed if
4780   //       T has no accessible default constructor);
4781   if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
4782     TryConstructorInitialization(S, Entity, Kind, None, DestType,
4783                                  Entity.getType(), Sequence);
4784     return;
4785   }
4786 
4787   //     - otherwise, no initialization is performed.
4788 
4789   //   If a program calls for the default initialization of an object of
4790   //   a const-qualified type T, T shall be a class type with a user-provided
4791   //   default constructor.
4792   if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
4793     if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
4794       Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
4795     return;
4796   }
4797 
4798   // If the destination type has a lifetime property, zero-initialize it.
4799   if (DestType.getQualifiers().hasObjCLifetime()) {
4800     Sequence.AddZeroInitializationStep(Entity.getType());
4801     return;
4802   }
4803 }
4804 
4805 /// Attempt a user-defined conversion between two types (C++ [dcl.init]),
4806 /// which enumerates all conversion functions and performs overload resolution
4807 /// to select the best.
4808 static void TryUserDefinedConversion(Sema &S,
4809                                      QualType DestType,
4810                                      const InitializationKind &Kind,
4811                                      Expr *Initializer,
4812                                      InitializationSequence &Sequence,
4813                                      bool TopLevelOfInitList) {
4814   assert(!DestType->isReferenceType() && "References are handled elsewhere");
4815   QualType SourceType = Initializer->getType();
4816   assert((DestType->isRecordType() || SourceType->isRecordType()) &&
4817          "Must have a class type to perform a user-defined conversion");
4818 
4819   // Build the candidate set directly in the initialization sequence
4820   // structure, so that it will persist if we fail.
4821   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4822   CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4823 
4824   // Determine whether we are allowed to call explicit constructors or
4825   // explicit conversion operators.
4826   bool AllowExplicit = Kind.AllowExplicit();
4827 
4828   if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
4829     // The type we're converting to is a class type. Enumerate its constructors
4830     // to see if there is a suitable conversion.
4831     CXXRecordDecl *DestRecordDecl
4832       = cast<CXXRecordDecl>(DestRecordType->getDecl());
4833 
4834     // Try to complete the type we're converting to.
4835     if (S.isCompleteType(Kind.getLocation(), DestType)) {
4836       for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) {
4837         auto Info = getConstructorInfo(D);
4838         if (!Info.Constructor)
4839           continue;
4840 
4841         if (!Info.Constructor->isInvalidDecl() &&
4842             Info.Constructor->isConvertingConstructor(AllowExplicit)) {
4843           if (Info.ConstructorTmpl)
4844             S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
4845                                            /*ExplicitArgs*/ nullptr,
4846                                            Initializer, CandidateSet,
4847                                            /*SuppressUserConversions=*/true);
4848           else
4849             S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
4850                                    Initializer, CandidateSet,
4851                                    /*SuppressUserConversions=*/true);
4852         }
4853       }
4854     }
4855   }
4856 
4857   SourceLocation DeclLoc = Initializer->getLocStart();
4858 
4859   if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
4860     // The type we're converting from is a class type, enumerate its conversion
4861     // functions.
4862 
4863     // We can only enumerate the conversion functions for a complete type; if
4864     // the type isn't complete, simply skip this step.
4865     if (S.isCompleteType(DeclLoc, SourceType)) {
4866       CXXRecordDecl *SourceRecordDecl
4867         = cast<CXXRecordDecl>(SourceRecordType->getDecl());
4868 
4869       const auto &Conversions =
4870           SourceRecordDecl->getVisibleConversionFunctions();
4871       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4872         NamedDecl *D = *I;
4873         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4874         if (isa<UsingShadowDecl>(D))
4875           D = cast<UsingShadowDecl>(D)->getTargetDecl();
4876 
4877         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4878         CXXConversionDecl *Conv;
4879         if (ConvTemplate)
4880           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4881         else
4882           Conv = cast<CXXConversionDecl>(D);
4883 
4884         if (AllowExplicit || !Conv->isExplicit()) {
4885           if (ConvTemplate)
4886             S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
4887                                              ActingDC, Initializer, DestType,
4888                                              CandidateSet, AllowExplicit);
4889           else
4890             S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
4891                                      Initializer, DestType, CandidateSet,
4892                                      AllowExplicit);
4893         }
4894       }
4895     }
4896   }
4897 
4898   // Perform overload resolution. If it fails, return the failed result.
4899   OverloadCandidateSet::iterator Best;
4900   if (OverloadingResult Result
4901         = CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
4902     Sequence.SetOverloadFailure(
4903                         InitializationSequence::FK_UserConversionOverloadFailed,
4904                                 Result);
4905     return;
4906   }
4907 
4908   FunctionDecl *Function = Best->Function;
4909   Function->setReferenced();
4910   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4911 
4912   if (isa<CXXConstructorDecl>(Function)) {
4913     // Add the user-defined conversion step. Any cv-qualification conversion is
4914     // subsumed by the initialization. Per DR5, the created temporary is of the
4915     // cv-unqualified type of the destination.
4916     Sequence.AddUserConversionStep(Function, Best->FoundDecl,
4917                                    DestType.getUnqualifiedType(),
4918                                    HadMultipleCandidates);
4919 
4920     // C++14 and before:
4921     //   - if the function is a constructor, the call initializes a temporary
4922     //     of the cv-unqualified version of the destination type. The [...]
4923     //     temporary [...] is then used to direct-initialize, according to the
4924     //     rules above, the object that is the destination of the
4925     //     copy-initialization.
4926     // Note that this just performs a simple object copy from the temporary.
4927     //
4928     // C++17:
4929     //   - if the function is a constructor, the call is a prvalue of the
4930     //     cv-unqualified version of the destination type whose return object
4931     //     is initialized by the constructor. The call is used to
4932     //     direct-initialize, according to the rules above, the object that
4933     //     is the destination of the copy-initialization.
4934     // Therefore we need to do nothing further.
4935     //
4936     // FIXME: Mark this copy as extraneous.
4937     if (!S.getLangOpts().CPlusPlus17)
4938       Sequence.AddFinalCopy(DestType);
4939     else if (DestType.hasQualifiers())
4940       Sequence.AddQualificationConversionStep(DestType, VK_RValue);
4941     return;
4942   }
4943 
4944   // Add the user-defined conversion step that calls the conversion function.
4945   QualType ConvType = Function->getCallResultType();
4946   Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
4947                                  HadMultipleCandidates);
4948 
4949   if (ConvType->getAs<RecordType>()) {
4950     //   The call is used to direct-initialize [...] the object that is the
4951     //   destination of the copy-initialization.
4952     //
4953     // In C++17, this does not call a constructor if we enter /17.6.1:
4954     //   - If the initializer expression is a prvalue and the cv-unqualified
4955     //     version of the source type is the same as the class of the
4956     //     destination [... do not make an extra copy]
4957     //
4958     // FIXME: Mark this copy as extraneous.
4959     if (!S.getLangOpts().CPlusPlus17 ||
4960         Function->getReturnType()->isReferenceType() ||
4961         !S.Context.hasSameUnqualifiedType(ConvType, DestType))
4962       Sequence.AddFinalCopy(DestType);
4963     else if (!S.Context.hasSameType(ConvType, DestType))
4964       Sequence.AddQualificationConversionStep(DestType, VK_RValue);
4965     return;
4966   }
4967 
4968   // If the conversion following the call to the conversion function
4969   // is interesting, add it as a separate step.
4970   if (Best->FinalConversion.First || Best->FinalConversion.Second ||
4971       Best->FinalConversion.Third) {
4972     ImplicitConversionSequence ICS;
4973     ICS.setStandard();
4974     ICS.Standard = Best->FinalConversion;
4975     Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
4976   }
4977 }
4978 
4979 /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>,
4980 /// a function with a pointer return type contains a 'return false;' statement.
4981 /// In C++11, 'false' is not a null pointer, so this breaks the build of any
4982 /// code using that header.
4983 ///
4984 /// Work around this by treating 'return false;' as zero-initializing the result
4985 /// if it's used in a pointer-returning function in a system header.
4986 static bool isLibstdcxxPointerReturnFalseHack(Sema &S,
4987                                               const InitializedEntity &Entity,
4988                                               const Expr *Init) {
4989   return S.getLangOpts().CPlusPlus11 &&
4990          Entity.getKind() == InitializedEntity::EK_Result &&
4991          Entity.getType()->isPointerType() &&
4992          isa<CXXBoolLiteralExpr>(Init) &&
4993          !cast<CXXBoolLiteralExpr>(Init)->getValue() &&
4994          S.getSourceManager().isInSystemHeader(Init->getExprLoc());
4995 }
4996 
4997 /// The non-zero enum values here are indexes into diagnostic alternatives.
4998 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
4999 
5000 /// Determines whether this expression is an acceptable ICR source.
5001 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
5002                                          bool isAddressOf, bool &isWeakAccess) {
5003   // Skip parens.
5004   e = e->IgnoreParens();
5005 
5006   // Skip address-of nodes.
5007   if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
5008     if (op->getOpcode() == UO_AddrOf)
5009       return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
5010                                 isWeakAccess);
5011 
5012   // Skip certain casts.
5013   } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
5014     switch (ce->getCastKind()) {
5015     case CK_Dependent:
5016     case CK_BitCast:
5017     case CK_LValueBitCast:
5018     case CK_NoOp:
5019       return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
5020 
5021     case CK_ArrayToPointerDecay:
5022       return IIK_nonscalar;
5023 
5024     case CK_NullToPointer:
5025       return IIK_okay;
5026 
5027     default:
5028       break;
5029     }
5030 
5031   // If we have a declaration reference, it had better be a local variable.
5032   } else if (isa<DeclRefExpr>(e)) {
5033     // set isWeakAccess to true, to mean that there will be an implicit
5034     // load which requires a cleanup.
5035     if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
5036       isWeakAccess = true;
5037 
5038     if (!isAddressOf) return IIK_nonlocal;
5039 
5040     VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
5041     if (!var) return IIK_nonlocal;
5042 
5043     return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
5044 
5045   // If we have a conditional operator, check both sides.
5046   } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
5047     if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
5048                                                 isWeakAccess))
5049       return iik;
5050 
5051     return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
5052 
5053   // These are never scalar.
5054   } else if (isa<ArraySubscriptExpr>(e)) {
5055     return IIK_nonscalar;
5056 
5057   // Otherwise, it needs to be a null pointer constant.
5058   } else {
5059     return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
5060             ? IIK_okay : IIK_nonlocal);
5061   }
5062 
5063   return IIK_nonlocal;
5064 }
5065 
5066 /// Check whether the given expression is a valid operand for an
5067 /// indirect copy/restore.
5068 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
5069   assert(src->isRValue());
5070   bool isWeakAccess = false;
5071   InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
5072   // If isWeakAccess to true, there will be an implicit
5073   // load which requires a cleanup.
5074   if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
5075     S.Cleanup.setExprNeedsCleanups(true);
5076 
5077   if (iik == IIK_okay) return;
5078 
5079   S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
5080     << ((unsigned) iik - 1)  // shift index into diagnostic explanations
5081     << src->getSourceRange();
5082 }
5083 
5084 /// Determine whether we have compatible array types for the
5085 /// purposes of GNU by-copy array initialization.
5086 static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest,
5087                                     const ArrayType *Source) {
5088   // If the source and destination array types are equivalent, we're
5089   // done.
5090   if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
5091     return true;
5092 
5093   // Make sure that the element types are the same.
5094   if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
5095     return false;
5096 
5097   // The only mismatch we allow is when the destination is an
5098   // incomplete array type and the source is a constant array type.
5099   return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
5100 }
5101 
5102 static bool tryObjCWritebackConversion(Sema &S,
5103                                        InitializationSequence &Sequence,
5104                                        const InitializedEntity &Entity,
5105                                        Expr *Initializer) {
5106   bool ArrayDecay = false;
5107   QualType ArgType = Initializer->getType();
5108   QualType ArgPointee;
5109   if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
5110     ArrayDecay = true;
5111     ArgPointee = ArgArrayType->getElementType();
5112     ArgType = S.Context.getPointerType(ArgPointee);
5113   }
5114 
5115   // Handle write-back conversion.
5116   QualType ConvertedArgType;
5117   if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
5118                                    ConvertedArgType))
5119     return false;
5120 
5121   // We should copy unless we're passing to an argument explicitly
5122   // marked 'out'.
5123   bool ShouldCopy = true;
5124   if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5125     ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5126 
5127   // Do we need an lvalue conversion?
5128   if (ArrayDecay || Initializer->isGLValue()) {
5129     ImplicitConversionSequence ICS;
5130     ICS.setStandard();
5131     ICS.Standard.setAsIdentityConversion();
5132 
5133     QualType ResultType;
5134     if (ArrayDecay) {
5135       ICS.Standard.First = ICK_Array_To_Pointer;
5136       ResultType = S.Context.getPointerType(ArgPointee);
5137     } else {
5138       ICS.Standard.First = ICK_Lvalue_To_Rvalue;
5139       ResultType = Initializer->getType().getNonLValueExprType(S.Context);
5140     }
5141 
5142     Sequence.AddConversionSequenceStep(ICS, ResultType);
5143   }
5144 
5145   Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
5146   return true;
5147 }
5148 
5149 static bool TryOCLSamplerInitialization(Sema &S,
5150                                         InitializationSequence &Sequence,
5151                                         QualType DestType,
5152                                         Expr *Initializer) {
5153   if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
5154       (!Initializer->isIntegerConstantExpr(S.Context) &&
5155       !Initializer->getType()->isSamplerT()))
5156     return false;
5157 
5158   Sequence.AddOCLSamplerInitStep(DestType);
5159   return true;
5160 }
5161 
5162 //
5163 // OpenCL 1.2 spec, s6.12.10
5164 //
5165 // The event argument can also be used to associate the
5166 // async_work_group_copy with a previous async copy allowing
5167 // an event to be shared by multiple async copies; otherwise
5168 // event should be zero.
5169 //
5170 static bool TryOCLZeroEventInitialization(Sema &S,
5171                                           InitializationSequence &Sequence,
5172                                           QualType DestType,
5173                                           Expr *Initializer) {
5174   if (!S.getLangOpts().OpenCL || !DestType->isEventT() ||
5175       !Initializer->isIntegerConstantExpr(S.getASTContext()) ||
5176       (Initializer->EvaluateKnownConstInt(S.getASTContext()) != 0))
5177     return false;
5178 
5179   Sequence.AddOCLZeroEventStep(DestType);
5180   return true;
5181 }
5182 
5183 static bool TryOCLZeroQueueInitialization(Sema &S,
5184                                           InitializationSequence &Sequence,
5185                                           QualType DestType,
5186                                           Expr *Initializer) {
5187   if (!S.getLangOpts().OpenCL || S.getLangOpts().OpenCLVersion < 200 ||
5188       !DestType->isQueueT() ||
5189       !Initializer->isIntegerConstantExpr(S.getASTContext()) ||
5190       (Initializer->EvaluateKnownConstInt(S.getASTContext()) != 0))
5191     return false;
5192 
5193   Sequence.AddOCLZeroQueueStep(DestType);
5194   return true;
5195 }
5196 
5197 InitializationSequence::InitializationSequence(Sema &S,
5198                                                const InitializedEntity &Entity,
5199                                                const InitializationKind &Kind,
5200                                                MultiExprArg Args,
5201                                                bool TopLevelOfInitList,
5202                                                bool TreatUnavailableAsInvalid)
5203     : FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) {
5204   InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList,
5205                  TreatUnavailableAsInvalid);
5206 }
5207 
5208 /// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the
5209 /// address of that function, this returns true. Otherwise, it returns false.
5210 static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) {
5211   auto *DRE = dyn_cast<DeclRefExpr>(E);
5212   if (!DRE || !isa<FunctionDecl>(DRE->getDecl()))
5213     return false;
5214 
5215   return !S.checkAddressOfFunctionIsAvailable(
5216       cast<FunctionDecl>(DRE->getDecl()));
5217 }
5218 
5219 /// Determine whether we can perform an elementwise array copy for this kind
5220 /// of entity.
5221 static bool canPerformArrayCopy(const InitializedEntity &Entity) {
5222   switch (Entity.getKind()) {
5223   case InitializedEntity::EK_LambdaCapture:
5224     // C++ [expr.prim.lambda]p24:
5225     //   For array members, the array elements are direct-initialized in
5226     //   increasing subscript order.
5227     return true;
5228 
5229   case InitializedEntity::EK_Variable:
5230     // C++ [dcl.decomp]p1:
5231     //   [...] each element is copy-initialized or direct-initialized from the
5232     //   corresponding element of the assignment-expression [...]
5233     return isa<DecompositionDecl>(Entity.getDecl());
5234 
5235   case InitializedEntity::EK_Member:
5236     // C++ [class.copy.ctor]p14:
5237     //   - if the member is an array, each element is direct-initialized with
5238     //     the corresponding subobject of x
5239     return Entity.isImplicitMemberInitializer();
5240 
5241   case InitializedEntity::EK_ArrayElement:
5242     // All the above cases are intended to apply recursively, even though none
5243     // of them actually say that.
5244     if (auto *E = Entity.getParent())
5245       return canPerformArrayCopy(*E);
5246     break;
5247 
5248   default:
5249     break;
5250   }
5251 
5252   return false;
5253 }
5254 
5255 void InitializationSequence::InitializeFrom(Sema &S,
5256                                             const InitializedEntity &Entity,
5257                                             const InitializationKind &Kind,
5258                                             MultiExprArg Args,
5259                                             bool TopLevelOfInitList,
5260                                             bool TreatUnavailableAsInvalid) {
5261   ASTContext &Context = S.Context;
5262 
5263   // Eliminate non-overload placeholder types in the arguments.  We
5264   // need to do this before checking whether types are dependent
5265   // because lowering a pseudo-object expression might well give us
5266   // something of dependent type.
5267   for (unsigned I = 0, E = Args.size(); I != E; ++I)
5268     if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
5269       // FIXME: should we be doing this here?
5270       ExprResult result = S.CheckPlaceholderExpr(Args[I]);
5271       if (result.isInvalid()) {
5272         SetFailed(FK_PlaceholderType);
5273         return;
5274       }
5275       Args[I] = result.get();
5276     }
5277 
5278   // C++0x [dcl.init]p16:
5279   //   The semantics of initializers are as follows. The destination type is
5280   //   the type of the object or reference being initialized and the source
5281   //   type is the type of the initializer expression. The source type is not
5282   //   defined when the initializer is a braced-init-list or when it is a
5283   //   parenthesized list of expressions.
5284   QualType DestType = Entity.getType();
5285 
5286   if (DestType->isDependentType() ||
5287       Expr::hasAnyTypeDependentArguments(Args)) {
5288     SequenceKind = DependentSequence;
5289     return;
5290   }
5291 
5292   // Almost everything is a normal sequence.
