1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements semantic analysis for initializers. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Sema/Designator.h" 15 #include "clang/Sema/Initialization.h" 16 #include "clang/Sema/Lookup.h" 17 #include "clang/Sema/SemaInternal.h" 18 #include "clang/Lex/Preprocessor.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/DeclObjC.h" 21 #include "clang/AST/ExprCXX.h" 22 #include "clang/AST/ExprObjC.h" 23 #include "clang/AST/TypeLoc.h" 24 #include "llvm/Support/ErrorHandling.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include <map> 27 using namespace clang; 28 29 //===----------------------------------------------------------------------===// 30 // Sema Initialization Checking 31 //===----------------------------------------------------------------------===// 32 33 static Expr *IsStringInit(Expr *Init, const ArrayType *AT, 34 ASTContext &Context) { 35 if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT)) 36 return 0; 37 38 // See if this is a string literal or @encode. 39 Init = Init->IgnoreParens(); 40 41 // Handle @encode, which is a narrow string. 42 if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType()) 43 return Init; 44 45 // Otherwise we can only handle string literals. 46 StringLiteral *SL = dyn_cast<StringLiteral>(Init); 47 if (SL == 0) return 0; 48 49 QualType ElemTy = Context.getCanonicalType(AT->getElementType()); 50 51 switch (SL->getKind()) { 52 case StringLiteral::Ascii: 53 case StringLiteral::UTF8: 54 // char array can be initialized with a narrow string. 55 // Only allow char x[] = "foo"; not char x[] = L"foo"; 56 return ElemTy->isCharType() ? Init : 0; 57 case StringLiteral::UTF16: 58 return ElemTy->isChar16Type() ? Init : 0; 59 case StringLiteral::UTF32: 60 return ElemTy->isChar32Type() ? Init : 0; 61 case StringLiteral::Wide: 62 // wchar_t array can be initialized with a wide string: C99 6.7.8p15 (with 63 // correction from DR343): "An array with element type compatible with a 64 // qualified or unqualified version of wchar_t may be initialized by a wide 65 // string literal, optionally enclosed in braces." 66 if (Context.typesAreCompatible(Context.getWCharType(), 67 ElemTy.getUnqualifiedType())) 68 return Init; 69 70 return 0; 71 } 72 73 llvm_unreachable("missed a StringLiteral kind?"); 74 } 75 76 static Expr *IsStringInit(Expr *init, QualType declType, ASTContext &Context) { 77 const ArrayType *arrayType = Context.getAsArrayType(declType); 78 if (!arrayType) return 0; 79 80 return IsStringInit(init, arrayType, Context); 81 } 82 83 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT, 84 Sema &S) { 85 // Get the length of the string as parsed. 86 uint64_t StrLength = 87 cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue(); 88 89 90 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) { 91 // C99 6.7.8p14. We have an array of character type with unknown size 92 // being initialized to a string literal. 93 llvm::APSInt ConstVal(32); 94 ConstVal = StrLength; 95 // Return a new array type (C99 6.7.8p22). 96 DeclT = S.Context.getConstantArrayType(IAT->getElementType(), 97 ConstVal, 98 ArrayType::Normal, 0); 99 return; 100 } 101 102 const ConstantArrayType *CAT = cast<ConstantArrayType>(AT); 103 104 // We have an array of character type with known size. However, 105 // the size may be smaller or larger than the string we are initializing. 106 // FIXME: Avoid truncation for 64-bit length strings. 107 if (S.getLangOptions().CPlusPlus) { 108 if (StringLiteral *SL = dyn_cast<StringLiteral>(Str)) { 109 // For Pascal strings it's OK to strip off the terminating null character, 110 // so the example below is valid: 111 // 112 // unsigned char a[2] = "\pa"; 113 if (SL->isPascal()) 114 StrLength--; 115 } 116 117 // [dcl.init.string]p2 118 if (StrLength > CAT->getSize().getZExtValue()) 119 S.Diag(Str->getSourceRange().getBegin(), 120 diag::err_initializer_string_for_char_array_too_long) 121 << Str->getSourceRange(); 122 } else { 123 // C99 6.7.8p14. 124 if (StrLength-1 > CAT->getSize().getZExtValue()) 125 S.Diag(Str->getSourceRange().getBegin(), 126 diag::warn_initializer_string_for_char_array_too_long) 127 << Str->getSourceRange(); 128 } 129 130 // Set the type to the actual size that we are initializing. If we have 131 // something like: 132 // char x[1] = "foo"; 133 // then this will set the string literal's type to char[1]. 134 Str->setType(DeclT); 135 } 136 137 //===----------------------------------------------------------------------===// 138 // Semantic checking for initializer lists. 139 //===----------------------------------------------------------------------===// 140 141 /// @brief Semantic checking for initializer lists. 142 /// 143 /// The InitListChecker class contains a set of routines that each 144 /// handle the initialization of a certain kind of entity, e.g., 145 /// arrays, vectors, struct/union types, scalars, etc. The 146 /// InitListChecker itself performs a recursive walk of the subobject 147 /// structure of the type to be initialized, while stepping through 148 /// the initializer list one element at a time. The IList and Index 149 /// parameters to each of the Check* routines contain the active 150 /// (syntactic) initializer list and the index into that initializer 151 /// list that represents the current initializer. Each routine is 152 /// responsible for moving that Index forward as it consumes elements. 153 /// 154 /// Each Check* routine also has a StructuredList/StructuredIndex 155 /// arguments, which contains the current "structured" (semantic) 156 /// initializer list and the index into that initializer list where we 157 /// are copying initializers as we map them over to the semantic 158 /// list. Once we have completed our recursive walk of the subobject 159 /// structure, we will have constructed a full semantic initializer 160 /// list. 161 /// 162 /// C99 designators cause changes in the initializer list traversal, 163 /// because they make the initialization "jump" into a specific 164 /// subobject and then continue the initialization from that 165 /// point. CheckDesignatedInitializer() recursively steps into the 166 /// designated subobject and manages backing out the recursion to 167 /// initialize the subobjects after the one designated. 168 namespace { 169 class InitListChecker { 170 Sema &SemaRef; 171 bool hadError; 172 bool VerifyOnly; // no diagnostics, no structure building 173 bool AllowBraceElision; 174 std::map<InitListExpr *, InitListExpr *> SyntacticToSemantic; 175 InitListExpr *FullyStructuredList; 176 177 void CheckImplicitInitList(const InitializedEntity &Entity, 178 InitListExpr *ParentIList, QualType T, 179 unsigned &Index, InitListExpr *StructuredList, 180 unsigned &StructuredIndex); 181 void CheckExplicitInitList(const InitializedEntity &Entity, 182 InitListExpr *IList, QualType &T, 183 unsigned &Index, InitListExpr *StructuredList, 184 unsigned &StructuredIndex, 185 bool TopLevelObject = false); 186 void CheckListElementTypes(const InitializedEntity &Entity, 187 InitListExpr *IList, QualType &DeclType, 188 bool SubobjectIsDesignatorContext, 189 unsigned &Index, 190 InitListExpr *StructuredList, 191 unsigned &StructuredIndex, 192 bool TopLevelObject = false); 193 void CheckSubElementType(const InitializedEntity &Entity, 194 InitListExpr *IList, QualType ElemType, 195 unsigned &Index, 196 InitListExpr *StructuredList, 197 unsigned &StructuredIndex); 198 void CheckComplexType(const InitializedEntity &Entity, 199 InitListExpr *IList, QualType DeclType, 200 unsigned &Index, 201 InitListExpr *StructuredList, 202 unsigned &StructuredIndex); 203 void CheckScalarType(const InitializedEntity &Entity, 204 InitListExpr *IList, QualType DeclType, 205 unsigned &Index, 206 InitListExpr *StructuredList, 207 unsigned &StructuredIndex); 208 void CheckReferenceType(const InitializedEntity &Entity, 209 InitListExpr *IList, QualType DeclType, 210 unsigned &Index, 211 InitListExpr *StructuredList, 212 unsigned &StructuredIndex); 213 void CheckVectorType(const InitializedEntity &Entity, 214 InitListExpr *IList, QualType DeclType, unsigned &Index, 215 InitListExpr *StructuredList, 216 unsigned &StructuredIndex); 217 void CheckStructUnionTypes(const InitializedEntity &Entity, 218 InitListExpr *IList, QualType DeclType, 219 RecordDecl::field_iterator Field, 220 bool SubobjectIsDesignatorContext, unsigned &Index, 221 InitListExpr *StructuredList, 222 unsigned &StructuredIndex, 223 bool TopLevelObject = false); 224 void CheckArrayType(const InitializedEntity &Entity, 225 InitListExpr *IList, QualType &DeclType, 226 llvm::APSInt elementIndex, 227 bool SubobjectIsDesignatorContext, unsigned &Index, 228 InitListExpr *StructuredList, 229 unsigned &StructuredIndex); 230 bool CheckDesignatedInitializer(const InitializedEntity &Entity, 231 InitListExpr *IList, DesignatedInitExpr *DIE, 232 unsigned DesigIdx, 233 QualType &CurrentObjectType, 234 RecordDecl::field_iterator *NextField, 235 llvm::APSInt *NextElementIndex, 236 unsigned &Index, 237 InitListExpr *StructuredList, 238 unsigned &StructuredIndex, 239 bool FinishSubobjectInit, 240 bool TopLevelObject); 241 InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, 242 QualType CurrentObjectType, 243 InitListExpr *StructuredList, 244 unsigned StructuredIndex, 245 SourceRange InitRange); 246 void UpdateStructuredListElement(InitListExpr *StructuredList, 247 unsigned &StructuredIndex, 248 Expr *expr); 249 int numArrayElements(QualType DeclType); 250 int numStructUnionElements(QualType DeclType); 251 252 void FillInValueInitForField(unsigned Init, FieldDecl *Field, 253 const InitializedEntity &ParentEntity, 254 InitListExpr *ILE, bool &RequiresSecondPass); 255 void FillInValueInitializations(const InitializedEntity &Entity, 256 InitListExpr *ILE, bool &RequiresSecondPass); 257 bool CheckFlexibleArrayInit(const InitializedEntity &Entity, 258 Expr *InitExpr, FieldDecl *Field, 259 bool TopLevelObject); 260 void CheckValueInitializable(const InitializedEntity &Entity); 261 262 public: 263 InitListChecker(Sema &S, const InitializedEntity &Entity, 264 InitListExpr *IL, QualType &T, bool VerifyOnly, 265 bool AllowBraceElision); 266 bool HadError() { return hadError; } 267 268 // @brief Retrieves the fully-structured initializer list used for 269 // semantic analysis and code generation. 270 InitListExpr *getFullyStructuredList() const { return FullyStructuredList; } 271 }; 272 } // end anonymous namespace 273 274 void InitListChecker::CheckValueInitializable(const InitializedEntity &Entity) { 275 assert(VerifyOnly && 276 "CheckValueInitializable is only inteded for verification mode."); 277 278 SourceLocation Loc; 279 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc, 280 true); 281 InitializationSequence InitSeq(SemaRef, Entity, Kind, 0, 0); 282 if (InitSeq.Failed()) 283 hadError = true; 284 } 285 286 void InitListChecker::FillInValueInitForField(unsigned Init, FieldDecl *Field, 287 const InitializedEntity &ParentEntity, 288 InitListExpr *ILE, 289 bool &RequiresSecondPass) { 290 SourceLocation Loc = ILE->getSourceRange().getBegin(); 291 unsigned NumInits = ILE->getNumInits(); 292 InitializedEntity MemberEntity 293 = InitializedEntity::InitializeMember(Field, &ParentEntity); 294 if (Init >= NumInits || !ILE->getInit(Init)) { 295 // FIXME: We probably don't need to handle references 296 // specially here, since value-initialization of references is 297 // handled in InitializationSequence. 298 if (Field->getType()->isReferenceType()) { 299 // C++ [dcl.init.aggr]p9: 300 // If an incomplete or empty initializer-list leaves a 301 // member of reference type uninitialized, the program is 302 // ill-formed. 303 SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized) 304 << Field->getType() 305 << ILE->getSyntacticForm()->getSourceRange(); 306 SemaRef.Diag(Field->getLocation(), 307 diag::note_uninit_reference_member); 308 hadError = true; 309 return; 310 } 311 312 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc, 313 true); 314 InitializationSequence InitSeq(SemaRef, MemberEntity, Kind, 0, 0); 315 if (!InitSeq) { 316 InitSeq.Diagnose(SemaRef, MemberEntity, Kind, 0, 0); 317 hadError = true; 318 return; 319 } 320 321 ExprResult MemberInit 322 = InitSeq.Perform(SemaRef, MemberEntity, Kind, MultiExprArg()); 323 if (MemberInit.isInvalid()) { 324 hadError = true; 325 return; 326 } 327 328 if (hadError) { 329 // Do nothing 330 } else if (Init < NumInits) { 331 ILE->setInit(Init, MemberInit.takeAs<Expr>()); 332 } else if (InitSeq.isConstructorInitialization()) { 333 // Value-initialization requires a constructor call, so 334 // extend the initializer list to include the constructor 335 // call and make a note that we'll need to take another pass 336 // through the initializer list. 337 ILE->updateInit(SemaRef.Context, Init, MemberInit.takeAs<Expr>()); 338 RequiresSecondPass = true; 339 } 340 } else if (InitListExpr *InnerILE 341 = dyn_cast<InitListExpr>(ILE->getInit(Init))) 342 FillInValueInitializations(MemberEntity, InnerILE, 343 RequiresSecondPass); 344 } 345 346 /// Recursively replaces NULL values within the given initializer list 347 /// with expressions that perform value-initialization of the 348 /// appropriate type. 349 void 350 InitListChecker::FillInValueInitializations(const InitializedEntity &Entity, 351 InitListExpr *ILE, 352 bool &RequiresSecondPass) { 353 assert((ILE->getType() != SemaRef.Context.VoidTy) && 354 "Should not have void type"); 355 SourceLocation Loc = ILE->getSourceRange().getBegin(); 356 if (ILE->getSyntacticForm()) 357 Loc = ILE->getSyntacticForm()->getSourceRange().getBegin(); 358 359 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 360 if (RType->getDecl()->isUnion() && 361 ILE->getInitializedFieldInUnion()) 362 FillInValueInitForField(0, ILE->getInitializedFieldInUnion(), 363 Entity, ILE, RequiresSecondPass); 364 else { 365 unsigned Init = 0; 366 for (RecordDecl::field_iterator 367 Field = RType->getDecl()->field_begin(), 368 FieldEnd = RType->getDecl()->field_end(); 369 Field != FieldEnd; ++Field) { 370 if (Field->isUnnamedBitfield()) 371 continue; 372 373 if (hadError) 374 return; 375 376 FillInValueInitForField(Init, *Field, Entity, ILE, RequiresSecondPass); 377 if (hadError) 378 return; 379 380 ++Init; 381 382 // Only look at the first initialization of a union. 