1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for initializers.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/Designator.h"
15 #include "clang/Sema/Initialization.h"
16 #include "clang/Sema/Lookup.h"
17 #include "clang/Sema/SemaInternal.h"
18 #include "clang/Lex/Preprocessor.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/ExprObjC.h"
23 #include "clang/AST/TypeLoc.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include <map>
29 using namespace clang;
30 
31 //===----------------------------------------------------------------------===//
32 // Sema Initialization Checking
33 //===----------------------------------------------------------------------===//
34 
35 static Expr *IsStringInit(Expr *Init, const ArrayType *AT,
36                           ASTContext &Context) {
37   if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
38     return 0;
39 
40   // See if this is a string literal or @encode.
41   Init = Init->IgnoreParens();
42 
43   // Handle @encode, which is a narrow string.
44   if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
45     return Init;
46 
47   // Otherwise we can only handle string literals.
48   StringLiteral *SL = dyn_cast<StringLiteral>(Init);
49   if (SL == 0) return 0;
50 
51   QualType ElemTy = Context.getCanonicalType(AT->getElementType());
52 
53   switch (SL->getKind()) {
54   case StringLiteral::Ascii:
55   case StringLiteral::UTF8:
56     // char array can be initialized with a narrow string.
57     // Only allow char x[] = "foo";  not char x[] = L"foo";
58     return ElemTy->isCharType() ? Init : 0;
59   case StringLiteral::UTF16:
60     return ElemTy->isChar16Type() ? Init : 0;
61   case StringLiteral::UTF32:
62     return ElemTy->isChar32Type() ? Init : 0;
63   case StringLiteral::Wide:
64     // wchar_t array can be initialized with a wide string: C99 6.7.8p15 (with
65     // correction from DR343): "An array with element type compatible with a
66     // qualified or unqualified version of wchar_t may be initialized by a wide
67     // string literal, optionally enclosed in braces."
68     if (Context.typesAreCompatible(Context.getWCharType(),
69                                    ElemTy.getUnqualifiedType()))
70       return Init;
71 
72     return 0;
73   }
74 
75   llvm_unreachable("missed a StringLiteral kind?");
76 }
77 
78 static Expr *IsStringInit(Expr *init, QualType declType, ASTContext &Context) {
79   const ArrayType *arrayType = Context.getAsArrayType(declType);
80   if (!arrayType) return 0;
81 
82   return IsStringInit(init, arrayType, Context);
83 }
84 
85 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
86                             Sema &S) {
87   // Get the length of the string as parsed.
88   uint64_t StrLength =
89     cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue();
90 
91 
92   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
93     // C99 6.7.8p14. We have an array of character type with unknown size
94     // being initialized to a string literal.
95     llvm::APInt ConstVal(32, StrLength);
96     // Return a new array type (C99 6.7.8p22).
97     DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
98                                            ConstVal,
99                                            ArrayType::Normal, 0);
100     return;
101   }
102 
103   const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
104 
105   // We have an array of character type with known size.  However,
106   // the size may be smaller or larger than the string we are initializing.
107   // FIXME: Avoid truncation for 64-bit length strings.
108   if (S.getLangOpts().CPlusPlus) {
109     if (StringLiteral *SL = dyn_cast<StringLiteral>(Str)) {
110       // For Pascal strings it's OK to strip off the terminating null character,
111       // so the example below is valid:
112       //
113       // unsigned char a[2] = "\pa";
114       if (SL->isPascal())
115         StrLength--;
116     }
117 
118     // [dcl.init.string]p2
119     if (StrLength > CAT->getSize().getZExtValue())
120       S.Diag(Str->getLocStart(),
121              diag::err_initializer_string_for_char_array_too_long)
122         << Str->getSourceRange();
123   } else {
124     // C99 6.7.8p14.
125     if (StrLength-1 > CAT->getSize().getZExtValue())
126       S.Diag(Str->getLocStart(),
127              diag::warn_initializer_string_for_char_array_too_long)
128         << Str->getSourceRange();
129   }
130 
131   // Set the type to the actual size that we are initializing.  If we have
132   // something like:
133   //   char x[1] = "foo";
134   // then this will set the string literal's type to char[1].
135   Str->setType(DeclT);
136 }
137 
138 //===----------------------------------------------------------------------===//
139 // Semantic checking for initializer lists.
140 //===----------------------------------------------------------------------===//
141 
142 /// @brief Semantic checking for initializer lists.
143 ///
144 /// The InitListChecker class contains a set of routines that each
145 /// handle the initialization of a certain kind of entity, e.g.,
146 /// arrays, vectors, struct/union types, scalars, etc. The
147 /// InitListChecker itself performs a recursive walk of the subobject
148 /// structure of the type to be initialized, while stepping through
149 /// the initializer list one element at a time. The IList and Index
150 /// parameters to each of the Check* routines contain the active
151 /// (syntactic) initializer list and the index into that initializer
152 /// list that represents the current initializer. Each routine is
153 /// responsible for moving that Index forward as it consumes elements.
154 ///
155 /// Each Check* routine also has a StructuredList/StructuredIndex
156 /// arguments, which contains the current "structured" (semantic)
157 /// initializer list and the index into that initializer list where we
158 /// are copying initializers as we map them over to the semantic
159 /// list. Once we have completed our recursive walk of the subobject
160 /// structure, we will have constructed a full semantic initializer
161 /// list.
162 ///
163 /// C99 designators cause changes in the initializer list traversal,
164 /// because they make the initialization "jump" into a specific
165 /// subobject and then continue the initialization from that
166 /// point. CheckDesignatedInitializer() recursively steps into the
167 /// designated subobject and manages backing out the recursion to
168 /// initialize the subobjects after the one designated.
169 namespace {
170 class InitListChecker {
171   Sema &SemaRef;
172   bool hadError;
173   bool VerifyOnly; // no diagnostics, no structure building
174   bool AllowBraceElision;
175   llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic;
176   InitListExpr *FullyStructuredList;
177 
178   void CheckImplicitInitList(const InitializedEntity &Entity,
179                              InitListExpr *ParentIList, QualType T,
180                              unsigned &Index, InitListExpr *StructuredList,
181                              unsigned &StructuredIndex);
182   void CheckExplicitInitList(const InitializedEntity &Entity,
183                              InitListExpr *IList, QualType &T,
184                              unsigned &Index, InitListExpr *StructuredList,
185                              unsigned &StructuredIndex,
186                              bool TopLevelObject = false);
187   void CheckListElementTypes(const InitializedEntity &Entity,
188                              InitListExpr *IList, QualType &DeclType,
189                              bool SubobjectIsDesignatorContext,
190                              unsigned &Index,
191                              InitListExpr *StructuredList,
192                              unsigned &StructuredIndex,
193                              bool TopLevelObject = false);
194   void CheckSubElementType(const InitializedEntity &Entity,
195                            InitListExpr *IList, QualType ElemType,
196                            unsigned &Index,
197                            InitListExpr *StructuredList,
198                            unsigned &StructuredIndex);
199   void CheckComplexType(const InitializedEntity &Entity,
200                         InitListExpr *IList, QualType DeclType,
201                         unsigned &Index,
202                         InitListExpr *StructuredList,
203                         unsigned &StructuredIndex);
204   void CheckScalarType(const InitializedEntity &Entity,
205                        InitListExpr *IList, QualType DeclType,
206                        unsigned &Index,
207                        InitListExpr *StructuredList,
208                        unsigned &StructuredIndex);
209   void CheckReferenceType(const InitializedEntity &Entity,
210                           InitListExpr *IList, QualType DeclType,
211                           unsigned &Index,
212                           InitListExpr *StructuredList,
213                           unsigned &StructuredIndex);
214   void CheckVectorType(const InitializedEntity &Entity,
215                        InitListExpr *IList, QualType DeclType, unsigned &Index,
216                        InitListExpr *StructuredList,
217                        unsigned &StructuredIndex);
218   void CheckStructUnionTypes(const InitializedEntity &Entity,
219                              InitListExpr *IList, QualType DeclType,
220                              RecordDecl::field_iterator Field,
221                              bool SubobjectIsDesignatorContext, unsigned &Index,
222                              InitListExpr *StructuredList,
223                              unsigned &StructuredIndex,
224                              bool TopLevelObject = false);
225   void CheckArrayType(const InitializedEntity &Entity,
226                       InitListExpr *IList, QualType &DeclType,
227                       llvm::APSInt elementIndex,
228                       bool SubobjectIsDesignatorContext, unsigned &Index,
229                       InitListExpr *StructuredList,
230                       unsigned &StructuredIndex);
231   bool CheckDesignatedInitializer(const InitializedEntity &Entity,
232                                   InitListExpr *IList, DesignatedInitExpr *DIE,
233                                   unsigned DesigIdx,
234                                   QualType &CurrentObjectType,
235                                   RecordDecl::field_iterator *NextField,
236                                   llvm::APSInt *NextElementIndex,
237                                   unsigned &Index,
238                                   InitListExpr *StructuredList,
239                                   unsigned &StructuredIndex,
240                                   bool FinishSubobjectInit,
241                                   bool TopLevelObject);
242   InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
243                                            QualType CurrentObjectType,
244                                            InitListExpr *StructuredList,
245                                            unsigned StructuredIndex,
246                                            SourceRange InitRange);
247   void UpdateStructuredListElement(InitListExpr *StructuredList,
248                                    unsigned &StructuredIndex,
249                                    Expr *expr);
250   int numArrayElements(QualType DeclType);
251   int numStructUnionElements(QualType DeclType);
252 
253   void FillInValueInitForField(unsigned Init, FieldDecl *Field,
254                                const InitializedEntity &ParentEntity,
255                                InitListExpr *ILE, bool &RequiresSecondPass);
256   void FillInValueInitializations(const InitializedEntity &Entity,
257                                   InitListExpr *ILE, bool &RequiresSecondPass);
258   bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
259                               Expr *InitExpr, FieldDecl *Field,
260                               bool TopLevelObject);
261   void CheckValueInitializable(const InitializedEntity &Entity);
262 
263 public:
264   InitListChecker(Sema &S, const InitializedEntity &Entity,
265                   InitListExpr *IL, QualType &T, bool VerifyOnly,
266                   bool AllowBraceElision);
267   bool HadError() { return hadError; }
268 
269   // @brief Retrieves the fully-structured initializer list used for
270   // semantic analysis and code generation.
271   InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
272 };
273 } // end anonymous namespace
274 
275 void InitListChecker::CheckValueInitializable(const InitializedEntity &Entity) {
276   assert(VerifyOnly &&
277          "CheckValueInitializable is only inteded for verification mode.");
278 
279   SourceLocation Loc;
280   InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
281                                                             true);
282   InitializationSequence InitSeq(SemaRef, Entity, Kind, 0, 0);
283   if (InitSeq.Failed())
284     hadError = true;
285 }
286 
287 void InitListChecker::FillInValueInitForField(unsigned Init, FieldDecl *Field,
288                                         const InitializedEntity &ParentEntity,
289                                               InitListExpr *ILE,
290                                               bool &RequiresSecondPass) {
291   SourceLocation Loc = ILE->getLocStart();
292   unsigned NumInits = ILE->getNumInits();
293   InitializedEntity MemberEntity
294     = InitializedEntity::InitializeMember(Field, &ParentEntity);
295   if (Init >= NumInits || !ILE->getInit(Init)) {
296     // FIXME: We probably don't need to handle references
297     // specially here, since value-initialization of references is
298     // handled in InitializationSequence.
299     if (Field->getType()->isReferenceType()) {
300       // C++ [dcl.init.aggr]p9:
301       //   If an incomplete or empty initializer-list leaves a
302       //   member of reference type uninitialized, the program is
303       //   ill-formed.
304       SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
305         << Field->getType()
306         << ILE->getSyntacticForm()->getSourceRange();
307       SemaRef.Diag(Field->getLocation(),
308                    diag::note_uninit_reference_member);
309       hadError = true;
310       return;
311     }
312 
313     InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
314                                                               true);
315     InitializationSequence InitSeq(SemaRef, MemberEntity, Kind, 0, 0);
316     if (!InitSeq) {
317       InitSeq.Diagnose(SemaRef, MemberEntity, Kind, 0, 0);
318       hadError = true;
319       return;
320     }
321 
322     ExprResult MemberInit
323       = InitSeq.Perform(SemaRef, MemberEntity, Kind, MultiExprArg());
324     if (MemberInit.isInvalid()) {
325       hadError = true;
326       return;
327     }
328 
329     if (hadError) {
330       // Do nothing
331     } else if (Init < NumInits) {
332       ILE->setInit(Init, MemberInit.takeAs<Expr>());
333     } else if (InitSeq.isConstructorInitialization()) {
334       // Value-initialization requires a constructor call, so
335       // extend the initializer list to include the constructor
336       // call and make a note that we'll need to take another pass
337       // through the initializer list.
338       ILE->updateInit(SemaRef.Context, Init, MemberInit.takeAs<Expr>());
339       RequiresSecondPass = true;
340     }
341   } else if (InitListExpr *InnerILE
342                = dyn_cast<InitListExpr>(ILE->getInit(Init)))
343     FillInValueInitializations(MemberEntity, InnerILE,
344                                RequiresSecondPass);
345 }
346 
347 /// Recursively replaces NULL values within the given initializer list
348 /// with expressions that perform value-initialization of the
349 /// appropriate type.
350 void
351 InitListChecker::FillInValueInitializations(const InitializedEntity &Entity,
352                                             InitListExpr *ILE,
353                                             bool &RequiresSecondPass) {
354   assert((ILE->getType() != SemaRef.Context.VoidTy) &&
355          "Should not have void type");
356   SourceLocation Loc = ILE->getLocStart();
357   if (ILE->getSyntacticForm())
358     Loc = ILE->getSyntacticForm()->getLocStart();
359 
360   if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
361     if (RType->getDecl()->isUnion() &&
362         ILE->getInitializedFieldInUnion())
363       FillInValueInitForField(0, ILE->getInitializedFieldInUnion(),
364                               Entity, ILE, RequiresSecondPass);
365     else {
366       unsigned Init = 0;
367       for (RecordDecl::field_iterator
368              Field = RType->getDecl()->field_begin(),
369              FieldEnd = RType->getDecl()->field_end();
370            Field != FieldEnd; ++Field) {
371         if (Field->isUnnamedBitfield())
372           continue;
373 
374         if (hadError)
375           return;
376 
377         FillInValueInitForField(Init, *Field, Entity, ILE, RequiresSecondPass);
378         if (hadError)
379           return;
380 
381         ++Init;
382 
383         // Only look at the first initialization of a union.
384         if (RType->getDecl()->isUnion())
385           break;
386       }
387     }
388 
389     return;
390   }
391 
392   QualType ElementType;
393 
394   InitializedEntity ElementEntity = Entity;
395   unsigned NumInits = ILE->getNumInits();
396   unsigned NumElements = NumInits;
397   if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
398     ElementType = AType->getElementType();
399     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
400       NumElements = CAType->getSize().getZExtValue();
401     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
402                                                          0, Entity);
403   } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
404     ElementType = VType->getElementType();
405     NumElements = VType->getNumElements();
406     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
407                                                          0, Entity);
408   } else
409     ElementType = ILE->getType();
410 
411 
412   for (unsigned Init = 0; Init != NumElements; ++Init) {
413     if (hadError)
414       return;
415 
416     if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
417         ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
418       ElementEntity.setElementIndex(Init);
419 
420     Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : 0);
421     if (!InitExpr && !ILE->hasArrayFiller()) {
422       InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
423                                                                 true);
424       InitializationSequence InitSeq(SemaRef, ElementEntity, Kind, 0, 0);
425       if (!InitSeq) {
426         InitSeq.Diagnose(SemaRef, ElementEntity, Kind, 0, 0);
427         hadError = true;
428         return;
429       }
430 
431       ExprResult ElementInit
432         = InitSeq.Perform(SemaRef, ElementEntity, Kind, MultiExprArg());
433       if (ElementInit.isInvalid()) {
434         hadError = true;
435         return;
436       }
437 
438       if (hadError) {
439         // Do nothing
440       } else if (Init < NumInits) {
441         // For arrays, just set the expression used for value-initialization
442         // of the "holes" in the array.
443         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
444           ILE->setArrayFiller(ElementInit.takeAs<Expr>());
445         else
446           ILE->setInit(Init, ElementInit.takeAs<Expr>());
447       } else {
448         // For arrays, just set the expression used for value-initialization
449         // of the rest of elements and exit.
450         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
451           ILE->setArrayFiller(ElementInit.takeAs<Expr>());
452           return;
453         }
454 
455         if (InitSeq.isConstructorInitialization()) {
456           // Value-initialization requires a constructor call, so
457           // extend the initializer list to include the constructor
458           // call and make a note that we'll need to take another pass
459           // through the initializer list.
460           ILE->updateInit(SemaRef.Context, Init, ElementInit.takeAs<Expr>());
461           RequiresSecondPass = true;
462         }
463       }
464     } else if (InitListExpr *InnerILE
465                  = dyn_cast_or_null<InitListExpr>(InitExpr))
466       FillInValueInitializations(ElementEntity, InnerILE, RequiresSecondPass);
467   }
468 }
469 
470 
471 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
472                                  InitListExpr *IL, QualType &T,
473                                  bool VerifyOnly, bool AllowBraceElision)
474   : SemaRef(S), VerifyOnly(VerifyOnly), AllowBraceElision(AllowBraceElision) {
475   hadError = false;
476 
477   unsigned newIndex = 0;
478   unsigned newStructuredIndex = 0;
479   FullyStructuredList
480     = getStructuredSubobjectInit(IL, newIndex, T, 0, 0, IL->getSourceRange());
481   CheckExplicitInitList(Entity, IL, T, newIndex,
482                         FullyStructuredList, newStructuredIndex,
483                         /*TopLevelObject=*/true);
484 
485   if (!hadError && !VerifyOnly) {
486     bool RequiresSecondPass = false;
487     FillInValueInitializations(Entity, FullyStructuredList, RequiresSecondPass);
488     if (RequiresSecondPass && !hadError)
489       FillInValueInitializations(Entity, FullyStructuredList,
490                                  RequiresSecondPass);
491   }
492 }
493 
494 int InitListChecker::numArrayElements(QualType DeclType) {
495   // FIXME: use a proper constant
496   int maxElements = 0x7FFFFFFF;
497   if (const ConstantArrayType *CAT =
498         SemaRef.Context.getAsConstantArrayType(DeclType)) {
499     maxElements = static_cast<int>(CAT->getSize().getZExtValue());
500   }
501   return maxElements;
502 }
503 
504 int InitListChecker::numStructUnionElements(QualType DeclType) {
505   RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
506   int InitializableMembers = 0;
507   for (RecordDecl::field_iterator
508          Field = structDecl->field_begin(),
509          FieldEnd = structDecl->field_end();
510        Field != FieldEnd; ++Field) {
511     if (!Field->isUnnamedBitfield())
512       ++InitializableMembers;
513   }
514   if (structDecl->isUnion())
515     return std::min(InitializableMembers, 1);
516   return InitializableMembers - structDecl->hasFlexibleArrayMember();
517 }
518 
519 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
520                                             InitListExpr *ParentIList,
521                                             QualType T, unsigned &Index,
522                                             InitListExpr *StructuredList,
523                                             unsigned &StructuredIndex) {
524   int maxElements = 0;
525 
526   if (T->isArrayType())
527     maxElements = numArrayElements(T);
528   else if (T->isRecordType())
529     maxElements = numStructUnionElements(T);
530   else if (T->isVectorType())
531     maxElements = T->getAs<VectorType>()->getNumElements();
532   else
533     llvm_unreachable("CheckImplicitInitList(): Illegal type");
534 
535   if (maxElements == 0) {
536     if (!VerifyOnly)
537       SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
538                    diag::err_implicit_empty_initializer);
539     ++Index;
540     hadError = true;
541     return;
542   }
543 
544   // Build a structured initializer list corresponding to this subobject.
545   InitListExpr *StructuredSubobjectInitList
546     = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
547                                  StructuredIndex,
548           SourceRange(ParentIList->getInit(Index)->getLocStart(),
549                       ParentIList->getSourceRange().getEnd()));
550   unsigned StructuredSubobjectInitIndex = 0;
551 
552   // Check the element types and build the structural subobject.
553   unsigned StartIndex = Index;
554   CheckListElementTypes(Entity, ParentIList, T,
555                         /*SubobjectIsDesignatorContext=*/false, Index,
556                         StructuredSubobjectInitList,
557                         StructuredSubobjectInitIndex);
558 
559   if (VerifyOnly) {
560     if (!AllowBraceElision && (T->isArrayType() || T->isRecordType()))
561       hadError = true;
562   } else {
563     StructuredSubobjectInitList->setType(T);
564 
565     unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
566     // Update the structured sub-object initializer so that it's ending
567     // range corresponds with the end of the last initializer it used.
568     if (EndIndex < ParentIList->getNumInits()) {
569       SourceLocation EndLoc
570         = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
571       StructuredSubobjectInitList->setRBraceLoc(EndLoc);
572     }
573 
574     // Complain about missing braces.
575     if (T->isArrayType() || T->isRecordType()) {
576       SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
577                     AllowBraceElision ? diag::warn_missing_braces :
578                                         diag::err_missing_braces)
579         << StructuredSubobjectInitList->getSourceRange()
580         << FixItHint::CreateInsertion(
581               StructuredSubobjectInitList->getLocStart(), "{")
582         << FixItHint::CreateInsertion(
583               SemaRef.PP.getLocForEndOfToken(
584                                       StructuredSubobjectInitList->getLocEnd()),
585               "}");
586       if (!AllowBraceElision)
587         hadError = true;
588     }
589   }
590 }
591 
592 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
593                                             InitListExpr *IList, QualType &T,
594                                             unsigned &Index,
595                                             InitListExpr *StructuredList,
596                                             unsigned &StructuredIndex,
597                                             bool TopLevelObject) {
598   assert(IList->isExplicit() && "Illegal Implicit InitListExpr");
599   if (!VerifyOnly) {
600     SyntacticToSemantic[IList] = StructuredList;
601     StructuredList->setSyntacticForm(IList);
602   }
603   CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
604                         Index, StructuredList, StructuredIndex, TopLevelObject);
605   if (!VerifyOnly) {
606     QualType ExprTy = T;
607     if (!ExprTy->isArrayType())
608       ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
609     IList->setType(ExprTy);
610     StructuredList->setType(ExprTy);
611   }
612   if (hadError)
613     return;
614 
615   if (Index < IList->getNumInits()) {
616     // We have leftover initializers
617     if (VerifyOnly) {
618       if (SemaRef.getLangOpts().CPlusPlus ||
619           (SemaRef.getLangOpts().OpenCL &&
620            IList->getType()->isVectorType())) {
621         hadError = true;
622       }
623       return;
624     }
625 
626     if (StructuredIndex == 1 &&
627         IsStringInit(StructuredList->getInit(0), T, SemaRef.Context)) {
628       unsigned DK = diag::warn_excess_initializers_in_char_array_initializer;
629       if (SemaRef.getLangOpts().CPlusPlus) {
630         DK = diag::err_excess_initializers_in_char_array_initializer;
631         hadError = true;
632       }
633       // Special-case
634       SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
635         << IList->getInit(Index)->getSourceRange();
636     } else if (!T->isIncompleteType()) {
637       // Don't complain for incomplete types, since we'll get an error
638       // elsewhere
639       QualType CurrentObjectType = StructuredList->getType();
640       int initKind =
641         CurrentObjectType->isArrayType()? 0 :
642         CurrentObjectType->isVectorType()? 1 :
643         CurrentObjectType->isScalarType()? 2 :
644         CurrentObjectType->isUnionType()? 3 :
645         4;
646 
647       unsigned DK = diag::warn_excess_initializers;
648       if (SemaRef.getLangOpts().CPlusPlus) {
649         DK = diag::err_excess_initializers;
650         hadError = true;
651       }
652       if (SemaRef.getLangOpts().OpenCL && initKind == 1) {
653         DK = diag::err_excess_initializers;
654         hadError = true;
655       }
656 
657       SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
658         << initKind << IList->getInit(Index)->getSourceRange();
659     }
660   }
661 
662   if (!VerifyOnly && T->isScalarType() && IList->getNumInits() == 1 &&
663       !TopLevelObject)
664     SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init)
665       << IList->getSourceRange()
666       << FixItHint::CreateRemoval(IList->getLocStart())
667       << FixItHint::CreateRemoval(IList->getLocEnd());
668 }
669 
670 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
671                                             InitListExpr *IList,
672                                             QualType &DeclType,
673                                             bool SubobjectIsDesignatorContext,
674                                             unsigned &Index,
675                                             InitListExpr *StructuredList,
676                                             unsigned &StructuredIndex,
677                                             bool TopLevelObject) {
678   if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
679     // Explicitly braced initializer for complex type can be real+imaginary
680     // parts.
681     CheckComplexType(Entity, IList, DeclType, Index,
682                      StructuredList, StructuredIndex);
683   } else if (DeclType->isScalarType()) {
684     CheckScalarType(Entity, IList, DeclType, Index,
685                     StructuredList, StructuredIndex);
686   } else if (DeclType->isVectorType()) {
687     CheckVectorType(Entity, IList, DeclType, Index,
688                     StructuredList, StructuredIndex);
689   } else if (DeclType->isRecordType()) {
690     assert(DeclType->isAggregateType() &&
691            "non-aggregate records should be handed in CheckSubElementType");
692     RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
693     CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(),
694                           SubobjectIsDesignatorContext, Index,
695                           StructuredList, StructuredIndex,
696                           TopLevelObject);
697   } else if (DeclType->isArrayType()) {
698     llvm::APSInt Zero(
699                     SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
700                     false);
701     CheckArrayType(Entity, IList, DeclType, Zero,
702                    SubobjectIsDesignatorContext, Index,
703                    StructuredList, StructuredIndex);
704   } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
705     // This type is invalid, issue a diagnostic.
706     ++Index;
707     if (!VerifyOnly)
708       SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
709         << DeclType;
710     hadError = true;
711   } else if (DeclType->isReferenceType()) {
712     CheckReferenceType(Entity, IList, DeclType, Index,
713                        StructuredList, StructuredIndex);
714   } else if (DeclType->isObjCObjectType()) {
715     if (!VerifyOnly)
716       SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class)
717         << DeclType;
718     hadError = true;
719   } else {
720     if (!VerifyOnly)
721       SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
722         << DeclType;
723     hadError = true;
724   }
725 }
726 
727 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
728                                           InitListExpr *IList,
729                                           QualType ElemType,
730                                           unsigned &Index,
731                                           InitListExpr *StructuredList,
732                                           unsigned &StructuredIndex) {
733   Expr *expr = IList->getInit(Index);
734   if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
735     if (!ElemType->isRecordType() || ElemType->isAggregateType()) {
736       unsigned newIndex = 0;
737       unsigned newStructuredIndex = 0;
738       InitListExpr *newStructuredList
739         = getStructuredSubobjectInit(IList, Index, ElemType,
740                                      StructuredList, StructuredIndex,
741                                      SubInitList->getSourceRange());
742       CheckExplicitInitList(Entity, SubInitList, ElemType, newIndex,
743                             newStructuredList, newStructuredIndex);
744       ++StructuredIndex;
745       ++Index;
746       return;
747     }
748     assert(SemaRef.getLangOpts().CPlusPlus &&
749            "non-aggregate records are only possible in C++");
750     // C++ initialization is handled later.
751   }
752 
753   if (ElemType->isScalarType()) {
754     return CheckScalarType(Entity, IList, ElemType, Index,
755                            StructuredList, StructuredIndex);
756   } else if (ElemType->isReferenceType()) {
757     return CheckReferenceType(Entity, IList, ElemType, Index,
758                               StructuredList, StructuredIndex);
759   }
760 
761   if (const ArrayType *arrayType = SemaRef.Context.getAsArrayType(ElemType)) {
762     // arrayType can be incomplete if we're initializing a flexible
763     // array member.  There's nothing we can do with the completed
764     // type here, though.
765 
766     if (Expr *Str = IsStringInit(expr, arrayType, SemaRef.Context)) {
767       if (!VerifyOnly) {
768         CheckStringInit(Str, ElemType, arrayType, SemaRef);
769         UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
770       }
771       ++Index;
772       return;
773     }
774 
775     // Fall through for subaggregate initialization.
776 
777   } else if (SemaRef.getLangOpts().CPlusPlus) {
778     // C++ [dcl.init.aggr]p12:
779     //   All implicit type conversions (clause 4) are considered when
780     //   initializing the aggregate member with an initializer from
781     //   an initializer-list. If the initializer can initialize a
782     //   member, the member is initialized. [...]
783 
784     // FIXME: Better EqualLoc?
