1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for initializers. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ASTContext.h" 14 #include "clang/AST/DeclObjC.h" 15 #include "clang/AST/ExprCXX.h" 16 #include "clang/AST/ExprObjC.h" 17 #include "clang/AST/ExprOpenMP.h" 18 #include "clang/AST/TypeLoc.h" 19 #include "clang/Basic/CharInfo.h" 20 #include "clang/Basic/SourceManager.h" 21 #include "clang/Basic/TargetInfo.h" 22 #include "clang/Sema/Designator.h" 23 #include "clang/Sema/Initialization.h" 24 #include "clang/Sema/Lookup.h" 25 #include "clang/Sema/SemaInternal.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/SmallString.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/raw_ostream.h" 30 31 using namespace clang; 32 33 //===----------------------------------------------------------------------===// 34 // Sema Initialization Checking 35 //===----------------------------------------------------------------------===// 36 37 /// Check whether T is compatible with a wide character type (wchar_t, 38 /// char16_t or char32_t). 39 static bool IsWideCharCompatible(QualType T, ASTContext &Context) { 40 if (Context.typesAreCompatible(Context.getWideCharType(), T)) 41 return true; 42 if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) { 43 return Context.typesAreCompatible(Context.Char16Ty, T) || 44 Context.typesAreCompatible(Context.Char32Ty, T); 45 } 46 return false; 47 } 48 49 enum StringInitFailureKind { 50 SIF_None, 51 SIF_NarrowStringIntoWideChar, 52 SIF_WideStringIntoChar, 53 SIF_IncompatWideStringIntoWideChar, 54 SIF_UTF8StringIntoPlainChar, 55 SIF_PlainStringIntoUTF8Char, 56 SIF_Other 57 }; 58 59 /// Check whether the array of type AT can be initialized by the Init 60 /// expression by means of string initialization. Returns SIF_None if so, 61 /// otherwise returns a StringInitFailureKind that describes why the 62 /// initialization would not work. 63 static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT, 64 ASTContext &Context) { 65 if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT)) 66 return SIF_Other; 67 68 // See if this is a string literal or @encode. 69 Init = Init->IgnoreParens(); 70 71 // Handle @encode, which is a narrow string. 72 if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType()) 73 return SIF_None; 74 75 // Otherwise we can only handle string literals. 76 StringLiteral *SL = dyn_cast<StringLiteral>(Init); 77 if (!SL) 78 return SIF_Other; 79 80 const QualType ElemTy = 81 Context.getCanonicalType(AT->getElementType()).getUnqualifiedType(); 82 83 switch (SL->getKind()) { 84 case StringLiteral::UTF8: 85 // char8_t array can be initialized with a UTF-8 string. 86 if (ElemTy->isChar8Type()) 87 return SIF_None; 88 LLVM_FALLTHROUGH; 89 case StringLiteral::Ascii: 90 // char array can be initialized with a narrow string. 91 // Only allow char x[] = "foo"; not char x[] = L"foo"; 92 if (ElemTy->isCharType()) 93 return (SL->getKind() == StringLiteral::UTF8 && 94 Context.getLangOpts().Char8) 95 ? SIF_UTF8StringIntoPlainChar 96 : SIF_None; 97 if (ElemTy->isChar8Type()) 98 return SIF_PlainStringIntoUTF8Char; 99 if (IsWideCharCompatible(ElemTy, Context)) 100 return SIF_NarrowStringIntoWideChar; 101 return SIF_Other; 102 // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15: 103 // "An array with element type compatible with a qualified or unqualified 104 // version of wchar_t, char16_t, or char32_t may be initialized by a wide 105 // string literal with the corresponding encoding prefix (L, u, or U, 106 // respectively), optionally enclosed in braces. 107 case StringLiteral::UTF16: 108 if (Context.typesAreCompatible(Context.Char16Ty, ElemTy)) 109 return SIF_None; 110 if (ElemTy->isCharType() || ElemTy->isChar8Type()) 111 return SIF_WideStringIntoChar; 112 if (IsWideCharCompatible(ElemTy, Context)) 113 return SIF_IncompatWideStringIntoWideChar; 114 return SIF_Other; 115 case StringLiteral::UTF32: 116 if (Context.typesAreCompatible(Context.Char32Ty, ElemTy)) 117 return SIF_None; 118 if (ElemTy->isCharType() || ElemTy->isChar8Type()) 119 return SIF_WideStringIntoChar; 120 if (IsWideCharCompatible(ElemTy, Context)) 121 return SIF_IncompatWideStringIntoWideChar; 122 return SIF_Other; 123 case StringLiteral::Wide: 124 if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy)) 125 return SIF_None; 126 if (ElemTy->isCharType() || ElemTy->isChar8Type()) 127 return SIF_WideStringIntoChar; 128 if (IsWideCharCompatible(ElemTy, Context)) 129 return SIF_IncompatWideStringIntoWideChar; 130 return SIF_Other; 131 } 132 133 llvm_unreachable("missed a StringLiteral kind?"); 134 } 135 136 static StringInitFailureKind IsStringInit(Expr *init, QualType declType, 137 ASTContext &Context) { 138 const ArrayType *arrayType = Context.getAsArrayType(declType); 139 if (!arrayType) 140 return SIF_Other; 141 return IsStringInit(init, arrayType, Context); 142 } 143 144 bool Sema::IsStringInit(Expr *Init, const ArrayType *AT) { 145 return ::IsStringInit(Init, AT, Context) == SIF_None; 146 } 147 148 /// Update the type of a string literal, including any surrounding parentheses, 149 /// to match the type of the object which it is initializing. 150 static void updateStringLiteralType(Expr *E, QualType Ty) { 151 while (true) { 152 E->setType(Ty); 153 E->setValueKind(VK_RValue); 154 if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E)) { 155 break; 156 } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 157 E = PE->getSubExpr(); 158 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 159 assert(UO->getOpcode() == UO_Extension); 160 E = UO->getSubExpr(); 161 } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) { 162 E = GSE->getResultExpr(); 163 } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) { 164 E = CE->getChosenSubExpr(); 165 } else { 166 llvm_unreachable("unexpected expr in string literal init"); 167 } 168 } 169 } 170 171 /// Fix a compound literal initializing an array so it's correctly marked 172 /// as an rvalue. 173 static void updateGNUCompoundLiteralRValue(Expr *E) { 174 while (true) { 175 E->setValueKind(VK_RValue); 176 if (isa<CompoundLiteralExpr>(E)) { 177 break; 178 } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 179 E = PE->getSubExpr(); 180 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 181 assert(UO->getOpcode() == UO_Extension); 182 E = UO->getSubExpr(); 183 } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) { 184 E = GSE->getResultExpr(); 185 } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) { 186 E = CE->getChosenSubExpr(); 187 } else { 188 llvm_unreachable("unexpected expr in array compound literal init"); 189 } 190 } 191 } 192 193 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT, 194 Sema &S) { 195 // Get the length of the string as parsed. 196 auto *ConstantArrayTy = 197 cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe()); 198 uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue(); 199 200 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) { 201 // C99 6.7.8p14. We have an array of character type with unknown size 202 // being initialized to a string literal. 203 llvm::APInt ConstVal(32, StrLength); 204 // Return a new array type (C99 6.7.8p22). 205 DeclT = S.Context.getConstantArrayType(IAT->getElementType(), 206 ConstVal, nullptr, 207 ArrayType::Normal, 0); 208 updateStringLiteralType(Str, DeclT); 209 return; 210 } 211 212 const ConstantArrayType *CAT = cast<ConstantArrayType>(AT); 213 214 // We have an array of character type with known size. However, 215 // the size may be smaller or larger than the string we are initializing. 216 // FIXME: Avoid truncation for 64-bit length strings. 217 if (S.getLangOpts().CPlusPlus) { 218 if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) { 219 // For Pascal strings it's OK to strip off the terminating null character, 220 // so the example below is valid: 221 // 222 // unsigned char a[2] = "\pa"; 223 if (SL->isPascal()) 224 StrLength--; 225 } 226 227 // [dcl.init.string]p2 228 if (StrLength > CAT->getSize().getZExtValue()) 229 S.Diag(Str->getBeginLoc(), 230 diag::err_initializer_string_for_char_array_too_long) 231 << Str->getSourceRange(); 232 } else { 233 // C99 6.7.8p14. 234 if (StrLength-1 > CAT->getSize().getZExtValue()) 235 S.Diag(Str->getBeginLoc(), 236 diag::ext_initializer_string_for_char_array_too_long) 237 << Str->getSourceRange(); 238 } 239 240 // Set the type to the actual size that we are initializing. If we have 241 // something like: 242 // char x[1] = "foo"; 243 // then this will set the string literal's type to char[1]. 244 updateStringLiteralType(Str, DeclT); 245 } 246 247 //===----------------------------------------------------------------------===// 248 // Semantic checking for initializer lists. 249 //===----------------------------------------------------------------------===// 250 251 namespace { 252 253 /// Semantic checking for initializer lists. 254 /// 255 /// The InitListChecker class contains a set of routines that each 256 /// handle the initialization of a certain kind of entity, e.g., 257 /// arrays, vectors, struct/union types, scalars, etc. The 258 /// InitListChecker itself performs a recursive walk of the subobject 259 /// structure of the type to be initialized, while stepping through 260 /// the initializer list one element at a time. The IList and Index 261 /// parameters to each of the Check* routines contain the active 262 /// (syntactic) initializer list and the index into that initializer 263 /// list that represents the current initializer. Each routine is 264 /// responsible for moving that Index forward as it consumes elements. 265 /// 266 /// Each Check* routine also has a StructuredList/StructuredIndex 267 /// arguments, which contains the current "structured" (semantic) 268 /// initializer list and the index into that initializer list where we 269 /// are copying initializers as we map them over to the semantic 270 /// list. Once we have completed our recursive walk of the subobject 271 /// structure, we will have constructed a full semantic initializer 272 /// list. 273 /// 274 /// C99 designators cause changes in the initializer list traversal, 275 /// because they make the initialization "jump" into a specific 276 /// subobject and then continue the initialization from that 277 /// point. CheckDesignatedInitializer() recursively steps into the 278 /// designated subobject and manages backing out the recursion to 279 /// initialize the subobjects after the one designated. 280 /// 281 /// If an initializer list contains any designators, we build a placeholder 282 /// structured list even in 'verify only' mode, so that we can track which 283 /// elements need 'empty' initializtion. 284 class InitListChecker { 285 Sema &SemaRef; 286 bool hadError = false; 287 bool VerifyOnly; // No diagnostics. 288 bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode. 289 bool InOverloadResolution; 290 InitListExpr *FullyStructuredList = nullptr; 291 NoInitExpr *DummyExpr = nullptr; 292 293 NoInitExpr *getDummyInit() { 294 if (!DummyExpr) 295 DummyExpr = new (SemaRef.Context) NoInitExpr(SemaRef.Context.VoidTy); 296 return DummyExpr; 297 } 298 299 void CheckImplicitInitList(const InitializedEntity &Entity, 300 InitListExpr *ParentIList, QualType T, 301 unsigned &Index, InitListExpr *StructuredList, 302 unsigned &StructuredIndex); 303 void CheckExplicitInitList(const InitializedEntity &Entity, 304 InitListExpr *IList, QualType &T, 305 InitListExpr *StructuredList, 306 bool TopLevelObject = false); 307 void CheckListElementTypes(const InitializedEntity &Entity, 308 InitListExpr *IList, QualType &DeclType, 309 bool SubobjectIsDesignatorContext, 310 unsigned &Index, 311 InitListExpr *StructuredList, 312 unsigned &StructuredIndex, 313 bool TopLevelObject = false); 314 void CheckSubElementType(const InitializedEntity &Entity, 315 InitListExpr *IList, QualType ElemType, 316 unsigned &Index, 317 InitListExpr *StructuredList, 318 unsigned &StructuredIndex); 319 void CheckComplexType(const InitializedEntity &Entity, 320 InitListExpr *IList, QualType DeclType, 321 unsigned &Index, 322 InitListExpr *StructuredList, 323 unsigned &StructuredIndex); 324 void CheckScalarType(const InitializedEntity &Entity, 325 InitListExpr *IList, QualType DeclType, 326 unsigned &Index, 327 InitListExpr *StructuredList, 328 unsigned &StructuredIndex); 329 void CheckReferenceType(const InitializedEntity &Entity, 330 InitListExpr *IList, QualType DeclType, 331 unsigned &Index, 332 InitListExpr *StructuredList, 333 unsigned &StructuredIndex); 334 void CheckVectorType(const InitializedEntity &Entity, 335 InitListExpr *IList, QualType DeclType, unsigned &Index, 336 InitListExpr *StructuredList, 337 unsigned &StructuredIndex); 338 void CheckStructUnionTypes(const InitializedEntity &Entity, 339 InitListExpr *IList, QualType DeclType, 340 CXXRecordDecl::base_class_range Bases, 341 RecordDecl::field_iterator Field, 342 bool SubobjectIsDesignatorContext, unsigned &Index, 343 InitListExpr *StructuredList, 344 unsigned &StructuredIndex, 345 bool TopLevelObject = false); 346 void CheckArrayType(const InitializedEntity &Entity, 347 InitListExpr *IList, QualType &DeclType, 348 llvm::APSInt elementIndex, 349 bool SubobjectIsDesignatorContext, unsigned &Index, 350 InitListExpr *StructuredList, 351 unsigned &StructuredIndex); 352 bool CheckDesignatedInitializer(const InitializedEntity &Entity, 353 InitListExpr *IList, DesignatedInitExpr *DIE, 354 unsigned DesigIdx, 355 QualType &CurrentObjectType, 356 RecordDecl::field_iterator *NextField, 357 llvm::APSInt *NextElementIndex, 358 unsigned &Index, 359 InitListExpr *StructuredList, 360 unsigned &StructuredIndex, 361 bool FinishSubobjectInit, 362 bool TopLevelObject); 363 InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, 364 QualType CurrentObjectType, 365 InitListExpr *StructuredList, 366 unsigned StructuredIndex, 367 SourceRange InitRange, 368 bool IsFullyOverwritten = false); 369 void UpdateStructuredListElement(InitListExpr *StructuredList, 370 unsigned &StructuredIndex, 371 Expr *expr); 372 InitListExpr *createInitListExpr(QualType CurrentObjectType, 373 SourceRange InitRange, 374 unsigned ExpectedNumInits); 375 int numArrayElements(QualType DeclType); 376 int numStructUnionElements(QualType DeclType); 377 378 ExprResult PerformEmptyInit(SourceLocation Loc, 379 const InitializedEntity &Entity); 380 381 /// Diagnose that OldInit (or part thereof) has been overridden by NewInit. 382 void diagnoseInitOverride(Expr *OldInit, SourceRange NewInitRange, 383 bool FullyOverwritten = true) { 384 // Overriding an initializer via a designator is valid with C99 designated 385 // initializers, but ill-formed with C++20 designated initializers. 386 unsigned DiagID = SemaRef.getLangOpts().CPlusPlus 387 ? diag::ext_initializer_overrides 388 : diag::warn_initializer_overrides; 389 390 if (InOverloadResolution && SemaRef.getLangOpts().CPlusPlus) { 391 // In overload resolution, we have to strictly enforce the rules, and so 392 // don't allow any overriding of prior initializers. This matters for a 393 // case such as: 394 // 395 // union U { int a, b; }; 396 // struct S { int a, b; }; 397 // void f(U), f(S); 398 // 399 // Here, f({.a = 1, .b = 2}) is required to call the struct overload. For 400 // consistency, we disallow all overriding of prior initializers in 401 // overload resolution, not only overriding of union members. 402 hadError = true; 403 } else if (OldInit->getType().isDestructedType() && !FullyOverwritten) { 404 // If we'll be keeping around the old initializer but overwriting part of 405 // the object it initialized, and that object is not trivially 406 // destructible, this can leak. Don't allow that, not even as an 407 // extension. 408 // 409 // FIXME: It might be reasonable to allow this in cases where the part of 410 // the initializer that we're overriding has trivial destruction. 411 DiagID = diag::err_initializer_overrides_destructed; 412 } else if (!OldInit->getSourceRange().isValid()) { 413 // We need to check on source range validity because the previous 414 // initializer does not have to be an explicit initializer. e.g., 415 // 416 // struct P { int a, b; }; 417 // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 }; 418 // 419 // There is an overwrite taking place because the first braced initializer 420 // list "{ .a = 2 }" already provides value for .p.b (which is zero). 421 // 422 // Such overwrites are harmless, so we don't diagnose them. (Note that in 423 // C++, this cannot be reached unless we've already seen and diagnosed a 424 // different conformance issue, such as a mixture of designated and 425 // non-designated initializers or a multi-level designator.) 426 return; 427 } 428 429 if (!VerifyOnly) { 430 SemaRef.Diag(NewInitRange.getBegin(), DiagID) 431 << NewInitRange << FullyOverwritten << OldInit->getType(); 432 SemaRef.Diag(OldInit->getBeginLoc(), diag::note_previous_initializer) 433 << (OldInit->HasSideEffects(SemaRef.Context) && FullyOverwritten) 434 << OldInit->getSourceRange(); 435 } 436 } 437 438 // Explanation on the "FillWithNoInit" mode: 439 // 440 // Assume we have the following definitions (Case#1): 441 // struct P { char x[6][6]; } xp = { .x[1] = "bar" }; 442 // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' }; 443 // 444 // l.lp.x[1][0..1] should not be filled with implicit initializers because the 445 // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf". 446 // 447 // But if we have (Case#2): 448 // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } }; 449 // 450 // l.lp.x[1][0..1] are implicitly initialized and do not use values from the 451 // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0". 452 // 453 // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes" 454 // in the InitListExpr, the "holes" in Case#1 are filled not with empty 455 // initializers but with special "NoInitExpr" place holders, which tells the 456 // CodeGen not to generate any initializers for these parts. 457 void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base, 458 const InitializedEntity &ParentEntity, 459 InitListExpr *ILE, bool &RequiresSecondPass, 460 bool FillWithNoInit); 461 void FillInEmptyInitForField(unsigned Init, FieldDecl *Field, 462 const InitializedEntity &ParentEntity, 463 InitListExpr *ILE, bool &RequiresSecondPass, 464 bool FillWithNoInit = false); 465 void FillInEmptyInitializations(const InitializedEntity &Entity, 466 InitListExpr *ILE, bool &RequiresSecondPass, 467 InitListExpr *OuterILE, unsigned OuterIndex, 468 bool FillWithNoInit = false); 469 bool CheckFlexibleArrayInit(const InitializedEntity &Entity, 470 Expr *InitExpr, FieldDecl *Field, 471 bool TopLevelObject); 472 void CheckEmptyInitializable(const InitializedEntity &Entity, 473 SourceLocation Loc); 474 475 public: 476 InitListChecker(Sema &S, const InitializedEntity &Entity, InitListExpr *IL, 477 QualType &T, bool VerifyOnly, bool TreatUnavailableAsInvalid, 478 bool InOverloadResolution = false); 479 bool HadError() { return hadError; } 480 481 // Retrieves the fully-structured initializer list used for 482 // semantic analysis and code generation. 483 InitListExpr *getFullyStructuredList() const { return FullyStructuredList; } 484 }; 485 486 } // end anonymous namespace 487 488 ExprResult InitListChecker::PerformEmptyInit(SourceLocation Loc, 489 const InitializedEntity &Entity) { 490 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc, 491 true); 492 MultiExprArg SubInit; 493 Expr *InitExpr; 494 InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc); 495 496 // C++ [dcl.init.aggr]p7: 497 // If there are fewer initializer-clauses in the list than there are 498 // members in the aggregate, then each member not explicitly initialized 499 // ... 500 bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 && 501 Entity.getType()->getBaseElementTypeUnsafe()->isRecordType(); 502 if (EmptyInitList) { 503 // C++1y / DR1070: 504 // shall be initialized [...] from an empty initializer list. 505 // 506 // We apply the resolution of this DR to C++11 but not C++98, since C++98 507 // does not have useful semantics for initialization from an init list. 508 // We treat this as copy-initialization, because aggregate initialization 509 // always performs copy-initialization on its elements. 510 // 511 // Only do this if we're initializing a class type, to avoid filling in 512 // the initializer list where possible. 513 InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context) 514 InitListExpr(SemaRef.Context, Loc, None, Loc); 515 InitExpr->setType(SemaRef.Context.VoidTy); 516 SubInit = InitExpr; 517 Kind = InitializationKind::CreateCopy(Loc, Loc); 518 } else { 519 // C++03: 520 // shall be value-initialized. 521 } 522 523 InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit); 524 // libstdc++4.6 marks the vector default constructor as explicit in 525 // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case. 526 // stlport does so too. Look for std::__debug for libstdc++, and for 527 // std:: for stlport. This is effectively a compiler-side implementation of 528 // LWG2193. 529 if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() == 530 InitializationSequence::FK_ExplicitConstructor) { 531 OverloadCandidateSet::iterator Best; 532 OverloadingResult O = 533 InitSeq.getFailedCandidateSet() 534 .BestViableFunction(SemaRef, Kind.getLocation(), Best); 535 (void)O; 536 assert(O == OR_Success && "Inconsistent overload resolution"); 537 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 538 CXXRecordDecl *R = CtorDecl->getParent(); 539 540 if (CtorDecl->getMinRequiredArguments() == 0 && 541 CtorDecl->isExplicit() && R->getDeclName() && 542 SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) { 543 bool IsInStd = false; 544 for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext()); 545 ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) { 546 if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND)) 547 IsInStd = true; 548 } 549 550 if (IsInStd && llvm::StringSwitch<bool>(R->getName()) 551 .Cases("basic_string", "deque", "forward_list", true) 552 .Cases("list", "map", "multimap", "multiset", true) 553 .Cases("priority_queue", "queue", "set", "stack", true) 554 .Cases("unordered_map", "unordered_set", "vector", true) 555 .Default(false)) { 556 InitSeq.InitializeFrom( 557 SemaRef, Entity, 558 InitializationKind::CreateValue(Loc, Loc, Loc, true), 559 MultiExprArg(), /*TopLevelOfInitList=*/false, 560 TreatUnavailableAsInvalid); 561 // Emit a warning for this. System header warnings aren't shown 562 // by default, but people working on system headers should see it. 563 if (!VerifyOnly) { 564 SemaRef.Diag(CtorDecl->getLocation(), 565 diag::warn_invalid_initializer_from_system_header); 566 if (Entity.getKind() == InitializedEntity::EK_Member) 567 SemaRef.Diag(Entity.getDecl()->getLocation(), 568 diag::note_used_in_initialization_here); 569 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) 570 SemaRef.Diag(Loc, diag::note_used_in_initialization_here); 571 } 572 } 573 } 574 } 575 if (!InitSeq) { 576 if (!VerifyOnly) { 577 InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit); 578 if (Entity.getKind() == InitializedEntity::EK_Member) 579 SemaRef.Diag(Entity.getDecl()->getLocation(), 580 diag::note_in_omitted_aggregate_initializer) 581 << /*field*/1 << Entity.getDecl(); 582 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) { 583 bool IsTrailingArrayNewMember = 584 Entity.getParent() && 585 Entity.getParent()->isVariableLengthArrayNew(); 586 SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer) 587 << (IsTrailingArrayNewMember ? 2 : /*array element*/0) 588 << Entity.getElementIndex(); 589 } 590 } 591 hadError = true; 592 return ExprError(); 593 } 594 595 return VerifyOnly ? ExprResult() 596 : InitSeq.Perform(SemaRef, Entity, Kind, SubInit); 597 } 598 599 void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity, 600 SourceLocation Loc) { 601 // If we're building a fully-structured list, we'll check this at the end 602 // once we know which elements are actually initialized. Otherwise, we know 603 // that there are no designators so we can just check now. 604 if (FullyStructuredList) 605 return; 606 PerformEmptyInit(Loc, Entity); 607 } 608 609 void InitListChecker::FillInEmptyInitForBase( 610 unsigned Init, const CXXBaseSpecifier &Base, 611 const InitializedEntity &ParentEntity, InitListExpr *ILE, 612 bool &RequiresSecondPass, bool FillWithNoInit) { 613 InitializedEntity BaseEntity = InitializedEntity::InitializeBase( 614 SemaRef.Context, &Base, false, &ParentEntity); 615 616 if (Init >= ILE->getNumInits() || !ILE->getInit(Init)) { 617 ExprResult BaseInit = FillWithNoInit 618 ? new (SemaRef.Context) NoInitExpr(Base.getType()) 619 : PerformEmptyInit(ILE->getEndLoc(), BaseEntity); 620 if (BaseInit.isInvalid()) { 621 hadError = true; 622 return; 623 } 624 625 if (!VerifyOnly) { 626 assert(Init < ILE->getNumInits() && "should have been expanded"); 627 ILE->setInit(Init, BaseInit.getAs<Expr>()); 628 } 629 } else if (InitListExpr *InnerILE = 630 dyn_cast<InitListExpr>(ILE->getInit(Init))) { 631 FillInEmptyInitializations(BaseEntity, InnerILE, RequiresSecondPass, 632 ILE, Init, FillWithNoInit); 633 } else if (DesignatedInitUpdateExpr *InnerDIUE = 634 dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) { 635 FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(), 636 RequiresSecondPass, ILE, Init, 637 /*FillWithNoInit =*/true); 638 } 639 } 640 641 void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field, 642 const InitializedEntity &ParentEntity, 643 InitListExpr *ILE, 644 bool &RequiresSecondPass, 645 bool FillWithNoInit) { 646 SourceLocation Loc = ILE->getEndLoc(); 647 unsigned NumInits = ILE->getNumInits(); 648 InitializedEntity MemberEntity 649 = InitializedEntity::InitializeMember(Field, &ParentEntity); 650 651 if (Init >= NumInits || !ILE->getInit(Init)) { 652 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) 653 if (!RType->getDecl()->isUnion()) 654 assert((Init < NumInits || VerifyOnly) && 655 "This ILE should have been expanded"); 656 657 if (FillWithNoInit) { 658 assert(!VerifyOnly && "should not fill with no-init in verify-only mode"); 659 Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType()); 660 if (Init < NumInits) 661 ILE->setInit(Init, Filler); 662 else 663 ILE->updateInit(SemaRef.Context, Init, Filler); 664 return; 665 } 666 // C++1y [dcl.init.aggr]p7: 667 // If there are fewer initializer-clauses in the list than there are 668 // members in the aggregate, then each member not explicitly initialized 669 // shall be initialized from its brace-or-equal-initializer [...] 670 if (Field->hasInClassInitializer()) { 671 if (VerifyOnly) 672 return; 673 674 ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field); 675 if (DIE.isInvalid()) { 676 hadError = true; 677 return; 678 } 679 SemaRef.checkInitializerLifetime(MemberEntity, DIE.get()); 680 if (Init < NumInits) 681 ILE->setInit(Init, DIE.get()); 682 else { 683 ILE->updateInit(SemaRef.Context, Init, DIE.get()); 684 RequiresSecondPass = true; 685 } 686 return; 687 } 688 689 if (Field->getType()->isReferenceType()) { 690 if (!VerifyOnly) { 691 // C++ [dcl.init.aggr]p9: 692 // If an incomplete or empty initializer-list leaves a 693 // member of reference type uninitialized, the program is 694 // ill-formed. 695 SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized) 696 << Field->getType() 697 << ILE->getSyntacticForm()->getSourceRange(); 698 SemaRef.Diag(Field->getLocation(), 699 diag::note_uninit_reference_member); 700 } 701 hadError = true; 702 return; 703 } 704 705 ExprResult MemberInit = PerformEmptyInit(Loc, MemberEntity); 706 if (MemberInit.isInvalid()) { 707 hadError = true; 708 return; 709 } 710 711 if (hadError || VerifyOnly) { 712 // Do nothing 713 } else if (Init < NumInits) { 714 ILE->setInit(Init, MemberInit.getAs<Expr>()); 715 } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) { 716 // Empty initialization requires a constructor call, so 717 // extend the initializer list to include the constructor 718 // call and make a note that we'll need to take another pass 719 // through the initializer list. 720 ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>()); 721 RequiresSecondPass = true; 722 } 723 } else if (InitListExpr *InnerILE 724 = dyn_cast<InitListExpr>(ILE->getInit(Init))) { 725 FillInEmptyInitializations(MemberEntity, InnerILE, 726 RequiresSecondPass, ILE, Init, FillWithNoInit); 727 } else if (DesignatedInitUpdateExpr *InnerDIUE = 728 dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) { 729 FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(), 730 RequiresSecondPass, ILE, Init, 731 /*FillWithNoInit =*/true); 732 } 733 } 734 735 /// Recursively replaces NULL values within the given initializer list 736 /// with expressions that perform value-initialization of the 737 /// appropriate type, and finish off the InitListExpr formation. 738 void 739 InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity, 740 InitListExpr *ILE, 741 bool &RequiresSecondPass, 742 InitListExpr *OuterILE, 743 unsigned OuterIndex, 744 bool FillWithNoInit) { 745 assert((ILE->getType() != SemaRef.Context.VoidTy) && 746 "Should not have void type"); 747 748 // We don't need to do any checks when just filling NoInitExprs; that can't 749 // fail. 750 if (FillWithNoInit && VerifyOnly) 751 return; 752 753 // If this is a nested initializer list, we might have changed its contents 754 // (and therefore some of its properties, such as instantiation-dependence) 755 // while filling it in. Inform the outer initializer list so that its state 756 // can be updated to match. 757 // FIXME: We should fully build the inner initializers before constructing 758 // the outer InitListExpr instead of mutating AST nodes after they have 759 // been used as subexpressions of other nodes. 760 struct UpdateOuterILEWithUpdatedInit { 761 InitListExpr *Outer; 762 unsigned OuterIndex; 763 ~UpdateOuterILEWithUpdatedInit() { 764 if (Outer) 765 Outer->setInit(OuterIndex, Outer->getInit(OuterIndex)); 766 } 767 } UpdateOuterRAII = {OuterILE, OuterIndex}; 768 769 // A transparent ILE is not performing aggregate initialization and should 770 // not be filled in. 771 if (ILE->isTransparent()) 772 return; 773 774 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 775 const RecordDecl *RDecl = RType->getDecl(); 776 if (RDecl->isUnion() && ILE->getInitializedFieldInUnion()) 777 FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(), 778 Entity, ILE, RequiresSecondPass, FillWithNoInit); 779 else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) && 780 cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) { 781 for (auto *Field : RDecl->fields()) { 782 if (Field->hasInClassInitializer()) { 783 FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass, 784 FillWithNoInit); 785 break; 786 } 787 } 788 } else { 789 // The fields beyond ILE->getNumInits() are default initialized, so in 790 // order to leave them uninitialized, the ILE is expanded and the extra 791 // fields are then filled with NoInitExpr. 792 unsigned NumElems = numStructUnionElements(ILE->getType()); 793 if (RDecl->hasFlexibleArrayMember()) 794 ++NumElems; 795 if (!VerifyOnly && ILE->getNumInits() < NumElems) 796 ILE->resizeInits(SemaRef.Context, NumElems); 797 798 unsigned Init = 0; 799 800 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) { 801 for (auto &Base : CXXRD->bases()) { 802 if (hadError) 803 return; 804 805 FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass, 806 FillWithNoInit); 807 ++Init; 808 } 809 } 810 811 for (auto *Field : RDecl->fields()) { 812 if (Field->isUnnamedBitfield()) 813 continue; 814 815 if (hadError) 816 return; 817 818 FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass, 819 FillWithNoInit); 820 if (hadError) 821 return; 822 823 ++Init; 824 825 // Only look at the first initialization of a union. 826 if (RDecl->isUnion()) 827 break; 828 } 829 } 830 831 return; 832 } 833 834 QualType ElementType; 835 836 InitializedEntity ElementEntity = Entity; 837 unsigned NumInits = ILE->getNumInits(); 838 unsigned NumElements = NumInits; 839 if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) { 840 ElementType = AType->getElementType(); 841 if (const auto *CAType = dyn_cast<ConstantArrayType>(AType)) 842 NumElements = CAType->getSize().getZExtValue(); 843 // For an array new with an unknown bound, ask for one additional element 844 // in order to populate the array filler. 845 if (Entity.isVariableLengthArrayNew()) 846 ++NumElements; 847 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, 848 0, Entity); 849 } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) { 850 ElementType = VType->getElementType(); 851 NumElements = VType->getNumElements(); 852 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, 853 0, Entity); 854 } else 855 ElementType = ILE->getType(); 856 857 bool SkipEmptyInitChecks = false; 858 for (unsigned Init = 0; Init != NumElements; ++Init) { 859 if (hadError) 860 return; 861 862 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement || 863 ElementEntity.getKind() == InitializedEntity::EK_VectorElement) 864 ElementEntity.setElementIndex(Init); 865 866 if (Init >= NumInits && (ILE->hasArrayFiller() || SkipEmptyInitChecks)) 867 return; 868 869 Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr); 870 if (!InitExpr && Init < NumInits && ILE->hasArrayFiller()) 871 ILE->setInit(Init, ILE->getArrayFiller()); 872 else if (!InitExpr && !ILE->hasArrayFiller()) { 873 // In VerifyOnly mode, there's no point performing empty initialization 874 // more than once. 875 if (SkipEmptyInitChecks) 876 continue; 877 878 Expr *Filler = nullptr; 879 880 if (FillWithNoInit) 881 Filler = new (SemaRef.Context) NoInitExpr(ElementType); 882 else { 883 ExprResult ElementInit = 884 PerformEmptyInit(ILE->getEndLoc(), ElementEntity); 885 if (ElementInit.isInvalid()) { 886 hadError = true; 887 return; 888 } 889 890 Filler = ElementInit.getAs<Expr>(); 891 } 892 893 if (hadError) { 894 // Do nothing 895 } else if (VerifyOnly) { 896 SkipEmptyInitChecks = true; 897 } else if (Init < NumInits) { 898 // For arrays, just set the expression used for value-initialization 899 // of the "holes" in the array. 900 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) 901 ILE->setArrayFiller(Filler); 902 else 903 ILE->setInit(Init, Filler); 904 } else { 905 // For arrays, just set the expression used for value-initialization 906 // of the rest of elements and exit. 907 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) { 908 ILE->setArrayFiller(Filler); 909 return; 910 } 911 912 if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) { 913 // Empty initialization requires a constructor call, so 914 // extend the initializer list to include the constructor 915 // call and make a note that we'll need to take another pass 916 // through the initializer list. 917 ILE->updateInit(SemaRef.Context, Init, Filler); 918 RequiresSecondPass = true; 919 } 920 } 921 } else if (InitListExpr *InnerILE 922 = dyn_cast_or_null<InitListExpr>(InitExpr)) { 923 FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass, 924 ILE, Init, FillWithNoInit); 925 } else if (DesignatedInitUpdateExpr *InnerDIUE = 926 dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr)) { 927 FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(), 928 RequiresSecondPass, ILE, Init, 929 /*FillWithNoInit =*/true); 930 } 931 } 932 } 933 934 static bool hasAnyDesignatedInits(const InitListExpr *IL) { 935 for (const Stmt *Init : *IL) 936 if (Init && isa<DesignatedInitExpr>(Init)) 937 return true; 938 return false; 939 } 940 941 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity, 942 InitListExpr *IL, QualType &T, bool VerifyOnly, 943 bool TreatUnavailableAsInvalid, 944 bool InOverloadResolution) 945 : SemaRef(S), VerifyOnly(VerifyOnly), 946 TreatUnavailableAsInvalid(TreatUnavailableAsInvalid), 947 InOverloadResolution(InOverloadResolution) { 948 if (!VerifyOnly || hasAnyDesignatedInits(IL)) { 949 FullyStructuredList = 950 createInitListExpr(T, IL->getSourceRange(), IL->getNumInits()); 951 952 // FIXME: Check that IL isn't already the semantic form of some other 953 // InitListExpr. If it is, we'd create a broken AST. 954 if (!VerifyOnly) 955 FullyStructuredList->setSyntacticForm(IL); 956 } 957 958 CheckExplicitInitList(Entity, IL, T, FullyStructuredList, 959 /*TopLevelObject=*/true); 960 961 if (!hadError && FullyStructuredList) { 962 bool RequiresSecondPass = false; 963 FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass, 964 /*OuterILE=*/nullptr, /*OuterIndex=*/0); 965 if (RequiresSecondPass && !hadError) 966 FillInEmptyInitializations(Entity, FullyStructuredList, 967 RequiresSecondPass, nullptr, 0); 968 } 969 if (hadError && FullyStructuredList) 970 FullyStructuredList->markError(); 971 } 972 973 int InitListChecker::numArrayElements(QualType DeclType) { 974 // FIXME: use a proper constant 975 int maxElements = 0x7FFFFFFF; 976 if (const ConstantArrayType *CAT = 977 SemaRef.Context.getAsConstantArrayType(DeclType)) { 978 maxElements = static_cast<int>(CAT->getSize().getZExtValue()); 979 } 980 return maxElements; 981 } 982 983 int InitListChecker::numStructUnionElements(QualType DeclType) { 984 RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl(); 985 int InitializableMembers = 0; 986 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl)) 987 InitializableMembers += CXXRD->getNumBases(); 988 for (const auto *Field : structDecl->fields()) 989 if (!Field->isUnnamedBitfield()) 990 ++InitializableMembers; 991 992 if (structDecl->isUnion()) 993 return std::min(InitializableMembers, 1); 994 return InitializableMembers - structDecl->hasFlexibleArrayMember(); 995 } 996 997 /// Determine whether Entity is an entity for which it is idiomatic to elide 998 /// the braces in aggregate initialization. 999 static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) { 1000 // Recursive initialization of the one and only field within an aggregate 1001 // class is considered idiomatic. This case arises in particular for 1002 // initialization of std::array, where the C++ standard suggests the idiom of 1003 // 1004 // std::array<T, N> arr = {1, 2, 3}; 1005 // 1006 // (where std::array is an aggregate struct containing a single array field. 1007 1008 // FIXME: Should aggregate initialization of a struct with a single 1009 // base class and no members also suppress the warning? 1010 if (Entity.getKind() != InitializedEntity::EK_Member || !Entity.getParent()) 1011 return false; 1012 1013 auto *ParentRD = 1014 Entity.getParent()->getType()->castAs<RecordType>()->getDecl(); 1015 if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(ParentRD)) 1016 if (CXXRD->getNumBases()) 1017 return false; 1018 1019 auto FieldIt = ParentRD->field_begin(); 1020 assert(FieldIt != ParentRD->field_end() && 1021 "no fields but have initializer for member?"); 1022 return ++FieldIt == ParentRD->field_end(); 1023 } 1024 1025 /// Check whether the range of the initializer \p ParentIList from element 1026 /// \p Index onwards can be used to initialize an object of type \p T. Update 1027 /// \p Index to indicate how many elements of the list were consumed. 1028 /// 1029 /// This also fills in \p StructuredList, from element \p StructuredIndex 1030 /// onwards, with the fully-braced, desugared form of the initialization. 1031 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity, 1032 InitListExpr *ParentIList, 1033 QualType T, unsigned &Index, 1034 InitListExpr *StructuredList, 1035 unsigned &StructuredIndex) { 1036 int maxElements = 0; 1037 1038 if (T->isArrayType()) 1039 maxElements = numArrayElements(T); 1040 else if (T->isRecordType()) 1041 maxElements = numStructUnionElements(T); 1042 else if (T->isVectorType()) 1043 maxElements = T->castAs<VectorType>()->getNumElements(); 1044 else 1045 llvm_unreachable("CheckImplicitInitList(): Illegal type"); 1046 1047 if (maxElements == 0) { 1048 if (!VerifyOnly) 1049 SemaRef.Diag(ParentIList->getInit(Index)->getBeginLoc(), 1050 diag::err_implicit_empty_initializer); 1051 ++Index; 1052 hadError = true; 1053 return; 1054 } 1055 1056 // Build a structured initializer list corresponding to this subobject. 1057 InitListExpr *StructuredSubobjectInitList = getStructuredSubobjectInit( 1058 ParentIList, Index, T, StructuredList, StructuredIndex, 1059 SourceRange(ParentIList->getInit(Index)->getBeginLoc(), 1060 ParentIList->getSourceRange().getEnd())); 1061 unsigned StructuredSubobjectInitIndex = 0; 1062 1063 // Check the element types and build the structural subobject. 1064 unsigned StartIndex = Index; 1065 CheckListElementTypes(Entity, ParentIList, T, 1066 /*SubobjectIsDesignatorContext=*/false, Index, 1067 StructuredSubobjectInitList, 1068 StructuredSubobjectInitIndex); 1069 1070 if (StructuredSubobjectInitList) { 1071 StructuredSubobjectInitList->setType(T); 1072 1073 unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1); 1074 // Update the structured sub-object initializer so that it's ending 1075 // range corresponds with the end of the last initializer it used. 1076 if (EndIndex < ParentIList->getNumInits() && 1077 ParentIList->getInit(EndIndex)) { 1078 SourceLocation EndLoc 1079 = ParentIList->getInit(EndIndex)->getSourceRange().getEnd(); 1080 StructuredSubobjectInitList->setRBraceLoc(EndLoc); 1081 } 1082 1083 // Complain about missing braces. 1084 if (!VerifyOnly && (T->isArrayType() || T->isRecordType()) && 1085 !ParentIList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) && 1086 !isIdiomaticBraceElisionEntity(Entity)) { 1087 SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(), 1088 diag::warn_missing_braces) 1089 << StructuredSubobjectInitList->getSourceRange() 1090 << FixItHint::CreateInsertion( 1091 StructuredSubobjectInitList->getBeginLoc(), "{") 1092 << FixItHint::CreateInsertion( 1093 SemaRef.getLocForEndOfToken( 1094 StructuredSubobjectInitList->getEndLoc()), 1095 "}"); 1096 } 1097 1098 // Warn if this type won't be an aggregate in future versions of C++. 1099 auto *CXXRD = T->getAsCXXRecordDecl(); 1100 if (!VerifyOnly && CXXRD && CXXRD->hasUserDeclaredConstructor()) { 1101 SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(), 1102 diag::warn_cxx20_compat_aggregate_init_with_ctors) 1103 << StructuredSubobjectInitList->getSourceRange() << T; 1104 } 1105 } 1106 } 1107 1108 /// Warn that \p Entity was of scalar type and was initialized by a 1109 /// single-element braced initializer list. 1110 static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity, 1111 SourceRange Braces) { 1112 // Don't warn during template instantiation. If the initialization was 1113 // non-dependent, we warned during the initial parse; otherwise, the 1114 // type might not be scalar in some uses of the template. 1115 if (S.inTemplateInstantiation()) 1116 return; 1117 1118 unsigned DiagID = 0; 1119 1120 switch (Entity.getKind()) { 1121 case InitializedEntity::EK_VectorElement: 1122 case InitializedEntity::EK_ComplexElement: 1123 case InitializedEntity::EK_ArrayElement: 1124 case InitializedEntity::EK_Parameter: 1125 case InitializedEntity::EK_Parameter_CF_Audited: 1126 case InitializedEntity::EK_Result: 1127 // Extra braces here are suspicious. 1128 DiagID = diag::warn_braces_around_init; 1129 break; 1130 1131 case InitializedEntity::EK_Member: 1132 // Warn on aggregate initialization but not on ctor init list or 1133 // default member initializer. 1134 if (Entity.getParent()) 1135 DiagID = diag::warn_braces_around_init; 1136 break; 1137 1138 case InitializedEntity::EK_Variable: 1139 case InitializedEntity::EK_LambdaCapture: 1140 // No warning, might be direct-list-initialization. 1141 // FIXME: Should we warn for copy-list-initialization in these cases? 1142 break; 1143 1144 case InitializedEntity::EK_New: 1145 case InitializedEntity::EK_Temporary: 1146 case InitializedEntity::EK_CompoundLiteralInit: 1147 // No warning, braces are part of the syntax of the underlying construct. 1148 break; 1149 1150 case InitializedEntity::EK_RelatedResult: 1151 // No warning, we already warned when initializing the result. 1152 break; 1153 1154 case InitializedEntity::EK_Exception: 1155 case InitializedEntity::EK_Base: 1156 case InitializedEntity::EK_Delegating: 1157 case InitializedEntity::EK_BlockElement: 1158 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 1159 case InitializedEntity::EK_Binding: 1160 case InitializedEntity::EK_StmtExprResult: 1161 llvm_unreachable("unexpected braced scalar init"); 1162 } 1163 1164 if (DiagID) { 1165 S.Diag(Braces.getBegin(), DiagID) 1166 << Entity.getType()->isSizelessBuiltinType() << Braces 1167 << FixItHint::CreateRemoval(Braces.getBegin()) 1168 << FixItHint::CreateRemoval(Braces.getEnd()); 1169 } 1170 } 1171 1172 /// Check whether the initializer \p IList (that was written with explicit 1173 /// braces) can be used to initialize an object of type \p T. 1174 /// 1175 /// This also fills in \p StructuredList with the fully-braced, desugared 1176 /// form of the initialization. 1177 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity, 1178 InitListExpr *IList, QualType &T, 1179 InitListExpr *StructuredList, 1180 bool TopLevelObject) { 1181 unsigned Index = 0, StructuredIndex = 0; 1182 CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true, 1183 Index, StructuredList, StructuredIndex, TopLevelObject); 1184 if (StructuredList) { 1185 QualType ExprTy = T; 1186 if (!ExprTy->isArrayType()) 1187 ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context); 1188 if (!VerifyOnly) 1189 IList->setType(ExprTy); 1190 StructuredList->setType(ExprTy); 1191 } 1192 if (hadError) 1193 return; 1194 1195 // Don't complain for incomplete types, since we'll get an error elsewhere. 1196 if (Index < IList->getNumInits() && !T->isIncompleteType()) { 1197 // We have leftover initializers 1198 bool ExtraInitsIsError = SemaRef.getLangOpts().CPlusPlus || 1199 (SemaRef.getLangOpts().OpenCL && T->isVectorType()); 1200 hadError = ExtraInitsIsError; 1201 if (VerifyOnly) { 1202 return; 1203 } else if (StructuredIndex == 1 && 1204 IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) == 1205 SIF_None) { 1206 unsigned DK = 1207 ExtraInitsIsError 1208 ? diag::err_excess_initializers_in_char_array_initializer 1209 : diag::ext_excess_initializers_in_char_array_initializer; 1210 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK) 1211 << IList->getInit(Index)->getSourceRange(); 1212 } else if (T->isSizelessBuiltinType()) { 1213 unsigned DK = ExtraInitsIsError 1214 ? diag::err_excess_initializers_for_sizeless_type 1215 : diag::ext_excess_initializers_for_sizeless_type; 1216 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK) 1217 << T << IList->getInit(Index)->getSourceRange(); 1218 } else { 1219 int initKind = T->isArrayType() ? 0 : 1220 T->isVectorType() ? 1 : 1221 T->isScalarType() ? 2 : 1222 T->isUnionType() ? 