1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for initializers.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/DeclObjC.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/AST/ExprObjC.h"
17 #include "clang/AST/ExprOpenMP.h"
18 #include "clang/AST/TypeLoc.h"
19 #include "clang/Basic/TargetInfo.h"
20 #include "clang/Sema/Designator.h"
21 #include "clang/Sema/Initialization.h"
22 #include "clang/Sema/Lookup.h"
23 #include "clang/Sema/SemaInternal.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/raw_ostream.h"
28 
29 using namespace clang;
30 
31 //===----------------------------------------------------------------------===//
32 // Sema Initialization Checking
33 //===----------------------------------------------------------------------===//
34 
35 /// Check whether T is compatible with a wide character type (wchar_t,
36 /// char16_t or char32_t).
37 static bool IsWideCharCompatible(QualType T, ASTContext &Context) {
38   if (Context.typesAreCompatible(Context.getWideCharType(), T))
39     return true;
40   if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) {
41     return Context.typesAreCompatible(Context.Char16Ty, T) ||
42            Context.typesAreCompatible(Context.Char32Ty, T);
43   }
44   return false;
45 }
46 
47 enum StringInitFailureKind {
48   SIF_None,
49   SIF_NarrowStringIntoWideChar,
50   SIF_WideStringIntoChar,
51   SIF_IncompatWideStringIntoWideChar,
52   SIF_UTF8StringIntoPlainChar,
53   SIF_PlainStringIntoUTF8Char,
54   SIF_Other
55 };
56 
57 /// Check whether the array of type AT can be initialized by the Init
58 /// expression by means of string initialization. Returns SIF_None if so,
59 /// otherwise returns a StringInitFailureKind that describes why the
60 /// initialization would not work.
61 static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT,
62                                           ASTContext &Context) {
63   if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
64     return SIF_Other;
65 
66   // See if this is a string literal or @encode.
67   Init = Init->IgnoreParens();
68 
69   // Handle @encode, which is a narrow string.
70   if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
71     return SIF_None;
72 
73   // Otherwise we can only handle string literals.
74   StringLiteral *SL = dyn_cast<StringLiteral>(Init);
75   if (!SL)
76     return SIF_Other;
77 
78   const QualType ElemTy =
79       Context.getCanonicalType(AT->getElementType()).getUnqualifiedType();
80 
81   switch (SL->getKind()) {
82   case StringLiteral::UTF8:
83     // char8_t array can be initialized with a UTF-8 string.
84     if (ElemTy->isChar8Type())
85       return SIF_None;
86     LLVM_FALLTHROUGH;
87   case StringLiteral::Ascii:
88     // char array can be initialized with a narrow string.
89     // Only allow char x[] = "foo";  not char x[] = L"foo";
90     if (ElemTy->isCharType())
91       return (SL->getKind() == StringLiteral::UTF8 &&
92               Context.getLangOpts().Char8)
93                  ? SIF_UTF8StringIntoPlainChar
94                  : SIF_None;
95     if (ElemTy->isChar8Type())
96       return SIF_PlainStringIntoUTF8Char;
97     if (IsWideCharCompatible(ElemTy, Context))
98       return SIF_NarrowStringIntoWideChar;
99     return SIF_Other;
100   // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15:
101   // "An array with element type compatible with a qualified or unqualified
102   // version of wchar_t, char16_t, or char32_t may be initialized by a wide
103   // string literal with the corresponding encoding prefix (L, u, or U,
104   // respectively), optionally enclosed in braces.
105   case StringLiteral::UTF16:
106     if (Context.typesAreCompatible(Context.Char16Ty, ElemTy))
107       return SIF_None;
108     if (ElemTy->isCharType() || ElemTy->isChar8Type())
109       return SIF_WideStringIntoChar;
110     if (IsWideCharCompatible(ElemTy, Context))
111       return SIF_IncompatWideStringIntoWideChar;
112     return SIF_Other;
113   case StringLiteral::UTF32:
114     if (Context.typesAreCompatible(Context.Char32Ty, ElemTy))
115       return SIF_None;
116     if (ElemTy->isCharType() || ElemTy->isChar8Type())
117       return SIF_WideStringIntoChar;
118     if (IsWideCharCompatible(ElemTy, Context))
119       return SIF_IncompatWideStringIntoWideChar;
120     return SIF_Other;
121   case StringLiteral::Wide:
122     if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy))
123       return SIF_None;
124     if (ElemTy->isCharType() || ElemTy->isChar8Type())
125       return SIF_WideStringIntoChar;
126     if (IsWideCharCompatible(ElemTy, Context))
127       return SIF_IncompatWideStringIntoWideChar;
128     return SIF_Other;
129   }
130 
131   llvm_unreachable("missed a StringLiteral kind?");
132 }
133 
134 static StringInitFailureKind IsStringInit(Expr *init, QualType declType,
135                                           ASTContext &Context) {
136   const ArrayType *arrayType = Context.getAsArrayType(declType);
137   if (!arrayType)
138     return SIF_Other;
139   return IsStringInit(init, arrayType, Context);
140 }
141 
142 /// Update the type of a string literal, including any surrounding parentheses,
143 /// to match the type of the object which it is initializing.
144 static void updateStringLiteralType(Expr *E, QualType Ty) {
145   while (true) {
146     E->setType(Ty);
147     E->setValueKind(VK_RValue);
148     if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E)) {
149       break;
150     } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
151       E = PE->getSubExpr();
152     } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
153       assert(UO->getOpcode() == UO_Extension);
154       E = UO->getSubExpr();
155     } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) {
156       E = GSE->getResultExpr();
157     } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) {
158       E = CE->getChosenSubExpr();
159     } else {
160       llvm_unreachable("unexpected expr in string literal init");
161     }
162   }
163 }
164 
165 /// Fix a compound literal initializing an array so it's correctly marked
166 /// as an rvalue.
167 static void updateGNUCompoundLiteralRValue(Expr *E) {
168   while (true) {
169     E->setValueKind(VK_RValue);
170     if (isa<CompoundLiteralExpr>(E)) {
171       break;
172     } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
173       E = PE->getSubExpr();
174     } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
175       assert(UO->getOpcode() == UO_Extension);
176       E = UO->getSubExpr();
177     } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) {
178       E = GSE->getResultExpr();
179     } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) {
180       E = CE->getChosenSubExpr();
181     } else {
182       llvm_unreachable("unexpected expr in array compound literal init");
183     }
184   }
185 }
186 
187 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
188                             Sema &S) {
189   // Get the length of the string as parsed.
190   auto *ConstantArrayTy =
191       cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe());
192   uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue();
193 
194   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
195     // C99 6.7.8p14. We have an array of character type with unknown size
196     // being initialized to a string literal.
197     llvm::APInt ConstVal(32, StrLength);
198     // Return a new array type (C99 6.7.8p22).
199     DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
200                                            ConstVal,
201                                            ArrayType::Normal, 0);
202     updateStringLiteralType(Str, DeclT);
203     return;
204   }
205 
206   const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
207 
208   // We have an array of character type with known size.  However,
209   // the size may be smaller or larger than the string we are initializing.
210   // FIXME: Avoid truncation for 64-bit length strings.
211   if (S.getLangOpts().CPlusPlus) {
212     if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
213       // For Pascal strings it's OK to strip off the terminating null character,
214       // so the example below is valid:
215       //
216       // unsigned char a[2] = "\pa";
217       if (SL->isPascal())
218         StrLength--;
219     }
220 
221     // [dcl.init.string]p2
222     if (StrLength > CAT->getSize().getZExtValue())
223       S.Diag(Str->getBeginLoc(),
224              diag::err_initializer_string_for_char_array_too_long)
225           << Str->getSourceRange();
226   } else {
227     // C99 6.7.8p14.
228     if (StrLength-1 > CAT->getSize().getZExtValue())
229       S.Diag(Str->getBeginLoc(),
230              diag::ext_initializer_string_for_char_array_too_long)
231           << Str->getSourceRange();
232   }
233 
234   // Set the type to the actual size that we are initializing.  If we have
235   // something like:
236   //   char x[1] = "foo";
237   // then this will set the string literal's type to char[1].
238   updateStringLiteralType(Str, DeclT);
239 }
240 
241 //===----------------------------------------------------------------------===//
242 // Semantic checking for initializer lists.
243 //===----------------------------------------------------------------------===//
244 
245 namespace {
246 
247 /// Semantic checking for initializer lists.
248 ///
249 /// The InitListChecker class contains a set of routines that each
250 /// handle the initialization of a certain kind of entity, e.g.,
251 /// arrays, vectors, struct/union types, scalars, etc. The
252 /// InitListChecker itself performs a recursive walk of the subobject
253 /// structure of the type to be initialized, while stepping through
254 /// the initializer list one element at a time. The IList and Index
255 /// parameters to each of the Check* routines contain the active
256 /// (syntactic) initializer list and the index into that initializer
257 /// list that represents the current initializer. Each routine is
258 /// responsible for moving that Index forward as it consumes elements.
259 ///
260 /// Each Check* routine also has a StructuredList/StructuredIndex
261 /// arguments, which contains the current "structured" (semantic)
262 /// initializer list and the index into that initializer list where we
263 /// are copying initializers as we map them over to the semantic
264 /// list. Once we have completed our recursive walk of the subobject
265 /// structure, we will have constructed a full semantic initializer
266 /// list.
267 ///
268 /// C99 designators cause changes in the initializer list traversal,
269 /// because they make the initialization "jump" into a specific
270 /// subobject and then continue the initialization from that
271 /// point. CheckDesignatedInitializer() recursively steps into the
272 /// designated subobject and manages backing out the recursion to
273 /// initialize the subobjects after the one designated.
274 class InitListChecker {
275   Sema &SemaRef;
276   bool hadError;
277   bool VerifyOnly; // no diagnostics, no structure building
278   bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode.
279   llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic;
280   InitListExpr *FullyStructuredList;
281 
282   void CheckImplicitInitList(const InitializedEntity &Entity,
283                              InitListExpr *ParentIList, QualType T,
284                              unsigned &Index, InitListExpr *StructuredList,
285                              unsigned &StructuredIndex);
286   void CheckExplicitInitList(const InitializedEntity &Entity,
287                              InitListExpr *IList, QualType &T,
288                              InitListExpr *StructuredList,
289                              bool TopLevelObject = false);
290   void CheckListElementTypes(const InitializedEntity &Entity,
291                              InitListExpr *IList, QualType &DeclType,
292                              bool SubobjectIsDesignatorContext,
293                              unsigned &Index,
294                              InitListExpr *StructuredList,
295                              unsigned &StructuredIndex,
296                              bool TopLevelObject = false);
297   void CheckSubElementType(const InitializedEntity &Entity,
298                            InitListExpr *IList, QualType ElemType,
299                            unsigned &Index,
300                            InitListExpr *StructuredList,
301                            unsigned &StructuredIndex);
302   void CheckComplexType(const InitializedEntity &Entity,
303                         InitListExpr *IList, QualType DeclType,
304                         unsigned &Index,
305                         InitListExpr *StructuredList,
306                         unsigned &StructuredIndex);
307   void CheckScalarType(const InitializedEntity &Entity,
308                        InitListExpr *IList, QualType DeclType,
309                        unsigned &Index,
310                        InitListExpr *StructuredList,
311                        unsigned &StructuredIndex);
312   void CheckReferenceType(const InitializedEntity &Entity,
313                           InitListExpr *IList, QualType DeclType,
314                           unsigned &Index,
315                           InitListExpr *StructuredList,
316                           unsigned &StructuredIndex);
317   void CheckVectorType(const InitializedEntity &Entity,
318                        InitListExpr *IList, QualType DeclType, unsigned &Index,
319                        InitListExpr *StructuredList,
320                        unsigned &StructuredIndex);
321   void CheckStructUnionTypes(const InitializedEntity &Entity,
322                              InitListExpr *IList, QualType DeclType,
323                              CXXRecordDecl::base_class_range Bases,
324                              RecordDecl::field_iterator Field,
325                              bool SubobjectIsDesignatorContext, unsigned &Index,
326                              InitListExpr *StructuredList,
327                              unsigned &StructuredIndex,
328                              bool TopLevelObject = false);
329   void CheckArrayType(const InitializedEntity &Entity,
330                       InitListExpr *IList, QualType &DeclType,
331                       llvm::APSInt elementIndex,
332                       bool SubobjectIsDesignatorContext, unsigned &Index,
333                       InitListExpr *StructuredList,
334                       unsigned &StructuredIndex);
335   bool CheckDesignatedInitializer(const InitializedEntity &Entity,
336                                   InitListExpr *IList, DesignatedInitExpr *DIE,
337                                   unsigned DesigIdx,
338                                   QualType &CurrentObjectType,
339                                   RecordDecl::field_iterator *NextField,
340                                   llvm::APSInt *NextElementIndex,
341                                   unsigned &Index,
342                                   InitListExpr *StructuredList,
343                                   unsigned &StructuredIndex,
344                                   bool FinishSubobjectInit,
345                                   bool TopLevelObject);
346   InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
347                                            QualType CurrentObjectType,
348                                            InitListExpr *StructuredList,
349                                            unsigned StructuredIndex,
350                                            SourceRange InitRange,
351                                            bool IsFullyOverwritten = false);
352   void UpdateStructuredListElement(InitListExpr *StructuredList,
353                                    unsigned &StructuredIndex,
354                                    Expr *expr);
355   int numArrayElements(QualType DeclType);
356   int numStructUnionElements(QualType DeclType);
357 
358   static ExprResult PerformEmptyInit(Sema &SemaRef,
359                                      SourceLocation Loc,
360                                      const InitializedEntity &Entity,
361                                      bool VerifyOnly,
362                                      bool TreatUnavailableAsInvalid);
363 
364   // Explanation on the "FillWithNoInit" mode:
365   //
366   // Assume we have the following definitions (Case#1):
367   // struct P { char x[6][6]; } xp = { .x[1] = "bar" };
368   // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' };
369   //
370   // l.lp.x[1][0..1] should not be filled with implicit initializers because the
371   // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf".
372   //
373   // But if we have (Case#2):
374   // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } };
375   //
376   // l.lp.x[1][0..1] are implicitly initialized and do not use values from the
377   // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0".
378   //
379   // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes"
380   // in the InitListExpr, the "holes" in Case#1 are filled not with empty
381   // initializers but with special "NoInitExpr" place holders, which tells the
382   // CodeGen not to generate any initializers for these parts.
383   void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base,
384                               const InitializedEntity &ParentEntity,
385                               InitListExpr *ILE, bool &RequiresSecondPass,
386                               bool FillWithNoInit);
387   void FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
388                                const InitializedEntity &ParentEntity,
389                                InitListExpr *ILE, bool &RequiresSecondPass,
390                                bool FillWithNoInit = false);
391   void FillInEmptyInitializations(const InitializedEntity &Entity,
392                                   InitListExpr *ILE, bool &RequiresSecondPass,
393                                   InitListExpr *OuterILE, unsigned OuterIndex,
394                                   bool FillWithNoInit = false);
395   bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
396                               Expr *InitExpr, FieldDecl *Field,
397                               bool TopLevelObject);
398   void CheckEmptyInitializable(const InitializedEntity &Entity,
399                                SourceLocation Loc);
400 
401 public:
402   InitListChecker(Sema &S, const InitializedEntity &Entity,
403                   InitListExpr *IL, QualType &T, bool VerifyOnly,
404                   bool TreatUnavailableAsInvalid);
405   bool HadError() { return hadError; }
406 
407   // Retrieves the fully-structured initializer list used for
408   // semantic analysis and code generation.
409   InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
410 };
411 
412 } // end anonymous namespace
413 
414 ExprResult InitListChecker::PerformEmptyInit(Sema &SemaRef,
415                                              SourceLocation Loc,
416                                              const InitializedEntity &Entity,
417                                              bool VerifyOnly,
418                                              bool TreatUnavailableAsInvalid) {
419   InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
420                                                             true);
421   MultiExprArg SubInit;
422   Expr *InitExpr;
423   InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc);
424 
425   // C++ [dcl.init.aggr]p7:
426   //   If there are fewer initializer-clauses in the list than there are
427   //   members in the aggregate, then each member not explicitly initialized
428   //   ...
429   bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 &&
430       Entity.getType()->getBaseElementTypeUnsafe()->isRecordType();
431   if (EmptyInitList) {
432     // C++1y / DR1070:
433     //   shall be initialized [...] from an empty initializer list.
434     //
435     // We apply the resolution of this DR to C++11 but not C++98, since C++98
436     // does not have useful semantics for initialization from an init list.
437     // We treat this as copy-initialization, because aggregate initialization
438     // always performs copy-initialization on its elements.
439     //
440     // Only do this if we're initializing a class type, to avoid filling in
441     // the initializer list where possible.
442     InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context)
443                    InitListExpr(SemaRef.Context, Loc, None, Loc);
444     InitExpr->setType(SemaRef.Context.VoidTy);
445     SubInit = InitExpr;
446     Kind = InitializationKind::CreateCopy(Loc, Loc);
447   } else {
448     // C++03:
449     //   shall be value-initialized.
450   }
451 
452   InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit);
453   // libstdc++4.6 marks the vector default constructor as explicit in
454   // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case.
455   // stlport does so too. Look for std::__debug for libstdc++, and for
456   // std:: for stlport.  This is effectively a compiler-side implementation of
457   // LWG2193.
458   if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() ==
459           InitializationSequence::FK_ExplicitConstructor) {
460     OverloadCandidateSet::iterator Best;
461     OverloadingResult O =
462         InitSeq.getFailedCandidateSet()
463             .BestViableFunction(SemaRef, Kind.getLocation(), Best);
464     (void)O;
465     assert(O == OR_Success && "Inconsistent overload resolution");
466     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
467     CXXRecordDecl *R = CtorDecl->getParent();
468 
469     if (CtorDecl->getMinRequiredArguments() == 0 &&
470         CtorDecl->isExplicit() && R->getDeclName() &&
471         SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) {
472       bool IsInStd = false;
473       for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext());
474            ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) {
475         if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND))
476           IsInStd = true;
477       }
478 
479       if (IsInStd && llvm::StringSwitch<bool>(R->getName())
480               .Cases("basic_string", "deque", "forward_list", true)
481               .Cases("list", "map", "multimap", "multiset", true)
482               .Cases("priority_queue", "queue", "set", "stack", true)
483               .Cases("unordered_map", "unordered_set", "vector", true)
484               .Default(false)) {
485         InitSeq.InitializeFrom(
486             SemaRef, Entity,
487             InitializationKind::CreateValue(Loc, Loc, Loc, true),
488             MultiExprArg(), /*TopLevelOfInitList=*/false,
489             TreatUnavailableAsInvalid);
490         // Emit a warning for this.  System header warnings aren't shown
491         // by default, but people working on system headers should see it.
492         if (!VerifyOnly) {
493           SemaRef.Diag(CtorDecl->getLocation(),
494                        diag::warn_invalid_initializer_from_system_header);
495           if (Entity.getKind() == InitializedEntity::EK_Member)
496             SemaRef.Diag(Entity.getDecl()->getLocation(),
497                          diag::note_used_in_initialization_here);
498           else if (Entity.getKind() == InitializedEntity::EK_ArrayElement)
499             SemaRef.Diag(Loc, diag::note_used_in_initialization_here);
500         }
501       }
502     }
503   }
504   if (!InitSeq) {
505     if (!VerifyOnly) {
506       InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit);
507       if (Entity.getKind() == InitializedEntity::EK_Member)
508         SemaRef.Diag(Entity.getDecl()->getLocation(),
509                      diag::note_in_omitted_aggregate_initializer)
510           << /*field*/1 << Entity.getDecl();
511       else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) {
512         bool IsTrailingArrayNewMember =
513             Entity.getParent() &&
514             Entity.getParent()->isVariableLengthArrayNew();
515         SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer)
516           << (IsTrailingArrayNewMember ? 2 : /*array element*/0)
517           << Entity.getElementIndex();
518       }
519     }
520     return ExprError();
521   }
522 
523   return VerifyOnly ? ExprResult(static_cast<Expr *>(nullptr))
524                     : InitSeq.Perform(SemaRef, Entity, Kind, SubInit);
525 }
526 
527 void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity,
528                                               SourceLocation Loc) {
529   assert(VerifyOnly &&
530          "CheckEmptyInitializable is only inteded for verification mode.");
531   if (PerformEmptyInit(SemaRef, Loc, Entity, /*VerifyOnly*/true,
532                        TreatUnavailableAsInvalid).isInvalid())
533     hadError = true;
534 }
535 
536 void InitListChecker::FillInEmptyInitForBase(
537     unsigned Init, const CXXBaseSpecifier &Base,
538     const InitializedEntity &ParentEntity, InitListExpr *ILE,
539     bool &RequiresSecondPass, bool FillWithNoInit) {
540   assert(Init < ILE->getNumInits() && "should have been expanded");
541 
542   InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
543       SemaRef.Context, &Base, false, &ParentEntity);
544 
545   if (!ILE->getInit(Init)) {
546     ExprResult BaseInit =
547         FillWithNoInit
548             ? new (SemaRef.Context) NoInitExpr(Base.getType())
549             : PerformEmptyInit(SemaRef, ILE->getEndLoc(), BaseEntity,
550                                /*VerifyOnly*/ false, TreatUnavailableAsInvalid);
551     if (BaseInit.isInvalid()) {
552       hadError = true;
553       return;
554     }
555 
556     ILE->setInit(Init, BaseInit.getAs<Expr>());
557   } else if (InitListExpr *InnerILE =
558                  dyn_cast<InitListExpr>(ILE->getInit(Init))) {
559     FillInEmptyInitializations(BaseEntity, InnerILE, RequiresSecondPass,
560                                ILE, Init, FillWithNoInit);
561   } else if (DesignatedInitUpdateExpr *InnerDIUE =
562                dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
563     FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(),
564                                RequiresSecondPass, ILE, Init,
565                                /*FillWithNoInit =*/true);
566   }
567 }
568 
569 void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
570                                         const InitializedEntity &ParentEntity,
571                                               InitListExpr *ILE,
572                                               bool &RequiresSecondPass,
573                                               bool FillWithNoInit) {
574   SourceLocation Loc = ILE->getEndLoc();
575   unsigned NumInits = ILE->getNumInits();
576   InitializedEntity MemberEntity
577     = InitializedEntity::InitializeMember(Field, &ParentEntity);
578 
579   if (const RecordType *RType = ILE->getType()->getAs<RecordType>())
580     if (!RType->getDecl()->isUnion())
581       assert(Init < NumInits && "This ILE should have been expanded");
582 
583   if (Init >= NumInits || !ILE->getInit(Init)) {
584     if (FillWithNoInit) {
585       Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType());
586       if (Init < NumInits)
587         ILE->setInit(Init, Filler);
588       else
589         ILE->updateInit(SemaRef.Context, Init, Filler);
590       return;
591     }
592     // C++1y [dcl.init.aggr]p7:
593     //   If there are fewer initializer-clauses in the list than there are
594     //   members in the aggregate, then each member not explicitly initialized
595     //   shall be initialized from its brace-or-equal-initializer [...]
596     if (Field->hasInClassInitializer()) {
597       ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field);
598       if (DIE.isInvalid()) {
599         hadError = true;
600         return;
601       }
602       SemaRef.checkInitializerLifetime(MemberEntity, DIE.get());
603       if (Init < NumInits)
604         ILE->setInit(Init, DIE.get());
605       else {
606         ILE->updateInit(SemaRef.Context, Init, DIE.get());
607         RequiresSecondPass = true;
608       }
609       return;
610     }
611 
612     if (Field->getType()->isReferenceType()) {
613       // C++ [dcl.init.aggr]p9:
614       //   If an incomplete or empty initializer-list leaves a
615       //   member of reference type uninitialized, the program is
616       //   ill-formed.
617       SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
618         << Field->getType()
619         << ILE->getSyntacticForm()->getSourceRange();
620       SemaRef.Diag(Field->getLocation(),
621                    diag::note_uninit_reference_member);
622       hadError = true;
623       return;
624     }
625 
626     ExprResult MemberInit = PerformEmptyInit(SemaRef, Loc, MemberEntity,
627                                              /*VerifyOnly*/false,
628                                              TreatUnavailableAsInvalid);
629     if (MemberInit.isInvalid()) {
630       hadError = true;
631       return;
632     }
633 
634     if (hadError) {
635       // Do nothing
636     } else if (Init < NumInits) {
637       ILE->setInit(Init, MemberInit.getAs<Expr>());
638     } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) {
639       // Empty initialization requires a constructor call, so
640       // extend the initializer list to include the constructor
641       // call and make a note that we'll need to take another pass
642       // through the initializer list.
643       ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>());
644       RequiresSecondPass = true;
645     }
646   } else if (InitListExpr *InnerILE
647                = dyn_cast<InitListExpr>(ILE->getInit(Init)))
648     FillInEmptyInitializations(MemberEntity, InnerILE,
649                                RequiresSecondPass, ILE, Init, FillWithNoInit);
650   else if (DesignatedInitUpdateExpr *InnerDIUE
651                = dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init)))
652     FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(),
653                                RequiresSecondPass, ILE, Init,
654                                /*FillWithNoInit =*/true);
655 }
656 
657 /// Recursively replaces NULL values within the given initializer list
658 /// with expressions that perform value-initialization of the
659 /// appropriate type, and finish off the InitListExpr formation.
660 void
661 InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity,
662                                             InitListExpr *ILE,
663                                             bool &RequiresSecondPass,
664                                             InitListExpr *OuterILE,
665                                             unsigned OuterIndex,
666                                             bool FillWithNoInit) {
667   assert((ILE->getType() != SemaRef.Context.VoidTy) &&
668          "Should not have void type");
669 
670   // If this is a nested initializer list, we might have changed its contents
671   // (and therefore some of its properties, such as instantiation-dependence)
672   // while filling it in. Inform the outer initializer list so that its state
673   // can be updated to match.
674   // FIXME: We should fully build the inner initializers before constructing
675   // the outer InitListExpr instead of mutating AST nodes after they have
676   // been used as subexpressions of other nodes.
677   struct UpdateOuterILEWithUpdatedInit {
678     InitListExpr *Outer;
679     unsigned OuterIndex;
680     ~UpdateOuterILEWithUpdatedInit() {
681       if (Outer)
682         Outer->setInit(OuterIndex, Outer->getInit(OuterIndex));
683     }
684   } UpdateOuterRAII = {OuterILE, OuterIndex};
685 
686   // A transparent ILE is not performing aggregate initialization and should
687   // not be filled in.
688   if (ILE->isTransparent())
689     return;
690 
691   if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
692     const RecordDecl *RDecl = RType->getDecl();
693     if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
694       FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(),
695                               Entity, ILE, RequiresSecondPass, FillWithNoInit);
696     else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
697              cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
698       for (auto *Field : RDecl->fields()) {
699         if (Field->hasInClassInitializer()) {
700           FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass,
701                                   FillWithNoInit);
702           break;
703         }
704       }
705     } else {
706       // The fields beyond ILE->getNumInits() are default initialized, so in
707       // order to leave them uninitialized, the ILE is expanded and the extra
708       // fields are then filled with NoInitExpr.
709       unsigned NumElems = numStructUnionElements(ILE->getType());
710       if (RDecl->hasFlexibleArrayMember())
711         ++NumElems;
712       if (ILE->getNumInits() < NumElems)
713         ILE->resizeInits(SemaRef.Context, NumElems);
714 
715       unsigned Init = 0;
716 
717       if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) {
718         for (auto &Base : CXXRD->bases()) {
719           if (hadError)
720             return;
721 
722           FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass,
723                                  FillWithNoInit);
724           ++Init;
725         }
726       }
727 
728       for (auto *Field : RDecl->fields()) {
729         if (Field->isUnnamedBitfield())
730           continue;
731 
732         if (hadError)
733           return;
734 
735         FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass,
736                                 FillWithNoInit);
737         if (hadError)
738           return;
739 
740         ++Init;
741 
742         // Only look at the first initialization of a union.
743         if (RDecl->isUnion())
744           break;
745       }
746     }
747 
748     return;
749   }
750 
751   QualType ElementType;
752 
753   InitializedEntity ElementEntity = Entity;
754   unsigned NumInits = ILE->getNumInits();
755   unsigned NumElements = NumInits;
756   if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
757     ElementType = AType->getElementType();
758     if (const auto *CAType = dyn_cast<ConstantArrayType>(AType))
759       NumElements = CAType->getSize().getZExtValue();
760     // For an array new with an unknown bound, ask for one additional element
761     // in order to populate the array filler.
762     if (Entity.isVariableLengthArrayNew())
763       ++NumElements;
764     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
765                                                          0, Entity);
766   } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
767     ElementType = VType->getElementType();
768     NumElements = VType->getNumElements();
769     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
770                                                          0, Entity);
771   } else
772     ElementType = ILE->getType();
773 
774   for (unsigned Init = 0; Init != NumElements; ++Init) {
775     if (hadError)
776       return;
777 
778     if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
779         ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
780       ElementEntity.setElementIndex(Init);
781 
782     if (Init >= NumInits && ILE->hasArrayFiller())
783       return;
784 
785     Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr);
786     if (!InitExpr && Init < NumInits && ILE->hasArrayFiller())
787       ILE->setInit(Init, ILE->getArrayFiller());
788     else if (!InitExpr && !ILE->hasArrayFiller()) {
789       Expr *Filler = nullptr;
790 
791       if (FillWithNoInit)
792         Filler = new (SemaRef.Context) NoInitExpr(ElementType);
793       else {
794         ExprResult ElementInit =
795             PerformEmptyInit(SemaRef, ILE->getEndLoc(), ElementEntity,
796                              /*VerifyOnly*/ false, TreatUnavailableAsInvalid);
797         if (ElementInit.isInvalid()) {
798           hadError = true;
799           return;
800         }
801 
802         Filler = ElementInit.getAs<Expr>();
803       }
804 
805       if (hadError) {
806         // Do nothing
807       } else if (Init < NumInits) {
808         // For arrays, just set the expression used for value-initialization
809         // of the "holes" in the array.
810         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
811           ILE->setArrayFiller(Filler);
812         else
813           ILE->setInit(Init, Filler);
814       } else {
815         // For arrays, just set the expression used for value-initialization
816         // of the rest of elements and exit.
817         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
818           ILE->setArrayFiller(Filler);
819           return;
820         }
821 
822         if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) {
823           // Empty initialization requires a constructor call, so
824           // extend the initializer list to include the constructor
825           // call and make a note that we'll need to take another pass
826           // through the initializer list.
827           ILE->updateInit(SemaRef.Context, Init, Filler);
828           RequiresSecondPass = true;
829         }
830       }
831     } else if (InitListExpr *InnerILE
832                  = dyn_cast_or_null<InitListExpr>(InitExpr))
833       FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass,
834                                  ILE, Init, FillWithNoInit);
835     else if (DesignatedInitUpdateExpr *InnerDIUE
836                  = dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr))
837       FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(),
838                                  RequiresSecondPass, ILE, Init,
839                                  /*FillWithNoInit =*/true);
840   }
841 }
842 
843 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
844                                  InitListExpr *IL, QualType &T,
845                                  bool VerifyOnly,
846                                  bool TreatUnavailableAsInvalid)
847   : SemaRef(S), VerifyOnly(VerifyOnly),
848     TreatUnavailableAsInvalid(TreatUnavailableAsInvalid) {
849   // FIXME: Check that IL isn't already the semantic form of some other
850   // InitListExpr. If it is, we'd create a broken AST.
851 
852   hadError = false;
853 
854   FullyStructuredList =
855       getStructuredSubobjectInit(IL, 0, T, nullptr, 0, IL->getSourceRange());
856   CheckExplicitInitList(Entity, IL, T, FullyStructuredList,
857                         /*TopLevelObject=*/true);
858 
859   if (!hadError && !VerifyOnly) {
860     bool RequiresSecondPass = false;
861     FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass,
862                                /*OuterILE=*/nullptr, /*OuterIndex=*/0);
863     if (RequiresSecondPass && !hadError)
864       FillInEmptyInitializations(Entity, FullyStructuredList,
865                                  RequiresSecondPass, nullptr, 0);
866   }
867 }
868 
869 int InitListChecker::numArrayElements(QualType DeclType) {
870   // FIXME: use a proper constant
871   int maxElements = 0x7FFFFFFF;
872   if (const ConstantArrayType *CAT =
873         SemaRef.Context.getAsConstantArrayType(DeclType)) {
874     maxElements = static_cast<int>(CAT->getSize().getZExtValue());
875   }
876   return maxElements;
877 }
878 
879 int InitListChecker::numStructUnionElements(QualType DeclType) {
880   RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
881   int InitializableMembers = 0;
882   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl))
883     InitializableMembers += CXXRD->getNumBases();
884   for (const auto *Field : structDecl->fields())
885     if (!Field->isUnnamedBitfield())
886       ++InitializableMembers;
887 
888   if (structDecl->isUnion())
889     return std::min(InitializableMembers, 1);
890   return InitializableMembers - structDecl->hasFlexibleArrayMember();
891 }
892 
893 /// Determine whether Entity is an entity for which it is idiomatic to elide
894 /// the braces in aggregate initialization.
895 static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) {
896   // Recursive initialization of the one and only field within an aggregate
897   // class is considered idiomatic. This case arises in particular for
898   // initialization of std::array, where the C++ standard suggests the idiom of
899   //
900   //   std::array<T, N> arr = {1, 2, 3};
901   //
902   // (where std::array is an aggregate struct containing a single array field.
903 
904   // FIXME: Should aggregate initialization of a struct with a single
905   // base class and no members also suppress the warning?
906   if (Entity.getKind() != InitializedEntity::EK_Member || !Entity.getParent())
907     return false;
908 
909   auto *ParentRD =
910       Entity.getParent()->getType()->castAs<RecordType>()->getDecl();
911   if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(ParentRD))
912     if (CXXRD->getNumBases())
913       return false;
914 
915   auto FieldIt = ParentRD->field_begin();
916   assert(FieldIt != ParentRD->field_end() &&
917          "no fields but have initializer for member?");
918   return ++FieldIt == ParentRD->field_end();
919 }
920 
921 /// Check whether the range of the initializer \p ParentIList from element
922 /// \p Index onwards can be used to initialize an object of type \p T. Update
923 /// \p Index to indicate how many elements of the list were consumed.
924 ///
925 /// This also fills in \p StructuredList, from element \p StructuredIndex
926 /// onwards, with the fully-braced, desugared form of the initialization.
927 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
928                                             InitListExpr *ParentIList,
929                                             QualType T, unsigned &Index,
930                                             InitListExpr *StructuredList,
931                                             unsigned &StructuredIndex) {
932   int maxElements = 0;
933 
934   if (T->isArrayType())
935     maxElements = numArrayElements(T);
936   else if (T->isRecordType())
937     maxElements = numStructUnionElements(T);
938   else if (T->isVectorType())
939     maxElements = T->getAs<VectorType>()->getNumElements();
940   else
941     llvm_unreachable("CheckImplicitInitList(): Illegal type");
942 
943   if (maxElements == 0) {
944     if (!VerifyOnly)
945       SemaRef.Diag(ParentIList->getInit(Index)->getBeginLoc(),
946                    diag::err_implicit_empty_initializer);
947     ++Index;
948     hadError = true;
949     return;
950   }
951 
952   // Build a structured initializer list corresponding to this subobject.
953   InitListExpr *StructuredSubobjectInitList = getStructuredSubobjectInit(
954       ParentIList, Index, T, StructuredList, StructuredIndex,
955       SourceRange(ParentIList->getInit(Index)->getBeginLoc(),
956                   ParentIList->getSourceRange().getEnd()));
957   unsigned StructuredSubobjectInitIndex = 0;
958 
959   // Check the element types and build the structural subobject.
960   unsigned StartIndex = Index;
961   CheckListElementTypes(Entity, ParentIList, T,
962                         /*SubobjectIsDesignatorContext=*/false, Index,
963                         StructuredSubobjectInitList,
964                         StructuredSubobjectInitIndex);
965 
966   if (!VerifyOnly) {
967     StructuredSubobjectInitList->setType(T);
968 
969     unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
970     // Update the structured sub-object initializer so that it's ending
971     // range corresponds with the end of the last initializer it used.
972     if (EndIndex < ParentIList->getNumInits() &&
973         ParentIList->getInit(EndIndex)) {
974       SourceLocation EndLoc
975         = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
976       StructuredSubobjectInitList->setRBraceLoc(EndLoc);
977     }
978 
979     // Complain about missing braces.
980     if ((T->isArrayType() || T->isRecordType()) &&
981         !ParentIList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) &&
982         !isIdiomaticBraceElisionEntity(Entity)) {
983       SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
984                    diag::warn_missing_braces)
985           << StructuredSubobjectInitList->getSourceRange()
986           << FixItHint::CreateInsertion(
987                  StructuredSubobjectInitList->getBeginLoc(), "{")
988           << FixItHint::CreateInsertion(
989                  SemaRef.getLocForEndOfToken(
990                      StructuredSubobjectInitList->getEndLoc()),
991                  "}");
992     }
993 
994     // Warn if this type won't be an aggregate in future versions of C++.
995     auto *CXXRD = T->getAsCXXRecordDecl();
996     if (CXXRD && CXXRD->hasUserDeclaredConstructor()) {
997       SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
998                    diag::warn_cxx2a_compat_aggregate_init_with_ctors)
999           << StructuredSubobjectInitList->getSourceRange() << T;
1000     }
1001   }
1002 }
1003 
1004 /// Warn that \p Entity was of scalar type and was initialized by a
1005 /// single-element braced initializer list.
1006 static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity,
1007                                  SourceRange Braces) {
1008   // Don't warn during template instantiation. If the initialization was
1009   // non-dependent, we warned during the initial parse; otherwise, the
1010   // type might not be scalar in some uses of the template.
1011   if (S.inTemplateInstantiation())
1012     return;
1013 
1014   unsigned DiagID = 0;
1015 
1016   switch (Entity.getKind()) {
1017   case InitializedEntity::EK_VectorElement:
1018   case InitializedEntity::EK_ComplexElement:
1019   case InitializedEntity::EK_ArrayElement:
1020   case InitializedEntity::EK_Parameter:
1021   case InitializedEntity::EK_Parameter_CF_Audited:
1022   case InitializedEntity::EK_Result:
1023     // Extra braces here are suspicious.
1024     DiagID = diag::warn_braces_around_scalar_init;
1025     break;
1026 
1027   case InitializedEntity::EK_Member:
1028     // Warn on aggregate initialization but not on ctor init list or
1029     // default member initializer.
1030     if (Entity.getParent())
1031       DiagID = diag::warn_braces_around_scalar_init;
1032     break;
1033 
1034   case InitializedEntity::EK_Variable:
1035   case InitializedEntity::EK_LambdaCapture:
1036     // No warning, might be direct-list-initialization.
1037     // FIXME: Should we warn for copy-list-initialization in these cases?
1038     break;
1039 
1040   case InitializedEntity::EK_New:
1041   case InitializedEntity::EK_Temporary:
1042   case InitializedEntity::EK_CompoundLiteralInit:
1043     // No warning, braces are part of the syntax of the underlying construct.
1044     break;
1045 
1046   case InitializedEntity::EK_RelatedResult:
1047     // No warning, we already warned when initializing the result.
1048     break;
1049 
1050   case InitializedEntity::EK_Exception:
1051   case InitializedEntity::EK_Base:
1052   case InitializedEntity::EK_Delegating:
1053   case InitializedEntity::EK_BlockElement:
1054   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
1055   case InitializedEntity::EK_Binding:
1056   case InitializedEntity::EK_StmtExprResult:
1057     llvm_unreachable("unexpected braced scalar init");
1058   }
1059 
1060   if (DiagID) {
1061     S.Diag(Braces.getBegin(), DiagID)
1062       << Braces
1063       << FixItHint::CreateRemoval(Braces.getBegin())
1064       << FixItHint::CreateRemoval(Braces.getEnd());
1065   }
1066 }
1067 
1068 /// Check whether the initializer \p IList (that was written with explicit
1069 /// braces) can be used to initialize an object of type \p T.
1070 ///
1071 /// This also fills in \p StructuredList with the fully-braced, desugared
1072 /// form of the initialization.
1073 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
1074                                             InitListExpr *IList, QualType &T,
1075                                             InitListExpr *StructuredList,
1076                                             bool TopLevelObject) {
1077   if (!VerifyOnly) {
1078     SyntacticToSemantic[IList] = StructuredList;
1079     StructuredList->setSyntacticForm(IList);
1080   }
1081 
1082   unsigned Index = 0, StructuredIndex = 0;
1083   CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
1084                         Index, StructuredList, StructuredIndex, TopLevelObject);
1085   if (!VerifyOnly) {
1086     QualType ExprTy = T;
1087     if (!ExprTy->isArrayType())
1088       ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
1089     IList->setType(ExprTy);
1090     StructuredList->setType(ExprTy);
1091   }
1092   if (hadError)
1093     return;
1094 
1095   if (Index < IList->getNumInits()) {
1096     // We have leftover initializers
1097     if (VerifyOnly) {
1098       if (SemaRef.getLangOpts().CPlusPlus ||
1099           (SemaRef.getLangOpts().OpenCL &&
1100            IList->getType()->isVectorType())) {
1101         hadError = true;
1102       }
1103       return;
1104     }
1105 
1106     if (StructuredIndex == 1 &&
1107         IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) ==
1108             SIF_None) {
1109       unsigned DK = diag::ext_excess_initializers_in_char_array_initializer;
1110       if (SemaRef.getLangOpts().CPlusPlus) {
1111         DK = diag::err_excess_initializers_in_char_array_initializer;
1112         hadError = true;
1113       }
1114       // Special-case
1115       SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1116           << IList->getInit(Index)->getSourceRange();
1117     } else if (!T->isIncompleteType()) {
1118       // Don't complain for incomplete types, since we'll get an error
1119       // elsewhere
1120       QualType CurrentObjectType = StructuredList->getType();
1121       int initKind =
1122         CurrentObjectType->isArrayType()? 0 :
1123         CurrentObjectType->isVectorType()? 1 :
1124         CurrentObjectType->isScalarType()? 2 :
1125         CurrentObjectType->isUnionType()? 3 :
1126         4;
1127 
1128       unsigned DK = diag::ext_excess_initializers;
1129       if (SemaRef.getLangOpts().CPlusPlus) {
1130         DK = diag::err_excess_initializers;
1131         hadError = true;
1132       }
1133       if (SemaRef.getLangOpts().OpenCL && initKind == 1) {
1134         DK = diag::err_excess_initializers;
1135         hadError = true;
1136       }
1137 
1138       SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1139           << initKind << IList->getInit(Index)->getSourceRange();
1140     }
1141   }
1142 
1143   if (!VerifyOnly) {
1144     if (T->isScalarType() && IList->getNumInits() == 1 &&
1145         !isa<InitListExpr>(IList->getInit(0)))
1146       warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange());
1147 
1148     // Warn if this is a class type that won't be an aggregate in future
1149     // versions of C++.
1150     auto *CXXRD = T->getAsCXXRecordDecl();
1151     if (CXXRD && CXXRD->hasUserDeclaredConstructor()) {
1152       // Don't warn if there's an equivalent default constructor that would be
1153       // used instead.
1154       bool HasEquivCtor = false;
1155       if (IList->getNumInits() == 0) {
1156         auto *CD = SemaRef.LookupDefaultConstructor(CXXRD);
1157         HasEquivCtor = CD && !CD->isDeleted();
1158       }
1159 
1160       if (!HasEquivCtor) {
1161         SemaRef.Diag(IList->getBeginLoc(),
1162                      diag::warn_cxx2a_compat_aggregate_init_with_ctors)
1163             << IList->getSourceRange() << T;
1164       }
1165     }
1166   }
1167 }
1168 
1169 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
1170                                             InitListExpr *IList,
1171                                             QualType &DeclType,
1172                                             bool SubobjectIsDesignatorContext,
1173                                             unsigned &Index,
1174                                             InitListExpr *StructuredList,
1175                                             unsigned &StructuredIndex,
1176                                             bool TopLevelObject) {
1177   if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
1178     // Explicitly braced initializer for complex type can be real+imaginary
1179     // parts.
1180     CheckComplexType(Entity, IList, DeclType, Index,
1181                      StructuredList, StructuredIndex);
1182   } else if (DeclType->isScalarType()) {
1183     CheckScalarType(Entity, IList, DeclType, Index,
1184                     StructuredList, StructuredIndex);
1185   } else if (DeclType->isVectorType()) {
1186     CheckVectorType(Entity, IList, DeclType, Index,
1187                     StructuredList, StructuredIndex);
1188   } else if (DeclType->isRecordType()) {
1189     assert(DeclType->isAggregateType() &&
1190            "non-aggregate records should be handed in CheckSubElementType");
1191     RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1192     auto Bases =
1193         CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
1194                                         CXXRecordDecl::base_class_iterator());
1195     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1196       Bases = CXXRD->bases();
1197     CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(),
1198                           SubobjectIsDesignatorContext, Index, StructuredList,
1199                           StructuredIndex, TopLevelObject);
1200   } else if (DeclType->isArrayType()) {
1201     llvm::APSInt Zero(
1202                     SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
1203                     false);
1204     CheckArrayType(Entity, IList, DeclType, Zero,
1205                    SubobjectIsDesignatorContext, Index,
1206                    StructuredList, StructuredIndex);
1207   } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
1208     // This type is invalid, issue a diagnostic.