5293   setSequenceKind(NormalSequence);
5294 
5295   QualType SourceType;
5296   Expr *Initializer = nullptr;
5297   if (Args.size() == 1) {
5298     Initializer = Args[0];
5299     if (S.getLangOpts().ObjC1) {
5300       if (S.CheckObjCBridgeRelatedConversions(Initializer->getLocStart(),
5301                                               DestType, Initializer->getType(),
5302                                               Initializer) ||
5303           S.ConversionToObjCStringLiteralCheck(DestType, Initializer))
5304         Args[0] = Initializer;
5305     }
5306     if (!isa<InitListExpr>(Initializer))
5307       SourceType = Initializer->getType();
5308   }
5309 
5310   //     - If the initializer is a (non-parenthesized) braced-init-list, the
5311   //       object is list-initialized (8.5.4).
5312   if (Kind.getKind() != InitializationKind::IK_Direct) {
5313     if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
5314       TryListInitialization(S, Entity, Kind, InitList, *this,
5315                             TreatUnavailableAsInvalid);
5316       return;
5317     }
5318   }
5319 
5320   //     - If the destination type is a reference type, see 8.5.3.
5321   if (DestType->isReferenceType()) {
5322     // C++0x [dcl.init.ref]p1:
5323     //   A variable declared to be a T& or T&&, that is, "reference to type T"
5324     //   (8.3.2), shall be initialized by an object, or function, of type T or
5325     //   by an object that can be converted into a T.
5326     // (Therefore, multiple arguments are not permitted.)
5327     if (Args.size() != 1)
5328       SetFailed(FK_TooManyInitsForReference);
5329     // C++17 [dcl.init.ref]p5:
5330     //   A reference [...] is initialized by an expression [...] as follows:
5331     // If the initializer is not an expression, presumably we should reject,
5332     // but the standard fails to actually say so.
5333     else if (isa<InitListExpr>(Args[0]))
5334       SetFailed(FK_ParenthesizedListInitForReference);
5335     else
5336       TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
5337     return;
5338   }
5339 
5340   //     - If the initializer is (), the object is value-initialized.
5341   if (Kind.getKind() == InitializationKind::IK_Value ||
5342       (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
5343     TryValueInitialization(S, Entity, Kind, *this);
5344     return;
5345   }
5346 
5347   // Handle default initialization.
5348   if (Kind.getKind() == InitializationKind::IK_Default) {
5349     TryDefaultInitialization(S, Entity, Kind, *this);
5350     return;
5351   }
5352 
5353   //     - If the destination type is an array of characters, an array of
5354   //       char16_t, an array of char32_t, or an array of wchar_t, and the
5355   //       initializer is a string literal, see 8.5.2.
5356   //     - Otherwise, if the destination type is an array, the program is
5357   //       ill-formed.
5358   if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
5359     if (Initializer && isa<VariableArrayType>(DestAT)) {
5360       SetFailed(FK_VariableLengthArrayHasInitializer);
5361       return;
5362     }
5363 
5364     if (Initializer) {
5365       switch (IsStringInit(Initializer, DestAT, Context)) {
5366       case SIF_None:
5367         TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
5368         return;
5369       case SIF_NarrowStringIntoWideChar:
5370         SetFailed(FK_NarrowStringIntoWideCharArray);
5371         return;
5372       case SIF_WideStringIntoChar:
5373         SetFailed(FK_WideStringIntoCharArray);
5374         return;
5375       case SIF_IncompatWideStringIntoWideChar:
5376         SetFailed(FK_IncompatWideStringIntoWideChar);
5377         return;
5378       case SIF_PlainStringIntoUTF8Char:
5379         SetFailed(FK_PlainStringIntoUTF8Char);
5380         return;
5381       case SIF_UTF8StringIntoPlainChar:
5382         SetFailed(FK_UTF8StringIntoPlainChar);
5383         return;
5384       case SIF_Other:
5385         break;
5386       }
5387     }
5388 
5389     // Some kinds of initialization permit an array to be initialized from
5390     // another array of the same type, and perform elementwise initialization.
5391     if (Initializer && isa<ConstantArrayType>(DestAT) &&
5392         S.Context.hasSameUnqualifiedType(Initializer->getType(),
5393                                          Entity.getType()) &&
5394         canPerformArrayCopy(Entity)) {
5395       // If source is a prvalue, use it directly.
5396       if (Initializer->getValueKind() == VK_RValue) {
5397         AddArrayInitStep(DestType, /*IsGNUExtension*/false);
5398         return;
5399       }
5400 
5401       // Emit element-at-a-time copy loop.
5402       InitializedEntity Element =
5403           InitializedEntity::InitializeElement(S.Context, 0, Entity);
5404       QualType InitEltT =
5405           Context.getAsArrayType(Initializer->getType())->getElementType();
5406       OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT,
5407                           Initializer->getValueKind(),
5408                           Initializer->getObjectKind());
5409       Expr *OVEAsExpr = &OVE;
5410       InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList,
5411                      TreatUnavailableAsInvalid);
5412       if (!Failed())
5413         AddArrayInitLoopStep(Entity.getType(), InitEltT);
5414       return;
5415     }
5416 
5417     // Note: as an GNU C extension, we allow initialization of an
5418     // array from a compound literal that creates an array of the same
5419     // type, so long as the initializer has no side effects.
5420     if (!S.getLangOpts().CPlusPlus && Initializer &&
5421         isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
5422         Initializer->getType()->isArrayType()) {
5423       const ArrayType *SourceAT
5424         = Context.getAsArrayType(Initializer->getType());
5425       if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
5426         SetFailed(FK_ArrayTypeMismatch);
5427       else if (Initializer->HasSideEffects(S.Context))
5428         SetFailed(FK_NonConstantArrayInit);
5429       else {
5430         AddArrayInitStep(DestType, /*IsGNUExtension*/true);
5431       }
5432     }
5433     // Note: as a GNU C++ extension, we allow list-initialization of a
5434     // class member of array type from a parenthesized initializer list.
5435     else if (S.getLangOpts().CPlusPlus &&
5436              Entity.getKind() == InitializedEntity::EK_Member &&
5437              Initializer && isa<InitListExpr>(Initializer)) {
5438       TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
5439                             *this, TreatUnavailableAsInvalid);
5440       AddParenthesizedArrayInitStep(DestType);
5441     } else if (DestAT->getElementType()->isCharType())
5442       SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
5443     else if (IsWideCharCompatible(DestAT->getElementType(), Context))
5444       SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral);
5445     else
5446       SetFailed(FK_ArrayNeedsInitList);
5447 
5448     return;
5449   }
5450 
5451   // Determine whether we should consider writeback conversions for
5452   // Objective-C ARC.
5453   bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
5454          Entity.isParameterKind();
5455 
5456   // We're at the end of the line for C: it's either a write-back conversion
5457   // or it's a C assignment. There's no need to check anything else.
5458   if (!S.getLangOpts().CPlusPlus) {
5459     // If allowed, check whether this is an Objective-C writeback conversion.
5460     if (allowObjCWritebackConversion &&
5461         tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
5462       return;
5463     }
5464 
5465     if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
5466       return;
5467 
5468     if (TryOCLZeroEventInitialization(S, *this, DestType, Initializer))
5469       return;
5470 
5471     if (TryOCLZeroQueueInitialization(S, *this, DestType, Initializer))
5472        return;
5473 
5474     // Handle initialization in C
5475     AddCAssignmentStep(DestType);
5476     MaybeProduceObjCObject(S, *this, Entity);
5477     return;
5478   }
5479 
5480   assert(S.getLangOpts().CPlusPlus);
5481 
5482   //     - If the destination type is a (possibly cv-qualified) class type:
5483   if (DestType->isRecordType()) {
5484     //     - If the initialization is direct-initialization, or if it is
5485     //       copy-initialization where the cv-unqualified version of the
5486     //       source type is the same class as, or a derived class of, the
5487     //       class of the destination, constructors are considered. [...]
5488     if (Kind.getKind() == InitializationKind::IK_Direct ||
5489         (Kind.getKind() == InitializationKind::IK_Copy &&
5490          (Context.hasSameUnqualifiedType(SourceType, DestType) ||
5491           S.IsDerivedFrom(Initializer->getLocStart(), SourceType, DestType))))
5492       TryConstructorInitialization(S, Entity, Kind, Args,
5493                                    DestType, DestType, *this);
5494     //     - Otherwise (i.e., for the remaining copy-initialization cases),
5495     //       user-defined conversion sequences that can convert from the source
5496     //       type to the destination type or (when a conversion function is
5497     //       used) to a derived class thereof are enumerated as described in
5498     //       13.3.1.4, and the best one is chosen through overload resolution
5499     //       (13.3).
5500     else
5501       TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5502                                TopLevelOfInitList);
5503     return;
5504   }
5505 
5506   assert(Args.size() >= 1 && "Zero-argument case handled above");
5507 
5508   // The remaining cases all need a source type.
5509   if (Args.size() > 1) {
5510     SetFailed(FK_TooManyInitsForScalar);
5511     return;
5512   } else if (isa<InitListExpr>(Args[0])) {
5513     SetFailed(FK_ParenthesizedListInitForScalar);
5514     return;
5515   }
5516 
5517   //    - Otherwise, if the source type is a (possibly cv-qualified) class
5518   //      type, conversion functions are considered.
5519   if (!SourceType.isNull() && SourceType->isRecordType()) {
5520     // For a conversion to _Atomic(T) from either T or a class type derived
5521     // from T, initialize the T object then convert to _Atomic type.
5522     bool NeedAtomicConversion = false;
5523     if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) {
5524       if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) ||
5525           S.IsDerivedFrom(Initializer->getLocStart(), SourceType,
5526                           Atomic->getValueType())) {
5527         DestType = Atomic->getValueType();
5528         NeedAtomicConversion = true;
5529       }
5530     }
5531 
5532     TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5533                              TopLevelOfInitList);
5534     MaybeProduceObjCObject(S, *this, Entity);
5535     if (!Failed() && NeedAtomicConversion)
5536       AddAtomicConversionStep(Entity.getType());
5537     return;
5538   }
5539 
5540   //    - Otherwise, the initial value of the object being initialized is the
5541   //      (possibly converted) value of the initializer expression. Standard
5542   //      conversions (Clause 4) will be used, if necessary, to convert the
5543   //      initializer expression to the cv-unqualified version of the
5544   //      destination type; no user-defined conversions are considered.
5545 
5546   ImplicitConversionSequence ICS
5547     = S.TryImplicitConversion(Initializer, DestType,
5548                               /*SuppressUserConversions*/true,
5549                               /*AllowExplicitConversions*/ false,
5550                               /*InOverloadResolution*/ false,
5551                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
5552                               allowObjCWritebackConversion);
5553 
5554   if (ICS.isStandard() &&
5555       ICS.Standard.Second == ICK_Writeback_Conversion) {
5556     // Objective-C ARC writeback conversion.
5557 
5558     // We should copy unless we're passing to an argument explicitly
5559     // marked 'out'.
5560     bool ShouldCopy = true;
5561     if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5562       ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5563 
5564     // If there was an lvalue adjustment, add it as a separate conversion.
5565     if (ICS.Standard.First == ICK_Array_To_Pointer ||
5566         ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
5567       ImplicitConversionSequence LvalueICS;
5568       LvalueICS.setStandard();
5569       LvalueICS.Standard.setAsIdentityConversion();
5570       LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
5571       LvalueICS.Standard.First = ICS.Standard.First;
5572       AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
5573     }
5574 
5575     AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy);
5576   } else if (ICS.isBad()) {
5577     DeclAccessPair dap;
5578     if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) {
5579       AddZeroInitializationStep(Entity.getType());
5580     } else if (Initializer->getType() == Context.OverloadTy &&
5581                !S.ResolveAddressOfOverloadedFunction(Initializer, DestType,
5582                                                      false, dap))
5583       SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
5584     else if (Initializer->getType()->isFunctionType() &&
5585              isExprAnUnaddressableFunction(S, Initializer))
5586       SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction);
5587     else
5588       SetFailed(InitializationSequence::FK_ConversionFailed);
5589   } else {
5590     AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5591 
5592     MaybeProduceObjCObject(S, *this, Entity);
5593   }
5594 }
5595 
5596 InitializationSequence::~InitializationSequence() {
5597   for (auto &S : Steps)
5598     S.Destroy();
5599 }
5600 
5601 //===----------------------------------------------------------------------===//
5602 // Perform initialization
5603 //===----------------------------------------------------------------------===//
5604 static Sema::AssignmentAction
5605 getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) {
5606   switch(Entity.getKind()) {
5607   case InitializedEntity::EK_Variable:
5608   case InitializedEntity::EK_New:
5609   case InitializedEntity::EK_Exception:
5610   case InitializedEntity::EK_Base:
5611   case InitializedEntity::EK_Delegating:
5612     return Sema::AA_Initializing;
5613 
5614   case InitializedEntity::EK_Parameter:
5615     if (Entity.getDecl() &&
5616         isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5617       return Sema::AA_Sending;
5618 
5619     return Sema::AA_Passing;
5620 
5621   case InitializedEntity::EK_Parameter_CF_Audited:
5622     if (Entity.getDecl() &&
5623       isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5624       return Sema::AA_Sending;
5625 
5626     return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited;
5627 
5628   case InitializedEntity::EK_Result:
5629     return Sema::AA_Returning;
5630 
5631   case InitializedEntity::EK_Temporary:
5632   case InitializedEntity::EK_RelatedResult:
5633     // FIXME: Can we tell apart casting vs. converting?
5634     return Sema::AA_Casting;
5635 
5636   case InitializedEntity::EK_Member:
5637   case InitializedEntity::EK_Binding:
5638   case InitializedEntity::EK_ArrayElement:
5639   case InitializedEntity::EK_VectorElement:
5640   case InitializedEntity::EK_ComplexElement:
5641   case InitializedEntity::EK_BlockElement:
5642   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5643   case InitializedEntity::EK_LambdaCapture:
5644   case InitializedEntity::EK_CompoundLiteralInit:
5645     return Sema::AA_Initializing;
5646   }
5647 
5648   llvm_unreachable("Invalid EntityKind!");
5649 }
5650 
5651 /// Whether we should bind a created object as a temporary when
5652 /// initializing the given entity.
5653 static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
5654   switch (Entity.getKind()) {
5655   case InitializedEntity::EK_ArrayElement:
5656   case InitializedEntity::EK_Member:
5657   case InitializedEntity::EK_Result:
5658   case InitializedEntity::EK_New:
5659   case InitializedEntity::EK_Variable:
5660   case InitializedEntity::EK_Base:
5661   case InitializedEntity::EK_Delegating:
5662   case InitializedEntity::EK_VectorElement:
5663   case InitializedEntity::EK_ComplexElement:
5664   case InitializedEntity::EK_Exception:
5665   case InitializedEntity::EK_BlockElement:
5666   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5667   case InitializedEntity::EK_LambdaCapture:
5668   case InitializedEntity::EK_CompoundLiteralInit:
5669     return false;
5670 
5671   case InitializedEntity::EK_Parameter:
5672   case InitializedEntity::EK_Parameter_CF_Audited:
5673   case InitializedEntity::EK_Temporary:
5674   case InitializedEntity::EK_RelatedResult:
5675   case InitializedEntity::EK_Binding:
5676     return true;
5677   }
5678 
5679   llvm_unreachable("missed an InitializedEntity kind?");
5680 }
5681 
5682 /// Whether the given entity, when initialized with an object
5683 /// created for that initialization, requires destruction.
5684 static bool shouldDestroyEntity(const InitializedEntity &Entity) {
5685   switch (Entity.getKind()) {
5686     case InitializedEntity::EK_Result:
5687     case InitializedEntity::EK_New:
5688     case InitializedEntity::EK_Base:
5689     case InitializedEntity::EK_Delegating:
5690     case InitializedEntity::EK_VectorElement:
5691     case InitializedEntity::EK_ComplexElement:
5692     case InitializedEntity::EK_BlockElement:
5693     case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5694     case InitializedEntity::EK_LambdaCapture:
5695       return false;
5696 
5697     case InitializedEntity::EK_Member:
5698     case InitializedEntity::EK_Binding:
5699     case InitializedEntity::EK_Variable:
5700     case InitializedEntity::EK_Parameter:
5701     case InitializedEntity::EK_Parameter_CF_Audited:
5702     case InitializedEntity::EK_Temporary:
5703     case InitializedEntity::EK_ArrayElement:
5704     case InitializedEntity::EK_Exception:
5705     case InitializedEntity::EK_CompoundLiteralInit:
5706     case InitializedEntity::EK_RelatedResult:
5707       return true;
5708   }
5709 
5710   llvm_unreachable("missed an InitializedEntity kind?");
5711 }
5712 
5713 /// Get the location at which initialization diagnostics should appear.
5714 static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
5715                                            Expr *Initializer) {
5716   switch (Entity.getKind()) {
5717   case InitializedEntity::EK_Result:
5718     return Entity.getReturnLoc();
5719 
5720   case InitializedEntity::EK_Exception:
5721     return Entity.getThrowLoc();
5722 
5723   case InitializedEntity::EK_Variable:
5724   case InitializedEntity::EK_Binding:
5725     return Entity.getDecl()->getLocation();
5726 
5727   case InitializedEntity::EK_LambdaCapture:
5728     return Entity.getCaptureLoc();
5729 
5730   case InitializedEntity::EK_ArrayElement:
5731   case InitializedEntity::EK_Member:
5732   case InitializedEntity::EK_Parameter:
5733   case InitializedEntity::EK_Parameter_CF_Audited:
5734   case InitializedEntity::EK_Temporary:
5735   case InitializedEntity::EK_New:
5736   case InitializedEntity::EK_Base:
5737   case InitializedEntity::EK_Delegating:
5738   case InitializedEntity::EK_VectorElement:
5739   case InitializedEntity::EK_ComplexElement:
5740   case InitializedEntity::EK_BlockElement:
5741   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5742   case InitializedEntity::EK_CompoundLiteralInit:
5743   case InitializedEntity::EK_RelatedResult:
5744     return Initializer->getLocStart();
5745   }
5746   llvm_unreachable("missed an InitializedEntity kind?");
5747 }
5748 
5749 /// Make a (potentially elidable) temporary copy of the object
5750 /// provided by the given initializer by calling the appropriate copy
5751 /// constructor.
5752 ///
5753 /// \param S The Sema object used for type-checking.
5754 ///
5755 /// \param T The type of the temporary object, which must either be
5756 /// the type of the initializer expression or a superclass thereof.
5757 ///
5758 /// \param Entity The entity being initialized.
5759 ///
5760 /// \param CurInit The initializer expression.
5761 ///
5762 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that
5763 /// is permitted in C++03 (but not C++0x) when binding a reference to
5764 /// an rvalue.
5765 ///
5766 /// \returns An expression that copies the initializer expression into
5767 /// a temporary object, or an error expression if a copy could not be
5768 /// created.
5769 static ExprResult CopyObject(Sema &S,
5770                              QualType T,
5771                              const InitializedEntity &Entity,
5772                              ExprResult CurInit,
5773                              bool IsExtraneousCopy) {
5774   if (CurInit.isInvalid())
5775     return CurInit;
5776   // Determine which class type we're copying to.
