1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for initializers.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/DeclObjC.h"
16 #include "clang/AST/ExprCXX.h"
17 #include "clang/AST/ExprObjC.h"
18 #include "clang/AST/ExprOpenMP.h"
19 #include "clang/AST/TypeLoc.h"
20 #include "clang/Basic/TargetInfo.h"
21 #include "clang/Sema/Designator.h"
22 #include "clang/Sema/Initialization.h"
23 #include "clang/Sema/Lookup.h"
24 #include "clang/Sema/SemaInternal.h"
25 #include "llvm/ADT/APInt.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/raw_ostream.h"
29 
30 using namespace clang;
31 
32 //===----------------------------------------------------------------------===//
33 // Sema Initialization Checking
34 //===----------------------------------------------------------------------===//
35 
36 /// Check whether T is compatible with a wide character type (wchar_t,
37 /// char16_t or char32_t).
38 static bool IsWideCharCompatible(QualType T, ASTContext &Context) {
39   if (Context.typesAreCompatible(Context.getWideCharType(), T))
40     return true;
41   if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) {
42     return Context.typesAreCompatible(Context.Char16Ty, T) ||
43            Context.typesAreCompatible(Context.Char32Ty, T);
44   }
45   return false;
46 }
47 
48 enum StringInitFailureKind {
49   SIF_None,
50   SIF_NarrowStringIntoWideChar,
51   SIF_WideStringIntoChar,
52   SIF_IncompatWideStringIntoWideChar,
53   SIF_UTF8StringIntoPlainChar,
54   SIF_PlainStringIntoUTF8Char,
55   SIF_Other
56 };
57 
58 /// Check whether the array of type AT can be initialized by the Init
59 /// expression by means of string initialization. Returns SIF_None if so,
60 /// otherwise returns a StringInitFailureKind that describes why the
61 /// initialization would not work.
62 static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT,
63                                           ASTContext &Context) {
64   if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
65     return SIF_Other;
66 
67   // See if this is a string literal or @encode.
68   Init = Init->IgnoreParens();
69 
70   // Handle @encode, which is a narrow string.
71   if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
72     return SIF_None;
73 
74   // Otherwise we can only handle string literals.
75   StringLiteral *SL = dyn_cast<StringLiteral>(Init);
76   if (!SL)
77     return SIF_Other;
78 
79   const QualType ElemTy =
80       Context.getCanonicalType(AT->getElementType()).getUnqualifiedType();
81 
82   switch (SL->getKind()) {
83   case StringLiteral::UTF8:
84     // char8_t array can be initialized with a UTF-8 string.
85     if (ElemTy->isChar8Type())
86       return SIF_None;
87     LLVM_FALLTHROUGH;
88   case StringLiteral::Ascii:
89     // char array can be initialized with a narrow string.
90     // Only allow char x[] = "foo";  not char x[] = L"foo";
91     if (ElemTy->isCharType())
92       return (SL->getKind() == StringLiteral::UTF8 &&
93               Context.getLangOpts().Char8)
94                  ? SIF_UTF8StringIntoPlainChar
95                  : SIF_None;
96     if (ElemTy->isChar8Type())
97       return SIF_PlainStringIntoUTF8Char;
98     if (IsWideCharCompatible(ElemTy, Context))
99       return SIF_NarrowStringIntoWideChar;
100     return SIF_Other;
101   // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15:
102   // "An array with element type compatible with a qualified or unqualified
103   // version of wchar_t, char16_t, or char32_t may be initialized by a wide
104   // string literal with the corresponding encoding prefix (L, u, or U,
105   // respectively), optionally enclosed in braces.
106   case StringLiteral::UTF16:
107     if (Context.typesAreCompatible(Context.Char16Ty, ElemTy))
108       return SIF_None;
109     if (ElemTy->isCharType() || ElemTy->isChar8Type())
110       return SIF_WideStringIntoChar;
111     if (IsWideCharCompatible(ElemTy, Context))
112       return SIF_IncompatWideStringIntoWideChar;
113     return SIF_Other;
114   case StringLiteral::UTF32:
115     if (Context.typesAreCompatible(Context.Char32Ty, ElemTy))
116       return SIF_None;
117     if (ElemTy->isCharType() || ElemTy->isChar8Type())
118       return SIF_WideStringIntoChar;
119     if (IsWideCharCompatible(ElemTy, Context))
120       return SIF_IncompatWideStringIntoWideChar;
121     return SIF_Other;
122   case StringLiteral::Wide:
123     if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy))
124       return SIF_None;
125     if (ElemTy->isCharType() || ElemTy->isChar8Type())
126       return SIF_WideStringIntoChar;
127     if (IsWideCharCompatible(ElemTy, Context))
128       return SIF_IncompatWideStringIntoWideChar;
129     return SIF_Other;
130   }
131 
132   llvm_unreachable("missed a StringLiteral kind?");
133 }
134 
135 static StringInitFailureKind IsStringInit(Expr *init, QualType declType,
136                                           ASTContext &Context) {
137   const ArrayType *arrayType = Context.getAsArrayType(declType);
138   if (!arrayType)
139     return SIF_Other;
140   return IsStringInit(init, arrayType, Context);
141 }
142 
143 /// Update the type of a string literal, including any surrounding parentheses,
144 /// to match the type of the object which it is initializing.
145 static void updateStringLiteralType(Expr *E, QualType Ty) {
146   while (true) {
147     E->setType(Ty);
148     if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E))
149       break;
150     else if (ParenExpr *PE = dyn_cast<ParenExpr>(E))
151       E = PE->getSubExpr();
152     else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
153       E = UO->getSubExpr();
154     else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E))
155       E = GSE->getResultExpr();
156     else
157       llvm_unreachable("unexpected expr in string literal init");
158   }
159 }
160 
161 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
162                             Sema &S) {
163   // Get the length of the string as parsed.
164   auto *ConstantArrayTy =
165       cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe());
166   uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue();
167 
168   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
169     // C99 6.7.8p14. We have an array of character type with unknown size
170     // being initialized to a string literal.
171     llvm::APInt ConstVal(32, StrLength);
172     // Return a new array type (C99 6.7.8p22).
173     DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
174                                            ConstVal,
175                                            ArrayType::Normal, 0);
176     updateStringLiteralType(Str, DeclT);
177     return;
178   }
179 
180   const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
181 
182   // We have an array of character type with known size.  However,
183   // the size may be smaller or larger than the string we are initializing.
184   // FIXME: Avoid truncation for 64-bit length strings.
185   if (S.getLangOpts().CPlusPlus) {
186     if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
187       // For Pascal strings it's OK to strip off the terminating null character,
188       // so the example below is valid:
189       //
190       // unsigned char a[2] = "\pa";
191       if (SL->isPascal())
192         StrLength--;
193     }
194 
195     // [dcl.init.string]p2
196     if (StrLength > CAT->getSize().getZExtValue())
197       S.Diag(Str->getBeginLoc(),
198              diag::err_initializer_string_for_char_array_too_long)
199           << Str->getSourceRange();
200   } else {
201     // C99 6.7.8p14.
202     if (StrLength-1 > CAT->getSize().getZExtValue())
203       S.Diag(Str->getBeginLoc(),
204              diag::ext_initializer_string_for_char_array_too_long)
205           << Str->getSourceRange();
206   }
207 
208   // Set the type to the actual size that we are initializing.  If we have
209   // something like:
210   //   char x[1] = "foo";
211   // then this will set the string literal's type to char[1].
212   updateStringLiteralType(Str, DeclT);
213 }
214 
215 //===----------------------------------------------------------------------===//
216 // Semantic checking for initializer lists.
217 //===----------------------------------------------------------------------===//
218 
219 namespace {
220 
221 /// Semantic checking for initializer lists.
222 ///
223 /// The InitListChecker class contains a set of routines that each
224 /// handle the initialization of a certain kind of entity, e.g.,
225 /// arrays, vectors, struct/union types, scalars, etc. The
226 /// InitListChecker itself performs a recursive walk of the subobject
227 /// structure of the type to be initialized, while stepping through
228 /// the initializer list one element at a time. The IList and Index
229 /// parameters to each of the Check* routines contain the active
230 /// (syntactic) initializer list and the index into that initializer
231 /// list that represents the current initializer. Each routine is
232 /// responsible for moving that Index forward as it consumes elements.
233 ///
234 /// Each Check* routine also has a StructuredList/StructuredIndex
235 /// arguments, which contains the current "structured" (semantic)
236 /// initializer list and the index into that initializer list where we
237 /// are copying initializers as we map them over to the semantic
238 /// list. Once we have completed our recursive walk of the subobject
239 /// structure, we will have constructed a full semantic initializer
240 /// list.
241 ///
242 /// C99 designators cause changes in the initializer list traversal,
243 /// because they make the initialization "jump" into a specific
244 /// subobject and then continue the initialization from that
245 /// point. CheckDesignatedInitializer() recursively steps into the
246 /// designated subobject and manages backing out the recursion to
247 /// initialize the subobjects after the one designated.
248 class InitListChecker {
249   Sema &SemaRef;
250   bool hadError;
251   bool VerifyOnly; // no diagnostics, no structure building
252   bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode.
253   llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic;
254   InitListExpr *FullyStructuredList;
255 
256   void CheckImplicitInitList(const InitializedEntity &Entity,
257                              InitListExpr *ParentIList, QualType T,
258                              unsigned &Index, InitListExpr *StructuredList,
259                              unsigned &StructuredIndex);
260   void CheckExplicitInitList(const InitializedEntity &Entity,
261                              InitListExpr *IList, QualType &T,
262                              InitListExpr *StructuredList,
263                              bool TopLevelObject = false);
264   void CheckListElementTypes(const InitializedEntity &Entity,
265                              InitListExpr *IList, QualType &DeclType,
266                              bool SubobjectIsDesignatorContext,
267                              unsigned &Index,
268                              InitListExpr *StructuredList,
269                              unsigned &StructuredIndex,
270                              bool TopLevelObject = false);
271   void CheckSubElementType(const InitializedEntity &Entity,
272                            InitListExpr *IList, QualType ElemType,
273                            unsigned &Index,
274                            InitListExpr *StructuredList,
275                            unsigned &StructuredIndex);
276   void CheckComplexType(const InitializedEntity &Entity,
277                         InitListExpr *IList, QualType DeclType,
278                         unsigned &Index,
279                         InitListExpr *StructuredList,
280                         unsigned &StructuredIndex);
281   void CheckScalarType(const InitializedEntity &Entity,
282                        InitListExpr *IList, QualType DeclType,
283                        unsigned &Index,
284                        InitListExpr *StructuredList,
285                        unsigned &StructuredIndex);
286   void CheckReferenceType(const InitializedEntity &Entity,
287                           InitListExpr *IList, QualType DeclType,
288                           unsigned &Index,
289                           InitListExpr *StructuredList,
290                           unsigned &StructuredIndex);
291   void CheckVectorType(const InitializedEntity &Entity,
292                        InitListExpr *IList, QualType DeclType, unsigned &Index,
293                        InitListExpr *StructuredList,
294                        unsigned &StructuredIndex);
295   void CheckStructUnionTypes(const InitializedEntity &Entity,
296                              InitListExpr *IList, QualType DeclType,
297                              CXXRecordDecl::base_class_range Bases,
298                              RecordDecl::field_iterator Field,
299                              bool SubobjectIsDesignatorContext, unsigned &Index,
300                              InitListExpr *StructuredList,
301                              unsigned &StructuredIndex,
302                              bool TopLevelObject = false);
303   void CheckArrayType(const InitializedEntity &Entity,
304                       InitListExpr *IList, QualType &DeclType,
305                       llvm::APSInt elementIndex,
306                       bool SubobjectIsDesignatorContext, unsigned &Index,
307                       InitListExpr *StructuredList,
308                       unsigned &StructuredIndex);
309   bool CheckDesignatedInitializer(const InitializedEntity &Entity,
310                                   InitListExpr *IList, DesignatedInitExpr *DIE,
311                                   unsigned DesigIdx,
312                                   QualType &CurrentObjectType,
313                                   RecordDecl::field_iterator *NextField,
314                                   llvm::APSInt *NextElementIndex,
315                                   unsigned &Index,
316                                   InitListExpr *StructuredList,
317                                   unsigned &StructuredIndex,
318                                   bool FinishSubobjectInit,
319                                   bool TopLevelObject);
320   InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
321                                            QualType CurrentObjectType,
322                                            InitListExpr *StructuredList,
323                                            unsigned StructuredIndex,
324                                            SourceRange InitRange,
325                                            bool IsFullyOverwritten = false);
326   void UpdateStructuredListElement(InitListExpr *StructuredList,
327                                    unsigned &StructuredIndex,
328                                    Expr *expr);
329   int numArrayElements(QualType DeclType);
330   int numStructUnionElements(QualType DeclType);
331 
332   static ExprResult PerformEmptyInit(Sema &SemaRef,
333                                      SourceLocation Loc,
334                                      const InitializedEntity &Entity,
335                                      bool VerifyOnly,
336                                      bool TreatUnavailableAsInvalid);
337 
338   // Explanation on the "FillWithNoInit" mode:
339   //
340   // Assume we have the following definitions (Case#1):
341   // struct P { char x[6][6]; } xp = { .x[1] = "bar" };
342   // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' };
343   //
344   // l.lp.x[1][0..1] should not be filled with implicit initializers because the
345   // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf".
346   //
347   // But if we have (Case#2):
348   // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } };
349   //
350   // l.lp.x[1][0..1] are implicitly initialized and do not use values from the
351   // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0".
352   //
353   // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes"
354   // in the InitListExpr, the "holes" in Case#1 are filled not with empty
355   // initializers but with special "NoInitExpr" place holders, which tells the
356   // CodeGen not to generate any initializers for these parts.
357   void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base,
358                               const InitializedEntity &ParentEntity,
359                               InitListExpr *ILE, bool &RequiresSecondPass,
360                               bool FillWithNoInit);
361   void FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
362                                const InitializedEntity &ParentEntity,
363                                InitListExpr *ILE, bool &RequiresSecondPass,
364                                bool FillWithNoInit = false);
365   void FillInEmptyInitializations(const InitializedEntity &Entity,
366                                   InitListExpr *ILE, bool &RequiresSecondPass,
367                                   InitListExpr *OuterILE, unsigned OuterIndex,
368                                   bool FillWithNoInit = false);
369   bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
370                               Expr *InitExpr, FieldDecl *Field,
371                               bool TopLevelObject);
372   void CheckEmptyInitializable(const InitializedEntity &Entity,
373                                SourceLocation Loc);
374 
375 public:
376   InitListChecker(Sema &S, const InitializedEntity &Entity,
377                   InitListExpr *IL, QualType &T, bool VerifyOnly,
378                   bool TreatUnavailableAsInvalid);
379   bool HadError() { return hadError; }
380 
381   // Retrieves the fully-structured initializer list used for
382   // semantic analysis and code generation.
383   InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
384 };
385 
386 } // end anonymous namespace
387 
388 ExprResult InitListChecker::PerformEmptyInit(Sema &SemaRef,
389                                              SourceLocation Loc,
390                                              const InitializedEntity &Entity,
391                                              bool VerifyOnly,
392                                              bool TreatUnavailableAsInvalid) {
393   InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
394                                                             true);
395   MultiExprArg SubInit;
396   Expr *InitExpr;
397   InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc);
398 
399   // C++ [dcl.init.aggr]p7:
400   //   If there are fewer initializer-clauses in the list than there are
401   //   members in the aggregate, then each member not explicitly initialized
402   //   ...
403   bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 &&
404       Entity.getType()->getBaseElementTypeUnsafe()->isRecordType();
405   if (EmptyInitList) {
406     // C++1y / DR1070:
407     //   shall be initialized [...] from an empty initializer list.
408     //
409     // We apply the resolution of this DR to C++11 but not C++98, since C++98
410     // does not have useful semantics for initialization from an init list.
411     // We treat this as copy-initialization, because aggregate initialization
412     // always performs copy-initialization on its elements.
413     //
414     // Only do this if we're initializing a class type, to avoid filling in
415     // the initializer list where possible.
416     InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context)
417                    InitListExpr(SemaRef.Context, Loc, None, Loc);
418     InitExpr->setType(SemaRef.Context.VoidTy);
419     SubInit = InitExpr;
420     Kind = InitializationKind::CreateCopy(Loc, Loc);
421   } else {
422     // C++03:
423     //   shall be value-initialized.
424   }
425 
426   InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit);
427   // libstdc++4.6 marks the vector default constructor as explicit in
428   // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case.
429   // stlport does so too. Look for std::__debug for libstdc++, and for
430   // std:: for stlport.  This is effectively a compiler-side implementation of
431   // LWG2193.
432   if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() ==
433           InitializationSequence::FK_ExplicitConstructor) {
434     OverloadCandidateSet::iterator Best;
435     OverloadingResult O =
436         InitSeq.getFailedCandidateSet()
437             .BestViableFunction(SemaRef, Kind.getLocation(), Best);
438     (void)O;
439     assert(O == OR_Success && "Inconsistent overload resolution");
440     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
441     CXXRecordDecl *R = CtorDecl->getParent();
442 
443     if (CtorDecl->getMinRequiredArguments() == 0 &&
444         CtorDecl->isExplicit() && R->getDeclName() &&
445         SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) {
446       bool IsInStd = false;
447       for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext());
448            ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) {
449         if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND))
450           IsInStd = true;
451       }
452 
453       if (IsInStd && llvm::StringSwitch<bool>(R->getName())
454               .Cases("basic_string", "deque", "forward_list", true)
455               .Cases("list", "map", "multimap", "multiset", true)
456               .Cases("priority_queue", "queue", "set", "stack", true)
457               .Cases("unordered_map", "unordered_set", "vector", true)
458               .Default(false)) {
459         InitSeq.InitializeFrom(
460             SemaRef, Entity,
461             InitializationKind::CreateValue(Loc, Loc, Loc, true),
462             MultiExprArg(), /*TopLevelOfInitList=*/false,
463             TreatUnavailableAsInvalid);
464         // Emit a warning for this.  System header warnings aren't shown
465         // by default, but people working on system headers should see it.
466         if (!VerifyOnly) {
467           SemaRef.Diag(CtorDecl->getLocation(),
468                        diag::warn_invalid_initializer_from_system_header);
469           if (Entity.getKind() == InitializedEntity::EK_Member)
470             SemaRef.Diag(Entity.getDecl()->getLocation(),
471                          diag::note_used_in_initialization_here);
472           else if (Entity.getKind() == InitializedEntity::EK_ArrayElement)
473             SemaRef.Diag(Loc, diag::note_used_in_initialization_here);
474         }
475       }
476     }
477   }
478   if (!InitSeq) {
479     if (!VerifyOnly) {
480       InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit);
481       if (Entity.getKind() == InitializedEntity::EK_Member)
482         SemaRef.Diag(Entity.getDecl()->getLocation(),
483                      diag::note_in_omitted_aggregate_initializer)
484           << /*field*/1 << Entity.getDecl();
485       else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) {
486         bool IsTrailingArrayNewMember =
487             Entity.getParent() &&
488             Entity.getParent()->isVariableLengthArrayNew();
489         SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer)
490           << (IsTrailingArrayNewMember ? 2 : /*array element*/0)
491           << Entity.getElementIndex();
492       }
493     }
494     return ExprError();
495   }
496 
497   return VerifyOnly ? ExprResult(static_cast<Expr *>(nullptr))
498                     : InitSeq.Perform(SemaRef, Entity, Kind, SubInit);
499 }
500 
501 void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity,
502                                               SourceLocation Loc) {
503   assert(VerifyOnly &&
504          "CheckEmptyInitializable is only inteded for verification mode.");
505   if (PerformEmptyInit(SemaRef, Loc, Entity, /*VerifyOnly*/true,
506                        TreatUnavailableAsInvalid).isInvalid())
507     hadError = true;
508 }
509 
510 void InitListChecker::FillInEmptyInitForBase(
511     unsigned Init, const CXXBaseSpecifier &Base,
512     const InitializedEntity &ParentEntity, InitListExpr *ILE,
513     bool &RequiresSecondPass, bool FillWithNoInit) {
514   assert(Init < ILE->getNumInits() && "should have been expanded");
515 
516   InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
517       SemaRef.Context, &Base, false, &ParentEntity);
518 
519   if (!ILE->getInit(Init)) {
520     ExprResult BaseInit =
521         FillWithNoInit
522             ? new (SemaRef.Context) NoInitExpr(Base.getType())
523             : PerformEmptyInit(SemaRef, ILE->getEndLoc(), BaseEntity,
524                                /*VerifyOnly*/ false, TreatUnavailableAsInvalid);
525     if (BaseInit.isInvalid()) {
526       hadError = true;
527       return;
528     }
529 
530     ILE->setInit(Init, BaseInit.getAs<Expr>());
531   } else if (InitListExpr *InnerILE =
532                  dyn_cast<InitListExpr>(ILE->getInit(Init))) {
533     FillInEmptyInitializations(BaseEntity, InnerILE, RequiresSecondPass,
534                                ILE, Init, FillWithNoInit);
535   } else if (DesignatedInitUpdateExpr *InnerDIUE =
536                dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
537     FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(),
538                                RequiresSecondPass, ILE, Init,
539                                /*FillWithNoInit =*/true);
540   }
541 }
542 
543 void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
544                                         const InitializedEntity &ParentEntity,
545                                               InitListExpr *ILE,
546                                               bool &RequiresSecondPass,
547                                               bool FillWithNoInit) {
548   SourceLocation Loc = ILE->getEndLoc();
549   unsigned NumInits = ILE->getNumInits();
550   InitializedEntity MemberEntity
551     = InitializedEntity::InitializeMember(Field, &ParentEntity);
552 
553   if (const RecordType *RType = ILE->getType()->getAs<RecordType>())
554     if (!RType->getDecl()->isUnion())
555       assert(Init < NumInits && "This ILE should have been expanded");
556 
557   if (Init >= NumInits || !ILE->getInit(Init)) {
558     if (FillWithNoInit) {
559       Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType());
560       if (Init < NumInits)
561         ILE->setInit(Init, Filler);
562       else
563         ILE->updateInit(SemaRef.Context, Init, Filler);
564       return;
565     }
566     // C++1y [dcl.init.aggr]p7:
567     //   If there are fewer initializer-clauses in the list than there are
568     //   members in the aggregate, then each member not explicitly initialized
569     //   shall be initialized from its brace-or-equal-initializer [...]
570     if (Field->hasInClassInitializer()) {
571       ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field);
572       if (DIE.isInvalid()) {
573         hadError = true;
574         return;
575       }
576       SemaRef.checkInitializerLifetime(MemberEntity, DIE.get());
577       if (Init < NumInits)
578         ILE->setInit(Init, DIE.get());
579       else {
580         ILE->updateInit(SemaRef.Context, Init, DIE.get());
581         RequiresSecondPass = true;
582       }
583       return;
584     }
585 
586     if (Field->getType()->isReferenceType()) {
587       // C++ [dcl.init.aggr]p9:
588       //   If an incomplete or empty initializer-list leaves a
589       //   member of reference type uninitialized, the program is
590       //   ill-formed.
591       SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
592         << Field->getType()
593         << ILE->getSyntacticForm()->getSourceRange();
594       SemaRef.Diag(Field->getLocation(),
595                    diag::note_uninit_reference_member);
596       hadError = true;
597       return;
598     }
599 
600     ExprResult MemberInit = PerformEmptyInit(SemaRef, Loc, MemberEntity,
601                                              /*VerifyOnly*/false,
602                                              TreatUnavailableAsInvalid);
603     if (MemberInit.isInvalid()) {
604       hadError = true;
605       return;
606     }
607 
608     if (hadError) {
609       // Do nothing
610     } else if (Init < NumInits) {
611       ILE->setInit(Init, MemberInit.getAs<Expr>());
612     } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) {
613       // Empty initialization requires a constructor call, so
614       // extend the initializer list to include the constructor
615       // call and make a note that we'll need to take another pass
616       // through the initializer list.
617       ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>());
618       RequiresSecondPass = true;
619     }
620   } else if (InitListExpr *InnerILE
621                = dyn_cast<InitListExpr>(ILE->getInit(Init)))
622     FillInEmptyInitializations(MemberEntity, InnerILE,
623                                RequiresSecondPass, ILE, Init, FillWithNoInit);
624   else if (DesignatedInitUpdateExpr *InnerDIUE
625                = dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init)))
626     FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(),
627                                RequiresSecondPass, ILE, Init,
628                                /*FillWithNoInit =*/true);
629 }
630 
631 /// Recursively replaces NULL values within the given initializer list
632 /// with expressions that perform value-initialization of the
633 /// appropriate type, and finish off the InitListExpr formation.
634 void
635 InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity,
636                                             InitListExpr *ILE,
637                                             bool &RequiresSecondPass,
638                                             InitListExpr *OuterILE,
639                                             unsigned OuterIndex,
640                                             bool FillWithNoInit) {
641   assert((ILE->getType() != SemaRef.Context.VoidTy) &&
642          "Should not have void type");
643 
644   // If this is a nested initializer list, we might have changed its contents
645   // (and therefore some of its properties, such as instantiation-dependence)
646   // while filling it in. Inform the outer initializer list so that its state
647   // can be updated to match.
648   // FIXME: We should fully build the inner initializers before constructing
649   // the outer InitListExpr instead of mutating AST nodes after they have
650   // been used as subexpressions of other nodes.
651   struct UpdateOuterILEWithUpdatedInit {
652     InitListExpr *Outer;
653     unsigned OuterIndex;
654     ~UpdateOuterILEWithUpdatedInit() {
655       if (Outer)
656         Outer->setInit(OuterIndex, Outer->getInit(OuterIndex));
657     }
658   } UpdateOuterRAII = {OuterILE, OuterIndex};
659 
660   // A transparent ILE is not performing aggregate initialization and should
661   // not be filled in.
662   if (ILE->isTransparent())
663     return;
664 
665   if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
666     const RecordDecl *RDecl = RType->getDecl();
667     if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
668       FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(),
669                               Entity, ILE, RequiresSecondPass, FillWithNoInit);
670     else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
671              cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
672       for (auto *Field : RDecl->fields()) {
673         if (Field->hasInClassInitializer()) {
674           FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass,
675                                   FillWithNoInit);
676           break;
677         }
678       }
679     } else {
680       // The fields beyond ILE->getNumInits() are default initialized, so in
681       // order to leave them uninitialized, the ILE is expanded and the extra
682       // fields are then filled with NoInitExpr.
683       unsigned NumElems = numStructUnionElements(ILE->getType());
684       if (RDecl->hasFlexibleArrayMember())
685         ++NumElems;
686       if (ILE->getNumInits() < NumElems)
687         ILE->resizeInits(SemaRef.Context, NumElems);
688 
689       unsigned Init = 0;
690 
691       if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) {
692         for (auto &Base : CXXRD->bases()) {
693           if (hadError)
694             return;
695 
696           FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass,
697                                  FillWithNoInit);
698           ++Init;
699         }
700       }
701 
702       for (auto *Field : RDecl->fields()) {
703         if (Field->isUnnamedBitfield())
704           continue;
705 
706         if (hadError)
707           return;
708 
709         FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass,
710                                 FillWithNoInit);
711         if (hadError)
712           return;
713 
714         ++Init;
715 
716         // Only look at the first initialization of a union.
717         if (RDecl->isUnion())
718           break;
719       }
720     }
721 
722     return;
723   }
724 
725   QualType ElementType;
726 
727   InitializedEntity ElementEntity = Entity;
728   unsigned NumInits = ILE->getNumInits();
729   unsigned NumElements = NumInits;
730   if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
731     ElementType = AType->getElementType();
732     if (const auto *CAType = dyn_cast<ConstantArrayType>(AType))
733       NumElements = CAType->getSize().getZExtValue();
734     // For an array new with an unknown bound, ask for one additional element
735     // in order to populate the array filler.
736     if (Entity.isVariableLengthArrayNew())
737       ++NumElements;
738     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
739                                                          0, Entity);
740   } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
741     ElementType = VType->getElementType();
742     NumElements = VType->getNumElements();
743     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
744                                                          0, Entity);
745   } else
746     ElementType = ILE->getType();
747 
748   for (unsigned Init = 0; Init != NumElements; ++Init) {
749     if (hadError)
750       return;
751 
752     if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
753         ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
754       ElementEntity.setElementIndex(Init);
755 
756     if (Init >= NumInits && ILE->hasArrayFiller())
757       return;
758 
759     Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr);
760     if (!InitExpr && Init < NumInits && ILE->hasArrayFiller())
761       ILE->setInit(Init, ILE->getArrayFiller());
762     else if (!InitExpr && !ILE->hasArrayFiller()) {
763       Expr *Filler = nullptr;
764 
765       if (FillWithNoInit)
766         Filler = new (SemaRef.Context) NoInitExpr(ElementType);
767       else {
768         ExprResult ElementInit =
769             PerformEmptyInit(SemaRef, ILE->getEndLoc(), ElementEntity,
770                              /*VerifyOnly*/ false, TreatUnavailableAsInvalid);
771         if (ElementInit.isInvalid()) {
772           hadError = true;
773           return;
774         }
775 
776         Filler = ElementInit.getAs<Expr>();
777       }
778 
779       if (hadError) {
780         // Do nothing
781       } else if (Init < NumInits) {
782         // For arrays, just set the expression used for value-initialization
783         // of the "holes" in the array.
784         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
785           ILE->setArrayFiller(Filler);
786         else
787           ILE->setInit(Init, Filler);
788       } else {
789         // For arrays, just set the expression used for value-initialization
790         // of the rest of elements and exit.
791         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
792           ILE->setArrayFiller(Filler);
793           return;
794         }
795 
796         if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) {
797           // Empty initialization requires a constructor call, so
798           // extend the initializer list to include the constructor
799           // call and make a note that we'll need to take another pass
800           // through the initializer list.
801           ILE->updateInit(SemaRef.Context, Init, Filler);
802           RequiresSecondPass = true;
803         }
804       }
805     } else if (InitListExpr *InnerILE
806                  = dyn_cast_or_null<InitListExpr>(InitExpr))
807       FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass,
808                                  ILE, Init, FillWithNoInit);
809     else if (DesignatedInitUpdateExpr *InnerDIUE
810                  = dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr))
811       FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(),
812                                  RequiresSecondPass, ILE, Init,
813                                  /*FillWithNoInit =*/true);
814   }
815 }
816 
817 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
818                                  InitListExpr *IL, QualType &T,
819                                  bool VerifyOnly,
820                                  bool TreatUnavailableAsInvalid)
821   : SemaRef(S), VerifyOnly(VerifyOnly),
822     TreatUnavailableAsInvalid(TreatUnavailableAsInvalid) {
823   // FIXME: Check that IL isn't already the semantic form of some other
824   // InitListExpr. If it is, we'd create a broken AST.
825 
826   hadError = false;
827 
828   FullyStructuredList =
829       getStructuredSubobjectInit(IL, 0, T, nullptr, 0, IL->getSourceRange());
830   CheckExplicitInitList(Entity, IL, T, FullyStructuredList,
831                         /*TopLevelObject=*/true);
832 
833   if (!hadError && !VerifyOnly) {
834     bool RequiresSecondPass = false;
835     FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass,
836                                /*OuterILE=*/nullptr, /*OuterIndex=*/0);
837     if (RequiresSecondPass && !hadError)
838       FillInEmptyInitializations(Entity, FullyStructuredList,
839                                  RequiresSecondPass, nullptr, 0);
840   }
841 }
842 
843 int InitListChecker::numArrayElements(QualType DeclType) {
844   // FIXME: use a proper constant
845   int maxElements = 0x7FFFFFFF;
846   if (const ConstantArrayType *CAT =
847         SemaRef.Context.getAsConstantArrayType(DeclType)) {
848     maxElements = static_cast<int>(CAT->getSize().getZExtValue());
849   }
850   return maxElements;
851 }
852 
853 int InitListChecker::numStructUnionElements(QualType DeclType) {
854   RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
855   int InitializableMembers = 0;
856   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl))
857     InitializableMembers += CXXRD->getNumBases();
858   for (const auto *Field : structDecl->fields())
859     if (!Field->isUnnamedBitfield())
860       ++InitializableMembers;
861 
862   if (structDecl->isUnion())
863     return std::min(InitializableMembers, 1);
864   return InitializableMembers - structDecl->hasFlexibleArrayMember();
865 }
866 
867 /// Determine whether Entity is an entity for which it is idiomatic to elide
868 /// the braces in aggregate initialization.
869 static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) {
870   // Recursive initialization of the one and only field within an aggregate
871   // class is considered idiomatic. This case arises in particular for
872   // initialization of std::array, where the C++ standard suggests the idiom of
873   //
874   //   std::array<T, N> arr = {1, 2, 3};
875   //
876   // (where std::array is an aggregate struct containing a single array field.
877 
878   // FIXME: Should aggregate initialization of a struct with a single
879   // base class and no members also suppress the warning?
880   if (Entity.getKind() != InitializedEntity::EK_Member || !Entity.getParent())
881     return false;
882 
883   auto *ParentRD =
884       Entity.getParent()->getType()->castAs<RecordType>()->getDecl();
885   if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(ParentRD))
886     if (CXXRD->getNumBases())
887       return false;
888 
889   auto FieldIt = ParentRD->field_begin();
890   assert(FieldIt != ParentRD->field_end() &&
891          "no fields but have initializer for member?");
892   return ++FieldIt == ParentRD->field_end();
893 }
894 
895 /// Check whether the range of the initializer \p ParentIList from element
896 /// \p Index onwards can be used to initialize an object of type \p T. Update
897 /// \p Index to indicate how many elements of the list were consumed.
898 ///
899 /// This also fills in \p StructuredList, from element \p StructuredIndex
900 /// onwards, with the fully-braced, desugared form of the initialization.
901 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
902                                             InitListExpr *ParentIList,
903                                             QualType T, unsigned &Index,
904                                             InitListExpr *StructuredList,
905                                             unsigned &StructuredIndex) {
906   int maxElements = 0;
907 
908   if (T->isArrayType())
909     maxElements = numArrayElements(T);
910   else if (T->isRecordType())
911     maxElements = numStructUnionElements(T);
912   else if (T->isVectorType())
913     maxElements = T->getAs<VectorType>()->getNumElements();
914   else
915     llvm_unreachable("CheckImplicitInitList(): Illegal type");
916 
917   if (maxElements == 0) {
918     if (!VerifyOnly)
919       SemaRef.Diag(ParentIList->getInit(Index)->getBeginLoc(),
920                    diag::err_implicit_empty_initializer);
921     ++Index;
922     hadError = true;
923     return;
924   }
925 
926   // Build a structured initializer list corresponding to this subobject.
927   InitListExpr *StructuredSubobjectInitList = getStructuredSubobjectInit(
928       ParentIList, Index, T, StructuredList, StructuredIndex,
929       SourceRange(ParentIList->getInit(Index)->getBeginLoc(),
930                   ParentIList->getSourceRange().getEnd()));
931   unsigned StructuredSubobjectInitIndex = 0;
932 
933   // Check the element types and build the structural subobject.
934   unsigned StartIndex = Index;
935   CheckListElementTypes(Entity, ParentIList, T,
936                         /*SubobjectIsDesignatorContext=*/false, Index,
937                         StructuredSubobjectInitList,
938                         StructuredSubobjectInitIndex);
939 
940   if (!VerifyOnly) {
941     StructuredSubobjectInitList->setType(T);
942 
943     unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
944     // Update the structured sub-object initializer so that it's ending
945     // range corresponds with the end of the last initializer it used.
946     if (EndIndex < ParentIList->getNumInits() &&
947         ParentIList->getInit(EndIndex)) {
948       SourceLocation EndLoc
949         = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
950       StructuredSubobjectInitList->setRBraceLoc(EndLoc);
951     }
952 
953     // Complain about missing braces.
954     if ((T->isArrayType() || T->isRecordType()) &&
955         !ParentIList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) &&
956         !isIdiomaticBraceElisionEntity(Entity)) {
957       SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
958                    diag::warn_missing_braces)
959           << StructuredSubobjectInitList->getSourceRange()
960           << FixItHint::CreateInsertion(
961                  StructuredSubobjectInitList->getBeginLoc(), "{")
962           << FixItHint::CreateInsertion(
963                  SemaRef.getLocForEndOfToken(
964                      StructuredSubobjectInitList->getEndLoc()),
965                  "}");
966     }
967 
968     // Warn if this type won't be an aggregate in future versions of C++.
969     auto *CXXRD = T->getAsCXXRecordDecl();
970     if (CXXRD && CXXRD->hasUserDeclaredConstructor()) {
971       SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
972                    diag::warn_cxx2a_compat_aggregate_init_with_ctors)
973           << StructuredSubobjectInitList->getSourceRange() << T;
974     }
975   }
976 }
977 
978 /// Warn that \p Entity was of scalar type and was initialized by a
979 /// single-element braced initializer list.
980 static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity,
981                                  SourceRange Braces) {
982   // Don't warn during template instantiation. If the initialization was
983   // non-dependent, we warned during the initial parse; otherwise, the
984   // type might not be scalar in some uses of the template.
985   if (S.inTemplateInstantiation())
986     return;
987 
988   unsigned DiagID = 0;
989 
990   switch (Entity.getKind()) {
991   case InitializedEntity::EK_VectorElement:
992   case InitializedEntity::EK_ComplexElement:
993   case InitializedEntity::EK_ArrayElement:
994   case InitializedEntity::EK_Parameter:
995   case InitializedEntity::EK_Parameter_CF_Audited:
996   case InitializedEntity::EK_Result:
997     // Extra braces here are suspicious.
998     DiagID = diag::warn_braces_around_scalar_init;
999     break;
1000 
1001   case InitializedEntity::EK_Member:
1002     // Warn on aggregate initialization but not on ctor init list or
1003     // default member initializer.
1004     if (Entity.getParent())
1005       DiagID = diag::warn_braces_around_scalar_init;
1006     break;
1007 
1008   case InitializedEntity::EK_Variable:
1009   case InitializedEntity::EK_LambdaCapture:
1010     // No warning, might be direct-list-initialization.
1011     // FIXME: Should we warn for copy-list-initialization in these cases?
1012     break;
1013 
1014   case InitializedEntity::EK_New:
1015   case InitializedEntity::EK_Temporary:
1016   case InitializedEntity::EK_CompoundLiteralInit:
1017     // No warning, braces are part of the syntax of the underlying construct.
1018     break;
1019 
1020   case InitializedEntity::EK_RelatedResult:
1021     // No warning, we already warned when initializing the result.
1022     break;
1023 
1024   case InitializedEntity::EK_Exception:
1025   case InitializedEntity::EK_Base:
1026   case InitializedEntity::EK_Delegating:
1027   case InitializedEntity::EK_BlockElement:
1028   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
1029   case InitializedEntity::EK_Binding:
1030   case InitializedEntity::EK_StmtExprResult:
1031     llvm_unreachable("unexpected braced scalar init");
1032   }
1033 
1034   if (DiagID) {
1035     S.Diag(Braces.getBegin(), DiagID)
1036       << Braces
1037       << FixItHint::CreateRemoval(Braces.getBegin())
1038       << FixItHint::CreateRemoval(Braces.getEnd());
1039   }
1040 }
1041 
1042 /// Check whether the initializer \p IList (that was written with explicit
1043 /// braces) can be used to initialize an object of type \p T.
1044 ///
1045 /// This also fills in \p StructuredList with the fully-braced, desugared
1046 /// form of the initialization.
1047 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
1048                                             InitListExpr *IList, QualType &T,
1049                                             InitListExpr *StructuredList,
1050                                             bool TopLevelObject) {
1051   if (!VerifyOnly) {
1052     SyntacticToSemantic[IList] = StructuredList;
1053     StructuredList->setSyntacticForm(IList);
1054   }
1055 
1056   unsigned Index = 0, StructuredIndex = 0;
1057   CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
1058                         Index, StructuredList, StructuredIndex, TopLevelObject);
1059   if (!VerifyOnly) {
1060     QualType ExprTy = T;
1061     if (!ExprTy->isArrayType())
1062       ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
1063     IList->setType(ExprTy);
1064     StructuredList->setType(ExprTy);
1065   }
1066   if (hadError)
1067     return;
1068 
1069   if (Index < IList->getNumInits()) {
1070     // We have leftover initializers
1071     if (VerifyOnly) {
1072       if (SemaRef.getLangOpts().CPlusPlus ||
1073           (SemaRef.getLangOpts().OpenCL &&
1074            IList->getType()->isVectorType())) {
1075         hadError = true;
1076       }
1077       return;
1078     }
1079 
1080     if (StructuredIndex == 1 &&
1081         IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) ==
1082             SIF_None) {
1083       unsigned DK = diag::ext_excess_initializers_in_char_array_initializer;
1084       if (SemaRef.getLangOpts().CPlusPlus) {
1085         DK = diag::err_excess_initializers_in_char_array_initializer;
1086         hadError = true;
1087       }
1088       // Special-case
1089       SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1090           << IList->getInit(Index)->getSourceRange();
1091     } else if (!T->isIncompleteType()) {
1092       // Don't complain for incomplete types, since we'll get an error
1093       // elsewhere
1094       QualType CurrentObjectType = StructuredList->getType();
1095       int initKind =
1096         CurrentObjectType->isArrayType()? 0 :
1097         CurrentObjectType->isVectorType()? 1 :
1098         CurrentObjectType->isScalarType()? 2 :
1099         CurrentObjectType->isUnionType()? 3 :
1100         4;
1101 
1102       unsigned DK = diag::ext_excess_initializers;
1103       if (SemaRef.getLangOpts().CPlusPlus) {
1104         DK = diag::err_excess_initializers;
1105         hadError = true;
1106       }
1107       if (SemaRef.getLangOpts().OpenCL && initKind == 1) {
1108         DK = diag::err_excess_initializers;
1109         hadError = true;
1110       }
1111 
1112       SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1113           << initKind << IList->getInit(Index)->getSourceRange();
1114     }
1115   }
1116 
1117   if (!VerifyOnly) {
1118     if (T->isScalarType() && IList->getNumInits() == 1 &&
1119         !isa<InitListExpr>(IList->getInit(0)))
1120       warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange());
1121 
1122     // Warn if this is a class type that won't be an aggregate in future
1123     // versions of C++.
1124     auto *CXXRD = T->getAsCXXRecordDecl();
1125     if (CXXRD && CXXRD->hasUserDeclaredConstructor()) {
1126       // Don't warn if there's an equivalent default constructor that would be
1127       // used instead.
1128       bool HasEquivCtor = false;
1129       if (IList->getNumInits() == 0) {
1130         auto *CD = SemaRef.LookupDefaultConstructor(CXXRD);
1131         HasEquivCtor = CD && !CD->isDeleted();
1132       }
1133 
1134       if (!HasEquivCtor) {
1135         SemaRef.Diag(IList->getBeginLoc(),
1136                      diag::warn_cxx2a_compat_aggregate_init_with_ctors)
1137             << IList->getSourceRange() << T;
1138       }
1139     }
1140   }
1141 }
1142 
1143 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
1144                                             InitListExpr *IList,
1145                                             QualType &DeclType,
1146                                             bool SubobjectIsDesignatorContext,
1147                                             unsigned &Index,
1148                                             InitListExpr *StructuredList,
1149                                             unsigned &StructuredIndex,
1150                                             bool TopLevelObject) {
1151   if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
1152     // Explicitly braced initializer for complex type can be real+imaginary
1153     // parts.
1154     CheckComplexType(Entity, IList, DeclType, Index,
1155                      StructuredList, StructuredIndex);
1156   } else if (DeclType->isScalarType()) {
1157     CheckScalarType(Entity, IList, DeclType, Index,
1158                     StructuredList, StructuredIndex);
1159   } else if (DeclType->isVectorType()) {
1160     CheckVectorType(Entity, IList, DeclType, Index,
1161                     StructuredList, StructuredIndex);
1162   } else if (DeclType->isRecordType()) {
1163     assert(DeclType->isAggregateType() &&
1164            "non-aggregate records should be handed in CheckSubElementType");
1165     RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1166     auto Bases =
1167         CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
1168                                         CXXRecordDecl::base_class_iterator());
1169     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1170       Bases = CXXRD->bases();
1171     CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(),
1172                           SubobjectIsDesignatorContext, Index, StructuredList,
1173                           StructuredIndex, TopLevelObject);
1174   } else if (DeclType->isArrayType()) {
1175     llvm::APSInt Zero(
1176                     SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
1177                     false);
1178     CheckArrayType(Entity, IList, DeclType, Zero,
1179                    SubobjectIsDesignatorContext, Index,
1180                    StructuredList, StructuredIndex);
1181   } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
1182     // This type is invalid, issue a diagnostic.