383 if (RType->getDecl()->isUnion()) 384 break; 385 } 386 } 387 388 return; 389 } 390 391 QualType ElementType; 392 393 InitializedEntity ElementEntity = Entity; 394 unsigned NumInits = ILE->getNumInits(); 395 unsigned NumElements = NumInits; 396 if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) { 397 ElementType = AType->getElementType(); 398 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) 399 NumElements = CAType->getSize().getZExtValue(); 400 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, 401 0, Entity); 402 } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) { 403 ElementType = VType->getElementType(); 404 NumElements = VType->getNumElements(); 405 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, 406 0, Entity); 407 } else 408 ElementType = ILE->getType(); 409 410 411 for (unsigned Init = 0; Init != NumElements; ++Init) { 412 if (hadError) 413 return; 414 415 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement || 416 ElementEntity.getKind() == InitializedEntity::EK_VectorElement) 417 ElementEntity.setElementIndex(Init); 418 419 Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : 0); 420 if (!InitExpr && !ILE->hasArrayFiller()) { 421 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc, 422 true); 423 InitializationSequence InitSeq(SemaRef, ElementEntity, Kind, 0, 0); 424 if (!InitSeq) { 425 InitSeq.Diagnose(SemaRef, ElementEntity, Kind, 0, 0); 426 hadError = true; 427 return; 428 } 429 430 ExprResult ElementInit 431 = InitSeq.Perform(SemaRef, ElementEntity, Kind, MultiExprArg()); 432 if (ElementInit.isInvalid()) { 433 hadError = true; 434 return; 435 } 436 437 if (hadError) { 438 // Do nothing 439 } else if (Init < NumInits) { 440 // For arrays, just set the expression used for value-initialization 441 // of the "holes" in the array. 442 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) 443 ILE->setArrayFiller(ElementInit.takeAs<Expr>()); 444 else 445 ILE->setInit(Init, ElementInit.takeAs<Expr>()); 446 } else { 447 // For arrays, just set the expression used for value-initialization 448 // of the rest of elements and exit. 449 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) { 450 ILE->setArrayFiller(ElementInit.takeAs<Expr>()); 451 return; 452 } 453 454 if (InitSeq.isConstructorInitialization()) { 455 // Value-initialization requires a constructor call, so 456 // extend the initializer list to include the constructor 457 // call and make a note that we'll need to take another pass 458 // through the initializer list. 459 ILE->updateInit(SemaRef.Context, Init, ElementInit.takeAs<Expr>()); 460 RequiresSecondPass = true; 461 } 462 } 463 } else if (InitListExpr *InnerILE 464 = dyn_cast_or_null<InitListExpr>(InitExpr)) 465 FillInValueInitializations(ElementEntity, InnerILE, RequiresSecondPass); 466 } 467 } 468 469 470 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity, 471 InitListExpr *IL, QualType &T, 472 bool VerifyOnly, bool AllowBraceElision) 473 : SemaRef(S), VerifyOnly(VerifyOnly), AllowBraceElision(AllowBraceElision) { 474 hadError = false; 475 476 unsigned newIndex = 0; 477 unsigned newStructuredIndex = 0; 478 FullyStructuredList 479 = getStructuredSubobjectInit(IL, newIndex, T, 0, 0, IL->getSourceRange()); 480 CheckExplicitInitList(Entity, IL, T, newIndex, 481 FullyStructuredList, newStructuredIndex, 482 /*TopLevelObject=*/true); 483 484 if (!hadError && !VerifyOnly) { 485 bool RequiresSecondPass = false; 486 FillInValueInitializations(Entity, FullyStructuredList, RequiresSecondPass); 487 if (RequiresSecondPass && !hadError) 488 FillInValueInitializations(Entity, FullyStructuredList, 489 RequiresSecondPass); 490 } 491 } 492 493 int InitListChecker::numArrayElements(QualType DeclType) { 494 // FIXME: use a proper constant 495 int maxElements = 0x7FFFFFFF; 496 if (const ConstantArrayType *CAT = 497 SemaRef.Context.getAsConstantArrayType(DeclType)) { 498 maxElements = static_cast<int>(CAT->getSize().getZExtValue()); 499 } 500 return maxElements; 501 } 502 503 int InitListChecker::numStructUnionElements(QualType DeclType) { 504 RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl(); 505 int InitializableMembers = 0; 506 for (RecordDecl::field_iterator 507 Field = structDecl->field_begin(), 508 FieldEnd = structDecl->field_end(); 509 Field != FieldEnd; ++Field) { 510 if (!Field->isUnnamedBitfield()) 511 ++InitializableMembers; 512 } 513 if (structDecl->isUnion()) 514 return std::min(InitializableMembers, 1); 515 return InitializableMembers - structDecl->hasFlexibleArrayMember(); 516 } 517 518 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity, 519 InitListExpr *ParentIList, 520 QualType T, unsigned &Index, 521 InitListExpr *StructuredList, 522 unsigned &StructuredIndex) { 523 int maxElements = 0; 524 525 if (T->isArrayType()) 526 maxElements = numArrayElements(T); 527 else if (T->isRecordType()) 528 maxElements = numStructUnionElements(T); 529 else if (T->isVectorType()) 530 maxElements = T->getAs<VectorType>()->getNumElements(); 531 else 532 llvm_unreachable("CheckImplicitInitList(): Illegal type"); 533 534 if (maxElements == 0) { 535 if (!VerifyOnly) 536 SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(), 537 diag::err_implicit_empty_initializer); 538 ++Index; 539 hadError = true; 540 return; 541 } 542 543 // Build a structured initializer list corresponding to this subobject. 544 InitListExpr *StructuredSubobjectInitList 545 = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList, 546 StructuredIndex, 547 SourceRange(ParentIList->getInit(Index)->getSourceRange().getBegin(), 548 ParentIList->getSourceRange().getEnd())); 549 unsigned StructuredSubobjectInitIndex = 0; 550 551 // Check the element types and build the structural subobject. 552 unsigned StartIndex = Index; 553 CheckListElementTypes(Entity, ParentIList, T, 554 /*SubobjectIsDesignatorContext=*/false, Index, 555 StructuredSubobjectInitList, 556 StructuredSubobjectInitIndex); 557 558 if (VerifyOnly) { 559 if (!AllowBraceElision && (T->isArrayType() || T->isRecordType())) 560 hadError = true; 561 } else { 562 StructuredSubobjectInitList->setType(T); 563 564 unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1); 565 // Update the structured sub-object initializer so that it's ending 566 // range corresponds with the end of the last initializer it used. 567 if (EndIndex < ParentIList->getNumInits()) { 568 SourceLocation EndLoc 569 = ParentIList->getInit(EndIndex)->getSourceRange().getEnd(); 570 StructuredSubobjectInitList->setRBraceLoc(EndLoc); 571 } 572 573 // Complain about missing braces. 574 if (T->isArrayType() || T->isRecordType()) { 575 SemaRef.Diag(StructuredSubobjectInitList->getLocStart(), 576 AllowBraceElision ? diag::warn_missing_braces : 577 diag::err_missing_braces) 578 << StructuredSubobjectInitList->getSourceRange() 579 << FixItHint::CreateInsertion( 580 StructuredSubobjectInitList->getLocStart(), "{") 581 << FixItHint::CreateInsertion( 582 SemaRef.PP.getLocForEndOfToken( 583 StructuredSubobjectInitList->getLocEnd()), 584 "}"); 585 if (!AllowBraceElision) 586 hadError = true; 587 } 588 } 589 } 590 591 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity, 592 InitListExpr *IList, QualType &T, 593 unsigned &Index, 594 InitListExpr *StructuredList, 595 unsigned &StructuredIndex, 596 bool TopLevelObject) { 597 assert(IList->isExplicit() && "Illegal Implicit InitListExpr"); 598 if (!VerifyOnly) { 599 SyntacticToSemantic[IList] = StructuredList; 600 StructuredList->setSyntacticForm(IList); 601 } 602 CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true, 603 Index, StructuredList, StructuredIndex, TopLevelObject); 604 if (!VerifyOnly) { 605 QualType ExprTy = T.getNonLValueExprType(SemaRef.Context); 606 IList->setType(ExprTy); 607 StructuredList->setType(ExprTy); 608 } 609 if (hadError) 610 return; 611 612 if (Index < IList->getNumInits()) { 613 // We have leftover initializers 614 if (VerifyOnly) { 615 if (SemaRef.getLangOptions().CPlusPlus || 616 (SemaRef.getLangOptions().OpenCL && 617 IList->getType()->isVectorType())) { 618 hadError = true; 619 } 620 return; 621 } 622 623 if (StructuredIndex == 1 && 624 IsStringInit(StructuredList->getInit(0), T, SemaRef.Context)) { 625 unsigned DK = diag::warn_excess_initializers_in_char_array_initializer; 626 if (SemaRef.getLangOptions().CPlusPlus) { 627 DK = diag::err_excess_initializers_in_char_array_initializer; 628 hadError = true; 629 } 630 // Special-case 631 SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK) 632 << IList->getInit(Index)->getSourceRange(); 633 } else if (!T->isIncompleteType()) { 634 // Don't complain for incomplete types, since we'll get an error 635 // elsewhere 636 QualType CurrentObjectType = StructuredList->getType(); 637 int initKind = 638 CurrentObjectType->isArrayType()? 0 : 639 CurrentObjectType->isVectorType()? 1 : 640 CurrentObjectType->isScalarType()? 2 : 641 CurrentObjectType->isUnionType()? 3 : 642 4; 643 644 unsigned DK = diag::warn_excess_initializers; 645 if (SemaRef.getLangOptions().CPlusPlus) { 646 DK = diag::err_excess_initializers; 647 hadError = true; 648 } 649 if (SemaRef.getLangOptions().OpenCL && initKind == 1) { 650 DK = diag::err_excess_initializers; 651 hadError = true; 652 } 653 654 SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK) 655 << initKind << IList->getInit(Index)->getSourceRange(); 656 } 657 } 658 659 if (!VerifyOnly && T->isScalarType() && IList->getNumInits() == 1 && 660 !TopLevelObject) 661 SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init) 662 << IList->getSourceRange() 663 << FixItHint::CreateRemoval(IList->getLocStart()) 664 << FixItHint::CreateRemoval(IList->getLocEnd()); 665 } 666 667 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity, 668 InitListExpr *IList, 669 QualType &DeclType, 670 bool SubobjectIsDesignatorContext, 671 unsigned &Index, 672 InitListExpr *StructuredList, 673 unsigned &StructuredIndex, 674 bool TopLevelObject) { 675 if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) { 676 // Explicitly braced initializer for complex type can be real+imaginary 677 // parts. 678 CheckComplexType(Entity, IList, DeclType, Index, 679 StructuredList, StructuredIndex); 680 } else if (DeclType->isScalarType()) { 681 CheckScalarType(Entity, IList, DeclType, Index, 682 StructuredList, StructuredIndex); 683 } else if (DeclType->isVectorType()) { 684 CheckVectorType(Entity, IList, DeclType, Index, 685 StructuredList, StructuredIndex); 686 } else if (DeclType->isAggregateType()) { 687 if (DeclType->isRecordType()) { 688 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl(); 689 CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(), 690 SubobjectIsDesignatorContext, Index, 691 StructuredList, StructuredIndex, 692 TopLevelObject); 693 } else if (DeclType->isArrayType()) { 694 llvm::APSInt Zero( 695 SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()), 696 false); 697 CheckArrayType(Entity, IList, DeclType, Zero, 698 SubobjectIsDesignatorContext, Index, 699 StructuredList, StructuredIndex); 700 } else 701 llvm_unreachable("Aggregate that isn't a structure or array?!"); 702 } else if (DeclType->isVoidType() || DeclType->isFunctionType()) { 703 // This type is invalid, issue a diagnostic. 704 ++Index; 705 if (!VerifyOnly) 706 SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type) 707 << DeclType; 708 hadError = true; 709 } else if (DeclType->isRecordType()) { 710 // C++ [dcl.init]p14: 711 // [...] If the class is an aggregate (8.5.1), and the initializer 712 // is a brace-enclosed list, see 8.5.1. 713 // 714 // Note: 8.5.1 is handled below; here, we diagnose the case where 715 // we have an initializer list and a destination type that is not 716 // an aggregate. 717 // FIXME: In C++0x, this is yet another form of initialization. 