5777   Expr *CurInitExpr = (Expr *)CurInit.get();
5778   CXXRecordDecl *Class = nullptr;
5779   if (const RecordType *Record = T->getAs<RecordType>())
5780     Class = cast<CXXRecordDecl>(Record->getDecl());
5781   if (!Class)
5782     return CurInit;
5783 
5784   SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
5785 
5786   // Make sure that the type we are copying is complete.
5787   if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
5788     return CurInit;
5789 
5790   // Perform overload resolution using the class's constructors. Per
5791   // C++11 [dcl.init]p16, second bullet for class types, this initialization
5792   // is direct-initialization.
5793   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
5794   DeclContext::lookup_result Ctors = S.LookupConstructors(Class);
5795 
5796   OverloadCandidateSet::iterator Best;
5797   switch (ResolveConstructorOverload(
5798       S, Loc, CurInitExpr, CandidateSet, T, Ctors, Best,
5799       /*CopyInitializing=*/false, /*AllowExplicit=*/true,
5800       /*OnlyListConstructors=*/false, /*IsListInit=*/false,
5801       /*SecondStepOfCopyInit=*/true)) {
5802   case OR_Success:
5803     break;
5804 
5805   case OR_No_Viable_Function:
5806     S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
5807            ? diag::ext_rvalue_to_reference_temp_copy_no_viable
5808            : diag::err_temp_copy_no_viable)
5809       << (int)Entity.getKind() << CurInitExpr->getType()
5810       << CurInitExpr->getSourceRange();
5811     CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
5812     if (!IsExtraneousCopy || S.isSFINAEContext())
5813       return ExprError();
5814     return CurInit;
5815 
5816   case OR_Ambiguous:
5817     S.Diag(Loc, diag::err_temp_copy_ambiguous)
5818       << (int)Entity.getKind() << CurInitExpr->getType()
5819       << CurInitExpr->getSourceRange();
5820     CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
5821     return ExprError();
5822 
5823   case OR_Deleted:
5824     S.Diag(Loc, diag::err_temp_copy_deleted)
5825       << (int)Entity.getKind() << CurInitExpr->getType()
5826       << CurInitExpr->getSourceRange();
5827     S.NoteDeletedFunction(Best->Function);
5828     return ExprError();
5829   }
5830 
5831   bool HadMultipleCandidates = CandidateSet.size() > 1;
5832 
5833   CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
5834   SmallVector<Expr*, 8> ConstructorArgs;
5835   CurInit.get(); // Ownership transferred into MultiExprArg, below.
5836 
5837   S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity,
5838                            IsExtraneousCopy);
5839 
5840   if (IsExtraneousCopy) {
5841     // If this is a totally extraneous copy for C++03 reference
5842     // binding purposes, just return the original initialization
5843     // expression. We don't generate an (elided) copy operation here
5844     // because doing so would require us to pass down a flag to avoid
5845     // infinite recursion, where each step adds another extraneous,
5846     // elidable copy.
5847 
5848     // Instantiate the default arguments of any extra parameters in
5849     // the selected copy constructor, as if we were going to create a
5850     // proper call to the copy constructor.
5851     for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
5852       ParmVarDecl *Parm = Constructor->getParamDecl(I);
5853       if (S.RequireCompleteType(Loc, Parm->getType(),
5854                                 diag::err_call_incomplete_argument))
5855         break;
5856 
5857       // Build the default argument expression; we don't actually care
5858       // if this succeeds or not, because this routine will complain
5859       // if there was a problem.
5860       S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
5861     }
5862 
5863     return CurInitExpr;
5864   }
5865 
5866   // Determine the arguments required to actually perform the
5867   // constructor call (we might have derived-to-base conversions, or
5868   // the copy constructor may have default arguments).
5869   if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs))
5870     return ExprError();
5871 
5872   // C++0x [class.copy]p32:
5873   //   When certain criteria are met, an implementation is allowed to
5874   //   omit the copy/move construction of a class object, even if the
5875   //   copy/move constructor and/or destructor for the object have
5876   //   side effects. [...]
5877   //     - when a temporary class object that has not been bound to a
5878   //       reference (12.2) would be copied/moved to a class object
5879   //       with the same cv-unqualified type, the copy/move operation
5880   //       can be omitted by constructing the temporary object
5881   //       directly into the target of the omitted copy/move
5882   //
5883   // Note that the other three bullets are handled elsewhere. Copy
5884   // elision for return statements and throw expressions are handled as part
5885   // of constructor initialization, while copy elision for exception handlers
5886   // is handled by the run-time.
5887   //
5888   // FIXME: If the function parameter is not the same type as the temporary, we
5889   // should still be able to elide the copy, but we don't have a way to
5890   // represent in the AST how much should be elided in this case.
5891   bool Elidable =
5892       CurInitExpr->isTemporaryObject(S.Context, Class) &&
5893       S.Context.hasSameUnqualifiedType(
5894           Best->Function->getParamDecl(0)->getType().getNonReferenceType(),
5895           CurInitExpr->getType());
5896 
5897   // Actually perform the constructor call.
5898   CurInit = S.BuildCXXConstructExpr(Loc, T, Best->FoundDecl, Constructor,
5899                                     Elidable,
5900                                     ConstructorArgs,
5901                                     HadMultipleCandidates,
5902                                     /*ListInit*/ false,
5903                                     /*StdInitListInit*/ false,
5904                                     /*ZeroInit*/ false,
5905                                     CXXConstructExpr::CK_Complete,
5906                                     SourceRange());
5907 
5908   // If we're supposed to bind temporaries, do so.
5909   if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
5910     CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
5911   return CurInit;
5912 }
5913 
5914 /// Check whether elidable copy construction for binding a reference to
5915 /// a temporary would have succeeded if we were building in C++98 mode, for
5916 /// -Wc++98-compat.
5917 static void CheckCXX98CompatAccessibleCopy(Sema &S,
5918                                            const InitializedEntity &Entity,
5919                                            Expr *CurInitExpr) {
5920   assert(S.getLangOpts().CPlusPlus11);
5921 
5922   const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
5923   if (!Record)
5924     return;
5925 
5926   SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
5927   if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc))
5928     return;
5929 
5930   // Find constructors which would have been considered.
5931   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
5932   DeclContext::lookup_result Ctors =
5933       S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl()));
5934 
5935   // Perform overload resolution.
5936   OverloadCandidateSet::iterator Best;
5937   OverloadingResult OR = ResolveConstructorOverload(
5938       S, Loc, CurInitExpr, CandidateSet, CurInitExpr->getType(), Ctors, Best,
5939       /*CopyInitializing=*/false, /*AllowExplicit=*/true,
5940       /*OnlyListConstructors=*/false, /*IsListInit=*/false,
5941       /*SecondStepOfCopyInit=*/true);
5942 
5943   PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
5944     << OR << (int)Entity.getKind() << CurInitExpr->getType()
5945     << CurInitExpr->getSourceRange();
5946 
5947   switch (OR) {
5948   case OR_Success:
5949     S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
5950                              Best->FoundDecl, Entity, Diag);
5951     // FIXME: Check default arguments as far as that's possible.
5952     break;
5953 
5954   case OR_No_Viable_Function:
5955     S.Diag(Loc, Diag);
5956     CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
5957     break;
5958 
5959   case OR_Ambiguous:
5960     S.Diag(Loc, Diag);
5961     CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
5962     break;
5963 
5964   case OR_Deleted:
5965     S.Diag(Loc, Diag);
5966     S.NoteDeletedFunction(Best->Function);
5967     break;
5968   }
5969 }
5970 
5971 void InitializationSequence::PrintInitLocationNote(Sema &S,
5972                                               const InitializedEntity &Entity) {
5973   if (Entity.isParameterKind() && Entity.getDecl()) {
5974     if (Entity.getDecl()->getLocation().isInvalid())
5975       return;
5976 
5977     if (Entity.getDecl()->getDeclName())
5978       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
5979         << Entity.getDecl()->getDeclName();
5980     else
5981       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
5982   }
5983   else if (Entity.getKind() == InitializedEntity::EK_RelatedResult &&
5984            Entity.getMethodDecl())
5985     S.Diag(Entity.getMethodDecl()->getLocation(),
5986            diag::note_method_return_type_change)
5987       << Entity.getMethodDecl()->getDeclName();
5988 }
5989 
5990 /// Returns true if the parameters describe a constructor initialization of
5991 /// an explicit temporary object, e.g. "Point(x, y)".
5992 static bool isExplicitTemporary(const InitializedEntity &Entity,
5993                                 const InitializationKind &Kind,
5994                                 unsigned NumArgs) {
5995   switch (Entity.getKind()) {
5996   case InitializedEntity::EK_Temporary:
5997   case InitializedEntity::EK_CompoundLiteralInit:
5998   case InitializedEntity::EK_RelatedResult:
5999     break;
6000   default:
6001     return false;
6002   }
6003 
6004   switch (Kind.getKind()) {
6005   case InitializationKind::IK_DirectList:
6006     return true;
6007   // FIXME: Hack to work around cast weirdness.
6008   case InitializationKind::IK_Direct:
6009   case InitializationKind::IK_Value:
6010     return NumArgs != 1;
6011   default:
6012     return false;
6013   }
6014 }
6015 
6016 static ExprResult
6017 PerformConstructorInitialization(Sema &S,
6018                                  const InitializedEntity &Entity,
6019                                  const InitializationKind &Kind,
6020                                  MultiExprArg Args,
6021                                  const InitializationSequence::Step& Step,
6022                                  bool &ConstructorInitRequiresZeroInit,
6023                                  bool IsListInitialization,
6024                                  bool IsStdInitListInitialization,
6025                                  SourceLocation LBraceLoc,
6026                                  SourceLocation RBraceLoc) {
6027   unsigned NumArgs = Args.size();
6028   CXXConstructorDecl *Constructor
6029     = cast<CXXConstructorDecl>(Step.Function.Function);
6030   bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
6031 
6032   // Build a call to the selected constructor.
6033   SmallVector<Expr*, 8> ConstructorArgs;
6034   SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
6035                          ? Kind.getEqualLoc()
6036                          : Kind.getLocation();
6037 
6038   if (Kind.getKind() == InitializationKind::IK_Default) {
6039     // Force even a trivial, implicit default constructor to be
6040     // semantically checked. We do this explicitly because we don't build
6041     // the definition for completely trivial constructors.
6042     assert(Constructor->getParent() && "No parent class for constructor.");
6043     if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6044         Constructor->isTrivial() && !Constructor->isUsed(false))
6045       S.DefineImplicitDefaultConstructor(Loc, Constructor);
6046   }
6047 
6048   ExprResult CurInit((Expr *)nullptr);
6049 
6050   // C++ [over.match.copy]p1:
6051   //   - When initializing a temporary to be bound to the first parameter
6052   //     of a constructor that takes a reference to possibly cv-qualified
6053   //     T as its first argument, called with a single argument in the
6054   //     context of direct-initialization, explicit conversion functions
6055   //     are also considered.
6056   bool AllowExplicitConv =
6057       Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 &&
6058       hasCopyOrMoveCtorParam(S.Context,
6059                              getConstructorInfo(Step.Function.FoundDecl));
6060 
6061   // Determine the arguments required to actually perform the constructor
6062   // call.
6063   if (S.CompleteConstructorCall(Constructor, Args,
6064                                 Loc, ConstructorArgs,
6065                                 AllowExplicitConv,
6066                                 IsListInitialization))
6067     return ExprError();
6068 
6069 
6070   if (isExplicitTemporary(Entity, Kind, NumArgs)) {
6071     // An explicitly-constructed temporary, e.g., X(1, 2).
6072     if (S.DiagnoseUseOfDecl(Constructor, Loc))
6073       return ExprError();
6074 
6075     TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
6076     if (!TSInfo)
6077       TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
6078     SourceRange ParenOrBraceRange = Kind.getParenOrBraceRange();
6079 
6080     if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(
6081             Step.Function.FoundDecl.getDecl())) {
6082       Constructor = S.findInheritingConstructor(Loc, Constructor, Shadow);
6083       if (S.DiagnoseUseOfDecl(Constructor, Loc))
6084         return ExprError();
6085     }
6086     S.MarkFunctionReferenced(Loc, Constructor);
6087 
6088     CurInit = new (S.Context) CXXTemporaryObjectExpr(
6089         S.Context, Constructor,
6090         Entity.getType().getNonLValueExprType(S.Context), TSInfo,
6091         ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates,
6092         IsListInitialization, IsStdInitListInitialization,
6093         ConstructorInitRequiresZeroInit);
6094   } else {
6095     CXXConstructExpr::ConstructionKind ConstructKind =
6096       CXXConstructExpr::CK_Complete;
6097 
6098     if (Entity.getKind() == InitializedEntity::EK_Base) {
6099       ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
6100         CXXConstructExpr::CK_VirtualBase :
6101         CXXConstructExpr::CK_NonVirtualBase;
6102     } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
6103       ConstructKind = CXXConstructExpr::CK_Delegating;
6104     }
6105 
6106     // Only get the parenthesis or brace range if it is a list initialization or
6107     // direct construction.
6108     SourceRange ParenOrBraceRange;
6109     if (IsListInitialization)
6110       ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc);
6111     else if (Kind.getKind() == InitializationKind::IK_Direct)
6112       ParenOrBraceRange = Kind.getParenOrBraceRange();
6113 
6114     // If the entity allows NRVO, mark the construction as elidable
6115     // unconditionally.
6116     if (Entity.allowsNRVO())
6117       CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
6118                                         Step.Function.FoundDecl,
6119                                         Constructor, /*Elidable=*/true,
6120                                         ConstructorArgs,
6121                                         HadMultipleCandidates,
6122                                         IsListInitialization,
6123                                         IsStdInitListInitialization,
6124                                         ConstructorInitRequiresZeroInit,
6125                                         ConstructKind,
6126                                         ParenOrBraceRange);
6127     else
6128       CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
6129                                         Step.Function.FoundDecl,
6130                                         Constructor,
6131                                         ConstructorArgs,
6132                                         HadMultipleCandidates,
6133                                         IsListInitialization,
6134                                         IsStdInitListInitialization,
6135                                         ConstructorInitRequiresZeroInit,
6136                                         ConstructKind,
6137                                         ParenOrBraceRange);
6138   }
6139   if (CurInit.isInvalid())
6140     return ExprError();
6141 
6142   // Only check access if all of that succeeded.
6143   S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity);
6144   if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc))
6145     return ExprError();
6146 
6147   if (shouldBindAsTemporary(Entity))
6148     CurInit = S.MaybeBindToTemporary(CurInit.get());
6149 
6150   return CurInit;
6151 }
6152 
6153 /// Determine whether the specified InitializedEntity definitely has a lifetime
6154 /// longer than the current full-expression. Conservatively returns false if
6155 /// it's unclear.
6156 static bool
6157 InitializedEntityOutlivesFullExpression(const InitializedEntity &Entity) {
6158   const InitializedEntity *Top = &Entity;
6159   while (Top->getParent())
6160     Top = Top->getParent();
6161 
6162   switch (Top->getKind()) {
6163   case InitializedEntity::EK_Variable:
6164   case InitializedEntity::EK_Result:
6165   case InitializedEntity::EK_Exception:
6166   case InitializedEntity::EK_Member:
6167   case InitializedEntity::EK_Binding:
6168   case InitializedEntity::EK_New:
6169   case InitializedEntity::EK_Base:
6170   case InitializedEntity::EK_Delegating:
6171     return true;
6172 
6173   case InitializedEntity::EK_ArrayElement:
6174   case InitializedEntity::EK_VectorElement:
6175   case InitializedEntity::EK_BlockElement:
6176   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6177   case InitializedEntity::EK_ComplexElement:
6178     // Could not determine what the full initialization is. Assume it might not
6179     // outlive the full-expression.
6180     return false;
6181 
6182   case InitializedEntity::EK_Parameter:
6183   case InitializedEntity::EK_Parameter_CF_Audited:
6184   case InitializedEntity::EK_Temporary:
6185   case InitializedEntity::EK_LambdaCapture:
6186   case InitializedEntity::EK_CompoundLiteralInit:
6187   case InitializedEntity::EK_RelatedResult:
6188     // The entity being initialized might not outlive the full-expression.
6189     return false;
6190   }
6191 
6192   llvm_unreachable("unknown entity kind");
6193 }
6194 
6195 /// Determine the declaration which an initialized entity ultimately refers to,
6196 /// for the purpose of lifetime-extending a temporary bound to a reference in
6197 /// the initialization of \p Entity.
6198 static const InitializedEntity *getEntityForTemporaryLifetimeExtension(
6199     const InitializedEntity *Entity,
6200     const InitializedEntity *FallbackDecl = nullptr) {
6201   // C++11 [class.temporary]p5:
6202   switch (Entity->getKind()) {
6203   case InitializedEntity::EK_Variable:
6204     //   The temporary [...] persists for the lifetime of the reference
6205     return Entity;
6206 
6207   case InitializedEntity::EK_Member:
6208     // For subobjects, we look at the complete object.
6209     if (Entity->getParent())
6210       return getEntityForTemporaryLifetimeExtension(Entity->getParent(),
6211                                                     Entity);
6212 
6213     //   except:
6214     //   -- A temporary bound to a reference member in a constructor's
6215     //      ctor-initializer persists until the constructor exits.
6216     return Entity;
6217 
6218   case InitializedEntity::EK_Binding:
6219     // Per [dcl.decomp]p3, the binding is treated as a variable of reference
6220     // type.
6221     return Entity;
6222 
6223   case InitializedEntity::EK_Parameter:
6224   case InitializedEntity::EK_Parameter_CF_Audited:
6225     //   -- A temporary bound to a reference parameter in a function call
6226     //      persists until the completion of the full-expression containing
6227     //      the call.
6228   case InitializedEntity::EK_Result:
6229     //   -- The lifetime of a temporary bound to the returned value in a
6230     //      function return statement is not extended; the temporary is
6231     //      destroyed at the end of the full-expression in the return statement.
6232   case InitializedEntity::EK_New:
6233     //   -- A temporary bound to a reference in a new-initializer persists
6234     //      until the completion of the full-expression containing the
6235     //      new-initializer.
6236     return nullptr;
6237 
6238   case InitializedEntity::EK_Temporary:
6239   case InitializedEntity::EK_CompoundLiteralInit:
6240   case InitializedEntity::EK_RelatedResult:
6241     // We don't yet know the storage duration of the surrounding temporary.
6242     // Assume it's got full-expression duration for now, it will patch up our
6243     // storage duration if that's not correct.
6244     return nullptr;
6245 
6246   case InitializedEntity::EK_ArrayElement:
6247     // For subobjects, we look at the complete object.
6248     return getEntityForTemporaryLifetimeExtension(Entity->getParent(),
6249                                                   FallbackDecl);
6250 
6251   case InitializedEntity::EK_Base:
6252     // For subobjects, we look at the complete object.
6253     if (Entity->getParent())
6254       return getEntityForTemporaryLifetimeExtension(Entity->getParent(),
6255                                                     Entity);
6256     LLVM_FALLTHROUGH;
6257   case InitializedEntity::EK_Delegating:
6258     // We can reach this case for aggregate initialization in a constructor:
6259     //   struct A { int &&r; };
6260     //   struct B : A { B() : A{0} {} };
6261     // In this case, use the innermost field decl as the context.