1183     ++Index;
1184     if (!VerifyOnly)
1185       SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
1186           << DeclType;
1187     hadError = true;
1188   } else if (DeclType->isReferenceType()) {
1189     CheckReferenceType(Entity, IList, DeclType, Index,
1190                        StructuredList, StructuredIndex);
1191   } else if (DeclType->isObjCObjectType()) {
1192     if (!VerifyOnly)
1193       SemaRef.Diag(IList->getBeginLoc(), diag::err_init_objc_class) << DeclType;
1194     hadError = true;
1195   } else if (DeclType->isOCLIntelSubgroupAVCType()) {
1196     // Checks for scalar type are sufficient for these types too.
1197     CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1198                     StructuredIndex);
1199   } else {
1200     if (!VerifyOnly)
1201       SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
1202           << DeclType;
1203     hadError = true;
1204   }
1205 }
1206 
1207 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
1208                                           InitListExpr *IList,
1209                                           QualType ElemType,
1210                                           unsigned &Index,
1211                                           InitListExpr *StructuredList,
1212                                           unsigned &StructuredIndex) {
1213   Expr *expr = IList->getInit(Index);
1214 
1215   if (ElemType->isReferenceType())
1216     return CheckReferenceType(Entity, IList, ElemType, Index,
1217                               StructuredList, StructuredIndex);
1218 
1219   if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
1220     if (SubInitList->getNumInits() == 1 &&
1221         IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) ==
1222         SIF_None) {
1223       expr = SubInitList->getInit(0);
1224     } else if (!SemaRef.getLangOpts().CPlusPlus) {
1225       InitListExpr *InnerStructuredList
1226         = getStructuredSubobjectInit(IList, Index, ElemType,
1227                                      StructuredList, StructuredIndex,
1228                                      SubInitList->getSourceRange(), true);
1229       CheckExplicitInitList(Entity, SubInitList, ElemType,
1230                             InnerStructuredList);
1231 
1232       if (!hadError && !VerifyOnly) {
1233         bool RequiresSecondPass = false;
1234         FillInEmptyInitializations(Entity, InnerStructuredList,
1235                                    RequiresSecondPass, StructuredList,
1236                                    StructuredIndex);
1237         if (RequiresSecondPass && !hadError)
1238           FillInEmptyInitializations(Entity, InnerStructuredList,
1239                                      RequiresSecondPass, StructuredList,
1240                                      StructuredIndex);
1241       }
1242       ++StructuredIndex;
1243       ++Index;
1244       return;
1245     }
1246     // C++ initialization is handled later.
1247   } else if (isa<ImplicitValueInitExpr>(expr)) {
1248     // This happens during template instantiation when we see an InitListExpr
1249     // that we've already checked once.
1250     assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) &&
1251            "found implicit initialization for the wrong type");
1252     if (!VerifyOnly)
1253       UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1254     ++Index;
1255     return;
1256   }
1257 
1258   if (SemaRef.getLangOpts().CPlusPlus) {
1259     // C++ [dcl.init.aggr]p2:
1260     //   Each member is copy-initialized from the corresponding
1261     //   initializer-clause.
1262 
1263     // FIXME: Better EqualLoc?
1264     InitializationKind Kind =
1265         InitializationKind::CreateCopy(expr->getBeginLoc(), SourceLocation());
1266     InitializationSequence Seq(SemaRef, Entity, Kind, expr,
1267                                /*TopLevelOfInitList*/ true);
1268 
1269     // C++14 [dcl.init.aggr]p13:
1270     //   If the assignment-expression can initialize a member, the member is
1271     //   initialized. Otherwise [...] brace elision is assumed
1272     //
1273     // Brace elision is never performed if the element is not an
1274     // assignment-expression.
1275     if (Seq || isa<InitListExpr>(expr)) {
1276       if (!VerifyOnly) {
1277         ExprResult Result =
1278           Seq.Perform(SemaRef, Entity, Kind, expr);
1279         if (Result.isInvalid())
1280           hadError = true;
1281 
1282         UpdateStructuredListElement(StructuredList, StructuredIndex,
1283                                     Result.getAs<Expr>());
1284       } else if (!Seq)
1285         hadError = true;
1286       ++Index;
1287       return;
1288     }
1289 
1290     // Fall through for subaggregate initialization
1291   } else if (ElemType->isScalarType() || ElemType->isAtomicType()) {
1292     // FIXME: Need to handle atomic aggregate types with implicit init lists.
1293     return CheckScalarType(Entity, IList, ElemType, Index,
1294                            StructuredList, StructuredIndex);
1295   } else if (const ArrayType *arrayType =
1296                  SemaRef.Context.getAsArrayType(ElemType)) {
1297     // arrayType can be incomplete if we're initializing a flexible
1298     // array member.  There's nothing we can do with the completed
1299     // type here, though.
1300 
1301     if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) {
1302       if (!VerifyOnly) {
1303         CheckStringInit(expr, ElemType, arrayType, SemaRef);
1304         UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1305       }
1306       ++Index;
1307       return;
1308     }
1309 
1310     // Fall through for subaggregate initialization.
1311 
1312   } else {
1313     assert((ElemType->isRecordType() || ElemType->isVectorType() ||
1314             ElemType->isOpenCLSpecificType()) && "Unexpected type");
1315 
1316     // C99 6.7.8p13:
1317     //
1318     //   The initializer for a structure or union object that has
1319     //   automatic storage duration shall be either an initializer
1320     //   list as described below, or a single expression that has
1321     //   compatible structure or union type. In the latter case, the
1322     //   initial value of the object, including unnamed members, is
1323     //   that of the expression.
1324     ExprResult ExprRes = expr;
1325     if (SemaRef.CheckSingleAssignmentConstraints(
1326             ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) {
1327       if (ExprRes.isInvalid())
1328         hadError = true;
1329       else {
1330         ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get());
1331           if (ExprRes.isInvalid())
1332             hadError = true;
1333       }
1334       UpdateStructuredListElement(StructuredList, StructuredIndex,
1335                                   ExprRes.getAs<Expr>());
1336       ++Index;
1337       return;
1338     }
1339     ExprRes.get();
1340     // Fall through for subaggregate initialization
1341   }
1342 
1343   // C++ [dcl.init.aggr]p12:
1344   //
1345   //   [...] Otherwise, if the member is itself a non-empty
1346   //   subaggregate, brace elision is assumed and the initializer is
1347   //   considered for the initialization of the first member of
1348   //   the subaggregate.
1349   // OpenCL vector initializer is handled elsewhere.
1350   if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) ||
1351       ElemType->isAggregateType()) {
1352     CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
1353                           StructuredIndex);
1354     ++StructuredIndex;
1355   } else {
1356     if (!VerifyOnly) {
1357       // We cannot initialize this element, so let
1358       // PerformCopyInitialization produce the appropriate diagnostic.
1359       SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr,
1360                                         /*TopLevelOfInitList=*/true);
1361     }
1362     hadError = true;
1363     ++Index;
1364     ++StructuredIndex;
1365   }
1366 }
1367 
1368 void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
1369                                        InitListExpr *IList, QualType DeclType,
1370                                        unsigned &Index,
1371                                        InitListExpr *StructuredList,
1372                                        unsigned &StructuredIndex) {
1373   assert(Index == 0 && "Index in explicit init list must be zero");
1374 
1375   // As an extension, clang supports complex initializers, which initialize
1376   // a complex number component-wise.  When an explicit initializer list for
1377   // a complex number contains two two initializers, this extension kicks in:
1378   // it exepcts the initializer list to contain two elements convertible to
1379   // the element type of the complex type. The first element initializes
1380   // the real part, and the second element intitializes the imaginary part.
1381 
1382   if (IList->getNumInits() != 2)
1383     return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1384                            StructuredIndex);
1385 
1386   // This is an extension in C.  (The builtin _Complex type does not exist
1387   // in the C++ standard.)
1388   if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
1389     SemaRef.Diag(IList->getBeginLoc(), diag::ext_complex_component_init)
1390         << IList->getSourceRange();
1391 
1392   // Initialize the complex number.
1393   QualType elementType = DeclType->getAs<ComplexType>()->getElementType();
1394   InitializedEntity ElementEntity =
1395     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1396 
1397   for (unsigned i = 0; i < 2; ++i) {
1398     ElementEntity.setElementIndex(Index);
1399     CheckSubElementType(ElementEntity, IList, elementType, Index,
1400                         StructuredList, StructuredIndex);
1401   }
1402 }
1403 
1404 void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
1405                                       InitListExpr *IList, QualType DeclType,
1406                                       unsigned &Index,
1407                                       InitListExpr *StructuredList,
1408                                       unsigned &StructuredIndex) {
1409   if (Index >= IList->getNumInits()) {
1410     if (!VerifyOnly)
1411       SemaRef.Diag(IList->getBeginLoc(),
1412                    SemaRef.getLangOpts().CPlusPlus11
1413                        ? diag::warn_cxx98_compat_empty_scalar_initializer
1414                        : diag::err_empty_scalar_initializer)
1415           << IList->getSourceRange();
1416     hadError = !SemaRef.getLangOpts().CPlusPlus11;
1417     ++Index;
1418     ++StructuredIndex;
1419     return;
1420   }
1421 
1422   Expr *expr = IList->getInit(Index);
1423   if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
1424     // FIXME: This is invalid, and accepting it causes overload resolution
1425     // to pick the wrong overload in some corner cases.
1426     if (!VerifyOnly)
1427       SemaRef.Diag(SubIList->getBeginLoc(),
1428                    diag::ext_many_braces_around_scalar_init)
1429           << SubIList->getSourceRange();
1430 
1431     CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
1432                     StructuredIndex);
1433     return;
1434   } else if (isa<DesignatedInitExpr>(expr)) {
1435     if (!VerifyOnly)
1436       SemaRef.Diag(expr->getBeginLoc(), diag::err_designator_for_scalar_init)
1437           << DeclType << expr->getSourceRange();
1438     hadError = true;
1439     ++Index;
1440     ++StructuredIndex;
1441     return;
1442   }
1443 
1444   if (VerifyOnly) {
1445     if (!SemaRef.CanPerformCopyInitialization(Entity,expr))
1446       hadError = true;
1447     ++Index;
1448     return;
1449   }
1450 
1451   ExprResult Result =
1452       SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
1453                                         /*TopLevelOfInitList=*/true);
1454 
1455   Expr *ResultExpr = nullptr;
1456 
1457   if (Result.isInvalid())
1458     hadError = true; // types weren't compatible.
1459   else {
1460     ResultExpr = Result.getAs<Expr>();
1461 
1462     if (ResultExpr != expr) {
1463       // The type was promoted, update initializer list.
1464       IList->setInit(Index, ResultExpr);
1465     }
1466   }
1467   if (hadError)
1468     ++StructuredIndex;
1469   else
1470     UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1471   ++Index;
1472 }
1473 
1474 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
1475                                          InitListExpr *IList, QualType DeclType,
1476                                          unsigned &Index,
1477                                          InitListExpr *StructuredList,
1478                                          unsigned &StructuredIndex) {
1479   if (Index >= IList->getNumInits()) {
1480     // FIXME: It would be wonderful if we could point at the actual member. In
1481     // general, it would be useful to pass location information down the stack,
1482     // so that we know the location (or decl) of the "current object" being
1483     // initialized.
1484     if (!VerifyOnly)
1485       SemaRef.Diag(IList->getBeginLoc(),
1486                    diag::err_init_reference_member_uninitialized)
1487           << DeclType << IList->getSourceRange();
1488     hadError = true;
1489     ++Index;
1490     ++StructuredIndex;
1491     return;
1492   }
1493 
1494   Expr *expr = IList->getInit(Index);
1495   if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
1496     if (!VerifyOnly)
1497       SemaRef.Diag(IList->getBeginLoc(), diag::err_init_non_aggr_init_list)
1498           << DeclType << IList->getSourceRange();
1499     hadError = true;
1500     ++Index;
1501     ++StructuredIndex;
1502     return;
1503   }
1504 
1505   if (VerifyOnly) {
1506     if (!SemaRef.CanPerformCopyInitialization(Entity,expr))
1507       hadError = true;
1508     ++Index;
1509     return;
1510   }
1511 
1512   ExprResult Result =
1513       SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
1514                                         /*TopLevelOfInitList=*/true);
1515 
1516   if (Result.isInvalid())
1517     hadError = true;
1518 
1519   expr = Result.getAs<Expr>();
1520   IList->setInit(Index, expr);
1521 
1522   if (hadError)
1523     ++StructuredIndex;
1524   else
1525     UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1526   ++Index;
1527 }
1528 
1529 void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1530                                       InitListExpr *IList, QualType DeclType,
1531                                       unsigned &Index,
1532                                       InitListExpr *StructuredList,
1533                                       unsigned &StructuredIndex) {
1534   const VectorType *VT = DeclType->getAs<VectorType>();
1535   unsigned maxElements = VT->getNumElements();
1536   unsigned numEltsInit = 0;
1537   QualType elementType = VT->getElementType();
1538 
1539   if (Index >= IList->getNumInits()) {
1540     // Make sure the element type can be value-initialized.
1541     if (VerifyOnly)
1542       CheckEmptyInitializable(
1543           InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1544           IList->getEndLoc());
1545     return;
1546   }
1547 
1548   if (!SemaRef.getLangOpts().OpenCL) {
1549     // If the initializing element is a vector, try to copy-initialize
1550     // instead of breaking it apart (which is doomed to failure anyway).
1551     Expr *Init = IList->getInit(Index);
1552     if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1553       if (VerifyOnly) {
1554         if (!SemaRef.CanPerformCopyInitialization(Entity, Init))
1555           hadError = true;
1556         ++Index;
1557         return;
1558       }
1559 
1560       ExprResult Result =
1561           SemaRef.PerformCopyInitialization(Entity, Init->getBeginLoc(), Init,
1562                                             /*TopLevelOfInitList=*/true);
1563 
1564       Expr *ResultExpr = nullptr;
1565       if (Result.isInvalid())
1566         hadError = true; // types weren't compatible.
1567       else {
1568         ResultExpr = Result.getAs<Expr>();
1569 
1570         if (ResultExpr != Init) {
1571           // The type was promoted, update initializer list.
1572           IList->setInit(Index, ResultExpr);
1573         }
1574       }
1575       if (hadError)
1576         ++StructuredIndex;
1577       else
1578         UpdateStructuredListElement(StructuredList, StructuredIndex,
1579                                     ResultExpr);
1580       ++Index;
1581       return;
1582     }
1583 
1584     InitializedEntity ElementEntity =
1585       InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1586 
1587     for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1588       // Don't attempt to go past the end of the init list
1589       if (Index >= IList->getNumInits()) {
1590         if (VerifyOnly)
1591           CheckEmptyInitializable(ElementEntity, IList->getEndLoc());
1592         break;
1593       }
1594 
1595       ElementEntity.setElementIndex(Index);
1596       CheckSubElementType(ElementEntity, IList, elementType, Index,
1597                           StructuredList, StructuredIndex);
1598     }
1599 
1600     if (VerifyOnly)
1601       return;
1602 
1603     bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian();
1604     const VectorType *T = Entity.getType()->getAs<VectorType>();
1605     if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector ||
1606                         T->getVectorKind() == VectorType::NeonPolyVector)) {
1607       // The ability to use vector initializer lists is a GNU vector extension
1608       // and is unrelated to the NEON intrinsics in arm_neon.h. On little
1609       // endian machines it works fine, however on big endian machines it
1610       // exhibits surprising behaviour:
1611       //
1612       //   uint32x2_t x = {42, 64};
1613       //   return vget_lane_u32(x, 0); // Will return 64.
1614       //
1615       // Because of this, explicitly call out that it is non-portable.
1616       //
1617       SemaRef.Diag(IList->getBeginLoc(),
1618                    diag::warn_neon_vector_initializer_non_portable);
1619 
1620       const char *typeCode;
1621       unsigned typeSize = SemaRef.Context.getTypeSize(elementType);
1622 
1623       if (elementType->isFloatingType())
1624         typeCode = "f";
1625       else if (elementType->isSignedIntegerType())
1626         typeCode = "s";
1627       else if (elementType->isUnsignedIntegerType())
1628         typeCode = "u";
1629       else
1630         llvm_unreachable("Invalid element type!");
1631 
1632       SemaRef.Diag(IList->getBeginLoc(),
1633                    SemaRef.Context.getTypeSize(VT) > 64
1634                        ? diag::note_neon_vector_initializer_non_portable_q
1635                        : diag::note_neon_vector_initializer_non_portable)
1636           << typeCode << typeSize;
1637     }
1638 
1639     return;
1640   }
1641 
1642   InitializedEntity ElementEntity =
1643     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1644 
1645   // OpenCL initializers allows vectors to be constructed from vectors.
1646   for (unsigned i = 0; i < maxElements; ++i) {
1647     // Don't attempt to go past the end of the init list
1648     if (Index >= IList->getNumInits())
1649       break;
1650 
1651     ElementEntity.setElementIndex(Index);
1652 
1653     QualType IType = IList->getInit(Index)->getType();
1654     if (!IType->isVectorType()) {
1655       CheckSubElementType(ElementEntity, IList, elementType, Index,
1656                           StructuredList, StructuredIndex);
1657       ++numEltsInit;
1658     } else {
1659       QualType VecType;
1660       const VectorType *IVT = IType->getAs<VectorType>();
1661       unsigned numIElts = IVT->getNumElements();
1662 
1663       if (IType->isExtVectorType())
1664         VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1665       else
1666         VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1667                                                 IVT->getVectorKind());
1668       CheckSubElementType(ElementEntity, IList, VecType, Index,
1669                           StructuredList, StructuredIndex);
1670       numEltsInit += numIElts;
1671     }
1672   }
1673 
1674   // OpenCL requires all elements to be initialized.
1675   if (numEltsInit != maxElements) {
1676     if (!VerifyOnly)
1677       SemaRef.Diag(IList->getBeginLoc(),
1678                    diag::err_vector_incorrect_num_initializers)
1679           << (numEltsInit < maxElements) << maxElements << numEltsInit;
1680     hadError = true;
1681   }
1682 }
1683 
1684 void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1685                                      InitListExpr *IList, QualType &DeclType,
1686                                      llvm::APSInt elementIndex,
1687                                      bool SubobjectIsDesignatorContext,
1688                                      unsigned &Index,
1689                                      InitListExpr *StructuredList,
1690                                      unsigned &StructuredIndex) {
1691   const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1692 
1693   // Check for the special-case of initializing an array with a string.
1694   if (Index < IList->getNumInits()) {
1695     if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) ==
1696         SIF_None) {
1697       // We place the string literal directly into the resulting
1698       // initializer list. This is the only place where the structure
1699       // of the structured initializer list doesn't match exactly,
1700       // because doing so would involve allocating one character
1701       // constant for each string.
1702       if (!VerifyOnly) {
1703         CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef);
1704         UpdateStructuredListElement(StructuredList, StructuredIndex,
1705                                     IList->getInit(Index));
1706         StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1707       }
1708       ++Index;
1709       return;
1710     }
1711   }
1712   if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1713     // Check for VLAs; in standard C it would be possible to check this
1714     // earlier, but I don't know where clang accepts VLAs (gcc accepts
1715     // them in all sorts of strange places).
1716     if (!VerifyOnly)
1717       SemaRef.Diag(VAT->getSizeExpr()->getBeginLoc(),
1718                    diag::err_variable_object_no_init)
1719           << VAT->getSizeExpr()->getSourceRange();
1720     hadError = true;
1721     ++Index;
1722     ++StructuredIndex;
1723     return;
1724   }
1725 
1726   // We might know the maximum number of elements in advance.
1727   llvm::APSInt maxElements(elementIndex.getBitWidth(),
1728                            elementIndex.isUnsigned());
1729   bool maxElementsKnown = false;
1730   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1731     maxElements = CAT->getSize();
1732     elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1733     elementIndex.setIsUnsigned(maxElements.isUnsigned());
1734     maxElementsKnown = true;
1735   }
1736 
1737   QualType elementType = arrayType->getElementType();
1738   while (Index < IList->getNumInits()) {
1739     Expr *Init = IList->getInit(Index);
1740     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1741       // If we're not the subobject that matches up with the '{' for
1742       // the designator, we shouldn't be handling the
1743       // designator. Return immediately.
1744       if (!SubobjectIsDesignatorContext)
1745         return;
1746 
1747       // Handle this designated initializer. elementIndex will be
1748       // updated to be the next array element we'll initialize.
1749       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1750                                      DeclType, nullptr, &elementIndex, Index,
1751                                      StructuredList, StructuredIndex, true,
1752                                      false)) {
1753         hadError = true;
1754         continue;
1755       }
1756 
1757       if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1758         maxElements = maxElements.extend(elementIndex.getBitWidth());
1759       else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1760         elementIndex = elementIndex.extend(maxElements.getBitWidth());
1761       elementIndex.setIsUnsigned(maxElements.isUnsigned());
1762 
1763       // If the array is of incomplete type, keep track of the number of
1764       // elements in the initializer.
1765       if (!maxElementsKnown && elementIndex > maxElements)
1766         maxElements = elementIndex;
1767 
1768       continue;
1769     }
1770 
1771     // If we know the maximum number of elements, and we've already
1772     // hit it, stop consuming elements in the initializer list.
1773     if (maxElementsKnown && elementIndex == maxElements)
1774       break;
1775 
1776     InitializedEntity ElementEntity =
1777       InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1778                                            Entity);
1779     // Check this element.
1780     CheckSubElementType(ElementEntity, IList, elementType, Index,
1781                         StructuredList, StructuredIndex);
1782     ++elementIndex;
1783 
1784     // If the array is of incomplete type, keep track of the number of
1785     // elements in the initializer.
1786     if (!maxElementsKnown && elementIndex > maxElements)
1787       maxElements = elementIndex;
1788   }
1789   if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1790     // If this is an incomplete array type, the actual type needs to
1791     // be calculated here.
1792     llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1793     if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) {
1794       // Sizing an array implicitly to zero is not allowed by ISO C,
1795       // but is supported by GNU.
1796       SemaRef.Diag(IList->getBeginLoc(), diag::ext_typecheck_zero_array_size);
1797     }
1798 
1799     DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1800                                                      ArrayType::Normal, 0);
1801   }
1802   if (!hadError && VerifyOnly) {
1803     // If there are any members of the array that get value-initialized, check
1804     // that is possible. That happens if we know the bound and don't have
1805     // enough elements, or if we're performing an array new with an unknown
1806     // bound.
1807     // FIXME: This needs to detect holes left by designated initializers too.
1808     if ((maxElementsKnown && elementIndex < maxElements) ||
1809         Entity.isVariableLengthArrayNew())
1810       CheckEmptyInitializable(
1811           InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1812           IList->getEndLoc());
1813   }
1814 }
1815 
1816 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1817                                              Expr *InitExpr,
1818                                              FieldDecl *Field,
1819                                              bool TopLevelObject) {
1820   // Handle GNU flexible array initializers.
1821   unsigned FlexArrayDiag;
1822   if (isa<InitListExpr>(InitExpr) &&
1823       cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
1824     // Empty flexible array init always allowed as an extension
1825     FlexArrayDiag = diag::ext_flexible_array_init;
1826   } else if (SemaRef.getLangOpts().CPlusPlus) {
1827     // Disallow flexible array init in C++; it is not required for gcc
1828     // compatibility, and it needs work to IRGen correctly in general.
1829     FlexArrayDiag = diag::err_flexible_array_init;
1830   } else if (!TopLevelObject) {
1831     // Disallow flexible array init on non-top-level object
1832     FlexArrayDiag = diag::err_flexible_array_init;
1833   } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
1834     // Disallow flexible array init on anything which is not a variable.
1835     FlexArrayDiag = diag::err_flexible_array_init;
1836   } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
1837     // Disallow flexible array init on local variables.
1838     FlexArrayDiag = diag::err_flexible_array_init;
1839   } else {
1840     // Allow other cases.
1841     FlexArrayDiag = diag::ext_flexible_array_init;
1842   }
1843 
1844   if (!VerifyOnly) {
1845     SemaRef.Diag(InitExpr->getBeginLoc(), FlexArrayDiag)
1846         << InitExpr->getBeginLoc();
1847     SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1848       << Field;
1849   }
1850 
1851   return FlexArrayDiag != diag::ext_flexible_array_init;
1852 }
1853 
1854 /// Check if the type of a class element has an accessible destructor.
1855 ///
1856 /// Aggregate initialization requires a class element's destructor be
1857 /// accessible per 11.6.1 [dcl.init.aggr]:
1858 ///
1859 /// The destructor for each element of class type is potentially invoked
1860 /// (15.4 [class.dtor]) from the context where the aggregate initialization
1861 /// occurs.
1862 static bool hasAccessibleDestructor(QualType ElementType, SourceLocation Loc,
1863                                     Sema &SemaRef) {
1864   auto *CXXRD = ElementType->getAsCXXRecordDecl();
1865   if (!CXXRD)
1866     return false;
1867 
1868   CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(CXXRD);
1869   SemaRef.CheckDestructorAccess(Loc, Destructor,
1870                                 SemaRef.PDiag(diag::err_access_dtor_temp)
1871                                     << ElementType);
1872   SemaRef.MarkFunctionReferenced(Loc, Destructor);
1873   if (SemaRef.DiagnoseUseOfDecl(Destructor, Loc))
1874     return true;
1875   return false;
1876 }
1877 
1878 void InitListChecker::CheckStructUnionTypes(
1879     const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType,
1880     CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field,
1881     bool SubobjectIsDesignatorContext, unsigned &Index,
1882     InitListExpr *StructuredList, unsigned &StructuredIndex,
1883     bool TopLevelObject) {
1884   RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
1885 
1886   // If the record is invalid, some of it's members are invalid. To avoid
1887   // confusion, we forgo checking the intializer for the entire record.
1888   if (structDecl->isInvalidDecl()) {
1889     // Assume it was supposed to consume a single initializer.
1890     ++Index;
1891     hadError = true;
1892     return;
1893   }
1894 
1895   if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1896     RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1897 
1898     if (!VerifyOnly)
1899       for (FieldDecl *FD : RD->fields()) {
1900         QualType ET = SemaRef.Context.getBaseElementType(FD->getType());
1901         if (hasAccessibleDestructor(ET, IList->getEndLoc(), SemaRef)) {
1902           hadError = true;
1903           return;
1904         }
1905       }
1906 
1907     // If there's a default initializer, use it.
1908     if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
1909       if (VerifyOnly)
1910         return;
1911       for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1912            Field != FieldEnd; ++Field) {
1913         if (Field->hasInClassInitializer()) {
1914           StructuredList->setInitializedFieldInUnion(*Field);
1915           // FIXME: Actually build a CXXDefaultInitExpr?
1916           return;
1917         }
1918       }
1919     }
1920 
1921     // Value-initialize the first member of the union that isn't an unnamed
1922     // bitfield.
1923     for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1924          Field != FieldEnd; ++Field) {
1925       if (!Field->isUnnamedBitfield()) {
1926         if (VerifyOnly)
1927           CheckEmptyInitializable(
1928               InitializedEntity::InitializeMember(*Field, &Entity),
1929               IList->getEndLoc());
1930         else
1931           StructuredList->setInitializedFieldInUnion(*Field);
1932         break;
1933       }
1934     }
1935     return;
1936   }
1937 
1938   bool InitializedSomething = false;
1939 
1940   // If we have any base classes, they are initialized prior to the fields.
1941   for (auto &Base : Bases) {
1942     Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr;
1943 
1944     // Designated inits always initialize fields, so if we see one, all
1945     // remaining base classes have no explicit initializer.
1946     if (Init && isa<DesignatedInitExpr>(Init))
1947       Init = nullptr;
1948 
1949     SourceLocation InitLoc = Init ? Init->getBeginLoc() : IList->getEndLoc();
1950     InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
1951         SemaRef.Context, &Base, false, &Entity);
1952     if (Init) {
1953       CheckSubElementType(BaseEntity, IList, Base.getType(), Index,
1954                           StructuredList, StructuredIndex);
1955       InitializedSomething = true;
1956     } else if (VerifyOnly) {
1957       CheckEmptyInitializable(BaseEntity, InitLoc);
1958     }
1959 
1960     if (!VerifyOnly)
1961       if (hasAccessibleDestructor(Base.getType(), InitLoc, SemaRef)) {
1962         hadError = true;
1963         return;
1964       }
1965   }
1966 
1967   // If structDecl is a forward declaration, this loop won't do
1968   // anything except look at designated initializers; That's okay,
1969   // because an error should get printed out elsewhere. It might be
1970   // worthwhile to skip over the rest of the initializer, though.
1971   RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1972   RecordDecl::field_iterator FieldEnd = RD->field_end();
1973   bool CheckForMissingFields =
1974     !IList->isIdiomaticZeroInitializer(SemaRef.getLangOpts());
1975   bool HasDesignatedInit = false;
1976 
1977   while (Index < IList->getNumInits()) {
1978     Expr *Init = IList->getInit(Index);
1979     SourceLocation InitLoc = Init->getBeginLoc();
1980 
1981     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1982       // If we're not the subobject that matches up with the '{' for
1983       // the designator, we shouldn't be handling the
1984       // designator. Return immediately.
1985       if (!SubobjectIsDesignatorContext)
1986         return;
1987 
1988       HasDesignatedInit = true;
1989 
1990       // Handle this designated initializer. Field will be updated to
1991       // the next field that we'll be initializing.
1992       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1993                                      DeclType, &Field, nullptr, Index,
1994                                      StructuredList, StructuredIndex,
1995                                      true, TopLevelObject))
1996         hadError = true;
1997       else if (!VerifyOnly) {
1998         // Find the field named by the designated initializer.
1999         RecordDecl::field_iterator F = RD->field_begin();
2000         while (std::next(F) != Field)
2001           ++F;
2002         QualType ET = SemaRef.Context.getBaseElementType(F->getType());
2003         if (hasAccessibleDestructor(ET, InitLoc, SemaRef)) {
2004           hadError = true;
2005           return;
2006         }
2007       }
2008 
2009       InitializedSomething = true;
2010 
2011       // Disable check for missing fields when designators are used.
2012       // This matches gcc behaviour.
2013       CheckForMissingFields = false;
2014       continue;
2015     }
2016 
2017     if (Field == FieldEnd) {
2018       // We've run out of fields. We're done.
2019       break;
2020     }
2021 
2022     // We've already initialized a member of a union. We're done.
2023     if (InitializedSomething && DeclType->isUnionType())
2024       break;
2025 
2026     // If we've hit the flexible array member at the end, we're done.
2027     if (Field->getType()->isIncompleteArrayType())
2028       break;
2029 
2030     if (Field->isUnnamedBitfield()) {
2031       // Don't initialize unnamed bitfields, e.g. "int : 20;"
2032       ++Field;
2033       continue;
2034     }
2035 
2036     // Make sure we can use this declaration.
2037     bool InvalidUse;
2038     if (VerifyOnly)
2039       InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2040     else
2041       InvalidUse = SemaRef.DiagnoseUseOfDecl(
2042           *Field, IList->getInit(Index)->getBeginLoc());
2043     if (InvalidUse) {
2044       ++Index;
2045       ++Field;
2046       hadError = true;
2047       continue;
2048     }
2049 
2050     if (!VerifyOnly) {
2051       QualType ET = SemaRef.Context.getBaseElementType(Field->getType());
2052       if (hasAccessibleDestructor(ET, InitLoc, SemaRef)) {
2053         hadError = true;
2054         return;
2055       }
2056     }
2057 
2058     InitializedEntity MemberEntity =
2059       InitializedEntity::InitializeMember(*Field, &Entity);
2060     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2061                         StructuredList, StructuredIndex);
2062     InitializedSomething = true;
2063 
2064     if (DeclType->isUnionType() && !VerifyOnly) {
2065       // Initialize the first field within the union.
2066       StructuredList->setInitializedFieldInUnion(*Field);
2067     }
2068 
2069     ++Field;
2070   }
2071 
2072   // Emit warnings for missing struct field initializers.
2073   if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
2074       Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
2075       !DeclType->isUnionType()) {
2076     // It is possible we have one or more unnamed bitfields remaining.
2077     // Find first (if any) named field and emit warning.
2078     for (RecordDecl::field_iterator it = Field, end = RD->field_end();
2079          it != end; ++it) {
2080       if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
2081         SemaRef.Diag(IList->getSourceRange().getEnd(),
2082                      diag::warn_missing_field_initializers) << *it;
2083         break;
2084       }
2085     }
2086   }
2087 
2088   // Check that any remaining fields can be value-initialized.
2089   if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() &&
2090       !Field->getType()->isIncompleteArrayType()) {
2091     // FIXME: Should check for holes left by designated initializers too.
2092     for (; Field != FieldEnd && !hadError; ++Field) {
2093       if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
2094         CheckEmptyInitializable(
2095             InitializedEntity::InitializeMember(*Field, &Entity),
2096             IList->getEndLoc());
2097     }
2098   }
2099 
2100   // Check that the types of the remaining fields have accessible destructors.
2101   if (!VerifyOnly) {
2102     // If the initializer expression has a designated initializer, check the
2103     // elements for which a designated initializer is not provided too.
2104     RecordDecl::field_iterator I = HasDesignatedInit ? RD->field_begin()
2105                                                      : Field;
2106     for (RecordDecl::field_iterator E = RD->field_end(); I != E; ++I) {
2107       QualType ET = SemaRef.Context.getBaseElementType(I->getType());
2108       if (hasAccessibleDestructor(ET, IList->getEndLoc(), SemaRef)) {
2109         hadError = true;
2110         return;
2111       }
2112     }
2113   }
2114 
2115   if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
2116       Index >= IList->getNumInits())
2117     return;
2118 
2119   if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
2120                              TopLevelObject)) {
2121     hadError = true;
2122     ++Index;
2123     return;
2124   }
2125 
2126   InitializedEntity MemberEntity =
2127     InitializedEntity::InitializeMember(*Field, &Entity);
2128 
2129   if (isa<InitListExpr>(IList->getInit(Index)))
2130     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2131                         StructuredList, StructuredIndex);
2132   else
2133     CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
2134                           StructuredList, StructuredIndex);
2135 }
2136 
2137 /// Expand a field designator that refers to a member of an
2138 /// anonymous struct or union into a series of field designators that
2139 /// refers to the field within the appropriate subobject.
2140 ///
2141 static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
2142                                            DesignatedInitExpr *DIE,
2143                                            unsigned DesigIdx,
2144                                            IndirectFieldDecl *IndirectField) {
2145   typedef DesignatedInitExpr::Designator Designator;
2146 
2147   // Build the replacement designators.
2148   SmallVector<Designator, 4> Replacements;
2149   for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
2150        PE = IndirectField->chain_end(); PI != PE; ++PI) {
2151     if (PI + 1 == PE)
2152       Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2153                                     DIE->getDesignator(DesigIdx)->getDotLoc(),
2154                                 DIE->getDesignator(DesigIdx)->getFieldLoc()));
2155     else
2156       Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2157                                         SourceLocation(), SourceLocation()));
2158     assert(isa<FieldDecl>(*PI));
2159     Replacements.back().setField(cast<FieldDecl>(*PI));
2160   }
2161 
2162   // Expand the current designator into the set of replacement
2163   // designators, so we have a full subobject path down to where the
2164   // member of the anonymous struct/union is actually stored.
2165   DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
2166                         &Replacements[0] + Replacements.size());
2167 }
2168 
2169 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
2170                                                    DesignatedInitExpr *DIE) {
2171   unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
2172   SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
2173   for (unsigned I = 0; I < NumIndexExprs; ++I)
2174     IndexExprs[I] = DIE->getSubExpr(I + 1);
2175   return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(),
2176                                     IndexExprs,
2177                                     DIE->getEqualOrColonLoc(),
2178                                     DIE->usesGNUSyntax(), DIE->getInit());
2179 }
2180 
2181 namespace {
2182 
2183 // Callback to only accept typo corrections that are for field members of
2184 // the given struct or union.
2185 class FieldInitializerValidatorCCC : public CorrectionCandidateCallback {
2186  public:
2187   explicit FieldInitializerValidatorCCC(RecordDecl *RD)
2188       : Record(RD) {}
2189 
2190   bool ValidateCandidate(const TypoCorrection &candidate) override {
2191     FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
2192     return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
2193   }
2194 
2195  private:
2196   RecordDecl *Record;
2197 };
2198 
2199 } // end anonymous namespace
2200 
2201 /// Check the well-formedness of a C99 designated initializer.
2202 ///
2203 /// Determines whether the designated initializer @p DIE, which
2204 /// resides at the given @p Index within the initializer list @p
2205 /// IList, is well-formed for a current object of type @p DeclType
2206 /// (C99 6.7.8). The actual subobject that this designator refers to
2207 /// within the current subobject is returned in either
2208 /// @p NextField or @p NextElementIndex (whichever is appropriate).
2209 ///
2210 /// @param IList  The initializer list in which this designated
2211 /// initializer occurs.
2212 ///
2213 /// @param DIE The designated initializer expression.
2214 ///
2215 /// @param DesigIdx  The index of the current designator.
2216 ///
2217 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
2218 /// into which the designation in @p DIE should refer.
2219 ///
2220 /// @param NextField  If non-NULL and the first designator in @p DIE is
2221 /// a field, this will be set to the field declaration corresponding
2222 /// to the field named by the designator.
2223 ///
2224 /// @param NextElementIndex  If non-NULL and the first designator in @p
2225 /// DIE is an array designator or GNU array-range designator, this
2226 /// will be set to the last index initialized by this designator.
2227 ///
2228 /// @param Index  Index into @p IList where the designated initializer
2229 /// @p DIE occurs.
2230 ///
2231 /// @param StructuredList  The initializer list expression that
2232 /// describes all of the subobject initializers in the order they'll
2233 /// actually be initialized.
2234 ///
2235 /// @returns true if there was an error, false otherwise.
2236 bool
2237 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
2238                                             InitListExpr *IList,
2239                                             DesignatedInitExpr *DIE,
2240                                             unsigned DesigIdx,
2241                                             QualType &CurrentObjectType,
2242                                           RecordDecl::field_iterator *NextField,
2243                                             llvm::APSInt *NextElementIndex,
2244                                             unsigned &Index,
2245                                             InitListExpr *StructuredList,
2246                                             unsigned &StructuredIndex,
2247                                             bool FinishSubobjectInit,
2248                                             bool TopLevelObject) {
2249   if (DesigIdx == DIE->size()) {
2250     // Check the actual initialization for the designated object type.
2251     bool prevHadError = hadError;
2252 
2253     // Temporarily remove the designator expression from the
2254     // initializer list that the child calls see, so that we don't try
2255     // to re-process the designator.
2256     unsigned OldIndex = Index;
2257     IList->setInit(OldIndex, DIE->getInit());
2258 
2259     CheckSubElementType(Entity, IList, CurrentObjectType, Index,
2260                         StructuredList, StructuredIndex);
2261 
2262     // Restore the designated initializer expression in the syntactic
2263     // form of the initializer list.
2264     if (IList->getInit(OldIndex) != DIE->getInit())
2265       DIE->setInit(IList->getInit(OldIndex));
2266     IList->setInit(OldIndex, DIE);
2267 
2268     return hadError && !prevHadError;
2269   }
2270 
2271   DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
2272   bool IsFirstDesignator = (DesigIdx == 0);
2273   if (!VerifyOnly) {
2274     assert((IsFirstDesignator || StructuredList) &&
2275            "Need a non-designated initializer list to start from");
2276 
2277     // Determine the structural initializer list that corresponds to the
2278     // current subobject.
2279     if (IsFirstDesignator)
2280       StructuredList = SyntacticToSemantic.lookup(IList);
2281     else {
2282       Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ?
2283           StructuredList->getInit(StructuredIndex) : nullptr;
2284       if (!ExistingInit && StructuredList->hasArrayFiller())
2285         ExistingInit = StructuredList->getArrayFiller();
2286 
2287       if (!ExistingInit)
2288         StructuredList = getStructuredSubobjectInit(
2289             IList, Index, CurrentObjectType, StructuredList, StructuredIndex,
2290             SourceRange(D->getBeginLoc(), DIE->getEndLoc()));
2291       else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit))
2292         StructuredList = Result;
2293       else {
2294         if (DesignatedInitUpdateExpr *E =
2295                 dyn_cast<DesignatedInitUpdateExpr>(ExistingInit))
2296           StructuredList = E->getUpdater();
2297         else {
2298           DesignatedInitUpdateExpr *DIUE = new (SemaRef.Context)
2299               DesignatedInitUpdateExpr(SemaRef.Context, D->getBeginLoc(),
2300                                        ExistingInit, DIE->getEndLoc());
2301           StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE);
2302           StructuredList = DIUE->getUpdater();
2303         }
2304 
2305         // We need to check on source range validity because the previous
2306         // initializer does not have to be an explicit initializer. e.g.,
2307         //
2308         // struct P { int a, b; };
2309         // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
2310         //
2311         // There is an overwrite taking place because the first braced initializer
2312         // list "{ .a = 2 }" already provides value for .p.b (which is zero).
2313         if (ExistingInit->getSourceRange().isValid()) {
2314           // We are creating an initializer list that initializes the
2315           // subobjects of the current object, but there was already an
2316           // initialization that completely initialized the current
2317           // subobject, e.g., by a compound literal:
2318           //
2319           // struct X { int a, b; };
2320           // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2321           //
2322           // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2323           // designated initializer re-initializes the whole
2324           // subobject [0], overwriting previous initializers.
2325           SemaRef.Diag(D->getBeginLoc(),
2326                        diag::warn_subobject_initializer_overrides)
2327               << SourceRange(D->getBeginLoc(), DIE->getEndLoc());
2328 
2329           SemaRef.Diag(ExistingInit->getBeginLoc(),
2330                        diag::note_previous_initializer)
2331               << /*FIXME:has side effects=*/0 << ExistingInit->getSourceRange();
2332         }
2333       }
2334     }
2335     assert(StructuredList && "Expected a structured initializer list");
2336   }
2337 
2338   if (D->isFieldDesignator()) {
2339     // C99 6.7.8p7:
2340     //
2341     //   If a designator has the form
2342     //
2343     //      . identifier
2344     //
2345     //   then the current object (defined below) shall have
2346     //   structure or union type and the identifier shall be the
2347     //   name of a member of that type.
2348     const RecordType *RT = CurrentObjectType->getAs<RecordType>();
2349     if (!RT) {
2350       SourceLocation Loc = D->getDotLoc();
2351       if (Loc.isInvalid())
2352         Loc = D->getFieldLoc();
2353       if (!VerifyOnly)
2354         SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
2355           << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
2356       ++Index;
2357       return true;
2358     }
2359 
2360     FieldDecl *KnownField = D->getField();
2361     if (!KnownField) {
2362       IdentifierInfo *FieldName = D->getFieldName();
2363       DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
2364       for (NamedDecl *ND : Lookup) {
2365         if (auto *FD = dyn_cast<FieldDecl>(ND)) {
2366           KnownField = FD;
2367           break;
2368         }
2369         if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) {
2370           // In verify mode, don't modify the original.
2371           if (VerifyOnly)
2372             DIE = CloneDesignatedInitExpr(SemaRef, DIE);
2373           ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD);
2374           D = DIE->getDesignator(DesigIdx);
2375           KnownField = cast<FieldDecl>(*IFD->chain_begin());
2376           break;
2377         }
2378       }
2379       if (!KnownField) {
2380         if (VerifyOnly) {
2381           ++Index;
2382           return true;  // No typo correction when just trying this out.
2383         }
2384 
2385         // Name lookup found something, but it wasn't a field.
2386         if (!Lookup.empty()) {
2387           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
2388             << FieldName;
2389           SemaRef.Diag(Lookup.front()->getLocation(),
2390                        diag::note_field_designator_found);
2391           ++Index;
2392           return true;
2393         }
2394 
2395         // Name lookup didn't find anything.
2396         // Determine whether this was a typo for another field name.
2397         if (TypoCorrection Corrected = SemaRef.CorrectTypo(
2398                 DeclarationNameInfo(FieldName, D->getFieldLoc()),
2399                 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr,
2400                 llvm::make_unique<FieldInitializerValidatorCCC>(RT->getDecl()),
2401                 Sema::CTK_ErrorRecovery, RT->getDecl())) {
2402           SemaRef.diagnoseTypo(
2403               Corrected,
2404               SemaRef.PDiag(diag::err_field_designator_unknown_suggest)
2405                 << FieldName << CurrentObjectType);
2406           KnownField = Corrected.getCorrectionDeclAs<FieldDecl>();
2407           hadError = true;
2408         } else {
2409           // Typo correction didn't find anything.