3 : 1223 4; 1224 1225 unsigned DK = ExtraInitsIsError ? diag::err_excess_initializers 1226 : diag::ext_excess_initializers; 1227 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK) 1228 << initKind << IList->getInit(Index)->getSourceRange(); 1229 } 1230 } 1231 1232 if (!VerifyOnly) { 1233 if (T->isScalarType() && IList->getNumInits() == 1 && 1234 !isa<InitListExpr>(IList->getInit(0))) 1235 warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange()); 1236 1237 // Warn if this is a class type that won't be an aggregate in future 1238 // versions of C++. 1239 auto *CXXRD = T->getAsCXXRecordDecl(); 1240 if (CXXRD && CXXRD->hasUserDeclaredConstructor()) { 1241 // Don't warn if there's an equivalent default constructor that would be 1242 // used instead. 1243 bool HasEquivCtor = false; 1244 if (IList->getNumInits() == 0) { 1245 auto *CD = SemaRef.LookupDefaultConstructor(CXXRD); 1246 HasEquivCtor = CD && !CD->isDeleted(); 1247 } 1248 1249 if (!HasEquivCtor) { 1250 SemaRef.Diag(IList->getBeginLoc(), 1251 diag::warn_cxx20_compat_aggregate_init_with_ctors) 1252 << IList->getSourceRange() << T; 1253 } 1254 } 1255 } 1256 } 1257 1258 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity, 1259 InitListExpr *IList, 1260 QualType &DeclType, 1261 bool SubobjectIsDesignatorContext, 1262 unsigned &Index, 1263 InitListExpr *StructuredList, 1264 unsigned &StructuredIndex, 1265 bool TopLevelObject) { 1266 if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) { 1267 // Explicitly braced initializer for complex type can be real+imaginary 1268 // parts. 1269 CheckComplexType(Entity, IList, DeclType, Index, 1270 StructuredList, StructuredIndex); 1271 } else if (DeclType->isScalarType()) { 1272 CheckScalarType(Entity, IList, DeclType, Index, 1273 StructuredList, StructuredIndex); 1274 } else if (DeclType->isVectorType()) { 1275 CheckVectorType(Entity, IList, DeclType, Index, 1276 StructuredList, StructuredIndex); 1277 } else if (DeclType->isRecordType()) { 1278 assert(DeclType->isAggregateType() && 1279 "non-aggregate records should be handed in CheckSubElementType"); 1280 RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl(); 1281 auto Bases = 1282 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(), 1283 CXXRecordDecl::base_class_iterator()); 1284 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1285 Bases = CXXRD->bases(); 1286 CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(), 1287 SubobjectIsDesignatorContext, Index, StructuredList, 1288 StructuredIndex, TopLevelObject); 1289 } else if (DeclType->isArrayType()) { 1290 llvm::APSInt Zero( 1291 SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()), 1292 false); 1293 CheckArrayType(Entity, IList, DeclType, Zero, 1294 SubobjectIsDesignatorContext, Index, 1295 StructuredList, StructuredIndex); 1296 } else if (DeclType->isVoidType() || DeclType->isFunctionType()) { 1297 // This type is invalid, issue a diagnostic. 1298 ++Index; 1299 if (!VerifyOnly) 1300 SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type) 1301 << DeclType; 1302 hadError = true; 1303 } else if (DeclType->isReferenceType()) { 1304 CheckReferenceType(Entity, IList, DeclType, Index, 1305 StructuredList, StructuredIndex); 1306 } else if (DeclType->isObjCObjectType()) { 1307 if (!VerifyOnly) 1308 SemaRef.Diag(IList->getBeginLoc(), diag::err_init_objc_class) << DeclType; 1309 hadError = true; 1310 } else if (DeclType->isOCLIntelSubgroupAVCType() || 1311 DeclType->isSizelessBuiltinType()) { 1312 // Checks for scalar type are sufficient for these types too. 1313 CheckScalarType(Entity, IList, DeclType, Index, StructuredList, 1314 StructuredIndex); 1315 } else { 1316 if (!VerifyOnly) 1317 SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type) 1318 << DeclType; 1319 hadError = true; 1320 } 1321 } 1322 1323 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity, 1324 InitListExpr *IList, 1325 QualType ElemType, 1326 unsigned &Index, 1327 InitListExpr *StructuredList, 1328 unsigned &StructuredIndex) { 1329 Expr *expr = IList->getInit(Index); 1330 1331 if (ElemType->isReferenceType()) 1332 return CheckReferenceType(Entity, IList, ElemType, Index, 1333 StructuredList, StructuredIndex); 1334 1335 if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) { 1336 if (SubInitList->getNumInits() == 1 && 1337 IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) == 1338 SIF_None) { 1339 // FIXME: It would be more faithful and no less correct to include an 1340 // InitListExpr in the semantic form of the initializer list in this case. 1341 expr = SubInitList->getInit(0); 1342 } 1343 // Nested aggregate initialization and C++ initialization are handled later. 1344 } else if (isa<ImplicitValueInitExpr>(expr)) { 1345 // This happens during template instantiation when we see an InitListExpr 1346 // that we've already checked once. 1347 assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) && 1348 "found implicit initialization for the wrong type"); 1349 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1350 ++Index; 1351 return; 1352 } 1353 1354 if (SemaRef.getLangOpts().CPlusPlus || isa<InitListExpr>(expr)) { 1355 // C++ [dcl.init.aggr]p2: 1356 // Each member is copy-initialized from the corresponding 1357 // initializer-clause. 1358 1359 // FIXME: Better EqualLoc? 1360 InitializationKind Kind = 1361 InitializationKind::CreateCopy(expr->getBeginLoc(), SourceLocation()); 1362 1363 // Vector elements can be initialized from other vectors in which case 1364 // we need initialization entity with a type of a vector (and not a vector 1365 // element!) initializing multiple vector elements. 1366 auto TmpEntity = 1367 (ElemType->isExtVectorType() && !Entity.getType()->isExtVectorType()) 1368 ? InitializedEntity::InitializeTemporary(ElemType) 1369 : Entity; 1370 1371 InitializationSequence Seq(SemaRef, TmpEntity, Kind, expr, 1372 /*TopLevelOfInitList*/ true); 1373 1374 // C++14 [dcl.init.aggr]p13: 1375 // If the assignment-expression can initialize a member, the member is 1376 // initialized. Otherwise [...] brace elision is assumed 1377 // 1378 // Brace elision is never performed if the element is not an 1379 // assignment-expression. 1380 if (Seq || isa<InitListExpr>(expr)) { 1381 if (!VerifyOnly) { 1382 ExprResult Result = Seq.Perform(SemaRef, TmpEntity, Kind, expr); 1383 if (Result.isInvalid()) 1384 hadError = true; 1385 1386 UpdateStructuredListElement(StructuredList, StructuredIndex, 1387 Result.getAs<Expr>()); 1388 } else if (!Seq) { 1389 hadError = true; 1390 } else if (StructuredList) { 1391 UpdateStructuredListElement(StructuredList, StructuredIndex, 1392 getDummyInit()); 1393 } 1394 ++Index; 1395 return; 1396 } 1397 1398 // Fall through for subaggregate initialization 1399 } else if (ElemType->isScalarType() || ElemType->isAtomicType()) { 1400 // FIXME: Need to handle atomic aggregate types with implicit init lists. 1401 return CheckScalarType(Entity, IList, ElemType, Index, 1402 StructuredList, StructuredIndex); 1403 } else if (const ArrayType *arrayType = 1404 SemaRef.Context.getAsArrayType(ElemType)) { 1405 // arrayType can be incomplete if we're initializing a flexible 1406 // array member. There's nothing we can do with the completed 1407 // type here, though. 1408 1409 if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) { 1410 // FIXME: Should we do this checking in verify-only mode? 1411 if (!VerifyOnly) 1412 CheckStringInit(expr, ElemType, arrayType, SemaRef); 1413 if (StructuredList) 1414 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1415 ++Index; 1416 return; 1417 } 1418 1419 // Fall through for subaggregate initialization. 1420 1421 } else { 1422 assert((ElemType->isRecordType() || ElemType->isVectorType() || 1423 ElemType->isOpenCLSpecificType()) && "Unexpected type"); 1424 1425 // C99 6.7.8p13: 1426 // 1427 // The initializer for a structure or union object that has 1428 // automatic storage duration shall be either an initializer 1429 // list as described below, or a single expression that has 1430 // compatible structure or union type. In the latter case, the 1431 // initial value of the object, including unnamed members, is 1432 // that of the expression. 1433 ExprResult ExprRes = expr; 1434 if (SemaRef.CheckSingleAssignmentConstraints( 1435 ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) { 1436 if (ExprRes.isInvalid()) 1437 hadError = true; 1438 else { 1439 ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get()); 1440 if (ExprRes.isInvalid()) 1441 hadError = true; 1442 } 1443 UpdateStructuredListElement(StructuredList, StructuredIndex, 1444 ExprRes.getAs<Expr>()); 1445 ++Index; 1446 return; 1447 } 1448 ExprRes.get(); 1449 // Fall through for subaggregate initialization 1450 } 1451 1452 // C++ [dcl.init.aggr]p12: 1453 // 1454 // [...] Otherwise, if the member is itself a non-empty 1455 // subaggregate, brace elision is assumed and the initializer is 1456 // considered for the initialization of the first member of 1457 // the subaggregate. 1458 // OpenCL vector initializer is handled elsewhere. 1459 if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) || 1460 ElemType->isAggregateType()) { 1461 CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList, 1462 StructuredIndex); 1463 ++StructuredIndex; 1464 } else { 1465 if (!VerifyOnly) { 1466 // We cannot initialize this element, so let PerformCopyInitialization 1467 // produce the appropriate diagnostic. We already checked that this 1468 // initialization will fail. 1469 ExprResult Copy = 1470 SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr, 1471 /*TopLevelOfInitList=*/true); 1472 (void)Copy; 1473 assert(Copy.isInvalid() && 1474 "expected non-aggregate initialization to fail"); 1475 } 1476 hadError = true; 1477 ++Index; 1478 ++StructuredIndex; 1479 } 1480 } 1481 1482 void InitListChecker::CheckComplexType(const InitializedEntity &Entity, 1483 InitListExpr *IList, QualType DeclType, 1484 unsigned &Index, 1485 InitListExpr *StructuredList, 1486 unsigned &StructuredIndex) { 1487 assert(Index == 0 && "Index in explicit init list must be zero"); 1488 1489 // As an extension, clang supports complex initializers, which initialize 1490 // a complex number component-wise. When an explicit initializer list for 1491 // a complex number contains two two initializers, this extension kicks in: 1492 // it exepcts the initializer list to contain two elements convertible to 1493 // the element type of the complex type. The first element initializes 1494 // the real part, and the second element intitializes the imaginary part. 1495 1496 if (IList->getNumInits() != 2) 1497 return CheckScalarType(Entity, IList, DeclType, Index, StructuredList, 1498 StructuredIndex); 1499 1500 // This is an extension in C. (The builtin _Complex type does not exist 1501 // in the C++ standard.) 1502 if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly) 1503 SemaRef.Diag(IList->getBeginLoc(), diag::ext_complex_component_init) 1504 << IList->getSourceRange(); 1505 1506 // Initialize the complex number. 1507 QualType elementType = DeclType->castAs<ComplexType>()->getElementType(); 1508 InitializedEntity ElementEntity = 1509 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1510 1511 for (unsigned i = 0; i < 2; ++i) { 1512 ElementEntity.setElementIndex(Index); 1513 CheckSubElementType(ElementEntity, IList, elementType, Index, 1514 StructuredList, StructuredIndex); 1515 } 1516 } 1517 1518 void InitListChecker::CheckScalarType(const InitializedEntity &Entity, 1519 InitListExpr *IList, QualType DeclType, 1520 unsigned &Index, 1521 InitListExpr *StructuredList, 1522 unsigned &StructuredIndex) { 1523 if (Index >= IList->getNumInits()) { 1524 if (!VerifyOnly) { 1525 if (DeclType->isSizelessBuiltinType()) 1526 SemaRef.Diag(IList->getBeginLoc(), 1527 SemaRef.getLangOpts().CPlusPlus11 1528 ? diag::warn_cxx98_compat_empty_sizeless_initializer 1529 : diag::err_empty_sizeless_initializer) 1530 << DeclType << IList->getSourceRange(); 1531 else 1532 SemaRef.Diag(IList->getBeginLoc(), 1533 SemaRef.getLangOpts().CPlusPlus11 1534 ? diag::warn_cxx98_compat_empty_scalar_initializer 1535 : diag::err_empty_scalar_initializer) 1536 << IList->getSourceRange(); 1537 } 1538 hadError = !SemaRef.getLangOpts().CPlusPlus11; 1539 ++Index; 1540 ++StructuredIndex; 1541 return; 1542 } 1543 1544 Expr *expr = IList->getInit(Index); 1545 if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) { 1546 // FIXME: This is invalid, and accepting it causes overload resolution 1547 // to pick the wrong overload in some corner cases. 1548 if (!VerifyOnly) 1549 SemaRef.Diag(SubIList->getBeginLoc(), diag::ext_many_braces_around_init) 1550 << DeclType->isSizelessBuiltinType() << SubIList->getSourceRange(); 1551 1552 CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList, 1553 StructuredIndex); 1554 return; 1555 } else if (isa<DesignatedInitExpr>(expr)) { 1556 if (!VerifyOnly) 1557 SemaRef.Diag(expr->getBeginLoc(), 1558 diag::err_designator_for_scalar_or_sizeless_init) 1559 << DeclType->isSizelessBuiltinType() << DeclType 1560 << expr->getSourceRange(); 1561 hadError = true; 1562 ++Index; 1563 ++StructuredIndex; 1564 return; 1565 } 1566 1567 ExprResult Result; 1568 if (VerifyOnly) { 1569 if (SemaRef.CanPerformCopyInitialization(Entity, expr)) 1570 Result = getDummyInit(); 1571 else 1572 Result = ExprError(); 1573 } else { 1574 Result = 1575 SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr, 1576 /*TopLevelOfInitList=*/true); 1577 } 1578 1579 Expr *ResultExpr = nullptr; 1580 1581 if (Result.isInvalid()) 1582 hadError = true; // types weren't compatible. 1583 else { 1584 ResultExpr = Result.getAs<Expr>(); 1585 1586 if (ResultExpr != expr && !VerifyOnly) { 1587 // The type was promoted, update initializer list. 1588 // FIXME: Why are we updating the syntactic init list? 1589 IList->setInit(Index, ResultExpr); 1590 } 1591 } 1592 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr); 1593 ++Index; 1594 } 1595 1596 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity, 1597 InitListExpr *IList, QualType DeclType, 1598 unsigned &Index, 1599 InitListExpr *StructuredList, 1600 unsigned &StructuredIndex) { 1601 if (Index >= IList->getNumInits()) { 1602 // FIXME: It would be wonderful if we could point at the actual member. In 1603 // general, it would be useful to pass location information down the stack, 1604 // so that we know the location (or decl) of the "current object" being 1605 // initialized. 1606 if (!VerifyOnly) 1607 SemaRef.Diag(IList->getBeginLoc(), 1608 diag::err_init_reference_member_uninitialized) 1609 << DeclType << IList->getSourceRange(); 1610 hadError = true; 1611 ++Index; 1612 ++StructuredIndex; 1613 return; 1614 } 1615 1616 Expr *expr = IList->getInit(Index); 1617 if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) { 1618 if (!VerifyOnly) 1619 SemaRef.Diag(IList->getBeginLoc(), diag::err_init_non_aggr_init_list) 1620 << DeclType << IList->getSourceRange(); 1621 hadError = true; 1622 ++Index; 1623 ++StructuredIndex; 1624 return; 1625 } 1626 1627 ExprResult Result; 1628 if (VerifyOnly) { 1629 if (SemaRef.CanPerformCopyInitialization(Entity,expr)) 1630 Result = getDummyInit(); 1631 else 1632 Result = ExprError(); 1633 } else { 1634 Result = 1635 SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr, 1636 /*TopLevelOfInitList=*/true); 1637 } 1638 1639 if (Result.isInvalid()) 1640 hadError = true; 1641 1642 expr = Result.getAs<Expr>(); 1643 // FIXME: Why are we updating the syntactic init list? 1644 if (!VerifyOnly && expr) 1645 IList->setInit(Index, expr); 1646 1647 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1648 ++Index; 1649 } 1650 1651 void InitListChecker::CheckVectorType(const InitializedEntity &Entity, 1652 InitListExpr *IList, QualType DeclType, 1653 unsigned &Index, 1654 InitListExpr *StructuredList, 1655 unsigned &StructuredIndex) { 1656 const VectorType *VT = DeclType->castAs<VectorType>(); 1657 unsigned maxElements = VT->getNumElements(); 1658 unsigned numEltsInit = 0; 1659 QualType elementType = VT->getElementType(); 1660 1661 if (Index >= IList->getNumInits()) { 1662 // Make sure the element type can be value-initialized. 1663 CheckEmptyInitializable( 1664 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity), 1665 IList->getEndLoc()); 1666 return; 1667 } 1668 1669 if (!SemaRef.getLangOpts().OpenCL) { 1670 // If the initializing element is a vector, try to copy-initialize 1671 // instead of breaking it apart (which is doomed to failure anyway). 1672 Expr *Init = IList->getInit(Index); 1673 if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) { 1674 ExprResult Result; 1675 if (VerifyOnly) { 1676 if (SemaRef.CanPerformCopyInitialization(Entity, Init)) 1677 Result = getDummyInit(); 1678 else 1679 Result = ExprError(); 1680 } else { 1681 Result = 1682 SemaRef.PerformCopyInitialization(Entity, Init->getBeginLoc(), Init, 1683 /*TopLevelOfInitList=*/true); 1684 } 1685 1686 Expr *ResultExpr = nullptr; 1687 if (Result.isInvalid()) 1688 hadError = true; // types weren't compatible. 1689 else { 1690 ResultExpr = Result.getAs<Expr>(); 1691 1692 if (ResultExpr != Init && !VerifyOnly) { 1693 // The type was promoted, update initializer list. 1694 // FIXME: Why are we updating the syntactic init list? 1695 IList->setInit(Index, ResultExpr); 1696 } 1697 } 1698 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr); 1699 ++Index; 1700 return; 1701 } 1702 1703 InitializedEntity ElementEntity = 1704 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1705 1706 for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) { 1707 // Don't attempt to go past the end of the init list 1708 if (Index >= IList->getNumInits()) { 1709 CheckEmptyInitializable(ElementEntity, IList->getEndLoc()); 1710 break; 1711 } 1712 1713 ElementEntity.setElementIndex(Index); 1714 CheckSubElementType(ElementEntity, IList, elementType, Index, 1715 StructuredList, StructuredIndex); 1716 } 1717 1718 if (VerifyOnly) 1719 return; 1720 1721 bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian(); 1722 const VectorType *T = Entity.getType()->castAs<VectorType>(); 1723 if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector || 1724 T->getVectorKind() == VectorType::NeonPolyVector)) { 1725 // The ability to use vector initializer lists is a GNU vector extension 1726 // and is unrelated to the NEON intrinsics in arm_neon.h. On little 1727 // endian machines it works fine, however on big endian machines it 1728 // exhibits surprising behaviour: 1729 // 1730 // uint32x2_t x = {42, 64}; 1731 // return vget_lane_u32(x, 0); // Will return 64. 1732 // 1733 // Because of this, explicitly call out that it is non-portable. 1734 // 1735 SemaRef.Diag(IList->getBeginLoc(), 1736 diag::warn_neon_vector_initializer_non_portable); 1737 1738 const char *typeCode; 1739 unsigned typeSize = SemaRef.Context.getTypeSize(elementType); 1740 1741 if (elementType->isFloatingType()) 1742 typeCode = "f"; 1743 else if (elementType->isSignedIntegerType()) 1744 typeCode = "s"; 1745 else if (elementType->isUnsignedIntegerType()) 1746 typeCode = "u"; 1747 else 1748 llvm_unreachable("Invalid element type!"); 1749 1750 SemaRef.Diag(IList->getBeginLoc(), 1751 SemaRef.Context.getTypeSize(VT) > 64 1752 ? diag::note_neon_vector_initializer_non_portable_q 1753 : diag::note_neon_vector_initializer_non_portable) 1754 << typeCode << typeSize; 1755 } 1756 1757 return; 1758 } 1759 1760 InitializedEntity ElementEntity = 1761 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1762 1763 // OpenCL initializers allows vectors to be constructed from vectors. 1764 for (unsigned i = 0; i < maxElements; ++i) { 1765 // Don't attempt to go past the end of the init list 1766 if (Index >= IList->getNumInits()) 1767 break; 1768 1769 ElementEntity.setElementIndex(Index); 1770 1771 QualType IType = IList->getInit(Index)->getType(); 1772 if (!IType->isVectorType()) { 1773 CheckSubElementType(ElementEntity, IList, elementType, Index, 1774 StructuredList, StructuredIndex); 1775 ++numEltsInit; 1776 } else { 1777 QualType VecType; 1778 const VectorType *IVT = IType->castAs<VectorType>(); 1779 unsigned numIElts = IVT->getNumElements(); 1780 1781 if (IType->isExtVectorType()) 1782 VecType = SemaRef.Context.getExtVectorType(elementType, numIElts); 1783 else 1784 VecType = SemaRef.Context.getVectorType(elementType, numIElts, 1785 IVT->getVectorKind()); 1786 CheckSubElementType(ElementEntity, IList, VecType, Index, 1787 StructuredList, StructuredIndex); 1788 numEltsInit += numIElts; 1789 } 1790 } 1791 1792 // OpenCL requires all elements to be initialized. 1793 if (numEltsInit != maxElements) { 1794 if (!VerifyOnly) 1795 SemaRef.Diag(IList->getBeginLoc(), 1796 diag::err_vector_incorrect_num_initializers) 1797 << (numEltsInit < maxElements) << maxElements << numEltsInit; 1798 hadError = true; 1799 } 1800 } 1801 1802 /// Check if the type of a class element has an accessible destructor, and marks 1803 /// it referenced. Returns true if we shouldn't form a reference to the 1804 /// destructor. 1805 /// 1806 /// Aggregate initialization requires a class element's destructor be 1807 /// accessible per 11.6.1 [dcl.init.aggr]: 1808 /// 1809 /// The destructor for each element of class type is potentially invoked 1810 /// (15.4 [class.dtor]) from the context where the aggregate initialization 1811 /// occurs. 1812 static bool checkDestructorReference(QualType ElementType, SourceLocation Loc, 1813 Sema &SemaRef) { 1814 auto *CXXRD = ElementType->getAsCXXRecordDecl(); 1815 if (!CXXRD) 1816 return false; 1817 1818 CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(CXXRD); 1819 SemaRef.CheckDestructorAccess(Loc, Destructor, 1820 SemaRef.PDiag(diag::err_access_dtor_temp) 1821 << ElementType); 1822 SemaRef.MarkFunctionReferenced(Loc, Destructor); 1823 return SemaRef.DiagnoseUseOfDecl(Destructor, Loc); 1824 } 1825 1826 void InitListChecker::CheckArrayType(const InitializedEntity &Entity, 1827 InitListExpr *IList, QualType &DeclType, 1828 llvm::APSInt elementIndex, 1829 bool SubobjectIsDesignatorContext, 1830 unsigned &Index, 1831 InitListExpr *StructuredList, 1832 unsigned &StructuredIndex) { 1833 const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType); 1834 1835 if (!VerifyOnly) { 1836 if (checkDestructorReference(arrayType->getElementType(), 1837 IList->getEndLoc(), SemaRef)) { 1838 hadError = true; 1839 return; 1840 } 1841 } 1842 1843 // Check for the special-case of initializing an array with a string. 1844 if (Index < IList->getNumInits()) { 1845 if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) == 1846 SIF_None) { 1847 // We place the string literal directly into the resulting 1848 // initializer list. This is the only place where the structure 1849 // of the structured initializer list doesn't match exactly, 1850 // because doing so would involve allocating one character 1851 // constant for each string. 1852 // FIXME: Should we do these checks in verify-only mode too? 1853 if (!VerifyOnly) 1854 CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef); 1855 if (StructuredList) { 1856 UpdateStructuredListElement(StructuredList, StructuredIndex, 1857 IList->getInit(Index)); 1858 StructuredList->resizeInits(SemaRef.Context, StructuredIndex); 1859 } 1860 ++Index; 1861 return; 1862 } 1863 } 1864 if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) { 1865 // Check for VLAs; in standard C it would be possible to check this 1866 // earlier, but I don't know where clang accepts VLAs (gcc accepts 1867 // them in all sorts of strange places). 1868 if (!VerifyOnly) 1869 SemaRef.Diag(VAT->getSizeExpr()->getBeginLoc(), 1870 diag::err_variable_object_no_init) 1871 << VAT->getSizeExpr()->getSourceRange(); 1872 hadError = true; 1873 ++Index; 1874 ++StructuredIndex; 1875 return; 1876 } 1877 1878 // We might know the maximum number of elements in advance. 1879 llvm::APSInt maxElements(elementIndex.getBitWidth(), 1880 elementIndex.isUnsigned()); 1881 bool maxElementsKnown = false; 1882 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) { 1883 maxElements = CAT->getSize(); 1884 elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth()); 1885 elementIndex.setIsUnsigned(maxElements.isUnsigned()); 1886 maxElementsKnown = true; 1887 } 1888 1889 QualType elementType = arrayType->getElementType(); 1890 while (Index < IList->getNumInits()) { 1891 Expr *Init = IList->getInit(Index); 1892 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { 1893 // If we're not the subobject that matches up with the '{' for 1894 // the designator, we shouldn't be handling the 1895 // designator. Return immediately. 1896 if (!SubobjectIsDesignatorContext) 1897 return; 1898 1899 // Handle this designated initializer. elementIndex will be 1900 // updated to be the next array element we'll initialize. 1901 if (CheckDesignatedInitializer(Entity, IList, DIE, 0, 1902 DeclType, nullptr, &elementIndex, Index, 1903 StructuredList, StructuredIndex, true, 1904 false)) { 1905 hadError = true; 1906 continue; 1907 } 1908 1909 if (elementIndex.getBitWidth() > maxElements.getBitWidth()) 1910 maxElements = maxElements.extend(elementIndex.getBitWidth()); 1911 else if (elementIndex.getBitWidth() < maxElements.getBitWidth()) 1912 elementIndex = elementIndex.extend(maxElements.getBitWidth()); 1913 elementIndex.setIsUnsigned(maxElements.isUnsigned()); 1914 1915 // If the array is of incomplete type, keep track of the number of 1916 // elements in the initializer. 1917 if (!maxElementsKnown && elementIndex > maxElements) 1918 maxElements = elementIndex; 1919 1920 continue; 1921 } 1922 1923 // If we know the maximum number of elements, and we've already 1924 // hit it, stop consuming elements in the initializer list. 1925 if (maxElementsKnown && elementIndex == maxElements) 1926 break; 1927 1928 InitializedEntity ElementEntity = 1929 InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex, 1930 Entity); 1931 // Check this element. 1932 CheckSubElementType(ElementEntity, IList, elementType, Index, 1933 StructuredList, StructuredIndex); 1934 ++elementIndex; 1935 1936 // If the array is of incomplete type, keep track of the number of 1937 // elements in the initializer. 1938 if (!maxElementsKnown && elementIndex > maxElements) 1939 maxElements = elementIndex; 1940 } 1941 if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) { 1942 // If this is an incomplete array type, the actual type needs to 1943 // be calculated here. 1944 llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned()); 1945 if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) { 1946 // Sizing an array implicitly to zero is not allowed by ISO C, 1947 // but is supported by GNU. 1948 SemaRef.Diag(IList->getBeginLoc(), diag::ext_typecheck_zero_array_size); 1949 } 1950 1951 DeclType = SemaRef.Context.getConstantArrayType( 1952 elementType, maxElements, nullptr, ArrayType::Normal, 0); 1953 } 1954 if (!hadError) { 1955 // If there are any members of the array that get value-initialized, check 1956 // that is possible. That happens if we know the bound and don't have 1957 // enough elements, or if we're performing an array new with an unknown 1958 // bound. 1959 if ((maxElementsKnown && elementIndex < maxElements) || 1960 Entity.isVariableLengthArrayNew()) 1961 CheckEmptyInitializable( 1962 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity), 1963 IList->getEndLoc()); 1964 } 1965 } 1966 1967 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity, 1968 Expr *InitExpr, 1969 FieldDecl *Field, 1970 bool TopLevelObject) { 1971 // Handle GNU flexible array initializers. 1972 unsigned FlexArrayDiag; 1973 if (isa<InitListExpr>(InitExpr) && 1974 cast<InitListExpr>(InitExpr)->getNumInits() == 0) { 1975 // Empty flexible array init always allowed as an extension 1976 FlexArrayDiag = diag::ext_flexible_array_init; 1977 } else if (SemaRef.getLangOpts().CPlusPlus) { 1978 // Disallow flexible array init in C++; it is not required for gcc 1979 // compatibility, and it needs work to IRGen correctly in general. 1980 FlexArrayDiag = diag::err_flexible_array_init; 1981 } else if (!TopLevelObject) { 1982 // Disallow flexible array init on non-top-level object 1983 FlexArrayDiag = diag::err_flexible_array_init; 1984 } else if (Entity.getKind() != InitializedEntity::EK_Variable) { 1985 // Disallow flexible array init on anything which is not a variable. 1986 FlexArrayDiag = diag::err_flexible_array_init; 1987 } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) { 1988 // Disallow flexible array init on local variables. 1989 FlexArrayDiag = diag::err_flexible_array_init; 1990 } else { 1991 // Allow other cases. 1992 FlexArrayDiag = diag::ext_flexible_array_init; 1993 } 1994 1995 if (!VerifyOnly) { 1996 SemaRef.Diag(InitExpr->getBeginLoc(), FlexArrayDiag) 1997 << InitExpr->getBeginLoc(); 1998 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 1999 << Field; 2000 } 2001 2002 return FlexArrayDiag != diag::ext_flexible_array_init; 2003 } 2004 2005 void InitListChecker::CheckStructUnionTypes( 2006 const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType, 2007 CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field, 2008 bool SubobjectIsDesignatorContext, unsigned &Index, 2009 InitListExpr *StructuredList, unsigned &StructuredIndex, 2010 bool TopLevelObject) { 2011 RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl(); 2012 2013 // If the record is invalid, some of it's members are invalid. To avoid 2014 // confusion, we forgo checking the intializer for the entire record. 2015 if (structDecl->isInvalidDecl()) { 2016 // Assume it was supposed to consume a single initializer. 2017 ++Index; 2018 hadError = true; 2019 return; 2020 } 2021 2022 if (DeclType->isUnionType() && IList->getNumInits() == 0) { 2023 RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl(); 2024 2025 if (!VerifyOnly) 2026 for (FieldDecl *FD : RD->fields()) { 2027 QualType ET = SemaRef.Context.getBaseElementType(FD->getType()); 2028 if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) { 2029 hadError = true; 2030 return; 2031 } 2032 } 2033 2034 // If there's a default initializer, use it. 2035 if (isa<CXXRecordDecl>(RD) && 2036 cast<CXXRecordDecl>(RD)->hasInClassInitializer()) { 2037 if (!StructuredList) 2038 return; 2039 for (RecordDecl::field_iterator FieldEnd = RD->field_end(); 2040 Field != FieldEnd; ++Field) { 2041 if (Field->hasInClassInitializer()) { 2042 StructuredList->setInitializedFieldInUnion(*Field); 2043 // FIXME: Actually build a CXXDefaultInitExpr? 2044 return; 2045 } 2046 } 2047 } 2048 2049 // Value-initialize the first member of the union that isn't an unnamed 2050 // bitfield. 2051 for (RecordDecl::field_iterator FieldEnd = RD->field_end(); 2052 Field != FieldEnd; ++Field) { 2053 if (!Field->isUnnamedBitfield()) { 2054 CheckEmptyInitializable( 2055 InitializedEntity::InitializeMember(*Field, &Entity), 2056 IList->getEndLoc()); 2057 if (StructuredList) 2058 StructuredList->setInitializedFieldInUnion(*Field); 2059 break; 2060 } 2061 } 2062 return; 2063 } 2064 2065 bool InitializedSomething = false; 2066 2067 // If we have any base classes, they are initialized prior to the fields. 2068 for (auto &Base : Bases) { 2069 Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr; 2070 2071 // Designated inits always initialize fields, so if we see one, all 2072 // remaining base classes have no explicit initializer. 2073 if (Init && isa<DesignatedInitExpr>(Init)) 2074 Init = nullptr; 2075 2076 SourceLocation InitLoc = Init ? Init->getBeginLoc() : IList->getEndLoc(); 2077 InitializedEntity BaseEntity = InitializedEntity::InitializeBase( 2078 SemaRef.Context, &Base, false, &Entity); 2079 if (Init) { 2080 CheckSubElementType(BaseEntity, IList, Base.getType(), Index, 2081 StructuredList, StructuredIndex); 2082 InitializedSomething = true; 2083 } else { 2084 CheckEmptyInitializable(BaseEntity, InitLoc); 2085 } 2086 2087 if (!VerifyOnly) 2088 if (checkDestructorReference(Base.getType(), InitLoc, SemaRef)) { 2089 hadError = true; 2090 return; 2091 } 2092 } 2093 2094 // If structDecl is a forward declaration, this loop won't do 2095 // anything except look at designated initializers; That's okay, 2096 // because an error should get printed out elsewhere. It might be 2097 // worthwhile to skip over the rest of the initializer, though. 2098 RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl(); 2099 RecordDecl::field_iterator FieldEnd = RD->field_end(); 2100 bool CheckForMissingFields = 2101 !IList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()); 2102 bool HasDesignatedInit = false; 2103 2104 while (Index < IList->getNumInits()) { 2105 Expr *Init = IList->getInit(Index); 2106 SourceLocation InitLoc = Init->getBeginLoc(); 2107 2108 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { 2109 // If we're not the subobject that matches up with the '{' for 2110 // the designator, we shouldn't be handling the 2111 // designator. Return immediately. 2112 if (!SubobjectIsDesignatorContext) 2113 return; 2114 2115 HasDesignatedInit = true; 2116 2117 // Handle this designated initializer. Field will be updated to 2118 // the next field that we'll be initializing. 2119 if (CheckDesignatedInitializer(Entity, IList, DIE, 0, 2120 DeclType, &Field, nullptr, Index, 2121 StructuredList, StructuredIndex, 2122 true, TopLevelObject)) 2123 hadError = true; 2124 else if (!VerifyOnly) { 2125 // Find the field named by the designated initializer. 2126 RecordDecl::field_iterator F = RD->field_begin(); 2127 while (std::next(F) != Field) 2128 ++F; 2129 QualType ET = SemaRef.Context.getBaseElementType(F->getType()); 2130 if (checkDestructorReference(ET, InitLoc, SemaRef)) { 2131 hadError = true; 2132 return; 2133 } 2134 } 2135 2136 InitializedSomething = true; 2137 2138 // Disable check for missing fields when designators are used. 2139 // This matches gcc behaviour. 2140 CheckForMissingFields = false; 2141 continue; 2142 } 2143 2144 if (Field == FieldEnd) { 2145 // We've run out of fields. We're done. 2146 break; 2147 } 2148 2149 // We've already initialized a member of a union. We're done. 2150 if (InitializedSomething && DeclType->isUnionType()) 2151 break; 2152 2153 // If we've hit the flexible array member at the end, we're done. 2154 if (Field->getType()->isIncompleteArrayType()) 2155 break; 2156 2157 if (Field->isUnnamedBitfield()) { 2158 // Don't initialize unnamed bitfields, e.g. "int : 20;" 2159 ++Field; 2160 continue; 2161 } 2162 2163 // Make sure we can use this declaration. 2164 bool InvalidUse; 2165 if (VerifyOnly) 2166 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid); 2167 else 2168 InvalidUse = SemaRef.DiagnoseUseOfDecl( 2169 *Field, IList->getInit(Index)->getBeginLoc()); 2170 if (InvalidUse) { 2171 ++Index; 2172 ++Field; 2173 hadError = true; 2174 continue; 2175 } 2176 2177 if (!VerifyOnly) { 2178 QualType ET = SemaRef.Context.getBaseElementType(Field->getType()); 2179 if (checkDestructorReference(ET, InitLoc, SemaRef)) { 2180 hadError = true; 2181 return; 2182 } 2183 } 2184 2185 InitializedEntity MemberEntity = 2186 InitializedEntity::InitializeMember(*Field, &Entity); 2187 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 2188 StructuredList, StructuredIndex); 2189 InitializedSomething = true; 2190 2191 if (DeclType->isUnionType() && StructuredList) { 2192 // Initialize the first field within the union. 2193 StructuredList->setInitializedFieldInUnion(*Field); 2194 } 2195 2196 ++Field; 2197 } 2198 2199 // Emit warnings for missing struct field initializers. 2200 if (!VerifyOnly && InitializedSomething && CheckForMissingFields && 2201 Field != FieldEnd && !Field->getType()->isIncompleteArrayType() && 2202 !DeclType->isUnionType()) { 2203 // It is possible we have one or more unnamed bitfields remaining. 2204 // Find first (if any) named field and emit warning. 2205 for (RecordDecl::field_iterator it = Field, end = RD->field_end(); 2206 it != end; ++it) { 2207 if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) { 2208 SemaRef.Diag(IList->getSourceRange().getEnd(), 2209 diag::warn_missing_field_initializers) << *it; 2210 break; 2211 } 2212 } 2213 } 2214 2215 // Check that any remaining fields can be value-initialized if we're not 2216 // building a structured list. (If we are, we'll check this later.) 2217 if (!StructuredList && Field != FieldEnd && !DeclType->isUnionType() && 2218 !Field->getType()->isIncompleteArrayType()) { 2219 for (; Field != FieldEnd && !hadError; ++Field) { 2220 if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer()) 2221 CheckEmptyInitializable( 2222 InitializedEntity::InitializeMember(*Field, &Entity), 2223 IList->getEndLoc()); 2224 } 2225 } 2226 2227 // Check that the types of the remaining fields have accessible destructors. 2228 if (!VerifyOnly) { 2229 // If the initializer expression has a designated initializer, check the 2230 // elements for which a designated initializer is not provided too. 2231 RecordDecl::field_iterator I = HasDesignatedInit ? RD->field_begin() 2232 : Field; 2233 for (RecordDecl::field_iterator E = RD->field_end(); I != E; ++I) { 2234 QualType ET = SemaRef.Context.getBaseElementType(I->getType()); 2235 if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) { 2236 hadError = true; 2237 return; 2238 } 2239 } 2240 } 2241 2242 if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() || 2243 Index >= IList->getNumInits()) 2244 return; 2245 2246 if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field, 2247 TopLevelObject)) { 2248 hadError = true; 2249 ++Index; 2250 return; 2251 } 2252 2253 InitializedEntity MemberEntity = 2254 InitializedEntity::InitializeMember(*Field, &Entity); 2255 2256 if (isa<InitListExpr>(IList->getInit(Index))) 2257 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 2258 StructuredList, StructuredIndex); 2259 else 2260 CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index, 2261 StructuredList, StructuredIndex); 2262 } 2263 2264 /// Expand a field designator that refers to a member of an 2265 /// anonymous struct or union into a series of field designators that 2266 /// refers to the field within the appropriate subobject. 2267 /// 2268 static void ExpandAnonymousFieldDesignator(Sema &SemaRef, 2269 DesignatedInitExpr *DIE, 2270 unsigned DesigIdx, 2271 IndirectFieldDecl *IndirectField) { 2272 typedef DesignatedInitExpr::Designator Designator; 2273 2274 // Build the replacement designators. 2275 SmallVector<Designator, 4> Replacements; 2276 for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(), 2277 PE = IndirectField->chain_end(); PI != PE; ++PI) { 2278 if (PI + 1 == PE) 2279 Replacements.push_back(Designator((IdentifierInfo *)nullptr, 2280 DIE->getDesignator(DesigIdx)->getDotLoc(), 2281 DIE->getDesignator(DesigIdx)->getFieldLoc())); 2282 else 2283 Replacements.push_back(Designator((IdentifierInfo *)nullptr, 2284 SourceLocation(), SourceLocation())); 2285 assert(isa<FieldDecl>(*PI)); 2286 Replacements.back().setField(cast<FieldDecl>(*PI)); 2287 } 2288 2289 // Expand the current designator into the set of replacement 2290 // designators, so we have a full subobject path down to where the 2291 // member of the anonymous struct/union is actually stored. 2292 DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0], 2293 &Replacements[0] + Replacements.size()); 2294 } 2295 2296 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef, 2297 DesignatedInitExpr *DIE) { 2298 unsigned NumIndexExprs = DIE->getNumSubExprs() - 1; 2299 SmallVector<Expr*, 4> IndexExprs(NumIndexExprs); 2300 for (unsigned I = 0; I < NumIndexExprs; ++I) 2301 IndexExprs[I] = DIE->getSubExpr(I + 1); 2302 return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(), 2303 IndexExprs, 2304 DIE->getEqualOrColonLoc(), 2305 DIE->usesGNUSyntax(), DIE->getInit()); 2306 } 2307 2308 namespace { 2309 2310 // Callback to only accept typo corrections that are for field members of 2311 // the given struct or union. 2312 class FieldInitializerValidatorCCC final : public CorrectionCandidateCallback { 2313 public: 2314 explicit FieldInitializerValidatorCCC(RecordDecl *RD) 2315 : Record(RD) {} 2316 2317 bool ValidateCandidate(const TypoCorrection &candidate) override { 2318 FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>(); 2319 return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record); 2320 } 2321 2322 std::unique_ptr<CorrectionCandidateCallback> clone() override { 2323 return std::make_unique<FieldInitializerValidatorCCC>(*this); 2324 } 2325 2326 private: 2327 RecordDecl *Record; 2328 }; 2329 2330 } // end anonymous namespace 2331 2332 /// Check the well-formedness of a C99 designated initializer. 2333 /// 2334 /// Determines whether the designated initializer @p DIE, which 2335 /// resides at the given @p Index within the initializer list @p 2336 /// IList, is well-formed for a current object of type @p DeclType 2337 /// (C99 6.7.8). The actual subobject that this designator refers to 2338 /// within the current subobject is returned in either 2339 /// @p NextField or @p NextElementIndex (whichever is appropriate). 2340 /// 2341 /// @param IList The initializer list in which this designated 2342 /// initializer occurs. 2343 /// 2344 /// @param DIE The designated initializer expression. 2345 /// 2346 /// @param DesigIdx The index of the current designator. 2347 /// 2348 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17), 2349 /// into which the designation in @p DIE should refer. 2350 /// 2351 /// @param NextField If non-NULL and the first designator in @p DIE is 2352 /// a field, this will be set to the field declaration corresponding 2353 /// to the field named by the designator. On input, this is expected to be 2354 /// the next field that would be initialized in the absence of designation, 2355 /// if the complete object being initialized is a struct. 2356 /// 2357 /// @param NextElementIndex If non-NULL and the first designator in @p 2358 /// DIE is an array designator or GNU array-range designator, this 2359 /// will be set to the last index initialized by this designator. 2360 /// 2361 /// @param Index Index into @p IList where the designated initializer 2362 /// @p DIE occurs. 2363 /// 2364 /// @param StructuredList The initializer list expression that 2365 /// describes all of the subobject initializers in the order they'll 2366 /// actually be initialized. 2367 /// 2368 /// @returns true if there was an error, false otherwise. 2369 bool 2370 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity, 2371 InitListExpr *IList, 2372 DesignatedInitExpr *DIE, 2373 unsigned DesigIdx, 2374 QualType &CurrentObjectType, 2375 RecordDecl::field_iterator *NextField, 2376 llvm::APSInt *NextElementIndex, 2377 unsigned &Index, 2378 InitListExpr *StructuredList, 2379 unsigned &StructuredIndex, 2380 bool FinishSubobjectInit, 2381 bool TopLevelObject) { 2382 if (DesigIdx == DIE->size()) { 2383 // C++20 designated initialization can result in direct-list-initialization 2384 // of the designated subobject. This is the only way that we can end up 2385 // performing direct initialization as part of aggregate initialization, so 2386 // it needs special handling. 2387 if (DIE->isDirectInit()) { 2388 Expr *Init = DIE->getInit(); 2389 assert(isa<InitListExpr>(Init) && 2390 "designator result in direct non-list initialization?"); 2391 InitializationKind Kind = InitializationKind::CreateDirectList( 2392 DIE->getBeginLoc(), Init->getBeginLoc(), Init->getEndLoc()); 2393 InitializationSequence Seq(SemaRef, Entity, Kind, Init, 2394 /*TopLevelOfInitList*/ true); 2395 if (StructuredList) { 2396 ExprResult Result = VerifyOnly 2397 ? getDummyInit() 2398 : Seq.Perform(SemaRef, Entity, Kind, Init); 2399 UpdateStructuredListElement(StructuredList, StructuredIndex, 2400 Result.get()); 2401 } 2402 ++Index; 2403 return !Seq; 2404 } 2405 2406 // Check the actual initialization for the designated object type. 2407 bool prevHadError = hadError; 2408 2409 // Temporarily remove the designator expression from the 2410 // initializer list that the child calls see, so that we don't try 2411 // to re-process the designator. 2412 unsigned OldIndex = Index; 2413 IList->setInit(OldIndex, DIE->getInit()); 2414 2415 CheckSubElementType(Entity, IList, CurrentObjectType, Index, 2416 StructuredList, StructuredIndex); 2417 2418 // Restore the designated initializer expression in the syntactic 2419 // form of the initializer list. 2420 if (IList->getInit(OldIndex) != DIE->getInit()) 2421 DIE->setInit(IList->getInit(OldIndex)); 2422 IList->setInit(OldIndex, DIE); 2423 2424 return hadError && !prevHadError; 2425 } 2426 2427 DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx); 2428 bool IsFirstDesignator = (DesigIdx == 0); 2429 if (IsFirstDesignator ? FullyStructuredList : StructuredList) { 2430 // Determine the structural initializer list that corresponds to the 2431 // current subobject. 2432 if (IsFirstDesignator) 2433 StructuredList = FullyStructuredList; 2434 else { 2435 Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ? 2436 StructuredList->getInit(StructuredIndex) : nullptr; 2437 if (!ExistingInit && StructuredList->hasArrayFiller()) 2438 ExistingInit = StructuredList->getArrayFiller(); 2439 2440 if (!ExistingInit) 2441 StructuredList = getStructuredSubobjectInit( 2442 IList, Index, CurrentObjectType, StructuredList, StructuredIndex, 2443 SourceRange(D->getBeginLoc(), DIE->getEndLoc())); 2444 else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit)) 2445 StructuredList = Result; 2446 else { 2447 // We are creating an initializer list that initializes the 2448 // subobjects of the current object, but there was already an 2449 // initialization that completely initialized the current 2450 // subobject, e.g., by a compound literal: 2451 // 2452 // struct X { int a, b; }; 2453 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; 2454 // 2455 // Here, xs[0].a == 1 and xs[0].b == 3, since the second, 2456 // designated initializer re-initializes only its current object 2457 // subobject [0].b. 2458 diagnoseInitOverride(ExistingInit, 2459 SourceRange(D->getBeginLoc(), DIE->getEndLoc()), 2460 /*FullyOverwritten=*/false); 2461 2462 if (!VerifyOnly) { 2463 if (DesignatedInitUpdateExpr *E = 2464 dyn_cast<DesignatedInitUpdateExpr>(ExistingInit)) 2465 StructuredList = E->getUpdater(); 2466 else { 2467 DesignatedInitUpdateExpr *DIUE = new (SemaRef.Context) 2468 DesignatedInitUpdateExpr(SemaRef.Context, D->getBeginLoc(), 2469 ExistingInit, DIE->getEndLoc()); 2470 StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE); 2471 StructuredList = DIUE->getUpdater(); 2472 } 2473 } else { 2474 // We don't need to track the structured representation of a 2475 // designated init update of an already-fully-initialized object in 2476 // verify-only mode. The only reason we would need the structure is 2477 // to determine where the uninitialized "holes" are, and in this 2478 // case, we know there aren't any and we can't introduce any. 2479 StructuredList = nullptr; 2480 } 2481 } 2482 } 2483 } 2484 2485 if (D->isFieldDesignator()) { 2486 // C99 6.7.8p7: 2487 // 2488 // If a designator has the form 2489 // 2490 // . identifier 2491 // 2492 // then the current object (defined below) shall have 2493 // structure or union type and the identifier shall be the 2494 // name of a member of that type. 2495 const RecordType *RT = CurrentObjectType->getAs<RecordType>(); 2496 if (!RT) { 2497 SourceLocation Loc = D->getDotLoc(); 2498 if (Loc.isInvalid()) 2499 Loc = D->getFieldLoc(); 2500 if (!VerifyOnly) 2501 SemaRef.Diag(Loc, diag::err_field_designator_non_aggr) 2502 << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType; 2503 ++Index; 2504 return true; 2505 } 2506 2507 FieldDecl *KnownField = D->getField(); 2508 if (!KnownField) { 2509 IdentifierInfo *FieldName = D->getFieldName(); 2510 DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName); 2511 for (NamedDecl *ND : Lookup) { 2512 if (auto *FD = dyn_cast<FieldDecl>(ND)) { 2513 KnownField = FD; 2514 break; 2515 } 2516 if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) { 2517 // In verify mode, don't modify the original. 