718 if (!VerifyOnly) 719 SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list) 720 << DeclType << IList->getSourceRange(); 721 hadError = true; 722 } else if (DeclType->isReferenceType()) { 723 CheckReferenceType(Entity, IList, DeclType, Index, 724 StructuredList, StructuredIndex); 725 } else if (DeclType->isObjCObjectType()) { 726 if (!VerifyOnly) 727 SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class) 728 << DeclType; 729 hadError = true; 730 } else { 731 if (!VerifyOnly) 732 SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type) 733 << DeclType; 734 hadError = true; 735 } 736 } 737 738 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity, 739 InitListExpr *IList, 740 QualType ElemType, 741 unsigned &Index, 742 InitListExpr *StructuredList, 743 unsigned &StructuredIndex) { 744 Expr *expr = IList->getInit(Index); 745 if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) { 746 unsigned newIndex = 0; 747 unsigned newStructuredIndex = 0; 748 InitListExpr *newStructuredList 749 = getStructuredSubobjectInit(IList, Index, ElemType, 750 StructuredList, StructuredIndex, 751 SubInitList->getSourceRange()); 752 CheckExplicitInitList(Entity, SubInitList, ElemType, newIndex, 753 newStructuredList, newStructuredIndex); 754 ++StructuredIndex; 755 ++Index; 756 return; 757 } else if (ElemType->isScalarType()) { 758 return CheckScalarType(Entity, IList, ElemType, Index, 759 StructuredList, StructuredIndex); 760 } else if (ElemType->isReferenceType()) { 761 return CheckReferenceType(Entity, IList, ElemType, Index, 762 StructuredList, StructuredIndex); 763 } 764 765 if (const ArrayType *arrayType = SemaRef.Context.getAsArrayType(ElemType)) { 766 // arrayType can be incomplete if we're initializing a flexible 767 // array member. There's nothing we can do with the completed 768 // type here, though. 769 770 if (Expr *Str = IsStringInit(expr, arrayType, SemaRef.Context)) { 771 if (!VerifyOnly) { 772 CheckStringInit(Str, ElemType, arrayType, SemaRef); 773 UpdateStructuredListElement(StructuredList, StructuredIndex, Str); 774 } 775 ++Index; 776 return; 777 } 778 779 // Fall through for subaggregate initialization. 780 781 } else if (SemaRef.getLangOptions().CPlusPlus) { 782 // C++ [dcl.init.aggr]p12: 783 // All implicit type conversions (clause 4) are considered when 784 // initializing the aggregate member with an initializer from 785 // an initializer-list. If the initializer can initialize a 786 // member, the member is initialized. [...] 787 788 // FIXME: Better EqualLoc? 789 InitializationKind Kind = 790 InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation()); 791 InitializationSequence Seq(SemaRef, Entity, Kind, &expr, 1); 792 793 if (Seq) { 794 if (!VerifyOnly) { 795 ExprResult Result = 796 Seq.Perform(SemaRef, Entity, Kind, MultiExprArg(&expr, 1)); 797 if (Result.isInvalid()) 798 hadError = true; 799 800 UpdateStructuredListElement(StructuredList, StructuredIndex, 801 Result.takeAs<Expr>()); 802 } 803 ++Index; 804 return; 805 } 806 807 // Fall through for subaggregate initialization 808 } else { 809 // C99 6.7.8p13: 810 // 811 // The initializer for a structure or union object that has 812 // automatic storage duration shall be either an initializer 813 // list as described below, or a single expression that has 814 // compatible structure or union type. In the latter case, the 815 // initial value of the object, including unnamed members, is 816 // that of the expression. 817 ExprResult ExprRes = SemaRef.Owned(expr); 818 if ((ElemType->isRecordType() || ElemType->isVectorType()) && 819 SemaRef.CheckSingleAssignmentConstraints(ElemType, ExprRes, 820 !VerifyOnly) 821 == Sema::Compatible) { 822 if (ExprRes.isInvalid()) 823 hadError = true; 824 else { 825 ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.take()); 826 if (ExprRes.isInvalid()) 827 hadError = true; 828 } 829 UpdateStructuredListElement(StructuredList, StructuredIndex, 830 ExprRes.takeAs<Expr>()); 831 ++Index; 832 return; 833 } 834 ExprRes.release(); 835 // Fall through for subaggregate initialization 836 } 837 838 // C++ [dcl.init.aggr]p12: 839 // 840 // [...] Otherwise, if the member is itself a non-empty 841 // subaggregate, brace elision is assumed and the initializer is 842 // considered for the initialization of the first member of 843 // the subaggregate. 844 if (!SemaRef.getLangOptions().OpenCL && 845 (ElemType->isAggregateType() || ElemType->isVectorType())) { 846 CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList, 847 StructuredIndex); 848 ++StructuredIndex; 849 } else { 850 if (!VerifyOnly) { 851 // We cannot initialize this element, so let 852 // PerformCopyInitialization produce the appropriate diagnostic. 853 SemaRef.PerformCopyInitialization(Entity, SourceLocation(), 854 SemaRef.Owned(expr), 855 /*TopLevelOfInitList=*/true); 856 } 857 hadError = true; 858 ++Index; 859 ++StructuredIndex; 860 } 861 } 862 863 void InitListChecker::CheckComplexType(const InitializedEntity &Entity, 864 InitListExpr *IList, QualType DeclType, 865 unsigned &Index, 866 InitListExpr *StructuredList, 867 unsigned &StructuredIndex) { 868 assert(Index == 0 && "Index in explicit init list must be zero"); 869 870 // As an extension, clang supports complex initializers, which initialize 871 // a complex number component-wise. When an explicit initializer list for 872 // a complex number contains two two initializers, this extension kicks in: 873 // it exepcts the initializer list to contain two elements convertible to 874 // the element type of the complex type. The first element initializes 875 // the real part, and the second element intitializes the imaginary part. 876 877 if (IList->getNumInits() != 2) 878 return CheckScalarType(Entity, IList, DeclType, Index, StructuredList, 879 StructuredIndex); 880 881 // This is an extension in C. (The builtin _Complex type does not exist 882 // in the C++ standard.) 883 if (!SemaRef.getLangOptions().CPlusPlus && !VerifyOnly) 884 SemaRef.Diag(IList->getLocStart(), diag::ext_complex_component_init) 885 << IList->getSourceRange(); 886 887 // Initialize the complex number. 888 QualType elementType = DeclType->getAs<ComplexType>()->getElementType(); 889 InitializedEntity ElementEntity = 890 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 891 892 for (unsigned i = 0; i < 2; ++i) { 893 ElementEntity.setElementIndex(Index); 894 CheckSubElementType(ElementEntity, IList, elementType, Index, 895 StructuredList, StructuredIndex); 896 } 897 } 898 899 900 void InitListChecker::CheckScalarType(const InitializedEntity &Entity, 901 InitListExpr *IList, QualType DeclType, 902 unsigned &Index, 903 InitListExpr *StructuredList, 904 unsigned &StructuredIndex) { 905 if (Index >= IList->getNumInits()) { 906 if (!VerifyOnly) 907 SemaRef.Diag(IList->getLocStart(), 908 SemaRef.getLangOptions().CPlusPlus0x ? 909 diag::warn_cxx98_compat_empty_scalar_initializer : 910 diag::err_empty_scalar_initializer) 911 << IList->getSourceRange(); 912 hadError = !SemaRef.getLangOptions().CPlusPlus0x; 913 ++Index; 914 ++StructuredIndex; 915 return; 916 } 917 918 Expr *expr = IList->getInit(Index); 919 if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) { 920 if (!VerifyOnly) 921 SemaRef.Diag(SubIList->getLocStart(), 922 diag::warn_many_braces_around_scalar_init) 923 << SubIList->getSourceRange(); 924 925 CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList, 926 StructuredIndex); 927 return; 928 } else if (isa<DesignatedInitExpr>(expr)) { 929 if (!VerifyOnly) 930 SemaRef.Diag(expr->getSourceRange().getBegin(), 931 diag::err_designator_for_scalar_init) 932 << DeclType << expr->getSourceRange(); 933 hadError = true; 934 ++Index; 935 ++StructuredIndex; 936 return; 937 } 938 939 if (VerifyOnly) { 940 if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr))) 941 hadError = true; 942 ++Index; 943 return; 944 } 945 946 ExprResult Result = 947 SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(), 948 SemaRef.Owned(expr), 949 /*TopLevelOfInitList=*/true); 950 951 Expr *ResultExpr = 0; 952 953 if (Result.isInvalid()) 954 hadError = true; // types weren't compatible. 955 else { 956 ResultExpr = Result.takeAs<Expr>(); 957 958 if (ResultExpr != expr) { 959 // The type was promoted, update initializer list. 960 IList->setInit(Index, ResultExpr); 961 } 962 } 963 if (hadError) 964 ++StructuredIndex; 965 else 966 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr); 967 ++Index; 968 } 969 970 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity, 971 InitListExpr *IList, QualType DeclType, 972 unsigned &Index, 973 InitListExpr *StructuredList, 974 unsigned &StructuredIndex) { 975 if (Index >= IList->getNumInits()) { 976 // FIXME: It would be wonderful if we could point at the actual member. In 977 // general, it would be useful to pass location information down the stack, 978 // so that we know the location (or decl) of the "current object" being 979 // initialized. 980 if (!VerifyOnly) 981 SemaRef.Diag(IList->getLocStart(), 982 diag::err_init_reference_member_uninitialized) 983 << DeclType 984 << IList->getSourceRange(); 985 hadError = true; 986 ++Index; 987 ++StructuredIndex; 988 return; 989 } 990 991 Expr *expr = IList->getInit(Index); 992 if (isa<InitListExpr>(expr) && !SemaRef.getLangOptions().CPlusPlus0x) { 993 if (!VerifyOnly) 994 SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list) 995 << DeclType << IList->getSourceRange(); 996 hadError = true; 997 ++Index; 998 ++StructuredIndex; 999 return; 1000 } 1001 1002 if (VerifyOnly) { 1003 if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr))) 1004 hadError = true; 1005 ++Index; 1006 return; 1007 } 1008 1009 ExprResult Result = 1010 SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(), 1011 SemaRef.Owned(expr), 1012 /*TopLevelOfInitList=*/true); 1013 1014 if (Result.isInvalid()) 1015 hadError = true; 1016 1017 expr = Result.takeAs<Expr>(); 1018 IList->setInit(Index, expr); 1019 1020 if (hadError) 1021 ++StructuredIndex; 1022 else 1023 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1024 ++Index; 1025 } 1026 1027 void InitListChecker::CheckVectorType(const InitializedEntity &Entity, 1028 InitListExpr *IList, QualType DeclType, 1029 unsigned &Index, 1030 InitListExpr *StructuredList, 1031 unsigned &StructuredIndex) { 1032 const VectorType *VT = DeclType->getAs<VectorType>(); 1033 unsigned maxElements = VT->getNumElements(); 1034 unsigned numEltsInit = 0; 1035 QualType elementType = VT->getElementType(); 1036 1037 if (Index >= IList->getNumInits()) { 1038 // Make sure the element type can be value-initialized. 1039 if (VerifyOnly) 1040 CheckValueInitializable( 1041 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity)); 1042 return; 1043 } 1044 1045 if (!SemaRef.getLangOptions().OpenCL) { 1046 // If the initializing element is a vector, try to copy-initialize 1047 // instead of breaking it apart (which is doomed to failure anyway). 1048 Expr *Init = IList->getInit(Index); 1049 if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) { 1050 if (VerifyOnly) { 1051 if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(Init))) 1052 hadError = true; 1053 ++Index; 1054 return; 1055 } 1056 1057 ExprResult Result = 1058 SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(), 1059 SemaRef.Owned(Init), 1060 /*TopLevelOfInitList=*/true); 1061 1062 Expr *ResultExpr = 0; 1063 if (Result.isInvalid()) 1064 hadError = true; // types weren't compatible. 1065 else { 1066 ResultExpr = Result.takeAs<Expr>(); 1067 1068 if (ResultExpr != Init) { 1069 // The type was promoted, update initializer list. 1070 IList->setInit(Index, ResultExpr); 1071 } 1072 } 1073 if (hadError) 1074 ++StructuredIndex; 1075 else 1076 UpdateStructuredListElement(StructuredList, StructuredIndex, 1077 ResultExpr); 1078 ++Index; 1079 return; 1080 } 1081 1082 InitializedEntity ElementEntity = 1083 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1084 1085 for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) { 1086 // Don't attempt to go past the end of the init list 1087 if (Index >= IList->getNumInits()) { 1088 if (VerifyOnly) 1089 CheckValueInitializable(ElementEntity); 1090 break; 1091 } 1092 1093 ElementEntity.setElementIndex(Index); 1094 CheckSubElementType(ElementEntity, IList, elementType, Index, 1095 StructuredList, StructuredIndex); 1096 } 1097 return; 1098 } 1099 1100 InitializedEntity ElementEntity = 1101 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1102 1103 // OpenCL initializers allows vectors to be constructed from vectors. 1104 for (unsigned i = 0; i < maxElements; ++i) { 1105 // Don't attempt to go past the end of the init list 1106 if (Index >= IList->getNumInits()) 1107 break; 1108 1109 ElementEntity.setElementIndex(Index); 1110 1111 QualType IType = IList->getInit(Index)->getType(); 1112 if (!IType->isVectorType()) { 1113 CheckSubElementType(ElementEntity, IList, elementType, Index, 1114 StructuredList, StructuredIndex); 1115 ++numEltsInit; 1116 } else { 1117 QualType VecType; 1118 const VectorType *IVT = IType->getAs<VectorType>(); 1119 unsigned numIElts = IVT->getNumElements(); 1120 1121 if (IType->isExtVectorType()) 1122 VecType = SemaRef.Context.getExtVectorType(elementType, numIElts); 1123 else 1124 VecType = SemaRef.Context.getVectorType(elementType, numIElts, 1125 IVT->getVectorKind()); 1126 CheckSubElementType(ElementEntity, IList, VecType, Index, 1127 StructuredList, StructuredIndex); 1128 numEltsInit += numIElts; 1129 } 1130 } 1131 1132 // OpenCL requires all elements to be initialized. 