1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for initializers.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/Designator.h"
15 #include "clang/Sema/Initialization.h"
16 #include "clang/Sema/Lookup.h"
17 #include "clang/Sema/SemaInternal.h"
18 #include "clang/Lex/Preprocessor.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/ExprObjC.h"
23 #include "clang/AST/TypeLoc.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include <map>
27 using namespace clang;
28 
29 //===----------------------------------------------------------------------===//
30 // Sema Initialization Checking
31 //===----------------------------------------------------------------------===//
32 
33 static Expr *IsStringInit(Expr *Init, const ArrayType *AT,
34                           ASTContext &Context) {
35   if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
36     return 0;
37 
38   // See if this is a string literal or @encode.
39   Init = Init->IgnoreParens();
40 
41   // Handle @encode, which is a narrow string.
42   if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
43     return Init;
44 
45   // Otherwise we can only handle string literals.
46   StringLiteral *SL = dyn_cast<StringLiteral>(Init);
47   if (SL == 0) return 0;
48 
49   QualType ElemTy = Context.getCanonicalType(AT->getElementType());
50 
51   switch (SL->getKind()) {
52   case StringLiteral::Ascii:
53   case StringLiteral::UTF8:
54     // char array can be initialized with a narrow string.
55     // Only allow char x[] = "foo";  not char x[] = L"foo";
56     return ElemTy->isCharType() ? Init : 0;
57   case StringLiteral::UTF16:
58     return ElemTy->isChar16Type() ? Init : 0;
59   case StringLiteral::UTF32:
60     return ElemTy->isChar32Type() ? Init : 0;
61   case StringLiteral::Wide:
62     // wchar_t array can be initialized with a wide string: C99 6.7.8p15 (with
63     // correction from DR343): "An array with element type compatible with a
64     // qualified or unqualified version of wchar_t may be initialized by a wide
65     // string literal, optionally enclosed in braces."
66     if (Context.typesAreCompatible(Context.getWCharType(),
67                                    ElemTy.getUnqualifiedType()))
68       return Init;
69 
70     return 0;
71   }
72 
73   llvm_unreachable("missed a StringLiteral kind?");
74 }
75 
76 static Expr *IsStringInit(Expr *init, QualType declType, ASTContext &Context) {
77   const ArrayType *arrayType = Context.getAsArrayType(declType);
78   if (!arrayType) return 0;
79 
80   return IsStringInit(init, arrayType, Context);
81 }
82 
83 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
84                             Sema &S) {
85   // Get the length of the string as parsed.
86   uint64_t StrLength =
87     cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue();
88 
89 
90   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
91     // C99 6.7.8p14. We have an array of character type with unknown size
92     // being initialized to a string literal.
93     llvm::APSInt ConstVal(32);
94     ConstVal = StrLength;
95     // Return a new array type (C99 6.7.8p22).
96     DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
97                                            ConstVal,
98                                            ArrayType::Normal, 0);
99     return;
100   }
101 
102   const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
103 
104   // We have an array of character type with known size.  However,
105   // the size may be smaller or larger than the string we are initializing.
106   // FIXME: Avoid truncation for 64-bit length strings.
107   if (S.getLangOptions().CPlusPlus) {
108     if (StringLiteral *SL = dyn_cast<StringLiteral>(Str)) {
109       // For Pascal strings it's OK to strip off the terminating null character,
110       // so the example below is valid:
111       //
112       // unsigned char a[2] = "\pa";
113       if (SL->isPascal())
114         StrLength--;
115     }
116 
117     // [dcl.init.string]p2
118     if (StrLength > CAT->getSize().getZExtValue())
119       S.Diag(Str->getSourceRange().getBegin(),
120              diag::err_initializer_string_for_char_array_too_long)
121         << Str->getSourceRange();
122   } else {
123     // C99 6.7.8p14.
124     if (StrLength-1 > CAT->getSize().getZExtValue())
125       S.Diag(Str->getSourceRange().getBegin(),
126              diag::warn_initializer_string_for_char_array_too_long)
127         << Str->getSourceRange();
128   }
129 
130   // Set the type to the actual size that we are initializing.  If we have
131   // something like:
132   //   char x[1] = "foo";
133   // then this will set the string literal's type to char[1].
134   Str->setType(DeclT);
135 }
136 
137 //===----------------------------------------------------------------------===//
138 // Semantic checking for initializer lists.
139 //===----------------------------------------------------------------------===//
140 
141 /// @brief Semantic checking for initializer lists.
142 ///
143 /// The InitListChecker class contains a set of routines that each
144 /// handle the initialization of a certain kind of entity, e.g.,
145 /// arrays, vectors, struct/union types, scalars, etc. The
146 /// InitListChecker itself performs a recursive walk of the subobject
147 /// structure of the type to be initialized, while stepping through
148 /// the initializer list one element at a time. The IList and Index
149 /// parameters to each of the Check* routines contain the active
150 /// (syntactic) initializer list and the index into that initializer
151 /// list that represents the current initializer. Each routine is
152 /// responsible for moving that Index forward as it consumes elements.
153 ///
154 /// Each Check* routine also has a StructuredList/StructuredIndex
155 /// arguments, which contains the current "structured" (semantic)
156 /// initializer list and the index into that initializer list where we
157 /// are copying initializers as we map them over to the semantic
158 /// list. Once we have completed our recursive walk of the subobject
159 /// structure, we will have constructed a full semantic initializer
160 /// list.
161 ///
162 /// C99 designators cause changes in the initializer list traversal,
163 /// because they make the initialization "jump" into a specific
164 /// subobject and then continue the initialization from that
165 /// point. CheckDesignatedInitializer() recursively steps into the
166 /// designated subobject and manages backing out the recursion to
167 /// initialize the subobjects after the one designated.
168 namespace {
169 class InitListChecker {
170   Sema &SemaRef;
171   bool hadError;
172   bool VerifyOnly; // no diagnostics, no structure building
173   bool AllowBraceElision;
174   std::map<InitListExpr *, InitListExpr *> SyntacticToSemantic;
175   InitListExpr *FullyStructuredList;
176 
177   void CheckImplicitInitList(const InitializedEntity &Entity,
178                              InitListExpr *ParentIList, QualType T,
179                              unsigned &Index, InitListExpr *StructuredList,
180                              unsigned &StructuredIndex);
181   void CheckExplicitInitList(const InitializedEntity &Entity,
182                              InitListExpr *IList, QualType &T,
183                              unsigned &Index, InitListExpr *StructuredList,
184                              unsigned &StructuredIndex,
185                              bool TopLevelObject = false);
186   void CheckListElementTypes(const InitializedEntity &Entity,
187                              InitListExpr *IList, QualType &DeclType,
188                              bool SubobjectIsDesignatorContext,
189                              unsigned &Index,
190                              InitListExpr *StructuredList,
191                              unsigned &StructuredIndex,
192                              bool TopLevelObject = false);
193   void CheckSubElementType(const InitializedEntity &Entity,
194                            InitListExpr *IList, QualType ElemType,
195                            unsigned &Index,
196                            InitListExpr *StructuredList,
197                            unsigned &StructuredIndex);
198   void CheckComplexType(const InitializedEntity &Entity,
199                         InitListExpr *IList, QualType DeclType,
200                         unsigned &Index,
201                         InitListExpr *StructuredList,
202                         unsigned &StructuredIndex);
203   void CheckScalarType(const InitializedEntity &Entity,
204                        InitListExpr *IList, QualType DeclType,
205                        unsigned &Index,
206                        InitListExpr *StructuredList,
207                        unsigned &StructuredIndex);
208   void CheckReferenceType(const InitializedEntity &Entity,
209                           InitListExpr *IList, QualType DeclType,
210                           unsigned &Index,
211                           InitListExpr *StructuredList,
212                           unsigned &StructuredIndex);
213   void CheckVectorType(const InitializedEntity &Entity,
214                        InitListExpr *IList, QualType DeclType, unsigned &Index,
215                        InitListExpr *StructuredList,
216                        unsigned &StructuredIndex);
217   void CheckStructUnionTypes(const InitializedEntity &Entity,
218                              InitListExpr *IList, QualType DeclType,
219                              RecordDecl::field_iterator Field,
220                              bool SubobjectIsDesignatorContext, unsigned &Index,
221                              InitListExpr *StructuredList,
222                              unsigned &StructuredIndex,
223                              bool TopLevelObject = false);
224   void CheckArrayType(const InitializedEntity &Entity,
225                       InitListExpr *IList, QualType &DeclType,
226                       llvm::APSInt elementIndex,
227                       bool SubobjectIsDesignatorContext, unsigned &Index,
228                       InitListExpr *StructuredList,
229                       unsigned &StructuredIndex);
230   bool CheckDesignatedInitializer(const InitializedEntity &Entity,
231                                   InitListExpr *IList, DesignatedInitExpr *DIE,
232                                   unsigned DesigIdx,
233                                   QualType &CurrentObjectType,
234                                   RecordDecl::field_iterator *NextField,
235                                   llvm::APSInt *NextElementIndex,
236                                   unsigned &Index,
237                                   InitListExpr *StructuredList,
238                                   unsigned &StructuredIndex,
239                                   bool FinishSubobjectInit,
240                                   bool TopLevelObject);
241   InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
242                                            QualType CurrentObjectType,
243                                            InitListExpr *StructuredList,
244                                            unsigned StructuredIndex,
245                                            SourceRange InitRange);
246   void UpdateStructuredListElement(InitListExpr *StructuredList,
247                                    unsigned &StructuredIndex,
248                                    Expr *expr);
249   int numArrayElements(QualType DeclType);
250   int numStructUnionElements(QualType DeclType);
251 
252   void FillInValueInitForField(unsigned Init, FieldDecl *Field,
253                                const InitializedEntity &ParentEntity,
254                                InitListExpr *ILE, bool &RequiresSecondPass);
255   void FillInValueInitializations(const InitializedEntity &Entity,
256                                   InitListExpr *ILE, bool &RequiresSecondPass);
257   bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
258                               Expr *InitExpr, FieldDecl *Field,
259                               bool TopLevelObject);
260   void CheckValueInitializable(const InitializedEntity &Entity);
261 
262 public:
263   InitListChecker(Sema &S, const InitializedEntity &Entity,
264                   InitListExpr *IL, QualType &T, bool VerifyOnly,
265                   bool AllowBraceElision);
266   bool HadError() { return hadError; }
267 
268   // @brief Retrieves the fully-structured initializer list used for
269   // semantic analysis and code generation.
270   InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
271 };
272 } // end anonymous namespace
273 
274 void InitListChecker::CheckValueInitializable(const InitializedEntity &Entity) {
275   assert(VerifyOnly &&
276          "CheckValueInitializable is only inteded for verification mode.");
277 
278   SourceLocation Loc;
279   InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
280                                                             true);
281   InitializationSequence InitSeq(SemaRef, Entity, Kind, 0, 0);
282   if (InitSeq.Failed())
283     hadError = true;
284 }
285 
286 void InitListChecker::FillInValueInitForField(unsigned Init, FieldDecl *Field,
287                                         const InitializedEntity &ParentEntity,
288                                               InitListExpr *ILE,
289                                               bool &RequiresSecondPass) {
290   SourceLocation Loc = ILE->getSourceRange().getBegin();
291   unsigned NumInits = ILE->getNumInits();
292   InitializedEntity MemberEntity
293     = InitializedEntity::InitializeMember(Field, &ParentEntity);
294   if (Init >= NumInits || !ILE->getInit(Init)) {
295     // FIXME: We probably don't need to handle references
296     // specially here, since value-initialization of references is
297     // handled in InitializationSequence.
298     if (Field->getType()->isReferenceType()) {
299       // C++ [dcl.init.aggr]p9:
300       //   If an incomplete or empty initializer-list leaves a
301       //   member of reference type uninitialized, the program is
302       //   ill-formed.
303       SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
304         << Field->getType()
305         << ILE->getSyntacticForm()->getSourceRange();
306       SemaRef.Diag(Field->getLocation(),
307                    diag::note_uninit_reference_member);
308       hadError = true;
309       return;
310     }
311 
312     InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
313                                                               true);
314     InitializationSequence InitSeq(SemaRef, MemberEntity, Kind, 0, 0);
315     if (!InitSeq) {
316       InitSeq.Diagnose(SemaRef, MemberEntity, Kind, 0, 0);
317       hadError = true;
318       return;
319     }
320 
321     ExprResult MemberInit
322       = InitSeq.Perform(SemaRef, MemberEntity, Kind, MultiExprArg());
323     if (MemberInit.isInvalid()) {
324       hadError = true;
325       return;
326     }
327 
328     if (hadError) {
329       // Do nothing
330     } else if (Init < NumInits) {
331       ILE->setInit(Init, MemberInit.takeAs<Expr>());
332     } else if (InitSeq.isConstructorInitialization()) {
333       // Value-initialization requires a constructor call, so
334       // extend the initializer list to include the constructor
335       // call and make a note that we'll need to take another pass
336       // through the initializer list.
337       ILE->updateInit(SemaRef.Context, Init, MemberInit.takeAs<Expr>());
338       RequiresSecondPass = true;
339     }
340   } else if (InitListExpr *InnerILE
341                = dyn_cast<InitListExpr>(ILE->getInit(Init)))
342     FillInValueInitializations(MemberEntity, InnerILE,
343                                RequiresSecondPass);
344 }
345 
346 /// Recursively replaces NULL values within the given initializer list
347 /// with expressions that perform value-initialization of the
348 /// appropriate type.
349 void
350 InitListChecker::FillInValueInitializations(const InitializedEntity &Entity,
351                                             InitListExpr *ILE,
352                                             bool &RequiresSecondPass) {
353   assert((ILE->getType() != SemaRef.Context.VoidTy) &&
354          "Should not have void type");
355   SourceLocation Loc = ILE->getSourceRange().getBegin();
356   if (ILE->getSyntacticForm())
357     Loc = ILE->getSyntacticForm()->getSourceRange().getBegin();
358 
359   if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
360     if (RType->getDecl()->isUnion() &&
361         ILE->getInitializedFieldInUnion())
362       FillInValueInitForField(0, ILE->getInitializedFieldInUnion(),
363                               Entity, ILE, RequiresSecondPass);
364     else {
365       unsigned Init = 0;
366       for (RecordDecl::field_iterator
367              Field = RType->getDecl()->field_begin(),
368              FieldEnd = RType->getDecl()->field_end();
369            Field != FieldEnd; ++Field) {
370         if (Field->isUnnamedBitfield())
371           continue;
372 
373         if (hadError)
374           return;
375 
376         FillInValueInitForField(Init, *Field, Entity, ILE, RequiresSecondPass);
377         if (hadError)
378           return;
379 
380         ++Init;
381 
382         // Only look at the first initialization of a union.
383         if (RType->getDecl()->isUnion())
384           break;
385       }
386     }
387 
388     return;
389   }
390 
391   QualType ElementType;
392 
393   InitializedEntity ElementEntity = Entity;
394   unsigned NumInits = ILE->getNumInits();
395   unsigned NumElements = NumInits;
396   if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
397     ElementType = AType->getElementType();
398     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
399       NumElements = CAType->getSize().getZExtValue();
400     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
401                                                          0, Entity);
402   } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
403     ElementType = VType->getElementType();
404     NumElements = VType->getNumElements();
405     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
406                                                          0, Entity);
407   } else
408     ElementType = ILE->getType();
409 
410 
411   for (unsigned Init = 0; Init != NumElements; ++Init) {
412     if (hadError)
413       return;
414 
415     if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
416         ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
417       ElementEntity.setElementIndex(Init);
418 
419     if (Init >= NumInits || !ILE->getInit(Init)) {
420       InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
421                                                                 true);
422       InitializationSequence InitSeq(SemaRef, ElementEntity, Kind, 0, 0);
423       if (!InitSeq) {
424         InitSeq.Diagnose(SemaRef, ElementEntity, Kind, 0, 0);
425         hadError = true;
426         return;
427       }
428 
429       ExprResult ElementInit
430         = InitSeq.Perform(SemaRef, ElementEntity, Kind, MultiExprArg());
431       if (ElementInit.isInvalid()) {
432         hadError = true;
433         return;
434       }
435 
436       if (hadError) {
437         // Do nothing
438       } else if (Init < NumInits) {
439         // For arrays, just set the expression used for value-initialization
440         // of the "holes" in the array.
441         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
442           ILE->setArrayFiller(ElementInit.takeAs<Expr>());
443         else
444           ILE->setInit(Init, ElementInit.takeAs<Expr>());
445       } else {
446         // For arrays, just set the expression used for value-initialization
447         // of the rest of elements and exit.
448         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
449           ILE->setArrayFiller(ElementInit.takeAs<Expr>());
450           return;
451         }
452 
453         if (InitSeq.isConstructorInitialization()) {
454           // Value-initialization requires a constructor call, so
455           // extend the initializer list to include the constructor
456           // call and make a note that we'll need to take another pass
457           // through the initializer list.
458           ILE->updateInit(SemaRef.Context, Init, ElementInit.takeAs<Expr>());
459           RequiresSecondPass = true;
460         }
461       }
462     } else if (InitListExpr *InnerILE
463                  = dyn_cast<InitListExpr>(ILE->getInit(Init)))
464       FillInValueInitializations(ElementEntity, InnerILE, RequiresSecondPass);
465   }
466 }
467 
468 
469 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
470                                  InitListExpr *IL, QualType &T,
471                                  bool VerifyOnly, bool AllowBraceElision)
472   : SemaRef(S), VerifyOnly(VerifyOnly), AllowBraceElision(AllowBraceElision) {
473   hadError = false;
474 
475   unsigned newIndex = 0;
476   unsigned newStructuredIndex = 0;
477   FullyStructuredList
478     = getStructuredSubobjectInit(IL, newIndex, T, 0, 0, IL->getSourceRange());
479   CheckExplicitInitList(Entity, IL, T, newIndex,
480                         FullyStructuredList, newStructuredIndex,
481                         /*TopLevelObject=*/true);
482 
483   if (!hadError && !VerifyOnly) {
484     bool RequiresSecondPass = false;
485     FillInValueInitializations(Entity, FullyStructuredList, RequiresSecondPass);
486     if (RequiresSecondPass && !hadError)
487       FillInValueInitializations(Entity, FullyStructuredList,
488                                  RequiresSecondPass);
489   }
490 }
491 
492 int InitListChecker::numArrayElements(QualType DeclType) {
493   // FIXME: use a proper constant
494   int maxElements = 0x7FFFFFFF;
495   if (const ConstantArrayType *CAT =
496         SemaRef.Context.getAsConstantArrayType(DeclType)) {
497     maxElements = static_cast<int>(CAT->getSize().getZExtValue());
498   }
499   return maxElements;
500 }
501 
502 int InitListChecker::numStructUnionElements(QualType DeclType) {
503   RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
504   int InitializableMembers = 0;
505   for (RecordDecl::field_iterator
506          Field = structDecl->field_begin(),
507          FieldEnd = structDecl->field_end();
508        Field != FieldEnd; ++Field) {
509     if (!Field->isUnnamedBitfield())
510       ++InitializableMembers;
511   }
512   if (structDecl->isUnion())
513     return std::min(InitializableMembers, 1);
514   return InitializableMembers - structDecl->hasFlexibleArrayMember();
515 }
516 
517 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
518                                             InitListExpr *ParentIList,
519                                             QualType T, unsigned &Index,
520                                             InitListExpr *StructuredList,
521                                             unsigned &StructuredIndex) {
522   int maxElements = 0;
523 
524   if (T->isArrayType())
525     maxElements = numArrayElements(T);
526   else if (T->isRecordType())
527     maxElements = numStructUnionElements(T);
528   else if (T->isVectorType())
529     maxElements = T->getAs<VectorType>()->getNumElements();
530   else
531     llvm_unreachable("CheckImplicitInitList(): Illegal type");
532 
533   if (maxElements == 0) {
534     if (!VerifyOnly)
535       SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
536                    diag::err_implicit_empty_initializer);
537     ++Index;
538     hadError = true;
539     return;
540   }
541 
542   // Build a structured initializer list corresponding to this subobject.
543   InitListExpr *StructuredSubobjectInitList
544     = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
545                                  StructuredIndex,
546           SourceRange(ParentIList->getInit(Index)->getSourceRange().getBegin(),
547                       ParentIList->getSourceRange().getEnd()));
548   unsigned StructuredSubobjectInitIndex = 0;
549 
550   // Check the element types and build the structural subobject.
551   unsigned StartIndex = Index;
552   CheckListElementTypes(Entity, ParentIList, T,
553                         /*SubobjectIsDesignatorContext=*/false, Index,
554                         StructuredSubobjectInitList,
555                         StructuredSubobjectInitIndex);
556 
557   if (VerifyOnly) {
558     if (!AllowBraceElision && (T->isArrayType() || T->isRecordType()))
559       hadError = true;
560   } else {
561     StructuredSubobjectInitList->setType(T);
562 
563     unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
564     // Update the structured sub-object initializer so that it's ending
565     // range corresponds with the end of the last initializer it used.
566     if (EndIndex < ParentIList->getNumInits()) {
567       SourceLocation EndLoc
568         = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
569       StructuredSubobjectInitList->setRBraceLoc(EndLoc);
570     }
571 
572     // Complain about missing braces.
573     if (T->isArrayType() || T->isRecordType()) {
574       SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
575                     AllowBraceElision ? diag::warn_missing_braces :
576                                         diag::err_missing_braces)
577         << StructuredSubobjectInitList->getSourceRange()
578         << FixItHint::CreateInsertion(
579               StructuredSubobjectInitList->getLocStart(), "{")
580         << FixItHint::CreateInsertion(
581               SemaRef.PP.getLocForEndOfToken(
582                                       StructuredSubobjectInitList->getLocEnd()),
583               "}");
584       if (!AllowBraceElision)
585         hadError = true;
586     }
587   }
588 }
589 
590 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
591                                             InitListExpr *IList, QualType &T,
592                                             unsigned &Index,
593                                             InitListExpr *StructuredList,
594                                             unsigned &StructuredIndex,
595                                             bool TopLevelObject) {
596   assert(IList->isExplicit() && "Illegal Implicit InitListExpr");
597   if (!VerifyOnly) {
598     SyntacticToSemantic[IList] = StructuredList;
599     StructuredList->setSyntacticForm(IList);
600   }
601   CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
602                         Index, StructuredList, StructuredIndex, TopLevelObject);
603   if (!VerifyOnly) {
604     QualType ExprTy = T.getNonLValueExprType(SemaRef.Context);
605     IList->setType(ExprTy);
606     StructuredList->setType(ExprTy);
607   }
608   if (hadError)
609     return;
610 
611   if (Index < IList->getNumInits()) {
612     // We have leftover initializers
613     if (VerifyOnly) {
614       if (SemaRef.getLangOptions().CPlusPlus ||
615           (SemaRef.getLangOptions().OpenCL &&
616            IList->getType()->isVectorType())) {
617         hadError = true;
618       }
619       return;
620     }
621 
622     if (StructuredIndex == 1 &&
623         IsStringInit(StructuredList->getInit(0), T, SemaRef.Context)) {
624       unsigned DK = diag::warn_excess_initializers_in_char_array_initializer;
625       if (SemaRef.getLangOptions().CPlusPlus) {
626         DK = diag::err_excess_initializers_in_char_array_initializer;
627         hadError = true;
628       }
629       // Special-case
630       SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
631         << IList->getInit(Index)->getSourceRange();
632     } else if (!T->isIncompleteType()) {
633       // Don't complain for incomplete types, since we'll get an error
634       // elsewhere
635       QualType CurrentObjectType = StructuredList->getType();
636       int initKind =
637         CurrentObjectType->isArrayType()? 0 :
638         CurrentObjectType->isVectorType()? 1 :
639         CurrentObjectType->isScalarType()? 2 :
640         CurrentObjectType->isUnionType()? 3 :
641         4;
642 
643       unsigned DK = diag::warn_excess_initializers;
644       if (SemaRef.getLangOptions().CPlusPlus) {
645         DK = diag::err_excess_initializers;
646         hadError = true;
647       }
648       if (SemaRef.getLangOptions().OpenCL && initKind == 1) {
649         DK = diag::err_excess_initializers;
650         hadError = true;
651       }
652 
653       SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
654         << initKind << IList->getInit(Index)->getSourceRange();
655     }
656   }
657 
658   if (!VerifyOnly && T->isScalarType() && IList->getNumInits() == 1 &&
659       !TopLevelObject)
660     SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init)
661       << IList->getSourceRange()
662       << FixItHint::CreateRemoval(IList->getLocStart())
663       << FixItHint::CreateRemoval(IList->getLocEnd());
664 }
665 
666 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
667                                             InitListExpr *IList,
668                                             QualType &DeclType,
669                                             bool SubobjectIsDesignatorContext,
670                                             unsigned &Index,
671                                             InitListExpr *StructuredList,
672                                             unsigned &StructuredIndex,
673                                             bool TopLevelObject) {
674   if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
675     // Explicitly braced initializer for complex type can be real+imaginary
676     // parts.
677     CheckComplexType(Entity, IList, DeclType, Index,
678                      StructuredList, StructuredIndex);
679   } else if (DeclType->isScalarType()) {
680     CheckScalarType(Entity, IList, DeclType, Index,
681                     StructuredList, StructuredIndex);
682   } else if (DeclType->isVectorType()) {
683     CheckVectorType(Entity, IList, DeclType, Index,
684                     StructuredList, StructuredIndex);
685   } else if (DeclType->isAggregateType()) {
686     if (DeclType->isRecordType()) {
687       RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
688       CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(),
689                             SubobjectIsDesignatorContext, Index,
690                             StructuredList, StructuredIndex,
691                             TopLevelObject);
692     } else if (DeclType->isArrayType()) {
693       llvm::APSInt Zero(
694                       SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
695                       false);
696       CheckArrayType(Entity, IList, DeclType, Zero,
697                      SubobjectIsDesignatorContext, Index,
698                      StructuredList, StructuredIndex);
699     } else
700       llvm_unreachable("Aggregate that isn't a structure or array?!");
701   } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
702     // This type is invalid, issue a diagnostic.