2518 if (VerifyOnly) 2519 DIE = CloneDesignatedInitExpr(SemaRef, DIE); 2520 ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD); 2521 D = DIE->getDesignator(DesigIdx); 2522 KnownField = cast<FieldDecl>(*IFD->chain_begin()); 2523 break; 2524 } 2525 } 2526 if (!KnownField) { 2527 if (VerifyOnly) { 2528 ++Index; 2529 return true; // No typo correction when just trying this out. 2530 } 2531 2532 // Name lookup found something, but it wasn't a field. 2533 if (!Lookup.empty()) { 2534 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield) 2535 << FieldName; 2536 SemaRef.Diag(Lookup.front()->getLocation(), 2537 diag::note_field_designator_found); 2538 ++Index; 2539 return true; 2540 } 2541 2542 // Name lookup didn't find anything. 2543 // Determine whether this was a typo for another field name. 2544 FieldInitializerValidatorCCC CCC(RT->getDecl()); 2545 if (TypoCorrection Corrected = SemaRef.CorrectTypo( 2546 DeclarationNameInfo(FieldName, D->getFieldLoc()), 2547 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr, CCC, 2548 Sema::CTK_ErrorRecovery, RT->getDecl())) { 2549 SemaRef.diagnoseTypo( 2550 Corrected, 2551 SemaRef.PDiag(diag::err_field_designator_unknown_suggest) 2552 << FieldName << CurrentObjectType); 2553 KnownField = Corrected.getCorrectionDeclAs<FieldDecl>(); 2554 hadError = true; 2555 } else { 2556 // Typo correction didn't find anything. 2557 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown) 2558 << FieldName << CurrentObjectType; 2559 ++Index; 2560 return true; 2561 } 2562 } 2563 } 2564 2565 unsigned NumBases = 0; 2566 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2567 NumBases = CXXRD->getNumBases(); 2568 2569 unsigned FieldIndex = NumBases; 2570 2571 for (auto *FI : RT->getDecl()->fields()) { 2572 if (FI->isUnnamedBitfield()) 2573 continue; 2574 if (declaresSameEntity(KnownField, FI)) { 2575 KnownField = FI; 2576 break; 2577 } 2578 ++FieldIndex; 2579 } 2580 2581 RecordDecl::field_iterator Field = 2582 RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField)); 2583 2584 // All of the fields of a union are located at the same place in 2585 // the initializer list. 2586 if (RT->getDecl()->isUnion()) { 2587 FieldIndex = 0; 2588 if (StructuredList) { 2589 FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion(); 2590 if (CurrentField && !declaresSameEntity(CurrentField, *Field)) { 2591 assert(StructuredList->getNumInits() == 1 2592 && "A union should never have more than one initializer!"); 2593 2594 Expr *ExistingInit = StructuredList->getInit(0); 2595 if (ExistingInit) { 2596 // We're about to throw away an initializer, emit warning. 2597 diagnoseInitOverride( 2598 ExistingInit, SourceRange(D->getBeginLoc(), DIE->getEndLoc())); 2599 } 2600 2601 // remove existing initializer 2602 StructuredList->resizeInits(SemaRef.Context, 0); 2603 StructuredList->setInitializedFieldInUnion(nullptr); 2604 } 2605 2606 StructuredList->setInitializedFieldInUnion(*Field); 2607 } 2608 } 2609 2610 // Make sure we can use this declaration. 2611 bool InvalidUse; 2612 if (VerifyOnly) 2613 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid); 2614 else 2615 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc()); 2616 if (InvalidUse) { 2617 ++Index; 2618 return true; 2619 } 2620 2621 // C++20 [dcl.init.list]p3: 2622 // The ordered identifiers in the designators of the designated- 2623 // initializer-list shall form a subsequence of the ordered identifiers 2624 // in the direct non-static data members of T. 2625 // 2626 // Note that this is not a condition on forming the aggregate 2627 // initialization, only on actually performing initialization, 2628 // so it is not checked in VerifyOnly mode. 2629 // 2630 // FIXME: This is the only reordering diagnostic we produce, and it only 2631 // catches cases where we have a top-level field designator that jumps 2632 // backwards. This is the only such case that is reachable in an 2633 // otherwise-valid C++20 program, so is the only case that's required for 2634 // conformance, but for consistency, we should diagnose all the other 2635 // cases where a designator takes us backwards too. 2636 if (IsFirstDesignator && !VerifyOnly && SemaRef.getLangOpts().CPlusPlus && 2637 NextField && 2638 (*NextField == RT->getDecl()->field_end() || 2639 (*NextField)->getFieldIndex() > Field->getFieldIndex() + 1)) { 2640 // Find the field that we just initialized. 2641 FieldDecl *PrevField = nullptr; 2642 for (auto FI = RT->getDecl()->field_begin(); 2643 FI != RT->getDecl()->field_end(); ++FI) { 2644 if (FI->isUnnamedBitfield()) 2645 continue; 2646 if (*NextField != RT->getDecl()->field_end() && 2647 declaresSameEntity(*FI, **NextField)) 2648 break; 2649 PrevField = *FI; 2650 } 2651 2652 if (PrevField && 2653 PrevField->getFieldIndex() > KnownField->getFieldIndex()) { 2654 SemaRef.Diag(DIE->getBeginLoc(), diag::ext_designated_init_reordered) 2655 << KnownField << PrevField << DIE->getSourceRange(); 2656 2657 unsigned OldIndex = NumBases + PrevField->getFieldIndex(); 2658 if (StructuredList && OldIndex <= StructuredList->getNumInits()) { 2659 if (Expr *PrevInit = StructuredList->getInit(OldIndex)) { 2660 SemaRef.Diag(PrevInit->getBeginLoc(), 2661 diag::note_previous_field_init) 2662 << PrevField << PrevInit->getSourceRange(); 2663 } 2664 } 2665 } 2666 } 2667 2668 2669 // Update the designator with the field declaration. 2670 if (!VerifyOnly) 2671 D->setField(*Field); 2672 2673 // Make sure that our non-designated initializer list has space 2674 // for a subobject corresponding to this field. 2675 if (StructuredList && FieldIndex >= StructuredList->getNumInits()) 2676 StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1); 2677 2678 // This designator names a flexible array member. 2679 if (Field->getType()->isIncompleteArrayType()) { 2680 bool Invalid = false; 2681 if ((DesigIdx + 1) != DIE->size()) { 2682 // We can't designate an object within the flexible array 2683 // member (because GCC doesn't allow it). 2684 if (!VerifyOnly) { 2685 DesignatedInitExpr::Designator *NextD 2686 = DIE->getDesignator(DesigIdx + 1); 2687 SemaRef.Diag(NextD->getBeginLoc(), 2688 diag::err_designator_into_flexible_array_member) 2689 << SourceRange(NextD->getBeginLoc(), DIE->getEndLoc()); 2690 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 2691 << *Field; 2692 } 2693 Invalid = true; 2694 } 2695 2696 if (!hadError && !isa<InitListExpr>(DIE->getInit()) && 2697 !isa<StringLiteral>(DIE->getInit())) { 2698 // The initializer is not an initializer list. 2699 if (!VerifyOnly) { 2700 SemaRef.Diag(DIE->getInit()->getBeginLoc(), 2701 diag::err_flexible_array_init_needs_braces) 2702 << DIE->getInit()->getSourceRange(); 2703 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 2704 << *Field; 2705 } 2706 Invalid = true; 2707 } 2708 2709 // Check GNU flexible array initializer. 2710 if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field, 2711 TopLevelObject)) 2712 Invalid = true; 2713 2714 if (Invalid) { 2715 ++Index; 2716 return true; 2717 } 2718 2719 // Initialize the array. 2720 bool prevHadError = hadError; 2721 unsigned newStructuredIndex = FieldIndex; 2722 unsigned OldIndex = Index; 2723 IList->setInit(Index, DIE->getInit()); 2724 2725 InitializedEntity MemberEntity = 2726 InitializedEntity::InitializeMember(*Field, &Entity); 2727 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 2728 StructuredList, newStructuredIndex); 2729 2730 IList->setInit(OldIndex, DIE); 2731 if (hadError && !prevHadError) { 2732 ++Field; 2733 ++FieldIndex; 2734 if (NextField) 2735 *NextField = Field; 2736 StructuredIndex = FieldIndex; 2737 return true; 2738 } 2739 } else { 2740 // Recurse to check later designated subobjects. 2741 QualType FieldType = Field->getType(); 2742 unsigned newStructuredIndex = FieldIndex; 2743 2744 InitializedEntity MemberEntity = 2745 InitializedEntity::InitializeMember(*Field, &Entity); 2746 if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1, 2747 FieldType, nullptr, nullptr, Index, 2748 StructuredList, newStructuredIndex, 2749 FinishSubobjectInit, false)) 2750 return true; 2751 } 2752 2753 // Find the position of the next field to be initialized in this 2754 // subobject. 2755 ++Field; 2756 ++FieldIndex; 2757 2758 // If this the first designator, our caller will continue checking 2759 // the rest of this struct/class/union subobject. 2760 if (IsFirstDesignator) { 2761 if (NextField) 2762 *NextField = Field; 2763 StructuredIndex = FieldIndex; 2764 return false; 2765 } 2766 2767 if (!FinishSubobjectInit) 2768 return false; 2769 2770 // We've already initialized something in the union; we're done. 2771 if (RT->getDecl()->isUnion()) 2772 return hadError; 2773 2774 // Check the remaining fields within this class/struct/union subobject. 2775 bool prevHadError = hadError; 2776 2777 auto NoBases = 2778 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(), 2779 CXXRecordDecl::base_class_iterator()); 2780 CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field, 2781 false, Index, StructuredList, FieldIndex); 2782 return hadError && !prevHadError; 2783 } 2784 2785 // C99 6.7.8p6: 2786 // 2787 // If a designator has the form 2788 // 2789 // [ constant-expression ] 2790 // 2791 // then the current object (defined below) shall have array 2792 // type and the expression shall be an integer constant 2793 // expression. If the array is of unknown size, any 2794 // nonnegative value is valid. 2795 // 2796 // Additionally, cope with the GNU extension that permits 2797 // designators of the form 2798 // 2799 // [ constant-expression ... constant-expression ] 2800 const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType); 2801 if (!AT) { 2802 if (!VerifyOnly) 2803 SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array) 2804 << CurrentObjectType; 2805 ++Index; 2806 return true; 2807 } 2808 2809 Expr *IndexExpr = nullptr; 2810 llvm::APSInt DesignatedStartIndex, DesignatedEndIndex; 2811 if (D->isArrayDesignator()) { 2812 IndexExpr = DIE->getArrayIndex(*D); 2813 DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context); 2814 DesignatedEndIndex = DesignatedStartIndex; 2815 } else { 2816 assert(D->isArrayRangeDesignator() && "Need array-range designator"); 2817 2818 DesignatedStartIndex = 2819 DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context); 2820 DesignatedEndIndex = 2821 DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context); 2822 IndexExpr = DIE->getArrayRangeEnd(*D); 2823 2824 // Codegen can't handle evaluating array range designators that have side 2825 // effects, because we replicate the AST value for each initialized element. 2826 // As such, set the sawArrayRangeDesignator() bit if we initialize multiple 2827 // elements with something that has a side effect, so codegen can emit an 2828 // "error unsupported" error instead of miscompiling the app. 2829 if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&& 2830 DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly) 2831 FullyStructuredList->sawArrayRangeDesignator(); 2832 } 2833 2834 if (isa<ConstantArrayType>(AT)) { 2835 llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false); 2836 DesignatedStartIndex 2837 = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth()); 2838 DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned()); 2839 DesignatedEndIndex 2840 = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth()); 2841 DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned()); 2842 if (DesignatedEndIndex >= MaxElements) { 2843 if (!VerifyOnly) 2844 SemaRef.Diag(IndexExpr->getBeginLoc(), 2845 diag::err_array_designator_too_large) 2846 << DesignatedEndIndex.toString(10) << MaxElements.toString(10) 2847 << IndexExpr->getSourceRange(); 2848 ++Index; 2849 return true; 2850 } 2851 } else { 2852 unsigned DesignatedIndexBitWidth = 2853 ConstantArrayType::getMaxSizeBits(SemaRef.Context); 2854 DesignatedStartIndex = 2855 DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth); 2856 DesignatedEndIndex = 2857 DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth); 2858 DesignatedStartIndex.setIsUnsigned(true); 2859 DesignatedEndIndex.setIsUnsigned(true); 2860 } 2861 2862 bool IsStringLiteralInitUpdate = 2863 StructuredList && StructuredList->isStringLiteralInit(); 2864 if (IsStringLiteralInitUpdate && VerifyOnly) { 2865 // We're just verifying an update to a string literal init. We don't need 2866 // to split the string up into individual characters to do that. 2867 StructuredList = nullptr; 2868 } else if (IsStringLiteralInitUpdate) { 2869 // We're modifying a string literal init; we have to decompose the string 2870 // so we can modify the individual characters. 2871 ASTContext &Context = SemaRef.Context; 2872 Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens(); 2873 2874 // Compute the character type 2875 QualType CharTy = AT->getElementType(); 2876 2877 // Compute the type of the integer literals. 2878 QualType PromotedCharTy = CharTy; 2879 if (CharTy->isPromotableIntegerType()) 2880 PromotedCharTy = Context.getPromotedIntegerType(CharTy); 2881 unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy); 2882 2883 if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) { 2884 // Get the length of the string. 2885 uint64_t StrLen = SL->getLength(); 2886 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen)) 2887 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue(); 2888 StructuredList->resizeInits(Context, StrLen); 2889 2890 // Build a literal for each character in the string, and put them into 2891 // the init list. 2892 for (unsigned i = 0, e = StrLen; i != e; ++i) { 2893 llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i)); 2894 Expr *Init = new (Context) IntegerLiteral( 2895 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); 2896 if (CharTy != PromotedCharTy) 2897 Init = 2898 ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, Init, 2899 nullptr, VK_RValue, FPOptionsOverride()); 2900 StructuredList->updateInit(Context, i, Init); 2901 } 2902 } else { 2903 ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr); 2904 std::string Str; 2905 Context.getObjCEncodingForType(E->getEncodedType(), Str); 2906 2907 // Get the length of the string. 2908 uint64_t StrLen = Str.size(); 2909 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen)) 2910 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue(); 2911 StructuredList->resizeInits(Context, StrLen); 2912 2913 // Build a literal for each character in the string, and put them into 2914 // the init list. 2915 for (unsigned i = 0, e = StrLen; i != e; ++i) { 2916 llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]); 2917 Expr *Init = new (Context) IntegerLiteral( 2918 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); 2919 if (CharTy != PromotedCharTy) 2920 Init = 2921 ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, Init, 2922 nullptr, VK_RValue, FPOptionsOverride()); 2923 StructuredList->updateInit(Context, i, Init); 2924 } 2925 } 2926 } 2927 2928 // Make sure that our non-designated initializer list has space 2929 // for a subobject corresponding to this array element. 2930 if (StructuredList && 2931 DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits()) 2932 StructuredList->resizeInits(SemaRef.Context, 2933 DesignatedEndIndex.getZExtValue() + 1); 2934 2935 // Repeatedly perform subobject initializations in the range 2936 // [DesignatedStartIndex, DesignatedEndIndex]. 2937 2938 // Move to the next designator 2939 unsigned ElementIndex = DesignatedStartIndex.getZExtValue(); 2940 unsigned OldIndex = Index; 2941 2942 InitializedEntity ElementEntity = 2943 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 2944 2945 while (DesignatedStartIndex <= DesignatedEndIndex) { 2946 // Recurse to check later designated subobjects. 2947 QualType ElementType = AT->getElementType(); 2948 Index = OldIndex; 2949 2950 ElementEntity.setElementIndex(ElementIndex); 2951 if (CheckDesignatedInitializer( 2952 ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr, 2953 nullptr, Index, StructuredList, ElementIndex, 2954 FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex), 2955 false)) 2956 return true; 2957 2958 // Move to the next index in the array that we'll be initializing. 2959 ++DesignatedStartIndex; 2960 ElementIndex = DesignatedStartIndex.getZExtValue(); 2961 } 2962 2963 // If this the first designator, our caller will continue checking 2964 // the rest of this array subobject. 2965 if (IsFirstDesignator) { 2966 if (NextElementIndex) 2967 *NextElementIndex = DesignatedStartIndex; 2968 StructuredIndex = ElementIndex; 2969 return false; 2970 } 2971 2972 if (!FinishSubobjectInit) 2973 return false; 2974 2975 // Check the remaining elements within this array subobject. 2976 bool prevHadError = hadError; 2977 CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex, 2978 /*SubobjectIsDesignatorContext=*/false, Index, 2979 StructuredList, ElementIndex); 2980 return hadError && !prevHadError; 2981 } 2982 2983 // Get the structured initializer list for a subobject of type 2984 // @p CurrentObjectType. 2985 InitListExpr * 2986 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, 2987 QualType CurrentObjectType, 2988 InitListExpr *StructuredList, 2989 unsigned StructuredIndex, 2990 SourceRange InitRange, 2991 bool IsFullyOverwritten) { 2992 if (!StructuredList) 2993 return nullptr; 2994 2995 Expr *ExistingInit = nullptr; 2996 if (StructuredIndex < StructuredList->getNumInits()) 2997 ExistingInit = StructuredList->getInit(StructuredIndex); 2998 2999 if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit)) 3000 // There might have already been initializers for subobjects of the current 3001 // object, but a subsequent initializer list will overwrite the entirety 3002 // of the current object. (See DR 253 and C99 6.7.8p21). e.g., 3003 // 3004 // struct P { char x[6]; }; 3005 // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } }; 3006 // 3007 // The first designated initializer is ignored, and l.x is just "f". 3008 if (!IsFullyOverwritten) 3009 return Result; 3010 3011 if (ExistingInit) { 3012 // We are creating an initializer list that initializes the 3013 // subobjects of the current object, but there was already an 3014 // initialization that completely initialized the current 3015 // subobject: 3016 // 3017 // struct X { int a, b; }; 3018 // struct X xs[] = { [0] = { 1, 2 }, [0].b = 3 }; 3019 // 3020 // Here, xs[0].a == 1 and xs[0].b == 3, since the second, 3021 // designated initializer overwrites the [0].b initializer 3022 // from the prior initialization. 3023 // 3024 // When the existing initializer is an expression rather than an 3025 // initializer list, we cannot decompose and update it in this way. 3026 // For example: 3027 // 3028 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; 3029 // 3030 // This case is handled by CheckDesignatedInitializer. 3031 diagnoseInitOverride(ExistingInit, InitRange); 3032 } 3033 3034 unsigned ExpectedNumInits = 0; 3035 if (Index < IList->getNumInits()) { 3036 if (auto *Init = dyn_cast_or_null<InitListExpr>(IList->getInit(Index))) 3037 ExpectedNumInits = Init->getNumInits(); 3038 else 3039 ExpectedNumInits = IList->getNumInits() - Index; 3040 } 3041 3042 InitListExpr *Result = 3043 createInitListExpr(CurrentObjectType, InitRange, ExpectedNumInits); 3044 3045 // Link this new initializer list into the structured initializer 3046 // lists. 3047 StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result); 3048 return Result; 3049 } 3050 3051 InitListExpr * 3052 InitListChecker::createInitListExpr(QualType CurrentObjectType, 3053 SourceRange InitRange, 3054 unsigned ExpectedNumInits) { 3055 InitListExpr *Result 3056 = new (SemaRef.Context) InitListExpr(SemaRef.Context, 3057 InitRange.getBegin(), None, 3058 InitRange.getEnd()); 3059 3060 QualType ResultType = CurrentObjectType; 3061 if (!ResultType->isArrayType()) 3062 ResultType = ResultType.getNonLValueExprType(SemaRef.Context); 3063 Result->setType(ResultType); 3064 3065 // Pre-allocate storage for the structured initializer list. 3066 unsigned NumElements = 0; 3067 3068 if (const ArrayType *AType 3069 = SemaRef.Context.getAsArrayType(CurrentObjectType)) { 3070 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) { 3071 NumElements = CAType->getSize().getZExtValue(); 3072 // Simple heuristic so that we don't allocate a very large 3073 // initializer with many empty entries at the end. 3074 if (NumElements > ExpectedNumInits) 3075 NumElements = 0; 3076 } 3077 } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>()) { 3078 NumElements = VType->getNumElements(); 3079 } else if (CurrentObjectType->isRecordType()) { 3080 NumElements = numStructUnionElements(CurrentObjectType); 3081 } 3082 3083 Result->reserveInits(SemaRef.Context, NumElements); 3084 3085 return Result; 3086 } 3087 3088 /// Update the initializer at index @p StructuredIndex within the 3089 /// structured initializer list to the value @p expr. 3090 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList, 3091 unsigned &StructuredIndex, 3092 Expr *expr) { 3093 // No structured initializer list to update 3094 if (!StructuredList) 3095 return; 3096 3097 if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context, 3098 StructuredIndex, expr)) { 3099 // This initializer overwrites a previous initializer. 3100 // No need to diagnose when `expr` is nullptr because a more relevant 3101 // diagnostic has already been issued and this diagnostic is potentially 3102 // noise. 3103 if (expr) 3104 diagnoseInitOverride(PrevInit, expr->getSourceRange()); 3105 } 3106 3107 ++StructuredIndex; 3108 } 3109 3110 /// Determine whether we can perform aggregate initialization for the purposes 3111 /// of overload resolution. 3112 bool Sema::CanPerformAggregateInitializationForOverloadResolution( 3113 const InitializedEntity &Entity, InitListExpr *From) { 3114 QualType Type = Entity.getType(); 3115 InitListChecker Check(*this, Entity, From, Type, /*VerifyOnly=*/true, 3116 /*TreatUnavailableAsInvalid=*/false, 3117 /*InOverloadResolution=*/true); 3118 return !Check.HadError(); 3119 } 3120 3121 /// Check that the given Index expression is a valid array designator 3122 /// value. This is essentially just a wrapper around 3123 /// VerifyIntegerConstantExpression that also checks for negative values 3124 /// and produces a reasonable diagnostic if there is a 3125 /// failure. Returns the index expression, possibly with an implicit cast 3126 /// added, on success. If everything went okay, Value will receive the 3127 /// value of the constant expression. 3128 static ExprResult 3129 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) { 3130 SourceLocation Loc = Index->getBeginLoc(); 3131 3132 // Make sure this is an integer constant expression. 3133 ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value); 3134 if (Result.isInvalid()) 3135 return Result; 3136 3137 if (Value.isSigned() && Value.isNegative()) 3138 return S.Diag(Loc, diag::err_array_designator_negative) 3139 << Value.toString(10) << Index->getSourceRange(); 3140 3141 Value.setIsUnsigned(true); 3142 return Result; 3143 } 3144 3145 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig, 3146 SourceLocation EqualOrColonLoc, 3147 bool GNUSyntax, 3148 ExprResult Init) { 3149 typedef DesignatedInitExpr::Designator ASTDesignator; 3150 3151 bool Invalid = false; 3152 SmallVector<ASTDesignator, 32> Designators; 3153 SmallVector<Expr *, 32> InitExpressions; 3154 3155 // Build designators and check array designator expressions. 3156 for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) { 3157 const Designator &D = Desig.getDesignator(Idx); 3158 switch (D.getKind()) { 3159 case Designator::FieldDesignator: 3160 Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(), 3161 D.getFieldLoc())); 3162 break; 3163 3164 case Designator::ArrayDesignator: { 3165 Expr *Index = static_cast<Expr *>(D.getArrayIndex()); 3166 llvm::APSInt IndexValue; 3167 if (!Index->isTypeDependent() && !Index->isValueDependent()) 3168 Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get(); 3169 if (!Index) 3170 Invalid = true; 3171 else { 3172 Designators.push_back(ASTDesignator(InitExpressions.size(), 3173 D.getLBracketLoc(), 3174 D.getRBracketLoc())); 3175 InitExpressions.push_back(Index); 3176 } 3177 break; 3178 } 3179 3180 case Designator::ArrayRangeDesignator: { 3181 Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart()); 3182 Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd()); 3183 llvm::APSInt StartValue; 3184 llvm::APSInt EndValue; 3185 bool StartDependent = StartIndex->isTypeDependent() || 3186 StartIndex->isValueDependent(); 3187 bool EndDependent = EndIndex->isTypeDependent() || 3188 EndIndex->isValueDependent(); 3189 if (!StartDependent) 3190 StartIndex = 3191 CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get(); 3192 if (!EndDependent) 3193 EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get(); 3194 3195 if (!StartIndex || !EndIndex) 3196 Invalid = true; 3197 else { 3198 // Make sure we're comparing values with the same bit width. 3199 if (StartDependent || EndDependent) { 3200 // Nothing to compute. 3201 } else if (StartValue.getBitWidth() > EndValue.getBitWidth()) 3202 EndValue = EndValue.extend(StartValue.getBitWidth()); 3203 else if (StartValue.getBitWidth() < EndValue.getBitWidth()) 3204 StartValue = StartValue.extend(EndValue.getBitWidth()); 3205 3206 if (!StartDependent && !EndDependent && EndValue < StartValue) { 3207 Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range) 3208 << StartValue.toString(10) << EndValue.toString(10) 3209 << StartIndex->getSourceRange() << EndIndex->getSourceRange(); 3210 Invalid = true; 3211 } else { 3212 Designators.push_back(ASTDesignator(InitExpressions.size(), 3213 D.getLBracketLoc(), 3214 D.getEllipsisLoc(), 3215 D.getRBracketLoc())); 3216 InitExpressions.push_back(StartIndex); 3217 InitExpressions.push_back(EndIndex); 3218 } 3219 } 3220 break; 3221 } 3222 } 3223 } 3224 3225 if (Invalid || Init.isInvalid()) 3226 return ExprError(); 3227 3228 // Clear out the expressions within the designation. 3229 Desig.ClearExprs(*this); 3230 3231 return DesignatedInitExpr::Create(Context, Designators, InitExpressions, 3232 EqualOrColonLoc, GNUSyntax, 3233 Init.getAs<Expr>()); 3234 } 3235 3236 //===----------------------------------------------------------------------===// 3237 // Initialization entity 3238 //===----------------------------------------------------------------------===// 3239 3240 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index, 3241 const InitializedEntity &Parent) 3242 : Parent(&Parent), Index(Index) 3243 { 3244 if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) { 3245 Kind = EK_ArrayElement; 3246 Type = AT->getElementType(); 3247 } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) { 3248 Kind = EK_VectorElement; 3249 Type = VT->getElementType(); 3250 } else { 3251 const ComplexType *CT = Parent.getType()->getAs<ComplexType>(); 3252 assert(CT && "Unexpected type"); 3253 Kind = EK_ComplexElement; 3254 Type = CT->getElementType(); 3255 } 3256 } 3257 3258 InitializedEntity 3259 InitializedEntity::InitializeBase(ASTContext &Context, 3260 const CXXBaseSpecifier *Base, 3261 bool IsInheritedVirtualBase, 3262 const InitializedEntity *Parent) { 3263 InitializedEntity Result; 3264 Result.Kind = EK_Base; 3265 Result.Parent = Parent; 3266 Result.Base = reinterpret_cast<uintptr_t>(Base); 3267 if (IsInheritedVirtualBase) 3268 Result.Base |= 0x01; 3269 3270 Result.Type = Base->getType(); 3271 return Result; 3272 } 3273 3274 DeclarationName InitializedEntity::getName() const { 3275 switch (getKind()) { 3276 case EK_Parameter: 3277 case EK_Parameter_CF_Audited: { 3278 ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1); 3279 return (D ? D->getDeclName() : DeclarationName()); 3280 } 3281 3282 case EK_Variable: 3283 case EK_Member: 3284 case EK_Binding: 3285 return Variable.VariableOrMember->getDeclName(); 3286 3287 case EK_LambdaCapture: 3288 return DeclarationName(Capture.VarID); 3289 3290 case EK_Result: 3291 case EK_StmtExprResult: 3292 case EK_Exception: 3293 case EK_New: 3294 case EK_Temporary: 3295 case EK_Base: 3296 case EK_Delegating: 3297 case EK_ArrayElement: 3298 case EK_VectorElement: 3299 case EK_ComplexElement: 3300 case EK_BlockElement: 3301 case EK_LambdaToBlockConversionBlockElement: 3302 case EK_CompoundLiteralInit: 3303 case EK_RelatedResult: 3304 return DeclarationName(); 3305 } 3306 3307 llvm_unreachable("Invalid EntityKind!"); 3308 } 3309 3310 ValueDecl *InitializedEntity::getDecl() const { 3311 switch (getKind()) { 3312 case EK_Variable: 3313 case EK_Member: 3314 case EK_Binding: 3315 return Variable.VariableOrMember; 3316 3317 case EK_Parameter: 3318 case EK_Parameter_CF_Audited: 3319 return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1); 3320 3321 case EK_Result: 3322 case EK_StmtExprResult: 3323 case EK_Exception: 3324 case EK_New: 3325 case EK_Temporary: 3326 case EK_Base: 3327 case EK_Delegating: 3328 case EK_ArrayElement: 3329 case EK_VectorElement: 3330 case EK_ComplexElement: 3331 case EK_BlockElement: 3332 case EK_LambdaToBlockConversionBlockElement: 3333 case EK_LambdaCapture: 3334 case EK_CompoundLiteralInit: 3335 case EK_RelatedResult: 3336 return nullptr; 3337 } 3338 3339 llvm_unreachable("Invalid EntityKind!"); 3340 } 3341 3342 bool InitializedEntity::allowsNRVO() const { 3343 switch (getKind()) { 3344 case EK_Result: 3345 case EK_Exception: 3346 return LocAndNRVO.NRVO; 3347 3348 case EK_StmtExprResult: 3349 case EK_Variable: 3350 case EK_Parameter: 3351 case EK_Parameter_CF_Audited: 3352 case EK_Member: 3353 case EK_Binding: 3354 case EK_New: 3355 case EK_Temporary: 3356 case EK_CompoundLiteralInit: 3357 case EK_Base: 3358 case EK_Delegating: 3359 case EK_ArrayElement: 3360 case EK_VectorElement: 3361 case EK_ComplexElement: 3362 case EK_BlockElement: 3363 case EK_LambdaToBlockConversionBlockElement: 3364 case EK_LambdaCapture: 3365 case EK_RelatedResult: 3366 break; 3367 } 3368 3369 return false; 3370 } 3371 3372 unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const { 3373 assert(getParent() != this); 3374 unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0; 3375 for (unsigned I = 0; I != Depth; ++I) 3376 OS << "`-"; 3377 3378 switch (getKind()) { 3379 case EK_Variable: OS << "Variable"; break; 3380 case EK_Parameter: OS << "Parameter"; break; 3381 case EK_Parameter_CF_Audited: OS << "CF audited function Parameter"; 3382 break; 3383 case EK_Result: OS << "Result"; break; 3384 case EK_StmtExprResult: OS << "StmtExprResult"; break; 3385 case EK_Exception: OS << "Exception"; break; 3386 case EK_Member: OS << "Member"; break; 3387 case EK_Binding: OS << "Binding"; break; 3388 case EK_New: OS << "New"; break; 3389 case EK_Temporary: OS << "Temporary"; break; 3390 case EK_CompoundLiteralInit: OS << "CompoundLiteral";break; 3391 case EK_RelatedResult: OS << "RelatedResult"; break; 3392 case EK_Base: OS << "Base"; break; 3393 case EK_Delegating: OS << "Delegating"; break; 3394 case EK_ArrayElement: OS << "ArrayElement " << Index; break; 3395 case EK_VectorElement: OS << "VectorElement " << Index; break; 3396 case EK_ComplexElement: OS << "ComplexElement " << Index; break; 3397 case EK_BlockElement: OS << "Block"; break; 3398 case EK_LambdaToBlockConversionBlockElement: 3399 OS << "Block (lambda)"; 3400 break; 3401 case EK_LambdaCapture: 3402 OS << "LambdaCapture "; 3403 OS << DeclarationName(Capture.VarID); 3404 break; 3405 } 3406 3407 if (auto *D = getDecl()) { 3408 OS << " "; 3409 D->printQualifiedName(OS); 3410 } 3411 3412 OS << " '" << getType().getAsString() << "'\n"; 3413 3414 return Depth + 1; 3415 } 3416 3417 LLVM_DUMP_METHOD void InitializedEntity::dump() const { 3418 dumpImpl(llvm::errs()); 3419 } 3420 3421 //===----------------------------------------------------------------------===// 3422 // Initialization sequence 3423 //===----------------------------------------------------------------------===// 3424 3425 void InitializationSequence::Step::Destroy() { 3426 switch (Kind) { 3427 case SK_ResolveAddressOfOverloadedFunction: 3428 case SK_CastDerivedToBaseRValue: 3429 case SK_CastDerivedToBaseXValue: 3430 case SK_CastDerivedToBaseLValue: 3431 case SK_BindReference: 3432 case SK_BindReferenceToTemporary: 3433 case SK_FinalCopy: 3434 case SK_ExtraneousCopyToTemporary: 3435 case SK_UserConversion: 3436 case SK_QualificationConversionRValue: 3437 case SK_QualificationConversionXValue: 3438 case SK_QualificationConversionLValue: 3439 case SK_AtomicConversion: 3440 case SK_ListInitialization: 3441 case SK_UnwrapInitList: 3442 case SK_RewrapInitList: 3443 case SK_ConstructorInitialization: 3444 case SK_ConstructorInitializationFromList: 3445 case SK_ZeroInitialization: 3446 case SK_CAssignment: 3447 case SK_StringInit: 3448 case SK_ObjCObjectConversion: 3449 case SK_ArrayLoopIndex: 3450 case SK_ArrayLoopInit: 3451 case SK_ArrayInit: 3452 case SK_GNUArrayInit: 3453 case SK_ParenthesizedArrayInit: 3454 case SK_PassByIndirectCopyRestore: 3455 case SK_PassByIndirectRestore: 3456 case SK_ProduceObjCObject: 3457 case SK_StdInitializerList: 3458 case SK_StdInitializerListConstructorCall: 3459 case SK_OCLSamplerInit: 3460 case SK_OCLZeroOpaqueType: 3461 break; 3462 3463 case SK_ConversionSequence: 3464 case SK_ConversionSequenceNoNarrowing: 3465 delete ICS; 3466 } 3467 } 3468 3469 bool InitializationSequence::isDirectReferenceBinding() const { 3470 // There can be some lvalue adjustments after the SK_BindReference step. 3471 for (auto I = Steps.rbegin(); I != Steps.rend(); ++I) { 3472 if (I->Kind == SK_BindReference) 3473 return true; 3474 if (I->Kind == SK_BindReferenceToTemporary) 3475 return false; 3476 } 3477 return false; 3478 } 3479 3480 bool InitializationSequence::isAmbiguous() const { 3481 if (!Failed()) 3482 return false; 3483 3484 switch (getFailureKind()) { 3485 case FK_TooManyInitsForReference: 3486 case FK_ParenthesizedListInitForReference: 3487 case FK_ArrayNeedsInitList: 3488 case FK_ArrayNeedsInitListOrStringLiteral: 3489 case FK_ArrayNeedsInitListOrWideStringLiteral: 3490 case FK_NarrowStringIntoWideCharArray: 3491 case FK_WideStringIntoCharArray: 3492 case FK_IncompatWideStringIntoWideChar: 3493 case FK_PlainStringIntoUTF8Char: 3494 case FK_UTF8StringIntoPlainChar: 3495 case FK_AddressOfOverloadFailed: // FIXME: Could do better 3496 case FK_NonConstLValueReferenceBindingToTemporary: 3497 case FK_NonConstLValueReferenceBindingToBitfield: 3498 case FK_NonConstLValueReferenceBindingToVectorElement: 3499 case FK_NonConstLValueReferenceBindingToMatrixElement: 3500 case FK_NonConstLValueReferenceBindingToUnrelated: 3501 case FK_RValueReferenceBindingToLValue: 3502 case FK_ReferenceAddrspaceMismatchTemporary: 3503 case FK_ReferenceInitDropsQualifiers: 3504 case FK_ReferenceInitFailed: 3505 case FK_ConversionFailed: 3506 case FK_ConversionFromPropertyFailed: 3507 case FK_TooManyInitsForScalar: 3508 case FK_ParenthesizedListInitForScalar: 3509 case FK_ReferenceBindingToInitList: 3510 case FK_InitListBadDestinationType: 3511 case FK_DefaultInitOfConst: 3512 case FK_Incomplete: 3513 case FK_ArrayTypeMismatch: 3514 case FK_NonConstantArrayInit: 3515 case FK_ListInitializationFailed: 3516 case FK_VariableLengthArrayHasInitializer: 3517 case FK_PlaceholderType: 3518 case FK_ExplicitConstructor: 3519 case FK_AddressOfUnaddressableFunction: 3520 return false; 3521 3522 case FK_ReferenceInitOverloadFailed: 3523 case FK_UserConversionOverloadFailed: 3524 case FK_ConstructorOverloadFailed: 3525 case FK_ListConstructorOverloadFailed: 3526 return FailedOverloadResult == OR_Ambiguous; 3527 } 3528 3529 llvm_unreachable("Invalid EntityKind!"); 3530 } 3531 3532 bool InitializationSequence::isConstructorInitialization() const { 3533 return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization; 3534 } 3535 3536 void 3537 InitializationSequence 3538 ::AddAddressOverloadResolutionStep(FunctionDecl *Function, 3539 DeclAccessPair Found, 3540 bool HadMultipleCandidates) { 3541 Step S; 3542 S.Kind = SK_ResolveAddressOfOverloadedFunction; 3543 S.Type = Function->getType(); 3544 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3545 S.Function.Function = Function; 3546 S.Function.FoundDecl = Found; 3547 Steps.push_back(S); 3548 } 3549 3550 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType, 3551 ExprValueKind VK) { 3552 Step S; 3553 switch (VK) { 3554 case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break; 3555 case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break; 3556 case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break; 3557 } 3558 S.Type = BaseType; 3559 Steps.push_back(S); 3560 } 3561 3562 void InitializationSequence::AddReferenceBindingStep(QualType T, 3563 bool BindingTemporary) { 3564 Step S; 3565 S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference; 3566 S.Type = T; 3567 Steps.push_back(S); 3568 } 3569 3570 void InitializationSequence::AddFinalCopy(QualType T) { 3571 Step S; 3572 S.Kind = SK_FinalCopy; 3573 S.Type = T; 3574 Steps.push_back(S); 3575 } 3576 3577 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) { 3578 Step S; 3579 S.Kind = SK_ExtraneousCopyToTemporary; 3580 S.Type = T; 3581 Steps.push_back(S); 3582 } 3583 3584 void 3585 InitializationSequence::AddUserConversionStep(FunctionDecl *Function, 3586 DeclAccessPair FoundDecl, 3587 QualType T, 3588 bool HadMultipleCandidates) { 3589 Step S; 3590 S.Kind = SK_UserConversion; 3591 S.Type = T; 3592 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3593 S.Function.Function = Function; 3594 S.Function.FoundDecl = FoundDecl; 3595 Steps.push_back(S); 3596 } 3597 3598 void InitializationSequence::AddQualificationConversionStep(QualType Ty, 3599 ExprValueKind VK) { 3600 Step S; 3601 S.Kind = SK_QualificationConversionRValue; // work around a gcc warning 3602 switch (VK) { 3603 case VK_RValue: 3604 S.Kind = SK_QualificationConversionRValue; 3605 break; 3606 case VK_XValue: 3607 S.Kind = SK_QualificationConversionXValue; 3608 break; 3609 case VK_LValue: 3610 S.Kind = SK_QualificationConversionLValue; 3611 break; 3612 } 3613 S.Type = Ty; 3614 Steps.push_back(S); 3615 } 3616 3617 void InitializationSequence::AddAtomicConversionStep(QualType Ty) { 3618 Step S; 3619 S.Kind = SK_AtomicConversion; 3620 S.Type = Ty; 3621 Steps.push_back(S); 3622 } 3623 3624 void InitializationSequence::AddConversionSequenceStep( 3625 const ImplicitConversionSequence &ICS, QualType T, 3626 bool TopLevelOfInitList) { 3627 Step S; 3628 S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing 3629 : SK_ConversionSequence; 3630 S.Type = T; 3631 S.ICS = new ImplicitConversionSequence(ICS); 3632 Steps.push_back(S); 3633 } 3634 3635 void InitializationSequence::AddListInitializationStep(QualType T) { 3636 Step S; 3637 S.Kind = SK_ListInitialization; 3638 S.Type = T; 3639 Steps.push_back(S); 3640 } 3641 3642 void InitializationSequence::AddConstructorInitializationStep( 3643 DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T, 3644 bool HadMultipleCandidates, bool FromInitList, bool AsInitList) { 3645 Step S; 3646 S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall 3647 : SK_ConstructorInitializationFromList 3648 : SK_ConstructorInitialization; 3649 S.Type = T; 3650 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3651 S.Function.Function = Constructor; 3652 S.Function.FoundDecl = FoundDecl; 3653 Steps.push_back(S); 3654 } 3655 3656 void InitializationSequence::AddZeroInitializationStep(QualType T) { 3657 Step S; 3658 S.Kind = SK_ZeroInitialization; 3659 S.Type = T; 3660 Steps.push_back(S); 3661 } 3662 3663 void InitializationSequence::AddCAssignmentStep(QualType T) { 3664 Step S; 3665 S.Kind = SK_CAssignment; 3666 S.Type = T; 3667 Steps.push_back(S); 3668 } 3669 3670 void InitializationSequence::AddStringInitStep(QualType T) { 3671 Step S; 3672 S.Kind = SK_StringInit; 3673 S.Type = T; 3674 Steps.push_back(S); 3675 } 3676 3677 void InitializationSequence::AddObjCObjectConversionStep(QualType T) { 3678 Step S; 3679 S.Kind = SK_ObjCObjectConversion; 3680 S.Type = T; 3681 Steps.push_back(S); 3682 } 3683 3684 void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) { 3685 Step S; 3686 S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit; 3687 S.Type = T; 3688 Steps.push_back(S); 3689 } 3690 3691 void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) { 3692 Step S; 3693 S.Kind = SK_ArrayLoopIndex; 3694 S.Type = EltT; 3695 Steps.insert(Steps.begin(), S); 3696 3697 S.Kind = SK_ArrayLoopInit; 3698 S.Type = T; 3699 Steps.push_back(S); 3700 } 3701 3702 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) { 3703 Step S; 3704 S.Kind = SK_ParenthesizedArrayInit; 3705 S.Type = T; 3706 Steps.push_back(S); 3707 } 3708 3709 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type, 3710 bool shouldCopy) { 3711 Step s; 3712 s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore 3713 : SK_PassByIndirectRestore); 3714 s.Type = type; 3715 Steps.push_back(s); 3716 } 3717 3718 void InitializationSequence::AddProduceObjCObjectStep(QualType T) { 3719 Step S; 3720 S.Kind = SK_ProduceObjCObject; 3721 S.Type = T; 3722 Steps.push_back(S); 3723 } 3724 3725 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) { 3726 Step S; 3727 S.Kind = SK_StdInitializerList; 3728 S.Type = T; 3729 Steps.push_back(S); 3730 } 3731 3732 void InitializationSequence::AddOCLSamplerInitStep(QualType T) { 3733 Step S; 3734 S.Kind = SK_OCLSamplerInit; 3735 S.Type = T; 3736 Steps.push_back(S); 3737 } 3738 3739 void InitializationSequence::AddOCLZeroOpaqueTypeStep(QualType T) { 3740 Step S; 3741 S.Kind = SK_OCLZeroOpaqueType; 3742 S.Type = T; 3743 Steps.push_back(S); 3744 } 3745 3746 void InitializationSequence::RewrapReferenceInitList(QualType T, 3747 InitListExpr *Syntactic) { 3748 assert(Syntactic->getNumInits() == 1 && 3749 "Can only rewrap trivial init lists."); 3750 Step S; 3751 S.Kind = SK_UnwrapInitList; 3752 S.Type = Syntactic->getInit(0)->getType(); 3753 Steps.insert(Steps.begin(), S); 3754 3755 S.Kind = SK_RewrapInitList; 3756 S.Type = T; 3757 S.WrappingSyntacticList = Syntactic; 3758 Steps.push_back(S); 3759 } 3760 3761 void InitializationSequence::SetOverloadFailure(FailureKind Failure, 3762 OverloadingResult Result) { 3763 setSequenceKind(FailedSequence); 3764 this->Failure = Failure; 3765 this->FailedOverloadResult = Result; 3766 } 3767 3768 //===----------------------------------------------------------------------===// 3769 // Attempt initialization 3770 //===----------------------------------------------------------------------===// 3771 3772 /// Tries to add a zero initializer. Returns true if that worked. 3773 static bool 3774 maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence, 3775 const InitializedEntity &Entity) { 3776 if (Entity.getKind() != InitializedEntity::EK_Variable) 3777 return false; 3778 3779 VarDecl *VD = cast<VarDecl>(Entity.getDecl()); 3780 if (VD->getInit() || VD->getEndLoc().isMacroID()) 3781 return false; 3782 3783 QualType VariableTy = VD->getType().getCanonicalType(); 3784 SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc()); 3785 std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc); 3786 if (!Init.empty()) { 3787 Sequence.AddZeroInitializationStep(Entity.getType()); 3788 Sequence.SetZeroInitializationFixit(Init, Loc); 3789 return true; 3790 } 3791 return false; 3792 } 3793 3794 static void MaybeProduceObjCObject(Sema &S, 3795 InitializationSequence &Sequence, 3796 const InitializedEntity &Entity) { 3797 if (!S.getLangOpts().ObjCAutoRefCount) return; 3798 3799 /// When initializing a parameter, produce the value if it's marked 3800 /// __attribute__((ns_consumed)). 3801 if (Entity.isParameterKind()) { 3802 if (!Entity.isParameterConsumed()) 3803 return; 3804 3805 assert(Entity.getType()->isObjCRetainableType() && 3806 "consuming an object of unretainable type?"); 3807 Sequence.AddProduceObjCObjectStep(Entity.getType()); 3808 3809 /// When initializing a return value, if the return type is a 3810 /// retainable type, then returns need to immediately retain the 3811 /// object. If an autorelease is required, it will be done at the 3812 /// last instant. 3813 } else if (Entity.getKind() == InitializedEntity::EK_Result || 3814 Entity.getKind() == InitializedEntity::EK_StmtExprResult) { 3815 if (!Entity.getType()->isObjCRetainableType()) 3816 return; 3817 3818 Sequence.AddProduceObjCObjectStep(Entity.getType()); 3819 } 3820 } 3821 3822 static void TryListInitialization(Sema &S, 3823 const InitializedEntity &Entity, 3824 const InitializationKind &Kind, 3825 InitListExpr *InitList, 3826 InitializationSequence &Sequence, 3827 bool TreatUnavailableAsInvalid); 3828 3829 /// When initializing from init list via constructor, handle 3830 /// initialization of an object of type std::initializer_list<T>. 3831 /// 3832 /// \return true if we have handled initialization of an object of type 3833 /// std::initializer_list<T>, false otherwise. 