6262     return FallbackDecl;
6263 
6264   case InitializedEntity::EK_BlockElement:
6265   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6266   case InitializedEntity::EK_LambdaCapture:
6267   case InitializedEntity::EK_Exception:
6268   case InitializedEntity::EK_VectorElement:
6269   case InitializedEntity::EK_ComplexElement:
6270     return nullptr;
6271   }
6272   llvm_unreachable("unknown entity kind");
6273 }
6274 
6275 static void performLifetimeExtension(Expr *Init,
6276                                      const InitializedEntity *ExtendingEntity);
6277 
6278 /// Update a glvalue expression that is used as the initializer of a reference
6279 /// to note that its lifetime is extended.
6280 /// \return \c true if any temporary had its lifetime extended.
6281 static bool
6282 performReferenceExtension(Expr *Init,
6283                           const InitializedEntity *ExtendingEntity) {
6284   // Walk past any constructs which we can lifetime-extend across.
6285   Expr *Old;
6286   do {
6287     Old = Init;
6288 
6289     if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
6290       if (ILE->getNumInits() == 1 && ILE->isGLValue()) {
6291         // This is just redundant braces around an initializer. Step over it.
6292         Init = ILE->getInit(0);
6293       }
6294     }
6295 
6296     // Step over any subobject adjustments; we may have a materialized
6297     // temporary inside them.
6298     Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
6299 
6300     // Per current approach for DR1376, look through casts to reference type
6301     // when performing lifetime extension.
6302     if (CastExpr *CE = dyn_cast<CastExpr>(Init))
6303       if (CE->getSubExpr()->isGLValue())
6304         Init = CE->getSubExpr();
6305 
6306     // Per the current approach for DR1299, look through array element access
6307     // when performing lifetime extension.
6308     if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Init))
6309       Init = ASE->getBase();
6310   } while (Init != Old);
6311 
6312   if (MaterializeTemporaryExpr *ME = dyn_cast<MaterializeTemporaryExpr>(Init)) {
6313     // Update the storage duration of the materialized temporary.
6314     // FIXME: Rebuild the expression instead of mutating it.
6315     ME->setExtendingDecl(ExtendingEntity->getDecl(),
6316                          ExtendingEntity->allocateManglingNumber());
6317     performLifetimeExtension(ME->GetTemporaryExpr(), ExtendingEntity);
6318     return true;
6319   }
6320 
6321   return false;
6322 }
6323 
6324 /// Update a prvalue expression that is going to be materialized as a
6325 /// lifetime-extended temporary.
6326 static void performLifetimeExtension(Expr *Init,
6327                                      const InitializedEntity *ExtendingEntity) {
6328   // Dig out the expression which constructs the extended temporary.
6329   Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
6330 
6331   if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init))
6332     Init = BTE->getSubExpr();
6333 
6334   if (CXXStdInitializerListExpr *ILE =
6335           dyn_cast<CXXStdInitializerListExpr>(Init)) {
6336     performReferenceExtension(ILE->getSubExpr(), ExtendingEntity);
6337     return;
6338   }
6339 
6340   if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
6341     if (ILE->getType()->isArrayType()) {
6342       for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I)
6343         performLifetimeExtension(ILE->getInit(I), ExtendingEntity);
6344       return;
6345     }
6346 
6347     if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) {
6348       assert(RD->isAggregate() && "aggregate init on non-aggregate");
6349 
6350       // If we lifetime-extend a braced initializer which is initializing an
6351       // aggregate, and that aggregate contains reference members which are
6352       // bound to temporaries, those temporaries are also lifetime-extended.
6353       if (RD->isUnion() && ILE->getInitializedFieldInUnion() &&
6354           ILE->getInitializedFieldInUnion()->getType()->isReferenceType())
6355         performReferenceExtension(ILE->getInit(0), ExtendingEntity);
6356       else {
6357         unsigned Index = 0;
6358         for (const auto *I : RD->fields()) {
6359           if (Index >= ILE->getNumInits())
6360             break;
6361           if (I->isUnnamedBitfield())
6362             continue;
6363           Expr *SubInit = ILE->getInit(Index);
6364           if (I->getType()->isReferenceType())
6365             performReferenceExtension(SubInit, ExtendingEntity);
6366           else if (isa<InitListExpr>(SubInit) ||
6367                    isa<CXXStdInitializerListExpr>(SubInit))
6368             // This may be either aggregate-initialization of a member or
6369             // initialization of a std::initializer_list object. Either way,
6370             // we should recursively lifetime-extend that initializer.
6371             performLifetimeExtension(SubInit, ExtendingEntity);
6372           ++Index;
6373         }
6374       }
6375     }
6376   }
6377 }
6378 
6379 static void warnOnLifetimeExtension(Sema &S, const InitializedEntity &Entity,
6380                                     const Expr *Init, bool IsInitializerList,
6381                                     const ValueDecl *ExtendingDecl) {
6382   // Warn if a field lifetime-extends a temporary.
6383   if (isa<FieldDecl>(ExtendingDecl)) {
6384     if (IsInitializerList) {
6385       S.Diag(Init->getExprLoc(), diag::warn_dangling_std_initializer_list)
6386         << /*at end of constructor*/true;
6387       return;
6388     }
6389 
6390     bool IsSubobjectMember = false;
6391     for (const InitializedEntity *Ent = Entity.getParent(); Ent;
6392          Ent = Ent->getParent()) {
6393       if (Ent->getKind() != InitializedEntity::EK_Base) {
6394         IsSubobjectMember = true;
6395         break;
6396       }
6397     }
6398     S.Diag(Init->getExprLoc(),
6399            diag::warn_bind_ref_member_to_temporary)
6400       << ExtendingDecl << Init->getSourceRange()
6401       << IsSubobjectMember << IsInitializerList;
6402     if (IsSubobjectMember)
6403       S.Diag(ExtendingDecl->getLocation(),
6404              diag::note_ref_subobject_of_member_declared_here);
6405     else
6406       S.Diag(ExtendingDecl->getLocation(),
6407              diag::note_ref_or_ptr_member_declared_here)
6408         << /*is pointer*/false;
6409   }
6410 }
6411 
6412 static void DiagnoseNarrowingInInitList(Sema &S,
6413                                         const ImplicitConversionSequence &ICS,
6414                                         QualType PreNarrowingType,
6415                                         QualType EntityType,
6416                                         const Expr *PostInit);
6417 
6418 /// Provide warnings when std::move is used on construction.
6419 static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr,
6420                                     bool IsReturnStmt) {
6421   if (!InitExpr)
6422     return;
6423 
6424   if (S.inTemplateInstantiation())
6425     return;
6426 
6427   QualType DestType = InitExpr->getType();
6428   if (!DestType->isRecordType())
6429     return;
6430 
6431   unsigned DiagID = 0;
6432   if (IsReturnStmt) {
6433     const CXXConstructExpr *CCE =
6434         dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens());
6435     if (!CCE || CCE->getNumArgs() != 1)
6436       return;
6437 
6438     if (!CCE->getConstructor()->isCopyOrMoveConstructor())
6439       return;
6440 
6441     InitExpr = CCE->getArg(0)->IgnoreImpCasts();
6442   }
6443 
6444   // Find the std::move call and get the argument.
6445   const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens());
6446   if (!CE || CE->getNumArgs() != 1)
6447     return;
6448 
6449   const FunctionDecl *MoveFunction = CE->getDirectCallee();
6450   if (!MoveFunction || !MoveFunction->isInStdNamespace() ||
6451       !MoveFunction->getIdentifier() ||
6452       !MoveFunction->getIdentifier()->isStr("move"))
6453     return;
6454 
6455   const Expr *Arg = CE->getArg(0)->IgnoreImplicit();
6456 
6457   if (IsReturnStmt) {
6458     const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts());
6459     if (!DRE || DRE->refersToEnclosingVariableOrCapture())
6460       return;
6461 
6462     const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
6463     if (!VD || !VD->hasLocalStorage())
6464       return;
6465 
6466     // __block variables are not moved implicitly.
6467     if (VD->hasAttr<BlocksAttr>())
6468       return;
6469 
6470     QualType SourceType = VD->getType();
6471     if (!SourceType->isRecordType())
6472       return;
6473 
6474     if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) {
6475       return;
6476     }
6477 
6478     // If we're returning a function parameter, copy elision
6479     // is not possible.
6480     if (isa<ParmVarDecl>(VD))
6481       DiagID = diag::warn_redundant_move_on_return;
6482     else
6483       DiagID = diag::warn_pessimizing_move_on_return;
6484   } else {
6485     DiagID = diag::warn_pessimizing_move_on_initialization;
6486     const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens();
6487     if (!ArgStripped->isRValue() || !ArgStripped->getType()->isRecordType())
6488       return;
6489   }
6490 
6491   S.Diag(CE->getLocStart(), DiagID);
6492 
6493   // Get all the locations for a fix-it.  Don't emit the fix-it if any location
6494   // is within a macro.
6495   SourceLocation CallBegin = CE->getCallee()->getLocStart();
6496   if (CallBegin.isMacroID())
6497     return;
6498   SourceLocation RParen = CE->getRParenLoc();
6499   if (RParen.isMacroID())
6500     return;
6501   SourceLocation LParen;
6502   SourceLocation ArgLoc = Arg->getLocStart();
6503 
6504   // Special testing for the argument location.  Since the fix-it needs the
6505   // location right before the argument, the argument location can be in a
6506   // macro only if it is at the beginning of the macro.
6507   while (ArgLoc.isMacroID() &&
6508          S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) {
6509     ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).getBegin();
6510   }
6511 
6512   if (LParen.isMacroID())
6513     return;
6514 
6515   LParen = ArgLoc.getLocWithOffset(-1);
6516 
6517   S.Diag(CE->getLocStart(), diag::note_remove_move)
6518       << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen))
6519       << FixItHint::CreateRemoval(SourceRange(RParen, RParen));
6520 }
6521 
6522 static void CheckForNullPointerDereference(Sema &S, const Expr *E) {
6523   // Check to see if we are dereferencing a null pointer.  If so, this is
6524   // undefined behavior, so warn about it.  This only handles the pattern
6525   // "*null", which is a very syntactic check.
6526   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
6527     if (UO->getOpcode() == UO_Deref &&
6528         UO->getSubExpr()->IgnoreParenCasts()->
6529         isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) {
6530     S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
6531                           S.PDiag(diag::warn_binding_null_to_reference)
6532                             << UO->getSubExpr()->getSourceRange());
6533   }
6534 }
6535 
6536 MaterializeTemporaryExpr *
6537 Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary,
6538                                      bool BoundToLvalueReference) {
6539   auto MTE = new (Context)
6540       MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference);
6541 
6542   // Order an ExprWithCleanups for lifetime marks.
6543   //
6544   // TODO: It'll be good to have a single place to check the access of the
6545   // destructor and generate ExprWithCleanups for various uses. Currently these
6546   // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary,
6547   // but there may be a chance to merge them.
6548   Cleanup.setExprNeedsCleanups(false);
6549   return MTE;
6550 }
6551 
6552 ExprResult Sema::TemporaryMaterializationConversion(Expr *E) {
6553   // In C++98, we don't want to implicitly create an xvalue.
6554   // FIXME: This means that AST consumers need to deal with "prvalues" that
6555   // denote materialized temporaries. Maybe we should add another ValueKind
6556   // for "xvalue pretending to be a prvalue" for C++98 support.
6557   if (!E->isRValue() || !getLangOpts().CPlusPlus11)
6558     return E;
6559 
6560   // C++1z [conv.rval]/1: T shall be a complete type.
6561   // FIXME: Does this ever matter (can we form a prvalue of incomplete type)?
6562   // If so, we should check for a non-abstract class type here too.
6563   QualType T = E->getType();
6564   if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type))
6565     return ExprError();
6566 
6567   return CreateMaterializeTemporaryExpr(E->getType(), E, false);
6568 }
6569 
6570 ExprResult
6571 InitializationSequence::Perform(Sema &S,
6572                                 const InitializedEntity &Entity,
6573                                 const InitializationKind &Kind,
6574                                 MultiExprArg Args,
6575                                 QualType *ResultType) {
6576   if (Failed()) {
6577     Diagnose(S, Entity, Kind, Args);
6578     return ExprError();
6579   }
6580   if (!ZeroInitializationFixit.empty()) {
6581     unsigned DiagID = diag::err_default_init_const;
6582     if (Decl *D = Entity.getDecl())
6583       if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>())
6584         DiagID = diag::ext_default_init_const;
6585 
6586     // The initialization would have succeeded with this fixit. Since the fixit
6587     // is on the error, we need to build a valid AST in this case, so this isn't
6588     // handled in the Failed() branch above.
6589     QualType DestType = Entity.getType();
6590     S.Diag(Kind.getLocation(), DiagID)
6591         << DestType << (bool)DestType->getAs<RecordType>()
6592         << FixItHint::CreateInsertion(ZeroInitializationFixitLoc,
6593                                       ZeroInitializationFixit);
6594   }
6595 
6596   if (getKind() == DependentSequence) {
6597     // If the declaration is a non-dependent, incomplete array type
6598     // that has an initializer, then its type will be completed once
6599     // the initializer is instantiated.
6600     if (ResultType && !Entity.getType()->isDependentType() &&
6601         Args.size() == 1) {
6602       QualType DeclType = Entity.getType();
6603       if (const IncompleteArrayType *ArrayT
6604                            = S.Context.getAsIncompleteArrayType(DeclType)) {
6605         // FIXME: We don't currently have the ability to accurately
6606         // compute the length of an initializer list without
6607         // performing full type-checking of the initializer list
6608         // (since we have to determine where braces are implicitly
6609         // introduced and such).  So, we fall back to making the array
6610         // type a dependently-sized array type with no specified
6611         // bound.
6612         if (isa<InitListExpr>((Expr *)Args[0])) {
6613           SourceRange Brackets;
6614 
6615           // Scavange the location of the brackets from the entity, if we can.
6616           if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Entity.getDecl())) {
6617             if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
6618               TypeLoc TL = TInfo->getTypeLoc();
6619               if (IncompleteArrayTypeLoc ArrayLoc =
6620                       TL.getAs<IncompleteArrayTypeLoc>())
6621                 Brackets = ArrayLoc.getBracketsRange();
6622             }
6623           }
6624 
6625           *ResultType
6626             = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
6627                                                    /*NumElts=*/nullptr,
6628                                                    ArrayT->getSizeModifier(),
6629                                        ArrayT->getIndexTypeCVRQualifiers(),
6630                                                    Brackets);
6631         }
6632 
6633       }
6634     }
6635     if (Kind.getKind() == InitializationKind::IK_Direct &&
6636         !Kind.isExplicitCast()) {
6637       // Rebuild the ParenListExpr.
6638       SourceRange ParenRange = Kind.getParenOrBraceRange();
6639       return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
6640                                   Args);
6641     }
6642     assert(Kind.getKind() == InitializationKind::IK_Copy ||
6643            Kind.isExplicitCast() ||
6644            Kind.getKind() == InitializationKind::IK_DirectList);
6645     return ExprResult(Args[0]);
6646   }
6647 
6648   // No steps means no initialization.
6649   if (Steps.empty())
6650     return ExprResult((Expr *)nullptr);
6651 
6652   if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
6653       Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
6654       !Entity.isParameterKind()) {
6655     // Produce a C++98 compatibility warning if we are initializing a reference
6656     // from an initializer list. For parameters, we produce a better warning
6657     // elsewhere.
6658     Expr *Init = Args[0];
6659     S.Diag(Init->getLocStart(), diag::warn_cxx98_compat_reference_list_init)
6660       << Init->getSourceRange();
6661   }
6662 
6663   // OpenCL v2.0 s6.13.11.1. atomic variables can be initialized in global scope
6664   QualType ETy = Entity.getType();
6665   Qualifiers TyQualifiers = ETy.getQualifiers();
6666   bool HasGlobalAS = TyQualifiers.hasAddressSpace() &&
6667                      TyQualifiers.getAddressSpace() == LangAS::opencl_global;
6668 
6669   if (S.getLangOpts().OpenCLVersion >= 200 &&
6670       ETy->isAtomicType() && !HasGlobalAS &&
6671       Entity.getKind() == InitializedEntity::EK_Variable && Args.size() > 0) {
6672     S.Diag(Args[0]->getLocStart(), diag::err_opencl_atomic_init) << 1 <<
6673     SourceRange(Entity.getDecl()->getLocStart(), Args[0]->getLocEnd());
6674     return ExprError();
6675   }
6676 
6677   // Diagnose cases where we initialize a pointer to an array temporary, and the
6678   // pointer obviously outlives the temporary.
6679   if (Args.size() == 1 && Args[0]->getType()->isArrayType() &&
6680       Entity.getType()->isPointerType() &&
6681       InitializedEntityOutlivesFullExpression(Entity)) {
6682     const Expr *Init = Args[0]->skipRValueSubobjectAdjustments();
6683     if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Init))
6684       Init = MTE->GetTemporaryExpr();
6685     Expr::LValueClassification Kind = Init->ClassifyLValue(S.Context);
6686     if (Kind == Expr::LV_ClassTemporary || Kind == Expr::LV_ArrayTemporary)
6687       S.Diag(Init->getLocStart(), diag::warn_temporary_array_to_pointer_decay)
6688         << Init->getSourceRange();
6689   }
6690 
6691   QualType DestType = Entity.getType().getNonReferenceType();
6692   // FIXME: Ugly hack around the fact that Entity.getType() is not
6693   // the same as Entity.getDecl()->getType() in cases involving type merging,
6694   //  and we want latter when it makes sense.
6695   if (ResultType)
6696     *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
6697                                      Entity.getType();
6698 
6699   ExprResult CurInit((Expr *)nullptr);
6700   SmallVector<Expr*, 4> ArrayLoopCommonExprs;
6701 
6702   // For initialization steps that start with a single initializer,
6703   // grab the only argument out the Args and place it into the "current"
6704   // initializer.