785     InitializationKind Kind =
786       InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
787     InitializationSequence Seq(SemaRef, Entity, Kind, &expr, 1);
788 
789     if (Seq) {
790       if (!VerifyOnly) {
791         ExprResult Result =
792           Seq.Perform(SemaRef, Entity, Kind, MultiExprArg(&expr, 1));
793         if (Result.isInvalid())
794           hadError = true;
795 
796         UpdateStructuredListElement(StructuredList, StructuredIndex,
797                                     Result.takeAs<Expr>());
798       }
799       ++Index;
800       return;
801     }
802 
803     // Fall through for subaggregate initialization
804   } else {
805     // C99 6.7.8p13:
806     //
807     //   The initializer for a structure or union object that has
808     //   automatic storage duration shall be either an initializer
809     //   list as described below, or a single expression that has
810     //   compatible structure or union type. In the latter case, the
811     //   initial value of the object, including unnamed members, is
812     //   that of the expression.
813     ExprResult ExprRes = SemaRef.Owned(expr);
814     if ((ElemType->isRecordType() || ElemType->isVectorType()) &&
815         SemaRef.CheckSingleAssignmentConstraints(ElemType, ExprRes,
816                                                  !VerifyOnly)
817           == Sema::Compatible) {
818       if (ExprRes.isInvalid())
819         hadError = true;
820       else {
821         ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.take());
822 	      if (ExprRes.isInvalid())
823 	        hadError = true;
824       }
825       UpdateStructuredListElement(StructuredList, StructuredIndex,
826                                   ExprRes.takeAs<Expr>());
827       ++Index;
828       return;
829     }
830     ExprRes.release();
831     // Fall through for subaggregate initialization
832   }
833 
834   // C++ [dcl.init.aggr]p12:
835   //
836   //   [...] Otherwise, if the member is itself a non-empty
837   //   subaggregate, brace elision is assumed and the initializer is
838   //   considered for the initialization of the first member of
839   //   the subaggregate.
840   if (!SemaRef.getLangOpts().OpenCL &&
841       (ElemType->isAggregateType() || ElemType->isVectorType())) {
842     CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
843                           StructuredIndex);
844     ++StructuredIndex;
845   } else {
846     if (!VerifyOnly) {
847       // We cannot initialize this element, so let
848       // PerformCopyInitialization produce the appropriate diagnostic.
849       SemaRef.PerformCopyInitialization(Entity, SourceLocation(),
850                                         SemaRef.Owned(expr),
851                                         /*TopLevelOfInitList=*/true);
852     }
853     hadError = true;
854     ++Index;
855     ++StructuredIndex;
856   }
857 }
858 
859 void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
860                                        InitListExpr *IList, QualType DeclType,
861                                        unsigned &Index,
862                                        InitListExpr *StructuredList,
863                                        unsigned &StructuredIndex) {
864   assert(Index == 0 && "Index in explicit init list must be zero");
865 
866   // As an extension, clang supports complex initializers, which initialize
867   // a complex number component-wise.  When an explicit initializer list for
868   // a complex number contains two two initializers, this extension kicks in:
869   // it exepcts the initializer list to contain two elements convertible to
870   // the element type of the complex type. The first element initializes
871   // the real part, and the second element intitializes the imaginary part.
872 
873   if (IList->getNumInits() != 2)
874     return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
875                            StructuredIndex);
876 
877   // This is an extension in C.  (The builtin _Complex type does not exist
878   // in the C++ standard.)
879   if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
880     SemaRef.Diag(IList->getLocStart(), diag::ext_complex_component_init)
881       << IList->getSourceRange();
882 
883   // Initialize the complex number.
884   QualType elementType = DeclType->getAs<ComplexType>()->getElementType();
885   InitializedEntity ElementEntity =
886     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
887 
888   for (unsigned i = 0; i < 2; ++i) {
889     ElementEntity.setElementIndex(Index);
890     CheckSubElementType(ElementEntity, IList, elementType, Index,
891                         StructuredList, StructuredIndex);
892   }
893 }
894 
895 
896 void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
897                                       InitListExpr *IList, QualType DeclType,
898                                       unsigned &Index,
899                                       InitListExpr *StructuredList,
900                                       unsigned &StructuredIndex) {
901   if (Index >= IList->getNumInits()) {
902     if (!VerifyOnly)
903       SemaRef.Diag(IList->getLocStart(),
904                    SemaRef.getLangOpts().CPlusPlus0x ?
905                      diag::warn_cxx98_compat_empty_scalar_initializer :
906                      diag::err_empty_scalar_initializer)
907         << IList->getSourceRange();
908     hadError = !SemaRef.getLangOpts().CPlusPlus0x;
909     ++Index;
910     ++StructuredIndex;
911     return;
912   }
913 
914   Expr *expr = IList->getInit(Index);
915   if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
916     if (!VerifyOnly)
917       SemaRef.Diag(SubIList->getLocStart(),
918                    diag::warn_many_braces_around_scalar_init)
919         << SubIList->getSourceRange();
920 
921     CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
922                     StructuredIndex);
923     return;
924   } else if (isa<DesignatedInitExpr>(expr)) {
925     if (!VerifyOnly)
926       SemaRef.Diag(expr->getLocStart(),
927                    diag::err_designator_for_scalar_init)
928         << DeclType << expr->getSourceRange();
929     hadError = true;
930     ++Index;
931     ++StructuredIndex;
932     return;
933   }
934 
935   if (VerifyOnly) {
936     if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr)))
937       hadError = true;
938     ++Index;
939     return;
940   }
941 
942   ExprResult Result =
943     SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
944                                       SemaRef.Owned(expr),
945                                       /*TopLevelOfInitList=*/true);
946 
947   Expr *ResultExpr = 0;
948 
949   if (Result.isInvalid())
950     hadError = true; // types weren't compatible.
951   else {
952     ResultExpr = Result.takeAs<Expr>();
953 
954     if (ResultExpr != expr) {
955       // The type was promoted, update initializer list.
956       IList->setInit(Index, ResultExpr);
957     }
958   }
959   if (hadError)
960     ++StructuredIndex;
961   else
962     UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
963   ++Index;
964 }
965 
966 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
967                                          InitListExpr *IList, QualType DeclType,
968                                          unsigned &Index,
969                                          InitListExpr *StructuredList,
970                                          unsigned &StructuredIndex) {
971   if (Index >= IList->getNumInits()) {
972     // FIXME: It would be wonderful if we could point at the actual member. In
973     // general, it would be useful to pass location information down the stack,
974     // so that we know the location (or decl) of the "current object" being
975     // initialized.
976     if (!VerifyOnly)
977       SemaRef.Diag(IList->getLocStart(),
978                     diag::err_init_reference_member_uninitialized)
979         << DeclType
980         << IList->getSourceRange();
981     hadError = true;
982     ++Index;
983     ++StructuredIndex;
984     return;
985   }
986 
987   Expr *expr = IList->getInit(Index);
988   if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus0x) {
989     if (!VerifyOnly)
990       SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
991         << DeclType << IList->getSourceRange();
992     hadError = true;
993     ++Index;
994     ++StructuredIndex;
995     return;
996   }
997 
998   if (VerifyOnly) {
999     if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr)))
1000       hadError = true;
1001     ++Index;
1002     return;
1003   }
1004 
1005   ExprResult Result =
1006     SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
1007                                       SemaRef.Owned(expr),
1008                                       /*TopLevelOfInitList=*/true);
1009 
1010   if (Result.isInvalid())
1011     hadError = true;
1012 
1013   expr = Result.takeAs<Expr>();
1014   IList->setInit(Index, expr);
1015 
1016   if (hadError)
1017     ++StructuredIndex;
1018   else
1019     UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1020   ++Index;
1021 }
1022 
1023 void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1024                                       InitListExpr *IList, QualType DeclType,
1025                                       unsigned &Index,
1026                                       InitListExpr *StructuredList,
1027                                       unsigned &StructuredIndex) {
1028   const VectorType *VT = DeclType->getAs<VectorType>();
1029   unsigned maxElements = VT->getNumElements();
1030   unsigned numEltsInit = 0;
1031   QualType elementType = VT->getElementType();
1032 
1033   if (Index >= IList->getNumInits()) {
1034     // Make sure the element type can be value-initialized.
1035     if (VerifyOnly)
1036       CheckValueInitializable(
1037           InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity));
1038     return;
1039   }
1040 
1041   if (!SemaRef.getLangOpts().OpenCL) {
1042     // If the initializing element is a vector, try to copy-initialize
1043     // instead of breaking it apart (which is doomed to failure anyway).
1044     Expr *Init = IList->getInit(Index);
1045     if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1046       if (VerifyOnly) {
1047         if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(Init)))
1048           hadError = true;
1049         ++Index;
1050         return;
1051       }
1052 
1053       ExprResult Result =
1054         SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(),
1055                                           SemaRef.Owned(Init),
1056                                           /*TopLevelOfInitList=*/true);
1057 
1058       Expr *ResultExpr = 0;
1059       if (Result.isInvalid())
1060         hadError = true; // types weren't compatible.
1061       else {
1062         ResultExpr = Result.takeAs<Expr>();
1063 
1064         if (ResultExpr != Init) {
1065           // The type was promoted, update initializer list.
1066           IList->setInit(Index, ResultExpr);
1067         }
1068       }
1069       if (hadError)
1070         ++StructuredIndex;
1071       else
1072         UpdateStructuredListElement(StructuredList, StructuredIndex,
1073                                     ResultExpr);
1074       ++Index;
1075       return;
1076     }
1077 
1078     InitializedEntity ElementEntity =
1079       InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1080 
1081     for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1082       // Don't attempt to go past the end of the init list
1083       if (Index >= IList->getNumInits()) {
1084         if (VerifyOnly)
1085           CheckValueInitializable(ElementEntity);
1086         break;
1087       }
1088 
1089       ElementEntity.setElementIndex(Index);
1090       CheckSubElementType(ElementEntity, IList, elementType, Index,
1091                           StructuredList, StructuredIndex);
1092     }
1093     return;
1094   }
1095 
1096   InitializedEntity ElementEntity =
1097     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1098 
1099   // OpenCL initializers allows vectors to be constructed from vectors.
1100   for (unsigned i = 0; i < maxElements; ++i) {
1101     // Don't attempt to go past the end of the init list
1102     if (Index >= IList->getNumInits())
1103       break;
1104 
1105     ElementEntity.setElementIndex(Index);
1106 
1107     QualType IType = IList->getInit(Index)->getType();
1108     if (!IType->isVectorType()) {
1109       CheckSubElementType(ElementEntity, IList, elementType, Index,
1110                           StructuredList, StructuredIndex);
1111       ++numEltsInit;
1112     } else {
1113       QualType VecType;
1114       const VectorType *IVT = IType->getAs<VectorType>();
1115       unsigned numIElts = IVT->getNumElements();
1116 
1117       if (IType->isExtVectorType())
1118         VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1119       else
1120         VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1121                                                 IVT->getVectorKind());
1122       CheckSubElementType(ElementEntity, IList, VecType, Index,
1123                           StructuredList, StructuredIndex);
1124       numEltsInit += numIElts;
1125     }
1126   }
1127 
1128   // OpenCL requires all elements to be initialized.
1129   if (numEltsInit != maxElements) {
1130     if (!VerifyOnly)
1131       SemaRef.Diag(IList->getLocStart(),
1132                    diag::err_vector_incorrect_num_initializers)
1133         << (numEltsInit < maxElements) << maxElements << numEltsInit;
1134     hadError = true;
1135   }
1136 }
1137 
1138 void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1139                                      InitListExpr *IList, QualType &DeclType,
1140                                      llvm::APSInt elementIndex,
1141                                      bool SubobjectIsDesignatorContext,
1142                                      unsigned &Index,
1143                                      InitListExpr *StructuredList,
1144                                      unsigned &StructuredIndex) {
1145   const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1146 
1147   // Check for the special-case of initializing an array with a string.
1148   if (Index < IList->getNumInits()) {
1149     if (Expr *Str = IsStringInit(IList->getInit(Index), arrayType,
1150                                  SemaRef.Context)) {
1151       // We place the string literal directly into the resulting
1152       // initializer list. This is the only place where the structure
1153       // of the structured initializer list doesn't match exactly,
1154       // because doing so would involve allocating one character
1155       // constant for each string.
1156       if (!VerifyOnly) {
1157         CheckStringInit(Str, DeclType, arrayType, SemaRef);
1158         UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
1159         StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1160       }
1161       ++Index;
1162       return;
1163     }
1164   }
1165   if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1166     // Check for VLAs; in standard C it would be possible to check this
1167     // earlier, but I don't know where clang accepts VLAs (gcc accepts
1168     // them in all sorts of strange places).
1169     if (!VerifyOnly)
1170       SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
1171                     diag::err_variable_object_no_init)
1172         << VAT->getSizeExpr()->getSourceRange();
1173     hadError = true;
1174     ++Index;
1175     ++StructuredIndex;
1176     return;
1177   }
1178 
1179   // We might know the maximum number of elements in advance.
1180   llvm::APSInt maxElements(elementIndex.getBitWidth(),
1181                            elementIndex.isUnsigned());
1182   bool maxElementsKnown = false;
1183   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1184     maxElements = CAT->getSize();
1185     elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1186     elementIndex.setIsUnsigned(maxElements.isUnsigned());
1187     maxElementsKnown = true;
1188   }
1189 
1190   QualType elementType = arrayType->getElementType();
1191   while (Index < IList->getNumInits()) {
1192     Expr *Init = IList->getInit(Index);
1193     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1194       // If we're not the subobject that matches up with the '{' for
1195       // the designator, we shouldn't be handling the
1196       // designator. Return immediately.
1197       if (!SubobjectIsDesignatorContext)
1198         return;
1199 
1200       // Handle this designated initializer. elementIndex will be
1201       // updated to be the next array element we'll initialize.
1202       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1203                                      DeclType, 0, &elementIndex, Index,
1204                                      StructuredList, StructuredIndex, true,
1205                                      false)) {
1206         hadError = true;
1207         continue;
1208       }
1209 
1210       if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1211         maxElements = maxElements.extend(elementIndex.getBitWidth());
1212       else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1213         elementIndex = elementIndex.extend(maxElements.getBitWidth());
1214       elementIndex.setIsUnsigned(maxElements.isUnsigned());
1215 
1216       // If the array is of incomplete type, keep track of the number of
1217       // elements in the initializer.
1218       if (!maxElementsKnown && elementIndex > maxElements)
1219         maxElements = elementIndex;
1220 
1221       continue;
1222     }
1223 
1224     // If we know the maximum number of elements, and we've already
1225     // hit it, stop consuming elements in the initializer list.
1226     if (maxElementsKnown && elementIndex == maxElements)
1227       break;
1228 
1229     InitializedEntity ElementEntity =
1230       InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1231                                            Entity);
1232     // Check this element.
1233     CheckSubElementType(ElementEntity, IList, elementType, Index,
1234                         StructuredList, StructuredIndex);
1235     ++elementIndex;
1236 
1237     // If the array is of incomplete type, keep track of the number of
1238     // elements in the initializer.
1239     if (!maxElementsKnown && elementIndex > maxElements)
1240       maxElements = elementIndex;
1241   }
1242   if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1243     // If this is an incomplete array type, the actual type needs to
1244     // be calculated here.
1245     llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1246     if (maxElements == Zero) {
1247       // Sizing an array implicitly to zero is not allowed by ISO C,
1248       // but is supported by GNU.
1249       SemaRef.Diag(IList->getLocStart(),
1250                     diag::ext_typecheck_zero_array_size);
1251     }
1252 
1253     DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1254                                                      ArrayType::Normal, 0);
1255   }
1256   if (!hadError && VerifyOnly) {
1257     // Check if there are any members of the array that get value-initialized.
1258     // If so, check if doing that is possible.
1259     // FIXME: This needs to detect holes left by designated initializers too.
1260     if (maxElementsKnown && elementIndex < maxElements)
1261       CheckValueInitializable(InitializedEntity::InitializeElement(
1262                                                   SemaRef.Context, 0, Entity));
1263   }
1264 }
1265 
1266 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1267                                              Expr *InitExpr,
1268                                              FieldDecl *Field,
1269                                              bool TopLevelObject) {
1270   // Handle GNU flexible array initializers.
1271   unsigned FlexArrayDiag;
1272   if (isa<InitListExpr>(InitExpr) &&
1273       cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
1274     // Empty flexible array init always allowed as an extension
1275     FlexArrayDiag = diag::ext_flexible_array_init;
1276   } else if (SemaRef.getLangOpts().CPlusPlus) {
1277     // Disallow flexible array init in C++; it is not required for gcc
1278     // compatibility, and it needs work to IRGen correctly in general.
1279     FlexArrayDiag = diag::err_flexible_array_init;
1280   } else if (!TopLevelObject) {
1281     // Disallow flexible array init on non-top-level object
1282     FlexArrayDiag = diag::err_flexible_array_init;
1283   } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
1284     // Disallow flexible array init on anything which is not a variable.
1285     FlexArrayDiag = diag::err_flexible_array_init;
1286   } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
1287     // Disallow flexible array init on local variables.
1288     FlexArrayDiag = diag::err_flexible_array_init;
1289   } else {
1290     // Allow other cases.
1291     FlexArrayDiag = diag::ext_flexible_array_init;
1292   }
1293 
1294   if (!VerifyOnly) {
1295     SemaRef.Diag(InitExpr->getLocStart(),
1296                  FlexArrayDiag)
1297       << InitExpr->getLocStart();
1298     SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1299       << Field;
1300   }
1301 
1302   return FlexArrayDiag != diag::ext_flexible_array_init;
1303 }
1304 
1305 void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity,
1306                                             InitListExpr *IList,
1307                                             QualType DeclType,
1308                                             RecordDecl::field_iterator Field,
1309                                             bool SubobjectIsDesignatorContext,
1310                                             unsigned &Index,
1311                                             InitListExpr *StructuredList,
1312                                             unsigned &StructuredIndex,
1313                                             bool TopLevelObject) {
1314   RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl();
1315 
1316   // If the record is invalid, some of it's members are invalid. To avoid
1317   // confusion, we forgo checking the intializer for the entire record.
1318   if (structDecl->isInvalidDecl()) {
1319     // Assume it was supposed to consume a single initializer.
1320     ++Index;
1321     hadError = true;
1322     return;
1323   }
1324 
1325   if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1326     // Value-initialize the first named member of the union.
1327     RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1328     for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1329          Field != FieldEnd; ++Field) {
1330       if (Field->getDeclName()) {
1331         if (VerifyOnly)
1332           CheckValueInitializable(
1333               InitializedEntity::InitializeMember(*Field, &Entity));
1334         else
1335           StructuredList->setInitializedFieldInUnion(*Field);
1336         break;
1337       }
1338     }
1339     return;
1340   }
1341 
1342   // If structDecl is a forward declaration, this loop won't do
1343   // anything except look at designated initializers; That's okay,
1344   // because an error should get printed out elsewhere. It might be
1345   // worthwhile to skip over the rest of the initializer, though.
1346   RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1347   RecordDecl::field_iterator FieldEnd = RD->field_end();
1348   bool InitializedSomething = false;
1349   bool CheckForMissingFields = true;
1350   while (Index < IList->getNumInits()) {
1351     Expr *Init = IList->getInit(Index);
1352 
1353     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1354       // If we're not the subobject that matches up with the '{' for
1355       // the designator, we shouldn't be handling the
1356       // designator. Return immediately.
1357       if (!SubobjectIsDesignatorContext)
1358         return;
1359 
1360       // Handle this designated initializer. Field will be updated to
1361       // the next field that we'll be initializing.
1362       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1363                                      DeclType, &Field, 0, Index,
1364                                      StructuredList, StructuredIndex,
1365                                      true, TopLevelObject))
1366         hadError = true;
1367 
1368       InitializedSomething = true;
1369 
1370       // Disable check for missing fields when designators are used.
1371       // This matches gcc behaviour.
1372       CheckForMissingFields = false;
1373       continue;
1374     }
1375 
1376     if (Field == FieldEnd) {
1377       // We've run out of fields. We're done.
1378       break;
1379     }
1380 
1381     // We've already initialized a member of a union. We're done.
1382     if (InitializedSomething && DeclType->isUnionType())
1383       break;
1384 
1385     // If we've hit the flexible array member at the end, we're done.
1386     if (Field->getType()->isIncompleteArrayType())
1387       break;
1388 
1389     if (Field->isUnnamedBitfield()) {
1390       // Don't initialize unnamed bitfields, e.g. "int : 20;"
1391       ++Field;
1392       continue;
1393     }
1394 
1395     // Make sure we can use this declaration.
1396     bool InvalidUse;
1397     if (VerifyOnly)
1398       InvalidUse = !SemaRef.CanUseDecl(*Field);
1399     else
1400       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field,
1401                                           IList->getInit(Index)->getLocStart());
1402     if (InvalidUse) {
1403       ++Index;
1404       ++Field;
1405       hadError = true;
1406       continue;
1407     }
1408 
1409     InitializedEntity MemberEntity =
1410       InitializedEntity::InitializeMember(*Field, &Entity);
1411     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1412                         StructuredList, StructuredIndex);
1413     InitializedSomething = true;
1414 
1415     if (DeclType->isUnionType() && !VerifyOnly) {
1416       // Initialize the first field within the union.
1417       StructuredList->setInitializedFieldInUnion(*Field);
1418     }
1419 
1420     ++Field;
1421   }
1422 
1423   // Emit warnings for missing struct field initializers.
1424   if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
1425       Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
1426       !DeclType->isUnionType()) {
1427     // It is possible we have one or more unnamed bitfields remaining.
1428     // Find first (if any) named field and emit warning.
1429     for (RecordDecl::field_iterator it = Field, end = RD->field_end();
1430          it != end; ++it) {
1431       if (!it->isUnnamedBitfield()) {
1432         SemaRef.Diag(IList->getSourceRange().getEnd(),
1433                      diag::warn_missing_field_initializers) << it->getName();
1434         break;
1435       }
1436     }
1437   }
1438 
1439   // Check that any remaining fields can be value-initialized.
1440   if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() &&
1441       !Field->getType()->isIncompleteArrayType()) {
1442     // FIXME: Should check for holes left by designated initializers too.
1443     for (; Field != FieldEnd && !hadError; ++Field) {
1444       if (!Field->isUnnamedBitfield())
1445         CheckValueInitializable(
1446             InitializedEntity::InitializeMember(*Field, &Entity));
1447     }
1448   }
1449 
1450   if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1451       Index >= IList->getNumInits())
1452     return;
1453 
1454   if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
1455                              TopLevelObject)) {
1456     hadError = true;
1457     ++Index;
1458     return;
1459   }
1460 
1461   InitializedEntity MemberEntity =
1462     InitializedEntity::InitializeMember(*Field, &Entity);
1463 
1464   if (isa<InitListExpr>(IList->getInit(Index)))
1465     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1466                         StructuredList, StructuredIndex);
1467   else
1468     CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
1469                           StructuredList, StructuredIndex);
1470 }
1471 
1472 /// \brief Expand a field designator that refers to a member of an
1473 /// anonymous struct or union into a series of field designators that
1474 /// refers to the field within the appropriate subobject.
1475 ///
1476 static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1477                                            DesignatedInitExpr *DIE,
1478                                            unsigned DesigIdx,
1479                                            IndirectFieldDecl *IndirectField) {
1480   typedef DesignatedInitExpr::Designator Designator;
1481 
1482   // Build the replacement designators.
1483   SmallVector<Designator, 4> Replacements;
1484   for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
1485        PE = IndirectField->chain_end(); PI != PE; ++PI) {
1486     if (PI + 1 == PE)
1487       Replacements.push_back(Designator((IdentifierInfo *)0,
1488                                     DIE->getDesignator(DesigIdx)->getDotLoc(),
1489                                 DIE->getDesignator(DesigIdx)->getFieldLoc()));
1490     else
1491       Replacements.push_back(Designator((IdentifierInfo *)0, SourceLocation(),
1492                                         SourceLocation()));
1493     assert(isa<FieldDecl>(*PI));
1494     Replacements.back().setField(cast<FieldDecl>(*PI));
1495   }
1496 
1497   // Expand the current designator into the set of replacement
1498   // designators, so we have a full subobject path down to where the
1499   // member of the anonymous struct/union is actually stored.
1500   DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
1501                         &Replacements[0] + Replacements.size());
1502 }
1503 
1504 /// \brief Given an implicit anonymous field, search the IndirectField that
1505 ///  corresponds to FieldName.
1506 static IndirectFieldDecl *FindIndirectFieldDesignator(FieldDecl *AnonField,
1507                                                  IdentifierInfo *FieldName) {
1508   if (!FieldName)
1509     return 0;
1510 
1511   assert(AnonField->isAnonymousStructOrUnion());
1512   Decl *NextDecl = AnonField->getNextDeclInContext();
1513   while (IndirectFieldDecl *IF =
1514           dyn_cast_or_null<IndirectFieldDecl>(NextDecl)) {
1515     if (FieldName == IF->getAnonField()->getIdentifier())
1516       return IF;
1517     NextDecl = NextDecl->getNextDeclInContext();
1518   }
1519   return 0;
1520 }
1521 
1522 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
1523                                                    DesignatedInitExpr *DIE) {
1524   unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
1525   SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
1526   for (unsigned I = 0; I < NumIndexExprs; ++I)
1527     IndexExprs[I] = DIE->getSubExpr(I + 1);
1528   return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators_begin(),
1529                                     DIE->size(), IndexExprs,
1530                                     DIE->getEqualOrColonLoc(),
1531                                     DIE->usesGNUSyntax(), DIE->getInit());
1532 }
1533 
1534 namespace {
1535 
1536 // Callback to only accept typo corrections that are for field members of
1537 // the given struct or union.
1538 class FieldInitializerValidatorCCC : public CorrectionCandidateCallback {
1539  public:
1540   explicit FieldInitializerValidatorCCC(RecordDecl *RD)
1541       : Record(RD) {}
1542 
1543   virtual bool ValidateCandidate(const TypoCorrection &candidate) {
1544     FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
1545     return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
1546   }
1547 
1548  private:
1549   RecordDecl *Record;
1550 };
1551 
1552 }
1553 
1554 /// @brief Check the well-formedness of a C99 designated initializer.
1555 ///
1556 /// Determines whether the designated initializer @p DIE, which
1557 /// resides at the given @p Index within the initializer list @p
1558 /// IList, is well-formed for a current object of type @p DeclType
1559 /// (C99 6.7.8). The actual subobject that this designator refers to
1560 /// within the current subobject is returned in either
1561 /// @p NextField or @p NextElementIndex (whichever is appropriate).
1562 ///
1563 /// @param IList  The initializer list in which this designated
1564 /// initializer occurs.
1565 ///
1566 /// @param DIE The designated initializer expression.
1567 ///
1568 /// @param DesigIdx  The index of the current designator.
1569 ///
1570 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
1571 /// into which the designation in @p DIE should refer.
1572 ///
1573 /// @param NextField  If non-NULL and the first designator in @p DIE is
1574 /// a field, this will be set to the field declaration corresponding
1575 /// to the field named by the designator.
1576 ///
1577 /// @param NextElementIndex  If non-NULL and the first designator in @p
1578 /// DIE is an array designator or GNU array-range designator, this
1579 /// will be set to the last index initialized by this designator.
1580 ///
1581 /// @param Index  Index into @p IList where the designated initializer
1582 /// @p DIE occurs.
1583 ///
1584 /// @param StructuredList  The initializer list expression that
1585 /// describes all of the subobject initializers in the order they'll
1586 /// actually be initialized.
1587 ///
1588 /// @returns true if there was an error, false otherwise.
1589 bool
1590 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
1591                                             InitListExpr *IList,
1592                                             DesignatedInitExpr *DIE,
1593                                             unsigned DesigIdx,
1594                                             QualType &CurrentObjectType,
1595                                           RecordDecl::field_iterator *NextField,
1596                                             llvm::APSInt *NextElementIndex,
1597                                             unsigned &Index,
1598                                             InitListExpr *StructuredList,
1599                                             unsigned &StructuredIndex,
1600                                             bool FinishSubobjectInit,
1601                                             bool TopLevelObject) {
1602   if (DesigIdx == DIE->size()) {
1603     // Check the actual initialization for the designated object type.
1604     bool prevHadError = hadError;
1605 
1606     // Temporarily remove the designator expression from the
1607     // initializer list that the child calls see, so that we don't try
1608     // to re-process the designator.
1609     unsigned OldIndex = Index;
1610     IList->setInit(OldIndex, DIE->getInit());
1611 
1612     CheckSubElementType(Entity, IList, CurrentObjectType, Index,
1613                         StructuredList, StructuredIndex);
1614 
1615     // Restore the designated initializer expression in the syntactic
1616     // form of the initializer list.
1617     if (IList->getInit(OldIndex) != DIE->getInit())
1618       DIE->setInit(IList->getInit(OldIndex));
1619     IList->setInit(OldIndex, DIE);
1620 
1621     return hadError && !prevHadError;
1622   }
1623 
1624   DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
1625   bool IsFirstDesignator = (DesigIdx == 0);
1626   if (!VerifyOnly) {
1627     assert((IsFirstDesignator || StructuredList) &&
1628            "Need a non-designated initializer list to start from");
1629 
1630     // Determine the structural initializer list that corresponds to the
1631     // current subobject.