3834 static bool TryInitializerListConstruction(Sema &S, 3835 InitListExpr *List, 3836 QualType DestType, 3837 InitializationSequence &Sequence, 3838 bool TreatUnavailableAsInvalid) { 3839 QualType E; 3840 if (!S.isStdInitializerList(DestType, &E)) 3841 return false; 3842 3843 if (!S.isCompleteType(List->getExprLoc(), E)) { 3844 Sequence.setIncompleteTypeFailure(E); 3845 return true; 3846 } 3847 3848 // Try initializing a temporary array from the init list. 3849 QualType ArrayType = S.Context.getConstantArrayType( 3850 E.withConst(), 3851 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()), 3852 List->getNumInits()), 3853 nullptr, clang::ArrayType::Normal, 0); 3854 InitializedEntity HiddenArray = 3855 InitializedEntity::InitializeTemporary(ArrayType); 3856 InitializationKind Kind = InitializationKind::CreateDirectList( 3857 List->getExprLoc(), List->getBeginLoc(), List->getEndLoc()); 3858 TryListInitialization(S, HiddenArray, Kind, List, Sequence, 3859 TreatUnavailableAsInvalid); 3860 if (Sequence) 3861 Sequence.AddStdInitializerListConstructionStep(DestType); 3862 return true; 3863 } 3864 3865 /// Determine if the constructor has the signature of a copy or move 3866 /// constructor for the type T of the class in which it was found. That is, 3867 /// determine if its first parameter is of type T or reference to (possibly 3868 /// cv-qualified) T. 3869 static bool hasCopyOrMoveCtorParam(ASTContext &Ctx, 3870 const ConstructorInfo &Info) { 3871 if (Info.Constructor->getNumParams() == 0) 3872 return false; 3873 3874 QualType ParmT = 3875 Info.Constructor->getParamDecl(0)->getType().getNonReferenceType(); 3876 QualType ClassT = 3877 Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext())); 3878 3879 return Ctx.hasSameUnqualifiedType(ParmT, ClassT); 3880 } 3881 3882 static OverloadingResult 3883 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc, 3884 MultiExprArg Args, 3885 OverloadCandidateSet &CandidateSet, 3886 QualType DestType, 3887 DeclContext::lookup_result Ctors, 3888 OverloadCandidateSet::iterator &Best, 3889 bool CopyInitializing, bool AllowExplicit, 3890 bool OnlyListConstructors, bool IsListInit, 3891 bool SecondStepOfCopyInit = false) { 3892 CandidateSet.clear(OverloadCandidateSet::CSK_InitByConstructor); 3893 CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace()); 3894 3895 for (NamedDecl *D : Ctors) { 3896 auto Info = getConstructorInfo(D); 3897 if (!Info.Constructor || Info.Constructor->isInvalidDecl()) 3898 continue; 3899 3900 if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor)) 3901 continue; 3902 3903 // C++11 [over.best.ics]p4: 3904 // ... and the constructor or user-defined conversion function is a 3905 // candidate by 3906 // - 13.3.1.3, when the argument is the temporary in the second step 3907 // of a class copy-initialization, or 3908 // - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here] 3909 // - the second phase of 13.3.1.7 when the initializer list has exactly 3910 // one element that is itself an initializer list, and the target is 3911 // the first parameter of a constructor of class X, and the conversion 3912 // is to X or reference to (possibly cv-qualified X), 3913 // user-defined conversion sequences are not considered. 3914 bool SuppressUserConversions = 3915 SecondStepOfCopyInit || 3916 (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) && 3917 hasCopyOrMoveCtorParam(S.Context, Info)); 3918 3919 if (Info.ConstructorTmpl) 3920 S.AddTemplateOverloadCandidate( 3921 Info.ConstructorTmpl, Info.FoundDecl, 3922 /*ExplicitArgs*/ nullptr, Args, CandidateSet, SuppressUserConversions, 3923 /*PartialOverloading=*/false, AllowExplicit); 3924 else { 3925 // C++ [over.match.copy]p1: 3926 // - When initializing a temporary to be bound to the first parameter 3927 // of a constructor [for type T] that takes a reference to possibly 3928 // cv-qualified T as its first argument, called with a single 3929 // argument in the context of direct-initialization, explicit 3930 // conversion functions are also considered. 3931 // FIXME: What if a constructor template instantiates to such a signature? 3932 bool AllowExplicitConv = AllowExplicit && !CopyInitializing && 3933 Args.size() == 1 && 3934 hasCopyOrMoveCtorParam(S.Context, Info); 3935 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args, 3936 CandidateSet, SuppressUserConversions, 3937 /*PartialOverloading=*/false, AllowExplicit, 3938 AllowExplicitConv); 3939 } 3940 } 3941 3942 // FIXME: Work around a bug in C++17 guaranteed copy elision. 3943 // 3944 // When initializing an object of class type T by constructor 3945 // ([over.match.ctor]) or by list-initialization ([over.match.list]) 3946 // from a single expression of class type U, conversion functions of 3947 // U that convert to the non-reference type cv T are candidates. 3948 // Explicit conversion functions are only candidates during 3949 // direct-initialization. 3950 // 3951 // Note: SecondStepOfCopyInit is only ever true in this case when 3952 // evaluating whether to produce a C++98 compatibility warning. 3953 if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 && 3954 !SecondStepOfCopyInit) { 3955 Expr *Initializer = Args[0]; 3956 auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl(); 3957 if (SourceRD && S.isCompleteType(DeclLoc, Initializer->getType())) { 3958 const auto &Conversions = SourceRD->getVisibleConversionFunctions(); 3959 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 3960 NamedDecl *D = *I; 3961 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 3962 D = D->getUnderlyingDecl(); 3963 3964 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 3965 CXXConversionDecl *Conv; 3966 if (ConvTemplate) 3967 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 3968 else 3969 Conv = cast<CXXConversionDecl>(D); 3970 3971 if (ConvTemplate) 3972 S.AddTemplateConversionCandidate( 3973 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, 3974 CandidateSet, AllowExplicit, AllowExplicit, 3975 /*AllowResultConversion*/ false); 3976 else 3977 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer, 3978 DestType, CandidateSet, AllowExplicit, 3979 AllowExplicit, 3980 /*AllowResultConversion*/ false); 3981 } 3982 } 3983 } 3984 3985 // Perform overload resolution and return the result. 3986 return CandidateSet.BestViableFunction(S, DeclLoc, Best); 3987 } 3988 3989 /// Attempt initialization by constructor (C++ [dcl.init]), which 3990 /// enumerates the constructors of the initialized entity and performs overload 3991 /// resolution to select the best. 3992 /// \param DestType The destination class type. 3993 /// \param DestArrayType The destination type, which is either DestType or 3994 /// a (possibly multidimensional) array of DestType. 3995 /// \param IsListInit Is this list-initialization? 3996 /// \param IsInitListCopy Is this non-list-initialization resulting from a 3997 /// list-initialization from {x} where x is the same 3998 /// type as the entity? 3999 static void TryConstructorInitialization(Sema &S, 4000 const InitializedEntity &Entity, 4001 const InitializationKind &Kind, 4002 MultiExprArg Args, QualType DestType, 4003 QualType DestArrayType, 4004 InitializationSequence &Sequence, 4005 bool IsListInit = false, 4006 bool IsInitListCopy = false) { 4007 assert(((!IsListInit && !IsInitListCopy) || 4008 (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && 4009 "IsListInit/IsInitListCopy must come with a single initializer list " 4010 "argument."); 4011 InitListExpr *ILE = 4012 (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr; 4013 MultiExprArg UnwrappedArgs = 4014 ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args; 4015 4016 // The type we're constructing needs to be complete. 4017 if (!S.isCompleteType(Kind.getLocation(), DestType)) { 4018 Sequence.setIncompleteTypeFailure(DestType); 4019 return; 4020 } 4021 4022 // C++17 [dcl.init]p17: 4023 // - If the initializer expression is a prvalue and the cv-unqualified 4024 // version of the source type is the same class as the class of the 4025 // destination, the initializer expression is used to initialize the 4026 // destination object. 4027 // Per DR (no number yet), this does not apply when initializing a base 4028 // class or delegating to another constructor from a mem-initializer. 4029 // ObjC++: Lambda captured by the block in the lambda to block conversion 4030 // should avoid copy elision. 4031 if (S.getLangOpts().CPlusPlus17 && 4032 Entity.getKind() != InitializedEntity::EK_Base && 4033 Entity.getKind() != InitializedEntity::EK_Delegating && 4034 Entity.getKind() != 4035 InitializedEntity::EK_LambdaToBlockConversionBlockElement && 4036 UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isRValue() && 4037 S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) { 4038 // Convert qualifications if necessary. 4039 Sequence.AddQualificationConversionStep(DestType, VK_RValue); 4040 if (ILE) 4041 Sequence.RewrapReferenceInitList(DestType, ILE); 4042 return; 4043 } 4044 4045 const RecordType *DestRecordType = DestType->getAs<RecordType>(); 4046 assert(DestRecordType && "Constructor initialization requires record type"); 4047 CXXRecordDecl *DestRecordDecl 4048 = cast<CXXRecordDecl>(DestRecordType->getDecl()); 4049 4050 // Build the candidate set directly in the initialization sequence 4051 // structure, so that it will persist if we fail. 4052 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 4053 4054 // Determine whether we are allowed to call explicit constructors or 4055 // explicit conversion operators. 4056 bool AllowExplicit = Kind.AllowExplicit() || IsListInit; 4057 bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy; 4058 4059 // - Otherwise, if T is a class type, constructors are considered. The 4060 // applicable constructors are enumerated, and the best one is chosen 4061 // through overload resolution. 4062 DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl); 4063 4064 OverloadingResult Result = OR_No_Viable_Function; 4065 OverloadCandidateSet::iterator Best; 4066 bool AsInitializerList = false; 4067 4068 // C++11 [over.match.list]p1, per DR1467: 4069 // When objects of non-aggregate type T are list-initialized, such that 4070 // 8.5.4 [dcl.init.list] specifies that overload resolution is performed 4071 // according to the rules in this section, overload resolution selects 4072 // the constructor in two phases: 4073 // 4074 // - Initially, the candidate functions are the initializer-list 4075 // constructors of the class T and the argument list consists of the 4076 // initializer list as a single argument. 4077 if (IsListInit) { 4078 AsInitializerList = true; 4079 4080 // If the initializer list has no elements and T has a default constructor, 4081 // the first phase is omitted. 4082 if (!(UnwrappedArgs.empty() && S.LookupDefaultConstructor(DestRecordDecl))) 4083 Result = ResolveConstructorOverload(S, Kind.getLocation(), Args, 4084 CandidateSet, DestType, Ctors, Best, 4085 CopyInitialization, AllowExplicit, 4086 /*OnlyListConstructors=*/true, 4087 IsListInit); 4088 } 4089 4090 // C++11 [over.match.list]p1: 4091 // - If no viable initializer-list constructor is found, overload resolution 4092 // is performed again, where the candidate functions are all the 4093 // constructors of the class T and the argument list consists of the 4094 // elements of the initializer list. 4095 if (Result == OR_No_Viable_Function) { 4096 AsInitializerList = false; 4097 Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs, 4098 CandidateSet, DestType, Ctors, Best, 4099 CopyInitialization, AllowExplicit, 4100 /*OnlyListConstructors=*/false, 4101 IsListInit); 4102 } 4103 if (Result) { 4104 Sequence.SetOverloadFailure(IsListInit ? 4105 InitializationSequence::FK_ListConstructorOverloadFailed : 4106 InitializationSequence::FK_ConstructorOverloadFailed, 4107 Result); 4108 return; 4109 } 4110 4111 bool HadMultipleCandidates = (CandidateSet.size() > 1); 4112 4113 // In C++17, ResolveConstructorOverload can select a conversion function 4114 // instead of a constructor. 4115 if (auto *CD = dyn_cast<CXXConversionDecl>(Best->Function)) { 4116 // Add the user-defined conversion step that calls the conversion function. 4117 QualType ConvType = CD->getConversionType(); 4118 assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) && 4119 "should not have selected this conversion function"); 4120 Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType, 4121 HadMultipleCandidates); 4122 if (!S.Context.hasSameType(ConvType, DestType)) 4123 Sequence.AddQualificationConversionStep(DestType, VK_RValue); 4124 if (IsListInit) 4125 Sequence.RewrapReferenceInitList(Entity.getType(), ILE); 4126 return; 4127 } 4128 4129 // C++11 [dcl.init]p6: 4130 // If a program calls for the default initialization of an object 4131 // of a const-qualified type T, T shall be a class type with a 4132 // user-provided default constructor. 4133 // C++ core issue 253 proposal: 4134 // If the implicit default constructor initializes all subobjects, no 4135 // initializer should be required. 4136 // The 253 proposal is for example needed to process libstdc++ headers in 5.x. 4137 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 4138 if (Kind.getKind() == InitializationKind::IK_Default && 4139 Entity.getType().isConstQualified()) { 4140 if (!CtorDecl->getParent()->allowConstDefaultInit()) { 4141 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity)) 4142 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); 4143 return; 4144 } 4145 } 4146 4147 // C++11 [over.match.list]p1: 4148 // In copy-list-initialization, if an explicit constructor is chosen, the 4149 // initializer is ill-formed. 4150 if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) { 4151 Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor); 4152 return; 4153 } 4154 4155 // Add the constructor initialization step. Any cv-qualification conversion is 4156 // subsumed by the initialization. 4157 Sequence.AddConstructorInitializationStep( 4158 Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates, 4159 IsListInit | IsInitListCopy, AsInitializerList); 4160 } 4161 4162 static bool 4163 ResolveOverloadedFunctionForReferenceBinding(Sema &S, 4164 Expr *Initializer, 4165 QualType &SourceType, 4166 QualType &UnqualifiedSourceType, 4167 QualType UnqualifiedTargetType, 4168 InitializationSequence &Sequence) { 4169 if (S.Context.getCanonicalType(UnqualifiedSourceType) == 4170 S.Context.OverloadTy) { 4171 DeclAccessPair Found; 4172 bool HadMultipleCandidates = false; 4173 if (FunctionDecl *Fn 4174 = S.ResolveAddressOfOverloadedFunction(Initializer, 4175 UnqualifiedTargetType, 4176 false, Found, 4177 &HadMultipleCandidates)) { 4178 Sequence.AddAddressOverloadResolutionStep(Fn, Found, 4179 HadMultipleCandidates); 4180 SourceType = Fn->getType(); 4181 UnqualifiedSourceType = SourceType.getUnqualifiedType(); 4182 } else if (!UnqualifiedTargetType->isRecordType()) { 4183 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 4184 return true; 4185 } 4186 } 4187 return false; 4188 } 4189 4190 static void TryReferenceInitializationCore(Sema &S, 4191 const InitializedEntity &Entity, 4192 const InitializationKind &Kind, 4193 Expr *Initializer, 4194 QualType cv1T1, QualType T1, 4195 Qualifiers T1Quals, 4196 QualType cv2T2, QualType T2, 4197 Qualifiers T2Quals, 4198 InitializationSequence &Sequence); 4199 4200 static void TryValueInitialization(Sema &S, 4201 const InitializedEntity &Entity, 4202 const InitializationKind &Kind, 4203 InitializationSequence &Sequence, 4204 InitListExpr *InitList = nullptr); 4205 4206 /// Attempt list initialization of a reference. 4207 static void TryReferenceListInitialization(Sema &S, 4208 const InitializedEntity &Entity, 4209 const InitializationKind &Kind, 4210 InitListExpr *InitList, 4211 InitializationSequence &Sequence, 4212 bool TreatUnavailableAsInvalid) { 4213 // First, catch C++03 where this isn't possible. 4214 if (!S.getLangOpts().CPlusPlus11) { 4215 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); 4216 return; 4217 } 4218 // Can't reference initialize a compound literal. 4219 if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) { 4220 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); 4221 return; 4222 } 4223 4224 QualType DestType = Entity.getType(); 4225 QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); 4226 Qualifiers T1Quals; 4227 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); 4228 4229 // Reference initialization via an initializer list works thus: 4230 // If the initializer list consists of a single element that is 4231 // reference-related to the referenced type, bind directly to that element 4232 // (possibly creating temporaries). 4233 // Otherwise, initialize a temporary with the initializer list and 4234 // bind to that. 4235 if (InitList->getNumInits() == 1) { 4236 Expr *Initializer = InitList->getInit(0); 4237 QualType cv2T2 = Initializer->getType(); 4238 Qualifiers T2Quals; 4239 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); 4240 4241 // If this fails, creating a temporary wouldn't work either. 4242 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, 4243 T1, Sequence)) 4244 return; 4245 4246 SourceLocation DeclLoc = Initializer->getBeginLoc(); 4247 Sema::ReferenceCompareResult RefRelationship 4248 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2); 4249 if (RefRelationship >= Sema::Ref_Related) { 4250 // Try to bind the reference here. 4251 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, 4252 T1Quals, cv2T2, T2, T2Quals, Sequence); 4253 if (Sequence) 4254 Sequence.RewrapReferenceInitList(cv1T1, InitList); 4255 return; 4256 } 4257 4258 // Update the initializer if we've resolved an overloaded function. 4259 if (Sequence.step_begin() != Sequence.step_end()) 4260 Sequence.RewrapReferenceInitList(cv1T1, InitList); 4261 } 4262 4263 // Not reference-related. Create a temporary and bind to that. 4264 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1); 4265 4266 TryListInitialization(S, TempEntity, Kind, InitList, Sequence, 4267 TreatUnavailableAsInvalid); 4268 if (Sequence) { 4269 if (DestType->isRValueReferenceType() || 4270 (T1Quals.hasConst() && !T1Quals.hasVolatile())) 4271 Sequence.AddReferenceBindingStep(cv1T1, /*BindingTemporary=*/true); 4272 else 4273 Sequence.SetFailed( 4274 InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary); 4275 } 4276 } 4277 4278 /// Attempt list initialization (C++0x [dcl.init.list]) 4279 static void TryListInitialization(Sema &S, 4280 const InitializedEntity &Entity, 4281 const InitializationKind &Kind, 4282 InitListExpr *InitList, 4283 InitializationSequence &Sequence, 4284 bool TreatUnavailableAsInvalid) { 4285 QualType DestType = Entity.getType(); 4286 4287 // C++ doesn't allow scalar initialization with more than one argument. 4288 // But C99 complex numbers are scalars and it makes sense there. 4289 if (S.getLangOpts().CPlusPlus && DestType->isScalarType() && 4290 !DestType->isAnyComplexType() && InitList->getNumInits() > 1) { 4291 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar); 4292 return; 4293 } 4294 if (DestType->isReferenceType()) { 4295 TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence, 4296 TreatUnavailableAsInvalid); 4297 return; 4298 } 4299 4300 if (DestType->isRecordType() && 4301 !S.isCompleteType(InitList->getBeginLoc(), DestType)) { 4302 Sequence.setIncompleteTypeFailure(DestType); 4303 return; 4304 } 4305 4306 // C++11 [dcl.init.list]p3, per DR1467: 4307 // - If T is a class type and the initializer list has a single element of 4308 // type cv U, where U is T or a class derived from T, the object is 4309 // initialized from that element (by copy-initialization for 4310 // copy-list-initialization, or by direct-initialization for 4311 // direct-list-initialization). 4312 // - Otherwise, if T is a character array and the initializer list has a 4313 // single element that is an appropriately-typed string literal 4314 // (8.5.2 [dcl.init.string]), initialization is performed as described 4315 // in that section. 4316 // - Otherwise, if T is an aggregate, [...] (continue below). 4317 if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) { 4318 if (DestType->isRecordType()) { 4319 QualType InitType = InitList->getInit(0)->getType(); 4320 if (S.Context.hasSameUnqualifiedType(InitType, DestType) || 4321 S.IsDerivedFrom(InitList->getBeginLoc(), InitType, DestType)) { 4322 Expr *InitListAsExpr = InitList; 4323 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType, 4324 DestType, Sequence, 4325 /*InitListSyntax*/false, 4326 /*IsInitListCopy*/true); 4327 return; 4328 } 4329 } 4330 if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) { 4331 Expr *SubInit[1] = {InitList->getInit(0)}; 4332 if (!isa<VariableArrayType>(DestAT) && 4333 IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) { 4334 InitializationKind SubKind = 4335 Kind.getKind() == InitializationKind::IK_DirectList 4336 ? InitializationKind::CreateDirect(Kind.getLocation(), 4337 InitList->getLBraceLoc(), 4338 InitList->getRBraceLoc()) 4339 : Kind; 4340 Sequence.InitializeFrom(S, Entity, SubKind, SubInit, 4341 /*TopLevelOfInitList*/ true, 4342 TreatUnavailableAsInvalid); 4343 4344 // TryStringLiteralInitialization() (in InitializeFrom()) will fail if 4345 // the element is not an appropriately-typed string literal, in which 4346 // case we should proceed as in C++11 (below). 4347 if (Sequence) { 4348 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 4349 return; 4350 } 4351 } 4352 } 4353 } 4354 4355 // C++11 [dcl.init.list]p3: 4356 // - If T is an aggregate, aggregate initialization is performed. 4357 if ((DestType->isRecordType() && !DestType->isAggregateType()) || 4358 (S.getLangOpts().CPlusPlus11 && 4359 S.isStdInitializerList(DestType, nullptr))) { 4360 if (S.getLangOpts().CPlusPlus11) { 4361 // - Otherwise, if the initializer list has no elements and T is a 4362 // class type with a default constructor, the object is 4363 // value-initialized. 4364 if (InitList->getNumInits() == 0) { 4365 CXXRecordDecl *RD = DestType->getAsCXXRecordDecl(); 4366 if (S.LookupDefaultConstructor(RD)) { 4367 TryValueInitialization(S, Entity, Kind, Sequence, InitList); 4368 return; 4369 } 4370 } 4371 4372 // - Otherwise, if T is a specialization of std::initializer_list<E>, 4373 // an initializer_list object constructed [...] 4374 if (TryInitializerListConstruction(S, InitList, DestType, Sequence, 4375 TreatUnavailableAsInvalid)) 4376 return; 4377 4378 // - Otherwise, if T is a class type, constructors are considered. 4379 Expr *InitListAsExpr = InitList; 4380 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType, 4381 DestType, Sequence, /*InitListSyntax*/true); 4382 } else 4383 Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType); 4384 return; 4385 } 4386 4387 if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() && 4388 InitList->getNumInits() == 1) { 4389 Expr *E = InitList->getInit(0); 4390 4391 // - Otherwise, if T is an enumeration with a fixed underlying type, 4392 // the initializer-list has a single element v, and the initialization 4393 // is direct-list-initialization, the object is initialized with the 4394 // value T(v); if a narrowing conversion is required to convert v to 4395 // the underlying type of T, the program is ill-formed. 4396 auto *ET = DestType->getAs<EnumType>(); 4397 if (S.getLangOpts().CPlusPlus17 && 4398 Kind.getKind() == InitializationKind::IK_DirectList && 4399 ET && ET->getDecl()->isFixed() && 4400 !S.Context.hasSameUnqualifiedType(E->getType(), DestType) && 4401 (E->getType()->isIntegralOrEnumerationType() || 4402 E->getType()->isFloatingType())) { 4403 // There are two ways that T(v) can work when T is an enumeration type. 4404 // If there is either an implicit conversion sequence from v to T or 4405 // a conversion function that can convert from v to T, then we use that. 4406 // Otherwise, if v is of integral, enumeration, or floating-point type, 4407 // it is converted to the enumeration type via its underlying type. 4408 // There is no overlap possible between these two cases (except when the 4409 // source value is already of the destination type), and the first 4410 // case is handled by the general case for single-element lists below. 4411 ImplicitConversionSequence ICS; 4412 ICS.setStandard(); 4413 ICS.Standard.setAsIdentityConversion(); 4414 if (!E->isRValue()) 4415 ICS.Standard.First = ICK_Lvalue_To_Rvalue; 4416 // If E is of a floating-point type, then the conversion is ill-formed 4417 // due to narrowing, but go through the motions in order to produce the 4418 // right diagnostic. 4419 ICS.Standard.Second = E->getType()->isFloatingType() 4420 ? ICK_Floating_Integral 4421 : ICK_Integral_Conversion; 4422 ICS.Standard.setFromType(E->getType()); 4423 ICS.Standard.setToType(0, E->getType()); 4424 ICS.Standard.setToType(1, DestType); 4425 ICS.Standard.setToType(2, DestType); 4426 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2), 4427 /*TopLevelOfInitList*/true); 4428 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 4429 return; 4430 } 4431 4432 // - Otherwise, if the initializer list has a single element of type E 4433 // [...references are handled above...], the object or reference is 4434 // initialized from that element (by copy-initialization for 4435 // copy-list-initialization, or by direct-initialization for 4436 // direct-list-initialization); if a narrowing conversion is required 4437 // to convert the element to T, the program is ill-formed. 4438 // 4439 // Per core-24034, this is direct-initialization if we were performing 4440 // direct-list-initialization and copy-initialization otherwise. 4441 // We can't use InitListChecker for this, because it always performs 4442 // copy-initialization. This only matters if we might use an 'explicit' 4443 // conversion operator, or for the special case conversion of nullptr_t to 4444 // bool, so we only need to handle those cases. 4445 // 4446 // FIXME: Why not do this in all cases? 4447 Expr *Init = InitList->getInit(0); 4448 if (Init->getType()->isRecordType() || 4449 (Init->getType()->isNullPtrType() && DestType->isBooleanType())) { 4450 InitializationKind SubKind = 4451 Kind.getKind() == InitializationKind::IK_DirectList 4452 ? InitializationKind::CreateDirect(Kind.getLocation(), 4453 InitList->getLBraceLoc(), 4454 InitList->getRBraceLoc()) 4455 : Kind; 4456 Expr *SubInit[1] = { Init }; 4457 Sequence.InitializeFrom(S, Entity, SubKind, SubInit, 4458 /*TopLevelOfInitList*/true, 4459 TreatUnavailableAsInvalid); 4460 if (Sequence) 4461 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 4462 return; 4463 } 4464 } 4465 4466 InitListChecker CheckInitList(S, Entity, InitList, 4467 DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid); 4468 if (CheckInitList.HadError()) { 4469 Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed); 4470 return; 4471 } 4472 4473 // Add the list initialization step with the built init list. 4474 Sequence.AddListInitializationStep(DestType); 4475 } 4476 4477 /// Try a reference initialization that involves calling a conversion 4478 /// function. 4479 static OverloadingResult TryRefInitWithConversionFunction( 4480 Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, 4481 Expr *Initializer, bool AllowRValues, bool IsLValueRef, 4482 InitializationSequence &Sequence) { 4483 QualType DestType = Entity.getType(); 4484 QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); 4485 QualType T1 = cv1T1.getUnqualifiedType(); 4486 QualType cv2T2 = Initializer->getType(); 4487 QualType T2 = cv2T2.getUnqualifiedType(); 4488 4489 assert(!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2) && 4490 "Must have incompatible references when binding via conversion"); 4491 4492 // Build the candidate set directly in the initialization sequence 4493 // structure, so that it will persist if we fail. 4494 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 4495 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); 4496 4497 // Determine whether we are allowed to call explicit conversion operators. 4498 // Note that none of [over.match.copy], [over.match.conv], nor 4499 // [over.match.ref] permit an explicit constructor to be chosen when 4500 // initializing a reference, not even for direct-initialization. 4501 bool AllowExplicitCtors = false; 4502 bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding(); 4503 4504 const RecordType *T1RecordType = nullptr; 4505 if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) && 4506 S.isCompleteType(Kind.getLocation(), T1)) { 4507 // The type we're converting to is a class type. Enumerate its constructors 4508 // to see if there is a suitable conversion. 4509 CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl()); 4510 4511 for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) { 4512 auto Info = getConstructorInfo(D); 4513 if (!Info.Constructor) 4514 continue; 4515 4516 if (!Info.Constructor->isInvalidDecl() && 4517 Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) { 4518 if (Info.ConstructorTmpl) 4519 S.AddTemplateOverloadCandidate( 4520 Info.ConstructorTmpl, Info.FoundDecl, 4521 /*ExplicitArgs*/ nullptr, Initializer, CandidateSet, 4522 /*SuppressUserConversions=*/true, 4523 /*PartialOverloading*/ false, AllowExplicitCtors); 4524 else 4525 S.AddOverloadCandidate( 4526 Info.Constructor, Info.FoundDecl, Initializer, CandidateSet, 4527 /*SuppressUserConversions=*/true, 4528 /*PartialOverloading*/ false, AllowExplicitCtors); 4529 } 4530 } 4531 } 4532 if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl()) 4533 return OR_No_Viable_Function; 4534 4535 const RecordType *T2RecordType = nullptr; 4536 if ((T2RecordType = T2->getAs<RecordType>()) && 4537 S.isCompleteType(Kind.getLocation(), T2)) { 4538 // The type we're converting from is a class type, enumerate its conversion 4539 // functions. 4540 CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl()); 4541 4542 const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions(); 4543 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 4544 NamedDecl *D = *I; 4545 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 4546 if (isa<UsingShadowDecl>(D)) 4547 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 4548 4549 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 4550 CXXConversionDecl *Conv; 4551 if (ConvTemplate) 4552 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 4553 else 4554 Conv = cast<CXXConversionDecl>(D); 4555 4556 // If the conversion function doesn't return a reference type, 4557 // it can't be considered for this conversion unless we're allowed to 4558 // consider rvalues. 4559 // FIXME: Do we need to make sure that we only consider conversion 4560 // candidates with reference-compatible results? That might be needed to 4561 // break recursion. 4562 if ((AllowRValues || 4563 Conv->getConversionType()->isLValueReferenceType())) { 4564 if (ConvTemplate) 4565 S.AddTemplateConversionCandidate( 4566 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, 4567 CandidateSet, 4568 /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs); 4569 else 4570 S.AddConversionCandidate( 4571 Conv, I.getPair(), ActingDC, Initializer, DestType, CandidateSet, 4572 /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs); 4573 } 4574 } 4575 } 4576 if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl()) 4577 return OR_No_Viable_Function; 4578 4579 SourceLocation DeclLoc = Initializer->getBeginLoc(); 4580 4581 // Perform overload resolution. If it fails, return the failed result. 4582 OverloadCandidateSet::iterator Best; 4583 if (OverloadingResult Result 4584 = CandidateSet.BestViableFunction(S, DeclLoc, Best)) 4585 return Result; 4586 4587 FunctionDecl *Function = Best->Function; 4588 // This is the overload that will be used for this initialization step if we 4589 // use this initialization. Mark it as referenced. 4590 Function->setReferenced(); 4591 4592 // Compute the returned type and value kind of the conversion. 4593 QualType cv3T3; 4594 if (isa<CXXConversionDecl>(Function)) 4595 cv3T3 = Function->getReturnType(); 4596 else 4597 cv3T3 = T1; 4598 4599 ExprValueKind VK = VK_RValue; 4600 if (cv3T3->isLValueReferenceType()) 4601 VK = VK_LValue; 4602 else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>()) 4603 VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue; 4604 cv3T3 = cv3T3.getNonLValueExprType(S.Context); 4605 4606 // Add the user-defined conversion step. 4607 bool HadMultipleCandidates = (CandidateSet.size() > 1); 4608 Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3, 4609 HadMultipleCandidates); 4610 4611 // Determine whether we'll need to perform derived-to-base adjustments or 4612 // other conversions. 4613 Sema::ReferenceConversions RefConv; 4614 Sema::ReferenceCompareResult NewRefRelationship = 4615 S.CompareReferenceRelationship(DeclLoc, T1, cv3T3, &RefConv); 4616 4617 // Add the final conversion sequence, if necessary. 4618 if (NewRefRelationship == Sema::Ref_Incompatible) { 4619 assert(!isa<CXXConstructorDecl>(Function) && 4620 "should not have conversion after constructor"); 4621 4622 ImplicitConversionSequence ICS; 4623 ICS.setStandard(); 4624 ICS.Standard = Best->FinalConversion; 4625 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2)); 4626 4627 // Every implicit conversion results in a prvalue, except for a glvalue 4628 // derived-to-base conversion, which we handle below. 4629 cv3T3 = ICS.Standard.getToType(2); 4630 VK = VK_RValue; 4631 } 4632 4633 // If the converted initializer is a prvalue, its type T4 is adjusted to 4634 // type "cv1 T4" and the temporary materialization conversion is applied. 4635 // 4636 // We adjust the cv-qualifications to match the reference regardless of 4637 // whether we have a prvalue so that the AST records the change. In this 4638 // case, T4 is "cv3 T3". 4639 QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers()); 4640 if (cv1T4.getQualifiers() != cv3T3.getQualifiers()) 4641 Sequence.AddQualificationConversionStep(cv1T4, VK); 4642 Sequence.AddReferenceBindingStep(cv1T4, VK == VK_RValue); 4643 VK = IsLValueRef ? VK_LValue : VK_XValue; 4644 4645 if (RefConv & Sema::ReferenceConversions::DerivedToBase) 4646 Sequence.AddDerivedToBaseCastStep(cv1T1, VK); 4647 else if (RefConv & Sema::ReferenceConversions::ObjC) 4648 Sequence.AddObjCObjectConversionStep(cv1T1); 4649 else if (RefConv & Sema::ReferenceConversions::Function) 4650 Sequence.AddQualificationConversionStep(cv1T1, VK); 4651 else if (RefConv & Sema::ReferenceConversions::Qualification) { 4652 if (!S.Context.hasSameType(cv1T4, cv1T1)) 4653 Sequence.AddQualificationConversionStep(cv1T1, VK); 4654 } 4655 4656 return OR_Success; 4657 } 4658 4659 static void CheckCXX98CompatAccessibleCopy(Sema &S, 4660 const InitializedEntity &Entity, 4661 Expr *CurInitExpr); 4662 4663 /// Attempt reference initialization (C++0x [dcl.init.ref]) 4664 static void TryReferenceInitialization(Sema &S, 4665 const InitializedEntity &Entity, 4666 const InitializationKind &Kind, 4667 Expr *Initializer, 4668 InitializationSequence &Sequence) { 4669 QualType DestType = Entity.getType(); 4670 QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); 4671 Qualifiers T1Quals; 4672 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); 4673 QualType cv2T2 = Initializer->getType(); 4674 Qualifiers T2Quals; 4675 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); 4676 4677 // If the initializer is the address of an overloaded function, try 4678 // to resolve the overloaded function. If all goes well, T2 is the 4679 // type of the resulting function. 4680 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, 4681 T1, Sequence)) 4682 return; 4683 4684 // Delegate everything else to a subfunction. 4685 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, 4686 T1Quals, cv2T2, T2, T2Quals, Sequence); 4687 } 4688 4689 /// Determine whether an expression is a non-referenceable glvalue (one to 4690 /// which a reference can never bind). Attempting to bind a reference to 4691 /// such a glvalue will always create a temporary. 4692 static bool isNonReferenceableGLValue(Expr *E) { 4693 return E->refersToBitField() || E->refersToVectorElement() || 4694 E->refersToMatrixElement(); 4695 } 4696 4697 /// Reference initialization without resolving overloaded functions. 4698 /// 4699 /// We also can get here in C if we call a builtin which is declared as 4700 /// a function with a parameter of reference type (such as __builtin_va_end()). 4701 static void TryReferenceInitializationCore(Sema &S, 4702 const InitializedEntity &Entity, 4703 const InitializationKind &Kind, 4704 Expr *Initializer, 4705 QualType cv1T1, QualType T1, 4706 Qualifiers T1Quals, 4707 QualType cv2T2, QualType T2, 4708 Qualifiers T2Quals, 4709 InitializationSequence &Sequence) { 4710 QualType DestType = Entity.getType(); 4711 SourceLocation DeclLoc = Initializer->getBeginLoc(); 4712 4713 // Compute some basic properties of the types and the initializer. 4714 bool isLValueRef = DestType->isLValueReferenceType(); 4715 bool isRValueRef = !isLValueRef; 4716 Expr::Classification InitCategory = Initializer->Classify(S.Context); 4717 4718 Sema::ReferenceConversions RefConv; 4719 Sema::ReferenceCompareResult RefRelationship = 4720 S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, &RefConv); 4721 4722 // C++0x [dcl.init.ref]p5: 4723 // A reference to type "cv1 T1" is initialized by an expression of type 4724 // "cv2 T2" as follows: 4725 // 4726 // - If the reference is an lvalue reference and the initializer 4727 // expression 4728 // Note the analogous bullet points for rvalue refs to functions. Because 4729 // there are no function rvalues in C++, rvalue refs to functions are treated 4730 // like lvalue refs. 4731 OverloadingResult ConvOvlResult = OR_Success; 4732 bool T1Function = T1->isFunctionType(); 4733 if (isLValueRef || T1Function) { 4734 if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) && 4735 (RefRelationship == Sema::Ref_Compatible || 4736 (Kind.isCStyleOrFunctionalCast() && 4737 RefRelationship == Sema::Ref_Related))) { 4738 // - is an lvalue (but is not a bit-field), and "cv1 T1" is 4739 // reference-compatible with "cv2 T2," or 4740 if (RefConv & (Sema::ReferenceConversions::DerivedToBase | 4741 Sema::ReferenceConversions::ObjC)) { 4742 // If we're converting the pointee, add any qualifiers first; 4743 // these qualifiers must all be top-level, so just convert to "cv1 T2". 4744 if (RefConv & (Sema::ReferenceConversions::Qualification)) 4745 Sequence.AddQualificationConversionStep( 4746 S.Context.getQualifiedType(T2, T1Quals), 4747 Initializer->getValueKind()); 4748 if (RefConv & Sema::ReferenceConversions::DerivedToBase) 4749 Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue); 4750 else 4751 Sequence.AddObjCObjectConversionStep(cv1T1); 4752 } else if (RefConv & (Sema::ReferenceConversions::Qualification | 4753 Sema::ReferenceConversions::Function)) { 4754 // Perform a (possibly multi-level) qualification conversion. 4755 // FIXME: Should we use a different step kind for function conversions? 4756 Sequence.AddQualificationConversionStep(cv1T1, 4757 Initializer->getValueKind()); 4758 } 4759 4760 // We only create a temporary here when binding a reference to a 4761 // bit-field or vector element. Those cases are't supposed to be 4762 // handled by this bullet, but the outcome is the same either way. 4763 Sequence.AddReferenceBindingStep(cv1T1, false); 4764 return; 4765 } 4766 4767 // - has a class type (i.e., T2 is a class type), where T1 is not 4768 // reference-related to T2, and can be implicitly converted to an 4769 // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible 4770 // with "cv3 T3" (this conversion is selected by enumerating the 4771 // applicable conversion functions (13.3.1.6) and choosing the best 4772 // one through overload resolution (13.3)), 4773 // If we have an rvalue ref to function type here, the rhs must be 4774 // an rvalue. DR1287 removed the "implicitly" here. 4775 if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() && 4776 (isLValueRef || InitCategory.isRValue())) { 4777 if (S.getLangOpts().CPlusPlus) { 4778 // Try conversion functions only for C++. 4779 ConvOvlResult = TryRefInitWithConversionFunction( 4780 S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef, 4781 /*IsLValueRef*/ isLValueRef, Sequence); 4782 if (ConvOvlResult == OR_Success) 4783 return; 4784 if (ConvOvlResult != OR_No_Viable_Function) 4785 Sequence.SetOverloadFailure( 4786 InitializationSequence::FK_ReferenceInitOverloadFailed, 4787 ConvOvlResult); 4788 } else { 4789 ConvOvlResult = OR_No_Viable_Function; 4790 } 4791 } 4792 } 4793 4794 // - Otherwise, the reference shall be an lvalue reference to a 4795 // non-volatile const type (i.e., cv1 shall be const), or the reference 4796 // shall be an rvalue reference. 4797 // For address spaces, we interpret this to mean that an addr space 4798 // of a reference "cv1 T1" is a superset of addr space of "cv2 T2". 4799 if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile() && 4800 T1Quals.isAddressSpaceSupersetOf(T2Quals))) { 4801 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) 4802 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 4803 else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) 4804 Sequence.SetOverloadFailure( 4805 InitializationSequence::FK_ReferenceInitOverloadFailed, 4806 ConvOvlResult); 4807 else if (!InitCategory.isLValue()) 4808 Sequence.SetFailed( 4809 T1Quals.isAddressSpaceSupersetOf(T2Quals) 4810 ? InitializationSequence:: 4811 FK_NonConstLValueReferenceBindingToTemporary 4812 : InitializationSequence::FK_ReferenceInitDropsQualifiers); 4813 else { 4814 InitializationSequence::FailureKind FK; 4815 switch (RefRelationship) { 4816 case Sema::Ref_Compatible: 4817 if (Initializer->refersToBitField()) 4818 FK = InitializationSequence:: 4819 FK_NonConstLValueReferenceBindingToBitfield; 4820 else if (Initializer->refersToVectorElement()) 4821 FK = InitializationSequence:: 4822 FK_NonConstLValueReferenceBindingToVectorElement; 4823 else if (Initializer->refersToMatrixElement()) 4824 FK = InitializationSequence:: 4825 FK_NonConstLValueReferenceBindingToMatrixElement; 4826 else 4827 llvm_unreachable("unexpected kind of compatible initializer"); 4828 break; 4829 case Sema::Ref_Related: 4830 FK = InitializationSequence::FK_ReferenceInitDropsQualifiers; 4831 break; 4832 case Sema::Ref_Incompatible: 4833 FK = InitializationSequence:: 4834 FK_NonConstLValueReferenceBindingToUnrelated; 4835 break; 4836 } 4837 Sequence.SetFailed(FK); 4838 } 4839 return; 4840 } 4841 4842 // - If the initializer expression 4843 // - is an 4844 // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or 4845 // [1z] rvalue (but not a bit-field) or 4846 // function lvalue and "cv1 T1" is reference-compatible with "cv2 T2" 4847 // 4848 // Note: functions are handled above and below rather than here... 4849 if (!T1Function && 4850 (RefRelationship == Sema::Ref_Compatible || 4851 (Kind.isCStyleOrFunctionalCast() && 4852 RefRelationship == Sema::Ref_Related)) && 4853 ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) || 4854 (InitCategory.isPRValue() && 4855 (S.getLangOpts().CPlusPlus17 || T2->isRecordType() || 4856 T2->isArrayType())))) { 4857 ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_RValue; 4858 if (InitCategory.isPRValue() && T2->isRecordType()) { 4859 // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the 4860 // compiler the freedom to perform a copy here or bind to the 4861 // object, while C++0x requires that we bind directly to the 4862 // object. Hence, we always bind to the object without making an 4863 // extra copy. However, in C++03 requires that we check for the 4864 // presence of a suitable copy constructor: 4865 // 4866 // The constructor that would be used to make the copy shall 4867 // be callable whether or not the copy is actually done. 4868 if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt) 4869 Sequence.AddExtraneousCopyToTemporary(cv2T2); 4870 else if (S.getLangOpts().CPlusPlus11) 4871 CheckCXX98CompatAccessibleCopy(S, Entity, Initializer); 4872 } 4873 4874 // C++1z [dcl.init.ref]/5.2.1.2: 4875 // If the converted initializer is a prvalue, its type T4 is adjusted 4876 // to type "cv1 T4" and the temporary materialization conversion is 4877 // applied. 4878 // Postpone address space conversions to after the temporary materialization 4879 // conversion to allow creating temporaries in the alloca address space. 4880 auto T1QualsIgnoreAS = T1Quals; 4881 auto T2QualsIgnoreAS = T2Quals; 4882 if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) { 4883 T1QualsIgnoreAS.removeAddressSpace(); 4884 T2QualsIgnoreAS.removeAddressSpace(); 4885 } 4886 QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1QualsIgnoreAS); 4887 if (T1QualsIgnoreAS != T2QualsIgnoreAS) 4888 Sequence.AddQualificationConversionStep(cv1T4, ValueKind); 4889 Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_RValue); 4890 ValueKind = isLValueRef ? VK_LValue : VK_XValue; 4891 // Add addr space conversion if required. 4892 if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) { 4893 auto T4Quals = cv1T4.getQualifiers(); 4894 T4Quals.addAddressSpace(T1Quals.getAddressSpace()); 4895 QualType cv1T4WithAS = S.Context.getQualifiedType(T2, T4Quals); 4896 Sequence.AddQualificationConversionStep(cv1T4WithAS, ValueKind); 4897 cv1T4 = cv1T4WithAS; 4898 } 4899 4900 // In any case, the reference is bound to the resulting glvalue (or to 4901 // an appropriate base class subobject). 4902 if (RefConv & Sema::ReferenceConversions::DerivedToBase) 4903 Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind); 4904 else if (RefConv & Sema::ReferenceConversions::ObjC) 4905 Sequence.AddObjCObjectConversionStep(cv1T1); 4906 else if (RefConv & Sema::ReferenceConversions::Qualification) { 4907 if (!S.Context.hasSameType(cv1T4, cv1T1)) 4908 Sequence.AddQualificationConversionStep(cv1T1, ValueKind); 4909 } 4910 return; 4911 } 4912 4913 // - has a class type (i.e., T2 is a class type), where T1 is not 4914 // reference-related to T2, and can be implicitly converted to an 4915 // xvalue, class prvalue, or function lvalue of type "cv3 T3", 4916 // where "cv1 T1" is reference-compatible with "cv3 T3", 4917 // 4918 // DR1287 removes the "implicitly" here. 4919 if (T2->isRecordType()) { 4920 if (RefRelationship == Sema::Ref_Incompatible) { 4921 ConvOvlResult = TryRefInitWithConversionFunction( 4922 S, Entity, Kind, Initializer, /*AllowRValues*/ true, 4923 /*IsLValueRef*/ isLValueRef, Sequence); 4924 if (ConvOvlResult) 4925 Sequence.SetOverloadFailure( 4926 InitializationSequence::FK_ReferenceInitOverloadFailed, 4927 ConvOvlResult); 4928 4929 return; 4930 } 4931 4932 if (RefRelationship == Sema::Ref_Compatible && 4933 isRValueRef && InitCategory.isLValue()) { 4934 Sequence.SetFailed( 4935 InitializationSequence::FK_RValueReferenceBindingToLValue); 4936 return; 4937 } 4938 4939 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); 4940 return; 4941 } 4942 4943 // - Otherwise, a temporary of type "cv1 T1" is created and initialized 4944 // from the initializer expression using the rules for a non-reference 4945 // copy-initialization (8.5). The reference is then bound to the 4946 // temporary. [...] 4947 4948 // Ignore address space of reference type at this point and perform address 4949 // space conversion after the reference binding step. 4950 QualType cv1T1IgnoreAS = 4951 T1Quals.hasAddressSpace() 4952 ? S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace()) 4953 : cv1T1; 4954 4955 InitializedEntity TempEntity = 4956 InitializedEntity::InitializeTemporary(cv1T1IgnoreAS); 4957 4958 // FIXME: Why do we use an implicit conversion here rather than trying 4959 // copy-initialization? 4960 ImplicitConversionSequence ICS 4961 = S.TryImplicitConversion(Initializer, TempEntity.getType(), 4962 /*SuppressUserConversions=*/false, 4963 Sema::AllowedExplicit::None, 4964 /*FIXME:InOverloadResolution=*/false, 4965 /*CStyle=*/Kind.isCStyleOrFunctionalCast(), 4966 /*AllowObjCWritebackConversion=*/false); 4967 4968 if (ICS.isBad()) { 4969 // FIXME: Use the conversion function set stored in ICS to turn 4970 // this into an overloading ambiguity diagnostic. However, we need 4971 // to keep that set as an OverloadCandidateSet rather than as some 4972 // other kind of set. 4973 if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) 4974 Sequence.SetOverloadFailure( 4975 InitializationSequence::FK_ReferenceInitOverloadFailed, 4976 ConvOvlResult); 4977 else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) 4978 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 4979 else 4980 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed); 4981 return; 4982 } else { 4983 Sequence.AddConversionSequenceStep(ICS, TempEntity.getType()); 4984 } 4985 4986 // [...] If T1 is reference-related to T2, cv1 must be the 4987 // same cv-qualification as, or greater cv-qualification 4988 // than, cv2; otherwise, the program is ill-formed. 