2410           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
2411             << FieldName << CurrentObjectType;
2412           ++Index;
2413           return true;
2414         }
2415       }
2416     }
2417 
2418     unsigned FieldIndex = 0;
2419 
2420     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2421       FieldIndex = CXXRD->getNumBases();
2422 
2423     for (auto *FI : RT->getDecl()->fields()) {
2424       if (FI->isUnnamedBitfield())
2425         continue;
2426       if (declaresSameEntity(KnownField, FI)) {
2427         KnownField = FI;
2428         break;
2429       }
2430       ++FieldIndex;
2431     }
2432 
2433     RecordDecl::field_iterator Field =
2434         RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField));
2435 
2436     // All of the fields of a union are located at the same place in
2437     // the initializer list.
2438     if (RT->getDecl()->isUnion()) {
2439       FieldIndex = 0;
2440       if (!VerifyOnly) {
2441         FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion();
2442         if (CurrentField && !declaresSameEntity(CurrentField, *Field)) {
2443           assert(StructuredList->getNumInits() == 1
2444                  && "A union should never have more than one initializer!");
2445 
2446           Expr *ExistingInit = StructuredList->getInit(0);
2447           if (ExistingInit) {
2448             // We're about to throw away an initializer, emit warning.
2449             SemaRef.Diag(D->getFieldLoc(),
2450                          diag::warn_initializer_overrides)
2451               << D->getSourceRange();
2452             SemaRef.Diag(ExistingInit->getBeginLoc(),
2453                          diag::note_previous_initializer)
2454                 << /*FIXME:has side effects=*/0
2455                 << ExistingInit->getSourceRange();
2456           }
2457 
2458           // remove existing initializer
2459           StructuredList->resizeInits(SemaRef.Context, 0);
2460           StructuredList->setInitializedFieldInUnion(nullptr);
2461         }
2462 
2463         StructuredList->setInitializedFieldInUnion(*Field);
2464       }
2465     }
2466 
2467     // Make sure we can use this declaration.
2468     bool InvalidUse;
2469     if (VerifyOnly)
2470       InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2471     else
2472       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
2473     if (InvalidUse) {
2474       ++Index;
2475       return true;
2476     }
2477 
2478     if (!VerifyOnly) {
2479       // Update the designator with the field declaration.
2480       D->setField(*Field);
2481 
2482       // Make sure that our non-designated initializer list has space
2483       // for a subobject corresponding to this field.
2484       if (FieldIndex >= StructuredList->getNumInits())
2485         StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
2486     }
2487 
2488     // This designator names a flexible array member.
2489     if (Field->getType()->isIncompleteArrayType()) {
2490       bool Invalid = false;
2491       if ((DesigIdx + 1) != DIE->size()) {
2492         // We can't designate an object within the flexible array
2493         // member (because GCC doesn't allow it).
2494         if (!VerifyOnly) {
2495           DesignatedInitExpr::Designator *NextD
2496             = DIE->getDesignator(DesigIdx + 1);
2497           SemaRef.Diag(NextD->getBeginLoc(),
2498                        diag::err_designator_into_flexible_array_member)
2499               << SourceRange(NextD->getBeginLoc(), DIE->getEndLoc());
2500           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2501             << *Field;
2502         }
2503         Invalid = true;
2504       }
2505 
2506       if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
2507           !isa<StringLiteral>(DIE->getInit())) {
2508         // The initializer is not an initializer list.
2509         if (!VerifyOnly) {
2510           SemaRef.Diag(DIE->getInit()->getBeginLoc(),
2511                        diag::err_flexible_array_init_needs_braces)
2512               << DIE->getInit()->getSourceRange();
2513           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2514             << *Field;
2515         }
2516         Invalid = true;
2517       }
2518 
2519       // Check GNU flexible array initializer.
2520       if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
2521                                              TopLevelObject))
2522         Invalid = true;
2523 
2524       if (Invalid) {
2525         ++Index;
2526         return true;
2527       }
2528 
2529       // Initialize the array.
2530       bool prevHadError = hadError;
2531       unsigned newStructuredIndex = FieldIndex;
2532       unsigned OldIndex = Index;
2533       IList->setInit(Index, DIE->getInit());
2534 
2535       InitializedEntity MemberEntity =
2536         InitializedEntity::InitializeMember(*Field, &Entity);
2537       CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2538                           StructuredList, newStructuredIndex);
2539 
2540       IList->setInit(OldIndex, DIE);
2541       if (hadError && !prevHadError) {
2542         ++Field;
2543         ++FieldIndex;
2544         if (NextField)
2545           *NextField = Field;
2546         StructuredIndex = FieldIndex;
2547         return true;
2548       }
2549     } else {
2550       // Recurse to check later designated subobjects.
2551       QualType FieldType = Field->getType();
2552       unsigned newStructuredIndex = FieldIndex;
2553 
2554       InitializedEntity MemberEntity =
2555         InitializedEntity::InitializeMember(*Field, &Entity);
2556       if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
2557                                      FieldType, nullptr, nullptr, Index,
2558                                      StructuredList, newStructuredIndex,
2559                                      FinishSubobjectInit, false))
2560         return true;
2561     }
2562 
2563     // Find the position of the next field to be initialized in this
2564     // subobject.
2565     ++Field;
2566     ++FieldIndex;
2567 
2568     // If this the first designator, our caller will continue checking
2569     // the rest of this struct/class/union subobject.
2570     if (IsFirstDesignator) {
2571       if (NextField)
2572         *NextField = Field;
2573       StructuredIndex = FieldIndex;
2574       return false;
2575     }
2576 
2577     if (!FinishSubobjectInit)
2578       return false;
2579 
2580     // We've already initialized something in the union; we're done.
2581     if (RT->getDecl()->isUnion())
2582       return hadError;
2583 
2584     // Check the remaining fields within this class/struct/union subobject.
2585     bool prevHadError = hadError;
2586 
2587     auto NoBases =
2588         CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
2589                                         CXXRecordDecl::base_class_iterator());
2590     CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field,
2591                           false, Index, StructuredList, FieldIndex);
2592     return hadError && !prevHadError;
2593   }
2594 
2595   // C99 6.7.8p6:
2596   //
2597   //   If a designator has the form
2598   //
2599   //      [ constant-expression ]
2600   //
2601   //   then the current object (defined below) shall have array
2602   //   type and the expression shall be an integer constant
2603   //   expression. If the array is of unknown size, any
2604   //   nonnegative value is valid.
2605   //
2606   // Additionally, cope with the GNU extension that permits
2607   // designators of the form
2608   //
2609   //      [ constant-expression ... constant-expression ]
2610   const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
2611   if (!AT) {
2612     if (!VerifyOnly)
2613       SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
2614         << CurrentObjectType;
2615     ++Index;
2616     return true;
2617   }
2618 
2619   Expr *IndexExpr = nullptr;
2620   llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
2621   if (D->isArrayDesignator()) {
2622     IndexExpr = DIE->getArrayIndex(*D);
2623     DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
2624     DesignatedEndIndex = DesignatedStartIndex;
2625   } else {
2626     assert(D->isArrayRangeDesignator() && "Need array-range designator");
2627 
2628     DesignatedStartIndex =
2629       DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
2630     DesignatedEndIndex =
2631       DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
2632     IndexExpr = DIE->getArrayRangeEnd(*D);
2633 
2634     // Codegen can't handle evaluating array range designators that have side
2635     // effects, because we replicate the AST value for each initialized element.
2636     // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
2637     // elements with something that has a side effect, so codegen can emit an
2638     // "error unsupported" error instead of miscompiling the app.
2639     if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
2640         DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
2641       FullyStructuredList->sawArrayRangeDesignator();
2642   }
2643 
2644   if (isa<ConstantArrayType>(AT)) {
2645     llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
2646     DesignatedStartIndex
2647       = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
2648     DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
2649     DesignatedEndIndex
2650       = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
2651     DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
2652     if (DesignatedEndIndex >= MaxElements) {
2653       if (!VerifyOnly)
2654         SemaRef.Diag(IndexExpr->getBeginLoc(),
2655                      diag::err_array_designator_too_large)
2656             << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
2657             << IndexExpr->getSourceRange();
2658       ++Index;
2659       return true;
2660     }
2661   } else {
2662     unsigned DesignatedIndexBitWidth =
2663       ConstantArrayType::getMaxSizeBits(SemaRef.Context);
2664     DesignatedStartIndex =
2665       DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth);
2666     DesignatedEndIndex =
2667       DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth);
2668     DesignatedStartIndex.setIsUnsigned(true);
2669     DesignatedEndIndex.setIsUnsigned(true);
2670   }
2671 
2672   if (!VerifyOnly && StructuredList->isStringLiteralInit()) {
2673     // We're modifying a string literal init; we have to decompose the string
2674     // so we can modify the individual characters.
2675     ASTContext &Context = SemaRef.Context;
2676     Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens();
2677 
2678     // Compute the character type
2679     QualType CharTy = AT->getElementType();
2680 
2681     // Compute the type of the integer literals.
2682     QualType PromotedCharTy = CharTy;
2683     if (CharTy->isPromotableIntegerType())
2684       PromotedCharTy = Context.getPromotedIntegerType(CharTy);
2685     unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy);
2686 
2687     if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) {
2688       // Get the length of the string.
2689       uint64_t StrLen = SL->getLength();
2690       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2691         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2692       StructuredList->resizeInits(Context, StrLen);
2693 
2694       // Build a literal for each character in the string, and put them into
2695       // the init list.
2696       for (unsigned i = 0, e = StrLen; i != e; ++i) {
2697         llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i));
2698         Expr *Init = new (Context) IntegerLiteral(
2699             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2700         if (CharTy != PromotedCharTy)
2701           Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2702                                           Init, nullptr, VK_RValue);
2703         StructuredList->updateInit(Context, i, Init);
2704       }
2705     } else {
2706       ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr);
2707       std::string Str;
2708       Context.getObjCEncodingForType(E->getEncodedType(), Str);
2709 
2710       // Get the length of the string.
2711       uint64_t StrLen = Str.size();
2712       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2713         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2714       StructuredList->resizeInits(Context, StrLen);
2715 
2716       // Build a literal for each character in the string, and put them into
2717       // the init list.
2718       for (unsigned i = 0, e = StrLen; i != e; ++i) {
2719         llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]);
2720         Expr *Init = new (Context) IntegerLiteral(
2721             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2722         if (CharTy != PromotedCharTy)
2723           Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2724                                           Init, nullptr, VK_RValue);
2725         StructuredList->updateInit(Context, i, Init);
2726       }
2727     }
2728   }
2729 
2730   // Make sure that our non-designated initializer list has space
2731   // for a subobject corresponding to this array element.
2732   if (!VerifyOnly &&
2733       DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
2734     StructuredList->resizeInits(SemaRef.Context,
2735                                 DesignatedEndIndex.getZExtValue() + 1);
2736 
2737   // Repeatedly perform subobject initializations in the range
2738   // [DesignatedStartIndex, DesignatedEndIndex].
2739 
2740   // Move to the next designator
2741   unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
2742   unsigned OldIndex = Index;
2743 
2744   InitializedEntity ElementEntity =
2745     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
2746 
2747   while (DesignatedStartIndex <= DesignatedEndIndex) {
2748     // Recurse to check later designated subobjects.
2749     QualType ElementType = AT->getElementType();
2750     Index = OldIndex;
2751 
2752     ElementEntity.setElementIndex(ElementIndex);
2753     if (CheckDesignatedInitializer(
2754             ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr,
2755             nullptr, Index, StructuredList, ElementIndex,
2756             FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex),
2757             false))
2758       return true;
2759 
2760     // Move to the next index in the array that we'll be initializing.
2761     ++DesignatedStartIndex;
2762     ElementIndex = DesignatedStartIndex.getZExtValue();
2763   }
2764 
2765   // If this the first designator, our caller will continue checking
2766   // the rest of this array subobject.
2767   if (IsFirstDesignator) {
2768     if (NextElementIndex)
2769       *NextElementIndex = DesignatedStartIndex;
2770     StructuredIndex = ElementIndex;
2771     return false;
2772   }
2773 
2774   if (!FinishSubobjectInit)
2775     return false;
2776 
2777   // Check the remaining elements within this array subobject.
2778   bool prevHadError = hadError;
2779   CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
2780                  /*SubobjectIsDesignatorContext=*/false, Index,
2781                  StructuredList, ElementIndex);
2782   return hadError && !prevHadError;
2783 }
2784 
2785 // Get the structured initializer list for a subobject of type
2786 // @p CurrentObjectType.
2787 InitListExpr *
2788 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
2789                                             QualType CurrentObjectType,
2790                                             InitListExpr *StructuredList,
2791                                             unsigned StructuredIndex,
2792                                             SourceRange InitRange,
2793                                             bool IsFullyOverwritten) {
2794   if (VerifyOnly)
2795     return nullptr; // No structured list in verification-only mode.
2796   Expr *ExistingInit = nullptr;
2797   if (!StructuredList)
2798     ExistingInit = SyntacticToSemantic.lookup(IList);
2799   else if (StructuredIndex < StructuredList->getNumInits())
2800     ExistingInit = StructuredList->getInit(StructuredIndex);
2801 
2802   if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
2803     // There might have already been initializers for subobjects of the current
2804     // object, but a subsequent initializer list will overwrite the entirety
2805     // of the current object. (See DR 253 and C99 6.7.8p21). e.g.,
2806     //
2807     // struct P { char x[6]; };
2808     // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } };
2809     //
2810     // The first designated initializer is ignored, and l.x is just "f".
2811     if (!IsFullyOverwritten)
2812       return Result;
2813 
2814   if (ExistingInit) {
2815     // We are creating an initializer list that initializes the
2816     // subobjects of the current object, but there was already an
2817     // initialization that completely initialized the current
2818     // subobject, e.g., by a compound literal:
2819     //
2820     // struct X { int a, b; };
2821     // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2822     //
2823     // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2824     // designated initializer re-initializes the whole
2825     // subobject [0], overwriting previous initializers.
2826     SemaRef.Diag(InitRange.getBegin(),
2827                  diag::warn_subobject_initializer_overrides)
2828       << InitRange;
2829     SemaRef.Diag(ExistingInit->getBeginLoc(), diag::note_previous_initializer)
2830         << /*FIXME:has side effects=*/0 << ExistingInit->getSourceRange();
2831   }
2832 
2833   InitListExpr *Result
2834     = new (SemaRef.Context) InitListExpr(SemaRef.Context,
2835                                          InitRange.getBegin(), None,
2836                                          InitRange.getEnd());
2837 
2838   QualType ResultType = CurrentObjectType;
2839   if (!ResultType->isArrayType())
2840     ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
2841   Result->setType(ResultType);
2842 
2843   // Pre-allocate storage for the structured initializer list.
2844   unsigned NumElements = 0;
2845   unsigned NumInits = 0;
2846   bool GotNumInits = false;
2847   if (!StructuredList) {
2848     NumInits = IList->getNumInits();
2849     GotNumInits = true;
2850   } else if (Index < IList->getNumInits()) {
2851     if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
2852       NumInits = SubList->getNumInits();
2853       GotNumInits = true;
2854     }
2855   }
2856 
2857   if (const ArrayType *AType
2858       = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
2859     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
2860       NumElements = CAType->getSize().getZExtValue();
2861       // Simple heuristic so that we don't allocate a very large
2862       // initializer with many empty entries at the end.
2863       if (GotNumInits && NumElements > NumInits)
2864         NumElements = 0;
2865     }
2866   } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
2867     NumElements = VType->getNumElements();
2868   else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
2869     RecordDecl *RDecl = RType->getDecl();
2870     if (RDecl->isUnion())
2871       NumElements = 1;
2872     else
2873       NumElements = std::distance(RDecl->field_begin(), RDecl->field_end());
2874   }
2875 
2876   Result->reserveInits(SemaRef.Context, NumElements);
2877 
2878   // Link this new initializer list into the structured initializer
2879   // lists.
2880   if (StructuredList)
2881     StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
2882   else {
2883     Result->setSyntacticForm(IList);
2884     SyntacticToSemantic[IList] = Result;
2885   }
2886 
2887   return Result;
2888 }
2889 
2890 /// Update the initializer at index @p StructuredIndex within the
2891 /// structured initializer list to the value @p expr.
2892 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
2893                                                   unsigned &StructuredIndex,
2894                                                   Expr *expr) {
2895   // No structured initializer list to update
2896   if (!StructuredList)
2897     return;
2898 
2899   if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
2900                                                   StructuredIndex, expr)) {
2901     // This initializer overwrites a previous initializer. Warn.
2902     // We need to check on source range validity because the previous
2903     // initializer does not have to be an explicit initializer.
2904     // struct P { int a, b; };
2905     // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
2906     // There is an overwrite taking place because the first braced initializer
2907     // list "{ .a = 2 }' already provides value for .p.b (which is zero).
2908     if (PrevInit->getSourceRange().isValid()) {
2909       SemaRef.Diag(expr->getBeginLoc(), diag::warn_initializer_overrides)
2910           << expr->getSourceRange();
2911 
2912       SemaRef.Diag(PrevInit->getBeginLoc(), diag::note_previous_initializer)
2913           << /*FIXME:has side effects=*/0 << PrevInit->getSourceRange();
2914     }
2915   }
2916 
2917   ++StructuredIndex;
2918 }
2919 
2920 /// Check that the given Index expression is a valid array designator
2921 /// value. This is essentially just a wrapper around
2922 /// VerifyIntegerConstantExpression that also checks for negative values
2923 /// and produces a reasonable diagnostic if there is a
2924 /// failure. Returns the index expression, possibly with an implicit cast
2925 /// added, on success.  If everything went okay, Value will receive the
2926 /// value of the constant expression.
2927 static ExprResult
2928 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
2929   SourceLocation Loc = Index->getBeginLoc();
2930 
2931   // Make sure this is an integer constant expression.
2932   ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value);
2933   if (Result.isInvalid())
2934     return Result;
2935 
2936   if (Value.isSigned() && Value.isNegative())
2937     return S.Diag(Loc, diag::err_array_designator_negative)
2938       << Value.toString(10) << Index->getSourceRange();
2939 
2940   Value.setIsUnsigned(true);
2941   return Result;
2942 }
2943 
2944 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
2945                                             SourceLocation Loc,
2946                                             bool GNUSyntax,
2947                                             ExprResult Init) {
2948   typedef DesignatedInitExpr::Designator ASTDesignator;
2949 
2950   bool Invalid = false;
2951   SmallVector<ASTDesignator, 32> Designators;
2952   SmallVector<Expr *, 32> InitExpressions;
2953 
2954   // Build designators and check array designator expressions.
2955   for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
2956     const Designator &D = Desig.getDesignator(Idx);
2957     switch (D.getKind()) {
2958     case Designator::FieldDesignator:
2959       Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
2960                                           D.getFieldLoc()));
2961       break;
2962 
2963     case Designator::ArrayDesignator: {
2964       Expr *Index = static_cast<Expr *>(D.getArrayIndex());
2965       llvm::APSInt IndexValue;
2966       if (!Index->isTypeDependent() && !Index->isValueDependent())
2967         Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get();
2968       if (!Index)
2969         Invalid = true;
2970       else {
2971         Designators.push_back(ASTDesignator(InitExpressions.size(),
2972                                             D.getLBracketLoc(),
2973                                             D.getRBracketLoc()));
2974         InitExpressions.push_back(Index);
2975       }
2976       break;
2977     }
2978 
2979     case Designator::ArrayRangeDesignator: {
2980       Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
2981       Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
2982       llvm::APSInt StartValue;
2983       llvm::APSInt EndValue;
2984       bool StartDependent = StartIndex->isTypeDependent() ||
2985                             StartIndex->isValueDependent();
2986       bool EndDependent = EndIndex->isTypeDependent() ||
2987                           EndIndex->isValueDependent();
2988       if (!StartDependent)
2989         StartIndex =
2990             CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get();
2991       if (!EndDependent)
2992         EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get();
2993 
2994       if (!StartIndex || !EndIndex)
2995         Invalid = true;
2996       else {
2997         // Make sure we're comparing values with the same bit width.
2998         if (StartDependent || EndDependent) {
2999           // Nothing to compute.
3000         } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
3001           EndValue = EndValue.extend(StartValue.getBitWidth());
3002         else if (StartValue.getBitWidth() < EndValue.getBitWidth())
3003           StartValue = StartValue.extend(EndValue.getBitWidth());
3004 
3005         if (!StartDependent && !EndDependent && EndValue < StartValue) {
3006           Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
3007             << StartValue.toString(10) << EndValue.toString(10)
3008             << StartIndex->getSourceRange() << EndIndex->getSourceRange();
3009           Invalid = true;
3010         } else {
3011           Designators.push_back(ASTDesignator(InitExpressions.size(),
3012                                               D.getLBracketLoc(),
3013                                               D.getEllipsisLoc(),
3014                                               D.getRBracketLoc()));
3015           InitExpressions.push_back(StartIndex);
3016           InitExpressions.push_back(EndIndex);
3017         }
3018       }
3019       break;
3020     }
3021     }
3022   }
3023 
3024   if (Invalid || Init.isInvalid())
3025     return ExprError();
3026 
3027   // Clear out the expressions within the designation.
3028   Desig.ClearExprs(*this);
3029 
3030   DesignatedInitExpr *DIE
3031     = DesignatedInitExpr::Create(Context,
3032                                  Designators,
3033                                  InitExpressions, Loc, GNUSyntax,
3034                                  Init.getAs<Expr>());
3035 
3036   if (!getLangOpts().C99)
3037     Diag(DIE->getBeginLoc(), diag::ext_designated_init)
3038         << DIE->getSourceRange();
3039 
3040   return DIE;
3041 }
3042 
3043 //===----------------------------------------------------------------------===//
3044 // Initialization entity
3045 //===----------------------------------------------------------------------===//
3046 
3047 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
3048                                      const InitializedEntity &Parent)
3049   : Parent(&Parent), Index(Index)
3050 {
3051   if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
3052     Kind = EK_ArrayElement;
3053     Type = AT->getElementType();
3054   } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
3055     Kind = EK_VectorElement;
3056     Type = VT->getElementType();
3057   } else {
3058     const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
3059     assert(CT && "Unexpected type");
3060     Kind = EK_ComplexElement;
3061     Type = CT->getElementType();
3062   }
3063 }
3064 
3065 InitializedEntity
3066 InitializedEntity::InitializeBase(ASTContext &Context,
3067                                   const CXXBaseSpecifier *Base,
3068                                   bool IsInheritedVirtualBase,
3069                                   const InitializedEntity *Parent) {
3070   InitializedEntity Result;
3071   Result.Kind = EK_Base;
3072   Result.Parent = Parent;
3073   Result.Base = reinterpret_cast<uintptr_t>(Base);
3074   if (IsInheritedVirtualBase)
3075     Result.Base |= 0x01;
3076 
3077   Result.Type = Base->getType();
3078   return Result;
3079 }
3080 
3081 DeclarationName InitializedEntity::getName() const {
3082   switch (getKind()) {
3083   case EK_Parameter:
3084   case EK_Parameter_CF_Audited: {
3085     ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
3086     return (D ? D->getDeclName() : DeclarationName());
3087   }
3088 
3089   case EK_Variable:
3090   case EK_Member:
3091   case EK_Binding:
3092     return Variable.VariableOrMember->getDeclName();
3093 
3094   case EK_LambdaCapture:
3095     return DeclarationName(Capture.VarID);
3096 
3097   case EK_Result:
3098   case EK_StmtExprResult:
3099   case EK_Exception:
3100   case EK_New:
3101   case EK_Temporary:
3102   case EK_Base:
3103   case EK_Delegating:
3104   case EK_ArrayElement:
3105   case EK_VectorElement:
3106   case EK_ComplexElement:
3107   case EK_BlockElement:
3108   case EK_LambdaToBlockConversionBlockElement:
3109   case EK_CompoundLiteralInit:
3110   case EK_RelatedResult:
3111     return DeclarationName();
3112   }
3113 
3114   llvm_unreachable("Invalid EntityKind!");
3115 }
3116 
3117 ValueDecl *InitializedEntity::getDecl() const {
3118   switch (getKind()) {
3119   case EK_Variable:
3120   case EK_Member:
3121   case EK_Binding:
3122     return Variable.VariableOrMember;
3123 
3124   case EK_Parameter:
3125   case EK_Parameter_CF_Audited:
3126     return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
3127 
3128   case EK_Result:
3129   case EK_StmtExprResult:
3130   case EK_Exception:
3131   case EK_New:
3132   case EK_Temporary:
3133   case EK_Base:
3134   case EK_Delegating:
3135   case EK_ArrayElement:
3136   case EK_VectorElement:
3137   case EK_ComplexElement:
3138   case EK_BlockElement:
3139   case EK_LambdaToBlockConversionBlockElement:
3140   case EK_LambdaCapture:
3141   case EK_CompoundLiteralInit:
3142   case EK_RelatedResult:
3143     return nullptr;
3144   }
3145 
3146   llvm_unreachable("Invalid EntityKind!");
3147 }
3148 
3149 bool InitializedEntity::allowsNRVO() const {
3150   switch (getKind()) {
3151   case EK_Result:
3152   case EK_Exception:
3153     return LocAndNRVO.NRVO;
3154 
3155   case EK_StmtExprResult:
3156   case EK_Variable:
3157   case EK_Parameter:
3158   case EK_Parameter_CF_Audited:
3159   case EK_Member:
3160   case EK_Binding:
3161   case EK_New:
3162   case EK_Temporary:
3163   case EK_CompoundLiteralInit:
3164   case EK_Base:
3165   case EK_Delegating:
3166   case EK_ArrayElement:
3167   case EK_VectorElement:
3168   case EK_ComplexElement:
3169   case EK_BlockElement:
3170   case EK_LambdaToBlockConversionBlockElement:
3171   case EK_LambdaCapture:
3172   case EK_RelatedResult:
3173     break;
3174   }
3175 
3176   return false;
3177 }
3178 
3179 unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const {
3180   assert(getParent() != this);
3181   unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0;
3182   for (unsigned I = 0; I != Depth; ++I)
3183     OS << "`-";
3184 
3185   switch (getKind()) {
3186   case EK_Variable: OS << "Variable"; break;
3187   case EK_Parameter: OS << "Parameter"; break;
3188   case EK_Parameter_CF_Audited: OS << "CF audited function Parameter";
3189     break;
3190   case EK_Result: OS << "Result"; break;
3191   case EK_StmtExprResult: OS << "StmtExprResult"; break;
3192   case EK_Exception: OS << "Exception"; break;
3193   case EK_Member: OS << "Member"; break;
3194   case EK_Binding: OS << "Binding"; break;
3195   case EK_New: OS << "New"; break;
3196   case EK_Temporary: OS << "Temporary"; break;
3197   case EK_CompoundLiteralInit: OS << "CompoundLiteral";break;
3198   case EK_RelatedResult: OS << "RelatedResult"; break;
3199   case EK_Base: OS << "Base"; break;
3200   case EK_Delegating: OS << "Delegating"; break;
3201   case EK_ArrayElement: OS << "ArrayElement " << Index; break;
3202   case EK_VectorElement: OS << "VectorElement " << Index; break;
3203   case EK_ComplexElement: OS << "ComplexElement " << Index; break;
3204   case EK_BlockElement: OS << "Block"; break;
3205   case EK_LambdaToBlockConversionBlockElement:
3206     OS << "Block (lambda)";
3207     break;
3208   case EK_LambdaCapture:
3209     OS << "LambdaCapture ";
3210     OS << DeclarationName(Capture.VarID);
3211     break;
3212   }
3213 
3214   if (auto *D = getDecl()) {
3215     OS << " ";
3216     D->printQualifiedName(OS);
3217   }
3218 
3219   OS << " '" << getType().getAsString() << "'\n";
3220 
3221   return Depth + 1;
3222 }
3223 
3224 LLVM_DUMP_METHOD void InitializedEntity::dump() const {
3225   dumpImpl(llvm::errs());
3226 }
3227 
3228 //===----------------------------------------------------------------------===//
3229 // Initialization sequence
3230 //===----------------------------------------------------------------------===//
3231 
3232 void InitializationSequence::Step::Destroy() {
3233   switch (Kind) {
3234   case SK_ResolveAddressOfOverloadedFunction:
3235   case SK_CastDerivedToBaseRValue:
3236   case SK_CastDerivedToBaseXValue:
3237   case SK_CastDerivedToBaseLValue:
3238   case SK_BindReference:
3239   case SK_BindReferenceToTemporary:
3240   case SK_FinalCopy:
3241   case SK_ExtraneousCopyToTemporary:
3242   case SK_UserConversion:
3243   case SK_QualificationConversionRValue:
3244   case SK_QualificationConversionXValue:
3245   case SK_QualificationConversionLValue:
3246   case SK_AtomicConversion:
3247   case SK_LValueToRValue:
3248   case SK_ListInitialization:
3249   case SK_UnwrapInitList:
3250   case SK_RewrapInitList:
3251   case SK_ConstructorInitialization:
3252   case SK_ConstructorInitializationFromList:
3253   case SK_ZeroInitialization:
3254   case SK_CAssignment:
3255   case SK_StringInit:
3256   case SK_ObjCObjectConversion:
3257   case SK_ArrayLoopIndex:
3258   case SK_ArrayLoopInit:
3259   case SK_ArrayInit:
3260   case SK_GNUArrayInit:
3261   case SK_ParenthesizedArrayInit:
3262   case SK_PassByIndirectCopyRestore:
3263   case SK_PassByIndirectRestore:
3264   case SK_ProduceObjCObject:
3265   case SK_StdInitializerList:
3266   case SK_StdInitializerListConstructorCall:
3267   case SK_OCLSamplerInit:
3268   case SK_OCLZeroOpaqueType:
3269     break;
3270 
3271   case SK_ConversionSequence:
3272   case SK_ConversionSequenceNoNarrowing:
3273     delete ICS;
3274   }
3275 }
3276 
3277 bool InitializationSequence::isDirectReferenceBinding() const {
3278   // There can be some lvalue adjustments after the SK_BindReference step.
3279   for (auto I = Steps.rbegin(); I != Steps.rend(); ++I) {
3280     if (I->Kind == SK_BindReference)
3281       return true;
3282     if (I->Kind == SK_BindReferenceToTemporary)
3283       return false;
3284   }
3285   return false;
3286 }
3287 
3288 bool InitializationSequence::isAmbiguous() const {
3289   if (!Failed())
3290     return false;
3291 
3292   switch (getFailureKind()) {
3293   case FK_TooManyInitsForReference:
3294   case FK_ParenthesizedListInitForReference:
3295   case FK_ArrayNeedsInitList:
3296   case FK_ArrayNeedsInitListOrStringLiteral:
3297   case FK_ArrayNeedsInitListOrWideStringLiteral:
3298   case FK_NarrowStringIntoWideCharArray:
3299   case FK_WideStringIntoCharArray:
3300   case FK_IncompatWideStringIntoWideChar:
3301   case FK_PlainStringIntoUTF8Char:
3302   case FK_UTF8StringIntoPlainChar:
3303   case FK_AddressOfOverloadFailed: // FIXME: Could do better
3304   case FK_NonConstLValueReferenceBindingToTemporary:
3305   case FK_NonConstLValueReferenceBindingToBitfield:
3306   case FK_NonConstLValueReferenceBindingToVectorElement:
3307   case FK_NonConstLValueReferenceBindingToUnrelated:
3308   case FK_RValueReferenceBindingToLValue:
3309   case FK_ReferenceInitDropsQualifiers:
3310   case FK_ReferenceInitFailed:
3311   case FK_ConversionFailed:
3312   case FK_ConversionFromPropertyFailed:
3313   case FK_TooManyInitsForScalar:
3314   case FK_ParenthesizedListInitForScalar:
3315   case FK_ReferenceBindingToInitList:
3316   case FK_InitListBadDestinationType:
3317   case FK_DefaultInitOfConst:
3318   case FK_Incomplete:
3319   case FK_ArrayTypeMismatch:
3320   case FK_NonConstantArrayInit:
3321   case FK_ListInitializationFailed:
3322   case FK_VariableLengthArrayHasInitializer:
3323   case FK_PlaceholderType:
3324   case FK_ExplicitConstructor:
3325   case FK_AddressOfUnaddressableFunction:
3326     return false;
3327 
3328   case FK_ReferenceInitOverloadFailed:
3329   case FK_UserConversionOverloadFailed:
3330   case FK_ConstructorOverloadFailed:
3331   case FK_ListConstructorOverloadFailed:
3332     return FailedOverloadResult == OR_Ambiguous;
3333   }
3334 
3335   llvm_unreachable("Invalid EntityKind!");
3336 }
3337 
3338 bool InitializationSequence::isConstructorInitialization() const {
3339   return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
3340 }
3341 
3342 void
3343 InitializationSequence
3344 ::AddAddressOverloadResolutionStep(FunctionDecl *Function,
3345                                    DeclAccessPair Found,
3346                                    bool HadMultipleCandidates) {
3347   Step S;
3348   S.Kind = SK_ResolveAddressOfOverloadedFunction;
3349   S.Type = Function->getType();
3350   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3351   S.Function.Function = Function;
3352   S.Function.FoundDecl = Found;
3353   Steps.push_back(S);
3354 }
3355 
3356 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
3357                                                       ExprValueKind VK) {
3358   Step S;
3359   switch (VK) {
3360   case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
3361   case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
3362   case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
3363   }
3364   S.Type = BaseType;
3365   Steps.push_back(S);
3366 }
3367 
3368 void InitializationSequence::AddReferenceBindingStep(QualType T,
3369                                                      bool BindingTemporary) {
3370   Step S;
3371   S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
3372   S.Type = T;
3373   Steps.push_back(S);
3374 }
3375 
3376 void InitializationSequence::AddFinalCopy(QualType T) {
3377   Step S;
3378   S.Kind = SK_FinalCopy;
3379   S.Type = T;
3380   Steps.push_back(S);
3381 }
3382 
3383 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
3384   Step S;
3385   S.Kind = SK_ExtraneousCopyToTemporary;
3386   S.Type = T;
3387   Steps.push_back(S);
3388 }
3389 
3390 void
3391 InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
3392                                               DeclAccessPair FoundDecl,
3393                                               QualType T,
3394                                               bool HadMultipleCandidates) {
3395   Step S;
3396   S.Kind = SK_UserConversion;
3397   S.Type = T;
3398   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3399   S.Function.Function = Function;
3400   S.Function.FoundDecl = FoundDecl;
3401   Steps.push_back(S);
3402 }
3403 
3404 void InitializationSequence::AddQualificationConversionStep(QualType Ty,
3405                                                             ExprValueKind VK) {
3406   Step S;
3407   S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
3408   switch (VK) {
3409   case VK_RValue:
3410     S.Kind = SK_QualificationConversionRValue;
3411     break;
3412   case VK_XValue:
3413     S.Kind = SK_QualificationConversionXValue;
3414     break;
3415   case VK_LValue:
3416     S.Kind = SK_QualificationConversionLValue;
3417     break;
3418   }
3419   S.Type = Ty;
3420   Steps.push_back(S);
3421 }
3422 
3423 void InitializationSequence::AddAtomicConversionStep(QualType Ty) {
3424   Step S;
3425   S.Kind = SK_AtomicConversion;
3426   S.Type = Ty;
3427   Steps.push_back(S);
3428 }
3429 
3430 void InitializationSequence::AddLValueToRValueStep(QualType Ty) {
3431   assert(!Ty.hasQualifiers() && "rvalues may not have qualifiers");
3432 
3433   Step S;
3434   S.Kind = SK_LValueToRValue;
3435   S.Type = Ty;
3436   Steps.push_back(S);
3437 }
3438 
3439 void InitializationSequence::AddConversionSequenceStep(
3440     const ImplicitConversionSequence &ICS, QualType T,
3441     bool TopLevelOfInitList) {
3442   Step S;
3443   S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing
3444                               : SK_ConversionSequence;
3445   S.Type = T;
3446   S.ICS = new ImplicitConversionSequence(ICS);
3447   Steps.push_back(S);
3448 }
3449 
3450 void InitializationSequence::AddListInitializationStep(QualType T) {
3451   Step S;
3452   S.Kind = SK_ListInitialization;
3453   S.Type = T;
3454   Steps.push_back(S);
3455 }
3456 
3457 void InitializationSequence::AddConstructorInitializationStep(
3458     DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T,
3459     bool HadMultipleCandidates, bool FromInitList, bool AsInitList) {
3460   Step S;
3461   S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall
3462                                      : SK_ConstructorInitializationFromList
3463                         : SK_ConstructorInitialization;
3464   S.Type = T;
3465   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3466   S.Function.Function = Constructor;
3467   S.Function.FoundDecl = FoundDecl;
3468   Steps.push_back(S);
3469 }
3470 
3471 void InitializationSequence::AddZeroInitializationStep(QualType T) {
3472   Step S;
3473   S.Kind = SK_ZeroInitialization;
3474   S.Type = T;
3475   Steps.push_back(S);
3476 }
3477 
3478 void InitializationSequence::AddCAssignmentStep(QualType T) {
3479   Step S;
3480   S.Kind = SK_CAssignment;
3481   S.Type = T;
3482   Steps.push_back(S);
3483 }
3484 
3485 void InitializationSequence::AddStringInitStep(QualType T) {
3486   Step S;
3487   S.Kind = SK_StringInit;
3488   S.Type = T;
3489   Steps.push_back(S);
3490 }
3491 
3492 void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
3493   Step S;
3494   S.Kind = SK_ObjCObjectConversion;
3495   S.Type = T;
3496   Steps.push_back(S);
3497 }
3498 
3499 void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) {
3500   Step S;
3501   S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit;
3502   S.Type = T;
3503   Steps.push_back(S);
3504 }
3505 
3506 void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) {
3507   Step S;
3508   S.Kind = SK_ArrayLoopIndex;
3509   S.Type = EltT;
3510   Steps.insert(Steps.begin(), S);
3511 
3512   S.Kind = SK_ArrayLoopInit;
3513   S.Type = T;
3514   Steps.push_back(S);
3515 }
3516 
3517 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
3518   Step S;
3519   S.Kind = SK_ParenthesizedArrayInit;
3520   S.Type = T;
3521   Steps.push_back(S);
3522 }
3523 
3524 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
3525                                                               bool shouldCopy) {
3526   Step s;
3527   s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
3528                        : SK_PassByIndirectRestore);
3529   s.Type = type;
3530   Steps.push_back(s);
3531 }
3532 
3533 void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
3534   Step S;
3535   S.Kind = SK_ProduceObjCObject;
3536   S.Type = T;
3537   Steps.push_back(S);
3538 }
3539 
3540 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
3541   Step S;
3542   S.Kind = SK_StdInitializerList;
3543   S.Type = T;
3544   Steps.push_back(S);
3545 }
3546 
3547 void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
3548   Step S;
3549   S.Kind = SK_OCLSamplerInit;
3550   S.Type = T;
3551   Steps.push_back(S);
3552 }
3553 
3554 void InitializationSequence::AddOCLZeroOpaqueTypeStep(QualType T) {
3555   Step S;
3556   S.Kind = SK_OCLZeroOpaqueType;
3557   S.Type = T;
3558   Steps.push_back(S);
3559 }
3560 
3561 void InitializationSequence::RewrapReferenceInitList(QualType T,
3562                                                      InitListExpr *Syntactic) {
3563   assert(Syntactic->getNumInits() == 1 &&
3564          "Can only rewrap trivial init lists.");
3565   Step S;
3566   S.Kind = SK_UnwrapInitList;
3567   S.Type = Syntactic->getInit(0)->getType();
3568   Steps.insert(Steps.begin(), S);
3569 
3570   S.Kind = SK_RewrapInitList;
3571   S.Type = T;
3572   S.WrappingSyntacticList = Syntactic;
3573   Steps.push_back(S);
3574 }
3575 
3576 void InitializationSequence::SetOverloadFailure(FailureKind Failure,
3577                                                 OverloadingResult Result) {
3578   setSequenceKind(FailedSequence);
3579   this->Failure = Failure;
3580   this->FailedOverloadResult = Result;
3581 }
3582 
3583 //===----------------------------------------------------------------------===//
3584 // Attempt initialization
3585 //===----------------------------------------------------------------------===//
3586 
3587 /// Tries to add a zero initializer. Returns true if that worked.
3588 static bool
3589 maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence,
3590                                    const InitializedEntity &Entity) {
3591   if (Entity.getKind() != InitializedEntity::EK_Variable)
3592     return false;
3593 
3594   VarDecl *VD = cast<VarDecl>(Entity.getDecl());
3595   if (VD->getInit() || VD->getEndLoc().isMacroID())
3596     return false;
3597 
3598   QualType VariableTy = VD->getType().getCanonicalType();
3599   SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc());
3600   std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
3601   if (!Init.empty()) {
3602     Sequence.AddZeroInitializationStep(Entity.getType());
3603     Sequence.SetZeroInitializationFixit(Init, Loc);
3604     return true;
3605   }
3606   return false;
3607 }
3608 
3609 static void MaybeProduceObjCObject(Sema &S,
3610                                    InitializationSequence &Sequence,
3611                                    const InitializedEntity &Entity) {
3612   if (!S.getLangOpts().ObjCAutoRefCount) return;
3613 
3614   /// When initializing a parameter, produce the value if it's marked
3615   /// __attribute__((ns_consumed)).
3616   if (Entity.isParameterKind()) {
3617     if (!Entity.isParameterConsumed())
3618       return;
3619 
3620     assert(Entity.getType()->isObjCRetainableType() &&
3621            "consuming an object of unretainable type?");
3622     Sequence.AddProduceObjCObjectStep(Entity.getType());
3623 
3624   /// When initializing a return value, if the return type is a
3625   /// retainable type, then returns need to immediately retain the
3626   /// object.  If an autorelease is required, it will be done at the
3627   /// last instant.
3628   } else if (Entity.getKind() == InitializedEntity::EK_Result ||
3629              Entity.getKind() == InitializedEntity::EK_StmtExprResult) {
3630     if (!Entity.getType()->isObjCRetainableType())
3631       return;
3632 
3633     Sequence.AddProduceObjCObjectStep(Entity.getType());
3634   }
3635 }
3636 
3637 static void TryListInitialization(Sema &S,
3638                                   const InitializedEntity &Entity,
3639                                   const InitializationKind &Kind,
3640                                   InitListExpr *InitList,
3641                                   InitializationSequence &Sequence,
3642                                   bool TreatUnavailableAsInvalid);
3643 
3644 /// When initializing from init list via constructor, handle
3645 /// initialization of an object of type std::initializer_list<T>.
3646 ///
3647 /// \return true if we have handled initialization of an object of type
3648 /// std::initializer_list<T>, false otherwise.
3649 static bool TryInitializerListConstruction(Sema &S,
3650                                            InitListExpr *List,
3651                                            QualType DestType,
3652                                            InitializationSequence &Sequence,
3653                                            bool TreatUnavailableAsInvalid) {
3654   QualType E;
3655   if (!S.isStdInitializerList(DestType, &E))
3656     return false;
3657 
3658   if (!S.isCompleteType(List->getExprLoc(), E)) {
3659     Sequence.setIncompleteTypeFailure(E);
3660     return true;
3661   }
3662 
3663   // Try initializing a temporary array from the init list.
3664   QualType ArrayType = S.Context.getConstantArrayType(
3665       E.withConst(), llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
3666                                  List->getNumInits()),
3667       clang::ArrayType::Normal, 0);
3668   InitializedEntity HiddenArray =
3669       InitializedEntity::InitializeTemporary(ArrayType);
3670   InitializationKind Kind = InitializationKind::CreateDirectList(
3671       List->getExprLoc(), List->getBeginLoc(), List->getEndLoc());
3672   TryListInitialization(S, HiddenArray, Kind, List, Sequence,
3673                         TreatUnavailableAsInvalid);
3674   if (Sequence)
3675     Sequence.AddStdInitializerListConstructionStep(DestType);
3676   return true;
3677 }
3678 
3679 /// Determine if the constructor has the signature of a copy or move
3680 /// constructor for the type T of the class in which it was found. That is,
3681 /// determine if its first parameter is of type T or reference to (possibly
3682 /// cv-qualified) T.