1133 if (numEltsInit != maxElements) { 1134 if (!VerifyOnly) 1135 SemaRef.Diag(IList->getSourceRange().getBegin(), 1136 diag::err_vector_incorrect_num_initializers) 1137 << (numEltsInit < maxElements) << maxElements << numEltsInit; 1138 hadError = true; 1139 } 1140 } 1141 1142 void InitListChecker::CheckArrayType(const InitializedEntity &Entity, 1143 InitListExpr *IList, QualType &DeclType, 1144 llvm::APSInt elementIndex, 1145 bool SubobjectIsDesignatorContext, 1146 unsigned &Index, 1147 InitListExpr *StructuredList, 1148 unsigned &StructuredIndex) { 1149 const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType); 1150 1151 // Check for the special-case of initializing an array with a string. 1152 if (Index < IList->getNumInits()) { 1153 if (Expr *Str = IsStringInit(IList->getInit(Index), arrayType, 1154 SemaRef.Context)) { 1155 // We place the string literal directly into the resulting 1156 // initializer list. This is the only place where the structure 1157 // of the structured initializer list doesn't match exactly, 1158 // because doing so would involve allocating one character 1159 // constant for each string. 1160 if (!VerifyOnly) { 1161 CheckStringInit(Str, DeclType, arrayType, SemaRef); 1162 UpdateStructuredListElement(StructuredList, StructuredIndex, Str); 1163 StructuredList->resizeInits(SemaRef.Context, StructuredIndex); 1164 } 1165 ++Index; 1166 return; 1167 } 1168 } 1169 if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) { 1170 // Check for VLAs; in standard C it would be possible to check this 1171 // earlier, but I don't know where clang accepts VLAs (gcc accepts 1172 // them in all sorts of strange places). 1173 if (!VerifyOnly) 1174 SemaRef.Diag(VAT->getSizeExpr()->getLocStart(), 1175 diag::err_variable_object_no_init) 1176 << VAT->getSizeExpr()->getSourceRange(); 1177 hadError = true; 1178 ++Index; 1179 ++StructuredIndex; 1180 return; 1181 } 1182 1183 // We might know the maximum number of elements in advance. 1184 llvm::APSInt maxElements(elementIndex.getBitWidth(), 1185 elementIndex.isUnsigned()); 1186 bool maxElementsKnown = false; 1187 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) { 1188 maxElements = CAT->getSize(); 1189 elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth()); 1190 elementIndex.setIsUnsigned(maxElements.isUnsigned()); 1191 maxElementsKnown = true; 1192 } 1193 1194 QualType elementType = arrayType->getElementType(); 1195 while (Index < IList->getNumInits()) { 1196 Expr *Init = IList->getInit(Index); 1197 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { 1198 // If we're not the subobject that matches up with the '{' for 1199 // the designator, we shouldn't be handling the 1200 // designator. Return immediately. 1201 if (!SubobjectIsDesignatorContext) 1202 return; 1203 1204 // Handle this designated initializer. elementIndex will be 1205 // updated to be the next array element we'll initialize. 1206 if (CheckDesignatedInitializer(Entity, IList, DIE, 0, 1207 DeclType, 0, &elementIndex, Index, 1208 StructuredList, StructuredIndex, true, 1209 false)) { 1210 hadError = true; 1211 continue; 1212 } 1213 1214 if (elementIndex.getBitWidth() > maxElements.getBitWidth()) 1215 maxElements = maxElements.extend(elementIndex.getBitWidth()); 1216 else if (elementIndex.getBitWidth() < maxElements.getBitWidth()) 1217 elementIndex = elementIndex.extend(maxElements.getBitWidth()); 1218 elementIndex.setIsUnsigned(maxElements.isUnsigned()); 1219 1220 // If the array is of incomplete type, keep track of the number of 1221 // elements in the initializer. 1222 if (!maxElementsKnown && elementIndex > maxElements) 1223 maxElements = elementIndex; 1224 1225 continue; 1226 } 1227 1228 // If we know the maximum number of elements, and we've already 1229 // hit it, stop consuming elements in the initializer list. 1230 if (maxElementsKnown && elementIndex == maxElements) 1231 break; 1232 1233 InitializedEntity ElementEntity = 1234 InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex, 1235 Entity); 1236 // Check this element. 1237 CheckSubElementType(ElementEntity, IList, elementType, Index, 1238 StructuredList, StructuredIndex); 1239 ++elementIndex; 1240 1241 // If the array is of incomplete type, keep track of the number of 1242 // elements in the initializer. 1243 if (!maxElementsKnown && elementIndex > maxElements) 1244 maxElements = elementIndex; 1245 } 1246 if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) { 1247 // If this is an incomplete array type, the actual type needs to 1248 // be calculated here. 1249 llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned()); 1250 if (maxElements == Zero) { 1251 // Sizing an array implicitly to zero is not allowed by ISO C, 1252 // but is supported by GNU. 1253 SemaRef.Diag(IList->getLocStart(), 1254 diag::ext_typecheck_zero_array_size); 1255 } 1256 1257 DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements, 1258 ArrayType::Normal, 0); 1259 } 1260 if (!hadError && VerifyOnly) { 1261 // Check if there are any members of the array that get value-initialized. 1262 // If so, check if doing that is possible. 1263 // FIXME: This needs to detect holes left by designated initializers too. 1264 if (maxElementsKnown && elementIndex < maxElements) 1265 CheckValueInitializable(InitializedEntity::InitializeElement( 1266 SemaRef.Context, 0, Entity)); 1267 } 1268 } 1269 1270 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity, 1271 Expr *InitExpr, 1272 FieldDecl *Field, 1273 bool TopLevelObject) { 1274 // Handle GNU flexible array initializers. 1275 unsigned FlexArrayDiag; 1276 if (isa<InitListExpr>(InitExpr) && 1277 cast<InitListExpr>(InitExpr)->getNumInits() == 0) { 1278 // Empty flexible array init always allowed as an extension 1279 FlexArrayDiag = diag::ext_flexible_array_init; 1280 } else if (SemaRef.getLangOptions().CPlusPlus) { 1281 // Disallow flexible array init in C++; it is not required for gcc 1282 // compatibility, and it needs work to IRGen correctly in general. 1283 FlexArrayDiag = diag::err_flexible_array_init; 1284 } else if (!TopLevelObject) { 1285 // Disallow flexible array init on non-top-level object 1286 FlexArrayDiag = diag::err_flexible_array_init; 1287 } else if (Entity.getKind() != InitializedEntity::EK_Variable) { 1288 // Disallow flexible array init on anything which is not a variable. 1289 FlexArrayDiag = diag::err_flexible_array_init; 1290 } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) { 1291 // Disallow flexible array init on local variables. 1292 FlexArrayDiag = diag::err_flexible_array_init; 1293 } else { 1294 // Allow other cases. 1295 FlexArrayDiag = diag::ext_flexible_array_init; 1296 } 1297 1298 if (!VerifyOnly) { 1299 SemaRef.Diag(InitExpr->getSourceRange().getBegin(), 1300 FlexArrayDiag) 1301 << InitExpr->getSourceRange().getBegin(); 1302 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 1303 << Field; 1304 } 1305 1306 return FlexArrayDiag != diag::ext_flexible_array_init; 1307 } 1308 1309 void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity, 1310 InitListExpr *IList, 1311 QualType DeclType, 1312 RecordDecl::field_iterator Field, 1313 bool SubobjectIsDesignatorContext, 1314 unsigned &Index, 1315 InitListExpr *StructuredList, 1316 unsigned &StructuredIndex, 1317 bool TopLevelObject) { 1318 RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl(); 1319 1320 // If the record is invalid, some of it's members are invalid. To avoid 1321 // confusion, we forgo checking the intializer for the entire record. 1322 if (structDecl->isInvalidDecl()) { 1323 hadError = true; 1324 return; 1325 } 1326 1327 if (DeclType->isUnionType() && IList->getNumInits() == 0) { 1328 // Value-initialize the first named member of the union. 1329 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl(); 1330 for (RecordDecl::field_iterator FieldEnd = RD->field_end(); 1331 Field != FieldEnd; ++Field) { 1332 if (Field->getDeclName()) { 1333 if (VerifyOnly) 1334 CheckValueInitializable( 1335 InitializedEntity::InitializeMember(*Field, &Entity)); 1336 else 1337 StructuredList->setInitializedFieldInUnion(*Field); 1338 break; 1339 } 1340 } 1341 return; 1342 } 1343 1344 // If structDecl is a forward declaration, this loop won't do 1345 // anything except look at designated initializers; That's okay, 1346 // because an error should get printed out elsewhere. It might be 1347 // worthwhile to skip over the rest of the initializer, though. 1348 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl(); 1349 RecordDecl::field_iterator FieldEnd = RD->field_end(); 1350 bool InitializedSomething = false; 1351 bool CheckForMissingFields = true; 1352 while (Index < IList->getNumInits()) { 1353 Expr *Init = IList->getInit(Index); 1354 1355 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { 1356 // If we're not the subobject that matches up with the '{' for 1357 // the designator, we shouldn't be handling the 1358 // designator. Return immediately. 1359 if (!SubobjectIsDesignatorContext) 1360 return; 1361 1362 // Handle this designated initializer. Field will be updated to 1363 // the next field that we'll be initializing. 1364 if (CheckDesignatedInitializer(Entity, IList, DIE, 0, 1365 DeclType, &Field, 0, Index, 1366 StructuredList, StructuredIndex, 1367 true, TopLevelObject)) 1368 hadError = true; 1369 1370 InitializedSomething = true; 1371 1372 // Disable check for missing fields when designators are used. 1373 // This matches gcc behaviour. 1374 CheckForMissingFields = false; 1375 continue; 1376 } 1377 1378 if (Field == FieldEnd) { 1379 // We've run out of fields. We're done. 1380 break; 1381 } 1382 1383 // We've already initialized a member of a union. We're done. 1384 if (InitializedSomething && DeclType->isUnionType()) 1385 break; 1386 1387 // If we've hit the flexible array member at the end, we're done. 1388 if (Field->getType()->isIncompleteArrayType()) 1389 break; 1390 1391 if (Field->isUnnamedBitfield()) { 1392 // Don't initialize unnamed bitfields, e.g. "int : 20;" 1393 ++Field; 1394 continue; 1395 } 1396 1397 // Make sure we can use this declaration. 1398 bool InvalidUse; 1399 if (VerifyOnly) 1400 InvalidUse = !SemaRef.CanUseDecl(*Field); 1401 else 1402 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, 1403 IList->getInit(Index)->getLocStart()); 1404 if (InvalidUse) { 1405 ++Index; 1406 ++Field; 1407 hadError = true; 1408 continue; 1409 } 1410 1411 InitializedEntity MemberEntity = 1412 InitializedEntity::InitializeMember(*Field, &Entity); 1413 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 1414 StructuredList, StructuredIndex); 1415 InitializedSomething = true; 1416 1417 if (DeclType->isUnionType() && !VerifyOnly) { 1418 // Initialize the first field within the union. 1419 StructuredList->setInitializedFieldInUnion(*Field); 1420 } 1421 1422 ++Field; 1423 } 1424 1425 // Emit warnings for missing struct field initializers. 1426 if (!VerifyOnly && InitializedSomething && CheckForMissingFields && 1427 Field != FieldEnd && !Field->getType()->isIncompleteArrayType() && 1428 !DeclType->isUnionType()) { 1429 // It is possible we have one or more unnamed bitfields remaining. 1430 // Find first (if any) named field and emit warning. 1431 for (RecordDecl::field_iterator it = Field, end = RD->field_end(); 1432 it != end; ++it) { 1433 if (!it->isUnnamedBitfield()) { 1434 SemaRef.Diag(IList->getSourceRange().getEnd(), 1435 diag::warn_missing_field_initializers) << it->getName(); 1436 break; 1437 } 1438 } 1439 } 1440 1441 // Check that any remaining fields can be value-initialized. 1442 if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() && 1443 !Field->getType()->isIncompleteArrayType()) { 1444 // FIXME: Should check for holes left by designated initializers too. 1445 for (; Field != FieldEnd && !hadError; ++Field) { 1446 if (!Field->isUnnamedBitfield()) 1447 CheckValueInitializable( 1448 InitializedEntity::InitializeMember(*Field, &Entity)); 1449 } 1450 } 1451 1452 if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() || 1453 Index >= IList->getNumInits()) 1454 return; 1455 1456 if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field, 1457 TopLevelObject)) { 1458 hadError = true; 1459 ++Index; 1460 return; 1461 } 1462 1463 InitializedEntity MemberEntity = 1464 InitializedEntity::InitializeMember(*Field, &Entity); 1465 1466 if (isa<InitListExpr>(IList->getInit(Index))) 1467 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 1468 StructuredList, StructuredIndex); 1469 else 1470 CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index, 1471 StructuredList, StructuredIndex); 1472 } 1473 1474 /// \brief Expand a field designator that refers to a member of an 1475 /// anonymous struct or union into a series of field designators that 1476 /// refers to the field within the appropriate subobject. 