6705   switch (Steps.front().Kind) {
6706   case SK_ResolveAddressOfOverloadedFunction:
6707   case SK_CastDerivedToBaseRValue:
6708   case SK_CastDerivedToBaseXValue:
6709   case SK_CastDerivedToBaseLValue:
6710   case SK_BindReference:
6711   case SK_BindReferenceToTemporary:
6712   case SK_FinalCopy:
6713   case SK_ExtraneousCopyToTemporary:
6714   case SK_UserConversion:
6715   case SK_QualificationConversionLValue:
6716   case SK_QualificationConversionXValue:
6717   case SK_QualificationConversionRValue:
6718   case SK_AtomicConversion:
6719   case SK_LValueToRValue:
6720   case SK_ConversionSequence:
6721   case SK_ConversionSequenceNoNarrowing:
6722   case SK_ListInitialization:
6723   case SK_UnwrapInitList:
6724   case SK_RewrapInitList:
6725   case SK_CAssignment:
6726   case SK_StringInit:
6727   case SK_ObjCObjectConversion:
6728   case SK_ArrayLoopIndex:
6729   case SK_ArrayLoopInit:
6730   case SK_ArrayInit:
6731   case SK_GNUArrayInit:
6732   case SK_ParenthesizedArrayInit:
6733   case SK_PassByIndirectCopyRestore:
6734   case SK_PassByIndirectRestore:
6735   case SK_ProduceObjCObject:
6736   case SK_StdInitializerList:
6737   case SK_OCLSamplerInit:
6738   case SK_OCLZeroEvent:
6739   case SK_OCLZeroQueue: {
6740     assert(Args.size() == 1);
6741     CurInit = Args[0];
6742     if (!CurInit.get()) return ExprError();
6743     break;
6744   }
6745 
6746   case SK_ConstructorInitialization:
6747   case SK_ConstructorInitializationFromList:
6748   case SK_StdInitializerListConstructorCall:
6749   case SK_ZeroInitialization:
6750     break;
6751   }
6752 
6753   // Promote from an unevaluated context to an unevaluated list context in
6754   // C++11 list-initialization; we need to instantiate entities usable in
6755   // constant expressions here in order to perform narrowing checks =(
6756   EnterExpressionEvaluationContext Evaluated(
6757       S, EnterExpressionEvaluationContext::InitList,
6758       CurInit.get() && isa<InitListExpr>(CurInit.get()));
6759 
6760   // C++ [class.abstract]p2:
6761   //   no objects of an abstract class can be created except as subobjects
6762   //   of a class derived from it
6763   auto checkAbstractType = [&](QualType T) -> bool {
6764     if (Entity.getKind() == InitializedEntity::EK_Base ||
6765         Entity.getKind() == InitializedEntity::EK_Delegating)
6766       return false;
6767     return S.RequireNonAbstractType(Kind.getLocation(), T,
6768                                     diag::err_allocation_of_abstract_type);
6769   };
6770 
6771   // Walk through the computed steps for the initialization sequence,
6772   // performing the specified conversions along the way.
6773   bool ConstructorInitRequiresZeroInit = false;
6774   for (step_iterator Step = step_begin(), StepEnd = step_end();
6775        Step != StepEnd; ++Step) {
6776     if (CurInit.isInvalid())
6777       return ExprError();
6778 
6779     QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
6780 
6781     switch (Step->Kind) {
6782     case SK_ResolveAddressOfOverloadedFunction:
6783       // Overload resolution determined which function invoke; update the
6784       // initializer to reflect that choice.
6785       S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
6786       if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()))
6787         return ExprError();
6788       CurInit = S.FixOverloadedFunctionReference(CurInit,
6789                                                  Step->Function.FoundDecl,
6790                                                  Step->Function.Function);
6791       break;
6792 
6793     case SK_CastDerivedToBaseRValue:
6794     case SK_CastDerivedToBaseXValue:
6795     case SK_CastDerivedToBaseLValue: {
6796       // We have a derived-to-base cast that produces either an rvalue or an
6797       // lvalue. Perform that cast.
6798 
6799       CXXCastPath BasePath;
6800 
6801       // Casts to inaccessible base classes are allowed with C-style casts.
6802       bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
6803       if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
6804                                          CurInit.get()->getLocStart(),
6805                                          CurInit.get()->getSourceRange(),
6806                                          &BasePath, IgnoreBaseAccess))
6807         return ExprError();
6808 
6809       ExprValueKind VK =
6810           Step->Kind == SK_CastDerivedToBaseLValue ?
6811               VK_LValue :
6812               (Step->Kind == SK_CastDerivedToBaseXValue ?
6813                    VK_XValue :
6814                    VK_RValue);
6815       CurInit =
6816           ImplicitCastExpr::Create(S.Context, Step->Type, CK_DerivedToBase,
6817                                    CurInit.get(), &BasePath, VK);
6818       break;
6819     }
6820 
6821     case SK_BindReference:
6822       // Reference binding does not have any corresponding ASTs.
6823 
6824       // Check exception specifications
6825       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
6826         return ExprError();
6827 
6828       // We don't check for e.g. function pointers here, since address
6829       // availability checks should only occur when the function first decays
6830       // into a pointer or reference.
6831       if (CurInit.get()->getType()->isFunctionProtoType()) {
6832         if (auto *DRE = dyn_cast<DeclRefExpr>(CurInit.get()->IgnoreParens())) {
6833           if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
6834             if (!S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
6835                                                      DRE->getLocStart()))
6836               return ExprError();
6837           }
6838         }
6839       }
6840 
6841       // Even though we didn't materialize a temporary, the binding may still
6842       // extend the lifetime of a temporary. This happens if we bind a reference
6843       // to the result of a cast to reference type.
6844       if (const InitializedEntity *ExtendingEntity =
6845               getEntityForTemporaryLifetimeExtension(&Entity))
6846         if (performReferenceExtension(CurInit.get(), ExtendingEntity))
6847           warnOnLifetimeExtension(S, Entity, CurInit.get(),
6848                                   /*IsInitializerList=*/false,
6849                                   ExtendingEntity->getDecl());
6850 
6851       CheckForNullPointerDereference(S, CurInit.get());
6852       break;
6853 
6854     case SK_BindReferenceToTemporary: {
6855       // Make sure the "temporary" is actually an rvalue.
6856       assert(CurInit.get()->isRValue() && "not a temporary");
6857 
6858       // Check exception specifications
6859       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
6860         return ExprError();
6861 
6862       // Materialize the temporary into memory.
6863       MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
6864           Step->Type, CurInit.get(), Entity.getType()->isLValueReferenceType());
6865 
6866       // Maybe lifetime-extend the temporary's subobjects to match the
6867       // entity's lifetime.
6868       if (const InitializedEntity *ExtendingEntity =
6869               getEntityForTemporaryLifetimeExtension(&Entity))
6870         if (performReferenceExtension(MTE, ExtendingEntity))
6871           warnOnLifetimeExtension(S, Entity, CurInit.get(),
6872                                   /*IsInitializerList=*/false,
6873                                   ExtendingEntity->getDecl());
6874 
6875       // If we're extending this temporary to automatic storage duration -- we
6876       // need to register its cleanup during the full-expression's cleanups.
6877       if (MTE->getStorageDuration() == SD_Automatic &&
6878           MTE->getType().isDestructedType())
6879         S.Cleanup.setExprNeedsCleanups(true);
6880 
6881       CurInit = MTE;
6882       break;
6883     }
6884 
6885     case SK_FinalCopy:
6886       if (checkAbstractType(Step->Type))
6887         return ExprError();
6888 
6889       // If the overall initialization is initializing a temporary, we already
6890       // bound our argument if it was necessary to do so. If not (if we're
6891       // ultimately initializing a non-temporary), our argument needs to be
6892       // bound since it's initializing a function parameter.
6893       // FIXME: This is a mess. Rationalize temporary destruction.
6894       if (!shouldBindAsTemporary(Entity))
6895         CurInit = S.MaybeBindToTemporary(CurInit.get());
6896       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
6897                            /*IsExtraneousCopy=*/false);
6898       break;
6899 
6900     case SK_ExtraneousCopyToTemporary:
6901       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
6902                            /*IsExtraneousCopy=*/true);
6903       break;
6904 
6905     case SK_UserConversion: {
6906       // We have a user-defined conversion that invokes either a constructor
6907       // or a conversion function.
6908       CastKind CastKind;
6909       FunctionDecl *Fn = Step->Function.Function;
6910       DeclAccessPair FoundFn = Step->Function.FoundDecl;
6911       bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
6912       bool CreatedObject = false;
6913       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
6914         // Build a call to the selected constructor.
6915         SmallVector<Expr*, 8> ConstructorArgs;
6916         SourceLocation Loc = CurInit.get()->getLocStart();
6917 
6918         // Determine the arguments required to actually perform the constructor
6919         // call.
6920         Expr *Arg = CurInit.get();
6921         if (S.CompleteConstructorCall(Constructor,
6922                                       MultiExprArg(&Arg, 1),
6923                                       Loc, ConstructorArgs))
6924           return ExprError();
6925 
6926         // Build an expression that constructs a temporary.
6927         CurInit = S.BuildCXXConstructExpr(Loc, Step->Type,
6928                                           FoundFn, Constructor,
6929                                           ConstructorArgs,
6930                                           HadMultipleCandidates,
6931                                           /*ListInit*/ false,
6932                                           /*StdInitListInit*/ false,
6933                                           /*ZeroInit*/ false,
6934                                           CXXConstructExpr::CK_Complete,
6935                                           SourceRange());
6936         if (CurInit.isInvalid())
6937           return ExprError();
6938 
6939         S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn,
6940                                  Entity);
6941         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
6942           return ExprError();
6943 
6944         CastKind = CK_ConstructorConversion;
6945         CreatedObject = true;
6946       } else {
6947         // Build a call to the conversion function.
6948         CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
6949         S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr,
6950                                     FoundFn);
6951         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
6952           return ExprError();
6953 
6954         // FIXME: Should we move this initialization into a separate
6955         // derived-to-base conversion? I believe the answer is "no", because
6956         // we don't want to turn off access control here for c-style casts.
6957         CurInit = S.PerformObjectArgumentInitialization(CurInit.get(),
6958                                                         /*Qualifier=*/nullptr,
6959                                                         FoundFn, Conversion);
6960         if (CurInit.isInvalid())
6961           return ExprError();
6962 
6963         // Build the actual call to the conversion function.
6964         CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
6965                                            HadMultipleCandidates);
6966         if (CurInit.isInvalid())
6967           return ExprError();
6968 
6969         CastKind = CK_UserDefinedConversion;
6970         CreatedObject = Conversion->getReturnType()->isRecordType();
6971       }
6972 
6973       if (CreatedObject && checkAbstractType(CurInit.get()->getType()))
6974         return ExprError();
6975 
6976       CurInit = ImplicitCastExpr::Create(S.Context, CurInit.get()->getType(),
6977                                          CastKind, CurInit.get(), nullptr,
6978                                          CurInit.get()->getValueKind());
6979 
6980       if (shouldBindAsTemporary(Entity))
6981         // The overall entity is temporary, so this expression should be
6982         // destroyed at the end of its full-expression.
6983         CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
6984       else if (CreatedObject && shouldDestroyEntity(Entity)) {
6985         // The object outlasts the full-expression, but we need to prepare for
6986         // a destructor being run on it.
6987         // FIXME: It makes no sense to do this here. This should happen
6988         // regardless of how we initialized the entity.
6989         QualType T = CurInit.get()->getType();
6990         if (const RecordType *Record = T->getAs<RecordType>()) {
6991           CXXDestructorDecl *Destructor
6992             = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
6993           S.CheckDestructorAccess(CurInit.get()->getLocStart(), Destructor,
6994                                   S.PDiag(diag::err_access_dtor_temp) << T);
6995           S.MarkFunctionReferenced(CurInit.get()->getLocStart(), Destructor);
6996           if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getLocStart()))
6997             return ExprError();
6998         }
6999       }
7000       break;
7001     }
7002 
7003     case SK_QualificationConversionLValue:
7004     case SK_QualificationConversionXValue:
7005     case SK_QualificationConversionRValue: {
7006       // Perform a qualification conversion; these can never go wrong.
7007       ExprValueKind VK =
7008           Step->Kind == SK_QualificationConversionLValue ?
7009               VK_LValue :
7010               (Step->Kind == SK_QualificationConversionXValue ?
7011                    VK_XValue :
7012                    VK_RValue);
7013       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, CK_NoOp, VK);
7014       break;
7015     }
7016 
7017     case SK_AtomicConversion: {
7018       assert(CurInit.get()->isRValue() && "cannot convert glvalue to atomic");
7019       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
7020                                     CK_NonAtomicToAtomic, VK_RValue);
7021       break;
7022     }
7023 
7024     case SK_LValueToRValue: {
7025       assert(CurInit.get()->isGLValue() && "cannot load from a prvalue");
7026       CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
7027                                          CK_LValueToRValue, CurInit.get(),
7028                                          /*BasePath=*/nullptr, VK_RValue);
7029       break;
7030     }
7031 
7032     case SK_ConversionSequence:
7033     case SK_ConversionSequenceNoNarrowing: {
7034       Sema::CheckedConversionKind CCK
7035         = Kind.isCStyleCast()? Sema::CCK_CStyleCast
7036         : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
7037         : Kind.isExplicitCast()? Sema::CCK_OtherCast
7038         : Sema::CCK_ImplicitConversion;
7039       ExprResult CurInitExprRes =
7040         S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
7041                                     getAssignmentAction(Entity), CCK);
7042       if (CurInitExprRes.isInvalid())
7043         return ExprError();
7044 
7045       S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), CurInit.get());
7046 
7047       CurInit = CurInitExprRes;
7048 
7049       if (Step->Kind == SK_ConversionSequenceNoNarrowing &&
7050           S.getLangOpts().CPlusPlus)
7051         DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(),
7052                                     CurInit.get());
7053 
7054       break;
7055     }
7056 
7057     case SK_ListInitialization: {
7058       if (checkAbstractType(Step->Type))
7059         return ExprError();
7060 
7061       InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
7062       // If we're not initializing the top-level entity, we need to create an
7063       // InitializeTemporary entity for our target type.
7064       QualType Ty = Step->Type;
7065       bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty);
7066       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
7067       InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
7068       InitListChecker PerformInitList(S, InitEntity,
7069           InitList, Ty, /*VerifyOnly=*/false,
7070           /*TreatUnavailableAsInvalid=*/false);
7071       if (PerformInitList.HadError())
7072         return ExprError();
7073 
7074       // Hack: We must update *ResultType if available in order to set the
7075       // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
7076       // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
7077       if (ResultType &&
7078           ResultType->getNonReferenceType()->isIncompleteArrayType()) {
7079         if ((*ResultType)->isRValueReferenceType())
7080           Ty = S.Context.getRValueReferenceType(Ty);
7081         else if ((*ResultType)->isLValueReferenceType())
7082           Ty = S.Context.getLValueReferenceType(Ty,
7083             (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue());
7084         *ResultType = Ty;
7085       }
7086 
7087       InitListExpr *StructuredInitList =
7088           PerformInitList.getFullyStructuredList();
7089       CurInit.get();
7090       CurInit = shouldBindAsTemporary(InitEntity)
7091           ? S.MaybeBindToTemporary(StructuredInitList)
7092           : StructuredInitList;
7093       break;
7094     }
7095 
7096     case SK_ConstructorInitializationFromList: {
7097       if (checkAbstractType(Step->Type))
7098         return ExprError();
7099 
7100       // When an initializer list is passed for a parameter of type "reference
7101       // to object", we don't get an EK_Temporary entity, but instead an
7102       // EK_Parameter entity with reference type.
7103       // FIXME: This is a hack. What we really should do is create a user
7104       // conversion step for this case, but this makes it considerably more
7105       // complicated. For now, this will do.
7106       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
7107                                         Entity.getType().getNonReferenceType());
7108       bool UseTemporary = Entity.getType()->isReferenceType();
7109       assert(Args.size() == 1 && "expected a single argument for list init");
7110       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
7111       S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
7112         << InitList->getSourceRange();
7113       MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
7114       CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
7115                                                                    Entity,
7116                                                  Kind, Arg, *Step,
7117                                                ConstructorInitRequiresZeroInit,
7118                                                /*IsListInitialization*/true,
7119                                                /*IsStdInitListInit*/false,
7120                                                InitList->getLBraceLoc(),
7121                                                InitList->getRBraceLoc());
7122       break;
7123     }
7124 
7125     case SK_UnwrapInitList:
7126       CurInit = cast<InitListExpr>(CurInit.get())->getInit(0);
7127       break;
7128 
7129     case SK_RewrapInitList: {
7130       Expr *E = CurInit.get();
7131       InitListExpr *Syntactic = Step->WrappingSyntacticList;
7132       InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
7133           Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
7134       ILE->setSyntacticForm(Syntactic);
7135       ILE->setType(E->getType());
7136       ILE->setValueKind(E->getValueKind());
7137       CurInit = ILE;
7138       break;
7139     }
7140 
7141     case SK_ConstructorInitialization:
7142     case SK_StdInitializerListConstructorCall: {
7143       if (checkAbstractType(Step->Type))
7144         return ExprError();
7145 
7146       // When an initializer list is passed for a parameter of type "reference
7147       // to object", we don't get an EK_Temporary entity, but instead an
7148       // EK_Parameter entity with reference type.
7149       // FIXME: This is a hack. What we really should do is create a user
7150       // conversion step for this case, but this makes it considerably more
7151       // complicated. For now, this will do.
7152       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
7153                                         Entity.getType().getNonReferenceType());
7154       bool UseTemporary = Entity.getType()->isReferenceType();
7155       bool IsStdInitListInit =
7156           Step->Kind == SK_StdInitializerListConstructorCall;
7157       Expr *Source = CurInit.get();
7158       SourceRange Range = Kind.hasParenOrBraceRange()
7159                               ? Kind.getParenOrBraceRange()
7160                               : SourceRange();
7161       CurInit = PerformConstructorInitialization(
7162           S, UseTemporary ? TempEntity : Entity, Kind,
7163           Source ? MultiExprArg(Source) : Args, *Step,
7164           ConstructorInitRequiresZeroInit,
7165           /*IsListInitialization*/ IsStdInitListInit,
7166           /*IsStdInitListInitialization*/ IsStdInitListInit,
7167           /*LBraceLoc*/ Range.getBegin(),
7168           /*RBraceLoc*/ Range.getEnd());
7169       break;
7170     }
7171 
7172     case SK_ZeroInitialization: {
7173       step_iterator NextStep = Step;
7174       ++NextStep;
7175       if (NextStep != StepEnd &&
7176           (NextStep->Kind == SK_ConstructorInitialization ||
7177            NextStep->Kind == SK_ConstructorInitializationFromList)) {
7178         // The need for zero-initialization is recorded directly into
7179         // the call to the object's constructor within the next step.
7180         ConstructorInitRequiresZeroInit = true;
7181       } else if (Kind.getKind() == InitializationKind::IK_Value &&
7182                  S.getLangOpts().CPlusPlus &&
7183                  !Kind.isImplicitValueInit()) {
7184         TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
7185         if (!TSInfo)
7186           TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
7187                                                     Kind.getRange().getBegin());
7188 
7189         CurInit = new (S.Context) CXXScalarValueInitExpr(
7190             Entity.getType().getNonLValueExprType(S.Context), TSInfo,
7191             Kind.getRange().getEnd());
7192       } else {
7193         CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type);
7194       }
7195       break;
7196     }
7197 
7198     case SK_CAssignment: {
7199       QualType SourceType = CurInit.get()->getType();
7200       // Save off the initial CurInit in case we need to emit a diagnostic
7201       ExprResult InitialCurInit = CurInit;
7202       ExprResult Result = CurInit;
7203       Sema::AssignConvertType ConvTy =
7204         S.CheckSingleAssignmentConstraints(Step->Type, Result, true,
7205             Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited);
7206       if (Result.isInvalid())
7207         return ExprError();
7208       CurInit = Result;
7209 
7210       // If this is a call, allow conversion to a transparent union.