1632     StructuredList = IsFirstDesignator? SyntacticToSemantic.lookup(IList)
1633       : getStructuredSubobjectInit(IList, Index, CurrentObjectType,
1634                                    StructuredList, StructuredIndex,
1635                                    SourceRange(D->getStartLocation(),
1636                                                DIE->getSourceRange().getEnd()));
1637     assert(StructuredList && "Expected a structured initializer list");
1638   }
1639 
1640   if (D->isFieldDesignator()) {
1641     // C99 6.7.8p7:
1642     //
1643     //   If a designator has the form
1644     //
1645     //      . identifier
1646     //
1647     //   then the current object (defined below) shall have
1648     //   structure or union type and the identifier shall be the
1649     //   name of a member of that type.
1650     const RecordType *RT = CurrentObjectType->getAs<RecordType>();
1651     if (!RT) {
1652       SourceLocation Loc = D->getDotLoc();
1653       if (Loc.isInvalid())
1654         Loc = D->getFieldLoc();
1655       if (!VerifyOnly)
1656         SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
1657           << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
1658       ++Index;
1659       return true;
1660     }
1661 
1662     // Note: we perform a linear search of the fields here, despite
1663     // the fact that we have a faster lookup method, because we always
1664     // need to compute the field's index.
1665     FieldDecl *KnownField = D->getField();
1666     IdentifierInfo *FieldName = D->getFieldName();
1667     unsigned FieldIndex = 0;
1668     RecordDecl::field_iterator
1669       Field = RT->getDecl()->field_begin(),
1670       FieldEnd = RT->getDecl()->field_end();
1671     for (; Field != FieldEnd; ++Field) {
1672       if (Field->isUnnamedBitfield())
1673         continue;
1674 
1675       // If we find a field representing an anonymous field, look in the
1676       // IndirectFieldDecl that follow for the designated initializer.
1677       if (!KnownField && Field->isAnonymousStructOrUnion()) {
1678         if (IndirectFieldDecl *IF =
1679             FindIndirectFieldDesignator(*Field, FieldName)) {
1680           // In verify mode, don't modify the original.
1681           if (VerifyOnly)
1682             DIE = CloneDesignatedInitExpr(SemaRef, DIE);
1683           ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IF);
1684           D = DIE->getDesignator(DesigIdx);
1685           break;
1686         }
1687       }
1688       if (KnownField && KnownField == *Field)
1689         break;
1690       if (FieldName && FieldName == Field->getIdentifier())
1691         break;
1692 
1693       ++FieldIndex;
1694     }
1695 
1696     if (Field == FieldEnd) {
1697       if (VerifyOnly) {
1698         ++Index;
1699         return true; // No typo correction when just trying this out.
1700       }
1701 
1702       // There was no normal field in the struct with the designated
1703       // name. Perform another lookup for this name, which may find
1704       // something that we can't designate (e.g., a member function),
1705       // may find nothing, or may find a member of an anonymous
1706       // struct/union.
1707       DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
1708       FieldDecl *ReplacementField = 0;
1709       if (Lookup.first == Lookup.second) {
1710         // Name lookup didn't find anything. Determine whether this
1711         // was a typo for another field name.
1712         FieldInitializerValidatorCCC Validator(RT->getDecl());
1713         TypoCorrection Corrected = SemaRef.CorrectTypo(
1714             DeclarationNameInfo(FieldName, D->getFieldLoc()),
1715             Sema::LookupMemberName, /*Scope=*/0, /*SS=*/0, Validator,
1716             RT->getDecl());
1717         if (Corrected) {
1718           std::string CorrectedStr(
1719               Corrected.getAsString(SemaRef.getLangOpts()));
1720           std::string CorrectedQuotedStr(
1721               Corrected.getQuoted(SemaRef.getLangOpts()));
1722           ReplacementField = Corrected.getCorrectionDeclAs<FieldDecl>();
1723           SemaRef.Diag(D->getFieldLoc(),
1724                        diag::err_field_designator_unknown_suggest)
1725             << FieldName << CurrentObjectType << CorrectedQuotedStr
1726             << FixItHint::CreateReplacement(D->getFieldLoc(), CorrectedStr);
1727           SemaRef.Diag(ReplacementField->getLocation(),
1728                        diag::note_previous_decl) << CorrectedQuotedStr;
1729           hadError = true;
1730         } else {
1731           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
1732             << FieldName << CurrentObjectType;
1733           ++Index;
1734           return true;
1735         }
1736       }
1737 
1738       if (!ReplacementField) {
1739         // Name lookup found something, but it wasn't a field.
1740         SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
1741           << FieldName;
1742         SemaRef.Diag((*Lookup.first)->getLocation(),
1743                       diag::note_field_designator_found);
1744         ++Index;
1745         return true;
1746       }
1747 
1748       if (!KnownField) {
1749         // The replacement field comes from typo correction; find it
1750         // in the list of fields.
1751         FieldIndex = 0;
1752         Field = RT->getDecl()->field_begin();
1753         for (; Field != FieldEnd; ++Field) {
1754           if (Field->isUnnamedBitfield())
1755             continue;
1756 
1757           if (ReplacementField == *Field ||
1758               Field->getIdentifier() == ReplacementField->getIdentifier())
1759             break;
1760 
1761           ++FieldIndex;
1762         }
1763       }
1764     }
1765 
1766     // All of the fields of a union are located at the same place in
1767     // the initializer list.
1768     if (RT->getDecl()->isUnion()) {
1769       FieldIndex = 0;
1770       if (!VerifyOnly)
1771         StructuredList->setInitializedFieldInUnion(*Field);
1772     }
1773 
1774     // Make sure we can use this declaration.
1775     bool InvalidUse;
1776     if (VerifyOnly)
1777       InvalidUse = !SemaRef.CanUseDecl(*Field);
1778     else
1779       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
1780     if (InvalidUse) {
1781       ++Index;
1782       return true;
1783     }
1784 
1785     if (!VerifyOnly) {
1786       // Update the designator with the field declaration.
1787       D->setField(*Field);
1788 
1789       // Make sure that our non-designated initializer list has space
1790       // for a subobject corresponding to this field.
1791       if (FieldIndex >= StructuredList->getNumInits())
1792         StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
1793     }
1794 
1795     // This designator names a flexible array member.
1796     if (Field->getType()->isIncompleteArrayType()) {
1797       bool Invalid = false;
1798       if ((DesigIdx + 1) != DIE->size()) {
1799         // We can't designate an object within the flexible array
1800         // member (because GCC doesn't allow it).
1801         if (!VerifyOnly) {
1802           DesignatedInitExpr::Designator *NextD
1803             = DIE->getDesignator(DesigIdx + 1);
1804           SemaRef.Diag(NextD->getStartLocation(),
1805                         diag::err_designator_into_flexible_array_member)
1806             << SourceRange(NextD->getStartLocation(),
1807                            DIE->getSourceRange().getEnd());
1808           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1809             << *Field;
1810         }
1811         Invalid = true;
1812       }
1813 
1814       if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
1815           !isa<StringLiteral>(DIE->getInit())) {
1816         // The initializer is not an initializer list.
1817         if (!VerifyOnly) {
1818           SemaRef.Diag(DIE->getInit()->getLocStart(),
1819                         diag::err_flexible_array_init_needs_braces)
1820             << DIE->getInit()->getSourceRange();
1821           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1822             << *Field;
1823         }
1824         Invalid = true;
1825       }
1826 
1827       // Check GNU flexible array initializer.
1828       if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
1829                                              TopLevelObject))
1830         Invalid = true;
1831 
1832       if (Invalid) {
1833         ++Index;
1834         return true;
1835       }
1836 
1837       // Initialize the array.
1838       bool prevHadError = hadError;
1839       unsigned newStructuredIndex = FieldIndex;
1840       unsigned OldIndex = Index;
1841       IList->setInit(Index, DIE->getInit());
1842 
1843       InitializedEntity MemberEntity =
1844         InitializedEntity::InitializeMember(*Field, &Entity);
1845       CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1846                           StructuredList, newStructuredIndex);
1847 
1848       IList->setInit(OldIndex, DIE);
1849       if (hadError && !prevHadError) {
1850         ++Field;
1851         ++FieldIndex;
1852         if (NextField)
1853           *NextField = Field;
1854         StructuredIndex = FieldIndex;
1855         return true;
1856       }
1857     } else {
1858       // Recurse to check later designated subobjects.
1859       QualType FieldType = Field->getType();
1860       unsigned newStructuredIndex = FieldIndex;
1861 
1862       InitializedEntity MemberEntity =
1863         InitializedEntity::InitializeMember(*Field, &Entity);
1864       if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
1865                                      FieldType, 0, 0, Index,
1866                                      StructuredList, newStructuredIndex,
1867                                      true, false))
1868         return true;
1869     }
1870 
1871     // Find the position of the next field to be initialized in this
1872     // subobject.
1873     ++Field;
1874     ++FieldIndex;
1875 
1876     // If this the first designator, our caller will continue checking
1877     // the rest of this struct/class/union subobject.
1878     if (IsFirstDesignator) {
1879       if (NextField)
1880         *NextField = Field;
1881       StructuredIndex = FieldIndex;
1882       return false;
1883     }
1884 
1885     if (!FinishSubobjectInit)
1886       return false;
1887 
1888     // We've already initialized something in the union; we're done.
1889     if (RT->getDecl()->isUnion())
1890       return hadError;
1891 
1892     // Check the remaining fields within this class/struct/union subobject.
1893     bool prevHadError = hadError;
1894 
1895     CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index,
1896                           StructuredList, FieldIndex);
1897     return hadError && !prevHadError;
1898   }
1899 
1900   // C99 6.7.8p6:
1901   //
1902   //   If a designator has the form
1903   //
1904   //      [ constant-expression ]
1905   //
1906   //   then the current object (defined below) shall have array
1907   //   type and the expression shall be an integer constant
1908   //   expression. If the array is of unknown size, any
1909   //   nonnegative value is valid.
1910   //
1911   // Additionally, cope with the GNU extension that permits
1912   // designators of the form
1913   //
1914   //      [ constant-expression ... constant-expression ]
1915   const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
1916   if (!AT) {
1917     if (!VerifyOnly)
1918       SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
1919         << CurrentObjectType;
1920     ++Index;
1921     return true;
1922   }
1923 
1924   Expr *IndexExpr = 0;
1925   llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
1926   if (D->isArrayDesignator()) {
1927     IndexExpr = DIE->getArrayIndex(*D);
1928     DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
1929     DesignatedEndIndex = DesignatedStartIndex;
1930   } else {
1931     assert(D->isArrayRangeDesignator() && "Need array-range designator");
1932 
1933     DesignatedStartIndex =
1934       DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
1935     DesignatedEndIndex =
1936       DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
1937     IndexExpr = DIE->getArrayRangeEnd(*D);
1938 
1939     // Codegen can't handle evaluating array range designators that have side
1940     // effects, because we replicate the AST value for each initialized element.
1941     // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
1942     // elements with something that has a side effect, so codegen can emit an
1943     // "error unsupported" error instead of miscompiling the app.
1944     if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
1945         DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
1946       FullyStructuredList->sawArrayRangeDesignator();
1947   }
1948 
1949   if (isa<ConstantArrayType>(AT)) {
1950     llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
1951     DesignatedStartIndex
1952       = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
1953     DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
1954     DesignatedEndIndex
1955       = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
1956     DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
1957     if (DesignatedEndIndex >= MaxElements) {
1958       if (!VerifyOnly)
1959         SemaRef.Diag(IndexExpr->getLocStart(),
1960                       diag::err_array_designator_too_large)
1961           << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
1962           << IndexExpr->getSourceRange();
1963       ++Index;
1964       return true;
1965     }
1966   } else {
1967     // Make sure the bit-widths and signedness match.
1968     if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
1969       DesignatedEndIndex
1970         = DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
1971     else if (DesignatedStartIndex.getBitWidth() <
1972              DesignatedEndIndex.getBitWidth())
1973       DesignatedStartIndex
1974         = DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
1975     DesignatedStartIndex.setIsUnsigned(true);
1976     DesignatedEndIndex.setIsUnsigned(true);
1977   }
1978 
1979   // Make sure that our non-designated initializer list has space
1980   // for a subobject corresponding to this array element.
1981   if (!VerifyOnly &&
1982       DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
1983     StructuredList->resizeInits(SemaRef.Context,
1984                                 DesignatedEndIndex.getZExtValue() + 1);
1985 
1986   // Repeatedly perform subobject initializations in the range
1987   // [DesignatedStartIndex, DesignatedEndIndex].
1988 
1989   // Move to the next designator
1990   unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
1991   unsigned OldIndex = Index;
1992 
1993   InitializedEntity ElementEntity =
1994     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1995 
1996   while (DesignatedStartIndex <= DesignatedEndIndex) {
1997     // Recurse to check later designated subobjects.
1998     QualType ElementType = AT->getElementType();
1999     Index = OldIndex;
2000 
2001     ElementEntity.setElementIndex(ElementIndex);
2002     if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1,
2003                                    ElementType, 0, 0, Index,
2004                                    StructuredList, ElementIndex,
2005                                    (DesignatedStartIndex == DesignatedEndIndex),
2006                                    false))
2007       return true;
2008 
2009     // Move to the next index in the array that we'll be initializing.
2010     ++DesignatedStartIndex;
2011     ElementIndex = DesignatedStartIndex.getZExtValue();
2012   }
2013 
2014   // If this the first designator, our caller will continue checking
2015   // the rest of this array subobject.
2016   if (IsFirstDesignator) {
2017     if (NextElementIndex)
2018       *NextElementIndex = DesignatedStartIndex;
2019     StructuredIndex = ElementIndex;
2020     return false;
2021   }
2022 
2023   if (!FinishSubobjectInit)
2024     return false;
2025 
2026   // Check the remaining elements within this array subobject.
2027   bool prevHadError = hadError;
2028   CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
2029                  /*SubobjectIsDesignatorContext=*/false, Index,
2030                  StructuredList, ElementIndex);
2031   return hadError && !prevHadError;
2032 }
2033 
2034 // Get the structured initializer list for a subobject of type
2035 // @p CurrentObjectType.
2036 InitListExpr *
2037 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
2038                                             QualType CurrentObjectType,
2039                                             InitListExpr *StructuredList,
2040                                             unsigned StructuredIndex,
2041                                             SourceRange InitRange) {
2042   if (VerifyOnly)
2043     return 0; // No structured list in verification-only mode.
2044   Expr *ExistingInit = 0;
2045   if (!StructuredList)
2046     ExistingInit = SyntacticToSemantic.lookup(IList);
2047   else if (StructuredIndex < StructuredList->getNumInits())
2048     ExistingInit = StructuredList->getInit(StructuredIndex);
2049 
2050   if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
2051     return Result;
2052 
2053   if (ExistingInit) {
2054     // We are creating an initializer list that initializes the
2055     // subobjects of the current object, but there was already an
2056     // initialization that completely initialized the current
2057     // subobject, e.g., by a compound literal:
2058     //
2059     // struct X { int a, b; };
2060     // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2061     //
2062     // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2063     // designated initializer re-initializes the whole
2064     // subobject [0], overwriting previous initializers.
2065     SemaRef.Diag(InitRange.getBegin(),
2066                  diag::warn_subobject_initializer_overrides)
2067       << InitRange;
2068     SemaRef.Diag(ExistingInit->getLocStart(),
2069                   diag::note_previous_initializer)
2070       << /*FIXME:has side effects=*/0
2071       << ExistingInit->getSourceRange();
2072   }
2073 
2074   InitListExpr *Result
2075     = new (SemaRef.Context) InitListExpr(SemaRef.Context,
2076                                          InitRange.getBegin(), MultiExprArg(),
2077                                          InitRange.getEnd());
2078 
2079   QualType ResultType = CurrentObjectType;
2080   if (!ResultType->isArrayType())
2081     ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
2082   Result->setType(ResultType);
2083 
2084   // Pre-allocate storage for the structured initializer list.
2085   unsigned NumElements = 0;
2086   unsigned NumInits = 0;
2087   bool GotNumInits = false;
2088   if (!StructuredList) {
2089     NumInits = IList->getNumInits();
2090     GotNumInits = true;
2091   } else if (Index < IList->getNumInits()) {
2092     if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
2093       NumInits = SubList->getNumInits();
2094       GotNumInits = true;
2095     }
2096   }
2097 
2098   if (const ArrayType *AType
2099       = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
2100     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
2101       NumElements = CAType->getSize().getZExtValue();
2102       // Simple heuristic so that we don't allocate a very large
2103       // initializer with many empty entries at the end.
2104       if (GotNumInits && NumElements > NumInits)
2105         NumElements = 0;
2106     }
2107   } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
2108     NumElements = VType->getNumElements();
2109   else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
2110     RecordDecl *RDecl = RType->getDecl();
2111     if (RDecl->isUnion())
2112       NumElements = 1;
2113     else
2114       NumElements = std::distance(RDecl->field_begin(),
2115                                   RDecl->field_end());
2116   }
2117 
2118   Result->reserveInits(SemaRef.Context, NumElements);
2119 
2120   // Link this new initializer list into the structured initializer
2121   // lists.
2122   if (StructuredList)
2123     StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
2124   else {
2125     Result->setSyntacticForm(IList);
2126     SyntacticToSemantic[IList] = Result;
2127   }
2128 
2129   return Result;
2130 }
2131 
2132 /// Update the initializer at index @p StructuredIndex within the
2133 /// structured initializer list to the value @p expr.
2134 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
2135                                                   unsigned &StructuredIndex,
2136                                                   Expr *expr) {
2137   // No structured initializer list to update
2138   if (!StructuredList)
2139     return;
2140 
2141   if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
2142                                                   StructuredIndex, expr)) {
2143     // This initializer overwrites a previous initializer. Warn.
2144     SemaRef.Diag(expr->getLocStart(),
2145                   diag::warn_initializer_overrides)
2146       << expr->getSourceRange();
2147     SemaRef.Diag(PrevInit->getLocStart(),
2148                   diag::note_previous_initializer)
2149       << /*FIXME:has side effects=*/0
2150       << PrevInit->getSourceRange();
2151   }
2152 
2153   ++StructuredIndex;
2154 }
2155 
2156 /// Check that the given Index expression is a valid array designator
2157 /// value. This is essentially just a wrapper around
2158 /// VerifyIntegerConstantExpression that also checks for negative values
2159 /// and produces a reasonable diagnostic if there is a
2160 /// failure. Returns the index expression, possibly with an implicit cast
2161 /// added, on success.  If everything went okay, Value will receive the
2162 /// value of the constant expression.
2163 static ExprResult
2164 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
2165   SourceLocation Loc = Index->getLocStart();
2166 
2167   // Make sure this is an integer constant expression.
2168   ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value);
2169   if (Result.isInvalid())
2170     return Result;
2171 
2172   if (Value.isSigned() && Value.isNegative())
2173     return S.Diag(Loc, diag::err_array_designator_negative)
2174       << Value.toString(10) << Index->getSourceRange();
2175 
2176   Value.setIsUnsigned(true);
2177   return Result;
2178 }
2179 
2180 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
2181                                             SourceLocation Loc,
2182                                             bool GNUSyntax,
2183                                             ExprResult Init) {
2184   typedef DesignatedInitExpr::Designator ASTDesignator;
2185 
2186   bool Invalid = false;
2187   SmallVector<ASTDesignator, 32> Designators;
2188   SmallVector<Expr *, 32> InitExpressions;
2189 
2190   // Build designators and check array designator expressions.
2191   for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
2192     const Designator &D = Desig.getDesignator(Idx);
2193     switch (D.getKind()) {
2194     case Designator::FieldDesignator:
2195       Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
2196                                           D.getFieldLoc()));
2197       break;
2198 
2199     case Designator::ArrayDesignator: {
2200       Expr *Index = static_cast<Expr *>(D.getArrayIndex());
2201       llvm::APSInt IndexValue;
2202       if (!Index->isTypeDependent() && !Index->isValueDependent())
2203         Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).take();
2204       if (!Index)
2205         Invalid = true;
2206       else {
2207         Designators.push_back(ASTDesignator(InitExpressions.size(),
2208                                             D.getLBracketLoc(),
2209                                             D.getRBracketLoc()));
2210         InitExpressions.push_back(Index);
2211       }
2212       break;
2213     }
2214 
2215     case Designator::ArrayRangeDesignator: {
2216       Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
2217       Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
2218       llvm::APSInt StartValue;
2219       llvm::APSInt EndValue;
2220       bool StartDependent = StartIndex->isTypeDependent() ||
2221                             StartIndex->isValueDependent();
2222       bool EndDependent = EndIndex->isTypeDependent() ||
2223                           EndIndex->isValueDependent();
2224       if (!StartDependent)
2225         StartIndex =
2226             CheckArrayDesignatorExpr(*this, StartIndex, StartValue).take();
2227       if (!EndDependent)
2228         EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).take();
2229 
2230       if (!StartIndex || !EndIndex)
2231         Invalid = true;
2232       else {
2233         // Make sure we're comparing values with the same bit width.
2234         if (StartDependent || EndDependent) {
2235           // Nothing to compute.
2236         } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
2237           EndValue = EndValue.extend(StartValue.getBitWidth());
2238         else if (StartValue.getBitWidth() < EndValue.getBitWidth())
2239           StartValue = StartValue.extend(EndValue.getBitWidth());
2240 
2241         if (!StartDependent && !EndDependent && EndValue < StartValue) {
2242           Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
2243             << StartValue.toString(10) << EndValue.toString(10)
2244             << StartIndex->getSourceRange() << EndIndex->getSourceRange();
2245           Invalid = true;
2246         } else {
2247           Designators.push_back(ASTDesignator(InitExpressions.size(),
2248                                               D.getLBracketLoc(),
2249                                               D.getEllipsisLoc(),
2250                                               D.getRBracketLoc()));
2251           InitExpressions.push_back(StartIndex);
2252           InitExpressions.push_back(EndIndex);
2253         }
2254       }
2255       break;
2256     }
2257     }
2258   }
2259 
2260   if (Invalid || Init.isInvalid())
2261     return ExprError();
2262 
2263   // Clear out the expressions within the designation.