3683 static bool hasCopyOrMoveCtorParam(ASTContext &Ctx,
3684                                    const ConstructorInfo &Info) {
3685   if (Info.Constructor->getNumParams() == 0)
3686     return false;
3687 
3688   QualType ParmT =
3689       Info.Constructor->getParamDecl(0)->getType().getNonReferenceType();
3690   QualType ClassT =
3691       Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext()));
3692 
3693   return Ctx.hasSameUnqualifiedType(ParmT, ClassT);
3694 }
3695 
3696 static OverloadingResult
3697 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
3698                            MultiExprArg Args,
3699                            OverloadCandidateSet &CandidateSet,
3700                            QualType DestType,
3701                            DeclContext::lookup_result Ctors,
3702                            OverloadCandidateSet::iterator &Best,
3703                            bool CopyInitializing, bool AllowExplicit,
3704                            bool OnlyListConstructors, bool IsListInit,
3705                            bool SecondStepOfCopyInit = false) {
3706   CandidateSet.clear(OverloadCandidateSet::CSK_InitByConstructor);
3707 
3708   for (NamedDecl *D : Ctors) {
3709     auto Info = getConstructorInfo(D);
3710     if (!Info.Constructor || Info.Constructor->isInvalidDecl())
3711       continue;
3712 
3713     if (!AllowExplicit && Info.Constructor->isExplicit())
3714       continue;
3715 
3716     if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor))
3717       continue;
3718 
3719     // C++11 [over.best.ics]p4:
3720     //   ... and the constructor or user-defined conversion function is a
3721     //   candidate by
3722     //   - 13.3.1.3, when the argument is the temporary in the second step
3723     //     of a class copy-initialization, or
3724     //   - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here]
3725     //   - the second phase of 13.3.1.7 when the initializer list has exactly
3726     //     one element that is itself an initializer list, and the target is
3727     //     the first parameter of a constructor of class X, and the conversion
3728     //     is to X or reference to (possibly cv-qualified X),
3729     //   user-defined conversion sequences are not considered.
3730     bool SuppressUserConversions =
3731         SecondStepOfCopyInit ||
3732         (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
3733          hasCopyOrMoveCtorParam(S.Context, Info));
3734 
3735     if (Info.ConstructorTmpl)
3736       S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
3737                                      /*ExplicitArgs*/ nullptr, Args,
3738                                      CandidateSet, SuppressUserConversions);
3739     else {
3740       // C++ [over.match.copy]p1:
3741       //   - When initializing a temporary to be bound to the first parameter
3742       //     of a constructor [for type T] that takes a reference to possibly
3743       //     cv-qualified T as its first argument, called with a single
3744       //     argument in the context of direct-initialization, explicit
3745       //     conversion functions are also considered.
3746       // FIXME: What if a constructor template instantiates to such a signature?
3747       bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
3748                                Args.size() == 1 &&
3749                                hasCopyOrMoveCtorParam(S.Context, Info);
3750       S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args,
3751                              CandidateSet, SuppressUserConversions,
3752                              /*PartialOverloading=*/false,
3753                              /*AllowExplicit=*/AllowExplicitConv);
3754     }
3755   }
3756 
3757   // FIXME: Work around a bug in C++17 guaranteed copy elision.
3758   //
3759   // When initializing an object of class type T by constructor
3760   // ([over.match.ctor]) or by list-initialization ([over.match.list])
3761   // from a single expression of class type U, conversion functions of
3762   // U that convert to the non-reference type cv T are candidates.
3763   // Explicit conversion functions are only candidates during
3764   // direct-initialization.
3765   //
3766   // Note: SecondStepOfCopyInit is only ever true in this case when
3767   // evaluating whether to produce a C++98 compatibility warning.
3768   if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 &&
3769       !SecondStepOfCopyInit) {
3770     Expr *Initializer = Args[0];
3771     auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl();
3772     if (SourceRD && S.isCompleteType(DeclLoc, Initializer->getType())) {
3773       const auto &Conversions = SourceRD->getVisibleConversionFunctions();
3774       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
3775         NamedDecl *D = *I;
3776         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3777         D = D->getUnderlyingDecl();
3778 
3779         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3780         CXXConversionDecl *Conv;
3781         if (ConvTemplate)
3782           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3783         else
3784           Conv = cast<CXXConversionDecl>(D);
3785 
3786         if ((AllowExplicit && !CopyInitializing) || !Conv->isExplicit()) {
3787           if (ConvTemplate)
3788             S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3789                                              ActingDC, Initializer, DestType,
3790                                              CandidateSet, AllowExplicit,
3791                                              /*AllowResultConversion*/false);
3792           else
3793             S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer,
3794                                      DestType, CandidateSet, AllowExplicit,
3795                                      /*AllowResultConversion*/false);
3796         }
3797       }
3798     }
3799   }
3800 
3801   // Perform overload resolution and return the result.
3802   return CandidateSet.BestViableFunction(S, DeclLoc, Best);
3803 }
3804 
3805 /// Attempt initialization by constructor (C++ [dcl.init]), which
3806 /// enumerates the constructors of the initialized entity and performs overload
3807 /// resolution to select the best.
3808 /// \param DestType       The destination class type.
3809 /// \param DestArrayType  The destination type, which is either DestType or
3810 ///                       a (possibly multidimensional) array of DestType.
3811 /// \param IsListInit     Is this list-initialization?
3812 /// \param IsInitListCopy Is this non-list-initialization resulting from a
3813 ///                       list-initialization from {x} where x is the same
3814 ///                       type as the entity?
3815 static void TryConstructorInitialization(Sema &S,
3816                                          const InitializedEntity &Entity,
3817                                          const InitializationKind &Kind,
3818                                          MultiExprArg Args, QualType DestType,
3819                                          QualType DestArrayType,
3820                                          InitializationSequence &Sequence,
3821                                          bool IsListInit = false,
3822                                          bool IsInitListCopy = false) {
3823   assert(((!IsListInit && !IsInitListCopy) ||
3824           (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&
3825          "IsListInit/IsInitListCopy must come with a single initializer list "
3826          "argument.");
3827   InitListExpr *ILE =
3828       (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr;
3829   MultiExprArg UnwrappedArgs =
3830       ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args;
3831 
3832   // The type we're constructing needs to be complete.
3833   if (!S.isCompleteType(Kind.getLocation(), DestType)) {
3834     Sequence.setIncompleteTypeFailure(DestType);
3835     return;
3836   }
3837 
3838   // C++17 [dcl.init]p17:
3839   //     - If the initializer expression is a prvalue and the cv-unqualified
3840   //       version of the source type is the same class as the class of the
3841   //       destination, the initializer expression is used to initialize the
3842   //       destination object.
3843   // Per DR (no number yet), this does not apply when initializing a base
3844   // class or delegating to another constructor from a mem-initializer.
3845   // ObjC++: Lambda captured by the block in the lambda to block conversion
3846   // should avoid copy elision.
3847   if (S.getLangOpts().CPlusPlus17 &&
3848       Entity.getKind() != InitializedEntity::EK_Base &&
3849       Entity.getKind() != InitializedEntity::EK_Delegating &&
3850       Entity.getKind() !=
3851           InitializedEntity::EK_LambdaToBlockConversionBlockElement &&
3852       UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isRValue() &&
3853       S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) {
3854     // Convert qualifications if necessary.
3855     Sequence.AddQualificationConversionStep(DestType, VK_RValue);
3856     if (ILE)
3857       Sequence.RewrapReferenceInitList(DestType, ILE);
3858     return;
3859   }
3860 
3861   const RecordType *DestRecordType = DestType->getAs<RecordType>();
3862   assert(DestRecordType && "Constructor initialization requires record type");
3863   CXXRecordDecl *DestRecordDecl
3864     = cast<CXXRecordDecl>(DestRecordType->getDecl());
3865 
3866   // Build the candidate set directly in the initialization sequence
3867   // structure, so that it will persist if we fail.
3868   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3869 
3870   // Determine whether we are allowed to call explicit constructors or
3871   // explicit conversion operators.
3872   bool AllowExplicit = Kind.AllowExplicit() || IsListInit;
3873   bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
3874 
3875   //   - Otherwise, if T is a class type, constructors are considered. The
3876   //     applicable constructors are enumerated, and the best one is chosen
3877   //     through overload resolution.
3878   DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl);
3879 
3880   OverloadingResult Result = OR_No_Viable_Function;
3881   OverloadCandidateSet::iterator Best;
3882   bool AsInitializerList = false;
3883 
3884   // C++11 [over.match.list]p1, per DR1467:
3885   //   When objects of non-aggregate type T are list-initialized, such that
3886   //   8.5.4 [dcl.init.list] specifies that overload resolution is performed
3887   //   according to the rules in this section, overload resolution selects
3888   //   the constructor in two phases:
3889   //
3890   //   - Initially, the candidate functions are the initializer-list
3891   //     constructors of the class T and the argument list consists of the
3892   //     initializer list as a single argument.
3893   if (IsListInit) {
3894     AsInitializerList = true;
3895 
3896     // If the initializer list has no elements and T has a default constructor,
3897     // the first phase is omitted.
3898     if (!(UnwrappedArgs.empty() && DestRecordDecl->hasDefaultConstructor()))
3899       Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
3900                                           CandidateSet, DestType, Ctors, Best,
3901                                           CopyInitialization, AllowExplicit,
3902                                           /*OnlyListConstructor=*/true,
3903                                           IsListInit);
3904   }
3905 
3906   // C++11 [over.match.list]p1:
3907   //   - If no viable initializer-list constructor is found, overload resolution
3908   //     is performed again, where the candidate functions are all the
3909   //     constructors of the class T and the argument list consists of the
3910   //     elements of the initializer list.
3911   if (Result == OR_No_Viable_Function) {
3912     AsInitializerList = false;
3913     Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs,
3914                                         CandidateSet, DestType, Ctors, Best,
3915                                         CopyInitialization, AllowExplicit,
3916                                         /*OnlyListConstructors=*/false,
3917                                         IsListInit);
3918   }
3919   if (Result) {
3920     Sequence.SetOverloadFailure(IsListInit ?
3921                       InitializationSequence::FK_ListConstructorOverloadFailed :
3922                       InitializationSequence::FK_ConstructorOverloadFailed,
3923                                 Result);
3924     return;
3925   }
3926 
3927   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3928 
3929   // In C++17, ResolveConstructorOverload can select a conversion function
3930   // instead of a constructor.
3931   if (auto *CD = dyn_cast<CXXConversionDecl>(Best->Function)) {
3932     // Add the user-defined conversion step that calls the conversion function.
3933     QualType ConvType = CD->getConversionType();
3934     assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) &&
3935            "should not have selected this conversion function");
3936     Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType,
3937                                    HadMultipleCandidates);
3938     if (!S.Context.hasSameType(ConvType, DestType))
3939       Sequence.AddQualificationConversionStep(DestType, VK_RValue);
3940     if (IsListInit)
3941       Sequence.RewrapReferenceInitList(Entity.getType(), ILE);
3942     return;
3943   }
3944 
3945   // C++11 [dcl.init]p6:
3946   //   If a program calls for the default initialization of an object
3947   //   of a const-qualified type T, T shall be a class type with a
3948   //   user-provided default constructor.
3949   // C++ core issue 253 proposal:
3950   //   If the implicit default constructor initializes all subobjects, no
3951   //   initializer should be required.
3952   // The 253 proposal is for example needed to process libstdc++ headers in 5.x.
3953   CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
3954   if (Kind.getKind() == InitializationKind::IK_Default &&
3955       Entity.getType().isConstQualified()) {
3956     if (!CtorDecl->getParent()->allowConstDefaultInit()) {
3957       if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
3958         Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3959       return;
3960     }
3961   }
3962 
3963   // C++11 [over.match.list]p1:
3964   //   In copy-list-initialization, if an explicit constructor is chosen, the
3965   //   initializer is ill-formed.
3966   if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
3967     Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
3968     return;
3969   }
3970 
3971   // Add the constructor initialization step. Any cv-qualification conversion is
3972   // subsumed by the initialization.
3973   Sequence.AddConstructorInitializationStep(
3974       Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates,
3975       IsListInit | IsInitListCopy, AsInitializerList);
3976 }
3977 
3978 static bool
3979 ResolveOverloadedFunctionForReferenceBinding(Sema &S,
3980                                              Expr *Initializer,
3981                                              QualType &SourceType,
3982                                              QualType &UnqualifiedSourceType,
3983                                              QualType UnqualifiedTargetType,
3984                                              InitializationSequence &Sequence) {
3985   if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
3986         S.Context.OverloadTy) {
3987     DeclAccessPair Found;
3988     bool HadMultipleCandidates = false;
3989     if (FunctionDecl *Fn
3990         = S.ResolveAddressOfOverloadedFunction(Initializer,
3991                                                UnqualifiedTargetType,
3992                                                false, Found,
3993                                                &HadMultipleCandidates)) {
3994       Sequence.AddAddressOverloadResolutionStep(Fn, Found,
3995                                                 HadMultipleCandidates);
3996       SourceType = Fn->getType();
3997       UnqualifiedSourceType = SourceType.getUnqualifiedType();
3998     } else if (!UnqualifiedTargetType->isRecordType()) {
3999       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4000       return true;
4001     }
4002   }
4003   return false;
4004 }
4005 
4006 static void TryReferenceInitializationCore(Sema &S,
4007                                            const InitializedEntity &Entity,
4008                                            const InitializationKind &Kind,
4009                                            Expr *Initializer,
4010                                            QualType cv1T1, QualType T1,
4011                                            Qualifiers T1Quals,
4012                                            QualType cv2T2, QualType T2,
4013                                            Qualifiers T2Quals,
4014                                            InitializationSequence &Sequence);
4015 
4016 static void TryValueInitialization(Sema &S,
4017                                    const InitializedEntity &Entity,
4018                                    const InitializationKind &Kind,
4019                                    InitializationSequence &Sequence,
4020                                    InitListExpr *InitList = nullptr);
4021 
4022 /// Attempt list initialization of a reference.
4023 static void TryReferenceListInitialization(Sema &S,
4024                                            const InitializedEntity &Entity,
4025                                            const InitializationKind &Kind,
4026                                            InitListExpr *InitList,
4027                                            InitializationSequence &Sequence,
4028                                            bool TreatUnavailableAsInvalid) {
4029   // First, catch C++03 where this isn't possible.
4030   if (!S.getLangOpts().CPlusPlus11) {
4031     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
4032     return;
4033   }
4034   // Can't reference initialize a compound literal.
4035   if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) {
4036     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
4037     return;
4038   }
4039 
4040   QualType DestType = Entity.getType();
4041   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
4042   Qualifiers T1Quals;
4043   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4044 
4045   // Reference initialization via an initializer list works thus:
4046   // If the initializer list consists of a single element that is
4047   // reference-related to the referenced type, bind directly to that element
4048   // (possibly creating temporaries).
4049   // Otherwise, initialize a temporary with the initializer list and
4050   // bind to that.
4051   if (InitList->getNumInits() == 1) {
4052     Expr *Initializer = InitList->getInit(0);
4053     QualType cv2T2 = Initializer->getType();
4054     Qualifiers T2Quals;
4055     QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4056 
4057     // If this fails, creating a temporary wouldn't work either.
4058     if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4059                                                      T1, Sequence))
4060       return;
4061 
4062     SourceLocation DeclLoc = Initializer->getBeginLoc();
4063     bool dummy1, dummy2, dummy3;
4064     Sema::ReferenceCompareResult RefRelationship
4065       = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1,
4066                                        dummy2, dummy3);
4067     if (RefRelationship >= Sema::Ref_Related) {
4068       // Try to bind the reference here.
4069       TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4070                                      T1Quals, cv2T2, T2, T2Quals, Sequence);
4071       if (Sequence)
4072         Sequence.RewrapReferenceInitList(cv1T1, InitList);
4073       return;
4074     }
4075 
4076     // Update the initializer if we've resolved an overloaded function.
4077     if (Sequence.step_begin() != Sequence.step_end())
4078       Sequence.RewrapReferenceInitList(cv1T1, InitList);
4079   }
4080 
4081   // Not reference-related. Create a temporary and bind to that.
4082   InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
4083 
4084   TryListInitialization(S, TempEntity, Kind, InitList, Sequence,
4085                         TreatUnavailableAsInvalid);
4086   if (Sequence) {
4087     if (DestType->isRValueReferenceType() ||
4088         (T1Quals.hasConst() && !T1Quals.hasVolatile()))
4089       Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
4090     else
4091       Sequence.SetFailed(
4092           InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
4093   }
4094 }
4095 
4096 /// Attempt list initialization (C++0x [dcl.init.list])
4097 static void TryListInitialization(Sema &S,
4098                                   const InitializedEntity &Entity,
4099                                   const InitializationKind &Kind,
4100                                   InitListExpr *InitList,
4101                                   InitializationSequence &Sequence,
4102                                   bool TreatUnavailableAsInvalid) {
4103   QualType DestType = Entity.getType();
4104 
4105   // C++ doesn't allow scalar initialization with more than one argument.
4106   // But C99 complex numbers are scalars and it makes sense there.
4107   if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
4108       !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
4109     Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
4110     return;
4111   }
4112   if (DestType->isReferenceType()) {
4113     TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence,
4114                                    TreatUnavailableAsInvalid);
4115     return;
4116   }
4117 
4118   if (DestType->isRecordType() &&
4119       !S.isCompleteType(InitList->getBeginLoc(), DestType)) {
4120     Sequence.setIncompleteTypeFailure(DestType);
4121     return;
4122   }
4123 
4124   // C++11 [dcl.init.list]p3, per DR1467:
4125   // - If T is a class type and the initializer list has a single element of
4126   //   type cv U, where U is T or a class derived from T, the object is
4127   //   initialized from that element (by copy-initialization for
4128   //   copy-list-initialization, or by direct-initialization for
4129   //   direct-list-initialization).
4130   // - Otherwise, if T is a character array and the initializer list has a
4131   //   single element that is an appropriately-typed string literal
4132   //   (8.5.2 [dcl.init.string]), initialization is performed as described
4133   //   in that section.
4134   // - Otherwise, if T is an aggregate, [...] (continue below).
4135   if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) {
4136     if (DestType->isRecordType()) {
4137       QualType InitType = InitList->getInit(0)->getType();
4138       if (S.Context.hasSameUnqualifiedType(InitType, DestType) ||
4139           S.IsDerivedFrom(InitList->getBeginLoc(), InitType, DestType)) {
4140         Expr *InitListAsExpr = InitList;
4141         TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4142                                      DestType, Sequence,
4143                                      /*InitListSyntax*/false,
4144                                      /*IsInitListCopy*/true);
4145         return;
4146       }
4147     }
4148     if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) {
4149       Expr *SubInit[1] = {InitList->getInit(0)};
4150       if (!isa<VariableArrayType>(DestAT) &&
4151           IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) {
4152         InitializationKind SubKind =
4153             Kind.getKind() == InitializationKind::IK_DirectList
4154                 ? InitializationKind::CreateDirect(Kind.getLocation(),
4155                                                    InitList->getLBraceLoc(),
4156                                                    InitList->getRBraceLoc())
4157                 : Kind;
4158         Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4159                                 /*TopLevelOfInitList*/ true,
4160                                 TreatUnavailableAsInvalid);
4161 
4162         // TryStringLiteralInitialization() (in InitializeFrom()) will fail if
4163         // the element is not an appropriately-typed string literal, in which
4164         // case we should proceed as in C++11 (below).
4165         if (Sequence) {
4166           Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4167           return;
4168         }
4169       }
4170     }
4171   }
4172 
4173   // C++11 [dcl.init.list]p3:
4174   //   - If T is an aggregate, aggregate initialization is performed.
4175   if ((DestType->isRecordType() && !DestType->isAggregateType()) ||
4176       (S.getLangOpts().CPlusPlus11 &&
4177        S.isStdInitializerList(DestType, nullptr))) {
4178     if (S.getLangOpts().CPlusPlus11) {
4179       //   - Otherwise, if the initializer list has no elements and T is a
4180       //     class type with a default constructor, the object is
4181       //     value-initialized.
4182       if (InitList->getNumInits() == 0) {
4183         CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
4184         if (RD->hasDefaultConstructor()) {
4185           TryValueInitialization(S, Entity, Kind, Sequence, InitList);
4186           return;
4187         }
4188       }
4189 
4190       //   - Otherwise, if T is a specialization of std::initializer_list<E>,
4191       //     an initializer_list object constructed [...]
4192       if (TryInitializerListConstruction(S, InitList, DestType, Sequence,
4193                                          TreatUnavailableAsInvalid))
4194         return;
4195 
4196       //   - Otherwise, if T is a class type, constructors are considered.
4197       Expr *InitListAsExpr = InitList;
4198       TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4199                                    DestType, Sequence, /*InitListSyntax*/true);
4200     } else
4201       Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
4202     return;
4203   }
4204 
4205   if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() &&
4206       InitList->getNumInits() == 1) {
4207     Expr *E = InitList->getInit(0);
4208 
4209     //   - Otherwise, if T is an enumeration with a fixed underlying type,
4210     //     the initializer-list has a single element v, and the initialization
4211     //     is direct-list-initialization, the object is initialized with the
4212     //     value T(v); if a narrowing conversion is required to convert v to
4213     //     the underlying type of T, the program is ill-formed.
4214     auto *ET = DestType->getAs<EnumType>();
4215     if (S.getLangOpts().CPlusPlus17 &&
4216         Kind.getKind() == InitializationKind::IK_DirectList &&
4217         ET && ET->getDecl()->isFixed() &&
4218         !S.Context.hasSameUnqualifiedType(E->getType(), DestType) &&
4219         (E->getType()->isIntegralOrEnumerationType() ||
4220          E->getType()->isFloatingType())) {
4221       // There are two ways that T(v) can work when T is an enumeration type.
4222       // If there is either an implicit conversion sequence from v to T or
4223       // a conversion function that can convert from v to T, then we use that.
4224       // Otherwise, if v is of integral, enumeration, or floating-point type,
4225       // it is converted to the enumeration type via its underlying type.
4226       // There is no overlap possible between these two cases (except when the
4227       // source value is already of the destination type), and the first
4228       // case is handled by the general case for single-element lists below.
4229       ImplicitConversionSequence ICS;
4230       ICS.setStandard();
4231       ICS.Standard.setAsIdentityConversion();
4232       if (!E->isRValue())
4233         ICS.Standard.First = ICK_Lvalue_To_Rvalue;
4234       // If E is of a floating-point type, then the conversion is ill-formed
4235       // due to narrowing, but go through the motions in order to produce the
4236       // right diagnostic.
4237       ICS.Standard.Second = E->getType()->isFloatingType()
4238                                 ? ICK_Floating_Integral
4239                                 : ICK_Integral_Conversion;
4240       ICS.Standard.setFromType(E->getType());
4241       ICS.Standard.setToType(0, E->getType());
4242       ICS.Standard.setToType(1, DestType);
4243       ICS.Standard.setToType(2, DestType);
4244       Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2),
4245                                          /*TopLevelOfInitList*/true);
4246       Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4247       return;
4248     }
4249 
4250     //   - Otherwise, if the initializer list has a single element of type E
4251     //     [...references are handled above...], the object or reference is
4252     //     initialized from that element (by copy-initialization for
4253     //     copy-list-initialization, or by direct-initialization for
4254     //     direct-list-initialization); if a narrowing conversion is required
4255     //     to convert the element to T, the program is ill-formed.
4256     //
4257     // Per core-24034, this is direct-initialization if we were performing
4258     // direct-list-initialization and copy-initialization otherwise.
4259     // We can't use InitListChecker for this, because it always performs
4260     // copy-initialization. This only matters if we might use an 'explicit'
4261     // conversion operator, so we only need to handle the cases where the source
4262     // is of record type.
4263     if (InitList->getInit(0)->getType()->isRecordType()) {
4264       InitializationKind SubKind =
4265           Kind.getKind() == InitializationKind::IK_DirectList
4266               ? InitializationKind::CreateDirect(Kind.getLocation(),
4267                                                  InitList->getLBraceLoc(),
4268                                                  InitList->getRBraceLoc())
4269               : Kind;
4270       Expr *SubInit[1] = { InitList->getInit(0) };
4271       Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4272                               /*TopLevelOfInitList*/true,
4273                               TreatUnavailableAsInvalid);
4274       if (Sequence)
4275         Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4276       return;
4277     }
4278   }
4279 
4280   InitListChecker CheckInitList(S, Entity, InitList,
4281           DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid);
4282   if (CheckInitList.HadError()) {
4283     Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
4284     return;
4285   }
4286 
4287   // Add the list initialization step with the built init list.
4288   Sequence.AddListInitializationStep(DestType);
4289 }
4290 
4291 /// Try a reference initialization that involves calling a conversion
4292 /// function.
4293 static OverloadingResult TryRefInitWithConversionFunction(
4294     Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind,
4295     Expr *Initializer, bool AllowRValues, bool IsLValueRef,
4296     InitializationSequence &Sequence) {
4297   QualType DestType = Entity.getType();
4298   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
4299   QualType T1 = cv1T1.getUnqualifiedType();
4300   QualType cv2T2 = Initializer->getType();
4301   QualType T2 = cv2T2.getUnqualifiedType();
4302 
4303   bool DerivedToBase;
4304   bool ObjCConversion;
4305   bool ObjCLifetimeConversion;
4306   assert(!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2,
4307                                          DerivedToBase, ObjCConversion,
4308                                          ObjCLifetimeConversion) &&
4309          "Must have incompatible references when binding via conversion");
4310   (void)DerivedToBase;
4311   (void)ObjCConversion;
4312   (void)ObjCLifetimeConversion;
4313 
4314   // Build the candidate set directly in the initialization sequence
4315   // structure, so that it will persist if we fail.
4316   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4317   CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4318 
4319   // Determine whether we are allowed to call explicit conversion operators.
4320   // Note that none of [over.match.copy], [over.match.conv], nor
4321   // [over.match.ref] permit an explicit constructor to be chosen when
4322   // initializing a reference, not even for direct-initialization.
4323   bool AllowExplicitCtors = false;
4324   bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding();
4325 
4326   const RecordType *T1RecordType = nullptr;
4327   if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
4328       S.isCompleteType(Kind.getLocation(), T1)) {
4329     // The type we're converting to is a class type. Enumerate its constructors
4330     // to see if there is a suitable conversion.
4331     CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
4332 
4333     for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) {
4334       auto Info = getConstructorInfo(D);
4335       if (!Info.Constructor)
4336         continue;
4337 
4338       if (!Info.Constructor->isInvalidDecl() &&
4339           Info.Constructor->isConvertingConstructor(AllowExplicitCtors)) {
4340         if (Info.ConstructorTmpl)
4341           S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
4342                                          /*ExplicitArgs*/ nullptr,
4343                                          Initializer, CandidateSet,
4344                                          /*SuppressUserConversions=*/true);
4345         else
4346           S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
4347                                  Initializer, CandidateSet,
4348                                  /*SuppressUserConversions=*/true);
4349       }
4350     }
4351   }
4352   if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
4353     return OR_No_Viable_Function;
4354 
4355   const RecordType *T2RecordType = nullptr;
4356   if ((T2RecordType = T2->getAs<RecordType>()) &&
4357       S.isCompleteType(Kind.getLocation(), T2)) {
4358     // The type we're converting from is a class type, enumerate its conversion
4359     // functions.
4360     CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
4361 
4362     const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4363     for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4364       NamedDecl *D = *I;
4365       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4366       if (isa<UsingShadowDecl>(D))
4367         D = cast<UsingShadowDecl>(D)->getTargetDecl();
4368 
4369       FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4370       CXXConversionDecl *Conv;
4371       if (ConvTemplate)
4372         Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4373       else
4374         Conv = cast<CXXConversionDecl>(D);
4375 
4376       // If the conversion function doesn't return a reference type,
4377       // it can't be considered for this conversion unless we're allowed to
4378       // consider rvalues.
4379       // FIXME: Do we need to make sure that we only consider conversion
4380       // candidates with reference-compatible results? That might be needed to
4381       // break recursion.
4382       if ((AllowExplicitConvs || !Conv->isExplicit()) &&
4383           (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
4384         if (ConvTemplate)
4385           S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
4386                                            ActingDC, Initializer,
4387                                            DestType, CandidateSet,
4388                                            /*AllowObjCConversionOnExplicit=*/
4389                                              false);
4390         else
4391           S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
4392                                    Initializer, DestType, CandidateSet,
4393                                    /*AllowObjCConversionOnExplicit=*/false);
4394       }
4395     }
4396   }
4397   if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
4398     return OR_No_Viable_Function;
4399 
4400   SourceLocation DeclLoc = Initializer->getBeginLoc();
4401 
4402   // Perform overload resolution. If it fails, return the failed result.
4403   OverloadCandidateSet::iterator Best;
4404   if (OverloadingResult Result
4405         = CandidateSet.BestViableFunction(S, DeclLoc, Best))
4406     return Result;
4407 
4408   FunctionDecl *Function = Best->Function;
4409   // This is the overload that will be used for this initialization step if we
4410   // use this initialization. Mark it as referenced.
4411   Function->setReferenced();
4412 
4413   // Compute the returned type and value kind of the conversion.
4414   QualType cv3T3;
4415   if (isa<CXXConversionDecl>(Function))
4416     cv3T3 = Function->getReturnType();
4417   else
4418     cv3T3 = T1;
4419 
4420   ExprValueKind VK = VK_RValue;
4421   if (cv3T3->isLValueReferenceType())
4422     VK = VK_LValue;
4423   else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>())
4424     VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
4425   cv3T3 = cv3T3.getNonLValueExprType(S.Context);
4426 
4427   // Add the user-defined conversion step.
4428   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4429   Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3,
4430                                  HadMultipleCandidates);
4431 
4432   // Determine whether we'll need to perform derived-to-base adjustments or
4433   // other conversions.
4434   bool NewDerivedToBase = false;
4435   bool NewObjCConversion = false;
4436   bool NewObjCLifetimeConversion = false;
4437   Sema::ReferenceCompareResult NewRefRelationship
4438     = S.CompareReferenceRelationship(DeclLoc, T1, cv3T3,
4439                                      NewDerivedToBase, NewObjCConversion,
4440                                      NewObjCLifetimeConversion);
4441 
4442   // Add the final conversion sequence, if necessary.
4443   if (NewRefRelationship == Sema::Ref_Incompatible) {
4444     assert(!isa<CXXConstructorDecl>(Function) &&
4445            "should not have conversion after constructor");
4446 
4447     ImplicitConversionSequence ICS;
4448     ICS.setStandard();
4449     ICS.Standard = Best->FinalConversion;
4450     Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2));
4451 
4452     // Every implicit conversion results in a prvalue, except for a glvalue
4453     // derived-to-base conversion, which we handle below.
4454     cv3T3 = ICS.Standard.getToType(2);
4455     VK = VK_RValue;
4456   }
4457 
4458   //   If the converted initializer is a prvalue, its type T4 is adjusted to
4459   //   type "cv1 T4" and the temporary materialization conversion is applied.
4460   //
4461   // We adjust the cv-qualifications to match the reference regardless of
4462   // whether we have a prvalue so that the AST records the change. In this
4463   // case, T4 is "cv3 T3".
4464   QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers());
4465   if (cv1T4.getQualifiers() != cv3T3.getQualifiers())
4466     Sequence.AddQualificationConversionStep(cv1T4, VK);
4467   Sequence.AddReferenceBindingStep(cv1T4, VK == VK_RValue);
4468   VK = IsLValueRef ? VK_LValue : VK_XValue;
4469 
4470   if (NewDerivedToBase)
4471     Sequence.AddDerivedToBaseCastStep(cv1T1, VK);
4472   else if (NewObjCConversion)
4473     Sequence.AddObjCObjectConversionStep(cv1T1);
4474 
4475   return OR_Success;
4476 }
4477 
4478 static void CheckCXX98CompatAccessibleCopy(Sema &S,
4479                                            const InitializedEntity &Entity,
4480                                            Expr *CurInitExpr);
4481 
4482 /// Attempt reference initialization (C++0x [dcl.init.ref])
4483 static void TryReferenceInitialization(Sema &S,
4484                                        const InitializedEntity &Entity,
4485                                        const InitializationKind &Kind,
4486                                        Expr *Initializer,
4487                                        InitializationSequence &Sequence) {
4488   QualType DestType = Entity.getType();
4489   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
4490   Qualifiers T1Quals;
4491   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4492   QualType cv2T2 = Initializer->getType();
4493   Qualifiers T2Quals;
4494   QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4495 
4496   // If the initializer is the address of an overloaded function, try
4497   // to resolve the overloaded function. If all goes well, T2 is the
4498   // type of the resulting function.
4499   if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4500                                                    T1, Sequence))
4501     return;
4502 
4503   // Delegate everything else to a subfunction.
4504   TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4505                                  T1Quals, cv2T2, T2, T2Quals, Sequence);
4506 }
4507 
4508 /// Determine whether an expression is a non-referenceable glvalue (one to
4509 /// which a reference can never bind). Attempting to bind a reference to
4510 /// such a glvalue will always create a temporary.
4511 static bool isNonReferenceableGLValue(Expr *E) {
4512   return E->refersToBitField() || E->refersToVectorElement();
4513 }
4514 
4515 /// Reference initialization without resolving overloaded functions.
4516 static void TryReferenceInitializationCore(Sema &S,
4517                                            const InitializedEntity &Entity,
4518                                            const InitializationKind &Kind,
4519                                            Expr *Initializer,
4520                                            QualType cv1T1, QualType T1,
4521                                            Qualifiers T1Quals,
4522                                            QualType cv2T2, QualType T2,
4523                                            Qualifiers T2Quals,
4524                                            InitializationSequence &Sequence) {
4525   QualType DestType = Entity.getType();
4526   SourceLocation DeclLoc = Initializer->getBeginLoc();
4527   // Compute some basic properties of the types and the initializer.
4528   bool isLValueRef = DestType->isLValueReferenceType();
4529   bool isRValueRef = !isLValueRef;
4530   bool DerivedToBase = false;
4531   bool ObjCConversion = false;
4532   bool ObjCLifetimeConversion = false;
4533   Expr::Classification InitCategory = Initializer->Classify(S.Context);
4534   Sema::ReferenceCompareResult RefRelationship
4535     = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
4536                                      ObjCConversion, ObjCLifetimeConversion);
4537 
4538   // C++0x [dcl.init.ref]p5:
4539   //   A reference to type "cv1 T1" is initialized by an expression of type
4540   //   "cv2 T2" as follows:
4541   //
4542   //     - If the reference is an lvalue reference and the initializer
4543   //       expression
4544   // Note the analogous bullet points for rvalue refs to functions. Because
4545   // there are no function rvalues in C++, rvalue refs to functions are treated
4546   // like lvalue refs.
4547   OverloadingResult ConvOvlResult = OR_Success;
4548   bool T1Function = T1->isFunctionType();
4549   if (isLValueRef || T1Function) {
4550     if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) &&
4551         (RefRelationship == Sema::Ref_Compatible ||
4552          (Kind.isCStyleOrFunctionalCast() &&
4553           RefRelationship == Sema::Ref_Related))) {
4554       //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
4555       //     reference-compatible with "cv2 T2," or
4556       if (T1Quals != T2Quals)
4557         // Convert to cv1 T2. This should only add qualifiers unless this is a
4558         // c-style cast. The removal of qualifiers in that case notionally
4559         // happens after the reference binding, but that doesn't matter.
4560         Sequence.AddQualificationConversionStep(
4561             S.Context.getQualifiedType(T2, T1Quals),
4562             Initializer->getValueKind());
4563       if (DerivedToBase)
4564         Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue);
4565       else if (ObjCConversion)
4566         Sequence.AddObjCObjectConversionStep(cv1T1);
4567 
4568       // We only create a temporary here when binding a reference to a
4569       // bit-field or vector element. Those cases are't supposed to be
4570       // handled by this bullet, but the outcome is the same either way.
4571       Sequence.AddReferenceBindingStep(cv1T1, false);
4572       return;
4573     }
4574 
4575     //     - has a class type (i.e., T2 is a class type), where T1 is not
4576     //       reference-related to T2, and can be implicitly converted to an
4577     //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
4578     //       with "cv3 T3" (this conversion is selected by enumerating the
4579     //       applicable conversion functions (13.3.1.6) and choosing the best
4580     //       one through overload resolution (13.3)),
4581     // If we have an rvalue ref to function type here, the rhs must be
4582     // an rvalue. DR1287 removed the "implicitly" here.
4583     if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
4584         (isLValueRef || InitCategory.isRValue())) {
4585       ConvOvlResult = TryRefInitWithConversionFunction(
4586           S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef,
4587           /*IsLValueRef*/ isLValueRef, Sequence);
4588       if (ConvOvlResult == OR_Success)
4589         return;
4590       if (ConvOvlResult != OR_No_Viable_Function)
4591         Sequence.SetOverloadFailure(
4592             InitializationSequence::FK_ReferenceInitOverloadFailed,
4593             ConvOvlResult);
4594     }
4595   }
4596 
4597   //     - Otherwise, the reference shall be an lvalue reference to a
4598   //       non-volatile const type (i.e., cv1 shall be const), or the reference
4599   //       shall be an rvalue reference.
4600   if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
4601     if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4602       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4603     else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4604       Sequence.SetOverloadFailure(
4605                         InitializationSequence::FK_ReferenceInitOverloadFailed,
4606                                   ConvOvlResult);
4607     else if (!InitCategory.isLValue())
4608       Sequence.SetFailed(
4609           InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
4610     else {
4611       InitializationSequence::FailureKind FK;
4612       switch (RefRelationship) {
4613       case Sema::Ref_Compatible:
4614         if (Initializer->refersToBitField())
4615           FK = InitializationSequence::
4616               FK_NonConstLValueReferenceBindingToBitfield;
4617         else if (Initializer->refersToVectorElement())
4618           FK = InitializationSequence::
4619               FK_NonConstLValueReferenceBindingToVectorElement;
4620         else
4621           llvm_unreachable("unexpected kind of compatible initializer");
4622         break;
4623       case Sema::Ref_Related:
4624         FK = InitializationSequence::FK_ReferenceInitDropsQualifiers;
4625         break;
4626       case Sema::Ref_Incompatible:
4627         FK = InitializationSequence::
4628             FK_NonConstLValueReferenceBindingToUnrelated;
4629         break;
4630       }
4631       Sequence.SetFailed(FK);
4632     }
4633     return;
4634   }
4635 
4636   //    - If the initializer expression
4637   //      - is an
4638   // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or
4639   // [1z]   rvalue (but not a bit-field) or
4640   //        function lvalue and "cv1 T1" is reference-compatible with "cv2 T2"
4641   //
4642   // Note: functions are handled above and below rather than here...
4643   if (!T1Function &&
4644       (RefRelationship == Sema::Ref_Compatible ||
4645        (Kind.isCStyleOrFunctionalCast() &&
4646         RefRelationship == Sema::Ref_Related)) &&
4647       ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) ||
4648        (InitCategory.isPRValue() &&
4649         (S.getLangOpts().CPlusPlus17 || T2->isRecordType() ||
4650          T2->isArrayType())))) {
4651     ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_RValue;
4652     if (InitCategory.isPRValue() && T2->isRecordType()) {
4653       // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
4654       // compiler the freedom to perform a copy here or bind to the
4655       // object, while C++0x requires that we bind directly to the
4656       // object. Hence, we always bind to the object without making an
4657       // extra copy. However, in C++03 requires that we check for the
4658       // presence of a suitable copy constructor:
4659       //
4660       //   The constructor that would be used to make the copy shall
4661       //   be callable whether or not the copy is actually done.
4662       if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
4663         Sequence.AddExtraneousCopyToTemporary(cv2T2);
4664       else if (S.getLangOpts().CPlusPlus11)
4665         CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
4666     }
4667 
4668     // C++1z [dcl.init.ref]/5.2.1.2:
4669     //   If the converted initializer is a prvalue, its type T4 is adjusted
4670     //   to type "cv1 T4" and the temporary materialization conversion is
4671     //   applied.
4672     QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1Quals);
4673     if (T1Quals != T2Quals)
4674       Sequence.AddQualificationConversionStep(cv1T4, ValueKind);
4675     Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_RValue);
4676     ValueKind = isLValueRef ? VK_LValue : VK_XValue;
4677 
4678     //   In any case, the reference is bound to the resulting glvalue (or to
4679     //   an appropriate base class subobject).
4680     if (DerivedToBase)
4681       Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind);
4682     else if (ObjCConversion)
4683       Sequence.AddObjCObjectConversionStep(cv1T1);
4684     return;
4685   }
4686 
4687   //       - has a class type (i.e., T2 is a class type), where T1 is not
4688   //         reference-related to T2, and can be implicitly converted to an
4689   //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
4690   //         where "cv1 T1" is reference-compatible with "cv3 T3",
4691   //
4692   // DR1287 removes the "implicitly" here.
4693   if (T2->isRecordType()) {
4694     if (RefRelationship == Sema::Ref_Incompatible) {
4695       ConvOvlResult = TryRefInitWithConversionFunction(
4696           S, Entity, Kind, Initializer, /*AllowRValues*/ true,
4697           /*IsLValueRef*/ isLValueRef, Sequence);
4698       if (ConvOvlResult)
4699         Sequence.SetOverloadFailure(
4700             InitializationSequence::FK_ReferenceInitOverloadFailed,
4701             ConvOvlResult);
4702 
4703       return;
4704     }
4705 
4706     if (RefRelationship == Sema::Ref_Compatible &&
4707         isRValueRef && InitCategory.isLValue()) {
4708       Sequence.SetFailed(
4709         InitializationSequence::FK_RValueReferenceBindingToLValue);
4710       return;
4711     }
4712 
4713     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4714     return;
4715   }
4716 
4717   //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
4718   //        from the initializer expression using the rules for a non-reference
4719   //        copy-initialization (8.5). The reference is then bound to the
4720   //        temporary. [...]
4721 
4722   InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
4723 
4724   // FIXME: Why do we use an implicit conversion here rather than trying
4725   // copy-initialization?
4726   ImplicitConversionSequence ICS
4727     = S.TryImplicitConversion(Initializer, TempEntity.getType(),
4728                               /*SuppressUserConversions=*/false,
4729                               /*AllowExplicit=*/false,
4730                               /*FIXME:InOverloadResolution=*/false,
4731                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
4732                               /*AllowObjCWritebackConversion=*/false);
4733 
4734   if (ICS.isBad()) {
4735     // FIXME: Use the conversion function set stored in ICS to turn
4736     // this into an overloading ambiguity diagnostic. However, we need
4737     // to keep that set as an OverloadCandidateSet rather than as some
4738     // other kind of set.
4739     if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4740       Sequence.SetOverloadFailure(
4741                         InitializationSequence::FK_ReferenceInitOverloadFailed,
4742                                   ConvOvlResult);
4743     else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4744       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4745     else
4746       Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
4747     return;
4748   } else {
4749     Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
4750   }
4751 
4752   //        [...] If T1 is reference-related to T2, cv1 must be the
4753   //        same cv-qualification as, or greater cv-qualification
4754   //        than, cv2; otherwise, the program is ill-formed.
4755   unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
4756   unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
4757   if (RefRelationship == Sema::Ref_Related &&
4758       (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
4759     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4760     return;
4761   }
4762 
4763   //   [...] If T1 is reference-related to T2 and the reference is an rvalue
4764   //   reference, the initializer expression shall not be an lvalue.
4765   if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
4766       InitCategory.isLValue()) {
4767     Sequence.SetFailed(
4768                     InitializationSequence::FK_RValueReferenceBindingToLValue);
4769     return;
4770   }
4771 
4772   Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
4773 }
4774 
4775 /// Attempt character array initialization from a string literal
4776 /// (C++ [dcl.init.string], C99 6.7.8).
4777 static void TryStringLiteralInitialization(Sema &S,
4778                                            const InitializedEntity &Entity,
4779                                            const InitializationKind &Kind,
4780                                            Expr *Initializer,
4781                                        InitializationSequence &Sequence) {
4782   Sequence.AddStringInitStep(Entity.getType());
4783 }
4784 
4785 /// Attempt value initialization (C++ [dcl.init]p7).
4786 static void TryValueInitialization(Sema &S,
4787                                    const InitializedEntity &Entity,
4788                                    const InitializationKind &Kind,
4789                                    InitializationSequence &Sequence,
4790                                    InitListExpr *InitList) {
4791   assert((!InitList || InitList->getNumInits() == 0) &&
4792          "Shouldn't use value-init for non-empty init lists");
4793 
4794   // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
4795   //
4796   //   To value-initialize an object of type T means:
4797   QualType T = Entity.getType();
4798 
4799   //     -- if T is an array type, then each element is value-initialized;
4800   T = S.Context.getBaseElementType(T);
4801 
4802   if (const RecordType *RT = T->getAs<RecordType>()) {
4803     if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
4804       bool NeedZeroInitialization = true;
4805       // C++98:
4806       // -- if T is a class type (clause 9) with a user-declared constructor
4807       //    (12.1), then the default constructor for T is called (and the
4808       //    initialization is ill-formed if T has no accessible default
4809       //    constructor);
4810       // C++11:
4811       // -- if T is a class type (clause 9) with either no default constructor
4812       //    (12.1 [class.ctor]) or a default constructor that is user-provided
4813       //    or deleted, then the object is default-initialized;
4814       //
4815       // Note that the C++11 rule is the same as the C++98 rule if there are no
4816       // defaulted or deleted constructors, so we just use it unconditionally.