7211       ExprResult CurInitExprRes = CurInit;
7212       if (ConvTy != Sema::Compatible &&
7213           Entity.isParameterKind() &&
7214           S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
7215             == Sema::Compatible)
7216         ConvTy = Sema::Compatible;
7217       if (CurInitExprRes.isInvalid())
7218         return ExprError();
7219       CurInit = CurInitExprRes;
7220 
7221       bool Complained;
7222       if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
7223                                      Step->Type, SourceType,
7224                                      InitialCurInit.get(),
7225                                      getAssignmentAction(Entity, true),
7226                                      &Complained)) {
7227         PrintInitLocationNote(S, Entity);
7228         return ExprError();
7229       } else if (Complained)
7230         PrintInitLocationNote(S, Entity);
7231       break;
7232     }
7233 
7234     case SK_StringInit: {
7235       QualType Ty = Step->Type;
7236       CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
7237                       S.Context.getAsArrayType(Ty), S);
7238       break;
7239     }
7240 
7241     case SK_ObjCObjectConversion:
7242       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
7243                           CK_ObjCObjectLValueCast,
7244                           CurInit.get()->getValueKind());
7245       break;
7246 
7247     case SK_ArrayLoopIndex: {
7248       Expr *Cur = CurInit.get();
7249       Expr *BaseExpr = new (S.Context)
7250           OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(),
7251                           Cur->getValueKind(), Cur->getObjectKind(), Cur);
7252       Expr *IndexExpr =
7253           new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType());
7254       CurInit = S.CreateBuiltinArraySubscriptExpr(
7255           BaseExpr, Kind.getLocation(), IndexExpr, Kind.getLocation());
7256       ArrayLoopCommonExprs.push_back(BaseExpr);
7257       break;
7258     }
7259 
7260     case SK_ArrayLoopInit: {
7261       assert(!ArrayLoopCommonExprs.empty() &&
7262              "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit");
7263       Expr *Common = ArrayLoopCommonExprs.pop_back_val();
7264       CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common,
7265                                                   CurInit.get());
7266       break;
7267     }
7268 
7269     case SK_GNUArrayInit:
7270       // Okay: we checked everything before creating this step. Note that
7271       // this is a GNU extension.
7272       S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
7273         << Step->Type << CurInit.get()->getType()
7274         << CurInit.get()->getSourceRange();
7275       LLVM_FALLTHROUGH;
7276     case SK_ArrayInit:
7277       // If the destination type is an incomplete array type, update the
7278       // type accordingly.
7279       if (ResultType) {
7280         if (const IncompleteArrayType *IncompleteDest
7281                            = S.Context.getAsIncompleteArrayType(Step->Type)) {
7282           if (const ConstantArrayType *ConstantSource
7283                  = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
7284             *ResultType = S.Context.getConstantArrayType(
7285                                              IncompleteDest->getElementType(),
7286                                              ConstantSource->getSize(),
7287                                              ArrayType::Normal, 0);
7288           }
7289         }
7290       }
7291       break;
7292 
7293     case SK_ParenthesizedArrayInit:
7294       // Okay: we checked everything before creating this step. Note that
7295       // this is a GNU extension.
7296       S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
7297         << CurInit.get()->getSourceRange();
7298       break;
7299 
7300     case SK_PassByIndirectCopyRestore:
7301     case SK_PassByIndirectRestore:
7302       checkIndirectCopyRestoreSource(S, CurInit.get());
7303       CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr(
7304           CurInit.get(), Step->Type,
7305           Step->Kind == SK_PassByIndirectCopyRestore);
7306       break;
7307 
7308     case SK_ProduceObjCObject:
7309       CurInit =
7310           ImplicitCastExpr::Create(S.Context, Step->Type, CK_ARCProduceObject,
7311                                    CurInit.get(), nullptr, VK_RValue);
7312       break;
7313 
7314     case SK_StdInitializerList: {
7315       S.Diag(CurInit.get()->getExprLoc(),
7316              diag::warn_cxx98_compat_initializer_list_init)
7317         << CurInit.get()->getSourceRange();
7318 
7319       // Materialize the temporary into memory.
7320       MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
7321           CurInit.get()->getType(), CurInit.get(),
7322           /*BoundToLvalueReference=*/false);
7323 
7324       // Maybe lifetime-extend the array temporary's subobjects to match the
7325       // entity's lifetime.
7326       if (const InitializedEntity *ExtendingEntity =
7327               getEntityForTemporaryLifetimeExtension(&Entity))
7328         if (performReferenceExtension(MTE, ExtendingEntity))
7329           warnOnLifetimeExtension(S, Entity, CurInit.get(),
7330                                   /*IsInitializerList=*/true,
7331                                   ExtendingEntity->getDecl());
7332 
7333       // Wrap it in a construction of a std::initializer_list<T>.
7334       CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE);
7335 
7336       // Bind the result, in case the library has given initializer_list a
7337       // non-trivial destructor.
7338       if (shouldBindAsTemporary(Entity))
7339         CurInit = S.MaybeBindToTemporary(CurInit.get());
7340       break;
7341     }
7342 
7343     case SK_OCLSamplerInit: {
7344       // Sampler initialzation have 5 cases:
7345       //   1. function argument passing
7346       //      1a. argument is a file-scope variable
7347       //      1b. argument is a function-scope variable
7348       //      1c. argument is one of caller function's parameters
7349       //   2. variable initialization
7350       //      2a. initializing a file-scope variable
7351       //      2b. initializing a function-scope variable
7352       //
7353       // For file-scope variables, since they cannot be initialized by function
7354       // call of __translate_sampler_initializer in LLVM IR, their references
7355       // need to be replaced by a cast from their literal initializers to
7356       // sampler type. Since sampler variables can only be used in function
7357       // calls as arguments, we only need to replace them when handling the
7358       // argument passing.
7359       assert(Step->Type->isSamplerT() &&
7360              "Sampler initialization on non-sampler type.");
7361       Expr *Init = CurInit.get();
7362       QualType SourceType = Init->getType();
7363       // Case 1
7364       if (Entity.isParameterKind()) {
7365         if (!SourceType->isSamplerT() && !SourceType->isIntegerType()) {
7366           S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
7367             << SourceType;
7368           break;
7369         } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init)) {
7370           auto Var = cast<VarDecl>(DRE->getDecl());
7371           // Case 1b and 1c
7372           // No cast from integer to sampler is needed.
7373           if (!Var->hasGlobalStorage()) {
7374             CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
7375                                                CK_LValueToRValue, Init,
7376                                                /*BasePath=*/nullptr, VK_RValue);
7377             break;
7378           }
7379           // Case 1a
7380           // For function call with a file-scope sampler variable as argument,
7381           // get the integer literal.
7382           // Do not diagnose if the file-scope variable does not have initializer
7383           // since this has already been diagnosed when parsing the variable
7384           // declaration.
7385           if (!Var->getInit() || !isa<ImplicitCastExpr>(Var->getInit()))
7386             break;
7387           Init = cast<ImplicitCastExpr>(const_cast<Expr*>(
7388             Var->getInit()))->getSubExpr();
7389           SourceType = Init->getType();
7390         }
7391       } else {
7392         // Case 2
7393         // Check initializer is 32 bit integer constant.
7394         // If the initializer is taken from global variable, do not diagnose since
7395         // this has already been done when parsing the variable declaration.
7396         if (!Init->isConstantInitializer(S.Context, false))
7397           break;
7398 
7399         if (!SourceType->isIntegerType() ||
7400             32 != S.Context.getIntWidth(SourceType)) {
7401           S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer)
7402             << SourceType;
7403           break;
7404         }
7405 
7406         llvm::APSInt Result;
7407         Init->EvaluateAsInt(Result, S.Context);
7408         const uint64_t SamplerValue = Result.getLimitedValue();
7409         // 32-bit value of sampler's initializer is interpreted as
7410         // bit-field with the following structure:
7411         // |unspecified|Filter|Addressing Mode| Normalized Coords|
7412         // |31        6|5    4|3             1|                 0|
7413         // This structure corresponds to enum values of sampler properties
7414         // defined in SPIR spec v1.2 and also opencl-c.h
7415         unsigned AddressingMode  = (0x0E & SamplerValue) >> 1;
7416         unsigned FilterMode      = (0x30 & SamplerValue) >> 4;
7417         if (FilterMode != 1 && FilterMode != 2)
7418           S.Diag(Kind.getLocation(),
7419                  diag::warn_sampler_initializer_invalid_bits)
7420                  << "Filter Mode";
7421         if (AddressingMode > 4)
7422           S.Diag(Kind.getLocation(),
7423                  diag::warn_sampler_initializer_invalid_bits)
7424                  << "Addressing Mode";
7425       }
7426 
7427       // Cases 1a, 2a and 2b
7428       // Insert cast from integer to sampler.
7429       CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy,
7430                                       CK_IntToOCLSampler);
7431       break;
7432     }
7433     case SK_OCLZeroEvent: {
7434       assert(Step->Type->isEventT() &&
7435              "Event initialization on non-event type.");
7436 
7437       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
7438                                     CK_ZeroToOCLEvent,
7439                                     CurInit.get()->getValueKind());
7440       break;
7441     }
7442     case SK_OCLZeroQueue: {
7443       assert(Step->Type->isQueueT() &&
7444              "Event initialization on non queue type.");
7445 
7446       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
7447                                     CK_ZeroToOCLQueue,
7448                                     CurInit.get()->getValueKind());
7449       break;
7450     }
7451     }
7452   }
7453 
7454   // Diagnose non-fatal problems with the completed initialization.
7455   if (Entity.getKind() == InitializedEntity::EK_Member &&
7456       cast<FieldDecl>(Entity.getDecl())->isBitField())
7457     S.CheckBitFieldInitialization(Kind.getLocation(),
7458                                   cast<FieldDecl>(Entity.getDecl()),
7459                                   CurInit.get());
7460 
7461   // Check for std::move on construction.
7462   if (const Expr *E = CurInit.get()) {
7463     CheckMoveOnConstruction(S, E,
7464                             Entity.getKind() == InitializedEntity::EK_Result);
7465   }
7466 
7467   return CurInit;
7468 }
7469 
7470 /// Somewhere within T there is an uninitialized reference subobject.
7471 /// Dig it out and diagnose it.
7472 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
7473                                            QualType T) {
7474   if (T->isReferenceType()) {
7475     S.Diag(Loc, diag::err_reference_without_init)
7476       << T.getNonReferenceType();
7477     return true;
7478   }
7479 
7480   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
7481   if (!RD || !RD->hasUninitializedReferenceMember())
7482     return false;
7483 
7484   for (const auto *FI : RD->fields()) {
7485     if (FI->isUnnamedBitfield())
7486       continue;
7487 
7488     if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
7489       S.Diag(Loc, diag::note_value_initialization_here) << RD;
7490       return true;
7491     }
7492   }
7493 
7494   for (const auto &BI : RD->bases()) {
7495     if (DiagnoseUninitializedReference(S, BI.getLocStart(), BI.getType())) {
7496       S.Diag(Loc, diag::note_value_initialization_here) << RD;
7497       return true;
7498     }
7499   }
7500 
7501   return false;
7502 }
7503 
7504 
7505 //===----------------------------------------------------------------------===//
7506 // Diagnose initialization failures
7507 //===----------------------------------------------------------------------===//
7508 
7509 /// Emit notes associated with an initialization that failed due to a
7510 /// "simple" conversion failure.
7511 static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity,
7512                                    Expr *op) {
7513   QualType destType = entity.getType();
7514   if (destType.getNonReferenceType()->isObjCObjectPointerType() &&
7515       op->getType()->isObjCObjectPointerType()) {
7516 
7517     // Emit a possible note about the conversion failing because the
7518     // operand is a message send with a related result type.
7519     S.EmitRelatedResultTypeNote(op);
7520 
7521     // Emit a possible note about a return failing because we're
7522     // expecting a related result type.
7523     if (entity.getKind() == InitializedEntity::EK_Result)
7524       S.EmitRelatedResultTypeNoteForReturn(destType);
7525   }
7526 }
7527 
7528 static void diagnoseListInit(Sema &S, const InitializedEntity &Entity,
7529                              InitListExpr *InitList) {
7530   QualType DestType = Entity.getType();
7531 
7532   QualType E;
7533   if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) {
7534     QualType ArrayType = S.Context.getConstantArrayType(
7535         E.withConst(),
7536         llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
7537                     InitList->getNumInits()),
7538         clang::ArrayType::Normal, 0);
7539     InitializedEntity HiddenArray =
7540         InitializedEntity::InitializeTemporary(ArrayType);
7541     return diagnoseListInit(S, HiddenArray, InitList);
7542   }
7543 
7544   if (DestType->isReferenceType()) {
7545     // A list-initialization failure for a reference means that we tried to
7546     // create a temporary of the inner type (per [dcl.init.list]p3.6) and the
7547     // inner initialization failed.
7548     QualType T = DestType->getAs<ReferenceType>()->getPointeeType();
7549     diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList);
7550     SourceLocation Loc = InitList->getLocStart();
7551     if (auto *D = Entity.getDecl())
7552       Loc = D->getLocation();
7553     S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T;
7554     return;
7555   }
7556 
7557   InitListChecker DiagnoseInitList(S, Entity, InitList, DestType,
7558                                    /*VerifyOnly=*/false,
7559                                    /*TreatUnavailableAsInvalid=*/false);
7560   assert(DiagnoseInitList.HadError() &&
7561          "Inconsistent init list check result.");
7562 }
7563 
7564 bool InitializationSequence::Diagnose(Sema &S,
7565                                       const InitializedEntity &Entity,
7566                                       const InitializationKind &Kind,
7567                                       ArrayRef<Expr *> Args) {
7568   if (!Failed())
7569     return false;
7570 
7571   QualType DestType = Entity.getType();
7572   switch (Failure) {
7573   case FK_TooManyInitsForReference:
7574     // FIXME: Customize for the initialized entity?
7575     if (Args.empty()) {
7576       // Dig out the reference subobject which is uninitialized and diagnose it.
7577       // If this is value-initialization, this could be nested some way within
7578       // the target type.
7579       assert(Kind.getKind() == InitializationKind::IK_Value ||
7580              DestType->isReferenceType());
7581       bool Diagnosed =
7582         DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
7583       assert(Diagnosed && "couldn't find uninitialized reference to diagnose");
7584       (void)Diagnosed;
7585     } else  // FIXME: diagnostic below could be better!
7586       S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
7587         << SourceRange(Args.front()->getLocStart(), Args.back()->getLocEnd());
7588     break;
7589   case FK_ParenthesizedListInitForReference:
7590     S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
7591       << 1 << Entity.getType() << Args[0]->getSourceRange();
7592     break;
7593 
7594   case FK_ArrayNeedsInitList:
7595     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0;
7596     break;
7597   case FK_ArrayNeedsInitListOrStringLiteral:
7598     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1;
7599     break;
7600   case FK_ArrayNeedsInitListOrWideStringLiteral:
7601     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2;
7602     break;
7603   case FK_NarrowStringIntoWideCharArray:
7604     S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar);
7605     break;
7606   case FK_WideStringIntoCharArray:
7607     S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char);
7608     break;
7609   case FK_IncompatWideStringIntoWideChar:
7610     S.Diag(Kind.getLocation(),
7611            diag::err_array_init_incompat_wide_string_into_wchar);
7612     break;
7613   case FK_PlainStringIntoUTF8Char:
7614     S.Diag(Kind.getLocation(),
7615            diag::err_array_init_plain_string_into_char8_t);
7616     S.Diag(Args.front()->getLocStart(),
7617            diag::note_array_init_plain_string_into_char8_t)
7618       << FixItHint::CreateInsertion(Args.front()->getLocStart(), "u8");
7619     break;
7620   case FK_UTF8StringIntoPlainChar:
7621     S.Diag(Kind.getLocation(),
7622            diag::err_array_init_utf8_string_into_char);
7623     break;
7624   case FK_ArrayTypeMismatch:
7625   case FK_NonConstantArrayInit:
7626     S.Diag(Kind.getLocation(),
7627            (Failure == FK_ArrayTypeMismatch
7628               ? diag::err_array_init_different_type
7629               : diag::err_array_init_non_constant_array))
7630       << DestType.getNonReferenceType()
7631       << Args[0]->getType()
7632       << Args[0]->getSourceRange();
7633     break;
7634 
7635   case FK_VariableLengthArrayHasInitializer:
7636     S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
7637       << Args[0]->getSourceRange();
7638     break;
7639 
7640   case FK_AddressOfOverloadFailed: {
7641     DeclAccessPair Found;
7642     S.ResolveAddressOfOverloadedFunction(Args[0],
7643                                          DestType.getNonReferenceType(),
7644                                          true,
7645                                          Found);
7646     break;
7647   }
7648 
7649   case FK_AddressOfUnaddressableFunction: {
7650     auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(Args[0])->getDecl());
7651     S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
7652                                         Args[0]->getLocStart());
7653     break;
7654   }
7655 
7656   case FK_ReferenceInitOverloadFailed:
7657   case FK_UserConversionOverloadFailed:
7658     switch (FailedOverloadResult) {
7659     case OR_Ambiguous:
7660       if (Failure == FK_UserConversionOverloadFailed)
7661         S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
7662           << Args[0]->getType() << DestType
7663           << Args[0]->getSourceRange();
7664       else
7665         S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
7666           << DestType << Args[0]->getType()
7667           << Args[0]->getSourceRange();
7668 
7669       FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
7670       break;
7671 
7672     case OR_No_Viable_Function:
7673       if (!S.RequireCompleteType(Kind.getLocation(),
7674                                  DestType.getNonReferenceType(),
7675                           diag::err_typecheck_nonviable_condition_incomplete,
7676                                Args[0]->getType(), Args[0]->getSourceRange()))
7677         S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
7678           << (Entity.getKind() == InitializedEntity::EK_Result)
7679           << Args[0]->getType() << Args[0]->getSourceRange()
7680           << DestType.getNonReferenceType();
7681 
7682       FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
7683       break;
7684 
7685     case OR_Deleted: {
7686       S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
7687         << Args[0]->getType() << DestType.getNonReferenceType()
7688         << Args[0]->getSourceRange();
7689       OverloadCandidateSet::iterator Best;
7690       OverloadingResult Ovl
7691         = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
7692       if (Ovl == OR_Deleted) {
7693         S.NoteDeletedFunction(Best->Function);
7694       } else {
7695         llvm_unreachable("Inconsistent overload resolution?");
7696       }
7697       break;
7698     }
7699 
7700     case OR_Success:
7701       llvm_unreachable("Conversion did not fail!");
7702     }
7703     break;
7704 
7705   case FK_NonConstLValueReferenceBindingToTemporary:
7706     if (isa<InitListExpr>(Args[0])) {
7707       S.Diag(Kind.getLocation(),
7708              diag::err_lvalue_reference_bind_to_initlist)
7709       << DestType.getNonReferenceType().isVolatileQualified()
7710       << DestType.getNonReferenceType()
7711       << Args[0]->getSourceRange();
7712       break;
7713     }
7714     LLVM_FALLTHROUGH;
7715 
7716   case FK_NonConstLValueReferenceBindingToUnrelated:
7717     S.Diag(Kind.getLocation(),
7718            Failure == FK_NonConstLValueReferenceBindingToTemporary
7719              ? diag::err_lvalue_reference_bind_to_temporary
7720              : diag::err_lvalue_reference_bind_to_unrelated)
7721       << DestType.getNonReferenceType().isVolatileQualified()
7722       << DestType.getNonReferenceType()
7723       << Args[0]->getType()
7724       << Args[0]->getSourceRange();
7725     break;
7726 
7727   case FK_NonConstLValueReferenceBindingToBitfield: {
7728     // We don't necessarily have an unambiguous source bit-field.