2264   Desig.ClearExprs(*this);
2265 
2266   DesignatedInitExpr *DIE
2267     = DesignatedInitExpr::Create(Context,
2268                                  Designators.data(), Designators.size(),
2269                                  InitExpressions, Loc, GNUSyntax,
2270                                  Init.takeAs<Expr>());
2271 
2272   if (!getLangOpts().C99)
2273     Diag(DIE->getLocStart(), diag::ext_designated_init)
2274       << DIE->getSourceRange();
2275 
2276   return Owned(DIE);
2277 }
2278 
2279 //===----------------------------------------------------------------------===//
2280 // Initialization entity
2281 //===----------------------------------------------------------------------===//
2282 
2283 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
2284                                      const InitializedEntity &Parent)
2285   : Parent(&Parent), Index(Index)
2286 {
2287   if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
2288     Kind = EK_ArrayElement;
2289     Type = AT->getElementType();
2290   } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
2291     Kind = EK_VectorElement;
2292     Type = VT->getElementType();
2293   } else {
2294     const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
2295     assert(CT && "Unexpected type");
2296     Kind = EK_ComplexElement;
2297     Type = CT->getElementType();
2298   }
2299 }
2300 
2301 InitializedEntity InitializedEntity::InitializeBase(ASTContext &Context,
2302                                                     CXXBaseSpecifier *Base,
2303                                                     bool IsInheritedVirtualBase)
2304 {
2305   InitializedEntity Result;
2306   Result.Kind = EK_Base;
2307   Result.Base = reinterpret_cast<uintptr_t>(Base);
2308   if (IsInheritedVirtualBase)
2309     Result.Base |= 0x01;
2310 
2311   Result.Type = Base->getType();
2312   return Result;
2313 }
2314 
2315 DeclarationName InitializedEntity::getName() const {
2316   switch (getKind()) {
2317   case EK_Parameter: {
2318     ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2319     return (D ? D->getDeclName() : DeclarationName());
2320   }
2321 
2322   case EK_Variable:
2323   case EK_Member:
2324     return VariableOrMember->getDeclName();
2325 
2326   case EK_LambdaCapture:
2327     return Capture.Var->getDeclName();
2328 
2329   case EK_Result:
2330   case EK_Exception:
2331   case EK_New:
2332   case EK_Temporary:
2333   case EK_Base:
2334   case EK_Delegating:
2335   case EK_ArrayElement:
2336   case EK_VectorElement:
2337   case EK_ComplexElement:
2338   case EK_BlockElement:
2339     return DeclarationName();
2340   }
2341 
2342   llvm_unreachable("Invalid EntityKind!");
2343 }
2344 
2345 DeclaratorDecl *InitializedEntity::getDecl() const {
2346   switch (getKind()) {
2347   case EK_Variable:
2348   case EK_Member:
2349     return VariableOrMember;
2350 
2351   case EK_Parameter:
2352     return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2353 
2354   case EK_Result:
2355   case EK_Exception:
2356   case EK_New:
2357   case EK_Temporary:
2358   case EK_Base:
2359   case EK_Delegating:
2360   case EK_ArrayElement:
2361   case EK_VectorElement:
2362   case EK_ComplexElement:
2363   case EK_BlockElement:
2364   case EK_LambdaCapture:
2365     return 0;
2366   }
2367 
2368   llvm_unreachable("Invalid EntityKind!");
2369 }
2370 
2371 bool InitializedEntity::allowsNRVO() const {
2372   switch (getKind()) {
2373   case EK_Result:
2374   case EK_Exception:
2375     return LocAndNRVO.NRVO;
2376 
2377   case EK_Variable:
2378   case EK_Parameter:
2379   case EK_Member:
2380   case EK_New:
2381   case EK_Temporary:
2382   case EK_Base:
2383   case EK_Delegating:
2384   case EK_ArrayElement:
2385   case EK_VectorElement:
2386   case EK_ComplexElement:
2387   case EK_BlockElement:
2388   case EK_LambdaCapture:
2389     break;
2390   }
2391 
2392   return false;
2393 }
2394 
2395 //===----------------------------------------------------------------------===//
2396 // Initialization sequence
2397 //===----------------------------------------------------------------------===//
2398 
2399 void InitializationSequence::Step::Destroy() {
2400   switch (Kind) {
2401   case SK_ResolveAddressOfOverloadedFunction:
2402   case SK_CastDerivedToBaseRValue:
2403   case SK_CastDerivedToBaseXValue:
2404   case SK_CastDerivedToBaseLValue:
2405   case SK_BindReference:
2406   case SK_BindReferenceToTemporary:
2407   case SK_ExtraneousCopyToTemporary:
2408   case SK_UserConversion:
2409   case SK_QualificationConversionRValue:
2410   case SK_QualificationConversionXValue:
2411   case SK_QualificationConversionLValue:
2412   case SK_ListInitialization:
2413   case SK_ListConstructorCall:
2414   case SK_UnwrapInitList:
2415   case SK_RewrapInitList:
2416   case SK_ConstructorInitialization:
2417   case SK_ZeroInitialization:
2418   case SK_CAssignment:
2419   case SK_StringInit:
2420   case SK_ObjCObjectConversion:
2421   case SK_ArrayInit:
2422   case SK_ParenthesizedArrayInit:
2423   case SK_PassByIndirectCopyRestore:
2424   case SK_PassByIndirectRestore:
2425   case SK_ProduceObjCObject:
2426   case SK_StdInitializerList:
2427     break;
2428 
2429   case SK_ConversionSequence:
2430     delete ICS;
2431   }
2432 }
2433 
2434 bool InitializationSequence::isDirectReferenceBinding() const {
2435   return !Steps.empty() && Steps.back().Kind == SK_BindReference;
2436 }
2437 
2438 bool InitializationSequence::isAmbiguous() const {
2439   if (!Failed())
2440     return false;
2441 
2442   switch (getFailureKind()) {
2443   case FK_TooManyInitsForReference:
2444   case FK_ArrayNeedsInitList:
2445   case FK_ArrayNeedsInitListOrStringLiteral:
2446   case FK_AddressOfOverloadFailed: // FIXME: Could do better
2447   case FK_NonConstLValueReferenceBindingToTemporary:
2448   case FK_NonConstLValueReferenceBindingToUnrelated:
2449   case FK_RValueReferenceBindingToLValue:
2450   case FK_ReferenceInitDropsQualifiers:
2451   case FK_ReferenceInitFailed:
2452   case FK_ConversionFailed:
2453   case FK_ConversionFromPropertyFailed:
2454   case FK_TooManyInitsForScalar:
2455   case FK_ReferenceBindingToInitList:
2456   case FK_InitListBadDestinationType:
2457   case FK_DefaultInitOfConst:
2458   case FK_Incomplete:
2459   case FK_ArrayTypeMismatch:
2460   case FK_NonConstantArrayInit:
2461   case FK_ListInitializationFailed:
2462   case FK_VariableLengthArrayHasInitializer:
2463   case FK_PlaceholderType:
2464   case FK_InitListElementCopyFailure:
2465   case FK_ExplicitConstructor:
2466     return false;
2467 
2468   case FK_ReferenceInitOverloadFailed:
2469   case FK_UserConversionOverloadFailed:
2470   case FK_ConstructorOverloadFailed:
2471   case FK_ListConstructorOverloadFailed:
2472     return FailedOverloadResult == OR_Ambiguous;
2473   }
2474 
2475   llvm_unreachable("Invalid EntityKind!");
2476 }
2477 
2478 bool InitializationSequence::isConstructorInitialization() const {
2479   return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
2480 }
2481 
2482 void
2483 InitializationSequence
2484 ::AddAddressOverloadResolutionStep(FunctionDecl *Function,
2485                                    DeclAccessPair Found,
2486                                    bool HadMultipleCandidates) {
2487   Step S;
2488   S.Kind = SK_ResolveAddressOfOverloadedFunction;
2489   S.Type = Function->getType();
2490   S.Function.HadMultipleCandidates = HadMultipleCandidates;
2491   S.Function.Function = Function;
2492   S.Function.FoundDecl = Found;
2493   Steps.push_back(S);
2494 }
2495 
2496 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
2497                                                       ExprValueKind VK) {
2498   Step S;
2499   switch (VK) {
2500   case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
2501   case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
2502   case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
2503   }
2504   S.Type = BaseType;
2505   Steps.push_back(S);
2506 }
2507 
2508 void InitializationSequence::AddReferenceBindingStep(QualType T,
2509                                                      bool BindingTemporary) {
2510   Step S;
2511   S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
2512   S.Type = T;
2513   Steps.push_back(S);
2514 }
2515 
2516 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
2517   Step S;
2518   S.Kind = SK_ExtraneousCopyToTemporary;
2519   S.Type = T;
2520   Steps.push_back(S);
2521 }
2522 
2523 void
2524 InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
2525                                               DeclAccessPair FoundDecl,
2526                                               QualType T,
2527                                               bool HadMultipleCandidates) {
2528   Step S;
2529   S.Kind = SK_UserConversion;
2530   S.Type = T;
2531   S.Function.HadMultipleCandidates = HadMultipleCandidates;
2532   S.Function.Function = Function;
2533   S.Function.FoundDecl = FoundDecl;
2534   Steps.push_back(S);
2535 }
2536 
2537 void InitializationSequence::AddQualificationConversionStep(QualType Ty,
2538                                                             ExprValueKind VK) {
2539   Step S;
2540   S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
2541   switch (VK) {
2542   case VK_RValue:
2543     S.Kind = SK_QualificationConversionRValue;
2544     break;
2545   case VK_XValue:
2546     S.Kind = SK_QualificationConversionXValue;
2547     break;
2548   case VK_LValue:
2549     S.Kind = SK_QualificationConversionLValue;
2550     break;
2551   }
2552   S.Type = Ty;
2553   Steps.push_back(S);
2554 }
2555 
2556 void InitializationSequence::AddConversionSequenceStep(
2557                                        const ImplicitConversionSequence &ICS,
2558                                                        QualType T) {
2559   Step S;
2560   S.Kind = SK_ConversionSequence;
2561   S.Type = T;
2562   S.ICS = new ImplicitConversionSequence(ICS);
2563   Steps.push_back(S);
2564 }
2565 
2566 void InitializationSequence::AddListInitializationStep(QualType T) {
2567   Step S;
2568   S.Kind = SK_ListInitialization;
2569   S.Type = T;
2570   Steps.push_back(S);
2571 }
2572 
2573 void
2574 InitializationSequence
2575 ::AddConstructorInitializationStep(CXXConstructorDecl *Constructor,
2576                                    AccessSpecifier Access,
2577                                    QualType T,
2578                                    bool HadMultipleCandidates,
2579                                    bool FromInitList, bool AsInitList) {
2580   Step S;
2581   S.Kind = FromInitList && !AsInitList ? SK_ListConstructorCall
2582                                        : SK_ConstructorInitialization;
2583   S.Type = T;
2584   S.Function.HadMultipleCandidates = HadMultipleCandidates;
2585   S.Function.Function = Constructor;
2586   S.Function.FoundDecl = DeclAccessPair::make(Constructor, Access);
2587   Steps.push_back(S);
2588 }
2589 
2590 void InitializationSequence::AddZeroInitializationStep(QualType T) {
2591   Step S;
2592   S.Kind = SK_ZeroInitialization;
2593   S.Type = T;
2594   Steps.push_back(S);
2595 }
2596 
2597 void InitializationSequence::AddCAssignmentStep(QualType T) {
2598   Step S;
2599   S.Kind = SK_CAssignment;
2600   S.Type = T;
2601   Steps.push_back(S);
2602 }
2603 
2604 void InitializationSequence::AddStringInitStep(QualType T) {
2605   Step S;
2606   S.Kind = SK_StringInit;
2607   S.Type = T;
2608   Steps.push_back(S);
2609 }
2610 
2611 void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
2612   Step S;
2613   S.Kind = SK_ObjCObjectConversion;
2614   S.Type = T;
2615   Steps.push_back(S);
2616 }
2617 
2618 void InitializationSequence::AddArrayInitStep(QualType T) {
2619   Step S;
2620   S.Kind = SK_ArrayInit;
2621   S.Type = T;
2622   Steps.push_back(S);
2623 }
2624 
2625 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
2626   Step S;
2627   S.Kind = SK_ParenthesizedArrayInit;
2628   S.Type = T;
2629   Steps.push_back(S);
2630 }
2631 
2632 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
2633                                                               bool shouldCopy) {
2634   Step s;
2635   s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
2636                        : SK_PassByIndirectRestore);
2637   s.Type = type;
2638   Steps.push_back(s);
2639 }
2640 
2641 void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
2642   Step S;
2643   S.Kind = SK_ProduceObjCObject;
2644   S.Type = T;
2645   Steps.push_back(S);
2646 }
2647 
2648 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
2649   Step S;
2650   S.Kind = SK_StdInitializerList;
2651   S.Type = T;
2652   Steps.push_back(S);
2653 }
2654 
2655 void InitializationSequence::RewrapReferenceInitList(QualType T,
2656                                                      InitListExpr *Syntactic) {
2657   assert(Syntactic->getNumInits() == 1 &&
2658          "Can only rewrap trivial init lists.");
2659   Step S;
2660   S.Kind = SK_UnwrapInitList;
2661   S.Type = Syntactic->getInit(0)->getType();
2662   Steps.insert(Steps.begin(), S);
2663 
2664   S.Kind = SK_RewrapInitList;
2665   S.Type = T;
2666   S.WrappingSyntacticList = Syntactic;
2667   Steps.push_back(S);
2668 }
2669 
2670 void InitializationSequence::SetOverloadFailure(FailureKind Failure,
2671                                                 OverloadingResult Result) {
2672   setSequenceKind(FailedSequence);
2673   this->Failure = Failure;
2674   this->FailedOverloadResult = Result;
2675 }
2676 
2677 //===----------------------------------------------------------------------===//
2678 // Attempt initialization
2679 //===----------------------------------------------------------------------===//
2680 
2681 static void MaybeProduceObjCObject(Sema &S,
2682                                    InitializationSequence &Sequence,
2683                                    const InitializedEntity &Entity) {
2684   if (!S.getLangOpts().ObjCAutoRefCount) return;
2685 
2686   /// When initializing a parameter, produce the value if it's marked
2687   /// __attribute__((ns_consumed)).
2688   if (Entity.getKind() == InitializedEntity::EK_Parameter) {
2689     if (!Entity.isParameterConsumed())
2690       return;
2691 
2692     assert(Entity.getType()->isObjCRetainableType() &&
2693            "consuming an object of unretainable type?");
2694     Sequence.AddProduceObjCObjectStep(Entity.getType());
2695 
2696   /// When initializing a return value, if the return type is a
2697   /// retainable type, then returns need to immediately retain the
2698   /// object.  If an autorelease is required, it will be done at the
2699   /// last instant.
2700   } else if (Entity.getKind() == InitializedEntity::EK_Result) {
2701     if (!Entity.getType()->isObjCRetainableType())
2702       return;
2703 
2704     Sequence.AddProduceObjCObjectStep(Entity.getType());
2705   }
2706 }
2707 
2708 /// \brief When initializing from init list via constructor, handle
2709 /// initialization of an object of type std::initializer_list<T>.
2710 ///
2711 /// \return true if we have handled initialization of an object of type
2712 /// std::initializer_list<T>, false otherwise.
2713 static bool TryInitializerListConstruction(Sema &S,
2714                                            InitListExpr *List,
2715                                            QualType DestType,
2716                                            InitializationSequence &Sequence) {
2717   QualType E;
2718   if (!S.isStdInitializerList(DestType, &E))
2719     return false;
2720 
2721   // Check that each individual element can be copy-constructed. But since we
2722   // have no place to store further information, we'll recalculate everything
2723   // later.
2724   InitializedEntity HiddenArray = InitializedEntity::InitializeTemporary(
2725       S.Context.getConstantArrayType(E,
2726           llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
2727                       List->getNumInits()),
2728           ArrayType::Normal, 0));
2729   InitializedEntity Element = InitializedEntity::InitializeElement(S.Context,
2730       0, HiddenArray);
2731   for (unsigned i = 0, n = List->getNumInits(); i < n; ++i) {
2732     Element.setElementIndex(i);
2733     if (!S.CanPerformCopyInitialization(Element, List->getInit(i))) {
2734       Sequence.SetFailed(
2735           InitializationSequence::FK_InitListElementCopyFailure);
2736       return true;
2737     }
2738   }
2739   Sequence.AddStdInitializerListConstructionStep(DestType);
2740   return true;
2741 }
2742 
2743 static OverloadingResult
2744 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
2745                            Expr **Args, unsigned NumArgs,
2746                            OverloadCandidateSet &CandidateSet,
2747                            ArrayRef<NamedDecl *> Ctors,
2748                            OverloadCandidateSet::iterator &Best,
2749                            bool CopyInitializing, bool AllowExplicit,
2750                            bool OnlyListConstructors, bool InitListSyntax) {
2751   CandidateSet.clear();
2752 
2753   for (ArrayRef<NamedDecl *>::iterator
2754          Con = Ctors.begin(), ConEnd = Ctors.end(); Con != ConEnd; ++Con) {
2755     NamedDecl *D = *Con;
2756     DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2757     bool SuppressUserConversions = false;
2758 
2759     // Find the constructor (which may be a template).
2760     CXXConstructorDecl *Constructor = 0;
2761     FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
2762     if (ConstructorTmpl)
2763       Constructor = cast<CXXConstructorDecl>(
2764                                            ConstructorTmpl->getTemplatedDecl());
2765     else {
2766       Constructor = cast<CXXConstructorDecl>(D);
2767 
2768       // If we're performing copy initialization using a copy constructor, we
2769       // suppress user-defined conversions on the arguments. We do the same for
2770       // move constructors.
2771       if ((CopyInitializing || (InitListSyntax && NumArgs == 1)) &&
2772           Constructor->isCopyOrMoveConstructor())
2773         SuppressUserConversions = true;
2774     }
2775 
2776     if (!Constructor->isInvalidDecl() &&
2777         (AllowExplicit || !Constructor->isExplicit()) &&
2778         (!OnlyListConstructors || S.isInitListConstructor(Constructor))) {
2779       if (ConstructorTmpl)
2780         S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2781                                        /*ExplicitArgs*/ 0,
2782                                        llvm::makeArrayRef(Args, NumArgs),
2783                                        CandidateSet, SuppressUserConversions);
2784       else {
2785         // C++ [over.match.copy]p1:
2786         //   - When initializing a temporary to be bound to the first parameter
2787         //     of a constructor that takes a reference to possibly cv-qualified
2788         //     T as its first argument, called with a single argument in the
2789         //     context of direct-initialization, explicit conversion functions
2790         //     are also considered.
2791         bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
2792                                  NumArgs == 1 &&
2793                                  Constructor->isCopyOrMoveConstructor();
2794         S.AddOverloadCandidate(Constructor, FoundDecl,
2795                                llvm::makeArrayRef(Args, NumArgs), CandidateSet,
2796                                SuppressUserConversions,
2797                                /*PartialOverloading=*/false,
2798                                /*AllowExplicit=*/AllowExplicitConv);
2799       }
2800     }
2801   }
2802 
2803   // Perform overload resolution and return the result.
2804   return CandidateSet.BestViableFunction(S, DeclLoc, Best);
2805 }
2806 
2807 /// \brief Attempt initialization by constructor (C++ [dcl.init]), which
2808 /// enumerates the constructors of the initialized entity and performs overload
2809 /// resolution to select the best.
2810 /// If InitListSyntax is true, this is list-initialization of a non-aggregate
2811 /// class type.
2812 static void TryConstructorInitialization(Sema &S,
2813                                          const InitializedEntity &Entity,
2814                                          const InitializationKind &Kind,
2815                                          Expr **Args, unsigned NumArgs,
2816                                          QualType DestType,
2817                                          InitializationSequence &Sequence,
2818                                          bool InitListSyntax = false) {
2819   assert((!InitListSyntax || (NumArgs == 1 && isa<InitListExpr>(Args[0]))) &&
2820          "InitListSyntax must come with a single initializer list argument.");
2821 
2822   // The type we're constructing needs to be complete.
2823   if (S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
2824     Sequence.setIncompleteTypeFailure(DestType);
2825     return;
2826   }
2827 
2828   const RecordType *DestRecordType = DestType->getAs<RecordType>();
2829   assert(DestRecordType && "Constructor initialization requires record type");
2830   CXXRecordDecl *DestRecordDecl
2831     = cast<CXXRecordDecl>(DestRecordType->getDecl());
2832 
2833   // Build the candidate set directly in the initialization sequence
2834   // structure, so that it will persist if we fail.
2835   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2836 
2837   // Determine whether we are allowed to call explicit constructors or
2838   // explicit conversion operators.
2839   bool AllowExplicit = Kind.AllowExplicit() || InitListSyntax;
2840   bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
2841 
2842   //   - Otherwise, if T is a class type, constructors are considered. The
2843   //     applicable constructors are enumerated, and the best one is chosen
2844   //     through overload resolution.
2845   DeclContext::lookup_iterator ConStart, ConEnd;
2846   llvm::tie(ConStart, ConEnd) = S.LookupConstructors(DestRecordDecl);
2847   // The container holding the constructors can under certain conditions
2848   // be changed while iterating (e.g. because of deserialization).
2849   // To be safe we copy the lookup results to a new container.
2850   SmallVector<NamedDecl*, 16> Ctors(ConStart, ConEnd);
2851 
2852   OverloadingResult Result = OR_No_Viable_Function;
2853   OverloadCandidateSet::iterator Best;
2854   bool AsInitializerList = false;
2855 
2856   // C++11 [over.match.list]p1:
2857   //   When objects of non-aggregate type T are list-initialized, overload
2858   //   resolution selects the constructor in two phases:
2859   //   - Initially, the candidate functions are the initializer-list
2860   //     constructors of the class T and the argument list consists of the
2861   //     initializer list as a single argument.
2862   if (InitListSyntax) {
2863     InitListExpr *ILE = cast<InitListExpr>(Args[0]);
2864     AsInitializerList = true;
2865 
2866     // If the initializer list has no elements and T has a default constructor,
2867     // the first phase is omitted.
2868     if (ILE->getNumInits() != 0 ||
2869         (!DestRecordDecl->hasDeclaredDefaultConstructor() &&
2870          !DestRecordDecl->needsImplicitDefaultConstructor()))
2871       Result = ResolveConstructorOverload(S, Kind.getLocation(), Args, NumArgs,
2872                                           CandidateSet, Ctors, Best,
2873                                           CopyInitialization, AllowExplicit,
2874                                           /*OnlyListConstructor=*/true,
2875                                           InitListSyntax);
2876 
2877     // Time to unwrap the init list.
2878     Args = ILE->getInits();
2879     NumArgs = ILE->getNumInits();
2880   }
2881 
2882   // C++11 [over.match.list]p1:
2883   //   - If no viable initializer-list constructor is found, overload resolution
2884   //     is performed again, where the candidate functions are all the
2885   //     constructors of the class T and the argument list consists of the
2886   //     elements of the initializer list.
2887   if (Result == OR_No_Viable_Function) {
2888     AsInitializerList = false;
2889     Result = ResolveConstructorOverload(S, Kind.getLocation(), Args, NumArgs,
2890                                         CandidateSet, Ctors, Best,
2891                                         CopyInitialization, AllowExplicit,
2892                                         /*OnlyListConstructors=*/false,
2893                                         InitListSyntax);
2894   }
2895   if (Result) {
2896     Sequence.SetOverloadFailure(InitListSyntax ?
2897                       InitializationSequence::FK_ListConstructorOverloadFailed :
2898                       InitializationSequence::FK_ConstructorOverloadFailed,
2899                                 Result);
2900     return;
2901   }
2902 
2903   // C++11 [dcl.init]p6:
2904   //   If a program calls for the default initialization of an object
2905   //   of a const-qualified type T, T shall be a class type with a
2906   //   user-provided default constructor.
2907   if (Kind.getKind() == InitializationKind::IK_Default &&
2908       Entity.getType().isConstQualified() &&
2909       !cast<CXXConstructorDecl>(Best->Function)->isUserProvided()) {
2910     Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
2911     return;
2912   }
2913 
2914   // C++11 [over.match.list]p1:
2915   //   In copy-list-initialization, if an explicit constructor is chosen, the
2916   //   initializer is ill-formed.
2917   CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
2918   if (InitListSyntax && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
2919     Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
2920     return;
2921   }
2922 
2923   // Add the constructor initialization step. Any cv-qualification conversion is
2924   // subsumed by the initialization.
2925   bool HadMultipleCandidates = (CandidateSet.size() > 1);
2926   Sequence.AddConstructorInitializationStep(CtorDecl,
2927                                             Best->FoundDecl.getAccess(),
2928                                             DestType, HadMultipleCandidates,
2929                                             InitListSyntax, AsInitializerList);
2930 }
2931 
2932 static bool
2933 ResolveOverloadedFunctionForReferenceBinding(Sema &S,
2934                                              Expr *Initializer,
2935                                              QualType &SourceType,
2936                                              QualType &UnqualifiedSourceType,
2937                                              QualType UnqualifiedTargetType,
2938                                              InitializationSequence &Sequence) {
2939   if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
2940         S.Context.OverloadTy) {
2941     DeclAccessPair Found;
2942     bool HadMultipleCandidates = false;
2943     if (FunctionDecl *Fn
2944         = S.ResolveAddressOfOverloadedFunction(Initializer,
2945                                                UnqualifiedTargetType,
2946                                                false, Found,
2947                                                &HadMultipleCandidates)) {
2948       Sequence.AddAddressOverloadResolutionStep(Fn, Found,
2949                                                 HadMultipleCandidates);
2950       SourceType = Fn->getType();
2951       UnqualifiedSourceType = SourceType.getUnqualifiedType();
2952     } else if (!UnqualifiedTargetType->isRecordType()) {
2953       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
2954       return true;
2955     }
2956   }
2957   return false;
2958 }
2959 
2960 static void TryReferenceInitializationCore(Sema &S,
2961                                            const InitializedEntity &Entity,
2962                                            const InitializationKind &Kind,
2963                                            Expr *Initializer,
2964                                            QualType cv1T1, QualType T1,
2965                                            Qualifiers T1Quals,
2966                                            QualType cv2T2, QualType T2,
2967                                            Qualifiers T2Quals,
2968                                            InitializationSequence &Sequence);
2969 
2970 static void TryValueInitialization(Sema &S,
2971                                    const InitializedEntity &Entity,
2972                                    const InitializationKind &Kind,
2973                                    InitializationSequence &Sequence,
2974                                    InitListExpr *InitList = 0);
2975 
2976 static void TryListInitialization(Sema &S,
2977                                   const InitializedEntity &Entity,
2978                                   const InitializationKind &Kind,
2979                                   InitListExpr *InitList,
2980                                   InitializationSequence &Sequence);
2981 
2982 /// \brief Attempt list initialization of a reference.
2983 static void TryReferenceListInitialization(Sema &S,
2984                                            const InitializedEntity &Entity,
2985                                            const InitializationKind &Kind,
2986                                            InitListExpr *InitList,
2987                                            InitializationSequence &Sequence)
2988 {
2989   // First, catch C++03 where this isn't possible.
2990   if (!S.getLangOpts().CPlusPlus0x) {
2991     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
2992     return;
2993   }
2994 
2995   QualType DestType = Entity.getType();
2996   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
2997   Qualifiers T1Quals;
2998   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
2999 
3000   // Reference initialization via an initializer list works thus:
3001   // If the initializer list consists of a single element that is
3002   // reference-related to the referenced type, bind directly to that element
3003   // (possibly creating temporaries).
3004   // Otherwise, initialize a temporary with the initializer list and
3005   // bind to that.
3006   if (InitList->getNumInits() == 1) {
3007     Expr *Initializer = InitList->getInit(0);
3008     QualType cv2T2 = Initializer->getType();
3009     Qualifiers T2Quals;
3010     QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3011 
3012     // If this fails, creating a temporary wouldn't work either.
3013     if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3014                                                      T1, Sequence))
3015       return;
3016 
3017     SourceLocation DeclLoc = Initializer->getLocStart();
3018     bool dummy1, dummy2, dummy3;
3019     Sema::ReferenceCompareResult RefRelationship
3020       = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1,
3021                                        dummy2, dummy3);
3022     if (RefRelationship >= Sema::Ref_Related) {
3023       // Try to bind the reference here.
3024       TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3025                                      T1Quals, cv2T2, T2, T2Quals, Sequence);
3026       if (Sequence)
3027         Sequence.RewrapReferenceInitList(cv1T1, InitList);
3028       return;
3029     }
3030   }
3031 
3032   // Not reference-related. Create a temporary and bind to that.
3033   InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3034 
3035   TryListInitialization(S, TempEntity, Kind, InitList, Sequence);
3036   if (Sequence) {
3037     if (DestType->isRValueReferenceType() ||
3038         (T1Quals.hasConst() && !T1Quals.hasVolatile()))
3039       Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3040     else
3041       Sequence.SetFailed(
3042           InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3043   }
3044 }
3045 
3046 /// \brief Attempt list initialization (C++0x [dcl.init.list])
3047 static void TryListInitialization(Sema &S,
3048                                   const InitializedEntity &Entity,
3049                                   const InitializationKind &Kind,
3050                                   InitListExpr *InitList,
3051                                   InitializationSequence &Sequence) {
3052   QualType DestType = Entity.getType();
3053 
3054   // C++ doesn't allow scalar initialization with more than one argument.
3055   // But C99 complex numbers are scalars and it makes sense there.
3056   if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
3057       !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
3058     Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
3059     return;
3060   }
3061   if (DestType->isReferenceType()) {
3062     TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence);
3063     return;
3064   }
3065   if (DestType->isRecordType()) {
3066     if (S.RequireCompleteType(InitList->getLocStart(), DestType, 0)) {
3067       Sequence.setIncompleteTypeFailure(DestType);
3068       return;
3069     }
3070 
3071     // C++11 [dcl.init.list]p3:
3072     //   - If T is an aggregate, aggregate initialization is performed.
3073     if (!DestType->isAggregateType()) {
3074       if (S.getLangOpts().CPlusPlus0x) {
3075         //   - Otherwise, if the initializer list has no elements and T is a
3076         //     class type with a default constructor, the object is
3077         //     value-initialized.
3078         if (InitList->getNumInits() == 0) {
3079           CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
3080           if (RD->hasDeclaredDefaultConstructor() ||
3081               RD->needsImplicitDefaultConstructor()) {
3082             TryValueInitialization(S, Entity, Kind, Sequence, InitList);
3083             return;
3084           }
3085         }
3086 
3087         //   - Otherwise, if T is a specialization of std::initializer_list<E>,
3088         //     an initializer_list object constructed [...]
3089         if (TryInitializerListConstruction(S, InitList, DestType, Sequence))
3090           return;
3091 
3092         //   - Otherwise, if T is a class type, constructors are considered.
3093         Expr *Arg = InitList;
3094         TryConstructorInitialization(S, Entity, Kind, &Arg, 1, DestType,
3095                                      Sequence, /*InitListSyntax*/true);
3096       } else
3097         Sequence.SetFailed(
3098             InitializationSequence::FK_InitListBadDestinationType);
3099       return;
3100     }
3101   }
3102 
3103   InitListChecker CheckInitList(S, Entity, InitList,
3104           DestType, /*VerifyOnly=*/true,
3105           Kind.getKind() != InitializationKind::IK_DirectList ||
3106             !S.getLangOpts().CPlusPlus0x);
3107   if (CheckInitList.HadError()) {
3108     Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
3109     return;
3110   }
3111 
3112   // Add the list initialization step with the built init list.
3113   Sequence.AddListInitializationStep(DestType);
3114 }
3115 
3116 /// \brief Try a reference initialization that involves calling a conversion
3117 /// function.
3118 static OverloadingResult TryRefInitWithConversionFunction(Sema &S,
3119                                              const InitializedEntity &Entity,
3120                                              const InitializationKind &Kind,
3121                                              Expr *Initializer,
3122                                              bool AllowRValues,
3123                                              InitializationSequence &Sequence) {
3124   QualType DestType = Entity.getType();
3125   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3126   QualType T1 = cv1T1.getUnqualifiedType();
3127   QualType cv2T2 = Initializer->getType();
3128   QualType T2 = cv2T2.getUnqualifiedType();
3129 
3130   bool DerivedToBase;
3131   bool ObjCConversion;
3132   bool ObjCLifetimeConversion;
3133   assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),
3134                                          T1, T2, DerivedToBase,
3135                                          ObjCConversion,
3136                                          ObjCLifetimeConversion) &&
3137          "Must have incompatible references when binding via conversion");
3138   (void)DerivedToBase;
3139   (void)ObjCConversion;
3140   (void)ObjCLifetimeConversion;
3141 
3142   // Build the candidate set directly in the initialization sequence
3143   // structure, so that it will persist if we fail.
3144   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3145   CandidateSet.clear();
3146 
3147   // Determine whether we are allowed to call explicit constructors or
3148   // explicit conversion operators.
3149   bool AllowExplicit = Kind.AllowExplicit();
3150   bool AllowExplicitConvs = Kind.allowExplicitConversionFunctions();
3151 
3152   const RecordType *T1RecordType = 0;
3153   if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
3154       !S.RequireCompleteType(Kind.getLocation(), T1, 0)) {
3155     // The type we're converting to is a class type. Enumerate its constructors
3156     // to see if there is a suitable conversion.
3157     CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
3158 
3159     DeclContext::lookup_iterator Con, ConEnd;
3160     llvm::tie(Con, ConEnd) = S.LookupConstructors(T1RecordDecl);
3161     // The container holding the constructors can under certain conditions
3162     // be changed while iterating (e.g. because of deserialization).
3163     // To be safe we copy the lookup results to a new container.
3164     SmallVector<NamedDecl*, 16> Ctors(Con, ConEnd);
3165     for (SmallVector<NamedDecl*, 16>::iterator
3166            CI = Ctors.begin(), CE = Ctors.end(); CI != CE; ++CI) {
3167       NamedDecl *D = *CI;
3168       DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3169 
3170       // Find the constructor (which may be a template).
3171       CXXConstructorDecl *Constructor = 0;
3172       FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
3173       if (ConstructorTmpl)
3174         Constructor = cast<CXXConstructorDecl>(
3175                                          ConstructorTmpl->getTemplatedDecl());
3176       else
3177         Constructor = cast<CXXConstructorDecl>(D);
3178 
3179       if (!Constructor->isInvalidDecl() &&
3180           Constructor->isConvertingConstructor(AllowExplicit)) {
3181         if (ConstructorTmpl)
3182           S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3183                                          /*ExplicitArgs*/ 0,
3184                                          Initializer, CandidateSet,
3185                                          /*SuppressUserConversions=*/true);
3186         else
3187           S.AddOverloadCandidate(Constructor, FoundDecl,
3188                                  Initializer, CandidateSet,
3189                                  /*SuppressUserConversions=*/true);
3190       }
3191     }
3192   }
3193   if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
3194     return OR_No_Viable_Function;
3195 
3196   const RecordType *T2RecordType = 0;
3197   if ((T2RecordType = T2->getAs<RecordType>()) &&
3198       !S.RequireCompleteType(Kind.getLocation(), T2, 0)) {
3199     // The type we're converting from is a class type, enumerate its conversion
3200     // functions.
3201     CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
3202 
3203     const UnresolvedSetImpl *Conversions
3204       = T2RecordDecl->getVisibleConversionFunctions();
3205     for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
3206            E = Conversions->end(); I != E; ++I) {
3207       NamedDecl *D = *I;
3208       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3209       if (isa<UsingShadowDecl>(D))
3210         D = cast<UsingShadowDecl>(D)->getTargetDecl();
3211 
3212       FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3213       CXXConversionDecl *Conv;
3214       if (ConvTemplate)
3215         Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3216       else
3217         Conv = cast<CXXConversionDecl>(D);
3218 
3219       // If the conversion function doesn't return a reference type,
3220       // it can't be considered for this conversion unless we're allowed to
3221       // consider rvalues.