4817       CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
4818       if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
4819         NeedZeroInitialization = false;
4820 
4821       // -- if T is a (possibly cv-qualified) non-union class type without a
4822       //    user-provided or deleted default constructor, then the object is
4823       //    zero-initialized and, if T has a non-trivial default constructor,
4824       //    default-initialized;
4825       // The 'non-union' here was removed by DR1502. The 'non-trivial default
4826       // constructor' part was removed by DR1507.
4827       if (NeedZeroInitialization)
4828         Sequence.AddZeroInitializationStep(Entity.getType());
4829 
4830       // C++03:
4831       // -- if T is a non-union class type without a user-declared constructor,
4832       //    then every non-static data member and base class component of T is
4833       //    value-initialized;
4834       // [...] A program that calls for [...] value-initialization of an
4835       // entity of reference type is ill-formed.
4836       //
4837       // C++11 doesn't need this handling, because value-initialization does not
4838       // occur recursively there, and the implicit default constructor is
4839       // defined as deleted in the problematic cases.
4840       if (!S.getLangOpts().CPlusPlus11 &&
4841           ClassDecl->hasUninitializedReferenceMember()) {
4842         Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
4843         return;
4844       }
4845 
4846       // If this is list-value-initialization, pass the empty init list on when
4847       // building the constructor call. This affects the semantics of a few
4848       // things (such as whether an explicit default constructor can be called).
4849       Expr *InitListAsExpr = InitList;
4850       MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
4851       bool InitListSyntax = InitList;
4852 
4853       // FIXME: Instead of creating a CXXConstructExpr of array type here,
4854       // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr.
4855       return TryConstructorInitialization(
4856           S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax);
4857     }
4858   }
4859 
4860   Sequence.AddZeroInitializationStep(Entity.getType());
4861 }
4862 
4863 /// Attempt default initialization (C++ [dcl.init]p6).
4864 static void TryDefaultInitialization(Sema &S,
4865                                      const InitializedEntity &Entity,
4866                                      const InitializationKind &Kind,
4867                                      InitializationSequence &Sequence) {
4868   assert(Kind.getKind() == InitializationKind::IK_Default);
4869 
4870   // C++ [dcl.init]p6:
4871   //   To default-initialize an object of type T means:
4872   //     - if T is an array type, each element is default-initialized;
4873   QualType DestType = S.Context.getBaseElementType(Entity.getType());
4874 
4875   //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
4876   //       constructor for T is called (and the initialization is ill-formed if
4877   //       T has no accessible default constructor);
4878   if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
4879     TryConstructorInitialization(S, Entity, Kind, None, DestType,
4880                                  Entity.getType(), Sequence);
4881     return;
4882   }
4883 
4884   //     - otherwise, no initialization is performed.
4885 
4886   //   If a program calls for the default initialization of an object of
4887   //   a const-qualified type T, T shall be a class type with a user-provided
4888   //   default constructor.
4889   if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
4890     if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
4891       Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
4892     return;
4893   }
4894 
4895   // If the destination type has a lifetime property, zero-initialize it.
4896   if (DestType.getQualifiers().hasObjCLifetime()) {
4897     Sequence.AddZeroInitializationStep(Entity.getType());
4898     return;
4899   }
4900 }
4901 
4902 /// Attempt a user-defined conversion between two types (C++ [dcl.init]),
4903 /// which enumerates all conversion functions and performs overload resolution
4904 /// to select the best.
4905 static void TryUserDefinedConversion(Sema &S,
4906                                      QualType DestType,
4907                                      const InitializationKind &Kind,
4908                                      Expr *Initializer,
4909                                      InitializationSequence &Sequence,
4910                                      bool TopLevelOfInitList) {
4911   assert(!DestType->isReferenceType() && "References are handled elsewhere");
4912   QualType SourceType = Initializer->getType();
4913   assert((DestType->isRecordType() || SourceType->isRecordType()) &&
4914          "Must have a class type to perform a user-defined conversion");
4915 
4916   // Build the candidate set directly in the initialization sequence
4917   // structure, so that it will persist if we fail.
4918   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4919   CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4920 
4921   // Determine whether we are allowed to call explicit constructors or
4922   // explicit conversion operators.
4923   bool AllowExplicit = Kind.AllowExplicit();
4924 
4925   if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
4926     // The type we're converting to is a class type. Enumerate its constructors
4927     // to see if there is a suitable conversion.
4928     CXXRecordDecl *DestRecordDecl
4929       = cast<CXXRecordDecl>(DestRecordType->getDecl());
4930 
4931     // Try to complete the type we're converting to.
4932     if (S.isCompleteType(Kind.getLocation(), DestType)) {
4933       for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) {
4934         auto Info = getConstructorInfo(D);
4935         if (!Info.Constructor)
4936           continue;
4937 
4938         if (!Info.Constructor->isInvalidDecl() &&
4939             Info.Constructor->isConvertingConstructor(AllowExplicit)) {
4940           if (Info.ConstructorTmpl)
4941             S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
4942                                            /*ExplicitArgs*/ nullptr,
4943                                            Initializer, CandidateSet,
4944                                            /*SuppressUserConversions=*/true);
4945           else
4946             S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
4947                                    Initializer, CandidateSet,
4948                                    /*SuppressUserConversions=*/true);
4949         }
4950       }
4951     }
4952   }
4953 
4954   SourceLocation DeclLoc = Initializer->getBeginLoc();
4955 
4956   if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
4957     // The type we're converting from is a class type, enumerate its conversion
4958     // functions.
4959 
4960     // We can only enumerate the conversion functions for a complete type; if
4961     // the type isn't complete, simply skip this step.
4962     if (S.isCompleteType(DeclLoc, SourceType)) {
4963       CXXRecordDecl *SourceRecordDecl
4964         = cast<CXXRecordDecl>(SourceRecordType->getDecl());
4965 
4966       const auto &Conversions =
4967           SourceRecordDecl->getVisibleConversionFunctions();
4968       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4969         NamedDecl *D = *I;
4970         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4971         if (isa<UsingShadowDecl>(D))
4972           D = cast<UsingShadowDecl>(D)->getTargetDecl();
4973 
4974         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4975         CXXConversionDecl *Conv;
4976         if (ConvTemplate)
4977           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4978         else
4979           Conv = cast<CXXConversionDecl>(D);
4980 
4981         if (AllowExplicit || !Conv->isExplicit()) {
4982           if (ConvTemplate)
4983             S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
4984                                              ActingDC, Initializer, DestType,
4985                                              CandidateSet, AllowExplicit);
4986           else
4987             S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
4988                                      Initializer, DestType, CandidateSet,
4989                                      AllowExplicit);
4990         }
4991       }
4992     }
4993   }
4994 
4995   // Perform overload resolution. If it fails, return the failed result.
4996   OverloadCandidateSet::iterator Best;
4997   if (OverloadingResult Result
4998         = CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
4999     Sequence.SetOverloadFailure(
5000                         InitializationSequence::FK_UserConversionOverloadFailed,
5001                                 Result);
5002     return;
5003   }
5004 
5005   FunctionDecl *Function = Best->Function;
5006   Function->setReferenced();
5007   bool HadMultipleCandidates = (CandidateSet.size() > 1);
5008 
5009   if (isa<CXXConstructorDecl>(Function)) {
5010     // Add the user-defined conversion step. Any cv-qualification conversion is
5011     // subsumed by the initialization. Per DR5, the created temporary is of the
5012     // cv-unqualified type of the destination.
5013     Sequence.AddUserConversionStep(Function, Best->FoundDecl,
5014                                    DestType.getUnqualifiedType(),
5015                                    HadMultipleCandidates);
5016 
5017     // C++14 and before:
5018     //   - if the function is a constructor, the call initializes a temporary
5019     //     of the cv-unqualified version of the destination type. The [...]
5020     //     temporary [...] is then used to direct-initialize, according to the
5021     //     rules above, the object that is the destination of the
5022     //     copy-initialization.
5023     // Note that this just performs a simple object copy from the temporary.
5024     //
5025     // C++17:
5026     //   - if the function is a constructor, the call is a prvalue of the
5027     //     cv-unqualified version of the destination type whose return object
5028     //     is initialized by the constructor. The call is used to
5029     //     direct-initialize, according to the rules above, the object that
5030     //     is the destination of the copy-initialization.
5031     // Therefore we need to do nothing further.
5032     //
5033     // FIXME: Mark this copy as extraneous.
5034     if (!S.getLangOpts().CPlusPlus17)
5035       Sequence.AddFinalCopy(DestType);
5036     else if (DestType.hasQualifiers())
5037       Sequence.AddQualificationConversionStep(DestType, VK_RValue);
5038     return;
5039   }
5040 
5041   // Add the user-defined conversion step that calls the conversion function.
5042   QualType ConvType = Function->getCallResultType();
5043   Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
5044                                  HadMultipleCandidates);
5045 
5046   if (ConvType->getAs<RecordType>()) {
5047     //   The call is used to direct-initialize [...] the object that is the
5048     //   destination of the copy-initialization.
5049     //
5050     // In C++17, this does not call a constructor if we enter /17.6.1:
5051     //   - If the initializer expression is a prvalue and the cv-unqualified
5052     //     version of the source type is the same as the class of the
5053     //     destination [... do not make an extra copy]
5054     //
5055     // FIXME: Mark this copy as extraneous.
5056     if (!S.getLangOpts().CPlusPlus17 ||
5057         Function->getReturnType()->isReferenceType() ||
5058         !S.Context.hasSameUnqualifiedType(ConvType, DestType))
5059       Sequence.AddFinalCopy(DestType);
5060     else if (!S.Context.hasSameType(ConvType, DestType))
5061       Sequence.AddQualificationConversionStep(DestType, VK_RValue);
5062     return;
5063   }
5064 
5065   // If the conversion following the call to the conversion function
5066   // is interesting, add it as a separate step.
5067   if (Best->FinalConversion.First || Best->FinalConversion.Second ||
5068       Best->FinalConversion.Third) {
5069     ImplicitConversionSequence ICS;
5070     ICS.setStandard();
5071     ICS.Standard = Best->FinalConversion;
5072     Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5073   }
5074 }
5075 
5076 /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>,
5077 /// a function with a pointer return type contains a 'return false;' statement.
5078 /// In C++11, 'false' is not a null pointer, so this breaks the build of any
5079 /// code using that header.
5080 ///
5081 /// Work around this by treating 'return false;' as zero-initializing the result
5082 /// if it's used in a pointer-returning function in a system header.
5083 static bool isLibstdcxxPointerReturnFalseHack(Sema &S,
5084                                               const InitializedEntity &Entity,
5085                                               const Expr *Init) {
5086   return S.getLangOpts().CPlusPlus11 &&
5087          Entity.getKind() == InitializedEntity::EK_Result &&
5088          Entity.getType()->isPointerType() &&
5089          isa<CXXBoolLiteralExpr>(Init) &&
5090          !cast<CXXBoolLiteralExpr>(Init)->getValue() &&
5091          S.getSourceManager().isInSystemHeader(Init->getExprLoc());
5092 }
5093 
5094 /// The non-zero enum values here are indexes into diagnostic alternatives.
5095 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
5096 
5097 /// Determines whether this expression is an acceptable ICR source.
5098 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
5099                                          bool isAddressOf, bool &isWeakAccess) {
5100   // Skip parens.
5101   e = e->IgnoreParens();
5102 
5103   // Skip address-of nodes.
5104   if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
5105     if (op->getOpcode() == UO_AddrOf)
5106       return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
5107                                 isWeakAccess);
5108 
5109   // Skip certain casts.
5110   } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
5111     switch (ce->getCastKind()) {
5112     case CK_Dependent:
5113     case CK_BitCast:
5114     case CK_LValueBitCast:
5115     case CK_NoOp:
5116       return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
5117 
5118     case CK_ArrayToPointerDecay:
5119       return IIK_nonscalar;
5120 
5121     case CK_NullToPointer:
5122       return IIK_okay;
5123 
5124     default:
5125       break;
5126     }
5127 
5128   // If we have a declaration reference, it had better be a local variable.
5129   } else if (isa<DeclRefExpr>(e)) {
5130     // set isWeakAccess to true, to mean that there will be an implicit
5131     // load which requires a cleanup.
5132     if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
5133       isWeakAccess = true;
5134 
5135     if (!isAddressOf) return IIK_nonlocal;
5136 
5137     VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
5138     if (!var) return IIK_nonlocal;
5139 
5140     return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
5141 
5142   // If we have a conditional operator, check both sides.
5143   } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
5144     if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
5145                                                 isWeakAccess))
5146       return iik;
5147 
5148     return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
5149 
5150   // These are never scalar.
5151   } else if (isa<ArraySubscriptExpr>(e)) {
5152     return IIK_nonscalar;
5153 
5154   // Otherwise, it needs to be a null pointer constant.
5155   } else {
5156     return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
5157             ? IIK_okay : IIK_nonlocal);
5158   }
5159 
5160   return IIK_nonlocal;
5161 }
5162 
5163 /// Check whether the given expression is a valid operand for an
5164 /// indirect copy/restore.
5165 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
5166   assert(src->isRValue());
5167   bool isWeakAccess = false;
5168   InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
5169   // If isWeakAccess to true, there will be an implicit
5170   // load which requires a cleanup.
5171   if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
5172     S.Cleanup.setExprNeedsCleanups(true);
5173 
5174   if (iik == IIK_okay) return;
5175 
5176   S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
5177     << ((unsigned) iik - 1)  // shift index into diagnostic explanations
5178     << src->getSourceRange();
5179 }
5180 
5181 /// Determine whether we have compatible array types for the
5182 /// purposes of GNU by-copy array initialization.
5183 static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest,
5184                                     const ArrayType *Source) {
5185   // If the source and destination array types are equivalent, we're
5186   // done.
5187   if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
5188     return true;
5189 
5190   // Make sure that the element types are the same.
5191   if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
5192     return false;
5193 
5194   // The only mismatch we allow is when the destination is an
5195   // incomplete array type and the source is a constant array type.
5196   return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
5197 }
5198 
5199 static bool tryObjCWritebackConversion(Sema &S,
5200                                        InitializationSequence &Sequence,
5201                                        const InitializedEntity &Entity,
5202                                        Expr *Initializer) {
5203   bool ArrayDecay = false;
5204   QualType ArgType = Initializer->getType();
5205   QualType ArgPointee;
5206   if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
5207     ArrayDecay = true;
5208     ArgPointee = ArgArrayType->getElementType();
5209     ArgType = S.Context.getPointerType(ArgPointee);
5210   }
5211 
5212   // Handle write-back conversion.
5213   QualType ConvertedArgType;
5214   if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
5215                                    ConvertedArgType))
5216     return false;
5217 
5218   // We should copy unless we're passing to an argument explicitly
5219   // marked 'out'.
5220   bool ShouldCopy = true;
5221   if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5222     ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5223 
5224   // Do we need an lvalue conversion?
5225   if (ArrayDecay || Initializer->isGLValue()) {
5226     ImplicitConversionSequence ICS;
5227     ICS.setStandard();
5228     ICS.Standard.setAsIdentityConversion();
5229 
5230     QualType ResultType;
5231     if (ArrayDecay) {
5232       ICS.Standard.First = ICK_Array_To_Pointer;
5233       ResultType = S.Context.getPointerType(ArgPointee);
5234     } else {
5235       ICS.Standard.First = ICK_Lvalue_To_Rvalue;
5236       ResultType = Initializer->getType().getNonLValueExprType(S.Context);
5237     }
5238 
5239     Sequence.AddConversionSequenceStep(ICS, ResultType);
5240   }
5241 
5242   Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
5243   return true;
5244 }
5245 
5246 static bool TryOCLSamplerInitialization(Sema &S,
5247                                         InitializationSequence &Sequence,
5248                                         QualType DestType,
5249                                         Expr *Initializer) {
5250   if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
5251       (!Initializer->isIntegerConstantExpr(S.Context) &&
5252       !Initializer->getType()->isSamplerT()))
5253     return false;
5254 
5255   Sequence.AddOCLSamplerInitStep(DestType);
5256   return true;
5257 }
5258 
5259 static bool IsZeroInitializer(Expr *Initializer, Sema &S) {
5260   return Initializer->isIntegerConstantExpr(S.getASTContext()) &&
5261     (Initializer->EvaluateKnownConstInt(S.getASTContext()) == 0);
5262 }
5263 
5264 static bool TryOCLZeroOpaqueTypeInitialization(Sema &S,
5265                                                InitializationSequence &Sequence,
5266                                                QualType DestType,
5267                                                Expr *Initializer) {
5268   if (!S.getLangOpts().OpenCL)
5269     return false;
5270 
5271   //
5272   // OpenCL 1.2 spec, s6.12.10
5273   //
5274   // The event argument can also be used to associate the
5275   // async_work_group_copy with a previous async copy allowing
5276   // an event to be shared by multiple async copies; otherwise
5277   // event should be zero.
5278   //
5279   if (DestType->isEventT() || DestType->isQueueT()) {
5280     if (!IsZeroInitializer(Initializer, S))
5281       return false;
5282 
5283     Sequence.AddOCLZeroOpaqueTypeStep(DestType);
5284     return true;
5285   }
5286 
5287   // We should allow zero initialization for all types defined in the
5288   // cl_intel_device_side_avc_motion_estimation extension, except
5289   // intel_sub_group_avc_mce_payload_t and intel_sub_group_avc_mce_result_t.
5290   if (S.getOpenCLOptions().isEnabled(
5291           "cl_intel_device_side_avc_motion_estimation") &&
5292       DestType->isOCLIntelSubgroupAVCType()) {
5293     if (DestType->isOCLIntelSubgroupAVCMcePayloadType() ||
5294         DestType->isOCLIntelSubgroupAVCMceResultType())
5295       return false;
5296     if (!IsZeroInitializer(Initializer, S))
5297       return false;
5298 
5299     Sequence.AddOCLZeroOpaqueTypeStep(DestType);
5300     return true;
5301   }
5302 
5303   return false;
5304 }
5305 
5306 InitializationSequence::InitializationSequence(Sema &S,
5307                                                const InitializedEntity &Entity,
5308                                                const InitializationKind &Kind,
5309                                                MultiExprArg Args,
5310                                                bool TopLevelOfInitList,
5311                                                bool TreatUnavailableAsInvalid)
5312     : FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) {
5313   InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList,
5314                  TreatUnavailableAsInvalid);
5315 }
5316 
5317 /// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the
5318 /// address of that function, this returns true. Otherwise, it returns false.
5319 static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) {
5320   auto *DRE = dyn_cast<DeclRefExpr>(E);
5321   if (!DRE || !isa<FunctionDecl>(DRE->getDecl()))
5322     return false;
5323 
5324   return !S.checkAddressOfFunctionIsAvailable(
5325       cast<FunctionDecl>(DRE->getDecl()));
5326 }
5327 
5328 /// Determine whether we can perform an elementwise array copy for this kind
5329 /// of entity.
5330 static bool canPerformArrayCopy(const InitializedEntity &Entity) {
5331   switch (Entity.getKind()) {
5332   case InitializedEntity::EK_LambdaCapture:
5333     // C++ [expr.prim.lambda]p24:
5334     //   For array members, the array elements are direct-initialized in
5335     //   increasing subscript order.
5336     return true;
5337 
5338   case InitializedEntity::EK_Variable:
5339     // C++ [dcl.decomp]p1:
5340     //   [...] each element is copy-initialized or direct-initialized from the
5341     //   corresponding element of the assignment-expression [...]
5342     return isa<DecompositionDecl>(Entity.getDecl());
5343 
5344   case InitializedEntity::EK_Member:
5345     // C++ [class.copy.ctor]p14:
5346     //   - if the member is an array, each element is direct-initialized with
5347     //     the corresponding subobject of x
5348     return Entity.isImplicitMemberInitializer();
5349 
5350   case InitializedEntity::EK_ArrayElement:
5351     // All the above cases are intended to apply recursively, even though none
5352     // of them actually say that.
5353     if (auto *E = Entity.getParent())
5354       return canPerformArrayCopy(*E);
5355     break;
5356 
5357   default:
5358     break;
5359   }
5360 
5361   return false;
5362 }
5363 
5364 void InitializationSequence::InitializeFrom(Sema &S,
5365                                             const InitializedEntity &Entity,
5366                                             const InitializationKind &Kind,
5367                                             MultiExprArg Args,
5368                                             bool TopLevelOfInitList,
5369                                             bool TreatUnavailableAsInvalid) {
5370   ASTContext &Context = S.Context;
5371 
5372   // Eliminate non-overload placeholder types in the arguments.  We
5373   // need to do this before checking whether types are dependent
5374   // because lowering a pseudo-object expression might well give us
5375   // something of dependent type.
5376   for (unsigned I = 0, E = Args.size(); I != E; ++I)
5377     if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
5378       // FIXME: should we be doing this here?
5379       ExprResult result = S.CheckPlaceholderExpr(Args[I]);
5380       if (result.isInvalid()) {
5381         SetFailed(FK_PlaceholderType);
5382         return;
5383       }
5384       Args[I] = result.get();
5385     }
5386 
5387   // C++0x [dcl.init]p16:
5388   //   The semantics of initializers are as follows. The destination type is
5389   //   the type of the object or reference being initialized and the source
5390   //   type is the type of the initializer expression. The source type is not
5391   //   defined when the initializer is a braced-init-list or when it is a
5392   //   parenthesized list of expressions.
5393   QualType DestType = Entity.getType();
5394 
5395   if (DestType->isDependentType() ||
5396       Expr::hasAnyTypeDependentArguments(Args)) {
5397     SequenceKind = DependentSequence;
5398     return;
5399   }
5400 
5401   // Almost everything is a normal sequence.
5402   setSequenceKind(NormalSequence);
5403 
5404   QualType SourceType;
5405   Expr *Initializer = nullptr;
5406   if (Args.size() == 1) {
5407     Initializer = Args[0];
5408     if (S.getLangOpts().ObjC) {
5409       if (S.CheckObjCBridgeRelatedConversions(Initializer->getBeginLoc(),
5410                                               DestType, Initializer->getType(),
5411                                               Initializer) ||
5412           S.ConversionToObjCStringLiteralCheck(DestType, Initializer))
5413         Args[0] = Initializer;
5414     }
5415     if (!isa<InitListExpr>(Initializer))
5416       SourceType = Initializer->getType();
5417   }
5418 
5419   //     - If the initializer is a (non-parenthesized) braced-init-list, the
5420   //       object is list-initialized (8.5.4).
5421   if (Kind.getKind() != InitializationKind::IK_Direct) {
5422     if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
5423       TryListInitialization(S, Entity, Kind, InitList, *this,
5424                             TreatUnavailableAsInvalid);
5425       return;
5426     }
5427   }
5428 
5429   //     - If the destination type is a reference type, see 8.5.3.
5430   if (DestType->isReferenceType()) {
5431     // C++0x [dcl.init.ref]p1:
5432     //   A variable declared to be a T& or T&&, that is, "reference to type T"
5433     //   (8.3.2), shall be initialized by an object, or function, of type T or
5434     //   by an object that can be converted into a T.
5435     // (Therefore, multiple arguments are not permitted.)
5436     if (Args.size() != 1)
5437       SetFailed(FK_TooManyInitsForReference);
5438     // C++17 [dcl.init.ref]p5:
5439     //   A reference [...] is initialized by an expression [...] as follows:
5440     // If the initializer is not an expression, presumably we should reject,
5441     // but the standard fails to actually say so.
5442     else if (isa<InitListExpr>(Args[0]))
5443       SetFailed(FK_ParenthesizedListInitForReference);
5444     else
5445       TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
5446     return;
5447   }
5448 
5449   //     - If the initializer is (), the object is value-initialized.
5450   if (Kind.getKind() == InitializationKind::IK_Value ||
5451       (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
5452     TryValueInitialization(S, Entity, Kind, *this);
5453     return;
5454   }
5455 
5456   // Handle default initialization.
5457   if (Kind.getKind() == InitializationKind::IK_Default) {
5458     TryDefaultInitialization(S, Entity, Kind, *this);
5459     return;
5460   }
5461 
5462   //     - If the destination type is an array of characters, an array of
5463   //       char16_t, an array of char32_t, or an array of wchar_t, and the
5464   //       initializer is a string literal, see 8.5.2.
5465   //     - Otherwise, if the destination type is an array, the program is
5466   //       ill-formed.
5467   if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
5468     if (Initializer && isa<VariableArrayType>(DestAT)) {
5469       SetFailed(FK_VariableLengthArrayHasInitializer);
5470       return;
5471     }
5472 
5473     if (Initializer) {
5474       switch (IsStringInit(Initializer, DestAT, Context)) {
5475       case SIF_None:
5476         TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
5477         return;
5478       case SIF_NarrowStringIntoWideChar:
5479         SetFailed(FK_NarrowStringIntoWideCharArray);
5480         return;
5481       case SIF_WideStringIntoChar:
5482         SetFailed(FK_WideStringIntoCharArray);
5483         return;
5484       case SIF_IncompatWideStringIntoWideChar:
5485         SetFailed(FK_IncompatWideStringIntoWideChar);
5486         return;
5487       case SIF_PlainStringIntoUTF8Char:
5488         SetFailed(FK_PlainStringIntoUTF8Char);
5489         return;
5490       case SIF_UTF8StringIntoPlainChar:
5491         SetFailed(FK_UTF8StringIntoPlainChar);
5492         return;
5493       case SIF_Other:
5494         break;
5495       }
5496     }
5497 
5498     // Some kinds of initialization permit an array to be initialized from
5499     // another array of the same type, and perform elementwise initialization.
5500     if (Initializer && isa<ConstantArrayType>(DestAT) &&
5501         S.Context.hasSameUnqualifiedType(Initializer->getType(),
5502                                          Entity.getType()) &&
5503         canPerformArrayCopy(Entity)) {
5504       // If source is a prvalue, use it directly.
5505       if (Initializer->getValueKind() == VK_RValue) {
5506         AddArrayInitStep(DestType, /*IsGNUExtension*/false);
5507         return;
5508       }
5509 
5510       // Emit element-at-a-time copy loop.
5511       InitializedEntity Element =
5512           InitializedEntity::InitializeElement(S.Context, 0, Entity);
5513       QualType InitEltT =
5514           Context.getAsArrayType(Initializer->getType())->getElementType();
5515       OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT,
5516                           Initializer->getValueKind(),
5517                           Initializer->getObjectKind());
5518       Expr *OVEAsExpr = &OVE;
5519       InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList,
5520                      TreatUnavailableAsInvalid);
5521       if (!Failed())
5522         AddArrayInitLoopStep(Entity.getType(), InitEltT);
5523       return;
5524     }
5525 
5526     // Note: as an GNU C extension, we allow initialization of an
5527     // array from a compound literal that creates an array of the same
5528     // type, so long as the initializer has no side effects.
5529     if (!S.getLangOpts().CPlusPlus && Initializer &&
5530         (isa<ConstantExpr>(Initializer->IgnoreParens()) ||
5531          isa<CompoundLiteralExpr>(Initializer->IgnoreParens())) &&
5532         Initializer->getType()->isArrayType()) {
5533       const ArrayType *SourceAT
5534         = Context.getAsArrayType(Initializer->getType());
5535       if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
5536         SetFailed(FK_ArrayTypeMismatch);
5537       else if (Initializer->HasSideEffects(S.Context))
5538         SetFailed(FK_NonConstantArrayInit);
5539       else {
5540         AddArrayInitStep(DestType, /*IsGNUExtension*/true);
5541       }
5542     }
5543     // Note: as a GNU C++ extension, we allow list-initialization of a
5544     // class member of array type from a parenthesized initializer list.
5545     else if (S.getLangOpts().CPlusPlus &&
5546              Entity.getKind() == InitializedEntity::EK_Member &&
5547              Initializer && isa<InitListExpr>(Initializer)) {
5548       TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
5549                             *this, TreatUnavailableAsInvalid);
5550       AddParenthesizedArrayInitStep(DestType);
5551     } else if (DestAT->getElementType()->isCharType())
5552       SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
5553     else if (IsWideCharCompatible(DestAT->getElementType(), Context))
5554       SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral);
5555     else
5556       SetFailed(FK_ArrayNeedsInitList);
5557 
5558     return;
5559   }
5560 
5561   // Determine whether we should consider writeback conversions for
5562   // Objective-C ARC.
5563   bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
5564          Entity.isParameterKind();
5565 
5566   // We're at the end of the line for C: it's either a write-back conversion
5567   // or it's a C assignment. There's no need to check anything else.
5568   if (!S.getLangOpts().CPlusPlus) {
5569     // If allowed, check whether this is an Objective-C writeback conversion.
5570     if (allowObjCWritebackConversion &&
5571         tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
5572       return;
5573     }
5574 
5575     if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
5576       return;
5577 
5578     if (TryOCLZeroOpaqueTypeInitialization(S, *this, DestType, Initializer))
5579       return;
5580 
5581     // Handle initialization in C
5582     AddCAssignmentStep(DestType);
5583     MaybeProduceObjCObject(S, *this, Entity);
5584     return;
5585   }
5586 
5587   assert(S.getLangOpts().CPlusPlus);
5588 
5589   //     - If the destination type is a (possibly cv-qualified) class type:
5590   if (DestType->isRecordType()) {
5591     //     - If the initialization is direct-initialization, or if it is
5592     //       copy-initialization where the cv-unqualified version of the
5593     //       source type is the same class as, or a derived class of, the
5594     //       class of the destination, constructors are considered. [...]
5595     if (Kind.getKind() == InitializationKind::IK_Direct ||
5596         (Kind.getKind() == InitializationKind::IK_Copy &&
5597          (Context.hasSameUnqualifiedType(SourceType, DestType) ||
5598           S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, DestType))))
5599       TryConstructorInitialization(S, Entity, Kind, Args,
5600                                    DestType, DestType, *this);
5601     //     - Otherwise (i.e., for the remaining copy-initialization cases),
5602     //       user-defined conversion sequences that can convert from the source
5603     //       type to the destination type or (when a conversion function is
5604     //       used) to a derived class thereof are enumerated as described in
5605     //       13.3.1.4, and the best one is chosen through overload resolution
5606     //       (13.3).
5607     else
5608       TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5609                                TopLevelOfInitList);
5610     return;
5611   }
5612 
5613   assert(Args.size() >= 1 && "Zero-argument case handled above");
5614 
5615   // The remaining cases all need a source type.
5616   if (Args.size() > 1) {
5617     SetFailed(FK_TooManyInitsForScalar);
5618     return;
5619   } else if (isa<InitListExpr>(Args[0])) {
5620     SetFailed(FK_ParenthesizedListInitForScalar);
5621     return;
5622   }
5623 
5624   //    - Otherwise, if the source type is a (possibly cv-qualified) class
5625   //      type, conversion functions are considered.
5626   if (!SourceType.isNull() && SourceType->isRecordType()) {
5627     // For a conversion to _Atomic(T) from either T or a class type derived
5628     // from T, initialize the T object then convert to _Atomic type.
5629     bool NeedAtomicConversion = false;
5630     if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) {
5631       if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) ||
5632           S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType,
5633                           Atomic->getValueType())) {
5634         DestType = Atomic->getValueType();
5635         NeedAtomicConversion = true;
5636       }
5637     }
5638 
5639     TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5640                              TopLevelOfInitList);
5641     MaybeProduceObjCObject(S, *this, Entity);
5642     if (!Failed() && NeedAtomicConversion)
5643       AddAtomicConversionStep(Entity.getType());
5644     return;
5645   }
5646 
5647   //    - Otherwise, the initial value of the object being initialized is the
5648   //      (possibly converted) value of the initializer expression. Standard
5649   //      conversions (Clause 4) will be used, if necessary, to convert the
5650   //      initializer expression to the cv-unqualified version of the
5651   //      destination type; no user-defined conversions are considered.
5652 
5653   ImplicitConversionSequence ICS
5654     = S.TryImplicitConversion(Initializer, DestType,
5655                               /*SuppressUserConversions*/true,
5656                               /*AllowExplicitConversions*/ false,
5657                               /*InOverloadResolution*/ false,
5658                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
5659                               allowObjCWritebackConversion);
5660 
5661   if (ICS.isStandard() &&
5662       ICS.Standard.Second == ICK_Writeback_Conversion) {
5663     // Objective-C ARC writeback conversion.
5664 
5665     // We should copy unless we're passing to an argument explicitly
5666     // marked 'out'.
5667     bool ShouldCopy = true;
5668     if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5669       ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5670 
5671     // If there was an lvalue adjustment, add it as a separate conversion.
5672     if (ICS.Standard.First == ICK_Array_To_Pointer ||
5673         ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
5674       ImplicitConversionSequence LvalueICS;
5675       LvalueICS.setStandard();
5676       LvalueICS.Standard.setAsIdentityConversion();
5677       LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
5678       LvalueICS.Standard.First = ICS.Standard.First;
5679       AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
5680     }
5681 
5682     AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy);
5683   } else if (ICS.isBad()) {
5684     DeclAccessPair dap;
5685     if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) {
5686       AddZeroInitializationStep(Entity.getType());
5687     } else if (Initializer->getType() == Context.OverloadTy &&
5688                !S.ResolveAddressOfOverloadedFunction(Initializer, DestType,
5689                                                      false, dap))
5690       SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
5691     else if (Initializer->getType()->isFunctionType() &&
5692              isExprAnUnaddressableFunction(S, Initializer))
5693       SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction);
5694     else
5695       SetFailed(InitializationSequence::FK_ConversionFailed);
5696   } else {
5697     AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5698 
5699     MaybeProduceObjCObject(S, *this, Entity);
5700   }
5701 }
5702 
5703 InitializationSequence::~InitializationSequence() {
5704   for (auto &S : Steps)
5705     S.Destroy();
5706 }
5707 
5708 //===----------------------------------------------------------------------===//
5709 // Perform initialization
5710 //===----------------------------------------------------------------------===//
5711 static Sema::AssignmentAction
5712 getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) {
5713   switch(Entity.getKind()) {
5714   case InitializedEntity::EK_Variable:
5715   case InitializedEntity::EK_New:
5716   case InitializedEntity::EK_Exception:
5717   case InitializedEntity::EK_Base:
5718   case InitializedEntity::EK_Delegating:
5719     return Sema::AA_Initializing;
5720 
5721   case InitializedEntity::EK_Parameter:
5722     if (Entity.getDecl() &&
5723         isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5724       return Sema::AA_Sending;
5725 
5726     return Sema::AA_Passing;
5727 
5728   case InitializedEntity::EK_Parameter_CF_Audited:
5729     if (Entity.getDecl() &&
5730       isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5731       return Sema::AA_Sending;
5732 
5733     return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited;
5734 
5735   case InitializedEntity::EK_Result:
5736   case InitializedEntity::EK_StmtExprResult: // FIXME: Not quite right.
5737     return Sema::AA_Returning;
5738 
5739   case InitializedEntity::EK_Temporary:
5740   case InitializedEntity::EK_RelatedResult:
5741     // FIXME: Can we tell apart casting vs. converting?
5742     return Sema::AA_Casting;
5743 
5744   case InitializedEntity::EK_Member:
5745   case InitializedEntity::EK_Binding:
5746   case InitializedEntity::EK_ArrayElement:
5747   case InitializedEntity::EK_VectorElement:
5748   case InitializedEntity::EK_ComplexElement:
5749   case InitializedEntity::EK_BlockElement:
5750   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5751   case InitializedEntity::EK_LambdaCapture:
5752   case InitializedEntity::EK_CompoundLiteralInit:
5753     return Sema::AA_Initializing;
5754   }
5755 
5756   llvm_unreachable("Invalid EntityKind!");
5757 }
5758 
5759 /// Whether we should bind a created object as a temporary when
5760 /// initializing the given entity.
5761 static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
5762   switch (Entity.getKind()) {
5763   case InitializedEntity::EK_ArrayElement:
5764   case InitializedEntity::EK_Member:
5765   case InitializedEntity::EK_Result:
5766   case InitializedEntity::EK_StmtExprResult:
5767   case InitializedEntity::EK_New:
5768   case InitializedEntity::EK_Variable:
5769   case InitializedEntity::EK_Base:
5770   case InitializedEntity::EK_Delegating:
5771   case InitializedEntity::EK_VectorElement:
5772   case InitializedEntity::EK_ComplexElement:
5773   case InitializedEntity::EK_Exception:
5774   case InitializedEntity::EK_BlockElement:
5775   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5776   case InitializedEntity::EK_LambdaCapture:
5777   case InitializedEntity::EK_CompoundLiteralInit:
5778     return false;
5779 
5780   case InitializedEntity::EK_Parameter:
5781   case InitializedEntity::EK_Parameter_CF_Audited:
5782   case InitializedEntity::EK_Temporary:
5783   case InitializedEntity::EK_RelatedResult:
5784   case InitializedEntity::EK_Binding:
5785     return true;
5786   }
5787 
5788   llvm_unreachable("missed an InitializedEntity kind?");
5789 }
5790 
5791 /// Whether the given entity, when initialized with an object
5792 /// created for that initialization, requires destruction.
5793 static bool shouldDestroyEntity(const InitializedEntity &Entity) {
5794   switch (Entity.getKind()) {
5795     case InitializedEntity::EK_Result:
5796     case InitializedEntity::EK_StmtExprResult:
5797     case InitializedEntity::EK_New:
5798     case InitializedEntity::EK_Base:
5799     case InitializedEntity::EK_Delegating:
5800     case InitializedEntity::EK_VectorElement:
5801     case InitializedEntity::EK_ComplexElement:
5802     case InitializedEntity::EK_BlockElement:
5803     case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5804     case InitializedEntity::EK_LambdaCapture:
5805       return false;
5806 
5807     case InitializedEntity::EK_Member:
5808     case InitializedEntity::EK_Binding:
5809     case InitializedEntity::EK_Variable:
5810     case InitializedEntity::EK_Parameter:
5811     case InitializedEntity::EK_Parameter_CF_Audited:
5812     case InitializedEntity::EK_Temporary:
5813     case InitializedEntity::EK_ArrayElement:
5814     case InitializedEntity::EK_Exception:
5815     case InitializedEntity::EK_CompoundLiteralInit:
5816     case InitializedEntity::EK_RelatedResult:
5817       return true;
5818   }
5819 
5820   llvm_unreachable("missed an InitializedEntity kind?");
5821 }
5822 
5823 /// Get the location at which initialization diagnostics should appear.
5824 static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
5825                                            Expr *Initializer) {
5826   switch (Entity.getKind()) {
5827   case InitializedEntity::EK_Result:
5828   case InitializedEntity::EK_StmtExprResult:
5829     return Entity.getReturnLoc();
5830 
5831   case InitializedEntity::EK_Exception:
5832     return Entity.getThrowLoc();
5833 
5834   case InitializedEntity::EK_Variable:
5835   case InitializedEntity::EK_Binding:
5836     return Entity.getDecl()->getLocation();
5837 
5838   case InitializedEntity::EK_LambdaCapture:
5839     return Entity.getCaptureLoc();
5840 
5841   case InitializedEntity::EK_ArrayElement:
5842   case InitializedEntity::EK_Member:
5843   case InitializedEntity::EK_Parameter:
5844   case InitializedEntity::EK_Parameter_CF_Audited:
5845   case InitializedEntity::EK_Temporary:
5846   case InitializedEntity::EK_New:
5847   case InitializedEntity::EK_Base:
5848   case InitializedEntity::EK_Delegating:
5849   case InitializedEntity::EK_VectorElement:
5850   case InitializedEntity::EK_ComplexElement:
5851   case InitializedEntity::EK_BlockElement:
5852   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5853   case InitializedEntity::EK_CompoundLiteralInit:
5854   case InitializedEntity::EK_RelatedResult:
5855     return Initializer->getBeginLoc();
5856   }
5857   llvm_unreachable("missed an InitializedEntity kind?");
5858 }
5859 
5860 /// Make a (potentially elidable) temporary copy of the object
5861 /// provided by the given initializer by calling the appropriate copy
5862 /// constructor.
5863 ///
5864 /// \param S The Sema object used for type-checking.
5865 ///
5866 /// \param T The type of the temporary object, which must either be
5867 /// the type of the initializer expression or a superclass thereof.
5868 ///
5869 /// \param Entity The entity being initialized.
5870 ///
5871 /// \param CurInit The initializer expression.
5872 ///
5873 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that
5874 /// is permitted in C++03 (but not C++0x) when binding a reference to
5875 /// an rvalue.
5876 ///
5877 /// \returns An expression that copies the initializer expression into
5878 /// a temporary object, or an error expression if a copy could not be
5879 /// created.
5880 static ExprResult CopyObject(Sema &S,
5881                              QualType T,
5882                              const InitializedEntity &Entity,
5883                              ExprResult CurInit,
5884                              bool IsExtraneousCopy) {
5885   if (CurInit.isInvalid())
5886     return CurInit;
5887   // Determine which class type we're copying to.
5888   Expr *CurInitExpr = (Expr *)CurInit.get();
5889   CXXRecordDecl *Class = nullptr;
5890   if (const RecordType *Record = T->getAs<RecordType>())
5891     Class = cast<CXXRecordDecl>(Record->getDecl());
5892   if (!Class)
5893     return CurInit;
5894 
5895   SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
5896 
5897   // Make sure that the type we are copying is complete.
5898   if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
5899     return CurInit;
5900 
5901   // Perform overload resolution using the class's constructors. Per
5902   // C++11 [dcl.init]p16, second bullet for class types, this initialization
5903   // is direct-initialization.
5904   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
5905   DeclContext::lookup_result Ctors = S.LookupConstructors(Class);
5906 
5907   OverloadCandidateSet::iterator Best;
5908   switch (ResolveConstructorOverload(
5909       S, Loc, CurInitExpr, CandidateSet, T, Ctors, Best,
5910       /*CopyInitializing=*/false, /*AllowExplicit=*/true,
5911       /*OnlyListConstructors=*/false, /*IsListInit=*/false,
5912       /*SecondStepOfCopyInit=*/true)) {
5913   case OR_Success:
5914     break;
5915 
5916   case OR_No_Viable_Function:
5917     S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
5918            ? diag::ext_rvalue_to_reference_temp_copy_no_viable
5919            : diag::err_temp_copy_no_viable)
5920       << (int)Entity.getKind() << CurInitExpr->getType()
5921       << CurInitExpr->getSourceRange();
5922     CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
5923     if (!IsExtraneousCopy || S.isSFINAEContext())
5924       return ExprError();
5925     return CurInit;
5926 
5927   case OR_Ambiguous:
5928     S.Diag(Loc, diag::err_temp_copy_ambiguous)
5929       << (int)Entity.getKind() << CurInitExpr->getType()
5930       << CurInitExpr->getSourceRange();
5931     CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
5932     return ExprError();
5933 
5934   case OR_Deleted:
5935     S.Diag(Loc, diag::err_temp_copy_deleted)
5936       << (int)Entity.getKind() << CurInitExpr->getType()
5937       << CurInitExpr->getSourceRange();
5938     S.NoteDeletedFunction(Best->Function);
5939     return ExprError();
5940   }
5941 
5942   bool HadMultipleCandidates = CandidateSet.size() > 1;
5943 
5944   CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
5945   SmallVector<Expr*, 8> ConstructorArgs;
5946   CurInit.get(); // Ownership transferred into MultiExprArg, below.
5947 
5948   S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity,
5949                            IsExtraneousCopy);
5950 
5951   if (IsExtraneousCopy) {
5952     // If this is a totally extraneous copy for C++03 reference
5953     // binding purposes, just return the original initialization
5954     // expression. We don't generate an (elided) copy operation here
5955     // because doing so would require us to pass down a flag to avoid
5956     // infinite recursion, where each step adds another extraneous,
5957     // elidable copy.
5958 
5959     // Instantiate the default arguments of any extra parameters in
5960     // the selected copy constructor, as if we were going to create a
5961     // proper call to the copy constructor.
5962     for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
5963       ParmVarDecl *Parm = Constructor->getParamDecl(I);
5964       if (S.RequireCompleteType(Loc, Parm->getType(),
5965                                 diag::err_call_incomplete_argument))
5966         break;
5967 
5968       // Build the default argument expression; we don't actually care
5969       // if this succeeds or not, because this routine will complain
5970       // if there was a problem.
5971       S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
5972     }
5973 
5974     return CurInitExpr;
5975   }
5976 
5977   // Determine the arguments required to actually perform the
5978   // constructor call (we might have derived-to-base conversions, or
5979   // the copy constructor may have default arguments).