7729     FieldDecl *BitField = Args[0]->getSourceBitField();
7730     S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
7731       << DestType.isVolatileQualified()
7732       << (BitField ? BitField->getDeclName() : DeclarationName())
7733       << (BitField != nullptr)
7734       << Args[0]->getSourceRange();
7735     if (BitField)
7736       S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
7737     break;
7738   }
7739 
7740   case FK_NonConstLValueReferenceBindingToVectorElement:
7741     S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
7742       << DestType.isVolatileQualified()
7743       << Args[0]->getSourceRange();
7744     break;
7745 
7746   case FK_RValueReferenceBindingToLValue:
7747     S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
7748       << DestType.getNonReferenceType() << Args[0]->getType()
7749       << Args[0]->getSourceRange();
7750     break;
7751 
7752   case FK_ReferenceInitDropsQualifiers: {
7753     QualType SourceType = Args[0]->getType();
7754     QualType NonRefType = DestType.getNonReferenceType();
7755     Qualifiers DroppedQualifiers =
7756         SourceType.getQualifiers() - NonRefType.getQualifiers();
7757 
7758     S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
7759       << SourceType
7760       << NonRefType
7761       << DroppedQualifiers.getCVRQualifiers()
7762       << Args[0]->getSourceRange();
7763     break;
7764   }
7765 
7766   case FK_ReferenceInitFailed:
7767     S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
7768       << DestType.getNonReferenceType()
7769       << Args[0]->isLValue()
7770       << Args[0]->getType()
7771       << Args[0]->getSourceRange();
7772     emitBadConversionNotes(S, Entity, Args[0]);
7773     break;
7774 
7775   case FK_ConversionFailed: {
7776     QualType FromType = Args[0]->getType();
7777     PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
7778       << (int)Entity.getKind()
7779       << DestType
7780       << Args[0]->isLValue()
7781       << FromType
7782       << Args[0]->getSourceRange();
7783     S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
7784     S.Diag(Kind.getLocation(), PDiag);
7785     emitBadConversionNotes(S, Entity, Args[0]);
7786     break;
7787   }
7788 
7789   case FK_ConversionFromPropertyFailed:
7790     // No-op. This error has already been reported.
7791     break;
7792 
7793   case FK_TooManyInitsForScalar: {
7794     SourceRange R;
7795 
7796     auto *InitList = dyn_cast<InitListExpr>(Args[0]);
7797     if (InitList && InitList->getNumInits() >= 1) {
7798       R = SourceRange(InitList->getInit(0)->getLocEnd(), InitList->getLocEnd());
7799     } else {
7800       assert(Args.size() > 1 && "Expected multiple initializers!");
7801       R = SourceRange(Args.front()->getLocEnd(), Args.back()->getLocEnd());
7802     }
7803 
7804     R.setBegin(S.getLocForEndOfToken(R.getBegin()));
7805     if (Kind.isCStyleOrFunctionalCast())
7806       S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
7807         << R;
7808     else
7809       S.Diag(Kind.getLocation(), diag::err_excess_initializers)
7810         << /*scalar=*/2 << R;
7811     break;
7812   }
7813 
7814   case FK_ParenthesizedListInitForScalar:
7815     S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
7816       << 0 << Entity.getType() << Args[0]->getSourceRange();
7817     break;
7818 
7819   case FK_ReferenceBindingToInitList:
7820     S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
7821       << DestType.getNonReferenceType() << Args[0]->getSourceRange();
7822     break;
7823 
7824   case FK_InitListBadDestinationType:
7825     S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
7826       << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
7827     break;
7828 
7829   case FK_ListConstructorOverloadFailed:
7830   case FK_ConstructorOverloadFailed: {
7831     SourceRange ArgsRange;
7832     if (Args.size())
7833       ArgsRange = SourceRange(Args.front()->getLocStart(),
7834                               Args.back()->getLocEnd());
7835 
7836     if (Failure == FK_ListConstructorOverloadFailed) {
7837       assert(Args.size() == 1 &&
7838              "List construction from other than 1 argument.");
7839       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
7840       Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
7841     }
7842 
7843     // FIXME: Using "DestType" for the entity we're printing is probably
7844     // bad.
7845     switch (FailedOverloadResult) {
7846       case OR_Ambiguous:
7847         S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
7848           << DestType << ArgsRange;
7849         FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
7850         break;
7851 
7852       case OR_No_Viable_Function:
7853         if (Kind.getKind() == InitializationKind::IK_Default &&
7854             (Entity.getKind() == InitializedEntity::EK_Base ||
7855              Entity.getKind() == InitializedEntity::EK_Member) &&
7856             isa<CXXConstructorDecl>(S.CurContext)) {
7857           // This is implicit default initialization of a member or
7858           // base within a constructor. If no viable function was
7859           // found, notify the user that they need to explicitly
7860           // initialize this base/member.
7861           CXXConstructorDecl *Constructor
7862             = cast<CXXConstructorDecl>(S.CurContext);
7863           const CXXRecordDecl *InheritedFrom = nullptr;
7864           if (auto Inherited = Constructor->getInheritedConstructor())
7865             InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass();
7866           if (Entity.getKind() == InitializedEntity::EK_Base) {
7867             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
7868               << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
7869               << S.Context.getTypeDeclType(Constructor->getParent())
7870               << /*base=*/0
7871               << Entity.getType()
7872               << InheritedFrom;
7873 
7874             RecordDecl *BaseDecl
7875               = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
7876                                                                   ->getDecl();
7877             S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
7878               << S.Context.getTagDeclType(BaseDecl);
7879           } else {
7880             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
7881               << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
7882               << S.Context.getTypeDeclType(Constructor->getParent())
7883               << /*member=*/1
7884               << Entity.getName()
7885               << InheritedFrom;
7886             S.Diag(Entity.getDecl()->getLocation(),
7887                    diag::note_member_declared_at);
7888 
7889             if (const RecordType *Record
7890                                  = Entity.getType()->getAs<RecordType>())
7891               S.Diag(Record->getDecl()->getLocation(),
7892                      diag::note_previous_decl)
7893                 << S.Context.getTagDeclType(Record->getDecl());
7894           }
7895           break;
7896         }
7897 
7898         S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
7899           << DestType << ArgsRange;
7900         FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
7901         break;
7902 
7903       case OR_Deleted: {
7904         OverloadCandidateSet::iterator Best;
7905         OverloadingResult Ovl
7906           = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
7907         if (Ovl != OR_Deleted) {
7908           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
7909             << true << DestType << ArgsRange;
7910           llvm_unreachable("Inconsistent overload resolution?");
7911           break;
7912         }
7913 
7914         // If this is a defaulted or implicitly-declared function, then
7915         // it was implicitly deleted. Make it clear that the deletion was
7916         // implicit.
7917         if (S.isImplicitlyDeleted(Best->Function))
7918           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
7919             << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
7920             << DestType << ArgsRange;
7921         else
7922           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
7923             << true << DestType << ArgsRange;
7924 
7925         S.NoteDeletedFunction(Best->Function);
7926         break;
7927       }
7928 
7929       case OR_Success:
7930         llvm_unreachable("Conversion did not fail!");
7931     }
7932   }
7933   break;
7934 
7935   case FK_DefaultInitOfConst:
7936     if (Entity.getKind() == InitializedEntity::EK_Member &&
7937         isa<CXXConstructorDecl>(S.CurContext)) {
7938       // This is implicit default-initialization of a const member in
7939       // a constructor. Complain that it needs to be explicitly
7940       // initialized.
7941       CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
7942       S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
7943         << (Constructor->getInheritedConstructor() ? 2 :
7944             Constructor->isImplicit() ? 1 : 0)
7945         << S.Context.getTypeDeclType(Constructor->getParent())
7946         << /*const=*/1
7947         << Entity.getName();
7948       S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
7949         << Entity.getName();
7950     } else {
7951       S.Diag(Kind.getLocation(), diag::err_default_init_const)
7952           << DestType << (bool)DestType->getAs<RecordType>();
7953     }
7954     break;
7955 
7956   case FK_Incomplete:
7957     S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
7958                           diag::err_init_incomplete_type);
7959     break;
7960 
7961   case FK_ListInitializationFailed: {
7962     // Run the init list checker again to emit diagnostics.
7963     InitListExpr *InitList = cast<InitListExpr>(Args[0]);
7964     diagnoseListInit(S, Entity, InitList);
7965     break;
7966   }
7967 
7968   case FK_PlaceholderType: {
7969     // FIXME: Already diagnosed!
7970     break;
7971   }
7972 
7973   case FK_ExplicitConstructor: {
7974     S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
7975       << Args[0]->getSourceRange();
7976     OverloadCandidateSet::iterator Best;
7977     OverloadingResult Ovl
7978       = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
7979     (void)Ovl;
7980     assert(Ovl == OR_Success && "Inconsistent overload resolution");
7981     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
7982     S.Diag(CtorDecl->getLocation(),
7983            diag::note_explicit_ctor_deduction_guide_here) << false;
7984     break;
7985   }
7986   }
7987 
7988   PrintInitLocationNote(S, Entity);
7989   return true;
7990 }
7991 
7992 void InitializationSequence::dump(raw_ostream &OS) const {
7993   switch (SequenceKind) {
7994   case FailedSequence: {
7995     OS << "Failed sequence: ";
7996     switch (Failure) {
7997     case FK_TooManyInitsForReference:
7998       OS << "too many initializers for reference";
7999       break;
8000 
8001     case FK_ParenthesizedListInitForReference:
8002       OS << "parenthesized list init for reference";
8003       break;
8004 
8005     case FK_ArrayNeedsInitList:
8006       OS << "array requires initializer list";
8007       break;
8008 
8009     case FK_AddressOfUnaddressableFunction:
8010       OS << "address of unaddressable function was taken";
8011       break;
8012 
8013     case FK_ArrayNeedsInitListOrStringLiteral:
8014       OS << "array requires initializer list or string literal";
8015       break;
8016 
8017     case FK_ArrayNeedsInitListOrWideStringLiteral:
8018       OS << "array requires initializer list or wide string literal";
8019       break;
8020 
8021     case FK_NarrowStringIntoWideCharArray:
8022       OS << "narrow string into wide char array";
8023       break;
8024 
8025     case FK_WideStringIntoCharArray:
8026       OS << "wide string into char array";
8027       break;
8028 
8029     case FK_IncompatWideStringIntoWideChar:
8030       OS << "incompatible wide string into wide char array";
8031       break;
8032 
8033     case FK_PlainStringIntoUTF8Char:
8034       OS << "plain string literal into char8_t array";
8035       break;
8036 
8037     case FK_UTF8StringIntoPlainChar:
8038       OS << "u8 string literal into char array";
8039       break;
8040 
8041     case FK_ArrayTypeMismatch:
8042       OS << "array type mismatch";
8043       break;
8044 
8045     case FK_NonConstantArrayInit:
8046       OS << "non-constant array initializer";
8047       break;
8048 
8049     case FK_AddressOfOverloadFailed:
8050       OS << "address of overloaded function failed";
8051       break;
8052 
8053     case FK_ReferenceInitOverloadFailed:
8054       OS << "overload resolution for reference initialization failed";
8055       break;
8056 
8057     case FK_NonConstLValueReferenceBindingToTemporary:
8058       OS << "non-const lvalue reference bound to temporary";
8059       break;
8060 
8061     case FK_NonConstLValueReferenceBindingToBitfield:
8062       OS << "non-const lvalue reference bound to bit-field";
8063       break;
8064 
8065     case FK_NonConstLValueReferenceBindingToVectorElement:
8066       OS << "non-const lvalue reference bound to vector element";
8067       break;
8068 
8069     case FK_NonConstLValueReferenceBindingToUnrelated:
8070       OS << "non-const lvalue reference bound to unrelated type";
8071       break;
8072 
8073     case FK_RValueReferenceBindingToLValue:
8074       OS << "rvalue reference bound to an lvalue";
8075       break;
8076 
8077     case FK_ReferenceInitDropsQualifiers:
8078       OS << "reference initialization drops qualifiers";
8079       break;
8080 
8081     case FK_ReferenceInitFailed:
8082       OS << "reference initialization failed";
8083       break;
8084 
8085     case FK_ConversionFailed:
8086       OS << "conversion failed";
8087       break;
8088 
8089     case FK_ConversionFromPropertyFailed:
8090       OS << "conversion from property failed";
8091       break;
8092 
8093     case FK_TooManyInitsForScalar:
8094       OS << "too many initializers for scalar";
8095       break;
8096 
8097     case FK_ParenthesizedListInitForScalar:
8098       OS << "parenthesized list init for reference";
8099       break;
8100 
8101     case FK_ReferenceBindingToInitList:
8102       OS << "referencing binding to initializer list";
8103       break;
8104 
8105     case FK_InitListBadDestinationType:
8106       OS << "initializer list for non-aggregate, non-scalar type";
8107       break;
8108 
8109     case FK_UserConversionOverloadFailed:
8110       OS << "overloading failed for user-defined conversion";
8111       break;
8112 
8113     case FK_ConstructorOverloadFailed:
8114       OS << "constructor overloading failed";
8115       break;
8116 
8117     case FK_DefaultInitOfConst:
8118       OS << "default initialization of a const variable";
8119       break;
8120 
8121     case FK_Incomplete:
8122       OS << "initialization of incomplete type";
8123       break;
8124 
8125     case FK_ListInitializationFailed:
8126       OS << "list initialization checker failure";
8127       break;
8128 
8129     case FK_VariableLengthArrayHasInitializer:
8130       OS << "variable length array has an initializer";
8131       break;
8132 
8133     case FK_PlaceholderType:
8134       OS << "initializer expression isn't contextually valid";
8135       break;
8136 
8137     case FK_ListConstructorOverloadFailed:
8138       OS << "list constructor overloading failed";
8139       break;
8140 
8141     case FK_ExplicitConstructor:
8142       OS << "list copy initialization chose explicit constructor";
8143       break;
8144     }
8145     OS << '\n';
8146     return;
8147   }
8148 
8149   case DependentSequence:
8150     OS << "Dependent sequence\n";
8151     return;
8152 
8153   case NormalSequence:
8154     OS << "Normal sequence: ";
8155     break;
8156   }
8157 
8158   for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
8159     if (S != step_begin()) {
8160       OS << " -> ";
8161     }
8162 
8163     switch (S->Kind) {
8164     case SK_ResolveAddressOfOverloadedFunction:
8165       OS << "resolve address of overloaded function";
8166       break;
8167 
8168     case SK_CastDerivedToBaseRValue:
8169       OS << "derived-to-base (rvalue)";
8170       break;
8171 
8172     case SK_CastDerivedToBaseXValue:
8173       OS << "derived-to-base (xvalue)";
8174       break;
8175 
8176     case SK_CastDerivedToBaseLValue:
8177       OS << "derived-to-base (lvalue)";
8178       break;
8179 
8180     case SK_BindReference:
8181       OS << "bind reference to lvalue";
8182       break;
8183 
8184     case SK_BindReferenceToTemporary:
8185       OS << "bind reference to a temporary";
8186       break;
8187 
8188     case SK_FinalCopy:
8189       OS << "final copy in class direct-initialization";
8190       break;
8191 
8192     case SK_ExtraneousCopyToTemporary:
8193       OS << "extraneous C++03 copy to temporary";
8194       break;
8195 
8196     case SK_UserConversion:
8197       OS << "user-defined conversion via " << *S->Function.Function;
8198       break;
8199 
8200     case SK_QualificationConversionRValue:
8201       OS << "qualification conversion (rvalue)";
8202       break;
8203 
8204     case SK_QualificationConversionXValue:
8205       OS << "qualification conversion (xvalue)";
8206       break;
8207 
8208     case SK_QualificationConversionLValue:
8209       OS << "qualification conversion (lvalue)";
8210       break;
8211 
8212     case SK_AtomicConversion:
8213       OS << "non-atomic-to-atomic conversion";
8214       break;
8215 
8216     case SK_LValueToRValue:
8217       OS << "load (lvalue to rvalue)";
8218       break;
8219 
8220     case SK_ConversionSequence:
8221       OS << "implicit conversion sequence (";
8222       S->ICS->dump(); // FIXME: use OS
8223       OS << ")";
8224       break;
8225 
8226     case SK_ConversionSequenceNoNarrowing:
8227       OS << "implicit conversion sequence with narrowing prohibited (";
8228       S->ICS->dump(); // FIXME: use OS
8229       OS << ")";
8230       break;
8231 
8232     case SK_ListInitialization:
8233       OS << "list aggregate initialization";
8234       break;
8235 
8236     case SK_UnwrapInitList:
8237       OS << "unwrap reference initializer list";
8238       break;
8239 
8240     case SK_RewrapInitList:
8241       OS << "rewrap reference initializer list";
8242       break;
8243 
8244     case SK_ConstructorInitialization:
8245       OS << "constructor initialization";
8246       break;
8247 
8248     case SK_ConstructorInitializationFromList:
8249       OS << "list initialization via constructor";
8250       break;
8251 
8252     case SK_ZeroInitialization:
8253       OS << "zero initialization";
8254       break;
8255 
8256     case SK_CAssignment:
8257       OS << "C assignment";
8258       break;
8259 
8260     case SK_StringInit:
8261       OS << "string initialization";
8262       break;
8263 
8264     case SK_ObjCObjectConversion:
8265       OS << "Objective-C object conversion";
8266       break;
8267 
8268     case SK_ArrayLoopIndex:
8269       OS << "indexing for array initialization loop";
8270       break;
8271 
8272     case SK_ArrayLoopInit:
8273       OS << "array initialization loop";
8274       break;
8275 
8276     case SK_ArrayInit:
8277       OS << "array initialization";
8278       break;
8279 
8280     case SK_GNUArrayInit:
8281       OS << "array initialization (GNU extension)";
8282       break;
8283 
8284     case SK_ParenthesizedArrayInit:
8285       OS << "parenthesized array initialization";
8286       break;
8287 
8288     case SK_PassByIndirectCopyRestore:
8289       OS << "pass by indirect copy and restore";
8290       break;
8291 
8292     case SK_PassByIndirectRestore:
8293       OS << "pass by indirect restore";
8294       break;
8295 
8296     case SK_ProduceObjCObject:
8297       OS << "Objective-C object retension";
8298       break;
8299 
8300     case SK_StdInitializerList:
8301       OS << "std::initializer_list from initializer list";
8302       break;
8303 
8304     case SK_StdInitializerListConstructorCall:
8305       OS << "list initialization from std::initializer_list";
8306       break;
8307 
8308     case SK_OCLSamplerInit:
8309       OS << "OpenCL sampler_t from integer constant";
8310       break;
8311 
8312     case SK_OCLZeroEvent:
8313       OS << "OpenCL event_t from zero";
8314       break;
8315 
8316     case SK_OCLZeroQueue:
8317       OS << "OpenCL queue_t from zero";
8318       break;
8319     }
8320 
8321     OS << " [" << S->Type.getAsString() << ']';
8322   }
8323 
8324   OS << '\n';
8325 }
8326 
8327 void InitializationSequence::dump() const {
8328   dump(llvm::errs());
8329 }
8330 
8331 static void DiagnoseNarrowingInInitList(Sema &S,
8332                                         const ImplicitConversionSequence &ICS,
8333                                         QualType PreNarrowingType,
8334                                         QualType EntityType,
8335                                         const Expr *PostInit) {
8336   const StandardConversionSequence *SCS = nullptr;
8337   switch (ICS.getKind()) {
8338   case ImplicitConversionSequence::StandardConversion:
8339     SCS = &ICS.Standard;
8340     break;
8341   case ImplicitConversionSequence::UserDefinedConversion:
8342     SCS = &ICS.UserDefined.After;
8343     break;
8344   case ImplicitConversionSequence::AmbiguousConversion:
8345   case ImplicitConversionSequence::EllipsisConversion:
8346   case ImplicitConversionSequence::BadConversion:
8347     return;
8348   }
8349 
8350   // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
8351   APValue ConstantValue;
8352   QualType ConstantType;
8353   switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
8354                                 ConstantType)) {
8355   case NK_Not_Narrowing:
8356   case NK_Dependent_Narrowing:
8357     // No narrowing occurred.