3222       // FIXME: Do we need to make sure that we only consider conversion
3223       // candidates with reference-compatible results? That might be needed to
3224       // break recursion.
3225       if ((AllowExplicitConvs || !Conv->isExplicit()) &&
3226           (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
3227         if (ConvTemplate)
3228           S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3229                                            ActingDC, Initializer,
3230                                            DestType, CandidateSet);
3231         else
3232           S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
3233                                    Initializer, DestType, CandidateSet);
3234       }
3235     }
3236   }
3237   if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
3238     return OR_No_Viable_Function;
3239 
3240   SourceLocation DeclLoc = Initializer->getLocStart();
3241 
3242   // Perform overload resolution. If it fails, return the failed result.
3243   OverloadCandidateSet::iterator Best;
3244   if (OverloadingResult Result
3245         = CandidateSet.BestViableFunction(S, DeclLoc, Best, true))
3246     return Result;
3247 
3248   FunctionDecl *Function = Best->Function;
3249 
3250   // This is the overload that will actually be used for the initialization, so
3251   // mark it as used.
3252   S.MarkFunctionReferenced(DeclLoc, Function);
3253 
3254   // Compute the returned type of the conversion.
3255   if (isa<CXXConversionDecl>(Function))
3256     T2 = Function->getResultType();
3257   else
3258     T2 = cv1T1;
3259 
3260   // Add the user-defined conversion step.
3261   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3262   Sequence.AddUserConversionStep(Function, Best->FoundDecl,
3263                                  T2.getNonLValueExprType(S.Context),
3264                                  HadMultipleCandidates);
3265 
3266   // Determine whether we need to perform derived-to-base or
3267   // cv-qualification adjustments.
3268   ExprValueKind VK = VK_RValue;
3269   if (T2->isLValueReferenceType())
3270     VK = VK_LValue;
3271   else if (const RValueReferenceType *RRef = T2->getAs<RValueReferenceType>())
3272     VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
3273 
3274   bool NewDerivedToBase = false;
3275   bool NewObjCConversion = false;
3276   bool NewObjCLifetimeConversion = false;
3277   Sema::ReferenceCompareResult NewRefRelationship
3278     = S.CompareReferenceRelationship(DeclLoc, T1,
3279                                      T2.getNonLValueExprType(S.Context),
3280                                      NewDerivedToBase, NewObjCConversion,
3281                                      NewObjCLifetimeConversion);
3282   if (NewRefRelationship == Sema::Ref_Incompatible) {
3283     // If the type we've converted to is not reference-related to the
3284     // type we're looking for, then there is another conversion step
3285     // we need to perform to produce a temporary of the right type
3286     // that we'll be binding to.
3287     ImplicitConversionSequence ICS;
3288     ICS.setStandard();
3289     ICS.Standard = Best->FinalConversion;
3290     T2 = ICS.Standard.getToType(2);
3291     Sequence.AddConversionSequenceStep(ICS, T2);
3292   } else if (NewDerivedToBase)
3293     Sequence.AddDerivedToBaseCastStep(
3294                                 S.Context.getQualifiedType(T1,
3295                                   T2.getNonReferenceType().getQualifiers()),
3296                                       VK);
3297   else if (NewObjCConversion)
3298     Sequence.AddObjCObjectConversionStep(
3299                                 S.Context.getQualifiedType(T1,
3300                                   T2.getNonReferenceType().getQualifiers()));
3301 
3302   if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers())
3303     Sequence.AddQualificationConversionStep(cv1T1, VK);
3304 
3305   Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType());
3306   return OR_Success;
3307 }
3308 
3309 static void CheckCXX98CompatAccessibleCopy(Sema &S,
3310                                            const InitializedEntity &Entity,
3311                                            Expr *CurInitExpr);
3312 
3313 /// \brief Attempt reference initialization (C++0x [dcl.init.ref])
3314 static void TryReferenceInitialization(Sema &S,
3315                                        const InitializedEntity &Entity,
3316                                        const InitializationKind &Kind,
3317                                        Expr *Initializer,
3318                                        InitializationSequence &Sequence) {
3319   QualType DestType = Entity.getType();
3320   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3321   Qualifiers T1Quals;
3322   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3323   QualType cv2T2 = Initializer->getType();
3324   Qualifiers T2Quals;
3325   QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3326 
3327   // If the initializer is the address of an overloaded function, try
3328   // to resolve the overloaded function. If all goes well, T2 is the
3329   // type of the resulting function.
3330   if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3331                                                    T1, Sequence))
3332     return;
3333 
3334   // Delegate everything else to a subfunction.
3335   TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3336                                  T1Quals, cv2T2, T2, T2Quals, Sequence);
3337 }
3338 
3339 /// \brief Reference initialization without resolving overloaded functions.
3340 static void TryReferenceInitializationCore(Sema &S,
3341                                            const InitializedEntity &Entity,
3342                                            const InitializationKind &Kind,
3343                                            Expr *Initializer,
3344                                            QualType cv1T1, QualType T1,
3345                                            Qualifiers T1Quals,
3346                                            QualType cv2T2, QualType T2,
3347                                            Qualifiers T2Quals,
3348                                            InitializationSequence &Sequence) {
3349   QualType DestType = Entity.getType();
3350   SourceLocation DeclLoc = Initializer->getLocStart();
3351   // Compute some basic properties of the types and the initializer.
3352   bool isLValueRef = DestType->isLValueReferenceType();
3353   bool isRValueRef = !isLValueRef;
3354   bool DerivedToBase = false;
3355   bool ObjCConversion = false;
3356   bool ObjCLifetimeConversion = false;
3357   Expr::Classification InitCategory = Initializer->Classify(S.Context);
3358   Sema::ReferenceCompareResult RefRelationship
3359     = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
3360                                      ObjCConversion, ObjCLifetimeConversion);
3361 
3362   // C++0x [dcl.init.ref]p5:
3363   //   A reference to type "cv1 T1" is initialized by an expression of type
3364   //   "cv2 T2" as follows:
3365   //
3366   //     - If the reference is an lvalue reference and the initializer
3367   //       expression
3368   // Note the analogous bullet points for rvlaue refs to functions. Because
3369   // there are no function rvalues in C++, rvalue refs to functions are treated
3370   // like lvalue refs.
3371   OverloadingResult ConvOvlResult = OR_Success;
3372   bool T1Function = T1->isFunctionType();
3373   if (isLValueRef || T1Function) {
3374     if (InitCategory.isLValue() &&
3375         (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
3376          (Kind.isCStyleOrFunctionalCast() &&
3377           RefRelationship == Sema::Ref_Related))) {
3378       //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
3379       //     reference-compatible with "cv2 T2," or
3380       //
3381       // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a
3382       // bit-field when we're determining whether the reference initialization
3383       // can occur. However, we do pay attention to whether it is a bit-field
3384       // to decide whether we're actually binding to a temporary created from
3385       // the bit-field.
3386       if (DerivedToBase)
3387         Sequence.AddDerivedToBaseCastStep(
3388                          S.Context.getQualifiedType(T1, T2Quals),
3389                          VK_LValue);
3390       else if (ObjCConversion)
3391         Sequence.AddObjCObjectConversionStep(
3392                                      S.Context.getQualifiedType(T1, T2Quals));
3393 
3394       if (T1Quals != T2Quals)
3395         Sequence.AddQualificationConversionStep(cv1T1, VK_LValue);
3396       bool BindingTemporary = T1Quals.hasConst() && !T1Quals.hasVolatile() &&
3397         (Initializer->getBitField() || Initializer->refersToVectorElement());
3398       Sequence.AddReferenceBindingStep(cv1T1, BindingTemporary);
3399       return;
3400     }
3401 
3402     //     - has a class type (i.e., T2 is a class type), where T1 is not
3403     //       reference-related to T2, and can be implicitly converted to an
3404     //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
3405     //       with "cv3 T3" (this conversion is selected by enumerating the
3406     //       applicable conversion functions (13.3.1.6) and choosing the best
3407     //       one through overload resolution (13.3)),
3408     // If we have an rvalue ref to function type here, the rhs must be
3409     // an rvalue.
3410     if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
3411         (isLValueRef || InitCategory.isRValue())) {
3412       ConvOvlResult = TryRefInitWithConversionFunction(S, Entity, Kind,
3413                                                        Initializer,
3414                                                    /*AllowRValues=*/isRValueRef,
3415                                                        Sequence);
3416       if (ConvOvlResult == OR_Success)
3417         return;
3418       if (ConvOvlResult != OR_No_Viable_Function) {
3419         Sequence.SetOverloadFailure(
3420                       InitializationSequence::FK_ReferenceInitOverloadFailed,
3421                                     ConvOvlResult);
3422       }
3423     }
3424   }
3425 
3426   //     - Otherwise, the reference shall be an lvalue reference to a
3427   //       non-volatile const type (i.e., cv1 shall be const), or the reference
3428   //       shall be an rvalue reference.
3429   if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
3430     if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
3431       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3432     else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
3433       Sequence.SetOverloadFailure(
3434                         InitializationSequence::FK_ReferenceInitOverloadFailed,
3435                                   ConvOvlResult);
3436     else
3437       Sequence.SetFailed(InitCategory.isLValue()
3438         ? (RefRelationship == Sema::Ref_Related
3439              ? InitializationSequence::FK_ReferenceInitDropsQualifiers
3440              : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated)
3441         : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3442 
3443     return;
3444   }
3445 
3446   //    - If the initializer expression
3447   //      - is an xvalue, class prvalue, array prvalue, or function lvalue and
3448   //        "cv1 T1" is reference-compatible with "cv2 T2"
3449   // Note: functions are handled below.
3450   if (!T1Function &&
3451       (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
3452        (Kind.isCStyleOrFunctionalCast() &&
3453         RefRelationship == Sema::Ref_Related)) &&
3454       (InitCategory.isXValue() ||
3455        (InitCategory.isPRValue() && T2->isRecordType()) ||
3456        (InitCategory.isPRValue() && T2->isArrayType()))) {
3457     ExprValueKind ValueKind = InitCategory.isXValue()? VK_XValue : VK_RValue;
3458     if (InitCategory.isPRValue() && T2->isRecordType()) {
3459       // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
3460       // compiler the freedom to perform a copy here or bind to the
3461       // object, while C++0x requires that we bind directly to the
3462       // object. Hence, we always bind to the object without making an
3463       // extra copy. However, in C++03 requires that we check for the
3464       // presence of a suitable copy constructor:
3465       //
3466       //   The constructor that would be used to make the copy shall
3467       //   be callable whether or not the copy is actually done.
3468       if (!S.getLangOpts().CPlusPlus0x && !S.getLangOpts().MicrosoftExt)
3469         Sequence.AddExtraneousCopyToTemporary(cv2T2);
3470       else if (S.getLangOpts().CPlusPlus0x)
3471         CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
3472     }
3473 
3474     if (DerivedToBase)
3475       Sequence.AddDerivedToBaseCastStep(S.Context.getQualifiedType(T1, T2Quals),
3476                                         ValueKind);
3477     else if (ObjCConversion)
3478       Sequence.AddObjCObjectConversionStep(
3479                                        S.Context.getQualifiedType(T1, T2Quals));
3480 
3481     if (T1Quals != T2Quals)
3482       Sequence.AddQualificationConversionStep(cv1T1, ValueKind);
3483     Sequence.AddReferenceBindingStep(cv1T1,
3484                                  /*bindingTemporary=*/InitCategory.isPRValue());
3485     return;
3486   }
3487 
3488   //       - has a class type (i.e., T2 is a class type), where T1 is not
3489   //         reference-related to T2, and can be implicitly converted to an
3490   //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
3491   //         where "cv1 T1" is reference-compatible with "cv3 T3",
3492   if (T2->isRecordType()) {
3493     if (RefRelationship == Sema::Ref_Incompatible) {
3494       ConvOvlResult = TryRefInitWithConversionFunction(S, Entity,
3495                                                        Kind, Initializer,
3496                                                        /*AllowRValues=*/true,
3497                                                        Sequence);
3498       if (ConvOvlResult)
3499         Sequence.SetOverloadFailure(
3500                       InitializationSequence::FK_ReferenceInitOverloadFailed,
3501                                     ConvOvlResult);
3502 
3503       return;
3504     }
3505 
3506     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
3507     return;
3508   }
3509 
3510   //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
3511   //        from the initializer expression using the rules for a non-reference
3512   //        copy initialization (8.5). The reference is then bound to the
3513   //        temporary. [...]
3514 
3515   // Determine whether we are allowed to call explicit constructors or
3516   // explicit conversion operators.
3517   bool AllowExplicit = Kind.AllowExplicit();
3518 
3519   InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3520 
3521   ImplicitConversionSequence ICS
3522     = S.TryImplicitConversion(Initializer, TempEntity.getType(),
3523                               /*SuppressUserConversions*/ false,
3524                               AllowExplicit,
3525                               /*FIXME:InOverloadResolution=*/false,
3526                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
3527                               /*AllowObjCWritebackConversion=*/false);
3528 
3529   if (ICS.isBad()) {
3530     // FIXME: Use the conversion function set stored in ICS to turn
3531     // this into an overloading ambiguity diagnostic. However, we need
3532     // to keep that set as an OverloadCandidateSet rather than as some
3533     // other kind of set.
3534     if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
3535       Sequence.SetOverloadFailure(
3536                         InitializationSequence::FK_ReferenceInitOverloadFailed,
3537                                   ConvOvlResult);
3538     else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
3539       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3540     else
3541       Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
3542     return;
3543   } else {
3544     Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
3545   }
3546 
3547   //        [...] If T1 is reference-related to T2, cv1 must be the
3548   //        same cv-qualification as, or greater cv-qualification
3549   //        than, cv2; otherwise, the program is ill-formed.
3550   unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
3551   unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
3552   if (RefRelationship == Sema::Ref_Related &&
3553       (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
3554     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
3555     return;
3556   }
3557 
3558   //   [...] If T1 is reference-related to T2 and the reference is an rvalue
3559   //   reference, the initializer expression shall not be an lvalue.
3560   if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
3561       InitCategory.isLValue()) {
3562     Sequence.SetFailed(
3563                     InitializationSequence::FK_RValueReferenceBindingToLValue);
3564     return;
3565   }
3566 
3567   Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3568   return;
3569 }
3570 
3571 /// \brief Attempt character array initialization from a string literal
3572 /// (C++ [dcl.init.string], C99 6.7.8).
3573 static void TryStringLiteralInitialization(Sema &S,
3574                                            const InitializedEntity &Entity,
3575                                            const InitializationKind &Kind,
3576                                            Expr *Initializer,
3577                                        InitializationSequence &Sequence) {
3578   Sequence.AddStringInitStep(Entity.getType());
3579 }
3580 
3581 /// \brief Attempt value initialization (C++ [dcl.init]p7).
3582 static void TryValueInitialization(Sema &S,
3583                                    const InitializedEntity &Entity,
3584                                    const InitializationKind &Kind,
3585                                    InitializationSequence &Sequence,
3586                                    InitListExpr *InitList) {
3587   assert((!InitList || InitList->getNumInits() == 0) &&
3588          "Shouldn't use value-init for non-empty init lists");
3589 
3590   // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
3591   //
3592   //   To value-initialize an object of type T means:
3593   QualType T = Entity.getType();
3594 
3595   //     -- if T is an array type, then each element is value-initialized;
3596   T = S.Context.getBaseElementType(T);
3597 
3598   if (const RecordType *RT = T->getAs<RecordType>()) {
3599     if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3600       bool NeedZeroInitialization = true;
3601       if (!S.getLangOpts().CPlusPlus0x) {
3602         // C++98:
3603         // -- if T is a class type (clause 9) with a user-declared constructor
3604         //    (12.1), then the default constructor for T is called (and the
3605         //    initialization is ill-formed if T has no accessible default
3606         //    constructor);
3607         if (ClassDecl->hasUserDeclaredConstructor())
3608           NeedZeroInitialization = false;
3609       } else {
3610         // C++11:
3611         // -- if T is a class type (clause 9) with either no default constructor
3612         //    (12.1 [class.ctor]) or a default constructor that is user-provided
3613         //    or deleted, then the object is default-initialized;
3614         CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
3615         if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
3616           NeedZeroInitialization = false;
3617       }
3618 
3619       // -- if T is a (possibly cv-qualified) non-union class type without a
3620       //    user-provided or deleted default constructor, then the object is
3621       //    zero-initialized and, if T has a non-trivial default constructor,
3622       //    default-initialized;
3623       // The 'non-union' here was removed by DR1502. The 'non-trivial default
3624       // constructor' part was removed by DR1507.
3625       if (NeedZeroInitialization)
3626         Sequence.AddZeroInitializationStep(Entity.getType());
3627 
3628       // If this is list-value-initialization, pass the empty init list on when
3629       // building the constructor call. This affects the semantics of a few
3630       // things (such as whether an explicit default constructor can be called).
3631       Expr *InitListAsExpr = InitList;
3632       Expr **Args = InitList ? &InitListAsExpr : 0;
3633       unsigned NumArgs = InitList ? 1 : 0;
3634       bool InitListSyntax = InitList;
3635 
3636       return TryConstructorInitialization(S, Entity, Kind, Args, NumArgs, T,
3637                                           Sequence, InitListSyntax);
3638     }
3639   }
3640 
3641   Sequence.AddZeroInitializationStep(Entity.getType());
3642 }
3643 
3644 /// \brief Attempt default initialization (C++ [dcl.init]p6).
3645 static void TryDefaultInitialization(Sema &S,
3646                                      const InitializedEntity &Entity,
3647                                      const InitializationKind &Kind,
3648                                      InitializationSequence &Sequence) {
3649   assert(Kind.getKind() == InitializationKind::IK_Default);
3650 
3651   // C++ [dcl.init]p6:
3652   //   To default-initialize an object of type T means:
3653   //     - if T is an array type, each element is default-initialized;
3654   QualType DestType = S.Context.getBaseElementType(Entity.getType());
3655 
3656   //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
3657   //       constructor for T is called (and the initialization is ill-formed if
3658   //       T has no accessible default constructor);
3659   if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
3660     TryConstructorInitialization(S, Entity, Kind, 0, 0, DestType, Sequence);
3661     return;
3662   }
3663 
3664   //     - otherwise, no initialization is performed.
3665 
3666   //   If a program calls for the default initialization of an object of
3667   //   a const-qualified type T, T shall be a class type with a user-provided
3668   //   default constructor.
3669   if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
3670     Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3671     return;
3672   }
3673 
3674   // If the destination type has a lifetime property, zero-initialize it.
3675   if (DestType.getQualifiers().hasObjCLifetime()) {
3676     Sequence.AddZeroInitializationStep(Entity.getType());
3677     return;
3678   }
3679 }
3680 
3681 /// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
3682 /// which enumerates all conversion functions and performs overload resolution
3683 /// to select the best.
3684 static void TryUserDefinedConversion(Sema &S,
3685                                      const InitializedEntity &Entity,
3686                                      const InitializationKind &Kind,
3687                                      Expr *Initializer,
3688                                      InitializationSequence &Sequence) {
3689   QualType DestType = Entity.getType();
3690   assert(!DestType->isReferenceType() && "References are handled elsewhere");
3691   QualType SourceType = Initializer->getType();
3692   assert((DestType->isRecordType() || SourceType->isRecordType()) &&
3693          "Must have a class type to perform a user-defined conversion");
3694 
3695   // Build the candidate set directly in the initialization sequence
3696   // structure, so that it will persist if we fail.
3697   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3698   CandidateSet.clear();
3699 
3700   // Determine whether we are allowed to call explicit constructors or
3701   // explicit conversion operators.
3702   bool AllowExplicit = Kind.AllowExplicit();
3703 
3704   if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
3705     // The type we're converting to is a class type. Enumerate its constructors
3706     // to see if there is a suitable conversion.
3707     CXXRecordDecl *DestRecordDecl
3708       = cast<CXXRecordDecl>(DestRecordType->getDecl());
3709 
3710     // Try to complete the type we're converting to.
3711     if (!S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
3712       DeclContext::lookup_iterator ConOrig, ConEndOrig;
3713       llvm::tie(ConOrig, ConEndOrig) = S.LookupConstructors(DestRecordDecl);
3714       // The container holding the constructors can under certain conditions
3715       // be changed while iterating. To be safe we copy the lookup results
3716       // to a new container.
3717       SmallVector<NamedDecl*, 8> CopyOfCon(ConOrig, ConEndOrig);
3718       for (SmallVector<NamedDecl*, 8>::iterator
3719              Con = CopyOfCon.begin(), ConEnd = CopyOfCon.end();
3720            Con != ConEnd; ++Con) {
3721         NamedDecl *D = *Con;
3722         DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3723 
3724         // Find the constructor (which may be a template).
3725         CXXConstructorDecl *Constructor = 0;
3726         FunctionTemplateDecl *ConstructorTmpl
3727           = dyn_cast<FunctionTemplateDecl>(D);
3728         if (ConstructorTmpl)
3729           Constructor = cast<CXXConstructorDecl>(
3730                                            ConstructorTmpl->getTemplatedDecl());
3731         else
3732           Constructor = cast<CXXConstructorDecl>(D);
3733 
3734         if (!Constructor->isInvalidDecl() &&
3735             Constructor->isConvertingConstructor(AllowExplicit)) {
3736           if (ConstructorTmpl)
3737             S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3738                                            /*ExplicitArgs*/ 0,
3739                                            Initializer, CandidateSet,
3740                                            /*SuppressUserConversions=*/true);
3741           else
3742             S.AddOverloadCandidate(Constructor, FoundDecl,
3743                                    Initializer, CandidateSet,
3744                                    /*SuppressUserConversions=*/true);
3745         }
3746       }
3747     }
3748   }
3749 
3750   SourceLocation DeclLoc = Initializer->getLocStart();
3751 
3752   if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
3753     // The type we're converting from is a class type, enumerate its conversion
3754     // functions.
3755 
3756     // We can only enumerate the conversion functions for a complete type; if
3757     // the type isn't complete, simply skip this step.
3758     if (!S.RequireCompleteType(DeclLoc, SourceType, 0)) {
3759       CXXRecordDecl *SourceRecordDecl
3760         = cast<CXXRecordDecl>(SourceRecordType->getDecl());
3761 
3762       const UnresolvedSetImpl *Conversions
3763         = SourceRecordDecl->getVisibleConversionFunctions();
3764       for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
3765            E = Conversions->end();
3766            I != E; ++I) {
3767         NamedDecl *D = *I;
3768         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3769         if (isa<UsingShadowDecl>(D))
3770           D = cast<UsingShadowDecl>(D)->getTargetDecl();
3771 
3772         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3773         CXXConversionDecl *Conv;
3774         if (ConvTemplate)
3775           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3776         else
3777           Conv = cast<CXXConversionDecl>(D);
3778 
3779         if (AllowExplicit || !Conv->isExplicit()) {
3780           if (ConvTemplate)
3781             S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3782                                              ActingDC, Initializer, DestType,
3783                                              CandidateSet);
3784           else
3785             S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
3786                                      Initializer, DestType, CandidateSet);
3787         }
3788       }
3789     }
3790   }
3791 
3792   // Perform overload resolution. If it fails, return the failed result.
3793   OverloadCandidateSet::iterator Best;
3794   if (OverloadingResult Result
3795         = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
3796     Sequence.SetOverloadFailure(
3797                         InitializationSequence::FK_UserConversionOverloadFailed,
3798                                 Result);
3799     return;
3800   }
3801 
3802   FunctionDecl *Function = Best->Function;
3803   S.MarkFunctionReferenced(DeclLoc, Function);
3804   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3805 
3806   if (isa<CXXConstructorDecl>(Function)) {
3807     // Add the user-defined conversion step. Any cv-qualification conversion is
3808     // subsumed by the initialization. Per DR5, the created temporary is of the
3809     // cv-unqualified type of the destination.
3810     Sequence.AddUserConversionStep(Function, Best->FoundDecl,
3811                                    DestType.getUnqualifiedType(),
3812                                    HadMultipleCandidates);
3813     return;
3814   }
3815 
3816   // Add the user-defined conversion step that calls the conversion function.
3817   QualType ConvType = Function->getCallResultType();
3818   if (ConvType->getAs<RecordType>()) {
3819     // If we're converting to a class type, there may be an copy of
3820     // the resulting temporary object (possible to create an object of
3821     // a base class type). That copy is not a separate conversion, so
3822     // we just make a note of the actual destination type (possibly a
3823     // base class of the type returned by the conversion function) and
3824     // let the user-defined conversion step handle the conversion.
3825     Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType,
3826                                    HadMultipleCandidates);
3827     return;
3828   }
3829 
3830   Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
3831                                  HadMultipleCandidates);
3832 
3833   // If the conversion following the call to the conversion function
3834   // is interesting, add it as a separate step.
3835   if (Best->FinalConversion.First || Best->FinalConversion.Second ||
3836       Best->FinalConversion.Third) {
3837     ImplicitConversionSequence ICS;
3838     ICS.setStandard();
3839     ICS.Standard = Best->FinalConversion;
3840     Sequence.AddConversionSequenceStep(ICS, DestType);
3841   }
3842 }
3843 
3844 /// The non-zero enum values here are indexes into diagnostic alternatives.
3845 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
3846 
3847 /// Determines whether this expression is an acceptable ICR source.
3848 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
3849                                          bool isAddressOf) {
3850   // Skip parens.
3851   e = e->IgnoreParens();
3852 
3853   // Skip address-of nodes.
3854   if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
3855     if (op->getOpcode() == UO_AddrOf)
3856       return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true);
3857 
3858   // Skip certain casts.
3859   } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
3860     switch (ce->getCastKind()) {
3861     case CK_Dependent:
3862     case CK_BitCast:
3863     case CK_LValueBitCast:
3864     case CK_NoOp:
3865       return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf);
3866 
3867     case CK_ArrayToPointerDecay:
3868       return IIK_nonscalar;
3869 
3870     case CK_NullToPointer:
3871       return IIK_okay;
3872 
3873     default:
3874       break;
3875     }
3876 
3877   // If we have a declaration reference, it had better be a local variable.
3878   } else if (isa<DeclRefExpr>(e)) {
3879     if (!isAddressOf) return IIK_nonlocal;
3880 
3881     VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
3882     if (!var) return IIK_nonlocal;
3883 
3884     return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
3885 
3886   // If we have a conditional operator, check both sides.
3887   } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
3888     if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf))
3889       return iik;
3890 
3891     return isInvalidICRSource(C, cond->getRHS(), isAddressOf);
3892 
3893   // These are never scalar.
3894   } else if (isa<ArraySubscriptExpr>(e)) {
3895     return IIK_nonscalar;
3896 
3897   // Otherwise, it needs to be a null pointer constant.
3898   } else {
3899     return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
3900             ? IIK_okay : IIK_nonlocal);
3901   }
3902 
3903   return IIK_nonlocal;
3904 }
3905 
3906 /// Check whether the given expression is a valid operand for an
3907 /// indirect copy/restore.
3908 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
3909   assert(src->isRValue());
3910 
3911   InvalidICRKind iik = isInvalidICRSource(S.Context, src, false);
3912   if (iik == IIK_okay) return;
3913 
3914   S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
3915     << ((unsigned) iik - 1)  // shift index into diagnostic explanations
3916     << src->getSourceRange();
3917 }
3918 
3919 /// \brief Determine whether we have compatible array types for the
3920 /// purposes of GNU by-copy array initialization.
3921 static bool hasCompatibleArrayTypes(ASTContext &Context,
3922                                     const ArrayType *Dest,
3923                                     const ArrayType *Source) {
3924   // If the source and destination array types are equivalent, we're
3925   // done.
3926   if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
3927     return true;
3928 
3929   // Make sure that the element types are the same.
3930   if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
3931     return false;
3932 
3933   // The only mismatch we allow is when the destination is an
3934   // incomplete array type and the source is a constant array type.
3935   return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
3936 }
3937 
3938 static bool tryObjCWritebackConversion(Sema &S,
3939                                        InitializationSequence &Sequence,
3940                                        const InitializedEntity &Entity,
3941                                        Expr *Initializer) {
3942   bool ArrayDecay = false;
3943   QualType ArgType = Initializer->getType();
3944   QualType ArgPointee;
3945   if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
3946     ArrayDecay = true;
3947     ArgPointee = ArgArrayType->getElementType();
3948     ArgType = S.Context.getPointerType(ArgPointee);
3949   }
3950 
3951   // Handle write-back conversion.
3952   QualType ConvertedArgType;
3953   if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
3954                                    ConvertedArgType))
3955     return false;
3956 
3957   // We should copy unless we're passing to an argument explicitly
3958   // marked 'out'.
3959   bool ShouldCopy = true;
3960   if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
3961     ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
3962 
3963   // Do we need an lvalue conversion?