703     ++Index;
704     if (!VerifyOnly)
705       SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
706         << DeclType;
707     hadError = true;
708   } else if (DeclType->isRecordType()) {
709     // C++ [dcl.init]p14:
710     //   [...] If the class is an aggregate (8.5.1), and the initializer
711     //   is a brace-enclosed list, see 8.5.1.
712     //
713     // Note: 8.5.1 is handled below; here, we diagnose the case where
714     // we have an initializer list and a destination type that is not
715     // an aggregate.
716     // FIXME: In C++0x, this is yet another form of initialization.
717     if (!VerifyOnly)
718       SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
719         << DeclType << IList->getSourceRange();
720     hadError = true;
721   } else if (DeclType->isReferenceType()) {
722     CheckReferenceType(Entity, IList, DeclType, Index,
723                        StructuredList, StructuredIndex);
724   } else if (DeclType->isObjCObjectType()) {
725     if (!VerifyOnly)
726       SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class)
727         << DeclType;
728     hadError = true;
729   } else {
730     if (!VerifyOnly)
731       SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
732         << DeclType;
733     hadError = true;
734   }
735 }
736 
737 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
738                                           InitListExpr *IList,
739                                           QualType ElemType,
740                                           unsigned &Index,
741                                           InitListExpr *StructuredList,
742                                           unsigned &StructuredIndex) {
743   Expr *expr = IList->getInit(Index);
744   if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
745     unsigned newIndex = 0;
746     unsigned newStructuredIndex = 0;
747     InitListExpr *newStructuredList
748       = getStructuredSubobjectInit(IList, Index, ElemType,
749                                    StructuredList, StructuredIndex,
750                                    SubInitList->getSourceRange());
751     CheckExplicitInitList(Entity, SubInitList, ElemType, newIndex,
752                           newStructuredList, newStructuredIndex);
753     ++StructuredIndex;
754     ++Index;
755     return;
756   } else if (ElemType->isScalarType()) {
757     return CheckScalarType(Entity, IList, ElemType, Index,
758                            StructuredList, StructuredIndex);
759   } else if (ElemType->isReferenceType()) {
760     return CheckReferenceType(Entity, IList, ElemType, Index,
761                               StructuredList, StructuredIndex);
762   }
763 
764   if (const ArrayType *arrayType = SemaRef.Context.getAsArrayType(ElemType)) {
765     // arrayType can be incomplete if we're initializing a flexible
766     // array member.  There's nothing we can do with the completed
767     // type here, though.
768 
769     if (Expr *Str = IsStringInit(expr, arrayType, SemaRef.Context)) {
770       if (!VerifyOnly) {
771         CheckStringInit(Str, ElemType, arrayType, SemaRef);
772         UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
773       }
774       ++Index;
775       return;
776     }
777 
778     // Fall through for subaggregate initialization.
779 
780   } else if (SemaRef.getLangOptions().CPlusPlus) {
781     // C++ [dcl.init.aggr]p12:
782     //   All implicit type conversions (clause 4) are considered when
783     //   initializing the aggregate member with an initializer from
784     //   an initializer-list. If the initializer can initialize a
785     //   member, the member is initialized. [...]
786 
787     // FIXME: Better EqualLoc?
788     InitializationKind Kind =
789       InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
790     InitializationSequence Seq(SemaRef, Entity, Kind, &expr, 1);
791 
792     if (Seq) {
793       if (!VerifyOnly) {
794         ExprResult Result =
795           Seq.Perform(SemaRef, Entity, Kind, MultiExprArg(&expr, 1));
796         if (Result.isInvalid())
797           hadError = true;
798 
799         UpdateStructuredListElement(StructuredList, StructuredIndex,
800                                     Result.takeAs<Expr>());
801       }
802       ++Index;
803       return;
804     }
805 
806     // Fall through for subaggregate initialization
807   } else {
808     // C99 6.7.8p13:
809     //
810     //   The initializer for a structure or union object that has
811     //   automatic storage duration shall be either an initializer
812     //   list as described below, or a single expression that has
813     //   compatible structure or union type. In the latter case, the
814     //   initial value of the object, including unnamed members, is
815     //   that of the expression.
816     ExprResult ExprRes = SemaRef.Owned(expr);
817     if ((ElemType->isRecordType() || ElemType->isVectorType()) &&
818         SemaRef.CheckSingleAssignmentConstraints(ElemType, ExprRes,
819                                                  !VerifyOnly)
820           == Sema::Compatible) {
821       if (ExprRes.isInvalid())
822         hadError = true;
823       else {
824         ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.take());
825 	      if (ExprRes.isInvalid())
826 	        hadError = true;
827       }
828       UpdateStructuredListElement(StructuredList, StructuredIndex,
829                                   ExprRes.takeAs<Expr>());
830       ++Index;
831       return;
832     }
833     ExprRes.release();
834     // Fall through for subaggregate initialization
835   }
836 
837   // C++ [dcl.init.aggr]p12:
838   //
839   //   [...] Otherwise, if the member is itself a non-empty
840   //   subaggregate, brace elision is assumed and the initializer is
841   //   considered for the initialization of the first member of
842   //   the subaggregate.
843   if (!SemaRef.getLangOptions().OpenCL &&
844       (ElemType->isAggregateType() || ElemType->isVectorType())) {
845     CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
846                           StructuredIndex);
847     ++StructuredIndex;
848   } else {
849     if (!VerifyOnly) {
850       // We cannot initialize this element, so let
851       // PerformCopyInitialization produce the appropriate diagnostic.
852       SemaRef.PerformCopyInitialization(Entity, SourceLocation(),
853                                         SemaRef.Owned(expr),
854                                         /*TopLevelOfInitList=*/true);
855     }
856     hadError = true;
857     ++Index;
858     ++StructuredIndex;
859   }
860 }
861 
862 void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
863                                        InitListExpr *IList, QualType DeclType,
864                                        unsigned &Index,
865                                        InitListExpr *StructuredList,
866                                        unsigned &StructuredIndex) {
867   assert(Index == 0 && "Index in explicit init list must be zero");
868 
869   // As an extension, clang supports complex initializers, which initialize
870   // a complex number component-wise.  When an explicit initializer list for
871   // a complex number contains two two initializers, this extension kicks in:
872   // it exepcts the initializer list to contain two elements convertible to
873   // the element type of the complex type. The first element initializes
874   // the real part, and the second element intitializes the imaginary part.
875 
876   if (IList->getNumInits() != 2)
877     return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
878                            StructuredIndex);
879 
880   // This is an extension in C.  (The builtin _Complex type does not exist
881   // in the C++ standard.)
882   if (!SemaRef.getLangOptions().CPlusPlus && !VerifyOnly)
883     SemaRef.Diag(IList->getLocStart(), diag::ext_complex_component_init)
884       << IList->getSourceRange();
885 
886   // Initialize the complex number.
887   QualType elementType = DeclType->getAs<ComplexType>()->getElementType();
888   InitializedEntity ElementEntity =
889     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
890 
891   for (unsigned i = 0; i < 2; ++i) {
892     ElementEntity.setElementIndex(Index);
893     CheckSubElementType(ElementEntity, IList, elementType, Index,
894                         StructuredList, StructuredIndex);
895   }
896 }
897 
898 
899 void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
900                                       InitListExpr *IList, QualType DeclType,
901                                       unsigned &Index,
902                                       InitListExpr *StructuredList,
903                                       unsigned &StructuredIndex) {
904   if (Index >= IList->getNumInits()) {
905     if (!SemaRef.getLangOptions().CPlusPlus0x) {
906       if (!VerifyOnly)
907         SemaRef.Diag(IList->getLocStart(), diag::err_empty_scalar_initializer)
908           << IList->getSourceRange();
909       hadError = true;
910     }
911     ++Index;
912     ++StructuredIndex;
913     return;
914   }
915 
916   Expr *expr = IList->getInit(Index);
917   if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
918     if (!VerifyOnly)
919       SemaRef.Diag(SubIList->getLocStart(),
920                    diag::warn_many_braces_around_scalar_init)
921         << SubIList->getSourceRange();
922 
923     CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
924                     StructuredIndex);
925     return;
926   } else if (isa<DesignatedInitExpr>(expr)) {
927     if (!VerifyOnly)
928       SemaRef.Diag(expr->getSourceRange().getBegin(),
929                    diag::err_designator_for_scalar_init)
930         << DeclType << expr->getSourceRange();
931     hadError = true;
932     ++Index;
933     ++StructuredIndex;
934     return;
935   }
936 
937   if (VerifyOnly) {
938     if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr)))
939       hadError = true;
940     ++Index;
941     return;
942   }
943 
944   ExprResult Result =
945     SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
946                                       SemaRef.Owned(expr),
947                                       /*TopLevelOfInitList=*/true);
948 
949   Expr *ResultExpr = 0;
950 
951   if (Result.isInvalid())
952     hadError = true; // types weren't compatible.
953   else {
954     ResultExpr = Result.takeAs<Expr>();
955 
956     if (ResultExpr != expr) {
957       // The type was promoted, update initializer list.
958       IList->setInit(Index, ResultExpr);
959     }
960   }
961   if (hadError)
962     ++StructuredIndex;
963   else
964     UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
965   ++Index;
966 }
967 
968 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
969                                          InitListExpr *IList, QualType DeclType,
970                                          unsigned &Index,
971                                          InitListExpr *StructuredList,
972                                          unsigned &StructuredIndex) {
973   if (Index >= IList->getNumInits()) {
974     // FIXME: It would be wonderful if we could point at the actual member. In
975     // general, it would be useful to pass location information down the stack,
976     // so that we know the location (or decl) of the "current object" being
977     // initialized.
978     if (!VerifyOnly)
979       SemaRef.Diag(IList->getLocStart(),
980                     diag::err_init_reference_member_uninitialized)
981         << DeclType
982         << IList->getSourceRange();
983     hadError = true;
984     ++Index;
985     ++StructuredIndex;
986     return;
987   }
988 
989   Expr *expr = IList->getInit(Index);
990   if (isa<InitListExpr>(expr)) {
991     // FIXME: Allowed in C++11.
992     if (!VerifyOnly)
993       SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
994         << DeclType << IList->getSourceRange();
995     hadError = true;
996     ++Index;
997     ++StructuredIndex;
998     return;
999   }
1000 
1001   if (VerifyOnly) {
1002     if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr)))
1003       hadError = true;
1004     ++Index;
1005     return;
1006   }
1007 
1008   ExprResult Result =
1009     SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
1010                                       SemaRef.Owned(expr),
1011                                       /*TopLevelOfInitList=*/true);
1012 
1013   if (Result.isInvalid())
1014     hadError = true;
1015 
1016   expr = Result.takeAs<Expr>();
1017   IList->setInit(Index, expr);
1018 
1019   if (hadError)
1020     ++StructuredIndex;
1021   else
1022     UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1023   ++Index;
1024 }
1025 
1026 void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1027                                       InitListExpr *IList, QualType DeclType,
1028                                       unsigned &Index,
1029                                       InitListExpr *StructuredList,
1030                                       unsigned &StructuredIndex) {
1031   const VectorType *VT = DeclType->getAs<VectorType>();
1032   unsigned maxElements = VT->getNumElements();
1033   unsigned numEltsInit = 0;
1034   QualType elementType = VT->getElementType();
1035 
1036   if (Index >= IList->getNumInits()) {
1037     // Make sure the element type can be value-initialized.
1038     if (VerifyOnly)
1039       CheckValueInitializable(
1040           InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity));
1041     return;
1042   }
1043 
1044   if (!SemaRef.getLangOptions().OpenCL) {
1045     // If the initializing element is a vector, try to copy-initialize
1046     // instead of breaking it apart (which is doomed to failure anyway).
1047     Expr *Init = IList->getInit(Index);
1048     if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1049       if (VerifyOnly) {
1050         if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(Init)))
1051           hadError = true;
1052         ++Index;
1053         return;
1054       }
1055 
1056       ExprResult Result =
1057         SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(),
1058                                           SemaRef.Owned(Init),
1059                                           /*TopLevelOfInitList=*/true);
1060 
1061       Expr *ResultExpr = 0;
1062       if (Result.isInvalid())
1063         hadError = true; // types weren't compatible.
1064       else {
1065         ResultExpr = Result.takeAs<Expr>();
1066 
1067         if (ResultExpr != Init) {
1068           // The type was promoted, update initializer list.
1069           IList->setInit(Index, ResultExpr);
1070         }
1071       }
1072       if (hadError)
1073         ++StructuredIndex;
1074       else
1075         UpdateStructuredListElement(StructuredList, StructuredIndex,
1076                                     ResultExpr);
1077       ++Index;
1078       return;
1079     }
1080 
1081     InitializedEntity ElementEntity =
1082       InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1083 
1084     for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1085       // Don't attempt to go past the end of the init list
1086       if (Index >= IList->getNumInits()) {
1087         if (VerifyOnly)
1088           CheckValueInitializable(ElementEntity);
1089         break;
1090       }
1091 
1092       ElementEntity.setElementIndex(Index);
1093       CheckSubElementType(ElementEntity, IList, elementType, Index,
1094                           StructuredList, StructuredIndex);
1095     }
1096     return;
1097   }
1098 
1099   InitializedEntity ElementEntity =
1100     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1101 
1102   // OpenCL initializers allows vectors to be constructed from vectors.
1103   for (unsigned i = 0; i < maxElements; ++i) {
1104     // Don't attempt to go past the end of the init list
1105     if (Index >= IList->getNumInits())
1106       break;
1107 
1108     ElementEntity.setElementIndex(Index);
1109 
1110     QualType IType = IList->getInit(Index)->getType();
1111     if (!IType->isVectorType()) {
1112       CheckSubElementType(ElementEntity, IList, elementType, Index,
1113                           StructuredList, StructuredIndex);
1114       ++numEltsInit;
1115     } else {
1116       QualType VecType;
1117       const VectorType *IVT = IType->getAs<VectorType>();
1118       unsigned numIElts = IVT->getNumElements();
1119 
1120       if (IType->isExtVectorType())
1121         VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1122       else
1123         VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1124                                                 IVT->getVectorKind());
1125       CheckSubElementType(ElementEntity, IList, VecType, Index,
1126                           StructuredList, StructuredIndex);
1127       numEltsInit += numIElts;
1128     }
1129   }
1130 
1131   // OpenCL requires all elements to be initialized.
1132   if (numEltsInit != maxElements) {
1133     if (!VerifyOnly)
1134       SemaRef.Diag(IList->getSourceRange().getBegin(),
1135                    diag::err_vector_incorrect_num_initializers)
1136         << (numEltsInit < maxElements) << maxElements << numEltsInit;
1137     hadError = true;
1138   }
1139 }
1140 
1141 void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1142                                      InitListExpr *IList, QualType &DeclType,
1143                                      llvm::APSInt elementIndex,
1144                                      bool SubobjectIsDesignatorContext,
1145                                      unsigned &Index,
1146                                      InitListExpr *StructuredList,
1147                                      unsigned &StructuredIndex) {
1148   const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1149 
1150   // Check for the special-case of initializing an array with a string.
1151   if (Index < IList->getNumInits()) {
1152     if (Expr *Str = IsStringInit(IList->getInit(Index), arrayType,
1153                                  SemaRef.Context)) {
1154       // We place the string literal directly into the resulting
1155       // initializer list. This is the only place where the structure
1156       // of the structured initializer list doesn't match exactly,
1157       // because doing so would involve allocating one character
1158       // constant for each string.
1159       if (!VerifyOnly) {
1160         CheckStringInit(Str, DeclType, arrayType, SemaRef);
1161         UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
1162         StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1163       }
1164       ++Index;
1165       return;
1166     }
1167   }
1168   if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1169     // Check for VLAs; in standard C it would be possible to check this
1170     // earlier, but I don't know where clang accepts VLAs (gcc accepts
1171     // them in all sorts of strange places).
1172     if (!VerifyOnly)
1173       SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
1174                     diag::err_variable_object_no_init)
1175         << VAT->getSizeExpr()->getSourceRange();
1176     hadError = true;
1177     ++Index;
1178     ++StructuredIndex;
1179     return;
1180   }
1181 
1182   // We might know the maximum number of elements in advance.
1183   llvm::APSInt maxElements(elementIndex.getBitWidth(),
1184                            elementIndex.isUnsigned());
1185   bool maxElementsKnown = false;
1186   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1187     maxElements = CAT->getSize();
1188     elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1189     elementIndex.setIsUnsigned(maxElements.isUnsigned());
1190     maxElementsKnown = true;
1191   }
1192 
1193   QualType elementType = arrayType->getElementType();
1194   while (Index < IList->getNumInits()) {
1195     Expr *Init = IList->getInit(Index);
1196     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1197       // If we're not the subobject that matches up with the '{' for
1198       // the designator, we shouldn't be handling the
1199       // designator. Return immediately.
1200       if (!SubobjectIsDesignatorContext)
1201         return;
1202 
1203       // Handle this designated initializer. elementIndex will be
1204       // updated to be the next array element we'll initialize.
1205       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1206                                      DeclType, 0, &elementIndex, Index,
1207                                      StructuredList, StructuredIndex, true,
1208                                      false)) {
1209         hadError = true;
1210         continue;
1211       }
1212 
1213       if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1214         maxElements = maxElements.extend(elementIndex.getBitWidth());
1215       else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1216         elementIndex = elementIndex.extend(maxElements.getBitWidth());
1217       elementIndex.setIsUnsigned(maxElements.isUnsigned());
1218 
1219       // If the array is of incomplete type, keep track of the number of
1220       // elements in the initializer.
1221       if (!maxElementsKnown && elementIndex > maxElements)
1222         maxElements = elementIndex;
1223 
1224       continue;
1225     }
1226 
1227     // If we know the maximum number of elements, and we've already
1228     // hit it, stop consuming elements in the initializer list.
1229     if (maxElementsKnown && elementIndex == maxElements)
1230       break;
1231 
1232     InitializedEntity ElementEntity =
1233       InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1234                                            Entity);
1235     // Check this element.
1236     CheckSubElementType(ElementEntity, IList, elementType, Index,
1237                         StructuredList, StructuredIndex);
1238     ++elementIndex;
1239 
1240     // If the array is of incomplete type, keep track of the number of
1241     // elements in the initializer.
1242     if (!maxElementsKnown && elementIndex > maxElements)
1243       maxElements = elementIndex;
1244   }
1245   if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1246     // If this is an incomplete array type, the actual type needs to
1247     // be calculated here.
1248     llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1249     if (maxElements == Zero) {
1250       // Sizing an array implicitly to zero is not allowed by ISO C,
1251       // but is supported by GNU.
1252       SemaRef.Diag(IList->getLocStart(),
1253                     diag::ext_typecheck_zero_array_size);
1254     }
1255 
1256     DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1257                                                      ArrayType::Normal, 0);
1258   }
1259   if (!hadError && VerifyOnly) {
1260     // Check if there are any members of the array that get value-initialized.
1261     // If so, check if doing that is possible.
1262     // FIXME: This needs to detect holes left by designated initializers too.
1263     if (maxElementsKnown && elementIndex < maxElements)
1264       CheckValueInitializable(InitializedEntity::InitializeElement(
1265                                                   SemaRef.Context, 0, Entity));
1266   }
1267 }
1268 
1269 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1270                                              Expr *InitExpr,
1271                                              FieldDecl *Field,
1272                                              bool TopLevelObject) {
1273   // Handle GNU flexible array initializers.
1274   unsigned FlexArrayDiag;
1275   if (isa<InitListExpr>(InitExpr) &&
1276       cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
1277     // Empty flexible array init always allowed as an extension
1278     FlexArrayDiag = diag::ext_flexible_array_init;
1279   } else if (SemaRef.getLangOptions().CPlusPlus) {
1280     // Disallow flexible array init in C++; it is not required for gcc
1281     // compatibility, and it needs work to IRGen correctly in general.
1282     FlexArrayDiag = diag::err_flexible_array_init;
1283   } else if (!TopLevelObject) {
1284     // Disallow flexible array init on non-top-level object
1285     FlexArrayDiag = diag::err_flexible_array_init;
1286   } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
1287     // Disallow flexible array init on anything which is not a variable.
1288     FlexArrayDiag = diag::err_flexible_array_init;
1289   } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
1290     // Disallow flexible array init on local variables.
1291     FlexArrayDiag = diag::err_flexible_array_init;
1292   } else {
1293     // Allow other cases.
1294     FlexArrayDiag = diag::ext_flexible_array_init;
1295   }
1296 
1297   if (!VerifyOnly) {
1298     SemaRef.Diag(InitExpr->getSourceRange().getBegin(),
1299                  FlexArrayDiag)
1300       << InitExpr->getSourceRange().getBegin();
1301     SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1302       << Field;
1303   }
1304 
1305   return FlexArrayDiag != diag::ext_flexible_array_init;
1306 }
1307 
1308 void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity,
1309                                             InitListExpr *IList,
1310                                             QualType DeclType,
1311                                             RecordDecl::field_iterator Field,
1312                                             bool SubobjectIsDesignatorContext,
1313                                             unsigned &Index,
1314                                             InitListExpr *StructuredList,
1315                                             unsigned &StructuredIndex,
1316                                             bool TopLevelObject) {
1317   RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl();
1318 
1319   // If the record is invalid, some of it's members are invalid. To avoid
1320   // confusion, we forgo checking the intializer for the entire record.
1321   if (structDecl->isInvalidDecl()) {
1322     hadError = true;
1323     return;
1324   }
1325 
1326   if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1327     // Value-initialize the first named member of the union.
1328     RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1329     for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1330          Field != FieldEnd; ++Field) {
1331       if (Field->getDeclName()) {
1332         if (VerifyOnly)
1333           CheckValueInitializable(
1334               InitializedEntity::InitializeMember(*Field, &Entity));
1335         else
1336           StructuredList->setInitializedFieldInUnion(*Field);
1337         break;
1338       }
1339     }
1340     return;
1341   }
1342 
1343   // If structDecl is a forward declaration, this loop won't do
1344   // anything except look at designated initializers; That's okay,
1345   // because an error should get printed out elsewhere. It might be
1346   // worthwhile to skip over the rest of the initializer, though.
1347   RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1348   RecordDecl::field_iterator FieldEnd = RD->field_end();
1349   bool InitializedSomething = false;
1350   bool CheckForMissingFields = true;
1351   while (Index < IList->getNumInits()) {
1352     Expr *Init = IList->getInit(Index);
1353 
1354     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1355       // If we're not the subobject that matches up with the '{' for
1356       // the designator, we shouldn't be handling the
1357       // designator. Return immediately.
1358       if (!SubobjectIsDesignatorContext)
1359         return;
1360 
1361       // Handle this designated initializer. Field will be updated to
1362       // the next field that we'll be initializing.
1363       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1364                                      DeclType, &Field, 0, Index,
1365                                      StructuredList, StructuredIndex,
1366                                      true, TopLevelObject))
1367         hadError = true;
1368 
1369       InitializedSomething = true;
1370 
1371       // Disable check for missing fields when designators are used.
1372       // This matches gcc behaviour.
1373       CheckForMissingFields = false;
1374       continue;
1375     }
1376 
1377     if (Field == FieldEnd) {
1378       // We've run out of fields. We're done.
1379       break;
1380     }
1381 
1382     // We've already initialized a member of a union. We're done.
1383     if (InitializedSomething && DeclType->isUnionType())
1384       break;
1385 
1386     // If we've hit the flexible array member at the end, we're done.
1387     if (Field->getType()->isIncompleteArrayType())
1388       break;
1389 
1390     if (Field->isUnnamedBitfield()) {
1391       // Don't initialize unnamed bitfields, e.g. "int : 20;"
1392       ++Field;
1393       continue;
1394     }
1395 
1396     // Make sure we can use this declaration.
1397     bool InvalidUse;
1398     if (VerifyOnly)
1399       InvalidUse = !SemaRef.CanUseDecl(*Field);
1400     else
1401       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field,
1402                                           IList->getInit(Index)->getLocStart());
1403     if (InvalidUse) {
1404       ++Index;
1405       ++Field;
1406       hadError = true;
1407       continue;
1408     }
1409 
1410     InitializedEntity MemberEntity =
1411       InitializedEntity::InitializeMember(*Field, &Entity);
1412     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1413                         StructuredList, StructuredIndex);
1414     InitializedSomething = true;
1415 
1416     if (DeclType->isUnionType() && !VerifyOnly) {
1417       // Initialize the first field within the union.
1418       StructuredList->setInitializedFieldInUnion(*Field);
1419     }
1420 
1421     ++Field;
1422   }
1423 
1424   // Emit warnings for missing struct field initializers.
1425   if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
1426       Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
1427       !DeclType->isUnionType()) {
1428     // It is possible we have one or more unnamed bitfields remaining.
1429     // Find first (if any) named field and emit warning.
1430     for (RecordDecl::field_iterator it = Field, end = RD->field_end();
1431          it != end; ++it) {
1432       if (!it->isUnnamedBitfield()) {
1433         SemaRef.Diag(IList->getSourceRange().getEnd(),
1434                      diag::warn_missing_field_initializers) << it->getName();
1435         break;
1436       }
1437     }
1438   }
1439 
1440   // Check that any remaining fields can be value-initialized.