1209     ++Index;
1210     if (!VerifyOnly)
1211       SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
1212           << DeclType;
1213     hadError = true;
1214   } else if (DeclType->isReferenceType()) {
1215     CheckReferenceType(Entity, IList, DeclType, Index,
1216                        StructuredList, StructuredIndex);
1217   } else if (DeclType->isObjCObjectType()) {
1218     if (!VerifyOnly)
1219       SemaRef.Diag(IList->getBeginLoc(), diag::err_init_objc_class) << DeclType;
1220     hadError = true;
1221   } else if (DeclType->isOCLIntelSubgroupAVCType()) {
1222     // Checks for scalar type are sufficient for these types too.
1223     CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1224                     StructuredIndex);
1225   } else {
1226     if (!VerifyOnly)
1227       SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
1228           << DeclType;
1229     hadError = true;
1230   }
1231 }
1232 
1233 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
1234                                           InitListExpr *IList,
1235                                           QualType ElemType,
1236                                           unsigned &Index,
1237                                           InitListExpr *StructuredList,
1238                                           unsigned &StructuredIndex) {
1239   Expr *expr = IList->getInit(Index);
1240 
1241   if (ElemType->isReferenceType())
1242     return CheckReferenceType(Entity, IList, ElemType, Index,
1243                               StructuredList, StructuredIndex);
1244 
1245   if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
1246     if (SubInitList->getNumInits() == 1 &&
1247         IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) ==
1248         SIF_None) {
1249       expr = SubInitList->getInit(0);
1250     } else if (!SemaRef.getLangOpts().CPlusPlus) {
1251       InitListExpr *InnerStructuredList
1252         = getStructuredSubobjectInit(IList, Index, ElemType,
1253                                      StructuredList, StructuredIndex,
1254                                      SubInitList->getSourceRange(), true);
1255       CheckExplicitInitList(Entity, SubInitList, ElemType,
1256                             InnerStructuredList);
1257 
1258       if (!hadError && !VerifyOnly) {
1259         bool RequiresSecondPass = false;
1260         FillInEmptyInitializations(Entity, InnerStructuredList,
1261                                    RequiresSecondPass, StructuredList,
1262                                    StructuredIndex);
1263         if (RequiresSecondPass && !hadError)
1264           FillInEmptyInitializations(Entity, InnerStructuredList,
1265                                      RequiresSecondPass, StructuredList,
1266                                      StructuredIndex);
1267       }
1268       ++StructuredIndex;
1269       ++Index;
1270       return;
1271     }
1272     // C++ initialization is handled later.
1273   } else if (isa<ImplicitValueInitExpr>(expr)) {
1274     // This happens during template instantiation when we see an InitListExpr
1275     // that we've already checked once.
1276     assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) &&
1277            "found implicit initialization for the wrong type");
1278     if (!VerifyOnly)
1279       UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1280     ++Index;
1281     return;
1282   }
1283 
1284   if (SemaRef.getLangOpts().CPlusPlus) {
1285     // C++ [dcl.init.aggr]p2:
1286     //   Each member is copy-initialized from the corresponding
1287     //   initializer-clause.
1288 
1289     // FIXME: Better EqualLoc?
1290     InitializationKind Kind =
1291         InitializationKind::CreateCopy(expr->getBeginLoc(), SourceLocation());
1292     InitializationSequence Seq(SemaRef, Entity, Kind, expr,
1293                                /*TopLevelOfInitList*/ true);
1294 
1295     // C++14 [dcl.init.aggr]p13:
1296     //   If the assignment-expression can initialize a member, the member is
1297     //   initialized. Otherwise [...] brace elision is assumed
1298     //
1299     // Brace elision is never performed if the element is not an
1300     // assignment-expression.
1301     if (Seq || isa<InitListExpr>(expr)) {
1302       if (!VerifyOnly) {
1303         ExprResult Result =
1304           Seq.Perform(SemaRef, Entity, Kind, expr);
1305         if (Result.isInvalid())
1306           hadError = true;
1307 
1308         UpdateStructuredListElement(StructuredList, StructuredIndex,
1309                                     Result.getAs<Expr>());
1310       } else if (!Seq)
1311         hadError = true;
1312       ++Index;
1313       return;
1314     }
1315 
1316     // Fall through for subaggregate initialization
1317   } else if (ElemType->isScalarType() || ElemType->isAtomicType()) {
1318     // FIXME: Need to handle atomic aggregate types with implicit init lists.
1319     return CheckScalarType(Entity, IList, ElemType, Index,
1320                            StructuredList, StructuredIndex);
1321   } else if (const ArrayType *arrayType =
1322                  SemaRef.Context.getAsArrayType(ElemType)) {
1323     // arrayType can be incomplete if we're initializing a flexible
1324     // array member.  There's nothing we can do with the completed
1325     // type here, though.
1326 
1327     if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) {
1328       if (!VerifyOnly) {
1329         CheckStringInit(expr, ElemType, arrayType, SemaRef);
1330         UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1331       }
1332       ++Index;
1333       return;
1334     }
1335 
1336     // Fall through for subaggregate initialization.
1337 
1338   } else {
1339     assert((ElemType->isRecordType() || ElemType->isVectorType() ||
1340             ElemType->isOpenCLSpecificType()) && "Unexpected type");
1341 
1342     // C99 6.7.8p13:
1343     //
1344     //   The initializer for a structure or union object that has
1345     //   automatic storage duration shall be either an initializer
1346     //   list as described below, or a single expression that has
1347     //   compatible structure or union type. In the latter case, the
1348     //   initial value of the object, including unnamed members, is
1349     //   that of the expression.
1350     ExprResult ExprRes = expr;
1351     if (SemaRef.CheckSingleAssignmentConstraints(
1352             ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) {
1353       if (ExprRes.isInvalid())
1354         hadError = true;
1355       else {
1356         ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get());
1357           if (ExprRes.isInvalid())
1358             hadError = true;
1359       }
1360       UpdateStructuredListElement(StructuredList, StructuredIndex,
1361                                   ExprRes.getAs<Expr>());
1362       ++Index;
1363       return;
1364     }
1365     ExprRes.get();
1366     // Fall through for subaggregate initialization
1367   }
1368 
1369   // C++ [dcl.init.aggr]p12:
1370   //
1371   //   [...] Otherwise, if the member is itself a non-empty
1372   //   subaggregate, brace elision is assumed and the initializer is
1373   //   considered for the initialization of the first member of
1374   //   the subaggregate.
1375   // OpenCL vector initializer is handled elsewhere.
1376   if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) ||
1377       ElemType->isAggregateType()) {
1378     CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
1379                           StructuredIndex);
1380     ++StructuredIndex;
1381   } else {
1382     if (!VerifyOnly) {
1383       // We cannot initialize this element, so let
1384       // PerformCopyInitialization produce the appropriate diagnostic.
1385       SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr,
1386                                         /*TopLevelOfInitList=*/true);
1387     }
1388     hadError = true;
1389     ++Index;
1390     ++StructuredIndex;
1391   }
1392 }
1393 
1394 void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
1395                                        InitListExpr *IList, QualType DeclType,
1396                                        unsigned &Index,
1397                                        InitListExpr *StructuredList,
1398                                        unsigned &StructuredIndex) {
1399   assert(Index == 0 && "Index in explicit init list must be zero");
1400 
1401   // As an extension, clang supports complex initializers, which initialize
1402   // a complex number component-wise.  When an explicit initializer list for
1403   // a complex number contains two two initializers, this extension kicks in:
1404   // it exepcts the initializer list to contain two elements convertible to
1405   // the element type of the complex type. The first element initializes
1406   // the real part, and the second element intitializes the imaginary part.
1407 
1408   if (IList->getNumInits() != 2)
1409     return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1410                            StructuredIndex);
1411 
1412   // This is an extension in C.  (The builtin _Complex type does not exist
1413   // in the C++ standard.)
1414   if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
1415     SemaRef.Diag(IList->getBeginLoc(), diag::ext_complex_component_init)
1416         << IList->getSourceRange();
1417 
1418   // Initialize the complex number.
1419   QualType elementType = DeclType->getAs<ComplexType>()->getElementType();
1420   InitializedEntity ElementEntity =
1421     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1422 
1423   for (unsigned i = 0; i < 2; ++i) {
1424     ElementEntity.setElementIndex(Index);
1425     CheckSubElementType(ElementEntity, IList, elementType, Index,
1426                         StructuredList, StructuredIndex);
1427   }
1428 }
1429 
1430 void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
1431                                       InitListExpr *IList, QualType DeclType,
1432                                       unsigned &Index,
1433                                       InitListExpr *StructuredList,
1434                                       unsigned &StructuredIndex) {
1435   if (Index >= IList->getNumInits()) {
1436     if (!VerifyOnly)
1437       SemaRef.Diag(IList->getBeginLoc(),
1438                    SemaRef.getLangOpts().CPlusPlus11
1439                        ? diag::warn_cxx98_compat_empty_scalar_initializer
1440                        : diag::err_empty_scalar_initializer)
1441           << IList->getSourceRange();
1442     hadError = !SemaRef.getLangOpts().CPlusPlus11;
1443     ++Index;
1444     ++StructuredIndex;
1445     return;
1446   }
1447 
1448   Expr *expr = IList->getInit(Index);
1449   if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
1450     // FIXME: This is invalid, and accepting it causes overload resolution
1451     // to pick the wrong overload in some corner cases.
1452     if (!VerifyOnly)
1453       SemaRef.Diag(SubIList->getBeginLoc(),
1454                    diag::ext_many_braces_around_scalar_init)
1455           << SubIList->getSourceRange();
1456 
1457     CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
1458                     StructuredIndex);
1459     return;
1460   } else if (isa<DesignatedInitExpr>(expr)) {
1461     if (!VerifyOnly)
1462       SemaRef.Diag(expr->getBeginLoc(), diag::err_designator_for_scalar_init)
1463           << DeclType << expr->getSourceRange();
1464     hadError = true;
1465     ++Index;
1466     ++StructuredIndex;
1467     return;
1468   }
1469 
1470   if (VerifyOnly) {
1471     if (!SemaRef.CanPerformCopyInitialization(Entity,expr))
1472       hadError = true;
1473     ++Index;
1474     return;
1475   }
1476 
1477   ExprResult Result =
1478       SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
1479                                         /*TopLevelOfInitList=*/true);
1480 
1481   Expr *ResultExpr = nullptr;
1482 
1483   if (Result.isInvalid())
1484     hadError = true; // types weren't compatible.
1485   else {
1486     ResultExpr = Result.getAs<Expr>();
1487 
1488     if (ResultExpr != expr) {
1489       // The type was promoted, update initializer list.
1490       IList->setInit(Index, ResultExpr);
1491     }
1492   }
1493   if (hadError)
1494     ++StructuredIndex;
1495   else
1496     UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1497   ++Index;
1498 }
1499 
1500 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
1501                                          InitListExpr *IList, QualType DeclType,
1502                                          unsigned &Index,
1503                                          InitListExpr *StructuredList,
1504                                          unsigned &StructuredIndex) {
1505   if (Index >= IList->getNumInits()) {
1506     // FIXME: It would be wonderful if we could point at the actual member. In
1507     // general, it would be useful to pass location information down the stack,
1508     // so that we know the location (or decl) of the "current object" being
1509     // initialized.
1510     if (!VerifyOnly)
1511       SemaRef.Diag(IList->getBeginLoc(),
1512                    diag::err_init_reference_member_uninitialized)
1513           << DeclType << IList->getSourceRange();
1514     hadError = true;
1515     ++Index;
1516     ++StructuredIndex;
1517     return;
1518   }
1519 
1520   Expr *expr = IList->getInit(Index);
1521   if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
1522     if (!VerifyOnly)
1523       SemaRef.Diag(IList->getBeginLoc(), diag::err_init_non_aggr_init_list)
1524           << DeclType << IList->getSourceRange();
1525     hadError = true;
1526     ++Index;
1527     ++StructuredIndex;
1528     return;
1529   }
1530 
1531   if (VerifyOnly) {
1532     if (!SemaRef.CanPerformCopyInitialization(Entity,expr))
1533       hadError = true;
1534     ++Index;
1535     return;
1536   }
1537 
1538   ExprResult Result =
1539       SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
1540                                         /*TopLevelOfInitList=*/true);
1541 
1542   if (Result.isInvalid())
1543     hadError = true;
1544 
1545   expr = Result.getAs<Expr>();
1546   IList->setInit(Index, expr);
1547 
1548   if (hadError)
1549     ++StructuredIndex;
1550   else
1551     UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1552   ++Index;
1553 }
1554 
1555 void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1556                                       InitListExpr *IList, QualType DeclType,
1557                                       unsigned &Index,
1558                                       InitListExpr *StructuredList,
1559                                       unsigned &StructuredIndex) {
1560   const VectorType *VT = DeclType->getAs<VectorType>();
1561   unsigned maxElements = VT->getNumElements();
1562   unsigned numEltsInit = 0;
1563   QualType elementType = VT->getElementType();
1564 
1565   if (Index >= IList->getNumInits()) {
1566     // Make sure the element type can be value-initialized.
1567     if (VerifyOnly)
1568       CheckEmptyInitializable(
1569           InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1570           IList->getEndLoc());
1571     return;
1572   }
1573 
1574   if (!SemaRef.getLangOpts().OpenCL) {
1575     // If the initializing element is a vector, try to copy-initialize
1576     // instead of breaking it apart (which is doomed to failure anyway).
1577     Expr *Init = IList->getInit(Index);
1578     if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1579       if (VerifyOnly) {
1580         if (!SemaRef.CanPerformCopyInitialization(Entity, Init))
1581           hadError = true;
1582         ++Index;
1583         return;
1584       }
1585 
1586       ExprResult Result =
1587           SemaRef.PerformCopyInitialization(Entity, Init->getBeginLoc(), Init,
1588                                             /*TopLevelOfInitList=*/true);
1589 
1590       Expr *ResultExpr = nullptr;
1591       if (Result.isInvalid())
1592         hadError = true; // types weren't compatible.
1593       else {
1594         ResultExpr = Result.getAs<Expr>();
1595 
1596         if (ResultExpr != Init) {
1597           // The type was promoted, update initializer list.
1598           IList->setInit(Index, ResultExpr);
1599         }
1600       }
1601       if (hadError)
1602         ++StructuredIndex;
1603       else
1604         UpdateStructuredListElement(StructuredList, StructuredIndex,
1605                                     ResultExpr);
1606       ++Index;
1607       return;
1608     }
1609 
1610     InitializedEntity ElementEntity =
1611       InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1612 
1613     for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1614       // Don't attempt to go past the end of the init list
1615       if (Index >= IList->getNumInits()) {
1616         if (VerifyOnly)
1617           CheckEmptyInitializable(ElementEntity, IList->getEndLoc());
1618         break;
1619       }
1620 
1621       ElementEntity.setElementIndex(Index);
1622       CheckSubElementType(ElementEntity, IList, elementType, Index,
1623                           StructuredList, StructuredIndex);
1624     }
1625 
1626     if (VerifyOnly)
1627       return;
1628 
1629     bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian();
1630     const VectorType *T = Entity.getType()->getAs<VectorType>();
1631     if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector ||
1632                         T->getVectorKind() == VectorType::NeonPolyVector)) {
1633       // The ability to use vector initializer lists is a GNU vector extension
1634       // and is unrelated to the NEON intrinsics in arm_neon.h. On little
1635       // endian machines it works fine, however on big endian machines it
1636       // exhibits surprising behaviour:
1637       //
1638       //   uint32x2_t x = {42, 64};
1639       //   return vget_lane_u32(x, 0); // Will return 64.
1640       //
1641       // Because of this, explicitly call out that it is non-portable.
1642       //
1643       SemaRef.Diag(IList->getBeginLoc(),
1644                    diag::warn_neon_vector_initializer_non_portable);
1645 
1646       const char *typeCode;
1647       unsigned typeSize = SemaRef.Context.getTypeSize(elementType);
1648 
1649       if (elementType->isFloatingType())
1650         typeCode = "f";
1651       else if (elementType->isSignedIntegerType())
1652         typeCode = "s";
1653       else if (elementType->isUnsignedIntegerType())
1654         typeCode = "u";
1655       else
1656         llvm_unreachable("Invalid element type!");
1657 
1658       SemaRef.Diag(IList->getBeginLoc(),
1659                    SemaRef.Context.getTypeSize(VT) > 64
1660                        ? diag::note_neon_vector_initializer_non_portable_q
1661                        : diag::note_neon_vector_initializer_non_portable)
1662           << typeCode << typeSize;
1663     }
1664 
1665     return;
1666   }
1667 
1668   InitializedEntity ElementEntity =
1669     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1670 
1671   // OpenCL initializers allows vectors to be constructed from vectors.
1672   for (unsigned i = 0; i < maxElements; ++i) {
1673     // Don't attempt to go past the end of the init list
1674     if (Index >= IList->getNumInits())
1675       break;
1676 
1677     ElementEntity.setElementIndex(Index);
1678 
1679     QualType IType = IList->getInit(Index)->getType();
1680     if (!IType->isVectorType()) {
1681       CheckSubElementType(ElementEntity, IList, elementType, Index,
1682                           StructuredList, StructuredIndex);
1683       ++numEltsInit;
1684     } else {
1685       QualType VecType;
1686       const VectorType *IVT = IType->getAs<VectorType>();
1687       unsigned numIElts = IVT->getNumElements();
1688 
1689       if (IType->isExtVectorType())
1690         VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1691       else
1692         VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1693                                                 IVT->getVectorKind());
1694       CheckSubElementType(ElementEntity, IList, VecType, Index,
1695                           StructuredList, StructuredIndex);
1696       numEltsInit += numIElts;
1697     }
1698   }
1699 
1700   // OpenCL requires all elements to be initialized.
1701   if (numEltsInit != maxElements) {
1702     if (!VerifyOnly)
1703       SemaRef.Diag(IList->getBeginLoc(),
1704                    diag::err_vector_incorrect_num_initializers)
1705           << (numEltsInit < maxElements) << maxElements << numEltsInit;
1706     hadError = true;
1707   }
1708 }
1709 
1710 void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1711                                      InitListExpr *IList, QualType &DeclType,
1712                                      llvm::APSInt elementIndex,
1713                                      bool SubobjectIsDesignatorContext,
1714                                      unsigned &Index,
1715                                      InitListExpr *StructuredList,
1716                                      unsigned &StructuredIndex) {
1717   const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1718 
1719   // Check for the special-case of initializing an array with a string.
1720   if (Index < IList->getNumInits()) {
1721     if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) ==
1722         SIF_None) {
1723       // We place the string literal directly into the resulting
1724       // initializer list. This is the only place where the structure
1725       // of the structured initializer list doesn't match exactly,
1726       // because doing so would involve allocating one character
1727       // constant for each string.
1728       if (!VerifyOnly) {
1729         CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef);
1730         UpdateStructuredListElement(StructuredList, StructuredIndex,
1731                                     IList->getInit(Index));
1732         StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1733       }
1734       ++Index;
1735       return;
1736     }
1737   }
1738   if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1739     // Check for VLAs; in standard C it would be possible to check this
1740     // earlier, but I don't know where clang accepts VLAs (gcc accepts
1741     // them in all sorts of strange places).
1742     if (!VerifyOnly)
1743       SemaRef.Diag(VAT->getSizeExpr()->getBeginLoc(),
1744                    diag::err_variable_object_no_init)
1745           << VAT->getSizeExpr()->getSourceRange();
1746     hadError = true;
1747     ++Index;
1748     ++StructuredIndex;
1749     return;
1750   }
1751 
1752   // We might know the maximum number of elements in advance.
1753   llvm::APSInt maxElements(elementIndex.getBitWidth(),
1754                            elementIndex.isUnsigned());
1755   bool maxElementsKnown = false;
1756   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1757     maxElements = CAT->getSize();
1758     elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1759     elementIndex.setIsUnsigned(maxElements.isUnsigned());
1760     maxElementsKnown = true;
1761   }
1762 
1763   QualType elementType = arrayType->getElementType();
1764   while (Index < IList->getNumInits()) {
1765     Expr *Init = IList->getInit(Index);
1766     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1767       // If we're not the subobject that matches up with the '{' for
1768       // the designator, we shouldn't be handling the
1769       // designator. Return immediately.
1770       if (!SubobjectIsDesignatorContext)
1771         return;
1772 
1773       // Handle this designated initializer. elementIndex will be
1774       // updated to be the next array element we'll initialize.
1775       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1776                                      DeclType, nullptr, &elementIndex, Index,
1777                                      StructuredList, StructuredIndex, true,
1778                                      false)) {
1779         hadError = true;
1780         continue;
1781       }
1782 
1783       if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1784         maxElements = maxElements.extend(elementIndex.getBitWidth());
1785       else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1786         elementIndex = elementIndex.extend(maxElements.getBitWidth());
1787       elementIndex.setIsUnsigned(maxElements.isUnsigned());
1788 
1789       // If the array is of incomplete type, keep track of the number of
1790       // elements in the initializer.
1791       if (!maxElementsKnown && elementIndex > maxElements)
1792         maxElements = elementIndex;
1793 
1794       continue;
1795     }
1796 
1797     // If we know the maximum number of elements, and we've already
1798     // hit it, stop consuming elements in the initializer list.
1799     if (maxElementsKnown && elementIndex == maxElements)
1800       break;
1801 
1802     InitializedEntity ElementEntity =
1803       InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1804                                            Entity);
1805     // Check this element.
1806     CheckSubElementType(ElementEntity, IList, elementType, Index,
1807                         StructuredList, StructuredIndex);
1808     ++elementIndex;
1809 
1810     // If the array is of incomplete type, keep track of the number of
1811     // elements in the initializer.
1812     if (!maxElementsKnown && elementIndex > maxElements)
1813       maxElements = elementIndex;
1814   }
1815   if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1816     // If this is an incomplete array type, the actual type needs to
1817     // be calculated here.
1818     llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1819     if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) {
1820       // Sizing an array implicitly to zero is not allowed by ISO C,
1821       // but is supported by GNU.
1822       SemaRef.Diag(IList->getBeginLoc(), diag::ext_typecheck_zero_array_size);
1823     }
1824 
1825     DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1826                                                      ArrayType::Normal, 0);
1827   }
1828   if (!hadError && VerifyOnly) {
1829     // If there are any members of the array that get value-initialized, check
1830     // that is possible. That happens if we know the bound and don't have
1831     // enough elements, or if we're performing an array new with an unknown
1832     // bound.
1833     // FIXME: This needs to detect holes left by designated initializers too.
1834     if ((maxElementsKnown && elementIndex < maxElements) ||
1835         Entity.isVariableLengthArrayNew())
1836       CheckEmptyInitializable(
1837           InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1838           IList->getEndLoc());
1839   }
1840 }
1841 
1842 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1843                                              Expr *InitExpr,
1844                                              FieldDecl *Field,
1845                                              bool TopLevelObject) {
1846   // Handle GNU flexible array initializers.
1847   unsigned FlexArrayDiag;
1848   if (isa<InitListExpr>(InitExpr) &&
1849       cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
1850     // Empty flexible array init always allowed as an extension
1851     FlexArrayDiag = diag::ext_flexible_array_init;
1852   } else if (SemaRef.getLangOpts().CPlusPlus) {
1853     // Disallow flexible array init in C++; it is not required for gcc
1854     // compatibility, and it needs work to IRGen correctly in general.
1855     FlexArrayDiag = diag::err_flexible_array_init;
1856   } else if (!TopLevelObject) {
1857     // Disallow flexible array init on non-top-level object
1858     FlexArrayDiag = diag::err_flexible_array_init;
1859   } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
1860     // Disallow flexible array init on anything which is not a variable.
1861     FlexArrayDiag = diag::err_flexible_array_init;
1862   } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
1863     // Disallow flexible array init on local variables.
1864     FlexArrayDiag = diag::err_flexible_array_init;
1865   } else {
1866     // Allow other cases.
1867     FlexArrayDiag = diag::ext_flexible_array_init;
1868   }
1869 
1870   if (!VerifyOnly) {
1871     SemaRef.Diag(InitExpr->getBeginLoc(), FlexArrayDiag)
1872         << InitExpr->getBeginLoc();
1873     SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1874       << Field;
1875   }
1876 
1877   return FlexArrayDiag != diag::ext_flexible_array_init;
1878 }
1879 
1880 /// Check if the type of a class element has an accessible destructor.
1881 ///
1882 /// Aggregate initialization requires a class element's destructor be
1883 /// accessible per 11.6.1 [dcl.init.aggr]:
1884 ///
1885 /// The destructor for each element of class type is potentially invoked
1886 /// (15.4 [class.dtor]) from the context where the aggregate initialization
1887 /// occurs.
1888 static bool hasAccessibleDestructor(QualType ElementType, SourceLocation Loc,
1889                                     Sema &SemaRef) {
1890   auto *CXXRD = ElementType->getAsCXXRecordDecl();
1891   if (!CXXRD)
1892     return false;
1893 
1894   CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(CXXRD);
1895   SemaRef.CheckDestructorAccess(Loc, Destructor,
1896                                 SemaRef.PDiag(diag::err_access_dtor_temp)
1897                                     << ElementType);
1898   SemaRef.MarkFunctionReferenced(Loc, Destructor);
1899   if (SemaRef.DiagnoseUseOfDecl(Destructor, Loc))
1900     return true;
1901   return false;
1902 }
1903 
1904 void InitListChecker::CheckStructUnionTypes(
1905     const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType,
1906     CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field,
1907     bool SubobjectIsDesignatorContext, unsigned &Index,
1908     InitListExpr *StructuredList, unsigned &StructuredIndex,
1909     bool TopLevelObject) {
1910   RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
1911 
1912   // If the record is invalid, some of it's members are invalid. To avoid
1913   // confusion, we forgo checking the intializer for the entire record.
1914   if (structDecl->isInvalidDecl()) {
1915     // Assume it was supposed to consume a single initializer.
1916     ++Index;
1917     hadError = true;
1918     return;
1919   }
1920 
1921   if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1922     RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1923 
1924     if (!VerifyOnly)
1925       for (FieldDecl *FD : RD->fields()) {
1926         QualType ET = SemaRef.Context.getBaseElementType(FD->getType());
1927         if (hasAccessibleDestructor(ET, IList->getEndLoc(), SemaRef)) {
1928           hadError = true;
1929           return;
1930         }
1931       }
1932 
1933     // If there's a default initializer, use it.
1934     if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
1935       if (VerifyOnly)
1936         return;
1937       for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1938            Field != FieldEnd; ++Field) {
1939         if (Field->hasInClassInitializer()) {
1940           StructuredList->setInitializedFieldInUnion(*Field);
1941           // FIXME: Actually build a CXXDefaultInitExpr?
1942           return;
1943         }
1944       }
1945     }
1946 
1947     // Value-initialize the first member of the union that isn't an unnamed
1948     // bitfield.
1949     for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1950          Field != FieldEnd; ++Field) {
1951       if (!Field->isUnnamedBitfield()) {
1952         if (VerifyOnly)
1953           CheckEmptyInitializable(
1954               InitializedEntity::InitializeMember(*Field, &Entity),
1955               IList->getEndLoc());
1956         else
1957           StructuredList->setInitializedFieldInUnion(*Field);
1958         break;
1959       }
1960     }
1961     return;
1962   }
1963 
1964   bool InitializedSomething = false;
1965 
1966   // If we have any base classes, they are initialized prior to the fields.
1967   for (auto &Base : Bases) {
1968     Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr;
1969 
1970     // Designated inits always initialize fields, so if we see one, all
1971     // remaining base classes have no explicit initializer.
1972     if (Init && isa<DesignatedInitExpr>(Init))
1973       Init = nullptr;
1974 
1975     SourceLocation InitLoc = Init ? Init->getBeginLoc() : IList->getEndLoc();
1976     InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
1977         SemaRef.Context, &Base, false, &Entity);
1978     if (Init) {
1979       CheckSubElementType(BaseEntity, IList, Base.getType(), Index,
1980                           StructuredList, StructuredIndex);
1981       InitializedSomething = true;
1982     } else if (VerifyOnly) {
1983       CheckEmptyInitializable(BaseEntity, InitLoc);
1984     }
1985 
1986     if (!VerifyOnly)
1987       if (hasAccessibleDestructor(Base.getType(), InitLoc, SemaRef)) {
1988         hadError = true;
1989         return;
1990       }
1991   }
1992 
1993   // If structDecl is a forward declaration, this loop won't do
1994   // anything except look at designated initializers; That's okay,
1995   // because an error should get printed out elsewhere. It might be
1996   // worthwhile to skip over the rest of the initializer, though.
1997   RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1998   RecordDecl::field_iterator FieldEnd = RD->field_end();
1999   bool CheckForMissingFields =
2000     !IList->isIdiomaticZeroInitializer(SemaRef.getLangOpts());
2001   bool HasDesignatedInit = false;
2002 
2003   while (Index < IList->getNumInits()) {
2004     Expr *Init = IList->getInit(Index);
2005     SourceLocation InitLoc = Init->getBeginLoc();
2006 
2007     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
2008       // If we're not the subobject that matches up with the '{' for
2009       // the designator, we shouldn't be handling the
2010       // designator. Return immediately.
2011       if (!SubobjectIsDesignatorContext)
2012         return;
2013 
2014       HasDesignatedInit = true;
2015 
2016       // Handle this designated initializer. Field will be updated to
2017       // the next field that we'll be initializing.
2018       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
2019                                      DeclType, &Field, nullptr, Index,
2020                                      StructuredList, StructuredIndex,
2021                                      true, TopLevelObject))
2022         hadError = true;
2023       else if (!VerifyOnly) {
2024         // Find the field named by the designated initializer.
2025         RecordDecl::field_iterator F = RD->field_begin();
2026         while (std::next(F) != Field)
2027           ++F;
2028         QualType ET = SemaRef.Context.getBaseElementType(F->getType());
2029         if (hasAccessibleDestructor(ET, InitLoc, SemaRef)) {
2030           hadError = true;
2031           return;
2032         }
2033       }
2034 
2035       InitializedSomething = true;
2036 
2037       // Disable check for missing fields when designators are used.
2038       // This matches gcc behaviour.
2039       CheckForMissingFields = false;
2040       continue;
2041     }
2042 
2043     if (Field == FieldEnd) {
2044       // We've run out of fields. We're done.
2045       break;
2046     }
2047 
2048     // We've already initialized a member of a union. We're done.
2049     if (InitializedSomething && DeclType->isUnionType())
2050       break;
2051 
2052     // If we've hit the flexible array member at the end, we're done.
2053     if (Field->getType()->isIncompleteArrayType())
2054       break;
2055 
2056     if (Field->isUnnamedBitfield()) {
2057       // Don't initialize unnamed bitfields, e.g. "int : 20;"
2058       ++Field;
2059       continue;
2060     }
2061 
2062     // Make sure we can use this declaration.
2063     bool InvalidUse;
2064     if (VerifyOnly)
2065       InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2066     else
2067       InvalidUse = SemaRef.DiagnoseUseOfDecl(
2068           *Field, IList->getInit(Index)->getBeginLoc());
2069     if (InvalidUse) {
2070       ++Index;
2071       ++Field;
2072       hadError = true;
2073       continue;
2074     }
2075 
2076     if (!VerifyOnly) {
2077       QualType ET = SemaRef.Context.getBaseElementType(Field->getType());
2078       if (hasAccessibleDestructor(ET, InitLoc, SemaRef)) {
2079         hadError = true;
2080         return;
2081       }
2082     }
2083 
2084     InitializedEntity MemberEntity =
2085       InitializedEntity::InitializeMember(*Field, &Entity);
2086     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2087                         StructuredList, StructuredIndex);
2088     InitializedSomething = true;
2089 
2090     if (DeclType->isUnionType() && !VerifyOnly) {
2091       // Initialize the first field within the union.
2092       StructuredList->setInitializedFieldInUnion(*Field);
2093     }
2094 
2095     ++Field;
2096   }
2097 
2098   // Emit warnings for missing struct field initializers.
2099   if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
2100       Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
2101       !DeclType->isUnionType()) {
2102     // It is possible we have one or more unnamed bitfields remaining.
2103     // Find first (if any) named field and emit warning.
2104     for (RecordDecl::field_iterator it = Field, end = RD->field_end();
2105          it != end; ++it) {
2106       if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
2107         SemaRef.Diag(IList->getSourceRange().getEnd(),
2108                      diag::warn_missing_field_initializers) << *it;
2109         break;
2110       }
2111     }
2112   }
2113 
2114   // Check that any remaining fields can be value-initialized.
2115   if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() &&
2116       !Field->getType()->isIncompleteArrayType()) {
2117     // FIXME: Should check for holes left by designated initializers too.
2118     for (; Field != FieldEnd && !hadError; ++Field) {
2119       if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
2120         CheckEmptyInitializable(
2121             InitializedEntity::InitializeMember(*Field, &Entity),
2122             IList->getEndLoc());
2123     }
2124   }
2125 
2126   // Check that the types of the remaining fields have accessible destructors.
2127   if (!VerifyOnly) {
2128     // If the initializer expression has a designated initializer, check the
2129     // elements for which a designated initializer is not provided too.
2130     RecordDecl::field_iterator I = HasDesignatedInit ? RD->field_begin()
2131                                                      : Field;
2132     for (RecordDecl::field_iterator E = RD->field_end(); I != E; ++I) {
2133       QualType ET = SemaRef.Context.getBaseElementType(I->getType());
2134       if (hasAccessibleDestructor(ET, IList->getEndLoc(), SemaRef)) {
2135         hadError = true;
2136         return;
2137       }
2138     }
2139   }
2140 
2141   if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
2142       Index >= IList->getNumInits())
2143     return;
2144 
2145   if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
2146                              TopLevelObject)) {
2147     hadError = true;
2148     ++Index;
2149     return;
2150   }
2151 
2152   InitializedEntity MemberEntity =
2153     InitializedEntity::InitializeMember(*Field, &Entity);
2154 
2155   if (isa<InitListExpr>(IList->getInit(Index)))
2156     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2157                         StructuredList, StructuredIndex);
2158   else
2159     CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
2160                           StructuredList, StructuredIndex);
2161 }
2162 
2163 /// Expand a field designator that refers to a member of an
2164 /// anonymous struct or union into a series of field designators that
2165 /// refers to the field within the appropriate subobject.
2166 ///
2167 static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
2168                                            DesignatedInitExpr *DIE,
2169                                            unsigned DesigIdx,
2170                                            IndirectFieldDecl *IndirectField) {
2171   typedef DesignatedInitExpr::Designator Designator;
2172 
2173   // Build the replacement designators.
2174   SmallVector<Designator, 4> Replacements;
2175   for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
2176        PE = IndirectField->chain_end(); PI != PE; ++PI) {
2177     if (PI + 1 == PE)
2178       Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2179                                     DIE->getDesignator(DesigIdx)->getDotLoc(),
2180                                 DIE->getDesignator(DesigIdx)->getFieldLoc()));
2181     else
2182       Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2183                                         SourceLocation(), SourceLocation()));
2184     assert(isa<FieldDecl>(*PI));
2185     Replacements.back().setField(cast<FieldDecl>(*PI));
2186   }
2187 
2188   // Expand the current designator into the set of replacement
2189   // designators, so we have a full subobject path down to where the
2190   // member of the anonymous struct/union is actually stored.
2191   DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
2192                         &Replacements[0] + Replacements.size());
2193 }
2194 
2195 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
2196                                                    DesignatedInitExpr *DIE) {
2197   unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
2198   SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
2199   for (unsigned I = 0; I < NumIndexExprs; ++I)
2200     IndexExprs[I] = DIE->getSubExpr(I + 1);
2201   return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(),
2202                                     IndexExprs,
2203                                     DIE->getEqualOrColonLoc(),
2204                                     DIE->usesGNUSyntax(), DIE->getInit());
2205 }
2206 
2207 namespace {
2208 
2209 // Callback to only accept typo corrections that are for field members of
2210 // the given struct or union.
2211 class FieldInitializerValidatorCCC : public CorrectionCandidateCallback {
2212  public:
2213   explicit FieldInitializerValidatorCCC(RecordDecl *RD)
2214       : Record(RD) {}
2215 
2216   bool ValidateCandidate(const TypoCorrection &candidate) override {
2217     FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
2218     return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
2219   }
2220 
2221  private:
2222   RecordDecl *Record;
2223 };
2224 
2225 } // end anonymous namespace
2226 
2227 /// Check the well-formedness of a C99 designated initializer.
2228 ///
2229 /// Determines whether the designated initializer @p DIE, which
2230 /// resides at the given @p Index within the initializer list @p
2231 /// IList, is well-formed for a current object of type @p DeclType
2232 /// (C99 6.7.8). The actual subobject that this designator refers to
2233 /// within the current subobject is returned in either
2234 /// @p NextField or @p NextElementIndex (whichever is appropriate).
2235 ///
2236 /// @param IList  The initializer list in which this designated
2237 /// initializer occurs.
2238 ///
2239 /// @param DIE The designated initializer expression.
2240 ///
2241 /// @param DesigIdx  The index of the current designator.
2242 ///
2243 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
2244 /// into which the designation in @p DIE should refer.
2245 ///
2246 /// @param NextField  If non-NULL and the first designator in @p DIE is
2247 /// a field, this will be set to the field declaration corresponding
2248 /// to the field named by the designator.
2249 ///
2250 /// @param NextElementIndex  If non-NULL and the first designator in @p
2251 /// DIE is an array designator or GNU array-range designator, this
2252 /// will be set to the last index initialized by this designator.
2253 ///
2254 /// @param Index  Index into @p IList where the designated initializer
2255 /// @p DIE occurs.
2256 ///
2257 /// @param StructuredList  The initializer list expression that
2258 /// describes all of the subobject initializers in the order they'll
2259 /// actually be initialized.
2260 ///
2261 /// @returns true if there was an error, false otherwise.
2262 bool
2263 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
2264                                             InitListExpr *IList,
2265                                             DesignatedInitExpr *DIE,
2266                                             unsigned DesigIdx,
2267                                             QualType &CurrentObjectType,
2268                                           RecordDecl::field_iterator *NextField,
2269                                             llvm::APSInt *NextElementIndex,
2270                                             unsigned &Index,
2271                                             InitListExpr *StructuredList,
2272                                             unsigned &StructuredIndex,
2273                                             bool FinishSubobjectInit,
2274                                             bool TopLevelObject) {
2275   if (DesigIdx == DIE->size()) {
2276     // Check the actual initialization for the designated object type.
2277     bool prevHadError = hadError;
2278 
2279     // Temporarily remove the designator expression from the
2280     // initializer list that the child calls see, so that we don't try
2281     // to re-process the designator.
2282     unsigned OldIndex = Index;
2283     IList->setInit(OldIndex, DIE->getInit());
2284 
2285     CheckSubElementType(Entity, IList, CurrentObjectType, Index,
2286                         StructuredList, StructuredIndex);
2287 
2288     // Restore the designated initializer expression in the syntactic
2289     // form of the initializer list.
2290     if (IList->getInit(OldIndex) != DIE->getInit())
2291       DIE->setInit(IList->getInit(OldIndex));
2292     IList->setInit(OldIndex, DIE);
2293 
2294     return hadError && !prevHadError;
2295   }
2296 
2297   DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
2298   bool IsFirstDesignator = (DesigIdx == 0);
2299   if (!VerifyOnly) {
2300     assert((IsFirstDesignator || StructuredList) &&
2301            "Need a non-designated initializer list to start from");
2302 
2303     // Determine the structural initializer list that corresponds to the
2304     // current subobject.
2305     if (IsFirstDesignator)
2306       StructuredList = SyntacticToSemantic.lookup(IList);
2307     else {
2308       Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ?
2309           StructuredList->getInit(StructuredIndex) : nullptr;
2310       if (!ExistingInit && StructuredList->hasArrayFiller())
2311         ExistingInit = StructuredList->getArrayFiller();
2312 
2313       if (!ExistingInit)
2314         StructuredList = getStructuredSubobjectInit(
2315             IList, Index, CurrentObjectType, StructuredList, StructuredIndex,
2316             SourceRange(D->getBeginLoc(), DIE->getEndLoc()));
2317       else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit))
2318         StructuredList = Result;
2319       else {
2320         if (DesignatedInitUpdateExpr *E =
2321                 dyn_cast<DesignatedInitUpdateExpr>(ExistingInit))
2322           StructuredList = E->getUpdater();
2323         else {
2324           DesignatedInitUpdateExpr *DIUE = new (SemaRef.Context)
2325               DesignatedInitUpdateExpr(SemaRef.Context, D->getBeginLoc(),
2326                                        ExistingInit, DIE->getEndLoc());
2327           StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE);
2328           StructuredList = DIUE->getUpdater();
2329         }
2330 
2331         // We need to check on source range validity because the previous
2332         // initializer does not have to be an explicit initializer. e.g.,
2333         //
2334         // struct P { int a, b; };
2335         // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
2336         //
2337         // There is an overwrite taking place because the first braced initializer
2338         // list "{ .a = 2 }" already provides value for .p.b (which is zero).
2339         if (ExistingInit->getSourceRange().isValid()) {
2340           // We are creating an initializer list that initializes the
2341           // subobjects of the current object, but there was already an
2342           // initialization that completely initialized the current
2343           // subobject, e.g., by a compound literal:
2344           //
2345           // struct X { int a, b; };
2346           // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2347           //
2348           // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2349           // designated initializer re-initializes the whole
2350           // subobject [0], overwriting previous initializers.
2351           SemaRef.Diag(D->getBeginLoc(),
2352                        diag::warn_subobject_initializer_overrides)
2353               << SourceRange(D->getBeginLoc(), DIE->getEndLoc());
2354 
2355           SemaRef.Diag(ExistingInit->getBeginLoc(),
2356                        diag::note_previous_initializer)
2357               << /*FIXME:has side effects=*/0 << ExistingInit->getSourceRange();
2358         }
2359       }
2360     }
2361     assert(StructuredList && "Expected a structured initializer list");
2362   }
2363 
2364   if (D->isFieldDesignator()) {
2365     // C99 6.7.8p7:
2366     //
2367     //   If a designator has the form
2368     //
2369     //      . identifier
2370     //
2371     //   then the current object (defined below) shall have
2372     //   structure or union type and the identifier shall be the
2373     //   name of a member of that type.
2374     const RecordType *RT = CurrentObjectType->getAs<RecordType>();
2375     if (!RT) {
2376       SourceLocation Loc = D->getDotLoc();
2377       if (Loc.isInvalid())
2378         Loc = D->getFieldLoc();
2379       if (!VerifyOnly)
2380         SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
2381           << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
2382       ++Index;
2383       return true;
2384     }
2385 
2386     FieldDecl *KnownField = D->getField();
2387     if (!KnownField) {
2388       IdentifierInfo *FieldName = D->getFieldName();
2389       DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
2390       for (NamedDecl *ND : Lookup) {
2391         if (auto *FD = dyn_cast<FieldDecl>(ND)) {
2392           KnownField = FD;
2393           break;
2394         }
2395         if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) {
2396           // In verify mode, don't modify the original.
2397           if (VerifyOnly)
2398             DIE = CloneDesignatedInitExpr(SemaRef, DIE);
2399           ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD);
2400           D = DIE->getDesignator(DesigIdx);
2401           KnownField = cast<FieldDecl>(*IFD->chain_begin());
2402           break;
2403         }
2404       }
2405       if (!KnownField) {
2406         if (VerifyOnly) {
2407           ++Index;
2408           return true;  // No typo correction when just trying this out.
2409         }
2410 
2411         // Name lookup found something, but it wasn't a field.
2412         if (!Lookup.empty()) {
2413           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
2414             << FieldName;
2415           SemaRef.Diag(Lookup.front()->getLocation(),
2416                        diag::note_field_designator_found);
2417           ++Index;
2418           return true;
2419         }
2420 
2421         // Name lookup didn't find anything.
2422         // Determine whether this was a typo for another field name.
2423         if (TypoCorrection Corrected = SemaRef.CorrectTypo(
2424                 DeclarationNameInfo(FieldName, D->getFieldLoc()),
2425                 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr,
2426                 llvm::make_unique<FieldInitializerValidatorCCC>(RT->getDecl()),
2427                 Sema::CTK_ErrorRecovery, RT->getDecl())) {
2428           SemaRef.diagnoseTypo(
2429               Corrected,
2430               SemaRef.PDiag(diag::err_field_designator_unknown_suggest)
2431                 << FieldName << CurrentObjectType);
2432           KnownField = Corrected.getCorrectionDeclAs<FieldDecl>();
2433           hadError = true;
2434         } else {
2435           // Typo correction didn't find anything.