3964   if (ArrayDecay || Initializer->isGLValue()) {
3965     ImplicitConversionSequence ICS;
3966     ICS.setStandard();
3967     ICS.Standard.setAsIdentityConversion();
3968 
3969     QualType ResultType;
3970     if (ArrayDecay) {
3971       ICS.Standard.First = ICK_Array_To_Pointer;
3972       ResultType = S.Context.getPointerType(ArgPointee);
3973     } else {
3974       ICS.Standard.First = ICK_Lvalue_To_Rvalue;
3975       ResultType = Initializer->getType().getNonLValueExprType(S.Context);
3976     }
3977 
3978     Sequence.AddConversionSequenceStep(ICS, ResultType);
3979   }
3980 
3981   Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
3982   return true;
3983 }
3984 
3985 InitializationSequence::InitializationSequence(Sema &S,
3986                                                const InitializedEntity &Entity,
3987                                                const InitializationKind &Kind,
3988                                                Expr **Args,
3989                                                unsigned NumArgs)
3990     : FailedCandidateSet(Kind.getLocation()) {
3991   ASTContext &Context = S.Context;
3992 
3993   // C++0x [dcl.init]p16:
3994   //   The semantics of initializers are as follows. The destination type is
3995   //   the type of the object or reference being initialized and the source
3996   //   type is the type of the initializer expression. The source type is not
3997   //   defined when the initializer is a braced-init-list or when it is a
3998   //   parenthesized list of expressions.
3999   QualType DestType = Entity.getType();
4000 
4001   if (DestType->isDependentType() ||
4002       Expr::hasAnyTypeDependentArguments(llvm::makeArrayRef(Args, NumArgs))) {
4003     SequenceKind = DependentSequence;
4004     return;
4005   }
4006 
4007   // Almost everything is a normal sequence.
4008   setSequenceKind(NormalSequence);
4009 
4010   for (unsigned I = 0; I != NumArgs; ++I)
4011     if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
4012       // FIXME: should we be doing this here?
4013       ExprResult result = S.CheckPlaceholderExpr(Args[I]);
4014       if (result.isInvalid()) {
4015         SetFailed(FK_PlaceholderType);
4016         return;
4017       }
4018       Args[I] = result.take();
4019     }
4020 
4021 
4022   QualType SourceType;
4023   Expr *Initializer = 0;
4024   if (NumArgs == 1) {
4025     Initializer = Args[0];
4026     if (!isa<InitListExpr>(Initializer))
4027       SourceType = Initializer->getType();
4028   }
4029 
4030   //     - If the initializer is a (non-parenthesized) braced-init-list, the
4031   //       object is list-initialized (8.5.4).
4032   if (Kind.getKind() != InitializationKind::IK_Direct) {
4033     if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
4034       TryListInitialization(S, Entity, Kind, InitList, *this);
4035       return;
4036     }
4037   }
4038 
4039   //     - If the destination type is a reference type, see 8.5.3.
4040   if (DestType->isReferenceType()) {
4041     // C++0x [dcl.init.ref]p1:
4042     //   A variable declared to be a T& or T&&, that is, "reference to type T"
4043     //   (8.3.2), shall be initialized by an object, or function, of type T or
4044     //   by an object that can be converted into a T.
4045     // (Therefore, multiple arguments are not permitted.)
4046     if (NumArgs != 1)
4047       SetFailed(FK_TooManyInitsForReference);
4048     else
4049       TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
4050     return;
4051   }
4052 
4053   //     - If the initializer is (), the object is value-initialized.
4054   if (Kind.getKind() == InitializationKind::IK_Value ||
4055       (Kind.getKind() == InitializationKind::IK_Direct && NumArgs == 0)) {
4056     TryValueInitialization(S, Entity, Kind, *this);
4057     return;
4058   }
4059 
4060   // Handle default initialization.
4061   if (Kind.getKind() == InitializationKind::IK_Default) {
4062     TryDefaultInitialization(S, Entity, Kind, *this);
4063     return;
4064   }
4065 
4066   //     - If the destination type is an array of characters, an array of
4067   //       char16_t, an array of char32_t, or an array of wchar_t, and the
4068   //       initializer is a string literal, see 8.5.2.
4069   //     - Otherwise, if the destination type is an array, the program is
4070   //       ill-formed.
4071   if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
4072     if (Initializer && isa<VariableArrayType>(DestAT)) {
4073       SetFailed(FK_VariableLengthArrayHasInitializer);
4074       return;
4075     }
4076 
4077     if (Initializer && IsStringInit(Initializer, DestAT, Context)) {
4078       TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
4079       return;
4080     }
4081 
4082     // Note: as an GNU C extension, we allow initialization of an
4083     // array from a compound literal that creates an array of the same
4084     // type, so long as the initializer has no side effects.
4085     if (!S.getLangOpts().CPlusPlus && Initializer &&
4086         isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
4087         Initializer->getType()->isArrayType()) {
4088       const ArrayType *SourceAT
4089         = Context.getAsArrayType(Initializer->getType());
4090       if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
4091         SetFailed(FK_ArrayTypeMismatch);
4092       else if (Initializer->HasSideEffects(S.Context))
4093         SetFailed(FK_NonConstantArrayInit);
4094       else {
4095         AddArrayInitStep(DestType);
4096       }
4097     }
4098     // Note: as a GNU C++ extension, we allow list-initialization of a
4099     // class member of array type from a parenthesized initializer list.
4100     else if (S.getLangOpts().CPlusPlus &&
4101              Entity.getKind() == InitializedEntity::EK_Member &&
4102              Initializer && isa<InitListExpr>(Initializer)) {
4103       TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
4104                             *this);
4105       AddParenthesizedArrayInitStep(DestType);
4106     } else if (DestAT->getElementType()->isAnyCharacterType())
4107       SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
4108     else
4109       SetFailed(FK_ArrayNeedsInitList);
4110 
4111     return;
4112   }
4113 
4114   // Determine whether we should consider writeback conversions for
4115   // Objective-C ARC.
4116   bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
4117     Entity.getKind() == InitializedEntity::EK_Parameter;
4118 
4119   // We're at the end of the line for C: it's either a write-back conversion
4120   // or it's a C assignment. There's no need to check anything else.
4121   if (!S.getLangOpts().CPlusPlus) {
4122     // If allowed, check whether this is an Objective-C writeback conversion.
4123     if (allowObjCWritebackConversion &&
4124         tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
4125       return;
4126     }
4127 
4128     // Handle initialization in C
4129     AddCAssignmentStep(DestType);
4130     MaybeProduceObjCObject(S, *this, Entity);
4131     return;
4132   }
4133 
4134   assert(S.getLangOpts().CPlusPlus);
4135 
4136   //     - If the destination type is a (possibly cv-qualified) class type:
4137   if (DestType->isRecordType()) {
4138     //     - If the initialization is direct-initialization, or if it is
4139     //       copy-initialization where the cv-unqualified version of the
4140     //       source type is the same class as, or a derived class of, the
4141     //       class of the destination, constructors are considered. [...]
4142     if (Kind.getKind() == InitializationKind::IK_Direct ||
4143         (Kind.getKind() == InitializationKind::IK_Copy &&
4144          (Context.hasSameUnqualifiedType(SourceType, DestType) ||
4145           S.IsDerivedFrom(SourceType, DestType))))
4146       TryConstructorInitialization(S, Entity, Kind, Args, NumArgs,
4147                                    Entity.getType(), *this);
4148     //     - Otherwise (i.e., for the remaining copy-initialization cases),
4149     //       user-defined conversion sequences that can convert from the source
4150     //       type to the destination type or (when a conversion function is
4151     //       used) to a derived class thereof are enumerated as described in
4152     //       13.3.1.4, and the best one is chosen through overload resolution
4153     //       (13.3).
4154     else
4155       TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
4156     return;
4157   }
4158 
4159   if (NumArgs > 1) {
4160     SetFailed(FK_TooManyInitsForScalar);
4161     return;
4162   }
4163   assert(NumArgs == 1 && "Zero-argument case handled above");
4164 
4165   //    - Otherwise, if the source type is a (possibly cv-qualified) class
4166   //      type, conversion functions are considered.
4167   if (!SourceType.isNull() && SourceType->isRecordType()) {
4168     TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
4169     MaybeProduceObjCObject(S, *this, Entity);
4170     return;
4171   }
4172 
4173   //    - Otherwise, the initial value of the object being initialized is the
4174   //      (possibly converted) value of the initializer expression. Standard
4175   //      conversions (Clause 4) will be used, if necessary, to convert the
4176   //      initializer expression to the cv-unqualified version of the
4177   //      destination type; no user-defined conversions are considered.
4178 
4179   ImplicitConversionSequence ICS
4180     = S.TryImplicitConversion(Initializer, Entity.getType(),
4181                               /*SuppressUserConversions*/true,
4182                               /*AllowExplicitConversions*/ false,
4183                               /*InOverloadResolution*/ false,
4184                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
4185                               allowObjCWritebackConversion);
4186 
4187   if (ICS.isStandard() &&
4188       ICS.Standard.Second == ICK_Writeback_Conversion) {
4189     // Objective-C ARC writeback conversion.
4190 
4191     // We should copy unless we're passing to an argument explicitly
4192     // marked 'out'.
4193     bool ShouldCopy = true;
4194     if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
4195       ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
4196 
4197     // If there was an lvalue adjustment, add it as a separate conversion.
4198     if (ICS.Standard.First == ICK_Array_To_Pointer ||
4199         ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
4200       ImplicitConversionSequence LvalueICS;
4201       LvalueICS.setStandard();
4202       LvalueICS.Standard.setAsIdentityConversion();
4203       LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
4204       LvalueICS.Standard.First = ICS.Standard.First;
4205       AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
4206     }
4207 
4208     AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
4209   } else if (ICS.isBad()) {
4210     DeclAccessPair dap;
4211     if (Initializer->getType() == Context.OverloadTy &&
4212           !S.ResolveAddressOfOverloadedFunction(Initializer
4213                       , DestType, false, dap))
4214       SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4215     else
4216       SetFailed(InitializationSequence::FK_ConversionFailed);
4217   } else {
4218     AddConversionSequenceStep(ICS, Entity.getType());
4219 
4220     MaybeProduceObjCObject(S, *this, Entity);
4221   }
4222 }
4223 
4224 InitializationSequence::~InitializationSequence() {
4225   for (SmallVectorImpl<Step>::iterator Step = Steps.begin(),
4226                                           StepEnd = Steps.end();
4227        Step != StepEnd; ++Step)
4228     Step->Destroy();
4229 }
4230 
4231 //===----------------------------------------------------------------------===//
4232 // Perform initialization
4233 //===----------------------------------------------------------------------===//
4234 static Sema::AssignmentAction
4235 getAssignmentAction(const InitializedEntity &Entity) {
4236   switch(Entity.getKind()) {
4237   case InitializedEntity::EK_Variable:
4238   case InitializedEntity::EK_New:
4239   case InitializedEntity::EK_Exception:
4240   case InitializedEntity::EK_Base:
4241   case InitializedEntity::EK_Delegating:
4242     return Sema::AA_Initializing;
4243 
4244   case InitializedEntity::EK_Parameter:
4245     if (Entity.getDecl() &&
4246         isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
4247       return Sema::AA_Sending;
4248 
4249     return Sema::AA_Passing;
4250 
4251   case InitializedEntity::EK_Result:
4252     return Sema::AA_Returning;
4253 
4254   case InitializedEntity::EK_Temporary:
4255     // FIXME: Can we tell apart casting vs. converting?
4256     return Sema::AA_Casting;
4257 
4258   case InitializedEntity::EK_Member:
4259   case InitializedEntity::EK_ArrayElement:
4260   case InitializedEntity::EK_VectorElement:
4261   case InitializedEntity::EK_ComplexElement:
4262   case InitializedEntity::EK_BlockElement:
4263   case InitializedEntity::EK_LambdaCapture:
4264     return Sema::AA_Initializing;
4265   }
4266 
4267   llvm_unreachable("Invalid EntityKind!");
4268 }
4269 
4270 /// \brief Whether we should binding a created object as a temporary when
4271 /// initializing the given entity.
4272 static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
4273   switch (Entity.getKind()) {
4274   case InitializedEntity::EK_ArrayElement:
4275   case InitializedEntity::EK_Member:
4276   case InitializedEntity::EK_Result:
4277   case InitializedEntity::EK_New:
4278   case InitializedEntity::EK_Variable:
4279   case InitializedEntity::EK_Base:
4280   case InitializedEntity::EK_Delegating:
4281   case InitializedEntity::EK_VectorElement:
4282   case InitializedEntity::EK_ComplexElement:
4283   case InitializedEntity::EK_Exception:
4284   case InitializedEntity::EK_BlockElement:
4285   case InitializedEntity::EK_LambdaCapture:
4286     return false;
4287 
4288   case InitializedEntity::EK_Parameter:
4289   case InitializedEntity::EK_Temporary:
4290     return true;
4291   }
4292 
4293   llvm_unreachable("missed an InitializedEntity kind?");
4294 }
4295 
4296 /// \brief Whether the given entity, when initialized with an object
4297 /// created for that initialization, requires destruction.
4298 static bool shouldDestroyTemporary(const InitializedEntity &Entity) {
4299   switch (Entity.getKind()) {
4300     case InitializedEntity::EK_Member:
4301     case InitializedEntity::EK_Result:
4302     case InitializedEntity::EK_New:
4303     case InitializedEntity::EK_Base:
4304     case InitializedEntity::EK_Delegating:
4305     case InitializedEntity::EK_VectorElement:
4306     case InitializedEntity::EK_ComplexElement:
4307     case InitializedEntity::EK_BlockElement:
4308     case InitializedEntity::EK_LambdaCapture:
4309       return false;
4310 
4311     case InitializedEntity::EK_Variable:
4312     case InitializedEntity::EK_Parameter:
4313     case InitializedEntity::EK_Temporary:
4314     case InitializedEntity::EK_ArrayElement:
4315     case InitializedEntity::EK_Exception:
4316       return true;
4317   }
4318 
4319   llvm_unreachable("missed an InitializedEntity kind?");
4320 }
4321 
4322 /// \brief Look for copy and move constructors and constructor templates, for
4323 /// copying an object via direct-initialization (per C++11 [dcl.init]p16).
4324 static void LookupCopyAndMoveConstructors(Sema &S,
4325                                           OverloadCandidateSet &CandidateSet,
4326                                           CXXRecordDecl *Class,
4327                                           Expr *CurInitExpr) {
4328   DeclContext::lookup_iterator Con, ConEnd;
4329   llvm::tie(Con, ConEnd) = S.LookupConstructors(Class);
4330   // The container holding the constructors can under certain conditions
4331   // be changed while iterating (e.g. because of deserialization).
4332   // To be safe we copy the lookup results to a new container.
4333   SmallVector<NamedDecl*, 16> Ctors(Con, ConEnd);
4334   for (SmallVector<NamedDecl*, 16>::iterator
4335          CI = Ctors.begin(), CE = Ctors.end(); CI != CE; ++CI) {
4336     NamedDecl *D = *CI;
4337     CXXConstructorDecl *Constructor = 0;
4338 
4339     if ((Constructor = dyn_cast<CXXConstructorDecl>(D))) {
4340       // Handle copy/moveconstructors, only.
4341       if (!Constructor || Constructor->isInvalidDecl() ||
4342           !Constructor->isCopyOrMoveConstructor() ||
4343           !Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
4344         continue;
4345 
4346       DeclAccessPair FoundDecl
4347         = DeclAccessPair::make(Constructor, Constructor->getAccess());
4348       S.AddOverloadCandidate(Constructor, FoundDecl,
4349                              CurInitExpr, CandidateSet);
4350       continue;
4351     }
4352 
4353     // Handle constructor templates.
4354     FunctionTemplateDecl *ConstructorTmpl = cast<FunctionTemplateDecl>(D);
4355     if (ConstructorTmpl->isInvalidDecl())
4356       continue;
4357 
4358     Constructor = cast<CXXConstructorDecl>(
4359                                          ConstructorTmpl->getTemplatedDecl());
4360     if (!Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
4361       continue;
4362 
4363     // FIXME: Do we need to limit this to copy-constructor-like
4364     // candidates?
4365     DeclAccessPair FoundDecl
4366       = DeclAccessPair::make(ConstructorTmpl, ConstructorTmpl->getAccess());
4367     S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 0,
4368                                    CurInitExpr, CandidateSet, true);
4369   }
4370 }
4371 
4372 /// \brief Get the location at which initialization diagnostics should appear.
4373 static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
4374                                            Expr *Initializer) {
4375   switch (Entity.getKind()) {
4376   case InitializedEntity::EK_Result:
4377     return Entity.getReturnLoc();
4378 
4379   case InitializedEntity::EK_Exception:
4380     return Entity.getThrowLoc();
4381 
4382   case InitializedEntity::EK_Variable:
4383     return Entity.getDecl()->getLocation();
4384 
4385   case InitializedEntity::EK_LambdaCapture:
4386     return Entity.getCaptureLoc();
4387 
4388   case InitializedEntity::EK_ArrayElement:
4389   case InitializedEntity::EK_Member:
4390   case InitializedEntity::EK_Parameter:
4391   case InitializedEntity::EK_Temporary:
4392   case InitializedEntity::EK_New:
4393   case InitializedEntity::EK_Base:
4394   case InitializedEntity::EK_Delegating:
4395   case InitializedEntity::EK_VectorElement:
4396   case InitializedEntity::EK_ComplexElement:
4397   case InitializedEntity::EK_BlockElement:
4398     return Initializer->getLocStart();
4399   }
4400   llvm_unreachable("missed an InitializedEntity kind?");
4401 }
4402 
4403 /// \brief Make a (potentially elidable) temporary copy of the object
4404 /// provided by the given initializer by calling the appropriate copy
4405 /// constructor.
4406 ///
4407 /// \param S The Sema object used for type-checking.
4408 ///
4409 /// \param T The type of the temporary object, which must either be
4410 /// the type of the initializer expression or a superclass thereof.
4411 ///
4412 /// \param Entity The entity being initialized.
4413 ///
4414 /// \param CurInit The initializer expression.
4415 ///
4416 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that
4417 /// is permitted in C++03 (but not C++0x) when binding a reference to
4418 /// an rvalue.
4419 ///
4420 /// \returns An expression that copies the initializer expression into
4421 /// a temporary object, or an error expression if a copy could not be
4422 /// created.
4423 static ExprResult CopyObject(Sema &S,
4424                              QualType T,
4425                              const InitializedEntity &Entity,
4426                              ExprResult CurInit,
4427                              bool IsExtraneousCopy) {
4428   // Determine which class type we're copying to.
4429   Expr *CurInitExpr = (Expr *)CurInit.get();
4430   CXXRecordDecl *Class = 0;
4431   if (const RecordType *Record = T->getAs<RecordType>())
4432     Class = cast<CXXRecordDecl>(Record->getDecl());
4433   if (!Class)
4434     return CurInit;
4435 
4436   // C++0x [class.copy]p32:
4437   //   When certain criteria are met, an implementation is allowed to
4438   //   omit the copy/move construction of a class object, even if the
4439   //   copy/move constructor and/or destructor for the object have
4440   //   side effects. [...]
4441   //     - when a temporary class object that has not been bound to a
4442   //       reference (12.2) would be copied/moved to a class object
4443   //       with the same cv-unqualified type, the copy/move operation
4444   //       can be omitted by constructing the temporary object
4445   //       directly into the target of the omitted copy/move
4446   //
4447   // Note that the other three bullets are handled elsewhere. Copy
4448   // elision for return statements and throw expressions are handled as part
4449   // of constructor initialization, while copy elision for exception handlers
4450   // is handled by the run-time.
4451   bool Elidable = CurInitExpr->isTemporaryObject(S.Context, Class);
4452   SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
4453 
4454   // Make sure that the type we are copying is complete.
4455   if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
4456     return CurInit;
4457 
4458   // Perform overload resolution using the class's copy/move constructors.
4459   // Only consider constructors and constructor templates. Per
4460   // C++0x [dcl.init]p16, second bullet to class types, this initialization
4461   // is direct-initialization.
4462   OverloadCandidateSet CandidateSet(Loc);
4463   LookupCopyAndMoveConstructors(S, CandidateSet, Class, CurInitExpr);
4464 
4465   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4466 
4467   OverloadCandidateSet::iterator Best;
4468   switch (CandidateSet.BestViableFunction(S, Loc, Best)) {
4469   case OR_Success:
4470     break;
4471 
4472   case OR_No_Viable_Function:
4473     S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
4474            ? diag::ext_rvalue_to_reference_temp_copy_no_viable
4475            : diag::err_temp_copy_no_viable)
4476       << (int)Entity.getKind() << CurInitExpr->getType()
4477       << CurInitExpr->getSourceRange();
4478     CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
4479     if (!IsExtraneousCopy || S.isSFINAEContext())
4480       return ExprError();
4481     return CurInit;
4482 
4483   case OR_Ambiguous:
4484     S.Diag(Loc, diag::err_temp_copy_ambiguous)
4485       << (int)Entity.getKind() << CurInitExpr->getType()
4486       << CurInitExpr->getSourceRange();
4487     CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
4488     return ExprError();
4489 
4490   case OR_Deleted:
4491     S.Diag(Loc, diag::err_temp_copy_deleted)
4492       << (int)Entity.getKind() << CurInitExpr->getType()
4493       << CurInitExpr->getSourceRange();
4494     S.NoteDeletedFunction(Best->Function);
4495     return ExprError();
4496   }
4497 
4498   CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
4499   SmallVector<Expr*, 8> ConstructorArgs;
4500   CurInit.release(); // Ownership transferred into MultiExprArg, below.
4501 
4502   S.CheckConstructorAccess(Loc, Constructor, Entity,
4503                            Best->FoundDecl.getAccess(), IsExtraneousCopy);
4504 
4505   if (IsExtraneousCopy) {
4506     // If this is a totally extraneous copy for C++03 reference
4507     // binding purposes, just return the original initialization
4508     // expression. We don't generate an (elided) copy operation here
4509     // because doing so would require us to pass down a flag to avoid
4510     // infinite recursion, where each step adds another extraneous,
4511     // elidable copy.
4512 
4513     // Instantiate the default arguments of any extra parameters in
4514     // the selected copy constructor, as if we were going to create a
4515     // proper call to the copy constructor.
4516     for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
4517       ParmVarDecl *Parm = Constructor->getParamDecl(I);
4518       if (S.RequireCompleteType(Loc, Parm->getType(),
4519                                 diag::err_call_incomplete_argument))
4520         break;
4521 
4522       // Build the default argument expression; we don't actually care
4523       // if this succeeds or not, because this routine will complain
4524       // if there was a problem.
4525       S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
4526     }
4527 
4528     return S.Owned(CurInitExpr);
4529   }
4530 
4531   S.MarkFunctionReferenced(Loc, Constructor);
4532 
4533   // Determine the arguments required to actually perform the
4534   // constructor call (we might have derived-to-base conversions, or
4535   // the copy constructor may have default arguments).
4536   if (S.CompleteConstructorCall(Constructor, MultiExprArg(&CurInitExpr, 1),
4537                                 Loc, ConstructorArgs))
4538     return ExprError();
4539 
4540   // Actually perform the constructor call.
4541   CurInit = S.BuildCXXConstructExpr(Loc, T, Constructor, Elidable,
4542                                     ConstructorArgs,
4543                                     HadMultipleCandidates,
4544                                     /*ZeroInit*/ false,
4545                                     CXXConstructExpr::CK_Complete,
4546                                     SourceRange());
4547 
4548   // If we're supposed to bind temporaries, do so.
4549   if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
4550     CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
4551   return CurInit;
4552 }
4553 
4554 /// \brief Check whether elidable copy construction for binding a reference to
4555 /// a temporary would have succeeded if we were building in C++98 mode, for
4556 /// -Wc++98-compat.
4557 static void CheckCXX98CompatAccessibleCopy(Sema &S,
4558                                            const InitializedEntity &Entity,
4559                                            Expr *CurInitExpr) {
4560   assert(S.getLangOpts().CPlusPlus0x);
4561 
4562   const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
4563   if (!Record)
4564     return;
4565 
4566   SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
4567   if (S.Diags.getDiagnosticLevel(diag::warn_cxx98_compat_temp_copy, Loc)
4568         == DiagnosticsEngine::Ignored)
4569     return;
4570 
4571   // Find constructors which would have been considered.
4572   OverloadCandidateSet CandidateSet(Loc);
4573   LookupCopyAndMoveConstructors(
4574       S, CandidateSet, cast<CXXRecordDecl>(Record->getDecl()), CurInitExpr);
4575 
4576   // Perform overload resolution.
4577   OverloadCandidateSet::iterator Best;
4578   OverloadingResult OR = CandidateSet.BestViableFunction(S, Loc, Best);
4579 
4580   PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
4581     << OR << (int)Entity.getKind() << CurInitExpr->getType()
4582     << CurInitExpr->getSourceRange();
4583 
4584   switch (OR) {
4585   case OR_Success:
4586     S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
4587                              Entity, Best->FoundDecl.getAccess(), Diag);
4588     // FIXME: Check default arguments as far as that's possible.
4589     break;
4590 
4591   case OR_No_Viable_Function:
4592     S.Diag(Loc, Diag);
4593     CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
4594     break;
4595 
4596   case OR_Ambiguous:
4597     S.Diag(Loc, Diag);
4598     CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
4599     break;
4600 
4601   case OR_Deleted:
4602     S.Diag(Loc, Diag);
4603     S.NoteDeletedFunction(Best->Function);
4604     break;
4605   }
4606 }
4607 
4608 void InitializationSequence::PrintInitLocationNote(Sema &S,
4609                                               const InitializedEntity &Entity) {
4610   if (Entity.getKind() == InitializedEntity::EK_Parameter && Entity.getDecl()) {
4611     if (Entity.getDecl()->getLocation().isInvalid())
4612       return;
4613 
4614     if (Entity.getDecl()->getDeclName())
4615       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
4616         << Entity.getDecl()->getDeclName();
4617     else
4618       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
4619   }
4620 }
4621 
4622 static bool isReferenceBinding(const InitializationSequence::Step &s) {
4623   return s.Kind == InitializationSequence::SK_BindReference ||
4624          s.Kind == InitializationSequence::SK_BindReferenceToTemporary;
4625 }
4626 
4627 static ExprResult
4628 PerformConstructorInitialization(Sema &S,
4629                                  const InitializedEntity &Entity,
4630                                  const InitializationKind &Kind,
4631                                  MultiExprArg Args,
4632                                  const InitializationSequence::Step& Step,
4633                                  bool &ConstructorInitRequiresZeroInit) {
4634   unsigned NumArgs = Args.size();
4635   CXXConstructorDecl *Constructor
4636     = cast<CXXConstructorDecl>(Step.Function.Function);
4637   bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
4638 
4639   // Build a call to the selected constructor.
4640   SmallVector<Expr*, 8> ConstructorArgs;
4641   SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
4642                          ? Kind.getEqualLoc()
4643                          : Kind.getLocation();
4644 
4645   if (Kind.getKind() == InitializationKind::IK_Default) {
4646     // Force even a trivial, implicit default constructor to be
4647     // semantically checked. We do this explicitly because we don't build
4648     // the definition for completely trivial constructors.
4649     assert(Constructor->getParent() && "No parent class for constructor.");
4650     if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
4651         Constructor->isTrivial() && !Constructor->isUsed(false))
4652       S.DefineImplicitDefaultConstructor(Loc, Constructor);
4653   }
4654 
4655   ExprResult CurInit = S.Owned((Expr *)0);
4656 
4657   // C++ [over.match.copy]p1:
4658   //   - When initializing a temporary to be bound to the first parameter
4659   //     of a constructor that takes a reference to possibly cv-qualified
4660   //     T as its first argument, called with a single argument in the
4661   //     context of direct-initialization, explicit conversion functions
4662   //     are also considered.
4663   bool AllowExplicitConv = Kind.AllowExplicit() && !Kind.isCopyInit() &&
4664                            Args.size() == 1 &&
4665                            Constructor->isCopyOrMoveConstructor();
4666 
4667   // Determine the arguments required to actually perform the constructor
4668   // call.
4669   if (S.CompleteConstructorCall(Constructor, Args,
4670                                 Loc, ConstructorArgs,
4671                                 AllowExplicitConv))
4672     return ExprError();
4673 
4674 
4675   if (Entity.getKind() == InitializedEntity::EK_Temporary &&
4676       (Kind.getKind() == InitializationKind::IK_DirectList ||
4677        (NumArgs != 1 && // FIXME: Hack to work around cast weirdness
4678         (Kind.getKind() == InitializationKind::IK_Direct ||
4679          Kind.getKind() == InitializationKind::IK_Value)))) {
4680     // An explicitly-constructed temporary, e.g., X(1, 2).