1441   if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() &&
1442       !Field->getType()->isIncompleteArrayType()) {
1443     // FIXME: Should check for holes left by designated initializers too.
1444     for (; Field != FieldEnd && !hadError; ++Field) {
1445       if (!Field->isUnnamedBitfield())
1446         CheckValueInitializable(
1447             InitializedEntity::InitializeMember(*Field, &Entity));
1448     }
1449   }
1450 
1451   if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1452       Index >= IList->getNumInits())
1453     return;
1454 
1455   if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
1456                              TopLevelObject)) {
1457     hadError = true;
1458     ++Index;
1459     return;
1460   }
1461 
1462   InitializedEntity MemberEntity =
1463     InitializedEntity::InitializeMember(*Field, &Entity);
1464 
1465   if (isa<InitListExpr>(IList->getInit(Index)))
1466     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1467                         StructuredList, StructuredIndex);
1468   else
1469     CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
1470                           StructuredList, StructuredIndex);
1471 }
1472 
1473 /// \brief Expand a field designator that refers to a member of an
1474 /// anonymous struct or union into a series of field designators that
1475 /// refers to the field within the appropriate subobject.
1476 ///
1477 static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1478                                            DesignatedInitExpr *DIE,
1479                                            unsigned DesigIdx,
1480                                            IndirectFieldDecl *IndirectField) {
1481   typedef DesignatedInitExpr::Designator Designator;
1482 
1483   // Build the replacement designators.
1484   SmallVector<Designator, 4> Replacements;
1485   for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
1486        PE = IndirectField->chain_end(); PI != PE; ++PI) {
1487     if (PI + 1 == PE)
1488       Replacements.push_back(Designator((IdentifierInfo *)0,
1489                                     DIE->getDesignator(DesigIdx)->getDotLoc(),
1490                                 DIE->getDesignator(DesigIdx)->getFieldLoc()));
1491     else
1492       Replacements.push_back(Designator((IdentifierInfo *)0, SourceLocation(),
1493                                         SourceLocation()));
1494     assert(isa<FieldDecl>(*PI));
1495     Replacements.back().setField(cast<FieldDecl>(*PI));
1496   }
1497 
1498   // Expand the current designator into the set of replacement
1499   // designators, so we have a full subobject path down to where the
1500   // member of the anonymous struct/union is actually stored.
1501   DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
1502                         &Replacements[0] + Replacements.size());
1503 }
1504 
1505 /// \brief Given an implicit anonymous field, search the IndirectField that
1506 ///  corresponds to FieldName.
1507 static IndirectFieldDecl *FindIndirectFieldDesignator(FieldDecl *AnonField,
1508                                                  IdentifierInfo *FieldName) {
1509   assert(AnonField->isAnonymousStructOrUnion());
1510   Decl *NextDecl = AnonField->getNextDeclInContext();
1511   while (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(NextDecl)) {
1512     if (FieldName && FieldName == IF->getAnonField()->getIdentifier())
1513       return IF;
1514     NextDecl = NextDecl->getNextDeclInContext();
1515   }
1516   return 0;
1517 }
1518 
1519 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
1520                                                    DesignatedInitExpr *DIE) {
1521   unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
1522   SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
1523   for (unsigned I = 0; I < NumIndexExprs; ++I)
1524     IndexExprs[I] = DIE->getSubExpr(I + 1);
1525   return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators_begin(),
1526                                     DIE->size(), IndexExprs.data(),
1527                                     NumIndexExprs, DIE->getEqualOrColonLoc(),
1528                                     DIE->usesGNUSyntax(), DIE->getInit());
1529 }
1530 
1531 /// @brief Check the well-formedness of a C99 designated initializer.
1532 ///
1533 /// Determines whether the designated initializer @p DIE, which
1534 /// resides at the given @p Index within the initializer list @p
1535 /// IList, is well-formed for a current object of type @p DeclType
1536 /// (C99 6.7.8). The actual subobject that this designator refers to
1537 /// within the current subobject is returned in either
1538 /// @p NextField or @p NextElementIndex (whichever is appropriate).
1539 ///
1540 /// @param IList  The initializer list in which this designated
1541 /// initializer occurs.
1542 ///
1543 /// @param DIE The designated initializer expression.
1544 ///
1545 /// @param DesigIdx  The index of the current designator.
1546 ///
1547 /// @param DeclType  The type of the "current object" (C99 6.7.8p17),
1548 /// into which the designation in @p DIE should refer.
1549 ///
1550 /// @param NextField  If non-NULL and the first designator in @p DIE is
1551 /// a field, this will be set to the field declaration corresponding
1552 /// to the field named by the designator.
1553 ///
1554 /// @param NextElementIndex  If non-NULL and the first designator in @p
1555 /// DIE is an array designator or GNU array-range designator, this
1556 /// will be set to the last index initialized by this designator.
1557 ///
1558 /// @param Index  Index into @p IList where the designated initializer
1559 /// @p DIE occurs.
1560 ///
1561 /// @param StructuredList  The initializer list expression that
1562 /// describes all of the subobject initializers in the order they'll
1563 /// actually be initialized.
1564 ///
1565 /// @returns true if there was an error, false otherwise.
1566 bool
1567 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
1568                                             InitListExpr *IList,
1569                                             DesignatedInitExpr *DIE,
1570                                             unsigned DesigIdx,
1571                                             QualType &CurrentObjectType,
1572                                           RecordDecl::field_iterator *NextField,
1573                                             llvm::APSInt *NextElementIndex,
1574                                             unsigned &Index,
1575                                             InitListExpr *StructuredList,
1576                                             unsigned &StructuredIndex,
1577                                             bool FinishSubobjectInit,
1578                                             bool TopLevelObject) {
1579   if (DesigIdx == DIE->size()) {
1580     // Check the actual initialization for the designated object type.
1581     bool prevHadError = hadError;
1582 
1583     // Temporarily remove the designator expression from the
1584     // initializer list that the child calls see, so that we don't try
1585     // to re-process the designator.
1586     unsigned OldIndex = Index;
1587     IList->setInit(OldIndex, DIE->getInit());
1588 
1589     CheckSubElementType(Entity, IList, CurrentObjectType, Index,
1590                         StructuredList, StructuredIndex);
1591 
1592     // Restore the designated initializer expression in the syntactic
1593     // form of the initializer list.
1594     if (IList->getInit(OldIndex) != DIE->getInit())
1595       DIE->setInit(IList->getInit(OldIndex));
1596     IList->setInit(OldIndex, DIE);
1597 
1598     return hadError && !prevHadError;
1599   }
1600 
1601   DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
1602   bool IsFirstDesignator = (DesigIdx == 0);
1603   if (!VerifyOnly) {
1604     assert((IsFirstDesignator || StructuredList) &&
1605            "Need a non-designated initializer list to start from");
1606 
1607     // Determine the structural initializer list that corresponds to the
1608     // current subobject.
1609     StructuredList = IsFirstDesignator? SyntacticToSemantic[IList]
1610       : getStructuredSubobjectInit(IList, Index, CurrentObjectType,
1611                                    StructuredList, StructuredIndex,
1612                                    SourceRange(D->getStartLocation(),
1613                                                DIE->getSourceRange().getEnd()));
1614     assert(StructuredList && "Expected a structured initializer list");
1615   }
1616 
1617   if (D->isFieldDesignator()) {
1618     // C99 6.7.8p7:
1619     //
1620     //   If a designator has the form
1621     //
1622     //      . identifier
1623     //
1624     //   then the current object (defined below) shall have
1625     //   structure or union type and the identifier shall be the
1626     //   name of a member of that type.
1627     const RecordType *RT = CurrentObjectType->getAs<RecordType>();
1628     if (!RT) {
1629       SourceLocation Loc = D->getDotLoc();
1630       if (Loc.isInvalid())
1631         Loc = D->getFieldLoc();
1632       if (!VerifyOnly)
1633         SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
1634           << SemaRef.getLangOptions().CPlusPlus << CurrentObjectType;
1635       ++Index;
1636       return true;
1637     }
1638 
1639     // Note: we perform a linear search of the fields here, despite
1640     // the fact that we have a faster lookup method, because we always
1641     // need to compute the field's index.
1642     FieldDecl *KnownField = D->getField();
1643     IdentifierInfo *FieldName = D->getFieldName();
1644     unsigned FieldIndex = 0;
1645     RecordDecl::field_iterator
1646       Field = RT->getDecl()->field_begin(),
1647       FieldEnd = RT->getDecl()->field_end();
1648     for (; Field != FieldEnd; ++Field) {
1649       if (Field->isUnnamedBitfield())
1650         continue;
1651 
1652       // If we find a field representing an anonymous field, look in the
1653       // IndirectFieldDecl that follow for the designated initializer.
1654       if (!KnownField && Field->isAnonymousStructOrUnion()) {
1655         if (IndirectFieldDecl *IF =
1656             FindIndirectFieldDesignator(*Field, FieldName)) {
1657           // In verify mode, don't modify the original.
1658           if (VerifyOnly)
1659             DIE = CloneDesignatedInitExpr(SemaRef, DIE);
1660           ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IF);
1661           D = DIE->getDesignator(DesigIdx);
1662           break;
1663         }
1664       }
1665       if (KnownField && KnownField == *Field)
1666         break;
1667       if (FieldName && FieldName == Field->getIdentifier())
1668         break;
1669 
1670       ++FieldIndex;
1671     }
1672 
1673     if (Field == FieldEnd) {
1674       if (VerifyOnly) {
1675         ++Index;
1676         return true; // No typo correction when just trying this out.
1677       }
1678 
1679       // There was no normal field in the struct with the designated
1680       // name. Perform another lookup for this name, which may find
1681       // something that we can't designate (e.g., a member function),
1682       // may find nothing, or may find a member of an anonymous
1683       // struct/union.
1684       DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
1685       FieldDecl *ReplacementField = 0;
1686       if (Lookup.first == Lookup.second) {
1687         // Name lookup didn't find anything. Determine whether this
1688         // was a typo for another field name.
1689         LookupResult R(SemaRef, FieldName, D->getFieldLoc(),
1690                        Sema::LookupMemberName);
1691         TypoCorrection Corrected = SemaRef.CorrectTypo(
1692             DeclarationNameInfo(FieldName, D->getFieldLoc()),
1693             Sema::LookupMemberName, /*Scope=*/NULL, /*SS=*/NULL,
1694             RT->getDecl(), false, Sema::CTC_NoKeywords);
1695         if ((ReplacementField = Corrected.getCorrectionDeclAs<FieldDecl>()) &&
1696             ReplacementField->getDeclContext()->getRedeclContext()
1697                                                       ->Equals(RT->getDecl())) {
1698           std::string CorrectedStr(
1699               Corrected.getAsString(SemaRef.getLangOptions()));
1700           std::string CorrectedQuotedStr(
1701               Corrected.getQuoted(SemaRef.getLangOptions()));
1702           SemaRef.Diag(D->getFieldLoc(),
1703                        diag::err_field_designator_unknown_suggest)
1704             << FieldName << CurrentObjectType << CorrectedQuotedStr
1705             << FixItHint::CreateReplacement(D->getFieldLoc(), CorrectedStr);
1706           SemaRef.Diag(ReplacementField->getLocation(),
1707                        diag::note_previous_decl) << CorrectedQuotedStr;
1708           hadError = true;
1709         } else {
1710           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
1711             << FieldName << CurrentObjectType;
1712           ++Index;
1713           return true;
1714         }
1715       }
1716 
1717       if (!ReplacementField) {
1718         // Name lookup found something, but it wasn't a field.
1719         SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
1720           << FieldName;
1721         SemaRef.Diag((*Lookup.first)->getLocation(),
1722                       diag::note_field_designator_found);
1723         ++Index;
1724         return true;
1725       }
1726 
1727       if (!KnownField) {
1728         // The replacement field comes from typo correction; find it
1729         // in the list of fields.
1730         FieldIndex = 0;
1731         Field = RT->getDecl()->field_begin();
1732         for (; Field != FieldEnd; ++Field) {
1733           if (Field->isUnnamedBitfield())
1734             continue;
1735 
1736           if (ReplacementField == *Field ||
1737               Field->getIdentifier() == ReplacementField->getIdentifier())
1738             break;
1739 
1740           ++FieldIndex;
1741         }
1742       }
1743     }
1744 
1745     // All of the fields of a union are located at the same place in
1746     // the initializer list.
1747     if (RT->getDecl()->isUnion()) {
1748       FieldIndex = 0;
1749       if (!VerifyOnly)
1750         StructuredList->setInitializedFieldInUnion(*Field);
1751     }
1752 
1753     // Make sure we can use this declaration.
1754     bool InvalidUse;
1755     if (VerifyOnly)
1756       InvalidUse = !SemaRef.CanUseDecl(*Field);
1757     else
1758       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
1759     if (InvalidUse) {
1760       ++Index;
1761       return true;
1762     }
1763 
1764     if (!VerifyOnly) {
1765       // Update the designator with the field declaration.
1766       D->setField(*Field);
1767 
1768       // Make sure that our non-designated initializer list has space
1769       // for a subobject corresponding to this field.
1770       if (FieldIndex >= StructuredList->getNumInits())
1771         StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
1772     }
1773 
1774     // This designator names a flexible array member.
1775     if (Field->getType()->isIncompleteArrayType()) {
1776       bool Invalid = false;
1777       if ((DesigIdx + 1) != DIE->size()) {
1778         // We can't designate an object within the flexible array
1779         // member (because GCC doesn't allow it).
1780         if (!VerifyOnly) {
1781           DesignatedInitExpr::Designator *NextD
1782             = DIE->getDesignator(DesigIdx + 1);
1783           SemaRef.Diag(NextD->getStartLocation(),
1784                         diag::err_designator_into_flexible_array_member)
1785             << SourceRange(NextD->getStartLocation(),
1786                            DIE->getSourceRange().getEnd());
1787           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1788             << *Field;
1789         }
1790         Invalid = true;
1791       }
1792 
1793       if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
1794           !isa<StringLiteral>(DIE->getInit())) {
1795         // The initializer is not an initializer list.
1796         if (!VerifyOnly) {
1797           SemaRef.Diag(DIE->getInit()->getSourceRange().getBegin(),
1798                         diag::err_flexible_array_init_needs_braces)
1799             << DIE->getInit()->getSourceRange();
1800           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1801             << *Field;
1802         }
1803         Invalid = true;
1804       }
1805 
1806       // Check GNU flexible array initializer.
1807       if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
1808                                              TopLevelObject))
1809         Invalid = true;
1810 
1811       if (Invalid) {
1812         ++Index;
1813         return true;
1814       }
1815 
1816       // Initialize the array.
1817       bool prevHadError = hadError;
1818       unsigned newStructuredIndex = FieldIndex;
1819       unsigned OldIndex = Index;
1820       IList->setInit(Index, DIE->getInit());
1821 
1822       InitializedEntity MemberEntity =
1823         InitializedEntity::InitializeMember(*Field, &Entity);
1824       CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1825                           StructuredList, newStructuredIndex);
1826 
1827       IList->setInit(OldIndex, DIE);
1828       if (hadError && !prevHadError) {
1829         ++Field;
1830         ++FieldIndex;
1831         if (NextField)
1832           *NextField = Field;
1833         StructuredIndex = FieldIndex;
1834         return true;
1835       }
1836     } else {
1837       // Recurse to check later designated subobjects.
1838       QualType FieldType = (*Field)->getType();
1839       unsigned newStructuredIndex = FieldIndex;
1840 
1841       InitializedEntity MemberEntity =
1842         InitializedEntity::InitializeMember(*Field, &Entity);
1843       if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
1844                                      FieldType, 0, 0, Index,
1845                                      StructuredList, newStructuredIndex,
1846                                      true, false))
1847         return true;
1848     }
1849 
1850     // Find the position of the next field to be initialized in this
1851     // subobject.
1852     ++Field;
1853     ++FieldIndex;
1854 
1855     // If this the first designator, our caller will continue checking
1856     // the rest of this struct/class/union subobject.
1857     if (IsFirstDesignator) {
1858       if (NextField)
1859         *NextField = Field;
1860       StructuredIndex = FieldIndex;
1861       return false;
1862     }
1863 
1864     if (!FinishSubobjectInit)
1865       return false;
1866 
1867     // We've already initialized something in the union; we're done.
1868     if (RT->getDecl()->isUnion())
1869       return hadError;
1870 
1871     // Check the remaining fields within this class/struct/union subobject.
1872     bool prevHadError = hadError;
1873 
1874     CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index,
1875                           StructuredList, FieldIndex);
1876     return hadError && !prevHadError;
1877   }
1878 
1879   // C99 6.7.8p6:
1880   //
1881   //   If a designator has the form
1882   //
1883   //      [ constant-expression ]
1884   //
1885   //   then the current object (defined below) shall have array
1886   //   type and the expression shall be an integer constant
1887   //   expression. If the array is of unknown size, any
1888   //   nonnegative value is valid.
1889   //
1890   // Additionally, cope with the GNU extension that permits
1891   // designators of the form
1892   //
1893   //      [ constant-expression ... constant-expression ]
1894   const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
1895   if (!AT) {
1896     if (!VerifyOnly)
1897       SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
1898         << CurrentObjectType;
1899     ++Index;
1900     return true;
1901   }
1902 
1903   Expr *IndexExpr = 0;
1904   llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
1905   if (D->isArrayDesignator()) {
1906     IndexExpr = DIE->getArrayIndex(*D);
1907     DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
1908     DesignatedEndIndex = DesignatedStartIndex;
1909   } else {
1910     assert(D->isArrayRangeDesignator() && "Need array-range designator");
1911 
1912     DesignatedStartIndex =
1913       DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
1914     DesignatedEndIndex =
1915       DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
1916     IndexExpr = DIE->getArrayRangeEnd(*D);
1917 
1918     // Codegen can't handle evaluating array range designators that have side
1919     // effects, because we replicate the AST value for each initialized element.
1920     // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
1921     // elements with something that has a side effect, so codegen can emit an
1922     // "error unsupported" error instead of miscompiling the app.
1923     if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
1924         DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
1925       FullyStructuredList->sawArrayRangeDesignator();
1926   }
1927 
1928   if (isa<ConstantArrayType>(AT)) {
1929     llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
1930     DesignatedStartIndex
1931       = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
1932     DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
1933     DesignatedEndIndex
1934       = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
1935     DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
1936     if (DesignatedEndIndex >= MaxElements) {
1937       if (!VerifyOnly)
1938         SemaRef.Diag(IndexExpr->getSourceRange().getBegin(),
1939                       diag::err_array_designator_too_large)
1940           << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
1941           << IndexExpr->getSourceRange();
1942       ++Index;
1943       return true;
1944     }
1945   } else {
1946     // Make sure the bit-widths and signedness match.
1947     if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
1948       DesignatedEndIndex
1949         = DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
1950     else if (DesignatedStartIndex.getBitWidth() <
1951              DesignatedEndIndex.getBitWidth())
1952       DesignatedStartIndex
1953         = DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
1954     DesignatedStartIndex.setIsUnsigned(true);
1955     DesignatedEndIndex.setIsUnsigned(true);
1956   }
1957 
1958   // Make sure that our non-designated initializer list has space
1959   // for a subobject corresponding to this array element.
1960   if (!VerifyOnly &&
1961       DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
1962     StructuredList->resizeInits(SemaRef.Context,
1963                                 DesignatedEndIndex.getZExtValue() + 1);
1964 
1965   // Repeatedly perform subobject initializations in the range
1966   // [DesignatedStartIndex, DesignatedEndIndex].
1967 
1968   // Move to the next designator
1969   unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
1970   unsigned OldIndex = Index;
1971 
1972   InitializedEntity ElementEntity =
1973     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1974 
1975   while (DesignatedStartIndex <= DesignatedEndIndex) {
1976     // Recurse to check later designated subobjects.
1977     QualType ElementType = AT->getElementType();
1978     Index = OldIndex;
1979 
1980     ElementEntity.setElementIndex(ElementIndex);
1981     if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1,
1982                                    ElementType, 0, 0, Index,
1983                                    StructuredList, ElementIndex,
1984                                    (DesignatedStartIndex == DesignatedEndIndex),
1985                                    false))
1986       return true;
1987 
1988     // Move to the next index in the array that we'll be initializing.
1989     ++DesignatedStartIndex;
1990     ElementIndex = DesignatedStartIndex.getZExtValue();
1991   }
1992 
1993   // If this the first designator, our caller will continue checking
1994   // the rest of this array subobject.
1995   if (IsFirstDesignator) {
1996     if (NextElementIndex)
1997       *NextElementIndex = DesignatedStartIndex;
1998     StructuredIndex = ElementIndex;
1999     return false;
2000   }
2001 
2002   if (!FinishSubobjectInit)
2003     return false;
2004 
2005   // Check the remaining elements within this array subobject.
2006   bool prevHadError = hadError;
2007   CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
2008                  /*SubobjectIsDesignatorContext=*/false, Index,
2009                  StructuredList, ElementIndex);
2010   return hadError && !prevHadError;
2011 }
2012 
2013 // Get the structured initializer list for a subobject of type
2014 // @p CurrentObjectType.
2015 InitListExpr *
2016 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
2017                                             QualType CurrentObjectType,
2018                                             InitListExpr *StructuredList,
2019                                             unsigned StructuredIndex,
2020                                             SourceRange InitRange) {
2021   if (VerifyOnly)
2022     return 0; // No structured list in verification-only mode.
2023   Expr *ExistingInit = 0;
2024   if (!StructuredList)
2025     ExistingInit = SyntacticToSemantic[IList];
2026   else if (StructuredIndex < StructuredList->getNumInits())
2027     ExistingInit = StructuredList->getInit(StructuredIndex);
2028 
2029   if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
2030     return Result;
2031 
2032   if (ExistingInit) {
2033     // We are creating an initializer list that initializes the
2034     // subobjects of the current object, but there was already an
2035     // initialization that completely initialized the current
2036     // subobject, e.g., by a compound literal:
2037     //
2038     // struct X { int a, b; };
2039     // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2040     //
2041     // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2042     // designated initializer re-initializes the whole
2043     // subobject [0], overwriting previous initializers.
2044     SemaRef.Diag(InitRange.getBegin(),
2045                  diag::warn_subobject_initializer_overrides)
2046       << InitRange;
2047     SemaRef.Diag(ExistingInit->getSourceRange().getBegin(),
2048                   diag::note_previous_initializer)
2049       << /*FIXME:has side effects=*/0
2050       << ExistingInit->getSourceRange();
2051   }
2052 
2053   InitListExpr *Result
2054     = new (SemaRef.Context) InitListExpr(SemaRef.Context,
2055                                          InitRange.getBegin(), 0, 0,
2056                                          InitRange.getEnd());
2057 
2058   Result->setType(CurrentObjectType.getNonLValueExprType(SemaRef.Context));
2059 
2060   // Pre-allocate storage for the structured initializer list.
2061   unsigned NumElements = 0;
2062   unsigned NumInits = 0;
2063   bool GotNumInits = false;
2064   if (!StructuredList) {
2065     NumInits = IList->getNumInits();
2066     GotNumInits = true;
2067   } else if (Index < IList->getNumInits()) {
2068     if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
2069       NumInits = SubList->getNumInits();
2070       GotNumInits = true;
2071     }
2072   }
2073 
2074   if (const ArrayType *AType
2075       = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
2076     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
2077       NumElements = CAType->getSize().getZExtValue();
2078       // Simple heuristic so that we don't allocate a very large
2079       // initializer with many empty entries at the end.
2080       if (GotNumInits && NumElements > NumInits)
2081         NumElements = 0;
2082     }
2083   } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
2084     NumElements = VType->getNumElements();
2085   else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
2086     RecordDecl *RDecl = RType->getDecl();
2087     if (RDecl->isUnion())
2088       NumElements = 1;
2089     else
2090       NumElements = std::distance(RDecl->field_begin(),
2091                                   RDecl->field_end());
2092   }
2093 
2094   Result->reserveInits(SemaRef.Context, NumElements);
2095 
2096   // Link this new initializer list into the structured initializer
2097   // lists.
2098   if (StructuredList)
2099     StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
2100   else {
2101     Result->setSyntacticForm(IList);
2102     SyntacticToSemantic[IList] = Result;
2103   }
2104 
2105   return Result;
2106 }
2107 
2108 /// Update the initializer at index @p StructuredIndex within the
2109 /// structured initializer list to the value @p expr.
2110 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
2111                                                   unsigned &StructuredIndex,
2112                                                   Expr *expr) {
2113   // No structured initializer list to update
2114   if (!StructuredList)
2115     return;
2116 
2117   if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
2118                                                   StructuredIndex, expr)) {
2119     // This initializer overwrites a previous initializer. Warn.
2120     SemaRef.Diag(expr->getSourceRange().getBegin(),
2121                   diag::warn_initializer_overrides)
2122       << expr->getSourceRange();
2123     SemaRef.Diag(PrevInit->getSourceRange().getBegin(),
2124                   diag::note_previous_initializer)
2125       << /*FIXME:has side effects=*/0
2126       << PrevInit->getSourceRange();
2127   }
2128 
2129   ++StructuredIndex;
2130 }
2131 
2132 /// Check that the given Index expression is a valid array designator
2133 /// value. This is essentailly just a wrapper around
2134 /// VerifyIntegerConstantExpression that also checks for negative values
2135 /// and produces a reasonable diagnostic if there is a
2136 /// failure. Returns true if there was an error, false otherwise.  If
2137 /// everything went okay, Value will receive the value of the constant
2138 /// expression.