5980   if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs))
5981     return ExprError();
5982 
5983   // C++0x [class.copy]p32:
5984   //   When certain criteria are met, an implementation is allowed to
5985   //   omit the copy/move construction of a class object, even if the
5986   //   copy/move constructor and/or destructor for the object have
5987   //   side effects. [...]
5988   //     - when a temporary class object that has not been bound to a
5989   //       reference (12.2) would be copied/moved to a class object
5990   //       with the same cv-unqualified type, the copy/move operation
5991   //       can be omitted by constructing the temporary object
5992   //       directly into the target of the omitted copy/move
5993   //
5994   // Note that the other three bullets are handled elsewhere. Copy
5995   // elision for return statements and throw expressions are handled as part
5996   // of constructor initialization, while copy elision for exception handlers
5997   // is handled by the run-time.
5998   //
5999   // FIXME: If the function parameter is not the same type as the temporary, we
6000   // should still be able to elide the copy, but we don't have a way to
6001   // represent in the AST how much should be elided in this case.
6002   bool Elidable =
6003       CurInitExpr->isTemporaryObject(S.Context, Class) &&
6004       S.Context.hasSameUnqualifiedType(
6005           Best->Function->getParamDecl(0)->getType().getNonReferenceType(),
6006           CurInitExpr->getType());
6007 
6008   // Actually perform the constructor call.
6009   CurInit = S.BuildCXXConstructExpr(Loc, T, Best->FoundDecl, Constructor,
6010                                     Elidable,
6011                                     ConstructorArgs,
6012                                     HadMultipleCandidates,
6013                                     /*ListInit*/ false,
6014                                     /*StdInitListInit*/ false,
6015                                     /*ZeroInit*/ false,
6016                                     CXXConstructExpr::CK_Complete,
6017                                     SourceRange());
6018 
6019   // If we're supposed to bind temporaries, do so.
6020   if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
6021     CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
6022   return CurInit;
6023 }
6024 
6025 /// Check whether elidable copy construction for binding a reference to
6026 /// a temporary would have succeeded if we were building in C++98 mode, for
6027 /// -Wc++98-compat.
6028 static void CheckCXX98CompatAccessibleCopy(Sema &S,
6029                                            const InitializedEntity &Entity,
6030                                            Expr *CurInitExpr) {
6031   assert(S.getLangOpts().CPlusPlus11);
6032 
6033   const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
6034   if (!Record)
6035     return;
6036 
6037   SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
6038   if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc))
6039     return;
6040 
6041   // Find constructors which would have been considered.
6042   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
6043   DeclContext::lookup_result Ctors =
6044       S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl()));
6045 
6046   // Perform overload resolution.
6047   OverloadCandidateSet::iterator Best;
6048   OverloadingResult OR = ResolveConstructorOverload(
6049       S, Loc, CurInitExpr, CandidateSet, CurInitExpr->getType(), Ctors, Best,
6050       /*CopyInitializing=*/false, /*AllowExplicit=*/true,
6051       /*OnlyListConstructors=*/false, /*IsListInit=*/false,
6052       /*SecondStepOfCopyInit=*/true);
6053 
6054   PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
6055     << OR << (int)Entity.getKind() << CurInitExpr->getType()
6056     << CurInitExpr->getSourceRange();
6057 
6058   switch (OR) {
6059   case OR_Success:
6060     S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
6061                              Best->FoundDecl, Entity, Diag);
6062     // FIXME: Check default arguments as far as that's possible.
6063     break;
6064 
6065   case OR_No_Viable_Function:
6066     S.Diag(Loc, Diag);
6067     CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
6068     break;
6069 
6070   case OR_Ambiguous:
6071     S.Diag(Loc, Diag);
6072     CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
6073     break;
6074 
6075   case OR_Deleted:
6076     S.Diag(Loc, Diag);
6077     S.NoteDeletedFunction(Best->Function);
6078     break;
6079   }
6080 }
6081 
6082 void InitializationSequence::PrintInitLocationNote(Sema &S,
6083                                               const InitializedEntity &Entity) {
6084   if (Entity.isParameterKind() && Entity.getDecl()) {
6085     if (Entity.getDecl()->getLocation().isInvalid())
6086       return;
6087 
6088     if (Entity.getDecl()->getDeclName())
6089       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
6090         << Entity.getDecl()->getDeclName();
6091     else
6092       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
6093   }
6094   else if (Entity.getKind() == InitializedEntity::EK_RelatedResult &&
6095            Entity.getMethodDecl())
6096     S.Diag(Entity.getMethodDecl()->getLocation(),
6097            diag::note_method_return_type_change)
6098       << Entity.getMethodDecl()->getDeclName();
6099 }
6100 
6101 /// Returns true if the parameters describe a constructor initialization of
6102 /// an explicit temporary object, e.g. "Point(x, y)".
6103 static bool isExplicitTemporary(const InitializedEntity &Entity,
6104                                 const InitializationKind &Kind,
6105                                 unsigned NumArgs) {
6106   switch (Entity.getKind()) {
6107   case InitializedEntity::EK_Temporary:
6108   case InitializedEntity::EK_CompoundLiteralInit:
6109   case InitializedEntity::EK_RelatedResult:
6110     break;
6111   default:
6112     return false;
6113   }
6114 
6115   switch (Kind.getKind()) {
6116   case InitializationKind::IK_DirectList:
6117     return true;
6118   // FIXME: Hack to work around cast weirdness.
6119   case InitializationKind::IK_Direct:
6120   case InitializationKind::IK_Value:
6121     return NumArgs != 1;
6122   default:
6123     return false;
6124   }
6125 }
6126 
6127 static ExprResult
6128 PerformConstructorInitialization(Sema &S,
6129                                  const InitializedEntity &Entity,
6130                                  const InitializationKind &Kind,
6131                                  MultiExprArg Args,
6132                                  const InitializationSequence::Step& Step,
6133                                  bool &ConstructorInitRequiresZeroInit,
6134                                  bool IsListInitialization,
6135                                  bool IsStdInitListInitialization,
6136                                  SourceLocation LBraceLoc,
6137                                  SourceLocation RBraceLoc) {
6138   unsigned NumArgs = Args.size();
6139   CXXConstructorDecl *Constructor
6140     = cast<CXXConstructorDecl>(Step.Function.Function);
6141   bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
6142 
6143   // Build a call to the selected constructor.
6144   SmallVector<Expr*, 8> ConstructorArgs;
6145   SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
6146                          ? Kind.getEqualLoc()
6147                          : Kind.getLocation();
6148 
6149   if (Kind.getKind() == InitializationKind::IK_Default) {
6150     // Force even a trivial, implicit default constructor to be
6151     // semantically checked. We do this explicitly because we don't build
6152     // the definition for completely trivial constructors.
6153     assert(Constructor->getParent() && "No parent class for constructor.");
6154     if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6155         Constructor->isTrivial() && !Constructor->isUsed(false))
6156       S.DefineImplicitDefaultConstructor(Loc, Constructor);
6157   }
6158 
6159   ExprResult CurInit((Expr *)nullptr);
6160 
6161   // C++ [over.match.copy]p1:
6162   //   - When initializing a temporary to be bound to the first parameter
6163   //     of a constructor that takes a reference to possibly cv-qualified
6164   //     T as its first argument, called with a single argument in the
6165   //     context of direct-initialization, explicit conversion functions
6166   //     are also considered.
6167   bool AllowExplicitConv =
6168       Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 &&
6169       hasCopyOrMoveCtorParam(S.Context,
6170                              getConstructorInfo(Step.Function.FoundDecl));
6171 
6172   // Determine the arguments required to actually perform the constructor
6173   // call.
6174   if (S.CompleteConstructorCall(Constructor, Args,
6175                                 Loc, ConstructorArgs,
6176                                 AllowExplicitConv,
6177                                 IsListInitialization))
6178     return ExprError();
6179 
6180 
6181   if (isExplicitTemporary(Entity, Kind, NumArgs)) {
6182     // An explicitly-constructed temporary, e.g., X(1, 2).
6183     if (S.DiagnoseUseOfDecl(Constructor, Loc))
6184       return ExprError();
6185 
6186     TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
6187     if (!TSInfo)
6188       TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
6189     SourceRange ParenOrBraceRange =
6190         (Kind.getKind() == InitializationKind::IK_DirectList)
6191         ? SourceRange(LBraceLoc, RBraceLoc)
6192         : Kind.getParenOrBraceRange();
6193 
6194     if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(
6195             Step.Function.FoundDecl.getDecl())) {
6196       Constructor = S.findInheritingConstructor(Loc, Constructor, Shadow);
6197       if (S.DiagnoseUseOfDecl(Constructor, Loc))
6198         return ExprError();
6199     }
6200     S.MarkFunctionReferenced(Loc, Constructor);
6201 
6202     CurInit = new (S.Context) CXXTemporaryObjectExpr(
6203         S.Context, Constructor,
6204         Entity.getType().getNonLValueExprType(S.Context), TSInfo,
6205         ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates,
6206         IsListInitialization, IsStdInitListInitialization,
6207         ConstructorInitRequiresZeroInit);
6208   } else {
6209     CXXConstructExpr::ConstructionKind ConstructKind =
6210       CXXConstructExpr::CK_Complete;
6211 
6212     if (Entity.getKind() == InitializedEntity::EK_Base) {
6213       ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
6214         CXXConstructExpr::CK_VirtualBase :
6215         CXXConstructExpr::CK_NonVirtualBase;
6216     } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
6217       ConstructKind = CXXConstructExpr::CK_Delegating;
6218     }
6219 
6220     // Only get the parenthesis or brace range if it is a list initialization or
6221     // direct construction.
6222     SourceRange ParenOrBraceRange;
6223     if (IsListInitialization)
6224       ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc);
6225     else if (Kind.getKind() == InitializationKind::IK_Direct)
6226       ParenOrBraceRange = Kind.getParenOrBraceRange();
6227 
6228     // If the entity allows NRVO, mark the construction as elidable
6229     // unconditionally.
6230     if (Entity.allowsNRVO())
6231       CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
6232                                         Step.Function.FoundDecl,
6233                                         Constructor, /*Elidable=*/true,
6234                                         ConstructorArgs,
6235                                         HadMultipleCandidates,
6236                                         IsListInitialization,
6237                                         IsStdInitListInitialization,
6238                                         ConstructorInitRequiresZeroInit,
6239                                         ConstructKind,
6240                                         ParenOrBraceRange);
6241     else
6242       CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
6243                                         Step.Function.FoundDecl,
6244                                         Constructor,
6245                                         ConstructorArgs,
6246                                         HadMultipleCandidates,
6247                                         IsListInitialization,
6248                                         IsStdInitListInitialization,
6249                                         ConstructorInitRequiresZeroInit,
6250                                         ConstructKind,
6251                                         ParenOrBraceRange);
6252   }
6253   if (CurInit.isInvalid())
6254     return ExprError();
6255 
6256   // Only check access if all of that succeeded.
6257   S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity);
6258   if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc))
6259     return ExprError();
6260 
6261   if (shouldBindAsTemporary(Entity))
6262     CurInit = S.MaybeBindToTemporary(CurInit.get());
6263 
6264   return CurInit;
6265 }
6266 
6267 namespace {
6268 enum LifetimeKind {
6269   /// The lifetime of a temporary bound to this entity ends at the end of the
6270   /// full-expression, and that's (probably) fine.
6271   LK_FullExpression,
6272 
6273   /// The lifetime of a temporary bound to this entity is extended to the
6274   /// lifeitme of the entity itself.
6275   LK_Extended,
6276 
6277   /// The lifetime of a temporary bound to this entity probably ends too soon,
6278   /// because the entity is allocated in a new-expression.
6279   LK_New,
6280 
6281   /// The lifetime of a temporary bound to this entity ends too soon, because
6282   /// the entity is a return object.
6283   LK_Return,
6284 
6285   /// The lifetime of a temporary bound to this entity ends too soon, because
6286   /// the entity is the result of a statement expression.
6287   LK_StmtExprResult,
6288 
6289   /// This is a mem-initializer: if it would extend a temporary (other than via
6290   /// a default member initializer), the program is ill-formed.
6291   LK_MemInitializer,
6292 };
6293 using LifetimeResult =
6294     llvm::PointerIntPair<const InitializedEntity *, 3, LifetimeKind>;
6295 }
6296 
6297 /// Determine the declaration which an initialized entity ultimately refers to,
6298 /// for the purpose of lifetime-extending a temporary bound to a reference in
6299 /// the initialization of \p Entity.
6300 static LifetimeResult getEntityLifetime(
6301     const InitializedEntity *Entity,
6302     const InitializedEntity *InitField = nullptr) {
6303   // C++11 [class.temporary]p5:
6304   switch (Entity->getKind()) {
6305   case InitializedEntity::EK_Variable:
6306     //   The temporary [...] persists for the lifetime of the reference
6307     return {Entity, LK_Extended};
6308 
6309   case InitializedEntity::EK_Member:
6310     // For subobjects, we look at the complete object.
6311     if (Entity->getParent())
6312       return getEntityLifetime(Entity->getParent(), Entity);
6313 
6314     //   except:
6315     // C++17 [class.base.init]p8:
6316     //   A temporary expression bound to a reference member in a
6317     //   mem-initializer is ill-formed.
6318     // C++17 [class.base.init]p11:
6319     //   A temporary expression bound to a reference member from a
6320     //   default member initializer is ill-formed.
6321     //
6322     // The context of p11 and its example suggest that it's only the use of a
6323     // default member initializer from a constructor that makes the program
6324     // ill-formed, not its mere existence, and that it can even be used by
6325     // aggregate initialization.
6326     return {Entity, Entity->isDefaultMemberInitializer() ? LK_Extended
6327                                                          : LK_MemInitializer};
6328 
6329   case InitializedEntity::EK_Binding:
6330     // Per [dcl.decomp]p3, the binding is treated as a variable of reference
6331     // type.
6332     return {Entity, LK_Extended};
6333 
6334   case InitializedEntity::EK_Parameter:
6335   case InitializedEntity::EK_Parameter_CF_Audited:
6336     //   -- A temporary bound to a reference parameter in a function call
6337     //      persists until the completion of the full-expression containing
6338     //      the call.
6339     return {nullptr, LK_FullExpression};
6340 
6341   case InitializedEntity::EK_Result:
6342     //   -- The lifetime of a temporary bound to the returned value in a
6343     //      function return statement is not extended; the temporary is
6344     //      destroyed at the end of the full-expression in the return statement.
6345     return {nullptr, LK_Return};
6346 
6347   case InitializedEntity::EK_StmtExprResult:
6348     // FIXME: Should we lifetime-extend through the result of a statement
6349     // expression?
6350     return {nullptr, LK_StmtExprResult};
6351 
6352   case InitializedEntity::EK_New:
6353     //   -- A temporary bound to a reference in a new-initializer persists
6354     //      until the completion of the full-expression containing the
6355     //      new-initializer.
6356     return {nullptr, LK_New};
6357 
6358   case InitializedEntity::EK_Temporary:
6359   case InitializedEntity::EK_CompoundLiteralInit:
6360   case InitializedEntity::EK_RelatedResult:
6361     // We don't yet know the storage duration of the surrounding temporary.
6362     // Assume it's got full-expression duration for now, it will patch up our
6363     // storage duration if that's not correct.
6364     return {nullptr, LK_FullExpression};
6365 
6366   case InitializedEntity::EK_ArrayElement:
6367     // For subobjects, we look at the complete object.
6368     return getEntityLifetime(Entity->getParent(), InitField);
6369 
6370   case InitializedEntity::EK_Base:
6371     // For subobjects, we look at the complete object.
6372     if (Entity->getParent())
6373       return getEntityLifetime(Entity->getParent(), InitField);
6374     return {InitField, LK_MemInitializer};
6375 
6376   case InitializedEntity::EK_Delegating:
6377     // We can reach this case for aggregate initialization in a constructor:
6378     //   struct A { int &&r; };
6379     //   struct B : A { B() : A{0} {} };
6380     // In this case, use the outermost field decl as the context.
6381     return {InitField, LK_MemInitializer};
6382 
6383   case InitializedEntity::EK_BlockElement:
6384   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6385   case InitializedEntity::EK_LambdaCapture:
6386   case InitializedEntity::EK_VectorElement:
6387   case InitializedEntity::EK_ComplexElement:
6388     return {nullptr, LK_FullExpression};
6389 
6390   case InitializedEntity::EK_Exception:
6391     // FIXME: Can we diagnose lifetime problems with exceptions?
6392     return {nullptr, LK_FullExpression};
6393   }
6394   llvm_unreachable("unknown entity kind");
6395 }
6396 
6397 namespace {
6398 enum ReferenceKind {
6399   /// Lifetime would be extended by a reference binding to a temporary.
6400   RK_ReferenceBinding,
6401   /// Lifetime would be extended by a std::initializer_list object binding to
6402   /// its backing array.
6403   RK_StdInitializerList,
6404 };
6405 
6406 /// A temporary or local variable. This will be one of:
6407 ///  * A MaterializeTemporaryExpr.
6408 ///  * A DeclRefExpr whose declaration is a local.
6409 ///  * An AddrLabelExpr.
6410 ///  * A BlockExpr for a block with captures.
6411 using Local = Expr*;
6412 
6413 /// Expressions we stepped over when looking for the local state. Any steps
6414 /// that would inhibit lifetime extension or take us out of subexpressions of
6415 /// the initializer are included.
6416 struct IndirectLocalPathEntry {
6417   enum EntryKind {
6418     DefaultInit,
6419     AddressOf,
6420     VarInit,
6421     LValToRVal,
6422     LifetimeBoundCall,
6423   } Kind;
6424   Expr *E;
6425   const Decl *D = nullptr;
6426   IndirectLocalPathEntry() {}
6427   IndirectLocalPathEntry(EntryKind K, Expr *E) : Kind(K), E(E) {}
6428   IndirectLocalPathEntry(EntryKind K, Expr *E, const Decl *D)
6429       : Kind(K), E(E), D(D) {}
6430 };
6431 
6432 using IndirectLocalPath = llvm::SmallVectorImpl<IndirectLocalPathEntry>;
6433 
6434 struct RevertToOldSizeRAII {
6435   IndirectLocalPath &Path;
6436   unsigned OldSize = Path.size();
6437   RevertToOldSizeRAII(IndirectLocalPath &Path) : Path(Path) {}
6438   ~RevertToOldSizeRAII() { Path.resize(OldSize); }
6439 };
6440 
6441 using LocalVisitor = llvm::function_ref<bool(IndirectLocalPath &Path, Local L,
6442                                              ReferenceKind RK)>;
6443 }
6444 
6445 static bool isVarOnPath(IndirectLocalPath &Path, VarDecl *VD) {
6446   for (auto E : Path)
6447     if (E.Kind == IndirectLocalPathEntry::VarInit && E.D == VD)
6448       return true;
6449   return false;
6450 }
6451 
6452 static bool pathContainsInit(IndirectLocalPath &Path) {
6453   return llvm::any_of(Path, [=](IndirectLocalPathEntry E) {
6454     return E.Kind == IndirectLocalPathEntry::DefaultInit ||
6455            E.Kind == IndirectLocalPathEntry::VarInit;
6456   });
6457 }
6458 
6459 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
6460                                              Expr *Init, LocalVisitor Visit,
6461                                              bool RevisitSubinits);
6462 
6463 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
6464                                                   Expr *Init, ReferenceKind RK,
6465                                                   LocalVisitor Visit);
6466 
6467 static bool implicitObjectParamIsLifetimeBound(const FunctionDecl *FD) {
6468   const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
6469   if (!TSI)
6470     return false;
6471   // Don't declare this variable in the second operand of the for-statement;
6472   // GCC miscompiles that by ending its lifetime before evaluating the
6473   // third operand. See gcc.gnu.org/PR86769.
6474   AttributedTypeLoc ATL;
6475   for (TypeLoc TL = TSI->getTypeLoc();
6476        (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
6477        TL = ATL.getModifiedLoc()) {
6478     if (ATL.getAttrAs<LifetimeBoundAttr>())
6479       return true;
6480   }
6481   return false;
6482 }
6483 
6484 static void visitLifetimeBoundArguments(IndirectLocalPath &Path, Expr *Call,
6485                                         LocalVisitor Visit) {
6486   const FunctionDecl *Callee;
6487   ArrayRef<Expr*> Args;
6488 
6489   if (auto *CE = dyn_cast<CallExpr>(Call)) {
6490     Callee = CE->getDirectCallee();
6491     Args = llvm::makeArrayRef(CE->getArgs(), CE->getNumArgs());
6492   } else {
6493     auto *CCE = cast<CXXConstructExpr>(Call);
6494     Callee = CCE->getConstructor();
6495     Args = llvm::makeArrayRef(CCE->getArgs(), CCE->getNumArgs());
6496   }
6497   if (!Callee)
6498     return;
6499 
6500   Expr *ObjectArg = nullptr;
6501   if (isa<CXXOperatorCallExpr>(Call) && Callee->isCXXInstanceMember()) {
6502     ObjectArg = Args[0];
6503     Args = Args.slice(1);
6504   } else if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) {
6505     ObjectArg = MCE->getImplicitObjectArgument();
6506   }
6507 
6508   auto VisitLifetimeBoundArg = [&](const Decl *D, Expr *Arg) {
6509     Path.push_back({IndirectLocalPathEntry::LifetimeBoundCall, Arg, D});
6510     if (Arg->isGLValue())
6511       visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding,
6512                                             Visit);
6513     else
6514       visitLocalsRetainedByInitializer(Path, Arg, Visit, true);
6515     Path.pop_back();
6516   };
6517 
6518   if (ObjectArg && implicitObjectParamIsLifetimeBound(Callee))
6519     VisitLifetimeBoundArg(Callee, ObjectArg);
6520 
6521   for (unsigned I = 0,
6522                 N = std::min<unsigned>(Callee->getNumParams(), Args.size());
6523        I != N; ++I) {
6524     if (Callee->getParamDecl(I)->hasAttr<LifetimeBoundAttr>())
6525       VisitLifetimeBoundArg(Callee->getParamDecl(I), Args[I]);
6526   }
6527 }
6528 
6529 /// Visit the locals that would be reachable through a reference bound to the
6530 /// glvalue expression \c Init.
6531 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
6532                                                   Expr *Init, ReferenceKind RK,
6533                                                   LocalVisitor Visit) {
6534   RevertToOldSizeRAII RAII(Path);
6535 
6536   // Walk past any constructs which we can lifetime-extend across.
6537   Expr *Old;
6538   do {
6539     Old = Init;
6540 
6541     if (auto *FE = dyn_cast<FullExpr>(Init))
6542       Init = FE->getSubExpr();
6543 
6544     if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
6545       // If this is just redundant braces around an initializer, step over it.
6546       if (ILE->isTransparent())
6547         Init = ILE->getInit(0);
6548     }
6549 
6550     // Step over any subobject adjustments; we may have a materialized
6551     // temporary inside them.
6552     Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
6553 
6554     // Per current approach for DR1376, look through casts to reference type
6555     // when performing lifetime extension.
6556     if (CastExpr *CE = dyn_cast<CastExpr>(Init))
6557       if (CE->getSubExpr()->isGLValue())
6558         Init = CE->getSubExpr();
6559 
6560     // Per the current approach for DR1299, look through array element access
6561     // on array glvalues when performing lifetime extension.
6562     if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Init)) {
6563       Init = ASE->getBase();
6564       auto *ICE = dyn_cast<ImplicitCastExpr>(Init);
6565       if (ICE && ICE->getCastKind() == CK_ArrayToPointerDecay)
6566         Init = ICE->getSubExpr();
6567       else
6568         // We can't lifetime extend through this but we might still find some
6569         // retained temporaries.
6570         return visitLocalsRetainedByInitializer(Path, Init, Visit, true);
6571     }
6572 
6573     // Step into CXXDefaultInitExprs so we can diagnose cases where a
6574     // constructor inherits one as an implicit mem-initializer.
6575     if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
6576       Path.push_back(
6577           {IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
6578       Init = DIE->getExpr();
6579     }
6580   } while (Init != Old);
6581 
6582   if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Init)) {
6583     if (Visit(Path, Local(MTE), RK))
6584       visitLocalsRetainedByInitializer(Path, MTE->GetTemporaryExpr(), Visit,
6585                                        true);
6586   }
6587 
6588   if (isa<CallExpr>(Init))
6589     return visitLifetimeBoundArguments(Path, Init, Visit);
6590 
6591   switch (Init->getStmtClass()) {
6592   case Stmt::DeclRefExprClass: {
6593     // If we find the name of a local non-reference parameter, we could have a
6594     // lifetime problem.
6595     auto *DRE = cast<DeclRefExpr>(Init);
6596     auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
6597     if (VD && VD->hasLocalStorage() &&
6598         !DRE->refersToEnclosingVariableOrCapture()) {
6599       if (!VD->getType()->isReferenceType()) {
6600         Visit(Path, Local(DRE), RK);
6601       } else if (isa<ParmVarDecl>(DRE->getDecl())) {
6602         // The lifetime of a reference parameter is unknown; assume it's OK
6603         // for now.
6604         break;
6605       } else if (VD->getInit() && !isVarOnPath(Path, VD)) {
6606         Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
6607         visitLocalsRetainedByReferenceBinding(Path, VD->getInit(),
6608                                               RK_ReferenceBinding, Visit);
6609       }
6610     }
6611     break;
6612   }
6613 
6614   case Stmt::UnaryOperatorClass: {
6615     // The only unary operator that make sense to handle here
6616     // is Deref.  All others don't resolve to a "name."  This includes
6617     // handling all sorts of rvalues passed to a unary operator.
6618     const UnaryOperator *U = cast<UnaryOperator>(Init);
6619     if (U->getOpcode() == UO_Deref)
6620       visitLocalsRetainedByInitializer(Path, U->getSubExpr(), Visit, true);
6621     break;
6622   }
6623 
6624   case Stmt::OMPArraySectionExprClass: {
6625     visitLocalsRetainedByInitializer(
6626         Path, cast<OMPArraySectionExpr>(Init)->getBase(), Visit, true);
6627     break;
6628   }
6629 
6630   case Stmt::ConditionalOperatorClass:
6631   case Stmt::BinaryConditionalOperatorClass: {
6632     auto *C = cast<AbstractConditionalOperator>(Init);
6633     if (!C->getTrueExpr()->getType()->isVoidType())
6634       visitLocalsRetainedByReferenceBinding(Path, C->getTrueExpr(), RK, Visit);
6635     if (!C->getFalseExpr()->getType()->isVoidType())
6636       visitLocalsRetainedByReferenceBinding(Path, C->getFalseExpr(), RK, Visit);
6637     break;
6638   }
6639 
6640   // FIXME: Visit the left-hand side of an -> or ->*.
6641 
6642   default:
6643     break;
6644   }
6645 }
6646 
6647 /// Visit the locals that would be reachable through an object initialized by
6648 /// the prvalue expression \c Init.
6649 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
6650                                              Expr *Init, LocalVisitor Visit,
6651                                              bool RevisitSubinits) {
6652   RevertToOldSizeRAII RAII(Path);
6653 
6654   Expr *Old;
6655   do {
6656     Old = Init;
6657 
6658     // Step into CXXDefaultInitExprs so we can diagnose cases where a
6659     // constructor inherits one as an implicit mem-initializer.
6660     if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
6661       Path.push_back({IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
6662       Init = DIE->getExpr();
6663     }
6664 
6665     if (auto *FE = dyn_cast<FullExpr>(Init))
6666       Init = FE->getSubExpr();
6667 
6668     // Dig out the expression which constructs the extended temporary.
6669     Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
6670 
6671     if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init))
6672       Init = BTE->getSubExpr();
6673 
6674     Init = Init->IgnoreParens();
6675 
6676     // Step over value-preserving rvalue casts.
6677     if (auto *CE = dyn_cast<CastExpr>(Init)) {
6678       switch (CE->getCastKind()) {
6679       case CK_LValueToRValue:
6680         // If we can match the lvalue to a const object, we can look at its
6681         // initializer.
6682         Path.push_back({IndirectLocalPathEntry::LValToRVal, CE});
6683         return visitLocalsRetainedByReferenceBinding(
6684             Path, Init, RK_ReferenceBinding,
6685             [&](IndirectLocalPath &Path, Local L, ReferenceKind RK) -> bool {
6686           if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
6687             auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
6688             if (VD && VD->getType().isConstQualified() && VD->getInit() &&
6689                 !isVarOnPath(Path, VD)) {
6690               Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
6691               visitLocalsRetainedByInitializer(Path, VD->getInit(), Visit, true);
6692             }
6693           } else if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L)) {
6694             if (MTE->getType().isConstQualified())
6695               visitLocalsRetainedByInitializer(Path, MTE->GetTemporaryExpr(),
6696                                                Visit, true);
6697           }
6698           return false;
6699         });
6700 
6701         // We assume that objects can be retained by pointers cast to integers,
6702         // but not if the integer is cast to floating-point type or to _Complex.
6703         // We assume that casts to 'bool' do not preserve enough information to
6704         // retain a local object.
6705       case CK_NoOp:
6706       case CK_BitCast:
6707       case CK_BaseToDerived:
6708       case CK_DerivedToBase:
6709       case CK_UncheckedDerivedToBase:
6710       case CK_Dynamic:
6711       case CK_ToUnion:
6712       case CK_UserDefinedConversion:
6713       case CK_ConstructorConversion:
6714       case CK_IntegralToPointer:
6715       case CK_PointerToIntegral:
6716       case CK_VectorSplat:
6717       case CK_IntegralCast:
6718       case CK_CPointerToObjCPointerCast:
6719       case CK_BlockPointerToObjCPointerCast:
6720       case CK_AnyPointerToBlockPointerCast:
6721       case CK_AddressSpaceConversion:
6722         break;
6723 
6724       case CK_ArrayToPointerDecay:
6725         // Model array-to-pointer decay as taking the address of the array
6726         // lvalue.
6727         Path.push_back({IndirectLocalPathEntry::AddressOf, CE});
6728         return visitLocalsRetainedByReferenceBinding(Path, CE->getSubExpr(),
6729                                                      RK_ReferenceBinding, Visit);
6730 
6731       default:
6732         return;
6733       }
6734 
6735       Init = CE->getSubExpr();
6736     }
6737   } while (Old != Init);
6738 
6739   // C++17 [dcl.init.list]p6:
6740   //   initializing an initializer_list object from the array extends the
6741   //   lifetime of the array exactly like binding a reference to a temporary.
6742   if (auto *ILE = dyn_cast<CXXStdInitializerListExpr>(Init))
6743     return visitLocalsRetainedByReferenceBinding(Path, ILE->getSubExpr(),
6744                                                  RK_StdInitializerList, Visit);
6745 
6746   if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
6747     // We already visited the elements of this initializer list while
6748     // performing the initialization. Don't visit them again unless we've
6749     // changed the lifetime of the initialized entity.
6750     if (!RevisitSubinits)
6751       return;
6752 
6753     if (ILE->isTransparent())
6754       return visitLocalsRetainedByInitializer(Path, ILE->getInit(0), Visit,
6755                                               RevisitSubinits);
6756 
6757     if (ILE->getType()->isArrayType()) {
6758       for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I)
6759         visitLocalsRetainedByInitializer(Path, ILE->getInit(I), Visit,
6760                                          RevisitSubinits);
6761       return;
6762     }
6763 
6764     if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) {
6765       assert(RD->isAggregate() && "aggregate init on non-aggregate");
6766 
6767       // If we lifetime-extend a braced initializer which is initializing an
6768       // aggregate, and that aggregate contains reference members which are
6769       // bound to temporaries, those temporaries are also lifetime-extended.
6770       if (RD->isUnion() && ILE->getInitializedFieldInUnion() &&
6771           ILE->getInitializedFieldInUnion()->getType()->isReferenceType())
6772         visitLocalsRetainedByReferenceBinding(Path, ILE->getInit(0),
6773                                               RK_ReferenceBinding, Visit);
6774       else {
6775         unsigned Index = 0;
6776         for (const auto *I : RD->fields()) {
6777           if (Index >= ILE->getNumInits())
6778             break;
6779           if (I->isUnnamedBitfield())
6780             continue;
6781           Expr *SubInit = ILE->getInit(Index);
6782           if (I->getType()->isReferenceType())
6783             visitLocalsRetainedByReferenceBinding(Path, SubInit,
6784                                                   RK_ReferenceBinding, Visit);
6785           else
6786             // This might be either aggregate-initialization of a member or
6787             // initialization of a std::initializer_list object. Regardless,
6788             // we should recursively lifetime-extend that initializer.
6789             visitLocalsRetainedByInitializer(Path, SubInit, Visit,
6790                                              RevisitSubinits);
6791           ++Index;
6792         }
6793       }
6794     }
6795     return;
6796   }
6797 
6798   // The lifetime of an init-capture is that of the closure object constructed
6799   // by a lambda-expression.
6800   if (auto *LE = dyn_cast<LambdaExpr>(Init)) {
6801     for (Expr *E : LE->capture_inits()) {
6802       if (!E)
6803         continue;
6804       if (E->isGLValue())
6805         visitLocalsRetainedByReferenceBinding(Path, E, RK_ReferenceBinding,
6806                                               Visit);
6807       else
6808         visitLocalsRetainedByInitializer(Path, E, Visit, true);
6809     }
6810   }
6811 
6812   if (isa<CallExpr>(Init) || isa<CXXConstructExpr>(Init))
6813     return visitLifetimeBoundArguments(Path, Init, Visit);
6814 
6815   switch (Init->getStmtClass()) {
6816   case Stmt::UnaryOperatorClass: {
6817     auto *UO = cast<UnaryOperator>(Init);
6818     // If the initializer is the address of a local, we could have a lifetime
6819     // problem.
6820     if (UO->getOpcode() == UO_AddrOf) {
6821       // If this is &rvalue, then it's ill-formed and we have already diagnosed
6822       // it. Don't produce a redundant warning about the lifetime of the
6823       // temporary.
6824       if (isa<MaterializeTemporaryExpr>(UO->getSubExpr()))
6825         return;
6826 
6827       Path.push_back({IndirectLocalPathEntry::AddressOf, UO});
6828       visitLocalsRetainedByReferenceBinding(Path, UO->getSubExpr(),
6829                                             RK_ReferenceBinding, Visit);
6830     }
6831     break;
6832   }
6833 
6834   case Stmt::BinaryOperatorClass: {
6835     // Handle pointer arithmetic.
6836     auto *BO = cast<BinaryOperator>(Init);
6837     BinaryOperatorKind BOK = BO->getOpcode();
6838     if (!BO->getType()->isPointerType() || (BOK != BO_Add && BOK != BO_Sub))
6839       break;
6840 
6841     if (BO->getLHS()->getType()->isPointerType())
6842       visitLocalsRetainedByInitializer(Path, BO->getLHS(), Visit, true);
6843     else if (BO->getRHS()->getType()->isPointerType())
6844       visitLocalsRetainedByInitializer(Path, BO->getRHS(), Visit, true);
6845     break;
6846   }
6847 
6848   case Stmt::ConditionalOperatorClass:
6849   case Stmt::BinaryConditionalOperatorClass: {
6850     auto *C = cast<AbstractConditionalOperator>(Init);
6851     // In C++, we can have a throw-expression operand, which has 'void' type
6852     // and isn't interesting from a lifetime perspective.
6853     if (!C->getTrueExpr()->getType()->isVoidType())
6854       visitLocalsRetainedByInitializer(Path, C->getTrueExpr(), Visit, true);
6855     if (!C->getFalseExpr()->getType()->isVoidType())
6856       visitLocalsRetainedByInitializer(Path, C->getFalseExpr(), Visit, true);
6857     break;
6858   }
6859 
6860   case Stmt::BlockExprClass:
6861     if (cast<BlockExpr>(Init)->getBlockDecl()->hasCaptures()) {
6862       // This is a local block, whose lifetime is that of the function.
6863       Visit(Path, Local(cast<BlockExpr>(Init)), RK_ReferenceBinding);
6864     }
6865     break;
6866 
6867   case Stmt::AddrLabelExprClass:
6868     // We want to warn if the address of a label would escape the function.
6869     Visit(Path, Local(cast<AddrLabelExpr>(Init)), RK_ReferenceBinding);
6870     break;
6871 
6872   default:
6873     break;
6874   }
6875 }
6876 
6877 /// Determine whether this is an indirect path to a temporary that we are
6878 /// supposed to lifetime-extend along (but don't).
6879 static bool shouldLifetimeExtendThroughPath(const IndirectLocalPath &Path) {
6880   for (auto Elem : Path) {
6881     if (Elem.Kind != IndirectLocalPathEntry::DefaultInit)
6882       return false;
6883   }
6884   return true;
6885 }
6886 
6887 /// Find the range for the first interesting entry in the path at or after I.
6888 static SourceRange nextPathEntryRange(const IndirectLocalPath &Path, unsigned I,
6889                                       Expr *E) {
6890   for (unsigned N = Path.size(); I != N; ++I) {
6891     switch (Path[I].Kind) {
6892     case IndirectLocalPathEntry::AddressOf:
6893     case IndirectLocalPathEntry::LValToRVal:
6894     case IndirectLocalPathEntry::LifetimeBoundCall:
6895       // These exist primarily to mark the path as not permitting or
6896       // supporting lifetime extension.
6897       break;
6898 
6899     case IndirectLocalPathEntry::DefaultInit:
6900     case IndirectLocalPathEntry::VarInit:
6901       return Path[I].E->getSourceRange();
6902     }
6903   }
6904   return E->getSourceRange();
6905 }
6906 
6907 void Sema::checkInitializerLifetime(const InitializedEntity &Entity,
6908                                     Expr *Init) {
6909   LifetimeResult LR = getEntityLifetime(&Entity);
6910   LifetimeKind LK = LR.getInt();
6911   const InitializedEntity *ExtendingEntity = LR.getPointer();
6912 
6913   // If this entity doesn't have an interesting lifetime, don't bother looking
6914   // for temporaries within its initializer.
6915   if (LK == LK_FullExpression)
6916     return;
6917 
6918   auto TemporaryVisitor = [&](IndirectLocalPath &Path, Local L,
6919                               ReferenceKind RK) -> bool {
6920     SourceRange DiagRange = nextPathEntryRange(Path, 0, L);
6921     SourceLocation DiagLoc = DiagRange.getBegin();
6922 
6923     switch (LK) {
6924     case LK_FullExpression:
6925       llvm_unreachable("already handled this");
6926 
6927     case LK_Extended: {
6928       auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L);
6929       if (!MTE) {
6930         // The initialized entity has lifetime beyond the full-expression,
6931         // and the local entity does too, so don't warn.
6932         //
6933         // FIXME: We should consider warning if a static / thread storage
6934         // duration variable retains an automatic storage duration local.
6935         return false;
6936       }
6937 
6938       // Lifetime-extend the temporary.
6939       if (Path.empty()) {
6940         // Update the storage duration of the materialized temporary.
6941         // FIXME: Rebuild the expression instead of mutating it.
6942         MTE->setExtendingDecl(ExtendingEntity->getDecl(),
6943                               ExtendingEntity->allocateManglingNumber());
6944         // Also visit the temporaries lifetime-extended by this initializer.
6945         return true;
6946       }
6947 
6948       if (shouldLifetimeExtendThroughPath(Path)) {
6949         // We're supposed to lifetime-extend the temporary along this path (per
6950         // the resolution of DR1815), but we don't support that yet.
6951         //
6952         // FIXME: Properly handle this situation. Perhaps the easiest approach
6953         // would be to clone the initializer expression on each use that would
6954         // lifetime extend its temporaries.
6955         Diag(DiagLoc, diag::warn_unsupported_lifetime_extension)
6956             << RK << DiagRange;
6957       } else {
6958         // If the path goes through the initialization of a variable or field,
6959         // it can't possibly reach a temporary created in this full-expression.
6960         // We will have already diagnosed any problems with the initializer.
6961         if (pathContainsInit(Path))
6962           return false;
6963 
6964         Diag(DiagLoc, diag::warn_dangling_variable)
6965             << RK << !Entity.getParent()
6966             << ExtendingEntity->getDecl()->isImplicit()
6967             << ExtendingEntity->getDecl() << Init->isGLValue() << DiagRange;
6968       }
6969       break;
6970     }
6971 
6972     case LK_MemInitializer: {
6973       if (isa<MaterializeTemporaryExpr>(L)) {
6974         // Under C++ DR1696, if a mem-initializer (or a default member
6975         // initializer used by the absence of one) would lifetime-extend a
6976         // temporary, the program is ill-formed.
6977         if (auto *ExtendingDecl =
6978                 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
6979           bool IsSubobjectMember = ExtendingEntity != &Entity;
6980           Diag(DiagLoc, shouldLifetimeExtendThroughPath(Path)
6981                             ? diag::err_dangling_member
6982                             : diag::warn_dangling_member)
6983               << ExtendingDecl << IsSubobjectMember << RK << DiagRange;
6984           // Don't bother adding a note pointing to the field if we're inside
6985           // its default member initializer; our primary diagnostic points to
6986           // the same place in that case.
6987           if (Path.empty() ||
6988               Path.back().Kind != IndirectLocalPathEntry::DefaultInit) {
6989             Diag(ExtendingDecl->getLocation(),
6990                  diag::note_lifetime_extending_member_declared_here)
6991                 << RK << IsSubobjectMember;
6992           }
6993         } else {
6994           // We have a mem-initializer but no particular field within it; this
6995           // is either a base class or a delegating initializer directly
6996           // initializing the base-class from something that doesn't live long
6997           // enough.
6998           //
6999           // FIXME: Warn on this.
7000           return false;
7001         }
7002       } else {
7003         // Paths via a default initializer can only occur during error recovery
7004         // (there's no other way that a default initializer can refer to a
7005         // local). Don't produce a bogus warning on those cases.
7006         if (pathContainsInit(Path))
7007           return false;
7008 
7009         auto *DRE = dyn_cast<DeclRefExpr>(L);
7010         auto *VD = DRE ? dyn_cast<VarDecl>(DRE->getDecl()) : nullptr;
7011         if (!VD) {
7012           // A member was initialized to a local block.
7013           // FIXME: Warn on this.
7014           return false;
7015         }
7016 
7017         if (auto *Member =
7018                 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
7019           bool IsPointer = Member->getType()->isAnyPointerType();
7020           Diag(DiagLoc, IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
7021                                   : diag::warn_bind_ref_member_to_parameter)
7022               << Member << VD << isa<ParmVarDecl>(VD) << DiagRange;
7023           Diag(Member->getLocation(),
7024                diag::note_ref_or_ptr_member_declared_here)
7025               << (unsigned)IsPointer;
7026         }
7027       }
7028       break;
7029     }
7030 
7031     case LK_New:
7032       if (isa<MaterializeTemporaryExpr>(L)) {
7033         Diag(DiagLoc, RK == RK_ReferenceBinding
7034                           ? diag::warn_new_dangling_reference
7035                           : diag::warn_new_dangling_initializer_list)
7036             << !Entity.getParent() << DiagRange;
7037       } else {
7038         // We can't determine if the allocation outlives the local declaration.
7039         return false;
7040       }
7041       break;
7042 
7043     case LK_Return:
7044     case LK_StmtExprResult:
7045       if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
7046         // We can't determine if the local variable outlives the statement
7047         // expression.
7048         if (LK == LK_StmtExprResult)
7049           return false;
7050         Diag(DiagLoc, diag::warn_ret_stack_addr_ref)
7051             << Entity.getType()->isReferenceType() << DRE->getDecl()
7052             << isa<ParmVarDecl>(DRE->getDecl()) << DiagRange;
7053       } else if (isa<BlockExpr>(L)) {
7054         Diag(DiagLoc, diag::err_ret_local_block) << DiagRange;
7055       } else if (isa<AddrLabelExpr>(L)) {
7056         // Don't warn when returning a label from a statement expression.
7057         // Leaving the scope doesn't end its lifetime.
7058         if (LK == LK_StmtExprResult)
7059           return false;
7060         Diag(DiagLoc, diag::warn_ret_addr_label) << DiagRange;
7061       } else {
7062         Diag(DiagLoc, diag::warn_ret_local_temp_addr_ref)
7063          << Entity.getType()->isReferenceType() << DiagRange;
7064       }
7065       break;
7066     }
7067 
7068     for (unsigned I = 0; I != Path.size(); ++I) {
7069       auto Elem = Path[I];
7070 
7071       switch (Elem.Kind) {
7072       case IndirectLocalPathEntry::AddressOf:
7073       case IndirectLocalPathEntry::LValToRVal:
7074         // These exist primarily to mark the path as not permitting or
7075         // supporting lifetime extension.
7076         break;
7077 
7078       case IndirectLocalPathEntry::LifetimeBoundCall:
7079         // FIXME: Consider adding a note for this.