1477 /// 1478 static void ExpandAnonymousFieldDesignator(Sema &SemaRef, 1479 DesignatedInitExpr *DIE, 1480 unsigned DesigIdx, 1481 IndirectFieldDecl *IndirectField) { 1482 typedef DesignatedInitExpr::Designator Designator; 1483 1484 // Build the replacement designators. 1485 SmallVector<Designator, 4> Replacements; 1486 for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(), 1487 PE = IndirectField->chain_end(); PI != PE; ++PI) { 1488 if (PI + 1 == PE) 1489 Replacements.push_back(Designator((IdentifierInfo *)0, 1490 DIE->getDesignator(DesigIdx)->getDotLoc(), 1491 DIE->getDesignator(DesigIdx)->getFieldLoc())); 1492 else 1493 Replacements.push_back(Designator((IdentifierInfo *)0, SourceLocation(), 1494 SourceLocation())); 1495 assert(isa<FieldDecl>(*PI)); 1496 Replacements.back().setField(cast<FieldDecl>(*PI)); 1497 } 1498 1499 // Expand the current designator into the set of replacement 1500 // designators, so we have a full subobject path down to where the 1501 // member of the anonymous struct/union is actually stored. 1502 DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0], 1503 &Replacements[0] + Replacements.size()); 1504 } 1505 1506 /// \brief Given an implicit anonymous field, search the IndirectField that 1507 /// corresponds to FieldName. 1508 static IndirectFieldDecl *FindIndirectFieldDesignator(FieldDecl *AnonField, 1509 IdentifierInfo *FieldName) { 1510 assert(AnonField->isAnonymousStructOrUnion()); 1511 Decl *NextDecl = AnonField->getNextDeclInContext(); 1512 while (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(NextDecl)) { 1513 if (FieldName && FieldName == IF->getAnonField()->getIdentifier()) 1514 return IF; 1515 NextDecl = NextDecl->getNextDeclInContext(); 1516 } 1517 return 0; 1518 } 1519 1520 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef, 1521 DesignatedInitExpr *DIE) { 1522 unsigned NumIndexExprs = DIE->getNumSubExprs() - 1; 1523 SmallVector<Expr*, 4> IndexExprs(NumIndexExprs); 1524 for (unsigned I = 0; I < NumIndexExprs; ++I) 1525 IndexExprs[I] = DIE->getSubExpr(I + 1); 1526 return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators_begin(), 1527 DIE->size(), IndexExprs.data(), 1528 NumIndexExprs, DIE->getEqualOrColonLoc(), 1529 DIE->usesGNUSyntax(), DIE->getInit()); 1530 } 1531 1532 /// @brief Check the well-formedness of a C99 designated initializer. 1533 /// 1534 /// Determines whether the designated initializer @p DIE, which 1535 /// resides at the given @p Index within the initializer list @p 1536 /// IList, is well-formed for a current object of type @p DeclType 1537 /// (C99 6.7.8). The actual subobject that this designator refers to 1538 /// within the current subobject is returned in either 1539 /// @p NextField or @p NextElementIndex (whichever is appropriate). 1540 /// 1541 /// @param IList The initializer list in which this designated 1542 /// initializer occurs. 1543 /// 1544 /// @param DIE The designated initializer expression. 1545 /// 1546 /// @param DesigIdx The index of the current designator. 1547 /// 1548 /// @param DeclType The type of the "current object" (C99 6.7.8p17), 1549 /// into which the designation in @p DIE should refer. 1550 /// 1551 /// @param NextField If non-NULL and the first designator in @p DIE is 1552 /// a field, this will be set to the field declaration corresponding 1553 /// to the field named by the designator. 1554 /// 1555 /// @param NextElementIndex If non-NULL and the first designator in @p 1556 /// DIE is an array designator or GNU array-range designator, this 1557 /// will be set to the last index initialized by this designator. 1558 /// 1559 /// @param Index Index into @p IList where the designated initializer 1560 /// @p DIE occurs. 1561 /// 1562 /// @param StructuredList The initializer list expression that 1563 /// describes all of the subobject initializers in the order they'll 1564 /// actually be initialized. 1565 /// 1566 /// @returns true if there was an error, false otherwise. 1567 bool 1568 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity, 1569 InitListExpr *IList, 1570 DesignatedInitExpr *DIE, 1571 unsigned DesigIdx, 1572 QualType &CurrentObjectType, 1573 RecordDecl::field_iterator *NextField, 1574 llvm::APSInt *NextElementIndex, 1575 unsigned &Index, 1576 InitListExpr *StructuredList, 1577 unsigned &StructuredIndex, 1578 bool FinishSubobjectInit, 1579 bool TopLevelObject) { 1580 if (DesigIdx == DIE->size()) { 1581 // Check the actual initialization for the designated object type. 1582 bool prevHadError = hadError; 1583 1584 // Temporarily remove the designator expression from the 1585 // initializer list that the child calls see, so that we don't try 1586 // to re-process the designator. 1587 unsigned OldIndex = Index; 1588 IList->setInit(OldIndex, DIE->getInit()); 1589 1590 CheckSubElementType(Entity, IList, CurrentObjectType, Index, 1591 StructuredList, StructuredIndex); 1592 1593 // Restore the designated initializer expression in the syntactic 1594 // form of the initializer list. 1595 if (IList->getInit(OldIndex) != DIE->getInit()) 1596 DIE->setInit(IList->getInit(OldIndex)); 1597 IList->setInit(OldIndex, DIE); 1598 1599 return hadError && !prevHadError; 1600 } 1601 1602 DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx); 1603 bool IsFirstDesignator = (DesigIdx == 0); 1604 if (!VerifyOnly) { 1605 assert((IsFirstDesignator || StructuredList) && 1606 "Need a non-designated initializer list to start from"); 1607 1608 // Determine the structural initializer list that corresponds to the 1609 // current subobject. 1610 StructuredList = IsFirstDesignator? SyntacticToSemantic[IList] 1611 : getStructuredSubobjectInit(IList, Index, CurrentObjectType, 1612 StructuredList, StructuredIndex, 1613 SourceRange(D->getStartLocation(), 1614 DIE->getSourceRange().getEnd())); 1615 assert(StructuredList && "Expected a structured initializer list"); 1616 } 1617 1618 if (D->isFieldDesignator()) { 1619 // C99 6.7.8p7: 1620 // 1621 // If a designator has the form 1622 // 1623 // . identifier 1624 // 1625 // then the current object (defined below) shall have 1626 // structure or union type and the identifier shall be the 1627 // name of a member of that type. 1628 const RecordType *RT = CurrentObjectType->getAs<RecordType>(); 1629 if (!RT) { 1630 SourceLocation Loc = D->getDotLoc(); 1631 if (Loc.isInvalid()) 1632 Loc = D->getFieldLoc(); 1633 if (!VerifyOnly) 1634 SemaRef.Diag(Loc, diag::err_field_designator_non_aggr) 1635 << SemaRef.getLangOptions().CPlusPlus << CurrentObjectType; 1636 ++Index; 1637 return true; 1638 } 1639 1640 // Note: we perform a linear search of the fields here, despite 1641 // the fact that we have a faster lookup method, because we always 1642 // need to compute the field's index. 1643 FieldDecl *KnownField = D->getField(); 1644 IdentifierInfo *FieldName = D->getFieldName(); 1645 unsigned FieldIndex = 0; 1646 RecordDecl::field_iterator 1647 Field = RT->getDecl()->field_begin(), 1648 FieldEnd = RT->getDecl()->field_end(); 1649 for (; Field != FieldEnd; ++Field) { 1650 if (Field->isUnnamedBitfield()) 1651 continue; 1652 1653 // If we find a field representing an anonymous field, look in the 1654 // IndirectFieldDecl that follow for the designated initializer. 1655 if (!KnownField && Field->isAnonymousStructOrUnion()) { 1656 if (IndirectFieldDecl *IF = 1657 FindIndirectFieldDesignator(*Field, FieldName)) { 1658 // In verify mode, don't modify the original. 1659 if (VerifyOnly) 1660 DIE = CloneDesignatedInitExpr(SemaRef, DIE); 1661 ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IF); 1662 D = DIE->getDesignator(DesigIdx); 1663 break; 1664 } 1665 } 1666 if (KnownField && KnownField == *Field) 1667 break; 1668 if (FieldName && FieldName == Field->getIdentifier()) 1669 break; 1670 1671 ++FieldIndex; 1672 } 1673 1674 if (Field == FieldEnd) { 1675 if (VerifyOnly) { 1676 ++Index; 1677 return true; // No typo correction when just trying this out. 1678 } 1679 1680 // There was no normal field in the struct with the designated 1681 // name. Perform another lookup for this name, which may find 1682 // something that we can't designate (e.g., a member function), 1683 // may find nothing, or may find a member of an anonymous 1684 // struct/union. 1685 DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName); 1686 FieldDecl *ReplacementField = 0; 1687 if (Lookup.first == Lookup.second) { 1688 // Name lookup didn't find anything. Determine whether this 1689 // was a typo for another field name. 1690 LookupResult R(SemaRef, FieldName, D->getFieldLoc(), 1691 Sema::LookupMemberName); 1692 TypoCorrection Corrected = SemaRef.CorrectTypo( 1693 DeclarationNameInfo(FieldName, D->getFieldLoc()), 1694 Sema::LookupMemberName, /*Scope=*/NULL, /*SS=*/NULL, 1695 RT->getDecl(), false, Sema::CTC_NoKeywords); 1696 if ((ReplacementField = Corrected.getCorrectionDeclAs<FieldDecl>()) && 1697 ReplacementField->getDeclContext()->getRedeclContext() 1698 ->Equals(RT->getDecl())) { 1699 std::string CorrectedStr( 1700 Corrected.getAsString(SemaRef.getLangOptions())); 1701 std::string CorrectedQuotedStr( 1702 Corrected.getQuoted(SemaRef.getLangOptions())); 1703 SemaRef.Diag(D->getFieldLoc(), 1704 diag::err_field_designator_unknown_suggest) 1705 << FieldName << CurrentObjectType << CorrectedQuotedStr 1706 << FixItHint::CreateReplacement(D->getFieldLoc(), CorrectedStr); 1707 SemaRef.Diag(ReplacementField->getLocation(), 1708 diag::note_previous_decl) << CorrectedQuotedStr; 1709 hadError = true; 1710 } else { 1711 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown) 1712 << FieldName << CurrentObjectType; 1713 ++Index; 1714 return true; 1715 } 1716 } 1717 1718 if (!ReplacementField) { 1719 // Name lookup found something, but it wasn't a field. 1720 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield) 1721 << FieldName; 1722 SemaRef.Diag((*Lookup.first)->getLocation(), 1723 diag::note_field_designator_found); 1724 ++Index; 1725 return true; 1726 } 1727 1728 if (!KnownField) { 1729 // The replacement field comes from typo correction; find it 1730 // in the list of fields. 1731 FieldIndex = 0; 1732 Field = RT->getDecl()->field_begin(); 1733 for (; Field != FieldEnd; ++Field) { 1734 if (Field->isUnnamedBitfield()) 1735 continue; 1736 1737 if (ReplacementField == *Field || 1738 Field->getIdentifier() == ReplacementField->getIdentifier()) 1739 break; 1740 1741 ++FieldIndex; 1742 } 1743 } 1744 } 1745 1746 // All of the fields of a union are located at the same place in 1747 // the initializer list. 1748 if (RT->getDecl()->isUnion()) { 1749 FieldIndex = 0; 1750 if (!VerifyOnly) 1751 StructuredList->setInitializedFieldInUnion(*Field); 1752 } 1753 1754 // Make sure we can use this declaration. 1755 bool InvalidUse; 1756 if (VerifyOnly) 1757 InvalidUse = !SemaRef.CanUseDecl(*Field); 1758 else 1759 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc()); 1760 if (InvalidUse) { 1761 ++Index; 1762 return true; 1763 } 1764 1765 if (!VerifyOnly) { 1766 // Update the designator with the field declaration. 1767 D->setField(*Field); 1768 1769 // Make sure that our non-designated initializer list has space 1770 // for a subobject corresponding to this field. 1771 if (FieldIndex >= StructuredList->getNumInits()) 1772 StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1); 1773 } 1774 1775 // This designator names a flexible array member. 1776 if (Field->getType()->isIncompleteArrayType()) { 1777 bool Invalid = false; 1778 if ((DesigIdx + 1) != DIE->size()) { 1779 // We can't designate an object within the flexible array 1780 // member (because GCC doesn't allow it). 1781 if (!VerifyOnly) { 1782 DesignatedInitExpr::Designator *NextD 1783 = DIE->getDesignator(DesigIdx + 1); 1784 SemaRef.Diag(NextD->getStartLocation(), 1785 diag::err_designator_into_flexible_array_member) 1786 << SourceRange(NextD->getStartLocation(), 1787 DIE->getSourceRange().getEnd()); 1788 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 1789 << *Field; 1790 } 1791 Invalid = true; 1792 } 1793 1794 if (!hadError && !isa<InitListExpr>(DIE->getInit()) && 1795 !isa<StringLiteral>(DIE->getInit())) { 1796 // The initializer is not an initializer list. 1797 if (!VerifyOnly) { 1798 SemaRef.Diag(DIE->getInit()->getSourceRange().getBegin(), 1799 diag::err_flexible_array_init_needs_braces) 1800 << DIE->getInit()->getSourceRange(); 1801 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 1802 << *Field; 1803 } 1804 Invalid = true; 1805 } 1806 1807 // Check GNU flexible array initializer. 1808 if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field, 1809 TopLevelObject)) 1810 Invalid = true; 1811 1812 if (Invalid) { 1813 ++Index; 1814 return true; 1815 } 1816 1817 // Initialize the array. 