2139 static bool
2140 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
2141   SourceLocation Loc = Index->getSourceRange().getBegin();
2142 
2143   // Make sure this is an integer constant expression.
2144   if (S.VerifyIntegerConstantExpression(Index, &Value))
2145     return true;
2146 
2147   if (Value.isSigned() && Value.isNegative())
2148     return S.Diag(Loc, diag::err_array_designator_negative)
2149       << Value.toString(10) << Index->getSourceRange();
2150 
2151   Value.setIsUnsigned(true);
2152   return false;
2153 }
2154 
2155 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
2156                                             SourceLocation Loc,
2157                                             bool GNUSyntax,
2158                                             ExprResult Init) {
2159   typedef DesignatedInitExpr::Designator ASTDesignator;
2160 
2161   bool Invalid = false;
2162   SmallVector<ASTDesignator, 32> Designators;
2163   SmallVector<Expr *, 32> InitExpressions;
2164 
2165   // Build designators and check array designator expressions.
2166   for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
2167     const Designator &D = Desig.getDesignator(Idx);
2168     switch (D.getKind()) {
2169     case Designator::FieldDesignator:
2170       Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
2171                                           D.getFieldLoc()));
2172       break;
2173 
2174     case Designator::ArrayDesignator: {
2175       Expr *Index = static_cast<Expr *>(D.getArrayIndex());
2176       llvm::APSInt IndexValue;
2177       if (!Index->isTypeDependent() &&
2178           !Index->isValueDependent() &&
2179           CheckArrayDesignatorExpr(*this, Index, IndexValue))
2180         Invalid = true;
2181       else {
2182         Designators.push_back(ASTDesignator(InitExpressions.size(),
2183                                             D.getLBracketLoc(),
2184                                             D.getRBracketLoc()));
2185         InitExpressions.push_back(Index);
2186       }
2187       break;
2188     }
2189 
2190     case Designator::ArrayRangeDesignator: {
2191       Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
2192       Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
2193       llvm::APSInt StartValue;
2194       llvm::APSInt EndValue;
2195       bool StartDependent = StartIndex->isTypeDependent() ||
2196                             StartIndex->isValueDependent();
2197       bool EndDependent = EndIndex->isTypeDependent() ||
2198                           EndIndex->isValueDependent();
2199       if ((!StartDependent &&
2200            CheckArrayDesignatorExpr(*this, StartIndex, StartValue)) ||
2201           (!EndDependent &&
2202            CheckArrayDesignatorExpr(*this, EndIndex, EndValue)))
2203         Invalid = true;
2204       else {
2205         // Make sure we're comparing values with the same bit width.
2206         if (StartDependent || EndDependent) {
2207           // Nothing to compute.
2208         } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
2209           EndValue = EndValue.extend(StartValue.getBitWidth());
2210         else if (StartValue.getBitWidth() < EndValue.getBitWidth())
2211           StartValue = StartValue.extend(EndValue.getBitWidth());
2212 
2213         if (!StartDependent && !EndDependent && EndValue < StartValue) {
2214           Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
2215             << StartValue.toString(10) << EndValue.toString(10)
2216             << StartIndex->getSourceRange() << EndIndex->getSourceRange();
2217           Invalid = true;
2218         } else {
2219           Designators.push_back(ASTDesignator(InitExpressions.size(),
2220                                               D.getLBracketLoc(),
2221                                               D.getEllipsisLoc(),
2222                                               D.getRBracketLoc()));
2223           InitExpressions.push_back(StartIndex);
2224           InitExpressions.push_back(EndIndex);
2225         }
2226       }
2227       break;
2228     }
2229     }
2230   }
2231 
2232   if (Invalid || Init.isInvalid())
2233     return ExprError();
2234 
2235   // Clear out the expressions within the designation.
2236   Desig.ClearExprs(*this);
2237 
2238   DesignatedInitExpr *DIE
2239     = DesignatedInitExpr::Create(Context,
2240                                  Designators.data(), Designators.size(),
2241                                  InitExpressions.data(), InitExpressions.size(),
2242                                  Loc, GNUSyntax, Init.takeAs<Expr>());
2243 
2244   if (getLangOptions().CPlusPlus)
2245     Diag(DIE->getLocStart(), diag::ext_designated_init_cxx)
2246       << DIE->getSourceRange();
2247   else if (!getLangOptions().C99)
2248     Diag(DIE->getLocStart(), diag::ext_designated_init)
2249       << DIE->getSourceRange();
2250 
2251   return Owned(DIE);
2252 }
2253 
2254 //===----------------------------------------------------------------------===//
2255 // Initialization entity
2256 //===----------------------------------------------------------------------===//
2257 
2258 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
2259                                      const InitializedEntity &Parent)
2260   : Parent(&Parent), Index(Index)
2261 {
2262   if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
2263     Kind = EK_ArrayElement;
2264     Type = AT->getElementType();
2265   } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
2266     Kind = EK_VectorElement;
2267     Type = VT->getElementType();
2268   } else {
2269     const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
2270     assert(CT && "Unexpected type");
2271     Kind = EK_ComplexElement;
2272     Type = CT->getElementType();
2273   }
2274 }
2275 
2276 InitializedEntity InitializedEntity::InitializeBase(ASTContext &Context,
2277                                                     CXXBaseSpecifier *Base,
2278                                                     bool IsInheritedVirtualBase)
2279 {
2280   InitializedEntity Result;
2281   Result.Kind = EK_Base;
2282   Result.Base = reinterpret_cast<uintptr_t>(Base);
2283   if (IsInheritedVirtualBase)
2284     Result.Base |= 0x01;
2285 
2286   Result.Type = Base->getType();
2287   return Result;
2288 }
2289 
2290 DeclarationName InitializedEntity::getName() const {
2291   switch (getKind()) {
2292   case EK_Parameter: {
2293     ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2294     return (D ? D->getDeclName() : DeclarationName());
2295   }
2296 
2297   case EK_Variable:
2298   case EK_Member:
2299     return VariableOrMember->getDeclName();
2300 
2301   case EK_Result:
2302   case EK_Exception:
2303   case EK_New:
2304   case EK_Temporary:
2305   case EK_Base:
2306   case EK_Delegating:
2307   case EK_ArrayElement:
2308   case EK_VectorElement:
2309   case EK_ComplexElement:
2310   case EK_BlockElement:
2311     return DeclarationName();
2312   }
2313 
2314   // Silence GCC warning
2315   return DeclarationName();
2316 }
2317 
2318 DeclaratorDecl *InitializedEntity::getDecl() const {
2319   switch (getKind()) {
2320   case EK_Variable:
2321   case EK_Member:
2322     return VariableOrMember;
2323 
2324   case EK_Parameter:
2325     return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2326 
2327   case EK_Result:
2328   case EK_Exception:
2329   case EK_New:
2330   case EK_Temporary:
2331   case EK_Base:
2332   case EK_Delegating:
2333   case EK_ArrayElement:
2334   case EK_VectorElement:
2335   case EK_ComplexElement:
2336   case EK_BlockElement:
2337     return 0;
2338   }
2339 
2340   // Silence GCC warning
2341   return 0;
2342 }
2343 
2344 bool InitializedEntity::allowsNRVO() const {
2345   switch (getKind()) {
2346   case EK_Result:
2347   case EK_Exception:
2348     return LocAndNRVO.NRVO;
2349 
2350   case EK_Variable:
2351   case EK_Parameter:
2352   case EK_Member:
2353   case EK_New:
2354   case EK_Temporary:
2355   case EK_Base:
2356   case EK_Delegating:
2357   case EK_ArrayElement:
2358   case EK_VectorElement:
2359   case EK_ComplexElement:
2360   case EK_BlockElement:
2361     break;
2362   }
2363 
2364   return false;
2365 }
2366 
2367 //===----------------------------------------------------------------------===//
2368 // Initialization sequence
2369 //===----------------------------------------------------------------------===//
2370 
2371 void InitializationSequence::Step::Destroy() {
2372   switch (Kind) {
2373   case SK_ResolveAddressOfOverloadedFunction:
2374   case SK_CastDerivedToBaseRValue:
2375   case SK_CastDerivedToBaseXValue:
2376   case SK_CastDerivedToBaseLValue:
2377   case SK_BindReference:
2378   case SK_BindReferenceToTemporary:
2379   case SK_ExtraneousCopyToTemporary:
2380   case SK_UserConversion:
2381   case SK_QualificationConversionRValue:
2382   case SK_QualificationConversionXValue:
2383   case SK_QualificationConversionLValue:
2384   case SK_ListInitialization:
2385   case SK_ListConstructorCall:
2386   case SK_ConstructorInitialization:
2387   case SK_ZeroInitialization:
2388   case SK_CAssignment:
2389   case SK_StringInit:
2390   case SK_ObjCObjectConversion:
2391   case SK_ArrayInit:
2392   case SK_PassByIndirectCopyRestore:
2393   case SK_PassByIndirectRestore:
2394   case SK_ProduceObjCObject:
2395     break;
2396 
2397   case SK_ConversionSequence:
2398     delete ICS;
2399   }
2400 }
2401 
2402 bool InitializationSequence::isDirectReferenceBinding() const {
2403   return !Steps.empty() && Steps.back().Kind == SK_BindReference;
2404 }
2405 
2406 bool InitializationSequence::isAmbiguous() const {
2407   if (!Failed())
2408     return false;
2409 
2410   switch (getFailureKind()) {
2411   case FK_TooManyInitsForReference:
2412   case FK_ArrayNeedsInitList:
2413   case FK_ArrayNeedsInitListOrStringLiteral:
2414   case FK_AddressOfOverloadFailed: // FIXME: Could do better
2415   case FK_NonConstLValueReferenceBindingToTemporary:
2416   case FK_NonConstLValueReferenceBindingToUnrelated:
2417   case FK_RValueReferenceBindingToLValue:
2418   case FK_ReferenceInitDropsQualifiers:
2419   case FK_ReferenceInitFailed:
2420   case FK_ConversionFailed:
2421   case FK_ConversionFromPropertyFailed:
2422   case FK_TooManyInitsForScalar:
2423   case FK_ReferenceBindingToInitList:
2424   case FK_InitListBadDestinationType:
2425   case FK_DefaultInitOfConst:
2426   case FK_Incomplete:
2427   case FK_ArrayTypeMismatch:
2428   case FK_NonConstantArrayInit:
2429   case FK_ListInitializationFailed:
2430     return false;
2431 
2432   case FK_ReferenceInitOverloadFailed:
2433   case FK_UserConversionOverloadFailed:
2434   case FK_ConstructorOverloadFailed:
2435     return FailedOverloadResult == OR_Ambiguous;
2436   }
2437 
2438   return false;
2439 }
2440 
2441 bool InitializationSequence::isConstructorInitialization() const {
2442   return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
2443 }
2444 
2445 bool InitializationSequence::endsWithNarrowing(ASTContext &Ctx,
2446                                                const Expr *Initializer,
2447                                                bool *isInitializerConstant,
2448                                                APValue *ConstantValue) const {
2449   if (Steps.empty() || Initializer->isValueDependent())
2450     return false;
2451 
2452   const Step &LastStep = Steps.back();
2453   if (LastStep.Kind != SK_ConversionSequence)
2454     return false;
2455 
2456   const ImplicitConversionSequence &ICS = *LastStep.ICS;
2457   const StandardConversionSequence *SCS = NULL;
2458   switch (ICS.getKind()) {
2459   case ImplicitConversionSequence::StandardConversion:
2460     SCS = &ICS.Standard;
2461     break;
2462   case ImplicitConversionSequence::UserDefinedConversion:
2463     SCS = &ICS.UserDefined.After;
2464     break;
2465   case ImplicitConversionSequence::AmbiguousConversion:
2466   case ImplicitConversionSequence::EllipsisConversion:
2467   case ImplicitConversionSequence::BadConversion:
2468     return false;
2469   }
2470 
2471   // Check if SCS represents a narrowing conversion, according to C++0x
2472   // [dcl.init.list]p7:
2473   //
2474   // A narrowing conversion is an implicit conversion ...
2475   ImplicitConversionKind PossibleNarrowing = SCS->Second;
2476   QualType FromType = SCS->getToType(0);
2477   QualType ToType = SCS->getToType(1);
2478   switch (PossibleNarrowing) {
2479   // * from a floating-point type to an integer type, or
2480   //
2481   // * from an integer type or unscoped enumeration type to a floating-point
2482   //   type, except where the source is a constant expression and the actual
2483   //   value after conversion will fit into the target type and will produce
2484   //   the original value when converted back to the original type, or
2485   case ICK_Floating_Integral:
2486     if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
2487       *isInitializerConstant = false;
2488       return true;
2489     } else if (FromType->isIntegralType(Ctx) && ToType->isRealFloatingType()) {
2490       llvm::APSInt IntConstantValue;
2491       if (Initializer &&
2492           Initializer->isIntegerConstantExpr(IntConstantValue, Ctx)) {
2493         // Convert the integer to the floating type.
2494         llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
2495         Result.convertFromAPInt(IntConstantValue, IntConstantValue.isSigned(),
2496                                 llvm::APFloat::rmNearestTiesToEven);
2497         // And back.
2498         llvm::APSInt ConvertedValue = IntConstantValue;
2499         bool ignored;
2500         Result.convertToInteger(ConvertedValue,
2501                                 llvm::APFloat::rmTowardZero, &ignored);
2502         // If the resulting value is different, this was a narrowing conversion.
2503         if (IntConstantValue != ConvertedValue) {
2504           *isInitializerConstant = true;
2505           *ConstantValue = APValue(IntConstantValue);
2506           return true;
2507         }
2508       } else {
2509         // Variables are always narrowings.
2510         *isInitializerConstant = false;
2511         return true;
2512       }
2513     }
2514     return false;
2515 
2516   // * from long double to double or float, or from double to float, except
2517   //   where the source is a constant expression and the actual value after
2518   //   conversion is within the range of values that can be represented (even
2519   //   if it cannot be represented exactly), or
2520   case ICK_Floating_Conversion:
2521     if (1 == Ctx.getFloatingTypeOrder(FromType, ToType)) {
2522       // FromType is larger than ToType.
2523       Expr::EvalResult InitializerValue;
2524       // FIXME: Check whether Initializer is a constant expression according
2525       // to C++0x [expr.const], rather than just whether it can be folded.
2526       if (Initializer->Evaluate(InitializerValue, Ctx) &&
2527           !InitializerValue.HasSideEffects && InitializerValue.Val.isFloat()) {
2528         // Constant! (Except for FIXME above.)
2529         llvm::APFloat FloatVal = InitializerValue.Val.getFloat();
2530         // Convert the source value into the target type.
2531         bool ignored;
2532         llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
2533           Ctx.getFloatTypeSemantics(ToType),
2534           llvm::APFloat::rmNearestTiesToEven, &ignored);
2535         // If there was no overflow, the source value is within the range of
2536         // values that can be represented.
2537         if (ConvertStatus & llvm::APFloat::opOverflow) {
2538           *isInitializerConstant = true;
2539           *ConstantValue = InitializerValue.Val;
2540           return true;
2541         }
2542       } else {
2543         *isInitializerConstant = false;
2544         return true;
2545       }
2546     }
2547     return false;
2548 
2549   // * from an integer type or unscoped enumeration type to an integer type
2550   //   that cannot represent all the values of the original type, except where
2551   //   the source is a constant expression and the actual value after
2552   //   conversion will fit into the target type and will produce the original
2553   //   value when converted back to the original type.
2554   case ICK_Boolean_Conversion:  // Bools are integers too.
2555     if (!FromType->isIntegralOrUnscopedEnumerationType()) {
2556       // Boolean conversions can be from pointers and pointers to members
2557       // [conv.bool], and those aren't considered narrowing conversions.
2558       return false;
2559     }  // Otherwise, fall through to the integral case.
2560   case ICK_Integral_Conversion: {
2561     assert(FromType->isIntegralOrUnscopedEnumerationType());
2562     assert(ToType->isIntegralOrUnscopedEnumerationType());
2563     const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
2564     const unsigned FromWidth = Ctx.getIntWidth(FromType);
2565     const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
2566     const unsigned ToWidth = Ctx.getIntWidth(ToType);
2567 
2568     if (FromWidth > ToWidth ||
2569         (FromWidth == ToWidth && FromSigned != ToSigned)) {
2570       // Not all values of FromType can be represented in ToType.
2571       llvm::APSInt InitializerValue;
2572       if (Initializer->isIntegerConstantExpr(InitializerValue, Ctx)) {
2573         *isInitializerConstant = true;
2574         *ConstantValue = APValue(InitializerValue);
2575 
2576         // Add a bit to the InitializerValue so we don't have to worry about
2577         // signed vs. unsigned comparisons.
2578         InitializerValue = InitializerValue.extend(
2579           InitializerValue.getBitWidth() + 1);
2580         // Convert the initializer to and from the target width and signed-ness.
2581         llvm::APSInt ConvertedValue = InitializerValue;
2582         ConvertedValue = ConvertedValue.trunc(ToWidth);
2583         ConvertedValue.setIsSigned(ToSigned);
2584         ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
2585         ConvertedValue.setIsSigned(InitializerValue.isSigned());
2586         // If the result is different, this was a narrowing conversion.
2587         return ConvertedValue != InitializerValue;
2588       } else {
2589         // Variables are always narrowings.
2590         *isInitializerConstant = false;
2591         return true;
2592       }
2593     }
2594     return false;
2595   }
2596 
2597   default:
2598     // Other kinds of conversions are not narrowings.
2599     return false;
2600   }
2601 }
2602 
2603 void InitializationSequence::AddAddressOverloadResolutionStep(
2604                                                       FunctionDecl *Function,
2605                                                       DeclAccessPair Found) {
2606   Step S;
2607   S.Kind = SK_ResolveAddressOfOverloadedFunction;
2608   S.Type = Function->getType();
2609   S.Function.HadMultipleCandidates = false;
2610   S.Function.Function = Function;
2611   S.Function.FoundDecl = Found;
2612   Steps.push_back(S);
2613 }
2614 
2615 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
2616                                                       ExprValueKind VK) {
2617   Step S;
2618   switch (VK) {
2619   case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
2620   case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
2621   case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
2622   default: llvm_unreachable("No such category");
2623   }
2624   S.Type = BaseType;
2625   Steps.push_back(S);
2626 }
2627 
2628 void InitializationSequence::AddReferenceBindingStep(QualType T,
2629                                                      bool BindingTemporary) {
2630   Step S;
2631   S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
2632   S.Type = T;
2633   Steps.push_back(S);
2634 }
2635 
2636 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
2637   Step S;
2638   S.Kind = SK_ExtraneousCopyToTemporary;
2639   S.Type = T;
2640   Steps.push_back(S);
2641 }
2642 
2643 void InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
2644                                                    DeclAccessPair FoundDecl,
2645                                                    QualType T) {
2646   Step S;
2647   S.Kind = SK_UserConversion;
2648   S.Type = T;
2649   S.Function.HadMultipleCandidates = false;
2650   S.Function.Function = Function;
2651   S.Function.FoundDecl = FoundDecl;
2652   Steps.push_back(S);
2653 }
2654 
2655 void InitializationSequence::AddQualificationConversionStep(QualType Ty,
2656                                                             ExprValueKind VK) {
2657   Step S;
2658   S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
2659   switch (VK) {
2660   case VK_RValue:
2661     S.Kind = SK_QualificationConversionRValue;
2662     break;
2663   case VK_XValue:
2664     S.Kind = SK_QualificationConversionXValue;
2665     break;
2666   case VK_LValue:
2667     S.Kind = SK_QualificationConversionLValue;
2668     break;
2669   }
2670   S.Type = Ty;
2671   Steps.push_back(S);
2672 }
2673 
2674 void InitializationSequence::AddConversionSequenceStep(
2675                                        const ImplicitConversionSequence &ICS,
2676                                                        QualType T) {
2677   Step S;
2678   S.Kind = SK_ConversionSequence;
2679   S.Type = T;
2680   S.ICS = new ImplicitConversionSequence(ICS);
2681   Steps.push_back(S);
2682 }
2683 
2684 void InitializationSequence::AddListInitializationStep(QualType T) {
2685   Step S;
2686   S.Kind = SK_ListInitialization;
2687   S.Type = T;
2688   Steps.push_back(S);
2689 }
2690 
2691 void
2692 InitializationSequence::AddConstructorInitializationStep(
2693                                               CXXConstructorDecl *Constructor,
2694                                                        AccessSpecifier Access,
2695                                                          QualType T) {
2696   Step S;
2697   S.Kind = SK_ConstructorInitialization;
2698   S.Type = T;
2699   S.Function.HadMultipleCandidates = false;
2700   S.Function.Function = Constructor;
2701   S.Function.FoundDecl = DeclAccessPair::make(Constructor, Access);
2702   Steps.push_back(S);
2703 }
2704 
2705 void InitializationSequence::AddZeroInitializationStep(QualType T) {
2706   Step S;
2707   S.Kind = SK_ZeroInitialization;
2708   S.Type = T;
2709   Steps.push_back(S);
2710 }
2711 
2712 void InitializationSequence::AddCAssignmentStep(QualType T) {
2713   Step S;
2714   S.Kind = SK_CAssignment;
2715   S.Type = T;
2716   Steps.push_back(S);
2717 }
2718 
2719 void InitializationSequence::AddStringInitStep(QualType T) {
2720   Step S;
2721   S.Kind = SK_StringInit;
2722   S.Type = T;
2723   Steps.push_back(S);
2724 }
2725 
2726 void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
2727   Step S;
2728   S.Kind = SK_ObjCObjectConversion;
2729   S.Type = T;
2730   Steps.push_back(S);
2731 }
2732 
2733 void InitializationSequence::AddArrayInitStep(QualType T) {
2734   Step S;
2735   S.Kind = SK_ArrayInit;
2736   S.Type = T;
2737   Steps.push_back(S);
2738 }
2739 
2740 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
2741                                                               bool shouldCopy) {
2742   Step s;
2743   s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
2744                        : SK_PassByIndirectRestore);
2745   s.Type = type;
2746   Steps.push_back(s);
2747 }
2748 
2749 void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
2750   Step S;
2751   S.Kind = SK_ProduceObjCObject;
2752   S.Type = T;
2753   Steps.push_back(S);
2754 }
2755 
2756 void InitializationSequence::SetOverloadFailure(FailureKind Failure,
2757                                                 OverloadingResult Result) {
2758   setSequenceKind(FailedSequence);
2759   this->Failure = Failure;
2760   this->FailedOverloadResult = Result;
2761 }
2762 
2763 //===----------------------------------------------------------------------===//
2764 // Attempt initialization
2765 //===----------------------------------------------------------------------===//
2766 
2767 static void MaybeProduceObjCObject(Sema &S,
2768                                    InitializationSequence &Sequence,
2769                                    const InitializedEntity &Entity) {
2770   if (!S.getLangOptions().ObjCAutoRefCount) return;
2771 
2772   /// When initializing a parameter, produce the value if it's marked
2773   /// __attribute__((ns_consumed)).
2774   if (Entity.getKind() == InitializedEntity::EK_Parameter) {
2775     if (!Entity.isParameterConsumed())
2776       return;
2777 
2778     assert(Entity.getType()->isObjCRetainableType() &&
2779            "consuming an object of unretainable type?");
2780     Sequence.AddProduceObjCObjectStep(Entity.getType());
2781 
2782   /// When initializing a return value, if the return type is a
2783   /// retainable type, then returns need to immediately retain the
2784   /// object.  If an autorelease is required, it will be done at the
2785   /// last instant.
2786   } else if (Entity.getKind() == InitializedEntity::EK_Result) {
2787     if (!Entity.getType()->isObjCRetainableType())
2788       return;
2789 
2790     Sequence.AddProduceObjCObjectStep(Entity.getType());
2791   }
2792 }
2793 
2794 /// \brief Attempt list initialization (C++0x [dcl.init.list])
2795 static void TryListInitialization(Sema &S,
2796                                   const InitializedEntity &Entity,
2797                                   const InitializationKind &Kind,
2798                                   InitListExpr *InitList,
2799                                   InitializationSequence &Sequence) {
2800   QualType DestType = Entity.getType();
2801 
2802   // C++ doesn't allow scalar initialization with more than one argument.
2803   // But C99 complex numbers are scalars and it makes sense there.
2804   if (S.getLangOptions().CPlusPlus && DestType->isScalarType() &&
2805       !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
2806     Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
2807     return;
2808   }
2809   // FIXME: C++0x defines behavior for these two cases.
2810   if (DestType->isReferenceType()) {
2811     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
2812     return;
2813   }
2814   if (DestType->isRecordType() && !DestType->isAggregateType()) {
2815     Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
2816     return;
2817   }
2818 
2819   InitListChecker CheckInitList(S, Entity, InitList,
2820           DestType, /*VerifyOnly=*/true,
2821           Kind.getKind() != InitializationKind::IK_Direct ||
2822             !S.getLangOptions().CPlusPlus0x);
2823   if (CheckInitList.HadError()) {
2824     Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
2825     return;
2826   }
2827 
2828   // Add the list initialization step with the built init list.
2829   Sequence.AddListInitializationStep(DestType);
2830 }
2831 
2832 /// \brief Try a reference initialization that involves calling a conversion
2833 /// function.