4681     S.MarkFunctionReferenced(Loc, Constructor);
4682     S.DiagnoseUseOfDecl(Constructor, Loc);
4683 
4684     TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
4685     if (!TSInfo)
4686       TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
4687     SourceRange ParenRange;
4688     if (Kind.getKind() != InitializationKind::IK_DirectList)
4689       ParenRange = Kind.getParenRange();
4690 
4691     CurInit = S.Owned(new (S.Context) CXXTemporaryObjectExpr(S.Context,
4692                                                              Constructor,
4693                                                              TSInfo,
4694                                                              ConstructorArgs,
4695                                                              ParenRange,
4696                                                      HadMultipleCandidates,
4697                                          ConstructorInitRequiresZeroInit));
4698   } else {
4699     CXXConstructExpr::ConstructionKind ConstructKind =
4700       CXXConstructExpr::CK_Complete;
4701 
4702     if (Entity.getKind() == InitializedEntity::EK_Base) {
4703       ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
4704         CXXConstructExpr::CK_VirtualBase :
4705         CXXConstructExpr::CK_NonVirtualBase;
4706     } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
4707       ConstructKind = CXXConstructExpr::CK_Delegating;
4708     }
4709 
4710     // Only get the parenthesis range if it is a direct construction.
4711     SourceRange parenRange =
4712         Kind.getKind() == InitializationKind::IK_Direct ?
4713         Kind.getParenRange() : SourceRange();
4714 
4715     // If the entity allows NRVO, mark the construction as elidable
4716     // unconditionally.
4717     if (Entity.allowsNRVO())
4718       CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
4719                                         Constructor, /*Elidable=*/true,
4720                                         ConstructorArgs,
4721                                         HadMultipleCandidates,
4722                                         ConstructorInitRequiresZeroInit,
4723                                         ConstructKind,
4724                                         parenRange);
4725     else
4726       CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
4727                                         Constructor,
4728                                         ConstructorArgs,
4729                                         HadMultipleCandidates,
4730                                         ConstructorInitRequiresZeroInit,
4731                                         ConstructKind,
4732                                         parenRange);
4733   }
4734   if (CurInit.isInvalid())
4735     return ExprError();
4736 
4737   // Only check access if all of that succeeded.
4738   S.CheckConstructorAccess(Loc, Constructor, Entity,
4739                            Step.Function.FoundDecl.getAccess());
4740   S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc);
4741 
4742   if (shouldBindAsTemporary(Entity))
4743     CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
4744 
4745   return CurInit;
4746 }
4747 
4748 /// Determine whether the specified InitializedEntity definitely has a lifetime
4749 /// longer than the current full-expression. Conservatively returns false if
4750 /// it's unclear.
4751 static bool
4752 InitializedEntityOutlivesFullExpression(const InitializedEntity &Entity) {
4753   const InitializedEntity *Top = &Entity;
4754   while (Top->getParent())
4755     Top = Top->getParent();
4756 
4757   switch (Top->getKind()) {
4758   case InitializedEntity::EK_Variable:
4759   case InitializedEntity::EK_Result:
4760   case InitializedEntity::EK_Exception:
4761   case InitializedEntity::EK_Member:
4762   case InitializedEntity::EK_New:
4763   case InitializedEntity::EK_Base:
4764   case InitializedEntity::EK_Delegating:
4765     return true;
4766 
4767   case InitializedEntity::EK_ArrayElement:
4768   case InitializedEntity::EK_VectorElement:
4769   case InitializedEntity::EK_BlockElement:
4770   case InitializedEntity::EK_ComplexElement:
4771     // Could not determine what the full initialization is. Assume it might not
4772     // outlive the full-expression.
4773     return false;
4774 
4775   case InitializedEntity::EK_Parameter:
4776   case InitializedEntity::EK_Temporary:
4777   case InitializedEntity::EK_LambdaCapture:
4778     // The entity being initialized might not outlive the full-expression.
4779     return false;
4780   }
4781 
4782   llvm_unreachable("unknown entity kind");
4783 }
4784 
4785 ExprResult
4786 InitializationSequence::Perform(Sema &S,
4787                                 const InitializedEntity &Entity,
4788                                 const InitializationKind &Kind,
4789                                 MultiExprArg Args,
4790                                 QualType *ResultType) {
4791   if (Failed()) {
4792     unsigned NumArgs = Args.size();
4793     Diagnose(S, Entity, Kind, Args.data(), NumArgs);
4794     return ExprError();
4795   }
4796 
4797   if (getKind() == DependentSequence) {
4798     // If the declaration is a non-dependent, incomplete array type
4799     // that has an initializer, then its type will be completed once
4800     // the initializer is instantiated.
4801     if (ResultType && !Entity.getType()->isDependentType() &&
4802         Args.size() == 1) {
4803       QualType DeclType = Entity.getType();
4804       if (const IncompleteArrayType *ArrayT
4805                            = S.Context.getAsIncompleteArrayType(DeclType)) {
4806         // FIXME: We don't currently have the ability to accurately
4807         // compute the length of an initializer list without
4808         // performing full type-checking of the initializer list
4809         // (since we have to determine where braces are implicitly
4810         // introduced and such).  So, we fall back to making the array
4811         // type a dependently-sized array type with no specified
4812         // bound.
4813         if (isa<InitListExpr>((Expr *)Args[0])) {
4814           SourceRange Brackets;
4815 
4816           // Scavange the location of the brackets from the entity, if we can.
4817           if (DeclaratorDecl *DD = Entity.getDecl()) {
4818             if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
4819               TypeLoc TL = TInfo->getTypeLoc();
4820               if (IncompleteArrayTypeLoc *ArrayLoc
4821                                       = dyn_cast<IncompleteArrayTypeLoc>(&TL))
4822               Brackets = ArrayLoc->getBracketsRange();
4823             }
4824           }
4825 
4826           *ResultType
4827             = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
4828                                                    /*NumElts=*/0,
4829                                                    ArrayT->getSizeModifier(),
4830                                        ArrayT->getIndexTypeCVRQualifiers(),
4831                                                    Brackets);
4832         }
4833 
4834       }
4835     }
4836     if (Kind.getKind() == InitializationKind::IK_Direct &&
4837         !Kind.isExplicitCast()) {
4838       // Rebuild the ParenListExpr.
4839       SourceRange ParenRange = Kind.getParenRange();
4840       return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
4841                                   Args);
4842     }
4843     assert(Kind.getKind() == InitializationKind::IK_Copy ||
4844            Kind.isExplicitCast() ||
4845            Kind.getKind() == InitializationKind::IK_DirectList);
4846     return ExprResult(Args[0]);
4847   }
4848 
4849   // No steps means no initialization.
4850   if (Steps.empty())
4851     return S.Owned((Expr *)0);
4852 
4853   if (S.getLangOpts().CPlusPlus0x && Entity.getType()->isReferenceType() &&
4854       Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
4855       Entity.getKind() != InitializedEntity::EK_Parameter) {
4856     // Produce a C++98 compatibility warning if we are initializing a reference
4857     // from an initializer list. For parameters, we produce a better warning
4858     // elsewhere.
4859     Expr *Init = Args[0];
4860     S.Diag(Init->getLocStart(), diag::warn_cxx98_compat_reference_list_init)
4861       << Init->getSourceRange();
4862   }
4863 
4864   // Diagnose cases where we initialize a pointer to an array temporary, and the
4865   // pointer obviously outlives the temporary.
4866   if (Args.size() == 1 && Args[0]->getType()->isArrayType() &&
4867       Entity.getType()->isPointerType() &&
4868       InitializedEntityOutlivesFullExpression(Entity)) {
4869     Expr *Init = Args[0];
4870     Expr::LValueClassification Kind = Init->ClassifyLValue(S.Context);
4871     if (Kind == Expr::LV_ClassTemporary || Kind == Expr::LV_ArrayTemporary)
4872       S.Diag(Init->getLocStart(), diag::warn_temporary_array_to_pointer_decay)
4873         << Init->getSourceRange();
4874   }
4875 
4876   QualType DestType = Entity.getType().getNonReferenceType();
4877   // FIXME: Ugly hack around the fact that Entity.getType() is not
4878   // the same as Entity.getDecl()->getType() in cases involving type merging,
4879   //  and we want latter when it makes sense.
4880   if (ResultType)
4881     *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
4882                                      Entity.getType();
4883 
4884   ExprResult CurInit = S.Owned((Expr *)0);
4885 
4886   // For initialization steps that start with a single initializer,
4887   // grab the only argument out the Args and place it into the "current"
4888   // initializer.
4889   switch (Steps.front().Kind) {
4890   case SK_ResolveAddressOfOverloadedFunction:
4891   case SK_CastDerivedToBaseRValue:
4892   case SK_CastDerivedToBaseXValue:
4893   case SK_CastDerivedToBaseLValue:
4894   case SK_BindReference:
4895   case SK_BindReferenceToTemporary:
4896   case SK_ExtraneousCopyToTemporary:
4897   case SK_UserConversion:
4898   case SK_QualificationConversionLValue:
4899   case SK_QualificationConversionXValue:
4900   case SK_QualificationConversionRValue:
4901   case SK_ConversionSequence:
4902   case SK_ListInitialization:
4903   case SK_UnwrapInitList:
4904   case SK_RewrapInitList:
4905   case SK_CAssignment:
4906   case SK_StringInit:
4907   case SK_ObjCObjectConversion:
4908   case SK_ArrayInit:
4909   case SK_ParenthesizedArrayInit:
4910   case SK_PassByIndirectCopyRestore:
4911   case SK_PassByIndirectRestore:
4912   case SK_ProduceObjCObject:
4913   case SK_StdInitializerList: {
4914     assert(Args.size() == 1);
4915     CurInit = Args[0];
4916     if (!CurInit.get()) return ExprError();
4917     break;
4918   }
4919 
4920   case SK_ConstructorInitialization:
4921   case SK_ListConstructorCall:
4922   case SK_ZeroInitialization:
4923     break;
4924   }
4925 
4926   // Walk through the computed steps for the initialization sequence,
4927   // performing the specified conversions along the way.
4928   bool ConstructorInitRequiresZeroInit = false;
4929   for (step_iterator Step = step_begin(), StepEnd = step_end();
4930        Step != StepEnd; ++Step) {
4931     if (CurInit.isInvalid())
4932       return ExprError();
4933 
4934     QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
4935 
4936     switch (Step->Kind) {
4937     case SK_ResolveAddressOfOverloadedFunction:
4938       // Overload resolution determined which function invoke; update the
4939       // initializer to reflect that choice.
4940       S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
4941       S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation());
4942       CurInit = S.FixOverloadedFunctionReference(CurInit,
4943                                                  Step->Function.FoundDecl,
4944                                                  Step->Function.Function);
4945       break;
4946 
4947     case SK_CastDerivedToBaseRValue:
4948     case SK_CastDerivedToBaseXValue:
4949     case SK_CastDerivedToBaseLValue: {
4950       // We have a derived-to-base cast that produces either an rvalue or an
4951       // lvalue. Perform that cast.
4952 
4953       CXXCastPath BasePath;
4954 
4955       // Casts to inaccessible base classes are allowed with C-style casts.
4956       bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
4957       if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
4958                                          CurInit.get()->getLocStart(),
4959                                          CurInit.get()->getSourceRange(),
4960                                          &BasePath, IgnoreBaseAccess))
4961         return ExprError();
4962 
4963       if (S.BasePathInvolvesVirtualBase(BasePath)) {
4964         QualType T = SourceType;
4965         if (const PointerType *Pointer = T->getAs<PointerType>())
4966           T = Pointer->getPointeeType();
4967         if (const RecordType *RecordTy = T->getAs<RecordType>())
4968           S.MarkVTableUsed(CurInit.get()->getLocStart(),
4969                            cast<CXXRecordDecl>(RecordTy->getDecl()));
4970       }
4971 
4972       ExprValueKind VK =
4973           Step->Kind == SK_CastDerivedToBaseLValue ?
4974               VK_LValue :
4975               (Step->Kind == SK_CastDerivedToBaseXValue ?
4976                    VK_XValue :
4977                    VK_RValue);
4978       CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
4979                                                  Step->Type,
4980                                                  CK_DerivedToBase,
4981                                                  CurInit.get(),
4982                                                  &BasePath, VK));
4983       break;
4984     }
4985 
4986     case SK_BindReference:
4987       if (FieldDecl *BitField = CurInit.get()->getBitField()) {
4988         // References cannot bind to bit fields (C++ [dcl.init.ref]p5).
4989         S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
4990           << Entity.getType().isVolatileQualified()
4991           << BitField->getDeclName()
4992           << CurInit.get()->getSourceRange();
4993         S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
4994         return ExprError();
4995       }
4996 
4997       if (CurInit.get()->refersToVectorElement()) {
4998         // References cannot bind to vector elements.
4999         S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
5000           << Entity.getType().isVolatileQualified()
5001           << CurInit.get()->getSourceRange();
5002         PrintInitLocationNote(S, Entity);
5003         return ExprError();
5004       }
5005 
5006       // Reference binding does not have any corresponding ASTs.
5007 
5008       // Check exception specifications
5009       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
5010         return ExprError();
5011 
5012       break;
5013 
5014     case SK_BindReferenceToTemporary:
5015       // Check exception specifications
5016       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
5017         return ExprError();
5018 
5019       // Materialize the temporary into memory.
5020       CurInit = new (S.Context) MaterializeTemporaryExpr(
5021                                          Entity.getType().getNonReferenceType(),
5022                                                          CurInit.get(),
5023                                      Entity.getType()->isLValueReferenceType());
5024 
5025       // If we're binding to an Objective-C object that has lifetime, we
5026       // need cleanups.
5027       if (S.getLangOpts().ObjCAutoRefCount &&
5028           CurInit.get()->getType()->isObjCLifetimeType())
5029         S.ExprNeedsCleanups = true;
5030 
5031       break;
5032 
5033     case SK_ExtraneousCopyToTemporary:
5034       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
5035                            /*IsExtraneousCopy=*/true);
5036       break;
5037 
5038     case SK_UserConversion: {
5039       // We have a user-defined conversion that invokes either a constructor
5040       // or a conversion function.
5041       CastKind CastKind;
5042       bool IsCopy = false;
5043       FunctionDecl *Fn = Step->Function.Function;
5044       DeclAccessPair FoundFn = Step->Function.FoundDecl;
5045       bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
5046       bool CreatedObject = false;
5047       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
5048         // Build a call to the selected constructor.
5049         SmallVector<Expr*, 8> ConstructorArgs;
5050         SourceLocation Loc = CurInit.get()->getLocStart();
5051         CurInit.release(); // Ownership transferred into MultiExprArg, below.
5052 
5053         // Determine the arguments required to actually perform the constructor
5054         // call.
5055         Expr *Arg = CurInit.get();
5056         if (S.CompleteConstructorCall(Constructor,
5057                                       MultiExprArg(&Arg, 1),
5058                                       Loc, ConstructorArgs))
5059           return ExprError();
5060 
5061         // Build an expression that constructs a temporary.
5062         CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor,
5063                                           ConstructorArgs,
5064                                           HadMultipleCandidates,
5065                                           /*ZeroInit*/ false,
5066                                           CXXConstructExpr::CK_Complete,
5067                                           SourceRange());
5068         if (CurInit.isInvalid())
5069           return ExprError();
5070 
5071         S.CheckConstructorAccess(Kind.getLocation(), Constructor, Entity,
5072                                  FoundFn.getAccess());
5073         S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation());
5074 
5075         CastKind = CK_ConstructorConversion;
5076         QualType Class = S.Context.getTypeDeclType(Constructor->getParent());
5077         if (S.Context.hasSameUnqualifiedType(SourceType, Class) ||
5078             S.IsDerivedFrom(SourceType, Class))
5079           IsCopy = true;
5080 
5081         CreatedObject = true;
5082       } else {
5083         // Build a call to the conversion function.
5084         CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
5085         S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), 0,
5086                                     FoundFn);
5087         S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation());
5088 
5089         // FIXME: Should we move this initialization into a separate
5090         // derived-to-base conversion? I believe the answer is "no", because
5091         // we don't want to turn off access control here for c-style casts.
5092         ExprResult CurInitExprRes =
5093           S.PerformObjectArgumentInitialization(CurInit.take(), /*Qualifier=*/0,
5094                                                 FoundFn, Conversion);
5095         if(CurInitExprRes.isInvalid())
5096           return ExprError();
5097         CurInit = CurInitExprRes;
5098 
5099         // Build the actual call to the conversion function.
5100         CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
5101                                            HadMultipleCandidates);
5102         if (CurInit.isInvalid() || !CurInit.get())
5103           return ExprError();
5104 
5105         CastKind = CK_UserDefinedConversion;
5106 
5107         CreatedObject = Conversion->getResultType()->isRecordType();
5108       }
5109 
5110       bool RequiresCopy = !IsCopy && !isReferenceBinding(Steps.back());
5111       bool MaybeBindToTemp = RequiresCopy || shouldBindAsTemporary(Entity);
5112 
5113       if (!MaybeBindToTemp && CreatedObject && shouldDestroyTemporary(Entity)) {
5114         QualType T = CurInit.get()->getType();
5115         if (const RecordType *Record = T->getAs<RecordType>()) {
5116           CXXDestructorDecl *Destructor
5117             = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
5118           S.CheckDestructorAccess(CurInit.get()->getLocStart(), Destructor,
5119                                   S.PDiag(diag::err_access_dtor_temp) << T);
5120           S.MarkFunctionReferenced(CurInit.get()->getLocStart(), Destructor);
5121           S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getLocStart());
5122         }
5123       }
5124 
5125       CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
5126                                                  CurInit.get()->getType(),
5127                                                  CastKind, CurInit.get(), 0,
5128                                                 CurInit.get()->getValueKind()));
5129       if (MaybeBindToTemp)
5130         CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
5131       if (RequiresCopy)
5132         CurInit = CopyObject(S, Entity.getType().getNonReferenceType(), Entity,
5133                              CurInit, /*IsExtraneousCopy=*/false);
5134       break;
5135     }
5136 
5137     case SK_QualificationConversionLValue:
5138     case SK_QualificationConversionXValue:
5139     case SK_QualificationConversionRValue: {
5140       // Perform a qualification conversion; these can never go wrong.
5141       ExprValueKind VK =
5142           Step->Kind == SK_QualificationConversionLValue ?
5143               VK_LValue :
5144               (Step->Kind == SK_QualificationConversionXValue ?
5145                    VK_XValue :
5146                    VK_RValue);
5147       CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type, CK_NoOp, VK);
5148       break;
5149     }
5150 
5151     case SK_ConversionSequence: {
5152       Sema::CheckedConversionKind CCK
5153         = Kind.isCStyleCast()? Sema::CCK_CStyleCast
5154         : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
5155         : Kind.isExplicitCast()? Sema::CCK_OtherCast
5156         : Sema::CCK_ImplicitConversion;
5157       ExprResult CurInitExprRes =
5158         S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
5159                                     getAssignmentAction(Entity), CCK);
5160       if (CurInitExprRes.isInvalid())
5161         return ExprError();
5162       CurInit = CurInitExprRes;
5163       break;
5164     }
5165 
5166     case SK_ListInitialization: {
5167       InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
5168       // Hack: We must pass *ResultType if available in order to set the type
5169       // of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
5170       // But in 'const X &x = {1, 2, 3};' we're supposed to initialize a
5171       // temporary, not a reference, so we should pass Ty.
5172       // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
5173       // Since this step is never used for a reference directly, we explicitly
5174       // unwrap references here and rewrap them afterwards.
5175       // We also need to create a InitializeTemporary entity for this.
5176       QualType Ty = ResultType ? ResultType->getNonReferenceType() : Step->Type;
5177       bool IsTemporary = Entity.getType()->isReferenceType();
5178       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
5179       InitListChecker PerformInitList(S, IsTemporary ? TempEntity : Entity,
5180           InitList, Ty, /*VerifyOnly=*/false,
5181           Kind.getKind() != InitializationKind::IK_DirectList ||
5182             !S.getLangOpts().CPlusPlus0x);
5183       if (PerformInitList.HadError())
5184         return ExprError();
5185 
5186       if (ResultType) {
5187         if ((*ResultType)->isRValueReferenceType())
5188           Ty = S.Context.getRValueReferenceType(Ty);
5189         else if ((*ResultType)->isLValueReferenceType())
5190           Ty = S.Context.getLValueReferenceType(Ty,
5191             (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue());
5192         *ResultType = Ty;
5193       }
5194 
5195       InitListExpr *StructuredInitList =
5196           PerformInitList.getFullyStructuredList();
5197       CurInit.release();
5198       CurInit = S.Owned(StructuredInitList);
5199       break;
5200     }
5201 
5202     case SK_ListConstructorCall: {
5203       // When an initializer list is passed for a parameter of type "reference
5204       // to object", we don't get an EK_Temporary entity, but instead an
5205       // EK_Parameter entity with reference type.
5206       // FIXME: This is a hack. What we really should do is create a user
5207       // conversion step for this case, but this makes it considerably more
5208       // complicated. For now, this will do.
5209       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
5210                                         Entity.getType().getNonReferenceType());
5211       bool UseTemporary = Entity.getType()->isReferenceType();
5212       assert(Args.size() == 1 && "expected a single argument for list init");
5213       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
5214       S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
5215         << InitList->getSourceRange();
5216       MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
5217       CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
5218                                                                    Entity,
5219                                                  Kind, Arg, *Step,
5220                                                ConstructorInitRequiresZeroInit);
5221       break;
5222     }
5223 
5224     case SK_UnwrapInitList:
5225       CurInit = S.Owned(cast<InitListExpr>(CurInit.take())->getInit(0));
5226       break;
5227 
5228     case SK_RewrapInitList: {
5229       Expr *E = CurInit.take();
5230       InitListExpr *Syntactic = Step->WrappingSyntacticList;
5231       InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
5232           Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
5233       ILE->setSyntacticForm(Syntactic);
5234       ILE->setType(E->getType());
5235       ILE->setValueKind(E->getValueKind());
5236       CurInit = S.Owned(ILE);
5237       break;
5238     }
5239 
5240     case SK_ConstructorInitialization: {
5241       // When an initializer list is passed for a parameter of type "reference
5242       // to object", we don't get an EK_Temporary entity, but instead an
5243       // EK_Parameter entity with reference type.
5244       // FIXME: This is a hack. What we really should do is create a user
5245       // conversion step for this case, but this makes it considerably more
5246       // complicated. For now, this will do.
5247       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
5248                                         Entity.getType().getNonReferenceType());
5249       bool UseTemporary = Entity.getType()->isReferenceType();
5250       CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity
5251                                                                  : Entity,
5252                                                  Kind, Args, *Step,
5253                                                ConstructorInitRequiresZeroInit);
5254       break;
5255     }
5256 
5257     case SK_ZeroInitialization: {
5258       step_iterator NextStep = Step;
5259       ++NextStep;
5260       if (NextStep != StepEnd &&
5261           (NextStep->Kind == SK_ConstructorInitialization ||
5262            NextStep->Kind == SK_ListConstructorCall)) {
5263         // The need for zero-initialization is recorded directly into
5264         // the call to the object's constructor within the next step.
5265         ConstructorInitRequiresZeroInit = true;
5266       } else if (Kind.getKind() == InitializationKind::IK_Value &&
5267                  S.getLangOpts().CPlusPlus &&
5268                  !Kind.isImplicitValueInit()) {
5269         TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
5270         if (!TSInfo)
5271           TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
5272                                                     Kind.getRange().getBegin());
5273 
5274         CurInit = S.Owned(new (S.Context) CXXScalarValueInitExpr(
5275                               TSInfo->getType().getNonLValueExprType(S.Context),
5276                                                                  TSInfo,
5277                                                     Kind.getRange().getEnd()));
5278       } else {
5279         CurInit = S.Owned(new (S.Context) ImplicitValueInitExpr(Step->Type));
5280       }
5281       break;
5282     }
5283 
5284     case SK_CAssignment: {
5285       QualType SourceType = CurInit.get()->getType();
5286       ExprResult Result = CurInit;
5287       Sema::AssignConvertType ConvTy =
5288         S.CheckSingleAssignmentConstraints(Step->Type, Result);
5289       if (Result.isInvalid())
5290         return ExprError();
5291       CurInit = Result;
5292 
5293       // If this is a call, allow conversion to a transparent union.
5294       ExprResult CurInitExprRes = CurInit;
5295       if (ConvTy != Sema::Compatible &&
5296           Entity.getKind() == InitializedEntity::EK_Parameter &&
5297           S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
5298             == Sema::Compatible)
5299         ConvTy = Sema::Compatible;
5300       if (CurInitExprRes.isInvalid())
5301         return ExprError();
5302       CurInit = CurInitExprRes;
5303 
5304       bool Complained;
5305       if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
5306                                      Step->Type, SourceType,
5307                                      CurInit.get(),
5308                                      getAssignmentAction(Entity),
5309                                      &Complained)) {
5310         PrintInitLocationNote(S, Entity);
5311         return ExprError();
5312       } else if (Complained)
5313         PrintInitLocationNote(S, Entity);
5314       break;
5315     }
5316 
5317     case SK_StringInit: {
5318       QualType Ty = Step->Type;
5319       CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
5320                       S.Context.getAsArrayType(Ty), S);
5321       break;
5322     }
5323 
5324     case SK_ObjCObjectConversion:
5325       CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type,
5326                           CK_ObjCObjectLValueCast,
5327                           CurInit.get()->getValueKind());
5328       break;
5329 
5330     case SK_ArrayInit:
5331       // Okay: we checked everything before creating this step. Note that
5332       // this is a GNU extension.
5333       S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
5334         << Step->Type << CurInit.get()->getType()
5335         << CurInit.get()->getSourceRange();
5336 
5337       // If the destination type is an incomplete array type, update the
5338       // type accordingly.
5339       if (ResultType) {
5340         if (const IncompleteArrayType *IncompleteDest
5341                            = S.Context.getAsIncompleteArrayType(Step->Type)) {
5342           if (const ConstantArrayType *ConstantSource
5343                  = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
5344             *ResultType = S.Context.getConstantArrayType(
5345                                              IncompleteDest->getElementType(),
5346                                              ConstantSource->getSize(),
5347                                              ArrayType::Normal, 0);
5348           }
5349         }
5350       }
5351       break;
5352 
5353     case SK_ParenthesizedArrayInit:
5354       // Okay: we checked everything before creating this step. Note that
5355       // this is a GNU extension.
5356       S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
5357         << CurInit.get()->getSourceRange();
5358       break;
5359 
5360     case SK_PassByIndirectCopyRestore:
5361     case SK_PassByIndirectRestore:
5362       checkIndirectCopyRestoreSource(S, CurInit.get());
5363       CurInit = S.Owned(new (S.Context)
5364                         ObjCIndirectCopyRestoreExpr(CurInit.take(), Step->Type,
5365                                 Step->Kind == SK_PassByIndirectCopyRestore));
5366       break;
5367 
5368     case SK_ProduceObjCObject:
5369       CurInit = S.Owned(ImplicitCastExpr::Create(S.Context, Step->Type,
5370                                                  CK_ARCProduceObject,
5371                                                  CurInit.take(), 0, VK_RValue));
5372       break;
5373 
5374     case SK_StdInitializerList: {
5375       QualType Dest = Step->Type;
5376       QualType E;
5377       bool Success = S.isStdInitializerList(Dest, &E);
5378       (void)Success;
5379       assert(Success && "Destination type changed?");
5380 
5381       // If the element type has a destructor, check it.
5382       if (CXXRecordDecl *RD = E->getAsCXXRecordDecl()) {
5383         if (!RD->hasIrrelevantDestructor()) {
5384           if (CXXDestructorDecl *Destructor = S.LookupDestructor(RD)) {
5385             S.MarkFunctionReferenced(Kind.getLocation(), Destructor);
5386             S.CheckDestructorAccess(Kind.getLocation(), Destructor,
5387                                     S.PDiag(diag::err_access_dtor_temp) << E);
5388             S.DiagnoseUseOfDecl(Destructor, Kind.getLocation());
5389           }
5390         }
5391       }
5392 
5393       InitListExpr *ILE = cast<InitListExpr>(CurInit.take());
5394       S.Diag(ILE->getExprLoc(), diag::warn_cxx98_compat_initializer_list_init)
5395         << ILE->getSourceRange();
5396       unsigned NumInits = ILE->getNumInits();
5397       SmallVector<Expr*, 16> Converted(NumInits);
5398       InitializedEntity HiddenArray = InitializedEntity::InitializeTemporary(
5399           S.Context.getConstantArrayType(E,
5400               llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
5401                           NumInits),
5402               ArrayType::Normal, 0));
5403       InitializedEntity Element =InitializedEntity::InitializeElement(S.Context,
5404           0, HiddenArray);
5405       for (unsigned i = 0; i < NumInits; ++i) {
5406         Element.setElementIndex(i);
5407         ExprResult Init = S.Owned(ILE->getInit(i));
5408         ExprResult Res = S.PerformCopyInitialization(Element,
5409                                                      Init.get()->getExprLoc(),
5410                                                      Init);
5411         assert(!Res.isInvalid() && "Result changed since try phase.");
5412         Converted[i] = Res.take();
5413       }
5414       InitListExpr *Semantic = new (S.Context)
5415           InitListExpr(S.Context, ILE->getLBraceLoc(),
5416                        Converted, ILE->getRBraceLoc());
5417       Semantic->setSyntacticForm(ILE);
5418       Semantic->setType(Dest);
5419       Semantic->setInitializesStdInitializerList();
5420       CurInit = S.Owned(Semantic);
5421       break;
5422     }
5423     }
5424   }
5425 
5426   // Diagnose non-fatal problems with the completed initialization.