2436           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
2437             << FieldName << CurrentObjectType;
2438           ++Index;
2439           return true;
2440         }
2441       }
2442     }
2443 
2444     unsigned FieldIndex = 0;
2445 
2446     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2447       FieldIndex = CXXRD->getNumBases();
2448 
2449     for (auto *FI : RT->getDecl()->fields()) {
2450       if (FI->isUnnamedBitfield())
2451         continue;
2452       if (declaresSameEntity(KnownField, FI)) {
2453         KnownField = FI;
2454         break;
2455       }
2456       ++FieldIndex;
2457     }
2458 
2459     RecordDecl::field_iterator Field =
2460         RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField));
2461 
2462     // All of the fields of a union are located at the same place in
2463     // the initializer list.
2464     if (RT->getDecl()->isUnion()) {
2465       FieldIndex = 0;
2466       if (!VerifyOnly) {
2467         FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion();
2468         if (CurrentField && !declaresSameEntity(CurrentField, *Field)) {
2469           assert(StructuredList->getNumInits() == 1
2470                  && "A union should never have more than one initializer!");
2471 
2472           Expr *ExistingInit = StructuredList->getInit(0);
2473           if (ExistingInit) {
2474             // We're about to throw away an initializer, emit warning.
2475             SemaRef.Diag(D->getFieldLoc(),
2476                          diag::warn_initializer_overrides)
2477               << D->getSourceRange();
2478             SemaRef.Diag(ExistingInit->getBeginLoc(),
2479                          diag::note_previous_initializer)
2480                 << /*FIXME:has side effects=*/0
2481                 << ExistingInit->getSourceRange();
2482           }
2483 
2484           // remove existing initializer
2485           StructuredList->resizeInits(SemaRef.Context, 0);
2486           StructuredList->setInitializedFieldInUnion(nullptr);
2487         }
2488 
2489         StructuredList->setInitializedFieldInUnion(*Field);
2490       }
2491     }
2492 
2493     // Make sure we can use this declaration.
2494     bool InvalidUse;
2495     if (VerifyOnly)
2496       InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2497     else
2498       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
2499     if (InvalidUse) {
2500       ++Index;
2501       return true;
2502     }
2503 
2504     if (!VerifyOnly) {
2505       // Update the designator with the field declaration.
2506       D->setField(*Field);
2507 
2508       // Make sure that our non-designated initializer list has space
2509       // for a subobject corresponding to this field.
2510       if (FieldIndex >= StructuredList->getNumInits())
2511         StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
2512     }
2513 
2514     // This designator names a flexible array member.
2515     if (Field->getType()->isIncompleteArrayType()) {
2516       bool Invalid = false;
2517       if ((DesigIdx + 1) != DIE->size()) {
2518         // We can't designate an object within the flexible array
2519         // member (because GCC doesn't allow it).
2520         if (!VerifyOnly) {
2521           DesignatedInitExpr::Designator *NextD
2522             = DIE->getDesignator(DesigIdx + 1);
2523           SemaRef.Diag(NextD->getBeginLoc(),
2524                        diag::err_designator_into_flexible_array_member)
2525               << SourceRange(NextD->getBeginLoc(), DIE->getEndLoc());
2526           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2527             << *Field;
2528         }
2529         Invalid = true;
2530       }
2531 
2532       if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
2533           !isa<StringLiteral>(DIE->getInit())) {
2534         // The initializer is not an initializer list.
2535         if (!VerifyOnly) {
2536           SemaRef.Diag(DIE->getInit()->getBeginLoc(),
2537                        diag::err_flexible_array_init_needs_braces)
2538               << DIE->getInit()->getSourceRange();
2539           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2540             << *Field;
2541         }
2542         Invalid = true;
2543       }
2544 
2545       // Check GNU flexible array initializer.
2546       if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
2547                                              TopLevelObject))
2548         Invalid = true;
2549 
2550       if (Invalid) {
2551         ++Index;
2552         return true;
2553       }
2554 
2555       // Initialize the array.
2556       bool prevHadError = hadError;
2557       unsigned newStructuredIndex = FieldIndex;
2558       unsigned OldIndex = Index;
2559       IList->setInit(Index, DIE->getInit());
2560 
2561       InitializedEntity MemberEntity =
2562         InitializedEntity::InitializeMember(*Field, &Entity);
2563       CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2564                           StructuredList, newStructuredIndex);
2565 
2566       IList->setInit(OldIndex, DIE);
2567       if (hadError && !prevHadError) {
2568         ++Field;
2569         ++FieldIndex;
2570         if (NextField)
2571           *NextField = Field;
2572         StructuredIndex = FieldIndex;
2573         return true;
2574       }
2575     } else {
2576       // Recurse to check later designated subobjects.
2577       QualType FieldType = Field->getType();
2578       unsigned newStructuredIndex = FieldIndex;
2579 
2580       InitializedEntity MemberEntity =
2581         InitializedEntity::InitializeMember(*Field, &Entity);
2582       if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
2583                                      FieldType, nullptr, nullptr, Index,
2584                                      StructuredList, newStructuredIndex,
2585                                      FinishSubobjectInit, false))
2586         return true;
2587     }
2588 
2589     // Find the position of the next field to be initialized in this
2590     // subobject.
2591     ++Field;
2592     ++FieldIndex;
2593 
2594     // If this the first designator, our caller will continue checking
2595     // the rest of this struct/class/union subobject.
2596     if (IsFirstDesignator) {
2597       if (NextField)
2598         *NextField = Field;
2599       StructuredIndex = FieldIndex;
2600       return false;
2601     }
2602 
2603     if (!FinishSubobjectInit)
2604       return false;
2605 
2606     // We've already initialized something in the union; we're done.
2607     if (RT->getDecl()->isUnion())
2608       return hadError;
2609 
2610     // Check the remaining fields within this class/struct/union subobject.
2611     bool prevHadError = hadError;
2612 
2613     auto NoBases =
2614         CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
2615                                         CXXRecordDecl::base_class_iterator());
2616     CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field,
2617                           false, Index, StructuredList, FieldIndex);
2618     return hadError && !prevHadError;
2619   }
2620 
2621   // C99 6.7.8p6:
2622   //
2623   //   If a designator has the form
2624   //
2625   //      [ constant-expression ]
2626   //
2627   //   then the current object (defined below) shall have array
2628   //   type and the expression shall be an integer constant
2629   //   expression. If the array is of unknown size, any
2630   //   nonnegative value is valid.
2631   //
2632   // Additionally, cope with the GNU extension that permits
2633   // designators of the form
2634   //
2635   //      [ constant-expression ... constant-expression ]
2636   const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
2637   if (!AT) {
2638     if (!VerifyOnly)
2639       SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
2640         << CurrentObjectType;
2641     ++Index;
2642     return true;
2643   }
2644 
2645   Expr *IndexExpr = nullptr;
2646   llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
2647   if (D->isArrayDesignator()) {
2648     IndexExpr = DIE->getArrayIndex(*D);
2649     DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
2650     DesignatedEndIndex = DesignatedStartIndex;
2651   } else {
2652     assert(D->isArrayRangeDesignator() && "Need array-range designator");
2653 
2654     DesignatedStartIndex =
2655       DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
2656     DesignatedEndIndex =
2657       DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
2658     IndexExpr = DIE->getArrayRangeEnd(*D);
2659 
2660     // Codegen can't handle evaluating array range designators that have side
2661     // effects, because we replicate the AST value for each initialized element.
2662     // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
2663     // elements with something that has a side effect, so codegen can emit an
2664     // "error unsupported" error instead of miscompiling the app.
2665     if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
2666         DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
2667       FullyStructuredList->sawArrayRangeDesignator();
2668   }
2669 
2670   if (isa<ConstantArrayType>(AT)) {
2671     llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
2672     DesignatedStartIndex
2673       = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
2674     DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
2675     DesignatedEndIndex
2676       = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
2677     DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
2678     if (DesignatedEndIndex >= MaxElements) {
2679       if (!VerifyOnly)
2680         SemaRef.Diag(IndexExpr->getBeginLoc(),
2681                      diag::err_array_designator_too_large)
2682             << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
2683             << IndexExpr->getSourceRange();
2684       ++Index;
2685       return true;
2686     }
2687   } else {
2688     unsigned DesignatedIndexBitWidth =
2689       ConstantArrayType::getMaxSizeBits(SemaRef.Context);
2690     DesignatedStartIndex =
2691       DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth);
2692     DesignatedEndIndex =
2693       DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth);
2694     DesignatedStartIndex.setIsUnsigned(true);
2695     DesignatedEndIndex.setIsUnsigned(true);
2696   }
2697 
2698   if (!VerifyOnly && StructuredList->isStringLiteralInit()) {
2699     // We're modifying a string literal init; we have to decompose the string
2700     // so we can modify the individual characters.
2701     ASTContext &Context = SemaRef.Context;
2702     Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens();
2703 
2704     // Compute the character type
2705     QualType CharTy = AT->getElementType();
2706 
2707     // Compute the type of the integer literals.
2708     QualType PromotedCharTy = CharTy;
2709     if (CharTy->isPromotableIntegerType())
2710       PromotedCharTy = Context.getPromotedIntegerType(CharTy);
2711     unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy);
2712 
2713     if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) {
2714       // Get the length of the string.
2715       uint64_t StrLen = SL->getLength();
2716       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2717         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2718       StructuredList->resizeInits(Context, StrLen);
2719 
2720       // Build a literal for each character in the string, and put them into
2721       // the init list.
2722       for (unsigned i = 0, e = StrLen; i != e; ++i) {
2723         llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i));
2724         Expr *Init = new (Context) IntegerLiteral(
2725             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2726         if (CharTy != PromotedCharTy)
2727           Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2728                                           Init, nullptr, VK_RValue);
2729         StructuredList->updateInit(Context, i, Init);
2730       }
2731     } else {
2732       ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr);
2733       std::string Str;
2734       Context.getObjCEncodingForType(E->getEncodedType(), Str);
2735 
2736       // Get the length of the string.
2737       uint64_t StrLen = Str.size();
2738       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2739         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2740       StructuredList->resizeInits(Context, StrLen);
2741 
2742       // Build a literal for each character in the string, and put them into
2743       // the init list.
2744       for (unsigned i = 0, e = StrLen; i != e; ++i) {
2745         llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]);
2746         Expr *Init = new (Context) IntegerLiteral(
2747             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2748         if (CharTy != PromotedCharTy)
2749           Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2750                                           Init, nullptr, VK_RValue);
2751         StructuredList->updateInit(Context, i, Init);
2752       }
2753     }
2754   }
2755 
2756   // Make sure that our non-designated initializer list has space
2757   // for a subobject corresponding to this array element.
2758   if (!VerifyOnly &&
2759       DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
2760     StructuredList->resizeInits(SemaRef.Context,
2761                                 DesignatedEndIndex.getZExtValue() + 1);
2762 
2763   // Repeatedly perform subobject initializations in the range
2764   // [DesignatedStartIndex, DesignatedEndIndex].
2765 
2766   // Move to the next designator
2767   unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
2768   unsigned OldIndex = Index;
2769 
2770   InitializedEntity ElementEntity =
2771     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
2772 
2773   while (DesignatedStartIndex <= DesignatedEndIndex) {
2774     // Recurse to check later designated subobjects.
2775     QualType ElementType = AT->getElementType();
2776     Index = OldIndex;
2777 
2778     ElementEntity.setElementIndex(ElementIndex);
2779     if (CheckDesignatedInitializer(
2780             ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr,
2781             nullptr, Index, StructuredList, ElementIndex,
2782             FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex),
2783             false))
2784       return true;
2785 
2786     // Move to the next index in the array that we'll be initializing.
2787     ++DesignatedStartIndex;
2788     ElementIndex = DesignatedStartIndex.getZExtValue();
2789   }
2790 
2791   // If this the first designator, our caller will continue checking
2792   // the rest of this array subobject.
2793   if (IsFirstDesignator) {
2794     if (NextElementIndex)
2795       *NextElementIndex = DesignatedStartIndex;
2796     StructuredIndex = ElementIndex;
2797     return false;
2798   }
2799 
2800   if (!FinishSubobjectInit)
2801     return false;
2802 
2803   // Check the remaining elements within this array subobject.
2804   bool prevHadError = hadError;
2805   CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
2806                  /*SubobjectIsDesignatorContext=*/false, Index,
2807                  StructuredList, ElementIndex);
2808   return hadError && !prevHadError;
2809 }
2810 
2811 // Get the structured initializer list for a subobject of type
2812 // @p CurrentObjectType.
2813 InitListExpr *
2814 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
2815                                             QualType CurrentObjectType,
2816                                             InitListExpr *StructuredList,
2817                                             unsigned StructuredIndex,
2818                                             SourceRange InitRange,
2819                                             bool IsFullyOverwritten) {
2820   if (VerifyOnly)
2821     return nullptr; // No structured list in verification-only mode.
2822   Expr *ExistingInit = nullptr;
2823   if (!StructuredList)
2824     ExistingInit = SyntacticToSemantic.lookup(IList);
2825   else if (StructuredIndex < StructuredList->getNumInits())
2826     ExistingInit = StructuredList->getInit(StructuredIndex);
2827 
2828   if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
2829     // There might have already been initializers for subobjects of the current
2830     // object, but a subsequent initializer list will overwrite the entirety
2831     // of the current object. (See DR 253 and C99 6.7.8p21). e.g.,
2832     //
2833     // struct P { char x[6]; };
2834     // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } };
2835     //
2836     // The first designated initializer is ignored, and l.x is just "f".
2837     if (!IsFullyOverwritten)
2838       return Result;
2839 
2840   if (ExistingInit) {
2841     // We are creating an initializer list that initializes the
2842     // subobjects of the current object, but there was already an
2843     // initialization that completely initialized the current
2844     // subobject, e.g., by a compound literal:
2845     //
2846     // struct X { int a, b; };
2847     // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2848     //
2849     // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2850     // designated initializer re-initializes the whole
2851     // subobject [0], overwriting previous initializers.
2852     SemaRef.Diag(InitRange.getBegin(),
2853                  diag::warn_subobject_initializer_overrides)
2854       << InitRange;
2855     SemaRef.Diag(ExistingInit->getBeginLoc(), diag::note_previous_initializer)
2856         << /*FIXME:has side effects=*/0 << ExistingInit->getSourceRange();
2857   }
2858 
2859   InitListExpr *Result
2860     = new (SemaRef.Context) InitListExpr(SemaRef.Context,
2861                                          InitRange.getBegin(), None,
2862                                          InitRange.getEnd());
2863 
2864   QualType ResultType = CurrentObjectType;
2865   if (!ResultType->isArrayType())
2866     ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
2867   Result->setType(ResultType);
2868 
2869   // Pre-allocate storage for the structured initializer list.
2870   unsigned NumElements = 0;
2871   unsigned NumInits = 0;
2872   bool GotNumInits = false;
2873   if (!StructuredList) {
2874     NumInits = IList->getNumInits();
2875     GotNumInits = true;
2876   } else if (Index < IList->getNumInits()) {
2877     if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
2878       NumInits = SubList->getNumInits();
2879       GotNumInits = true;
2880     }
2881   }
2882 
2883   if (const ArrayType *AType
2884       = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
2885     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
2886       NumElements = CAType->getSize().getZExtValue();
2887       // Simple heuristic so that we don't allocate a very large
2888       // initializer with many empty entries at the end.
2889       if (GotNumInits && NumElements > NumInits)
2890         NumElements = 0;
2891     }
2892   } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
2893     NumElements = VType->getNumElements();
2894   else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
2895     RecordDecl *RDecl = RType->getDecl();
2896     if (RDecl->isUnion())
2897       NumElements = 1;
2898     else
2899       NumElements = std::distance(RDecl->field_begin(), RDecl->field_end());
2900   }
2901 
2902   Result->reserveInits(SemaRef.Context, NumElements);
2903 
2904   // Link this new initializer list into the structured initializer
2905   // lists.
2906   if (StructuredList)
2907     StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
2908   else {
2909     Result->setSyntacticForm(IList);
2910     SyntacticToSemantic[IList] = Result;
2911   }
2912 
2913   return Result;
2914 }
2915 
2916 /// Update the initializer at index @p StructuredIndex within the
2917 /// structured initializer list to the value @p expr.
2918 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
2919                                                   unsigned &StructuredIndex,
2920                                                   Expr *expr) {
2921   // No structured initializer list to update
2922   if (!StructuredList)
2923     return;
2924 
2925   if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
2926                                                   StructuredIndex, expr)) {
2927     // This initializer overwrites a previous initializer. Warn.
2928     // We need to check on source range validity because the previous
2929     // initializer does not have to be an explicit initializer.
2930     // struct P { int a, b; };
2931     // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
2932     // There is an overwrite taking place because the first braced initializer
2933     // list "{ .a = 2 }' already provides value for .p.b (which is zero).
2934     if (PrevInit->getSourceRange().isValid()) {
2935       SemaRef.Diag(expr->getBeginLoc(), diag::warn_initializer_overrides)
2936           << expr->getSourceRange();
2937 
2938       SemaRef.Diag(PrevInit->getBeginLoc(), diag::note_previous_initializer)
2939           << /*FIXME:has side effects=*/0 << PrevInit->getSourceRange();
2940     }
2941   }
2942 
2943   ++StructuredIndex;
2944 }
2945 
2946 /// Check that the given Index expression is a valid array designator
2947 /// value. This is essentially just a wrapper around
2948 /// VerifyIntegerConstantExpression that also checks for negative values
2949 /// and produces a reasonable diagnostic if there is a
2950 /// failure. Returns the index expression, possibly with an implicit cast
2951 /// added, on success.  If everything went okay, Value will receive the
2952 /// value of the constant expression.
2953 static ExprResult
2954 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
2955   SourceLocation Loc = Index->getBeginLoc();
2956 
2957   // Make sure this is an integer constant expression.
2958   ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value);
2959   if (Result.isInvalid())
2960     return Result;
2961 
2962   if (Value.isSigned() && Value.isNegative())
2963     return S.Diag(Loc, diag::err_array_designator_negative)
2964       << Value.toString(10) << Index->getSourceRange();
2965 
2966   Value.setIsUnsigned(true);
2967   return Result;
2968 }
2969 
2970 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
2971                                             SourceLocation Loc,
2972                                             bool GNUSyntax,
2973                                             ExprResult Init) {
2974   typedef DesignatedInitExpr::Designator ASTDesignator;
2975 
2976   bool Invalid = false;
2977   SmallVector<ASTDesignator, 32> Designators;
2978   SmallVector<Expr *, 32> InitExpressions;
2979 
2980   // Build designators and check array designator expressions.
2981   for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
2982     const Designator &D = Desig.getDesignator(Idx);
2983     switch (D.getKind()) {
2984     case Designator::FieldDesignator:
2985       Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
2986                                           D.getFieldLoc()));
2987       break;
2988 
2989     case Designator::ArrayDesignator: {
2990       Expr *Index = static_cast<Expr *>(D.getArrayIndex());
2991       llvm::APSInt IndexValue;
2992       if (!Index->isTypeDependent() && !Index->isValueDependent())
2993         Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get();
2994       if (!Index)
2995         Invalid = true;
2996       else {
2997         Designators.push_back(ASTDesignator(InitExpressions.size(),
2998                                             D.getLBracketLoc(),
2999                                             D.getRBracketLoc()));
3000         InitExpressions.push_back(Index);
3001       }
3002       break;
3003     }
3004 
3005     case Designator::ArrayRangeDesignator: {
3006       Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
3007       Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
3008       llvm::APSInt StartValue;
3009       llvm::APSInt EndValue;
3010       bool StartDependent = StartIndex->isTypeDependent() ||
3011                             StartIndex->isValueDependent();
3012       bool EndDependent = EndIndex->isTypeDependent() ||
3013                           EndIndex->isValueDependent();
3014       if (!StartDependent)
3015         StartIndex =
3016             CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get();
3017       if (!EndDependent)
3018         EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get();
3019 
3020       if (!StartIndex || !EndIndex)
3021         Invalid = true;
3022       else {
3023         // Make sure we're comparing values with the same bit width.
3024         if (StartDependent || EndDependent) {
3025           // Nothing to compute.
3026         } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
3027           EndValue = EndValue.extend(StartValue.getBitWidth());
3028         else if (StartValue.getBitWidth() < EndValue.getBitWidth())
3029           StartValue = StartValue.extend(EndValue.getBitWidth());
3030 
3031         if (!StartDependent && !EndDependent && EndValue < StartValue) {
3032           Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
3033             << StartValue.toString(10) << EndValue.toString(10)
3034             << StartIndex->getSourceRange() << EndIndex->getSourceRange();
3035           Invalid = true;
3036         } else {
3037           Designators.push_back(ASTDesignator(InitExpressions.size(),
3038                                               D.getLBracketLoc(),
3039                                               D.getEllipsisLoc(),
3040                                               D.getRBracketLoc()));
3041           InitExpressions.push_back(StartIndex);
3042           InitExpressions.push_back(EndIndex);
3043         }
3044       }
3045       break;
3046     }
3047     }
3048   }
3049 
3050   if (Invalid || Init.isInvalid())
3051     return ExprError();
3052 
3053   // Clear out the expressions within the designation.
3054   Desig.ClearExprs(*this);
3055 
3056   DesignatedInitExpr *DIE
3057     = DesignatedInitExpr::Create(Context,
3058                                  Designators,
3059                                  InitExpressions, Loc, GNUSyntax,
3060                                  Init.getAs<Expr>());
3061 
3062   if (!getLangOpts().C99)
3063     Diag(DIE->getBeginLoc(), diag::ext_designated_init)
3064         << DIE->getSourceRange();
3065 
3066   return DIE;
3067 }
3068 
3069 //===----------------------------------------------------------------------===//
3070 // Initialization entity
3071 //===----------------------------------------------------------------------===//
3072 
3073 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
3074                                      const InitializedEntity &Parent)
3075   : Parent(&Parent), Index(Index)
3076 {
3077   if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
3078     Kind = EK_ArrayElement;
3079     Type = AT->getElementType();
3080   } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
3081     Kind = EK_VectorElement;
3082     Type = VT->getElementType();
3083   } else {
3084     const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
3085     assert(CT && "Unexpected type");
3086     Kind = EK_ComplexElement;
3087     Type = CT->getElementType();
3088   }
3089 }
3090 
3091 InitializedEntity
3092 InitializedEntity::InitializeBase(ASTContext &Context,
3093                                   const CXXBaseSpecifier *Base,
3094                                   bool IsInheritedVirtualBase,
3095                                   const InitializedEntity *Parent) {
3096   InitializedEntity Result;
3097   Result.Kind = EK_Base;
3098   Result.Parent = Parent;
3099   Result.Base = reinterpret_cast<uintptr_t>(Base);
3100   if (IsInheritedVirtualBase)
3101     Result.Base |= 0x01;
3102 
3103   Result.Type = Base->getType();
3104   return Result;
3105 }
3106 
3107 DeclarationName InitializedEntity::getName() const {
3108   switch (getKind()) {
3109   case EK_Parameter:
3110   case EK_Parameter_CF_Audited: {
3111     ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
3112     return (D ? D->getDeclName() : DeclarationName());
3113   }
3114 
3115   case EK_Variable:
3116   case EK_Member:
3117   case EK_Binding:
3118     return Variable.VariableOrMember->getDeclName();
3119 
3120   case EK_LambdaCapture:
3121     return DeclarationName(Capture.VarID);
3122 
3123   case EK_Result:
3124   case EK_StmtExprResult:
3125   case EK_Exception:
3126   case EK_New:
3127   case EK_Temporary:
3128   case EK_Base:
3129   case EK_Delegating:
3130   case EK_ArrayElement:
3131   case EK_VectorElement:
3132   case EK_ComplexElement:
3133   case EK_BlockElement:
3134   case EK_LambdaToBlockConversionBlockElement:
3135   case EK_CompoundLiteralInit:
3136   case EK_RelatedResult:
3137     return DeclarationName();
3138   }
3139 
3140   llvm_unreachable("Invalid EntityKind!");
3141 }
3142 
3143 ValueDecl *InitializedEntity::getDecl() const {
3144   switch (getKind()) {
3145   case EK_Variable:
3146   case EK_Member:
3147   case EK_Binding:
3148     return Variable.VariableOrMember;
3149 
3150   case EK_Parameter:
3151   case EK_Parameter_CF_Audited:
3152     return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
3153 
3154   case EK_Result:
3155   case EK_StmtExprResult:
3156   case EK_Exception:
3157   case EK_New:
3158   case EK_Temporary:
3159   case EK_Base:
3160   case EK_Delegating:
3161   case EK_ArrayElement:
3162   case EK_VectorElement:
3163   case EK_ComplexElement:
3164   case EK_BlockElement:
3165   case EK_LambdaToBlockConversionBlockElement:
3166   case EK_LambdaCapture:
3167   case EK_CompoundLiteralInit:
3168   case EK_RelatedResult:
3169     return nullptr;
3170   }
3171 
3172   llvm_unreachable("Invalid EntityKind!");
3173 }
3174 
3175 bool InitializedEntity::allowsNRVO() const {
3176   switch (getKind()) {
3177   case EK_Result:
3178   case EK_Exception:
3179     return LocAndNRVO.NRVO;
3180 
3181   case EK_StmtExprResult:
3182   case EK_Variable:
3183   case EK_Parameter:
3184   case EK_Parameter_CF_Audited:
3185   case EK_Member:
3186   case EK_Binding:
3187   case EK_New:
3188   case EK_Temporary:
3189   case EK_CompoundLiteralInit:
3190   case EK_Base:
3191   case EK_Delegating:
3192   case EK_ArrayElement:
3193   case EK_VectorElement:
3194   case EK_ComplexElement:
3195   case EK_BlockElement:
3196   case EK_LambdaToBlockConversionBlockElement:
3197   case EK_LambdaCapture:
3198   case EK_RelatedResult:
3199     break;
3200   }
3201 
3202   return false;
3203 }
3204 
3205 unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const {
3206   assert(getParent() != this);
3207   unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0;
3208   for (unsigned I = 0; I != Depth; ++I)
3209     OS << "`-";
3210 
3211   switch (getKind()) {
3212   case EK_Variable: OS << "Variable"; break;
3213   case EK_Parameter: OS << "Parameter"; break;
3214   case EK_Parameter_CF_Audited: OS << "CF audited function Parameter";
3215     break;
3216   case EK_Result: OS << "Result"; break;
3217   case EK_StmtExprResult: OS << "StmtExprResult"; break;
3218   case EK_Exception: OS << "Exception"; break;
3219   case EK_Member: OS << "Member"; break;
3220   case EK_Binding: OS << "Binding"; break;
3221   case EK_New: OS << "New"; break;
3222   case EK_Temporary: OS << "Temporary"; break;
3223   case EK_CompoundLiteralInit: OS << "CompoundLiteral";break;
3224   case EK_RelatedResult: OS << "RelatedResult"; break;
3225   case EK_Base: OS << "Base"; break;
3226   case EK_Delegating: OS << "Delegating"; break;
3227   case EK_ArrayElement: OS << "ArrayElement " << Index; break;
3228   case EK_VectorElement: OS << "VectorElement " << Index; break;
3229   case EK_ComplexElement: OS << "ComplexElement " << Index; break;
3230   case EK_BlockElement: OS << "Block"; break;
3231   case EK_LambdaToBlockConversionBlockElement:
3232     OS << "Block (lambda)";
3233     break;
3234   case EK_LambdaCapture:
3235     OS << "LambdaCapture ";
3236     OS << DeclarationName(Capture.VarID);
3237     break;
3238   }
3239 
3240   if (auto *D = getDecl()) {
3241     OS << " ";
3242     D->printQualifiedName(OS);
3243   }
3244 
3245   OS << " '" << getType().getAsString() << "'\n";
3246 
3247   return Depth + 1;
3248 }
3249 
3250 LLVM_DUMP_METHOD void InitializedEntity::dump() const {
3251   dumpImpl(llvm::errs());
3252 }
3253 
3254 //===----------------------------------------------------------------------===//
3255 // Initialization sequence
3256 //===----------------------------------------------------------------------===//
3257 
3258 void InitializationSequence::Step::Destroy() {
3259   switch (Kind) {
3260   case SK_ResolveAddressOfOverloadedFunction:
3261   case SK_CastDerivedToBaseRValue:
3262   case SK_CastDerivedToBaseXValue:
3263   case SK_CastDerivedToBaseLValue:
3264   case SK_BindReference:
3265   case SK_BindReferenceToTemporary:
3266   case SK_FinalCopy:
3267   case SK_ExtraneousCopyToTemporary:
3268   case SK_UserConversion:
3269   case SK_QualificationConversionRValue:
3270   case SK_QualificationConversionXValue:
3271   case SK_QualificationConversionLValue:
3272   case SK_AtomicConversion:
3273   case SK_LValueToRValue:
3274   case SK_ListInitialization:
3275   case SK_UnwrapInitList:
3276   case SK_RewrapInitList:
3277   case SK_ConstructorInitialization:
3278   case SK_ConstructorInitializationFromList:
3279   case SK_ZeroInitialization:
3280   case SK_CAssignment:
3281   case SK_StringInit:
3282   case SK_ObjCObjectConversion:
3283   case SK_ArrayLoopIndex:
3284   case SK_ArrayLoopInit:
3285   case SK_ArrayInit:
3286   case SK_GNUArrayInit:
3287   case SK_ParenthesizedArrayInit:
3288   case SK_PassByIndirectCopyRestore:
3289   case SK_PassByIndirectRestore:
3290   case SK_ProduceObjCObject:
3291   case SK_StdInitializerList:
3292   case SK_StdInitializerListConstructorCall:
3293   case SK_OCLSamplerInit:
3294   case SK_OCLZeroOpaqueType:
3295     break;
3296 
3297   case SK_ConversionSequence:
3298   case SK_ConversionSequenceNoNarrowing:
3299     delete ICS;
3300   }
3301 }
3302 
3303 bool InitializationSequence::isDirectReferenceBinding() const {
3304   // There can be some lvalue adjustments after the SK_BindReference step.
3305   for (auto I = Steps.rbegin(); I != Steps.rend(); ++I) {
3306     if (I->Kind == SK_BindReference)
3307       return true;
3308     if (I->Kind == SK_BindReferenceToTemporary)
3309       return false;
3310   }
3311   return false;
3312 }
3313 
3314 bool InitializationSequence::isAmbiguous() const {
3315   if (!Failed())
3316     return false;
3317 
3318   switch (getFailureKind()) {
3319   case FK_TooManyInitsForReference:
3320   case FK_ParenthesizedListInitForReference:
3321   case FK_ArrayNeedsInitList:
3322   case FK_ArrayNeedsInitListOrStringLiteral:
3323   case FK_ArrayNeedsInitListOrWideStringLiteral:
3324   case FK_NarrowStringIntoWideCharArray:
3325   case FK_WideStringIntoCharArray:
3326   case FK_IncompatWideStringIntoWideChar:
3327   case FK_PlainStringIntoUTF8Char:
3328   case FK_UTF8StringIntoPlainChar:
3329   case FK_AddressOfOverloadFailed: // FIXME: Could do better
3330   case FK_NonConstLValueReferenceBindingToTemporary:
3331   case FK_NonConstLValueReferenceBindingToBitfield:
3332   case FK_NonConstLValueReferenceBindingToVectorElement:
3333   case FK_NonConstLValueReferenceBindingToUnrelated:
3334   case FK_RValueReferenceBindingToLValue:
3335   case FK_ReferenceInitDropsQualifiers:
3336   case FK_ReferenceInitFailed:
3337   case FK_ConversionFailed:
3338   case FK_ConversionFromPropertyFailed:
3339   case FK_TooManyInitsForScalar:
3340   case FK_ParenthesizedListInitForScalar:
3341   case FK_ReferenceBindingToInitList:
3342   case FK_InitListBadDestinationType:
3343   case FK_DefaultInitOfConst:
3344   case FK_Incomplete:
3345   case FK_ArrayTypeMismatch:
3346   case FK_NonConstantArrayInit:
3347   case FK_ListInitializationFailed:
3348   case FK_VariableLengthArrayHasInitializer:
3349   case FK_PlaceholderType:
3350   case FK_ExplicitConstructor:
3351   case FK_AddressOfUnaddressableFunction:
3352     return false;
3353 
3354   case FK_ReferenceInitOverloadFailed:
3355   case FK_UserConversionOverloadFailed:
3356   case FK_ConstructorOverloadFailed:
3357   case FK_ListConstructorOverloadFailed:
3358     return FailedOverloadResult == OR_Ambiguous;
3359   }
3360 
3361   llvm_unreachable("Invalid EntityKind!");
3362 }
3363 
3364 bool InitializationSequence::isConstructorInitialization() const {
3365   return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
3366 }
3367 
3368 void
3369 InitializationSequence
3370 ::AddAddressOverloadResolutionStep(FunctionDecl *Function,
3371                                    DeclAccessPair Found,
3372                                    bool HadMultipleCandidates) {
3373   Step S;
3374   S.Kind = SK_ResolveAddressOfOverloadedFunction;
3375   S.Type = Function->getType();
3376   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3377   S.Function.Function = Function;
3378   S.Function.FoundDecl = Found;
3379   Steps.push_back(S);
3380 }
3381 
3382 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
3383                                                       ExprValueKind VK) {
3384   Step S;
3385   switch (VK) {
3386   case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
3387   case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
3388   case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
3389   }
3390   S.Type = BaseType;
3391   Steps.push_back(S);
3392 }
3393 
3394 void InitializationSequence::AddReferenceBindingStep(QualType T,
3395                                                      bool BindingTemporary) {
3396   Step S;
3397   S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
3398   S.Type = T;
3399   Steps.push_back(S);
3400 }
3401 
3402 void InitializationSequence::AddFinalCopy(QualType T) {
3403   Step S;
3404   S.Kind = SK_FinalCopy;
3405   S.Type = T;
3406   Steps.push_back(S);
3407 }
3408 
3409 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
3410   Step S;
3411   S.Kind = SK_ExtraneousCopyToTemporary;
3412   S.Type = T;
3413   Steps.push_back(S);
3414 }
3415 
3416 void
3417 InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
3418                                               DeclAccessPair FoundDecl,
3419                                               QualType T,
3420                                               bool HadMultipleCandidates) {
3421   Step S;
3422   S.Kind = SK_UserConversion;
3423   S.Type = T;
3424   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3425   S.Function.Function = Function;
3426   S.Function.FoundDecl = FoundDecl;
3427   Steps.push_back(S);
3428 }
3429 
3430 void InitializationSequence::AddQualificationConversionStep(QualType Ty,
3431                                                             ExprValueKind VK) {
3432   Step S;
3433   S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
3434   switch (VK) {
3435   case VK_RValue:
3436     S.Kind = SK_QualificationConversionRValue;
3437     break;
3438   case VK_XValue:
3439     S.Kind = SK_QualificationConversionXValue;
3440     break;
3441   case VK_LValue:
3442     S.Kind = SK_QualificationConversionLValue;
3443     break;
3444   }
3445   S.Type = Ty;
3446   Steps.push_back(S);
3447 }
3448 
3449 void InitializationSequence::AddAtomicConversionStep(QualType Ty) {
3450   Step S;
3451   S.Kind = SK_AtomicConversion;
3452   S.Type = Ty;
3453   Steps.push_back(S);
3454 }
3455 
3456 void InitializationSequence::AddLValueToRValueStep(QualType Ty) {
3457   assert(!Ty.hasQualifiers() && "rvalues may not have qualifiers");
3458 
3459   Step S;
3460   S.Kind = SK_LValueToRValue;
3461   S.Type = Ty;
3462   Steps.push_back(S);
3463 }
3464 
3465 void InitializationSequence::AddConversionSequenceStep(
3466     const ImplicitConversionSequence &ICS, QualType T,
3467     bool TopLevelOfInitList) {
3468   Step S;
3469   S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing
3470                               : SK_ConversionSequence;
3471   S.Type = T;
3472   S.ICS = new ImplicitConversionSequence(ICS);
3473   Steps.push_back(S);
3474 }
3475 
3476 void InitializationSequence::AddListInitializationStep(QualType T) {
3477   Step S;
3478   S.Kind = SK_ListInitialization;
3479   S.Type = T;
3480   Steps.push_back(S);
3481 }
3482 
3483 void InitializationSequence::AddConstructorInitializationStep(
3484     DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T,
3485     bool HadMultipleCandidates, bool FromInitList, bool AsInitList) {
3486   Step S;
3487   S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall
3488                                      : SK_ConstructorInitializationFromList
3489                         : SK_ConstructorInitialization;
3490   S.Type = T;
3491   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3492   S.Function.Function = Constructor;
3493   S.Function.FoundDecl = FoundDecl;
3494   Steps.push_back(S);
3495 }
3496 
3497 void InitializationSequence::AddZeroInitializationStep(QualType T) {
3498   Step S;
3499   S.Kind = SK_ZeroInitialization;
3500   S.Type = T;
3501   Steps.push_back(S);
3502 }
3503 
3504 void InitializationSequence::AddCAssignmentStep(QualType T) {
3505   Step S;
3506   S.Kind = SK_CAssignment;
3507   S.Type = T;
3508   Steps.push_back(S);
3509 }
3510 
3511 void InitializationSequence::AddStringInitStep(QualType T) {
3512   Step S;
3513   S.Kind = SK_StringInit;
3514   S.Type = T;
3515   Steps.push_back(S);
3516 }
3517 
3518 void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
3519   Step S;
3520   S.Kind = SK_ObjCObjectConversion;
3521   S.Type = T;
3522   Steps.push_back(S);
3523 }
3524 
3525 void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) {
3526   Step S;
3527   S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit;
3528   S.Type = T;
3529   Steps.push_back(S);
3530 }
3531 
3532 void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) {
3533   Step S;
3534   S.Kind = SK_ArrayLoopIndex;
3535   S.Type = EltT;
3536   Steps.insert(Steps.begin(), S);
3537 
3538   S.Kind = SK_ArrayLoopInit;
3539   S.Type = T;
3540   Steps.push_back(S);
3541 }
3542 
3543 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
3544   Step S;
3545   S.Kind = SK_ParenthesizedArrayInit;
3546   S.Type = T;
3547   Steps.push_back(S);
3548 }
3549 
3550 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
3551                                                               bool shouldCopy) {
3552   Step s;
3553   s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
3554                        : SK_PassByIndirectRestore);
3555   s.Type = type;
3556   Steps.push_back(s);
3557 }
3558 
3559 void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
3560   Step S;
3561   S.Kind = SK_ProduceObjCObject;
3562   S.Type = T;
3563   Steps.push_back(S);
3564 }
3565 
3566 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
3567   Step S;
3568   S.Kind = SK_StdInitializerList;
3569   S.Type = T;
3570   Steps.push_back(S);
3571 }
3572 
3573 void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
3574   Step S;
3575   S.Kind = SK_OCLSamplerInit;
3576   S.Type = T;
3577   Steps.push_back(S);
3578 }
3579 
3580 void InitializationSequence::AddOCLZeroOpaqueTypeStep(QualType T) {
3581   Step S;
3582   S.Kind = SK_OCLZeroOpaqueType;
3583   S.Type = T;
3584   Steps.push_back(S);
3585 }
3586 
3587 void InitializationSequence::RewrapReferenceInitList(QualType T,
3588                                                      InitListExpr *Syntactic) {
3589   assert(Syntactic->getNumInits() == 1 &&
3590          "Can only rewrap trivial init lists.");
3591   Step S;
3592   S.Kind = SK_UnwrapInitList;
3593   S.Type = Syntactic->getInit(0)->getType();
3594   Steps.insert(Steps.begin(), S);
3595 
3596   S.Kind = SK_RewrapInitList;
3597   S.Type = T;
3598   S.WrappingSyntacticList = Syntactic;
3599   Steps.push_back(S);
3600 }
3601 
3602 void InitializationSequence::SetOverloadFailure(FailureKind Failure,
3603                                                 OverloadingResult Result) {
3604   setSequenceKind(FailedSequence);
3605   this->Failure = Failure;
3606   this->FailedOverloadResult = Result;
3607 }
3608 
3609 //===----------------------------------------------------------------------===//
3610 // Attempt initialization
3611 //===----------------------------------------------------------------------===//
3612 
3613 /// Tries to add a zero initializer. Returns true if that worked.
3614 static bool
3615 maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence,
3616                                    const InitializedEntity &Entity) {
3617   if (Entity.getKind() != InitializedEntity::EK_Variable)
3618     return false;
3619 
3620   VarDecl *VD = cast<VarDecl>(Entity.getDecl());
3621   if (VD->getInit() || VD->getEndLoc().isMacroID())
3622     return false;
3623 
3624   QualType VariableTy = VD->getType().getCanonicalType();
3625   SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc());
3626   std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
3627   if (!Init.empty()) {
3628     Sequence.AddZeroInitializationStep(Entity.getType());
3629     Sequence.SetZeroInitializationFixit(Init, Loc);
3630     return true;
3631   }
3632   return false;
3633 }
3634 
3635 static void MaybeProduceObjCObject(Sema &S,
3636                                    InitializationSequence &Sequence,
3637                                    const InitializedEntity &Entity) {
3638   if (!S.getLangOpts().ObjCAutoRefCount) return;
3639 
3640   /// When initializing a parameter, produce the value if it's marked
3641   /// __attribute__((ns_consumed)).
3642   if (Entity.isParameterKind()) {
3643     if (!Entity.isParameterConsumed())
3644       return;
3645 
3646     assert(Entity.getType()->isObjCRetainableType() &&
3647            "consuming an object of unretainable type?");
3648     Sequence.AddProduceObjCObjectStep(Entity.getType());
3649 
3650   /// When initializing a return value, if the return type is a
3651   /// retainable type, then returns need to immediately retain the
3652   /// object.  If an autorelease is required, it will be done at the
3653   /// last instant.
3654   } else if (Entity.getKind() == InitializedEntity::EK_Result ||
3655              Entity.getKind() == InitializedEntity::EK_StmtExprResult) {
3656     if (!Entity.getType()->isObjCRetainableType())
3657       return;
3658 
3659     Sequence.AddProduceObjCObjectStep(Entity.getType());
3660   }
3661 }
3662 
3663 static void TryListInitialization(Sema &S,
3664                                   const InitializedEntity &Entity,
3665                                   const InitializationKind &Kind,
3666                                   InitListExpr *InitList,
3667                                   InitializationSequence &Sequence,
3668                                   bool TreatUnavailableAsInvalid);
3669 
3670 /// When initializing from init list via constructor, handle
3671 /// initialization of an object of type std::initializer_list<T>.
3672 ///
3673 /// \return true if we have handled initialization of an object of type
3674 /// std::initializer_list<T>, false otherwise.
3675 static bool TryInitializerListConstruction(Sema &S,
3676                                            InitListExpr *List,
3677                                            QualType DestType,
3678                                            InitializationSequence &Sequence,
3679                                            bool TreatUnavailableAsInvalid) {
3680   QualType E;
3681   if (!S.isStdInitializerList(DestType, &E))
3682     return false;
3683 
3684   if (!S.isCompleteType(List->getExprLoc(), E)) {
3685     Sequence.setIncompleteTypeFailure(E);
3686     return true;
3687   }
3688 
3689   // Try initializing a temporary array from the init list.
3690   QualType ArrayType = S.Context.getConstantArrayType(
3691       E.withConst(), llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
3692                                  List->getNumInits()),
3693       clang::ArrayType::Normal, 0);
3694   InitializedEntity HiddenArray =
3695       InitializedEntity::InitializeTemporary(ArrayType);
3696   InitializationKind Kind = InitializationKind::CreateDirectList(
3697       List->getExprLoc(), List->getBeginLoc(), List->getEndLoc());
3698   TryListInitialization(S, HiddenArray, Kind, List, Sequence,
3699                         TreatUnavailableAsInvalid);
3700   if (Sequence)
3701     Sequence.AddStdInitializerListConstructionStep(DestType);
3702   return true;
3703 }
3704 
3705 /// Determine if the constructor has the signature of a copy or move
3706 /// constructor for the type T of the class in which it was found. That is,
3707 /// determine if its first parameter is of type T or reference to (possibly
3708 /// cv-qualified) T.