2834 static OverloadingResult TryRefInitWithConversionFunction(Sema &S,
2835                                              const InitializedEntity &Entity,
2836                                              const InitializationKind &Kind,
2837                                                           Expr *Initializer,
2838                                                           bool AllowRValues,
2839                                              InitializationSequence &Sequence) {
2840   QualType DestType = Entity.getType();
2841   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
2842   QualType T1 = cv1T1.getUnqualifiedType();
2843   QualType cv2T2 = Initializer->getType();
2844   QualType T2 = cv2T2.getUnqualifiedType();
2845 
2846   bool DerivedToBase;
2847   bool ObjCConversion;
2848   bool ObjCLifetimeConversion;
2849   assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),
2850                                          T1, T2, DerivedToBase,
2851                                          ObjCConversion,
2852                                          ObjCLifetimeConversion) &&
2853          "Must have incompatible references when binding via conversion");
2854   (void)DerivedToBase;
2855   (void)ObjCConversion;
2856   (void)ObjCLifetimeConversion;
2857 
2858   // Build the candidate set directly in the initialization sequence
2859   // structure, so that it will persist if we fail.
2860   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2861   CandidateSet.clear();
2862 
2863   // Determine whether we are allowed to call explicit constructors or
2864   // explicit conversion operators.
2865   bool AllowExplicit = Kind.getKind() == InitializationKind::IK_Direct;
2866 
2867   const RecordType *T1RecordType = 0;
2868   if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
2869       !S.RequireCompleteType(Kind.getLocation(), T1, 0)) {
2870     // The type we're converting to is a class type. Enumerate its constructors
2871     // to see if there is a suitable conversion.
2872     CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
2873 
2874     DeclContext::lookup_iterator Con, ConEnd;
2875     for (llvm::tie(Con, ConEnd) = S.LookupConstructors(T1RecordDecl);
2876          Con != ConEnd; ++Con) {
2877       NamedDecl *D = *Con;
2878       DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2879 
2880       // Find the constructor (which may be a template).
2881       CXXConstructorDecl *Constructor = 0;
2882       FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
2883       if (ConstructorTmpl)
2884         Constructor = cast<CXXConstructorDecl>(
2885                                          ConstructorTmpl->getTemplatedDecl());
2886       else
2887         Constructor = cast<CXXConstructorDecl>(D);
2888 
2889       if (!Constructor->isInvalidDecl() &&
2890           Constructor->isConvertingConstructor(AllowExplicit)) {
2891         if (ConstructorTmpl)
2892           S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2893                                          /*ExplicitArgs*/ 0,
2894                                          &Initializer, 1, CandidateSet,
2895                                          /*SuppressUserConversions=*/true);
2896         else
2897           S.AddOverloadCandidate(Constructor, FoundDecl,
2898                                  &Initializer, 1, CandidateSet,
2899                                  /*SuppressUserConversions=*/true);
2900       }
2901     }
2902   }
2903   if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
2904     return OR_No_Viable_Function;
2905 
2906   const RecordType *T2RecordType = 0;
2907   if ((T2RecordType = T2->getAs<RecordType>()) &&
2908       !S.RequireCompleteType(Kind.getLocation(), T2, 0)) {
2909     // The type we're converting from is a class type, enumerate its conversion
2910     // functions.
2911     CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
2912 
2913     const UnresolvedSetImpl *Conversions
2914       = T2RecordDecl->getVisibleConversionFunctions();
2915     for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
2916            E = Conversions->end(); I != E; ++I) {
2917       NamedDecl *D = *I;
2918       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
2919       if (isa<UsingShadowDecl>(D))
2920         D = cast<UsingShadowDecl>(D)->getTargetDecl();
2921 
2922       FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
2923       CXXConversionDecl *Conv;
2924       if (ConvTemplate)
2925         Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
2926       else
2927         Conv = cast<CXXConversionDecl>(D);
2928 
2929       // If the conversion function doesn't return a reference type,
2930       // it can't be considered for this conversion unless we're allowed to
2931       // consider rvalues.
2932       // FIXME: Do we need to make sure that we only consider conversion
2933       // candidates with reference-compatible results? That might be needed to
2934       // break recursion.
2935       if ((AllowExplicit || !Conv->isExplicit()) &&
2936           (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
2937         if (ConvTemplate)
2938           S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
2939                                            ActingDC, Initializer,
2940                                            DestType, CandidateSet);
2941         else
2942           S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
2943                                    Initializer, DestType, CandidateSet);
2944       }
2945     }
2946   }
2947   if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
2948     return OR_No_Viable_Function;
2949 
2950   SourceLocation DeclLoc = Initializer->getLocStart();
2951 
2952   // Perform overload resolution. If it fails, return the failed result.
2953   OverloadCandidateSet::iterator Best;
2954   if (OverloadingResult Result
2955         = CandidateSet.BestViableFunction(S, DeclLoc, Best, true))
2956     return Result;
2957 
2958   FunctionDecl *Function = Best->Function;
2959 
2960   // This is the overload that will actually be used for the initialization, so
2961   // mark it as used.
2962   S.MarkDeclarationReferenced(DeclLoc, Function);
2963 
2964   // Compute the returned type of the conversion.
2965   if (isa<CXXConversionDecl>(Function))
2966     T2 = Function->getResultType();
2967   else
2968     T2 = cv1T1;
2969 
2970   // Add the user-defined conversion step.
2971   Sequence.AddUserConversionStep(Function, Best->FoundDecl,
2972                                  T2.getNonLValueExprType(S.Context));
2973 
2974   // Determine whether we need to perform derived-to-base or
2975   // cv-qualification adjustments.
2976   ExprValueKind VK = VK_RValue;
2977   if (T2->isLValueReferenceType())
2978     VK = VK_LValue;
2979   else if (const RValueReferenceType *RRef = T2->getAs<RValueReferenceType>())
2980     VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
2981 
2982   bool NewDerivedToBase = false;
2983   bool NewObjCConversion = false;
2984   bool NewObjCLifetimeConversion = false;
2985   Sema::ReferenceCompareResult NewRefRelationship
2986     = S.CompareReferenceRelationship(DeclLoc, T1,
2987                                      T2.getNonLValueExprType(S.Context),
2988                                      NewDerivedToBase, NewObjCConversion,
2989                                      NewObjCLifetimeConversion);
2990   if (NewRefRelationship == Sema::Ref_Incompatible) {
2991     // If the type we've converted to is not reference-related to the
2992     // type we're looking for, then there is another conversion step
2993     // we need to perform to produce a temporary of the right type
2994     // that we'll be binding to.
2995     ImplicitConversionSequence ICS;
2996     ICS.setStandard();
2997     ICS.Standard = Best->FinalConversion;
2998     T2 = ICS.Standard.getToType(2);
2999     Sequence.AddConversionSequenceStep(ICS, T2);
3000   } else if (NewDerivedToBase)
3001     Sequence.AddDerivedToBaseCastStep(
3002                                 S.Context.getQualifiedType(T1,
3003                                   T2.getNonReferenceType().getQualifiers()),
3004                                       VK);
3005   else if (NewObjCConversion)
3006     Sequence.AddObjCObjectConversionStep(
3007                                 S.Context.getQualifiedType(T1,
3008                                   T2.getNonReferenceType().getQualifiers()));
3009 
3010   if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers())
3011     Sequence.AddQualificationConversionStep(cv1T1, VK);
3012 
3013   Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType());
3014   return OR_Success;
3015 }
3016 
3017 /// \brief Attempt reference initialization (C++0x [dcl.init.ref])
3018 static void TryReferenceInitialization(Sema &S,
3019                                        const InitializedEntity &Entity,
3020                                        const InitializationKind &Kind,
3021                                        Expr *Initializer,
3022                                        InitializationSequence &Sequence) {
3023   QualType DestType = Entity.getType();
3024   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3025   Qualifiers T1Quals;
3026   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3027   QualType cv2T2 = Initializer->getType();
3028   Qualifiers T2Quals;
3029   QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3030   SourceLocation DeclLoc = Initializer->getLocStart();
3031 
3032   // If the initializer is the address of an overloaded function, try
3033   // to resolve the overloaded function. If all goes well, T2 is the
3034   // type of the resulting function.
3035   if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
3036     DeclAccessPair Found;
3037     if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Initializer,
3038                                                                 T1,
3039                                                                 false,
3040                                                                 Found)) {
3041       Sequence.AddAddressOverloadResolutionStep(Fn, Found);
3042       cv2T2 = Fn->getType();
3043       T2 = cv2T2.getUnqualifiedType();
3044     } else if (!T1->isRecordType()) {
3045       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3046       return;
3047     }
3048   }
3049 
3050   // Compute some basic properties of the types and the initializer.
3051   bool isLValueRef = DestType->isLValueReferenceType();
3052   bool isRValueRef = !isLValueRef;
3053   bool DerivedToBase = false;
3054   bool ObjCConversion = false;
3055   bool ObjCLifetimeConversion = false;
3056   Expr::Classification InitCategory = Initializer->Classify(S.Context);
3057   Sema::ReferenceCompareResult RefRelationship
3058     = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
3059                                      ObjCConversion, ObjCLifetimeConversion);
3060 
3061   // C++0x [dcl.init.ref]p5:
3062   //   A reference to type "cv1 T1" is initialized by an expression of type
3063   //   "cv2 T2" as follows:
3064   //
3065   //     - If the reference is an lvalue reference and the initializer
3066   //       expression
3067   // Note the analogous bullet points for rvlaue refs to functions. Because
3068   // there are no function rvalues in C++, rvalue refs to functions are treated
3069   // like lvalue refs.
3070   OverloadingResult ConvOvlResult = OR_Success;
3071   bool T1Function = T1->isFunctionType();
3072   if (isLValueRef || T1Function) {
3073     if (InitCategory.isLValue() &&
3074         (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
3075          (Kind.isCStyleOrFunctionalCast() &&
3076           RefRelationship == Sema::Ref_Related))) {
3077       //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
3078       //     reference-compatible with "cv2 T2," or
3079       //
3080       // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a
3081       // bit-field when we're determining whether the reference initialization
3082       // can occur. However, we do pay attention to whether it is a bit-field
3083       // to decide whether we're actually binding to a temporary created from
3084       // the bit-field.
3085       if (DerivedToBase)
3086         Sequence.AddDerivedToBaseCastStep(
3087                          S.Context.getQualifiedType(T1, T2Quals),
3088                          VK_LValue);
3089       else if (ObjCConversion)
3090         Sequence.AddObjCObjectConversionStep(
3091                                      S.Context.getQualifiedType(T1, T2Quals));
3092 
3093       if (T1Quals != T2Quals)
3094         Sequence.AddQualificationConversionStep(cv1T1, VK_LValue);
3095       bool BindingTemporary = T1Quals.hasConst() && !T1Quals.hasVolatile() &&
3096         (Initializer->getBitField() || Initializer->refersToVectorElement());
3097       Sequence.AddReferenceBindingStep(cv1T1, BindingTemporary);
3098       return;
3099     }
3100 
3101     //     - has a class type (i.e., T2 is a class type), where T1 is not
3102     //       reference-related to T2, and can be implicitly converted to an
3103     //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
3104     //       with "cv3 T3" (this conversion is selected by enumerating the
3105     //       applicable conversion functions (13.3.1.6) and choosing the best
3106     //       one through overload resolution (13.3)),
3107     // If we have an rvalue ref to function type here, the rhs must be
3108     // an rvalue.
3109     if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
3110         (isLValueRef || InitCategory.isRValue())) {
3111       ConvOvlResult = TryRefInitWithConversionFunction(S, Entity, Kind,
3112                                                        Initializer,
3113                                                    /*AllowRValues=*/isRValueRef,
3114                                                        Sequence);
3115       if (ConvOvlResult == OR_Success)
3116         return;
3117       if (ConvOvlResult != OR_No_Viable_Function) {
3118         Sequence.SetOverloadFailure(
3119                       InitializationSequence::FK_ReferenceInitOverloadFailed,
3120                                     ConvOvlResult);
3121       }
3122     }
3123   }
3124 
3125   //     - Otherwise, the reference shall be an lvalue reference to a
3126   //       non-volatile const type (i.e., cv1 shall be const), or the reference
3127   //       shall be an rvalue reference.
3128   if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
3129     if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
3130       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3131     else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
3132       Sequence.SetOverloadFailure(
3133                         InitializationSequence::FK_ReferenceInitOverloadFailed,
3134                                   ConvOvlResult);
3135     else
3136       Sequence.SetFailed(InitCategory.isLValue()
3137         ? (RefRelationship == Sema::Ref_Related
3138              ? InitializationSequence::FK_ReferenceInitDropsQualifiers
3139              : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated)
3140         : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3141 
3142     return;
3143   }
3144 
3145   //    - If the initializer expression
3146   //      - is an xvalue, class prvalue, array prvalue, or function lvalue and
3147   //        "cv1 T1" is reference-compatible with "cv2 T2"
3148   // Note: functions are handled below.
3149   if (!T1Function &&
3150       (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
3151        (Kind.isCStyleOrFunctionalCast() &&
3152         RefRelationship == Sema::Ref_Related)) &&
3153       (InitCategory.isXValue() ||
3154        (InitCategory.isPRValue() && T2->isRecordType()) ||
3155        (InitCategory.isPRValue() && T2->isArrayType()))) {
3156     ExprValueKind ValueKind = InitCategory.isXValue()? VK_XValue : VK_RValue;
3157     if (InitCategory.isPRValue() && T2->isRecordType()) {
3158       // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
3159       // compiler the freedom to perform a copy here or bind to the
3160       // object, while C++0x requires that we bind directly to the
3161       // object. Hence, we always bind to the object without making an
3162       // extra copy. However, in C++03 requires that we check for the
3163       // presence of a suitable copy constructor:
3164       //
3165       //   The constructor that would be used to make the copy shall
3166       //   be callable whether or not the copy is actually done.
3167       if (!S.getLangOptions().CPlusPlus0x && !S.getLangOptions().MicrosoftExt)
3168         Sequence.AddExtraneousCopyToTemporary(cv2T2);
3169     }
3170 
3171     if (DerivedToBase)
3172       Sequence.AddDerivedToBaseCastStep(S.Context.getQualifiedType(T1, T2Quals),
3173                                         ValueKind);
3174     else if (ObjCConversion)
3175       Sequence.AddObjCObjectConversionStep(
3176                                        S.Context.getQualifiedType(T1, T2Quals));
3177 
3178     if (T1Quals != T2Quals)
3179       Sequence.AddQualificationConversionStep(cv1T1, ValueKind);
3180     Sequence.AddReferenceBindingStep(cv1T1,
3181          /*bindingTemporary=*/(InitCategory.isPRValue() && !T2->isArrayType()));
3182     return;
3183   }
3184 
3185   //       - has a class type (i.e., T2 is a class type), where T1 is not
3186   //         reference-related to T2, and can be implicitly converted to an
3187   //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
3188   //         where "cv1 T1" is reference-compatible with "cv3 T3",
3189   if (T2->isRecordType()) {
3190     if (RefRelationship == Sema::Ref_Incompatible) {
3191       ConvOvlResult = TryRefInitWithConversionFunction(S, Entity,
3192                                                        Kind, Initializer,
3193                                                        /*AllowRValues=*/true,
3194                                                        Sequence);
3195       if (ConvOvlResult)
3196         Sequence.SetOverloadFailure(
3197                       InitializationSequence::FK_ReferenceInitOverloadFailed,
3198                                     ConvOvlResult);
3199 
3200       return;
3201     }
3202 
3203     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
3204     return;
3205   }
3206 
3207   //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
3208   //        from the initializer expression using the rules for a non-reference
3209   //        copy initialization (8.5). The reference is then bound to the
3210   //        temporary. [...]
3211 
3212   // Determine whether we are allowed to call explicit constructors or
3213   // explicit conversion operators.
3214   bool AllowExplicit = (Kind.getKind() == InitializationKind::IK_Direct);
3215 
3216   InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3217 
3218   ImplicitConversionSequence ICS
3219     = S.TryImplicitConversion(Initializer, TempEntity.getType(),
3220                               /*SuppressUserConversions*/ false,
3221                               AllowExplicit,
3222                               /*FIXME:InOverloadResolution=*/false,
3223                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
3224                               /*AllowObjCWritebackConversion=*/false);
3225 
3226   if (ICS.isBad()) {
3227     // FIXME: Use the conversion function set stored in ICS to turn
3228     // this into an overloading ambiguity diagnostic. However, we need
3229     // to keep that set as an OverloadCandidateSet rather than as some
3230     // other kind of set.
3231     if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
3232       Sequence.SetOverloadFailure(
3233                         InitializationSequence::FK_ReferenceInitOverloadFailed,
3234                                   ConvOvlResult);
3235     else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
3236       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3237     else
3238       Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
3239     return;
3240   } else {
3241     Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
3242   }
3243 
3244   //        [...] If T1 is reference-related to T2, cv1 must be the
3245   //        same cv-qualification as, or greater cv-qualification
3246   //        than, cv2; otherwise, the program is ill-formed.
3247   unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
3248   unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
3249   if (RefRelationship == Sema::Ref_Related &&
3250       (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
3251     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
3252     return;
3253   }
3254 
3255   //   [...] If T1 is reference-related to T2 and the reference is an rvalue
3256   //   reference, the initializer expression shall not be an lvalue.
3257   if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
3258       InitCategory.isLValue()) {
3259     Sequence.SetFailed(
3260                     InitializationSequence::FK_RValueReferenceBindingToLValue);
3261     return;
3262   }
3263 
3264   Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3265   return;
3266 }
3267 
3268 /// \brief Attempt character array initialization from a string literal
3269 /// (C++ [dcl.init.string], C99 6.7.8).
3270 static void TryStringLiteralInitialization(Sema &S,
3271                                            const InitializedEntity &Entity,
3272                                            const InitializationKind &Kind,
3273                                            Expr *Initializer,
3274                                        InitializationSequence &Sequence) {
3275   Sequence.AddStringInitStep(Entity.getType());
3276 }
3277 
3278 /// \brief Attempt initialization by constructor (C++ [dcl.init]), which
3279 /// enumerates the constructors of the initialized entity and performs overload
3280 /// resolution to select the best.
3281 static void TryConstructorInitialization(Sema &S,
3282                                          const InitializedEntity &Entity,
3283                                          const InitializationKind &Kind,
3284                                          Expr **Args, unsigned NumArgs,
3285                                          QualType DestType,
3286                                          InitializationSequence &Sequence) {
3287   // Check constructor arguments for self reference.
3288   if (DeclaratorDecl *DD = Entity.getDecl())
3289     // Parameters arguments are occassionially constructed with itself,
3290     // for instance, in recursive functions.  Skip them.
3291     if (!isa<ParmVarDecl>(DD))
3292       for (unsigned i = 0; i < NumArgs; ++i)
3293         S.CheckSelfReference(DD, Args[i]);
3294 
3295   // Build the candidate set directly in the initialization sequence
3296   // structure, so that it will persist if we fail.
3297   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3298   CandidateSet.clear();
3299 
3300   // Determine whether we are allowed to call explicit constructors or
3301   // explicit conversion operators.
3302   bool AllowExplicit = (Kind.getKind() == InitializationKind::IK_Direct ||
3303                         Kind.getKind() == InitializationKind::IK_Value ||
3304                         Kind.getKind() == InitializationKind::IK_Default);
3305 
3306   // The type we're constructing needs to be complete.
3307   if (S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
3308     Sequence.SetFailed(InitializationSequence::FK_Incomplete);
3309     return;
3310   }
3311 
3312   // The type we're converting to is a class type. Enumerate its constructors
3313   // to see if one is suitable.
3314   const RecordType *DestRecordType = DestType->getAs<RecordType>();
3315   assert(DestRecordType && "Constructor initialization requires record type");
3316   CXXRecordDecl *DestRecordDecl
3317     = cast<CXXRecordDecl>(DestRecordType->getDecl());
3318 
3319   DeclContext::lookup_iterator Con, ConEnd;
3320   for (llvm::tie(Con, ConEnd) = S.LookupConstructors(DestRecordDecl);
3321        Con != ConEnd; ++Con) {
3322     NamedDecl *D = *Con;
3323     DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3324     bool SuppressUserConversions = false;
3325 
3326     // Find the constructor (which may be a template).
3327     CXXConstructorDecl *Constructor = 0;
3328     FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
3329     if (ConstructorTmpl)
3330       Constructor = cast<CXXConstructorDecl>(
3331                                            ConstructorTmpl->getTemplatedDecl());
3332     else {
3333       Constructor = cast<CXXConstructorDecl>(D);
3334 
3335       // If we're performing copy initialization using a copy constructor, we
3336       // suppress user-defined conversions on the arguments.
3337       // FIXME: Move constructors?
3338       if (Kind.getKind() == InitializationKind::IK_Copy &&
3339           Constructor->isCopyConstructor())
3340         SuppressUserConversions = true;
3341     }
3342 
3343     if (!Constructor->isInvalidDecl() &&
3344         (AllowExplicit || !Constructor->isExplicit())) {
3345       if (ConstructorTmpl)
3346         S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3347                                        /*ExplicitArgs*/ 0,
3348                                        Args, NumArgs, CandidateSet,
3349                                        SuppressUserConversions);
3350       else
3351         S.AddOverloadCandidate(Constructor, FoundDecl,
3352                                Args, NumArgs, CandidateSet,
3353                                SuppressUserConversions);
3354     }
3355   }
3356 
3357   SourceLocation DeclLoc = Kind.getLocation();
3358 
3359   // Perform overload resolution. If it fails, return the failed result.
3360   OverloadCandidateSet::iterator Best;
3361   if (OverloadingResult Result
3362         = CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
3363     Sequence.SetOverloadFailure(
3364                           InitializationSequence::FK_ConstructorOverloadFailed,
3365                                 Result);
3366     return;
3367   }
3368 
3369   // C++0x [dcl.init]p6:
3370   //   If a program calls for the default initialization of an object
3371   //   of a const-qualified type T, T shall be a class type with a
3372   //   user-provided default constructor.
3373   if (Kind.getKind() == InitializationKind::IK_Default &&
3374       Entity.getType().isConstQualified() &&
3375       cast<CXXConstructorDecl>(Best->Function)->isImplicit()) {
3376     Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3377     return;
3378   }
3379 
3380   // Add the constructor initialization step. Any cv-qualification conversion is
3381   // subsumed by the initialization.
3382   Sequence.AddConstructorInitializationStep(
3383                                       cast<CXXConstructorDecl>(Best->Function),
3384                                       Best->FoundDecl.getAccess(),
3385                                       DestType);
3386 }
3387 
3388 /// \brief Attempt value initialization (C++ [dcl.init]p7).
3389 static void TryValueInitialization(Sema &S,
3390                                    const InitializedEntity &Entity,
3391                                    const InitializationKind &Kind,
3392                                    InitializationSequence &Sequence) {
3393   // C++ [dcl.init]p5:
3394   //
3395   //   To value-initialize an object of type T means:
3396   QualType T = Entity.getType();
3397 
3398   //     -- if T is an array type, then each element is value-initialized;
3399   while (const ArrayType *AT = S.Context.getAsArrayType(T))
3400     T = AT->getElementType();
3401 
3402   if (const RecordType *RT = T->getAs<RecordType>()) {
3403     if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3404       // -- if T is a class type (clause 9) with a user-declared
3405       //    constructor (12.1), then the default constructor for T is
3406       //    called (and the initialization is ill-formed if T has no
3407       //    accessible default constructor);
3408       //
3409       // FIXME: we really want to refer to a single subobject of the array,
3410       // but Entity doesn't have a way to capture that (yet).
3411       if (ClassDecl->hasUserDeclaredConstructor())
3412         return TryConstructorInitialization(S, Entity, Kind, 0, 0, T, Sequence);
3413 
3414       // -- if T is a (possibly cv-qualified) non-union class type
3415       //    without a user-provided constructor, then the object is
3416       //    zero-initialized and, if T's implicitly-declared default
3417       //    constructor is non-trivial, that constructor is called.
3418       if ((ClassDecl->getTagKind() == TTK_Class ||
3419            ClassDecl->getTagKind() == TTK_Struct)) {
3420         Sequence.AddZeroInitializationStep(Entity.getType());
3421         return TryConstructorInitialization(S, Entity, Kind, 0, 0, T, Sequence);
3422       }
3423     }
3424   }
3425 
3426   Sequence.AddZeroInitializationStep(Entity.getType());
3427 }
3428 
3429 /// \brief Attempt default initialization (C++ [dcl.init]p6).
3430 static void TryDefaultInitialization(Sema &S,
3431                                      const InitializedEntity &Entity,
3432                                      const InitializationKind &Kind,
3433                                      InitializationSequence &Sequence) {
3434   assert(Kind.getKind() == InitializationKind::IK_Default);
3435 
3436   // C++ [dcl.init]p6:
3437   //   To default-initialize an object of type T means:
3438   //     - if T is an array type, each element is default-initialized;
3439   QualType DestType = S.Context.getBaseElementType(Entity.getType());
3440 
3441   //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
3442   //       constructor for T is called (and the initialization is ill-formed if
3443   //       T has no accessible default constructor);
3444   if (DestType->isRecordType() && S.getLangOptions().CPlusPlus) {
3445     TryConstructorInitialization(S, Entity, Kind, 0, 0, DestType, Sequence);
3446     return;
3447   }
3448 
3449   //     - otherwise, no initialization is performed.
3450 
3451   //   If a program calls for the default initialization of an object of
3452   //   a const-qualified type T, T shall be a class type with a user-provided
3453   //   default constructor.
3454   if (DestType.isConstQualified() && S.getLangOptions().CPlusPlus) {
3455     Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3456     return;
3457   }
3458 
3459   // If the destination type has a lifetime property, zero-initialize it.
3460   if (DestType.getQualifiers().hasObjCLifetime()) {
3461     Sequence.AddZeroInitializationStep(Entity.getType());
3462     return;
3463   }
3464 }
3465 
3466 /// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
3467 /// which enumerates all conversion functions and performs overload resolution
3468 /// to select the best.