7080         break;
7081 
7082       case IndirectLocalPathEntry::DefaultInit: {
7083         auto *FD = cast<FieldDecl>(Elem.D);
7084         Diag(FD->getLocation(), diag::note_init_with_default_member_initalizer)
7085             << FD << nextPathEntryRange(Path, I + 1, L);
7086         break;
7087       }
7088 
7089       case IndirectLocalPathEntry::VarInit:
7090         const VarDecl *VD = cast<VarDecl>(Elem.D);
7091         Diag(VD->getLocation(), diag::note_local_var_initializer)
7092             << VD->getType()->isReferenceType()
7093             << VD->isImplicit() << VD->getDeclName()
7094             << nextPathEntryRange(Path, I + 1, L);
7095         break;
7096       }
7097     }
7098 
7099     // We didn't lifetime-extend, so don't go any further; we don't need more
7100     // warnings or errors on inner temporaries within this one's initializer.
7101     return false;
7102   };
7103 
7104   llvm::SmallVector<IndirectLocalPathEntry, 8> Path;
7105   if (Init->isGLValue())
7106     visitLocalsRetainedByReferenceBinding(Path, Init, RK_ReferenceBinding,
7107                                           TemporaryVisitor);
7108   else
7109     visitLocalsRetainedByInitializer(Path, Init, TemporaryVisitor, false);
7110 }
7111 
7112 static void DiagnoseNarrowingInInitList(Sema &S,
7113                                         const ImplicitConversionSequence &ICS,
7114                                         QualType PreNarrowingType,
7115                                         QualType EntityType,
7116                                         const Expr *PostInit);
7117 
7118 /// Provide warnings when std::move is used on construction.
7119 static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr,
7120                                     bool IsReturnStmt) {
7121   if (!InitExpr)
7122     return;
7123 
7124   if (S.inTemplateInstantiation())
7125     return;
7126 
7127   QualType DestType = InitExpr->getType();
7128   if (!DestType->isRecordType())
7129     return;
7130 
7131   unsigned DiagID = 0;
7132   if (IsReturnStmt) {
7133     const CXXConstructExpr *CCE =
7134         dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens());
7135     if (!CCE || CCE->getNumArgs() != 1)
7136       return;
7137 
7138     if (!CCE->getConstructor()->isCopyOrMoveConstructor())
7139       return;
7140 
7141     InitExpr = CCE->getArg(0)->IgnoreImpCasts();
7142   }
7143 
7144   // Find the std::move call and get the argument.
7145   const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens());
7146   if (!CE || !CE->isCallToStdMove())
7147     return;
7148 
7149   const Expr *Arg = CE->getArg(0)->IgnoreImplicit();
7150 
7151   if (IsReturnStmt) {
7152     const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts());
7153     if (!DRE || DRE->refersToEnclosingVariableOrCapture())
7154       return;
7155 
7156     const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
7157     if (!VD || !VD->hasLocalStorage())
7158       return;
7159 
7160     // __block variables are not moved implicitly.
7161     if (VD->hasAttr<BlocksAttr>())
7162       return;
7163 
7164     QualType SourceType = VD->getType();
7165     if (!SourceType->isRecordType())
7166       return;
7167 
7168     if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) {
7169       return;
7170     }
7171 
7172     // If we're returning a function parameter, copy elision
7173     // is not possible.
7174     if (isa<ParmVarDecl>(VD))
7175       DiagID = diag::warn_redundant_move_on_return;
7176     else
7177       DiagID = diag::warn_pessimizing_move_on_return;
7178   } else {
7179     DiagID = diag::warn_pessimizing_move_on_initialization;
7180     const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens();
7181     if (!ArgStripped->isRValue() || !ArgStripped->getType()->isRecordType())
7182       return;
7183   }
7184 
7185   S.Diag(CE->getBeginLoc(), DiagID);
7186 
7187   // Get all the locations for a fix-it.  Don't emit the fix-it if any location
7188   // is within a macro.
7189   SourceLocation CallBegin = CE->getCallee()->getBeginLoc();
7190   if (CallBegin.isMacroID())
7191     return;
7192   SourceLocation RParen = CE->getRParenLoc();
7193   if (RParen.isMacroID())
7194     return;
7195   SourceLocation LParen;
7196   SourceLocation ArgLoc = Arg->getBeginLoc();
7197 
7198   // Special testing for the argument location.  Since the fix-it needs the
7199   // location right before the argument, the argument location can be in a
7200   // macro only if it is at the beginning of the macro.
7201   while (ArgLoc.isMacroID() &&
7202          S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) {
7203     ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).getBegin();
7204   }
7205 
7206   if (LParen.isMacroID())
7207     return;
7208 
7209   LParen = ArgLoc.getLocWithOffset(-1);
7210 
7211   S.Diag(CE->getBeginLoc(), diag::note_remove_move)
7212       << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen))
7213       << FixItHint::CreateRemoval(SourceRange(RParen, RParen));
7214 }
7215 
7216 static void CheckForNullPointerDereference(Sema &S, const Expr *E) {
7217   // Check to see if we are dereferencing a null pointer.  If so, this is
7218   // undefined behavior, so warn about it.  This only handles the pattern
7219   // "*null", which is a very syntactic check.
7220   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
7221     if (UO->getOpcode() == UO_Deref &&
7222         UO->getSubExpr()->IgnoreParenCasts()->
7223         isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) {
7224     S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
7225                           S.PDiag(diag::warn_binding_null_to_reference)
7226                             << UO->getSubExpr()->getSourceRange());
7227   }
7228 }
7229 
7230 MaterializeTemporaryExpr *
7231 Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary,
7232                                      bool BoundToLvalueReference) {
7233   auto MTE = new (Context)
7234       MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference);
7235 
7236   // Order an ExprWithCleanups for lifetime marks.
7237   //
7238   // TODO: It'll be good to have a single place to check the access of the
7239   // destructor and generate ExprWithCleanups for various uses. Currently these
7240   // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary,
7241   // but there may be a chance to merge them.
7242   Cleanup.setExprNeedsCleanups(false);
7243   return MTE;
7244 }
7245 
7246 ExprResult Sema::TemporaryMaterializationConversion(Expr *E) {
7247   // In C++98, we don't want to implicitly create an xvalue.
7248   // FIXME: This means that AST consumers need to deal with "prvalues" that
7249   // denote materialized temporaries. Maybe we should add another ValueKind
7250   // for "xvalue pretending to be a prvalue" for C++98 support.
7251   if (!E->isRValue() || !getLangOpts().CPlusPlus11)
7252     return E;
7253 
7254   // C++1z [conv.rval]/1: T shall be a complete type.
7255   // FIXME: Does this ever matter (can we form a prvalue of incomplete type)?
7256   // If so, we should check for a non-abstract class type here too.
7257   QualType T = E->getType();
7258   if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type))
7259     return ExprError();
7260 
7261   return CreateMaterializeTemporaryExpr(E->getType(), E, false);
7262 }
7263 
7264 ExprResult Sema::PerformQualificationConversion(Expr *E, QualType Ty,
7265                                                 ExprValueKind VK,
7266                                                 CheckedConversionKind CCK) {
7267   CastKind CK = (Ty.getAddressSpace() != E->getType().getAddressSpace())
7268                     ? CK_AddressSpaceConversion
7269                     : CK_NoOp;
7270   return ImpCastExprToType(E, Ty, CK, VK, /*BasePath=*/nullptr, CCK);
7271 }
7272 
7273 ExprResult InitializationSequence::Perform(Sema &S,
7274                                            const InitializedEntity &Entity,
7275                                            const InitializationKind &Kind,
7276                                            MultiExprArg Args,
7277                                            QualType *ResultType) {
7278   if (Failed()) {
7279     Diagnose(S, Entity, Kind, Args);
7280     return ExprError();
7281   }
7282   if (!ZeroInitializationFixit.empty()) {
7283     unsigned DiagID = diag::err_default_init_const;
7284     if (Decl *D = Entity.getDecl())
7285       if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>())
7286         DiagID = diag::ext_default_init_const;
7287 
7288     // The initialization would have succeeded with this fixit. Since the fixit
7289     // is on the error, we need to build a valid AST in this case, so this isn't
7290     // handled in the Failed() branch above.
7291     QualType DestType = Entity.getType();
7292     S.Diag(Kind.getLocation(), DiagID)
7293         << DestType << (bool)DestType->getAs<RecordType>()
7294         << FixItHint::CreateInsertion(ZeroInitializationFixitLoc,
7295                                       ZeroInitializationFixit);
7296   }
7297 
7298   if (getKind() == DependentSequence) {
7299     // If the declaration is a non-dependent, incomplete array type
7300     // that has an initializer, then its type will be completed once
7301     // the initializer is instantiated.
7302     if (ResultType && !Entity.getType()->isDependentType() &&
7303         Args.size() == 1) {
7304       QualType DeclType = Entity.getType();
7305       if (const IncompleteArrayType *ArrayT
7306                            = S.Context.getAsIncompleteArrayType(DeclType)) {
7307         // FIXME: We don't currently have the ability to accurately
7308         // compute the length of an initializer list without
7309         // performing full type-checking of the initializer list
7310         // (since we have to determine where braces are implicitly
7311         // introduced and such).  So, we fall back to making the array
7312         // type a dependently-sized array type with no specified
7313         // bound.
7314         if (isa<InitListExpr>((Expr *)Args[0])) {
7315           SourceRange Brackets;
7316 
7317           // Scavange the location of the brackets from the entity, if we can.
7318           if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Entity.getDecl())) {
7319             if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
7320               TypeLoc TL = TInfo->getTypeLoc();
7321               if (IncompleteArrayTypeLoc ArrayLoc =
7322                       TL.getAs<IncompleteArrayTypeLoc>())
7323                 Brackets = ArrayLoc.getBracketsRange();
7324             }
7325           }
7326 
7327           *ResultType
7328             = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
7329                                                    /*NumElts=*/nullptr,
7330                                                    ArrayT->getSizeModifier(),
7331                                        ArrayT->getIndexTypeCVRQualifiers(),
7332                                                    Brackets);
7333         }
7334 
7335       }
7336     }
7337     if (Kind.getKind() == InitializationKind::IK_Direct &&
7338         !Kind.isExplicitCast()) {
7339       // Rebuild the ParenListExpr.
7340       SourceRange ParenRange = Kind.getParenOrBraceRange();
7341       return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
7342                                   Args);
7343     }
7344     assert(Kind.getKind() == InitializationKind::IK_Copy ||
7345            Kind.isExplicitCast() ||
7346            Kind.getKind() == InitializationKind::IK_DirectList);
7347     return ExprResult(Args[0]);
7348   }
7349 
7350   // No steps means no initialization.
7351   if (Steps.empty())
7352     return ExprResult((Expr *)nullptr);
7353 
7354   if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
7355       Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
7356       !Entity.isParameterKind()) {
7357     // Produce a C++98 compatibility warning if we are initializing a reference
7358     // from an initializer list. For parameters, we produce a better warning
7359     // elsewhere.
7360     Expr *Init = Args[0];
7361     S.Diag(Init->getBeginLoc(), diag::warn_cxx98_compat_reference_list_init)
7362         << Init->getSourceRange();
7363   }
7364 
7365   // OpenCL v2.0 s6.13.11.1. atomic variables can be initialized in global scope
7366   QualType ETy = Entity.getType();
7367   Qualifiers TyQualifiers = ETy.getQualifiers();
7368   bool HasGlobalAS = TyQualifiers.hasAddressSpace() &&
7369                      TyQualifiers.getAddressSpace() == LangAS::opencl_global;
7370 
7371   if (S.getLangOpts().OpenCLVersion >= 200 &&
7372       ETy->isAtomicType() && !HasGlobalAS &&
7373       Entity.getKind() == InitializedEntity::EK_Variable && Args.size() > 0) {
7374     S.Diag(Args[0]->getBeginLoc(), diag::err_opencl_atomic_init)
7375         << 1
7376         << SourceRange(Entity.getDecl()->getBeginLoc(), Args[0]->getEndLoc());
7377     return ExprError();
7378   }
7379 
7380   QualType DestType = Entity.getType().getNonReferenceType();
7381   // FIXME: Ugly hack around the fact that Entity.getType() is not
7382   // the same as Entity.getDecl()->getType() in cases involving type merging,
7383   //  and we want latter when it makes sense.
7384   if (ResultType)
7385     *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
7386                                      Entity.getType();
7387 
7388   ExprResult CurInit((Expr *)nullptr);
7389   SmallVector<Expr*, 4> ArrayLoopCommonExprs;
7390 
7391   // For initialization steps that start with a single initializer,
7392   // grab the only argument out the Args and place it into the "current"
7393   // initializer.
7394   switch (Steps.front().Kind) {
7395   case SK_ResolveAddressOfOverloadedFunction:
7396   case SK_CastDerivedToBaseRValue:
7397   case SK_CastDerivedToBaseXValue:
7398   case SK_CastDerivedToBaseLValue:
7399   case SK_BindReference:
7400   case SK_BindReferenceToTemporary:
7401   case SK_FinalCopy:
7402   case SK_ExtraneousCopyToTemporary:
7403   case SK_UserConversion:
7404   case SK_QualificationConversionLValue:
7405   case SK_QualificationConversionXValue:
7406   case SK_QualificationConversionRValue:
7407   case SK_AtomicConversion:
7408   case SK_LValueToRValue:
7409   case SK_ConversionSequence:
7410   case SK_ConversionSequenceNoNarrowing:
7411   case SK_ListInitialization:
7412   case SK_UnwrapInitList:
7413   case SK_RewrapInitList:
7414   case SK_CAssignment:
7415   case SK_StringInit:
7416   case SK_ObjCObjectConversion:
7417   case SK_ArrayLoopIndex:
7418   case SK_ArrayLoopInit:
7419   case SK_ArrayInit:
7420   case SK_GNUArrayInit:
7421   case SK_ParenthesizedArrayInit:
7422   case SK_PassByIndirectCopyRestore:
7423   case SK_PassByIndirectRestore:
7424   case SK_ProduceObjCObject:
7425   case SK_StdInitializerList:
7426   case SK_OCLSamplerInit:
7427   case SK_OCLZeroOpaqueType: {
7428     assert(Args.size() == 1);
7429     CurInit = Args[0];
7430     if (!CurInit.get()) return ExprError();
7431     break;
7432   }
7433 
7434   case SK_ConstructorInitialization:
7435   case SK_ConstructorInitializationFromList:
7436   case SK_StdInitializerListConstructorCall:
7437   case SK_ZeroInitialization:
7438     break;
7439   }
7440 
7441   // Promote from an unevaluated context to an unevaluated list context in
7442   // C++11 list-initialization; we need to instantiate entities usable in
7443   // constant expressions here in order to perform narrowing checks =(
7444   EnterExpressionEvaluationContext Evaluated(
7445       S, EnterExpressionEvaluationContext::InitList,
7446       CurInit.get() && isa<InitListExpr>(CurInit.get()));
7447 
7448   // C++ [class.abstract]p2:
7449   //   no objects of an abstract class can be created except as subobjects
7450   //   of a class derived from it
7451   auto checkAbstractType = [&](QualType T) -> bool {
7452     if (Entity.getKind() == InitializedEntity::EK_Base ||
7453         Entity.getKind() == InitializedEntity::EK_Delegating)
7454       return false;
7455     return S.RequireNonAbstractType(Kind.getLocation(), T,
7456                                     diag::err_allocation_of_abstract_type);
7457   };
7458 
7459   // Walk through the computed steps for the initialization sequence,
7460   // performing the specified conversions along the way.
7461   bool ConstructorInitRequiresZeroInit = false;
7462   for (step_iterator Step = step_begin(), StepEnd = step_end();
7463        Step != StepEnd; ++Step) {
7464     if (CurInit.isInvalid())
7465       return ExprError();
7466 
7467     QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
7468 
7469     switch (Step->Kind) {
7470     case SK_ResolveAddressOfOverloadedFunction:
7471       // Overload resolution determined which function invoke; update the
7472       // initializer to reflect that choice.
7473       S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
7474       if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()))
7475         return ExprError();
7476       CurInit = S.FixOverloadedFunctionReference(CurInit,
7477                                                  Step->Function.FoundDecl,
7478                                                  Step->Function.Function);
7479       break;
7480 
7481     case SK_CastDerivedToBaseRValue:
7482     case SK_CastDerivedToBaseXValue:
7483     case SK_CastDerivedToBaseLValue: {
7484       // We have a derived-to-base cast that produces either an rvalue or an
7485       // lvalue. Perform that cast.
7486 
7487       CXXCastPath BasePath;
7488 
7489       // Casts to inaccessible base classes are allowed with C-style casts.
7490       bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
7491       if (S.CheckDerivedToBaseConversion(
7492               SourceType, Step->Type, CurInit.get()->getBeginLoc(),
7493               CurInit.get()->getSourceRange(), &BasePath, IgnoreBaseAccess))
7494         return ExprError();
7495 
7496       ExprValueKind VK =
7497           Step->Kind == SK_CastDerivedToBaseLValue ?
7498               VK_LValue :
7499               (Step->Kind == SK_CastDerivedToBaseXValue ?
7500                    VK_XValue :
7501                    VK_RValue);
7502       CurInit =
7503           ImplicitCastExpr::Create(S.Context, Step->Type, CK_DerivedToBase,
7504                                    CurInit.get(), &BasePath, VK);
7505       break;
7506     }
7507 
7508     case SK_BindReference:
7509       // Reference binding does not have any corresponding ASTs.
7510 
7511       // Check exception specifications
7512       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
7513         return ExprError();
7514 
7515       // We don't check for e.g. function pointers here, since address
7516       // availability checks should only occur when the function first decays
7517       // into a pointer or reference.
7518       if (CurInit.get()->getType()->isFunctionProtoType()) {
7519         if (auto *DRE = dyn_cast<DeclRefExpr>(CurInit.get()->IgnoreParens())) {
7520           if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
7521             if (!S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
7522                                                      DRE->getBeginLoc()))
7523               return ExprError();
7524           }
7525         }
7526       }
7527 
7528       CheckForNullPointerDereference(S, CurInit.get());
7529       break;
7530 
7531     case SK_BindReferenceToTemporary: {
7532       // Make sure the "temporary" is actually an rvalue.
7533       assert(CurInit.get()->isRValue() && "not a temporary");
7534 
7535       // Check exception specifications
7536       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
7537         return ExprError();
7538 
7539       // Materialize the temporary into memory.
7540       MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
7541           Step->Type, CurInit.get(), Entity.getType()->isLValueReferenceType());
7542       CurInit = MTE;
7543 
7544       // If we're extending this temporary to automatic storage duration -- we
7545       // need to register its cleanup during the full-expression's cleanups.
7546       if (MTE->getStorageDuration() == SD_Automatic &&
7547           MTE->getType().isDestructedType())
7548         S.Cleanup.setExprNeedsCleanups(true);
7549       break;
7550     }
7551 
7552     case SK_FinalCopy:
7553       if (checkAbstractType(Step->Type))
7554         return ExprError();
7555 
7556       // If the overall initialization is initializing a temporary, we already
7557       // bound our argument if it was necessary to do so. If not (if we're
7558       // ultimately initializing a non-temporary), our argument needs to be
7559       // bound since it's initializing a function parameter.
7560       // FIXME: This is a mess. Rationalize temporary destruction.
7561       if (!shouldBindAsTemporary(Entity))
7562         CurInit = S.MaybeBindToTemporary(CurInit.get());
7563       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
7564                            /*IsExtraneousCopy=*/false);
7565       break;
7566 
7567     case SK_ExtraneousCopyToTemporary:
7568       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
7569                            /*IsExtraneousCopy=*/true);
7570       break;
7571 
7572     case SK_UserConversion: {
7573       // We have a user-defined conversion that invokes either a constructor
7574       // or a conversion function.
7575       CastKind CastKind;
7576       FunctionDecl *Fn = Step->Function.Function;
7577       DeclAccessPair FoundFn = Step->Function.FoundDecl;
7578       bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
7579       bool CreatedObject = false;
7580       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
7581         // Build a call to the selected constructor.
7582         SmallVector<Expr*, 8> ConstructorArgs;
7583         SourceLocation Loc = CurInit.get()->getBeginLoc();
7584 
7585         // Determine the arguments required to actually perform the constructor
7586         // call.
7587         Expr *Arg = CurInit.get();
7588         if (S.CompleteConstructorCall(Constructor,
7589                                       MultiExprArg(&Arg, 1),
7590                                       Loc, ConstructorArgs))
7591           return ExprError();
7592 
7593         // Build an expression that constructs a temporary.
7594         CurInit = S.BuildCXXConstructExpr(Loc, Step->Type,
7595                                           FoundFn, Constructor,
7596                                           ConstructorArgs,
7597                                           HadMultipleCandidates,
7598                                           /*ListInit*/ false,
7599                                           /*StdInitListInit*/ false,
7600                                           /*ZeroInit*/ false,
7601                                           CXXConstructExpr::CK_Complete,
7602                                           SourceRange());
7603         if (CurInit.isInvalid())
7604           return ExprError();
7605 
7606         S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn,
7607                                  Entity);
7608         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
7609           return ExprError();
7610 
7611         CastKind = CK_ConstructorConversion;
7612         CreatedObject = true;
7613       } else {
7614         // Build a call to the conversion function.
7615         CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
7616         S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr,
7617                                     FoundFn);
7618         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
7619           return ExprError();
7620 
7621         CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
7622                                            HadMultipleCandidates);
7623         if (CurInit.isInvalid())
7624           return ExprError();
7625 
7626         CastKind = CK_UserDefinedConversion;
7627         CreatedObject = Conversion->getReturnType()->isRecordType();
7628       }
7629 
7630       if (CreatedObject && checkAbstractType(CurInit.get()->getType()))
7631         return ExprError();
7632 
7633       CurInit = ImplicitCastExpr::Create(S.Context, CurInit.get()->getType(),
7634                                          CastKind, CurInit.get(), nullptr,
7635                                          CurInit.get()->getValueKind());
7636 
7637       if (shouldBindAsTemporary(Entity))
7638         // The overall entity is temporary, so this expression should be
7639         // destroyed at the end of its full-expression.
7640         CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
7641       else if (CreatedObject && shouldDestroyEntity(Entity)) {
7642         // The object outlasts the full-expression, but we need to prepare for
7643         // a destructor being run on it.
7644         // FIXME: It makes no sense to do this here. This should happen
7645         // regardless of how we initialized the entity.
7646         QualType T = CurInit.get()->getType();
7647         if (const RecordType *Record = T->getAs<RecordType>()) {
7648           CXXDestructorDecl *Destructor
7649             = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
7650           S.CheckDestructorAccess(CurInit.get()->getBeginLoc(), Destructor,
7651                                   S.PDiag(diag::err_access_dtor_temp) << T);
7652           S.MarkFunctionReferenced(CurInit.get()->getBeginLoc(), Destructor);
7653           if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getBeginLoc()))
7654             return ExprError();
7655         }
7656       }
7657       break;
7658     }
7659 
7660     case SK_QualificationConversionLValue:
7661     case SK_QualificationConversionXValue:
7662     case SK_QualificationConversionRValue: {
7663       // Perform a qualification conversion; these can never go wrong.
7664       ExprValueKind VK =
7665           Step->Kind == SK_QualificationConversionLValue
7666               ? VK_LValue
7667               : (Step->Kind == SK_QualificationConversionXValue ? VK_XValue
7668                                                                 : VK_RValue);
7669       CurInit = S.PerformQualificationConversion(CurInit.get(), Step->Type, VK);
7670       break;
7671     }
7672 
7673     case SK_AtomicConversion: {
7674       assert(CurInit.get()->isRValue() && "cannot convert glvalue to atomic");
7675       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
7676                                     CK_NonAtomicToAtomic, VK_RValue);
7677       break;
7678     }
7679 
7680     case SK_LValueToRValue: {
7681       assert(CurInit.get()->isGLValue() && "cannot load from a prvalue");
7682       CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
7683                                          CK_LValueToRValue, CurInit.get(),
7684                                          /*BasePath=*/nullptr, VK_RValue);
7685       break;
7686     }
7687 
7688     case SK_ConversionSequence:
7689     case SK_ConversionSequenceNoNarrowing: {
7690       if (const auto *FromPtrType =
7691               CurInit.get()->getType()->getAs<PointerType>()) {
7692         if (const auto *ToPtrType = Step->Type->getAs<PointerType>()) {
7693           if (FromPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
7694               !ToPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
7695             S.Diag(CurInit.get()->getExprLoc(),
7696                    diag::warn_noderef_to_dereferenceable_pointer)
7697                 << CurInit.get()->getSourceRange();
7698           }
7699         }
7700       }
7701 
7702       Sema::CheckedConversionKind CCK
7703         = Kind.isCStyleCast()? Sema::CCK_CStyleCast
7704         : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
7705         : Kind.isExplicitCast()? Sema::CCK_OtherCast
7706         : Sema::CCK_ImplicitConversion;
7707       ExprResult CurInitExprRes =
7708         S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
7709                                     getAssignmentAction(Entity), CCK);
7710       if (CurInitExprRes.isInvalid())
7711         return ExprError();
7712 
7713       S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), CurInit.get());
7714 
7715       CurInit = CurInitExprRes;
7716 
7717       if (Step->Kind == SK_ConversionSequenceNoNarrowing &&
7718           S.getLangOpts().CPlusPlus)
7719         DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(),
7720                                     CurInit.get());
7721 
7722       break;
7723     }
7724 
7725     case SK_ListInitialization: {
7726       if (checkAbstractType(Step->Type))
7727         return ExprError();
7728 
7729       InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
7730       // If we're not initializing the top-level entity, we need to create an
7731       // InitializeTemporary entity for our target type.
7732       QualType Ty = Step->Type;
7733       bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty);
7734       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
7735       InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
7736       InitListChecker PerformInitList(S, InitEntity,
7737           InitList, Ty, /*VerifyOnly=*/false,
7738           /*TreatUnavailableAsInvalid=*/false);
7739       if (PerformInitList.HadError())
7740         return ExprError();
7741 
7742       // Hack: We must update *ResultType if available in order to set the
7743       // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
7744       // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
7745       if (ResultType &&
7746           ResultType->getNonReferenceType()->isIncompleteArrayType()) {
7747         if ((*ResultType)->isRValueReferenceType())
7748           Ty = S.Context.getRValueReferenceType(Ty);
7749         else if ((*ResultType)->isLValueReferenceType())
7750           Ty = S.Context.getLValueReferenceType(Ty,
7751             (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue());
7752         *ResultType = Ty;
7753       }
7754 
7755       InitListExpr *StructuredInitList =
7756           PerformInitList.getFullyStructuredList();
7757       CurInit.get();
7758       CurInit = shouldBindAsTemporary(InitEntity)
7759           ? S.MaybeBindToTemporary(StructuredInitList)
7760           : StructuredInitList;
7761       break;
7762     }
7763 
7764     case SK_ConstructorInitializationFromList: {
7765       if (checkAbstractType(Step->Type))
7766         return ExprError();
7767 
7768       // When an initializer list is passed for a parameter of type "reference
7769       // to object", we don't get an EK_Temporary entity, but instead an
7770       // EK_Parameter entity with reference type.
7771       // FIXME: This is a hack. What we really should do is create a user
7772       // conversion step for this case, but this makes it considerably more
7773       // complicated. For now, this will do.
7774       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
7775                                         Entity.getType().getNonReferenceType());
7776       bool UseTemporary = Entity.getType()->isReferenceType();
7777       assert(Args.size() == 1 && "expected a single argument for list init");
7778       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
7779       S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
7780         << InitList->getSourceRange();
7781       MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
7782       CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
7783                                                                    Entity,
7784                                                  Kind, Arg, *Step,
7785                                                ConstructorInitRequiresZeroInit,
7786                                                /*IsListInitialization*/true,
7787                                                /*IsStdInitListInit*/false,
7788                                                InitList->getLBraceLoc(),
7789                                                InitList->getRBraceLoc());
7790       break;
7791     }
7792 
7793     case SK_UnwrapInitList:
7794       CurInit = cast<InitListExpr>(CurInit.get())->getInit(0);
7795       break;
7796 
7797     case SK_RewrapInitList: {
7798       Expr *E = CurInit.get();
7799       InitListExpr *Syntactic = Step->WrappingSyntacticList;
7800       InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
7801           Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
7802       ILE->setSyntacticForm(Syntactic);
7803       ILE->setType(E->getType());
7804       ILE->setValueKind(E->getValueKind());
7805       CurInit = ILE;
7806       break;
7807     }
7808 
7809     case SK_ConstructorInitialization:
7810     case SK_StdInitializerListConstructorCall: {
7811       if (checkAbstractType(Step->Type))
7812         return ExprError();
7813 
7814       // When an initializer list is passed for a parameter of type "reference
7815       // to object", we don't get an EK_Temporary entity, but instead an
7816       // EK_Parameter entity with reference type.
7817       // FIXME: This is a hack. What we really should do is create a user
7818       // conversion step for this case, but this makes it considerably more
7819       // complicated. For now, this will do.
7820       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
7821                                         Entity.getType().getNonReferenceType());
7822       bool UseTemporary = Entity.getType()->isReferenceType();
7823       bool IsStdInitListInit =
7824           Step->Kind == SK_StdInitializerListConstructorCall;
7825       Expr *Source = CurInit.get();
7826       SourceRange Range = Kind.hasParenOrBraceRange()
7827                               ? Kind.getParenOrBraceRange()
7828                               : SourceRange();
7829       CurInit = PerformConstructorInitialization(
7830           S, UseTemporary ? TempEntity : Entity, Kind,
7831           Source ? MultiExprArg(Source) : Args, *Step,
7832           ConstructorInitRequiresZeroInit,
7833           /*IsListInitialization*/ IsStdInitListInit,
7834           /*IsStdInitListInitialization*/ IsStdInitListInit,
7835           /*LBraceLoc*/ Range.getBegin(),
7836           /*RBraceLoc*/ Range.getEnd());
7837       break;
7838     }
7839 
7840     case SK_ZeroInitialization: {
7841       step_iterator NextStep = Step;
7842       ++NextStep;
7843       if (NextStep != StepEnd &&
7844           (NextStep->Kind == SK_ConstructorInitialization ||
7845            NextStep->Kind == SK_ConstructorInitializationFromList)) {
7846         // The need for zero-initialization is recorded directly into
7847         // the call to the object's constructor within the next step.
7848         ConstructorInitRequiresZeroInit = true;
7849       } else if (Kind.getKind() == InitializationKind::IK_Value &&
7850                  S.getLangOpts().CPlusPlus &&
7851                  !Kind.isImplicitValueInit()) {
7852         TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
7853         if (!TSInfo)
7854           TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
7855                                                     Kind.getRange().getBegin());
7856 
7857         CurInit = new (S.Context) CXXScalarValueInitExpr(
7858             Entity.getType().getNonLValueExprType(S.Context), TSInfo,
7859             Kind.getRange().getEnd());
7860       } else {
7861         CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type);
7862       }
7863       break;
7864     }
7865 
7866     case SK_CAssignment: {
7867       QualType SourceType = CurInit.get()->getType();
7868 
7869       // Save off the initial CurInit in case we need to emit a diagnostic
7870       ExprResult InitialCurInit = CurInit;
7871       ExprResult Result = CurInit;
7872       Sema::AssignConvertType ConvTy =
7873         S.CheckSingleAssignmentConstraints(Step->Type, Result, true,
7874             Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited);
7875       if (Result.isInvalid())
7876         return ExprError();
7877       CurInit = Result;
7878 
7879       // If this is a call, allow conversion to a transparent union.
7880       ExprResult CurInitExprRes = CurInit;
7881       if (ConvTy != Sema::Compatible &&
7882           Entity.isParameterKind() &&
7883           S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
7884             == Sema::Compatible)
7885         ConvTy = Sema::Compatible;
7886       if (CurInitExprRes.isInvalid())
7887         return ExprError();
7888       CurInit = CurInitExprRes;
7889 
7890       bool Complained;
7891       if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
7892                                      Step->Type, SourceType,
7893                                      InitialCurInit.get(),
7894                                      getAssignmentAction(Entity, true),
7895                                      &Complained)) {
7896         PrintInitLocationNote(S, Entity);
7897         return ExprError();
7898       } else if (Complained)
7899         PrintInitLocationNote(S, Entity);
7900       break;
7901     }
7902 
7903     case SK_StringInit: {
7904       QualType Ty = Step->Type;
7905       CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
7906                       S.Context.getAsArrayType(Ty), S);
7907       break;
7908     }
7909 
7910     case SK_ObjCObjectConversion:
7911       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
7912                           CK_ObjCObjectLValueCast,
7913                           CurInit.get()->getValueKind());
7914       break;
7915 
7916     case SK_ArrayLoopIndex: {
7917       Expr *Cur = CurInit.get();
7918       Expr *BaseExpr = new (S.Context)
7919           OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(),
7920                           Cur->getValueKind(), Cur->getObjectKind(), Cur);
7921       Expr *IndexExpr =
7922           new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType());
7923       CurInit = S.CreateBuiltinArraySubscriptExpr(
7924           BaseExpr, Kind.getLocation(), IndexExpr, Kind.getLocation());
7925       ArrayLoopCommonExprs.push_back(BaseExpr);
7926       break;
7927     }
7928 
7929     case SK_ArrayLoopInit: {
7930       assert(!ArrayLoopCommonExprs.empty() &&
7931              "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit");
7932       Expr *Common = ArrayLoopCommonExprs.pop_back_val();
7933       CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common,
7934                                                   CurInit.get());
7935       break;
7936     }
7937 
7938     case SK_GNUArrayInit:
7939       // Okay: we checked everything before creating this step. Note that
7940       // this is a GNU extension.
7941       S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
7942         << Step->Type << CurInit.get()->getType()
7943         << CurInit.get()->getSourceRange();
7944       LLVM_FALLTHROUGH;
7945     case SK_ArrayInit:
7946       // If the destination type is an incomplete array type, update the
7947       // type accordingly.
7948       if (ResultType) {
7949         if (const IncompleteArrayType *IncompleteDest
7950                            = S.Context.getAsIncompleteArrayType(Step->Type)) {
7951           if (const ConstantArrayType *ConstantSource
7952                  = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
7953             *ResultType = S.Context.getConstantArrayType(
7954                                              IncompleteDest->getElementType(),
7955                                              ConstantSource->getSize(),
7956                                              ArrayType::Normal, 0);
7957           }
7958         }
7959       }
7960       break;
7961 
7962     case SK_ParenthesizedArrayInit:
7963       // Okay: we checked everything before creating this step. Note that
7964       // this is a GNU extension.
7965       S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
7966         << CurInit.get()->getSourceRange();
7967       break;
7968 
7969     case SK_PassByIndirectCopyRestore:
7970     case SK_PassByIndirectRestore:
7971       checkIndirectCopyRestoreSource(S, CurInit.get());
7972       CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr(
7973           CurInit.get(), Step->Type,
7974           Step->Kind == SK_PassByIndirectCopyRestore);
7975       break;
7976 
7977     case SK_ProduceObjCObject:
7978       CurInit =
7979           ImplicitCastExpr::Create(S.Context, Step->Type, CK_ARCProduceObject,
7980                                    CurInit.get(), nullptr, VK_RValue);
7981       break;
7982 
7983     case SK_StdInitializerList: {
7984       S.Diag(CurInit.get()->getExprLoc(),
7985              diag::warn_cxx98_compat_initializer_list_init)
7986         << CurInit.get()->getSourceRange();
7987 
7988       // Materialize the temporary into memory.
7989       MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
7990           CurInit.get()->getType(), CurInit.get(),
7991           /*BoundToLvalueReference=*/false);
7992 
7993       // Wrap it in a construction of a std::initializer_list<T>.
7994       CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE);
7995 
7996       // Bind the result, in case the library has given initializer_list a
7997       // non-trivial destructor.
7998       if (shouldBindAsTemporary(Entity))
7999         CurInit = S.MaybeBindToTemporary(CurInit.get());
8000       break;
8001     }
8002 
8003     case SK_OCLSamplerInit: {
8004       // Sampler initialization have 5 cases:
8005       //   1. function argument passing
8006       //      1a. argument is a file-scope variable
8007       //      1b. argument is a function-scope variable
8008       //      1c. argument is one of caller function's parameters
8009       //   2. variable initialization
8010       //      2a. initializing a file-scope variable
8011       //      2b. initializing a function-scope variable
8012       //
8013       // For file-scope variables, since they cannot be initialized by function
8014       // call of __translate_sampler_initializer in LLVM IR, their references
8015       // need to be replaced by a cast from their literal initializers to
8016       // sampler type. Since sampler variables can only be used in function
8017       // calls as arguments, we only need to replace them when handling the
8018       // argument passing.
8019       assert(Step->Type->isSamplerT() &&
8020              "Sampler initialization on non-sampler type.");
8021       Expr *Init = CurInit.get();
8022       QualType SourceType = Init->getType();
8023       // Case 1
8024       if (Entity.isParameterKind()) {
8025         if (!SourceType->isSamplerT() && !SourceType->isIntegerType()) {
8026           S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
8027             << SourceType;
8028           break;
8029         } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init)) {
8030           auto Var = cast<VarDecl>(DRE->getDecl());
8031           // Case 1b and 1c
8032           // No cast from integer to sampler is needed.
8033           if (!Var->hasGlobalStorage()) {
8034             CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
8035                                                CK_LValueToRValue, Init,
8036                                                /*BasePath=*/nullptr, VK_RValue);
8037             break;
8038           }
8039           // Case 1a
8040           // For function call with a file-scope sampler variable as argument,
8041           // get the integer literal.
8042           // Do not diagnose if the file-scope variable does not have initializer
8043           // since this has already been diagnosed when parsing the variable
8044           // declaration.
8045           if (!Var->getInit() || !isa<ImplicitCastExpr>(Var->getInit()))
8046             break;
8047           Init = cast<ImplicitCastExpr>(const_cast<Expr*>(
8048             Var->getInit()))->getSubExpr();
8049           SourceType = Init->getType();
8050         }
8051       } else {
8052         // Case 2
8053         // Check initializer is 32 bit integer constant.
8054         // If the initializer is taken from global variable, do not diagnose since
8055         // this has already been done when parsing the variable declaration.
8056         if (!Init->isConstantInitializer(S.Context, false))
8057           break;
8058 
8059         if (!SourceType->isIntegerType() ||
8060             32 != S.Context.getIntWidth(SourceType)) {
8061           S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer)
8062             << SourceType;
8063           break;
8064         }
8065 
8066         Expr::EvalResult EVResult;
8067         Init->EvaluateAsInt(EVResult, S.Context);
8068         llvm::APSInt Result = EVResult.Val.getInt();
8069         const uint64_t SamplerValue = Result.getLimitedValue();
8070         // 32-bit value of sampler's initializer is interpreted as
8071         // bit-field with the following structure:
8072         // |unspecified|Filter|Addressing Mode| Normalized Coords|
8073         // |31        6|5    4|3             1|                 0|
8074         // This structure corresponds to enum values of sampler properties
8075         // defined in SPIR spec v1.2 and also opencl-c.h
8076         unsigned AddressingMode  = (0x0E & SamplerValue) >> 1;
8077         unsigned FilterMode      = (0x30 & SamplerValue) >> 4;
8078         if (FilterMode != 1 && FilterMode != 2 &&
8079             !S.getOpenCLOptions().isEnabled(
8080                 "cl_intel_device_side_avc_motion_estimation"))
8081           S.Diag(Kind.getLocation(),
8082                  diag::warn_sampler_initializer_invalid_bits)
8083                  << "Filter Mode";
8084         if (AddressingMode > 4)
8085           S.Diag(Kind.getLocation(),
8086                  diag::warn_sampler_initializer_invalid_bits)
8087                  << "Addressing Mode";
8088       }
8089 
8090       // Cases 1a, 2a and 2b
8091       // Insert cast from integer to sampler.
8092       CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy,
8093                                       CK_IntToOCLSampler);
8094       break;
8095     }
8096     case SK_OCLZeroOpaqueType: {
8097       assert((Step->Type->isEventT() || Step->Type->isQueueT() ||
8098               Step->Type->isOCLIntelSubgroupAVCType()) &&
8099              "Wrong type for initialization of OpenCL opaque type.");
8100 
8101       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8102                                     CK_ZeroToOCLOpaqueType,
8103                                     CurInit.get()->getValueKind());
8104       break;
8105     }
8106     }
8107   }
8108 
8109   // Check whether the initializer has a shorter lifetime than the initialized
8110   // entity, and if not, either lifetime-extend or warn as appropriate.
8111   if (auto *Init = CurInit.get())
8112     S.checkInitializerLifetime(Entity, Init);
8113 
8114   // Diagnose non-fatal problems with the completed initialization.
8115   if (Entity.getKind() == InitializedEntity::EK_Member &&
8116       cast<FieldDecl>(Entity.getDecl())->isBitField())
8117     S.CheckBitFieldInitialization(Kind.getLocation(),
8118                                   cast<FieldDecl>(Entity.getDecl()),
8119                                   CurInit.get());
8120 
8121   // Check for std::move on construction.
8122   if (const Expr *E = CurInit.get()) {
8123     CheckMoveOnConstruction(S, E,
8124                             Entity.getKind() == InitializedEntity::EK_Result);
8125   }
8126 
8127   return CurInit;
8128 }
8129 
8130 /// Somewhere within T there is an uninitialized reference subobject.
8131 /// Dig it out and diagnose it.
8132 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
8133                                            QualType T) {
8134   if (T->isReferenceType()) {
8135     S.Diag(Loc, diag::err_reference_without_init)
8136       << T.getNonReferenceType();
8137     return true;
8138   }
8139 
8140   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
8141   if (!RD || !RD->hasUninitializedReferenceMember())
8142     return false;
8143 
8144   for (const auto *FI : RD->fields()) {
8145     if (FI->isUnnamedBitfield())
8146       continue;
8147 
8148     if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
8149       S.Diag(Loc, diag::note_value_initialization_here) << RD;
8150       return true;
8151     }
8152   }
8153 
8154   for (const auto &BI : RD->bases()) {
8155     if (DiagnoseUninitializedReference(S, BI.getBeginLoc(), BI.getType())) {
8156       S.Diag(Loc, diag::note_value_initialization_here) << RD;
8157       return true;
8158     }
8159   }
8160 
8161   return false;
8162 }
8163 
8164 
8165 //===----------------------------------------------------------------------===//
8166 // Diagnose initialization failures
8167 //===----------------------------------------------------------------------===//
8168 
8169 /// Emit notes associated with an initialization that failed due to a
8170 /// "simple" conversion failure.
8171 static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity,
8172                                    Expr *op) {
8173   QualType destType = entity.getType();
8174   if (destType.getNonReferenceType()->isObjCObjectPointerType() &&
8175       op->getType()->isObjCObjectPointerType()) {
8176 
8177     // Emit a possible note about the conversion failing because the
8178     // operand is a message send with a related result type.
8179     S.EmitRelatedResultTypeNote(op);
8180 
8181     // Emit a possible note about a return failing because we're
8182     // expecting a related result type.
8183     if (entity.getKind() == InitializedEntity::EK_Result)
8184       S.EmitRelatedResultTypeNoteForReturn(destType);
8185   }
8186 }
8187 
8188 static void diagnoseListInit(Sema &S, const InitializedEntity &Entity,
8189                              InitListExpr *InitList) {
8190   QualType DestType = Entity.getType();
8191 
8192   QualType E;
8193   if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) {
8194     QualType ArrayType = S.Context.getConstantArrayType(
8195         E.withConst(),
8196         llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
8197                     InitList->getNumInits()),
8198         clang::ArrayType::Normal, 0);
8199     InitializedEntity HiddenArray =
8200         InitializedEntity::InitializeTemporary(ArrayType);
8201     return diagnoseListInit(S, HiddenArray, InitList);
8202   }
8203 
8204   if (DestType->isReferenceType()) {
8205     // A list-initialization failure for a reference means that we tried to
8206     // create a temporary of the inner type (per [dcl.init.list]p3.6) and the
8207     // inner initialization failed.
8208     QualType T = DestType->getAs<ReferenceType>()->getPointeeType();
8209     diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList);
8210     SourceLocation Loc = InitList->getBeginLoc();
8211     if (auto *D = Entity.getDecl())
8212       Loc = D->getLocation();
8213     S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T;
8214     return;
8215   }
8216 
8217   InitListChecker DiagnoseInitList(S, Entity, InitList, DestType,
8218                                    /*VerifyOnly=*/false,
8219                                    /*TreatUnavailableAsInvalid=*/false);
8220   assert(DiagnoseInitList.HadError() &&
8221          "Inconsistent init list check result.");
8222 }
8223 
8224 bool InitializationSequence::Diagnose(Sema &S,
8225                                       const InitializedEntity &Entity,
8226                                       const InitializationKind &Kind,
8227                                       ArrayRef<Expr *> Args) {
8228   if (!Failed())
8229     return false;
8230 
8231   // When we want to diagnose only one element of a braced-init-list,
8232   // we need to factor it out.