3709 static bool hasCopyOrMoveCtorParam(ASTContext &Ctx,
3710                                    const ConstructorInfo &Info) {
3711   if (Info.Constructor->getNumParams() == 0)
3712     return false;
3713 
3714   QualType ParmT =
3715       Info.Constructor->getParamDecl(0)->getType().getNonReferenceType();
3716   QualType ClassT =
3717       Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext()));
3718 
3719   return Ctx.hasSameUnqualifiedType(ParmT, ClassT);
3720 }
3721 
3722 static OverloadingResult
3723 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
3724                            MultiExprArg Args,
3725                            OverloadCandidateSet &CandidateSet,
3726                            QualType DestType,
3727                            DeclContext::lookup_result Ctors,
3728                            OverloadCandidateSet::iterator &Best,
3729                            bool CopyInitializing, bool AllowExplicit,
3730                            bool OnlyListConstructors, bool IsListInit,
3731                            bool SecondStepOfCopyInit = false) {
3732   CandidateSet.clear(OverloadCandidateSet::CSK_InitByConstructor);
3733 
3734   for (NamedDecl *D : Ctors) {
3735     auto Info = getConstructorInfo(D);
3736     if (!Info.Constructor || Info.Constructor->isInvalidDecl())
3737       continue;
3738 
3739     if (!AllowExplicit && Info.Constructor->isExplicit())
3740       continue;
3741 
3742     if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor))
3743       continue;
3744 
3745     // C++11 [over.best.ics]p4:
3746     //   ... and the constructor or user-defined conversion function is a
3747     //   candidate by
3748     //   - 13.3.1.3, when the argument is the temporary in the second step
3749     //     of a class copy-initialization, or
3750     //   - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here]
3751     //   - the second phase of 13.3.1.7 when the initializer list has exactly
3752     //     one element that is itself an initializer list, and the target is
3753     //     the first parameter of a constructor of class X, and the conversion
3754     //     is to X or reference to (possibly cv-qualified X),
3755     //   user-defined conversion sequences are not considered.
3756     bool SuppressUserConversions =
3757         SecondStepOfCopyInit ||
3758         (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
3759          hasCopyOrMoveCtorParam(S.Context, Info));
3760 
3761     if (Info.ConstructorTmpl)
3762       S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
3763                                      /*ExplicitArgs*/ nullptr, Args,
3764                                      CandidateSet, SuppressUserConversions);
3765     else {
3766       // C++ [over.match.copy]p1:
3767       //   - When initializing a temporary to be bound to the first parameter
3768       //     of a constructor [for type T] that takes a reference to possibly
3769       //     cv-qualified T as its first argument, called with a single
3770       //     argument in the context of direct-initialization, explicit
3771       //     conversion functions are also considered.
3772       // FIXME: What if a constructor template instantiates to such a signature?
3773       bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
3774                                Args.size() == 1 &&
3775                                hasCopyOrMoveCtorParam(S.Context, Info);
3776       S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args,
3777                              CandidateSet, SuppressUserConversions,
3778                              /*PartialOverloading=*/false,
3779                              /*AllowExplicit=*/AllowExplicitConv);
3780     }
3781   }
3782 
3783   // FIXME: Work around a bug in C++17 guaranteed copy elision.
3784   //
3785   // When initializing an object of class type T by constructor
3786   // ([over.match.ctor]) or by list-initialization ([over.match.list])
3787   // from a single expression of class type U, conversion functions of
3788   // U that convert to the non-reference type cv T are candidates.
3789   // Explicit conversion functions are only candidates during
3790   // direct-initialization.
3791   //
3792   // Note: SecondStepOfCopyInit is only ever true in this case when
3793   // evaluating whether to produce a C++98 compatibility warning.
3794   if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 &&
3795       !SecondStepOfCopyInit) {
3796     Expr *Initializer = Args[0];
3797     auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl();
3798     if (SourceRD && S.isCompleteType(DeclLoc, Initializer->getType())) {
3799       const auto &Conversions = SourceRD->getVisibleConversionFunctions();
3800       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
3801         NamedDecl *D = *I;
3802         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3803         D = D->getUnderlyingDecl();
3804 
3805         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3806         CXXConversionDecl *Conv;
3807         if (ConvTemplate)
3808           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3809         else
3810           Conv = cast<CXXConversionDecl>(D);
3811 
3812         if ((AllowExplicit && !CopyInitializing) || !Conv->isExplicit()) {
3813           if (ConvTemplate)
3814             S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3815                                              ActingDC, Initializer, DestType,
3816                                              CandidateSet, AllowExplicit,
3817                                              /*AllowResultConversion*/false);
3818           else
3819             S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer,
3820                                      DestType, CandidateSet, AllowExplicit,
3821                                      /*AllowResultConversion*/false);
3822         }
3823       }
3824     }
3825   }
3826 
3827   // Perform overload resolution and return the result.
3828   return CandidateSet.BestViableFunction(S, DeclLoc, Best);
3829 }
3830 
3831 /// Attempt initialization by constructor (C++ [dcl.init]), which
3832 /// enumerates the constructors of the initialized entity and performs overload
3833 /// resolution to select the best.
3834 /// \param DestType       The destination class type.
3835 /// \param DestArrayType  The destination type, which is either DestType or
3836 ///                       a (possibly multidimensional) array of DestType.
3837 /// \param IsListInit     Is this list-initialization?
3838 /// \param IsInitListCopy Is this non-list-initialization resulting from a
3839 ///                       list-initialization from {x} where x is the same
3840 ///                       type as the entity?
3841 static void TryConstructorInitialization(Sema &S,
3842                                          const InitializedEntity &Entity,
3843                                          const InitializationKind &Kind,
3844                                          MultiExprArg Args, QualType DestType,
3845                                          QualType DestArrayType,
3846                                          InitializationSequence &Sequence,
3847                                          bool IsListInit = false,
3848                                          bool IsInitListCopy = false) {
3849   assert(((!IsListInit && !IsInitListCopy) ||
3850           (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&
3851          "IsListInit/IsInitListCopy must come with a single initializer list "
3852          "argument.");
3853   InitListExpr *ILE =
3854       (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr;
3855   MultiExprArg UnwrappedArgs =
3856       ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args;
3857 
3858   // The type we're constructing needs to be complete.
3859   if (!S.isCompleteType(Kind.getLocation(), DestType)) {
3860     Sequence.setIncompleteTypeFailure(DestType);
3861     return;
3862   }
3863 
3864   // C++17 [dcl.init]p17:
3865   //     - If the initializer expression is a prvalue and the cv-unqualified
3866   //       version of the source type is the same class as the class of the
3867   //       destination, the initializer expression is used to initialize the
3868   //       destination object.
3869   // Per DR (no number yet), this does not apply when initializing a base
3870   // class or delegating to another constructor from a mem-initializer.
3871   // ObjC++: Lambda captured by the block in the lambda to block conversion
3872   // should avoid copy elision.
3873   if (S.getLangOpts().CPlusPlus17 &&
3874       Entity.getKind() != InitializedEntity::EK_Base &&
3875       Entity.getKind() != InitializedEntity::EK_Delegating &&
3876       Entity.getKind() !=
3877           InitializedEntity::EK_LambdaToBlockConversionBlockElement &&
3878       UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isRValue() &&
3879       S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) {
3880     // Convert qualifications if necessary.
3881     Sequence.AddQualificationConversionStep(DestType, VK_RValue);
3882     if (ILE)
3883       Sequence.RewrapReferenceInitList(DestType, ILE);
3884     return;
3885   }
3886 
3887   const RecordType *DestRecordType = DestType->getAs<RecordType>();
3888   assert(DestRecordType && "Constructor initialization requires record type");
3889   CXXRecordDecl *DestRecordDecl
3890     = cast<CXXRecordDecl>(DestRecordType->getDecl());
3891 
3892   // Build the candidate set directly in the initialization sequence
3893   // structure, so that it will persist if we fail.
3894   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3895 
3896   // Determine whether we are allowed to call explicit constructors or
3897   // explicit conversion operators.
3898   bool AllowExplicit = Kind.AllowExplicit() || IsListInit;
3899   bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
3900 
3901   //   - Otherwise, if T is a class type, constructors are considered. The
3902   //     applicable constructors are enumerated, and the best one is chosen
3903   //     through overload resolution.
3904   DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl);
3905 
3906   OverloadingResult Result = OR_No_Viable_Function;
3907   OverloadCandidateSet::iterator Best;
3908   bool AsInitializerList = false;
3909 
3910   // C++11 [over.match.list]p1, per DR1467:
3911   //   When objects of non-aggregate type T are list-initialized, such that
3912   //   8.5.4 [dcl.init.list] specifies that overload resolution is performed
3913   //   according to the rules in this section, overload resolution selects
3914   //   the constructor in two phases:
3915   //
3916   //   - Initially, the candidate functions are the initializer-list
3917   //     constructors of the class T and the argument list consists of the
3918   //     initializer list as a single argument.
3919   if (IsListInit) {
3920     AsInitializerList = true;
3921 
3922     // If the initializer list has no elements and T has a default constructor,
3923     // the first phase is omitted.
3924     if (!(UnwrappedArgs.empty() && DestRecordDecl->hasDefaultConstructor()))
3925       Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
3926                                           CandidateSet, DestType, Ctors, Best,
3927                                           CopyInitialization, AllowExplicit,
3928                                           /*OnlyListConstructor=*/true,
3929                                           IsListInit);
3930   }
3931 
3932   // C++11 [over.match.list]p1:
3933   //   - If no viable initializer-list constructor is found, overload resolution
3934   //     is performed again, where the candidate functions are all the
3935   //     constructors of the class T and the argument list consists of the
3936   //     elements of the initializer list.
3937   if (Result == OR_No_Viable_Function) {
3938     AsInitializerList = false;
3939     Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs,
3940                                         CandidateSet, DestType, Ctors, Best,
3941                                         CopyInitialization, AllowExplicit,
3942                                         /*OnlyListConstructors=*/false,
3943                                         IsListInit);
3944   }
3945   if (Result) {
3946     Sequence.SetOverloadFailure(IsListInit ?
3947                       InitializationSequence::FK_ListConstructorOverloadFailed :
3948                       InitializationSequence::FK_ConstructorOverloadFailed,
3949                                 Result);
3950     return;
3951   }
3952 
3953   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3954 
3955   // In C++17, ResolveConstructorOverload can select a conversion function
3956   // instead of a constructor.
3957   if (auto *CD = dyn_cast<CXXConversionDecl>(Best->Function)) {
3958     // Add the user-defined conversion step that calls the conversion function.
3959     QualType ConvType = CD->getConversionType();
3960     assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) &&
3961            "should not have selected this conversion function");
3962     Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType,
3963                                    HadMultipleCandidates);
3964     if (!S.Context.hasSameType(ConvType, DestType))
3965       Sequence.AddQualificationConversionStep(DestType, VK_RValue);
3966     if (IsListInit)
3967       Sequence.RewrapReferenceInitList(Entity.getType(), ILE);
3968     return;
3969   }
3970 
3971   // C++11 [dcl.init]p6:
3972   //   If a program calls for the default initialization of an object
3973   //   of a const-qualified type T, T shall be a class type with a
3974   //   user-provided default constructor.
3975   // C++ core issue 253 proposal:
3976   //   If the implicit default constructor initializes all subobjects, no
3977   //   initializer should be required.
3978   // The 253 proposal is for example needed to process libstdc++ headers in 5.x.
3979   CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
3980   if (Kind.getKind() == InitializationKind::IK_Default &&
3981       Entity.getType().isConstQualified()) {
3982     if (!CtorDecl->getParent()->allowConstDefaultInit()) {
3983       if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
3984         Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3985       return;
3986     }
3987   }
3988 
3989   // C++11 [over.match.list]p1:
3990   //   In copy-list-initialization, if an explicit constructor is chosen, the
3991   //   initializer is ill-formed.
3992   if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
3993     Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
3994     return;
3995   }
3996 
3997   // Add the constructor initialization step. Any cv-qualification conversion is
3998   // subsumed by the initialization.
3999   Sequence.AddConstructorInitializationStep(
4000       Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates,
4001       IsListInit | IsInitListCopy, AsInitializerList);
4002 }
4003 
4004 static bool
4005 ResolveOverloadedFunctionForReferenceBinding(Sema &S,
4006                                              Expr *Initializer,
4007                                              QualType &SourceType,
4008                                              QualType &UnqualifiedSourceType,
4009                                              QualType UnqualifiedTargetType,
4010                                              InitializationSequence &Sequence) {
4011   if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
4012         S.Context.OverloadTy) {
4013     DeclAccessPair Found;
4014     bool HadMultipleCandidates = false;
4015     if (FunctionDecl *Fn
4016         = S.ResolveAddressOfOverloadedFunction(Initializer,
4017                                                UnqualifiedTargetType,
4018                                                false, Found,
4019                                                &HadMultipleCandidates)) {
4020       Sequence.AddAddressOverloadResolutionStep(Fn, Found,
4021                                                 HadMultipleCandidates);
4022       SourceType = Fn->getType();
4023       UnqualifiedSourceType = SourceType.getUnqualifiedType();
4024     } else if (!UnqualifiedTargetType->isRecordType()) {
4025       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4026       return true;
4027     }
4028   }
4029   return false;
4030 }
4031 
4032 static void TryReferenceInitializationCore(Sema &S,
4033                                            const InitializedEntity &Entity,
4034                                            const InitializationKind &Kind,
4035                                            Expr *Initializer,
4036                                            QualType cv1T1, QualType T1,
4037                                            Qualifiers T1Quals,
4038                                            QualType cv2T2, QualType T2,
4039                                            Qualifiers T2Quals,
4040                                            InitializationSequence &Sequence);
4041 
4042 static void TryValueInitialization(Sema &S,
4043                                    const InitializedEntity &Entity,
4044                                    const InitializationKind &Kind,
4045                                    InitializationSequence &Sequence,
4046                                    InitListExpr *InitList = nullptr);
4047 
4048 /// Attempt list initialization of a reference.
4049 static void TryReferenceListInitialization(Sema &S,
4050                                            const InitializedEntity &Entity,
4051                                            const InitializationKind &Kind,
4052                                            InitListExpr *InitList,
4053                                            InitializationSequence &Sequence,
4054                                            bool TreatUnavailableAsInvalid) {
4055   // First, catch C++03 where this isn't possible.
4056   if (!S.getLangOpts().CPlusPlus11) {
4057     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
4058     return;
4059   }
4060   // Can't reference initialize a compound literal.
4061   if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) {
4062     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
4063     return;
4064   }
4065 
4066   QualType DestType = Entity.getType();
4067   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
4068   Qualifiers T1Quals;
4069   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4070 
4071   // Reference initialization via an initializer list works thus:
4072   // If the initializer list consists of a single element that is
4073   // reference-related to the referenced type, bind directly to that element
4074   // (possibly creating temporaries).
4075   // Otherwise, initialize a temporary with the initializer list and
4076   // bind to that.
4077   if (InitList->getNumInits() == 1) {
4078     Expr *Initializer = InitList->getInit(0);
4079     QualType cv2T2 = Initializer->getType();
4080     Qualifiers T2Quals;
4081     QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4082 
4083     // If this fails, creating a temporary wouldn't work either.
4084     if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4085                                                      T1, Sequence))
4086       return;
4087 
4088     SourceLocation DeclLoc = Initializer->getBeginLoc();
4089     bool dummy1, dummy2, dummy3;
4090     Sema::ReferenceCompareResult RefRelationship
4091       = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1,
4092                                        dummy2, dummy3);
4093     if (RefRelationship >= Sema::Ref_Related) {
4094       // Try to bind the reference here.
4095       TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4096                                      T1Quals, cv2T2, T2, T2Quals, Sequence);
4097       if (Sequence)
4098         Sequence.RewrapReferenceInitList(cv1T1, InitList);
4099       return;
4100     }
4101 
4102     // Update the initializer if we've resolved an overloaded function.
4103     if (Sequence.step_begin() != Sequence.step_end())
4104       Sequence.RewrapReferenceInitList(cv1T1, InitList);
4105   }
4106 
4107   // Not reference-related. Create a temporary and bind to that.
4108   InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
4109 
4110   TryListInitialization(S, TempEntity, Kind, InitList, Sequence,
4111                         TreatUnavailableAsInvalid);
4112   if (Sequence) {
4113     if (DestType->isRValueReferenceType() ||
4114         (T1Quals.hasConst() && !T1Quals.hasVolatile()))
4115       Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
4116     else
4117       Sequence.SetFailed(
4118           InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
4119   }
4120 }
4121 
4122 /// Attempt list initialization (C++0x [dcl.init.list])
4123 static void TryListInitialization(Sema &S,
4124                                   const InitializedEntity &Entity,
4125                                   const InitializationKind &Kind,
4126                                   InitListExpr *InitList,
4127                                   InitializationSequence &Sequence,
4128                                   bool TreatUnavailableAsInvalid) {
4129   QualType DestType = Entity.getType();
4130 
4131   // C++ doesn't allow scalar initialization with more than one argument.
4132   // But C99 complex numbers are scalars and it makes sense there.
4133   if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
4134       !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
4135     Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
4136     return;
4137   }
4138   if (DestType->isReferenceType()) {
4139     TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence,
4140                                    TreatUnavailableAsInvalid);
4141     return;
4142   }
4143 
4144   if (DestType->isRecordType() &&
4145       !S.isCompleteType(InitList->getBeginLoc(), DestType)) {
4146     Sequence.setIncompleteTypeFailure(DestType);
4147     return;
4148   }
4149 
4150   // C++11 [dcl.init.list]p3, per DR1467:
4151   // - If T is a class type and the initializer list has a single element of
4152   //   type cv U, where U is T or a class derived from T, the object is
4153   //   initialized from that element (by copy-initialization for
4154   //   copy-list-initialization, or by direct-initialization for
4155   //   direct-list-initialization).
4156   // - Otherwise, if T is a character array and the initializer list has a
4157   //   single element that is an appropriately-typed string literal
4158   //   (8.5.2 [dcl.init.string]), initialization is performed as described
4159   //   in that section.
4160   // - Otherwise, if T is an aggregate, [...] (continue below).
4161   if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) {
4162     if (DestType->isRecordType()) {
4163       QualType InitType = InitList->getInit(0)->getType();
4164       if (S.Context.hasSameUnqualifiedType(InitType, DestType) ||
4165           S.IsDerivedFrom(InitList->getBeginLoc(), InitType, DestType)) {
4166         Expr *InitListAsExpr = InitList;
4167         TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4168                                      DestType, Sequence,
4169                                      /*InitListSyntax*/false,
4170                                      /*IsInitListCopy*/true);
4171         return;
4172       }
4173     }
4174     if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) {
4175       Expr *SubInit[1] = {InitList->getInit(0)};
4176       if (!isa<VariableArrayType>(DestAT) &&
4177           IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) {
4178         InitializationKind SubKind =
4179             Kind.getKind() == InitializationKind::IK_DirectList
4180                 ? InitializationKind::CreateDirect(Kind.getLocation(),
4181                                                    InitList->getLBraceLoc(),
4182                                                    InitList->getRBraceLoc())
4183                 : Kind;
4184         Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4185                                 /*TopLevelOfInitList*/ true,
4186                                 TreatUnavailableAsInvalid);
4187 
4188         // TryStringLiteralInitialization() (in InitializeFrom()) will fail if
4189         // the element is not an appropriately-typed string literal, in which
4190         // case we should proceed as in C++11 (below).
4191         if (Sequence) {
4192           Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4193           return;
4194         }
4195       }
4196     }
4197   }
4198 
4199   // C++11 [dcl.init.list]p3:
4200   //   - If T is an aggregate, aggregate initialization is performed.
4201   if ((DestType->isRecordType() && !DestType->isAggregateType()) ||
4202       (S.getLangOpts().CPlusPlus11 &&
4203        S.isStdInitializerList(DestType, nullptr))) {
4204     if (S.getLangOpts().CPlusPlus11) {
4205       //   - Otherwise, if the initializer list has no elements and T is a
4206       //     class type with a default constructor, the object is
4207       //     value-initialized.
4208       if (InitList->getNumInits() == 0) {
4209         CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
4210         if (RD->hasDefaultConstructor()) {
4211           TryValueInitialization(S, Entity, Kind, Sequence, InitList);
4212           return;
4213         }
4214       }
4215 
4216       //   - Otherwise, if T is a specialization of std::initializer_list<E>,
4217       //     an initializer_list object constructed [...]
4218       if (TryInitializerListConstruction(S, InitList, DestType, Sequence,
4219                                          TreatUnavailableAsInvalid))
4220         return;
4221 
4222       //   - Otherwise, if T is a class type, constructors are considered.
4223       Expr *InitListAsExpr = InitList;
4224       TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4225                                    DestType, Sequence, /*InitListSyntax*/true);
4226     } else
4227       Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
4228     return;
4229   }
4230 
4231   if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() &&
4232       InitList->getNumInits() == 1) {
4233     Expr *E = InitList->getInit(0);
4234 
4235     //   - Otherwise, if T is an enumeration with a fixed underlying type,
4236     //     the initializer-list has a single element v, and the initialization
4237     //     is direct-list-initialization, the object is initialized with the
4238     //     value T(v); if a narrowing conversion is required to convert v to
4239     //     the underlying type of T, the program is ill-formed.
4240     auto *ET = DestType->getAs<EnumType>();
4241     if (S.getLangOpts().CPlusPlus17 &&
4242         Kind.getKind() == InitializationKind::IK_DirectList &&
4243         ET && ET->getDecl()->isFixed() &&
4244         !S.Context.hasSameUnqualifiedType(E->getType(), DestType) &&
4245         (E->getType()->isIntegralOrEnumerationType() ||
4246          E->getType()->isFloatingType())) {
4247       // There are two ways that T(v) can work when T is an enumeration type.
4248       // If there is either an implicit conversion sequence from v to T or
4249       // a conversion function that can convert from v to T, then we use that.
4250       // Otherwise, if v is of integral, enumeration, or floating-point type,
4251       // it is converted to the enumeration type via its underlying type.
4252       // There is no overlap possible between these two cases (except when the
4253       // source value is already of the destination type), and the first
4254       // case is handled by the general case for single-element lists below.
4255       ImplicitConversionSequence ICS;
4256       ICS.setStandard();
4257       ICS.Standard.setAsIdentityConversion();
4258       if (!E->isRValue())
4259         ICS.Standard.First = ICK_Lvalue_To_Rvalue;
4260       // If E is of a floating-point type, then the conversion is ill-formed
4261       // due to narrowing, but go through the motions in order to produce the
4262       // right diagnostic.
4263       ICS.Standard.Second = E->getType()->isFloatingType()
4264                                 ? ICK_Floating_Integral
4265                                 : ICK_Integral_Conversion;
4266       ICS.Standard.setFromType(E->getType());
4267       ICS.Standard.setToType(0, E->getType());
4268       ICS.Standard.setToType(1, DestType);
4269       ICS.Standard.setToType(2, DestType);
4270       Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2),
4271                                          /*TopLevelOfInitList*/true);
4272       Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4273       return;
4274     }
4275 
4276     //   - Otherwise, if the initializer list has a single element of type E
4277     //     [...references are handled above...], the object or reference is
4278     //     initialized from that element (by copy-initialization for
4279     //     copy-list-initialization, or by direct-initialization for
4280     //     direct-list-initialization); if a narrowing conversion is required
4281     //     to convert the element to T, the program is ill-formed.
4282     //
4283     // Per core-24034, this is direct-initialization if we were performing
4284     // direct-list-initialization and copy-initialization otherwise.
4285     // We can't use InitListChecker for this, because it always performs
4286     // copy-initialization. This only matters if we might use an 'explicit'
4287     // conversion operator, so we only need to handle the cases where the source
4288     // is of record type.
4289     if (InitList->getInit(0)->getType()->isRecordType()) {
4290       InitializationKind SubKind =
4291           Kind.getKind() == InitializationKind::IK_DirectList
4292               ? InitializationKind::CreateDirect(Kind.getLocation(),
4293                                                  InitList->getLBraceLoc(),
4294                                                  InitList->getRBraceLoc())
4295               : Kind;
4296       Expr *SubInit[1] = { InitList->getInit(0) };
4297       Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4298                               /*TopLevelOfInitList*/true,
4299                               TreatUnavailableAsInvalid);
4300       if (Sequence)
4301         Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4302       return;
4303     }
4304   }
4305 
4306   InitListChecker CheckInitList(S, Entity, InitList,
4307           DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid);
4308   if (CheckInitList.HadError()) {
4309     Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
4310     return;
4311   }
4312 
4313   // Add the list initialization step with the built init list.
4314   Sequence.AddListInitializationStep(DestType);
4315 }
4316 
4317 /// Try a reference initialization that involves calling a conversion
4318 /// function.
4319 static OverloadingResult TryRefInitWithConversionFunction(
4320     Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind,
4321     Expr *Initializer, bool AllowRValues, bool IsLValueRef,
4322     InitializationSequence &Sequence) {
4323   QualType DestType = Entity.getType();
4324   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
4325   QualType T1 = cv1T1.getUnqualifiedType();
4326   QualType cv2T2 = Initializer->getType();
4327   QualType T2 = cv2T2.getUnqualifiedType();
4328 
4329   bool DerivedToBase;
4330   bool ObjCConversion;
4331   bool ObjCLifetimeConversion;
4332   assert(!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2,
4333                                          DerivedToBase, ObjCConversion,
4334                                          ObjCLifetimeConversion) &&
4335          "Must have incompatible references when binding via conversion");
4336   (void)DerivedToBase;
4337   (void)ObjCConversion;
4338   (void)ObjCLifetimeConversion;
4339 
4340   // Build the candidate set directly in the initialization sequence
4341   // structure, so that it will persist if we fail.
4342   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4343   CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4344 
4345   // Determine whether we are allowed to call explicit conversion operators.
4346   // Note that none of [over.match.copy], [over.match.conv], nor
4347   // [over.match.ref] permit an explicit constructor to be chosen when
4348   // initializing a reference, not even for direct-initialization.
4349   bool AllowExplicitCtors = false;
4350   bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding();
4351 
4352   const RecordType *T1RecordType = nullptr;
4353   if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
4354       S.isCompleteType(Kind.getLocation(), T1)) {
4355     // The type we're converting to is a class type. Enumerate its constructors
4356     // to see if there is a suitable conversion.
4357     CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
4358 
4359     for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) {
4360       auto Info = getConstructorInfo(D);
4361       if (!Info.Constructor)
4362         continue;
4363 
4364       if (!Info.Constructor->isInvalidDecl() &&
4365           Info.Constructor->isConvertingConstructor(AllowExplicitCtors)) {
4366         if (Info.ConstructorTmpl)
4367           S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
4368                                          /*ExplicitArgs*/ nullptr,
4369                                          Initializer, CandidateSet,
4370                                          /*SuppressUserConversions=*/true);
4371         else
4372           S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
4373                                  Initializer, CandidateSet,
4374                                  /*SuppressUserConversions=*/true);
4375       }
4376     }
4377   }
4378   if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
4379     return OR_No_Viable_Function;
4380 
4381   const RecordType *T2RecordType = nullptr;
4382   if ((T2RecordType = T2->getAs<RecordType>()) &&
4383       S.isCompleteType(Kind.getLocation(), T2)) {
4384     // The type we're converting from is a class type, enumerate its conversion
4385     // functions.
4386     CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
4387 
4388     const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4389     for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4390       NamedDecl *D = *I;
4391       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4392       if (isa<UsingShadowDecl>(D))
4393         D = cast<UsingShadowDecl>(D)->getTargetDecl();
4394 
4395       FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4396       CXXConversionDecl *Conv;
4397       if (ConvTemplate)
4398         Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4399       else
4400         Conv = cast<CXXConversionDecl>(D);
4401 
4402       // If the conversion function doesn't return a reference type,
4403       // it can't be considered for this conversion unless we're allowed to
4404       // consider rvalues.
4405       // FIXME: Do we need to make sure that we only consider conversion
4406       // candidates with reference-compatible results? That might be needed to
4407       // break recursion.
4408       if ((AllowExplicitConvs || !Conv->isExplicit()) &&
4409           (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
4410         if (ConvTemplate)
4411           S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
4412                                            ActingDC, Initializer,
4413                                            DestType, CandidateSet,
4414                                            /*AllowObjCConversionOnExplicit=*/
4415                                              false);
4416         else
4417           S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
4418                                    Initializer, DestType, CandidateSet,
4419                                    /*AllowObjCConversionOnExplicit=*/false);
4420       }
4421     }
4422   }
4423   if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
4424     return OR_No_Viable_Function;
4425 
4426   SourceLocation DeclLoc = Initializer->getBeginLoc();
4427 
4428   // Perform overload resolution. If it fails, return the failed result.
4429   OverloadCandidateSet::iterator Best;
4430   if (OverloadingResult Result
4431         = CandidateSet.BestViableFunction(S, DeclLoc, Best))
4432     return Result;
4433 
4434   FunctionDecl *Function = Best->Function;
4435   // This is the overload that will be used for this initialization step if we
4436   // use this initialization. Mark it as referenced.
4437   Function->setReferenced();
4438 
4439   // Compute the returned type and value kind of the conversion.
4440   QualType cv3T3;
4441   if (isa<CXXConversionDecl>(Function))
4442     cv3T3 = Function->getReturnType();
4443   else
4444     cv3T3 = T1;
4445 
4446   ExprValueKind VK = VK_RValue;
4447   if (cv3T3->isLValueReferenceType())
4448     VK = VK_LValue;
4449   else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>())
4450     VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
4451   cv3T3 = cv3T3.getNonLValueExprType(S.Context);
4452 
4453   // Add the user-defined conversion step.
4454   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4455   Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3,
4456                                  HadMultipleCandidates);
4457 
4458   // Determine whether we'll need to perform derived-to-base adjustments or
4459   // other conversions.
4460   bool NewDerivedToBase = false;
4461   bool NewObjCConversion = false;
4462   bool NewObjCLifetimeConversion = false;
4463   Sema::ReferenceCompareResult NewRefRelationship
4464     = S.CompareReferenceRelationship(DeclLoc, T1, cv3T3,
4465                                      NewDerivedToBase, NewObjCConversion,
4466                                      NewObjCLifetimeConversion);
4467 
4468   // Add the final conversion sequence, if necessary.
4469   if (NewRefRelationship == Sema::Ref_Incompatible) {
4470     assert(!isa<CXXConstructorDecl>(Function) &&
4471            "should not have conversion after constructor");
4472 
4473     ImplicitConversionSequence ICS;
4474     ICS.setStandard();
4475     ICS.Standard = Best->FinalConversion;
4476     Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2));
4477 
4478     // Every implicit conversion results in a prvalue, except for a glvalue
4479     // derived-to-base conversion, which we handle below.
4480     cv3T3 = ICS.Standard.getToType(2);
4481     VK = VK_RValue;
4482   }
4483 
4484   //   If the converted initializer is a prvalue, its type T4 is adjusted to
4485   //   type "cv1 T4" and the temporary materialization conversion is applied.
4486   //
4487   // We adjust the cv-qualifications to match the reference regardless of
4488   // whether we have a prvalue so that the AST records the change. In this
4489   // case, T4 is "cv3 T3".
4490   QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers());
4491   if (cv1T4.getQualifiers() != cv3T3.getQualifiers())
4492     Sequence.AddQualificationConversionStep(cv1T4, VK);
4493   Sequence.AddReferenceBindingStep(cv1T4, VK == VK_RValue);
4494   VK = IsLValueRef ? VK_LValue : VK_XValue;
4495 
4496   if (NewDerivedToBase)
4497     Sequence.AddDerivedToBaseCastStep(cv1T1, VK);
4498   else if (NewObjCConversion)
4499     Sequence.AddObjCObjectConversionStep(cv1T1);
4500 
4501   return OR_Success;
4502 }
4503 
4504 static void CheckCXX98CompatAccessibleCopy(Sema &S,
4505                                            const InitializedEntity &Entity,
4506                                            Expr *CurInitExpr);
4507 
4508 /// Attempt reference initialization (C++0x [dcl.init.ref])
4509 static void TryReferenceInitialization(Sema &S,
4510                                        const InitializedEntity &Entity,
4511                                        const InitializationKind &Kind,
4512                                        Expr *Initializer,
4513                                        InitializationSequence &Sequence) {
4514   QualType DestType = Entity.getType();
4515   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
4516   Qualifiers T1Quals;
4517   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4518   QualType cv2T2 = Initializer->getType();
4519   Qualifiers T2Quals;
4520   QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4521 
4522   // If the initializer is the address of an overloaded function, try
4523   // to resolve the overloaded function. If all goes well, T2 is the
4524   // type of the resulting function.
4525   if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4526                                                    T1, Sequence))
4527     return;
4528 
4529   // Delegate everything else to a subfunction.
4530   TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4531                                  T1Quals, cv2T2, T2, T2Quals, Sequence);
4532 }
4533 
4534 /// Determine whether an expression is a non-referenceable glvalue (one to
4535 /// which a reference can never bind). Attempting to bind a reference to
4536 /// such a glvalue will always create a temporary.
4537 static bool isNonReferenceableGLValue(Expr *E) {
4538   return E->refersToBitField() || E->refersToVectorElement();
4539 }
4540 
4541 /// Reference initialization without resolving overloaded functions.
4542 static void TryReferenceInitializationCore(Sema &S,
4543                                            const InitializedEntity &Entity,
4544                                            const InitializationKind &Kind,
4545                                            Expr *Initializer,
4546                                            QualType cv1T1, QualType T1,
4547                                            Qualifiers T1Quals,
4548                                            QualType cv2T2, QualType T2,
4549                                            Qualifiers T2Quals,
4550                                            InitializationSequence &Sequence) {
4551   QualType DestType = Entity.getType();
4552   SourceLocation DeclLoc = Initializer->getBeginLoc();
4553   // Compute some basic properties of the types and the initializer.
4554   bool isLValueRef = DestType->isLValueReferenceType();
4555   bool isRValueRef = !isLValueRef;
4556   bool DerivedToBase = false;
4557   bool ObjCConversion = false;
4558   bool ObjCLifetimeConversion = false;
4559   Expr::Classification InitCategory = Initializer->Classify(S.Context);
4560   Sema::ReferenceCompareResult RefRelationship
4561     = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
4562                                      ObjCConversion, ObjCLifetimeConversion);
4563 
4564   // C++0x [dcl.init.ref]p5:
4565   //   A reference to type "cv1 T1" is initialized by an expression of type
4566   //   "cv2 T2" as follows:
4567   //
4568   //     - If the reference is an lvalue reference and the initializer
4569   //       expression
4570   // Note the analogous bullet points for rvalue refs to functions. Because
4571   // there are no function rvalues in C++, rvalue refs to functions are treated
4572   // like lvalue refs.
4573   OverloadingResult ConvOvlResult = OR_Success;
4574   bool T1Function = T1->isFunctionType();
4575   if (isLValueRef || T1Function) {
4576     if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) &&
4577         (RefRelationship == Sema::Ref_Compatible ||
4578          (Kind.isCStyleOrFunctionalCast() &&
4579           RefRelationship == Sema::Ref_Related))) {
4580       //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
4581       //     reference-compatible with "cv2 T2," or
4582       if (T1Quals != T2Quals)
4583         // Convert to cv1 T2. This should only add qualifiers unless this is a
4584         // c-style cast. The removal of qualifiers in that case notionally
4585         // happens after the reference binding, but that doesn't matter.
4586         Sequence.AddQualificationConversionStep(
4587             S.Context.getQualifiedType(T2, T1Quals),
4588             Initializer->getValueKind());
4589       if (DerivedToBase)
4590         Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue);
4591       else if (ObjCConversion)
4592         Sequence.AddObjCObjectConversionStep(cv1T1);
4593 
4594       // We only create a temporary here when binding a reference to a
4595       // bit-field or vector element. Those cases are't supposed to be
4596       // handled by this bullet, but the outcome is the same either way.
4597       Sequence.AddReferenceBindingStep(cv1T1, false);
4598       return;
4599     }
4600 
4601     //     - has a class type (i.e., T2 is a class type), where T1 is not
4602     //       reference-related to T2, and can be implicitly converted to an
4603     //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
4604     //       with "cv3 T3" (this conversion is selected by enumerating the
4605     //       applicable conversion functions (13.3.1.6) and choosing the best
4606     //       one through overload resolution (13.3)),
4607     // If we have an rvalue ref to function type here, the rhs must be
4608     // an rvalue. DR1287 removed the "implicitly" here.
4609     if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
4610         (isLValueRef || InitCategory.isRValue())) {
4611       ConvOvlResult = TryRefInitWithConversionFunction(
4612           S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef,
4613           /*IsLValueRef*/ isLValueRef, Sequence);
4614       if (ConvOvlResult == OR_Success)
4615         return;
4616       if (ConvOvlResult != OR_No_Viable_Function)
4617         Sequence.SetOverloadFailure(
4618             InitializationSequence::FK_ReferenceInitOverloadFailed,
4619             ConvOvlResult);
4620     }
4621   }
4622 
4623   //     - Otherwise, the reference shall be an lvalue reference to a
4624   //       non-volatile const type (i.e., cv1 shall be const), or the reference
4625   //       shall be an rvalue reference.
4626   if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
4627     if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4628       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4629     else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4630       Sequence.SetOverloadFailure(
4631                         InitializationSequence::FK_ReferenceInitOverloadFailed,
4632                                   ConvOvlResult);
4633     else if (!InitCategory.isLValue())
4634       Sequence.SetFailed(
4635           InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
4636     else {
4637       InitializationSequence::FailureKind FK;
4638       switch (RefRelationship) {
4639       case Sema::Ref_Compatible:
4640         if (Initializer->refersToBitField())
4641           FK = InitializationSequence::
4642               FK_NonConstLValueReferenceBindingToBitfield;
4643         else if (Initializer->refersToVectorElement())
4644           FK = InitializationSequence::
4645               FK_NonConstLValueReferenceBindingToVectorElement;
4646         else
4647           llvm_unreachable("unexpected kind of compatible initializer");
4648         break;
4649       case Sema::Ref_Related:
4650         FK = InitializationSequence::FK_ReferenceInitDropsQualifiers;
4651         break;
4652       case Sema::Ref_Incompatible:
4653         FK = InitializationSequence::
4654             FK_NonConstLValueReferenceBindingToUnrelated;
4655         break;
4656       }
4657       Sequence.SetFailed(FK);
4658     }
4659     return;
4660   }
4661 
4662   //    - If the initializer expression
4663   //      - is an
4664   // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or
4665   // [1z]   rvalue (but not a bit-field) or
4666   //        function lvalue and "cv1 T1" is reference-compatible with "cv2 T2"
4667   //
4668   // Note: functions are handled above and below rather than here...
4669   if (!T1Function &&
4670       (RefRelationship == Sema::Ref_Compatible ||
4671        (Kind.isCStyleOrFunctionalCast() &&
4672         RefRelationship == Sema::Ref_Related)) &&
4673       ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) ||
4674        (InitCategory.isPRValue() &&
4675         (S.getLangOpts().CPlusPlus17 || T2->isRecordType() ||
4676          T2->isArrayType())))) {
4677     ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_RValue;
4678     if (InitCategory.isPRValue() && T2->isRecordType()) {
4679       // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
4680       // compiler the freedom to perform a copy here or bind to the
4681       // object, while C++0x requires that we bind directly to the
4682       // object. Hence, we always bind to the object without making an
4683       // extra copy. However, in C++03 requires that we check for the
4684       // presence of a suitable copy constructor:
4685       //
4686       //   The constructor that would be used to make the copy shall
4687       //   be callable whether or not the copy is actually done.
4688       if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
4689         Sequence.AddExtraneousCopyToTemporary(cv2T2);
4690       else if (S.getLangOpts().CPlusPlus11)
4691         CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
4692     }
4693 
4694     // C++1z [dcl.init.ref]/5.2.1.2:
4695     //   If the converted initializer is a prvalue, its type T4 is adjusted
4696     //   to type "cv1 T4" and the temporary materialization conversion is
4697     //   applied.
4698     // Postpone address space conversions to after the temporary materialization
4699     // conversion to allow creating temporaries in the alloca address space.
4700     auto T1QualsIgnoreAS = T1Quals;
4701     auto T2QualsIgnoreAS = T2Quals;
4702     if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) {
4703       T1QualsIgnoreAS.removeAddressSpace();
4704       T2QualsIgnoreAS.removeAddressSpace();
4705     }
4706     QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1QualsIgnoreAS);
4707     if (T1QualsIgnoreAS != T2QualsIgnoreAS)
4708       Sequence.AddQualificationConversionStep(cv1T4, ValueKind);
4709     Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_RValue);
4710     ValueKind = isLValueRef ? VK_LValue : VK_XValue;
4711     // Add addr space conversion if required.
4712     if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) {
4713       auto T4Quals = cv1T4.getQualifiers();
4714       T4Quals.addAddressSpace(T1Quals.getAddressSpace());
4715       QualType cv1T4WithAS = S.Context.getQualifiedType(T2, T4Quals);
4716       Sequence.AddQualificationConversionStep(cv1T4WithAS, ValueKind);
4717     }
4718 
4719     //   In any case, the reference is bound to the resulting glvalue (or to
4720     //   an appropriate base class subobject).
4721     if (DerivedToBase)
4722       Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind);
4723     else if (ObjCConversion)
4724       Sequence.AddObjCObjectConversionStep(cv1T1);
4725     return;
4726   }
4727 
4728   //       - has a class type (i.e., T2 is a class type), where T1 is not
4729   //         reference-related to T2, and can be implicitly converted to an
4730   //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
4731   //         where "cv1 T1" is reference-compatible with "cv3 T3",
4732   //
4733   // DR1287 removes the "implicitly" here.
4734   if (T2->isRecordType()) {
4735     if (RefRelationship == Sema::Ref_Incompatible) {
4736       ConvOvlResult = TryRefInitWithConversionFunction(
4737           S, Entity, Kind, Initializer, /*AllowRValues*/ true,
4738           /*IsLValueRef*/ isLValueRef, Sequence);
4739       if (ConvOvlResult)
4740         Sequence.SetOverloadFailure(
4741             InitializationSequence::FK_ReferenceInitOverloadFailed,
4742             ConvOvlResult);
4743 
4744       return;
4745     }
4746 
4747     if (RefRelationship == Sema::Ref_Compatible &&
4748         isRValueRef && InitCategory.isLValue()) {
4749       Sequence.SetFailed(
4750         InitializationSequence::FK_RValueReferenceBindingToLValue);
4751       return;
4752     }
4753 
4754     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4755     return;
4756   }
4757 
4758   //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
4759   //        from the initializer expression using the rules for a non-reference
4760   //        copy-initialization (8.5). The reference is then bound to the
4761   //        temporary. [...]
4762 
4763   // Ignore address space of reference type at this point and perform address
4764   // space conversion after the reference binding step.
4765   QualType cv1T1IgnoreAS =
4766       T1Quals.hasAddressSpace()
4767           ? S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace())
4768           : cv1T1;
4769 
4770   InitializedEntity TempEntity =
4771       InitializedEntity::InitializeTemporary(cv1T1IgnoreAS);
4772 
4773   // FIXME: Why do we use an implicit conversion here rather than trying
4774   // copy-initialization?
4775   ImplicitConversionSequence ICS
4776     = S.TryImplicitConversion(Initializer, TempEntity.getType(),
4777                               /*SuppressUserConversions=*/false,
4778                               /*AllowExplicit=*/false,
4779                               /*FIXME:InOverloadResolution=*/false,
4780                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
4781                               /*AllowObjCWritebackConversion=*/false);
4782 
4783   if (ICS.isBad()) {
4784     // FIXME: Use the conversion function set stored in ICS to turn
4785     // this into an overloading ambiguity diagnostic. However, we need
4786     // to keep that set as an OverloadCandidateSet rather than as some
4787     // other kind of set.
4788     if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4789       Sequence.SetOverloadFailure(
4790                         InitializationSequence::FK_ReferenceInitOverloadFailed,
4791                                   ConvOvlResult);
4792     else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4793       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4794     else
4795       Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
4796     return;
4797   } else {
4798     Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
4799   }
4800 
4801   //        [...] If T1 is reference-related to T2, cv1 must be the
4802   //        same cv-qualification as, or greater cv-qualification
4803   //        than, cv2; otherwise, the program is ill-formed.
4804   unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
4805   unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
4806   if ((RefRelationship == Sema::Ref_Related &&
4807        (T1CVRQuals | T2CVRQuals) != T1CVRQuals) ||
4808       !T1Quals.isAddressSpaceSupersetOf(T2Quals)) {
4809     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4810     return;
4811   }
4812 
4813   //   [...] If T1 is reference-related to T2 and the reference is an rvalue
4814   //   reference, the initializer expression shall not be an lvalue.
4815   if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
4816       InitCategory.isLValue()) {
4817     Sequence.SetFailed(
4818                     InitializationSequence::FK_RValueReferenceBindingToLValue);
4819     return;
4820   }
4821 
4822   Sequence.AddReferenceBindingStep(cv1T1IgnoreAS, /*bindingTemporary=*/true);
4823 
4824   if (T1Quals.hasAddressSpace())
4825     Sequence.AddQualificationConversionStep(cv1T1, isLValueRef ? VK_LValue
4826                                                                : VK_XValue);
4827 }
4828 
4829 /// Attempt character array initialization from a string literal
4830 /// (C++ [dcl.init.string], C99 6.7.8).
4831 static void TryStringLiteralInitialization(Sema &S,
4832                                            const InitializedEntity &Entity,
4833                                            const InitializationKind &Kind,
4834                                            Expr *Initializer,
4835                                        InitializationSequence &Sequence) {
4836   Sequence.AddStringInitStep(Entity.getType());
4837 }
4838 
4839 /// Attempt value initialization (C++ [dcl.init]p7).