3469 static void TryUserDefinedConversion(Sema &S,
3470                                      const InitializedEntity &Entity,
3471                                      const InitializationKind &Kind,
3472                                      Expr *Initializer,
3473                                      InitializationSequence &Sequence) {
3474   QualType DestType = Entity.getType();
3475   assert(!DestType->isReferenceType() && "References are handled elsewhere");
3476   QualType SourceType = Initializer->getType();
3477   assert((DestType->isRecordType() || SourceType->isRecordType()) &&
3478          "Must have a class type to perform a user-defined conversion");
3479 
3480   // Build the candidate set directly in the initialization sequence
3481   // structure, so that it will persist if we fail.
3482   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3483   CandidateSet.clear();
3484 
3485   // Determine whether we are allowed to call explicit constructors or
3486   // explicit conversion operators.
3487   bool AllowExplicit = Kind.getKind() == InitializationKind::IK_Direct;
3488 
3489   if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
3490     // The type we're converting to is a class type. Enumerate its constructors
3491     // to see if there is a suitable conversion.
3492     CXXRecordDecl *DestRecordDecl
3493       = cast<CXXRecordDecl>(DestRecordType->getDecl());
3494 
3495     // Try to complete the type we're converting to.
3496     if (!S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
3497       DeclContext::lookup_iterator Con, ConEnd;
3498       for (llvm::tie(Con, ConEnd) = S.LookupConstructors(DestRecordDecl);
3499            Con != ConEnd; ++Con) {
3500         NamedDecl *D = *Con;
3501         DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3502 
3503         // Find the constructor (which may be a template).
3504         CXXConstructorDecl *Constructor = 0;
3505         FunctionTemplateDecl *ConstructorTmpl
3506           = dyn_cast<FunctionTemplateDecl>(D);
3507         if (ConstructorTmpl)
3508           Constructor = cast<CXXConstructorDecl>(
3509                                            ConstructorTmpl->getTemplatedDecl());
3510         else
3511           Constructor = cast<CXXConstructorDecl>(D);
3512 
3513         if (!Constructor->isInvalidDecl() &&
3514             Constructor->isConvertingConstructor(AllowExplicit)) {
3515           if (ConstructorTmpl)
3516             S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3517                                            /*ExplicitArgs*/ 0,
3518                                            &Initializer, 1, CandidateSet,
3519                                            /*SuppressUserConversions=*/true);
3520           else
3521             S.AddOverloadCandidate(Constructor, FoundDecl,
3522                                    &Initializer, 1, CandidateSet,
3523                                    /*SuppressUserConversions=*/true);
3524         }
3525       }
3526     }
3527   }
3528 
3529   SourceLocation DeclLoc = Initializer->getLocStart();
3530 
3531   if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
3532     // The type we're converting from is a class type, enumerate its conversion
3533     // functions.
3534 
3535     // We can only enumerate the conversion functions for a complete type; if
3536     // the type isn't complete, simply skip this step.
3537     if (!S.RequireCompleteType(DeclLoc, SourceType, 0)) {
3538       CXXRecordDecl *SourceRecordDecl
3539         = cast<CXXRecordDecl>(SourceRecordType->getDecl());
3540 
3541       const UnresolvedSetImpl *Conversions
3542         = SourceRecordDecl->getVisibleConversionFunctions();
3543       for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
3544            E = Conversions->end();
3545            I != E; ++I) {
3546         NamedDecl *D = *I;
3547         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3548         if (isa<UsingShadowDecl>(D))
3549           D = cast<UsingShadowDecl>(D)->getTargetDecl();
3550 
3551         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3552         CXXConversionDecl *Conv;
3553         if (ConvTemplate)
3554           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3555         else
3556           Conv = cast<CXXConversionDecl>(D);
3557 
3558         if (AllowExplicit || !Conv->isExplicit()) {
3559           if (ConvTemplate)
3560             S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3561                                              ActingDC, Initializer, DestType,
3562                                              CandidateSet);
3563           else
3564             S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
3565                                      Initializer, DestType, CandidateSet);
3566         }
3567       }
3568     }
3569   }
3570 
3571   // Perform overload resolution. If it fails, return the failed result.
3572   OverloadCandidateSet::iterator Best;
3573   if (OverloadingResult Result
3574         = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
3575     Sequence.SetOverloadFailure(
3576                         InitializationSequence::FK_UserConversionOverloadFailed,
3577                                 Result);
3578     return;
3579   }
3580 
3581   FunctionDecl *Function = Best->Function;
3582   S.MarkDeclarationReferenced(DeclLoc, Function);
3583 
3584   if (isa<CXXConstructorDecl>(Function)) {
3585     // Add the user-defined conversion step. Any cv-qualification conversion is
3586     // subsumed by the initialization.
3587     Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType);
3588     return;
3589   }
3590 
3591   // Add the user-defined conversion step that calls the conversion function.
3592   QualType ConvType = Function->getCallResultType();
3593   if (ConvType->getAs<RecordType>()) {
3594     // If we're converting to a class type, there may be an copy if
3595     // the resulting temporary object (possible to create an object of
3596     // a base class type). That copy is not a separate conversion, so
3597     // we just make a note of the actual destination type (possibly a
3598     // base class of the type returned by the conversion function) and
3599     // let the user-defined conversion step handle the conversion.
3600     Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType);
3601     return;
3602   }
3603 
3604   Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType);
3605 
3606   // If the conversion following the call to the conversion function
3607   // is interesting, add it as a separate step.
3608   if (Best->FinalConversion.First || Best->FinalConversion.Second ||
3609       Best->FinalConversion.Third) {
3610     ImplicitConversionSequence ICS;
3611     ICS.setStandard();
3612     ICS.Standard = Best->FinalConversion;
3613     Sequence.AddConversionSequenceStep(ICS, DestType);
3614   }
3615 }
3616 
3617 /// The non-zero enum values here are indexes into diagnostic alternatives.
3618 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
3619 
3620 /// Determines whether this expression is an acceptable ICR source.
3621 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
3622                                          bool isAddressOf) {
3623   // Skip parens.
3624   e = e->IgnoreParens();
3625 
3626   // Skip address-of nodes.
3627   if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
3628     if (op->getOpcode() == UO_AddrOf)
3629       return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true);
3630 
3631   // Skip certain casts.
3632   } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
3633     switch (ce->getCastKind()) {
3634     case CK_Dependent:
3635     case CK_BitCast:
3636     case CK_LValueBitCast:
3637     case CK_NoOp:
3638       return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf);
3639 
3640     case CK_ArrayToPointerDecay:
3641       return IIK_nonscalar;
3642 
3643     case CK_NullToPointer:
3644       return IIK_okay;
3645 
3646     default:
3647       break;
3648     }
3649 
3650   // If we have a declaration reference, it had better be a local variable.
3651   } else if (isa<DeclRefExpr>(e) || isa<BlockDeclRefExpr>(e)) {
3652     if (!isAddressOf) return IIK_nonlocal;
3653 
3654     VarDecl *var;
3655     if (isa<DeclRefExpr>(e)) {
3656       var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
3657       if (!var) return IIK_nonlocal;
3658     } else {
3659       var = cast<BlockDeclRefExpr>(e)->getDecl();
3660     }
3661 
3662     return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
3663 
3664   // If we have a conditional operator, check both sides.
3665   } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
3666     if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf))
3667       return iik;
3668 
3669     return isInvalidICRSource(C, cond->getRHS(), isAddressOf);
3670 
3671   // These are never scalar.
3672   } else if (isa<ArraySubscriptExpr>(e)) {
3673     return IIK_nonscalar;
3674 
3675   // Otherwise, it needs to be a null pointer constant.
3676   } else {
3677     return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
3678             ? IIK_okay : IIK_nonlocal);
3679   }
3680 
3681   return IIK_nonlocal;
3682 }
3683 
3684 /// Check whether the given expression is a valid operand for an
3685 /// indirect copy/restore.
3686 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
3687   assert(src->isRValue());
3688 
3689   InvalidICRKind iik = isInvalidICRSource(S.Context, src, false);
3690   if (iik == IIK_okay) return;
3691 
3692   S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
3693     << ((unsigned) iik - 1)  // shift index into diagnostic explanations
3694     << src->getSourceRange();
3695 }
3696 
3697 /// \brief Determine whether we have compatible array types for the
3698 /// purposes of GNU by-copy array initialization.
3699 static bool hasCompatibleArrayTypes(ASTContext &Context,
3700                                     const ArrayType *Dest,
3701                                     const ArrayType *Source) {
3702   // If the source and destination array types are equivalent, we're
3703   // done.
3704   if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
3705     return true;
3706 
3707   // Make sure that the element types are the same.
3708   if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
3709     return false;
3710 
3711   // The only mismatch we allow is when the destination is an
3712   // incomplete array type and the source is a constant array type.
3713   return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
3714 }
3715 
3716 static bool tryObjCWritebackConversion(Sema &S,
3717                                        InitializationSequence &Sequence,
3718                                        const InitializedEntity &Entity,
3719                                        Expr *Initializer) {
3720   bool ArrayDecay = false;
3721   QualType ArgType = Initializer->getType();
3722   QualType ArgPointee;
3723   if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
3724     ArrayDecay = true;
3725     ArgPointee = ArgArrayType->getElementType();
3726     ArgType = S.Context.getPointerType(ArgPointee);
3727   }
3728 
3729   // Handle write-back conversion.
3730   QualType ConvertedArgType;
3731   if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
3732                                    ConvertedArgType))
3733     return false;
3734 
3735   // We should copy unless we're passing to an argument explicitly
3736   // marked 'out'.
3737   bool ShouldCopy = true;
3738   if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
3739     ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
3740 
3741   // Do we need an lvalue conversion?
3742   if (ArrayDecay || Initializer->isGLValue()) {
3743     ImplicitConversionSequence ICS;
3744     ICS.setStandard();
3745     ICS.Standard.setAsIdentityConversion();
3746 
3747     QualType ResultType;
3748     if (ArrayDecay) {
3749       ICS.Standard.First = ICK_Array_To_Pointer;
3750       ResultType = S.Context.getPointerType(ArgPointee);
3751     } else {
3752       ICS.Standard.First = ICK_Lvalue_To_Rvalue;
3753       ResultType = Initializer->getType().getNonLValueExprType(S.Context);
3754     }
3755 
3756     Sequence.AddConversionSequenceStep(ICS, ResultType);
3757   }
3758 
3759   Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
3760   return true;
3761 }
3762 
3763 InitializationSequence::InitializationSequence(Sema &S,
3764                                                const InitializedEntity &Entity,
3765                                                const InitializationKind &Kind,
3766                                                Expr **Args,
3767                                                unsigned NumArgs)
3768     : FailedCandidateSet(Kind.getLocation()) {
3769   ASTContext &Context = S.Context;
3770 
3771   // C++0x [dcl.init]p16:
3772   //   The semantics of initializers are as follows. The destination type is
3773   //   the type of the object or reference being initialized and the source
3774   //   type is the type of the initializer expression. The source type is not
3775   //   defined when the initializer is a braced-init-list or when it is a
3776   //   parenthesized list of expressions.
3777   QualType DestType = Entity.getType();
3778 
3779   if (DestType->isDependentType() ||
3780       Expr::hasAnyTypeDependentArguments(Args, NumArgs)) {
3781     SequenceKind = DependentSequence;
3782     return;
3783   }
3784 
3785   // Almost everything is a normal sequence.
3786   setSequenceKind(NormalSequence);
3787 
3788   for (unsigned I = 0; I != NumArgs; ++I)
3789     if (Args[I]->getObjectKind() == OK_ObjCProperty) {
3790       ExprResult Result = S.ConvertPropertyForRValue(Args[I]);
3791       if (Result.isInvalid()) {
3792         SetFailed(FK_ConversionFromPropertyFailed);
3793         return;
3794       }
3795       Args[I] = Result.take();
3796     }
3797 
3798   QualType SourceType;
3799   Expr *Initializer = 0;
3800   if (NumArgs == 1) {
3801     Initializer = Args[0];
3802     if (!isa<InitListExpr>(Initializer))
3803       SourceType = Initializer->getType();
3804   }
3805 
3806   //     - If the initializer is a braced-init-list, the object is
3807   //       list-initialized (8.5.4).
3808   if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
3809     TryListInitialization(S, Entity, Kind, InitList, *this);
3810     return;
3811   }
3812 
3813   //     - If the destination type is a reference type, see 8.5.3.
3814   if (DestType->isReferenceType()) {
3815     // C++0x [dcl.init.ref]p1:
3816     //   A variable declared to be a T& or T&&, that is, "reference to type T"
3817     //   (8.3.2), shall be initialized by an object, or function, of type T or
3818     //   by an object that can be converted into a T.
3819     // (Therefore, multiple arguments are not permitted.)
3820     if (NumArgs != 1)
3821       SetFailed(FK_TooManyInitsForReference);
3822     else
3823       TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
3824     return;
3825   }
3826 
3827   //     - If the initializer is (), the object is value-initialized.
3828   if (Kind.getKind() == InitializationKind::IK_Value ||
3829       (Kind.getKind() == InitializationKind::IK_Direct && NumArgs == 0)) {
3830     TryValueInitialization(S, Entity, Kind, *this);
3831     return;
3832   }
3833 
3834   // Handle default initialization.
3835   if (Kind.getKind() == InitializationKind::IK_Default) {
3836     TryDefaultInitialization(S, Entity, Kind, *this);
3837     return;
3838   }
3839 
3840   //     - If the destination type is an array of characters, an array of
3841   //       char16_t, an array of char32_t, or an array of wchar_t, and the
3842   //       initializer is a string literal, see 8.5.2.
3843   //     - Otherwise, if the destination type is an array, the program is
3844   //       ill-formed.
3845   if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
3846     if (Initializer && IsStringInit(Initializer, DestAT, Context)) {
3847       TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
3848       return;
3849     }
3850 
3851     // Note: as an GNU C extension, we allow initialization of an
3852     // array from a compound literal that creates an array of the same
3853     // type, so long as the initializer has no side effects.
3854     if (!S.getLangOptions().CPlusPlus && Initializer &&
3855         isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
3856         Initializer->getType()->isArrayType()) {
3857       const ArrayType *SourceAT
3858         = Context.getAsArrayType(Initializer->getType());
3859       if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
3860         SetFailed(FK_ArrayTypeMismatch);
3861       else if (Initializer->HasSideEffects(S.Context))
3862         SetFailed(FK_NonConstantArrayInit);
3863       else {
3864         AddArrayInitStep(DestType);
3865       }
3866     } else if (DestAT->getElementType()->isAnyCharacterType())
3867       SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
3868     else
3869       SetFailed(FK_ArrayNeedsInitList);
3870 
3871     return;
3872   }
3873 
3874   // Determine whether we should consider writeback conversions for
3875   // Objective-C ARC.
3876   bool allowObjCWritebackConversion = S.getLangOptions().ObjCAutoRefCount &&
3877     Entity.getKind() == InitializedEntity::EK_Parameter;
3878 
3879   // We're at the end of the line for C: it's either a write-back conversion
3880   // or it's a C assignment. There's no need to check anything else.
3881   if (!S.getLangOptions().CPlusPlus) {
3882     // If allowed, check whether this is an Objective-C writeback conversion.
3883     if (allowObjCWritebackConversion &&
3884         tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
3885       return;
3886     }
3887 
3888     // Handle initialization in C
3889     AddCAssignmentStep(DestType);
3890     MaybeProduceObjCObject(S, *this, Entity);
3891     return;
3892   }
3893 
3894   assert(S.getLangOptions().CPlusPlus);
3895 
3896   //     - If the destination type is a (possibly cv-qualified) class type:
3897   if (DestType->isRecordType()) {
3898     //     - If the initialization is direct-initialization, or if it is
3899     //       copy-initialization where the cv-unqualified version of the
3900     //       source type is the same class as, or a derived class of, the
3901     //       class of the destination, constructors are considered. [...]
3902     if (Kind.getKind() == InitializationKind::IK_Direct ||
3903         (Kind.getKind() == InitializationKind::IK_Copy &&
3904          (Context.hasSameUnqualifiedType(SourceType, DestType) ||
3905           S.IsDerivedFrom(SourceType, DestType))))
3906       TryConstructorInitialization(S, Entity, Kind, Args, NumArgs,
3907                                    Entity.getType(), *this);
3908     //     - Otherwise (i.e., for the remaining copy-initialization cases),
3909     //       user-defined conversion sequences that can convert from the source
3910     //       type to the destination type or (when a conversion function is
3911     //       used) to a derived class thereof are enumerated as described in
3912     //       13.3.1.4, and the best one is chosen through overload resolution
3913     //       (13.3).
3914     else
3915       TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
3916     return;
3917   }
3918 
3919   if (NumArgs > 1) {
3920     SetFailed(FK_TooManyInitsForScalar);
3921     return;
3922   }
3923   assert(NumArgs == 1 && "Zero-argument case handled above");
3924 
3925   //    - Otherwise, if the source type is a (possibly cv-qualified) class
3926   //      type, conversion functions are considered.
3927   if (!SourceType.isNull() && SourceType->isRecordType()) {
3928     TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
3929     MaybeProduceObjCObject(S, *this, Entity);
3930     return;
3931   }
3932 
3933   //    - Otherwise, the initial value of the object being initialized is the
3934   //      (possibly converted) value of the initializer expression. Standard
3935   //      conversions (Clause 4) will be used, if necessary, to convert the
3936   //      initializer expression to the cv-unqualified version of the
3937   //      destination type; no user-defined conversions are considered.
3938 
3939   ImplicitConversionSequence ICS
3940     = S.TryImplicitConversion(Initializer, Entity.getType(),
3941                               /*SuppressUserConversions*/true,
3942                               /*AllowExplicitConversions*/ false,
3943                               /*InOverloadResolution*/ false,
3944                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
3945                               allowObjCWritebackConversion);
3946 
3947   if (ICS.isStandard() &&
3948       ICS.Standard.Second == ICK_Writeback_Conversion) {
3949     // Objective-C ARC writeback conversion.
3950 
3951     // We should copy unless we're passing to an argument explicitly
3952     // marked 'out'.
3953     bool ShouldCopy = true;
3954     if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
3955       ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
3956 
3957     // If there was an lvalue adjustment, add it as a separate conversion.
3958     if (ICS.Standard.First == ICK_Array_To_Pointer ||
3959         ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
3960       ImplicitConversionSequence LvalueICS;
3961       LvalueICS.setStandard();
3962       LvalueICS.Standard.setAsIdentityConversion();
3963       LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
3964       LvalueICS.Standard.First = ICS.Standard.First;
3965       AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
3966     }
3967 
3968     AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
3969   } else if (ICS.isBad()) {
3970     DeclAccessPair dap;
3971     if (Initializer->getType() == Context.OverloadTy &&
3972           !S.ResolveAddressOfOverloadedFunction(Initializer
3973                       , DestType, false, dap))
3974       SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3975     else
3976       SetFailed(InitializationSequence::FK_ConversionFailed);
3977   } else {
3978     AddConversionSequenceStep(ICS, Entity.getType());
3979 
3980     MaybeProduceObjCObject(S, *this, Entity);
3981   }
3982 }
3983 
3984 InitializationSequence::~InitializationSequence() {
3985   for (SmallVectorImpl<Step>::iterator Step = Steps.begin(),
3986                                           StepEnd = Steps.end();
3987        Step != StepEnd; ++Step)
3988     Step->Destroy();
3989 }
3990 
3991 //===----------------------------------------------------------------------===//
3992 // Perform initialization
3993 //===----------------------------------------------------------------------===//
3994 static Sema::AssignmentAction
3995 getAssignmentAction(const InitializedEntity &Entity) {
3996   switch(Entity.getKind()) {
3997   case InitializedEntity::EK_Variable:
3998   case InitializedEntity::EK_New:
3999   case InitializedEntity::EK_Exception:
4000   case InitializedEntity::EK_Base:
4001   case InitializedEntity::EK_Delegating:
4002     return Sema::AA_Initializing;
4003 
4004   case InitializedEntity::EK_Parameter:
4005     if (Entity.getDecl() &&
4006         isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
4007       return Sema::AA_Sending;
4008 
4009     return Sema::AA_Passing;
4010 
4011   case InitializedEntity::EK_Result:
4012     return Sema::AA_Returning;
4013 
4014   case InitializedEntity::EK_Temporary:
4015     // FIXME: Can we tell apart casting vs. converting?
4016     return Sema::AA_Casting;
4017 
4018   case InitializedEntity::EK_Member:
4019   case InitializedEntity::EK_ArrayElement:
4020   case InitializedEntity::EK_VectorElement:
4021   case InitializedEntity::EK_ComplexElement:
4022   case InitializedEntity::EK_BlockElement:
4023     return Sema::AA_Initializing;
4024   }
4025 
4026   return Sema::AA_Converting;
4027 }
4028 
4029 /// \brief Whether we should binding a created object as a temporary when
4030 /// initializing the given entity.
4031 static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
4032   switch (Entity.getKind()) {
4033   case InitializedEntity::EK_ArrayElement:
4034   case InitializedEntity::EK_Member:
4035   case InitializedEntity::EK_Result:
4036   case InitializedEntity::EK_New:
4037   case InitializedEntity::EK_Variable:
4038   case InitializedEntity::EK_Base:
4039   case InitializedEntity::EK_Delegating:
4040   case InitializedEntity::EK_VectorElement:
4041   case InitializedEntity::EK_ComplexElement:
4042   case InitializedEntity::EK_Exception:
4043   case InitializedEntity::EK_BlockElement:
4044     return false;
4045 
4046   case InitializedEntity::EK_Parameter:
4047   case InitializedEntity::EK_Temporary:
4048     return true;
4049   }
4050 
4051   llvm_unreachable("missed an InitializedEntity kind?");
4052 }
4053 
4054 /// \brief Whether the given entity, when initialized with an object
4055 /// created for that initialization, requires destruction.
4056 static bool shouldDestroyTemporary(const InitializedEntity &Entity) {
4057   switch (Entity.getKind()) {
4058     case InitializedEntity::EK_Member:
4059     case InitializedEntity::EK_Result:
4060     case InitializedEntity::EK_New:
4061     case InitializedEntity::EK_Base:
4062     case InitializedEntity::EK_Delegating:
4063     case InitializedEntity::EK_VectorElement:
4064     case InitializedEntity::EK_ComplexElement:
4065     case InitializedEntity::EK_BlockElement:
4066       return false;
4067 
4068     case InitializedEntity::EK_Variable:
4069     case InitializedEntity::EK_Parameter:
4070     case InitializedEntity::EK_Temporary:
4071     case InitializedEntity::EK_ArrayElement:
4072     case InitializedEntity::EK_Exception:
4073       return true;
4074   }
4075 
4076   llvm_unreachable("missed an InitializedEntity kind?");
4077 }
4078 
4079 /// \brief Make a (potentially elidable) temporary copy of the object
4080 /// provided by the given initializer by calling the appropriate copy
4081 /// constructor.
4082 ///
4083 /// \param S The Sema object used for type-checking.
4084 ///
4085 /// \param T The type of the temporary object, which must either be
4086 /// the type of the initializer expression or a superclass thereof.
4087 ///
4088 /// \param Enter The entity being initialized.
4089 ///
4090 /// \param CurInit The initializer expression.
4091 ///
4092 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that
4093 /// is permitted in C++03 (but not C++0x) when binding a reference to
4094 /// an rvalue.
4095 ///
4096 /// \returns An expression that copies the initializer expression into
4097 /// a temporary object, or an error expression if a copy could not be
4098 /// created.
4099 static ExprResult CopyObject(Sema &S,
4100                              QualType T,
4101                              const InitializedEntity &Entity,
4102                              ExprResult CurInit,
4103                              bool IsExtraneousCopy) {
4104   // Determine which class type we're copying to.
4105   Expr *CurInitExpr = (Expr *)CurInit.get();
4106   CXXRecordDecl *Class = 0;
4107   if (const RecordType *Record = T->getAs<RecordType>())
4108     Class = cast<CXXRecordDecl>(Record->getDecl());
4109   if (!Class)
4110     return move(CurInit);
4111 
4112   // C++0x [class.copy]p32:
4113   //   When certain criteria are met, an implementation is allowed to
4114   //   omit the copy/move construction of a class object, even if the
4115   //   copy/move constructor and/or destructor for the object have
4116   //   side effects. [...]
4117   //     - when a temporary class object that has not been bound to a
4118   //       reference (12.2) would be copied/moved to a class object
4119   //       with the same cv-unqualified type, the copy/move operation
4120   //       can be omitted by constructing the temporary object
4121   //       directly into the target of the omitted copy/move
4122   //
4123   // Note that the other three bullets are handled elsewhere. Copy
4124   // elision for return statements and throw expressions are handled as part
4125   // of constructor initialization, while copy elision for exception handlers
4126   // is handled by the run-time.
4127   bool Elidable = CurInitExpr->isTemporaryObject(S.Context, Class);
4128   SourceLocation Loc;
4129   switch (Entity.getKind()) {
4130   case InitializedEntity::EK_Result:
4131     Loc = Entity.getReturnLoc();
4132     break;
4133 
4134   case InitializedEntity::EK_Exception:
4135     Loc = Entity.getThrowLoc();
4136     break;
4137 
4138   case InitializedEntity::EK_Variable:
4139     Loc = Entity.getDecl()->getLocation();
4140     break;
4141 
4142   case InitializedEntity::EK_ArrayElement:
4143   case InitializedEntity::EK_Member:
4144   case InitializedEntity::EK_Parameter:
4145   case InitializedEntity::EK_Temporary:
4146   case InitializedEntity::EK_New:
4147   case InitializedEntity::EK_Base:
4148   case InitializedEntity::EK_Delegating:
4149   case InitializedEntity::EK_VectorElement:
4150   case InitializedEntity::EK_ComplexElement:
4151   case InitializedEntity::EK_BlockElement:
4152     Loc = CurInitExpr->getLocStart();
4153     break;
4154   }
4155 
4156   // Make sure that the type we are copying is complete.