8233   Expr *OnlyArg;
8234   if (Args.size() == 1) {
8235     auto *List = dyn_cast<InitListExpr>(Args[0]);
8236     if (List && List->getNumInits() == 1)
8237       OnlyArg = List->getInit(0);
8238     else
8239       OnlyArg = Args[0];
8240   }
8241   else
8242     OnlyArg = nullptr;
8243 
8244   QualType DestType = Entity.getType();
8245   switch (Failure) {
8246   case FK_TooManyInitsForReference:
8247     // FIXME: Customize for the initialized entity?
8248     if (Args.empty()) {
8249       // Dig out the reference subobject which is uninitialized and diagnose it.
8250       // If this is value-initialization, this could be nested some way within
8251       // the target type.
8252       assert(Kind.getKind() == InitializationKind::IK_Value ||
8253              DestType->isReferenceType());
8254       bool Diagnosed =
8255         DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
8256       assert(Diagnosed && "couldn't find uninitialized reference to diagnose");
8257       (void)Diagnosed;
8258     } else  // FIXME: diagnostic below could be better!
8259       S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
8260           << SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
8261     break;
8262   case FK_ParenthesizedListInitForReference:
8263     S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
8264       << 1 << Entity.getType() << Args[0]->getSourceRange();
8265     break;
8266 
8267   case FK_ArrayNeedsInitList:
8268     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0;
8269     break;
8270   case FK_ArrayNeedsInitListOrStringLiteral:
8271     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1;
8272     break;
8273   case FK_ArrayNeedsInitListOrWideStringLiteral:
8274     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2;
8275     break;
8276   case FK_NarrowStringIntoWideCharArray:
8277     S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar);
8278     break;
8279   case FK_WideStringIntoCharArray:
8280     S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char);
8281     break;
8282   case FK_IncompatWideStringIntoWideChar:
8283     S.Diag(Kind.getLocation(),
8284            diag::err_array_init_incompat_wide_string_into_wchar);
8285     break;
8286   case FK_PlainStringIntoUTF8Char:
8287     S.Diag(Kind.getLocation(),
8288            diag::err_array_init_plain_string_into_char8_t);
8289     S.Diag(Args.front()->getBeginLoc(),
8290            diag::note_array_init_plain_string_into_char8_t)
8291         << FixItHint::CreateInsertion(Args.front()->getBeginLoc(), "u8");
8292     break;
8293   case FK_UTF8StringIntoPlainChar:
8294     S.Diag(Kind.getLocation(),
8295            diag::err_array_init_utf8_string_into_char)
8296       << S.getLangOpts().CPlusPlus2a;
8297     break;
8298   case FK_ArrayTypeMismatch:
8299   case FK_NonConstantArrayInit:
8300     S.Diag(Kind.getLocation(),
8301            (Failure == FK_ArrayTypeMismatch
8302               ? diag::err_array_init_different_type
8303               : diag::err_array_init_non_constant_array))
8304       << DestType.getNonReferenceType()
8305       << OnlyArg->getType()
8306       << Args[0]->getSourceRange();
8307     break;
8308 
8309   case FK_VariableLengthArrayHasInitializer:
8310     S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
8311       << Args[0]->getSourceRange();
8312     break;
8313 
8314   case FK_AddressOfOverloadFailed: {
8315     DeclAccessPair Found;
8316     S.ResolveAddressOfOverloadedFunction(OnlyArg,
8317                                          DestType.getNonReferenceType(),
8318                                          true,
8319                                          Found);
8320     break;
8321   }
8322 
8323   case FK_AddressOfUnaddressableFunction: {
8324     auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(OnlyArg)->getDecl());
8325     S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
8326                                         OnlyArg->getBeginLoc());
8327     break;
8328   }
8329 
8330   case FK_ReferenceInitOverloadFailed:
8331   case FK_UserConversionOverloadFailed:
8332     switch (FailedOverloadResult) {
8333     case OR_Ambiguous:
8334       if (Failure == FK_UserConversionOverloadFailed)
8335         S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
8336           << OnlyArg->getType() << DestType
8337           << Args[0]->getSourceRange();
8338       else
8339         S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
8340           << DestType << OnlyArg->getType()
8341           << Args[0]->getSourceRange();
8342 
8343       FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
8344       break;
8345 
8346     case OR_No_Viable_Function:
8347       if (!S.RequireCompleteType(Kind.getLocation(),
8348                                  DestType.getNonReferenceType(),
8349                           diag::err_typecheck_nonviable_condition_incomplete,
8350                                OnlyArg->getType(), Args[0]->getSourceRange()))
8351         S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
8352           << (Entity.getKind() == InitializedEntity::EK_Result)
8353           << OnlyArg->getType() << Args[0]->getSourceRange()
8354           << DestType.getNonReferenceType();
8355 
8356       FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
8357       break;
8358 
8359     case OR_Deleted: {
8360       S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
8361         << OnlyArg->getType() << DestType.getNonReferenceType()
8362         << Args[0]->getSourceRange();
8363       OverloadCandidateSet::iterator Best;
8364       OverloadingResult Ovl
8365         = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
8366       if (Ovl == OR_Deleted) {
8367         S.NoteDeletedFunction(Best->Function);
8368       } else {
8369         llvm_unreachable("Inconsistent overload resolution?");
8370       }
8371       break;
8372     }
8373 
8374     case OR_Success:
8375       llvm_unreachable("Conversion did not fail!");
8376     }
8377     break;
8378 
8379   case FK_NonConstLValueReferenceBindingToTemporary:
8380     if (isa<InitListExpr>(Args[0])) {
8381       S.Diag(Kind.getLocation(),
8382              diag::err_lvalue_reference_bind_to_initlist)
8383       << DestType.getNonReferenceType().isVolatileQualified()
8384       << DestType.getNonReferenceType()
8385       << Args[0]->getSourceRange();
8386       break;
8387     }
8388     LLVM_FALLTHROUGH;
8389 
8390   case FK_NonConstLValueReferenceBindingToUnrelated:
8391     S.Diag(Kind.getLocation(),
8392            Failure == FK_NonConstLValueReferenceBindingToTemporary
8393              ? diag::err_lvalue_reference_bind_to_temporary
8394              : diag::err_lvalue_reference_bind_to_unrelated)
8395       << DestType.getNonReferenceType().isVolatileQualified()
8396       << DestType.getNonReferenceType()
8397       << OnlyArg->getType()
8398       << Args[0]->getSourceRange();
8399     break;
8400 
8401   case FK_NonConstLValueReferenceBindingToBitfield: {
8402     // We don't necessarily have an unambiguous source bit-field.
8403     FieldDecl *BitField = Args[0]->getSourceBitField();
8404     S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
8405       << DestType.isVolatileQualified()
8406       << (BitField ? BitField->getDeclName() : DeclarationName())
8407       << (BitField != nullptr)
8408       << Args[0]->getSourceRange();
8409     if (BitField)
8410       S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
8411     break;
8412   }
8413 
8414   case FK_NonConstLValueReferenceBindingToVectorElement:
8415     S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
8416       << DestType.isVolatileQualified()
8417       << Args[0]->getSourceRange();
8418     break;
8419 
8420   case FK_RValueReferenceBindingToLValue:
8421     S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
8422       << DestType.getNonReferenceType() << OnlyArg->getType()
8423       << Args[0]->getSourceRange();
8424     break;
8425 
8426   case FK_ReferenceInitDropsQualifiers: {
8427     QualType SourceType = OnlyArg->getType();
8428     QualType NonRefType = DestType.getNonReferenceType();
8429     Qualifiers DroppedQualifiers =
8430         SourceType.getQualifiers() - NonRefType.getQualifiers();
8431 
8432     S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
8433       << SourceType
8434       << NonRefType
8435       << DroppedQualifiers.getCVRQualifiers()
8436       << Args[0]->getSourceRange();
8437     break;
8438   }
8439 
8440   case FK_ReferenceInitFailed:
8441     S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
8442       << DestType.getNonReferenceType()
8443       << OnlyArg->isLValue()
8444       << OnlyArg->getType()
8445       << Args[0]->getSourceRange();
8446     emitBadConversionNotes(S, Entity, Args[0]);
8447     break;
8448 
8449   case FK_ConversionFailed: {
8450     QualType FromType = OnlyArg->getType();
8451     PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
8452       << (int)Entity.getKind()
8453       << DestType
8454       << OnlyArg->isLValue()
8455       << FromType
8456       << Args[0]->getSourceRange();
8457     S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
8458     S.Diag(Kind.getLocation(), PDiag);
8459     emitBadConversionNotes(S, Entity, Args[0]);
8460     break;
8461   }
8462 
8463   case FK_ConversionFromPropertyFailed:
8464     // No-op. This error has already been reported.
8465     break;
8466 
8467   case FK_TooManyInitsForScalar: {
8468     SourceRange R;
8469 
8470     auto *InitList = dyn_cast<InitListExpr>(Args[0]);
8471     if (InitList && InitList->getNumInits() >= 1) {
8472       R = SourceRange(InitList->getInit(0)->getEndLoc(), InitList->getEndLoc());
8473     } else {
8474       assert(Args.size() > 1 && "Expected multiple initializers!");
8475       R = SourceRange(Args.front()->getEndLoc(), Args.back()->getEndLoc());
8476     }
8477 
8478     R.setBegin(S.getLocForEndOfToken(R.getBegin()));
8479     if (Kind.isCStyleOrFunctionalCast())
8480       S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
8481         << R;
8482     else
8483       S.Diag(Kind.getLocation(), diag::err_excess_initializers)
8484         << /*scalar=*/2 << R;
8485     break;
8486   }
8487 
8488   case FK_ParenthesizedListInitForScalar:
8489     S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
8490       << 0 << Entity.getType() << Args[0]->getSourceRange();
8491     break;
8492 
8493   case FK_ReferenceBindingToInitList:
8494     S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
8495       << DestType.getNonReferenceType() << Args[0]->getSourceRange();
8496     break;
8497 
8498   case FK_InitListBadDestinationType:
8499     S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
8500       << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
8501     break;
8502 
8503   case FK_ListConstructorOverloadFailed:
8504   case FK_ConstructorOverloadFailed: {
8505     SourceRange ArgsRange;
8506     if (Args.size())
8507       ArgsRange =
8508           SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
8509 
8510     if (Failure == FK_ListConstructorOverloadFailed) {
8511       assert(Args.size() == 1 &&
8512              "List construction from other than 1 argument.");
8513       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
8514       Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
8515     }
8516 
8517     // FIXME: Using "DestType" for the entity we're printing is probably
8518     // bad.
8519     switch (FailedOverloadResult) {
8520       case OR_Ambiguous:
8521         S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
8522           << DestType << ArgsRange;
8523         FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
8524         break;
8525 
8526       case OR_No_Viable_Function:
8527         if (Kind.getKind() == InitializationKind::IK_Default &&
8528             (Entity.getKind() == InitializedEntity::EK_Base ||
8529              Entity.getKind() == InitializedEntity::EK_Member) &&
8530             isa<CXXConstructorDecl>(S.CurContext)) {
8531           // This is implicit default initialization of a member or
8532           // base within a constructor. If no viable function was
8533           // found, notify the user that they need to explicitly
8534           // initialize this base/member.
8535           CXXConstructorDecl *Constructor
8536             = cast<CXXConstructorDecl>(S.CurContext);
8537           const CXXRecordDecl *InheritedFrom = nullptr;
8538           if (auto Inherited = Constructor->getInheritedConstructor())
8539             InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass();
8540           if (Entity.getKind() == InitializedEntity::EK_Base) {
8541             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
8542               << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
8543               << S.Context.getTypeDeclType(Constructor->getParent())
8544               << /*base=*/0
8545               << Entity.getType()
8546               << InheritedFrom;
8547 
8548             RecordDecl *BaseDecl
8549               = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
8550                                                                   ->getDecl();
8551             S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
8552               << S.Context.getTagDeclType(BaseDecl);
8553           } else {
8554             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
8555               << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
8556               << S.Context.getTypeDeclType(Constructor->getParent())
8557               << /*member=*/1
8558               << Entity.getName()
8559               << InheritedFrom;
8560             S.Diag(Entity.getDecl()->getLocation(),
8561                    diag::note_member_declared_at);
8562 
8563             if (const RecordType *Record
8564                                  = Entity.getType()->getAs<RecordType>())
8565               S.Diag(Record->getDecl()->getLocation(),
8566                      diag::note_previous_decl)
8567                 << S.Context.getTagDeclType(Record->getDecl());
8568           }
8569           break;
8570         }
8571 
8572         S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
8573           << DestType << ArgsRange;
8574         FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
8575         break;
8576 
8577       case OR_Deleted: {
8578         OverloadCandidateSet::iterator Best;
8579         OverloadingResult Ovl
8580           = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
8581         if (Ovl != OR_Deleted) {
8582           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
8583             << true << DestType << ArgsRange;
8584           llvm_unreachable("Inconsistent overload resolution?");
8585           break;
8586         }
8587 
8588         // If this is a defaulted or implicitly-declared function, then
8589         // it was implicitly deleted. Make it clear that the deletion was
8590         // implicit.
8591         if (S.isImplicitlyDeleted(Best->Function))
8592           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
8593             << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
8594             << DestType << ArgsRange;
8595         else
8596           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
8597             << true << DestType << ArgsRange;
8598 
8599         S.NoteDeletedFunction(Best->Function);
8600         break;
8601       }
8602 
8603       case OR_Success:
8604         llvm_unreachable("Conversion did not fail!");
8605     }
8606   }
8607   break;
8608 
8609   case FK_DefaultInitOfConst:
8610     if (Entity.getKind() == InitializedEntity::EK_Member &&
8611         isa<CXXConstructorDecl>(S.CurContext)) {
8612       // This is implicit default-initialization of a const member in
8613       // a constructor. Complain that it needs to be explicitly
8614       // initialized.
8615       CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
8616       S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
8617         << (Constructor->getInheritedConstructor() ? 2 :
8618             Constructor->isImplicit() ? 1 : 0)
8619         << S.Context.getTypeDeclType(Constructor->getParent())
8620         << /*const=*/1
8621         << Entity.getName();
8622       S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
8623         << Entity.getName();
8624     } else {
8625       S.Diag(Kind.getLocation(), diag::err_default_init_const)
8626           << DestType << (bool)DestType->getAs<RecordType>();
8627     }
8628     break;
8629 
8630   case FK_Incomplete:
8631     S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
8632                           diag::err_init_incomplete_type);
8633     break;
8634 
8635   case FK_ListInitializationFailed: {
8636     // Run the init list checker again to emit diagnostics.
8637     InitListExpr *InitList = cast<InitListExpr>(Args[0]);
8638     diagnoseListInit(S, Entity, InitList);
8639     break;
8640   }
8641 
8642   case FK_PlaceholderType: {
8643     // FIXME: Already diagnosed!
8644     break;
8645   }
8646 
8647   case FK_ExplicitConstructor: {
8648     S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
8649       << Args[0]->getSourceRange();
8650     OverloadCandidateSet::iterator Best;
8651     OverloadingResult Ovl
8652       = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
8653     (void)Ovl;
8654     assert(Ovl == OR_Success && "Inconsistent overload resolution");
8655     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
8656     S.Diag(CtorDecl->getLocation(),
8657            diag::note_explicit_ctor_deduction_guide_here) << false;
8658     break;
8659   }
8660   }
8661 
8662   PrintInitLocationNote(S, Entity);
8663   return true;
8664 }
8665 
8666 void InitializationSequence::dump(raw_ostream &OS) const {
8667   switch (SequenceKind) {
8668   case FailedSequence: {
8669     OS << "Failed sequence: ";
8670     switch (Failure) {
8671     case FK_TooManyInitsForReference:
8672       OS << "too many initializers for reference";
8673       break;
8674 
8675     case FK_ParenthesizedListInitForReference:
8676       OS << "parenthesized list init for reference";
8677       break;
8678 
8679     case FK_ArrayNeedsInitList:
8680       OS << "array requires initializer list";
8681       break;
8682 
8683     case FK_AddressOfUnaddressableFunction:
8684       OS << "address of unaddressable function was taken";
8685       break;
8686 
8687     case FK_ArrayNeedsInitListOrStringLiteral:
8688       OS << "array requires initializer list or string literal";
8689       break;
8690 
8691     case FK_ArrayNeedsInitListOrWideStringLiteral:
8692       OS << "array requires initializer list or wide string literal";
8693       break;
8694 
8695     case FK_NarrowStringIntoWideCharArray:
8696       OS << "narrow string into wide char array";
8697       break;
8698 
8699     case FK_WideStringIntoCharArray:
8700       OS << "wide string into char array";
8701       break;
8702 
8703     case FK_IncompatWideStringIntoWideChar:
8704       OS << "incompatible wide string into wide char array";
8705       break;
8706 
8707     case FK_PlainStringIntoUTF8Char:
8708       OS << "plain string literal into char8_t array";
8709       break;
8710 
8711     case FK_UTF8StringIntoPlainChar:
8712       OS << "u8 string literal into char array";
8713       break;
8714 
8715     case FK_ArrayTypeMismatch:
8716       OS << "array type mismatch";
8717       break;
8718 
8719     case FK_NonConstantArrayInit:
8720       OS << "non-constant array initializer";
8721       break;
8722 
8723     case FK_AddressOfOverloadFailed:
8724       OS << "address of overloaded function failed";
8725       break;
8726 
8727     case FK_ReferenceInitOverloadFailed:
8728       OS << "overload resolution for reference initialization failed";
8729       break;
8730 
8731     case FK_NonConstLValueReferenceBindingToTemporary:
8732       OS << "non-const lvalue reference bound to temporary";
8733       break;
8734 
8735     case FK_NonConstLValueReferenceBindingToBitfield:
8736       OS << "non-const lvalue reference bound to bit-field";
8737       break;
8738 
8739     case FK_NonConstLValueReferenceBindingToVectorElement:
8740       OS << "non-const lvalue reference bound to vector element";
8741       break;
8742 
8743     case FK_NonConstLValueReferenceBindingToUnrelated:
8744       OS << "non-const lvalue reference bound to unrelated type";
8745       break;
8746 
8747     case FK_RValueReferenceBindingToLValue:
8748       OS << "rvalue reference bound to an lvalue";
8749       break;
8750 
8751     case FK_ReferenceInitDropsQualifiers:
8752       OS << "reference initialization drops qualifiers";
8753       break;
8754 
8755     case FK_ReferenceInitFailed:
8756       OS << "reference initialization failed";
8757       break;
8758 
8759     case FK_ConversionFailed:
8760       OS << "conversion failed";
8761       break;
8762 
8763     case FK_ConversionFromPropertyFailed:
8764       OS << "conversion from property failed";
8765       break;
8766 
8767     case FK_TooManyInitsForScalar:
8768       OS << "too many initializers for scalar";
8769       break;
8770 
8771     case FK_ParenthesizedListInitForScalar:
8772       OS << "parenthesized list init for reference";
8773       break;
8774 
8775     case FK_ReferenceBindingToInitList:
8776       OS << "referencing binding to initializer list";
8777       break;
8778 
8779     case FK_InitListBadDestinationType:
8780       OS << "initializer list for non-aggregate, non-scalar type";
8781       break;
8782 
8783     case FK_UserConversionOverloadFailed:
8784       OS << "overloading failed for user-defined conversion";
8785       break;
8786 
8787     case FK_ConstructorOverloadFailed:
8788       OS << "constructor overloading failed";
8789       break;
8790 
8791     case FK_DefaultInitOfConst:
8792       OS << "default initialization of a const variable";
8793       break;
8794 
8795     case FK_Incomplete:
8796       OS << "initialization of incomplete type";
8797       break;
8798 
8799     case FK_ListInitializationFailed:
8800       OS << "list initialization checker failure";
8801       break;
8802 
8803     case FK_VariableLengthArrayHasInitializer:
8804       OS << "variable length array has an initializer";
8805       break;
8806 
8807     case FK_PlaceholderType:
8808       OS << "initializer expression isn't contextually valid";
8809       break;
8810 
8811     case FK_ListConstructorOverloadFailed:
8812       OS << "list constructor overloading failed";
8813       break;
8814 
8815     case FK_ExplicitConstructor:
8816       OS << "list copy initialization chose explicit constructor";
8817       break;
8818     }
8819     OS << '\n';
8820     return;
8821   }
8822 
8823   case DependentSequence:
8824     OS << "Dependent sequence\n";
8825     return;
8826 
8827   case NormalSequence:
8828     OS << "Normal sequence: ";
8829     break;
8830   }
8831 
8832   for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
8833     if (S != step_begin()) {
8834       OS << " -> ";
8835     }
8836 
8837     switch (S->Kind) {
8838     case SK_ResolveAddressOfOverloadedFunction:
8839       OS << "resolve address of overloaded function";
8840       break;
8841 
8842     case SK_CastDerivedToBaseRValue:
8843       OS << "derived-to-base (rvalue)";
8844       break;
8845 
8846     case SK_CastDerivedToBaseXValue:
8847       OS << "derived-to-base (xvalue)";
8848       break;
8849 
8850     case SK_CastDerivedToBaseLValue:
8851       OS << "derived-to-base (lvalue)";
8852       break;
8853 
8854     case SK_BindReference:
8855       OS << "bind reference to lvalue";
8856       break;
8857 
8858     case SK_BindReferenceToTemporary:
8859       OS << "bind reference to a temporary";
8860       break;
8861 
8862     case SK_FinalCopy:
8863       OS << "final copy in class direct-initialization";
8864       break;
8865 
8866     case SK_ExtraneousCopyToTemporary:
8867       OS << "extraneous C++03 copy to temporary";
8868       break;
8869 
8870     case SK_UserConversion:
8871       OS << "user-defined conversion via " << *S->Function.Function;
8872       break;
8873 
8874     case SK_QualificationConversionRValue:
8875       OS << "qualification conversion (rvalue)";
8876       break;
8877 
8878     case SK_QualificationConversionXValue:
8879       OS << "qualification conversion (xvalue)";
8880       break;
8881 
8882     case SK_QualificationConversionLValue:
8883       OS << "qualification conversion (lvalue)";
8884       break;
8885 
8886     case SK_AtomicConversion:
8887       OS << "non-atomic-to-atomic conversion";
8888       break;
8889 
8890     case SK_LValueToRValue:
8891       OS << "load (lvalue to rvalue)";
8892       break;
8893 
8894     case SK_ConversionSequence:
8895       OS << "implicit conversion sequence (";
8896       S->ICS->dump(); // FIXME: use OS
8897       OS << ")";
8898       break;
8899 
8900     case SK_ConversionSequenceNoNarrowing:
8901       OS << "implicit conversion sequence with narrowing prohibited (";
8902       S->ICS->dump(); // FIXME: use OS
8903       OS << ")";
8904       break;
8905 
8906     case SK_ListInitialization:
8907       OS << "list aggregate initialization";
8908       break;
8909 
8910     case SK_UnwrapInitList:
8911       OS << "unwrap reference initializer list";
8912       break;
8913 
8914     case SK_RewrapInitList:
8915       OS << "rewrap reference initializer list";
8916       break;
8917 
8918     case SK_ConstructorInitialization:
8919       OS << "constructor initialization";
8920       break;
8921 
8922     case SK_ConstructorInitializationFromList:
8923       OS << "list initialization via constructor";
8924       break;
8925 
8926     case SK_ZeroInitialization:
8927       OS << "zero initialization";
8928       break;
8929 
8930     case SK_CAssignment:
8931       OS << "C assignment";
8932       break;
8933 
8934     case SK_StringInit:
8935       OS << "string initialization";
8936       break;
8937 
8938     case SK_ObjCObjectConversion:
8939       OS << "Objective-C object conversion";
8940       break;
8941 
8942     case SK_ArrayLoopIndex:
8943       OS << "indexing for array initialization loop";
8944       break;
8945 
8946     case SK_ArrayLoopInit:
8947       OS << "array initialization loop";
8948       break;
8949 
8950     case SK_ArrayInit:
8951       OS << "array initialization";
8952       break;
8953 
8954     case SK_GNUArrayInit:
8955       OS << "array initialization (GNU extension)";
8956       break;
8957 
8958     case SK_ParenthesizedArrayInit:
8959       OS << "parenthesized array initialization";
8960       break;
8961 
8962     case SK_PassByIndirectCopyRestore:
8963       OS << "pass by indirect copy and restore";
8964       break;
8965 
8966     case SK_PassByIndirectRestore:
8967       OS << "pass by indirect restore";
8968       break;
8969 
8970     case SK_ProduceObjCObject:
8971       OS << "Objective-C object retension";
8972       break;
8973 
8974     case SK_StdInitializerList:
8975       OS << "std::initializer_list from initializer list";
8976       break;
8977 
8978     case SK_StdInitializerListConstructorCall:
8979       OS << "list initialization from std::initializer_list";
8980       break;
8981 
8982     case SK_OCLSamplerInit:
8983       OS << "OpenCL sampler_t from integer constant";
8984       break;
8985 
8986     case SK_OCLZeroOpaqueType:
8987       OS << "OpenCL opaque type from zero";
8988       break;
8989     }
8990 
8991     OS << " [" << S->Type.getAsString() << ']';
8992   }
8993 
8994   OS << '\n';
8995 }
8996 
8997 void InitializationSequence::dump() const {
8998   dump(llvm::errs());
8999 }
9000 
9001 static bool NarrowingErrs(const LangOptions &L) {
9002   return L.CPlusPlus11 &&
9003          (!L.MicrosoftExt || L.isCompatibleWithMSVC(LangOptions::MSVC2015));
9004 }
9005 
9006 static void DiagnoseNarrowingInInitList(Sema &S,
9007                                         const ImplicitConversionSequence &ICS,
9008                                         QualType PreNarrowingType,
9009                                         QualType EntityType,
9010                                         const Expr *PostInit) {
9011   const StandardConversionSequence *SCS = nullptr;
9012   switch (ICS.getKind()) {
9013   case ImplicitConversionSequence::StandardConversion:
9014     SCS = &ICS.Standard;
9015     break;
9016   case ImplicitConversionSequence::UserDefinedConversion:
9017     SCS = &ICS.UserDefined.After;
9018     break;
9019   case ImplicitConversionSequence::AmbiguousConversion:
9020   case ImplicitConversionSequence::EllipsisConversion:
9021   case ImplicitConversionSequence::BadConversion:
9022     return;
9023   }
9024 
9025   // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
9026   APValue ConstantValue;
9027   QualType ConstantType;
9028   switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
9029                                 ConstantType)) {
9030   case NK_Not_Narrowing:
9031   case NK_Dependent_Narrowing:
9032     // No narrowing occurred.
9033     return;
9034 
9035   case NK_Type_Narrowing:
9036     // This was a floating-to-integer conversion, which is always considered a
9037     // narrowing conversion even if the value is a constant and can be
9038     // represented exactly as an integer.
9039     S.Diag(PostInit->getBeginLoc(), NarrowingErrs(S.getLangOpts())
9040                                         ? diag::ext_init_list_type_narrowing
9041                                         : diag::warn_init_list_type_narrowing)
9042         << PostInit->getSourceRange()
9043         << PreNarrowingType.getLocalUnqualifiedType()
9044         << EntityType.getLocalUnqualifiedType();
9045     break;
9046 
9047   case NK_Constant_Narrowing:
9048     // A constant value was narrowed.
9049     S.Diag(PostInit->getBeginLoc(),
9050            NarrowingErrs(S.getLangOpts())
9051                ? diag::ext_init_list_constant_narrowing
9052                : diag::warn_init_list_constant_narrowing)
9053         << PostInit->getSourceRange()
9054         << ConstantValue.getAsString(S.getASTContext(), ConstantType)
9055         << EntityType.getLocalUnqualifiedType();
9056     break;
9057 
9058   case NK_Variable_Narrowing:
9059     // A variable's value may have been narrowed.
9060     S.Diag(PostInit->getBeginLoc(),
9061            NarrowingErrs(S.getLangOpts())
9062                ? diag::ext_init_list_variable_narrowing
9063                : diag::warn_init_list_variable_narrowing)
9064         << PostInit->getSourceRange()
9065         << PreNarrowingType.getLocalUnqualifiedType()
9066         << EntityType.getLocalUnqualifiedType();
9067     break;
9068   }
9069 
9070   SmallString<128> StaticCast;
9071   llvm::raw_svector_ostream OS(StaticCast);
9072   OS << "static_cast<";
9073   if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
9074     // It's important to use the typedef's name if there is one so that the
9075     // fixit doesn't break code using types like int64_t.
9076     //
9077     // FIXME: This will break if the typedef requires qualification.  But
9078     // getQualifiedNameAsString() includes non-machine-parsable components.
9079     OS << *TT->getDecl();
9080   } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
9081     OS << BT->getName(S.getLangOpts());
9082   else {
9083     // Oops, we didn't find the actual type of the variable.  Don't emit a fixit
9084     // with a broken cast.
9085     return;
9086   }
9087   OS << ">(";
9088   S.Diag(PostInit->getBeginLoc(), diag::note_init_list_narrowing_silence)
9089       << PostInit->getSourceRange()
9090       << FixItHint::CreateInsertion(PostInit->getBeginLoc(), OS.str())
9091       << FixItHint::CreateInsertion(
9092              S.getLocForEndOfToken(PostInit->getEndLoc()), ")");
9093 }
9094 
9095 //===----------------------------------------------------------------------===//
9096 // Initialization helper functions
9097 //===----------------------------------------------------------------------===//
9098 bool
9099 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
9100                                    ExprResult Init) {
9101   if (Init.isInvalid())
9102     return false;
9103 
9104   Expr *InitE = Init.get();
9105   assert(InitE && "No initialization expression");
9106 
9107   InitializationKind Kind =
9108       InitializationKind::CreateCopy(InitE->getBeginLoc(), SourceLocation());
9109   InitializationSequence Seq(*this, Entity, Kind, InitE);
9110   return !Seq.Failed();
9111 }
9112 
9113 ExprResult
9114 Sema::PerformCopyInitialization(const InitializedEntity &Entity,
9115                                 SourceLocation EqualLoc,
9116                                 ExprResult Init,
9117                                 bool TopLevelOfInitList,
9118                                 bool AllowExplicit) {
9119   if (Init.isInvalid())
9120     return ExprError();
9121 
9122   Expr *InitE = Init.get();
9123   assert(InitE && "No initialization expression?");
9124 
9125   if (EqualLoc.isInvalid())
9126     EqualLoc = InitE->getBeginLoc();
9127 
9128   InitializationKind Kind = InitializationKind::CreateCopy(
9129       InitE->getBeginLoc(), EqualLoc, AllowExplicit);
9130   InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList);
9131 
9132   // Prevent infinite recursion when performing parameter copy-initialization.
9133   const bool ShouldTrackCopy =
9134       Entity.isParameterKind() && Seq.isConstructorInitialization();
9135   if (ShouldTrackCopy) {
9136     if (llvm::find(CurrentParameterCopyTypes, Entity.getType()) !=
9137         CurrentParameterCopyTypes.end()) {
9138       Seq.SetOverloadFailure(
9139           InitializationSequence::FK_ConstructorOverloadFailed,
9140           OR_No_Viable_Function);
9141 
9142       // Try to give a meaningful diagnostic note for the problematic
9143       // constructor.
9144       const auto LastStep = Seq.step_end() - 1;
9145       assert(LastStep->Kind ==
9146              InitializationSequence::SK_ConstructorInitialization);
9147       const FunctionDecl *Function = LastStep->Function.Function;
9148       auto Candidate =
9149           llvm::find_if(Seq.getFailedCandidateSet(),
9150                         [Function](const OverloadCandidate &Candidate) -> bool {
9151                           return Candidate.Viable &&
9152                                  Candidate.Function == Function &&
9153                                  Candidate.Conversions.size() > 0;
9154                         });
9155       if (Candidate != Seq.getFailedCandidateSet().end() &&
9156           Function->getNumParams() > 0) {
9157         Candidate->Viable = false;
9158         Candidate->FailureKind = ovl_fail_bad_conversion;
9159         Candidate->Conversions[0].setBad(BadConversionSequence::no_conversion,
9160                                          InitE,
9161                                          Function->getParamDecl(0)->getType());
9162       }
9163     }
9164     CurrentParameterCopyTypes.push_back(Entity.getType());
9165   }
9166 
9167   ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE);
9168 
9169   if (ShouldTrackCopy)
9170     CurrentParameterCopyTypes.pop_back();
9171 
9172   return Result;
9173 }
9174 
9175 /// Determine whether RD is, or is derived from, a specialization of CTD.
9176 static bool isOrIsDerivedFromSpecializationOf(CXXRecordDecl *RD,
9177                                               ClassTemplateDecl *CTD) {
9178   auto NotSpecialization = [&] (const CXXRecordDecl *Candidate) {
9179     auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Candidate);
9180     return !CTSD || !declaresSameEntity(CTSD->getSpecializedTemplate(), CTD);
9181   };
9182   return !(NotSpecialization(RD) && RD->forallBases(NotSpecialization));
9183 }
9184 
9185 QualType Sema::DeduceTemplateSpecializationFromInitializer(
9186     TypeSourceInfo *TSInfo, const InitializedEntity &Entity,
9187     const InitializationKind &Kind, MultiExprArg Inits) {
9188   auto *DeducedTST = dyn_cast<DeducedTemplateSpecializationType>(
9189       TSInfo->getType()->getContainedDeducedType());
9190   assert(DeducedTST && "not a deduced template specialization type");
9191 
9192   auto TemplateName = DeducedTST->getTemplateName();
9193   if (TemplateName.isDependent())
9194     return Context.DependentTy;
9195 
9196   // We can only perform deduction for class templates.
9197   auto *Template =
9198       dyn_cast_or_null<ClassTemplateDecl>(TemplateName.getAsTemplateDecl());
9199   if (!Template) {
9200     Diag(Kind.getLocation(),
9201          diag::err_deduced_non_class_template_specialization_type)
9202       << (int)getTemplateNameKindForDiagnostics(TemplateName) << TemplateName;
9203     if (auto *TD = TemplateName.getAsTemplateDecl())
9204       Diag(TD->getLocation(), diag::note_template_decl_here);
9205     return QualType();
9206   }
9207 
9208   // Can't deduce from dependent arguments.
9209   if (Expr::hasAnyTypeDependentArguments(Inits)) {
9210     Diag(TSInfo->getTypeLoc().getBeginLoc(),
9211          diag::warn_cxx14_compat_class_template_argument_deduction)
9212         << TSInfo->getTypeLoc().getSourceRange() << 0;
9213     return Context.DependentTy;
9214   }
9215 
9216   // FIXME: Perform "exact type" matching first, per CWG discussion?
9217   //        Or implement this via an implied 'T(T) -> T' deduction guide?
9218 
9219   // FIXME: Do we need/want a std::initializer_list<T> special case?
9220 
9221   // Look up deduction guides, including those synthesized from constructors.
9222   //
9223   // C++1z [over.match.class.deduct]p1:
9224   //   A set of functions and function templates is formed comprising:
9225   //   - For each constructor of the class template designated by the
9226   //     template-name, a function template [...]
9227   //  - For each deduction-guide, a function or function template [...]
9228   DeclarationNameInfo NameInfo(
9229       Context.DeclarationNames.getCXXDeductionGuideName(Template),
9230       TSInfo->getTypeLoc().getEndLoc());
9231   LookupResult Guides(*this, NameInfo, LookupOrdinaryName);
9232   LookupQualifiedName(Guides, Template->getDeclContext());
9233 
9234   // FIXME: Do not diagnose inaccessible deduction guides. The standard isn't
9235   // clear on this, but they're not found by name so access does not apply.
9236   Guides.suppressDiagnostics();
9237 
9238   // Figure out if this is list-initialization.
9239   InitListExpr *ListInit =
9240       (Inits.size() == 1 && Kind.getKind() != InitializationKind::IK_Direct)
9241           ? dyn_cast<InitListExpr>(Inits[0])
9242           : nullptr;
9243 
9244   // C++1z [over.match.class.deduct]p1:
9245   //   Initialization and overload resolution are performed as described in
9246   //   [dcl.init] and [over.match.ctor], [over.match.copy], or [over.match.list]
9247   //   (as appropriate for the type of initialization performed) for an object
9248   //   of a hypothetical class type, where the selected functions and function
9249   //   templates are considered to be the constructors of that class type
9250   //
9251   // Since we know we're initializing a class type of a type unrelated to that
9252   // of the initializer, this reduces to something fairly reasonable.
9253   OverloadCandidateSet Candidates(Kind.getLocation(),
9254                                   OverloadCandidateSet::CSK_Normal);
9255   OverloadCandidateSet::iterator Best;
9256   auto tryToResolveOverload =
9257       [&](bool OnlyListConstructors) -> OverloadingResult {
9258     Candidates.clear(OverloadCandidateSet::CSK_Normal);
9259     for (auto I = Guides.begin(), E = Guides.end(); I != E; ++I) {
9260       NamedDecl *D = (*I)->getUnderlyingDecl();
9261       if (D->isInvalidDecl())
9262         continue;
9263 
9264       auto *TD = dyn_cast<FunctionTemplateDecl>(D);
9265       auto *GD = dyn_cast_or_null<CXXDeductionGuideDecl>(
9266           TD ? TD->getTemplatedDecl() : dyn_cast<FunctionDecl>(D));
9267       if (!GD)
9268         continue;
9269 
9270       // C++ [over.match.ctor]p1: (non-list copy-initialization from non-class)
9271       //   For copy-initialization, the candidate functions are all the
9272       //   converting constructors (12.3.1) of that class.
9273       // C++ [over.match.copy]p1: (non-list copy-initialization from class)
9274       //   The converting constructors of T are candidate functions.
9275       if (Kind.isCopyInit() && !ListInit) {
9276         // Only consider converting constructors.
9277         if (GD->isExplicit())
9278           continue;
9279 
9280         // When looking for a converting constructor, deduction guides that
9281         // could never be called with one argument are not interesting to
9282         // check or note.
9283         if (GD->getMinRequiredArguments() > 1 ||
9284             (GD->getNumParams() == 0 && !GD->isVariadic()))
9285           continue;
9286       }
9287 
9288       // C++ [over.match.list]p1.1: (first phase list initialization)
9289       //   Initially, the candidate functions are the initializer-list
9290       //   constructors of the class T
9291       if (OnlyListConstructors && !isInitListConstructor(GD))
9292         continue;
9293 
9294       // C++ [over.match.list]p1.2: (second phase list initialization)
9295       //   the candidate functions are all the constructors of the class T
9296       // C++ [over.match.ctor]p1: (all other cases)
9297       //   the candidate functions are all the constructors of the class of
9298       //   the object being initialized
9299 
9300       // C++ [over.best.ics]p4:
9301       //   When [...] the constructor [...] is a candidate by
9302       //    - [over.match.copy] (in all cases)
9303       // FIXME: The "second phase of [over.match.list] case can also
9304       // theoretically happen here, but it's not clear whether we can
9305       // ever have a parameter of the right type.
9306       bool SuppressUserConversions = Kind.isCopyInit();
9307 
9308       if (TD)
9309         AddTemplateOverloadCandidate(TD, I.getPair(), /*ExplicitArgs*/ nullptr,
9310                                      Inits, Candidates,
9311                                      SuppressUserConversions);
9312       else
9313         AddOverloadCandidate(GD, I.getPair(), Inits, Candidates,
9314                              SuppressUserConversions);
9315     }
9316     return Candidates.BestViableFunction(*this, Kind.getLocation(), Best);
9317   };
9318 
9319   OverloadingResult Result = OR_No_Viable_Function;
9320 
9321   // C++11 [over.match.list]p1, per DR1467: for list-initialization, first
9322   // try initializer-list constructors.
9323   if (ListInit) {
9324     bool TryListConstructors = true;
9325 
9326     // Try list constructors unless the list is empty and the class has one or
9327     // more default constructors, in which case those constructors win.
9328     if (!ListInit->getNumInits()) {
9329       for (NamedDecl *D : Guides) {
9330         auto *FD = dyn_cast<FunctionDecl>(D->getUnderlyingDecl());
9331         if (FD && FD->getMinRequiredArguments() == 0) {
9332           TryListConstructors = false;
9333           break;
9334         }
9335       }
9336     } else if (ListInit->getNumInits() == 1) {
9337       // C++ [over.match.class.deduct]:
9338       //   As an exception, the first phase in [over.match.list] (considering
9339       //   initializer-list constructors) is omitted if the initializer list
9340       //   consists of a single expression of type cv U, where U is a
9341       //   specialization of C or a class derived from a specialization of C.
9342       Expr *E = ListInit->getInit(0);
9343       auto *RD = E->getType()->getAsCXXRecordDecl();
9344       if (!isa<InitListExpr>(E) && RD &&
9345           isCompleteType(Kind.getLocation(), E->getType()) &&
9346           isOrIsDerivedFromSpecializationOf(RD, Template))
9347         TryListConstructors = false;
9348     }
9349 
9350     if (TryListConstructors)
9351       Result = tryToResolveOverload(/*OnlyListConstructor*/true);
9352     // Then unwrap the initializer list and try again considering all
9353     // constructors.
9354     Inits = MultiExprArg(ListInit->getInits(), ListInit->getNumInits());
9355   }
9356 
9357   // If list-initialization fails, or if we're doing any other kind of
9358   // initialization, we (eventually) consider constructors.
9359   if (Result == OR_No_Viable_Function)
9360     Result = tryToResolveOverload(/*OnlyListConstructor*/false);
9361 
9362   switch (Result) {
9363   case OR_Ambiguous:
9364     Diag(Kind.getLocation(), diag::err_deduced_class_template_ctor_ambiguous)
9365       << TemplateName;
9366     // FIXME: For list-initialization candidates, it'd usually be better to
9367     // list why they were not viable when given the initializer list itself as
9368     // an argument.
9369     Candidates.NoteCandidates(*this, OCD_ViableCandidates, Inits);
9370     return QualType();
9371 
9372   case OR_No_Viable_Function: {
9373     CXXRecordDecl *Primary =
9374         cast<ClassTemplateDecl>(Template)->getTemplatedDecl();
9375     bool Complete =
9376         isCompleteType(Kind.getLocation(), Context.getTypeDeclType(Primary));
9377     Diag(Kind.getLocation(),
9378          Complete ? diag::err_deduced_class_template_ctor_no_viable
9379                   : diag::err_deduced_class_template_incomplete)
9380       << TemplateName << !Guides.empty();
9381     Candidates.NoteCandidates(*this, OCD_AllCandidates, Inits);
9382     return QualType();
9383   }
9384 
9385   case OR_Deleted: {
9386     Diag(Kind.getLocation(), diag::err_deduced_class_template_deleted)
9387       << TemplateName;
9388     NoteDeletedFunction(Best->Function);
9389     return QualType();
9390   }
9391 
9392   case OR_Success:
9393     // C++ [over.match.list]p1:
9394     //   In copy-list-initialization, if an explicit constructor is chosen, the
9395     //   initialization is ill-formed.
9396     if (Kind.isCopyInit() && ListInit &&
9397         cast<CXXDeductionGuideDecl>(Best->Function)->isExplicit()) {
9398       bool IsDeductionGuide = !Best->Function->isImplicit();
9399       Diag(Kind.getLocation(), diag::err_deduced_class_template_explicit)
9400           << TemplateName << IsDeductionGuide;
9401       Diag(Best->Function->getLocation(),
9402            diag::note_explicit_ctor_deduction_guide_here)
9403           << IsDeductionGuide;
9404       return QualType();
9405     }
9406 
9407     // Make sure we didn't select an unusable deduction guide, and mark it
9408     // as referenced.
9409     DiagnoseUseOfDecl(Best->Function, Kind.getLocation());
9410     MarkFunctionReferenced(Kind.getLocation(), Best->Function);
9411     break;
9412   }
9413 
9414   // C++ [dcl.type.class.deduct]p1:
9415   //  The placeholder is replaced by the return type of the function selected
9416   //  by overload resolution for class template deduction.
9417   QualType DeducedType =
9418       SubstAutoType(TSInfo->getType(), Best->Function->getReturnType());
9419   Diag(TSInfo->getTypeLoc().getBeginLoc(),
9420        diag::warn_cxx14_compat_class_template_argument_deduction)
9421       << TSInfo->getTypeLoc().getSourceRange() << 1 << DeducedType;
9422   return DeducedType;
9423 }
9424