4989 unsigned T1CVRQuals = T1Quals.getCVRQualifiers(); 4990 unsigned T2CVRQuals = T2Quals.getCVRQualifiers(); 4991 if ((RefRelationship == Sema::Ref_Related && 4992 (T1CVRQuals | T2CVRQuals) != T1CVRQuals) || 4993 !T1Quals.isAddressSpaceSupersetOf(T2Quals)) { 4994 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); 4995 return; 4996 } 4997 4998 // [...] If T1 is reference-related to T2 and the reference is an rvalue 4999 // reference, the initializer expression shall not be an lvalue. 5000 if (RefRelationship >= Sema::Ref_Related && !isLValueRef && 5001 InitCategory.isLValue()) { 5002 Sequence.SetFailed( 5003 InitializationSequence::FK_RValueReferenceBindingToLValue); 5004 return; 5005 } 5006 5007 Sequence.AddReferenceBindingStep(cv1T1IgnoreAS, /*BindingTemporary=*/true); 5008 5009 if (T1Quals.hasAddressSpace()) { 5010 if (!Qualifiers::isAddressSpaceSupersetOf(T1Quals.getAddressSpace(), 5011 LangAS::Default)) { 5012 Sequence.SetFailed( 5013 InitializationSequence::FK_ReferenceAddrspaceMismatchTemporary); 5014 return; 5015 } 5016 Sequence.AddQualificationConversionStep(cv1T1, isLValueRef ? VK_LValue 5017 : VK_XValue); 5018 } 5019 } 5020 5021 /// Attempt character array initialization from a string literal 5022 /// (C++ [dcl.init.string], C99 6.7.8). 5023 static void TryStringLiteralInitialization(Sema &S, 5024 const InitializedEntity &Entity, 5025 const InitializationKind &Kind, 5026 Expr *Initializer, 5027 InitializationSequence &Sequence) { 5028 Sequence.AddStringInitStep(Entity.getType()); 5029 } 5030 5031 /// Attempt value initialization (C++ [dcl.init]p7). 5032 static void TryValueInitialization(Sema &S, 5033 const InitializedEntity &Entity, 5034 const InitializationKind &Kind, 5035 InitializationSequence &Sequence, 5036 InitListExpr *InitList) { 5037 assert((!InitList || InitList->getNumInits() == 0) && 5038 "Shouldn't use value-init for non-empty init lists"); 5039 5040 // C++98 [dcl.init]p5, C++11 [dcl.init]p7: 5041 // 5042 // To value-initialize an object of type T means: 5043 QualType T = Entity.getType(); 5044 5045 // -- if T is an array type, then each element is value-initialized; 5046 T = S.Context.getBaseElementType(T); 5047 5048 if (const RecordType *RT = T->getAs<RecordType>()) { 5049 if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 5050 bool NeedZeroInitialization = true; 5051 // C++98: 5052 // -- if T is a class type (clause 9) with a user-declared constructor 5053 // (12.1), then the default constructor for T is called (and the 5054 // initialization is ill-formed if T has no accessible default 5055 // constructor); 5056 // C++11: 5057 // -- if T is a class type (clause 9) with either no default constructor 5058 // (12.1 [class.ctor]) or a default constructor that is user-provided 5059 // or deleted, then the object is default-initialized; 5060 // 5061 // Note that the C++11 rule is the same as the C++98 rule if there are no 5062 // defaulted or deleted constructors, so we just use it unconditionally. 5063 CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl); 5064 if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted()) 5065 NeedZeroInitialization = false; 5066 5067 // -- if T is a (possibly cv-qualified) non-union class type without a 5068 // user-provided or deleted default constructor, then the object is 5069 // zero-initialized and, if T has a non-trivial default constructor, 5070 // default-initialized; 5071 // The 'non-union' here was removed by DR1502. The 'non-trivial default 5072 // constructor' part was removed by DR1507. 5073 if (NeedZeroInitialization) 5074 Sequence.AddZeroInitializationStep(Entity.getType()); 5075 5076 // C++03: 5077 // -- if T is a non-union class type without a user-declared constructor, 5078 // then every non-static data member and base class component of T is 5079 // value-initialized; 5080 // [...] A program that calls for [...] value-initialization of an 5081 // entity of reference type is ill-formed. 5082 // 5083 // C++11 doesn't need this handling, because value-initialization does not 5084 // occur recursively there, and the implicit default constructor is 5085 // defined as deleted in the problematic cases. 5086 if (!S.getLangOpts().CPlusPlus11 && 5087 ClassDecl->hasUninitializedReferenceMember()) { 5088 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference); 5089 return; 5090 } 5091 5092 // If this is list-value-initialization, pass the empty init list on when 5093 // building the constructor call. This affects the semantics of a few 5094 // things (such as whether an explicit default constructor can be called). 5095 Expr *InitListAsExpr = InitList; 5096 MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0); 5097 bool InitListSyntax = InitList; 5098 5099 // FIXME: Instead of creating a CXXConstructExpr of array type here, 5100 // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr. 5101 return TryConstructorInitialization( 5102 S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax); 5103 } 5104 } 5105 5106 Sequence.AddZeroInitializationStep(Entity.getType()); 5107 } 5108 5109 /// Attempt default initialization (C++ [dcl.init]p6). 5110 static void TryDefaultInitialization(Sema &S, 5111 const InitializedEntity &Entity, 5112 const InitializationKind &Kind, 5113 InitializationSequence &Sequence) { 5114 assert(Kind.getKind() == InitializationKind::IK_Default); 5115 5116 // C++ [dcl.init]p6: 5117 // To default-initialize an object of type T means: 5118 // - if T is an array type, each element is default-initialized; 5119 QualType DestType = S.Context.getBaseElementType(Entity.getType()); 5120 5121 // - if T is a (possibly cv-qualified) class type (Clause 9), the default 5122 // constructor for T is called (and the initialization is ill-formed if 5123 // T has no accessible default constructor); 5124 if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) { 5125 TryConstructorInitialization(S, Entity, Kind, None, DestType, 5126 Entity.getType(), Sequence); 5127 return; 5128 } 5129 5130 // - otherwise, no initialization is performed. 5131 5132 // If a program calls for the default initialization of an object of 5133 // a const-qualified type T, T shall be a class type with a user-provided 5134 // default constructor. 5135 if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) { 5136 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity)) 5137 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); 5138 return; 5139 } 5140 5141 // If the destination type has a lifetime property, zero-initialize it. 5142 if (DestType.getQualifiers().hasObjCLifetime()) { 5143 Sequence.AddZeroInitializationStep(Entity.getType()); 5144 return; 5145 } 5146 } 5147 5148 /// Attempt a user-defined conversion between two types (C++ [dcl.init]), 5149 /// which enumerates all conversion functions and performs overload resolution 5150 /// to select the best. 5151 static void TryUserDefinedConversion(Sema &S, 5152 QualType DestType, 5153 const InitializationKind &Kind, 5154 Expr *Initializer, 5155 InitializationSequence &Sequence, 5156 bool TopLevelOfInitList) { 5157 assert(!DestType->isReferenceType() && "References are handled elsewhere"); 5158 QualType SourceType = Initializer->getType(); 5159 assert((DestType->isRecordType() || SourceType->isRecordType()) && 5160 "Must have a class type to perform a user-defined conversion"); 5161 5162 // Build the candidate set directly in the initialization sequence 5163 // structure, so that it will persist if we fail. 5164 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 5165 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); 5166 CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace()); 5167 5168 // Determine whether we are allowed to call explicit constructors or 5169 // explicit conversion operators. 5170 bool AllowExplicit = Kind.AllowExplicit(); 5171 5172 if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) { 5173 // The type we're converting to is a class type. Enumerate its constructors 5174 // to see if there is a suitable conversion. 5175 CXXRecordDecl *DestRecordDecl 5176 = cast<CXXRecordDecl>(DestRecordType->getDecl()); 5177 5178 // Try to complete the type we're converting to. 5179 if (S.isCompleteType(Kind.getLocation(), DestType)) { 5180 for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) { 5181 auto Info = getConstructorInfo(D); 5182 if (!Info.Constructor) 5183 continue; 5184 5185 if (!Info.Constructor->isInvalidDecl() && 5186 Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) { 5187 if (Info.ConstructorTmpl) 5188 S.AddTemplateOverloadCandidate( 5189 Info.ConstructorTmpl, Info.FoundDecl, 5190 /*ExplicitArgs*/ nullptr, Initializer, CandidateSet, 5191 /*SuppressUserConversions=*/true, 5192 /*PartialOverloading*/ false, AllowExplicit); 5193 else 5194 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, 5195 Initializer, CandidateSet, 5196 /*SuppressUserConversions=*/true, 5197 /*PartialOverloading*/ false, AllowExplicit); 5198 } 5199 } 5200 } 5201 } 5202 5203 SourceLocation DeclLoc = Initializer->getBeginLoc(); 5204 5205 if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) { 5206 // The type we're converting from is a class type, enumerate its conversion 5207 // functions. 5208 5209 // We can only enumerate the conversion functions for a complete type; if 5210 // the type isn't complete, simply skip this step. 5211 if (S.isCompleteType(DeclLoc, SourceType)) { 5212 CXXRecordDecl *SourceRecordDecl 5213 = cast<CXXRecordDecl>(SourceRecordType->getDecl()); 5214 5215 const auto &Conversions = 5216 SourceRecordDecl->getVisibleConversionFunctions(); 5217 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 5218 NamedDecl *D = *I; 5219 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 5220 if (isa<UsingShadowDecl>(D)) 5221 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 5222 5223 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 5224 CXXConversionDecl *Conv; 5225 if (ConvTemplate) 5226 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 5227 else 5228 Conv = cast<CXXConversionDecl>(D); 5229 5230 if (ConvTemplate) 5231 S.AddTemplateConversionCandidate( 5232 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, 5233 CandidateSet, AllowExplicit, AllowExplicit); 5234 else 5235 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer, 5236 DestType, CandidateSet, AllowExplicit, 5237 AllowExplicit); 5238 } 5239 } 5240 } 5241 5242 // Perform overload resolution. If it fails, return the failed result. 5243 OverloadCandidateSet::iterator Best; 5244 if (OverloadingResult Result 5245 = CandidateSet.BestViableFunction(S, DeclLoc, Best)) { 5246 Sequence.SetOverloadFailure( 5247 InitializationSequence::FK_UserConversionOverloadFailed, 5248 Result); 5249 return; 5250 } 5251 5252 FunctionDecl *Function = Best->Function; 5253 Function->setReferenced(); 5254 bool HadMultipleCandidates = (CandidateSet.size() > 1); 5255 5256 if (isa<CXXConstructorDecl>(Function)) { 5257 // Add the user-defined conversion step. Any cv-qualification conversion is 5258 // subsumed by the initialization. Per DR5, the created temporary is of the 5259 // cv-unqualified type of the destination. 5260 Sequence.AddUserConversionStep(Function, Best->FoundDecl, 5261 DestType.getUnqualifiedType(), 5262 HadMultipleCandidates); 5263 5264 // C++14 and before: 5265 // - if the function is a constructor, the call initializes a temporary 5266 // of the cv-unqualified version of the destination type. The [...] 5267 // temporary [...] is then used to direct-initialize, according to the 5268 // rules above, the object that is the destination of the 5269 // copy-initialization. 5270 // Note that this just performs a simple object copy from the temporary. 5271 // 5272 // C++17: 5273 // - if the function is a constructor, the call is a prvalue of the 5274 // cv-unqualified version of the destination type whose return object 5275 // is initialized by the constructor. The call is used to 5276 // direct-initialize, according to the rules above, the object that 5277 // is the destination of the copy-initialization. 5278 // Therefore we need to do nothing further. 5279 // 5280 // FIXME: Mark this copy as extraneous. 5281 if (!S.getLangOpts().CPlusPlus17) 5282 Sequence.AddFinalCopy(DestType); 5283 else if (DestType.hasQualifiers()) 5284 Sequence.AddQualificationConversionStep(DestType, VK_RValue); 5285 return; 5286 } 5287 5288 // Add the user-defined conversion step that calls the conversion function. 5289 QualType ConvType = Function->getCallResultType(); 5290 Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType, 5291 HadMultipleCandidates); 5292 5293 if (ConvType->getAs<RecordType>()) { 5294 // The call is used to direct-initialize [...] the object that is the 5295 // destination of the copy-initialization. 5296 // 5297 // In C++17, this does not call a constructor if we enter /17.6.1: 5298 // - If the initializer expression is a prvalue and the cv-unqualified 5299 // version of the source type is the same as the class of the 5300 // destination [... do not make an extra copy] 5301 // 5302 // FIXME: Mark this copy as extraneous. 5303 if (!S.getLangOpts().CPlusPlus17 || 5304 Function->getReturnType()->isReferenceType() || 5305 !S.Context.hasSameUnqualifiedType(ConvType, DestType)) 5306 Sequence.AddFinalCopy(DestType); 5307 else if (!S.Context.hasSameType(ConvType, DestType)) 5308 Sequence.AddQualificationConversionStep(DestType, VK_RValue); 5309 return; 5310 } 5311 5312 // If the conversion following the call to the conversion function 5313 // is interesting, add it as a separate step. 5314 if (Best->FinalConversion.First || Best->FinalConversion.Second || 5315 Best->FinalConversion.Third) { 5316 ImplicitConversionSequence ICS; 5317 ICS.setStandard(); 5318 ICS.Standard = Best->FinalConversion; 5319 Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList); 5320 } 5321 } 5322 5323 /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>, 5324 /// a function with a pointer return type contains a 'return false;' statement. 5325 /// In C++11, 'false' is not a null pointer, so this breaks the build of any 5326 /// code using that header. 5327 /// 5328 /// Work around this by treating 'return false;' as zero-initializing the result 5329 /// if it's used in a pointer-returning function in a system header. 5330 static bool isLibstdcxxPointerReturnFalseHack(Sema &S, 5331 const InitializedEntity &Entity, 5332 const Expr *Init) { 5333 return S.getLangOpts().CPlusPlus11 && 5334 Entity.getKind() == InitializedEntity::EK_Result && 5335 Entity.getType()->isPointerType() && 5336 isa<CXXBoolLiteralExpr>(Init) && 5337 !cast<CXXBoolLiteralExpr>(Init)->getValue() && 5338 S.getSourceManager().isInSystemHeader(Init->getExprLoc()); 5339 } 5340 5341 /// The non-zero enum values here are indexes into diagnostic alternatives. 5342 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar }; 5343 5344 /// Determines whether this expression is an acceptable ICR source. 5345 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e, 5346 bool isAddressOf, bool &isWeakAccess) { 5347 // Skip parens. 5348 e = e->IgnoreParens(); 5349 5350 // Skip address-of nodes. 5351 if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) { 5352 if (op->getOpcode() == UO_AddrOf) 5353 return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true, 5354 isWeakAccess); 5355 5356 // Skip certain casts. 5357 } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) { 5358 switch (ce->getCastKind()) { 5359 case CK_Dependent: 5360 case CK_BitCast: 5361 case CK_LValueBitCast: 5362 case CK_NoOp: 5363 return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess); 5364 5365 case CK_ArrayToPointerDecay: 5366 return IIK_nonscalar; 5367 5368 case CK_NullToPointer: 5369 return IIK_okay; 5370 5371 default: 5372 break; 5373 } 5374 5375 // If we have a declaration reference, it had better be a local variable. 5376 } else if (isa<DeclRefExpr>(e)) { 5377 // set isWeakAccess to true, to mean that there will be an implicit 5378 // load which requires a cleanup. 5379 if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak) 5380 isWeakAccess = true; 5381 5382 if (!isAddressOf) return IIK_nonlocal; 5383 5384 VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl()); 5385 if (!var) return IIK_nonlocal; 5386 5387 return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal); 5388 5389 // If we have a conditional operator, check both sides. 5390 } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) { 5391 if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf, 5392 isWeakAccess)) 5393 return iik; 5394 5395 return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess); 5396 5397 // These are never scalar. 5398 } else if (isa<ArraySubscriptExpr>(e)) { 5399 return IIK_nonscalar; 5400 5401 // Otherwise, it needs to be a null pointer constant. 5402 } else { 5403 return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull) 5404 ? IIK_okay : IIK_nonlocal); 5405 } 5406 5407 return IIK_nonlocal; 5408 } 5409 5410 /// Check whether the given expression is a valid operand for an 5411 /// indirect copy/restore. 5412 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) { 5413 assert(src->isRValue()); 5414 bool isWeakAccess = false; 5415 InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess); 5416 // If isWeakAccess to true, there will be an implicit 5417 // load which requires a cleanup. 5418 if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess) 5419 S.Cleanup.setExprNeedsCleanups(true); 5420 5421 if (iik == IIK_okay) return; 5422 5423 S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback) 5424 << ((unsigned) iik - 1) // shift index into diagnostic explanations 5425 << src->getSourceRange(); 5426 } 5427 5428 /// Determine whether we have compatible array types for the 5429 /// purposes of GNU by-copy array initialization. 5430 static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest, 5431 const ArrayType *Source) { 5432 // If the source and destination array types are equivalent, we're 5433 // done. 5434 if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0))) 5435 return true; 5436 5437 // Make sure that the element types are the same. 5438 if (!Context.hasSameType(Dest->getElementType(), Source->getElementType())) 5439 return false; 5440 5441 // The only mismatch we allow is when the destination is an 5442 // incomplete array type and the source is a constant array type. 5443 return Source->isConstantArrayType() && Dest->isIncompleteArrayType(); 5444 } 5445 5446 static bool tryObjCWritebackConversion(Sema &S, 5447 InitializationSequence &Sequence, 5448 const InitializedEntity &Entity, 5449 Expr *Initializer) { 5450 bool ArrayDecay = false; 5451 QualType ArgType = Initializer->getType(); 5452 QualType ArgPointee; 5453 if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) { 5454 ArrayDecay = true; 5455 ArgPointee = ArgArrayType->getElementType(); 5456 ArgType = S.Context.getPointerType(ArgPointee); 5457 } 5458 5459 // Handle write-back conversion. 5460 QualType ConvertedArgType; 5461 if (!S.isObjCWritebackConversion(ArgType, Entity.getType(), 5462 ConvertedArgType)) 5463 return false; 5464 5465 // We should copy unless we're passing to an argument explicitly 5466 // marked 'out'. 5467 bool ShouldCopy = true; 5468 if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl())) 5469 ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); 5470 5471 // Do we need an lvalue conversion? 5472 if (ArrayDecay || Initializer->isGLValue()) { 5473 ImplicitConversionSequence ICS; 5474 ICS.setStandard(); 5475 ICS.Standard.setAsIdentityConversion(); 5476 5477 QualType ResultType; 5478 if (ArrayDecay) { 5479 ICS.Standard.First = ICK_Array_To_Pointer; 5480 ResultType = S.Context.getPointerType(ArgPointee); 5481 } else { 5482 ICS.Standard.First = ICK_Lvalue_To_Rvalue; 5483 ResultType = Initializer->getType().getNonLValueExprType(S.Context); 5484 } 5485 5486 Sequence.AddConversionSequenceStep(ICS, ResultType); 5487 } 5488 5489 Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy); 5490 return true; 5491 } 5492 5493 static bool TryOCLSamplerInitialization(Sema &S, 5494 InitializationSequence &Sequence, 5495 QualType DestType, 5496 Expr *Initializer) { 5497 if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() || 5498 (!Initializer->isIntegerConstantExpr(S.Context) && 5499 !Initializer->getType()->isSamplerT())) 5500 return false; 5501 5502 Sequence.AddOCLSamplerInitStep(DestType); 5503 return true; 5504 } 5505 5506 static bool IsZeroInitializer(Expr *Initializer, Sema &S) { 5507 return Initializer->isIntegerConstantExpr(S.getASTContext()) && 5508 (Initializer->EvaluateKnownConstInt(S.getASTContext()) == 0); 5509 } 5510 5511 static bool TryOCLZeroOpaqueTypeInitialization(Sema &S, 5512 InitializationSequence &Sequence, 5513 QualType DestType, 5514 Expr *Initializer) { 5515 if (!S.getLangOpts().OpenCL) 5516 return false; 5517 5518 // 5519 // OpenCL 1.2 spec, s6.12.10 5520 // 5521 // The event argument can also be used to associate the 5522 // async_work_group_copy with a previous async copy allowing 5523 // an event to be shared by multiple async copies; otherwise 5524 // event should be zero. 5525 // 5526 if (DestType->isEventT() || DestType->isQueueT()) { 5527 if (!IsZeroInitializer(Initializer, S)) 5528 return false; 5529 5530 Sequence.AddOCLZeroOpaqueTypeStep(DestType); 5531 return true; 5532 } 5533 5534 // We should allow zero initialization for all types defined in the 5535 // cl_intel_device_side_avc_motion_estimation extension, except 5536 // intel_sub_group_avc_mce_payload_t and intel_sub_group_avc_mce_result_t. 5537 if (S.getOpenCLOptions().isEnabled( 5538 "cl_intel_device_side_avc_motion_estimation") && 5539 DestType->isOCLIntelSubgroupAVCType()) { 5540 if (DestType->isOCLIntelSubgroupAVCMcePayloadType() || 5541 DestType->isOCLIntelSubgroupAVCMceResultType()) 5542 return false; 5543 if (!IsZeroInitializer(Initializer, S)) 5544 return false; 5545 5546 Sequence.AddOCLZeroOpaqueTypeStep(DestType); 5547 return true; 5548 } 5549 5550 return false; 5551 } 5552 5553 InitializationSequence::InitializationSequence(Sema &S, 5554 const InitializedEntity &Entity, 5555 const InitializationKind &Kind, 5556 MultiExprArg Args, 5557 bool TopLevelOfInitList, 5558 bool TreatUnavailableAsInvalid) 5559 : FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) { 5560 InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList, 5561 TreatUnavailableAsInvalid); 5562 } 5563 5564 /// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the 5565 /// address of that function, this returns true. Otherwise, it returns false. 5566 static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) { 5567 auto *DRE = dyn_cast<DeclRefExpr>(E); 5568 if (!DRE || !isa<FunctionDecl>(DRE->getDecl())) 5569 return false; 5570 5571 return !S.checkAddressOfFunctionIsAvailable( 5572 cast<FunctionDecl>(DRE->getDecl())); 5573 } 5574 5575 /// Determine whether we can perform an elementwise array copy for this kind 5576 /// of entity. 5577 static bool canPerformArrayCopy(const InitializedEntity &Entity) { 5578 switch (Entity.getKind()) { 5579 case InitializedEntity::EK_LambdaCapture: 5580 // C++ [expr.prim.lambda]p24: 5581 // For array members, the array elements are direct-initialized in 5582 // increasing subscript order. 5583 return true; 5584 5585 case InitializedEntity::EK_Variable: 5586 // C++ [dcl.decomp]p1: 5587 // [...] each element is copy-initialized or direct-initialized from the 5588 // corresponding element of the assignment-expression [...] 5589 return isa<DecompositionDecl>(Entity.getDecl()); 5590 5591 case InitializedEntity::EK_Member: 5592 // C++ [class.copy.ctor]p14: 5593 // - if the member is an array, each element is direct-initialized with 5594 // the corresponding subobject of x 5595 return Entity.isImplicitMemberInitializer(); 5596 5597 case InitializedEntity::EK_ArrayElement: 5598 // All the above cases are intended to apply recursively, even though none 5599 // of them actually say that. 5600 if (auto *E = Entity.getParent()) 5601 return canPerformArrayCopy(*E); 5602 break; 5603 5604 default: 5605 break; 5606 } 5607 5608 return false; 5609 } 5610 5611 void InitializationSequence::InitializeFrom(Sema &S, 5612 const InitializedEntity &Entity, 5613 const InitializationKind &Kind, 5614 MultiExprArg Args, 5615 bool TopLevelOfInitList, 5616 bool TreatUnavailableAsInvalid) { 5617 ASTContext &Context = S.Context; 5618 5619 // Eliminate non-overload placeholder types in the arguments. We 5620 // need to do this before checking whether types are dependent 5621 // because lowering a pseudo-object expression might well give us 5622 // something of dependent type. 5623 for (unsigned I = 0, E = Args.size(); I != E; ++I) 5624 if (Args[I]->getType()->isNonOverloadPlaceholderType()) { 5625 // FIXME: should we be doing this here? 5626 ExprResult result = S.CheckPlaceholderExpr(Args[I]); 5627 if (result.isInvalid()) { 5628 SetFailed(FK_PlaceholderType); 5629 return; 5630 } 5631 Args[I] = result.get(); 5632 } 5633 5634 // C++0x [dcl.init]p16: 5635 // The semantics of initializers are as follows. The destination type is 5636 // the type of the object or reference being initialized and the source 5637 // type is the type of the initializer expression. The source type is not 5638 // defined when the initializer is a braced-init-list or when it is a 5639 // parenthesized list of expressions. 5640 QualType DestType = Entity.getType(); 5641 5642 if (DestType->isDependentType() || 5643 Expr::hasAnyTypeDependentArguments(Args)) { 5644 SequenceKind = DependentSequence; 5645 return; 5646 } 5647 5648 // Almost everything is a normal sequence. 5649 setSequenceKind(NormalSequence); 5650 5651 QualType SourceType; 5652 Expr *Initializer = nullptr; 5653 if (Args.size() == 1) { 5654 Initializer = Args[0]; 5655 if (S.getLangOpts().ObjC) { 5656 if (S.CheckObjCBridgeRelatedConversions(Initializer->getBeginLoc(), 5657 DestType, Initializer->getType(), 5658 Initializer) || 5659 S.CheckConversionToObjCLiteral(DestType, Initializer)) 5660 Args[0] = Initializer; 5661 } 5662 if (!isa<InitListExpr>(Initializer)) 5663 SourceType = Initializer->getType(); 5664 } 5665 5666 // - If the initializer is a (non-parenthesized) braced-init-list, the 5667 // object is list-initialized (8.5.4). 5668 if (Kind.getKind() != InitializationKind::IK_Direct) { 5669 if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) { 5670 TryListInitialization(S, Entity, Kind, InitList, *this, 5671 TreatUnavailableAsInvalid); 5672 return; 5673 } 5674 } 5675 5676 // - If the destination type is a reference type, see 8.5.3. 5677 if (DestType->isReferenceType()) { 5678 // C++0x [dcl.init.ref]p1: 5679 // A variable declared to be a T& or T&&, that is, "reference to type T" 5680 // (8.3.2), shall be initialized by an object, or function, of type T or 5681 // by an object that can be converted into a T. 5682 // (Therefore, multiple arguments are not permitted.) 5683 if (Args.size() != 1) 5684 SetFailed(FK_TooManyInitsForReference); 5685 // C++17 [dcl.init.ref]p5: 5686 // A reference [...] is initialized by an expression [...] as follows: 5687 // If the initializer is not an expression, presumably we should reject, 5688 // but the standard fails to actually say so. 5689 else if (isa<InitListExpr>(Args[0])) 5690 SetFailed(FK_ParenthesizedListInitForReference); 5691 else 5692 TryReferenceInitialization(S, Entity, Kind, Args[0], *this); 5693 return; 5694 } 5695 5696 // - If the initializer is (), the object is value-initialized. 5697 if (Kind.getKind() == InitializationKind::IK_Value || 5698 (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) { 5699 TryValueInitialization(S, Entity, Kind, *this); 5700 return; 5701 } 5702 5703 // Handle default initialization. 5704 if (Kind.getKind() == InitializationKind::IK_Default) { 5705 TryDefaultInitialization(S, Entity, Kind, *this); 5706 return; 5707 } 5708 5709 // - If the destination type is an array of characters, an array of 5710 // char16_t, an array of char32_t, or an array of wchar_t, and the 5711 // initializer is a string literal, see 8.5.2. 5712 // - Otherwise, if the destination type is an array, the program is 5713 // ill-formed. 5714 if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) { 5715 if (Initializer && isa<VariableArrayType>(DestAT)) { 5716 SetFailed(FK_VariableLengthArrayHasInitializer); 5717 return; 5718 } 5719 5720 if (Initializer) { 5721 switch (IsStringInit(Initializer, DestAT, Context)) { 5722 case SIF_None: 5723 TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this); 5724 return; 5725 case SIF_NarrowStringIntoWideChar: 5726 SetFailed(FK_NarrowStringIntoWideCharArray); 5727 return; 5728 case SIF_WideStringIntoChar: 5729 SetFailed(FK_WideStringIntoCharArray); 5730 return; 5731 case SIF_IncompatWideStringIntoWideChar: 5732 SetFailed(FK_IncompatWideStringIntoWideChar); 5733 return; 5734 case SIF_PlainStringIntoUTF8Char: 5735 SetFailed(FK_PlainStringIntoUTF8Char); 5736 return; 5737 case SIF_UTF8StringIntoPlainChar: 5738 SetFailed(FK_UTF8StringIntoPlainChar); 5739 return; 5740 case SIF_Other: 5741 break; 5742 } 5743 } 5744 5745 // Some kinds of initialization permit an array to be initialized from 5746 // another array of the same type, and perform elementwise initialization. 5747 if (Initializer && isa<ConstantArrayType>(DestAT) && 5748 S.Context.hasSameUnqualifiedType(Initializer->getType(), 5749 Entity.getType()) && 5750 canPerformArrayCopy(Entity)) { 5751 // If source is a prvalue, use it directly. 5752 if (Initializer->getValueKind() == VK_RValue) { 5753 AddArrayInitStep(DestType, /*IsGNUExtension*/false); 5754 return; 5755 } 5756 5757 // Emit element-at-a-time copy loop. 5758 InitializedEntity Element = 5759 InitializedEntity::InitializeElement(S.Context, 0, Entity); 5760 QualType InitEltT = 5761 Context.getAsArrayType(Initializer->getType())->getElementType(); 5762 OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT, 5763 Initializer->getValueKind(), 5764 Initializer->getObjectKind()); 5765 Expr *OVEAsExpr = &OVE; 5766 InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList, 5767 TreatUnavailableAsInvalid); 5768 if (!Failed()) 5769 AddArrayInitLoopStep(Entity.getType(), InitEltT); 5770 return; 5771 } 5772 5773 // Note: as an GNU C extension, we allow initialization of an 5774 // array from a compound literal that creates an array of the same 5775 // type, so long as the initializer has no side effects. 5776 if (!S.getLangOpts().CPlusPlus && Initializer && 5777 isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) && 5778 Initializer->getType()->isArrayType()) { 5779 const ArrayType *SourceAT 5780 = Context.getAsArrayType(Initializer->getType()); 5781 if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT)) 5782 SetFailed(FK_ArrayTypeMismatch); 5783 else if (Initializer->HasSideEffects(S.Context)) 5784 SetFailed(FK_NonConstantArrayInit); 5785 else { 5786 AddArrayInitStep(DestType, /*IsGNUExtension*/true); 5787 } 5788 } 5789 // Note: as a GNU C++ extension, we allow list-initialization of a 5790 // class member of array type from a parenthesized initializer list. 5791 else if (S.getLangOpts().CPlusPlus && 5792 Entity.getKind() == InitializedEntity::EK_Member && 5793 Initializer && isa<InitListExpr>(Initializer)) { 5794 TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer), 5795 *this, TreatUnavailableAsInvalid); 5796 AddParenthesizedArrayInitStep(DestType); 5797 } else if (DestAT->getElementType()->isCharType()) 5798 SetFailed(FK_ArrayNeedsInitListOrStringLiteral); 5799 else if (IsWideCharCompatible(DestAT->getElementType(), Context)) 5800 SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral); 5801 else 5802 SetFailed(FK_ArrayNeedsInitList); 5803 5804 return; 5805 } 5806 5807 // Determine whether we should consider writeback conversions for 5808 // Objective-C ARC. 5809 bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount && 5810 Entity.isParameterKind(); 5811 5812 if (TryOCLSamplerInitialization(S, *this, DestType, Initializer)) 5813 return; 5814 5815 // We're at the end of the line for C: it's either a write-back conversion 5816 // or it's a C assignment. There's no need to check anything else. 5817 if (!S.getLangOpts().CPlusPlus) { 5818 // If allowed, check whether this is an Objective-C writeback conversion. 5819 if (allowObjCWritebackConversion && 5820 tryObjCWritebackConversion(S, *this, Entity, Initializer)) { 5821 return; 5822 } 5823 5824 if (TryOCLZeroOpaqueTypeInitialization(S, *this, DestType, Initializer)) 5825 return; 5826 5827 // Handle initialization in C 5828 AddCAssignmentStep(DestType); 5829 MaybeProduceObjCObject(S, *this, Entity); 5830 return; 5831 } 5832 5833 assert(S.getLangOpts().CPlusPlus); 5834 5835 // - If the destination type is a (possibly cv-qualified) class type: 5836 if (DestType->isRecordType()) { 5837 // - If the initialization is direct-initialization, or if it is 5838 // copy-initialization where the cv-unqualified version of the 5839 // source type is the same class as, or a derived class of, the 5840 // class of the destination, constructors are considered. [...] 5841 if (Kind.getKind() == InitializationKind::IK_Direct || 5842 (Kind.getKind() == InitializationKind::IK_Copy && 5843 (Context.hasSameUnqualifiedType(SourceType, DestType) || 5844 S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, DestType)))) 5845 TryConstructorInitialization(S, Entity, Kind, Args, 5846 DestType, DestType, *this); 5847 // - Otherwise (i.e., for the remaining copy-initialization cases), 5848 // user-defined conversion sequences that can convert from the source 5849 // type to the destination type or (when a conversion function is 5850 // used) to a derived class thereof are enumerated as described in 5851 // 13.3.1.4, and the best one is chosen through overload resolution 5852 // (13.3). 5853 else 5854 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this, 5855 TopLevelOfInitList); 5856 return; 5857 } 5858 5859 assert(Args.size() >= 1 && "Zero-argument case handled above"); 5860 5861 // The remaining cases all need a source type. 5862 if (Args.size() > 1) { 5863 SetFailed(FK_TooManyInitsForScalar); 5864 return; 5865 } else if (isa<InitListExpr>(Args[0])) { 5866 SetFailed(FK_ParenthesizedListInitForScalar); 5867 return; 5868 } 5869 5870 // - Otherwise, if the source type is a (possibly cv-qualified) class 5871 // type, conversion functions are considered. 5872 if (!SourceType.isNull() && SourceType->isRecordType()) { 5873 // For a conversion to _Atomic(T) from either T or a class type derived 5874 // from T, initialize the T object then convert to _Atomic type. 5875 bool NeedAtomicConversion = false; 5876 if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) { 5877 if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) || 5878 S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, 5879 Atomic->getValueType())) { 5880 DestType = Atomic->getValueType(); 5881 NeedAtomicConversion = true; 5882 } 5883 } 5884 5885 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this, 5886 TopLevelOfInitList); 5887 MaybeProduceObjCObject(S, *this, Entity); 5888 if (!Failed() && NeedAtomicConversion) 5889 AddAtomicConversionStep(Entity.getType()); 5890 return; 5891 } 5892 5893 // - Otherwise, if the initialization is direct-initialization, the source 5894 // type is std::nullptr_t, and the destination type is bool, the initial 5895 // value of the object being initialized is false. 5896 if (!SourceType.isNull() && SourceType->isNullPtrType() && 5897 DestType->isBooleanType() && 5898 Kind.getKind() == InitializationKind::IK_Direct) { 5899 AddConversionSequenceStep( 5900 ImplicitConversionSequence::getNullptrToBool(SourceType, DestType, 5901 Initializer->isGLValue()), 5902 DestType); 5903 return; 5904 } 5905 5906 // - Otherwise, the initial value of the object being initialized is the 5907 // (possibly converted) value of the initializer expression. Standard 5908 // conversions (Clause 4) will be used, if necessary, to convert the 5909 // initializer expression to the cv-unqualified version of the 5910 // destination type; no user-defined conversions are considered. 5911 5912 ImplicitConversionSequence ICS 5913 = S.TryImplicitConversion(Initializer, DestType, 5914 /*SuppressUserConversions*/true, 5915 Sema::AllowedExplicit::None, 5916 /*InOverloadResolution*/ false, 5917 /*CStyle=*/Kind.isCStyleOrFunctionalCast(), 5918 allowObjCWritebackConversion); 5919 5920 if (ICS.isStandard() && 5921 ICS.Standard.Second == ICK_Writeback_Conversion) { 5922 // Objective-C ARC writeback conversion. 5923 5924 // We should copy unless we're passing to an argument explicitly 5925 // marked 'out'. 5926 bool ShouldCopy = true; 5927 if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl())) 5928 ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); 5929 5930 // If there was an lvalue adjustment, add it as a separate conversion. 5931 if (ICS.Standard.First == ICK_Array_To_Pointer || 5932 ICS.Standard.First == ICK_Lvalue_To_Rvalue) { 5933 ImplicitConversionSequence LvalueICS; 5934 LvalueICS.setStandard(); 5935 LvalueICS.Standard.setAsIdentityConversion(); 5936 LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0)); 5937 LvalueICS.Standard.First = ICS.Standard.First; 5938 AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0)); 5939 } 5940 5941 AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy); 5942 } else if (ICS.isBad()) { 5943 DeclAccessPair dap; 5944 if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) { 5945 AddZeroInitializationStep(Entity.getType()); 5946 } else if (Initializer->getType() == Context.OverloadTy && 5947 !S.ResolveAddressOfOverloadedFunction(Initializer, DestType, 5948 false, dap)) 5949 SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 5950 else if (Initializer->getType()->isFunctionType() && 5951 isExprAnUnaddressableFunction(S, Initializer)) 5952 SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction); 5953 else 5954 SetFailed(InitializationSequence::FK_ConversionFailed); 5955 } else { 5956 AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList); 5957 5958 MaybeProduceObjCObject(S, *this, Entity); 5959 } 5960 } 5961 5962 InitializationSequence::~InitializationSequence() { 5963 for (auto &S : Steps) 5964 S.Destroy(); 5965 } 5966 5967 //===----------------------------------------------------------------------===// 5968 // Perform initialization 5969 //===----------------------------------------------------------------------===// 5970 static Sema::AssignmentAction 5971 getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) { 5972 switch(Entity.getKind()) { 5973 case InitializedEntity::EK_Variable: 5974 case InitializedEntity::EK_New: 5975 case InitializedEntity::EK_Exception: 5976 case InitializedEntity::EK_Base: 5977 case InitializedEntity::EK_Delegating: 5978 return Sema::AA_Initializing; 5979 5980 case InitializedEntity::EK_Parameter: 5981 if (Entity.getDecl() && 5982 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) 5983 return Sema::AA_Sending; 5984 5985 return Sema::AA_Passing; 5986 5987 case InitializedEntity::EK_Parameter_CF_Audited: 5988 if (Entity.getDecl() && 5989 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) 5990 return Sema::AA_Sending; 5991 5992 return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited; 5993 5994 case InitializedEntity::EK_Result: 5995 case InitializedEntity::EK_StmtExprResult: // FIXME: Not quite right. 5996 return Sema::AA_Returning; 5997 5998 case InitializedEntity::EK_Temporary: 5999 case InitializedEntity::EK_RelatedResult: 6000 // FIXME: Can we tell apart casting vs. converting? 6001 return Sema::AA_Casting; 6002 6003 case InitializedEntity::EK_Member: 6004 case InitializedEntity::EK_Binding: 6005 case InitializedEntity::EK_ArrayElement: 6006 case InitializedEntity::EK_VectorElement: 6007 case InitializedEntity::EK_ComplexElement: 6008 case InitializedEntity::EK_BlockElement: 6009 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 6010 case InitializedEntity::EK_LambdaCapture: 6011 case InitializedEntity::EK_CompoundLiteralInit: 6012 return Sema::AA_Initializing; 6013 } 6014 6015 llvm_unreachable("Invalid EntityKind!"); 6016 } 6017 6018 /// Whether we should bind a created object as a temporary when 6019 /// initializing the given entity. 6020 static bool shouldBindAsTemporary(const InitializedEntity &Entity) { 6021 switch (Entity.getKind()) { 6022 case InitializedEntity::EK_ArrayElement: 6023 case InitializedEntity::EK_Member: 6024 case InitializedEntity::EK_Result: 6025 case InitializedEntity::EK_StmtExprResult: 6026 case InitializedEntity::EK_New: 6027 case InitializedEntity::EK_Variable: 6028 case InitializedEntity::EK_Base: 6029 case InitializedEntity::EK_Delegating: 6030 case InitializedEntity::EK_VectorElement: 6031 case InitializedEntity::EK_ComplexElement: 6032 case InitializedEntity::EK_Exception: 6033 case InitializedEntity::EK_BlockElement: 6034 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 6035 case InitializedEntity::EK_LambdaCapture: 6036 case InitializedEntity::EK_CompoundLiteralInit: 6037 return false; 6038 6039 case InitializedEntity::EK_Parameter: 6040 case InitializedEntity::EK_Parameter_CF_Audited: 6041 case InitializedEntity::EK_Temporary: 6042 case InitializedEntity::EK_RelatedResult: 6043 case InitializedEntity::EK_Binding: 6044 return true; 6045 } 6046 6047 llvm_unreachable("missed an InitializedEntity kind?"); 6048 } 6049 6050 /// Whether the given entity, when initialized with an object 6051 /// created for that initialization, requires destruction. 6052 static bool shouldDestroyEntity(const InitializedEntity &Entity) { 6053 switch (Entity.getKind()) { 6054 case InitializedEntity::EK_Result: 6055 case InitializedEntity::EK_StmtExprResult: 6056 case InitializedEntity::EK_New: 6057 case InitializedEntity::EK_Base: 6058 case InitializedEntity::EK_Delegating: 6059 case InitializedEntity::EK_VectorElement: 6060 case InitializedEntity::EK_ComplexElement: 6061 case InitializedEntity::EK_BlockElement: 6062 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 6063 case InitializedEntity::EK_LambdaCapture: 6064 return false; 6065 6066 case InitializedEntity::EK_Member: 6067 case InitializedEntity::EK_Binding: 6068 case InitializedEntity::EK_Variable: 6069 case InitializedEntity::EK_Parameter: 6070 case InitializedEntity::EK_Parameter_CF_Audited: 6071 case InitializedEntity::EK_Temporary: 6072 case InitializedEntity::EK_ArrayElement: 6073 case InitializedEntity::EK_Exception: 6074 case InitializedEntity::EK_CompoundLiteralInit: 6075 case InitializedEntity::EK_RelatedResult: 6076 return true; 6077 } 6078 6079 llvm_unreachable("missed an InitializedEntity kind?"); 6080 } 6081 6082 /// Get the location at which initialization diagnostics should appear. 6083 static SourceLocation getInitializationLoc(const InitializedEntity &Entity, 6084 Expr *Initializer) { 6085 switch (Entity.getKind()) { 6086 case InitializedEntity::EK_Result: 6087 case InitializedEntity::EK_StmtExprResult: 6088 return Entity.getReturnLoc(); 6089 6090 case InitializedEntity::EK_Exception: 6091 return Entity.getThrowLoc(); 6092 6093 case InitializedEntity::EK_Variable: 6094 case InitializedEntity::EK_Binding: 6095 return Entity.getDecl()->getLocation(); 6096 6097 case InitializedEntity::EK_LambdaCapture: 6098 return Entity.getCaptureLoc(); 6099 6100 case InitializedEntity::EK_ArrayElement: 6101 case InitializedEntity::EK_Member: 6102 case InitializedEntity::EK_Parameter: 6103 case InitializedEntity::EK_Parameter_CF_Audited: 6104 case InitializedEntity::EK_Temporary: 6105 case InitializedEntity::EK_New: 6106 case InitializedEntity::EK_Base: 6107 case InitializedEntity::EK_Delegating: 6108 case InitializedEntity::EK_VectorElement: 6109 case InitializedEntity::EK_ComplexElement: 6110 case InitializedEntity::EK_BlockElement: 6111 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 6112 case InitializedEntity::EK_CompoundLiteralInit: 6113 case InitializedEntity::EK_RelatedResult: 6114 return Initializer->getBeginLoc(); 6115 } 6116 llvm_unreachable("missed an InitializedEntity kind?"); 6117 } 6118 6119 /// Make a (potentially elidable) temporary copy of the object 6120 /// provided by the given initializer by calling the appropriate copy 6121 /// constructor. 6122 /// 6123 /// \param S The Sema object used for type-checking. 6124 /// 6125 /// \param T The type of the temporary object, which must either be 6126 /// the type of the initializer expression or a superclass thereof. 6127 /// 6128 /// \param Entity The entity being initialized. 6129 /// 6130 /// \param CurInit The initializer expression. 6131 /// 6132 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that 6133 /// is permitted in C++03 (but not C++0x) when binding a reference to 6134 /// an rvalue. 6135 /// 6136 /// \returns An expression that copies the initializer expression into 6137 /// a temporary object, or an error expression if a copy could not be 6138 /// created. 6139 static ExprResult CopyObject(Sema &S, 6140 QualType T, 6141 const InitializedEntity &Entity, 6142 ExprResult CurInit, 6143 bool IsExtraneousCopy) { 6144 if (CurInit.isInvalid()) 6145 return CurInit; 6146 // Determine which class type we're copying to. 6147 Expr *CurInitExpr = (Expr *)CurInit.get(); 6148 CXXRecordDecl *Class = nullptr; 6149 if (const RecordType *Record = T->getAs<RecordType>()) 6150 Class = cast<CXXRecordDecl>(Record->getDecl()); 6151 if (!Class) 6152 return CurInit; 6153 6154 SourceLocation Loc = getInitializationLoc(Entity, CurInit.get()); 6155 6156 // Make sure that the type we are copying is complete. 6157 if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete)) 6158 return CurInit; 6159 6160 // Perform overload resolution using the class's constructors. Per 6161 // C++11 [dcl.init]p16, second bullet for class types, this initialization 6162 // is direct-initialization. 