4157   if (S.RequireCompleteType(Loc, T, S.PDiag(diag::err_temp_copy_incomplete)))
4158     return move(CurInit);
4159 
4160   // Perform overload resolution using the class's copy/move constructors.
4161   DeclContext::lookup_iterator Con, ConEnd;
4162   OverloadCandidateSet CandidateSet(Loc);
4163   for (llvm::tie(Con, ConEnd) = S.LookupConstructors(Class);
4164        Con != ConEnd; ++Con) {
4165     // Only consider copy/move constructors and constructor templates. Per
4166     // C++0x [dcl.init]p16, second bullet to class types, this
4167     // initialization is direct-initialization.
4168     CXXConstructorDecl *Constructor = 0;
4169 
4170     if ((Constructor = dyn_cast<CXXConstructorDecl>(*Con))) {
4171       // Handle copy/moveconstructors, only.
4172       if (!Constructor || Constructor->isInvalidDecl() ||
4173           !Constructor->isCopyOrMoveConstructor() ||
4174           !Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
4175         continue;
4176 
4177       DeclAccessPair FoundDecl
4178         = DeclAccessPair::make(Constructor, Constructor->getAccess());
4179       S.AddOverloadCandidate(Constructor, FoundDecl,
4180                              &CurInitExpr, 1, CandidateSet);
4181       continue;
4182     }
4183 
4184     // Handle constructor templates.
4185     FunctionTemplateDecl *ConstructorTmpl = cast<FunctionTemplateDecl>(*Con);
4186     if (ConstructorTmpl->isInvalidDecl())
4187       continue;
4188 
4189     Constructor = cast<CXXConstructorDecl>(
4190                                          ConstructorTmpl->getTemplatedDecl());
4191     if (!Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
4192       continue;
4193 
4194     // FIXME: Do we need to limit this to copy-constructor-like
4195     // candidates?
4196     DeclAccessPair FoundDecl
4197       = DeclAccessPair::make(ConstructorTmpl, ConstructorTmpl->getAccess());
4198     S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 0,
4199                                    &CurInitExpr, 1, CandidateSet, true);
4200   }
4201 
4202   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4203 
4204   OverloadCandidateSet::iterator Best;
4205   switch (CandidateSet.BestViableFunction(S, Loc, Best)) {
4206   case OR_Success:
4207     break;
4208 
4209   case OR_No_Viable_Function:
4210     S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
4211            ? diag::ext_rvalue_to_reference_temp_copy_no_viable
4212            : diag::err_temp_copy_no_viable)
4213       << (int)Entity.getKind() << CurInitExpr->getType()
4214       << CurInitExpr->getSourceRange();
4215     CandidateSet.NoteCandidates(S, OCD_AllCandidates, &CurInitExpr, 1);
4216     if (!IsExtraneousCopy || S.isSFINAEContext())
4217       return ExprError();
4218     return move(CurInit);
4219 
4220   case OR_Ambiguous:
4221     S.Diag(Loc, diag::err_temp_copy_ambiguous)
4222       << (int)Entity.getKind() << CurInitExpr->getType()
4223       << CurInitExpr->getSourceRange();
4224     CandidateSet.NoteCandidates(S, OCD_ViableCandidates, &CurInitExpr, 1);
4225     return ExprError();
4226 
4227   case OR_Deleted:
4228     S.Diag(Loc, diag::err_temp_copy_deleted)
4229       << (int)Entity.getKind() << CurInitExpr->getType()
4230       << CurInitExpr->getSourceRange();
4231     S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
4232       << 1 << Best->Function->isDeleted();
4233     return ExprError();
4234   }
4235 
4236   CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
4237   ASTOwningVector<Expr*> ConstructorArgs(S);
4238   CurInit.release(); // Ownership transferred into MultiExprArg, below.
4239 
4240   S.CheckConstructorAccess(Loc, Constructor, Entity,
4241                            Best->FoundDecl.getAccess(), IsExtraneousCopy);
4242 
4243   if (IsExtraneousCopy) {
4244     // If this is a totally extraneous copy for C++03 reference
4245     // binding purposes, just return the original initialization
4246     // expression. We don't generate an (elided) copy operation here
4247     // because doing so would require us to pass down a flag to avoid
4248     // infinite recursion, where each step adds another extraneous,
4249     // elidable copy.
4250 
4251     // Instantiate the default arguments of any extra parameters in
4252     // the selected copy constructor, as if we were going to create a
4253     // proper call to the copy constructor.
4254     for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
4255       ParmVarDecl *Parm = Constructor->getParamDecl(I);
4256       if (S.RequireCompleteType(Loc, Parm->getType(),
4257                                 S.PDiag(diag::err_call_incomplete_argument)))
4258         break;
4259 
4260       // Build the default argument expression; we don't actually care
4261       // if this succeeds or not, because this routine will complain
4262       // if there was a problem.
4263       S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
4264     }
4265 
4266     return S.Owned(CurInitExpr);
4267   }
4268 
4269   S.MarkDeclarationReferenced(Loc, Constructor);
4270 
4271   // Determine the arguments required to actually perform the
4272   // constructor call (we might have derived-to-base conversions, or
4273   // the copy constructor may have default arguments).
4274   if (S.CompleteConstructorCall(Constructor, MultiExprArg(&CurInitExpr, 1),
4275                                 Loc, ConstructorArgs))
4276     return ExprError();
4277 
4278   // Actually perform the constructor call.
4279   CurInit = S.BuildCXXConstructExpr(Loc, T, Constructor, Elidable,
4280                                     move_arg(ConstructorArgs),
4281                                     HadMultipleCandidates,
4282                                     /*ZeroInit*/ false,
4283                                     CXXConstructExpr::CK_Complete,
4284                                     SourceRange());
4285 
4286   // If we're supposed to bind temporaries, do so.
4287   if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
4288     CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
4289   return move(CurInit);
4290 }
4291 
4292 void InitializationSequence::PrintInitLocationNote(Sema &S,
4293                                               const InitializedEntity &Entity) {
4294   if (Entity.getKind() == InitializedEntity::EK_Parameter && Entity.getDecl()) {
4295     if (Entity.getDecl()->getLocation().isInvalid())
4296       return;
4297 
4298     if (Entity.getDecl()->getDeclName())
4299       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
4300         << Entity.getDecl()->getDeclName();
4301     else
4302       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
4303   }
4304 }
4305 
4306 static bool isReferenceBinding(const InitializationSequence::Step &s) {
4307   return s.Kind == InitializationSequence::SK_BindReference ||
4308          s.Kind == InitializationSequence::SK_BindReferenceToTemporary;
4309 }
4310 
4311 ExprResult
4312 InitializationSequence::Perform(Sema &S,
4313                                 const InitializedEntity &Entity,
4314                                 const InitializationKind &Kind,
4315                                 MultiExprArg Args,
4316                                 QualType *ResultType) {
4317   if (Failed()) {
4318     unsigned NumArgs = Args.size();
4319     Diagnose(S, Entity, Kind, (Expr **)Args.release(), NumArgs);
4320     return ExprError();
4321   }
4322 
4323   if (getKind() == DependentSequence) {
4324     // If the declaration is a non-dependent, incomplete array type
4325     // that has an initializer, then its type will be completed once
4326     // the initializer is instantiated.
4327     if (ResultType && !Entity.getType()->isDependentType() &&
4328         Args.size() == 1) {
4329       QualType DeclType = Entity.getType();
4330       if (const IncompleteArrayType *ArrayT
4331                            = S.Context.getAsIncompleteArrayType(DeclType)) {
4332         // FIXME: We don't currently have the ability to accurately
4333         // compute the length of an initializer list without
4334         // performing full type-checking of the initializer list
4335         // (since we have to determine where braces are implicitly
4336         // introduced and such).  So, we fall back to making the array
4337         // type a dependently-sized array type with no specified
4338         // bound.
4339         if (isa<InitListExpr>((Expr *)Args.get()[0])) {
4340           SourceRange Brackets;
4341 
4342           // Scavange the location of the brackets from the entity, if we can.
4343           if (DeclaratorDecl *DD = Entity.getDecl()) {
4344             if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
4345               TypeLoc TL = TInfo->getTypeLoc();
4346               if (IncompleteArrayTypeLoc *ArrayLoc
4347                                       = dyn_cast<IncompleteArrayTypeLoc>(&TL))
4348               Brackets = ArrayLoc->getBracketsRange();
4349             }
4350           }
4351 
4352           *ResultType
4353             = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
4354                                                    /*NumElts=*/0,
4355                                                    ArrayT->getSizeModifier(),
4356                                        ArrayT->getIndexTypeCVRQualifiers(),
4357                                                    Brackets);
4358         }
4359 
4360       }
4361     }
4362     assert(Kind.getKind() == InitializationKind::IK_Copy ||
4363            Kind.isExplicitCast());
4364     return ExprResult(Args.release()[0]);
4365   }
4366 
4367   // No steps means no initialization.
4368   if (Steps.empty())
4369     return S.Owned((Expr *)0);
4370 
4371   QualType DestType = Entity.getType().getNonReferenceType();
4372   // FIXME: Ugly hack around the fact that Entity.getType() is not
4373   // the same as Entity.getDecl()->getType() in cases involving type merging,
4374   //  and we want latter when it makes sense.
4375   if (ResultType)
4376     *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
4377                                      Entity.getType();
4378 
4379   ExprResult CurInit = S.Owned((Expr *)0);
4380 
4381   // For initialization steps that start with a single initializer,
4382   // grab the only argument out the Args and place it into the "current"
4383   // initializer.
4384   switch (Steps.front().Kind) {
4385   case SK_ResolveAddressOfOverloadedFunction:
4386   case SK_CastDerivedToBaseRValue:
4387   case SK_CastDerivedToBaseXValue:
4388   case SK_CastDerivedToBaseLValue:
4389   case SK_BindReference:
4390   case SK_BindReferenceToTemporary:
4391   case SK_ExtraneousCopyToTemporary:
4392   case SK_UserConversion:
4393   case SK_QualificationConversionLValue:
4394   case SK_QualificationConversionXValue:
4395   case SK_QualificationConversionRValue:
4396   case SK_ConversionSequence:
4397   case SK_ListConstructorCall:
4398   case SK_ListInitialization:
4399   case SK_CAssignment:
4400   case SK_StringInit:
4401   case SK_ObjCObjectConversion:
4402   case SK_ArrayInit:
4403   case SK_PassByIndirectCopyRestore:
4404   case SK_PassByIndirectRestore:
4405   case SK_ProduceObjCObject: {
4406     assert(Args.size() == 1);
4407     CurInit = Args.get()[0];
4408     if (!CurInit.get()) return ExprError();
4409 
4410     // Read from a property when initializing something with it.
4411     if (CurInit.get()->getObjectKind() == OK_ObjCProperty) {
4412       CurInit = S.ConvertPropertyForRValue(CurInit.take());
4413       if (CurInit.isInvalid())
4414         return ExprError();
4415     }
4416     break;
4417   }
4418 
4419   case SK_ConstructorInitialization:
4420   case SK_ZeroInitialization:
4421     break;
4422   }
4423 
4424   // Walk through the computed steps for the initialization sequence,
4425   // performing the specified conversions along the way.
4426   bool ConstructorInitRequiresZeroInit = false;
4427   for (step_iterator Step = step_begin(), StepEnd = step_end();
4428        Step != StepEnd; ++Step) {
4429     if (CurInit.isInvalid())
4430       return ExprError();
4431 
4432     QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
4433 
4434     switch (Step->Kind) {
4435     case SK_ResolveAddressOfOverloadedFunction:
4436       // Overload resolution determined which function invoke; update the
4437       // initializer to reflect that choice.
4438       S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
4439       S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation());
4440       CurInit = S.FixOverloadedFunctionReference(move(CurInit),
4441                                                  Step->Function.FoundDecl,
4442                                                  Step->Function.Function);
4443       break;
4444 
4445     case SK_CastDerivedToBaseRValue:
4446     case SK_CastDerivedToBaseXValue:
4447     case SK_CastDerivedToBaseLValue: {
4448       // We have a derived-to-base cast that produces either an rvalue or an
4449       // lvalue. Perform that cast.
4450 
4451       CXXCastPath BasePath;
4452 
4453       // Casts to inaccessible base classes are allowed with C-style casts.
4454       bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
4455       if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
4456                                          CurInit.get()->getLocStart(),
4457                                          CurInit.get()->getSourceRange(),
4458                                          &BasePath, IgnoreBaseAccess))
4459         return ExprError();
4460 
4461       if (S.BasePathInvolvesVirtualBase(BasePath)) {
4462         QualType T = SourceType;
4463         if (const PointerType *Pointer = T->getAs<PointerType>())
4464           T = Pointer->getPointeeType();
4465         if (const RecordType *RecordTy = T->getAs<RecordType>())
4466           S.MarkVTableUsed(CurInit.get()->getLocStart(),
4467                            cast<CXXRecordDecl>(RecordTy->getDecl()));
4468       }
4469 
4470       ExprValueKind VK =
4471           Step->Kind == SK_CastDerivedToBaseLValue ?
4472               VK_LValue :
4473               (Step->Kind == SK_CastDerivedToBaseXValue ?
4474                    VK_XValue :
4475                    VK_RValue);
4476       CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
4477                                                  Step->Type,
4478                                                  CK_DerivedToBase,
4479                                                  CurInit.get(),
4480                                                  &BasePath, VK));
4481       break;
4482     }
4483 
4484     case SK_BindReference:
4485       if (FieldDecl *BitField = CurInit.get()->getBitField()) {
4486         // References cannot bind to bit fields (C++ [dcl.init.ref]p5).
4487         S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
4488           << Entity.getType().isVolatileQualified()
4489           << BitField->getDeclName()
4490           << CurInit.get()->getSourceRange();
4491         S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
4492         return ExprError();
4493       }
4494 
4495       if (CurInit.get()->refersToVectorElement()) {
4496         // References cannot bind to vector elements.
4497         S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
4498           << Entity.getType().isVolatileQualified()
4499           << CurInit.get()->getSourceRange();
4500         PrintInitLocationNote(S, Entity);
4501         return ExprError();
4502       }
4503 
4504       // Reference binding does not have any corresponding ASTs.
4505 
4506       // Check exception specifications
4507       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
4508         return ExprError();
4509 
4510       break;
4511 
4512     case SK_BindReferenceToTemporary:
4513       // Check exception specifications
4514       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
4515         return ExprError();
4516 
4517       // Materialize the temporary into memory.
4518       CurInit = new (S.Context) MaterializeTemporaryExpr(
4519                                          Entity.getType().getNonReferenceType(),
4520                                                          CurInit.get(),
4521                                      Entity.getType()->isLValueReferenceType());
4522 
4523       // If we're binding to an Objective-C object that has lifetime, we
4524       // need cleanups.
4525       if (S.getLangOptions().ObjCAutoRefCount &&
4526           CurInit.get()->getType()->isObjCLifetimeType())
4527         S.ExprNeedsCleanups = true;
4528 
4529       break;
4530 
4531     case SK_ExtraneousCopyToTemporary:
4532       CurInit = CopyObject(S, Step->Type, Entity, move(CurInit),
4533                            /*IsExtraneousCopy=*/true);
4534       break;
4535 
4536     case SK_UserConversion: {
4537       // We have a user-defined conversion that invokes either a constructor
4538       // or a conversion function.
4539       CastKind CastKind;
4540       bool IsCopy = false;
4541       FunctionDecl *Fn = Step->Function.Function;
4542       DeclAccessPair FoundFn = Step->Function.FoundDecl;
4543       bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
4544       bool CreatedObject = false;
4545       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
4546         // Build a call to the selected constructor.
4547         ASTOwningVector<Expr*> ConstructorArgs(S);
4548         SourceLocation Loc = CurInit.get()->getLocStart();
4549         CurInit.release(); // Ownership transferred into MultiExprArg, below.
4550 
4551         // Determine the arguments required to actually perform the constructor
4552         // call.
4553         Expr *Arg = CurInit.get();
4554         if (S.CompleteConstructorCall(Constructor,
4555                                       MultiExprArg(&Arg, 1),
4556                                       Loc, ConstructorArgs))
4557           return ExprError();
4558 
4559         // Build the an expression that constructs a temporary.
4560         CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor,
4561                                           move_arg(ConstructorArgs),
4562                                           HadMultipleCandidates,
4563                                           /*ZeroInit*/ false,
4564                                           CXXConstructExpr::CK_Complete,
4565                                           SourceRange());
4566         if (CurInit.isInvalid())
4567           return ExprError();
4568 
4569         S.CheckConstructorAccess(Kind.getLocation(), Constructor, Entity,
4570                                  FoundFn.getAccess());
4571         S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation());
4572 
4573         CastKind = CK_ConstructorConversion;
4574         QualType Class = S.Context.getTypeDeclType(Constructor->getParent());
4575         if (S.Context.hasSameUnqualifiedType(SourceType, Class) ||
4576             S.IsDerivedFrom(SourceType, Class))
4577           IsCopy = true;
4578 
4579         CreatedObject = true;
4580       } else {
4581         // Build a call to the conversion function.
4582         CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
4583         S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), 0,
4584                                     FoundFn);
4585         S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation());
4586 
4587         // FIXME: Should we move this initialization into a separate
4588         // derived-to-base conversion? I believe the answer is "no", because
4589         // we don't want to turn off access control here for c-style casts.
4590         ExprResult CurInitExprRes =
4591           S.PerformObjectArgumentInitialization(CurInit.take(), /*Qualifier=*/0,
4592                                                 FoundFn, Conversion);
4593         if(CurInitExprRes.isInvalid())
4594           return ExprError();
4595         CurInit = move(CurInitExprRes);
4596 
4597         // Build the actual call to the conversion function.
4598         CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
4599                                            HadMultipleCandidates);
4600         if (CurInit.isInvalid() || !CurInit.get())
4601           return ExprError();
4602 
4603         CastKind = CK_UserDefinedConversion;
4604 
4605         CreatedObject = Conversion->getResultType()->isRecordType();
4606       }
4607 
4608       bool RequiresCopy = !IsCopy && !isReferenceBinding(Steps.back());
4609       if (RequiresCopy || shouldBindAsTemporary(Entity))
4610         CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
4611       else if (CreatedObject && shouldDestroyTemporary(Entity)) {
4612         QualType T = CurInit.get()->getType();
4613         if (const RecordType *Record = T->getAs<RecordType>()) {
4614           CXXDestructorDecl *Destructor
4615             = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
4616           S.CheckDestructorAccess(CurInit.get()->getLocStart(), Destructor,
4617                                   S.PDiag(diag::err_access_dtor_temp) << T);
4618           S.MarkDeclarationReferenced(CurInit.get()->getLocStart(), Destructor);
4619           S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getLocStart());
4620         }
4621       }
4622 
4623       CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
4624                                                  CurInit.get()->getType(),
4625                                                  CastKind, CurInit.get(), 0,
4626                                                 CurInit.get()->getValueKind()));
4627 
4628       if (RequiresCopy)
4629         CurInit = CopyObject(S, Entity.getType().getNonReferenceType(), Entity,
4630                              move(CurInit), /*IsExtraneousCopy=*/false);
4631 
4632       break;
4633     }
4634 
4635     case SK_QualificationConversionLValue:
4636     case SK_QualificationConversionXValue:
4637     case SK_QualificationConversionRValue: {
4638       // Perform a qualification conversion; these can never go wrong.
4639       ExprValueKind VK =
4640           Step->Kind == SK_QualificationConversionLValue ?
4641               VK_LValue :
4642               (Step->Kind == SK_QualificationConversionXValue ?
4643                    VK_XValue :
4644                    VK_RValue);
4645       CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type, CK_NoOp, VK);
4646       break;
4647     }
4648 
4649     case SK_ConversionSequence: {
4650       Sema::CheckedConversionKind CCK
4651         = Kind.isCStyleCast()? Sema::CCK_CStyleCast
4652         : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
4653         : Kind.isExplicitCast()? Sema::CCK_OtherCast
4654         : Sema::CCK_ImplicitConversion;
4655       ExprResult CurInitExprRes =
4656         S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
4657                                     getAssignmentAction(Entity), CCK);
4658       if (CurInitExprRes.isInvalid())
4659         return ExprError();
4660       CurInit = move(CurInitExprRes);
4661       break;
4662     }
4663 
4664     case SK_ListInitialization: {
4665       InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
4666       QualType Ty = Step->Type;
4667       InitListChecker PerformInitList(S, Entity, InitList,
4668           ResultType ? *ResultType : Ty, /*VerifyOnly=*/false,
4669           Kind.getKind() != InitializationKind::IK_Direct ||
4670             !S.getLangOptions().CPlusPlus0x);
4671       if (PerformInitList.HadError())
4672         return ExprError();
4673 
4674       CurInit.release();
4675       CurInit = S.Owned(PerformInitList.getFullyStructuredList());
4676       break;
4677     }
4678 
4679     case SK_ListConstructorCall:
4680       assert(false && "List constructor calls not yet supported.");
4681 
4682     case SK_ConstructorInitialization: {
4683       unsigned NumArgs = Args.size();
4684       CXXConstructorDecl *Constructor
4685         = cast<CXXConstructorDecl>(Step->Function.Function);
4686       bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
4687 
4688       // Build a call to the selected constructor.
4689       ASTOwningVector<Expr*> ConstructorArgs(S);
4690       SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
4691                              ? Kind.getEqualLoc()
4692                              : Kind.getLocation();
4693 
4694       if (Kind.getKind() == InitializationKind::IK_Default) {
4695         // Force even a trivial, implicit default constructor to be
4696         // semantically checked. We do this explicitly because we don't build
4697         // the definition for completely trivial constructors.
4698         CXXRecordDecl *ClassDecl = Constructor->getParent();
4699         assert(ClassDecl && "No parent class for constructor.");
4700         if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
4701             ClassDecl->hasTrivialDefaultConstructor() &&
4702             !Constructor->isUsed(false))
4703           S.DefineImplicitDefaultConstructor(Loc, Constructor);
4704       }
4705 
4706       // Determine the arguments required to actually perform the constructor
4707       // call.
4708       if (S.CompleteConstructorCall(Constructor, move(Args),
4709                                     Loc, ConstructorArgs))
4710         return ExprError();
4711 
4712 
4713       if (Entity.getKind() == InitializedEntity::EK_Temporary &&
4714           NumArgs != 1 && // FIXME: Hack to work around cast weirdness
4715           (Kind.getKind() == InitializationKind::IK_Direct ||
4716            Kind.getKind() == InitializationKind::IK_Value)) {
4717         // An explicitly-constructed temporary, e.g., X(1, 2).
4718         unsigned NumExprs = ConstructorArgs.size();
4719         Expr **Exprs = (Expr **)ConstructorArgs.take();
4720         S.MarkDeclarationReferenced(Loc, Constructor);
4721         S.DiagnoseUseOfDecl(Constructor, Loc);
4722 
4723         TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
4724         if (!TSInfo)
4725           TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
4726 
4727         CurInit = S.Owned(new (S.Context) CXXTemporaryObjectExpr(S.Context,
4728                                                                  Constructor,
4729                                                                  TSInfo,
4730                                                                  Exprs,
4731                                                                  NumExprs,
4732                                                          Kind.getParenRange(),
4733                                                          HadMultipleCandidates,
4734                                              ConstructorInitRequiresZeroInit));
4735       } else {
4736         CXXConstructExpr::ConstructionKind ConstructKind =
4737           CXXConstructExpr::CK_Complete;
4738 
4739         if (Entity.getKind() == InitializedEntity::EK_Base) {
4740           ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
4741             CXXConstructExpr::CK_VirtualBase :
4742             CXXConstructExpr::CK_NonVirtualBase;
4743         } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
4744           ConstructKind = CXXConstructExpr::CK_Delegating;
4745         }
4746 
4747         // Only get the parenthesis range if it is a direct construction.
4748         SourceRange parenRange =
4749             Kind.getKind() == InitializationKind::IK_Direct ?
4750             Kind.getParenRange() : SourceRange();
4751 
4752         // If the entity allows NRVO, mark the construction as elidable
4753         // unconditionally.
4754         if (Entity.allowsNRVO())
4755           CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
4756                                             Constructor, /*Elidable=*/true,
4757                                             move_arg(ConstructorArgs),
4758                                             HadMultipleCandidates,
4759                                             ConstructorInitRequiresZeroInit,
4760                                             ConstructKind,
4761                                             parenRange);
4762         else
4763           CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
4764                                             Constructor,
4765                                             move_arg(ConstructorArgs),
4766                                             HadMultipleCandidates,
4767                                             ConstructorInitRequiresZeroInit,
4768                                             ConstructKind,
4769                                             parenRange);
4770       }
4771       if (CurInit.isInvalid())
4772         return ExprError();
4773 
4774       // Only check access if all of that succeeded.
4775       S.CheckConstructorAccess(Loc, Constructor, Entity,
4776                                Step->Function.FoundDecl.getAccess());
4777       S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Loc);
4778 
4779       if (shouldBindAsTemporary(Entity))
4780         CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
4781 
4782       break;
4783     }
4784 
4785     case SK_ZeroInitialization: {
4786       step_iterator NextStep = Step;
4787       ++NextStep;
4788       if (NextStep != StepEnd &&
4789           NextStep->Kind == SK_ConstructorInitialization) {
4790         // The need for zero-initialization is recorded directly into
4791         // the call to the object's constructor within the next step.