1818 bool prevHadError = hadError; 1819 unsigned newStructuredIndex = FieldIndex; 1820 unsigned OldIndex = Index; 1821 IList->setInit(Index, DIE->getInit()); 1822 1823 InitializedEntity MemberEntity = 1824 InitializedEntity::InitializeMember(*Field, &Entity); 1825 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 1826 StructuredList, newStructuredIndex); 1827 1828 IList->setInit(OldIndex, DIE); 1829 if (hadError && !prevHadError) { 1830 ++Field; 1831 ++FieldIndex; 1832 if (NextField) 1833 *NextField = Field; 1834 StructuredIndex = FieldIndex; 1835 return true; 1836 } 1837 } else { 1838 // Recurse to check later designated subobjects. 1839 QualType FieldType = (*Field)->getType(); 1840 unsigned newStructuredIndex = FieldIndex; 1841 1842 InitializedEntity MemberEntity = 1843 InitializedEntity::InitializeMember(*Field, &Entity); 1844 if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1, 1845 FieldType, 0, 0, Index, 1846 StructuredList, newStructuredIndex, 1847 true, false)) 1848 return true; 1849 } 1850 1851 // Find the position of the next field to be initialized in this 1852 // subobject. 1853 ++Field; 1854 ++FieldIndex; 1855 1856 // If this the first designator, our caller will continue checking 1857 // the rest of this struct/class/union subobject. 1858 if (IsFirstDesignator) { 1859 if (NextField) 1860 *NextField = Field; 1861 StructuredIndex = FieldIndex; 1862 return false; 1863 } 1864 1865 if (!FinishSubobjectInit) 1866 return false; 1867 1868 // We've already initialized something in the union; we're done. 1869 if (RT->getDecl()->isUnion()) 1870 return hadError; 1871 1872 // Check the remaining fields within this class/struct/union subobject. 1873 bool prevHadError = hadError; 1874 1875 CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index, 1876 StructuredList, FieldIndex); 1877 return hadError && !prevHadError; 1878 } 1879 1880 // C99 6.7.8p6: 1881 // 1882 // If a designator has the form 1883 // 1884 // [ constant-expression ] 1885 // 1886 // then the current object (defined below) shall have array 1887 // type and the expression shall be an integer constant 1888 // expression. If the array is of unknown size, any 1889 // nonnegative value is valid. 1890 // 1891 // Additionally, cope with the GNU extension that permits 1892 // designators of the form 1893 // 1894 // [ constant-expression ... constant-expression ] 1895 const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType); 1896 if (!AT) { 1897 if (!VerifyOnly) 1898 SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array) 1899 << CurrentObjectType; 1900 ++Index; 1901 return true; 1902 } 1903 1904 Expr *IndexExpr = 0; 1905 llvm::APSInt DesignatedStartIndex, DesignatedEndIndex; 1906 if (D->isArrayDesignator()) { 1907 IndexExpr = DIE->getArrayIndex(*D); 1908 DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context); 1909 DesignatedEndIndex = DesignatedStartIndex; 1910 } else { 1911 assert(D->isArrayRangeDesignator() && "Need array-range designator"); 1912 1913 DesignatedStartIndex = 1914 DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context); 1915 DesignatedEndIndex = 1916 DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context); 1917 IndexExpr = DIE->getArrayRangeEnd(*D); 1918 1919 // Codegen can't handle evaluating array range designators that have side 1920 // effects, because we replicate the AST value for each initialized element. 1921 // As such, set the sawArrayRangeDesignator() bit if we initialize multiple 1922 // elements with something that has a side effect, so codegen can emit an 1923 // "error unsupported" error instead of miscompiling the app. 1924 if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&& 1925 DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly) 1926 FullyStructuredList->sawArrayRangeDesignator(); 1927 } 1928 1929 if (isa<ConstantArrayType>(AT)) { 1930 llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false); 1931 DesignatedStartIndex 1932 = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth()); 1933 DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned()); 1934 DesignatedEndIndex 1935 = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth()); 1936 DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned()); 1937 if (DesignatedEndIndex >= MaxElements) { 1938 if (!VerifyOnly) 1939 SemaRef.Diag(IndexExpr->getSourceRange().getBegin(), 1940 diag::err_array_designator_too_large) 1941 << DesignatedEndIndex.toString(10) << MaxElements.toString(10) 1942 << IndexExpr->getSourceRange(); 1943 ++Index; 1944 return true; 1945 } 1946 } else { 1947 // Make sure the bit-widths and signedness match. 1948 if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth()) 1949 DesignatedEndIndex 1950 = DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth()); 1951 else if (DesignatedStartIndex.getBitWidth() < 1952 DesignatedEndIndex.getBitWidth()) 1953 DesignatedStartIndex 1954 = DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth()); 1955 DesignatedStartIndex.setIsUnsigned(true); 1956 DesignatedEndIndex.setIsUnsigned(true); 1957 } 1958 1959 // Make sure that our non-designated initializer list has space 1960 // for a subobject corresponding to this array element. 1961 if (!VerifyOnly && 1962 DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits()) 1963 StructuredList->resizeInits(SemaRef.Context, 1964 DesignatedEndIndex.getZExtValue() + 1); 1965 1966 // Repeatedly perform subobject initializations in the range 1967 // [DesignatedStartIndex, DesignatedEndIndex]. 1968 1969 // Move to the next designator 1970 unsigned ElementIndex = DesignatedStartIndex.getZExtValue(); 1971 unsigned OldIndex = Index; 1972 1973 InitializedEntity ElementEntity = 1974 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1975 1976 while (DesignatedStartIndex <= DesignatedEndIndex) { 1977 // Recurse to check later designated subobjects. 1978 QualType ElementType = AT->getElementType(); 1979 Index = OldIndex; 1980 1981 ElementEntity.setElementIndex(ElementIndex); 1982 if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1, 1983 ElementType, 0, 0, Index, 1984 StructuredList, ElementIndex, 1985 (DesignatedStartIndex == DesignatedEndIndex), 1986 false)) 1987 return true; 1988 1989 // Move to the next index in the array that we'll be initializing. 1990 ++DesignatedStartIndex; 1991 ElementIndex = DesignatedStartIndex.getZExtValue(); 1992 } 1993 1994 // If this the first designator, our caller will continue checking 1995 // the rest of this array subobject. 1996 if (IsFirstDesignator) { 1997 if (NextElementIndex) 1998 *NextElementIndex = DesignatedStartIndex; 1999 StructuredIndex = ElementIndex; 2000 return false; 2001 } 2002 2003 if (!FinishSubobjectInit) 2004 return false; 2005 2006 // Check the remaining elements within this array subobject. 2007 bool prevHadError = hadError; 2008 CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex, 2009 /*SubobjectIsDesignatorContext=*/false, Index, 2010 StructuredList, ElementIndex); 2011 return hadError && !prevHadError; 2012 } 2013 2014 // Get the structured initializer list for a subobject of type 2015 // @p CurrentObjectType. 2016 InitListExpr * 2017 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, 2018 QualType CurrentObjectType, 2019 InitListExpr *StructuredList, 2020 unsigned StructuredIndex, 2021 SourceRange InitRange) { 2022 if (VerifyOnly) 2023 return 0; // No structured list in verification-only mode. 2024 Expr *ExistingInit = 0; 2025 if (!StructuredList) 2026 ExistingInit = SyntacticToSemantic[IList]; 2027 else if (StructuredIndex < StructuredList->getNumInits()) 2028 ExistingInit = StructuredList->getInit(StructuredIndex); 2029 2030 if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit)) 2031 return Result; 2032 2033 if (ExistingInit) { 2034 // We are creating an initializer list that initializes the 2035 // subobjects of the current object, but there was already an 2036 // initialization that completely initialized the current 2037 // subobject, e.g., by a compound literal: 2038 // 2039 // struct X { int a, b; }; 2040 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; 2041 // 2042 // Here, xs[0].a == 0 and xs[0].b == 3, since the second, 2043 // designated initializer re-initializes the whole 2044 // subobject [0], overwriting previous initializers. 2045 SemaRef.Diag(InitRange.getBegin(), 2046 diag::warn_subobject_initializer_overrides) 2047 << InitRange; 2048 SemaRef.Diag(ExistingInit->getSourceRange().getBegin(), 2049 diag::note_previous_initializer) 2050 << /*FIXME:has side effects=*/0 2051 << ExistingInit->getSourceRange(); 2052 } 2053 2054 InitListExpr *Result 2055 = new (SemaRef.Context) InitListExpr(SemaRef.Context, 2056 InitRange.getBegin(), 0, 0, 2057 InitRange.getEnd()); 2058 2059 Result->setType(CurrentObjectType.getNonLValueExprType(SemaRef.Context)); 2060 2061 // Pre-allocate storage for the structured initializer list. 2062 unsigned NumElements = 0; 2063 unsigned NumInits = 0; 2064 bool GotNumInits = false; 2065 if (!StructuredList) { 2066 NumInits = IList->getNumInits(); 2067 GotNumInits = true; 2068 } else if (Index < IList->getNumInits()) { 2069 if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) { 2070 NumInits = SubList->getNumInits(); 2071 GotNumInits = true; 2072 } 2073 } 2074 2075 if (const ArrayType *AType 2076 = SemaRef.Context.getAsArrayType(CurrentObjectType)) { 2077 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) { 2078 NumElements = CAType->getSize().getZExtValue(); 2079 // Simple heuristic so that we don't allocate a very large 2080 // initializer with many empty entries at the end. 2081 if (GotNumInits && NumElements > NumInits) 2082 NumElements = 0; 2083 } 2084 } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>()) 2085 NumElements = VType->getNumElements(); 2086 else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) { 2087 RecordDecl *RDecl = RType->getDecl(); 2088 if (RDecl->isUnion()) 2089 NumElements = 1; 2090 else 2091 NumElements = std::distance(RDecl->field_begin(), 2092 RDecl->field_end()); 2093 } 2094 2095 Result->reserveInits(SemaRef.Context, NumElements); 2096 2097 // Link this new initializer list into the structured initializer 2098 // lists. 2099 if (StructuredList) 2100 StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result); 2101 else { 2102 Result->setSyntacticForm(IList); 2103 SyntacticToSemantic[IList] = Result; 2104 } 2105 2106 return Result; 2107 } 2108 2109 /// Update the initializer at index @p StructuredIndex within the 2110 /// structured initializer list to the value @p expr. 2111 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList, 2112 unsigned &StructuredIndex, 2113 Expr *expr) { 2114 // No structured initializer list to update 2115 if (!StructuredList) 2116 return; 2117 2118 if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context, 2119 StructuredIndex, expr)) { 2120 // This initializer overwrites a previous initializer. Warn. 2121 SemaRef.Diag(expr->getSourceRange().getBegin(), 2122 diag::warn_initializer_overrides) 2123 << expr->getSourceRange(); 2124 SemaRef.Diag(PrevInit->getSourceRange().getBegin(), 2125 diag::note_previous_initializer) 2126 << /*FIXME:has side effects=*/0 2127 << PrevInit->getSourceRange(); 2128 } 2129 2130 ++StructuredIndex; 2131 } 2132 2133 /// Check that the given Index expression is a valid array designator 2134 /// value. This is essentailly just a wrapper around 2135 /// VerifyIntegerConstantExpression that also checks for negative values 2136 /// and produces a reasonable diagnostic if there is a 2137 /// failure. Returns true if there was an error, false otherwise. If 2138 /// everything went okay, Value will receive the value of the constant 2139 /// expression. 2140 static bool 2141 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) { 2142 SourceLocation Loc = Index->getSourceRange().getBegin(); 2143 2144 // Make sure this is an integer constant expression. 2145 if (S.VerifyIntegerConstantExpression(Index, &Value)) 2146 return true; 2147 2148 if (Value.isSigned() && Value.isNegative()) 2149 return S.Diag(Loc, diag::err_array_designator_negative) 2150 << Value.toString(10) << Index->getSourceRange(); 2151 2152 Value.setIsUnsigned(true); 2153 return false; 2154 } 2155 2156 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig, 2157 SourceLocation Loc, 2158 bool GNUSyntax, 2159 ExprResult Init) { 2160 typedef DesignatedInitExpr::Designator ASTDesignator; 2161 2162 bool Invalid = false; 2163 SmallVector<ASTDesignator, 32> Designators; 2164 SmallVector<Expr *, 32> InitExpressions; 2165 2166 // Build designators and check array designator expressions. 