6163 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); 6164 DeclContext::lookup_result Ctors = S.LookupConstructors(Class); 6165 6166 OverloadCandidateSet::iterator Best; 6167 switch (ResolveConstructorOverload( 6168 S, Loc, CurInitExpr, CandidateSet, T, Ctors, Best, 6169 /*CopyInitializing=*/false, /*AllowExplicit=*/true, 6170 /*OnlyListConstructors=*/false, /*IsListInit=*/false, 6171 /*SecondStepOfCopyInit=*/true)) { 6172 case OR_Success: 6173 break; 6174 6175 case OR_No_Viable_Function: 6176 CandidateSet.NoteCandidates( 6177 PartialDiagnosticAt( 6178 Loc, S.PDiag(IsExtraneousCopy && !S.isSFINAEContext() 6179 ? diag::ext_rvalue_to_reference_temp_copy_no_viable 6180 : diag::err_temp_copy_no_viable) 6181 << (int)Entity.getKind() << CurInitExpr->getType() 6182 << CurInitExpr->getSourceRange()), 6183 S, OCD_AllCandidates, CurInitExpr); 6184 if (!IsExtraneousCopy || S.isSFINAEContext()) 6185 return ExprError(); 6186 return CurInit; 6187 6188 case OR_Ambiguous: 6189 CandidateSet.NoteCandidates( 6190 PartialDiagnosticAt(Loc, S.PDiag(diag::err_temp_copy_ambiguous) 6191 << (int)Entity.getKind() 6192 << CurInitExpr->getType() 6193 << CurInitExpr->getSourceRange()), 6194 S, OCD_AmbiguousCandidates, CurInitExpr); 6195 return ExprError(); 6196 6197 case OR_Deleted: 6198 S.Diag(Loc, diag::err_temp_copy_deleted) 6199 << (int)Entity.getKind() << CurInitExpr->getType() 6200 << CurInitExpr->getSourceRange(); 6201 S.NoteDeletedFunction(Best->Function); 6202 return ExprError(); 6203 } 6204 6205 bool HadMultipleCandidates = CandidateSet.size() > 1; 6206 6207 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function); 6208 SmallVector<Expr*, 8> ConstructorArgs; 6209 CurInit.get(); // Ownership transferred into MultiExprArg, below. 6210 6211 S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity, 6212 IsExtraneousCopy); 6213 6214 if (IsExtraneousCopy) { 6215 // If this is a totally extraneous copy for C++03 reference 6216 // binding purposes, just return the original initialization 6217 // expression. We don't generate an (elided) copy operation here 6218 // because doing so would require us to pass down a flag to avoid 6219 // infinite recursion, where each step adds another extraneous, 6220 // elidable copy. 6221 6222 // Instantiate the default arguments of any extra parameters in 6223 // the selected copy constructor, as if we were going to create a 6224 // proper call to the copy constructor. 6225 for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) { 6226 ParmVarDecl *Parm = Constructor->getParamDecl(I); 6227 if (S.RequireCompleteType(Loc, Parm->getType(), 6228 diag::err_call_incomplete_argument)) 6229 break; 6230 6231 // Build the default argument expression; we don't actually care 6232 // if this succeeds or not, because this routine will complain 6233 // if there was a problem. 6234 S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm); 6235 } 6236 6237 return CurInitExpr; 6238 } 6239 6240 // Determine the arguments required to actually perform the 6241 // constructor call (we might have derived-to-base conversions, or 6242 // the copy constructor may have default arguments). 6243 if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs)) 6244 return ExprError(); 6245 6246 // C++0x [class.copy]p32: 6247 // When certain criteria are met, an implementation is allowed to 6248 // omit the copy/move construction of a class object, even if the 6249 // copy/move constructor and/or destructor for the object have 6250 // side effects. [...] 6251 // - when a temporary class object that has not been bound to a 6252 // reference (12.2) would be copied/moved to a class object 6253 // with the same cv-unqualified type, the copy/move operation 6254 // can be omitted by constructing the temporary object 6255 // directly into the target of the omitted copy/move 6256 // 6257 // Note that the other three bullets are handled elsewhere. Copy 6258 // elision for return statements and throw expressions are handled as part 6259 // of constructor initialization, while copy elision for exception handlers 6260 // is handled by the run-time. 6261 // 6262 // FIXME: If the function parameter is not the same type as the temporary, we 6263 // should still be able to elide the copy, but we don't have a way to 6264 // represent in the AST how much should be elided in this case. 6265 bool Elidable = 6266 CurInitExpr->isTemporaryObject(S.Context, Class) && 6267 S.Context.hasSameUnqualifiedType( 6268 Best->Function->getParamDecl(0)->getType().getNonReferenceType(), 6269 CurInitExpr->getType()); 6270 6271 // Actually perform the constructor call. 6272 CurInit = S.BuildCXXConstructExpr(Loc, T, Best->FoundDecl, Constructor, 6273 Elidable, 6274 ConstructorArgs, 6275 HadMultipleCandidates, 6276 /*ListInit*/ false, 6277 /*StdInitListInit*/ false, 6278 /*ZeroInit*/ false, 6279 CXXConstructExpr::CK_Complete, 6280 SourceRange()); 6281 6282 // If we're supposed to bind temporaries, do so. 6283 if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity)) 6284 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>()); 6285 return CurInit; 6286 } 6287 6288 /// Check whether elidable copy construction for binding a reference to 6289 /// a temporary would have succeeded if we were building in C++98 mode, for 6290 /// -Wc++98-compat. 6291 static void CheckCXX98CompatAccessibleCopy(Sema &S, 6292 const InitializedEntity &Entity, 6293 Expr *CurInitExpr) { 6294 assert(S.getLangOpts().CPlusPlus11); 6295 6296 const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>(); 6297 if (!Record) 6298 return; 6299 6300 SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr); 6301 if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc)) 6302 return; 6303 6304 // Find constructors which would have been considered. 6305 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); 6306 DeclContext::lookup_result Ctors = 6307 S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl())); 6308 6309 // Perform overload resolution. 6310 OverloadCandidateSet::iterator Best; 6311 OverloadingResult OR = ResolveConstructorOverload( 6312 S, Loc, CurInitExpr, CandidateSet, CurInitExpr->getType(), Ctors, Best, 6313 /*CopyInitializing=*/false, /*AllowExplicit=*/true, 6314 /*OnlyListConstructors=*/false, /*IsListInit=*/false, 6315 /*SecondStepOfCopyInit=*/true); 6316 6317 PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy) 6318 << OR << (int)Entity.getKind() << CurInitExpr->getType() 6319 << CurInitExpr->getSourceRange(); 6320 6321 switch (OR) { 6322 case OR_Success: 6323 S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function), 6324 Best->FoundDecl, Entity, Diag); 6325 // FIXME: Check default arguments as far as that's possible. 6326 break; 6327 6328 case OR_No_Viable_Function: 6329 CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S, 6330 OCD_AllCandidates, CurInitExpr); 6331 break; 6332 6333 case OR_Ambiguous: 6334 CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S, 6335 OCD_AmbiguousCandidates, CurInitExpr); 6336 break; 6337 6338 case OR_Deleted: 6339 S.Diag(Loc, Diag); 6340 S.NoteDeletedFunction(Best->Function); 6341 break; 6342 } 6343 } 6344 6345 void InitializationSequence::PrintInitLocationNote(Sema &S, 6346 const InitializedEntity &Entity) { 6347 if (Entity.isParameterKind() && Entity.getDecl()) { 6348 if (Entity.getDecl()->getLocation().isInvalid()) 6349 return; 6350 6351 if (Entity.getDecl()->getDeclName()) 6352 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here) 6353 << Entity.getDecl()->getDeclName(); 6354 else 6355 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here); 6356 } 6357 else if (Entity.getKind() == InitializedEntity::EK_RelatedResult && 6358 Entity.getMethodDecl()) 6359 S.Diag(Entity.getMethodDecl()->getLocation(), 6360 diag::note_method_return_type_change) 6361 << Entity.getMethodDecl()->getDeclName(); 6362 } 6363 6364 /// Returns true if the parameters describe a constructor initialization of 6365 /// an explicit temporary object, e.g. "Point(x, y)". 6366 static bool isExplicitTemporary(const InitializedEntity &Entity, 6367 const InitializationKind &Kind, 6368 unsigned NumArgs) { 6369 switch (Entity.getKind()) { 6370 case InitializedEntity::EK_Temporary: 6371 case InitializedEntity::EK_CompoundLiteralInit: 6372 case InitializedEntity::EK_RelatedResult: 6373 break; 6374 default: 6375 return false; 6376 } 6377 6378 switch (Kind.getKind()) { 6379 case InitializationKind::IK_DirectList: 6380 return true; 6381 // FIXME: Hack to work around cast weirdness. 6382 case InitializationKind::IK_Direct: 6383 case InitializationKind::IK_Value: 6384 return NumArgs != 1; 6385 default: 6386 return false; 6387 } 6388 } 6389 6390 static ExprResult 6391 PerformConstructorInitialization(Sema &S, 6392 const InitializedEntity &Entity, 6393 const InitializationKind &Kind, 6394 MultiExprArg Args, 6395 const InitializationSequence::Step& Step, 6396 bool &ConstructorInitRequiresZeroInit, 6397 bool IsListInitialization, 6398 bool IsStdInitListInitialization, 6399 SourceLocation LBraceLoc, 6400 SourceLocation RBraceLoc) { 6401 unsigned NumArgs = Args.size(); 6402 CXXConstructorDecl *Constructor 6403 = cast<CXXConstructorDecl>(Step.Function.Function); 6404 bool HadMultipleCandidates = Step.Function.HadMultipleCandidates; 6405 6406 // Build a call to the selected constructor. 6407 SmallVector<Expr*, 8> ConstructorArgs; 6408 SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid()) 6409 ? Kind.getEqualLoc() 6410 : Kind.getLocation(); 6411 6412 if (Kind.getKind() == InitializationKind::IK_Default) { 6413 // Force even a trivial, implicit default constructor to be 6414 // semantically checked. We do this explicitly because we don't build 6415 // the definition for completely trivial constructors. 6416 assert(Constructor->getParent() && "No parent class for constructor."); 6417 if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() && 6418 Constructor->isTrivial() && !Constructor->isUsed(false)) { 6419 S.runWithSufficientStackSpace(Loc, [&] { 6420 S.DefineImplicitDefaultConstructor(Loc, Constructor); 6421 }); 6422 } 6423 } 6424 6425 ExprResult CurInit((Expr *)nullptr); 6426 6427 // C++ [over.match.copy]p1: 6428 // - When initializing a temporary to be bound to the first parameter 6429 // of a constructor that takes a reference to possibly cv-qualified 6430 // T as its first argument, called with a single argument in the 6431 // context of direct-initialization, explicit conversion functions 6432 // are also considered. 6433 bool AllowExplicitConv = 6434 Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 && 6435 hasCopyOrMoveCtorParam(S.Context, 6436 getConstructorInfo(Step.Function.FoundDecl)); 6437 6438 // Determine the arguments required to actually perform the constructor 6439 // call. 6440 if (S.CompleteConstructorCall(Constructor, Args, 6441 Loc, ConstructorArgs, 6442 AllowExplicitConv, 6443 IsListInitialization)) 6444 return ExprError(); 6445 6446 6447 if (isExplicitTemporary(Entity, Kind, NumArgs)) { 6448 // An explicitly-constructed temporary, e.g., X(1, 2). 6449 if (S.DiagnoseUseOfDecl(Constructor, Loc)) 6450 return ExprError(); 6451 6452 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); 6453 if (!TSInfo) 6454 TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc); 6455 SourceRange ParenOrBraceRange = 6456 (Kind.getKind() == InitializationKind::IK_DirectList) 6457 ? SourceRange(LBraceLoc, RBraceLoc) 6458 : Kind.getParenOrBraceRange(); 6459 6460 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>( 6461 Step.Function.FoundDecl.getDecl())) { 6462 Constructor = S.findInheritingConstructor(Loc, Constructor, Shadow); 6463 if (S.DiagnoseUseOfDecl(Constructor, Loc)) 6464 return ExprError(); 6465 } 6466 S.MarkFunctionReferenced(Loc, Constructor); 6467 6468 CurInit = S.CheckForImmediateInvocation( 6469 CXXTemporaryObjectExpr::Create( 6470 S.Context, Constructor, 6471 Entity.getType().getNonLValueExprType(S.Context), TSInfo, 6472 ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates, 6473 IsListInitialization, IsStdInitListInitialization, 6474 ConstructorInitRequiresZeroInit), 6475 Constructor); 6476 } else { 6477 CXXConstructExpr::ConstructionKind ConstructKind = 6478 CXXConstructExpr::CK_Complete; 6479 6480 if (Entity.getKind() == InitializedEntity::EK_Base) { 6481 ConstructKind = Entity.getBaseSpecifier()->isVirtual() ? 6482 CXXConstructExpr::CK_VirtualBase : 6483 CXXConstructExpr::CK_NonVirtualBase; 6484 } else if (Entity.getKind() == InitializedEntity::EK_Delegating) { 6485 ConstructKind = CXXConstructExpr::CK_Delegating; 6486 } 6487 6488 // Only get the parenthesis or brace range if it is a list initialization or 6489 // direct construction. 6490 SourceRange ParenOrBraceRange; 6491 if (IsListInitialization) 6492 ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc); 6493 else if (Kind.getKind() == InitializationKind::IK_Direct) 6494 ParenOrBraceRange = Kind.getParenOrBraceRange(); 6495 6496 // If the entity allows NRVO, mark the construction as elidable 6497 // unconditionally. 6498 if (Entity.allowsNRVO()) 6499 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type, 6500 Step.Function.FoundDecl, 6501 Constructor, /*Elidable=*/true, 6502 ConstructorArgs, 6503 HadMultipleCandidates, 6504 IsListInitialization, 6505 IsStdInitListInitialization, 6506 ConstructorInitRequiresZeroInit, 6507 ConstructKind, 6508 ParenOrBraceRange); 6509 else 6510 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type, 6511 Step.Function.FoundDecl, 6512 Constructor, 6513 ConstructorArgs, 6514 HadMultipleCandidates, 6515 IsListInitialization, 6516 IsStdInitListInitialization, 6517 ConstructorInitRequiresZeroInit, 6518 ConstructKind, 6519 ParenOrBraceRange); 6520 } 6521 if (CurInit.isInvalid()) 6522 return ExprError(); 6523 6524 // Only check access if all of that succeeded. 6525 S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity); 6526 if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc)) 6527 return ExprError(); 6528 6529 if (const ArrayType *AT = S.Context.getAsArrayType(Entity.getType())) 6530 if (checkDestructorReference(S.Context.getBaseElementType(AT), Loc, S)) 6531 return ExprError(); 6532 6533 if (shouldBindAsTemporary(Entity)) 6534 CurInit = S.MaybeBindToTemporary(CurInit.get()); 6535 6536 return CurInit; 6537 } 6538 6539 namespace { 6540 enum LifetimeKind { 6541 /// The lifetime of a temporary bound to this entity ends at the end of the 6542 /// full-expression, and that's (probably) fine. 6543 LK_FullExpression, 6544 6545 /// The lifetime of a temporary bound to this entity is extended to the 6546 /// lifeitme of the entity itself. 6547 LK_Extended, 6548 6549 /// The lifetime of a temporary bound to this entity probably ends too soon, 6550 /// because the entity is allocated in a new-expression. 6551 LK_New, 6552 6553 /// The lifetime of a temporary bound to this entity ends too soon, because 6554 /// the entity is a return object. 6555 LK_Return, 6556 6557 /// The lifetime of a temporary bound to this entity ends too soon, because 6558 /// the entity is the result of a statement expression. 6559 LK_StmtExprResult, 6560 6561 /// This is a mem-initializer: if it would extend a temporary (other than via 6562 /// a default member initializer), the program is ill-formed. 6563 LK_MemInitializer, 6564 }; 6565 using LifetimeResult = 6566 llvm::PointerIntPair<const InitializedEntity *, 3, LifetimeKind>; 6567 } 6568 6569 /// Determine the declaration which an initialized entity ultimately refers to, 6570 /// for the purpose of lifetime-extending a temporary bound to a reference in 6571 /// the initialization of \p Entity. 6572 static LifetimeResult getEntityLifetime( 6573 const InitializedEntity *Entity, 6574 const InitializedEntity *InitField = nullptr) { 6575 // C++11 [class.temporary]p5: 6576 switch (Entity->getKind()) { 6577 case InitializedEntity::EK_Variable: 6578 // The temporary [...] persists for the lifetime of the reference 6579 return {Entity, LK_Extended}; 6580 6581 case InitializedEntity::EK_Member: 6582 // For subobjects, we look at the complete object. 6583 if (Entity->getParent()) 6584 return getEntityLifetime(Entity->getParent(), Entity); 6585 6586 // except: 6587 // C++17 [class.base.init]p8: 6588 // A temporary expression bound to a reference member in a 6589 // mem-initializer is ill-formed. 6590 // C++17 [class.base.init]p11: 6591 // A temporary expression bound to a reference member from a 6592 // default member initializer is ill-formed. 6593 // 6594 // The context of p11 and its example suggest that it's only the use of a 6595 // default member initializer from a constructor that makes the program 6596 // ill-formed, not its mere existence, and that it can even be used by 6597 // aggregate initialization. 6598 return {Entity, Entity->isDefaultMemberInitializer() ? LK_Extended 6599 : LK_MemInitializer}; 6600 6601 case InitializedEntity::EK_Binding: 6602 // Per [dcl.decomp]p3, the binding is treated as a variable of reference 6603 // type. 6604 return {Entity, LK_Extended}; 6605 6606 case InitializedEntity::EK_Parameter: 6607 case InitializedEntity::EK_Parameter_CF_Audited: 6608 // -- A temporary bound to a reference parameter in a function call 6609 // persists until the completion of the full-expression containing 6610 // the call. 6611 return {nullptr, LK_FullExpression}; 6612 6613 case InitializedEntity::EK_Result: 6614 // -- The lifetime of a temporary bound to the returned value in a 6615 // function return statement is not extended; the temporary is 6616 // destroyed at the end of the full-expression in the return statement. 6617 return {nullptr, LK_Return}; 6618 6619 case InitializedEntity::EK_StmtExprResult: 6620 // FIXME: Should we lifetime-extend through the result of a statement 6621 // expression? 6622 return {nullptr, LK_StmtExprResult}; 6623 6624 case InitializedEntity::EK_New: 6625 // -- A temporary bound to a reference in a new-initializer persists 6626 // until the completion of the full-expression containing the 6627 // new-initializer. 6628 return {nullptr, LK_New}; 6629 6630 case InitializedEntity::EK_Temporary: 6631 case InitializedEntity::EK_CompoundLiteralInit: 6632 case InitializedEntity::EK_RelatedResult: 6633 // We don't yet know the storage duration of the surrounding temporary. 6634 // Assume it's got full-expression duration for now, it will patch up our 6635 // storage duration if that's not correct. 6636 return {nullptr, LK_FullExpression}; 6637 6638 case InitializedEntity::EK_ArrayElement: 6639 // For subobjects, we look at the complete object. 6640 return getEntityLifetime(Entity->getParent(), InitField); 6641 6642 case InitializedEntity::EK_Base: 6643 // For subobjects, we look at the complete object. 6644 if (Entity->getParent()) 6645 return getEntityLifetime(Entity->getParent(), InitField); 6646 return {InitField, LK_MemInitializer}; 6647 6648 case InitializedEntity::EK_Delegating: 6649 // We can reach this case for aggregate initialization in a constructor: 6650 // struct A { int &&r; }; 6651 // struct B : A { B() : A{0} {} }; 6652 // In this case, use the outermost field decl as the context. 6653 return {InitField, LK_MemInitializer}; 6654 6655 case InitializedEntity::EK_BlockElement: 6656 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 6657 case InitializedEntity::EK_LambdaCapture: 6658 case InitializedEntity::EK_VectorElement: 6659 case InitializedEntity::EK_ComplexElement: 6660 return {nullptr, LK_FullExpression}; 6661 6662 case InitializedEntity::EK_Exception: 6663 // FIXME: Can we diagnose lifetime problems with exceptions? 6664 return {nullptr, LK_FullExpression}; 6665 } 6666 llvm_unreachable("unknown entity kind"); 6667 } 6668 6669 namespace { 6670 enum ReferenceKind { 6671 /// Lifetime would be extended by a reference binding to a temporary. 6672 RK_ReferenceBinding, 6673 /// Lifetime would be extended by a std::initializer_list object binding to 6674 /// its backing array. 6675 RK_StdInitializerList, 6676 }; 6677 6678 /// A temporary or local variable. This will be one of: 6679 /// * A MaterializeTemporaryExpr. 6680 /// * A DeclRefExpr whose declaration is a local. 6681 /// * An AddrLabelExpr. 6682 /// * A BlockExpr for a block with captures. 6683 using Local = Expr*; 6684 6685 /// Expressions we stepped over when looking for the local state. Any steps 6686 /// that would inhibit lifetime extension or take us out of subexpressions of 6687 /// the initializer are included. 6688 struct IndirectLocalPathEntry { 6689 enum EntryKind { 6690 DefaultInit, 6691 AddressOf, 6692 VarInit, 6693 LValToRVal, 6694 LifetimeBoundCall, 6695 GslReferenceInit, 6696 GslPointerInit 6697 } Kind; 6698 Expr *E; 6699 const Decl *D = nullptr; 6700 IndirectLocalPathEntry() {} 6701 IndirectLocalPathEntry(EntryKind K, Expr *E) : Kind(K), E(E) {} 6702 IndirectLocalPathEntry(EntryKind K, Expr *E, const Decl *D) 6703 : Kind(K), E(E), D(D) {} 6704 }; 6705 6706 using IndirectLocalPath = llvm::SmallVectorImpl<IndirectLocalPathEntry>; 6707 6708 struct RevertToOldSizeRAII { 6709 IndirectLocalPath &Path; 6710 unsigned OldSize = Path.size(); 6711 RevertToOldSizeRAII(IndirectLocalPath &Path) : Path(Path) {} 6712 ~RevertToOldSizeRAII() { Path.resize(OldSize); } 6713 }; 6714 6715 using LocalVisitor = llvm::function_ref<bool(IndirectLocalPath &Path, Local L, 6716 ReferenceKind RK)>; 6717 } 6718 6719 static bool isVarOnPath(IndirectLocalPath &Path, VarDecl *VD) { 6720 for (auto E : Path) 6721 if (E.Kind == IndirectLocalPathEntry::VarInit && E.D == VD) 6722 return true; 6723 return false; 6724 } 6725 6726 static bool pathContainsInit(IndirectLocalPath &Path) { 6727 return llvm::any_of(Path, [=](IndirectLocalPathEntry E) { 6728 return E.Kind == IndirectLocalPathEntry::DefaultInit || 6729 E.Kind == IndirectLocalPathEntry::VarInit; 6730 }); 6731 } 6732 6733 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path, 6734 Expr *Init, LocalVisitor Visit, 6735 bool RevisitSubinits, 6736 bool EnableLifetimeWarnings); 6737 6738 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path, 6739 Expr *Init, ReferenceKind RK, 6740 LocalVisitor Visit, 6741 bool EnableLifetimeWarnings); 6742 6743 template <typename T> static bool isRecordWithAttr(QualType Type) { 6744 if (auto *RD = Type->getAsCXXRecordDecl()) 6745 return RD->hasAttr<T>(); 6746 return false; 6747 } 6748 6749 // Decl::isInStdNamespace will return false for iterators in some STL 6750 // implementations due to them being defined in a namespace outside of the std 6751 // namespace. 6752 static bool isInStlNamespace(const Decl *D) { 6753 const DeclContext *DC = D->getDeclContext(); 6754 if (!DC) 6755 return false; 6756 if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) 6757 if (const IdentifierInfo *II = ND->getIdentifier()) { 6758 StringRef Name = II->getName(); 6759 if (Name.size() >= 2 && Name.front() == '_' && 6760 (Name[1] == '_' || isUppercase(Name[1]))) 6761 return true; 6762 } 6763 6764 return DC->isStdNamespace(); 6765 } 6766 6767 static bool shouldTrackImplicitObjectArg(const CXXMethodDecl *Callee) { 6768 if (auto *Conv = dyn_cast_or_null<CXXConversionDecl>(Callee)) 6769 if (isRecordWithAttr<PointerAttr>(Conv->getConversionType())) 6770 return true; 6771 if (!isInStlNamespace(Callee->getParent())) 6772 return false; 6773 if (!isRecordWithAttr<PointerAttr>(Callee->getThisObjectType()) && 6774 !isRecordWithAttr<OwnerAttr>(Callee->getThisObjectType())) 6775 return false; 6776 if (Callee->getReturnType()->isPointerType() || 6777 isRecordWithAttr<PointerAttr>(Callee->getReturnType())) { 6778 if (!Callee->getIdentifier()) 6779 return false; 6780 return llvm::StringSwitch<bool>(Callee->getName()) 6781 .Cases("begin", "rbegin", "cbegin", "crbegin", true) 6782 .Cases("end", "rend", "cend", "crend", true) 6783 .Cases("c_str", "data", "get", true) 6784 // Map and set types. 6785 .Cases("find", "equal_range", "lower_bound", "upper_bound", true) 6786 .Default(false); 6787 } else if (Callee->getReturnType()->isReferenceType()) { 6788 if (!Callee->getIdentifier()) { 6789 auto OO = Callee->getOverloadedOperator(); 6790 return OO == OverloadedOperatorKind::OO_Subscript || 6791 OO == OverloadedOperatorKind::OO_Star; 6792 } 6793 return llvm::StringSwitch<bool>(Callee->getName()) 6794 .Cases("front", "back", "at", "top", "value", true) 6795 .Default(false); 6796 } 6797 return false; 6798 } 6799 6800 static bool shouldTrackFirstArgument(const FunctionDecl *FD) { 6801 if (!FD->getIdentifier() || FD->getNumParams() != 1) 6802 return false; 6803 const auto *RD = FD->getParamDecl(0)->getType()->getPointeeCXXRecordDecl(); 6804 if (!FD->isInStdNamespace() || !RD || !RD->isInStdNamespace()) 6805 return false; 6806 if (!isRecordWithAttr<PointerAttr>(QualType(RD->getTypeForDecl(), 0)) && 6807 !isRecordWithAttr<OwnerAttr>(QualType(RD->getTypeForDecl(), 0))) 6808 return false; 6809 if (FD->getReturnType()->isPointerType() || 6810 isRecordWithAttr<PointerAttr>(FD->getReturnType())) { 6811 return llvm::StringSwitch<bool>(FD->getName()) 6812 .Cases("begin", "rbegin", "cbegin", "crbegin", true) 6813 .Cases("end", "rend", "cend", "crend", true) 6814 .Case("data", true) 6815 .Default(false); 6816 } else if (FD->getReturnType()->isReferenceType()) { 6817 return llvm::StringSwitch<bool>(FD->getName()) 6818 .Cases("get", "any_cast", true) 6819 .Default(false); 6820 } 6821 return false; 6822 } 6823 6824 static void handleGslAnnotatedTypes(IndirectLocalPath &Path, Expr *Call, 6825 LocalVisitor Visit) { 6826 auto VisitPointerArg = [&](const Decl *D, Expr *Arg, bool Value) { 6827 // We are not interested in the temporary base objects of gsl Pointers: 6828 // Temp().ptr; // Here ptr might not dangle. 6829 if (isa<MemberExpr>(Arg->IgnoreImpCasts())) 6830 return; 6831 // Once we initialized a value with a reference, it can no longer dangle. 6832 if (!Value) { 6833 for (auto It = Path.rbegin(), End = Path.rend(); It != End; ++It) { 6834 if (It->Kind == IndirectLocalPathEntry::GslReferenceInit) 6835 continue; 6836 if (It->Kind == IndirectLocalPathEntry::GslPointerInit) 6837 return; 6838 break; 6839 } 6840 } 6841 Path.push_back({Value ? IndirectLocalPathEntry::GslPointerInit 6842 : IndirectLocalPathEntry::GslReferenceInit, 6843 Arg, D}); 6844 if (Arg->isGLValue()) 6845 visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding, 6846 Visit, 6847 /*EnableLifetimeWarnings=*/true); 6848 else 6849 visitLocalsRetainedByInitializer(Path, Arg, Visit, true, 6850 /*EnableLifetimeWarnings=*/true); 6851 Path.pop_back(); 6852 }; 6853 6854 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) { 6855 const auto *MD = cast_or_null<CXXMethodDecl>(MCE->getDirectCallee()); 6856 if (MD && shouldTrackImplicitObjectArg(MD)) 6857 VisitPointerArg(MD, MCE->getImplicitObjectArgument(), 6858 !MD->getReturnType()->isReferenceType()); 6859 return; 6860 } else if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(Call)) { 6861 FunctionDecl *Callee = OCE->getDirectCallee(); 6862 if (Callee && Callee->isCXXInstanceMember() && 6863 shouldTrackImplicitObjectArg(cast<CXXMethodDecl>(Callee))) 6864 VisitPointerArg(Callee, OCE->getArg(0), 6865 !Callee->getReturnType()->isReferenceType()); 6866 return; 6867 } else if (auto *CE = dyn_cast<CallExpr>(Call)) { 6868 FunctionDecl *Callee = CE->getDirectCallee(); 6869 if (Callee && shouldTrackFirstArgument(Callee)) 6870 VisitPointerArg(Callee, CE->getArg(0), 6871 !Callee->getReturnType()->isReferenceType()); 6872 return; 6873 } 6874 6875 if (auto *CCE = dyn_cast<CXXConstructExpr>(Call)) { 6876 const auto *Ctor = CCE->getConstructor(); 6877 const CXXRecordDecl *RD = Ctor->getParent(); 6878 if (CCE->getNumArgs() > 0 && RD->hasAttr<PointerAttr>()) 6879 VisitPointerArg(Ctor->getParamDecl(0), CCE->getArgs()[0], true); 6880 } 6881 } 6882 6883 static bool implicitObjectParamIsLifetimeBound(const FunctionDecl *FD) { 6884 const TypeSourceInfo *TSI = FD->getTypeSourceInfo(); 6885 if (!TSI) 6886 return false; 6887 // Don't declare this variable in the second operand of the for-statement; 6888 // GCC miscompiles that by ending its lifetime before evaluating the 6889 // third operand. See gcc.gnu.org/PR86769. 6890 AttributedTypeLoc ATL; 6891 for (TypeLoc TL = TSI->getTypeLoc(); 6892 (ATL = TL.getAsAdjusted<AttributedTypeLoc>()); 6893 TL = ATL.getModifiedLoc()) { 6894 if (ATL.getAttrAs<LifetimeBoundAttr>()) 6895 return true; 6896 } 6897 return false; 6898 } 6899 6900 static void visitLifetimeBoundArguments(IndirectLocalPath &Path, Expr *Call, 6901 LocalVisitor Visit) { 6902 const FunctionDecl *Callee; 6903 ArrayRef<Expr*> Args; 6904 6905 if (auto *CE = dyn_cast<CallExpr>(Call)) { 6906 Callee = CE->getDirectCallee(); 6907 Args = llvm::makeArrayRef(CE->getArgs(), CE->getNumArgs()); 6908 } else { 6909 auto *CCE = cast<CXXConstructExpr>(Call); 6910 Callee = CCE->getConstructor(); 6911 Args = llvm::makeArrayRef(CCE->getArgs(), CCE->getNumArgs()); 6912 } 6913 if (!Callee) 6914 return; 6915 6916 Expr *ObjectArg = nullptr; 6917 if (isa<CXXOperatorCallExpr>(Call) && Callee->isCXXInstanceMember()) { 6918 ObjectArg = Args[0]; 6919 Args = Args.slice(1); 6920 } else if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) { 6921 ObjectArg = MCE->getImplicitObjectArgument(); 6922 } 6923 6924 auto VisitLifetimeBoundArg = [&](const Decl *D, Expr *Arg) { 6925 Path.push_back({IndirectLocalPathEntry::LifetimeBoundCall, Arg, D}); 6926 if (Arg->isGLValue()) 6927 visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding, 6928 Visit, 6929 /*EnableLifetimeWarnings=*/false); 6930 else 6931 visitLocalsRetainedByInitializer(Path, Arg, Visit, true, 6932 /*EnableLifetimeWarnings=*/false); 6933 Path.pop_back(); 6934 }; 6935 6936 if (ObjectArg && implicitObjectParamIsLifetimeBound(Callee)) 6937 VisitLifetimeBoundArg(Callee, ObjectArg); 6938 6939 for (unsigned I = 0, 6940 N = std::min<unsigned>(Callee->getNumParams(), Args.size()); 6941 I != N; ++I) { 6942 if (Callee->getParamDecl(I)->hasAttr<LifetimeBoundAttr>()) 6943 VisitLifetimeBoundArg(Callee->getParamDecl(I), Args[I]); 6944 } 6945 } 6946 6947 /// Visit the locals that would be reachable through a reference bound to the 6948 /// glvalue expression \c Init. 6949 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path, 6950 Expr *Init, ReferenceKind RK, 6951 LocalVisitor Visit, 6952 bool EnableLifetimeWarnings) { 6953 RevertToOldSizeRAII RAII(Path); 6954 6955 // Walk past any constructs which we can lifetime-extend across. 6956 Expr *Old; 6957 do { 6958 Old = Init; 6959 6960 if (auto *FE = dyn_cast<FullExpr>(Init)) 6961 Init = FE->getSubExpr(); 6962 6963 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 6964 // If this is just redundant braces around an initializer, step over it. 6965 if (ILE->isTransparent()) 6966 Init = ILE->getInit(0); 6967 } 6968 6969 // Step over any subobject adjustments; we may have a materialized 6970 // temporary inside them. 6971 Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments()); 6972 6973 // Per current approach for DR1376, look through casts to reference type 6974 // when performing lifetime extension. 6975 if (CastExpr *CE = dyn_cast<CastExpr>(Init)) 6976 if (CE->getSubExpr()->isGLValue()) 6977 Init = CE->getSubExpr(); 6978 6979 // Per the current approach for DR1299, look through array element access 6980 // on array glvalues when performing lifetime extension. 6981 if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Init)) { 6982 Init = ASE->getBase(); 6983 auto *ICE = dyn_cast<ImplicitCastExpr>(Init); 6984 if (ICE && ICE->getCastKind() == CK_ArrayToPointerDecay) 6985 Init = ICE->getSubExpr(); 6986 else 6987 // We can't lifetime extend through this but we might still find some 6988 // retained temporaries. 6989 return visitLocalsRetainedByInitializer(Path, Init, Visit, true, 6990 EnableLifetimeWarnings); 6991 } 6992 6993 // Step into CXXDefaultInitExprs so we can diagnose cases where a 6994 // constructor inherits one as an implicit mem-initializer. 6995 if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) { 6996 Path.push_back( 6997 {IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()}); 6998 Init = DIE->getExpr(); 6999 } 7000 } while (Init != Old); 7001 7002 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Init)) { 7003 if (Visit(Path, Local(MTE), RK)) 7004 visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit, true, 7005 EnableLifetimeWarnings); 7006 } 7007 7008 if (isa<CallExpr>(Init)) { 7009 if (EnableLifetimeWarnings) 7010 handleGslAnnotatedTypes(Path, Init, Visit); 7011 return visitLifetimeBoundArguments(Path, Init, Visit); 7012 } 7013 7014 switch (Init->getStmtClass()) { 7015 case Stmt::DeclRefExprClass: { 7016 // If we find the name of a local non-reference parameter, we could have a 7017 // lifetime problem. 7018 auto *DRE = cast<DeclRefExpr>(Init); 7019 auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); 7020 if (VD && VD->hasLocalStorage() && 7021 !DRE->refersToEnclosingVariableOrCapture()) { 7022 if (!VD->getType()->isReferenceType()) { 7023 Visit(Path, Local(DRE), RK); 7024 } else if (isa<ParmVarDecl>(DRE->getDecl())) { 7025 // The lifetime of a reference parameter is unknown; assume it's OK 7026 // for now. 7027 break; 7028 } else if (VD->getInit() && !isVarOnPath(Path, VD)) { 7029 Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD}); 7030 visitLocalsRetainedByReferenceBinding(Path, VD->getInit(), 7031 RK_ReferenceBinding, Visit, 7032 EnableLifetimeWarnings); 7033 } 7034 } 7035 break; 7036 } 7037 7038 case Stmt::UnaryOperatorClass: { 7039 // The only unary operator that make sense to handle here 7040 // is Deref. All others don't resolve to a "name." This includes 7041 // handling all sorts of rvalues passed to a unary operator. 7042 const UnaryOperator *U = cast<UnaryOperator>(Init); 7043 if (U->getOpcode() == UO_Deref) 7044 visitLocalsRetainedByInitializer(Path, U->getSubExpr(), Visit, true, 7045 EnableLifetimeWarnings); 7046 break; 7047 } 7048 7049 case Stmt::OMPArraySectionExprClass: { 7050 visitLocalsRetainedByInitializer(Path, 7051 cast<OMPArraySectionExpr>(Init)->getBase(), 7052 Visit, true, EnableLifetimeWarnings); 7053 break; 7054 } 7055 7056 case Stmt::ConditionalOperatorClass: 7057 case Stmt::BinaryConditionalOperatorClass: { 7058 auto *C = cast<AbstractConditionalOperator>(Init); 7059 if (!C->getTrueExpr()->getType()->isVoidType()) 7060 visitLocalsRetainedByReferenceBinding(Path, C->getTrueExpr(), RK, Visit, 7061 EnableLifetimeWarnings); 7062 if (!C->getFalseExpr()->getType()->isVoidType()) 7063 visitLocalsRetainedByReferenceBinding(Path, C->getFalseExpr(), RK, Visit, 7064 EnableLifetimeWarnings); 7065 break; 7066 } 7067 7068 // FIXME: Visit the left-hand side of an -> or ->*. 7069 7070 default: 7071 break; 7072 } 7073 } 7074 7075 /// Visit the locals that would be reachable through an object initialized by 7076 /// the prvalue expression \c Init. 7077 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path, 7078 Expr *Init, LocalVisitor Visit, 7079 bool RevisitSubinits, 7080 bool EnableLifetimeWarnings) { 7081 RevertToOldSizeRAII RAII(Path); 7082 7083 Expr *Old; 7084 do { 7085 Old = Init; 7086 7087 // Step into CXXDefaultInitExprs so we can diagnose cases where a 7088 // constructor inherits one as an implicit mem-initializer. 7089 if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) { 7090 Path.push_back({IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()}); 7091 Init = DIE->getExpr(); 7092 } 7093 7094 if (auto *FE = dyn_cast<FullExpr>(Init)) 7095 Init = FE->getSubExpr(); 7096 7097 // Dig out the expression which constructs the extended temporary. 7098 Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments()); 7099 7100 if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init)) 7101 Init = BTE->getSubExpr(); 7102 7103 Init = Init->IgnoreParens(); 7104 7105 // Step over value-preserving rvalue casts. 7106 if (auto *CE = dyn_cast<CastExpr>(Init)) { 7107 switch (CE->getCastKind()) { 7108 case CK_LValueToRValue: 7109 // If we can match the lvalue to a const object, we can look at its 7110 // initializer. 7111 Path.push_back({IndirectLocalPathEntry::LValToRVal, CE}); 7112 return visitLocalsRetainedByReferenceBinding( 7113 Path, Init, RK_ReferenceBinding, 7114 [&](IndirectLocalPath &Path, Local L, ReferenceKind RK) -> bool { 7115 if (auto *DRE = dyn_cast<DeclRefExpr>(L)) { 7116 auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); 7117 if (VD && VD->getType().isConstQualified() && VD->getInit() && 7118 !isVarOnPath(Path, VD)) { 7119 Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD}); 7120 visitLocalsRetainedByInitializer(Path, VD->getInit(), Visit, true, 7121 EnableLifetimeWarnings); 7122 } 7123 } else if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L)) { 7124 if (MTE->getType().isConstQualified()) 7125 visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit, 7126 true, EnableLifetimeWarnings); 7127 } 7128 return false; 7129 }, EnableLifetimeWarnings); 7130 7131 // We assume that objects can be retained by pointers cast to integers, 7132 // but not if the integer is cast to floating-point type or to _Complex. 7133 // We assume that casts to 'bool' do not preserve enough information to 7134 // retain a local object. 7135 case CK_NoOp: 7136 case CK_BitCast: 7137 case CK_BaseToDerived: 7138 case CK_DerivedToBase: 7139 case CK_UncheckedDerivedToBase: 7140 case CK_Dynamic: 7141 case CK_ToUnion: 7142 case CK_UserDefinedConversion: 7143 case CK_ConstructorConversion: 7144 case CK_IntegralToPointer: 7145 case CK_PointerToIntegral: 7146 case CK_VectorSplat: 7147 case CK_IntegralCast: 7148 case CK_CPointerToObjCPointerCast: 7149 case CK_BlockPointerToObjCPointerCast: 7150 case CK_AnyPointerToBlockPointerCast: 7151 case CK_AddressSpaceConversion: 7152 break; 7153 7154 case CK_ArrayToPointerDecay: 7155 // Model array-to-pointer decay as taking the address of the array 7156 // lvalue. 7157 Path.push_back({IndirectLocalPathEntry::AddressOf, CE}); 7158 return visitLocalsRetainedByReferenceBinding(Path, CE->getSubExpr(), 7159 RK_ReferenceBinding, Visit, 7160 EnableLifetimeWarnings); 7161 7162 default: 7163 return; 7164 } 7165 7166 Init = CE->getSubExpr(); 7167 } 7168 } while (Old != Init); 7169 7170 // C++17 [dcl.init.list]p6: 7171 // initializing an initializer_list object from the array extends the 7172 // lifetime of the array exactly like binding a reference to a temporary. 7173 if (auto *ILE = dyn_cast<CXXStdInitializerListExpr>(Init)) 7174 return visitLocalsRetainedByReferenceBinding(Path, ILE->getSubExpr(), 7175 RK_StdInitializerList, Visit, 7176 EnableLifetimeWarnings); 7177 7178 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 7179 // We already visited the elements of this initializer list while 7180 // performing the initialization. Don't visit them again unless we've 7181 // changed the lifetime of the initialized entity. 7182 if (!RevisitSubinits) 7183 return; 7184 7185 if (ILE->isTransparent()) 7186 return visitLocalsRetainedByInitializer(Path, ILE->getInit(0), Visit, 7187 RevisitSubinits, 7188 EnableLifetimeWarnings); 7189 7190 if (ILE->getType()->isArrayType()) { 7191 for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I) 7192 visitLocalsRetainedByInitializer(Path, ILE->getInit(I), Visit, 7193 RevisitSubinits, 7194 EnableLifetimeWarnings); 7195 return; 7196 } 7197 7198 if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) { 7199 assert(RD->isAggregate() && "aggregate init on non-aggregate"); 7200 7201 // If we lifetime-extend a braced initializer which is initializing an 7202 // aggregate, and that aggregate contains reference members which are 7203 // bound to temporaries, those temporaries are also lifetime-extended. 7204 if (RD->isUnion() && ILE->getInitializedFieldInUnion() && 7205 ILE->getInitializedFieldInUnion()->getType()->isReferenceType()) 7206 visitLocalsRetainedByReferenceBinding(Path, ILE->getInit(0), 7207 RK_ReferenceBinding, Visit, 7208 EnableLifetimeWarnings); 7209 else { 7210 unsigned Index = 0; 7211 for (; Index < RD->getNumBases() && Index < ILE->getNumInits(); ++Index) 7212 visitLocalsRetainedByInitializer(Path, ILE->getInit(Index), Visit, 7213 RevisitSubinits, 7214 EnableLifetimeWarnings); 7215 for (const auto *I : RD->fields()) { 7216 if (Index >= ILE->getNumInits()) 7217 break; 7218 if (I->isUnnamedBitfield()) 7219 continue; 7220 Expr *SubInit = ILE->getInit(Index); 7221 if (I->getType()->isReferenceType()) 7222 visitLocalsRetainedByReferenceBinding(Path, SubInit, 7223 RK_ReferenceBinding, Visit, 7224 EnableLifetimeWarnings); 7225 else 7226 // This might be either aggregate-initialization of a member or 7227 // initialization of a std::initializer_list object. Regardless, 7228 // we should recursively lifetime-extend that initializer. 7229 visitLocalsRetainedByInitializer(Path, SubInit, Visit, 7230 RevisitSubinits, 7231 EnableLifetimeWarnings); 7232 ++Index; 7233 } 7234 } 7235 } 7236 return; 7237 } 7238 7239 // The lifetime of an init-capture is that of the closure object constructed 7240 // by a lambda-expression. 7241 if (auto *LE = dyn_cast<LambdaExpr>(Init)) { 7242 for (Expr *E : LE->capture_inits()) { 7243 if (!E) 7244 continue; 7245 if (E->isGLValue()) 7246 visitLocalsRetainedByReferenceBinding(Path, E, RK_ReferenceBinding, 7247 Visit, EnableLifetimeWarnings); 7248 else 7249 visitLocalsRetainedByInitializer(Path, E, Visit, true, 7250 EnableLifetimeWarnings); 7251 } 7252 } 7253 7254 if (isa<CallExpr>(Init) || isa<CXXConstructExpr>(Init)) { 7255 if (EnableLifetimeWarnings) 7256 handleGslAnnotatedTypes(Path, Init, Visit); 7257 return visitLifetimeBoundArguments(Path, Init, Visit); 7258 } 7259 7260 switch (Init->getStmtClass()) { 7261 case Stmt::UnaryOperatorClass: { 7262 auto *UO = cast<UnaryOperator>(Init); 7263 // If the initializer is the address of a local, we could have a lifetime 7264 // problem. 7265 if (UO->getOpcode() == UO_AddrOf) { 7266 // If this is &rvalue, then it's ill-formed and we have already diagnosed 7267 // it. Don't produce a redundant warning about the lifetime of the 7268 // temporary. 7269 if (isa<MaterializeTemporaryExpr>(UO->getSubExpr())) 7270 return; 7271 7272 Path.push_back({IndirectLocalPathEntry::AddressOf, UO}); 7273 visitLocalsRetainedByReferenceBinding(Path, UO->getSubExpr(), 7274 RK_ReferenceBinding, Visit, 7275 EnableLifetimeWarnings); 7276 } 7277 break; 7278 } 7279 7280 case Stmt::BinaryOperatorClass: { 7281 // Handle pointer arithmetic. 7282 auto *BO = cast<BinaryOperator>(Init); 7283 BinaryOperatorKind BOK = BO->getOpcode(); 7284 if (!BO->getType()->isPointerType() || (BOK != BO_Add && BOK != BO_Sub)) 7285 break; 7286 7287 if (BO->getLHS()->getType()->isPointerType()) 7288 visitLocalsRetainedByInitializer(Path, BO->getLHS(), Visit, true, 7289 EnableLifetimeWarnings); 7290 else if (BO->getRHS()->getType()->isPointerType()) 7291 visitLocalsRetainedByInitializer(Path, BO->getRHS(), Visit, true, 7292 EnableLifetimeWarnings); 7293 break; 7294 } 7295 7296 case Stmt::ConditionalOperatorClass: 7297 case Stmt::BinaryConditionalOperatorClass: { 7298 auto *C = cast<AbstractConditionalOperator>(Init); 7299 // In C++, we can have a throw-expression operand, which has 'void' type 7300 // and isn't interesting from a lifetime perspective. 7301 if (!C->getTrueExpr()->getType()->isVoidType()) 7302 visitLocalsRetainedByInitializer(Path, C->getTrueExpr(), Visit, true, 7303 EnableLifetimeWarnings); 7304 if (!C->getFalseExpr()->getType()->isVoidType()) 7305 visitLocalsRetainedByInitializer(Path, C->getFalseExpr(), Visit, true, 7306 EnableLifetimeWarnings); 7307 break; 7308 } 7309 7310 case Stmt::BlockExprClass: 7311 if (cast<BlockExpr>(Init)->getBlockDecl()->hasCaptures()) { 7312 // This is a local block, whose lifetime is that of the function. 7313 Visit(Path, Local(cast<BlockExpr>(Init)), RK_ReferenceBinding); 7314 } 7315 break; 7316 7317 case Stmt::AddrLabelExprClass: 7318 // We want to warn if the address of a label would escape the function. 7319 Visit(Path, Local(cast<AddrLabelExpr>(Init)), RK_ReferenceBinding); 7320 break; 7321 7322 default: 7323 break; 7324 } 7325 } 7326 7327 /// Determine whether this is an indirect path to a temporary that we are 7328 /// supposed to lifetime-extend along (but don't). 7329 static bool shouldLifetimeExtendThroughPath(const IndirectLocalPath &Path) { 7330 for (auto Elem : Path) { 7331 if (Elem.Kind != IndirectLocalPathEntry::DefaultInit) 7332 return false; 7333 } 7334 return true; 7335 } 7336 7337 /// Find the range for the first interesting entry in the path at or after I. 7338 static SourceRange nextPathEntryRange(const IndirectLocalPath &Path, unsigned I, 7339 Expr *E) { 7340 for (unsigned N = Path.size(); I != N; ++I) { 7341 switch (Path[I].Kind) { 7342 case IndirectLocalPathEntry::AddressOf: 7343 case IndirectLocalPathEntry::LValToRVal: 7344 case IndirectLocalPathEntry::LifetimeBoundCall: 7345 case IndirectLocalPathEntry::GslReferenceInit: 7346 case IndirectLocalPathEntry::GslPointerInit: 7347 // These exist primarily to mark the path as not permitting or 7348 // supporting lifetime extension. 7349 break; 7350 7351 case IndirectLocalPathEntry::VarInit: 7352 if (cast<VarDecl>(Path[I].D)->isImplicit()) 7353 return SourceRange(); 7354 LLVM_FALLTHROUGH; 7355 case IndirectLocalPathEntry::DefaultInit: 7356 return Path[I].E->getSourceRange(); 7357 } 7358 } 7359 return E->getSourceRange(); 7360 } 7361 7362 static bool pathOnlyInitializesGslPointer(IndirectLocalPath &Path) { 7363 for (auto It = Path.rbegin(), End = Path.rend(); It != End; ++It) { 7364 if (It->Kind == IndirectLocalPathEntry::VarInit) 7365 continue; 7366 if (It->Kind == IndirectLocalPathEntry::AddressOf) 7367 continue; 7368 return It->Kind == IndirectLocalPathEntry::GslPointerInit || 7369 It->Kind == IndirectLocalPathEntry::GslReferenceInit; 7370 } 7371 return false; 7372 } 7373 7374 void Sema::checkInitializerLifetime(const InitializedEntity &Entity, 7375 Expr *Init) { 7376 LifetimeResult LR = getEntityLifetime(&Entity); 7377 LifetimeKind LK = LR.getInt(); 7378 const InitializedEntity *ExtendingEntity = LR.getPointer(); 7379 7380 // If this entity doesn't have an interesting lifetime, don't bother looking 7381 // for temporaries within its initializer. 7382 if (LK == LK_FullExpression) 7383 return; 7384 7385 auto TemporaryVisitor = [&](IndirectLocalPath &Path, Local L, 7386 ReferenceKind RK) -> bool { 7387 SourceRange DiagRange = nextPathEntryRange(Path, 0, L); 7388 SourceLocation DiagLoc = DiagRange.getBegin(); 7389 7390 auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L); 7391 7392 bool IsGslPtrInitWithGslTempOwner = false; 7393 bool IsLocalGslOwner = false; 7394 if (pathOnlyInitializesGslPointer(Path)) { 7395 if (isa<DeclRefExpr>(L)) { 7396 // We do not want to follow the references when returning a pointer originating 7397 // from a local owner to avoid the following false positive: 7398 // int &p = *localUniquePtr; 7399 // someContainer.add(std::move(localUniquePtr)); 7400 // return p; 7401 IsLocalGslOwner = isRecordWithAttr<OwnerAttr>(L->getType()); 7402 if (pathContainsInit(Path) || !IsLocalGslOwner) 7403 return false; 7404 } else { 7405 IsGslPtrInitWithGslTempOwner = MTE && !MTE->getExtendingDecl() && 7406 isRecordWithAttr<OwnerAttr>(MTE->getType()); 7407 // Skipping a chain of initializing gsl::Pointer annotated objects. 7408 // We are looking only for the final source to find out if it was 7409 // a local or temporary owner or the address of a local variable/param. 7410 if (!IsGslPtrInitWithGslTempOwner) 7411 return true; 7412 } 7413 } 7414 7415 switch (LK) { 7416 case LK_FullExpression: 7417 llvm_unreachable("already handled this"); 7418 7419 case LK_Extended: { 7420 if (!MTE) { 7421 // The initialized entity has lifetime beyond the full-expression, 7422 // and the local entity does too, so don't warn. 7423 // 7424 // FIXME: We should consider warning if a static / thread storage 7425 // duration variable retains an automatic storage duration local. 