4840 static void TryValueInitialization(Sema &S,
4841                                    const InitializedEntity &Entity,
4842                                    const InitializationKind &Kind,
4843                                    InitializationSequence &Sequence,
4844                                    InitListExpr *InitList) {
4845   assert((!InitList || InitList->getNumInits() == 0) &&
4846          "Shouldn't use value-init for non-empty init lists");
4847 
4848   // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
4849   //
4850   //   To value-initialize an object of type T means:
4851   QualType T = Entity.getType();
4852 
4853   //     -- if T is an array type, then each element is value-initialized;
4854   T = S.Context.getBaseElementType(T);
4855 
4856   if (const RecordType *RT = T->getAs<RecordType>()) {
4857     if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
4858       bool NeedZeroInitialization = true;
4859       // C++98:
4860       // -- if T is a class type (clause 9) with a user-declared constructor
4861       //    (12.1), then the default constructor for T is called (and the
4862       //    initialization is ill-formed if T has no accessible default
4863       //    constructor);
4864       // C++11:
4865       // -- if T is a class type (clause 9) with either no default constructor
4866       //    (12.1 [class.ctor]) or a default constructor that is user-provided
4867       //    or deleted, then the object is default-initialized;
4868       //
4869       // Note that the C++11 rule is the same as the C++98 rule if there are no
4870       // defaulted or deleted constructors, so we just use it unconditionally.
4871       CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
4872       if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
4873         NeedZeroInitialization = false;
4874 
4875       // -- if T is a (possibly cv-qualified) non-union class type without a
4876       //    user-provided or deleted default constructor, then the object is
4877       //    zero-initialized and, if T has a non-trivial default constructor,
4878       //    default-initialized;
4879       // The 'non-union' here was removed by DR1502. The 'non-trivial default
4880       // constructor' part was removed by DR1507.
4881       if (NeedZeroInitialization)
4882         Sequence.AddZeroInitializationStep(Entity.getType());
4883 
4884       // C++03:
4885       // -- if T is a non-union class type without a user-declared constructor,
4886       //    then every non-static data member and base class component of T is
4887       //    value-initialized;
4888       // [...] A program that calls for [...] value-initialization of an
4889       // entity of reference type is ill-formed.
4890       //
4891       // C++11 doesn't need this handling, because value-initialization does not
4892       // occur recursively there, and the implicit default constructor is
4893       // defined as deleted in the problematic cases.
4894       if (!S.getLangOpts().CPlusPlus11 &&
4895           ClassDecl->hasUninitializedReferenceMember()) {
4896         Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
4897         return;
4898       }
4899 
4900       // If this is list-value-initialization, pass the empty init list on when
4901       // building the constructor call. This affects the semantics of a few
4902       // things (such as whether an explicit default constructor can be called).
4903       Expr *InitListAsExpr = InitList;
4904       MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
4905       bool InitListSyntax = InitList;
4906 
4907       // FIXME: Instead of creating a CXXConstructExpr of array type here,
4908       // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr.
4909       return TryConstructorInitialization(
4910           S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax);
4911     }
4912   }
4913 
4914   Sequence.AddZeroInitializationStep(Entity.getType());
4915 }
4916 
4917 /// Attempt default initialization (C++ [dcl.init]p6).
4918 static void TryDefaultInitialization(Sema &S,
4919                                      const InitializedEntity &Entity,
4920                                      const InitializationKind &Kind,
4921                                      InitializationSequence &Sequence) {
4922   assert(Kind.getKind() == InitializationKind::IK_Default);
4923 
4924   // C++ [dcl.init]p6:
4925   //   To default-initialize an object of type T means:
4926   //     - if T is an array type, each element is default-initialized;
4927   QualType DestType = S.Context.getBaseElementType(Entity.getType());
4928 
4929   //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
4930   //       constructor for T is called (and the initialization is ill-formed if
4931   //       T has no accessible default constructor);
4932   if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
4933     TryConstructorInitialization(S, Entity, Kind, None, DestType,
4934                                  Entity.getType(), Sequence);
4935     return;
4936   }
4937 
4938   //     - otherwise, no initialization is performed.
4939 
4940   //   If a program calls for the default initialization of an object of
4941   //   a const-qualified type T, T shall be a class type with a user-provided
4942   //   default constructor.
4943   if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
4944     if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
4945       Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
4946     return;
4947   }
4948 
4949   // If the destination type has a lifetime property, zero-initialize it.
4950   if (DestType.getQualifiers().hasObjCLifetime()) {
4951     Sequence.AddZeroInitializationStep(Entity.getType());
4952     return;
4953   }
4954 }
4955 
4956 /// Attempt a user-defined conversion between two types (C++ [dcl.init]),
4957 /// which enumerates all conversion functions and performs overload resolution
4958 /// to select the best.
4959 static void TryUserDefinedConversion(Sema &S,
4960                                      QualType DestType,
4961                                      const InitializationKind &Kind,
4962                                      Expr *Initializer,
4963                                      InitializationSequence &Sequence,
4964                                      bool TopLevelOfInitList) {
4965   assert(!DestType->isReferenceType() && "References are handled elsewhere");
4966   QualType SourceType = Initializer->getType();
4967   assert((DestType->isRecordType() || SourceType->isRecordType()) &&
4968          "Must have a class type to perform a user-defined conversion");
4969 
4970   // Build the candidate set directly in the initialization sequence
4971   // structure, so that it will persist if we fail.
4972   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4973   CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4974 
4975   // Determine whether we are allowed to call explicit constructors or
4976   // explicit conversion operators.
4977   bool AllowExplicit = Kind.AllowExplicit();
4978 
4979   if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
4980     // The type we're converting to is a class type. Enumerate its constructors
4981     // to see if there is a suitable conversion.
4982     CXXRecordDecl *DestRecordDecl
4983       = cast<CXXRecordDecl>(DestRecordType->getDecl());
4984 
4985     // Try to complete the type we're converting to.
4986     if (S.isCompleteType(Kind.getLocation(), DestType)) {
4987       for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) {
4988         auto Info = getConstructorInfo(D);
4989         if (!Info.Constructor)
4990           continue;
4991 
4992         if (!Info.Constructor->isInvalidDecl() &&
4993             Info.Constructor->isConvertingConstructor(AllowExplicit)) {
4994           if (Info.ConstructorTmpl)
4995             S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
4996                                            /*ExplicitArgs*/ nullptr,
4997                                            Initializer, CandidateSet,
4998                                            /*SuppressUserConversions=*/true);
4999           else
5000             S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
5001                                    Initializer, CandidateSet,
5002                                    /*SuppressUserConversions=*/true);
5003         }
5004       }
5005     }
5006   }
5007 
5008   SourceLocation DeclLoc = Initializer->getBeginLoc();
5009 
5010   if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
5011     // The type we're converting from is a class type, enumerate its conversion
5012     // functions.
5013 
5014     // We can only enumerate the conversion functions for a complete type; if
5015     // the type isn't complete, simply skip this step.
5016     if (S.isCompleteType(DeclLoc, SourceType)) {
5017       CXXRecordDecl *SourceRecordDecl
5018         = cast<CXXRecordDecl>(SourceRecordType->getDecl());
5019 
5020       const auto &Conversions =
5021           SourceRecordDecl->getVisibleConversionFunctions();
5022       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
5023         NamedDecl *D = *I;
5024         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
5025         if (isa<UsingShadowDecl>(D))
5026           D = cast<UsingShadowDecl>(D)->getTargetDecl();
5027 
5028         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
5029         CXXConversionDecl *Conv;
5030         if (ConvTemplate)
5031           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5032         else
5033           Conv = cast<CXXConversionDecl>(D);
5034 
5035         if (AllowExplicit || !Conv->isExplicit()) {
5036           if (ConvTemplate)
5037             S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
5038                                              ActingDC, Initializer, DestType,
5039                                              CandidateSet, AllowExplicit);
5040           else
5041             S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
5042                                      Initializer, DestType, CandidateSet,
5043                                      AllowExplicit);
5044         }
5045       }
5046     }
5047   }
5048 
5049   // Perform overload resolution. If it fails, return the failed result.
5050   OverloadCandidateSet::iterator Best;
5051   if (OverloadingResult Result
5052         = CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
5053     Sequence.SetOverloadFailure(
5054                         InitializationSequence::FK_UserConversionOverloadFailed,
5055                                 Result);
5056     return;
5057   }
5058 
5059   FunctionDecl *Function = Best->Function;
5060   Function->setReferenced();
5061   bool HadMultipleCandidates = (CandidateSet.size() > 1);
5062 
5063   if (isa<CXXConstructorDecl>(Function)) {
5064     // Add the user-defined conversion step. Any cv-qualification conversion is
5065     // subsumed by the initialization. Per DR5, the created temporary is of the
5066     // cv-unqualified type of the destination.
5067     Sequence.AddUserConversionStep(Function, Best->FoundDecl,
5068                                    DestType.getUnqualifiedType(),
5069                                    HadMultipleCandidates);
5070 
5071     // C++14 and before:
5072     //   - if the function is a constructor, the call initializes a temporary
5073     //     of the cv-unqualified version of the destination type. The [...]
5074     //     temporary [...] is then used to direct-initialize, according to the
5075     //     rules above, the object that is the destination of the
5076     //     copy-initialization.
5077     // Note that this just performs a simple object copy from the temporary.
5078     //
5079     // C++17:
5080     //   - if the function is a constructor, the call is a prvalue of the
5081     //     cv-unqualified version of the destination type whose return object
5082     //     is initialized by the constructor. The call is used to
5083     //     direct-initialize, according to the rules above, the object that
5084     //     is the destination of the copy-initialization.
5085     // Therefore we need to do nothing further.
5086     //
5087     // FIXME: Mark this copy as extraneous.
5088     if (!S.getLangOpts().CPlusPlus17)
5089       Sequence.AddFinalCopy(DestType);
5090     else if (DestType.hasQualifiers())
5091       Sequence.AddQualificationConversionStep(DestType, VK_RValue);
5092     return;
5093   }
5094 
5095   // Add the user-defined conversion step that calls the conversion function.
5096   QualType ConvType = Function->getCallResultType();
5097   Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
5098                                  HadMultipleCandidates);
5099 
5100   if (ConvType->getAs<RecordType>()) {
5101     //   The call is used to direct-initialize [...] the object that is the
5102     //   destination of the copy-initialization.
5103     //
5104     // In C++17, this does not call a constructor if we enter /17.6.1:
5105     //   - If the initializer expression is a prvalue and the cv-unqualified
5106     //     version of the source type is the same as the class of the
5107     //     destination [... do not make an extra copy]
5108     //
5109     // FIXME: Mark this copy as extraneous.
5110     if (!S.getLangOpts().CPlusPlus17 ||
5111         Function->getReturnType()->isReferenceType() ||
5112         !S.Context.hasSameUnqualifiedType(ConvType, DestType))
5113       Sequence.AddFinalCopy(DestType);
5114     else if (!S.Context.hasSameType(ConvType, DestType))
5115       Sequence.AddQualificationConversionStep(DestType, VK_RValue);
5116     return;
5117   }
5118 
5119   // If the conversion following the call to the conversion function
5120   // is interesting, add it as a separate step.
5121   if (Best->FinalConversion.First || Best->FinalConversion.Second ||
5122       Best->FinalConversion.Third) {
5123     ImplicitConversionSequence ICS;
5124     ICS.setStandard();
5125     ICS.Standard = Best->FinalConversion;
5126     Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5127   }
5128 }
5129 
5130 /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>,
5131 /// a function with a pointer return type contains a 'return false;' statement.
5132 /// In C++11, 'false' is not a null pointer, so this breaks the build of any
5133 /// code using that header.
5134 ///
5135 /// Work around this by treating 'return false;' as zero-initializing the result
5136 /// if it's used in a pointer-returning function in a system header.
5137 static bool isLibstdcxxPointerReturnFalseHack(Sema &S,
5138                                               const InitializedEntity &Entity,
5139                                               const Expr *Init) {
5140   return S.getLangOpts().CPlusPlus11 &&
5141          Entity.getKind() == InitializedEntity::EK_Result &&
5142          Entity.getType()->isPointerType() &&
5143          isa<CXXBoolLiteralExpr>(Init) &&
5144          !cast<CXXBoolLiteralExpr>(Init)->getValue() &&
5145          S.getSourceManager().isInSystemHeader(Init->getExprLoc());
5146 }
5147 
5148 /// The non-zero enum values here are indexes into diagnostic alternatives.
5149 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
5150 
5151 /// Determines whether this expression is an acceptable ICR source.
5152 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
5153                                          bool isAddressOf, bool &isWeakAccess) {
5154   // Skip parens.
5155   e = e->IgnoreParens();
5156 
5157   // Skip address-of nodes.
5158   if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
5159     if (op->getOpcode() == UO_AddrOf)
5160       return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
5161                                 isWeakAccess);
5162 
5163   // Skip certain casts.
5164   } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
5165     switch (ce->getCastKind()) {
5166     case CK_Dependent:
5167     case CK_BitCast:
5168     case CK_LValueBitCast:
5169     case CK_NoOp:
5170       return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
5171 
5172     case CK_ArrayToPointerDecay:
5173       return IIK_nonscalar;
5174 
5175     case CK_NullToPointer:
5176       return IIK_okay;
5177 
5178     default:
5179       break;
5180     }
5181 
5182   // If we have a declaration reference, it had better be a local variable.
5183   } else if (isa<DeclRefExpr>(e)) {
5184     // set isWeakAccess to true, to mean that there will be an implicit
5185     // load which requires a cleanup.
5186     if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
5187       isWeakAccess = true;
5188 
5189     if (!isAddressOf) return IIK_nonlocal;
5190 
5191     VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
5192     if (!var) return IIK_nonlocal;
5193 
5194     return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
5195 
5196   // If we have a conditional operator, check both sides.
5197   } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
5198     if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
5199                                                 isWeakAccess))
5200       return iik;
5201 
5202     return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
5203 
5204   // These are never scalar.
5205   } else if (isa<ArraySubscriptExpr>(e)) {
5206     return IIK_nonscalar;
5207 
5208   // Otherwise, it needs to be a null pointer constant.
5209   } else {
5210     return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
5211             ? IIK_okay : IIK_nonlocal);
5212   }
5213 
5214   return IIK_nonlocal;
5215 }
5216 
5217 /// Check whether the given expression is a valid operand for an
5218 /// indirect copy/restore.
5219 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
5220   assert(src->isRValue());
5221   bool isWeakAccess = false;
5222   InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
5223   // If isWeakAccess to true, there will be an implicit
5224   // load which requires a cleanup.
5225   if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
5226     S.Cleanup.setExprNeedsCleanups(true);
5227 
5228   if (iik == IIK_okay) return;
5229 
5230   S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
5231     << ((unsigned) iik - 1)  // shift index into diagnostic explanations
5232     << src->getSourceRange();
5233 }
5234 
5235 /// Determine whether we have compatible array types for the
5236 /// purposes of GNU by-copy array initialization.
5237 static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest,
5238                                     const ArrayType *Source) {
5239   // If the source and destination array types are equivalent, we're
5240   // done.
5241   if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
5242     return true;
5243 
5244   // Make sure that the element types are the same.
5245   if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
5246     return false;
5247 
5248   // The only mismatch we allow is when the destination is an
5249   // incomplete array type and the source is a constant array type.
5250   return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
5251 }
5252 
5253 static bool tryObjCWritebackConversion(Sema &S,
5254                                        InitializationSequence &Sequence,
5255                                        const InitializedEntity &Entity,
5256                                        Expr *Initializer) {
5257   bool ArrayDecay = false;
5258   QualType ArgType = Initializer->getType();
5259   QualType ArgPointee;
5260   if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
5261     ArrayDecay = true;
5262     ArgPointee = ArgArrayType->getElementType();
5263     ArgType = S.Context.getPointerType(ArgPointee);
5264   }
5265 
5266   // Handle write-back conversion.
5267   QualType ConvertedArgType;
5268   if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
5269                                    ConvertedArgType))
5270     return false;
5271 
5272   // We should copy unless we're passing to an argument explicitly
5273   // marked 'out'.
5274   bool ShouldCopy = true;
5275   if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5276     ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5277 
5278   // Do we need an lvalue conversion?
5279   if (ArrayDecay || Initializer->isGLValue()) {
5280     ImplicitConversionSequence ICS;
5281     ICS.setStandard();
5282     ICS.Standard.setAsIdentityConversion();
5283 
5284     QualType ResultType;
5285     if (ArrayDecay) {
5286       ICS.Standard.First = ICK_Array_To_Pointer;
5287       ResultType = S.Context.getPointerType(ArgPointee);
5288     } else {
5289       ICS.Standard.First = ICK_Lvalue_To_Rvalue;
5290       ResultType = Initializer->getType().getNonLValueExprType(S.Context);
5291     }
5292 
5293     Sequence.AddConversionSequenceStep(ICS, ResultType);
5294   }
5295 
5296   Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
5297   return true;
5298 }
5299 
5300 static bool TryOCLSamplerInitialization(Sema &S,
5301                                         InitializationSequence &Sequence,
5302                                         QualType DestType,
5303                                         Expr *Initializer) {
5304   if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
5305       (!Initializer->isIntegerConstantExpr(S.Context) &&
5306       !Initializer->getType()->isSamplerT()))
5307     return false;
5308 
5309   Sequence.AddOCLSamplerInitStep(DestType);
5310   return true;
5311 }
5312 
5313 static bool IsZeroInitializer(Expr *Initializer, Sema &S) {
5314   return Initializer->isIntegerConstantExpr(S.getASTContext()) &&
5315     (Initializer->EvaluateKnownConstInt(S.getASTContext()) == 0);
5316 }
5317 
5318 static bool TryOCLZeroOpaqueTypeInitialization(Sema &S,
5319                                                InitializationSequence &Sequence,
5320                                                QualType DestType,
5321                                                Expr *Initializer) {
5322   if (!S.getLangOpts().OpenCL)
5323     return false;
5324 
5325   //
5326   // OpenCL 1.2 spec, s6.12.10
5327   //
5328   // The event argument can also be used to associate the
5329   // async_work_group_copy with a previous async copy allowing
5330   // an event to be shared by multiple async copies; otherwise
5331   // event should be zero.
5332   //
5333   if (DestType->isEventT() || DestType->isQueueT()) {
5334     if (!IsZeroInitializer(Initializer, S))
5335       return false;
5336 
5337     Sequence.AddOCLZeroOpaqueTypeStep(DestType);
5338     return true;
5339   }
5340 
5341   // We should allow zero initialization for all types defined in the
5342   // cl_intel_device_side_avc_motion_estimation extension, except
5343   // intel_sub_group_avc_mce_payload_t and intel_sub_group_avc_mce_result_t.
5344   if (S.getOpenCLOptions().isEnabled(
5345           "cl_intel_device_side_avc_motion_estimation") &&
5346       DestType->isOCLIntelSubgroupAVCType()) {
5347     if (DestType->isOCLIntelSubgroupAVCMcePayloadType() ||
5348         DestType->isOCLIntelSubgroupAVCMceResultType())
5349       return false;
5350     if (!IsZeroInitializer(Initializer, S))
5351       return false;
5352 
5353     Sequence.AddOCLZeroOpaqueTypeStep(DestType);
5354     return true;
5355   }
5356 
5357   return false;
5358 }
5359 
5360 InitializationSequence::InitializationSequence(Sema &S,
5361                                                const InitializedEntity &Entity,
5362                                                const InitializationKind &Kind,
5363                                                MultiExprArg Args,
5364                                                bool TopLevelOfInitList,
5365                                                bool TreatUnavailableAsInvalid)
5366     : FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) {
5367   InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList,
5368                  TreatUnavailableAsInvalid);
5369 }
5370 
5371 /// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the
5372 /// address of that function, this returns true. Otherwise, it returns false.
5373 static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) {
5374   auto *DRE = dyn_cast<DeclRefExpr>(E);
5375   if (!DRE || !isa<FunctionDecl>(DRE->getDecl()))
5376     return false;
5377 
5378   return !S.checkAddressOfFunctionIsAvailable(
5379       cast<FunctionDecl>(DRE->getDecl()));
5380 }
5381 
5382 /// Determine whether we can perform an elementwise array copy for this kind
5383 /// of entity.
5384 static bool canPerformArrayCopy(const InitializedEntity &Entity) {
5385   switch (Entity.getKind()) {
5386   case InitializedEntity::EK_LambdaCapture:
5387     // C++ [expr.prim.lambda]p24:
5388     //   For array members, the array elements are direct-initialized in
5389     //   increasing subscript order.
5390     return true;
5391 
5392   case InitializedEntity::EK_Variable:
5393     // C++ [dcl.decomp]p1:
5394     //   [...] each element is copy-initialized or direct-initialized from the
5395     //   corresponding element of the assignment-expression [...]
5396     return isa<DecompositionDecl>(Entity.getDecl());
5397 
5398   case InitializedEntity::EK_Member:
5399     // C++ [class.copy.ctor]p14:
5400     //   - if the member is an array, each element is direct-initialized with
5401     //     the corresponding subobject of x
5402     return Entity.isImplicitMemberInitializer();
5403 
5404   case InitializedEntity::EK_ArrayElement:
5405     // All the above cases are intended to apply recursively, even though none
5406     // of them actually say that.
5407     if (auto *E = Entity.getParent())
5408       return canPerformArrayCopy(*E);
5409     break;
5410 
5411   default:
5412     break;
5413   }
5414 
5415   return false;
5416 }
5417 
5418 void InitializationSequence::InitializeFrom(Sema &S,
5419                                             const InitializedEntity &Entity,
5420                                             const InitializationKind &Kind,
5421                                             MultiExprArg Args,
5422                                             bool TopLevelOfInitList,
5423                                             bool TreatUnavailableAsInvalid) {
5424   ASTContext &Context = S.Context;
5425 
5426   // Eliminate non-overload placeholder types in the arguments.  We
5427   // need to do this before checking whether types are dependent
5428   // because lowering a pseudo-object expression might well give us
5429   // something of dependent type.
5430   for (unsigned I = 0, E = Args.size(); I != E; ++I)
5431     if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
5432       // FIXME: should we be doing this here?
5433       ExprResult result = S.CheckPlaceholderExpr(Args[I]);
5434       if (result.isInvalid()) {
5435         SetFailed(FK_PlaceholderType);
5436         return;
5437       }
5438       Args[I] = result.get();
5439     }
5440 
5441   // C++0x [dcl.init]p16:
5442   //   The semantics of initializers are as follows. The destination type is
5443   //   the type of the object or reference being initialized and the source
5444   //   type is the type of the initializer expression. The source type is not
5445   //   defined when the initializer is a braced-init-list or when it is a
5446   //   parenthesized list of expressions.
5447   QualType DestType = Entity.getType();
5448 
5449   if (DestType->isDependentType() ||
5450       Expr::hasAnyTypeDependentArguments(Args)) {
5451     SequenceKind = DependentSequence;
5452     return;
5453   }
5454 
5455   // Almost everything is a normal sequence.
5456   setSequenceKind(NormalSequence);
5457 
5458   QualType SourceType;
5459   Expr *Initializer = nullptr;
5460   if (Args.size() == 1) {
5461     Initializer = Args[0];
5462     if (S.getLangOpts().ObjC) {
5463       if (S.CheckObjCBridgeRelatedConversions(Initializer->getBeginLoc(),
5464                                               DestType, Initializer->getType(),
5465                                               Initializer) ||
5466           S.ConversionToObjCStringLiteralCheck(DestType, Initializer))
5467         Args[0] = Initializer;
5468     }
5469     if (!isa<InitListExpr>(Initializer))
5470       SourceType = Initializer->getType();
5471   }
5472 
5473   //     - If the initializer is a (non-parenthesized) braced-init-list, the
5474   //       object is list-initialized (8.5.4).
5475   if (Kind.getKind() != InitializationKind::IK_Direct) {
5476     if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
5477       TryListInitialization(S, Entity, Kind, InitList, *this,
5478                             TreatUnavailableAsInvalid);
5479       return;
5480     }
5481   }
5482 
5483   //     - If the destination type is a reference type, see 8.5.3.
5484   if (DestType->isReferenceType()) {
5485     // C++0x [dcl.init.ref]p1:
5486     //   A variable declared to be a T& or T&&, that is, "reference to type T"
5487     //   (8.3.2), shall be initialized by an object, or function, of type T or
5488     //   by an object that can be converted into a T.
5489     // (Therefore, multiple arguments are not permitted.)
5490     if (Args.size() != 1)
5491       SetFailed(FK_TooManyInitsForReference);
5492     // C++17 [dcl.init.ref]p5:
5493     //   A reference [...] is initialized by an expression [...] as follows:
5494     // If the initializer is not an expression, presumably we should reject,
5495     // but the standard fails to actually say so.
5496     else if (isa<InitListExpr>(Args[0]))
5497       SetFailed(FK_ParenthesizedListInitForReference);
5498     else
5499       TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
5500     return;
5501   }
5502 
5503   //     - If the initializer is (), the object is value-initialized.
5504   if (Kind.getKind() == InitializationKind::IK_Value ||
5505       (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
5506     TryValueInitialization(S, Entity, Kind, *this);
5507     return;
5508   }
5509 
5510   // Handle default initialization.
5511   if (Kind.getKind() == InitializationKind::IK_Default) {
5512     TryDefaultInitialization(S, Entity, Kind, *this);
5513     return;
5514   }
5515 
5516   //     - If the destination type is an array of characters, an array of
5517   //       char16_t, an array of char32_t, or an array of wchar_t, and the
5518   //       initializer is a string literal, see 8.5.2.
5519   //     - Otherwise, if the destination type is an array, the program is
5520   //       ill-formed.
5521   if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
5522     if (Initializer && isa<VariableArrayType>(DestAT)) {
5523       SetFailed(FK_VariableLengthArrayHasInitializer);
5524       return;
5525     }
5526 
5527     if (Initializer) {
5528       switch (IsStringInit(Initializer, DestAT, Context)) {
5529       case SIF_None:
5530         TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
5531         return;
5532       case SIF_NarrowStringIntoWideChar:
5533         SetFailed(FK_NarrowStringIntoWideCharArray);
5534         return;
5535       case SIF_WideStringIntoChar:
5536         SetFailed(FK_WideStringIntoCharArray);
5537         return;
5538       case SIF_IncompatWideStringIntoWideChar:
5539         SetFailed(FK_IncompatWideStringIntoWideChar);
5540         return;
5541       case SIF_PlainStringIntoUTF8Char:
5542         SetFailed(FK_PlainStringIntoUTF8Char);
5543         return;
5544       case SIF_UTF8StringIntoPlainChar:
5545         SetFailed(FK_UTF8StringIntoPlainChar);
5546         return;
5547       case SIF_Other:
5548         break;
5549       }
5550     }
5551 
5552     // Some kinds of initialization permit an array to be initialized from
5553     // another array of the same type, and perform elementwise initialization.
5554     if (Initializer && isa<ConstantArrayType>(DestAT) &&
5555         S.Context.hasSameUnqualifiedType(Initializer->getType(),
5556                                          Entity.getType()) &&
5557         canPerformArrayCopy(Entity)) {
5558       // If source is a prvalue, use it directly.
5559       if (Initializer->getValueKind() == VK_RValue) {
5560         AddArrayInitStep(DestType, /*IsGNUExtension*/false);
5561         return;
5562       }
5563 
5564       // Emit element-at-a-time copy loop.
5565       InitializedEntity Element =
5566           InitializedEntity::InitializeElement(S.Context, 0, Entity);
5567       QualType InitEltT =
5568           Context.getAsArrayType(Initializer->getType())->getElementType();
5569       OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT,
5570                           Initializer->getValueKind(),
5571                           Initializer->getObjectKind());
5572       Expr *OVEAsExpr = &OVE;
5573       InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList,
5574                      TreatUnavailableAsInvalid);
5575       if (!Failed())
5576         AddArrayInitLoopStep(Entity.getType(), InitEltT);
5577       return;
5578     }
5579 
5580     // Note: as an GNU C extension, we allow initialization of an
5581     // array from a compound literal that creates an array of the same
5582     // type, so long as the initializer has no side effects.
5583     if (!S.getLangOpts().CPlusPlus && Initializer &&
5584         isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
5585         Initializer->getType()->isArrayType()) {
5586       const ArrayType *SourceAT
5587         = Context.getAsArrayType(Initializer->getType());
5588       if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
5589         SetFailed(FK_ArrayTypeMismatch);
5590       else if (Initializer->HasSideEffects(S.Context))
5591         SetFailed(FK_NonConstantArrayInit);
5592       else {
5593         AddArrayInitStep(DestType, /*IsGNUExtension*/true);
5594       }
5595     }
5596     // Note: as a GNU C++ extension, we allow list-initialization of a
5597     // class member of array type from a parenthesized initializer list.
5598     else if (S.getLangOpts().CPlusPlus &&
5599              Entity.getKind() == InitializedEntity::EK_Member &&
5600              Initializer && isa<InitListExpr>(Initializer)) {
5601       TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
5602                             *this, TreatUnavailableAsInvalid);
5603       AddParenthesizedArrayInitStep(DestType);
5604     } else if (DestAT->getElementType()->isCharType())
5605       SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
5606     else if (IsWideCharCompatible(DestAT->getElementType(), Context))
5607       SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral);
5608     else
5609       SetFailed(FK_ArrayNeedsInitList);
5610 
5611     return;
5612   }
5613 
5614   // Determine whether we should consider writeback conversions for
5615   // Objective-C ARC.
5616   bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
5617          Entity.isParameterKind();
5618 
5619   // We're at the end of the line for C: it's either a write-back conversion
5620   // or it's a C assignment. There's no need to check anything else.
5621   if (!S.getLangOpts().CPlusPlus) {
5622     // If allowed, check whether this is an Objective-C writeback conversion.
5623     if (allowObjCWritebackConversion &&
5624         tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
5625       return;
5626     }
5627 
5628     if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
5629       return;
5630 
5631     if (TryOCLZeroOpaqueTypeInitialization(S, *this, DestType, Initializer))
5632       return;
5633 
5634     // Handle initialization in C
5635     AddCAssignmentStep(DestType);
5636     MaybeProduceObjCObject(S, *this, Entity);
5637     return;
5638   }
5639 
5640   assert(S.getLangOpts().CPlusPlus);
5641 
5642   //     - If the destination type is a (possibly cv-qualified) class type:
5643   if (DestType->isRecordType()) {
5644     //     - If the initialization is direct-initialization, or if it is
5645     //       copy-initialization where the cv-unqualified version of the
5646     //       source type is the same class as, or a derived class of, the
5647     //       class of the destination, constructors are considered. [...]
5648     if (Kind.getKind() == InitializationKind::IK_Direct ||
5649         (Kind.getKind() == InitializationKind::IK_Copy &&
5650          (Context.hasSameUnqualifiedType(SourceType, DestType) ||
5651           S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, DestType))))
5652       TryConstructorInitialization(S, Entity, Kind, Args,
5653                                    DestType, DestType, *this);
5654     //     - Otherwise (i.e., for the remaining copy-initialization cases),
5655     //       user-defined conversion sequences that can convert from the source
5656     //       type to the destination type or (when a conversion function is
5657     //       used) to a derived class thereof are enumerated as described in
5658     //       13.3.1.4, and the best one is chosen through overload resolution
5659     //       (13.3).
5660     else
5661       TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5662                                TopLevelOfInitList);
5663     return;
5664   }
5665 
5666   assert(Args.size() >= 1 && "Zero-argument case handled above");
5667 
5668   // The remaining cases all need a source type.
5669   if (Args.size() > 1) {
5670     SetFailed(FK_TooManyInitsForScalar);
5671     return;
5672   } else if (isa<InitListExpr>(Args[0])) {
5673     SetFailed(FK_ParenthesizedListInitForScalar);
5674     return;
5675   }
5676 
5677   //    - Otherwise, if the source type is a (possibly cv-qualified) class
5678   //      type, conversion functions are considered.
5679   if (!SourceType.isNull() && SourceType->isRecordType()) {
5680     // For a conversion to _Atomic(T) from either T or a class type derived
5681     // from T, initialize the T object then convert to _Atomic type.
5682     bool NeedAtomicConversion = false;
5683     if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) {
5684       if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) ||
5685           S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType,
5686                           Atomic->getValueType())) {
5687         DestType = Atomic->getValueType();
5688         NeedAtomicConversion = true;
5689       }
5690     }
5691 
5692     TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5693                              TopLevelOfInitList);
5694     MaybeProduceObjCObject(S, *this, Entity);
5695     if (!Failed() && NeedAtomicConversion)
5696       AddAtomicConversionStep(Entity.getType());
5697     return;
5698   }
5699 
5700   //    - Otherwise, the initial value of the object being initialized is the
5701   //      (possibly converted) value of the initializer expression. Standard
5702   //      conversions (Clause 4) will be used, if necessary, to convert the
5703   //      initializer expression to the cv-unqualified version of the
5704   //      destination type; no user-defined conversions are considered.
5705 
5706   ImplicitConversionSequence ICS
5707     = S.TryImplicitConversion(Initializer, DestType,
5708                               /*SuppressUserConversions*/true,
5709                               /*AllowExplicitConversions*/ false,
5710                               /*InOverloadResolution*/ false,
5711                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
5712                               allowObjCWritebackConversion);
5713 
5714   if (ICS.isStandard() &&
5715       ICS.Standard.Second == ICK_Writeback_Conversion) {
5716     // Objective-C ARC writeback conversion.
5717 
5718     // We should copy unless we're passing to an argument explicitly
5719     // marked 'out'.
5720     bool ShouldCopy = true;
5721     if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5722       ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5723 
5724     // If there was an lvalue adjustment, add it as a separate conversion.
5725     if (ICS.Standard.First == ICK_Array_To_Pointer ||
5726         ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
5727       ImplicitConversionSequence LvalueICS;
5728       LvalueICS.setStandard();
5729       LvalueICS.Standard.setAsIdentityConversion();
5730       LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
5731       LvalueICS.Standard.First = ICS.Standard.First;
5732       AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
5733     }
5734 
5735     AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy);
5736   } else if (ICS.isBad()) {
5737     DeclAccessPair dap;
5738     if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) {
5739       AddZeroInitializationStep(Entity.getType());
5740     } else if (Initializer->getType() == Context.OverloadTy &&
5741                !S.ResolveAddressOfOverloadedFunction(Initializer, DestType,
5742                                                      false, dap))
5743       SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
5744     else if (Initializer->getType()->isFunctionType() &&
5745              isExprAnUnaddressableFunction(S, Initializer))
5746       SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction);
5747     else
5748       SetFailed(InitializationSequence::FK_ConversionFailed);
5749   } else {
5750     AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5751 
5752     MaybeProduceObjCObject(S, *this, Entity);
5753   }
5754 }
5755 
5756 InitializationSequence::~InitializationSequence() {
5757   for (auto &S : Steps)
5758     S.Destroy();
5759 }
5760 
5761 //===----------------------------------------------------------------------===//
5762 // Perform initialization
5763 //===----------------------------------------------------------------------===//
5764 static Sema::AssignmentAction
5765 getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) {
5766   switch(Entity.getKind()) {
5767   case InitializedEntity::EK_Variable:
5768   case InitializedEntity::EK_New:
5769   case InitializedEntity::EK_Exception:
5770   case InitializedEntity::EK_Base:
5771   case InitializedEntity::EK_Delegating:
5772     return Sema::AA_Initializing;
5773 
5774   case InitializedEntity::EK_Parameter:
5775     if (Entity.getDecl() &&
5776         isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5777       return Sema::AA_Sending;
5778 
5779     return Sema::AA_Passing;
5780 
5781   case InitializedEntity::EK_Parameter_CF_Audited:
5782     if (Entity.getDecl() &&
5783       isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5784       return Sema::AA_Sending;
5785 
5786     return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited;
5787 
5788   case InitializedEntity::EK_Result:
5789   case InitializedEntity::EK_StmtExprResult: // FIXME: Not quite right.
5790     return Sema::AA_Returning;
5791 
5792   case InitializedEntity::EK_Temporary:
5793   case InitializedEntity::EK_RelatedResult:
5794     // FIXME: Can we tell apart casting vs. converting?
5795     return Sema::AA_Casting;
5796 
5797   case InitializedEntity::EK_Member:
5798   case InitializedEntity::EK_Binding:
5799   case InitializedEntity::EK_ArrayElement:
5800   case InitializedEntity::EK_VectorElement:
5801   case InitializedEntity::EK_ComplexElement:
5802   case InitializedEntity::EK_BlockElement:
5803   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5804   case InitializedEntity::EK_LambdaCapture:
5805   case InitializedEntity::EK_CompoundLiteralInit:
5806     return Sema::AA_Initializing;
5807   }
5808 
5809   llvm_unreachable("Invalid EntityKind!");
5810 }
5811 
5812 /// Whether we should bind a created object as a temporary when
5813 /// initializing the given entity.
5814 static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
5815   switch (Entity.getKind()) {
5816   case InitializedEntity::EK_ArrayElement:
5817   case InitializedEntity::EK_Member:
5818   case InitializedEntity::EK_Result:
5819   case InitializedEntity::EK_StmtExprResult:
5820   case InitializedEntity::EK_New:
5821   case InitializedEntity::EK_Variable:
5822   case InitializedEntity::EK_Base:
5823   case InitializedEntity::EK_Delegating:
5824   case InitializedEntity::EK_VectorElement:
5825   case InitializedEntity::EK_ComplexElement:
5826   case InitializedEntity::EK_Exception:
5827   case InitializedEntity::EK_BlockElement:
5828   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5829   case InitializedEntity::EK_LambdaCapture:
5830   case InitializedEntity::EK_CompoundLiteralInit:
5831     return false;
5832 
5833   case InitializedEntity::EK_Parameter:
5834   case InitializedEntity::EK_Parameter_CF_Audited:
5835   case InitializedEntity::EK_Temporary:
5836   case InitializedEntity::EK_RelatedResult:
5837   case InitializedEntity::EK_Binding:
5838     return true;
5839   }
5840 
5841   llvm_unreachable("missed an InitializedEntity kind?");
5842 }
5843 
5844 /// Whether the given entity, when initialized with an object
5845 /// created for that initialization, requires destruction.
5846 static bool shouldDestroyEntity(const InitializedEntity &Entity) {
5847   switch (Entity.getKind()) {
5848     case InitializedEntity::EK_Result:
5849     case InitializedEntity::EK_StmtExprResult:
5850     case InitializedEntity::EK_New:
5851     case InitializedEntity::EK_Base:
5852     case InitializedEntity::EK_Delegating:
5853     case InitializedEntity::EK_VectorElement:
5854     case InitializedEntity::EK_ComplexElement:
5855     case InitializedEntity::EK_BlockElement:
5856     case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5857     case InitializedEntity::EK_LambdaCapture:
5858       return false;
5859 
5860     case InitializedEntity::EK_Member:
5861     case InitializedEntity::EK_Binding:
5862     case InitializedEntity::EK_Variable:
5863     case InitializedEntity::EK_Parameter:
5864     case InitializedEntity::EK_Parameter_CF_Audited:
5865     case InitializedEntity::EK_Temporary:
5866     case InitializedEntity::EK_ArrayElement:
5867     case InitializedEntity::EK_Exception:
5868     case InitializedEntity::EK_CompoundLiteralInit:
5869     case InitializedEntity::EK_RelatedResult:
5870       return true;
5871   }
5872 
5873   llvm_unreachable("missed an InitializedEntity kind?");
5874 }
5875 
5876 /// Get the location at which initialization diagnostics should appear.
5877 static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
5878                                            Expr *Initializer) {
5879   switch (Entity.getKind()) {
5880   case InitializedEntity::EK_Result:
5881   case InitializedEntity::EK_StmtExprResult:
5882     return Entity.getReturnLoc();
5883 
5884   case InitializedEntity::EK_Exception:
5885     return Entity.getThrowLoc();
5886 
5887   case InitializedEntity::EK_Variable:
5888   case InitializedEntity::EK_Binding:
5889     return Entity.getDecl()->getLocation();
5890 
5891   case InitializedEntity::EK_LambdaCapture:
5892     return Entity.getCaptureLoc();
5893 
5894   case InitializedEntity::EK_ArrayElement:
5895   case InitializedEntity::EK_Member:
5896   case InitializedEntity::EK_Parameter:
5897   case InitializedEntity::EK_Parameter_CF_Audited:
5898   case InitializedEntity::EK_Temporary:
5899   case InitializedEntity::EK_New:
5900   case InitializedEntity::EK_Base:
5901   case InitializedEntity::EK_Delegating:
5902   case InitializedEntity::EK_VectorElement:
5903   case InitializedEntity::EK_ComplexElement:
5904   case InitializedEntity::EK_BlockElement:
5905   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5906   case InitializedEntity::EK_CompoundLiteralInit:
5907   case InitializedEntity::EK_RelatedResult:
5908     return Initializer->getBeginLoc();
5909   }
5910   llvm_unreachable("missed an InitializedEntity kind?");
5911 }
5912 
5913 /// Make a (potentially elidable) temporary copy of the object
5914 /// provided by the given initializer by calling the appropriate copy
5915 /// constructor.
5916 ///
5917 /// \param S The Sema object used for type-checking.
5918 ///
5919 /// \param T The type of the temporary object, which must either be
5920 /// the type of the initializer expression or a superclass thereof.
5921 ///
5922 /// \param Entity The entity being initialized.
5923 ///
5924 /// \param CurInit The initializer expression.
5925 ///
5926 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that
5927 /// is permitted in C++03 (but not C++0x) when binding a reference to
5928 /// an rvalue.
5929 ///
5930 /// \returns An expression that copies the initializer expression into
5931 /// a temporary object, or an error expression if a copy could not be
5932 /// created.
5933 static ExprResult CopyObject(Sema &S,
5934                              QualType T,
5935                              const InitializedEntity &Entity,
5936                              ExprResult CurInit,
5937                              bool IsExtraneousCopy) {
5938   if (CurInit.isInvalid())
5939     return CurInit;
5940   // Determine which class type we're copying to.
5941   Expr *CurInitExpr = (Expr *)CurInit.get();
5942   CXXRecordDecl *Class = nullptr;
5943   if (const RecordType *Record = T->getAs<RecordType>())
5944     Class = cast<CXXRecordDecl>(Record->getDecl());
5945   if (!Class)
5946     return CurInit;
5947 
5948   SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
5949 
5950   // Make sure that the type we are copying is complete.
5951   if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
5952     return CurInit;
5953 
5954   // Perform overload resolution using the class's constructors. Per
5955   // C++11 [dcl.init]p16, second bullet for class types, this initialization
5956   // is direct-initialization.
5957   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
5958   DeclContext::lookup_result Ctors = S.LookupConstructors(Class);
5959 
5960   OverloadCandidateSet::iterator Best;
5961   switch (ResolveConstructorOverload(
5962       S, Loc, CurInitExpr, CandidateSet, T, Ctors, Best,
5963       /*CopyInitializing=*/false, /*AllowExplicit=*/true,
5964       /*OnlyListConstructors=*/false, /*IsListInit=*/false,
5965       /*SecondStepOfCopyInit=*/true)) {
5966   case OR_Success:
5967     break;
5968 
5969   case OR_No_Viable_Function:
5970     S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
5971            ? diag::ext_rvalue_to_reference_temp_copy_no_viable
5972            : diag::err_temp_copy_no_viable)
5973       << (int)Entity.getKind() << CurInitExpr->getType()
5974       << CurInitExpr->getSourceRange();
5975     CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
5976     if (!IsExtraneousCopy || S.isSFINAEContext())
5977       return ExprError();
5978     return CurInit;
5979 
5980   case OR_Ambiguous:
5981     S.Diag(Loc, diag::err_temp_copy_ambiguous)
5982       << (int)Entity.getKind() << CurInitExpr->getType()
5983       << CurInitExpr->getSourceRange();
5984     CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
5985     return ExprError();
5986 
5987   case OR_Deleted:
5988     S.Diag(Loc, diag::err_temp_copy_deleted)
5989       << (int)Entity.getKind() << CurInitExpr->getType()
5990       << CurInitExpr->getSourceRange();
5991     S.NoteDeletedFunction(Best->Function);
5992     return ExprError();
5993   }
5994 
5995   bool HadMultipleCandidates = CandidateSet.size() > 1;
5996 
5997   CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
5998   SmallVector<Expr*, 8> ConstructorArgs;
5999   CurInit.get(); // Ownership transferred into MultiExprArg, below.
6000 
6001   S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity,
6002                            IsExtraneousCopy);
6003 
6004   if (IsExtraneousCopy) {
6005     // If this is a totally extraneous copy for C++03 reference
6006     // binding purposes, just return the original initialization
6007     // expression. We don't generate an (elided) copy operation here
6008     // because doing so would require us to pass down a flag to avoid
6009     // infinite recursion, where each step adds another extraneous,
6010     // elidable copy.
6011 
6012     // Instantiate the default arguments of any extra parameters in
6013     // the selected copy constructor, as if we were going to create a
6014     // proper call to the copy constructor.
6015     for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
6016       ParmVarDecl *Parm = Constructor->getParamDecl(I);
6017       if (S.RequireCompleteType(Loc, Parm->getType(),
6018                                 diag::err_call_incomplete_argument))
6019         break;
6020 
6021       // Build the default argument expression; we don't actually care
6022       // if this succeeds or not, because this routine will complain
6023       // if there was a problem.