2167 for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) { 2168 const Designator &D = Desig.getDesignator(Idx); 2169 switch (D.getKind()) { 2170 case Designator::FieldDesignator: 2171 Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(), 2172 D.getFieldLoc())); 2173 break; 2174 2175 case Designator::ArrayDesignator: { 2176 Expr *Index = static_cast<Expr *>(D.getArrayIndex()); 2177 llvm::APSInt IndexValue; 2178 if (!Index->isTypeDependent() && 2179 !Index->isValueDependent() && 2180 CheckArrayDesignatorExpr(*this, Index, IndexValue)) 2181 Invalid = true; 2182 else { 2183 Designators.push_back(ASTDesignator(InitExpressions.size(), 2184 D.getLBracketLoc(), 2185 D.getRBracketLoc())); 2186 InitExpressions.push_back(Index); 2187 } 2188 break; 2189 } 2190 2191 case Designator::ArrayRangeDesignator: { 2192 Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart()); 2193 Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd()); 2194 llvm::APSInt StartValue; 2195 llvm::APSInt EndValue; 2196 bool StartDependent = StartIndex->isTypeDependent() || 2197 StartIndex->isValueDependent(); 2198 bool EndDependent = EndIndex->isTypeDependent() || 2199 EndIndex->isValueDependent(); 2200 if ((!StartDependent && 2201 CheckArrayDesignatorExpr(*this, StartIndex, StartValue)) || 2202 (!EndDependent && 2203 CheckArrayDesignatorExpr(*this, EndIndex, EndValue))) 2204 Invalid = true; 2205 else { 2206 // Make sure we're comparing values with the same bit width. 2207 if (StartDependent || EndDependent) { 2208 // Nothing to compute. 2209 } else if (StartValue.getBitWidth() > EndValue.getBitWidth()) 2210 EndValue = EndValue.extend(StartValue.getBitWidth()); 2211 else if (StartValue.getBitWidth() < EndValue.getBitWidth()) 2212 StartValue = StartValue.extend(EndValue.getBitWidth()); 2213 2214 if (!StartDependent && !EndDependent && EndValue < StartValue) { 2215 Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range) 2216 << StartValue.toString(10) << EndValue.toString(10) 2217 << StartIndex->getSourceRange() << EndIndex->getSourceRange(); 2218 Invalid = true; 2219 } else { 2220 Designators.push_back(ASTDesignator(InitExpressions.size(), 2221 D.getLBracketLoc(), 2222 D.getEllipsisLoc(), 2223 D.getRBracketLoc())); 2224 InitExpressions.push_back(StartIndex); 2225 InitExpressions.push_back(EndIndex); 2226 } 2227 } 2228 break; 2229 } 2230 } 2231 } 2232 2233 if (Invalid || Init.isInvalid()) 2234 return ExprError(); 2235 2236 // Clear out the expressions within the designation. 2237 Desig.ClearExprs(*this); 2238 2239 DesignatedInitExpr *DIE 2240 = DesignatedInitExpr::Create(Context, 2241 Designators.data(), Designators.size(), 2242 InitExpressions.data(), InitExpressions.size(), 2243 Loc, GNUSyntax, Init.takeAs<Expr>()); 2244 2245 if (!getLangOptions().C99) 2246 Diag(DIE->getLocStart(), diag::ext_designated_init) 2247 << DIE->getSourceRange(); 2248 2249 return Owned(DIE); 2250 } 2251 2252 //===----------------------------------------------------------------------===// 2253 // Initialization entity 2254 //===----------------------------------------------------------------------===// 2255 2256 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index, 2257 const InitializedEntity &Parent) 2258 : Parent(&Parent), Index(Index) 2259 { 2260 if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) { 2261 Kind = EK_ArrayElement; 2262 Type = AT->getElementType(); 2263 } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) { 2264 Kind = EK_VectorElement; 2265 Type = VT->getElementType(); 2266 } else { 2267 const ComplexType *CT = Parent.getType()->getAs<ComplexType>(); 2268 assert(CT && "Unexpected type"); 2269 Kind = EK_ComplexElement; 2270 Type = CT->getElementType(); 2271 } 2272 } 2273 2274 InitializedEntity InitializedEntity::InitializeBase(ASTContext &Context, 2275 CXXBaseSpecifier *Base, 2276 bool IsInheritedVirtualBase) 2277 { 2278 InitializedEntity Result; 2279 Result.Kind = EK_Base; 2280 Result.Base = reinterpret_cast<uintptr_t>(Base); 2281 if (IsInheritedVirtualBase) 2282 Result.Base |= 0x01; 2283 2284 Result.Type = Base->getType(); 2285 return Result; 2286 } 2287 2288 DeclarationName InitializedEntity::getName() const { 2289 switch (getKind()) { 2290 case EK_Parameter: { 2291 ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1); 2292 return (D ? D->getDeclName() : DeclarationName()); 2293 } 2294 2295 case EK_Variable: 2296 case EK_Member: 2297 return VariableOrMember->getDeclName(); 2298 2299 case EK_Result: 2300 case EK_Exception: 2301 case EK_New: 2302 case EK_Temporary: 2303 case EK_Base: 2304 case EK_Delegating: 2305 case EK_ArrayElement: 2306 case EK_VectorElement: 2307 case EK_ComplexElement: 2308 case EK_BlockElement: 2309 return DeclarationName(); 2310 } 2311 2312 // Silence GCC warning 2313 return DeclarationName(); 2314 } 2315 2316 DeclaratorDecl *InitializedEntity::getDecl() const { 2317 switch (getKind()) { 2318 case EK_Variable: 2319 case EK_Member: 2320 return VariableOrMember; 2321 2322 case EK_Parameter: 2323 return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1); 2324 2325 case EK_Result: 2326 case EK_Exception: 2327 case EK_New: 2328 case EK_Temporary: 2329 case EK_Base: 2330 case EK_Delegating: 2331 case EK_ArrayElement: 2332 case EK_VectorElement: 2333 case EK_ComplexElement: 2334 case EK_BlockElement: 2335 return 0; 2336 } 2337 2338 // Silence GCC warning 2339 return 0; 2340 } 2341 2342 bool InitializedEntity::allowsNRVO() const { 2343 switch (getKind()) { 2344 case EK_Result: 2345 case EK_Exception: 2346 return LocAndNRVO.NRVO; 2347 2348 case EK_Variable: 2349 case EK_Parameter: 2350 case EK_Member: 2351 case EK_New: 2352 case EK_Temporary: 2353 case EK_Base: 2354 case EK_Delegating: 2355 case EK_ArrayElement: 2356 case EK_VectorElement: 2357 case EK_ComplexElement: 2358 case EK_BlockElement: 2359 break; 2360 } 2361 2362 return false; 2363 } 2364 2365 //===----------------------------------------------------------------------===// 2366 // Initialization sequence 2367 //===----------------------------------------------------------------------===// 2368 2369 void InitializationSequence::Step::Destroy() { 2370 switch (Kind) { 2371 case SK_ResolveAddressOfOverloadedFunction: 2372 case SK_CastDerivedToBaseRValue: 2373 case SK_CastDerivedToBaseXValue: 2374 case SK_CastDerivedToBaseLValue: 2375 case SK_BindReference: 2376 case SK_BindReferenceToTemporary: 2377 case SK_ExtraneousCopyToTemporary: 2378 case SK_UserConversion: 2379 case SK_QualificationConversionRValue: 2380 case SK_QualificationConversionXValue: 2381 case SK_QualificationConversionLValue: 2382 case SK_ListInitialization: 2383 case SK_ListConstructorCall: 2384 case SK_UnwrapInitList: 2385 case SK_RewrapInitList: 2386 case SK_ConstructorInitialization: 2387 case SK_ZeroInitialization: 2388 case SK_CAssignment: 2389 case SK_StringInit: 2390 case SK_ObjCObjectConversion: 2391 case SK_ArrayInit: 2392 case SK_PassByIndirectCopyRestore: 2393 case SK_PassByIndirectRestore: 2394 case SK_ProduceObjCObject: 2395 break; 2396 2397 case SK_ConversionSequence: 2398 delete ICS; 2399 } 2400 } 2401 2402 bool InitializationSequence::isDirectReferenceBinding() const { 2403 return !Steps.empty() && Steps.back().Kind == SK_BindReference; 2404 } 2405 2406 bool InitializationSequence::isAmbiguous() const { 2407 if (!Failed()) 2408 return false; 2409 2410 switch (getFailureKind()) { 2411 case FK_TooManyInitsForReference: 2412 case FK_ArrayNeedsInitList: 2413 case FK_ArrayNeedsInitListOrStringLiteral: 2414 case FK_AddressOfOverloadFailed: // FIXME: Could do better 2415 case FK_NonConstLValueReferenceBindingToTemporary: 2416 case FK_NonConstLValueReferenceBindingToUnrelated: 2417 case FK_RValueReferenceBindingToLValue: 2418 case FK_ReferenceInitDropsQualifiers: 2419 case FK_ReferenceInitFailed: 2420 case FK_ConversionFailed: 2421 case FK_ConversionFromPropertyFailed: 2422 case FK_TooManyInitsForScalar: 2423 case FK_ReferenceBindingToInitList: 2424 case FK_InitListBadDestinationType: 2425 case FK_DefaultInitOfConst: 2426 case FK_Incomplete: 2427 case FK_ArrayTypeMismatch: 2428 case FK_NonConstantArrayInit: 2429 case FK_ListInitializationFailed: 2430 case FK_PlaceholderType: 2431 return false; 2432 2433 case FK_ReferenceInitOverloadFailed: 2434 case FK_UserConversionOverloadFailed: 2435 case FK_ConstructorOverloadFailed: 2436 case FK_ListConstructorOverloadFailed: 2437 return FailedOverloadResult == OR_Ambiguous; 2438 } 2439 2440 return false; 2441 } 2442 2443 bool InitializationSequence::isConstructorInitialization() const { 2444 return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization; 2445 } 2446 2447 bool InitializationSequence::endsWithNarrowing(ASTContext &Ctx, 2448 const Expr *Initializer, 2449 bool *isInitializerConstant, 2450 APValue *ConstantValue) const { 2451 if (Steps.empty() || Initializer->isValueDependent()) 2452 return false; 2453 2454 const Step &LastStep = Steps.back(); 2455 if (LastStep.Kind != SK_ConversionSequence) 2456 return false; 2457 2458 const ImplicitConversionSequence &ICS = *LastStep.ICS; 2459 const StandardConversionSequence *SCS = NULL; 2460 switch (ICS.getKind()) { 2461 case ImplicitConversionSequence::StandardConversion: 2462 SCS = &ICS.Standard; 2463 break; 2464 case ImplicitConversionSequence::UserDefinedConversion: 2465 SCS = &ICS.UserDefined.After; 2466 break; 2467 case ImplicitConversionSequence::AmbiguousConversion: 2468 case ImplicitConversionSequence::EllipsisConversion: 2469 case ImplicitConversionSequence::BadConversion: 2470 return false; 2471 } 2472 2473 // Check if SCS represents a narrowing conversion, according to C++0x 2474 // [dcl.init.list]p7: 2475 // 2476 // A narrowing conversion is an implicit conversion ... 2477 ImplicitConversionKind PossibleNarrowing = SCS->Second; 2478 QualType FromType = SCS->getToType(0); 2479 QualType ToType = SCS->getToType(1); 2480 switch (PossibleNarrowing) { 2481 // * from a floating-point type to an integer type, or 2482 // 2483 // * from an integer type or unscoped enumeration type to a floating-point 2484 // type, except where the source is a constant expression and the actual 2485 // value after conversion will fit into the target type and will produce 2486 // the original value when converted back to the original type, or 2487 case ICK_Floating_Integral: 2488 if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) { 2489 *isInitializerConstant = false; 2490 return true; 2491 } else if (FromType->isIntegralType(Ctx) && ToType->isRealFloatingType()) { 2492 llvm::APSInt IntConstantValue; 2493 if (Initializer && 2494 Initializer->isIntegerConstantExpr(IntConstantValue, Ctx)) { 2495 // Convert the integer to the floating type. 2496 llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType)); 2497 Result.convertFromAPInt(IntConstantValue, IntConstantValue.isSigned(), 2498 llvm::APFloat::rmNearestTiesToEven); 2499 // And back. 2500 llvm::APSInt ConvertedValue = IntConstantValue; 2501 bool ignored; 2502 Result.convertToInteger(ConvertedValue, 2503 llvm::APFloat::rmTowardZero, &ignored); 2504 // If the resulting value is different, this was a narrowing conversion. 2505 if (IntConstantValue != ConvertedValue) { 2506 *isInitializerConstant = true; 2507 *ConstantValue = APValue(IntConstantValue); 2508 return true; 2509 } 2510 } else { 2511 // Variables are always narrowings. 2512 *isInitializerConstant = false; 2513 return true; 2514 } 2515 } 2516 return false; 2517 2518 // * from long double to double or float, or from double to float, except 2519 // where the source is a constant expression and the actual value after 2520 // conversion is within the range of values that can be represented (even 2521 // if it cannot be represented exactly), or 2522 case ICK_Floating_Conversion: 2523 if (1 == Ctx.getFloatingTypeOrder(FromType, ToType)) { 2524 // FromType is larger than ToType. 2525 Expr::EvalResult InitializerValue; 2526 // FIXME: Check whether Initializer is a constant expression according 2527 // to C++0x [expr.const], rather than just whether it can be folded. 2528 if (Initializer->EvaluateAsRValue(InitializerValue, Ctx) && 2529 !InitializerValue.HasSideEffects && InitializerValue.Val.isFloat()) { 2530 // Constant! (Except for FIXME above.) 2531 llvm::APFloat FloatVal = InitializerValue.Val.getFloat(); 2532 // Convert the source value into the target type. 2533 bool ignored; 2534 llvm::APFloat::opStatus ConvertStatus = FloatVal.convert( 2535 Ctx.getFloatTypeSemantics(ToType), 2536 llvm::APFloat::rmNearestTiesToEven, &ignored); 2537 // If there was no overflow, the source value is within the range of 2538 // values that can be represented. 2539 if (ConvertStatus & llvm::APFloat::opOverflow) { 2540 *isInitializerConstant = true; 2541 *ConstantValue = InitializerValue.Val; 2542 return true; 2543 } 2544 } else { 2545 *isInitializerConstant = false; 2546 return true; 2547 } 2548 } 2549 return false; 2550 2551 // * from an integer type or unscoped enumeration type to an integer type 2552 // that cannot represent all the values of the original type, except where 2553 // the source is a constant expression and the actual value after 2554 // conversion will fit into the target type and will produce the original 2555 // value when converted back to the original type. 2556 case ICK_Boolean_Conversion: // Bools are integers too. 2557 if (!FromType->isIntegralOrUnscopedEnumerationType()) { 2558 // Boolean conversions can be from pointers and pointers to members 2559 // [conv.bool], and those aren't considered narrowing conversions. 