7426 return false; 7427 } 7428 7429 if (IsGslPtrInitWithGslTempOwner && DiagLoc.isValid()) { 7430 Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange; 7431 return false; 7432 } 7433 7434 // Lifetime-extend the temporary. 7435 if (Path.empty()) { 7436 // Update the storage duration of the materialized temporary. 7437 // FIXME: Rebuild the expression instead of mutating it. 7438 MTE->setExtendingDecl(ExtendingEntity->getDecl(), 7439 ExtendingEntity->allocateManglingNumber()); 7440 // Also visit the temporaries lifetime-extended by this initializer. 7441 return true; 7442 } 7443 7444 if (shouldLifetimeExtendThroughPath(Path)) { 7445 // We're supposed to lifetime-extend the temporary along this path (per 7446 // the resolution of DR1815), but we don't support that yet. 7447 // 7448 // FIXME: Properly handle this situation. Perhaps the easiest approach 7449 // would be to clone the initializer expression on each use that would 7450 // lifetime extend its temporaries. 7451 Diag(DiagLoc, diag::warn_unsupported_lifetime_extension) 7452 << RK << DiagRange; 7453 } else { 7454 // If the path goes through the initialization of a variable or field, 7455 // it can't possibly reach a temporary created in this full-expression. 7456 // We will have already diagnosed any problems with the initializer. 7457 if (pathContainsInit(Path)) 7458 return false; 7459 7460 Diag(DiagLoc, diag::warn_dangling_variable) 7461 << RK << !Entity.getParent() 7462 << ExtendingEntity->getDecl()->isImplicit() 7463 << ExtendingEntity->getDecl() << Init->isGLValue() << DiagRange; 7464 } 7465 break; 7466 } 7467 7468 case LK_MemInitializer: { 7469 if (isa<MaterializeTemporaryExpr>(L)) { 7470 // Under C++ DR1696, if a mem-initializer (or a default member 7471 // initializer used by the absence of one) would lifetime-extend a 7472 // temporary, the program is ill-formed. 7473 if (auto *ExtendingDecl = 7474 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) { 7475 if (IsGslPtrInitWithGslTempOwner) { 7476 Diag(DiagLoc, diag::warn_dangling_lifetime_pointer_member) 7477 << ExtendingDecl << DiagRange; 7478 Diag(ExtendingDecl->getLocation(), 7479 diag::note_ref_or_ptr_member_declared_here) 7480 << true; 7481 return false; 7482 } 7483 bool IsSubobjectMember = ExtendingEntity != &Entity; 7484 Diag(DiagLoc, shouldLifetimeExtendThroughPath(Path) 7485 ? diag::err_dangling_member 7486 : diag::warn_dangling_member) 7487 << ExtendingDecl << IsSubobjectMember << RK << DiagRange; 7488 // Don't bother adding a note pointing to the field if we're inside 7489 // its default member initializer; our primary diagnostic points to 7490 // the same place in that case. 7491 if (Path.empty() || 7492 Path.back().Kind != IndirectLocalPathEntry::DefaultInit) { 7493 Diag(ExtendingDecl->getLocation(), 7494 diag::note_lifetime_extending_member_declared_here) 7495 << RK << IsSubobjectMember; 7496 } 7497 } else { 7498 // We have a mem-initializer but no particular field within it; this 7499 // is either a base class or a delegating initializer directly 7500 // initializing the base-class from something that doesn't live long 7501 // enough. 7502 // 7503 // FIXME: Warn on this. 7504 return false; 7505 } 7506 } else { 7507 // Paths via a default initializer can only occur during error recovery 7508 // (there's no other way that a default initializer can refer to a 7509 // local). Don't produce a bogus warning on those cases. 7510 if (pathContainsInit(Path)) 7511 return false; 7512 7513 // Suppress false positives for code like the one below: 7514 // Ctor(unique_ptr<T> up) : member(*up), member2(move(up)) {} 7515 if (IsLocalGslOwner && pathOnlyInitializesGslPointer(Path)) 7516 return false; 7517 7518 auto *DRE = dyn_cast<DeclRefExpr>(L); 7519 auto *VD = DRE ? dyn_cast<VarDecl>(DRE->getDecl()) : nullptr; 7520 if (!VD) { 7521 // A member was initialized to a local block. 7522 // FIXME: Warn on this. 7523 return false; 7524 } 7525 7526 if (auto *Member = 7527 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) { 7528 bool IsPointer = !Member->getType()->isReferenceType(); 7529 Diag(DiagLoc, IsPointer ? diag::warn_init_ptr_member_to_parameter_addr 7530 : diag::warn_bind_ref_member_to_parameter) 7531 << Member << VD << isa<ParmVarDecl>(VD) << DiagRange; 7532 Diag(Member->getLocation(), 7533 diag::note_ref_or_ptr_member_declared_here) 7534 << (unsigned)IsPointer; 7535 } 7536 } 7537 break; 7538 } 7539 7540 case LK_New: 7541 if (isa<MaterializeTemporaryExpr>(L)) { 7542 if (IsGslPtrInitWithGslTempOwner) 7543 Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange; 7544 else 7545 Diag(DiagLoc, RK == RK_ReferenceBinding 7546 ? diag::warn_new_dangling_reference 7547 : diag::warn_new_dangling_initializer_list) 7548 << !Entity.getParent() << DiagRange; 7549 } else { 7550 // We can't determine if the allocation outlives the local declaration. 7551 return false; 7552 } 7553 break; 7554 7555 case LK_Return: 7556 case LK_StmtExprResult: 7557 if (auto *DRE = dyn_cast<DeclRefExpr>(L)) { 7558 // We can't determine if the local variable outlives the statement 7559 // expression. 7560 if (LK == LK_StmtExprResult) 7561 return false; 7562 Diag(DiagLoc, diag::warn_ret_stack_addr_ref) 7563 << Entity.getType()->isReferenceType() << DRE->getDecl() 7564 << isa<ParmVarDecl>(DRE->getDecl()) << DiagRange; 7565 } else if (isa<BlockExpr>(L)) { 7566 Diag(DiagLoc, diag::err_ret_local_block) << DiagRange; 7567 } else if (isa<AddrLabelExpr>(L)) { 7568 // Don't warn when returning a label from a statement expression. 7569 // Leaving the scope doesn't end its lifetime. 7570 if (LK == LK_StmtExprResult) 7571 return false; 7572 Diag(DiagLoc, diag::warn_ret_addr_label) << DiagRange; 7573 } else { 7574 Diag(DiagLoc, diag::warn_ret_local_temp_addr_ref) 7575 << Entity.getType()->isReferenceType() << DiagRange; 7576 } 7577 break; 7578 } 7579 7580 for (unsigned I = 0; I != Path.size(); ++I) { 7581 auto Elem = Path[I]; 7582 7583 switch (Elem.Kind) { 7584 case IndirectLocalPathEntry::AddressOf: 7585 case IndirectLocalPathEntry::LValToRVal: 7586 // These exist primarily to mark the path as not permitting or 7587 // supporting lifetime extension. 7588 break; 7589 7590 case IndirectLocalPathEntry::LifetimeBoundCall: 7591 case IndirectLocalPathEntry::GslPointerInit: 7592 case IndirectLocalPathEntry::GslReferenceInit: 7593 // FIXME: Consider adding a note for these. 7594 break; 7595 7596 case IndirectLocalPathEntry::DefaultInit: { 7597 auto *FD = cast<FieldDecl>(Elem.D); 7598 Diag(FD->getLocation(), diag::note_init_with_default_member_initalizer) 7599 << FD << nextPathEntryRange(Path, I + 1, L); 7600 break; 7601 } 7602 7603 case IndirectLocalPathEntry::VarInit: 7604 const VarDecl *VD = cast<VarDecl>(Elem.D); 7605 Diag(VD->getLocation(), diag::note_local_var_initializer) 7606 << VD->getType()->isReferenceType() 7607 << VD->isImplicit() << VD->getDeclName() 7608 << nextPathEntryRange(Path, I + 1, L); 7609 break; 7610 } 7611 } 7612 7613 // We didn't lifetime-extend, so don't go any further; we don't need more 7614 // warnings or errors on inner temporaries within this one's initializer. 7615 return false; 7616 }; 7617 7618 bool EnableLifetimeWarnings = !getDiagnostics().isIgnored( 7619 diag::warn_dangling_lifetime_pointer, SourceLocation()); 7620 llvm::SmallVector<IndirectLocalPathEntry, 8> Path; 7621 if (Init->isGLValue()) 7622 visitLocalsRetainedByReferenceBinding(Path, Init, RK_ReferenceBinding, 7623 TemporaryVisitor, 7624 EnableLifetimeWarnings); 7625 else 7626 visitLocalsRetainedByInitializer(Path, Init, TemporaryVisitor, false, 7627 EnableLifetimeWarnings); 7628 } 7629 7630 static void DiagnoseNarrowingInInitList(Sema &S, 7631 const ImplicitConversionSequence &ICS, 7632 QualType PreNarrowingType, 7633 QualType EntityType, 7634 const Expr *PostInit); 7635 7636 /// Provide warnings when std::move is used on construction. 7637 static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr, 7638 bool IsReturnStmt) { 7639 if (!InitExpr) 7640 return; 7641 7642 if (S.inTemplateInstantiation()) 7643 return; 7644 7645 QualType DestType = InitExpr->getType(); 7646 if (!DestType->isRecordType()) 7647 return; 7648 7649 unsigned DiagID = 0; 7650 if (IsReturnStmt) { 7651 const CXXConstructExpr *CCE = 7652 dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens()); 7653 if (!CCE || CCE->getNumArgs() != 1) 7654 return; 7655 7656 if (!CCE->getConstructor()->isCopyOrMoveConstructor()) 7657 return; 7658 7659 InitExpr = CCE->getArg(0)->IgnoreImpCasts(); 7660 } 7661 7662 // Find the std::move call and get the argument. 7663 const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens()); 7664 if (!CE || !CE->isCallToStdMove()) 7665 return; 7666 7667 const Expr *Arg = CE->getArg(0)->IgnoreImplicit(); 7668 7669 if (IsReturnStmt) { 7670 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts()); 7671 if (!DRE || DRE->refersToEnclosingVariableOrCapture()) 7672 return; 7673 7674 const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()); 7675 if (!VD || !VD->hasLocalStorage()) 7676 return; 7677 7678 // __block variables are not moved implicitly. 7679 if (VD->hasAttr<BlocksAttr>()) 7680 return; 7681 7682 QualType SourceType = VD->getType(); 7683 if (!SourceType->isRecordType()) 7684 return; 7685 7686 if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) { 7687 return; 7688 } 7689 7690 // If we're returning a function parameter, copy elision 7691 // is not possible. 7692 if (isa<ParmVarDecl>(VD)) 7693 DiagID = diag::warn_redundant_move_on_return; 7694 else 7695 DiagID = diag::warn_pessimizing_move_on_return; 7696 } else { 7697 DiagID = diag::warn_pessimizing_move_on_initialization; 7698 const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens(); 7699 if (!ArgStripped->isRValue() || !ArgStripped->getType()->isRecordType()) 7700 return; 7701 } 7702 7703 S.Diag(CE->getBeginLoc(), DiagID); 7704 7705 // Get all the locations for a fix-it. Don't emit the fix-it if any location 7706 // is within a macro. 7707 SourceLocation CallBegin = CE->getCallee()->getBeginLoc(); 7708 if (CallBegin.isMacroID()) 7709 return; 7710 SourceLocation RParen = CE->getRParenLoc(); 7711 if (RParen.isMacroID()) 7712 return; 7713 SourceLocation LParen; 7714 SourceLocation ArgLoc = Arg->getBeginLoc(); 7715 7716 // Special testing for the argument location. Since the fix-it needs the 7717 // location right before the argument, the argument location can be in a 7718 // macro only if it is at the beginning of the macro. 7719 while (ArgLoc.isMacroID() && 7720 S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) { 7721 ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).getBegin(); 7722 } 7723 7724 if (LParen.isMacroID()) 7725 return; 7726 7727 LParen = ArgLoc.getLocWithOffset(-1); 7728 7729 S.Diag(CE->getBeginLoc(), diag::note_remove_move) 7730 << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen)) 7731 << FixItHint::CreateRemoval(SourceRange(RParen, RParen)); 7732 } 7733 7734 static void CheckForNullPointerDereference(Sema &S, const Expr *E) { 7735 // Check to see if we are dereferencing a null pointer. If so, this is 7736 // undefined behavior, so warn about it. This only handles the pattern 7737 // "*null", which is a very syntactic check. 7738 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts())) 7739 if (UO->getOpcode() == UO_Deref && 7740 UO->getSubExpr()->IgnoreParenCasts()-> 7741 isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) { 7742 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO, 7743 S.PDiag(diag::warn_binding_null_to_reference) 7744 << UO->getSubExpr()->getSourceRange()); 7745 } 7746 } 7747 7748 MaterializeTemporaryExpr * 7749 Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary, 7750 bool BoundToLvalueReference) { 7751 auto MTE = new (Context) 7752 MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference); 7753 7754 // Order an ExprWithCleanups for lifetime marks. 7755 // 7756 // TODO: It'll be good to have a single place to check the access of the 7757 // destructor and generate ExprWithCleanups for various uses. Currently these 7758 // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary, 7759 // but there may be a chance to merge them. 7760 Cleanup.setExprNeedsCleanups(false); 7761 return MTE; 7762 } 7763 7764 ExprResult Sema::TemporaryMaterializationConversion(Expr *E) { 7765 // In C++98, we don't want to implicitly create an xvalue. 7766 // FIXME: This means that AST consumers need to deal with "prvalues" that 7767 // denote materialized temporaries. Maybe we should add another ValueKind 7768 // for "xvalue pretending to be a prvalue" for C++98 support. 7769 if (!E->isRValue() || !getLangOpts().CPlusPlus11) 7770 return E; 7771 7772 // C++1z [conv.rval]/1: T shall be a complete type. 7773 // FIXME: Does this ever matter (can we form a prvalue of incomplete type)? 7774 // If so, we should check for a non-abstract class type here too. 7775 QualType T = E->getType(); 7776 if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type)) 7777 return ExprError(); 7778 7779 return CreateMaterializeTemporaryExpr(E->getType(), E, false); 7780 } 7781 7782 ExprResult Sema::PerformQualificationConversion(Expr *E, QualType Ty, 7783 ExprValueKind VK, 7784 CheckedConversionKind CCK) { 7785 7786 CastKind CK = CK_NoOp; 7787 7788 if (VK == VK_RValue) { 7789 auto PointeeTy = Ty->getPointeeType(); 7790 auto ExprPointeeTy = E->getType()->getPointeeType(); 7791 if (!PointeeTy.isNull() && 7792 PointeeTy.getAddressSpace() != ExprPointeeTy.getAddressSpace()) 7793 CK = CK_AddressSpaceConversion; 7794 } else if (Ty.getAddressSpace() != E->getType().getAddressSpace()) { 7795 CK = CK_AddressSpaceConversion; 7796 } 7797 7798 return ImpCastExprToType(E, Ty, CK, VK, /*BasePath=*/nullptr, CCK); 7799 } 7800 7801 ExprResult InitializationSequence::Perform(Sema &S, 7802 const InitializedEntity &Entity, 7803 const InitializationKind &Kind, 7804 MultiExprArg Args, 7805 QualType *ResultType) { 7806 if (Failed()) { 7807 Diagnose(S, Entity, Kind, Args); 7808 return ExprError(); 7809 } 7810 if (!ZeroInitializationFixit.empty()) { 7811 unsigned DiagID = diag::err_default_init_const; 7812 if (Decl *D = Entity.getDecl()) 7813 if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>()) 7814 DiagID = diag::ext_default_init_const; 7815 7816 // The initialization would have succeeded with this fixit. Since the fixit 7817 // is on the error, we need to build a valid AST in this case, so this isn't 7818 // handled in the Failed() branch above. 7819 QualType DestType = Entity.getType(); 7820 S.Diag(Kind.getLocation(), DiagID) 7821 << DestType << (bool)DestType->getAs<RecordType>() 7822 << FixItHint::CreateInsertion(ZeroInitializationFixitLoc, 7823 ZeroInitializationFixit); 7824 } 7825 7826 if (getKind() == DependentSequence) { 7827 // If the declaration is a non-dependent, incomplete array type 7828 // that has an initializer, then its type will be completed once 7829 // the initializer is instantiated. 7830 if (ResultType && !Entity.getType()->isDependentType() && 7831 Args.size() == 1) { 7832 QualType DeclType = Entity.getType(); 7833 if (const IncompleteArrayType *ArrayT 7834 = S.Context.getAsIncompleteArrayType(DeclType)) { 7835 // FIXME: We don't currently have the ability to accurately 7836 // compute the length of an initializer list without 7837 // performing full type-checking of the initializer list 7838 // (since we have to determine where braces are implicitly 7839 // introduced and such). So, we fall back to making the array 7840 // type a dependently-sized array type with no specified 7841 // bound. 7842 if (isa<InitListExpr>((Expr *)Args[0])) { 7843 SourceRange Brackets; 7844 7845 // Scavange the location of the brackets from the entity, if we can. 7846 if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Entity.getDecl())) { 7847 if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) { 7848 TypeLoc TL = TInfo->getTypeLoc(); 7849 if (IncompleteArrayTypeLoc ArrayLoc = 7850 TL.getAs<IncompleteArrayTypeLoc>()) 7851 Brackets = ArrayLoc.getBracketsRange(); 7852 } 7853 } 7854 7855 *ResultType 7856 = S.Context.getDependentSizedArrayType(ArrayT->getElementType(), 7857 /*NumElts=*/nullptr, 7858 ArrayT->getSizeModifier(), 7859 ArrayT->getIndexTypeCVRQualifiers(), 7860 Brackets); 7861 } 7862 7863 } 7864 } 7865 if (Kind.getKind() == InitializationKind::IK_Direct && 7866 !Kind.isExplicitCast()) { 7867 // Rebuild the ParenListExpr. 7868 SourceRange ParenRange = Kind.getParenOrBraceRange(); 7869 return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(), 7870 Args); 7871 } 7872 assert(Kind.getKind() == InitializationKind::IK_Copy || 7873 Kind.isExplicitCast() || 7874 Kind.getKind() == InitializationKind::IK_DirectList); 7875 return ExprResult(Args[0]); 7876 } 7877 7878 // No steps means no initialization. 7879 if (Steps.empty()) 7880 return ExprResult((Expr *)nullptr); 7881 7882 if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() && 7883 Args.size() == 1 && isa<InitListExpr>(Args[0]) && 7884 !Entity.isParameterKind()) { 7885 // Produce a C++98 compatibility warning if we are initializing a reference 7886 // from an initializer list. For parameters, we produce a better warning 7887 // elsewhere. 7888 Expr *Init = Args[0]; 7889 S.Diag(Init->getBeginLoc(), diag::warn_cxx98_compat_reference_list_init) 7890 << Init->getSourceRange(); 7891 } 7892 7893 // OpenCL v2.0 s6.13.11.1. atomic variables can be initialized in global scope 7894 QualType ETy = Entity.getType(); 7895 bool HasGlobalAS = ETy.hasAddressSpace() && 7896 ETy.getAddressSpace() == LangAS::opencl_global; 7897 7898 if (S.getLangOpts().OpenCLVersion >= 200 && 7899 ETy->isAtomicType() && !HasGlobalAS && 7900 Entity.getKind() == InitializedEntity::EK_Variable && Args.size() > 0) { 7901 S.Diag(Args[0]->getBeginLoc(), diag::err_opencl_atomic_init) 7902 << 1 7903 << SourceRange(Entity.getDecl()->getBeginLoc(), Args[0]->getEndLoc()); 7904 return ExprError(); 7905 } 7906 7907 QualType DestType = Entity.getType().getNonReferenceType(); 7908 // FIXME: Ugly hack around the fact that Entity.getType() is not 7909 // the same as Entity.getDecl()->getType() in cases involving type merging, 7910 // and we want latter when it makes sense. 7911 if (ResultType) 7912 *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() : 7913 Entity.getType(); 7914 7915 ExprResult CurInit((Expr *)nullptr); 7916 SmallVector<Expr*, 4> ArrayLoopCommonExprs; 7917 7918 // For initialization steps that start with a single initializer, 7919 // grab the only argument out the Args and place it into the "current" 7920 // initializer. 7921 switch (Steps.front().Kind) { 7922 case SK_ResolveAddressOfOverloadedFunction: 7923 case SK_CastDerivedToBaseRValue: 7924 case SK_CastDerivedToBaseXValue: 7925 case SK_CastDerivedToBaseLValue: 7926 case SK_BindReference: 7927 case SK_BindReferenceToTemporary: 7928 case SK_FinalCopy: 7929 case SK_ExtraneousCopyToTemporary: 7930 case SK_UserConversion: 7931 case SK_QualificationConversionLValue: 7932 case SK_QualificationConversionXValue: 7933 case SK_QualificationConversionRValue: 7934 case SK_AtomicConversion: 7935 case SK_ConversionSequence: 7936 case SK_ConversionSequenceNoNarrowing: 7937 case SK_ListInitialization: 7938 case SK_UnwrapInitList: 7939 case SK_RewrapInitList: 7940 case SK_CAssignment: 7941 case SK_StringInit: 7942 case SK_ObjCObjectConversion: 7943 case SK_ArrayLoopIndex: 7944 case SK_ArrayLoopInit: 7945 case SK_ArrayInit: 7946 case SK_GNUArrayInit: 7947 case SK_ParenthesizedArrayInit: 7948 case SK_PassByIndirectCopyRestore: 7949 case SK_PassByIndirectRestore: 7950 case SK_ProduceObjCObject: 7951 case SK_StdInitializerList: 7952 case SK_OCLSamplerInit: 7953 case SK_OCLZeroOpaqueType: { 7954 assert(Args.size() == 1); 7955 CurInit = Args[0]; 7956 if (!CurInit.get()) return ExprError(); 7957 break; 7958 } 7959 7960 case SK_ConstructorInitialization: 7961 case SK_ConstructorInitializationFromList: 7962 case SK_StdInitializerListConstructorCall: 7963 case SK_ZeroInitialization: 7964 break; 7965 } 7966 7967 // Promote from an unevaluated context to an unevaluated list context in 7968 // C++11 list-initialization; we need to instantiate entities usable in 7969 // constant expressions here in order to perform narrowing checks =( 7970 EnterExpressionEvaluationContext Evaluated( 7971 S, EnterExpressionEvaluationContext::InitList, 7972 CurInit.get() && isa<InitListExpr>(CurInit.get())); 7973 7974 // C++ [class.abstract]p2: 7975 // no objects of an abstract class can be created except as subobjects 7976 // of a class derived from it 7977 auto checkAbstractType = [&](QualType T) -> bool { 7978 if (Entity.getKind() == InitializedEntity::EK_Base || 7979 Entity.getKind() == InitializedEntity::EK_Delegating) 7980 return false; 7981 return S.RequireNonAbstractType(Kind.getLocation(), T, 7982 diag::err_allocation_of_abstract_type); 7983 }; 7984 7985 // Walk through the computed steps for the initialization sequence, 7986 // performing the specified conversions along the way. 7987 bool ConstructorInitRequiresZeroInit = false; 7988 for (step_iterator Step = step_begin(), StepEnd = step_end(); 7989 Step != StepEnd; ++Step) { 7990 if (CurInit.isInvalid()) 7991 return ExprError(); 7992 7993 QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType(); 7994 7995 switch (Step->Kind) { 7996 case SK_ResolveAddressOfOverloadedFunction: 7997 // Overload resolution determined which function invoke; update the 7998 // initializer to reflect that choice. 7999 S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl); 8000 if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation())) 8001 return ExprError(); 8002 CurInit = S.FixOverloadedFunctionReference(CurInit, 8003 Step->Function.FoundDecl, 8004 Step->Function.Function); 8005 break; 8006 8007 case SK_CastDerivedToBaseRValue: 8008 case SK_CastDerivedToBaseXValue: 8009 case SK_CastDerivedToBaseLValue: { 8010 // We have a derived-to-base cast that produces either an rvalue or an 8011 // lvalue. Perform that cast. 8012 8013 CXXCastPath BasePath; 8014 8015 // Casts to inaccessible base classes are allowed with C-style casts. 8016 bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast(); 8017 if (S.CheckDerivedToBaseConversion( 8018 SourceType, Step->Type, CurInit.get()->getBeginLoc(), 8019 CurInit.get()->getSourceRange(), &BasePath, IgnoreBaseAccess)) 8020 return ExprError(); 8021 8022 ExprValueKind VK = 8023 Step->Kind == SK_CastDerivedToBaseLValue ? 8024 VK_LValue : 8025 (Step->Kind == SK_CastDerivedToBaseXValue ? 8026 VK_XValue : 8027 VK_RValue); 8028 CurInit = ImplicitCastExpr::Create(S.Context, Step->Type, 8029 CK_DerivedToBase, CurInit.get(), 8030 &BasePath, VK, FPOptionsOverride()); 8031 break; 8032 } 8033 8034 case SK_BindReference: 8035 // Reference binding does not have any corresponding ASTs. 8036 8037 // Check exception specifications 8038 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType)) 8039 return ExprError(); 8040 8041 // We don't check for e.g. function pointers here, since address 8042 // availability checks should only occur when the function first decays 8043 // into a pointer or reference. 8044 if (CurInit.get()->getType()->isFunctionProtoType()) { 8045 if (auto *DRE = dyn_cast<DeclRefExpr>(CurInit.get()->IgnoreParens())) { 8046 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 8047 if (!S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, 8048 DRE->getBeginLoc())) 8049 return ExprError(); 8050 } 8051 } 8052 } 8053 8054 CheckForNullPointerDereference(S, CurInit.get()); 8055 break; 8056 8057 case SK_BindReferenceToTemporary: { 8058 // Make sure the "temporary" is actually an rvalue. 8059 assert(CurInit.get()->isRValue() && "not a temporary"); 8060 8061 // Check exception specifications 8062 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType)) 8063 return ExprError(); 8064 8065 // Materialize the temporary into memory. 8066 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr( 8067 Step->Type, CurInit.get(), Entity.getType()->isLValueReferenceType()); 8068 CurInit = MTE; 8069 8070 // If we're extending this temporary to automatic storage duration -- we 8071 // need to register its cleanup during the full-expression's cleanups. 8072 if (MTE->getStorageDuration() == SD_Automatic && 8073 MTE->getType().isDestructedType()) 8074 S.Cleanup.setExprNeedsCleanups(true); 8075 break; 8076 } 8077 8078 case SK_FinalCopy: 8079 if (checkAbstractType(Step->Type)) 8080 return ExprError(); 8081 8082 // If the overall initialization is initializing a temporary, we already 8083 // bound our argument if it was necessary to do so. If not (if we're 8084 // ultimately initializing a non-temporary), our argument needs to be 8085 // bound since it's initializing a function parameter. 8086 // FIXME: This is a mess. Rationalize temporary destruction. 8087 if (!shouldBindAsTemporary(Entity)) 8088 CurInit = S.MaybeBindToTemporary(CurInit.get()); 8089 CurInit = CopyObject(S, Step->Type, Entity, CurInit, 8090 /*IsExtraneousCopy=*/false); 8091 break; 8092 8093 case SK_ExtraneousCopyToTemporary: 8094 CurInit = CopyObject(S, Step->Type, Entity, CurInit, 8095 /*IsExtraneousCopy=*/true); 8096 break; 8097 8098 case SK_UserConversion: { 8099 // We have a user-defined conversion that invokes either a constructor 8100 // or a conversion function. 8101 CastKind CastKind; 8102 FunctionDecl *Fn = Step->Function.Function; 8103 DeclAccessPair FoundFn = Step->Function.FoundDecl; 8104 bool HadMultipleCandidates = Step->Function.HadMultipleCandidates; 8105 bool CreatedObject = false; 8106 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) { 8107 // Build a call to the selected constructor. 8108 SmallVector<Expr*, 8> ConstructorArgs; 8109 SourceLocation Loc = CurInit.get()->getBeginLoc(); 8110 8111 // Determine the arguments required to actually perform the constructor 8112 // call. 8113 Expr *Arg = CurInit.get(); 8114 if (S.CompleteConstructorCall(Constructor, 8115 MultiExprArg(&Arg, 1), 8116 Loc, ConstructorArgs)) 8117 return ExprError(); 8118 8119 // Build an expression that constructs a temporary. 8120 CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, 8121 FoundFn, Constructor, 8122 ConstructorArgs, 8123 HadMultipleCandidates, 8124 /*ListInit*/ false, 8125 /*StdInitListInit*/ false, 8126 /*ZeroInit*/ false, 8127 CXXConstructExpr::CK_Complete, 8128 SourceRange()); 8129 if (CurInit.isInvalid()) 8130 return ExprError(); 8131 8132 S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn, 8133 Entity); 8134 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation())) 8135 return ExprError(); 8136 8137 CastKind = CK_ConstructorConversion; 8138 CreatedObject = true; 8139 } else { 8140 // Build a call to the conversion function. 8141 CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn); 8142 S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr, 8143 FoundFn); 8144 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation())) 8145 return ExprError(); 8146 8147 CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion, 8148 HadMultipleCandidates); 8149 if (CurInit.isInvalid()) 8150 return ExprError(); 8151 8152 CastKind = CK_UserDefinedConversion; 8153 CreatedObject = Conversion->getReturnType()->isRecordType(); 8154 } 8155 8156 if (CreatedObject && checkAbstractType(CurInit.get()->getType())) 8157 return ExprError(); 8158 8159 CurInit = ImplicitCastExpr::Create( 8160 S.Context, CurInit.get()->getType(), CastKind, CurInit.get(), nullptr, 8161 CurInit.get()->getValueKind(), S.CurFPFeatureOverrides()); 8162 8163 if (shouldBindAsTemporary(Entity)) 8164 // The overall entity is temporary, so this expression should be 8165 // destroyed at the end of its full-expression. 8166 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>()); 8167 else if (CreatedObject && shouldDestroyEntity(Entity)) { 8168 // The object outlasts the full-expression, but we need to prepare for 8169 // a destructor being run on it. 8170 // FIXME: It makes no sense to do this here. This should happen 8171 // regardless of how we initialized the entity. 8172 QualType T = CurInit.get()->getType(); 8173 if (const RecordType *Record = T->getAs<RecordType>()) { 8174 CXXDestructorDecl *Destructor 8175 = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl())); 8176 S.CheckDestructorAccess(CurInit.get()->getBeginLoc(), Destructor, 8177 S.PDiag(diag::err_access_dtor_temp) << T); 8178 S.MarkFunctionReferenced(CurInit.get()->getBeginLoc(), Destructor); 8179 if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getBeginLoc())) 8180 return ExprError(); 8181 } 8182 } 8183 break; 8184 } 8185 8186 case SK_QualificationConversionLValue: 8187 case SK_QualificationConversionXValue: 8188 case SK_QualificationConversionRValue: { 8189 // Perform a qualification conversion; these can never go wrong. 8190 ExprValueKind VK = 8191 Step->Kind == SK_QualificationConversionLValue 8192 ? VK_LValue 8193 : (Step->Kind == SK_QualificationConversionXValue ? VK_XValue 8194 : VK_RValue); 8195 CurInit = S.PerformQualificationConversion(CurInit.get(), Step->Type, VK); 8196 break; 8197 } 8198 8199 case SK_AtomicConversion: { 8200 assert(CurInit.get()->isRValue() && "cannot convert glvalue to atomic"); 8201 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 8202 CK_NonAtomicToAtomic, VK_RValue); 8203 break; 8204 } 8205 8206 case SK_ConversionSequence: 8207 case SK_ConversionSequenceNoNarrowing: { 8208 if (const auto *FromPtrType = 8209 CurInit.get()->getType()->getAs<PointerType>()) { 8210 if (const auto *ToPtrType = Step->Type->getAs<PointerType>()) { 8211 if (FromPtrType->getPointeeType()->hasAttr(attr::NoDeref) && 8212 !ToPtrType->getPointeeType()->hasAttr(attr::NoDeref)) { 8213 // Do not check static casts here because they are checked earlier 8214 // in Sema::ActOnCXXNamedCast() 8215 if (!Kind.isStaticCast()) { 8216 S.Diag(CurInit.get()->getExprLoc(), 8217 diag::warn_noderef_to_dereferenceable_pointer) 8218 << CurInit.get()->getSourceRange(); 8219 } 8220 } 8221 } 8222 } 8223 8224 Sema::CheckedConversionKind CCK 8225 = Kind.isCStyleCast()? Sema::CCK_CStyleCast 8226 : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast 8227 : Kind.isExplicitCast()? Sema::CCK_OtherCast 8228 : Sema::CCK_ImplicitConversion; 8229 ExprResult CurInitExprRes = 8230 S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS, 8231 getAssignmentAction(Entity), CCK); 8232 if (CurInitExprRes.isInvalid()) 8233 return ExprError(); 8234 8235 S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), CurInit.get()); 8236 8237 CurInit = CurInitExprRes; 8238 8239 if (Step->Kind == SK_ConversionSequenceNoNarrowing && 8240 S.getLangOpts().CPlusPlus) 8241 DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(), 8242 CurInit.get()); 8243 8244 break; 8245 } 8246 8247 case SK_ListInitialization: { 8248 if (checkAbstractType(Step->Type)) 8249 return ExprError(); 8250 8251 InitListExpr *InitList = cast<InitListExpr>(CurInit.get()); 8252 // If we're not initializing the top-level entity, we need to create an 8253 // InitializeTemporary entity for our target type. 8254 QualType Ty = Step->Type; 8255 bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty); 8256 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty); 8257 InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity; 8258 InitListChecker PerformInitList(S, InitEntity, 8259 InitList, Ty, /*VerifyOnly=*/false, 8260 /*TreatUnavailableAsInvalid=*/false); 8261 if (PerformInitList.HadError()) 8262 return ExprError(); 8263 8264 // Hack: We must update *ResultType if available in order to set the 8265 // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'. 8266 // Worst case: 'const int (&arref)[] = {1, 2, 3};'. 8267 if (ResultType && 8268 ResultType->getNonReferenceType()->isIncompleteArrayType()) { 8269 if ((*ResultType)->isRValueReferenceType()) 8270 Ty = S.Context.getRValueReferenceType(Ty); 8271 else if ((*ResultType)->isLValueReferenceType()) 8272 Ty = S.Context.getLValueReferenceType(Ty, 8273 (*ResultType)->castAs<LValueReferenceType>()->isSpelledAsLValue()); 8274 *ResultType = Ty; 8275 } 8276 8277 InitListExpr *StructuredInitList = 8278 PerformInitList.getFullyStructuredList(); 8279 CurInit.get(); 8280 CurInit = shouldBindAsTemporary(InitEntity) 8281 ? S.MaybeBindToTemporary(StructuredInitList) 8282 : StructuredInitList; 8283 break; 8284 } 8285 8286 case SK_ConstructorInitializationFromList: { 8287 if (checkAbstractType(Step->Type)) 8288 return ExprError(); 8289 8290 // When an initializer list is passed for a parameter of type "reference 8291 // to object", we don't get an EK_Temporary entity, but instead an 8292 // EK_Parameter entity with reference type. 8293 // FIXME: This is a hack. What we really should do is create a user 8294 // conversion step for this case, but this makes it considerably more 8295 // complicated. For now, this will do. 8296 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( 8297 Entity.getType().getNonReferenceType()); 8298 bool UseTemporary = Entity.getType()->isReferenceType(); 8299 assert(Args.size() == 1 && "expected a single argument for list init"); 8300 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 8301 S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init) 8302 << InitList->getSourceRange(); 8303 MultiExprArg Arg(InitList->getInits(), InitList->getNumInits()); 8304 CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity : 8305 Entity, 8306 Kind, Arg, *Step, 8307 ConstructorInitRequiresZeroInit, 8308 /*IsListInitialization*/true, 8309 /*IsStdInitListInit*/false, 8310 InitList->getLBraceLoc(), 8311 InitList->getRBraceLoc()); 8312 break; 8313 } 8314 8315 case SK_UnwrapInitList: 8316 CurInit = cast<InitListExpr>(CurInit.get())->getInit(0); 8317 break; 8318 8319 case SK_RewrapInitList: { 8320 Expr *E = CurInit.get(); 8321 InitListExpr *Syntactic = Step->WrappingSyntacticList; 8322 InitListExpr *ILE = new (S.Context) InitListExpr(S.Context, 8323 Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc()); 8324 ILE->setSyntacticForm(Syntactic); 8325 ILE->setType(E->getType()); 8326 ILE->setValueKind(E->getValueKind()); 8327 CurInit = ILE; 8328 break; 8329 } 8330 8331 case SK_ConstructorInitialization: 8332 case SK_StdInitializerListConstructorCall: { 8333 if (checkAbstractType(Step->Type)) 8334 return ExprError(); 8335 8336 // When an initializer list is passed for a parameter of type "reference 8337 // to object", we don't get an EK_Temporary entity, but instead an 8338 // EK_Parameter entity with reference type. 8339 // FIXME: This is a hack. What we really should do is create a user 8340 // conversion step for this case, but this makes it considerably more 8341 // complicated. For now, this will do. 8342 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( 8343 Entity.getType().getNonReferenceType()); 8344 bool UseTemporary = Entity.getType()->isReferenceType(); 8345 bool IsStdInitListInit = 8346 Step->Kind == SK_StdInitializerListConstructorCall; 8347 Expr *Source = CurInit.get(); 8348 SourceRange Range = Kind.hasParenOrBraceRange() 8349 ? Kind.getParenOrBraceRange() 8350 : SourceRange(); 8351 CurInit = PerformConstructorInitialization( 8352 S, UseTemporary ? TempEntity : Entity, Kind, 8353 Source ? MultiExprArg(Source) : Args, *Step, 8354 ConstructorInitRequiresZeroInit, 8355 /*IsListInitialization*/ IsStdInitListInit, 8356 /*IsStdInitListInitialization*/ IsStdInitListInit, 8357 /*LBraceLoc*/ Range.getBegin(), 8358 /*RBraceLoc*/ Range.getEnd()); 8359 break; 8360 } 8361 8362 case SK_ZeroInitialization: { 8363 step_iterator NextStep = Step; 8364 ++NextStep; 8365 if (NextStep != StepEnd && 8366 (NextStep->Kind == SK_ConstructorInitialization || 8367 NextStep->Kind == SK_ConstructorInitializationFromList)) { 8368 // The need for zero-initialization is recorded directly into 8369 // the call to the object's constructor within the next step. 8370 ConstructorInitRequiresZeroInit = true; 8371 } else if (Kind.getKind() == InitializationKind::IK_Value && 8372 S.getLangOpts().CPlusPlus && 8373 !Kind.isImplicitValueInit()) { 8374 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); 8375 if (!TSInfo) 8376 TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type, 8377 Kind.getRange().getBegin()); 8378 8379 CurInit = new (S.Context) CXXScalarValueInitExpr( 8380 Entity.getType().getNonLValueExprType(S.Context), TSInfo, 8381 Kind.getRange().getEnd()); 8382 } else { 8383 CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type); 8384 } 8385 break; 8386 } 8387 8388 case SK_CAssignment: { 8389 QualType SourceType = CurInit.get()->getType(); 8390 8391 // Save off the initial CurInit in case we need to emit a diagnostic 8392 ExprResult InitialCurInit = CurInit; 8393 ExprResult Result = CurInit; 8394 Sema::AssignConvertType ConvTy = 8395 S.CheckSingleAssignmentConstraints(Step->Type, Result, true, 8396 Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited); 8397 if (Result.isInvalid()) 8398 return ExprError(); 8399 CurInit = Result; 8400 8401 // If this is a call, allow conversion to a transparent union. 8402 ExprResult CurInitExprRes = CurInit; 8403 if (ConvTy != Sema::Compatible && 8404 Entity.isParameterKind() && 8405 S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes) 8406 == Sema::Compatible) 8407 ConvTy = Sema::Compatible; 8408 if (CurInitExprRes.isInvalid()) 8409 return ExprError(); 8410 CurInit = CurInitExprRes; 8411 8412 bool Complained; 8413 if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(), 8414 Step->Type, SourceType, 8415 InitialCurInit.get(), 8416 getAssignmentAction(Entity, true), 8417 &Complained)) { 8418 PrintInitLocationNote(S, Entity); 8419 return ExprError(); 8420 } else if (Complained) 8421 PrintInitLocationNote(S, Entity); 8422 break; 8423 } 8424 8425 case SK_StringInit: { 8426 QualType Ty = Step->Type; 8427 bool UpdateType = ResultType && Entity.getType()->isIncompleteArrayType(); 8428 CheckStringInit(CurInit.get(), UpdateType ? *ResultType : Ty, 8429 S.Context.getAsArrayType(Ty), S); 8430 break; 8431 } 8432 8433 case SK_ObjCObjectConversion: 8434 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 8435 CK_ObjCObjectLValueCast, 8436 CurInit.get()->getValueKind()); 8437 break; 8438 8439 case SK_ArrayLoopIndex: { 8440 Expr *Cur = CurInit.get(); 8441 Expr *BaseExpr = new (S.Context) 8442 OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(), 8443 Cur->getValueKind(), Cur->getObjectKind(), Cur); 8444 Expr *IndexExpr = 8445 new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType()); 8446 CurInit = S.CreateBuiltinArraySubscriptExpr( 8447 BaseExpr, Kind.getLocation(), IndexExpr, Kind.getLocation()); 8448 ArrayLoopCommonExprs.push_back(BaseExpr); 8449 break; 8450 } 8451 8452 case SK_ArrayLoopInit: { 8453 assert(!ArrayLoopCommonExprs.empty() && 8454 "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit"); 8455 Expr *Common = ArrayLoopCommonExprs.pop_back_val(); 8456 CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common, 8457 CurInit.get()); 8458 break; 8459 } 8460 8461 case SK_GNUArrayInit: 8462 // Okay: we checked everything before creating this step. Note that 8463 // this is a GNU extension. 8464 S.Diag(Kind.getLocation(), diag::ext_array_init_copy) 8465 << Step->Type << CurInit.get()->getType() 8466 << CurInit.get()->getSourceRange(); 8467 updateGNUCompoundLiteralRValue(CurInit.get()); 8468 LLVM_FALLTHROUGH; 8469 case SK_ArrayInit: 8470 // If the destination type is an incomplete array type, update the 8471 // type accordingly. 8472 if (ResultType) { 8473 if (const IncompleteArrayType *IncompleteDest 8474 = S.Context.getAsIncompleteArrayType(Step->Type)) { 8475 if (const ConstantArrayType *ConstantSource 8476 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) { 8477 *ResultType = S.Context.getConstantArrayType( 8478 IncompleteDest->getElementType(), 8479 ConstantSource->getSize(), 8480 ConstantSource->getSizeExpr(), 8481 ArrayType::Normal, 0); 8482 } 8483 } 8484 } 8485 break; 8486 8487 case SK_ParenthesizedArrayInit: 8488 // Okay: we checked everything before creating this step. Note that 8489 // this is a GNU extension. 8490 S.Diag(Kind.getLocation(), diag::ext_array_init_parens) 8491 << CurInit.get()->getSourceRange(); 8492 break; 8493 8494 case SK_PassByIndirectCopyRestore: 8495 case SK_PassByIndirectRestore: 8496 checkIndirectCopyRestoreSource(S, CurInit.get()); 8497 CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr( 8498 CurInit.get(), Step->Type, 8499 Step->Kind == SK_PassByIndirectCopyRestore); 8500 break; 8501 8502 case SK_ProduceObjCObject: 8503 CurInit = ImplicitCastExpr::Create( 8504 S.Context, Step->Type, CK_ARCProduceObject, CurInit.get(), nullptr, 8505 VK_RValue, FPOptionsOverride()); 8506 break; 8507 8508 case SK_StdInitializerList: { 8509 S.Diag(CurInit.get()->getExprLoc(), 8510 diag::warn_cxx98_compat_initializer_list_init) 8511 << CurInit.get()->getSourceRange(); 8512 8513 // Materialize the temporary into memory. 8514 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr( 8515 CurInit.get()->getType(), CurInit.get(), 8516 /*BoundToLvalueReference=*/false); 8517 8518 // Wrap it in a construction of a std::initializer_list<T>. 8519 CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE); 8520 8521 // Bind the result, in case the library has given initializer_list a 8522 // non-trivial destructor. 8523 if (shouldBindAsTemporary(Entity)) 8524 CurInit = S.MaybeBindToTemporary(CurInit.get()); 8525 break; 8526 } 8527 8528 case SK_OCLSamplerInit: { 8529 // Sampler initialization have 5 cases: 8530 // 1. function argument passing 8531 // 1a. argument is a file-scope variable 8532 // 1b. argument is a function-scope variable 8533 // 1c. argument is one of caller function's parameters 8534 // 2. variable initialization 8535 // 2a. initializing a file-scope variable 8536 // 2b. initializing a function-scope variable 8537 // 8538 // For file-scope variables, since they cannot be initialized by function 8539 // call of __translate_sampler_initializer in LLVM IR, their references 8540 // need to be replaced by a cast from their literal initializers to 8541 // sampler type. Since sampler variables can only be used in function 8542 // calls as arguments, we only need to replace them when handling the 8543 // argument passing. 8544 assert(Step->Type->isSamplerT() && 8545 "Sampler initialization on non-sampler type."); 8546 Expr *Init = CurInit.get()->IgnoreParens(); 8547 QualType SourceType = Init->getType(); 8548 // Case 1 8549 if (Entity.isParameterKind()) { 8550 if (!SourceType->isSamplerT() && !SourceType->isIntegerType()) { 8551 S.Diag(Kind.getLocation(), diag::err_sampler_argument_required) 8552 << SourceType; 8553 break; 8554 } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init)) { 8555 auto Var = cast<VarDecl>(DRE->getDecl()); 8556 // Case 1b and 1c 8557 // No cast from integer to sampler is needed. 8558 if (!Var->hasGlobalStorage()) { 8559 CurInit = ImplicitCastExpr::Create( 8560 S.Context, Step->Type, CK_LValueToRValue, Init, 8561 /*BasePath=*/nullptr, VK_RValue, FPOptionsOverride()); 8562 break; 8563 } 8564 // Case 1a 8565 // For function call with a file-scope sampler variable as argument, 8566 // get the integer literal. 8567 // Do not diagnose if the file-scope variable does not have initializer 8568 // since this has already been diagnosed when parsing the variable 8569 // declaration. 8570 if (!Var->getInit() || !isa<ImplicitCastExpr>(Var->getInit())) 8571 break; 8572 Init = cast<ImplicitCastExpr>(const_cast<Expr*>( 8573 Var->getInit()))->getSubExpr(); 8574 SourceType = Init->getType(); 8575 } 8576 } else { 8577 // Case 2 8578 // Check initializer is 32 bit integer constant. 8579 // If the initializer is taken from global variable, do not diagnose since 8580 // this has already been done when parsing the variable declaration. 8581 if (!Init->isConstantInitializer(S.Context, false)) 8582 break; 8583 8584 if (!SourceType->isIntegerType() || 8585 32 != S.Context.getIntWidth(SourceType)) { 8586 S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer) 8587 << SourceType; 8588 break; 8589 } 8590 8591 Expr::EvalResult EVResult; 8592 Init->EvaluateAsInt(EVResult, S.Context); 8593 llvm::APSInt Result = EVResult.Val.getInt(); 8594 const uint64_t SamplerValue = Result.getLimitedValue(); 8595 // 32-bit value of sampler's initializer is interpreted as 8596 // bit-field with the following structure: 8597 // |unspecified|Filter|Addressing Mode| Normalized Coords| 8598 // |31 6|5 4|3 1| 0| 8599 // This structure corresponds to enum values of sampler properties 8600 // defined in SPIR spec v1.2 and also opencl-c.h 8601 unsigned AddressingMode = (0x0E & SamplerValue) >> 1; 8602 unsigned FilterMode = (0x30 & SamplerValue) >> 4; 8603 if (FilterMode != 1 && FilterMode != 2 && 8604 !S.getOpenCLOptions().isEnabled( 8605 "cl_intel_device_side_avc_motion_estimation")) 8606 S.Diag(Kind.getLocation(), 8607 diag::warn_sampler_initializer_invalid_bits) 8608 << "Filter Mode"; 8609 if (AddressingMode > 4) 8610 S.Diag(Kind.getLocation(), 8611 diag::warn_sampler_initializer_invalid_bits) 8612 << "Addressing Mode"; 8613 } 8614 8615 // Cases 1a, 2a and 2b 8616 // Insert cast from integer to sampler. 8617 CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy, 8618 CK_IntToOCLSampler); 8619 break; 8620 } 8621 case SK_OCLZeroOpaqueType: { 8622 assert((Step->Type->isEventT() || Step->Type->isQueueT() || 8623 Step->Type->isOCLIntelSubgroupAVCType()) && 8624 "Wrong type for initialization of OpenCL opaque type."); 8625 8626 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 8627 CK_ZeroToOCLOpaqueType, 8628 CurInit.get()->getValueKind()); 8629 break; 8630 } 8631 } 8632 } 8633 8634 // Check whether the initializer has a shorter lifetime than the initialized 8635 // entity, and if not, either lifetime-extend or warn as appropriate. 8636 if (auto *Init = CurInit.get()) 8637 S.checkInitializerLifetime(Entity, Init); 8638 8639 // Diagnose non-fatal problems with the completed initialization. 8640 if (Entity.getKind() == InitializedEntity::EK_Member && 8641 cast<FieldDecl>(Entity.getDecl())->isBitField()) 8642 S.CheckBitFieldInitialization(Kind.getLocation(), 8643 cast<FieldDecl>(Entity.getDecl()), 8644 CurInit.get()); 8645 8646 // Check for std::move on construction. 8647 if (const Expr *E = CurInit.get()) { 8648 CheckMoveOnConstruction(S, E, 8649 Entity.getKind() == InitializedEntity::EK_Result); 8650 } 8651 8652 return CurInit; 8653 } 8654 8655 /// Somewhere within T there is an uninitialized reference subobject. 