4792         ConstructorInitRequiresZeroInit = true;
4793       } else if (Kind.getKind() == InitializationKind::IK_Value &&
4794                  S.getLangOptions().CPlusPlus &&
4795                  !Kind.isImplicitValueInit()) {
4796         TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
4797         if (!TSInfo)
4798           TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
4799                                                     Kind.getRange().getBegin());
4800 
4801         CurInit = S.Owned(new (S.Context) CXXScalarValueInitExpr(
4802                               TSInfo->getType().getNonLValueExprType(S.Context),
4803                                                                  TSInfo,
4804                                                     Kind.getRange().getEnd()));
4805       } else {
4806         CurInit = S.Owned(new (S.Context) ImplicitValueInitExpr(Step->Type));
4807       }
4808       break;
4809     }
4810 
4811     case SK_CAssignment: {
4812       QualType SourceType = CurInit.get()->getType();
4813       ExprResult Result = move(CurInit);
4814       Sema::AssignConvertType ConvTy =
4815         S.CheckSingleAssignmentConstraints(Step->Type, Result);
4816       if (Result.isInvalid())
4817         return ExprError();
4818       CurInit = move(Result);
4819 
4820       // If this is a call, allow conversion to a transparent union.
4821       ExprResult CurInitExprRes = move(CurInit);
4822       if (ConvTy != Sema::Compatible &&
4823           Entity.getKind() == InitializedEntity::EK_Parameter &&
4824           S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
4825             == Sema::Compatible)
4826         ConvTy = Sema::Compatible;
4827       if (CurInitExprRes.isInvalid())
4828         return ExprError();
4829       CurInit = move(CurInitExprRes);
4830 
4831       bool Complained;
4832       if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
4833                                      Step->Type, SourceType,
4834                                      CurInit.get(),
4835                                      getAssignmentAction(Entity),
4836                                      &Complained)) {
4837         PrintInitLocationNote(S, Entity);
4838         return ExprError();
4839       } else if (Complained)
4840         PrintInitLocationNote(S, Entity);
4841       break;
4842     }
4843 
4844     case SK_StringInit: {
4845       QualType Ty = Step->Type;
4846       CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
4847                       S.Context.getAsArrayType(Ty), S);
4848       break;
4849     }
4850 
4851     case SK_ObjCObjectConversion:
4852       CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type,
4853                           CK_ObjCObjectLValueCast,
4854                           CurInit.get()->getValueKind());
4855       break;
4856 
4857     case SK_ArrayInit:
4858       // Okay: we checked everything before creating this step. Note that
4859       // this is a GNU extension.
4860       S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
4861         << Step->Type << CurInit.get()->getType()
4862         << CurInit.get()->getSourceRange();
4863 
4864       // If the destination type is an incomplete array type, update the
4865       // type accordingly.
4866       if (ResultType) {
4867         if (const IncompleteArrayType *IncompleteDest
4868                            = S.Context.getAsIncompleteArrayType(Step->Type)) {
4869           if (const ConstantArrayType *ConstantSource
4870                  = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
4871             *ResultType = S.Context.getConstantArrayType(
4872                                              IncompleteDest->getElementType(),
4873                                              ConstantSource->getSize(),
4874                                              ArrayType::Normal, 0);
4875           }
4876         }
4877       }
4878       break;
4879 
4880     case SK_PassByIndirectCopyRestore:
4881     case SK_PassByIndirectRestore:
4882       checkIndirectCopyRestoreSource(S, CurInit.get());
4883       CurInit = S.Owned(new (S.Context)
4884                         ObjCIndirectCopyRestoreExpr(CurInit.take(), Step->Type,
4885                                 Step->Kind == SK_PassByIndirectCopyRestore));
4886       break;
4887 
4888     case SK_ProduceObjCObject:
4889       CurInit = S.Owned(ImplicitCastExpr::Create(S.Context, Step->Type,
4890                                                  CK_ARCProduceObject,
4891                                                  CurInit.take(), 0, VK_RValue));
4892       break;
4893     }
4894   }
4895 
4896   // Diagnose non-fatal problems with the completed initialization.
4897   if (Entity.getKind() == InitializedEntity::EK_Member &&
4898       cast<FieldDecl>(Entity.getDecl())->isBitField())
4899     S.CheckBitFieldInitialization(Kind.getLocation(),
4900                                   cast<FieldDecl>(Entity.getDecl()),
4901                                   CurInit.get());
4902 
4903   return move(CurInit);
4904 }
4905 
4906 //===----------------------------------------------------------------------===//
4907 // Diagnose initialization failures
4908 //===----------------------------------------------------------------------===//
4909 bool InitializationSequence::Diagnose(Sema &S,
4910                                       const InitializedEntity &Entity,
4911                                       const InitializationKind &Kind,
4912                                       Expr **Args, unsigned NumArgs) {
4913   if (!Failed())
4914     return false;
4915 
4916   QualType DestType = Entity.getType();
4917   switch (Failure) {
4918   case FK_TooManyInitsForReference:
4919     // FIXME: Customize for the initialized entity?
4920     if (NumArgs == 0)
4921       S.Diag(Kind.getLocation(), diag::err_reference_without_init)
4922         << DestType.getNonReferenceType();
4923     else  // FIXME: diagnostic below could be better!
4924       S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
4925         << SourceRange(Args[0]->getLocStart(), Args[NumArgs - 1]->getLocEnd());
4926     break;
4927 
4928   case FK_ArrayNeedsInitList:
4929   case FK_ArrayNeedsInitListOrStringLiteral:
4930     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list)
4931       << (Failure == FK_ArrayNeedsInitListOrStringLiteral);
4932     break;
4933 
4934   case FK_ArrayTypeMismatch:
4935   case FK_NonConstantArrayInit:
4936     S.Diag(Kind.getLocation(),
4937            (Failure == FK_ArrayTypeMismatch
4938               ? diag::err_array_init_different_type
4939               : diag::err_array_init_non_constant_array))
4940       << DestType.getNonReferenceType()
4941       << Args[0]->getType()
4942       << Args[0]->getSourceRange();
4943     break;
4944 
4945   case FK_AddressOfOverloadFailed: {
4946     DeclAccessPair Found;
4947     S.ResolveAddressOfOverloadedFunction(Args[0],
4948                                          DestType.getNonReferenceType(),
4949                                          true,
4950                                          Found);
4951     break;
4952   }
4953 
4954   case FK_ReferenceInitOverloadFailed:
4955   case FK_UserConversionOverloadFailed:
4956     switch (FailedOverloadResult) {
4957     case OR_Ambiguous:
4958       if (Failure == FK_UserConversionOverloadFailed)
4959         S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
4960           << Args[0]->getType() << DestType
4961           << Args[0]->getSourceRange();
4962       else
4963         S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
4964           << DestType << Args[0]->getType()
4965           << Args[0]->getSourceRange();
4966 
4967       FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args, NumArgs);
4968       break;
4969 
4970     case OR_No_Viable_Function:
4971       S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
4972         << Args[0]->getType() << DestType.getNonReferenceType()
4973         << Args[0]->getSourceRange();
4974       FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args, NumArgs);
4975       break;
4976 
4977     case OR_Deleted: {
4978       S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
4979         << Args[0]->getType() << DestType.getNonReferenceType()
4980         << Args[0]->getSourceRange();
4981       OverloadCandidateSet::iterator Best;
4982       OverloadingResult Ovl
4983         = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best,
4984                                                 true);
4985       if (Ovl == OR_Deleted) {
4986         S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
4987           << 1 << Best->Function->isDeleted();
4988       } else {
4989         llvm_unreachable("Inconsistent overload resolution?");
4990       }
4991       break;
4992     }
4993 
4994     case OR_Success:
4995       llvm_unreachable("Conversion did not fail!");
4996       break;
4997     }
4998     break;
4999 
5000   case FK_NonConstLValueReferenceBindingToTemporary:
5001   case FK_NonConstLValueReferenceBindingToUnrelated:
5002     S.Diag(Kind.getLocation(),
5003            Failure == FK_NonConstLValueReferenceBindingToTemporary
5004              ? diag::err_lvalue_reference_bind_to_temporary
5005              : diag::err_lvalue_reference_bind_to_unrelated)
5006       << DestType.getNonReferenceType().isVolatileQualified()
5007       << DestType.getNonReferenceType()
5008       << Args[0]->getType()
5009       << Args[0]->getSourceRange();
5010     break;
5011 
5012   case FK_RValueReferenceBindingToLValue:
5013     S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
5014       << DestType.getNonReferenceType() << Args[0]->getType()
5015       << Args[0]->getSourceRange();
5016     break;
5017 
5018   case FK_ReferenceInitDropsQualifiers:
5019     S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
5020       << DestType.getNonReferenceType()
5021       << Args[0]->getType()
5022       << Args[0]->getSourceRange();
5023     break;
5024 
5025   case FK_ReferenceInitFailed:
5026     S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
5027       << DestType.getNonReferenceType()
5028       << Args[0]->isLValue()
5029       << Args[0]->getType()
5030       << Args[0]->getSourceRange();
5031     if (DestType.getNonReferenceType()->isObjCObjectPointerType() &&
5032         Args[0]->getType()->isObjCObjectPointerType())
5033       S.EmitRelatedResultTypeNote(Args[0]);
5034     break;
5035 
5036   case FK_ConversionFailed: {
5037     QualType FromType = Args[0]->getType();
5038     S.Diag(Kind.getLocation(), diag::err_init_conversion_failed)
5039       << (int)Entity.getKind()
5040       << DestType
5041       << Args[0]->isLValue()
5042       << FromType
5043       << Args[0]->getSourceRange();
5044     if (DestType.getNonReferenceType()->isObjCObjectPointerType() &&
5045         Args[0]->getType()->isObjCObjectPointerType())
5046       S.EmitRelatedResultTypeNote(Args[0]);
5047     break;
5048   }
5049 
5050   case FK_ConversionFromPropertyFailed:
5051     // No-op. This error has already been reported.
5052     break;
5053 
5054   case FK_TooManyInitsForScalar: {
5055     SourceRange R;
5056 
5057     if (InitListExpr *InitList = dyn_cast<InitListExpr>(Args[0]))
5058       R = SourceRange(InitList->getInit(0)->getLocEnd(),
5059                       InitList->getLocEnd());
5060     else
5061       R = SourceRange(Args[0]->getLocEnd(), Args[NumArgs - 1]->getLocEnd());
5062 
5063     R.setBegin(S.PP.getLocForEndOfToken(R.getBegin()));
5064     if (Kind.isCStyleOrFunctionalCast())
5065       S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
5066         << R;
5067     else
5068       S.Diag(Kind.getLocation(), diag::err_excess_initializers)
5069         << /*scalar=*/2 << R;
5070     break;
5071   }
5072 
5073   case FK_ReferenceBindingToInitList:
5074     S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
5075       << DestType.getNonReferenceType() << Args[0]->getSourceRange();
5076     break;
5077 
5078   case FK_InitListBadDestinationType:
5079     S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
5080       << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
5081     break;
5082 
5083   case FK_ConstructorOverloadFailed: {
5084     SourceRange ArgsRange;
5085     if (NumArgs)
5086       ArgsRange = SourceRange(Args[0]->getLocStart(),
5087                               Args[NumArgs - 1]->getLocEnd());
5088 
5089     // FIXME: Using "DestType" for the entity we're printing is probably
5090     // bad.
5091     switch (FailedOverloadResult) {
5092       case OR_Ambiguous:
5093         S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
5094           << DestType << ArgsRange;
5095         FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates,
5096                                           Args, NumArgs);
5097         break;
5098 
5099       case OR_No_Viable_Function:
5100         if (Kind.getKind() == InitializationKind::IK_Default &&
5101             (Entity.getKind() == InitializedEntity::EK_Base ||
5102              Entity.getKind() == InitializedEntity::EK_Member) &&
5103             isa<CXXConstructorDecl>(S.CurContext)) {
5104           // This is implicit default initialization of a member or
5105           // base within a constructor. If no viable function was
5106           // found, notify the user that she needs to explicitly
5107           // initialize this base/member.
5108           CXXConstructorDecl *Constructor
5109             = cast<CXXConstructorDecl>(S.CurContext);
5110           if (Entity.getKind() == InitializedEntity::EK_Base) {
5111             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
5112               << Constructor->isImplicit()
5113               << S.Context.getTypeDeclType(Constructor->getParent())
5114               << /*base=*/0
5115               << Entity.getType();
5116 
5117             RecordDecl *BaseDecl
5118               = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
5119                                                                   ->getDecl();
5120             S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
5121               << S.Context.getTagDeclType(BaseDecl);
5122           } else {
5123             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
5124               << Constructor->isImplicit()
5125               << S.Context.getTypeDeclType(Constructor->getParent())
5126               << /*member=*/1
5127               << Entity.getName();
5128             S.Diag(Entity.getDecl()->getLocation(), diag::note_field_decl);
5129 
5130             if (const RecordType *Record
5131                                  = Entity.getType()->getAs<RecordType>())
5132               S.Diag(Record->getDecl()->getLocation(),
5133                      diag::note_previous_decl)
5134                 << S.Context.getTagDeclType(Record->getDecl());
5135           }
5136           break;
5137         }
5138 
5139         S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
5140           << DestType << ArgsRange;
5141         FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args, NumArgs);
5142         break;
5143 
5144       case OR_Deleted: {
5145         S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
5146           << true << DestType << ArgsRange;
5147         OverloadCandidateSet::iterator Best;
5148         OverloadingResult Ovl
5149           = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
5150         if (Ovl == OR_Deleted) {
5151           S.Diag(Best->Function->getLocation(), diag::note_unavailable_here)
5152             << 1 << Best->Function->isDeleted();
5153         } else {
5154           llvm_unreachable("Inconsistent overload resolution?");
5155         }
5156         break;
5157       }
5158 
5159       case OR_Success:
5160         llvm_unreachable("Conversion did not fail!");
5161         break;
5162     }
5163     break;
5164   }
5165 
5166   case FK_DefaultInitOfConst:
5167     if (Entity.getKind() == InitializedEntity::EK_Member &&
5168         isa<CXXConstructorDecl>(S.CurContext)) {
5169       // This is implicit default-initialization of a const member in
5170       // a constructor. Complain that it needs to be explicitly
5171       // initialized.
5172       CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
5173       S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
5174         << Constructor->isImplicit()
5175         << S.Context.getTypeDeclType(Constructor->getParent())
5176         << /*const=*/1
5177         << Entity.getName();
5178       S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
5179         << Entity.getName();
5180     } else {
5181       S.Diag(Kind.getLocation(), diag::err_default_init_const)
5182         << DestType << (bool)DestType->getAs<RecordType>();
5183     }
5184     break;
5185 
5186   case FK_Incomplete:
5187     S.RequireCompleteType(Kind.getLocation(), DestType,
5188                           diag::err_init_incomplete_type);
5189     break;
5190 
5191   case FK_ListInitializationFailed: {
5192     // Run the init list checker again to emit diagnostics.
5193     InitListExpr* InitList = cast<InitListExpr>(Args[0]);
5194     QualType DestType = Entity.getType();
5195     InitListChecker DiagnoseInitList(S, Entity, InitList,
5196             DestType, /*VerifyOnly=*/false,
5197             Kind.getKind() != InitializationKind::IK_Direct ||
5198               !S.getLangOptions().CPlusPlus0x);
5199     assert(DiagnoseInitList.HadError() &&
5200            "Inconsistent init list check result.");
5201     break;
5202   }
5203   }
5204 
5205   PrintInitLocationNote(S, Entity);
5206   return true;
5207 }
5208 
5209 void InitializationSequence::dump(raw_ostream &OS) const {
5210   switch (SequenceKind) {
5211   case FailedSequence: {
5212     OS << "Failed sequence: ";
5213     switch (Failure) {
5214     case FK_TooManyInitsForReference:
5215       OS << "too many initializers for reference";
5216       break;
5217 
5218     case FK_ArrayNeedsInitList:
5219       OS << "array requires initializer list";
5220       break;
5221 
5222     case FK_ArrayNeedsInitListOrStringLiteral:
5223       OS << "array requires initializer list or string literal";
5224       break;
5225 
5226     case FK_ArrayTypeMismatch:
5227       OS << "array type mismatch";
5228       break;
5229 
5230     case FK_NonConstantArrayInit:
5231       OS << "non-constant array initializer";
5232       break;
5233 
5234     case FK_AddressOfOverloadFailed:
5235       OS << "address of overloaded function failed";
5236       break;
5237 
5238     case FK_ReferenceInitOverloadFailed:
5239       OS << "overload resolution for reference initialization failed";
5240       break;
5241 
5242     case FK_NonConstLValueReferenceBindingToTemporary:
5243       OS << "non-const lvalue reference bound to temporary";
5244       break;
5245 
5246     case FK_NonConstLValueReferenceBindingToUnrelated:
5247       OS << "non-const lvalue reference bound to unrelated type";
5248       break;
5249 
5250     case FK_RValueReferenceBindingToLValue:
5251       OS << "rvalue reference bound to an lvalue";
5252       break;
5253 
5254     case FK_ReferenceInitDropsQualifiers:
5255       OS << "reference initialization drops qualifiers";
5256       break;
5257 
5258     case FK_ReferenceInitFailed:
5259       OS << "reference initialization failed";
5260       break;
5261 
5262     case FK_ConversionFailed:
5263       OS << "conversion failed";
5264       break;
5265 
5266     case FK_ConversionFromPropertyFailed:
5267       OS << "conversion from property failed";
5268       break;
5269 
5270     case FK_TooManyInitsForScalar:
5271       OS << "too many initializers for scalar";
5272       break;
5273 
5274     case FK_ReferenceBindingToInitList:
5275       OS << "referencing binding to initializer list";
5276       break;
5277 
5278     case FK_InitListBadDestinationType:
5279       OS << "initializer list for non-aggregate, non-scalar type";
5280       break;
5281 
5282     case FK_UserConversionOverloadFailed:
5283       OS << "overloading failed for user-defined conversion";
5284       break;
5285 
5286     case FK_ConstructorOverloadFailed:
5287       OS << "constructor overloading failed";
5288       break;
5289 
5290     case FK_DefaultInitOfConst:
5291       OS << "default initialization of a const variable";
5292       break;
5293 
5294     case FK_Incomplete:
5295       OS << "initialization of incomplete type";
5296       break;
5297 
5298     case FK_ListInitializationFailed:
5299       OS << "list initialization checker failure";
5300     }
5301     OS << '\n';
5302     return;
5303   }
5304 
5305   case DependentSequence:
5306     OS << "Dependent sequence\n";
5307     return;
5308 
5309   case NormalSequence:
5310     OS << "Normal sequence: ";
5311     break;
5312   }
5313 
5314   for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
5315     if (S != step_begin()) {
5316       OS << " -> ";
5317     }
5318 
5319     switch (S->Kind) {
5320     case SK_ResolveAddressOfOverloadedFunction:
5321       OS << "resolve address of overloaded function";
5322       break;
5323 
5324     case SK_CastDerivedToBaseRValue:
5325       OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")";
5326       break;
5327 
5328     case SK_CastDerivedToBaseXValue:
5329       OS << "derived-to-base case (xvalue" << S->Type.getAsString() << ")";
5330       break;
5331 
5332     case SK_CastDerivedToBaseLValue:
5333       OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")";
5334       break;
5335 
5336     case SK_BindReference:
5337       OS << "bind reference to lvalue";
5338       break;
5339 
5340     case SK_BindReferenceToTemporary:
5341       OS << "bind reference to a temporary";
5342       break;
5343 
5344     case SK_ExtraneousCopyToTemporary:
5345       OS << "extraneous C++03 copy to temporary";
5346       break;
5347 
5348     case SK_UserConversion:
5349       OS << "user-defined conversion via " << *S->Function.Function;
5350       break;
5351 
5352     case SK_QualificationConversionRValue:
5353       OS << "qualification conversion (rvalue)";
5354 
5355     case SK_QualificationConversionXValue:
5356       OS << "qualification conversion (xvalue)";
5357 
5358     case SK_QualificationConversionLValue:
5359       OS << "qualification conversion (lvalue)";
5360       break;
5361 
5362     case SK_ConversionSequence:
5363       OS << "implicit conversion sequence (";
5364       S->ICS->DebugPrint(); // FIXME: use OS
5365       OS << ")";
5366       break;
5367 
5368     case SK_ListInitialization:
5369       OS << "list aggregate initialization";
5370       break;
5371 
5372     case SK_ListConstructorCall:
5373       OS << "list initialization via constructor";
5374       break;
5375 
5376     case SK_ConstructorInitialization:
5377       OS << "constructor initialization";
5378       break;
5379 
5380     case SK_ZeroInitialization:
5381       OS << "zero initialization";
5382       break;
5383 
5384     case SK_CAssignment:
5385       OS << "C assignment";
5386       break;
5387 
5388     case SK_StringInit:
5389       OS << "string initialization";
5390       break;
5391 
5392     case SK_ObjCObjectConversion:
5393       OS << "Objective-C object conversion";
5394       break;
5395 
5396     case SK_ArrayInit:
5397       OS << "array initialization";
5398       break;
5399 
5400     case SK_PassByIndirectCopyRestore:
5401       OS << "pass by indirect copy and restore";
5402       break;
5403 
5404     case SK_PassByIndirectRestore:
5405       OS << "pass by indirect restore";
5406       break;
5407 
5408     case SK_ProduceObjCObject:
5409       OS << "Objective-C object retension";
5410       break;
5411     }
5412   }
5413 }
5414 
5415 void InitializationSequence::dump() const {
5416   dump(llvm::errs());
5417 }
5418 
5419 static void DiagnoseNarrowingInInitList(
5420     Sema& S, QualType EntityType, const Expr *InitE,
5421     bool Constant, const APValue &ConstantValue) {
5422   if (Constant) {
5423     S.Diag(InitE->getLocStart(),
5424            S.getLangOptions().CPlusPlus0x && !S.getLangOptions().MicrosoftExt
5425            ? diag::err_init_list_constant_narrowing
5426            : diag::warn_init_list_constant_narrowing)
5427       << InitE->getSourceRange()
5428       << ConstantValue
5429       << EntityType.getLocalUnqualifiedType();
5430   } else
5431     S.Diag(InitE->getLocStart(),
5432            S.getLangOptions().CPlusPlus0x && !S.getLangOptions().MicrosoftExt
5433            ? diag::err_init_list_variable_narrowing
5434            : diag::warn_init_list_variable_narrowing)
5435       << InitE->getSourceRange()
5436       << InitE->getType().getLocalUnqualifiedType()
5437       << EntityType.getLocalUnqualifiedType();
5438 
5439   llvm::SmallString<128> StaticCast;
5440   llvm::raw_svector_ostream OS(StaticCast);
5441   OS << "static_cast<";
5442   if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
5443     // It's important to use the typedef's name if there is one so that the
5444     // fixit doesn't break code using types like int64_t.
5445     //
5446     // FIXME: This will break if the typedef requires qualification.  But
5447     // getQualifiedNameAsString() includes non-machine-parsable components.
5448     OS << *TT->getDecl();
5449   } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
5450     OS << BT->getName(S.getLangOptions());
5451   else {
5452     // Oops, we didn't find the actual type of the variable.  Don't emit a fixit
5453     // with a broken cast.
5454     return;
5455   }
5456   OS << ">(";
5457   S.Diag(InitE->getLocStart(), diag::note_init_list_narrowing_override)
5458     << InitE->getSourceRange()
5459     << FixItHint::CreateInsertion(InitE->getLocStart(), OS.str())
5460     << FixItHint::CreateInsertion(
5461       S.getPreprocessor().getLocForEndOfToken(InitE->getLocEnd()), ")");
5462 }
5463 
5464 //===----------------------------------------------------------------------===//
5465 // Initialization helper functions
5466 //===----------------------------------------------------------------------===//
5467 bool
5468 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
5469                                    ExprResult Init) {
5470   if (Init.isInvalid())
5471     return false;
5472 
5473   Expr *InitE = Init.get();
5474   assert(InitE && "No initialization expression");
5475 
5476   InitializationKind Kind = InitializationKind::CreateCopy(SourceLocation(),
5477                                                            SourceLocation());
5478   InitializationSequence Seq(*this, Entity, Kind, &InitE, 1);
5479   return !Seq.Failed();
5480 }
5481 
5482 ExprResult
5483 Sema::PerformCopyInitialization(const InitializedEntity &Entity,
5484                                 SourceLocation EqualLoc,
5485                                 ExprResult Init,
5486                                 bool TopLevelOfInitList) {
5487   if (Init.isInvalid())
5488     return ExprError();
5489 
5490   Expr *InitE = Init.get();
5491   assert(InitE && "No initialization expression?");
5492 
5493   if (EqualLoc.isInvalid())
5494     EqualLoc = InitE->getLocStart();
5495 
5496   InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
5497                                                            EqualLoc);
5498   InitializationSequence Seq(*this, Entity, Kind, &InitE, 1);
5499   Init.release();
5500 
5501   bool Constant = false;
5502   APValue Result;
5503   if (TopLevelOfInitList &&
5504       Seq.endsWithNarrowing(Context, InitE, &Constant, &Result)) {
5505     DiagnoseNarrowingInInitList(*this, Entity.getType(), InitE,
5506                                 Constant, Result);
5507   }
5508   return Seq.Perform(*this, Entity, Kind, MultiExprArg(&InitE, 1));
5509 }
5510