6024       S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
6025     }
6026 
6027     return CurInitExpr;
6028   }
6029 
6030   // Determine the arguments required to actually perform the
6031   // constructor call (we might have derived-to-base conversions, or
6032   // the copy constructor may have default arguments).
6033   if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs))
6034     return ExprError();
6035 
6036   // C++0x [class.copy]p32:
6037   //   When certain criteria are met, an implementation is allowed to
6038   //   omit the copy/move construction of a class object, even if the
6039   //   copy/move constructor and/or destructor for the object have
6040   //   side effects. [...]
6041   //     - when a temporary class object that has not been bound to a
6042   //       reference (12.2) would be copied/moved to a class object
6043   //       with the same cv-unqualified type, the copy/move operation
6044   //       can be omitted by constructing the temporary object
6045   //       directly into the target of the omitted copy/move
6046   //
6047   // Note that the other three bullets are handled elsewhere. Copy
6048   // elision for return statements and throw expressions are handled as part
6049   // of constructor initialization, while copy elision for exception handlers
6050   // is handled by the run-time.
6051   //
6052   // FIXME: If the function parameter is not the same type as the temporary, we
6053   // should still be able to elide the copy, but we don't have a way to
6054   // represent in the AST how much should be elided in this case.
6055   bool Elidable =
6056       CurInitExpr->isTemporaryObject(S.Context, Class) &&
6057       S.Context.hasSameUnqualifiedType(
6058           Best->Function->getParamDecl(0)->getType().getNonReferenceType(),
6059           CurInitExpr->getType());
6060 
6061   // Actually perform the constructor call.
6062   CurInit = S.BuildCXXConstructExpr(Loc, T, Best->FoundDecl, Constructor,
6063                                     Elidable,
6064                                     ConstructorArgs,
6065                                     HadMultipleCandidates,
6066                                     /*ListInit*/ false,
6067                                     /*StdInitListInit*/ false,
6068                                     /*ZeroInit*/ false,
6069                                     CXXConstructExpr::CK_Complete,
6070                                     SourceRange());
6071 
6072   // If we're supposed to bind temporaries, do so.
6073   if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
6074     CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
6075   return CurInit;
6076 }
6077 
6078 /// Check whether elidable copy construction for binding a reference to
6079 /// a temporary would have succeeded if we were building in C++98 mode, for
6080 /// -Wc++98-compat.
6081 static void CheckCXX98CompatAccessibleCopy(Sema &S,
6082                                            const InitializedEntity &Entity,
6083                                            Expr *CurInitExpr) {
6084   assert(S.getLangOpts().CPlusPlus11);
6085 
6086   const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
6087   if (!Record)
6088     return;
6089 
6090   SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
6091   if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc))
6092     return;
6093 
6094   // Find constructors which would have been considered.
6095   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
6096   DeclContext::lookup_result Ctors =
6097       S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl()));
6098 
6099   // Perform overload resolution.
6100   OverloadCandidateSet::iterator Best;
6101   OverloadingResult OR = ResolveConstructorOverload(
6102       S, Loc, CurInitExpr, CandidateSet, CurInitExpr->getType(), Ctors, Best,
6103       /*CopyInitializing=*/false, /*AllowExplicit=*/true,
6104       /*OnlyListConstructors=*/false, /*IsListInit=*/false,
6105       /*SecondStepOfCopyInit=*/true);
6106 
6107   PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
6108     << OR << (int)Entity.getKind() << CurInitExpr->getType()
6109     << CurInitExpr->getSourceRange();
6110 
6111   switch (OR) {
6112   case OR_Success:
6113     S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
6114                              Best->FoundDecl, Entity, Diag);
6115     // FIXME: Check default arguments as far as that's possible.
6116     break;
6117 
6118   case OR_No_Viable_Function:
6119     S.Diag(Loc, Diag);
6120     CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
6121     break;
6122 
6123   case OR_Ambiguous:
6124     S.Diag(Loc, Diag);
6125     CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
6126     break;
6127 
6128   case OR_Deleted:
6129     S.Diag(Loc, Diag);
6130     S.NoteDeletedFunction(Best->Function);
6131     break;
6132   }
6133 }
6134 
6135 void InitializationSequence::PrintInitLocationNote(Sema &S,
6136                                               const InitializedEntity &Entity) {
6137   if (Entity.isParameterKind() && Entity.getDecl()) {
6138     if (Entity.getDecl()->getLocation().isInvalid())
6139       return;
6140 
6141     if (Entity.getDecl()->getDeclName())
6142       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
6143         << Entity.getDecl()->getDeclName();
6144     else
6145       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
6146   }
6147   else if (Entity.getKind() == InitializedEntity::EK_RelatedResult &&
6148            Entity.getMethodDecl())
6149     S.Diag(Entity.getMethodDecl()->getLocation(),
6150            diag::note_method_return_type_change)
6151       << Entity.getMethodDecl()->getDeclName();
6152 }
6153 
6154 /// Returns true if the parameters describe a constructor initialization of
6155 /// an explicit temporary object, e.g. "Point(x, y)".
6156 static bool isExplicitTemporary(const InitializedEntity &Entity,
6157                                 const InitializationKind &Kind,
6158                                 unsigned NumArgs) {
6159   switch (Entity.getKind()) {
6160   case InitializedEntity::EK_Temporary:
6161   case InitializedEntity::EK_CompoundLiteralInit:
6162   case InitializedEntity::EK_RelatedResult:
6163     break;
6164   default:
6165     return false;
6166   }
6167 
6168   switch (Kind.getKind()) {
6169   case InitializationKind::IK_DirectList:
6170     return true;
6171   // FIXME: Hack to work around cast weirdness.
6172   case InitializationKind::IK_Direct:
6173   case InitializationKind::IK_Value:
6174     return NumArgs != 1;
6175   default:
6176     return false;
6177   }
6178 }
6179 
6180 static ExprResult
6181 PerformConstructorInitialization(Sema &S,
6182                                  const InitializedEntity &Entity,
6183                                  const InitializationKind &Kind,
6184                                  MultiExprArg Args,
6185                                  const InitializationSequence::Step& Step,
6186                                  bool &ConstructorInitRequiresZeroInit,
6187                                  bool IsListInitialization,
6188                                  bool IsStdInitListInitialization,
6189                                  SourceLocation LBraceLoc,
6190                                  SourceLocation RBraceLoc) {
6191   unsigned NumArgs = Args.size();
6192   CXXConstructorDecl *Constructor
6193     = cast<CXXConstructorDecl>(Step.Function.Function);
6194   bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
6195 
6196   // Build a call to the selected constructor.
6197   SmallVector<Expr*, 8> ConstructorArgs;
6198   SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
6199                          ? Kind.getEqualLoc()
6200                          : Kind.getLocation();
6201 
6202   if (Kind.getKind() == InitializationKind::IK_Default) {
6203     // Force even a trivial, implicit default constructor to be
6204     // semantically checked. We do this explicitly because we don't build
6205     // the definition for completely trivial constructors.
6206     assert(Constructor->getParent() && "No parent class for constructor.");
6207     if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6208         Constructor->isTrivial() && !Constructor->isUsed(false))
6209       S.DefineImplicitDefaultConstructor(Loc, Constructor);
6210   }
6211 
6212   ExprResult CurInit((Expr *)nullptr);
6213 
6214   // C++ [over.match.copy]p1:
6215   //   - When initializing a temporary to be bound to the first parameter
6216   //     of a constructor that takes a reference to possibly cv-qualified
6217   //     T as its first argument, called with a single argument in the
6218   //     context of direct-initialization, explicit conversion functions
6219   //     are also considered.
6220   bool AllowExplicitConv =
6221       Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 &&
6222       hasCopyOrMoveCtorParam(S.Context,
6223                              getConstructorInfo(Step.Function.FoundDecl));
6224 
6225   // Determine the arguments required to actually perform the constructor
6226   // call.
6227   if (S.CompleteConstructorCall(Constructor, Args,
6228                                 Loc, ConstructorArgs,
6229                                 AllowExplicitConv,
6230                                 IsListInitialization))
6231     return ExprError();
6232 
6233 
6234   if (isExplicitTemporary(Entity, Kind, NumArgs)) {
6235     // An explicitly-constructed temporary, e.g., X(1, 2).
6236     if (S.DiagnoseUseOfDecl(Constructor, Loc))
6237       return ExprError();
6238 
6239     TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
6240     if (!TSInfo)
6241       TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
6242     SourceRange ParenOrBraceRange =
6243         (Kind.getKind() == InitializationKind::IK_DirectList)
6244         ? SourceRange(LBraceLoc, RBraceLoc)
6245         : Kind.getParenOrBraceRange();
6246 
6247     if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(
6248             Step.Function.FoundDecl.getDecl())) {
6249       Constructor = S.findInheritingConstructor(Loc, Constructor, Shadow);
6250       if (S.DiagnoseUseOfDecl(Constructor, Loc))
6251         return ExprError();
6252     }
6253     S.MarkFunctionReferenced(Loc, Constructor);
6254 
6255     CurInit = CXXTemporaryObjectExpr::Create(
6256         S.Context, Constructor,
6257         Entity.getType().getNonLValueExprType(S.Context), TSInfo,
6258         ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates,
6259         IsListInitialization, IsStdInitListInitialization,
6260         ConstructorInitRequiresZeroInit);
6261   } else {
6262     CXXConstructExpr::ConstructionKind ConstructKind =
6263       CXXConstructExpr::CK_Complete;
6264 
6265     if (Entity.getKind() == InitializedEntity::EK_Base) {
6266       ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
6267         CXXConstructExpr::CK_VirtualBase :
6268         CXXConstructExpr::CK_NonVirtualBase;
6269     } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
6270       ConstructKind = CXXConstructExpr::CK_Delegating;
6271     }
6272 
6273     // Only get the parenthesis or brace range if it is a list initialization or
6274     // direct construction.
6275     SourceRange ParenOrBraceRange;
6276     if (IsListInitialization)
6277       ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc);
6278     else if (Kind.getKind() == InitializationKind::IK_Direct)
6279       ParenOrBraceRange = Kind.getParenOrBraceRange();
6280 
6281     // If the entity allows NRVO, mark the construction as elidable
6282     // unconditionally.
6283     if (Entity.allowsNRVO())
6284       CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
6285                                         Step.Function.FoundDecl,
6286                                         Constructor, /*Elidable=*/true,
6287                                         ConstructorArgs,
6288                                         HadMultipleCandidates,
6289                                         IsListInitialization,
6290                                         IsStdInitListInitialization,
6291                                         ConstructorInitRequiresZeroInit,
6292                                         ConstructKind,
6293                                         ParenOrBraceRange);
6294     else
6295       CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
6296                                         Step.Function.FoundDecl,
6297                                         Constructor,
6298                                         ConstructorArgs,
6299                                         HadMultipleCandidates,
6300                                         IsListInitialization,
6301                                         IsStdInitListInitialization,
6302                                         ConstructorInitRequiresZeroInit,
6303                                         ConstructKind,
6304                                         ParenOrBraceRange);
6305   }
6306   if (CurInit.isInvalid())
6307     return ExprError();
6308 
6309   // Only check access if all of that succeeded.
6310   S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity);
6311   if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc))
6312     return ExprError();
6313 
6314   if (shouldBindAsTemporary(Entity))
6315     CurInit = S.MaybeBindToTemporary(CurInit.get());
6316 
6317   return CurInit;
6318 }
6319 
6320 namespace {
6321 enum LifetimeKind {
6322   /// The lifetime of a temporary bound to this entity ends at the end of the
6323   /// full-expression, and that's (probably) fine.
6324   LK_FullExpression,
6325 
6326   /// The lifetime of a temporary bound to this entity is extended to the
6327   /// lifeitme of the entity itself.
6328   LK_Extended,
6329 
6330   /// The lifetime of a temporary bound to this entity probably ends too soon,
6331   /// because the entity is allocated in a new-expression.
6332   LK_New,
6333 
6334   /// The lifetime of a temporary bound to this entity ends too soon, because
6335   /// the entity is a return object.
6336   LK_Return,
6337 
6338   /// The lifetime of a temporary bound to this entity ends too soon, because
6339   /// the entity is the result of a statement expression.
6340   LK_StmtExprResult,
6341 
6342   /// This is a mem-initializer: if it would extend a temporary (other than via
6343   /// a default member initializer), the program is ill-formed.
6344   LK_MemInitializer,
6345 };
6346 using LifetimeResult =
6347     llvm::PointerIntPair<const InitializedEntity *, 3, LifetimeKind>;
6348 }
6349 
6350 /// Determine the declaration which an initialized entity ultimately refers to,
6351 /// for the purpose of lifetime-extending a temporary bound to a reference in
6352 /// the initialization of \p Entity.
6353 static LifetimeResult getEntityLifetime(
6354     const InitializedEntity *Entity,
6355     const InitializedEntity *InitField = nullptr) {
6356   // C++11 [class.temporary]p5:
6357   switch (Entity->getKind()) {
6358   case InitializedEntity::EK_Variable:
6359     //   The temporary [...] persists for the lifetime of the reference
6360     return {Entity, LK_Extended};
6361 
6362   case InitializedEntity::EK_Member:
6363     // For subobjects, we look at the complete object.
6364     if (Entity->getParent())
6365       return getEntityLifetime(Entity->getParent(), Entity);
6366 
6367     //   except:
6368     // C++17 [class.base.init]p8:
6369     //   A temporary expression bound to a reference member in a
6370     //   mem-initializer is ill-formed.
6371     // C++17 [class.base.init]p11:
6372     //   A temporary expression bound to a reference member from a
6373     //   default member initializer is ill-formed.
6374     //
6375     // The context of p11 and its example suggest that it's only the use of a
6376     // default member initializer from a constructor that makes the program
6377     // ill-formed, not its mere existence, and that it can even be used by
6378     // aggregate initialization.
6379     return {Entity, Entity->isDefaultMemberInitializer() ? LK_Extended
6380                                                          : LK_MemInitializer};
6381 
6382   case InitializedEntity::EK_Binding:
6383     // Per [dcl.decomp]p3, the binding is treated as a variable of reference
6384     // type.
6385     return {Entity, LK_Extended};
6386 
6387   case InitializedEntity::EK_Parameter:
6388   case InitializedEntity::EK_Parameter_CF_Audited:
6389     //   -- A temporary bound to a reference parameter in a function call
6390     //      persists until the completion of the full-expression containing
6391     //      the call.
6392     return {nullptr, LK_FullExpression};
6393 
6394   case InitializedEntity::EK_Result:
6395     //   -- The lifetime of a temporary bound to the returned value in a
6396     //      function return statement is not extended; the temporary is
6397     //      destroyed at the end of the full-expression in the return statement.
6398     return {nullptr, LK_Return};
6399 
6400   case InitializedEntity::EK_StmtExprResult:
6401     // FIXME: Should we lifetime-extend through the result of a statement
6402     // expression?
6403     return {nullptr, LK_StmtExprResult};
6404 
6405   case InitializedEntity::EK_New:
6406     //   -- A temporary bound to a reference in a new-initializer persists
6407     //      until the completion of the full-expression containing the
6408     //      new-initializer.
6409     return {nullptr, LK_New};
6410 
6411   case InitializedEntity::EK_Temporary:
6412   case InitializedEntity::EK_CompoundLiteralInit:
6413   case InitializedEntity::EK_RelatedResult:
6414     // We don't yet know the storage duration of the surrounding temporary.
6415     // Assume it's got full-expression duration for now, it will patch up our
6416     // storage duration if that's not correct.
6417     return {nullptr, LK_FullExpression};
6418 
6419   case InitializedEntity::EK_ArrayElement:
6420     // For subobjects, we look at the complete object.
6421     return getEntityLifetime(Entity->getParent(), InitField);
6422 
6423   case InitializedEntity::EK_Base:
6424     // For subobjects, we look at the complete object.
6425     if (Entity->getParent())
6426       return getEntityLifetime(Entity->getParent(), InitField);
6427     return {InitField, LK_MemInitializer};
6428 
6429   case InitializedEntity::EK_Delegating:
6430     // We can reach this case for aggregate initialization in a constructor:
6431     //   struct A { int &&r; };
6432     //   struct B : A { B() : A{0} {} };
6433     // In this case, use the outermost field decl as the context.
6434     return {InitField, LK_MemInitializer};
6435 
6436   case InitializedEntity::EK_BlockElement:
6437   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6438   case InitializedEntity::EK_LambdaCapture:
6439   case InitializedEntity::EK_VectorElement:
6440   case InitializedEntity::EK_ComplexElement:
6441     return {nullptr, LK_FullExpression};
6442 
6443   case InitializedEntity::EK_Exception:
6444     // FIXME: Can we diagnose lifetime problems with exceptions?
6445     return {nullptr, LK_FullExpression};
6446   }
6447   llvm_unreachable("unknown entity kind");
6448 }
6449 
6450 namespace {
6451 enum ReferenceKind {
6452   /// Lifetime would be extended by a reference binding to a temporary.
6453   RK_ReferenceBinding,
6454   /// Lifetime would be extended by a std::initializer_list object binding to
6455   /// its backing array.
6456   RK_StdInitializerList,
6457 };
6458 
6459 /// A temporary or local variable. This will be one of:
6460 ///  * A MaterializeTemporaryExpr.
6461 ///  * A DeclRefExpr whose declaration is a local.
6462 ///  * An AddrLabelExpr.
6463 ///  * A BlockExpr for a block with captures.
6464 using Local = Expr*;
6465 
6466 /// Expressions we stepped over when looking for the local state. Any steps
6467 /// that would inhibit lifetime extension or take us out of subexpressions of
6468 /// the initializer are included.
6469 struct IndirectLocalPathEntry {
6470   enum EntryKind {
6471     DefaultInit,
6472     AddressOf,
6473     VarInit,
6474     LValToRVal,
6475     LifetimeBoundCall,
6476   } Kind;
6477   Expr *E;
6478   const Decl *D = nullptr;
6479   IndirectLocalPathEntry() {}
6480   IndirectLocalPathEntry(EntryKind K, Expr *E) : Kind(K), E(E) {}
6481   IndirectLocalPathEntry(EntryKind K, Expr *E, const Decl *D)
6482       : Kind(K), E(E), D(D) {}
6483 };
6484 
6485 using IndirectLocalPath = llvm::SmallVectorImpl<IndirectLocalPathEntry>;
6486 
6487 struct RevertToOldSizeRAII {
6488   IndirectLocalPath &Path;
6489   unsigned OldSize = Path.size();
6490   RevertToOldSizeRAII(IndirectLocalPath &Path) : Path(Path) {}
6491   ~RevertToOldSizeRAII() { Path.resize(OldSize); }
6492 };
6493 
6494 using LocalVisitor = llvm::function_ref<bool(IndirectLocalPath &Path, Local L,
6495                                              ReferenceKind RK)>;
6496 }
6497 
6498 static bool isVarOnPath(IndirectLocalPath &Path, VarDecl *VD) {
6499   for (auto E : Path)
6500     if (E.Kind == IndirectLocalPathEntry::VarInit && E.D == VD)
6501       return true;
6502   return false;
6503 }
6504 
6505 static bool pathContainsInit(IndirectLocalPath &Path) {
6506   return llvm::any_of(Path, [=](IndirectLocalPathEntry E) {
6507     return E.Kind == IndirectLocalPathEntry::DefaultInit ||
6508            E.Kind == IndirectLocalPathEntry::VarInit;
6509   });
6510 }
6511 
6512 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
6513                                              Expr *Init, LocalVisitor Visit,
6514                                              bool RevisitSubinits);
6515 
6516 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
6517                                                   Expr *Init, ReferenceKind RK,
6518                                                   LocalVisitor Visit);
6519 
6520 static bool implicitObjectParamIsLifetimeBound(const FunctionDecl *FD) {
6521   const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
6522   if (!TSI)
6523     return false;
6524   // Don't declare this variable in the second operand of the for-statement;
6525   // GCC miscompiles that by ending its lifetime before evaluating the
6526   // third operand. See gcc.gnu.org/PR86769.
6527   AttributedTypeLoc ATL;
6528   for (TypeLoc TL = TSI->getTypeLoc();
6529        (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
6530        TL = ATL.getModifiedLoc()) {
6531     if (ATL.getAttrAs<LifetimeBoundAttr>())
6532       return true;
6533   }
6534   return false;
6535 }
6536 
6537 static void visitLifetimeBoundArguments(IndirectLocalPath &Path, Expr *Call,
6538                                         LocalVisitor Visit) {
6539   const FunctionDecl *Callee;
6540   ArrayRef<Expr*> Args;
6541 
6542   if (auto *CE = dyn_cast<CallExpr>(Call)) {
6543     Callee = CE->getDirectCallee();
6544     Args = llvm::makeArrayRef(CE->getArgs(), CE->getNumArgs());
6545   } else {
6546     auto *CCE = cast<CXXConstructExpr>(Call);
6547     Callee = CCE->getConstructor();
6548     Args = llvm::makeArrayRef(CCE->getArgs(), CCE->getNumArgs());
6549   }
6550   if (!Callee)
6551     return;
6552 
6553   Expr *ObjectArg = nullptr;
6554   if (isa<CXXOperatorCallExpr>(Call) && Callee->isCXXInstanceMember()) {
6555     ObjectArg = Args[0];
6556     Args = Args.slice(1);
6557   } else if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) {
6558     ObjectArg = MCE->getImplicitObjectArgument();
6559   }
6560 
6561   auto VisitLifetimeBoundArg = [&](const Decl *D, Expr *Arg) {
6562     Path.push_back({IndirectLocalPathEntry::LifetimeBoundCall, Arg, D});
6563     if (Arg->isGLValue())
6564       visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding,
6565                                             Visit);
6566     else
6567       visitLocalsRetainedByInitializer(Path, Arg, Visit, true);
6568     Path.pop_back();
6569   };
6570 
6571   if (ObjectArg && implicitObjectParamIsLifetimeBound(Callee))
6572     VisitLifetimeBoundArg(Callee, ObjectArg);
6573 
6574   for (unsigned I = 0,
6575                 N = std::min<unsigned>(Callee->getNumParams(), Args.size());
6576        I != N; ++I) {
6577     if (Callee->getParamDecl(I)->hasAttr<LifetimeBoundAttr>())
6578       VisitLifetimeBoundArg(Callee->getParamDecl(I), Args[I]);
6579   }
6580 }
6581 
6582 /// Visit the locals that would be reachable through a reference bound to the
6583 /// glvalue expression \c Init.
6584 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
6585                                                   Expr *Init, ReferenceKind RK,
6586                                                   LocalVisitor Visit) {
6587   RevertToOldSizeRAII RAII(Path);
6588 
6589   // Walk past any constructs which we can lifetime-extend across.
6590   Expr *Old;
6591   do {
6592     Old = Init;
6593 
6594     if (auto *FE = dyn_cast<FullExpr>(Init))
6595       Init = FE->getSubExpr();
6596 
6597     if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
6598       // If this is just redundant braces around an initializer, step over it.
6599       if (ILE->isTransparent())
6600         Init = ILE->getInit(0);
6601     }
6602 
6603     // Step over any subobject adjustments; we may have a materialized
6604     // temporary inside them.
6605     Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
6606 
6607     // Per current approach for DR1376, look through casts to reference type
6608     // when performing lifetime extension.
6609     if (CastExpr *CE = dyn_cast<CastExpr>(Init))
6610       if (CE->getSubExpr()->isGLValue())
6611         Init = CE->getSubExpr();
6612 
6613     // Per the current approach for DR1299, look through array element access
6614     // on array glvalues when performing lifetime extension.
6615     if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Init)) {
6616       Init = ASE->getBase();
6617       auto *ICE = dyn_cast<ImplicitCastExpr>(Init);
6618       if (ICE && ICE->getCastKind() == CK_ArrayToPointerDecay)
6619         Init = ICE->getSubExpr();
6620       else
6621         // We can't lifetime extend through this but we might still find some
6622         // retained temporaries.
6623         return visitLocalsRetainedByInitializer(Path, Init, Visit, true);
6624     }
6625 
6626     // Step into CXXDefaultInitExprs so we can diagnose cases where a
6627     // constructor inherits one as an implicit mem-initializer.
6628     if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
6629       Path.push_back(
6630           {IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
6631       Init = DIE->getExpr();
6632     }
6633   } while (Init != Old);
6634 
6635   if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Init)) {
6636     if (Visit(Path, Local(MTE), RK))
6637       visitLocalsRetainedByInitializer(Path, MTE->GetTemporaryExpr(), Visit,
6638                                        true);
6639   }
6640 
6641   if (isa<CallExpr>(Init))
6642     return visitLifetimeBoundArguments(Path, Init, Visit);
6643 
6644   switch (Init->getStmtClass()) {
6645   case Stmt::DeclRefExprClass: {
6646     // If we find the name of a local non-reference parameter, we could have a
6647     // lifetime problem.
6648     auto *DRE = cast<DeclRefExpr>(Init);
6649     auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
6650     if (VD && VD->hasLocalStorage() &&
6651         !DRE->refersToEnclosingVariableOrCapture()) {
6652       if (!VD->getType()->isReferenceType()) {
6653         Visit(Path, Local(DRE), RK);
6654       } else if (isa<ParmVarDecl>(DRE->getDecl())) {
6655         // The lifetime of a reference parameter is unknown; assume it's OK
6656         // for now.
6657         break;
6658       } else if (VD->getInit() && !isVarOnPath(Path, VD)) {
6659         Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
6660         visitLocalsRetainedByReferenceBinding(Path, VD->getInit(),
6661                                               RK_ReferenceBinding, Visit);
6662       }
6663     }
6664     break;
6665   }
6666 
6667   case Stmt::UnaryOperatorClass: {
6668     // The only unary operator that make sense to handle here
6669     // is Deref.  All others don't resolve to a "name."  This includes
6670     // handling all sorts of rvalues passed to a unary operator.
6671     const UnaryOperator *U = cast<UnaryOperator>(Init);
6672     if (U->getOpcode() == UO_Deref)
6673       visitLocalsRetainedByInitializer(Path, U->getSubExpr(), Visit, true);
6674     break;
6675   }
6676 
6677   case Stmt::OMPArraySectionExprClass: {
6678     visitLocalsRetainedByInitializer(
6679         Path, cast<OMPArraySectionExpr>(Init)->getBase(), Visit, true);
6680     break;
6681   }
6682 
6683   case Stmt::ConditionalOperatorClass:
6684   case Stmt::BinaryConditionalOperatorClass: {
6685     auto *C = cast<AbstractConditionalOperator>(Init);
6686     if (!C->getTrueExpr()->getType()->isVoidType())
6687       visitLocalsRetainedByReferenceBinding(Path, C->getTrueExpr(), RK, Visit);
6688     if (!C->getFalseExpr()->getType()->isVoidType())
6689       visitLocalsRetainedByReferenceBinding(Path, C->getFalseExpr(), RK, Visit);
6690     break;
6691   }
6692 
6693   // FIXME: Visit the left-hand side of an -> or ->*.
6694 
6695   default:
6696     break;
6697   }
6698 }
6699 
6700 /// Visit the locals that would be reachable through an object initialized by
6701 /// the prvalue expression \c Init.
6702 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
6703                                              Expr *Init, LocalVisitor Visit,
6704                                              bool RevisitSubinits) {
6705   RevertToOldSizeRAII RAII(Path);
6706 
6707   Expr *Old;
6708   do {
6709     Old = Init;
6710 
6711     // Step into CXXDefaultInitExprs so we can diagnose cases where a
6712     // constructor inherits one as an implicit mem-initializer.
6713     if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
6714       Path.push_back({IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
6715       Init = DIE->getExpr();
6716     }
6717 
6718     if (auto *FE = dyn_cast<FullExpr>(Init))
6719       Init = FE->getSubExpr();
6720 
6721     // Dig out the expression which constructs the extended temporary.
6722     Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
6723 
6724     if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init))
6725       Init = BTE->getSubExpr();
6726 
6727     Init = Init->IgnoreParens();
6728 
6729     // Step over value-preserving rvalue casts.
6730     if (auto *CE = dyn_cast<CastExpr>(Init)) {
6731       switch (CE->getCastKind()) {
6732       case CK_LValueToRValue:
6733         // If we can match the lvalue to a const object, we can look at its
6734         // initializer.
6735         Path.push_back({IndirectLocalPathEntry::LValToRVal, CE});
6736         return visitLocalsRetainedByReferenceBinding(
6737             Path, Init, RK_ReferenceBinding,
6738             [&](IndirectLocalPath &Path, Local L, ReferenceKind RK) -> bool {
6739           if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
6740             auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
6741             if (VD && VD->getType().isConstQualified() && VD->getInit() &&
6742                 !isVarOnPath(Path, VD)) {
6743               Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
6744               visitLocalsRetainedByInitializer(Path, VD->getInit(), Visit, true);
6745             }
6746           } else if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L)) {
6747             if (MTE->getType().isConstQualified())
6748               visitLocalsRetainedByInitializer(Path, MTE->GetTemporaryExpr(),
6749                                                Visit, true);
6750           }
6751           return false;
6752         });
6753 
6754         // We assume that objects can be retained by pointers cast to integers,
6755         // but not if the integer is cast to floating-point type or to _Complex.
6756         // We assume that casts to 'bool' do not preserve enough information to
6757         // retain a local object.
6758       case CK_NoOp:
6759       case CK_BitCast:
6760       case CK_BaseToDerived:
6761       case CK_DerivedToBase:
6762       case CK_UncheckedDerivedToBase:
6763       case CK_Dynamic:
6764       case CK_ToUnion:
6765       case CK_UserDefinedConversion:
6766       case CK_ConstructorConversion:
6767       case CK_IntegralToPointer:
6768       case CK_PointerToIntegral:
6769       case CK_VectorSplat:
6770       case CK_IntegralCast:
6771       case CK_CPointerToObjCPointerCast:
6772       case CK_BlockPointerToObjCPointerCast:
6773       case CK_AnyPointerToBlockPointerCast:
6774       case CK_AddressSpaceConversion:
6775         break;
6776 
6777       case CK_ArrayToPointerDecay:
6778         // Model array-to-pointer decay as taking the address of the array
6779         // lvalue.
6780         Path.push_back({IndirectLocalPathEntry::AddressOf, CE});
6781         return visitLocalsRetainedByReferenceBinding(Path, CE->getSubExpr(),
6782                                                      RK_ReferenceBinding, Visit);
6783 
6784       default:
6785         return;
6786       }
6787 
6788       Init = CE->getSubExpr();
6789     }
6790   } while (Old != Init);
6791 
6792   // C++17 [dcl.init.list]p6:
6793   //   initializing an initializer_list object from the array extends the
6794   //   lifetime of the array exactly like binding a reference to a temporary.
6795   if (auto *ILE = dyn_cast<CXXStdInitializerListExpr>(Init))
6796     return visitLocalsRetainedByReferenceBinding(Path, ILE->getSubExpr(),
6797                                                  RK_StdInitializerList, Visit);
6798 
6799   if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
6800     // We already visited the elements of this initializer list while
6801     // performing the initialization. Don't visit them again unless we've
6802     // changed the lifetime of the initialized entity.
6803     if (!RevisitSubinits)
6804       return;
6805 
6806     if (ILE->isTransparent())
6807       return visitLocalsRetainedByInitializer(Path, ILE->getInit(0), Visit,
6808                                               RevisitSubinits);
6809 
6810     if (ILE->getType()->isArrayType()) {
6811       for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I)
6812         visitLocalsRetainedByInitializer(Path, ILE->getInit(I), Visit,
6813                                          RevisitSubinits);
6814       return;
6815     }
6816 
6817     if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) {
6818       assert(RD->isAggregate() && "aggregate init on non-aggregate");
6819 
6820       // If we lifetime-extend a braced initializer which is initializing an
6821       // aggregate, and that aggregate contains reference members which are
6822       // bound to temporaries, those temporaries are also lifetime-extended.
6823       if (RD->isUnion() && ILE->getInitializedFieldInUnion() &&
6824           ILE->getInitializedFieldInUnion()->getType()->isReferenceType())
6825         visitLocalsRetainedByReferenceBinding(Path, ILE->getInit(0),
6826                                               RK_ReferenceBinding, Visit);
6827       else {
6828         unsigned Index = 0;
6829         for (const auto *I : RD->fields()) {
6830           if (Index >= ILE->getNumInits())
6831             break;
6832           if (I->isUnnamedBitfield())
6833             continue;
6834           Expr *SubInit = ILE->getInit(Index);
6835           if (I->getType()->isReferenceType())
6836             visitLocalsRetainedByReferenceBinding(Path, SubInit,
6837                                                   RK_ReferenceBinding, Visit);
6838           else
6839             // This might be either aggregate-initialization of a member or
6840             // initialization of a std::initializer_list object. Regardless,
6841             // we should recursively lifetime-extend that initializer.
6842             visitLocalsRetainedByInitializer(Path, SubInit, Visit,
6843                                              RevisitSubinits);
6844           ++Index;
6845         }
6846       }
6847     }
6848     return;
6849   }
6850 
6851   // The lifetime of an init-capture is that of the closure object constructed
6852   // by a lambda-expression.
6853   if (auto *LE = dyn_cast<LambdaExpr>(Init)) {
6854     for (Expr *E : LE->capture_inits()) {
6855       if (!E)
6856         continue;
6857       if (E->isGLValue())
6858         visitLocalsRetainedByReferenceBinding(Path, E, RK_ReferenceBinding,
6859                                               Visit);
6860       else
6861         visitLocalsRetainedByInitializer(Path, E, Visit, true);
6862     }
6863   }
6864 
6865   if (isa<CallExpr>(Init) || isa<CXXConstructExpr>(Init))
6866     return visitLifetimeBoundArguments(Path, Init, Visit);
6867 
6868   switch (Init->getStmtClass()) {
6869   case Stmt::UnaryOperatorClass: {
6870     auto *UO = cast<UnaryOperator>(Init);
6871     // If the initializer is the address of a local, we could have a lifetime
6872     // problem.
6873     if (UO->getOpcode() == UO_AddrOf) {
6874       // If this is &rvalue, then it's ill-formed and we have already diagnosed
6875       // it. Don't produce a redundant warning about the lifetime of the
6876       // temporary.
6877       if (isa<MaterializeTemporaryExpr>(UO->getSubExpr()))
6878         return;
6879 
6880       Path.push_back({IndirectLocalPathEntry::AddressOf, UO});
6881       visitLocalsRetainedByReferenceBinding(Path, UO->getSubExpr(),
6882                                             RK_ReferenceBinding, Visit);
6883     }
6884     break;
6885   }
6886 
6887   case Stmt::BinaryOperatorClass: {
6888     // Handle pointer arithmetic.
6889     auto *BO = cast<BinaryOperator>(Init);
6890     BinaryOperatorKind BOK = BO->getOpcode();
6891     if (!BO->getType()->isPointerType() || (BOK != BO_Add && BOK != BO_Sub))
6892       break;
6893 
6894     if (BO->getLHS()->getType()->isPointerType())
6895       visitLocalsRetainedByInitializer(Path, BO->getLHS(), Visit, true);
6896     else if (BO->getRHS()->getType()->isPointerType())
6897       visitLocalsRetainedByInitializer(Path, BO->getRHS(), Visit, true);
6898     break;
6899   }
6900 
6901   case Stmt::ConditionalOperatorClass:
6902   case Stmt::BinaryConditionalOperatorClass: {
6903     auto *C = cast<AbstractConditionalOperator>(Init);
6904     // In C++, we can have a throw-expression operand, which has 'void' type
6905     // and isn't interesting from a lifetime perspective.
6906     if (!C->getTrueExpr()->getType()->isVoidType())
6907       visitLocalsRetainedByInitializer(Path, C->getTrueExpr(), Visit, true);
6908     if (!C->getFalseExpr()->getType()->isVoidType())
6909       visitLocalsRetainedByInitializer(Path, C->getFalseExpr(), Visit, true);
6910     break;
6911   }
6912 
6913   case Stmt::BlockExprClass:
6914     if (cast<BlockExpr>(Init)->getBlockDecl()->hasCaptures()) {
6915       // This is a local block, whose lifetime is that of the function.
6916       Visit(Path, Local(cast<BlockExpr>(Init)), RK_ReferenceBinding);
6917     }
6918     break;
6919 
6920   case Stmt::AddrLabelExprClass:
6921     // We want to warn if the address of a label would escape the function.
6922     Visit(Path, Local(cast<AddrLabelExpr>(Init)), RK_ReferenceBinding);
6923     break;
6924 
6925   default:
6926     break;
6927   }
6928 }
6929 
6930 /// Determine whether this is an indirect path to a temporary that we are
6931 /// supposed to lifetime-extend along (but don't).
6932 static bool shouldLifetimeExtendThroughPath(const IndirectLocalPath &Path) {
6933   for (auto Elem : Path) {
6934     if (Elem.Kind != IndirectLocalPathEntry::DefaultInit)
6935       return false;
6936   }
6937   return true;
6938 }
6939 
6940 /// Find the range for the first interesting entry in the path at or after I.
6941 static SourceRange nextPathEntryRange(const IndirectLocalPath &Path, unsigned I,
6942                                       Expr *E) {
6943   for (unsigned N = Path.size(); I != N; ++I) {
6944     switch (Path[I].Kind) {
6945     case IndirectLocalPathEntry::AddressOf:
6946     case IndirectLocalPathEntry::LValToRVal:
6947     case IndirectLocalPathEntry::LifetimeBoundCall:
6948       // These exist primarily to mark the path as not permitting or
6949       // supporting lifetime extension.
6950       break;
6951 
6952     case IndirectLocalPathEntry::DefaultInit:
6953     case IndirectLocalPathEntry::VarInit:
6954       return Path[I].E->getSourceRange();
6955     }
6956   }
6957   return E->getSourceRange();
6958 }
6959 
6960 void Sema::checkInitializerLifetime(const InitializedEntity &Entity,
6961                                     Expr *Init) {
6962   LifetimeResult LR = getEntityLifetime(&Entity);
6963   LifetimeKind LK = LR.getInt();
6964   const InitializedEntity *ExtendingEntity = LR.getPointer();
6965 
6966   // If this entity doesn't have an interesting lifetime, don't bother looking
6967   // for temporaries within its initializer.
6968   if (LK == LK_FullExpression)
6969     return;
6970 
6971   auto TemporaryVisitor = [&](IndirectLocalPath &Path, Local L,
6972                               ReferenceKind RK) -> bool {
6973     SourceRange DiagRange = nextPathEntryRange(Path, 0, L);
6974     SourceLocation DiagLoc = DiagRange.getBegin();
6975 
6976     switch (LK) {
6977     case LK_FullExpression:
6978       llvm_unreachable("already handled this");
6979 
6980     case LK_Extended: {
6981       auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L);
6982       if (!MTE) {
6983         // The initialized entity has lifetime beyond the full-expression,
6984         // and the local entity does too, so don't warn.
6985         //
6986         // FIXME: We should consider warning if a static / thread storage
6987         // duration variable retains an automatic storage duration local.
6988         return false;
6989       }
6990 
6991       // Lifetime-extend the temporary.
6992       if (Path.empty()) {
6993         // Update the storage duration of the materialized temporary.
6994         // FIXME: Rebuild the expression instead of mutating it.
6995         MTE->setExtendingDecl(ExtendingEntity->getDecl(),
6996                               ExtendingEntity->allocateManglingNumber());
6997         // Also visit the temporaries lifetime-extended by this initializer.
6998         return true;
6999       }
7000 
7001       if (shouldLifetimeExtendThroughPath(Path)) {
7002         // We're supposed to lifetime-extend the temporary along this path (per
7003         // the resolution of DR1815), but we don't support that yet.
7004         //
7005         // FIXME: Properly handle this situation. Perhaps the easiest approach
7006         // would be to clone the initializer expression on each use that would
7007         // lifetime extend its temporaries.
7008         Diag(DiagLoc, diag::warn_unsupported_lifetime_extension)
7009             << RK << DiagRange;
7010       } else {
7011         // If the path goes through the initialization of a variable or field,
7012         // it can't possibly reach a temporary created in this full-expression.
7013         // We will have already diagnosed any problems with the initializer.
7014         if (pathContainsInit(Path))
7015           return false;
7016 
7017         Diag(DiagLoc, diag::warn_dangling_variable)
7018             << RK << !Entity.getParent()
7019             << ExtendingEntity->getDecl()->isImplicit()
7020             << ExtendingEntity->getDecl() << Init->isGLValue() << DiagRange;
7021       }
7022       break;
7023     }
7024 
7025     case LK_MemInitializer: {
7026       if (isa<MaterializeTemporaryExpr>(L)) {
7027         // Under C++ DR1696, if a mem-initializer (or a default member
7028         // initializer used by the absence of one) would lifetime-extend a
7029         // temporary, the program is ill-formed.
7030         if (auto *ExtendingDecl =
7031                 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
7032           bool IsSubobjectMember = ExtendingEntity != &Entity;
7033           Diag(DiagLoc, shouldLifetimeExtendThroughPath(Path)
7034                             ? diag::err_dangling_member
7035                             : diag::warn_dangling_member)
7036               << ExtendingDecl << IsSubobjectMember << RK << DiagRange;
7037           // Don't bother adding a note pointing to the field if we're inside
7038           // its default member initializer; our primary diagnostic points to
7039           // the same place in that case.
7040           if (Path.empty() ||
7041               Path.back().Kind != IndirectLocalPathEntry::DefaultInit) {
7042             Diag(ExtendingDecl->getLocation(),
7043                  diag::note_lifetime_extending_member_declared_here)
7044                 << RK << IsSubobjectMember;
7045           }
7046         } else {
7047           // We have a mem-initializer but no particular field within it; this
7048           // is either a base class or a delegating initializer directly
7049           // initializing the base-class from something that doesn't live long
7050           // enough.
7051           //
7052           // FIXME: Warn on this.
7053           return false;
7054         }
7055       } else {
7056         // Paths via a default initializer can only occur during error recovery
7057         // (there's no other way that a default initializer can refer to a
7058         // local). Don't produce a bogus warning on those cases.
7059         if (pathContainsInit(Path))
7060           return false;
7061 
7062         auto *DRE = dyn_cast<DeclRefExpr>(L);
7063         auto *VD = DRE ? dyn_cast<VarDecl>(DRE->getDecl()) : nullptr;
7064         if (!VD) {
7065           // A member was initialized to a local block.
7066           // FIXME: Warn on this.
7067           return false;
7068         }
7069 
7070         if (auto *Member =
7071                 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
7072           bool IsPointer = Member->getType()->isAnyPointerType();
7073           Diag(DiagLoc, IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
7074                                   : diag::warn_bind_ref_member_to_parameter)
7075               << Member << VD << isa<ParmVarDecl>(VD) << DiagRange;
7076           Diag(Member->getLocation(),
7077                diag::note_ref_or_ptr_member_declared_here)
7078               << (unsigned)IsPointer;
7079         }
7080       }
7081       break;
7082     }
7083 
7084     case LK_New:
7085       if (isa<MaterializeTemporaryExpr>(L)) {
7086         Diag(DiagLoc, RK == RK_ReferenceBinding
7087                           ? diag::warn_new_dangling_reference
7088                           : diag::warn_new_dangling_initializer_list)
7089             << !Entity.getParent() << DiagRange;
7090       } else {
7091         // We can't determine if the allocation outlives the local declaration.
7092         return false;
7093       }
7094       break;
7095 
7096     case LK_Return:
7097     case LK_StmtExprResult:
7098       if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
7099         // We can't determine if the local variable outlives the statement
7100         // expression.
7101         if (LK == LK_StmtExprResult)
7102           return false;
7103         Diag(DiagLoc, diag::warn_ret_stack_addr_ref)
7104             << Entity.getType()->isReferenceType() << DRE->getDecl()
7105             << isa<ParmVarDecl>(DRE->getDecl()) << DiagRange;
7106       } else if (isa<BlockExpr>(L)) {
7107         Diag(DiagLoc, diag::err_ret_local_block) << DiagRange;
7108       } else if (isa<AddrLabelExpr>(L)) {
7109         // Don't warn when returning a label from a statement expression.
7110         // Leaving the scope doesn't end its lifetime.
7111         if (LK == LK_StmtExprResult)
7112           return false;
7113         Diag(DiagLoc, diag::warn_ret_addr_label) << DiagRange;
7114       } else {
7115         Diag(DiagLoc, diag::warn_ret_local_temp_addr_ref)
7116          << Entity.getType()->isReferenceType() << DiagRange;
7117       }
7118       break;
7119     }
7120 
7121     for (unsigned I = 0; I != Path.size(); ++I) {
7122       auto Elem = Path[I];
7123 
7124       switch (Elem.Kind) {
7125       case IndirectLocalPathEntry::AddressOf:
7126       case IndirectLocalPathEntry::LValToRVal:
7127         // These exist primarily to mark the path as not permitting or
7128         // supporting lifetime extension.
7129         break;
7130 
7131       case IndirectLocalPathEntry::LifetimeBoundCall:
7132         // FIXME: Consider adding a note for this.