8656 /// Dig it out and diagnose it. 8657 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc, 8658 QualType T) { 8659 if (T->isReferenceType()) { 8660 S.Diag(Loc, diag::err_reference_without_init) 8661 << T.getNonReferenceType(); 8662 return true; 8663 } 8664 8665 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 8666 if (!RD || !RD->hasUninitializedReferenceMember()) 8667 return false; 8668 8669 for (const auto *FI : RD->fields()) { 8670 if (FI->isUnnamedBitfield()) 8671 continue; 8672 8673 if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) { 8674 S.Diag(Loc, diag::note_value_initialization_here) << RD; 8675 return true; 8676 } 8677 } 8678 8679 for (const auto &BI : RD->bases()) { 8680 if (DiagnoseUninitializedReference(S, BI.getBeginLoc(), BI.getType())) { 8681 S.Diag(Loc, diag::note_value_initialization_here) << RD; 8682 return true; 8683 } 8684 } 8685 8686 return false; 8687 } 8688 8689 8690 //===----------------------------------------------------------------------===// 8691 // Diagnose initialization failures 8692 //===----------------------------------------------------------------------===// 8693 8694 /// Emit notes associated with an initialization that failed due to a 8695 /// "simple" conversion failure. 8696 static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity, 8697 Expr *op) { 8698 QualType destType = entity.getType(); 8699 if (destType.getNonReferenceType()->isObjCObjectPointerType() && 8700 op->getType()->isObjCObjectPointerType()) { 8701 8702 // Emit a possible note about the conversion failing because the 8703 // operand is a message send with a related result type. 8704 S.EmitRelatedResultTypeNote(op); 8705 8706 // Emit a possible note about a return failing because we're 8707 // expecting a related result type. 8708 if (entity.getKind() == InitializedEntity::EK_Result) 8709 S.EmitRelatedResultTypeNoteForReturn(destType); 8710 } 8711 QualType fromType = op->getType(); 8712 auto *fromDecl = fromType.getTypePtr()->getPointeeCXXRecordDecl(); 8713 auto *destDecl = destType.getTypePtr()->getPointeeCXXRecordDecl(); 8714 if (fromDecl && destDecl && fromDecl->getDeclKind() == Decl::CXXRecord && 8715 destDecl->getDeclKind() == Decl::CXXRecord && 8716 !fromDecl->isInvalidDecl() && !destDecl->isInvalidDecl() && 8717 !fromDecl->hasDefinition()) 8718 S.Diag(fromDecl->getLocation(), diag::note_forward_class_conversion) 8719 << S.getASTContext().getTagDeclType(fromDecl) 8720 << S.getASTContext().getTagDeclType(destDecl); 8721 } 8722 8723 static void diagnoseListInit(Sema &S, const InitializedEntity &Entity, 8724 InitListExpr *InitList) { 8725 QualType DestType = Entity.getType(); 8726 8727 QualType E; 8728 if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) { 8729 QualType ArrayType = S.Context.getConstantArrayType( 8730 E.withConst(), 8731 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()), 8732 InitList->getNumInits()), 8733 nullptr, clang::ArrayType::Normal, 0); 8734 InitializedEntity HiddenArray = 8735 InitializedEntity::InitializeTemporary(ArrayType); 8736 return diagnoseListInit(S, HiddenArray, InitList); 8737 } 8738 8739 if (DestType->isReferenceType()) { 8740 // A list-initialization failure for a reference means that we tried to 8741 // create a temporary of the inner type (per [dcl.init.list]p3.6) and the 8742 // inner initialization failed. 8743 QualType T = DestType->castAs<ReferenceType>()->getPointeeType(); 8744 diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList); 8745 SourceLocation Loc = InitList->getBeginLoc(); 8746 if (auto *D = Entity.getDecl()) 8747 Loc = D->getLocation(); 8748 S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T; 8749 return; 8750 } 8751 8752 InitListChecker DiagnoseInitList(S, Entity, InitList, DestType, 8753 /*VerifyOnly=*/false, 8754 /*TreatUnavailableAsInvalid=*/false); 8755 assert(DiagnoseInitList.HadError() && 8756 "Inconsistent init list check result."); 8757 } 8758 8759 bool InitializationSequence::Diagnose(Sema &S, 8760 const InitializedEntity &Entity, 8761 const InitializationKind &Kind, 8762 ArrayRef<Expr *> Args) { 8763 if (!Failed()) 8764 return false; 8765 8766 // When we want to diagnose only one element of a braced-init-list, 8767 // we need to factor it out. 8768 Expr *OnlyArg; 8769 if (Args.size() == 1) { 8770 auto *List = dyn_cast<InitListExpr>(Args[0]); 8771 if (List && List->getNumInits() == 1) 8772 OnlyArg = List->getInit(0); 8773 else 8774 OnlyArg = Args[0]; 8775 } 8776 else 8777 OnlyArg = nullptr; 8778 8779 QualType DestType = Entity.getType(); 8780 switch (Failure) { 8781 case FK_TooManyInitsForReference: 8782 // FIXME: Customize for the initialized entity? 8783 if (Args.empty()) { 8784 // Dig out the reference subobject which is uninitialized and diagnose it. 8785 // If this is value-initialization, this could be nested some way within 8786 // the target type. 8787 assert(Kind.getKind() == InitializationKind::IK_Value || 8788 DestType->isReferenceType()); 8789 bool Diagnosed = 8790 DiagnoseUninitializedReference(S, Kind.getLocation(), DestType); 8791 assert(Diagnosed && "couldn't find uninitialized reference to diagnose"); 8792 (void)Diagnosed; 8793 } else // FIXME: diagnostic below could be better! 8794 S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits) 8795 << SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc()); 8796 break; 8797 case FK_ParenthesizedListInitForReference: 8798 S.Diag(Kind.getLocation(), diag::err_list_init_in_parens) 8799 << 1 << Entity.getType() << Args[0]->getSourceRange(); 8800 break; 8801 8802 case FK_ArrayNeedsInitList: 8803 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0; 8804 break; 8805 case FK_ArrayNeedsInitListOrStringLiteral: 8806 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1; 8807 break; 8808 case FK_ArrayNeedsInitListOrWideStringLiteral: 8809 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2; 8810 break; 8811 case FK_NarrowStringIntoWideCharArray: 8812 S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar); 8813 break; 8814 case FK_WideStringIntoCharArray: 8815 S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char); 8816 break; 8817 case FK_IncompatWideStringIntoWideChar: 8818 S.Diag(Kind.getLocation(), 8819 diag::err_array_init_incompat_wide_string_into_wchar); 8820 break; 8821 case FK_PlainStringIntoUTF8Char: 8822 S.Diag(Kind.getLocation(), 8823 diag::err_array_init_plain_string_into_char8_t); 8824 S.Diag(Args.front()->getBeginLoc(), 8825 diag::note_array_init_plain_string_into_char8_t) 8826 << FixItHint::CreateInsertion(Args.front()->getBeginLoc(), "u8"); 8827 break; 8828 case FK_UTF8StringIntoPlainChar: 8829 S.Diag(Kind.getLocation(), 8830 diag::err_array_init_utf8_string_into_char) 8831 << S.getLangOpts().CPlusPlus20; 8832 break; 8833 case FK_ArrayTypeMismatch: 8834 case FK_NonConstantArrayInit: 8835 S.Diag(Kind.getLocation(), 8836 (Failure == FK_ArrayTypeMismatch 8837 ? diag::err_array_init_different_type 8838 : diag::err_array_init_non_constant_array)) 8839 << DestType.getNonReferenceType() 8840 << OnlyArg->getType() 8841 << Args[0]->getSourceRange(); 8842 break; 8843 8844 case FK_VariableLengthArrayHasInitializer: 8845 S.Diag(Kind.getLocation(), diag::err_variable_object_no_init) 8846 << Args[0]->getSourceRange(); 8847 break; 8848 8849 case FK_AddressOfOverloadFailed: { 8850 DeclAccessPair Found; 8851 S.ResolveAddressOfOverloadedFunction(OnlyArg, 8852 DestType.getNonReferenceType(), 8853 true, 8854 Found); 8855 break; 8856 } 8857 8858 case FK_AddressOfUnaddressableFunction: { 8859 auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(OnlyArg)->getDecl()); 8860 S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, 8861 OnlyArg->getBeginLoc()); 8862 break; 8863 } 8864 8865 case FK_ReferenceInitOverloadFailed: 8866 case FK_UserConversionOverloadFailed: 8867 switch (FailedOverloadResult) { 8868 case OR_Ambiguous: 8869 8870 FailedCandidateSet.NoteCandidates( 8871 PartialDiagnosticAt( 8872 Kind.getLocation(), 8873 Failure == FK_UserConversionOverloadFailed 8874 ? (S.PDiag(diag::err_typecheck_ambiguous_condition) 8875 << OnlyArg->getType() << DestType 8876 << Args[0]->getSourceRange()) 8877 : (S.PDiag(diag::err_ref_init_ambiguous) 8878 << DestType << OnlyArg->getType() 8879 << Args[0]->getSourceRange())), 8880 S, OCD_AmbiguousCandidates, Args); 8881 break; 8882 8883 case OR_No_Viable_Function: { 8884 auto Cands = FailedCandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args); 8885 if (!S.RequireCompleteType(Kind.getLocation(), 8886 DestType.getNonReferenceType(), 8887 diag::err_typecheck_nonviable_condition_incomplete, 8888 OnlyArg->getType(), Args[0]->getSourceRange())) 8889 S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition) 8890 << (Entity.getKind() == InitializedEntity::EK_Result) 8891 << OnlyArg->getType() << Args[0]->getSourceRange() 8892 << DestType.getNonReferenceType(); 8893 8894 FailedCandidateSet.NoteCandidates(S, Args, Cands); 8895 break; 8896 } 8897 case OR_Deleted: { 8898 S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function) 8899 << OnlyArg->getType() << DestType.getNonReferenceType() 8900 << Args[0]->getSourceRange(); 8901 OverloadCandidateSet::iterator Best; 8902 OverloadingResult Ovl 8903 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 8904 if (Ovl == OR_Deleted) { 8905 S.NoteDeletedFunction(Best->Function); 8906 } else { 8907 llvm_unreachable("Inconsistent overload resolution?"); 8908 } 8909 break; 8910 } 8911 8912 case OR_Success: 8913 llvm_unreachable("Conversion did not fail!"); 8914 } 8915 break; 8916 8917 case FK_NonConstLValueReferenceBindingToTemporary: 8918 if (isa<InitListExpr>(Args[0])) { 8919 S.Diag(Kind.getLocation(), 8920 diag::err_lvalue_reference_bind_to_initlist) 8921 << DestType.getNonReferenceType().isVolatileQualified() 8922 << DestType.getNonReferenceType() 8923 << Args[0]->getSourceRange(); 8924 break; 8925 } 8926 LLVM_FALLTHROUGH; 8927 8928 case FK_NonConstLValueReferenceBindingToUnrelated: 8929 S.Diag(Kind.getLocation(), 8930 Failure == FK_NonConstLValueReferenceBindingToTemporary 8931 ? diag::err_lvalue_reference_bind_to_temporary 8932 : diag::err_lvalue_reference_bind_to_unrelated) 8933 << DestType.getNonReferenceType().isVolatileQualified() 8934 << DestType.getNonReferenceType() 8935 << OnlyArg->getType() 8936 << Args[0]->getSourceRange(); 8937 break; 8938 8939 case FK_NonConstLValueReferenceBindingToBitfield: { 8940 // We don't necessarily have an unambiguous source bit-field. 8941 FieldDecl *BitField = Args[0]->getSourceBitField(); 8942 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield) 8943 << DestType.isVolatileQualified() 8944 << (BitField ? BitField->getDeclName() : DeclarationName()) 8945 << (BitField != nullptr) 8946 << Args[0]->getSourceRange(); 8947 if (BitField) 8948 S.Diag(BitField->getLocation(), diag::note_bitfield_decl); 8949 break; 8950 } 8951 8952 case FK_NonConstLValueReferenceBindingToVectorElement: 8953 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element) 8954 << DestType.isVolatileQualified() 8955 << Args[0]->getSourceRange(); 8956 break; 8957 8958 case FK_NonConstLValueReferenceBindingToMatrixElement: 8959 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_matrix_element) 8960 << DestType.isVolatileQualified() << Args[0]->getSourceRange(); 8961 break; 8962 8963 case FK_RValueReferenceBindingToLValue: 8964 S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref) 8965 << DestType.getNonReferenceType() << OnlyArg->getType() 8966 << Args[0]->getSourceRange(); 8967 break; 8968 8969 case FK_ReferenceAddrspaceMismatchTemporary: 8970 S.Diag(Kind.getLocation(), diag::err_reference_bind_temporary_addrspace) 8971 << DestType << Args[0]->getSourceRange(); 8972 break; 8973 8974 case FK_ReferenceInitDropsQualifiers: { 8975 QualType SourceType = OnlyArg->getType(); 8976 QualType NonRefType = DestType.getNonReferenceType(); 8977 Qualifiers DroppedQualifiers = 8978 SourceType.getQualifiers() - NonRefType.getQualifiers(); 8979 8980 if (!NonRefType.getQualifiers().isAddressSpaceSupersetOf( 8981 SourceType.getQualifiers())) 8982 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) 8983 << NonRefType << SourceType << 1 /*addr space*/ 8984 << Args[0]->getSourceRange(); 8985 else if (DroppedQualifiers.hasQualifiers()) 8986 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) 8987 << NonRefType << SourceType << 0 /*cv quals*/ 8988 << Qualifiers::fromCVRMask(DroppedQualifiers.getCVRQualifiers()) 8989 << DroppedQualifiers.getCVRQualifiers() << Args[0]->getSourceRange(); 8990 else 8991 // FIXME: Consider decomposing the type and explaining which qualifiers 8992 // were dropped where, or on which level a 'const' is missing, etc. 8993 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) 8994 << NonRefType << SourceType << 2 /*incompatible quals*/ 8995 << Args[0]->getSourceRange(); 8996 break; 8997 } 8998 8999 case FK_ReferenceInitFailed: 9000 S.Diag(Kind.getLocation(), diag::err_reference_bind_failed) 9001 << DestType.getNonReferenceType() 9002 << DestType.getNonReferenceType()->isIncompleteType() 9003 << OnlyArg->isLValue() 9004 << OnlyArg->getType() 9005 << Args[0]->getSourceRange(); 9006 emitBadConversionNotes(S, Entity, Args[0]); 9007 break; 9008 9009 case FK_ConversionFailed: { 9010 QualType FromType = OnlyArg->getType(); 9011 PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed) 9012 << (int)Entity.getKind() 9013 << DestType 9014 << OnlyArg->isLValue() 9015 << FromType 9016 << Args[0]->getSourceRange(); 9017 S.HandleFunctionTypeMismatch(PDiag, FromType, DestType); 9018 S.Diag(Kind.getLocation(), PDiag); 9019 emitBadConversionNotes(S, Entity, Args[0]); 9020 break; 9021 } 9022 9023 case FK_ConversionFromPropertyFailed: 9024 // No-op. This error has already been reported. 9025 break; 9026 9027 case FK_TooManyInitsForScalar: { 9028 SourceRange R; 9029 9030 auto *InitList = dyn_cast<InitListExpr>(Args[0]); 9031 if (InitList && InitList->getNumInits() >= 1) { 9032 R = SourceRange(InitList->getInit(0)->getEndLoc(), InitList->getEndLoc()); 9033 } else { 9034 assert(Args.size() > 1 && "Expected multiple initializers!"); 9035 R = SourceRange(Args.front()->getEndLoc(), Args.back()->getEndLoc()); 9036 } 9037 9038 R.setBegin(S.getLocForEndOfToken(R.getBegin())); 9039 if (Kind.isCStyleOrFunctionalCast()) 9040 S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg) 9041 << R; 9042 else 9043 S.Diag(Kind.getLocation(), diag::err_excess_initializers) 9044 << /*scalar=*/2 << R; 9045 break; 9046 } 9047 9048 case FK_ParenthesizedListInitForScalar: 9049 S.Diag(Kind.getLocation(), diag::err_list_init_in_parens) 9050 << 0 << Entity.getType() << Args[0]->getSourceRange(); 9051 break; 9052 9053 case FK_ReferenceBindingToInitList: 9054 S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list) 9055 << DestType.getNonReferenceType() << Args[0]->getSourceRange(); 9056 break; 9057 9058 case FK_InitListBadDestinationType: 9059 S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type) 9060 << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange(); 9061 break; 9062 9063 case FK_ListConstructorOverloadFailed: 9064 case FK_ConstructorOverloadFailed: { 9065 SourceRange ArgsRange; 9066 if (Args.size()) 9067 ArgsRange = 9068 SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc()); 9069 9070 if (Failure == FK_ListConstructorOverloadFailed) { 9071 assert(Args.size() == 1 && 9072 "List construction from other than 1 argument."); 9073 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 9074 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits()); 9075 } 9076 9077 // FIXME: Using "DestType" for the entity we're printing is probably 9078 // bad. 9079 switch (FailedOverloadResult) { 9080 case OR_Ambiguous: 9081 FailedCandidateSet.NoteCandidates( 9082 PartialDiagnosticAt(Kind.getLocation(), 9083 S.PDiag(diag::err_ovl_ambiguous_init) 9084 << DestType << ArgsRange), 9085 S, OCD_AmbiguousCandidates, Args); 9086 break; 9087 9088 case OR_No_Viable_Function: 9089 if (Kind.getKind() == InitializationKind::IK_Default && 9090 (Entity.getKind() == InitializedEntity::EK_Base || 9091 Entity.getKind() == InitializedEntity::EK_Member) && 9092 isa<CXXConstructorDecl>(S.CurContext)) { 9093 // This is implicit default initialization of a member or 9094 // base within a constructor. If no viable function was 9095 // found, notify the user that they need to explicitly 9096 // initialize this base/member. 9097 CXXConstructorDecl *Constructor 9098 = cast<CXXConstructorDecl>(S.CurContext); 9099 const CXXRecordDecl *InheritedFrom = nullptr; 9100 if (auto Inherited = Constructor->getInheritedConstructor()) 9101 InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass(); 9102 if (Entity.getKind() == InitializedEntity::EK_Base) { 9103 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) 9104 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0) 9105 << S.Context.getTypeDeclType(Constructor->getParent()) 9106 << /*base=*/0 9107 << Entity.getType() 9108 << InheritedFrom; 9109 9110 RecordDecl *BaseDecl 9111 = Entity.getBaseSpecifier()->getType()->castAs<RecordType>() 9112 ->getDecl(); 9113 S.Diag(BaseDecl->getLocation(), diag::note_previous_decl) 9114 << S.Context.getTagDeclType(BaseDecl); 9115 } else { 9116 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) 9117 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0) 9118 << S.Context.getTypeDeclType(Constructor->getParent()) 9119 << /*member=*/1 9120 << Entity.getName() 9121 << InheritedFrom; 9122 S.Diag(Entity.getDecl()->getLocation(), 9123 diag::note_member_declared_at); 9124 9125 if (const RecordType *Record 9126 = Entity.getType()->getAs<RecordType>()) 9127 S.Diag(Record->getDecl()->getLocation(), 9128 diag::note_previous_decl) 9129 << S.Context.getTagDeclType(Record->getDecl()); 9130 } 9131 break; 9132 } 9133 9134 FailedCandidateSet.NoteCandidates( 9135 PartialDiagnosticAt( 9136 Kind.getLocation(), 9137 S.PDiag(diag::err_ovl_no_viable_function_in_init) 9138 << DestType << ArgsRange), 9139 S, OCD_AllCandidates, Args); 9140 break; 9141 9142 case OR_Deleted: { 9143 OverloadCandidateSet::iterator Best; 9144 OverloadingResult Ovl 9145 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 9146 if (Ovl != OR_Deleted) { 9147 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) 9148 << DestType << ArgsRange; 9149 llvm_unreachable("Inconsistent overload resolution?"); 9150 break; 9151 } 9152 9153 // If this is a defaulted or implicitly-declared function, then 9154 // it was implicitly deleted. Make it clear that the deletion was 9155 // implicit. 9156 if (S.isImplicitlyDeleted(Best->Function)) 9157 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init) 9158 << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function)) 9159 << DestType << ArgsRange; 9160 else 9161 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) 9162 << DestType << ArgsRange; 9163 9164 S.NoteDeletedFunction(Best->Function); 9165 break; 9166 } 9167 9168 case OR_Success: 9169 llvm_unreachable("Conversion did not fail!"); 9170 } 9171 } 9172 break; 9173 9174 case FK_DefaultInitOfConst: 9175 if (Entity.getKind() == InitializedEntity::EK_Member && 9176 isa<CXXConstructorDecl>(S.CurContext)) { 9177 // This is implicit default-initialization of a const member in 9178 // a constructor. Complain that it needs to be explicitly 9179 // initialized. 9180 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext); 9181 S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor) 9182 << (Constructor->getInheritedConstructor() ? 2 : 9183 Constructor->isImplicit() ? 1 : 0) 9184 << S.Context.getTypeDeclType(Constructor->getParent()) 9185 << /*const=*/1 9186 << Entity.getName(); 9187 S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl) 9188 << Entity.getName(); 9189 } else { 9190 S.Diag(Kind.getLocation(), diag::err_default_init_const) 9191 << DestType << (bool)DestType->getAs<RecordType>(); 9192 } 9193 break; 9194 9195 case FK_Incomplete: 9196 S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType, 9197 diag::err_init_incomplete_type); 9198 break; 9199 9200 case FK_ListInitializationFailed: { 9201 // Run the init list checker again to emit diagnostics. 9202 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 9203 diagnoseListInit(S, Entity, InitList); 9204 break; 9205 } 9206 9207 case FK_PlaceholderType: { 9208 // FIXME: Already diagnosed! 9209 break; 9210 } 9211 9212 case FK_ExplicitConstructor: { 9213 S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor) 9214 << Args[0]->getSourceRange(); 9215 OverloadCandidateSet::iterator Best; 9216 OverloadingResult Ovl 9217 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 9218 (void)Ovl; 9219 assert(Ovl == OR_Success && "Inconsistent overload resolution"); 9220 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 9221 S.Diag(CtorDecl->getLocation(), 9222 diag::note_explicit_ctor_deduction_guide_here) << false; 9223 break; 9224 } 9225 } 9226 9227 PrintInitLocationNote(S, Entity); 9228 return true; 9229 } 9230 9231 void InitializationSequence::dump(raw_ostream &OS) const { 9232 switch (SequenceKind) { 9233 case FailedSequence: { 9234 OS << "Failed sequence: "; 9235 switch (Failure) { 9236 case FK_TooManyInitsForReference: 9237 OS << "too many initializers for reference"; 9238 break; 9239 9240 case FK_ParenthesizedListInitForReference: 9241 OS << "parenthesized list init for reference"; 9242 break; 9243 9244 case FK_ArrayNeedsInitList: 9245 OS << "array requires initializer list"; 9246 break; 9247 9248 case FK_AddressOfUnaddressableFunction: 9249 OS << "address of unaddressable function was taken"; 9250 break; 9251 9252 case FK_ArrayNeedsInitListOrStringLiteral: 9253 OS << "array requires initializer list or string literal"; 9254 break; 9255 9256 case FK_ArrayNeedsInitListOrWideStringLiteral: 9257 OS << "array requires initializer list or wide string literal"; 9258 break; 9259 9260 case FK_NarrowStringIntoWideCharArray: 9261 OS << "narrow string into wide char array"; 9262 break; 9263 9264 case FK_WideStringIntoCharArray: 9265 OS << "wide string into char array"; 9266 break; 9267 9268 case FK_IncompatWideStringIntoWideChar: 9269 OS << "incompatible wide string into wide char array"; 9270 break; 9271 9272 case FK_PlainStringIntoUTF8Char: 9273 OS << "plain string literal into char8_t array"; 9274 break; 9275 9276 case FK_UTF8StringIntoPlainChar: 9277 OS << "u8 string literal into char array"; 9278 break; 9279 9280 case FK_ArrayTypeMismatch: 9281 OS << "array type mismatch"; 9282 break; 9283 9284 case FK_NonConstantArrayInit: 9285 OS << "non-constant array initializer"; 9286 break; 9287 9288 case FK_AddressOfOverloadFailed: 9289 OS << "address of overloaded function failed"; 9290 break; 9291 9292 case FK_ReferenceInitOverloadFailed: 9293 OS << "overload resolution for reference initialization failed"; 9294 break; 9295 9296 case FK_NonConstLValueReferenceBindingToTemporary: 9297 OS << "non-const lvalue reference bound to temporary"; 9298 break; 9299 9300 case FK_NonConstLValueReferenceBindingToBitfield: 9301 OS << "non-const lvalue reference bound to bit-field"; 9302 break; 9303 9304 case FK_NonConstLValueReferenceBindingToVectorElement: 9305 OS << "non-const lvalue reference bound to vector element"; 9306 break; 9307 9308 case FK_NonConstLValueReferenceBindingToMatrixElement: 9309 OS << "non-const lvalue reference bound to matrix element"; 9310 break; 9311 9312 case FK_NonConstLValueReferenceBindingToUnrelated: 9313 OS << "non-const lvalue reference bound to unrelated type"; 9314 break; 9315 9316 case FK_RValueReferenceBindingToLValue: 9317 OS << "rvalue reference bound to an lvalue"; 9318 break; 9319 9320 case FK_ReferenceInitDropsQualifiers: 9321 OS << "reference initialization drops qualifiers"; 9322 break; 9323 9324 case FK_ReferenceAddrspaceMismatchTemporary: 9325 OS << "reference with mismatching address space bound to temporary"; 9326 break; 9327 9328 case FK_ReferenceInitFailed: 9329 OS << "reference initialization failed"; 9330 break; 9331 9332 case FK_ConversionFailed: 9333 OS << "conversion failed"; 9334 break; 9335 9336 case FK_ConversionFromPropertyFailed: 9337 OS << "conversion from property failed"; 9338 break; 9339 9340 case FK_TooManyInitsForScalar: 9341 OS << "too many initializers for scalar"; 9342 break; 9343 9344 case FK_ParenthesizedListInitForScalar: 9345 OS << "parenthesized list init for reference"; 9346 break; 9347 9348 case FK_ReferenceBindingToInitList: 9349 OS << "referencing binding to initializer list"; 9350 break; 9351 9352 case FK_InitListBadDestinationType: 9353 OS << "initializer list for non-aggregate, non-scalar type"; 9354 break; 9355 9356 case FK_UserConversionOverloadFailed: 9357 OS << "overloading failed for user-defined conversion"; 9358 break; 9359 9360 case FK_ConstructorOverloadFailed: 9361 OS << "constructor overloading failed"; 9362 break; 9363 9364 case FK_DefaultInitOfConst: 9365 OS << "default initialization of a const variable"; 9366 break; 9367 9368 case FK_Incomplete: 9369 OS << "initialization of incomplete type"; 9370 break; 9371 9372 case FK_ListInitializationFailed: 9373 OS << "list initialization checker failure"; 9374 break; 9375 9376 case FK_VariableLengthArrayHasInitializer: 9377 OS << "variable length array has an initializer"; 9378 break; 9379 9380 case FK_PlaceholderType: 9381 OS << "initializer expression isn't contextually valid"; 9382 break; 9383 9384 case FK_ListConstructorOverloadFailed: 9385 OS << "list constructor overloading failed"; 9386 break; 9387 9388 case FK_ExplicitConstructor: 9389 OS << "list copy initialization chose explicit constructor"; 9390 break; 9391 } 9392 OS << '\n'; 9393 return; 9394 } 9395 9396 case DependentSequence: 9397 OS << "Dependent sequence\n"; 9398 return; 9399 9400 case NormalSequence: 9401 OS << "Normal sequence: "; 9402 break; 9403 } 9404 9405 for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) { 9406 if (S != step_begin()) { 9407 OS << " -> "; 9408 } 9409 9410 switch (S->Kind) { 9411 case SK_ResolveAddressOfOverloadedFunction: 9412 OS << "resolve address of overloaded function"; 9413 break; 9414 9415 case SK_CastDerivedToBaseRValue: 9416 OS << "derived-to-base (rvalue)"; 9417 break; 9418 9419 case SK_CastDerivedToBaseXValue: 9420 OS << "derived-to-base (xvalue)"; 9421 break; 9422 9423 case SK_CastDerivedToBaseLValue: 9424 OS << "derived-to-base (lvalue)"; 9425 break; 9426 9427 case SK_BindReference: 9428 OS << "bind reference to lvalue"; 9429 break; 9430 9431 case SK_BindReferenceToTemporary: 9432 OS << "bind reference to a temporary"; 9433 break; 9434 9435 case SK_FinalCopy: 9436 OS << "final copy in class direct-initialization"; 9437 break; 9438 9439 case SK_ExtraneousCopyToTemporary: 9440 OS << "extraneous C++03 copy to temporary"; 9441 break; 9442 9443 case SK_UserConversion: 9444 OS << "user-defined conversion via " << *S->Function.Function; 9445 break; 9446 9447 case SK_QualificationConversionRValue: 9448 OS << "qualification conversion (rvalue)"; 9449 break; 9450 9451 case SK_QualificationConversionXValue: 9452 OS << "qualification conversion (xvalue)"; 9453 break; 9454 9455 case SK_QualificationConversionLValue: 9456 OS << "qualification conversion (lvalue)"; 9457 break; 9458 9459 case SK_AtomicConversion: 9460 OS << "non-atomic-to-atomic conversion"; 9461 break; 9462 9463 case SK_ConversionSequence: 9464 OS << "implicit conversion sequence ("; 9465 S->ICS->dump(); // FIXME: use OS 9466 OS << ")"; 9467 break; 9468 9469 case SK_ConversionSequenceNoNarrowing: 9470 OS << "implicit conversion sequence with narrowing prohibited ("; 9471 S->ICS->dump(); // FIXME: use OS 9472 OS << ")"; 9473 break; 9474 9475 case SK_ListInitialization: 9476 OS << "list aggregate initialization"; 9477 break; 9478 9479 case SK_UnwrapInitList: 9480 OS << "unwrap reference initializer list"; 9481 break; 9482 9483 case SK_RewrapInitList: 9484 OS << "rewrap reference initializer list"; 9485 break; 9486 9487 case SK_ConstructorInitialization: 9488 OS << "constructor initialization"; 9489 break; 9490 9491 case SK_ConstructorInitializationFromList: 9492 OS << "list initialization via constructor"; 9493 break; 9494 9495 case SK_ZeroInitialization: 9496 OS << "zero initialization"; 9497 break; 9498 9499 case SK_CAssignment: 9500 OS << "C assignment"; 9501 break; 9502 9503 case SK_StringInit: 9504 OS << "string initialization"; 9505 break; 9506 9507 case SK_ObjCObjectConversion: 9508 OS << "Objective-C object conversion"; 9509 break; 9510 9511 case SK_ArrayLoopIndex: 9512 OS << "indexing for array initialization loop"; 9513 break; 9514 9515 case SK_ArrayLoopInit: 9516 OS << "array initialization loop"; 9517 break; 9518 9519 case SK_ArrayInit: 9520 OS << "array initialization"; 9521 break; 9522 9523 case SK_GNUArrayInit: 9524 OS << "array initialization (GNU extension)"; 9525 break; 9526 9527 case SK_ParenthesizedArrayInit: 9528 OS << "parenthesized array initialization"; 9529 break; 9530 9531 case SK_PassByIndirectCopyRestore: 9532 OS << "pass by indirect copy and restore"; 9533 break; 9534 9535 case SK_PassByIndirectRestore: 9536 OS << "pass by indirect restore"; 9537 break; 9538 9539 case SK_ProduceObjCObject: 9540 OS << "Objective-C object retension"; 9541 break; 9542 9543 case SK_StdInitializerList: 9544 OS << "std::initializer_list from initializer list"; 9545 break; 9546 9547 case SK_StdInitializerListConstructorCall: 9548 OS << "list initialization from std::initializer_list"; 9549 break; 9550 9551 case SK_OCLSamplerInit: 9552 OS << "OpenCL sampler_t from integer constant"; 9553 break; 9554 9555 case SK_OCLZeroOpaqueType: 9556 OS << "OpenCL opaque type from zero"; 9557 break; 9558 } 9559 9560 OS << " [" << S->Type.getAsString() << ']'; 9561 } 9562 9563 OS << '\n'; 9564 } 9565 9566 void InitializationSequence::dump() const { 9567 dump(llvm::errs()); 9568 } 9569 9570 static bool NarrowingErrs(const LangOptions &L) { 9571 return L.CPlusPlus11 && 9572 (!L.MicrosoftExt || L.isCompatibleWithMSVC(LangOptions::MSVC2015)); 9573 } 9574 9575 static void DiagnoseNarrowingInInitList(Sema &S, 9576 const ImplicitConversionSequence &ICS, 9577 QualType PreNarrowingType, 9578 QualType EntityType, 9579 const Expr *PostInit) { 9580 const StandardConversionSequence *SCS = nullptr; 9581 switch (ICS.getKind()) { 9582 case ImplicitConversionSequence::StandardConversion: 9583 SCS = &ICS.Standard; 9584 break; 9585 case ImplicitConversionSequence::UserDefinedConversion: 9586 SCS = &ICS.UserDefined.After; 9587 break; 9588 case ImplicitConversionSequence::AmbiguousConversion: 9589 case ImplicitConversionSequence::EllipsisConversion: 9590 case ImplicitConversionSequence::BadConversion: 9591 return; 9592 } 9593 9594 // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion. 9595 APValue ConstantValue; 9596 QualType ConstantType; 9597 switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue, 9598 ConstantType)) { 9599 case NK_Not_Narrowing: 9600 case NK_Dependent_Narrowing: 9601 // No narrowing occurred. 9602 return; 9603 9604 case NK_Type_Narrowing: 9605 // This was a floating-to-integer conversion, which is always considered a 9606 // narrowing conversion even if the value is a constant and can be 9607 // represented exactly as an integer. 9608 S.Diag(PostInit->getBeginLoc(), NarrowingErrs(S.getLangOpts()) 9609 ? diag::ext_init_list_type_narrowing 9610 : diag::warn_init_list_type_narrowing) 9611 << PostInit->getSourceRange() 9612 << PreNarrowingType.getLocalUnqualifiedType() 9613 << EntityType.getLocalUnqualifiedType(); 9614 break; 9615 9616 case NK_Constant_Narrowing: 9617 // A constant value was narrowed. 9618 S.Diag(PostInit->getBeginLoc(), 9619 NarrowingErrs(S.getLangOpts()) 9620 ? diag::ext_init_list_constant_narrowing 9621 : diag::warn_init_list_constant_narrowing) 9622 << PostInit->getSourceRange() 9623 << ConstantValue.getAsString(S.getASTContext(), ConstantType) 9624 << EntityType.getLocalUnqualifiedType(); 9625 break; 9626 9627 case NK_Variable_Narrowing: 9628 // A variable's value may have been narrowed. 9629 S.Diag(PostInit->getBeginLoc(), 9630 NarrowingErrs(S.getLangOpts()) 9631 ? diag::ext_init_list_variable_narrowing 9632 : diag::warn_init_list_variable_narrowing) 9633 << PostInit->getSourceRange() 9634 << PreNarrowingType.getLocalUnqualifiedType() 9635 << EntityType.getLocalUnqualifiedType(); 9636 break; 9637 } 9638 9639 SmallString<128> StaticCast; 9640 llvm::raw_svector_ostream OS(StaticCast); 9641 OS << "static_cast<"; 9642 if (const TypedefType *TT = EntityType->getAs<TypedefType>()) { 9643 // It's important to use the typedef's name if there is one so that the 9644 // fixit doesn't break code using types like int64_t. 9645 // 9646 // FIXME: This will break if the typedef requires qualification. But 9647 // getQualifiedNameAsString() includes non-machine-parsable components. 9648 OS << *TT->getDecl(); 9649 } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>()) 9650 OS << BT->getName(S.getLangOpts()); 9651 else { 9652 // Oops, we didn't find the actual type of the variable. Don't emit a fixit 9653 // with a broken cast. 9654 return; 9655 } 9656 OS << ">("; 9657 S.Diag(PostInit->getBeginLoc(), diag::note_init_list_narrowing_silence) 9658 << PostInit->getSourceRange() 9659 << FixItHint::CreateInsertion(PostInit->getBeginLoc(), OS.str()) 9660 << FixItHint::CreateInsertion( 9661 S.getLocForEndOfToken(PostInit->getEndLoc()), ")"); 9662 } 9663 9664 //===----------------------------------------------------------------------===// 9665 // Initialization helper functions 9666 //===----------------------------------------------------------------------===// 9667 bool 9668 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity, 9669 ExprResult Init) { 9670 if (Init.isInvalid()) 9671 return false; 9672 9673 Expr *InitE = Init.get(); 9674 assert(InitE && "No initialization expression"); 9675 9676 InitializationKind Kind = 9677 InitializationKind::CreateCopy(InitE->getBeginLoc(), SourceLocation()); 9678 InitializationSequence Seq(*this, Entity, Kind, InitE); 9679 return !Seq.Failed(); 9680 } 9681 9682 ExprResult 9683 Sema::PerformCopyInitialization(const InitializedEntity &Entity, 9684 SourceLocation EqualLoc, 9685 ExprResult Init, 9686 bool TopLevelOfInitList, 9687 bool AllowExplicit) { 9688 if (Init.isInvalid()) 9689 return ExprError(); 9690 9691 Expr *InitE = Init.get(); 9692 assert(InitE && "No initialization expression?"); 9693 9694 if (EqualLoc.isInvalid()) 9695 EqualLoc = InitE->getBeginLoc(); 9696 9697 InitializationKind Kind = InitializationKind::CreateCopy( 9698 InitE->getBeginLoc(), EqualLoc, AllowExplicit); 9699 InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList); 9700 9701 // Prevent infinite recursion when performing parameter copy-initialization. 9702 const bool ShouldTrackCopy = 9703 Entity.isParameterKind() && Seq.isConstructorInitialization(); 9704 if (ShouldTrackCopy) { 9705 if (llvm::find(CurrentParameterCopyTypes, Entity.getType()) != 9706 CurrentParameterCopyTypes.end()) { 9707 Seq.SetOverloadFailure( 9708 InitializationSequence::FK_ConstructorOverloadFailed, 9709 OR_No_Viable_Function); 9710 9711 // Try to give a meaningful diagnostic note for the problematic 9712 // constructor. 9713 const auto LastStep = Seq.step_end() - 1; 9714 assert(LastStep->Kind == 9715 InitializationSequence::SK_ConstructorInitialization); 9716 const FunctionDecl *Function = LastStep->Function.Function; 9717 auto Candidate = 9718 llvm::find_if(Seq.getFailedCandidateSet(), 9719 [Function](const OverloadCandidate &Candidate) -> bool { 9720 return Candidate.Viable && 9721 Candidate.Function == Function && 9722 Candidate.Conversions.size() > 0; 9723 }); 9724 if (Candidate != Seq.getFailedCandidateSet().end() && 9725 Function->getNumParams() > 0) { 9726 Candidate->Viable = false; 9727 Candidate->FailureKind = ovl_fail_bad_conversion; 9728 Candidate->Conversions[0].setBad(BadConversionSequence::no_conversion, 9729 InitE, 9730 Function->getParamDecl(0)->getType()); 9731 } 9732 } 9733 CurrentParameterCopyTypes.push_back(Entity.getType()); 9734 } 9735 9736 ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE); 9737 9738 if (ShouldTrackCopy) 9739 CurrentParameterCopyTypes.pop_back(); 9740 9741 return Result; 9742 } 9743 9744 /// Determine whether RD is, or is derived from, a specialization of CTD. 9745 static bool isOrIsDerivedFromSpecializationOf(CXXRecordDecl *RD, 9746 ClassTemplateDecl *CTD) { 9747 auto NotSpecialization = [&] (const CXXRecordDecl *Candidate) { 9748 auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Candidate); 9749 return !CTSD || !declaresSameEntity(CTSD->getSpecializedTemplate(), CTD); 9750 }; 9751 return !(NotSpecialization(RD) && RD->forallBases(NotSpecialization)); 9752 } 9753 9754 QualType Sema::DeduceTemplateSpecializationFromInitializer( 9755 TypeSourceInfo *TSInfo, const InitializedEntity &Entity, 9756 const InitializationKind &Kind, MultiExprArg Inits) { 9757 auto *DeducedTST = dyn_cast<DeducedTemplateSpecializationType>( 9758 TSInfo->getType()->getContainedDeducedType()); 9759 assert(DeducedTST && "not a deduced template specialization type"); 9760 9761 auto TemplateName = DeducedTST->getTemplateName(); 9762 if (TemplateName.isDependent()) 9763 return Context.DependentTy; 9764 9765 // We can only perform deduction for class templates. 9766 auto *Template = 9767 dyn_cast_or_null<ClassTemplateDecl>(TemplateName.getAsTemplateDecl()); 9768 if (!Template) { 9769 Diag(Kind.getLocation(), 9770 diag::err_deduced_non_class_template_specialization_type) 9771 << (int)getTemplateNameKindForDiagnostics(TemplateName) << TemplateName; 9772 if (auto *TD = TemplateName.getAsTemplateDecl()) 9773 Diag(TD->getLocation(), diag::note_template_decl_here); 9774 return QualType(); 9775 } 9776 9777 // Can't deduce from dependent arguments. 9778 if (Expr::hasAnyTypeDependentArguments(Inits)) { 9779 Diag(TSInfo->getTypeLoc().getBeginLoc(), 9780 diag::warn_cxx14_compat_class_template_argument_deduction) 9781 << TSInfo->getTypeLoc().getSourceRange() << 0; 9782 return Context.DependentTy; 9783 } 9784 9785 // FIXME: Perform "exact type" matching first, per CWG discussion? 9786 // Or implement this via an implied 'T(T) -> T' deduction guide? 9787 9788 // FIXME: Do we need/want a std::initializer_list<T> special case? 9789 9790 // Look up deduction guides, including those synthesized from constructors. 9791 // 9792 // C++1z [over.match.class.deduct]p1: 9793 // A set of functions and function templates is formed comprising: 9794 // - For each constructor of the class template designated by the 9795 // template-name, a function template [...] 9796 // - For each deduction-guide, a function or function template [...] 9797 DeclarationNameInfo NameInfo( 9798 Context.DeclarationNames.getCXXDeductionGuideName(Template), 9799 TSInfo->getTypeLoc().getEndLoc()); 9800 LookupResult Guides(*this, NameInfo, LookupOrdinaryName); 9801 LookupQualifiedName(Guides, Template->getDeclContext()); 9802 9803 // FIXME: Do not diagnose inaccessible deduction guides. The standard isn't 9804 // clear on this, but they're not found by name so access does not apply. 9805 Guides.suppressDiagnostics(); 9806 9807 // Figure out if this is list-initialization. 9808 InitListExpr *ListInit = 9809 (Inits.size() == 1 && Kind.getKind() != InitializationKind::IK_Direct) 9810 ? dyn_cast<InitListExpr>(Inits[0]) 9811 : nullptr; 9812 9813 // C++1z [over.match.class.deduct]p1: 9814 // Initialization and overload resolution are performed as described in 9815 // [dcl.init] and [over.match.ctor], [over.match.copy], or [over.match.list] 9816 // (as appropriate for the type of initialization performed) for an object 9817 // of a hypothetical class type, where the selected functions and function 9818 // templates are considered to be the constructors of that class type 9819 // 9820 // Since we know we're initializing a class type of a type unrelated to that 9821 // of the initializer, this reduces to something fairly reasonable. 9822 OverloadCandidateSet Candidates(Kind.getLocation(), 9823 OverloadCandidateSet::CSK_Normal); 9824 OverloadCandidateSet::iterator Best; 9825 9826 bool HasAnyDeductionGuide = false; 9827 bool AllowExplicit = !Kind.isCopyInit() || ListInit; 9828 9829 auto tryToResolveOverload = 9830 [&](bool OnlyListConstructors) -> OverloadingResult { 9831 Candidates.clear(OverloadCandidateSet::CSK_Normal); 9832 HasAnyDeductionGuide = false; 9833 9834 for (auto I = Guides.begin(), E = Guides.end(); I != E; ++I) { 9835 NamedDecl *D = (*I)->getUnderlyingDecl(); 9836 if (D->isInvalidDecl()) 9837 continue; 9838 9839 auto *TD = dyn_cast<FunctionTemplateDecl>(D); 9840 auto *GD = dyn_cast_or_null<CXXDeductionGuideDecl>( 9841 TD ? TD->getTemplatedDecl() : dyn_cast<FunctionDecl>(D)); 9842 if (!GD) 9843 continue; 9844 9845 if (!GD->isImplicit()) 9846 HasAnyDeductionGuide = true; 9847 9848 // C++ [over.match.ctor]p1: (non-list copy-initialization from non-class) 9849 // For copy-initialization, the candidate functions are all the 9850 // converting constructors (12.3.1) of that class. 9851 // C++ [over.match.copy]p1: (non-list copy-initialization from class) 9852 // The converting constructors of T are candidate functions. 9853 if (!AllowExplicit) { 9854 // Overload resolution checks whether the deduction guide is declared 9855 // explicit for us. 9856 9857 // When looking for a converting constructor, deduction guides that 9858 // could never be called with one argument are not interesting to 9859 // check or note. 9860 if (GD->getMinRequiredArguments() > 1 || 9861 (GD->getNumParams() == 0 && !GD->isVariadic())) 9862 continue; 9863 } 9864 9865 // C++ [over.match.list]p1.1: (first phase list initialization) 9866 // Initially, the candidate functions are the initializer-list 9867 // constructors of the class T 9868 if (OnlyListConstructors && !isInitListConstructor(GD)) 9869 continue; 9870 9871 // C++ [over.match.list]p1.2: (second phase list initialization) 9872 // the candidate functions are all the constructors of the class T 9873 // C++ [over.match.ctor]p1: (all other cases) 9874 // the candidate functions are all the constructors of the class of 9875 // the object being initialized 9876 9877 // C++ [over.best.ics]p4: 9878 // When [...] the constructor [...] is a candidate by 9879 // - [over.match.copy] (in all cases) 9880 // FIXME: The "second phase of [over.match.list] case can also 9881 // theoretically happen here, but it's not clear whether we can 9882 // ever have a parameter of the right type. 9883 bool SuppressUserConversions = Kind.isCopyInit(); 9884 9885 if (TD) 9886 AddTemplateOverloadCandidate(TD, I.getPair(), /*ExplicitArgs*/ nullptr, 9887 Inits, Candidates, SuppressUserConversions, 9888 /*PartialOverloading*/ false, 9889 AllowExplicit); 9890 else 9891 AddOverloadCandidate(GD, I.getPair(), Inits, Candidates, 9892 SuppressUserConversions, 9893 /*PartialOverloading*/ false, AllowExplicit); 9894 } 9895 return Candidates.BestViableFunction(*this, Kind.getLocation(), Best); 9896 }; 9897 9898 OverloadingResult Result = OR_No_Viable_Function; 9899 9900 // C++11 [over.match.list]p1, per DR1467: for list-initialization, first 9901 // try initializer-list constructors. 9902 if (ListInit) { 9903 bool TryListConstructors = true; 9904 9905 // Try list constructors unless the list is empty and the class has one or 9906 // more default constructors, in which case those constructors win. 9907 if (!ListInit->getNumInits()) { 9908 for (NamedDecl *D : Guides) { 9909 auto *FD = dyn_cast<FunctionDecl>(D->getUnderlyingDecl()); 9910 if (FD && FD->getMinRequiredArguments() == 0) { 9911 TryListConstructors = false; 9912 break; 9913 } 9914 } 9915 } else if (ListInit->getNumInits() == 1) { 9916 // C++ [over.match.class.deduct]: 9917 // As an exception, the first phase in [over.match.list] (considering 9918 // initializer-list constructors) is omitted if the initializer list 9919 // consists of a single expression of type cv U, where U is a 9920 // specialization of C or a class derived from a specialization of C. 9921 Expr *E = ListInit->getInit(0); 9922 auto *RD = E->getType()->getAsCXXRecordDecl(); 9923 if (!isa<InitListExpr>(E) && RD && 9924 isCompleteType(Kind.getLocation(), E->getType()) && 9925 isOrIsDerivedFromSpecializationOf(RD, Template)) 9926 TryListConstructors = false; 9927 } 9928 9929 if (TryListConstructors) 9930 Result = tryToResolveOverload(/*OnlyListConstructor*/true); 9931 // Then unwrap the initializer list and try again considering all 9932 // constructors. 9933 Inits = MultiExprArg(ListInit->getInits(), ListInit->getNumInits()); 9934 } 9935 9936 // If list-initialization fails, or if we're doing any other kind of 9937 // initialization, we (eventually) consider constructors. 9938 if (Result == OR_No_Viable_Function) 9939 Result = tryToResolveOverload(/*OnlyListConstructor*/false); 9940 9941 switch (Result) { 9942 case OR_Ambiguous: 9943 // FIXME: For list-initialization candidates, it'd usually be better to 9944 // list why they were not viable when given the initializer list itself as 9945 // an argument. 9946 Candidates.NoteCandidates( 9947 PartialDiagnosticAt( 9948 Kind.getLocation(), 9949 PDiag(diag::err_deduced_class_template_ctor_ambiguous) 9950 << TemplateName), 9951 *this, OCD_AmbiguousCandidates, Inits); 9952 return QualType(); 9953 9954 case OR_No_Viable_Function: { 9955 CXXRecordDecl *Primary = 9956 cast<ClassTemplateDecl>(Template)->getTemplatedDecl(); 9957 bool Complete = 9958 isCompleteType(Kind.getLocation(), Context.getTypeDeclType(Primary)); 9959 Candidates.NoteCandidates( 9960 PartialDiagnosticAt( 9961 Kind.getLocation(), 9962 PDiag(Complete ? diag::err_deduced_class_template_ctor_no_viable 9963 : diag::err_deduced_class_template_incomplete) 9964 << TemplateName << !Guides.empty()), 9965 *this, OCD_AllCandidates, Inits); 9966 return QualType(); 9967 } 9968 9969 case OR_Deleted: { 9970 Diag(Kind.getLocation(), diag::err_deduced_class_template_deleted) 9971 << TemplateName; 9972 NoteDeletedFunction(Best->Function); 9973 return QualType(); 9974 } 9975 9976 case OR_Success: 9977 // C++ [over.match.list]p1: 9978 // In copy-list-initialization, if an explicit constructor is chosen, the 9979 // initialization is ill-formed. 9980 if (Kind.isCopyInit() && ListInit && 9981 cast<CXXDeductionGuideDecl>(Best->Function)->isExplicit()) { 9982 bool IsDeductionGuide = !Best->Function->isImplicit(); 9983 Diag(Kind.getLocation(), diag::err_deduced_class_template_explicit) 9984 << TemplateName << IsDeductionGuide; 9985 Diag(Best->Function->getLocation(), 9986 diag::note_explicit_ctor_deduction_guide_here) 9987 << IsDeductionGuide; 9988 return QualType(); 9989 } 9990 9991 // Make sure we didn't select an unusable deduction guide, and mark it 9992 // as referenced. 9993 DiagnoseUseOfDecl(Best->Function, Kind.getLocation()); 9994 MarkFunctionReferenced(Kind.getLocation(), Best->Function); 9995 break; 9996 } 9997 9998 // C++ [dcl.type.class.deduct]p1: 9999 // The placeholder is replaced by the return type of the function selected 10000 // by overload resolution for class template deduction. 10001 QualType DeducedType = 10002 SubstAutoType(TSInfo->getType(), Best->Function->getReturnType()); 10003 Diag(TSInfo->getTypeLoc().getBeginLoc(), 10004 diag::warn_cxx14_compat_class_template_argument_deduction) 10005 << TSInfo->getTypeLoc().getSourceRange() << 1 << DeducedType; 10006 10007 // Warn if CTAD was used on a type that does not have any user-defined 10008 // deduction guides. 10009 if (!HasAnyDeductionGuide) { 10010 Diag(TSInfo->getTypeLoc().getBeginLoc(), 10011 diag::warn_ctad_maybe_unsupported) 10012 << TemplateName; 10013 Diag(Template->getLocation(), diag::note_suppress_ctad_maybe_unsupported); 10014 } 10015 10016 return DeducedType; 10017 } 10018