5427   if (Entity.getKind() == InitializedEntity::EK_Member &&
5428       cast<FieldDecl>(Entity.getDecl())->isBitField())
5429     S.CheckBitFieldInitialization(Kind.getLocation(),
5430                                   cast<FieldDecl>(Entity.getDecl()),
5431                                   CurInit.get());
5432 
5433   return CurInit;
5434 }
5435 
5436 //===----------------------------------------------------------------------===//
5437 // Diagnose initialization failures
5438 //===----------------------------------------------------------------------===//
5439 bool InitializationSequence::Diagnose(Sema &S,
5440                                       const InitializedEntity &Entity,
5441                                       const InitializationKind &Kind,
5442                                       Expr **Args, unsigned NumArgs) {
5443   if (!Failed())
5444     return false;
5445 
5446   QualType DestType = Entity.getType();
5447   switch (Failure) {
5448   case FK_TooManyInitsForReference:
5449     // FIXME: Customize for the initialized entity?
5450     if (NumArgs == 0)
5451       S.Diag(Kind.getLocation(), diag::err_reference_without_init)
5452         << DestType.getNonReferenceType();
5453     else  // FIXME: diagnostic below could be better!
5454       S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
5455         << SourceRange(Args[0]->getLocStart(), Args[NumArgs - 1]->getLocEnd());
5456     break;
5457 
5458   case FK_ArrayNeedsInitList:
5459   case FK_ArrayNeedsInitListOrStringLiteral:
5460     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list)
5461       << (Failure == FK_ArrayNeedsInitListOrStringLiteral);
5462     break;
5463 
5464   case FK_ArrayTypeMismatch:
5465   case FK_NonConstantArrayInit:
5466     S.Diag(Kind.getLocation(),
5467            (Failure == FK_ArrayTypeMismatch
5468               ? diag::err_array_init_different_type
5469               : diag::err_array_init_non_constant_array))
5470       << DestType.getNonReferenceType()
5471       << Args[0]->getType()
5472       << Args[0]->getSourceRange();
5473     break;
5474 
5475   case FK_VariableLengthArrayHasInitializer:
5476     S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
5477       << Args[0]->getSourceRange();
5478     break;
5479 
5480   case FK_AddressOfOverloadFailed: {
5481     DeclAccessPair Found;
5482     S.ResolveAddressOfOverloadedFunction(Args[0],
5483                                          DestType.getNonReferenceType(),
5484                                          true,
5485                                          Found);
5486     break;
5487   }
5488 
5489   case FK_ReferenceInitOverloadFailed:
5490   case FK_UserConversionOverloadFailed:
5491     switch (FailedOverloadResult) {
5492     case OR_Ambiguous:
5493       if (Failure == FK_UserConversionOverloadFailed)
5494         S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
5495           << Args[0]->getType() << DestType
5496           << Args[0]->getSourceRange();
5497       else
5498         S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
5499           << DestType << Args[0]->getType()
5500           << Args[0]->getSourceRange();
5501 
5502       FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates,
5503                                         llvm::makeArrayRef(Args, NumArgs));
5504       break;
5505 
5506     case OR_No_Viable_Function:
5507       S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
5508         << Args[0]->getType() << DestType.getNonReferenceType()
5509         << Args[0]->getSourceRange();
5510       FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates,
5511                                         llvm::makeArrayRef(Args, NumArgs));
5512       break;
5513 
5514     case OR_Deleted: {
5515       S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
5516         << Args[0]->getType() << DestType.getNonReferenceType()
5517         << Args[0]->getSourceRange();
5518       OverloadCandidateSet::iterator Best;
5519       OverloadingResult Ovl
5520         = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best,
5521                                                 true);
5522       if (Ovl == OR_Deleted) {
5523         S.NoteDeletedFunction(Best->Function);
5524       } else {
5525         llvm_unreachable("Inconsistent overload resolution?");
5526       }
5527       break;
5528     }
5529 
5530     case OR_Success:
5531       llvm_unreachable("Conversion did not fail!");
5532     }
5533     break;
5534 
5535   case FK_NonConstLValueReferenceBindingToTemporary:
5536     if (isa<InitListExpr>(Args[0])) {
5537       S.Diag(Kind.getLocation(),
5538              diag::err_lvalue_reference_bind_to_initlist)
5539       << DestType.getNonReferenceType().isVolatileQualified()
5540       << DestType.getNonReferenceType()
5541       << Args[0]->getSourceRange();
5542       break;
5543     }
5544     // Intentional fallthrough
5545 
5546   case FK_NonConstLValueReferenceBindingToUnrelated:
5547     S.Diag(Kind.getLocation(),
5548            Failure == FK_NonConstLValueReferenceBindingToTemporary
5549              ? diag::err_lvalue_reference_bind_to_temporary
5550              : diag::err_lvalue_reference_bind_to_unrelated)
5551       << DestType.getNonReferenceType().isVolatileQualified()
5552       << DestType.getNonReferenceType()
5553       << Args[0]->getType()
5554       << Args[0]->getSourceRange();
5555     break;
5556 
5557   case FK_RValueReferenceBindingToLValue:
5558     S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
5559       << DestType.getNonReferenceType() << Args[0]->getType()
5560       << Args[0]->getSourceRange();
5561     break;
5562 
5563   case FK_ReferenceInitDropsQualifiers:
5564     S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
5565       << DestType.getNonReferenceType()
5566       << Args[0]->getType()
5567       << Args[0]->getSourceRange();
5568     break;
5569 
5570   case FK_ReferenceInitFailed:
5571     S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
5572       << DestType.getNonReferenceType()
5573       << Args[0]->isLValue()
5574       << Args[0]->getType()
5575       << Args[0]->getSourceRange();
5576     if (DestType.getNonReferenceType()->isObjCObjectPointerType() &&
5577         Args[0]->getType()->isObjCObjectPointerType())
5578       S.EmitRelatedResultTypeNote(Args[0]);
5579     break;
5580 
5581   case FK_ConversionFailed: {
5582     QualType FromType = Args[0]->getType();
5583     PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
5584       << (int)Entity.getKind()
5585       << DestType
5586       << Args[0]->isLValue()
5587       << FromType
5588       << Args[0]->getSourceRange();
5589     S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
5590     S.Diag(Kind.getLocation(), PDiag);
5591     if (DestType.getNonReferenceType()->isObjCObjectPointerType() &&
5592         Args[0]->getType()->isObjCObjectPointerType())
5593       S.EmitRelatedResultTypeNote(Args[0]);
5594     break;
5595   }
5596 
5597   case FK_ConversionFromPropertyFailed:
5598     // No-op. This error has already been reported.
5599     break;
5600 
5601   case FK_TooManyInitsForScalar: {
5602     SourceRange R;
5603 
5604     if (InitListExpr *InitList = dyn_cast<InitListExpr>(Args[0]))
5605       R = SourceRange(InitList->getInit(0)->getLocEnd(),
5606                       InitList->getLocEnd());
5607     else
5608       R = SourceRange(Args[0]->getLocEnd(), Args[NumArgs - 1]->getLocEnd());
5609 
5610     R.setBegin(S.PP.getLocForEndOfToken(R.getBegin()));
5611     if (Kind.isCStyleOrFunctionalCast())
5612       S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
5613         << R;
5614     else
5615       S.Diag(Kind.getLocation(), diag::err_excess_initializers)
5616         << /*scalar=*/2 << R;
5617     break;
5618   }
5619 
5620   case FK_ReferenceBindingToInitList:
5621     S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
5622       << DestType.getNonReferenceType() << Args[0]->getSourceRange();
5623     break;
5624 
5625   case FK_InitListBadDestinationType:
5626     S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
5627       << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
5628     break;
5629 
5630   case FK_ListConstructorOverloadFailed:
5631   case FK_ConstructorOverloadFailed: {
5632     SourceRange ArgsRange;
5633     if (NumArgs)
5634       ArgsRange = SourceRange(Args[0]->getLocStart(),
5635                               Args[NumArgs - 1]->getLocEnd());
5636 
5637     if (Failure == FK_ListConstructorOverloadFailed) {
5638       assert(NumArgs == 1 && "List construction from other than 1 argument.");
5639       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
5640       Args = InitList->getInits();
5641       NumArgs = InitList->getNumInits();
5642     }
5643 
5644     // FIXME: Using "DestType" for the entity we're printing is probably
5645     // bad.
5646     switch (FailedOverloadResult) {
5647       case OR_Ambiguous:
5648         S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
5649           << DestType << ArgsRange;
5650         FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates,
5651                                           llvm::makeArrayRef(Args, NumArgs));
5652         break;
5653 
5654       case OR_No_Viable_Function:
5655         if (Kind.getKind() == InitializationKind::IK_Default &&
5656             (Entity.getKind() == InitializedEntity::EK_Base ||
5657              Entity.getKind() == InitializedEntity::EK_Member) &&
5658             isa<CXXConstructorDecl>(S.CurContext)) {
5659           // This is implicit default initialization of a member or
5660           // base within a constructor. If no viable function was
5661           // found, notify the user that she needs to explicitly
5662           // initialize this base/member.
5663           CXXConstructorDecl *Constructor
5664             = cast<CXXConstructorDecl>(S.CurContext);
5665           if (Entity.getKind() == InitializedEntity::EK_Base) {
5666             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
5667               << Constructor->isImplicit()
5668               << S.Context.getTypeDeclType(Constructor->getParent())
5669               << /*base=*/0
5670               << Entity.getType();
5671 
5672             RecordDecl *BaseDecl
5673               = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
5674                                                                   ->getDecl();
5675             S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
5676               << S.Context.getTagDeclType(BaseDecl);
5677           } else {
5678             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
5679               << Constructor->isImplicit()
5680               << S.Context.getTypeDeclType(Constructor->getParent())
5681               << /*member=*/1
5682               << Entity.getName();
5683             S.Diag(Entity.getDecl()->getLocation(), diag::note_field_decl);
5684 
5685             if (const RecordType *Record
5686                                  = Entity.getType()->getAs<RecordType>())
5687               S.Diag(Record->getDecl()->getLocation(),
5688                      diag::note_previous_decl)
5689                 << S.Context.getTagDeclType(Record->getDecl());
5690           }
5691           break;
5692         }
5693 
5694         S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
5695           << DestType << ArgsRange;
5696         FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates,
5697                                           llvm::makeArrayRef(Args, NumArgs));
5698         break;
5699 
5700       case OR_Deleted: {
5701         OverloadCandidateSet::iterator Best;
5702         OverloadingResult Ovl
5703           = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
5704         if (Ovl != OR_Deleted) {
5705           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
5706             << true << DestType << ArgsRange;
5707           llvm_unreachable("Inconsistent overload resolution?");
5708           break;
5709         }
5710 
5711         // If this is a defaulted or implicitly-declared function, then
5712         // it was implicitly deleted. Make it clear that the deletion was
5713         // implicit.
5714         if (S.isImplicitlyDeleted(Best->Function))
5715           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
5716             << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
5717             << DestType << ArgsRange;
5718         else
5719           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
5720             << true << DestType << ArgsRange;
5721 
5722         S.NoteDeletedFunction(Best->Function);
5723         break;
5724       }
5725 
5726       case OR_Success:
5727         llvm_unreachable("Conversion did not fail!");
5728     }
5729   }
5730   break;
5731 
5732   case FK_DefaultInitOfConst:
5733     if (Entity.getKind() == InitializedEntity::EK_Member &&
5734         isa<CXXConstructorDecl>(S.CurContext)) {
5735       // This is implicit default-initialization of a const member in
5736       // a constructor. Complain that it needs to be explicitly
5737       // initialized.
5738       CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
5739       S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
5740         << Constructor->isImplicit()
5741         << S.Context.getTypeDeclType(Constructor->getParent())
5742         << /*const=*/1
5743         << Entity.getName();
5744       S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
5745         << Entity.getName();
5746     } else {
5747       S.Diag(Kind.getLocation(), diag::err_default_init_const)
5748         << DestType << (bool)DestType->getAs<RecordType>();
5749     }
5750     break;
5751 
5752   case FK_Incomplete:
5753     S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
5754                           diag::err_init_incomplete_type);
5755     break;
5756 
5757   case FK_ListInitializationFailed: {
5758     // Run the init list checker again to emit diagnostics.
5759     InitListExpr* InitList = cast<InitListExpr>(Args[0]);
5760     QualType DestType = Entity.getType();
5761     InitListChecker DiagnoseInitList(S, Entity, InitList,
5762             DestType, /*VerifyOnly=*/false,
5763             Kind.getKind() != InitializationKind::IK_DirectList ||
5764               !S.getLangOpts().CPlusPlus0x);
5765     assert(DiagnoseInitList.HadError() &&
5766            "Inconsistent init list check result.");
5767     break;
5768   }
5769 
5770   case FK_PlaceholderType: {
5771     // FIXME: Already diagnosed!
5772     break;
5773   }
5774 
5775   case FK_InitListElementCopyFailure: {
5776     // Try to perform all copies again.
5777     InitListExpr* InitList = cast<InitListExpr>(Args[0]);
5778     unsigned NumInits = InitList->getNumInits();
5779     QualType DestType = Entity.getType();
5780     QualType E;
5781     bool Success = S.isStdInitializerList(DestType, &E);
5782     (void)Success;
5783     assert(Success && "Where did the std::initializer_list go?");
5784     InitializedEntity HiddenArray = InitializedEntity::InitializeTemporary(
5785         S.Context.getConstantArrayType(E,
5786             llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
5787                         NumInits),
5788             ArrayType::Normal, 0));
5789     InitializedEntity Element = InitializedEntity::InitializeElement(S.Context,
5790         0, HiddenArray);
5791     // Show at most 3 errors. Otherwise, you'd get a lot of errors for errors
5792     // where the init list type is wrong, e.g.
5793     //   std::initializer_list<void*> list = { 1, 2, 3, 4, 5, 6, 7, 8 };
5794     // FIXME: Emit a note if we hit the limit?
5795     int ErrorCount = 0;
5796     for (unsigned i = 0; i < NumInits && ErrorCount < 3; ++i) {
5797       Element.setElementIndex(i);
5798       ExprResult Init = S.Owned(InitList->getInit(i));
5799       if (S.PerformCopyInitialization(Element, Init.get()->getExprLoc(), Init)
5800            .isInvalid())
5801         ++ErrorCount;
5802     }
5803     break;
5804   }
5805 
5806   case FK_ExplicitConstructor: {
5807     S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
5808       << Args[0]->getSourceRange();
5809     OverloadCandidateSet::iterator Best;
5810     OverloadingResult Ovl
5811       = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
5812     (void)Ovl;
5813     assert(Ovl == OR_Success && "Inconsistent overload resolution");
5814     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
5815     S.Diag(CtorDecl->getLocation(), diag::note_constructor_declared_here);
5816     break;
5817   }
5818   }
5819 
5820   PrintInitLocationNote(S, Entity);
5821   return true;
5822 }
5823 
5824 void InitializationSequence::dump(raw_ostream &OS) const {
5825   switch (SequenceKind) {
5826   case FailedSequence: {
5827     OS << "Failed sequence: ";
5828     switch (Failure) {
5829     case FK_TooManyInitsForReference:
5830       OS << "too many initializers for reference";
5831       break;
5832 
5833     case FK_ArrayNeedsInitList:
5834       OS << "array requires initializer list";
5835       break;
5836 
5837     case FK_ArrayNeedsInitListOrStringLiteral:
5838       OS << "array requires initializer list or string literal";
5839       break;
5840 
5841     case FK_ArrayTypeMismatch:
5842       OS << "array type mismatch";
5843       break;
5844 
5845     case FK_NonConstantArrayInit:
5846       OS << "non-constant array initializer";
5847       break;
5848 
5849     case FK_AddressOfOverloadFailed:
5850       OS << "address of overloaded function failed";
5851       break;
5852 
5853     case FK_ReferenceInitOverloadFailed:
5854       OS << "overload resolution for reference initialization failed";
5855       break;
5856 
5857     case FK_NonConstLValueReferenceBindingToTemporary:
5858       OS << "non-const lvalue reference bound to temporary";
5859       break;
5860 
5861     case FK_NonConstLValueReferenceBindingToUnrelated:
5862       OS << "non-const lvalue reference bound to unrelated type";
5863       break;
5864 
5865     case FK_RValueReferenceBindingToLValue:
5866       OS << "rvalue reference bound to an lvalue";
5867       break;
5868 
5869     case FK_ReferenceInitDropsQualifiers:
5870       OS << "reference initialization drops qualifiers";
5871       break;
5872 
5873     case FK_ReferenceInitFailed:
5874       OS << "reference initialization failed";
5875       break;
5876 
5877     case FK_ConversionFailed:
5878       OS << "conversion failed";
5879       break;
5880 
5881     case FK_ConversionFromPropertyFailed:
5882       OS << "conversion from property failed";
5883       break;
5884 
5885     case FK_TooManyInitsForScalar:
5886       OS << "too many initializers for scalar";
5887       break;
5888 
5889     case FK_ReferenceBindingToInitList:
5890       OS << "referencing binding to initializer list";
5891       break;
5892 
5893     case FK_InitListBadDestinationType:
5894       OS << "initializer list for non-aggregate, non-scalar type";
5895       break;
5896 
5897     case FK_UserConversionOverloadFailed:
5898       OS << "overloading failed for user-defined conversion";
5899       break;
5900 
5901     case FK_ConstructorOverloadFailed:
5902       OS << "constructor overloading failed";
5903       break;
5904 
5905     case FK_DefaultInitOfConst:
5906       OS << "default initialization of a const variable";
5907       break;
5908 
5909     case FK_Incomplete:
5910       OS << "initialization of incomplete type";
5911       break;
5912 
5913     case FK_ListInitializationFailed:
5914       OS << "list initialization checker failure";
5915       break;
5916 
5917     case FK_VariableLengthArrayHasInitializer:
5918       OS << "variable length array has an initializer";
5919       break;
5920 
5921     case FK_PlaceholderType:
5922       OS << "initializer expression isn't contextually valid";
5923       break;
5924 
5925     case FK_ListConstructorOverloadFailed:
5926       OS << "list constructor overloading failed";
5927       break;
5928 
5929     case FK_InitListElementCopyFailure:
5930       OS << "copy construction of initializer list element failed";
5931       break;
5932 
5933     case FK_ExplicitConstructor:
5934       OS << "list copy initialization chose explicit constructor";
5935       break;
5936     }
5937     OS << '\n';
5938     return;
5939   }
5940 
5941   case DependentSequence:
5942     OS << "Dependent sequence\n";
5943     return;
5944 
5945   case NormalSequence:
5946     OS << "Normal sequence: ";
5947     break;
5948   }
5949 
5950   for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
5951     if (S != step_begin()) {
5952       OS << " -> ";
5953     }
5954 
5955     switch (S->Kind) {
5956     case SK_ResolveAddressOfOverloadedFunction:
5957       OS << "resolve address of overloaded function";
5958       break;
5959 
5960     case SK_CastDerivedToBaseRValue:
5961       OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")";
5962       break;
5963 
5964     case SK_CastDerivedToBaseXValue:
5965       OS << "derived-to-base case (xvalue" << S->Type.getAsString() << ")";
5966       break;
5967 
5968     case SK_CastDerivedToBaseLValue:
5969       OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")";
5970       break;
5971 
5972     case SK_BindReference:
5973       OS << "bind reference to lvalue";
5974       break;
5975 
5976     case SK_BindReferenceToTemporary:
5977       OS << "bind reference to a temporary";
5978       break;
5979 
5980     case SK_ExtraneousCopyToTemporary:
5981       OS << "extraneous C++03 copy to temporary";
5982       break;
5983 
5984     case SK_UserConversion:
5985       OS << "user-defined conversion via " << *S->Function.Function;
5986       break;
5987 
5988     case SK_QualificationConversionRValue:
5989       OS << "qualification conversion (rvalue)";
5990       break;
5991 
5992     case SK_QualificationConversionXValue:
5993       OS << "qualification conversion (xvalue)";
5994       break;
5995 
5996     case SK_QualificationConversionLValue:
5997       OS << "qualification conversion (lvalue)";
5998       break;
5999 
6000     case SK_ConversionSequence:
6001       OS << "implicit conversion sequence (";
6002       S->ICS->DebugPrint(); // FIXME: use OS
6003       OS << ")";
6004       break;
6005 
6006     case SK_ListInitialization:
6007       OS << "list aggregate initialization";
6008       break;
6009 
6010     case SK_ListConstructorCall:
6011       OS << "list initialization via constructor";
6012       break;
6013 
6014     case SK_UnwrapInitList:
6015       OS << "unwrap reference initializer list";
6016       break;
6017 
6018     case SK_RewrapInitList:
6019       OS << "rewrap reference initializer list";
6020       break;
6021 
6022     case SK_ConstructorInitialization:
6023       OS << "constructor initialization";
6024       break;
6025 
6026     case SK_ZeroInitialization:
6027       OS << "zero initialization";
6028       break;
6029 
6030     case SK_CAssignment:
6031       OS << "C assignment";
6032       break;
6033 
6034     case SK_StringInit:
6035       OS << "string initialization";
6036       break;
6037 
6038     case SK_ObjCObjectConversion:
6039       OS << "Objective-C object conversion";
6040       break;
6041 
6042     case SK_ArrayInit:
6043       OS << "array initialization";
6044       break;
6045 
6046     case SK_ParenthesizedArrayInit:
6047       OS << "parenthesized array initialization";
6048       break;
6049 
6050     case SK_PassByIndirectCopyRestore:
6051       OS << "pass by indirect copy and restore";
6052       break;
6053 
6054     case SK_PassByIndirectRestore:
6055       OS << "pass by indirect restore";
6056       break;
6057 
6058     case SK_ProduceObjCObject:
6059       OS << "Objective-C object retension";
6060       break;
6061 
6062     case SK_StdInitializerList:
6063       OS << "std::initializer_list from initializer list";
6064       break;
6065     }
6066   }
6067 }
6068 
6069 void InitializationSequence::dump() const {
6070   dump(llvm::errs());
6071 }
6072 
6073 static void DiagnoseNarrowingInInitList(Sema &S, InitializationSequence &Seq,
6074                                         QualType EntityType,
6075                                         const Expr *PreInit,
6076                                         const Expr *PostInit) {
6077   if (Seq.step_begin() == Seq.step_end() || PreInit->isValueDependent())
6078     return;
6079 
6080   // A narrowing conversion can only appear as the final implicit conversion in
6081   // an initialization sequence.
6082   const InitializationSequence::Step &LastStep = Seq.step_end()[-1];
6083   if (LastStep.Kind != InitializationSequence::SK_ConversionSequence)
6084     return;
6085 
6086   const ImplicitConversionSequence &ICS = *LastStep.ICS;
6087   const StandardConversionSequence *SCS = 0;
6088   switch (ICS.getKind()) {
6089   case ImplicitConversionSequence::StandardConversion:
6090     SCS = &ICS.Standard;
6091     break;
6092   case ImplicitConversionSequence::UserDefinedConversion:
6093     SCS = &ICS.UserDefined.After;
6094     break;
6095   case ImplicitConversionSequence::AmbiguousConversion:
6096   case ImplicitConversionSequence::EllipsisConversion:
6097   case ImplicitConversionSequence::BadConversion:
6098     return;
6099   }
6100 
6101   // Determine the type prior to the narrowing conversion. If a conversion
6102   // operator was used, this may be different from both the type of the entity
6103   // and of the pre-initialization expression.
6104   QualType PreNarrowingType = PreInit->getType();
6105   if (Seq.step_begin() + 1 != Seq.step_end())
6106     PreNarrowingType = Seq.step_end()[-2].Type;
6107 
6108   // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
6109   APValue ConstantValue;
6110   QualType ConstantType;
6111   switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
6112                                 ConstantType)) {
6113   case NK_Not_Narrowing:
6114     // No narrowing occurred.
6115     return;
6116 
6117   case NK_Type_Narrowing:
6118     // This was a floating-to-integer conversion, which is always considered a
6119     // narrowing conversion even if the value is a constant and can be
6120     // represented exactly as an integer.
6121     S.Diag(PostInit->getLocStart(),
6122            S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus0x?
6123              diag::warn_init_list_type_narrowing
6124            : S.isSFINAEContext()?
6125              diag::err_init_list_type_narrowing_sfinae
6126            : diag::err_init_list_type_narrowing)
6127       << PostInit->getSourceRange()
6128       << PreNarrowingType.getLocalUnqualifiedType()
6129       << EntityType.getLocalUnqualifiedType();
6130     break;
6131 
6132   case NK_Constant_Narrowing:
6133     // A constant value was narrowed.
6134     S.Diag(PostInit->getLocStart(),
6135            S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus0x?
6136              diag::warn_init_list_constant_narrowing
6137            : S.isSFINAEContext()?
6138              diag::err_init_list_constant_narrowing_sfinae
6139            : diag::err_init_list_constant_narrowing)
6140       << PostInit->getSourceRange()
6141       << ConstantValue.getAsString(S.getASTContext(), ConstantType)
6142       << EntityType.getLocalUnqualifiedType();
6143     break;
6144 
6145   case NK_Variable_Narrowing:
6146     // A variable's value may have been narrowed.
6147     S.Diag(PostInit->getLocStart(),
6148            S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus0x?
6149              diag::warn_init_list_variable_narrowing
6150            : S.isSFINAEContext()?
6151              diag::err_init_list_variable_narrowing_sfinae
6152            : diag::err_init_list_variable_narrowing)
6153       << PostInit->getSourceRange()
6154       << PreNarrowingType.getLocalUnqualifiedType()
6155       << EntityType.getLocalUnqualifiedType();
6156     break;
6157   }
6158 
6159   SmallString<128> StaticCast;
6160   llvm::raw_svector_ostream OS(StaticCast);
6161   OS << "static_cast<";
6162   if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
6163     // It's important to use the typedef's name if there is one so that the
6164     // fixit doesn't break code using types like int64_t.
6165     //
6166     // FIXME: This will break if the typedef requires qualification.  But
6167     // getQualifiedNameAsString() includes non-machine-parsable components.
6168     OS << *TT->getDecl();
6169   } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
6170     OS << BT->getName(S.getLangOpts());
6171   else {
6172     // Oops, we didn't find the actual type of the variable.  Don't emit a fixit
6173     // with a broken cast.
6174     return;
6175   }
6176   OS << ">(";
6177   S.Diag(PostInit->getLocStart(), diag::note_init_list_narrowing_override)
6178     << PostInit->getSourceRange()
6179     << FixItHint::CreateInsertion(PostInit->getLocStart(), OS.str())
6180     << FixItHint::CreateInsertion(
6181       S.getPreprocessor().getLocForEndOfToken(PostInit->getLocEnd()), ")");
6182 }
6183 
6184 //===----------------------------------------------------------------------===//
6185 // Initialization helper functions
6186 //===----------------------------------------------------------------------===//
6187 bool
6188 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
6189                                    ExprResult Init) {
6190   if (Init.isInvalid())
6191     return false;
6192 
6193   Expr *InitE = Init.get();
6194   assert(InitE && "No initialization expression");
6195 
6196   InitializationKind Kind
6197     = InitializationKind::CreateCopy(InitE->getLocStart(), SourceLocation());
6198   InitializationSequence Seq(*this, Entity, Kind, &InitE, 1);
6199   return !Seq.Failed();
6200 }
6201 
6202 ExprResult
6203 Sema::PerformCopyInitialization(const InitializedEntity &Entity,
6204                                 SourceLocation EqualLoc,
6205                                 ExprResult Init,
6206                                 bool TopLevelOfInitList,
6207                                 bool AllowExplicit) {
6208   if (Init.isInvalid())
6209     return ExprError();
6210 
6211   Expr *InitE = Init.get();
6212   assert(InitE && "No initialization expression?");
6213 
6214   if (EqualLoc.isInvalid())
6215     EqualLoc = InitE->getLocStart();
6216 
6217   InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
6218                                                            EqualLoc,
6219                                                            AllowExplicit);
6220   InitializationSequence Seq(*this, Entity, Kind, &InitE, 1);
6221   Init.release();
6222 
6223   ExprResult Result = Seq.Perform(*this, Entity, Kind, MultiExprArg(&InitE, 1));
6224 
6225   if (!Result.isInvalid() && TopLevelOfInitList)
6226     DiagnoseNarrowingInInitList(*this, Seq, Entity.getType(),
6227                                 InitE, Result.get());
6228 
6229   return Result;
6230 }
6231