7133         break;
7134 
7135       case IndirectLocalPathEntry::DefaultInit: {
7136         auto *FD = cast<FieldDecl>(Elem.D);
7137         Diag(FD->getLocation(), diag::note_init_with_default_member_initalizer)
7138             << FD << nextPathEntryRange(Path, I + 1, L);
7139         break;
7140       }
7141 
7142       case IndirectLocalPathEntry::VarInit:
7143         const VarDecl *VD = cast<VarDecl>(Elem.D);
7144         Diag(VD->getLocation(), diag::note_local_var_initializer)
7145             << VD->getType()->isReferenceType()
7146             << VD->isImplicit() << VD->getDeclName()
7147             << nextPathEntryRange(Path, I + 1, L);
7148         break;
7149       }
7150     }
7151 
7152     // We didn't lifetime-extend, so don't go any further; we don't need more
7153     // warnings or errors on inner temporaries within this one's initializer.
7154     return false;
7155   };
7156 
7157   llvm::SmallVector<IndirectLocalPathEntry, 8> Path;
7158   if (Init->isGLValue())
7159     visitLocalsRetainedByReferenceBinding(Path, Init, RK_ReferenceBinding,
7160                                           TemporaryVisitor);
7161   else
7162     visitLocalsRetainedByInitializer(Path, Init, TemporaryVisitor, false);
7163 }
7164 
7165 static void DiagnoseNarrowingInInitList(Sema &S,
7166                                         const ImplicitConversionSequence &ICS,
7167                                         QualType PreNarrowingType,
7168                                         QualType EntityType,
7169                                         const Expr *PostInit);
7170 
7171 /// Provide warnings when std::move is used on construction.
7172 static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr,
7173                                     bool IsReturnStmt) {
7174   if (!InitExpr)
7175     return;
7176 
7177   if (S.inTemplateInstantiation())
7178     return;
7179 
7180   QualType DestType = InitExpr->getType();
7181   if (!DestType->isRecordType())
7182     return;
7183 
7184   unsigned DiagID = 0;
7185   if (IsReturnStmt) {
7186     const CXXConstructExpr *CCE =
7187         dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens());
7188     if (!CCE || CCE->getNumArgs() != 1)
7189       return;
7190 
7191     if (!CCE->getConstructor()->isCopyOrMoveConstructor())
7192       return;
7193 
7194     InitExpr = CCE->getArg(0)->IgnoreImpCasts();
7195   }
7196 
7197   // Find the std::move call and get the argument.
7198   const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens());
7199   if (!CE || !CE->isCallToStdMove())
7200     return;
7201 
7202   const Expr *Arg = CE->getArg(0)->IgnoreImplicit();
7203 
7204   if (IsReturnStmt) {
7205     const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts());
7206     if (!DRE || DRE->refersToEnclosingVariableOrCapture())
7207       return;
7208 
7209     const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
7210     if (!VD || !VD->hasLocalStorage())
7211       return;
7212 
7213     // __block variables are not moved implicitly.
7214     if (VD->hasAttr<BlocksAttr>())
7215       return;
7216 
7217     QualType SourceType = VD->getType();
7218     if (!SourceType->isRecordType())
7219       return;
7220 
7221     if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) {
7222       return;
7223     }
7224 
7225     // If we're returning a function parameter, copy elision
7226     // is not possible.
7227     if (isa<ParmVarDecl>(VD))
7228       DiagID = diag::warn_redundant_move_on_return;
7229     else
7230       DiagID = diag::warn_pessimizing_move_on_return;
7231   } else {
7232     DiagID = diag::warn_pessimizing_move_on_initialization;
7233     const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens();
7234     if (!ArgStripped->isRValue() || !ArgStripped->getType()->isRecordType())
7235       return;
7236   }
7237 
7238   S.Diag(CE->getBeginLoc(), DiagID);
7239 
7240   // Get all the locations for a fix-it.  Don't emit the fix-it if any location
7241   // is within a macro.
7242   SourceLocation CallBegin = CE->getCallee()->getBeginLoc();
7243   if (CallBegin.isMacroID())
7244     return;
7245   SourceLocation RParen = CE->getRParenLoc();
7246   if (RParen.isMacroID())
7247     return;
7248   SourceLocation LParen;
7249   SourceLocation ArgLoc = Arg->getBeginLoc();
7250 
7251   // Special testing for the argument location.  Since the fix-it needs the
7252   // location right before the argument, the argument location can be in a
7253   // macro only if it is at the beginning of the macro.
7254   while (ArgLoc.isMacroID() &&
7255          S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) {
7256     ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).getBegin();
7257   }
7258 
7259   if (LParen.isMacroID())
7260     return;
7261 
7262   LParen = ArgLoc.getLocWithOffset(-1);
7263 
7264   S.Diag(CE->getBeginLoc(), diag::note_remove_move)
7265       << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen))
7266       << FixItHint::CreateRemoval(SourceRange(RParen, RParen));
7267 }
7268 
7269 static void CheckForNullPointerDereference(Sema &S, const Expr *E) {
7270   // Check to see if we are dereferencing a null pointer.  If so, this is
7271   // undefined behavior, so warn about it.  This only handles the pattern
7272   // "*null", which is a very syntactic check.
7273   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
7274     if (UO->getOpcode() == UO_Deref &&
7275         UO->getSubExpr()->IgnoreParenCasts()->
7276         isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) {
7277     S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
7278                           S.PDiag(diag::warn_binding_null_to_reference)
7279                             << UO->getSubExpr()->getSourceRange());
7280   }
7281 }
7282 
7283 MaterializeTemporaryExpr *
7284 Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary,
7285                                      bool BoundToLvalueReference) {
7286   auto MTE = new (Context)
7287       MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference);
7288 
7289   // Order an ExprWithCleanups for lifetime marks.
7290   //
7291   // TODO: It'll be good to have a single place to check the access of the
7292   // destructor and generate ExprWithCleanups for various uses. Currently these
7293   // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary,
7294   // but there may be a chance to merge them.
7295   Cleanup.setExprNeedsCleanups(false);
7296   return MTE;
7297 }
7298 
7299 ExprResult Sema::TemporaryMaterializationConversion(Expr *E) {
7300   // In C++98, we don't want to implicitly create an xvalue.
7301   // FIXME: This means that AST consumers need to deal with "prvalues" that
7302   // denote materialized temporaries. Maybe we should add another ValueKind
7303   // for "xvalue pretending to be a prvalue" for C++98 support.
7304   if (!E->isRValue() || !getLangOpts().CPlusPlus11)
7305     return E;
7306 
7307   // C++1z [conv.rval]/1: T shall be a complete type.
7308   // FIXME: Does this ever matter (can we form a prvalue of incomplete type)?
7309   // If so, we should check for a non-abstract class type here too.
7310   QualType T = E->getType();
7311   if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type))
7312     return ExprError();
7313 
7314   return CreateMaterializeTemporaryExpr(E->getType(), E, false);
7315 }
7316 
7317 ExprResult Sema::PerformQualificationConversion(Expr *E, QualType Ty,
7318                                                 ExprValueKind VK,
7319                                                 CheckedConversionKind CCK) {
7320   CastKind CK = (Ty.getAddressSpace() != E->getType().getAddressSpace())
7321                     ? CK_AddressSpaceConversion
7322                     : CK_NoOp;
7323   return ImpCastExprToType(E, Ty, CK, VK, /*BasePath=*/nullptr, CCK);
7324 }
7325 
7326 ExprResult InitializationSequence::Perform(Sema &S,
7327                                            const InitializedEntity &Entity,
7328                                            const InitializationKind &Kind,
7329                                            MultiExprArg Args,
7330                                            QualType *ResultType) {
7331   if (Failed()) {
7332     Diagnose(S, Entity, Kind, Args);
7333     return ExprError();
7334   }
7335   if (!ZeroInitializationFixit.empty()) {
7336     unsigned DiagID = diag::err_default_init_const;
7337     if (Decl *D = Entity.getDecl())
7338       if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>())
7339         DiagID = diag::ext_default_init_const;
7340 
7341     // The initialization would have succeeded with this fixit. Since the fixit
7342     // is on the error, we need to build a valid AST in this case, so this isn't
7343     // handled in the Failed() branch above.
7344     QualType DestType = Entity.getType();
7345     S.Diag(Kind.getLocation(), DiagID)
7346         << DestType << (bool)DestType->getAs<RecordType>()
7347         << FixItHint::CreateInsertion(ZeroInitializationFixitLoc,
7348                                       ZeroInitializationFixit);
7349   }
7350 
7351   if (getKind() == DependentSequence) {
7352     // If the declaration is a non-dependent, incomplete array type
7353     // that has an initializer, then its type will be completed once
7354     // the initializer is instantiated.
7355     if (ResultType && !Entity.getType()->isDependentType() &&
7356         Args.size() == 1) {
7357       QualType DeclType = Entity.getType();
7358       if (const IncompleteArrayType *ArrayT
7359                            = S.Context.getAsIncompleteArrayType(DeclType)) {
7360         // FIXME: We don't currently have the ability to accurately
7361         // compute the length of an initializer list without
7362         // performing full type-checking of the initializer list
7363         // (since we have to determine where braces are implicitly
7364         // introduced and such).  So, we fall back to making the array
7365         // type a dependently-sized array type with no specified
7366         // bound.
7367         if (isa<InitListExpr>((Expr *)Args[0])) {
7368           SourceRange Brackets;
7369 
7370           // Scavange the location of the brackets from the entity, if we can.
7371           if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Entity.getDecl())) {
7372             if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
7373               TypeLoc TL = TInfo->getTypeLoc();
7374               if (IncompleteArrayTypeLoc ArrayLoc =
7375                       TL.getAs<IncompleteArrayTypeLoc>())
7376                 Brackets = ArrayLoc.getBracketsRange();
7377             }
7378           }
7379 
7380           *ResultType
7381             = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
7382                                                    /*NumElts=*/nullptr,
7383                                                    ArrayT->getSizeModifier(),
7384                                        ArrayT->getIndexTypeCVRQualifiers(),
7385                                                    Brackets);
7386         }
7387 
7388       }
7389     }
7390     if (Kind.getKind() == InitializationKind::IK_Direct &&
7391         !Kind.isExplicitCast()) {
7392       // Rebuild the ParenListExpr.
7393       SourceRange ParenRange = Kind.getParenOrBraceRange();
7394       return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
7395                                   Args);
7396     }
7397     assert(Kind.getKind() == InitializationKind::IK_Copy ||
7398            Kind.isExplicitCast() ||
7399            Kind.getKind() == InitializationKind::IK_DirectList);
7400     return ExprResult(Args[0]);
7401   }
7402 
7403   // No steps means no initialization.
7404   if (Steps.empty())
7405     return ExprResult((Expr *)nullptr);
7406 
7407   if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
7408       Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
7409       !Entity.isParameterKind()) {
7410     // Produce a C++98 compatibility warning if we are initializing a reference
7411     // from an initializer list. For parameters, we produce a better warning
7412     // elsewhere.
7413     Expr *Init = Args[0];
7414     S.Diag(Init->getBeginLoc(), diag::warn_cxx98_compat_reference_list_init)
7415         << Init->getSourceRange();
7416   }
7417 
7418   // OpenCL v2.0 s6.13.11.1. atomic variables can be initialized in global scope
7419   QualType ETy = Entity.getType();
7420   Qualifiers TyQualifiers = ETy.getQualifiers();
7421   bool HasGlobalAS = TyQualifiers.hasAddressSpace() &&
7422                      TyQualifiers.getAddressSpace() == LangAS::opencl_global;
7423 
7424   if (S.getLangOpts().OpenCLVersion >= 200 &&
7425       ETy->isAtomicType() && !HasGlobalAS &&
7426       Entity.getKind() == InitializedEntity::EK_Variable && Args.size() > 0) {
7427     S.Diag(Args[0]->getBeginLoc(), diag::err_opencl_atomic_init)
7428         << 1
7429         << SourceRange(Entity.getDecl()->getBeginLoc(), Args[0]->getEndLoc());
7430     return ExprError();
7431   }
7432 
7433   QualType DestType = Entity.getType().getNonReferenceType();
7434   // FIXME: Ugly hack around the fact that Entity.getType() is not
7435   // the same as Entity.getDecl()->getType() in cases involving type merging,
7436   //  and we want latter when it makes sense.
7437   if (ResultType)
7438     *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
7439                                      Entity.getType();
7440 
7441   ExprResult CurInit((Expr *)nullptr);
7442   SmallVector<Expr*, 4> ArrayLoopCommonExprs;
7443 
7444   // For initialization steps that start with a single initializer,
7445   // grab the only argument out the Args and place it into the "current"
7446   // initializer.
7447   switch (Steps.front().Kind) {
7448   case SK_ResolveAddressOfOverloadedFunction:
7449   case SK_CastDerivedToBaseRValue:
7450   case SK_CastDerivedToBaseXValue:
7451   case SK_CastDerivedToBaseLValue:
7452   case SK_BindReference:
7453   case SK_BindReferenceToTemporary:
7454   case SK_FinalCopy:
7455   case SK_ExtraneousCopyToTemporary:
7456   case SK_UserConversion:
7457   case SK_QualificationConversionLValue:
7458   case SK_QualificationConversionXValue:
7459   case SK_QualificationConversionRValue:
7460   case SK_AtomicConversion:
7461   case SK_LValueToRValue:
7462   case SK_ConversionSequence:
7463   case SK_ConversionSequenceNoNarrowing:
7464   case SK_ListInitialization:
7465   case SK_UnwrapInitList:
7466   case SK_RewrapInitList:
7467   case SK_CAssignment:
7468   case SK_StringInit:
7469   case SK_ObjCObjectConversion:
7470   case SK_ArrayLoopIndex:
7471   case SK_ArrayLoopInit:
7472   case SK_ArrayInit:
7473   case SK_GNUArrayInit:
7474   case SK_ParenthesizedArrayInit:
7475   case SK_PassByIndirectCopyRestore:
7476   case SK_PassByIndirectRestore:
7477   case SK_ProduceObjCObject:
7478   case SK_StdInitializerList:
7479   case SK_OCLSamplerInit:
7480   case SK_OCLZeroOpaqueType: {
7481     assert(Args.size() == 1);
7482     CurInit = Args[0];
7483     if (!CurInit.get()) return ExprError();
7484     break;
7485   }
7486 
7487   case SK_ConstructorInitialization:
7488   case SK_ConstructorInitializationFromList:
7489   case SK_StdInitializerListConstructorCall:
7490   case SK_ZeroInitialization:
7491     break;
7492   }
7493 
7494   // Promote from an unevaluated context to an unevaluated list context in
7495   // C++11 list-initialization; we need to instantiate entities usable in
7496   // constant expressions here in order to perform narrowing checks =(
7497   EnterExpressionEvaluationContext Evaluated(
7498       S, EnterExpressionEvaluationContext::InitList,
7499       CurInit.get() && isa<InitListExpr>(CurInit.get()));
7500 
7501   // C++ [class.abstract]p2:
7502   //   no objects of an abstract class can be created except as subobjects
7503   //   of a class derived from it
7504   auto checkAbstractType = [&](QualType T) -> bool {
7505     if (Entity.getKind() == InitializedEntity::EK_Base ||
7506         Entity.getKind() == InitializedEntity::EK_Delegating)
7507       return false;
7508     return S.RequireNonAbstractType(Kind.getLocation(), T,
7509                                     diag::err_allocation_of_abstract_type);
7510   };
7511 
7512   // Walk through the computed steps for the initialization sequence,
7513   // performing the specified conversions along the way.
7514   bool ConstructorInitRequiresZeroInit = false;
7515   for (step_iterator Step = step_begin(), StepEnd = step_end();
7516        Step != StepEnd; ++Step) {
7517     if (CurInit.isInvalid())
7518       return ExprError();
7519 
7520     QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
7521 
7522     switch (Step->Kind) {
7523     case SK_ResolveAddressOfOverloadedFunction:
7524       // Overload resolution determined which function invoke; update the
7525       // initializer to reflect that choice.
7526       S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
7527       if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()))
7528         return ExprError();
7529       CurInit = S.FixOverloadedFunctionReference(CurInit,
7530                                                  Step->Function.FoundDecl,
7531                                                  Step->Function.Function);
7532       break;
7533 
7534     case SK_CastDerivedToBaseRValue:
7535     case SK_CastDerivedToBaseXValue:
7536     case SK_CastDerivedToBaseLValue: {
7537       // We have a derived-to-base cast that produces either an rvalue or an
7538       // lvalue. Perform that cast.
7539 
7540       CXXCastPath BasePath;
7541 
7542       // Casts to inaccessible base classes are allowed with C-style casts.
7543       bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
7544       if (S.CheckDerivedToBaseConversion(
7545               SourceType, Step->Type, CurInit.get()->getBeginLoc(),
7546               CurInit.get()->getSourceRange(), &BasePath, IgnoreBaseAccess))
7547         return ExprError();
7548 
7549       ExprValueKind VK =
7550           Step->Kind == SK_CastDerivedToBaseLValue ?
7551               VK_LValue :
7552               (Step->Kind == SK_CastDerivedToBaseXValue ?
7553                    VK_XValue :
7554                    VK_RValue);
7555       CurInit =
7556           ImplicitCastExpr::Create(S.Context, Step->Type, CK_DerivedToBase,
7557                                    CurInit.get(), &BasePath, VK);
7558       break;
7559     }
7560 
7561     case SK_BindReference:
7562       // Reference binding does not have any corresponding ASTs.
7563 
7564       // Check exception specifications
7565       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
7566         return ExprError();
7567 
7568       // We don't check for e.g. function pointers here, since address
7569       // availability checks should only occur when the function first decays
7570       // into a pointer or reference.
7571       if (CurInit.get()->getType()->isFunctionProtoType()) {
7572         if (auto *DRE = dyn_cast<DeclRefExpr>(CurInit.get()->IgnoreParens())) {
7573           if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
7574             if (!S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
7575                                                      DRE->getBeginLoc()))
7576               return ExprError();
7577           }
7578         }
7579       }
7580 
7581       CheckForNullPointerDereference(S, CurInit.get());
7582       break;
7583 
7584     case SK_BindReferenceToTemporary: {
7585       // Make sure the "temporary" is actually an rvalue.
7586       assert(CurInit.get()->isRValue() && "not a temporary");
7587 
7588       // Check exception specifications
7589       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
7590         return ExprError();
7591 
7592       // Materialize the temporary into memory.
7593       MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
7594           Step->Type, CurInit.get(), Entity.getType()->isLValueReferenceType());
7595       CurInit = MTE;
7596 
7597       // If we're extending this temporary to automatic storage duration -- we
7598       // need to register its cleanup during the full-expression's cleanups.
7599       if (MTE->getStorageDuration() == SD_Automatic &&
7600           MTE->getType().isDestructedType())
7601         S.Cleanup.setExprNeedsCleanups(true);
7602       break;
7603     }
7604 
7605     case SK_FinalCopy:
7606       if (checkAbstractType(Step->Type))
7607         return ExprError();
7608 
7609       // If the overall initialization is initializing a temporary, we already
7610       // bound our argument if it was necessary to do so. If not (if we're
7611       // ultimately initializing a non-temporary), our argument needs to be
7612       // bound since it's initializing a function parameter.
7613       // FIXME: This is a mess. Rationalize temporary destruction.
7614       if (!shouldBindAsTemporary(Entity))
7615         CurInit = S.MaybeBindToTemporary(CurInit.get());
7616       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
7617                            /*IsExtraneousCopy=*/false);
7618       break;
7619 
7620     case SK_ExtraneousCopyToTemporary:
7621       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
7622                            /*IsExtraneousCopy=*/true);
7623       break;
7624 
7625     case SK_UserConversion: {
7626       // We have a user-defined conversion that invokes either a constructor
7627       // or a conversion function.
7628       CastKind CastKind;
7629       FunctionDecl *Fn = Step->Function.Function;
7630       DeclAccessPair FoundFn = Step->Function.FoundDecl;
7631       bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
7632       bool CreatedObject = false;
7633       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
7634         // Build a call to the selected constructor.
7635         SmallVector<Expr*, 8> ConstructorArgs;
7636         SourceLocation Loc = CurInit.get()->getBeginLoc();
7637 
7638         // Determine the arguments required to actually perform the constructor
7639         // call.
7640         Expr *Arg = CurInit.get();
7641         if (S.CompleteConstructorCall(Constructor,
7642                                       MultiExprArg(&Arg, 1),
7643                                       Loc, ConstructorArgs))
7644           return ExprError();
7645 
7646         // Build an expression that constructs a temporary.
7647         CurInit = S.BuildCXXConstructExpr(Loc, Step->Type,
7648                                           FoundFn, Constructor,
7649                                           ConstructorArgs,
7650                                           HadMultipleCandidates,
7651                                           /*ListInit*/ false,
7652                                           /*StdInitListInit*/ false,
7653                                           /*ZeroInit*/ false,
7654                                           CXXConstructExpr::CK_Complete,
7655                                           SourceRange());
7656         if (CurInit.isInvalid())
7657           return ExprError();
7658 
7659         S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn,
7660                                  Entity);
7661         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
7662           return ExprError();
7663 
7664         CastKind = CK_ConstructorConversion;
7665         CreatedObject = true;
7666       } else {
7667         // Build a call to the conversion function.
7668         CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
7669         S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr,
7670                                     FoundFn);
7671         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
7672           return ExprError();
7673 
7674         CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
7675                                            HadMultipleCandidates);
7676         if (CurInit.isInvalid())
7677           return ExprError();
7678 
7679         CastKind = CK_UserDefinedConversion;
7680         CreatedObject = Conversion->getReturnType()->isRecordType();
7681       }
7682 
7683       if (CreatedObject && checkAbstractType(CurInit.get()->getType()))
7684         return ExprError();
7685 
7686       CurInit = ImplicitCastExpr::Create(S.Context, CurInit.get()->getType(),
7687                                          CastKind, CurInit.get(), nullptr,
7688                                          CurInit.get()->getValueKind());
7689 
7690       if (shouldBindAsTemporary(Entity))
7691         // The overall entity is temporary, so this expression should be
7692         // destroyed at the end of its full-expression.
7693         CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
7694       else if (CreatedObject && shouldDestroyEntity(Entity)) {
7695         // The object outlasts the full-expression, but we need to prepare for
7696         // a destructor being run on it.
7697         // FIXME: It makes no sense to do this here. This should happen
7698         // regardless of how we initialized the entity.
7699         QualType T = CurInit.get()->getType();
7700         if (const RecordType *Record = T->getAs<RecordType>()) {
7701           CXXDestructorDecl *Destructor
7702             = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
7703           S.CheckDestructorAccess(CurInit.get()->getBeginLoc(), Destructor,
7704                                   S.PDiag(diag::err_access_dtor_temp) << T);
7705           S.MarkFunctionReferenced(CurInit.get()->getBeginLoc(), Destructor);
7706           if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getBeginLoc()))
7707             return ExprError();
7708         }
7709       }
7710       break;
7711     }
7712 
7713     case SK_QualificationConversionLValue:
7714     case SK_QualificationConversionXValue:
7715     case SK_QualificationConversionRValue: {
7716       // Perform a qualification conversion; these can never go wrong.
7717       ExprValueKind VK =
7718           Step->Kind == SK_QualificationConversionLValue
7719               ? VK_LValue
7720               : (Step->Kind == SK_QualificationConversionXValue ? VK_XValue
7721                                                                 : VK_RValue);
7722       CurInit = S.PerformQualificationConversion(CurInit.get(), Step->Type, VK);
7723       break;
7724     }
7725 
7726     case SK_AtomicConversion: {
7727       assert(CurInit.get()->isRValue() && "cannot convert glvalue to atomic");
7728       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
7729                                     CK_NonAtomicToAtomic, VK_RValue);
7730       break;
7731     }
7732 
7733     case SK_LValueToRValue: {
7734       assert(CurInit.get()->isGLValue() && "cannot load from a prvalue");
7735       CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
7736                                          CK_LValueToRValue, CurInit.get(),
7737                                          /*BasePath=*/nullptr, VK_RValue);
7738       break;
7739     }
7740 
7741     case SK_ConversionSequence:
7742     case SK_ConversionSequenceNoNarrowing: {
7743       if (const auto *FromPtrType =
7744               CurInit.get()->getType()->getAs<PointerType>()) {
7745         if (const auto *ToPtrType = Step->Type->getAs<PointerType>()) {
7746           if (FromPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
7747               !ToPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
7748             S.Diag(CurInit.get()->getExprLoc(),
7749                    diag::warn_noderef_to_dereferenceable_pointer)
7750                 << CurInit.get()->getSourceRange();
7751           }
7752         }
7753       }
7754 
7755       Sema::CheckedConversionKind CCK
7756         = Kind.isCStyleCast()? Sema::CCK_CStyleCast
7757         : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
7758         : Kind.isExplicitCast()? Sema::CCK_OtherCast
7759         : Sema::CCK_ImplicitConversion;
7760       ExprResult CurInitExprRes =
7761         S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
7762                                     getAssignmentAction(Entity), CCK);
7763       if (CurInitExprRes.isInvalid())
7764         return ExprError();
7765 
7766       S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), CurInit.get());
7767 
7768       CurInit = CurInitExprRes;
7769 
7770       if (Step->Kind == SK_ConversionSequenceNoNarrowing &&
7771           S.getLangOpts().CPlusPlus)
7772         DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(),
7773                                     CurInit.get());
7774 
7775       break;
7776     }
7777 
7778     case SK_ListInitialization: {
7779       if (checkAbstractType(Step->Type))
7780         return ExprError();
7781 
7782       InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
7783       // If we're not initializing the top-level entity, we need to create an
7784       // InitializeTemporary entity for our target type.
7785       QualType Ty = Step->Type;
7786       bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty);
7787       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
7788       InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
7789       InitListChecker PerformInitList(S, InitEntity,
7790           InitList, Ty, /*VerifyOnly=*/false,
7791           /*TreatUnavailableAsInvalid=*/false);
7792       if (PerformInitList.HadError())
7793         return ExprError();
7794 
7795       // Hack: We must update *ResultType if available in order to set the
7796       // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
7797       // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
7798       if (ResultType &&
7799           ResultType->getNonReferenceType()->isIncompleteArrayType()) {
7800         if ((*ResultType)->isRValueReferenceType())
7801           Ty = S.Context.getRValueReferenceType(Ty);
7802         else if ((*ResultType)->isLValueReferenceType())
7803           Ty = S.Context.getLValueReferenceType(Ty,
7804             (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue());
7805         *ResultType = Ty;
7806       }
7807 
7808       InitListExpr *StructuredInitList =
7809           PerformInitList.getFullyStructuredList();
7810       CurInit.get();
7811       CurInit = shouldBindAsTemporary(InitEntity)
7812           ? S.MaybeBindToTemporary(StructuredInitList)
7813           : StructuredInitList;
7814       break;
7815     }
7816 
7817     case SK_ConstructorInitializationFromList: {
7818       if (checkAbstractType(Step->Type))
7819         return ExprError();
7820 
7821       // When an initializer list is passed for a parameter of type "reference
7822       // to object", we don't get an EK_Temporary entity, but instead an
7823       // EK_Parameter entity with reference type.
7824       // FIXME: This is a hack. What we really should do is create a user
7825       // conversion step for this case, but this makes it considerably more
7826       // complicated. For now, this will do.
7827       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
7828                                         Entity.getType().getNonReferenceType());
7829       bool UseTemporary = Entity.getType()->isReferenceType();
7830       assert(Args.size() == 1 && "expected a single argument for list init");
7831       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
7832       S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
7833         << InitList->getSourceRange();
7834       MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
7835       CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
7836                                                                    Entity,
7837                                                  Kind, Arg, *Step,
7838                                                ConstructorInitRequiresZeroInit,
7839                                                /*IsListInitialization*/true,
7840                                                /*IsStdInitListInit*/false,
7841                                                InitList->getLBraceLoc(),
7842                                                InitList->getRBraceLoc());
7843       break;
7844     }
7845 
7846     case SK_UnwrapInitList:
7847       CurInit = cast<InitListExpr>(CurInit.get())->getInit(0);
7848       break;
7849 
7850     case SK_RewrapInitList: {
7851       Expr *E = CurInit.get();
7852       InitListExpr *Syntactic = Step->WrappingSyntacticList;
7853       InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
7854           Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
7855       ILE->setSyntacticForm(Syntactic);
7856       ILE->setType(E->getType());
7857       ILE->setValueKind(E->getValueKind());
7858       CurInit = ILE;
7859       break;
7860     }
7861 
7862     case SK_ConstructorInitialization:
7863     case SK_StdInitializerListConstructorCall: {
7864       if (checkAbstractType(Step->Type))
7865         return ExprError();
7866 
7867       // When an initializer list is passed for a parameter of type "reference
7868       // to object", we don't get an EK_Temporary entity, but instead an
7869       // EK_Parameter entity with reference type.
7870       // FIXME: This is a hack. What we really should do is create a user
7871       // conversion step for this case, but this makes it considerably more
7872       // complicated. For now, this will do.
7873       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
7874                                         Entity.getType().getNonReferenceType());
7875       bool UseTemporary = Entity.getType()->isReferenceType();
7876       bool IsStdInitListInit =
7877           Step->Kind == SK_StdInitializerListConstructorCall;
7878       Expr *Source = CurInit.get();
7879       SourceRange Range = Kind.hasParenOrBraceRange()
7880                               ? Kind.getParenOrBraceRange()
7881                               : SourceRange();
7882       CurInit = PerformConstructorInitialization(
7883           S, UseTemporary ? TempEntity : Entity, Kind,
7884           Source ? MultiExprArg(Source) : Args, *Step,
7885           ConstructorInitRequiresZeroInit,
7886           /*IsListInitialization*/ IsStdInitListInit,
7887           /*IsStdInitListInitialization*/ IsStdInitListInit,
7888           /*LBraceLoc*/ Range.getBegin(),
7889           /*RBraceLoc*/ Range.getEnd());
7890       break;
7891     }
7892 
7893     case SK_ZeroInitialization: {
7894       step_iterator NextStep = Step;
7895       ++NextStep;
7896       if (NextStep != StepEnd &&
7897           (NextStep->Kind == SK_ConstructorInitialization ||
7898            NextStep->Kind == SK_ConstructorInitializationFromList)) {
7899         // The need for zero-initialization is recorded directly into
7900         // the call to the object's constructor within the next step.
7901         ConstructorInitRequiresZeroInit = true;
7902       } else if (Kind.getKind() == InitializationKind::IK_Value &&
7903                  S.getLangOpts().CPlusPlus &&
7904                  !Kind.isImplicitValueInit()) {
7905         TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
7906         if (!TSInfo)
7907           TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
7908                                                     Kind.getRange().getBegin());
7909 
7910         CurInit = new (S.Context) CXXScalarValueInitExpr(
7911             Entity.getType().getNonLValueExprType(S.Context), TSInfo,
7912             Kind.getRange().getEnd());
7913       } else {
7914         CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type);
7915       }
7916       break;
7917     }
7918 
7919     case SK_CAssignment: {
7920       QualType SourceType = CurInit.get()->getType();
7921 
7922       // Save off the initial CurInit in case we need to emit a diagnostic
7923       ExprResult InitialCurInit = CurInit;
7924       ExprResult Result = CurInit;
7925       Sema::AssignConvertType ConvTy =
7926         S.CheckSingleAssignmentConstraints(Step->Type, Result, true,
7927             Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited);
7928       if (Result.isInvalid())
7929         return ExprError();
7930       CurInit = Result;
7931 
7932       // If this is a call, allow conversion to a transparent union.
7933       ExprResult CurInitExprRes = CurInit;
7934       if (ConvTy != Sema::Compatible &&
7935           Entity.isParameterKind() &&
7936           S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
7937             == Sema::Compatible)
7938         ConvTy = Sema::Compatible;
7939       if (CurInitExprRes.isInvalid())
7940         return ExprError();
7941       CurInit = CurInitExprRes;
7942 
7943       bool Complained;
7944       if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
7945                                      Step->Type, SourceType,
7946                                      InitialCurInit.get(),
7947                                      getAssignmentAction(Entity, true),
7948                                      &Complained)) {
7949         PrintInitLocationNote(S, Entity);
7950         return ExprError();
7951       } else if (Complained)
7952         PrintInitLocationNote(S, Entity);
7953       break;
7954     }
7955 
7956     case SK_StringInit: {
7957       QualType Ty = Step->Type;
7958       CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
7959                       S.Context.getAsArrayType(Ty), S);
7960       break;
7961     }
7962 
7963     case SK_ObjCObjectConversion:
7964       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
7965                           CK_ObjCObjectLValueCast,
7966                           CurInit.get()->getValueKind());
7967       break;
7968 
7969     case SK_ArrayLoopIndex: {
7970       Expr *Cur = CurInit.get();
7971       Expr *BaseExpr = new (S.Context)
7972           OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(),
7973                           Cur->getValueKind(), Cur->getObjectKind(), Cur);
7974       Expr *IndexExpr =
7975           new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType());
7976       CurInit = S.CreateBuiltinArraySubscriptExpr(
7977           BaseExpr, Kind.getLocation(), IndexExpr, Kind.getLocation());
7978       ArrayLoopCommonExprs.push_back(BaseExpr);
7979       break;
7980     }
7981 
7982     case SK_ArrayLoopInit: {
7983       assert(!ArrayLoopCommonExprs.empty() &&
7984              "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit");
7985       Expr *Common = ArrayLoopCommonExprs.pop_back_val();
7986       CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common,
7987                                                   CurInit.get());
7988       break;
7989     }
7990 
7991     case SK_GNUArrayInit:
7992       // Okay: we checked everything before creating this step. Note that
7993       // this is a GNU extension.
7994       S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
7995         << Step->Type << CurInit.get()->getType()
7996         << CurInit.get()->getSourceRange();
7997       updateGNUCompoundLiteralRValue(CurInit.get());
7998       LLVM_FALLTHROUGH;
7999     case SK_ArrayInit:
8000       // If the destination type is an incomplete array type, update the
8001       // type accordingly.
8002       if (ResultType) {
8003         if (const IncompleteArrayType *IncompleteDest
8004                            = S.Context.getAsIncompleteArrayType(Step->Type)) {
8005           if (const ConstantArrayType *ConstantSource
8006                  = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
8007             *ResultType = S.Context.getConstantArrayType(
8008                                              IncompleteDest->getElementType(),
8009                                              ConstantSource->getSize(),
8010                                              ArrayType::Normal, 0);
8011           }
8012         }
8013       }
8014       break;
8015 
8016     case SK_ParenthesizedArrayInit:
8017       // Okay: we checked everything before creating this step. Note that
8018       // this is a GNU extension.
8019       S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
8020         << CurInit.get()->getSourceRange();
8021       break;
8022 
8023     case SK_PassByIndirectCopyRestore:
8024     case SK_PassByIndirectRestore:
8025       checkIndirectCopyRestoreSource(S, CurInit.get());
8026       CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr(
8027           CurInit.get(), Step->Type,
8028           Step->Kind == SK_PassByIndirectCopyRestore);
8029       break;
8030 
8031     case SK_ProduceObjCObject:
8032       CurInit =
8033           ImplicitCastExpr::Create(S.Context, Step->Type, CK_ARCProduceObject,
8034                                    CurInit.get(), nullptr, VK_RValue);
8035       break;
8036 
8037     case SK_StdInitializerList: {
8038       S.Diag(CurInit.get()->getExprLoc(),
8039              diag::warn_cxx98_compat_initializer_list_init)
8040         << CurInit.get()->getSourceRange();
8041 
8042       // Materialize the temporary into memory.
8043       MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
8044           CurInit.get()->getType(), CurInit.get(),
8045           /*BoundToLvalueReference=*/false);
8046 
8047       // Wrap it in a construction of a std::initializer_list<T>.
8048       CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE);
8049 
8050       // Bind the result, in case the library has given initializer_list a
8051       // non-trivial destructor.
8052       if (shouldBindAsTemporary(Entity))
8053         CurInit = S.MaybeBindToTemporary(CurInit.get());
8054       break;
8055     }
8056 
8057     case SK_OCLSamplerInit: {
8058       // Sampler initialization have 5 cases:
8059       //   1. function argument passing
8060       //      1a. argument is a file-scope variable
8061       //      1b. argument is a function-scope variable
8062       //      1c. argument is one of caller function's parameters
8063       //   2. variable initialization
8064       //      2a. initializing a file-scope variable
8065       //      2b. initializing a function-scope variable
8066       //
8067       // For file-scope variables, since they cannot be initialized by function
8068       // call of __translate_sampler_initializer in LLVM IR, their references
8069       // need to be replaced by a cast from their literal initializers to
8070       // sampler type. Since sampler variables can only be used in function
8071       // calls as arguments, we only need to replace them when handling the
8072       // argument passing.
8073       assert(Step->Type->isSamplerT() &&
8074              "Sampler initialization on non-sampler type.");
8075       Expr *Init = CurInit.get();
8076       QualType SourceType = Init->getType();
8077       // Case 1
8078       if (Entity.isParameterKind()) {
8079         if (!SourceType->isSamplerT() && !SourceType->isIntegerType()) {
8080           S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
8081             << SourceType;
8082           break;
8083         } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init)) {
8084           auto Var = cast<VarDecl>(DRE->getDecl());
8085           // Case 1b and 1c
8086           // No cast from integer to sampler is needed.
8087           if (!Var->hasGlobalStorage()) {
8088             CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
8089                                                CK_LValueToRValue, Init,
8090                                                /*BasePath=*/nullptr, VK_RValue);
8091             break;
8092           }
8093           // Case 1a
8094           // For function call with a file-scope sampler variable as argument,
8095           // get the integer literal.
8096           // Do not diagnose if the file-scope variable does not have initializer
8097           // since this has already been diagnosed when parsing the variable
8098           // declaration.
8099           if (!Var->getInit() || !isa<ImplicitCastExpr>(Var->getInit()))
8100             break;
8101           Init = cast<ImplicitCastExpr>(const_cast<Expr*>(
8102             Var->getInit()))->getSubExpr();
8103           SourceType = Init->getType();
8104         }
8105       } else {
8106         // Case 2
8107         // Check initializer is 32 bit integer constant.
8108         // If the initializer is taken from global variable, do not diagnose since
8109         // this has already been done when parsing the variable declaration.
8110         if (!Init->isConstantInitializer(S.Context, false))
8111           break;
8112 
8113         if (!SourceType->isIntegerType() ||
8114             32 != S.Context.getIntWidth(SourceType)) {
8115           S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer)
8116             << SourceType;
8117           break;
8118         }
8119 
8120         Expr::EvalResult EVResult;
8121         Init->EvaluateAsInt(EVResult, S.Context);
8122         llvm::APSInt Result = EVResult.Val.getInt();
8123         const uint64_t SamplerValue = Result.getLimitedValue();
8124         // 32-bit value of sampler's initializer is interpreted as
8125         // bit-field with the following structure:
8126         // |unspecified|Filter|Addressing Mode| Normalized Coords|
8127         // |31        6|5    4|3             1|                 0|
8128         // This structure corresponds to enum values of sampler properties
8129         // defined in SPIR spec v1.2 and also opencl-c.h
8130         unsigned AddressingMode  = (0x0E & SamplerValue) >> 1;
8131         unsigned FilterMode      = (0x30 & SamplerValue) >> 4;
8132         if (FilterMode != 1 && FilterMode != 2 &&
8133             !S.getOpenCLOptions().isEnabled(
8134                 "cl_intel_device_side_avc_motion_estimation"))
8135           S.Diag(Kind.getLocation(),
8136                  diag::warn_sampler_initializer_invalid_bits)
8137                  << "Filter Mode";
8138         if (AddressingMode > 4)
8139           S.Diag(Kind.getLocation(),
8140                  diag::warn_sampler_initializer_invalid_bits)
8141                  << "Addressing Mode";
8142       }
8143 
8144       // Cases 1a, 2a and 2b
8145       // Insert cast from integer to sampler.
8146       CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy,
8147                                       CK_IntToOCLSampler);
8148       break;
8149     }
8150     case SK_OCLZeroOpaqueType: {
8151       assert((Step->Type->isEventT() || Step->Type->isQueueT() ||
8152               Step->Type->isOCLIntelSubgroupAVCType()) &&
8153              "Wrong type for initialization of OpenCL opaque type.");
8154 
8155       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8156                                     CK_ZeroToOCLOpaqueType,
8157                                     CurInit.get()->getValueKind());
8158       break;
8159     }
8160     }
8161   }
8162 
8163   // Check whether the initializer has a shorter lifetime than the initialized
8164   // entity, and if not, either lifetime-extend or warn as appropriate.
8165   if (auto *Init = CurInit.get())
8166     S.checkInitializerLifetime(Entity, Init);
8167 
8168   // Diagnose non-fatal problems with the completed initialization.
8169   if (Entity.getKind() == InitializedEntity::EK_Member &&
8170       cast<FieldDecl>(Entity.getDecl())->isBitField())
8171     S.CheckBitFieldInitialization(Kind.getLocation(),
8172                                   cast<FieldDecl>(Entity.getDecl()),
8173                                   CurInit.get());
8174 
8175   // Check for std::move on construction.
8176   if (const Expr *E = CurInit.get()) {
8177     CheckMoveOnConstruction(S, E,
8178                             Entity.getKind() == InitializedEntity::EK_Result);
8179   }
8180 
8181   return CurInit;
8182 }
8183 
8184 /// Somewhere within T there is an uninitialized reference subobject.
8185 /// Dig it out and diagnose it.
8186 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
8187                                            QualType T) {
8188   if (T->isReferenceType()) {
8189     S.Diag(Loc, diag::err_reference_without_init)
8190       << T.getNonReferenceType();
8191     return true;
8192   }
8193 
8194   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
8195   if (!RD || !RD->hasUninitializedReferenceMember())
8196     return false;
8197 
8198   for (const auto *FI : RD->fields()) {
8199     if (FI->isUnnamedBitfield())
8200       continue;
8201 
8202     if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
8203       S.Diag(Loc, diag::note_value_initialization_here) << RD;
8204       return true;
8205     }
8206   }
8207 
8208   for (const auto &BI : RD->bases()) {
8209     if (DiagnoseUninitializedReference(S, BI.getBeginLoc(), BI.getType())) {
8210       S.Diag(Loc, diag::note_value_initialization_here) << RD;
8211       return true;
8212     }
8213   }
8214 
8215   return false;
8216 }
8217 
8218 
8219 //===----------------------------------------------------------------------===//
8220 // Diagnose initialization failures
8221 //===----------------------------------------------------------------------===//
8222 
8223 /// Emit notes associated with an initialization that failed due to a
8224 /// "simple" conversion failure.
8225 static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity,
8226                                    Expr *op) {
8227   QualType destType = entity.getType();
8228   if (destType.getNonReferenceType()->isObjCObjectPointerType() &&
8229       op->getType()->isObjCObjectPointerType()) {
8230 
8231     // Emit a possible note about the conversion failing because the
8232     // operand is a message send with a related result type.
8233     S.EmitRelatedResultTypeNote(op);
8234 
8235     // Emit a possible note about a return failing because we're
8236     // expecting a related result type.
8237     if (entity.getKind() == InitializedEntity::EK_Result)
8238       S.EmitRelatedResultTypeNoteForReturn(destType);
8239   }
8240 }
8241 
8242 static void diagnoseListInit(Sema &S, const InitializedEntity &Entity,
8243                              InitListExpr *InitList) {
8244   QualType DestType = Entity.getType();
8245 
8246   QualType E;
8247   if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) {
8248     QualType ArrayType = S.Context.getConstantArrayType(
8249         E.withConst(),
8250         llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
8251                     InitList->getNumInits()),
8252         clang::ArrayType::Normal, 0);
8253     InitializedEntity HiddenArray =
8254         InitializedEntity::InitializeTemporary(ArrayType);
8255     return diagnoseListInit(S, HiddenArray, InitList);
8256   }
8257 
8258   if (DestType->isReferenceType()) {
8259     // A list-initialization failure for a reference means that we tried to
8260     // create a temporary of the inner type (per [dcl.init.list]p3.6) and the
8261     // inner initialization failed.
8262     QualType T = DestType->getAs<ReferenceType>()->getPointeeType();
8263     diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList);
8264     SourceLocation Loc = InitList->getBeginLoc();
8265     if (auto *D = Entity.getDecl())
8266       Loc = D->getLocation();
8267     S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T;
8268     return;
8269   }
8270 
8271   InitListChecker DiagnoseInitList(S, Entity, InitList, DestType,
8272                                    /*VerifyOnly=*/false,
8273                                    /*TreatUnavailableAsInvalid=*/false);
8274   assert(DiagnoseInitList.HadError() &&
8275          "Inconsistent init list check result.");
8276 }
8277 
8278 bool InitializationSequence::Diagnose(Sema &S,
8279                                       const InitializedEntity &Entity,
8280                                       const InitializationKind &Kind,
8281                                       ArrayRef<Expr *> Args) {
8282   if (!Failed())
8283     return false;
8284 
8285   // When we want to diagnose only one element of a braced-init-list,
8286   // we need to factor it out.