8358     return;
8359 
8360   case NK_Type_Narrowing:
8361     // This was a floating-to-integer conversion, which is always considered a
8362     // narrowing conversion even if the value is a constant and can be
8363     // represented exactly as an integer.
8364     S.Diag(PostInit->getLocStart(),
8365            (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11)
8366                ? diag::warn_init_list_type_narrowing
8367                : diag::ext_init_list_type_narrowing)
8368       << PostInit->getSourceRange()
8369       << PreNarrowingType.getLocalUnqualifiedType()
8370       << EntityType.getLocalUnqualifiedType();
8371     break;
8372 
8373   case NK_Constant_Narrowing:
8374     // A constant value was narrowed.
8375     S.Diag(PostInit->getLocStart(),
8376            (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11)
8377                ? diag::warn_init_list_constant_narrowing
8378                : diag::ext_init_list_constant_narrowing)
8379       << PostInit->getSourceRange()
8380       << ConstantValue.getAsString(S.getASTContext(), ConstantType)
8381       << EntityType.getLocalUnqualifiedType();
8382     break;
8383 
8384   case NK_Variable_Narrowing:
8385     // A variable's value may have been narrowed.
8386     S.Diag(PostInit->getLocStart(),
8387            (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11)
8388                ? diag::warn_init_list_variable_narrowing
8389                : diag::ext_init_list_variable_narrowing)
8390       << PostInit->getSourceRange()
8391       << PreNarrowingType.getLocalUnqualifiedType()
8392       << EntityType.getLocalUnqualifiedType();
8393     break;
8394   }
8395 
8396   SmallString<128> StaticCast;
8397   llvm::raw_svector_ostream OS(StaticCast);
8398   OS << "static_cast<";
8399   if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
8400     // It's important to use the typedef's name if there is one so that the
8401     // fixit doesn't break code using types like int64_t.
8402     //
8403     // FIXME: This will break if the typedef requires qualification.  But
8404     // getQualifiedNameAsString() includes non-machine-parsable components.
8405     OS << *TT->getDecl();
8406   } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
8407     OS << BT->getName(S.getLangOpts());
8408   else {
8409     // Oops, we didn't find the actual type of the variable.  Don't emit a fixit
8410     // with a broken cast.
8411     return;
8412   }
8413   OS << ">(";
8414   S.Diag(PostInit->getLocStart(), diag::note_init_list_narrowing_silence)
8415       << PostInit->getSourceRange()
8416       << FixItHint::CreateInsertion(PostInit->getLocStart(), OS.str())
8417       << FixItHint::CreateInsertion(
8418              S.getLocForEndOfToken(PostInit->getLocEnd()), ")");
8419 }
8420 
8421 //===----------------------------------------------------------------------===//
8422 // Initialization helper functions
8423 //===----------------------------------------------------------------------===//
8424 bool
8425 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
8426                                    ExprResult Init) {
8427   if (Init.isInvalid())
8428     return false;
8429 
8430   Expr *InitE = Init.get();
8431   assert(InitE && "No initialization expression");
8432 
8433   InitializationKind Kind
8434     = InitializationKind::CreateCopy(InitE->getLocStart(), SourceLocation());
8435   InitializationSequence Seq(*this, Entity, Kind, InitE);
8436   return !Seq.Failed();
8437 }
8438 
8439 ExprResult
8440 Sema::PerformCopyInitialization(const InitializedEntity &Entity,
8441                                 SourceLocation EqualLoc,
8442                                 ExprResult Init,
8443                                 bool TopLevelOfInitList,
8444                                 bool AllowExplicit) {
8445   if (Init.isInvalid())
8446     return ExprError();
8447 
8448   Expr *InitE = Init.get();
8449   assert(InitE && "No initialization expression?");
8450 
8451   if (EqualLoc.isInvalid())
8452     EqualLoc = InitE->getLocStart();
8453 
8454   InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
8455                                                            EqualLoc,
8456                                                            AllowExplicit);
8457   InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList);
8458 
8459   // Prevent infinite recursion when performing parameter copy-initialization.
8460   const bool ShouldTrackCopy =
8461       Entity.isParameterKind() && Seq.isConstructorInitialization();
8462   if (ShouldTrackCopy) {
8463     if (llvm::find(CurrentParameterCopyTypes, Entity.getType()) !=
8464         CurrentParameterCopyTypes.end()) {
8465       Seq.SetOverloadFailure(
8466           InitializationSequence::FK_ConstructorOverloadFailed,
8467           OR_No_Viable_Function);
8468 
8469       // Try to give a meaningful diagnostic note for the problematic
8470       // constructor.
8471       const auto LastStep = Seq.step_end() - 1;
8472       assert(LastStep->Kind ==
8473              InitializationSequence::SK_ConstructorInitialization);
8474       const FunctionDecl *Function = LastStep->Function.Function;
8475       auto Candidate =
8476           llvm::find_if(Seq.getFailedCandidateSet(),
8477                         [Function](const OverloadCandidate &Candidate) -> bool {
8478                           return Candidate.Viable &&
8479                                  Candidate.Function == Function &&
8480                                  Candidate.Conversions.size() > 0;
8481                         });
8482       if (Candidate != Seq.getFailedCandidateSet().end() &&
8483           Function->getNumParams() > 0) {
8484         Candidate->Viable = false;
8485         Candidate->FailureKind = ovl_fail_bad_conversion;
8486         Candidate->Conversions[0].setBad(BadConversionSequence::no_conversion,
8487                                          InitE,
8488                                          Function->getParamDecl(0)->getType());
8489       }
8490     }
8491     CurrentParameterCopyTypes.push_back(Entity.getType());
8492   }
8493 
8494   ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE);
8495 
8496   if (ShouldTrackCopy)
8497     CurrentParameterCopyTypes.pop_back();
8498 
8499   return Result;
8500 }
8501 
8502 /// Determine whether RD is, or is derived from, a specialization of CTD.
8503 static bool isOrIsDerivedFromSpecializationOf(CXXRecordDecl *RD,
8504                                               ClassTemplateDecl *CTD) {
8505   auto NotSpecialization = [&] (const CXXRecordDecl *Candidate) {
8506     auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Candidate);
8507     return !CTSD || !declaresSameEntity(CTSD->getSpecializedTemplate(), CTD);
8508   };
8509   return !(NotSpecialization(RD) && RD->forallBases(NotSpecialization));
8510 }
8511 
8512 QualType Sema::DeduceTemplateSpecializationFromInitializer(
8513     TypeSourceInfo *TSInfo, const InitializedEntity &Entity,
8514     const InitializationKind &Kind, MultiExprArg Inits) {
8515   auto *DeducedTST = dyn_cast<DeducedTemplateSpecializationType>(
8516       TSInfo->getType()->getContainedDeducedType());
8517   assert(DeducedTST && "not a deduced template specialization type");
8518 
8519   // We can only perform deduction for class templates.
8520   auto TemplateName = DeducedTST->getTemplateName();
8521   auto *Template =
8522       dyn_cast_or_null<ClassTemplateDecl>(TemplateName.getAsTemplateDecl());
8523   if (!Template) {
8524     Diag(Kind.getLocation(),
8525          diag::err_deduced_non_class_template_specialization_type)
8526       << (int)getTemplateNameKindForDiagnostics(TemplateName) << TemplateName;
8527     if (auto *TD = TemplateName.getAsTemplateDecl())
8528       Diag(TD->getLocation(), diag::note_template_decl_here);
8529     return QualType();
8530   }
8531 
8532   // Can't deduce from dependent arguments.
8533   if (Expr::hasAnyTypeDependentArguments(Inits))
8534     return Context.DependentTy;
8535 
8536   // FIXME: Perform "exact type" matching first, per CWG discussion?
8537   //        Or implement this via an implied 'T(T) -> T' deduction guide?
8538 
8539   // FIXME: Do we need/want a std::initializer_list<T> special case?
8540 
8541   // Look up deduction guides, including those synthesized from constructors.
8542   //
8543   // C++1z [over.match.class.deduct]p1:
8544   //   A set of functions and function templates is formed comprising:
8545   //   - For each constructor of the class template designated by the
8546   //     template-name, a function template [...]
8547   //  - For each deduction-guide, a function or function template [...]
8548   DeclarationNameInfo NameInfo(
8549       Context.DeclarationNames.getCXXDeductionGuideName(Template),
8550       TSInfo->getTypeLoc().getEndLoc());
8551   LookupResult Guides(*this, NameInfo, LookupOrdinaryName);
8552   LookupQualifiedName(Guides, Template->getDeclContext());
8553 
8554   // FIXME: Do not diagnose inaccessible deduction guides. The standard isn't
8555   // clear on this, but they're not found by name so access does not apply.
8556   Guides.suppressDiagnostics();
8557 
8558   // Figure out if this is list-initialization.
8559   InitListExpr *ListInit =
8560       (Inits.size() == 1 && Kind.getKind() != InitializationKind::IK_Direct)
8561           ? dyn_cast<InitListExpr>(Inits[0])
8562           : nullptr;
8563 
8564   // C++1z [over.match.class.deduct]p1:
8565   //   Initialization and overload resolution are performed as described in
8566   //   [dcl.init] and [over.match.ctor], [over.match.copy], or [over.match.list]
8567   //   (as appropriate for the type of initialization performed) for an object
8568   //   of a hypothetical class type, where the selected functions and function
8569   //   templates are considered to be the constructors of that class type
8570   //
8571   // Since we know we're initializing a class type of a type unrelated to that
8572   // of the initializer, this reduces to something fairly reasonable.
8573   OverloadCandidateSet Candidates(Kind.getLocation(),
8574                                   OverloadCandidateSet::CSK_Normal);
8575   OverloadCandidateSet::iterator Best;
8576   auto tryToResolveOverload =
8577       [&](bool OnlyListConstructors) -> OverloadingResult {
8578     Candidates.clear(OverloadCandidateSet::CSK_Normal);
8579     for (auto I = Guides.begin(), E = Guides.end(); I != E; ++I) {
8580       NamedDecl *D = (*I)->getUnderlyingDecl();
8581       if (D->isInvalidDecl())
8582         continue;
8583 
8584       auto *TD = dyn_cast<FunctionTemplateDecl>(D);
8585       auto *GD = dyn_cast_or_null<CXXDeductionGuideDecl>(
8586           TD ? TD->getTemplatedDecl() : dyn_cast<FunctionDecl>(D));
8587       if (!GD)
8588         continue;
8589 
8590       // C++ [over.match.ctor]p1: (non-list copy-initialization from non-class)
8591       //   For copy-initialization, the candidate functions are all the
8592       //   converting constructors (12.3.1) of that class.
8593       // C++ [over.match.copy]p1: (non-list copy-initialization from class)
8594       //   The converting constructors of T are candidate functions.
8595       if (Kind.isCopyInit() && !ListInit) {
8596         // Only consider converting constructors.
8597         if (GD->isExplicit())
8598           continue;
8599 
8600         // When looking for a converting constructor, deduction guides that
8601         // could never be called with one argument are not interesting to
8602         // check or note.
8603         if (GD->getMinRequiredArguments() > 1 ||
8604             (GD->getNumParams() == 0 && !GD->isVariadic()))
8605           continue;
8606       }
8607 
8608       // C++ [over.match.list]p1.1: (first phase list initialization)
8609       //   Initially, the candidate functions are the initializer-list
8610       //   constructors of the class T
8611       if (OnlyListConstructors && !isInitListConstructor(GD))
8612         continue;
8613 
8614       // C++ [over.match.list]p1.2: (second phase list initialization)
8615       //   the candidate functions are all the constructors of the class T
8616       // C++ [over.match.ctor]p1: (all other cases)
8617       //   the candidate functions are all the constructors of the class of
8618       //   the object being initialized
8619 
8620       // C++ [over.best.ics]p4:
8621       //   When [...] the constructor [...] is a candidate by
8622       //    - [over.match.copy] (in all cases)
8623       // FIXME: The "second phase of [over.match.list] case can also
8624       // theoretically happen here, but it's not clear whether we can
8625       // ever have a parameter of the right type.
8626       bool SuppressUserConversions = Kind.isCopyInit();
8627 
8628       if (TD)
8629         AddTemplateOverloadCandidate(TD, I.getPair(), /*ExplicitArgs*/ nullptr,
8630                                      Inits, Candidates,
8631                                      SuppressUserConversions);
8632       else
8633         AddOverloadCandidate(GD, I.getPair(), Inits, Candidates,
8634                              SuppressUserConversions);
8635     }
8636     return Candidates.BestViableFunction(*this, Kind.getLocation(), Best);
8637   };
8638 
8639   OverloadingResult Result = OR_No_Viable_Function;
8640 
8641   // C++11 [over.match.list]p1, per DR1467: for list-initialization, first
8642   // try initializer-list constructors.
8643   if (ListInit) {
8644     bool TryListConstructors = true;
8645 
8646     // Try list constructors unless the list is empty and the class has one or
8647     // more default constructors, in which case those constructors win.
8648     if (!ListInit->getNumInits()) {
8649       for (NamedDecl *D : Guides) {
8650         auto *FD = dyn_cast<FunctionDecl>(D->getUnderlyingDecl());
8651         if (FD && FD->getMinRequiredArguments() == 0) {
8652           TryListConstructors = false;
8653           break;
8654         }
8655       }
8656     } else if (ListInit->getNumInits() == 1) {
8657       // C++ [over.match.class.deduct]:
8658       //   As an exception, the first phase in [over.match.list] (considering
8659       //   initializer-list constructors) is omitted if the initializer list
8660       //   consists of a single expression of type cv U, where U is a
8661       //   specialization of C or a class derived from a specialization of C.
8662       Expr *E = ListInit->getInit(0);
8663       auto *RD = E->getType()->getAsCXXRecordDecl();
8664       if (!isa<InitListExpr>(E) && RD &&
8665           isOrIsDerivedFromSpecializationOf(RD, Template))
8666         TryListConstructors = false;
8667     }
8668 
8669     if (TryListConstructors)
8670       Result = tryToResolveOverload(/*OnlyListConstructor*/true);
8671     // Then unwrap the initializer list and try again considering all
8672     // constructors.
8673     Inits = MultiExprArg(ListInit->getInits(), ListInit->getNumInits());
8674   }
8675 
8676   // If list-initialization fails, or if we're doing any other kind of
8677   // initialization, we (eventually) consider constructors.
8678   if (Result == OR_No_Viable_Function)
8679     Result = tryToResolveOverload(/*OnlyListConstructor*/false);
8680 
8681   switch (Result) {
8682   case OR_Ambiguous:
8683     Diag(Kind.getLocation(), diag::err_deduced_class_template_ctor_ambiguous)
8684       << TemplateName;
8685     // FIXME: For list-initialization candidates, it'd usually be better to
8686     // list why they were not viable when given the initializer list itself as
8687     // an argument.
8688     Candidates.NoteCandidates(*this, OCD_ViableCandidates, Inits);
8689     return QualType();
8690 
8691   case OR_No_Viable_Function: {
8692     CXXRecordDecl *Primary =
8693         cast<ClassTemplateDecl>(Template)->getTemplatedDecl();
8694     bool Complete =
8695         isCompleteType(Kind.getLocation(), Context.getTypeDeclType(Primary));
8696     Diag(Kind.getLocation(),
8697          Complete ? diag::err_deduced_class_template_ctor_no_viable
8698                   : diag::err_deduced_class_template_incomplete)
8699       << TemplateName << !Guides.empty();
8700     Candidates.NoteCandidates(*this, OCD_AllCandidates, Inits);
8701     return QualType();
8702   }
8703 
8704   case OR_Deleted: {
8705     Diag(Kind.getLocation(), diag::err_deduced_class_template_deleted)
8706       << TemplateName;
8707     NoteDeletedFunction(Best->Function);
8708     return QualType();
8709   }
8710 
8711   case OR_Success:
8712     // C++ [over.match.list]p1:
8713     //   In copy-list-initialization, if an explicit constructor is chosen, the
8714     //   initialization is ill-formed.
8715     if (Kind.isCopyInit() && ListInit &&
8716         cast<CXXDeductionGuideDecl>(Best->Function)->isExplicit()) {
8717       bool IsDeductionGuide = !Best->Function->isImplicit();
8718       Diag(Kind.getLocation(), diag::err_deduced_class_template_explicit)
8719           << TemplateName << IsDeductionGuide;
8720       Diag(Best->Function->getLocation(),
8721            diag::note_explicit_ctor_deduction_guide_here)
8722           << IsDeductionGuide;
8723       return QualType();
8724     }
8725 
8726     // Make sure we didn't select an unusable deduction guide, and mark it
8727     // as referenced.
8728     DiagnoseUseOfDecl(Best->Function, Kind.getLocation());
8729     MarkFunctionReferenced(Kind.getLocation(), Best->Function);
8730     break;
8731   }
8732 
8733   // C++ [dcl.type.class.deduct]p1:
8734   //  The placeholder is replaced by the return type of the function selected
8735   //  by overload resolution for class template deduction.
8736   return SubstAutoType(TSInfo->getType(), Best->Function->getReturnType());
8737 }
8738