8287   Expr *OnlyArg;
8288   if (Args.size() == 1) {
8289     auto *List = dyn_cast<InitListExpr>(Args[0]);
8290     if (List && List->getNumInits() == 1)
8291       OnlyArg = List->getInit(0);
8292     else
8293       OnlyArg = Args[0];
8294   }
8295   else
8296     OnlyArg = nullptr;
8297 
8298   QualType DestType = Entity.getType();
8299   switch (Failure) {
8300   case FK_TooManyInitsForReference:
8301     // FIXME: Customize for the initialized entity?
8302     if (Args.empty()) {
8303       // Dig out the reference subobject which is uninitialized and diagnose it.
8304       // If this is value-initialization, this could be nested some way within
8305       // the target type.
8306       assert(Kind.getKind() == InitializationKind::IK_Value ||
8307              DestType->isReferenceType());
8308       bool Diagnosed =
8309         DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
8310       assert(Diagnosed && "couldn't find uninitialized reference to diagnose");
8311       (void)Diagnosed;
8312     } else  // FIXME: diagnostic below could be better!
8313       S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
8314           << SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
8315     break;
8316   case FK_ParenthesizedListInitForReference:
8317     S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
8318       << 1 << Entity.getType() << Args[0]->getSourceRange();
8319     break;
8320 
8321   case FK_ArrayNeedsInitList:
8322     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0;
8323     break;
8324   case FK_ArrayNeedsInitListOrStringLiteral:
8325     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1;
8326     break;
8327   case FK_ArrayNeedsInitListOrWideStringLiteral:
8328     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2;
8329     break;
8330   case FK_NarrowStringIntoWideCharArray:
8331     S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar);
8332     break;
8333   case FK_WideStringIntoCharArray:
8334     S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char);
8335     break;
8336   case FK_IncompatWideStringIntoWideChar:
8337     S.Diag(Kind.getLocation(),
8338            diag::err_array_init_incompat_wide_string_into_wchar);
8339     break;
8340   case FK_PlainStringIntoUTF8Char:
8341     S.Diag(Kind.getLocation(),
8342            diag::err_array_init_plain_string_into_char8_t);
8343     S.Diag(Args.front()->getBeginLoc(),
8344            diag::note_array_init_plain_string_into_char8_t)
8345         << FixItHint::CreateInsertion(Args.front()->getBeginLoc(), "u8");
8346     break;
8347   case FK_UTF8StringIntoPlainChar:
8348     S.Diag(Kind.getLocation(),
8349            diag::err_array_init_utf8_string_into_char)
8350       << S.getLangOpts().CPlusPlus2a;
8351     break;
8352   case FK_ArrayTypeMismatch:
8353   case FK_NonConstantArrayInit:
8354     S.Diag(Kind.getLocation(),
8355            (Failure == FK_ArrayTypeMismatch
8356               ? diag::err_array_init_different_type
8357               : diag::err_array_init_non_constant_array))
8358       << DestType.getNonReferenceType()
8359       << OnlyArg->getType()
8360       << Args[0]->getSourceRange();
8361     break;
8362 
8363   case FK_VariableLengthArrayHasInitializer:
8364     S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
8365       << Args[0]->getSourceRange();
8366     break;
8367 
8368   case FK_AddressOfOverloadFailed: {
8369     DeclAccessPair Found;
8370     S.ResolveAddressOfOverloadedFunction(OnlyArg,
8371                                          DestType.getNonReferenceType(),
8372                                          true,
8373                                          Found);
8374     break;
8375   }
8376 
8377   case FK_AddressOfUnaddressableFunction: {
8378     auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(OnlyArg)->getDecl());
8379     S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
8380                                         OnlyArg->getBeginLoc());
8381     break;
8382   }
8383 
8384   case FK_ReferenceInitOverloadFailed:
8385   case FK_UserConversionOverloadFailed:
8386     switch (FailedOverloadResult) {
8387     case OR_Ambiguous:
8388       if (Failure == FK_UserConversionOverloadFailed)
8389         S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
8390           << OnlyArg->getType() << DestType
8391           << Args[0]->getSourceRange();
8392       else
8393         S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
8394           << DestType << OnlyArg->getType()
8395           << Args[0]->getSourceRange();
8396 
8397       FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
8398       break;
8399 
8400     case OR_No_Viable_Function:
8401       if (!S.RequireCompleteType(Kind.getLocation(),
8402                                  DestType.getNonReferenceType(),
8403                           diag::err_typecheck_nonviable_condition_incomplete,
8404                                OnlyArg->getType(), Args[0]->getSourceRange()))
8405         S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
8406           << (Entity.getKind() == InitializedEntity::EK_Result)
8407           << OnlyArg->getType() << Args[0]->getSourceRange()
8408           << DestType.getNonReferenceType();
8409 
8410       FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
8411       break;
8412 
8413     case OR_Deleted: {
8414       S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
8415         << OnlyArg->getType() << DestType.getNonReferenceType()
8416         << Args[0]->getSourceRange();
8417       OverloadCandidateSet::iterator Best;
8418       OverloadingResult Ovl
8419         = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
8420       if (Ovl == OR_Deleted) {
8421         S.NoteDeletedFunction(Best->Function);
8422       } else {
8423         llvm_unreachable("Inconsistent overload resolution?");
8424       }
8425       break;
8426     }
8427 
8428     case OR_Success:
8429       llvm_unreachable("Conversion did not fail!");
8430     }
8431     break;
8432 
8433   case FK_NonConstLValueReferenceBindingToTemporary:
8434     if (isa<InitListExpr>(Args[0])) {
8435       S.Diag(Kind.getLocation(),
8436              diag::err_lvalue_reference_bind_to_initlist)
8437       << DestType.getNonReferenceType().isVolatileQualified()
8438       << DestType.getNonReferenceType()
8439       << Args[0]->getSourceRange();
8440       break;
8441     }
8442     LLVM_FALLTHROUGH;
8443 
8444   case FK_NonConstLValueReferenceBindingToUnrelated:
8445     S.Diag(Kind.getLocation(),
8446            Failure == FK_NonConstLValueReferenceBindingToTemporary
8447              ? diag::err_lvalue_reference_bind_to_temporary
8448              : diag::err_lvalue_reference_bind_to_unrelated)
8449       << DestType.getNonReferenceType().isVolatileQualified()
8450       << DestType.getNonReferenceType()
8451       << OnlyArg->getType()
8452       << Args[0]->getSourceRange();
8453     break;
8454 
8455   case FK_NonConstLValueReferenceBindingToBitfield: {
8456     // We don't necessarily have an unambiguous source bit-field.
8457     FieldDecl *BitField = Args[0]->getSourceBitField();
8458     S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
8459       << DestType.isVolatileQualified()
8460       << (BitField ? BitField->getDeclName() : DeclarationName())
8461       << (BitField != nullptr)
8462       << Args[0]->getSourceRange();
8463     if (BitField)
8464       S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
8465     break;
8466   }
8467 
8468   case FK_NonConstLValueReferenceBindingToVectorElement:
8469     S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
8470       << DestType.isVolatileQualified()
8471       << Args[0]->getSourceRange();
8472     break;
8473 
8474   case FK_RValueReferenceBindingToLValue:
8475     S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
8476       << DestType.getNonReferenceType() << OnlyArg->getType()
8477       << Args[0]->getSourceRange();
8478     break;
8479 
8480   case FK_ReferenceInitDropsQualifiers: {
8481     QualType SourceType = OnlyArg->getType();
8482     QualType NonRefType = DestType.getNonReferenceType();
8483     Qualifiers DroppedQualifiers =
8484         SourceType.getQualifiers() - NonRefType.getQualifiers();
8485 
8486     S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
8487       << SourceType
8488       << NonRefType
8489       << DroppedQualifiers.getCVRQualifiers()
8490       << Args[0]->getSourceRange();
8491     break;
8492   }
8493 
8494   case FK_ReferenceInitFailed:
8495     S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
8496       << DestType.getNonReferenceType()
8497       << DestType.getNonReferenceType()->isIncompleteType()
8498       << OnlyArg->isLValue()
8499       << OnlyArg->getType()
8500       << Args[0]->getSourceRange();
8501     emitBadConversionNotes(S, Entity, Args[0]);
8502     break;
8503 
8504   case FK_ConversionFailed: {
8505     QualType FromType = OnlyArg->getType();
8506     PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
8507       << (int)Entity.getKind()
8508       << DestType
8509       << OnlyArg->isLValue()
8510       << FromType
8511       << Args[0]->getSourceRange();
8512     S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
8513     S.Diag(Kind.getLocation(), PDiag);
8514     emitBadConversionNotes(S, Entity, Args[0]);
8515     break;
8516   }
8517 
8518   case FK_ConversionFromPropertyFailed:
8519     // No-op. This error has already been reported.
8520     break;
8521 
8522   case FK_TooManyInitsForScalar: {
8523     SourceRange R;
8524 
8525     auto *InitList = dyn_cast<InitListExpr>(Args[0]);
8526     if (InitList && InitList->getNumInits() >= 1) {
8527       R = SourceRange(InitList->getInit(0)->getEndLoc(), InitList->getEndLoc());
8528     } else {
8529       assert(Args.size() > 1 && "Expected multiple initializers!");
8530       R = SourceRange(Args.front()->getEndLoc(), Args.back()->getEndLoc());
8531     }
8532 
8533     R.setBegin(S.getLocForEndOfToken(R.getBegin()));
8534     if (Kind.isCStyleOrFunctionalCast())
8535       S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
8536         << R;
8537     else
8538       S.Diag(Kind.getLocation(), diag::err_excess_initializers)
8539         << /*scalar=*/2 << R;
8540     break;
8541   }
8542 
8543   case FK_ParenthesizedListInitForScalar:
8544     S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
8545       << 0 << Entity.getType() << Args[0]->getSourceRange();
8546     break;
8547 
8548   case FK_ReferenceBindingToInitList:
8549     S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
8550       << DestType.getNonReferenceType() << Args[0]->getSourceRange();
8551     break;
8552 
8553   case FK_InitListBadDestinationType:
8554     S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
8555       << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
8556     break;
8557 
8558   case FK_ListConstructorOverloadFailed:
8559   case FK_ConstructorOverloadFailed: {
8560     SourceRange ArgsRange;
8561     if (Args.size())
8562       ArgsRange =
8563           SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
8564 
8565     if (Failure == FK_ListConstructorOverloadFailed) {
8566       assert(Args.size() == 1 &&
8567              "List construction from other than 1 argument.");
8568       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
8569       Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
8570     }
8571 
8572     // FIXME: Using "DestType" for the entity we're printing is probably
8573     // bad.
8574     switch (FailedOverloadResult) {
8575       case OR_Ambiguous:
8576         S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
8577           << DestType << ArgsRange;
8578         FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
8579         break;
8580 
8581       case OR_No_Viable_Function:
8582         if (Kind.getKind() == InitializationKind::IK_Default &&
8583             (Entity.getKind() == InitializedEntity::EK_Base ||
8584              Entity.getKind() == InitializedEntity::EK_Member) &&
8585             isa<CXXConstructorDecl>(S.CurContext)) {
8586           // This is implicit default initialization of a member or
8587           // base within a constructor. If no viable function was
8588           // found, notify the user that they need to explicitly
8589           // initialize this base/member.
8590           CXXConstructorDecl *Constructor
8591             = cast<CXXConstructorDecl>(S.CurContext);
8592           const CXXRecordDecl *InheritedFrom = nullptr;
8593           if (auto Inherited = Constructor->getInheritedConstructor())
8594             InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass();
8595           if (Entity.getKind() == InitializedEntity::EK_Base) {
8596             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
8597               << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
8598               << S.Context.getTypeDeclType(Constructor->getParent())
8599               << /*base=*/0
8600               << Entity.getType()
8601               << InheritedFrom;
8602 
8603             RecordDecl *BaseDecl
8604               = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
8605                                                                   ->getDecl();
8606             S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
8607               << S.Context.getTagDeclType(BaseDecl);
8608           } else {
8609             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
8610               << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
8611               << S.Context.getTypeDeclType(Constructor->getParent())
8612               << /*member=*/1
8613               << Entity.getName()
8614               << InheritedFrom;
8615             S.Diag(Entity.getDecl()->getLocation(),
8616                    diag::note_member_declared_at);
8617 
8618             if (const RecordType *Record
8619                                  = Entity.getType()->getAs<RecordType>())
8620               S.Diag(Record->getDecl()->getLocation(),
8621                      diag::note_previous_decl)
8622                 << S.Context.getTagDeclType(Record->getDecl());
8623           }
8624           break;
8625         }
8626 
8627         S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
8628           << DestType << ArgsRange;
8629         FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
8630         break;
8631 
8632       case OR_Deleted: {
8633         OverloadCandidateSet::iterator Best;
8634         OverloadingResult Ovl
8635           = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
8636         if (Ovl != OR_Deleted) {
8637           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
8638             << true << DestType << ArgsRange;
8639           llvm_unreachable("Inconsistent overload resolution?");
8640           break;
8641         }
8642 
8643         // If this is a defaulted or implicitly-declared function, then
8644         // it was implicitly deleted. Make it clear that the deletion was
8645         // implicit.
8646         if (S.isImplicitlyDeleted(Best->Function))
8647           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
8648             << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
8649             << DestType << ArgsRange;
8650         else
8651           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
8652             << true << DestType << ArgsRange;
8653 
8654         S.NoteDeletedFunction(Best->Function);
8655         break;
8656       }
8657 
8658       case OR_Success:
8659         llvm_unreachable("Conversion did not fail!");
8660     }
8661   }
8662   break;
8663 
8664   case FK_DefaultInitOfConst:
8665     if (Entity.getKind() == InitializedEntity::EK_Member &&
8666         isa<CXXConstructorDecl>(S.CurContext)) {
8667       // This is implicit default-initialization of a const member in
8668       // a constructor. Complain that it needs to be explicitly
8669       // initialized.
8670       CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
8671       S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
8672         << (Constructor->getInheritedConstructor() ? 2 :
8673             Constructor->isImplicit() ? 1 : 0)
8674         << S.Context.getTypeDeclType(Constructor->getParent())
8675         << /*const=*/1
8676         << Entity.getName();
8677       S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
8678         << Entity.getName();
8679     } else {
8680       S.Diag(Kind.getLocation(), diag::err_default_init_const)
8681           << DestType << (bool)DestType->getAs<RecordType>();
8682     }
8683     break;
8684 
8685   case FK_Incomplete:
8686     S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
8687                           diag::err_init_incomplete_type);
8688     break;
8689 
8690   case FK_ListInitializationFailed: {
8691     // Run the init list checker again to emit diagnostics.
8692     InitListExpr *InitList = cast<InitListExpr>(Args[0]);
8693     diagnoseListInit(S, Entity, InitList);
8694     break;
8695   }
8696 
8697   case FK_PlaceholderType: {
8698     // FIXME: Already diagnosed!
8699     break;
8700   }
8701 
8702   case FK_ExplicitConstructor: {
8703     S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
8704       << Args[0]->getSourceRange();
8705     OverloadCandidateSet::iterator Best;
8706     OverloadingResult Ovl
8707       = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
8708     (void)Ovl;
8709     assert(Ovl == OR_Success && "Inconsistent overload resolution");
8710     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
8711     S.Diag(CtorDecl->getLocation(),
8712            diag::note_explicit_ctor_deduction_guide_here) << false;
8713     break;
8714   }
8715   }
8716 
8717   PrintInitLocationNote(S, Entity);
8718   return true;
8719 }
8720 
8721 void InitializationSequence::dump(raw_ostream &OS) const {
8722   switch (SequenceKind) {
8723   case FailedSequence: {
8724     OS << "Failed sequence: ";
8725     switch (Failure) {
8726     case FK_TooManyInitsForReference:
8727       OS << "too many initializers for reference";
8728       break;
8729 
8730     case FK_ParenthesizedListInitForReference:
8731       OS << "parenthesized list init for reference";
8732       break;
8733 
8734     case FK_ArrayNeedsInitList:
8735       OS << "array requires initializer list";
8736       break;
8737 
8738     case FK_AddressOfUnaddressableFunction:
8739       OS << "address of unaddressable function was taken";
8740       break;
8741 
8742     case FK_ArrayNeedsInitListOrStringLiteral:
8743       OS << "array requires initializer list or string literal";
8744       break;
8745 
8746     case FK_ArrayNeedsInitListOrWideStringLiteral:
8747       OS << "array requires initializer list or wide string literal";
8748       break;
8749 
8750     case FK_NarrowStringIntoWideCharArray:
8751       OS << "narrow string into wide char array";
8752       break;
8753 
8754     case FK_WideStringIntoCharArray:
8755       OS << "wide string into char array";
8756       break;
8757 
8758     case FK_IncompatWideStringIntoWideChar:
8759       OS << "incompatible wide string into wide char array";
8760       break;
8761 
8762     case FK_PlainStringIntoUTF8Char:
8763       OS << "plain string literal into char8_t array";
8764       break;
8765 
8766     case FK_UTF8StringIntoPlainChar:
8767       OS << "u8 string literal into char array";
8768       break;
8769 
8770     case FK_ArrayTypeMismatch:
8771       OS << "array type mismatch";
8772       break;
8773 
8774     case FK_NonConstantArrayInit:
8775       OS << "non-constant array initializer";
8776       break;
8777 
8778     case FK_AddressOfOverloadFailed:
8779       OS << "address of overloaded function failed";
8780       break;
8781 
8782     case FK_ReferenceInitOverloadFailed:
8783       OS << "overload resolution for reference initialization failed";
8784       break;
8785 
8786     case FK_NonConstLValueReferenceBindingToTemporary:
8787       OS << "non-const lvalue reference bound to temporary";
8788       break;
8789 
8790     case FK_NonConstLValueReferenceBindingToBitfield:
8791       OS << "non-const lvalue reference bound to bit-field";
8792       break;
8793 
8794     case FK_NonConstLValueReferenceBindingToVectorElement:
8795       OS << "non-const lvalue reference bound to vector element";
8796       break;
8797 
8798     case FK_NonConstLValueReferenceBindingToUnrelated:
8799       OS << "non-const lvalue reference bound to unrelated type";
8800       break;
8801 
8802     case FK_RValueReferenceBindingToLValue:
8803       OS << "rvalue reference bound to an lvalue";
8804       break;
8805 
8806     case FK_ReferenceInitDropsQualifiers:
8807       OS << "reference initialization drops qualifiers";
8808       break;
8809 
8810     case FK_ReferenceInitFailed:
8811       OS << "reference initialization failed";
8812       break;
8813 
8814     case FK_ConversionFailed:
8815       OS << "conversion failed";
8816       break;
8817 
8818     case FK_ConversionFromPropertyFailed:
8819       OS << "conversion from property failed";
8820       break;
8821 
8822     case FK_TooManyInitsForScalar:
8823       OS << "too many initializers for scalar";
8824       break;
8825 
8826     case FK_ParenthesizedListInitForScalar:
8827       OS << "parenthesized list init for reference";
8828       break;
8829 
8830     case FK_ReferenceBindingToInitList:
8831       OS << "referencing binding to initializer list";
8832       break;
8833 
8834     case FK_InitListBadDestinationType:
8835       OS << "initializer list for non-aggregate, non-scalar type";
8836       break;
8837 
8838     case FK_UserConversionOverloadFailed:
8839       OS << "overloading failed for user-defined conversion";
8840       break;
8841 
8842     case FK_ConstructorOverloadFailed:
8843       OS << "constructor overloading failed";
8844       break;
8845 
8846     case FK_DefaultInitOfConst:
8847       OS << "default initialization of a const variable";
8848       break;
8849 
8850     case FK_Incomplete:
8851       OS << "initialization of incomplete type";
8852       break;
8853 
8854     case FK_ListInitializationFailed:
8855       OS << "list initialization checker failure";
8856       break;
8857 
8858     case FK_VariableLengthArrayHasInitializer:
8859       OS << "variable length array has an initializer";
8860       break;
8861 
8862     case FK_PlaceholderType:
8863       OS << "initializer expression isn't contextually valid";
8864       break;
8865 
8866     case FK_ListConstructorOverloadFailed:
8867       OS << "list constructor overloading failed";
8868       break;
8869 
8870     case FK_ExplicitConstructor:
8871       OS << "list copy initialization chose explicit constructor";
8872       break;
8873     }
8874     OS << '\n';
8875     return;
8876   }
8877 
8878   case DependentSequence:
8879     OS << "Dependent sequence\n";
8880     return;
8881 
8882   case NormalSequence:
8883     OS << "Normal sequence: ";
8884     break;
8885   }
8886 
8887   for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
8888     if (S != step_begin()) {
8889       OS << " -> ";
8890     }
8891 
8892     switch (S->Kind) {
8893     case SK_ResolveAddressOfOverloadedFunction:
8894       OS << "resolve address of overloaded function";
8895       break;
8896 
8897     case SK_CastDerivedToBaseRValue:
8898       OS << "derived-to-base (rvalue)";
8899       break;
8900 
8901     case SK_CastDerivedToBaseXValue:
8902       OS << "derived-to-base (xvalue)";
8903       break;
8904 
8905     case SK_CastDerivedToBaseLValue:
8906       OS << "derived-to-base (lvalue)";
8907       break;
8908 
8909     case SK_BindReference:
8910       OS << "bind reference to lvalue";
8911       break;
8912 
8913     case SK_BindReferenceToTemporary:
8914       OS << "bind reference to a temporary";
8915       break;
8916 
8917     case SK_FinalCopy:
8918       OS << "final copy in class direct-initialization";
8919       break;
8920 
8921     case SK_ExtraneousCopyToTemporary:
8922       OS << "extraneous C++03 copy to temporary";
8923       break;
8924 
8925     case SK_UserConversion:
8926       OS << "user-defined conversion via " << *S->Function.Function;
8927       break;
8928 
8929     case SK_QualificationConversionRValue:
8930       OS << "qualification conversion (rvalue)";
8931       break;
8932 
8933     case SK_QualificationConversionXValue:
8934       OS << "qualification conversion (xvalue)";
8935       break;
8936 
8937     case SK_QualificationConversionLValue:
8938       OS << "qualification conversion (lvalue)";
8939       break;
8940 
8941     case SK_AtomicConversion:
8942       OS << "non-atomic-to-atomic conversion";
8943       break;
8944 
8945     case SK_LValueToRValue:
8946       OS << "load (lvalue to rvalue)";
8947       break;
8948 
8949     case SK_ConversionSequence:
8950       OS << "implicit conversion sequence (";
8951       S->ICS->dump(); // FIXME: use OS
8952       OS << ")";
8953       break;
8954 
8955     case SK_ConversionSequenceNoNarrowing:
8956       OS << "implicit conversion sequence with narrowing prohibited (";
8957       S->ICS->dump(); // FIXME: use OS
8958       OS << ")";
8959       break;
8960 
8961     case SK_ListInitialization:
8962       OS << "list aggregate initialization";
8963       break;
8964 
8965     case SK_UnwrapInitList:
8966       OS << "unwrap reference initializer list";
8967       break;
8968 
8969     case SK_RewrapInitList:
8970       OS << "rewrap reference initializer list";
8971       break;
8972 
8973     case SK_ConstructorInitialization:
8974       OS << "constructor initialization";
8975       break;
8976 
8977     case SK_ConstructorInitializationFromList:
8978       OS << "list initialization via constructor";
8979       break;
8980 
8981     case SK_ZeroInitialization:
8982       OS << "zero initialization";
8983       break;
8984 
8985     case SK_CAssignment:
8986       OS << "C assignment";
8987       break;
8988 
8989     case SK_StringInit:
8990       OS << "string initialization";
8991       break;
8992 
8993     case SK_ObjCObjectConversion:
8994       OS << "Objective-C object conversion";
8995       break;
8996 
8997     case SK_ArrayLoopIndex:
8998       OS << "indexing for array initialization loop";
8999       break;
9000 
9001     case SK_ArrayLoopInit:
9002       OS << "array initialization loop";
9003       break;
9004 
9005     case SK_ArrayInit:
9006       OS << "array initialization";
9007       break;
9008 
9009     case SK_GNUArrayInit:
9010       OS << "array initialization (GNU extension)";
9011       break;
9012 
9013     case SK_ParenthesizedArrayInit:
9014       OS << "parenthesized array initialization";
9015       break;
9016 
9017     case SK_PassByIndirectCopyRestore:
9018       OS << "pass by indirect copy and restore";
9019       break;
9020 
9021     case SK_PassByIndirectRestore:
9022       OS << "pass by indirect restore";
9023       break;
9024 
9025     case SK_ProduceObjCObject:
9026       OS << "Objective-C object retension";
9027       break;
9028 
9029     case SK_StdInitializerList:
9030       OS << "std::initializer_list from initializer list";
9031       break;
9032 
9033     case SK_StdInitializerListConstructorCall:
9034       OS << "list initialization from std::initializer_list";
9035       break;
9036 
9037     case SK_OCLSamplerInit:
9038       OS << "OpenCL sampler_t from integer constant";
9039       break;
9040 
9041     case SK_OCLZeroOpaqueType:
9042       OS << "OpenCL opaque type from zero";
9043       break;
9044     }
9045 
9046     OS << " [" << S->Type.getAsString() << ']';
9047   }
9048 
9049   OS << '\n';
9050 }
9051 
9052 void InitializationSequence::dump() const {
9053   dump(llvm::errs());
9054 }
9055 
9056 static bool NarrowingErrs(const LangOptions &L) {
9057   return L.CPlusPlus11 &&
9058          (!L.MicrosoftExt || L.isCompatibleWithMSVC(LangOptions::MSVC2015));
9059 }
9060 
9061 static void DiagnoseNarrowingInInitList(Sema &S,
9062                                         const ImplicitConversionSequence &ICS,
9063                                         QualType PreNarrowingType,
9064                                         QualType EntityType,
9065                                         const Expr *PostInit) {
9066   const StandardConversionSequence *SCS = nullptr;
9067   switch (ICS.getKind()) {
9068   case ImplicitConversionSequence::StandardConversion:
9069     SCS = &ICS.Standard;
9070     break;
9071   case ImplicitConversionSequence::UserDefinedConversion:
9072     SCS = &ICS.UserDefined.After;
9073     break;
9074   case ImplicitConversionSequence::AmbiguousConversion:
9075   case ImplicitConversionSequence::EllipsisConversion:
9076   case ImplicitConversionSequence::BadConversion:
9077     return;
9078   }
9079 
9080   // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
9081   APValue ConstantValue;
9082   QualType ConstantType;
9083   switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
9084                                 ConstantType)) {
9085   case NK_Not_Narrowing:
9086   case NK_Dependent_Narrowing:
9087     // No narrowing occurred.
9088     return;
9089 
9090   case NK_Type_Narrowing:
9091     // This was a floating-to-integer conversion, which is always considered a
9092     // narrowing conversion even if the value is a constant and can be
9093     // represented exactly as an integer.
9094     S.Diag(PostInit->getBeginLoc(), NarrowingErrs(S.getLangOpts())
9095                                         ? diag::ext_init_list_type_narrowing
9096                                         : diag::warn_init_list_type_narrowing)
9097         << PostInit->getSourceRange()
9098         << PreNarrowingType.getLocalUnqualifiedType()
9099         << EntityType.getLocalUnqualifiedType();
9100     break;
9101 
9102   case NK_Constant_Narrowing:
9103     // A constant value was narrowed.
9104     S.Diag(PostInit->getBeginLoc(),
9105            NarrowingErrs(S.getLangOpts())
9106                ? diag::ext_init_list_constant_narrowing
9107                : diag::warn_init_list_constant_narrowing)
9108         << PostInit->getSourceRange()
9109         << ConstantValue.getAsString(S.getASTContext(), ConstantType)
9110         << EntityType.getLocalUnqualifiedType();
9111     break;
9112 
9113   case NK_Variable_Narrowing:
9114     // A variable's value may have been narrowed.
9115     S.Diag(PostInit->getBeginLoc(),
9116            NarrowingErrs(S.getLangOpts())
9117                ? diag::ext_init_list_variable_narrowing
9118                : diag::warn_init_list_variable_narrowing)
9119         << PostInit->getSourceRange()
9120         << PreNarrowingType.getLocalUnqualifiedType()
9121         << EntityType.getLocalUnqualifiedType();
9122     break;
9123   }
9124 
9125   SmallString<128> StaticCast;
9126   llvm::raw_svector_ostream OS(StaticCast);
9127   OS << "static_cast<";
9128   if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
9129     // It's important to use the typedef's name if there is one so that the
9130     // fixit doesn't break code using types like int64_t.
9131     //
9132     // FIXME: This will break if the typedef requires qualification.  But
9133     // getQualifiedNameAsString() includes non-machine-parsable components.
9134     OS << *TT->getDecl();
9135   } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
9136     OS << BT->getName(S.getLangOpts());
9137   else {
9138     // Oops, we didn't find the actual type of the variable.  Don't emit a fixit
9139     // with a broken cast.
9140     return;
9141   }
9142   OS << ">(";
9143   S.Diag(PostInit->getBeginLoc(), diag::note_init_list_narrowing_silence)
9144       << PostInit->getSourceRange()
9145       << FixItHint::CreateInsertion(PostInit->getBeginLoc(), OS.str())
9146       << FixItHint::CreateInsertion(
9147              S.getLocForEndOfToken(PostInit->getEndLoc()), ")");
9148 }
9149 
9150 //===----------------------------------------------------------------------===//
9151 // Initialization helper functions
9152 //===----------------------------------------------------------------------===//
9153 bool
9154 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
9155                                    ExprResult Init) {
9156   if (Init.isInvalid())
9157     return false;
9158 
9159   Expr *InitE = Init.get();
9160   assert(InitE && "No initialization expression");
9161 
9162   InitializationKind Kind =
9163       InitializationKind::CreateCopy(InitE->getBeginLoc(), SourceLocation());
9164   InitializationSequence Seq(*this, Entity, Kind, InitE);
9165   return !Seq.Failed();
9166 }
9167 
9168 ExprResult
9169 Sema::PerformCopyInitialization(const InitializedEntity &Entity,
9170                                 SourceLocation EqualLoc,
9171                                 ExprResult Init,
9172                                 bool TopLevelOfInitList,
9173                                 bool AllowExplicit) {
9174   if (Init.isInvalid())
9175     return ExprError();
9176 
9177   Expr *InitE = Init.get();
9178   assert(InitE && "No initialization expression?");
9179 
9180   if (EqualLoc.isInvalid())
9181     EqualLoc = InitE->getBeginLoc();
9182 
9183   InitializationKind Kind = InitializationKind::CreateCopy(
9184       InitE->getBeginLoc(), EqualLoc, AllowExplicit);
9185   InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList);
9186 
9187   // Prevent infinite recursion when performing parameter copy-initialization.
9188   const bool ShouldTrackCopy =
9189       Entity.isParameterKind() && Seq.isConstructorInitialization();
9190   if (ShouldTrackCopy) {
9191     if (llvm::find(CurrentParameterCopyTypes, Entity.getType()) !=
9192         CurrentParameterCopyTypes.end()) {
9193       Seq.SetOverloadFailure(
9194           InitializationSequence::FK_ConstructorOverloadFailed,
9195           OR_No_Viable_Function);
9196 
9197       // Try to give a meaningful diagnostic note for the problematic
9198       // constructor.
9199       const auto LastStep = Seq.step_end() - 1;
9200       assert(LastStep->Kind ==
9201              InitializationSequence::SK_ConstructorInitialization);
9202       const FunctionDecl *Function = LastStep->Function.Function;
9203       auto Candidate =
9204           llvm::find_if(Seq.getFailedCandidateSet(),
9205                         [Function](const OverloadCandidate &Candidate) -> bool {
9206                           return Candidate.Viable &&
9207                                  Candidate.Function == Function &&
9208                                  Candidate.Conversions.size() > 0;
9209                         });
9210       if (Candidate != Seq.getFailedCandidateSet().end() &&
9211           Function->getNumParams() > 0) {
9212         Candidate->Viable = false;
9213         Candidate->FailureKind = ovl_fail_bad_conversion;
9214         Candidate->Conversions[0].setBad(BadConversionSequence::no_conversion,
9215                                          InitE,
9216                                          Function->getParamDecl(0)->getType());
9217       }
9218     }
9219     CurrentParameterCopyTypes.push_back(Entity.getType());
9220   }
9221 
9222   ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE);
9223 
9224   if (ShouldTrackCopy)
9225     CurrentParameterCopyTypes.pop_back();
9226 
9227   return Result;
9228 }
9229 
9230 /// Determine whether RD is, or is derived from, a specialization of CTD.
9231 static bool isOrIsDerivedFromSpecializationOf(CXXRecordDecl *RD,
9232                                               ClassTemplateDecl *CTD) {
9233   auto NotSpecialization = [&] (const CXXRecordDecl *Candidate) {
9234     auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Candidate);
9235     return !CTSD || !declaresSameEntity(CTSD->getSpecializedTemplate(), CTD);
9236   };
9237   return !(NotSpecialization(RD) && RD->forallBases(NotSpecialization));
9238 }
9239 
9240 QualType Sema::DeduceTemplateSpecializationFromInitializer(
9241     TypeSourceInfo *TSInfo, const InitializedEntity &Entity,
9242     const InitializationKind &Kind, MultiExprArg Inits) {
9243   auto *DeducedTST = dyn_cast<DeducedTemplateSpecializationType>(
9244       TSInfo->getType()->getContainedDeducedType());
9245   assert(DeducedTST && "not a deduced template specialization type");
9246 
9247   auto TemplateName = DeducedTST->getTemplateName();
9248   if (TemplateName.isDependent())
9249     return Context.DependentTy;
9250 
9251   // We can only perform deduction for class templates.
9252   auto *Template =
9253       dyn_cast_or_null<ClassTemplateDecl>(TemplateName.getAsTemplateDecl());
9254   if (!Template) {
9255     Diag(Kind.getLocation(),
9256          diag::err_deduced_non_class_template_specialization_type)
9257       << (int)getTemplateNameKindForDiagnostics(TemplateName) << TemplateName;
9258     if (auto *TD = TemplateName.getAsTemplateDecl())
9259       Diag(TD->getLocation(), diag::note_template_decl_here);
9260     return QualType();
9261   }
9262 
9263   // Can't deduce from dependent arguments.
9264   if (Expr::hasAnyTypeDependentArguments(Inits)) {
9265     Diag(TSInfo->getTypeLoc().getBeginLoc(),
9266          diag::warn_cxx14_compat_class_template_argument_deduction)
9267         << TSInfo->getTypeLoc().getSourceRange() << 0;
9268     return Context.DependentTy;
9269   }
9270 
9271   // FIXME: Perform "exact type" matching first, per CWG discussion?
9272   //        Or implement this via an implied 'T(T) -> T' deduction guide?
9273 
9274   // FIXME: Do we need/want a std::initializer_list<T> special case?
9275 
9276   // Look up deduction guides, including those synthesized from constructors.
9277   //
9278   // C++1z [over.match.class.deduct]p1:
9279   //   A set of functions and function templates is formed comprising:
9280   //   - For each constructor of the class template designated by the
9281   //     template-name, a function template [...]
9282   //  - For each deduction-guide, a function or function template [...]
9283   DeclarationNameInfo NameInfo(
9284       Context.DeclarationNames.getCXXDeductionGuideName(Template),
9285       TSInfo->getTypeLoc().getEndLoc());
9286   LookupResult Guides(*this, NameInfo, LookupOrdinaryName);
9287   LookupQualifiedName(Guides, Template->getDeclContext());
9288 
9289   // FIXME: Do not diagnose inaccessible deduction guides. The standard isn't
9290   // clear on this, but they're not found by name so access does not apply.
9291   Guides.suppressDiagnostics();
9292 
9293   // Figure out if this is list-initialization.
9294   InitListExpr *ListInit =
9295       (Inits.size() == 1 && Kind.getKind() != InitializationKind::IK_Direct)
9296           ? dyn_cast<InitListExpr>(Inits[0])
9297           : nullptr;
9298 
9299   // C++1z [over.match.class.deduct]p1:
9300   //   Initialization and overload resolution are performed as described in
9301   //   [dcl.init] and [over.match.ctor], [over.match.copy], or [over.match.list]
9302   //   (as appropriate for the type of initialization performed) for an object
9303   //   of a hypothetical class type, where the selected functions and function
9304   //   templates are considered to be the constructors of that class type
9305   //
9306   // Since we know we're initializing a class type of a type unrelated to that
9307   // of the initializer, this reduces to something fairly reasonable.
9308   OverloadCandidateSet Candidates(Kind.getLocation(),
9309                                   OverloadCandidateSet::CSK_Normal);
9310   OverloadCandidateSet::iterator Best;
9311 
9312   bool HasAnyDeductionGuide = false;
9313 
9314   auto tryToResolveOverload =
9315       [&](bool OnlyListConstructors) -> OverloadingResult {
9316     Candidates.clear(OverloadCandidateSet::CSK_Normal);
9317     HasAnyDeductionGuide = false;
9318 
9319     for (auto I = Guides.begin(), E = Guides.end(); I != E; ++I) {
9320       NamedDecl *D = (*I)->getUnderlyingDecl();
9321       if (D->isInvalidDecl())
9322         continue;
9323 
9324       auto *TD = dyn_cast<FunctionTemplateDecl>(D);
9325       auto *GD = dyn_cast_or_null<CXXDeductionGuideDecl>(
9326           TD ? TD->getTemplatedDecl() : dyn_cast<FunctionDecl>(D));
9327       if (!GD)
9328         continue;
9329 
9330       if (!GD->isImplicit())
9331         HasAnyDeductionGuide = true;
9332 
9333       // C++ [over.match.ctor]p1: (non-list copy-initialization from non-class)
9334       //   For copy-initialization, the candidate functions are all the
9335       //   converting constructors (12.3.1) of that class.
9336       // C++ [over.match.copy]p1: (non-list copy-initialization from class)
9337       //   The converting constructors of T are candidate functions.
9338       if (Kind.isCopyInit() && !ListInit) {
9339         // Only consider converting constructors.
9340         if (GD->isExplicit())
9341           continue;
9342 
9343         // When looking for a converting constructor, deduction guides that
9344         // could never be called with one argument are not interesting to
9345         // check or note.
9346         if (GD->getMinRequiredArguments() > 1 ||
9347             (GD->getNumParams() == 0 && !GD->isVariadic()))
9348           continue;
9349       }
9350 
9351       // C++ [over.match.list]p1.1: (first phase list initialization)
9352       //   Initially, the candidate functions are the initializer-list
9353       //   constructors of the class T
9354       if (OnlyListConstructors && !isInitListConstructor(GD))
9355         continue;
9356 
9357       // C++ [over.match.list]p1.2: (second phase list initialization)
9358       //   the candidate functions are all the constructors of the class T
9359       // C++ [over.match.ctor]p1: (all other cases)
9360       //   the candidate functions are all the constructors of the class of
9361       //   the object being initialized
9362 
9363       // C++ [over.best.ics]p4:
9364       //   When [...] the constructor [...] is a candidate by
9365       //    - [over.match.copy] (in all cases)
9366       // FIXME: The "second phase of [over.match.list] case can also
9367       // theoretically happen here, but it's not clear whether we can
9368       // ever have a parameter of the right type.
9369       bool SuppressUserConversions = Kind.isCopyInit();
9370 
9371       if (TD)
9372         AddTemplateOverloadCandidate(TD, I.getPair(), /*ExplicitArgs*/ nullptr,
9373                                      Inits, Candidates,
9374                                      SuppressUserConversions);
9375       else
9376         AddOverloadCandidate(GD, I.getPair(), Inits, Candidates,
9377                              SuppressUserConversions);
9378     }
9379     return Candidates.BestViableFunction(*this, Kind.getLocation(), Best);
9380   };
9381 
9382   OverloadingResult Result = OR_No_Viable_Function;
9383 
9384   // C++11 [over.match.list]p1, per DR1467: for list-initialization, first
9385   // try initializer-list constructors.
9386   if (ListInit) {
9387     bool TryListConstructors = true;
9388 
9389     // Try list constructors unless the list is empty and the class has one or
9390     // more default constructors, in which case those constructors win.
9391     if (!ListInit->getNumInits()) {
9392       for (NamedDecl *D : Guides) {
9393         auto *FD = dyn_cast<FunctionDecl>(D->getUnderlyingDecl());
9394         if (FD && FD->getMinRequiredArguments() == 0) {
9395           TryListConstructors = false;
9396           break;
9397         }
9398       }
9399     } else if (ListInit->getNumInits() == 1) {
9400       // C++ [over.match.class.deduct]:
9401       //   As an exception, the first phase in [over.match.list] (considering
9402       //   initializer-list constructors) is omitted if the initializer list
9403       //   consists of a single expression of type cv U, where U is a
9404       //   specialization of C or a class derived from a specialization of C.
9405       Expr *E = ListInit->getInit(0);
9406       auto *RD = E->getType()->getAsCXXRecordDecl();
9407       if (!isa<InitListExpr>(E) && RD &&
9408           isCompleteType(Kind.getLocation(), E->getType()) &&
9409           isOrIsDerivedFromSpecializationOf(RD, Template))
9410         TryListConstructors = false;
9411     }
9412 
9413     if (TryListConstructors)
9414       Result = tryToResolveOverload(/*OnlyListConstructor*/true);
9415     // Then unwrap the initializer list and try again considering all
9416     // constructors.
9417     Inits = MultiExprArg(ListInit->getInits(), ListInit->getNumInits());
9418   }
9419 
9420   // If list-initialization fails, or if we're doing any other kind of
9421   // initialization, we (eventually) consider constructors.
9422   if (Result == OR_No_Viable_Function)
9423     Result = tryToResolveOverload(/*OnlyListConstructor*/false);
9424 
9425   switch (Result) {
9426   case OR_Ambiguous:
9427     Diag(Kind.getLocation(), diag::err_deduced_class_template_ctor_ambiguous)
9428       << TemplateName;
9429     // FIXME: For list-initialization candidates, it'd usually be better to
9430     // list why they were not viable when given the initializer list itself as
9431     // an argument.
9432     Candidates.NoteCandidates(*this, OCD_ViableCandidates, Inits);
9433     return QualType();
9434 
9435   case OR_No_Viable_Function: {
9436     CXXRecordDecl *Primary =
9437         cast<ClassTemplateDecl>(Template)->getTemplatedDecl();
9438     bool Complete =
9439         isCompleteType(Kind.getLocation(), Context.getTypeDeclType(Primary));
9440     Diag(Kind.getLocation(),
9441          Complete ? diag::err_deduced_class_template_ctor_no_viable
9442                   : diag::err_deduced_class_template_incomplete)
9443       << TemplateName << !Guides.empty();
9444     Candidates.NoteCandidates(*this, OCD_AllCandidates, Inits);
9445     return QualType();
9446   }
9447 
9448   case OR_Deleted: {
9449     Diag(Kind.getLocation(), diag::err_deduced_class_template_deleted)
9450       << TemplateName;
9451     NoteDeletedFunction(Best->Function);
9452     return QualType();
9453   }
9454 
9455   case OR_Success:
9456     // C++ [over.match.list]p1:
9457     //   In copy-list-initialization, if an explicit constructor is chosen, the
9458     //   initialization is ill-formed.
9459     if (Kind.isCopyInit() && ListInit &&
9460         cast<CXXDeductionGuideDecl>(Best->Function)->isExplicit()) {
9461       bool IsDeductionGuide = !Best->Function->isImplicit();
9462       Diag(Kind.getLocation(), diag::err_deduced_class_template_explicit)
9463           << TemplateName << IsDeductionGuide;
9464       Diag(Best->Function->getLocation(),
9465            diag::note_explicit_ctor_deduction_guide_here)
9466           << IsDeductionGuide;
9467       return QualType();
9468     }
9469 
9470     // Make sure we didn't select an unusable deduction guide, and mark it
9471     // as referenced.
9472     DiagnoseUseOfDecl(Best->Function, Kind.getLocation());
9473     MarkFunctionReferenced(Kind.getLocation(), Best->Function);
9474     break;
9475   }
9476 
9477   // C++ [dcl.type.class.deduct]p1:
9478   //  The placeholder is replaced by the return type of the function selected
9479   //  by overload resolution for class template deduction.
9480   QualType DeducedType =
9481       SubstAutoType(TSInfo->getType(), Best->Function->getReturnType());
9482   Diag(TSInfo->getTypeLoc().getBeginLoc(),
9483        diag::warn_cxx14_compat_class_template_argument_deduction)
9484       << TSInfo->getTypeLoc().getSourceRange() << 1 << DeducedType;
9485 
9486   // Warn if CTAD was used on a type that does not have any user-defined
9487   // deduction guides.
9488   if (!HasAnyDeductionGuide) {
9489     Diag(TSInfo->getTypeLoc().getBeginLoc(),
9490          diag::warn_ctad_maybe_unsupported)
9491         << TemplateName;
9492     Diag(Template->getLocation(), diag::note_suppress_ctad_maybe_unsupported);
9493   }
9494 
9495   return DeducedType;
9496 }
9497