2560 return false; 2561 } // Otherwise, fall through to the integral case. 2562 case ICK_Integral_Conversion: { 2563 assert(FromType->isIntegralOrUnscopedEnumerationType()); 2564 assert(ToType->isIntegralOrUnscopedEnumerationType()); 2565 const bool FromSigned = FromType->isSignedIntegerOrEnumerationType(); 2566 const unsigned FromWidth = Ctx.getIntWidth(FromType); 2567 const bool ToSigned = ToType->isSignedIntegerOrEnumerationType(); 2568 const unsigned ToWidth = Ctx.getIntWidth(ToType); 2569 2570 if (FromWidth > ToWidth || 2571 (FromWidth == ToWidth && FromSigned != ToSigned)) { 2572 // Not all values of FromType can be represented in ToType. 2573 llvm::APSInt InitializerValue; 2574 if (Initializer->isIntegerConstantExpr(InitializerValue, Ctx)) { 2575 *isInitializerConstant = true; 2576 *ConstantValue = APValue(InitializerValue); 2577 2578 // Add a bit to the InitializerValue so we don't have to worry about 2579 // signed vs. unsigned comparisons. 2580 InitializerValue = InitializerValue.extend( 2581 InitializerValue.getBitWidth() + 1); 2582 // Convert the initializer to and from the target width and signed-ness. 2583 llvm::APSInt ConvertedValue = InitializerValue; 2584 ConvertedValue = ConvertedValue.trunc(ToWidth); 2585 ConvertedValue.setIsSigned(ToSigned); 2586 ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth()); 2587 ConvertedValue.setIsSigned(InitializerValue.isSigned()); 2588 // If the result is different, this was a narrowing conversion. 2589 return ConvertedValue != InitializerValue; 2590 } else { 2591 // Variables are always narrowings. 2592 *isInitializerConstant = false; 2593 return true; 2594 } 2595 } 2596 return false; 2597 } 2598 2599 default: 2600 // Other kinds of conversions are not narrowings. 2601 return false; 2602 } 2603 } 2604 2605 void 2606 InitializationSequence 2607 ::AddAddressOverloadResolutionStep(FunctionDecl *Function, 2608 DeclAccessPair Found, 2609 bool HadMultipleCandidates) { 2610 Step S; 2611 S.Kind = SK_ResolveAddressOfOverloadedFunction; 2612 S.Type = Function->getType(); 2613 S.Function.HadMultipleCandidates = HadMultipleCandidates; 2614 S.Function.Function = Function; 2615 S.Function.FoundDecl = Found; 2616 Steps.push_back(S); 2617 } 2618 2619 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType, 2620 ExprValueKind VK) { 2621 Step S; 2622 switch (VK) { 2623 case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break; 2624 case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break; 2625 case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break; 2626 default: llvm_unreachable("No such category"); 2627 } 2628 S.Type = BaseType; 2629 Steps.push_back(S); 2630 } 2631 2632 void InitializationSequence::AddReferenceBindingStep(QualType T, 2633 bool BindingTemporary) { 2634 Step S; 2635 S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference; 2636 S.Type = T; 2637 Steps.push_back(S); 2638 } 2639 2640 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) { 2641 Step S; 2642 S.Kind = SK_ExtraneousCopyToTemporary; 2643 S.Type = T; 2644 Steps.push_back(S); 2645 } 2646 2647 void 2648 InitializationSequence::AddUserConversionStep(FunctionDecl *Function, 2649 DeclAccessPair FoundDecl, 2650 QualType T, 2651 bool HadMultipleCandidates) { 2652 Step S; 2653 S.Kind = SK_UserConversion; 2654 S.Type = T; 2655 S.Function.HadMultipleCandidates = HadMultipleCandidates; 2656 S.Function.Function = Function; 2657 S.Function.FoundDecl = FoundDecl; 2658 Steps.push_back(S); 2659 } 2660 2661 void InitializationSequence::AddQualificationConversionStep(QualType Ty, 2662 ExprValueKind VK) { 2663 Step S; 2664 S.Kind = SK_QualificationConversionRValue; // work around a gcc warning 2665 switch (VK) { 2666 case VK_RValue: 2667 S.Kind = SK_QualificationConversionRValue; 2668 break; 2669 case VK_XValue: 2670 S.Kind = SK_QualificationConversionXValue; 2671 break; 2672 case VK_LValue: 2673 S.Kind = SK_QualificationConversionLValue; 2674 break; 2675 } 2676 S.Type = Ty; 2677 Steps.push_back(S); 2678 } 2679 2680 void InitializationSequence::AddConversionSequenceStep( 2681 const ImplicitConversionSequence &ICS, 2682 QualType T) { 2683 Step S; 2684 S.Kind = SK_ConversionSequence; 2685 S.Type = T; 2686 S.ICS = new ImplicitConversionSequence(ICS); 2687 Steps.push_back(S); 2688 } 2689 2690 void InitializationSequence::AddListInitializationStep(QualType T) { 2691 Step S; 2692 S.Kind = SK_ListInitialization; 2693 S.Type = T; 2694 Steps.push_back(S); 2695 } 2696 2697 void 2698 InitializationSequence 2699 ::AddConstructorInitializationStep(CXXConstructorDecl *Constructor, 2700 AccessSpecifier Access, 2701 QualType T, 2702 bool HadMultipleCandidates, 2703 bool FromInitList) { 2704 Step S; 2705 S.Kind = FromInitList ? SK_ListConstructorCall : SK_ConstructorInitialization; 2706 S.Type = T; 2707 S.Function.HadMultipleCandidates = HadMultipleCandidates; 2708 S.Function.Function = Constructor; 2709 S.Function.FoundDecl = DeclAccessPair::make(Constructor, Access); 2710 Steps.push_back(S); 2711 } 2712 2713 void InitializationSequence::AddZeroInitializationStep(QualType T) { 2714 Step S; 2715 S.Kind = SK_ZeroInitialization; 2716 S.Type = T; 2717 Steps.push_back(S); 2718 } 2719 2720 void InitializationSequence::AddCAssignmentStep(QualType T) { 2721 Step S; 2722 S.Kind = SK_CAssignment; 2723 S.Type = T; 2724 Steps.push_back(S); 2725 } 2726 2727 void InitializationSequence::AddStringInitStep(QualType T) { 2728 Step S; 2729 S.Kind = SK_StringInit; 2730 S.Type = T; 2731 Steps.push_back(S); 2732 } 2733 2734 void InitializationSequence::AddObjCObjectConversionStep(QualType T) { 2735 Step S; 2736 S.Kind = SK_ObjCObjectConversion; 2737 S.Type = T; 2738 Steps.push_back(S); 2739 } 2740 2741 void InitializationSequence::AddArrayInitStep(QualType T) { 2742 Step S; 2743 S.Kind = SK_ArrayInit; 2744 S.Type = T; 2745 Steps.push_back(S); 2746 } 2747 2748 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type, 2749 bool shouldCopy) { 2750 Step s; 2751 s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore 2752 : SK_PassByIndirectRestore); 2753 s.Type = type; 2754 Steps.push_back(s); 2755 } 2756 2757 void InitializationSequence::AddProduceObjCObjectStep(QualType T) { 2758 Step S; 2759 S.Kind = SK_ProduceObjCObject; 2760 S.Type = T; 2761 Steps.push_back(S); 2762 } 2763 2764 void InitializationSequence::RewrapReferenceInitList(QualType T, 2765 InitListExpr *Syntactic) { 2766 assert(Syntactic->getNumInits() == 1 && 2767 "Can only rewrap trivial init lists."); 2768 Step S; 2769 S.Kind = SK_UnwrapInitList; 2770 S.Type = Syntactic->getInit(0)->getType(); 2771 Steps.insert(Steps.begin(), S); 2772 2773 S.Kind = SK_RewrapInitList; 2774 S.Type = T; 2775 S.WrappingSyntacticList = Syntactic; 2776 Steps.push_back(S); 2777 } 2778 2779 void InitializationSequence::SetOverloadFailure(FailureKind Failure, 2780 OverloadingResult Result) { 2781 setSequenceKind(FailedSequence); 2782 this->Failure = Failure; 2783 this->FailedOverloadResult = Result; 2784 } 2785 2786 //===----------------------------------------------------------------------===// 2787 // Attempt initialization 2788 //===----------------------------------------------------------------------===// 2789 2790 static void MaybeProduceObjCObject(Sema &S, 2791 InitializationSequence &Sequence, 2792 const InitializedEntity &Entity) { 2793 if (!S.getLangOptions().ObjCAutoRefCount) return; 2794 2795 /// When initializing a parameter, produce the value if it's marked 2796 /// __attribute__((ns_consumed)). 2797 if (Entity.getKind() == InitializedEntity::EK_Parameter) { 2798 if (!Entity.isParameterConsumed()) 2799 return; 2800 2801 assert(Entity.getType()->isObjCRetainableType() && 2802 "consuming an object of unretainable type?"); 2803 Sequence.AddProduceObjCObjectStep(Entity.getType()); 2804 2805 /// When initializing a return value, if the return type is a 2806 /// retainable type, then returns need to immediately retain the 2807 /// object. If an autorelease is required, it will be done at the 2808 /// last instant. 2809 } else if (Entity.getKind() == InitializedEntity::EK_Result) { 2810 if (!Entity.getType()->isObjCRetainableType()) 2811 return; 2812 2813 Sequence.AddProduceObjCObjectStep(Entity.getType()); 2814 } 2815 } 2816 2817 /// \brief When initializing from init list via constructor, deal with the 2818 /// empty init list and std::initializer_list special cases. 2819 /// 2820 /// \return True if this was a special case, false otherwise. 2821 static bool TryListConstructionSpecialCases(Sema &S, 2822 Expr **Args, unsigned NumArgs, 2823 CXXRecordDecl *DestRecordDecl, 2824 QualType DestType, 2825 InitializationSequence &Sequence) { 2826 // C++0x [dcl.init.list]p3: 2827 // List-initialization of an object of type T is defined as follows: 2828 // - If the initializer list has no elements and T is a class type with 2829 // a default constructor, the object is value-initialized. 2830 if (NumArgs == 0) { 2831 if (CXXConstructorDecl *DefaultConstructor = 2832 S.LookupDefaultConstructor(DestRecordDecl)) { 2833 if (DefaultConstructor->isDeleted() || 2834 S.isFunctionConsideredUnavailable(DefaultConstructor)) { 2835 // Fake an overload resolution failure. 2836 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 2837 DeclAccessPair FoundDecl = DeclAccessPair::make(DefaultConstructor, 2838 DefaultConstructor->getAccess()); 2839 if (FunctionTemplateDecl *ConstructorTmpl = 2840 dyn_cast<FunctionTemplateDecl>(DefaultConstructor)) 2841 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 2842 /*ExplicitArgs*/ 0, 2843 Args, NumArgs, CandidateSet, 2844 /*SuppressUserConversions*/ false); 2845 else 2846 S.AddOverloadCandidate(DefaultConstructor, FoundDecl, 2847 Args, NumArgs, CandidateSet, 2848 /*SuppressUserConversions*/ false); 2849 Sequence.SetOverloadFailure( 2850 InitializationSequence::FK_ListConstructorOverloadFailed, 2851 OR_Deleted); 2852 } else 2853 Sequence.AddConstructorInitializationStep(DefaultConstructor, 2854 DefaultConstructor->getAccess(), 2855 DestType, 2856 /*MultipleCandidates=*/false, 2857 /*FromInitList=*/true); 2858 return true; 2859 } 2860 } 2861 2862 // - Otherwise, if T is a specialization of std::initializer_list, [...] 2863 // FIXME: Implement. 2864 2865 // Not a special case. 2866 return false; 2867 } 2868 2869 /// \brief Attempt initialization by constructor (C++ [dcl.init]), which 2870 /// enumerates the constructors of the initialized entity and performs overload 2871 /// resolution to select the best. 2872 /// If FromInitList is true, this is list-initialization of a non-aggregate 2873 /// class type. 2874 static void TryConstructorInitialization(Sema &S, 2875 const InitializedEntity &Entity, 2876 const InitializationKind &Kind, 2877 Expr **Args, unsigned NumArgs, 2878 QualType DestType, 2879 InitializationSequence &Sequence, 2880 bool FromInitList = false) { 2881 // Check constructor arguments for self reference. 2882 if (DeclaratorDecl *DD = Entity.getDecl()) 2883 // Parameters arguments are occassionially constructed with itself, 2884 // for instance, in recursive functions. Skip them. 2885 if (!isa<ParmVarDecl>(DD)) 2886 for (unsigned i = 0; i < NumArgs; ++i) 2887 S.CheckSelfReference(DD, Args[i]); 2888 2889 // Build the candidate set directly in the initialization sequence 2890 // structure, so that it will persist if we fail. 2891 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 2892 CandidateSet.clear(); 2893 2894 // Determine whether we are allowed to call explicit constructors or 2895 // explicit conversion operators. 2896 bool AllowExplicit = (Kind.getKind() == InitializationKind::IK_Direct || 2897 Kind.getKind() == InitializationKind::IK_Value || 2898 Kind.getKind() == InitializationKind::IK_Default); 2899 2900 // The type we're constructing needs to be complete. 2901 if (S.RequireCompleteType(Kind.getLocation(), DestType, 0)) { 2902 Sequence.SetFailed(InitializationSequence::FK_Incomplete); 2903 } 2904 2905 const RecordType *DestRecordType = DestType->getAs<RecordType>(); 2906 assert(DestRecordType && "Constructor initialization requires record type"); 2907 CXXRecordDecl *DestRecordDecl 2908 = cast<CXXRecordDecl>(DestRecordType->getDecl()); 2909 2910 if (FromInitList && 2911 TryListConstructionSpecialCases(S, Args, NumArgs, DestRecordDecl, 2912 DestType, Sequence)) 2913 return; 2914 2915 // - Otherwise, if T is a class type, constructors are considered. The 2916 // applicable constructors are enumerated, and the best one is chosen 2917 // through overload resolution. 2918 DeclContext::lookup_iterator Con, ConEnd; 2919 for (llvm::tie(Con, ConEnd) = S.LookupConstructors(DestRecordDecl); 2920 Con != ConEnd; ++Con) { 2921 NamedDecl *D = *Con; 2922 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess()); 2923 bool SuppressUserConversions = false; 2924 2925 // Find the constructor (which may be a template). 2926 CXXConstructorDecl *Constructor = 0; 2927 FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D); 2928 if (ConstructorTmpl) 2929 Constructor = cast<CXXConstructorDecl>( 2930 ConstructorTmpl->getTemplatedDecl()); 2931 else { 2932 Constructor = cast<CXXConstructorDecl>(D); 2933 2934 // If we're performing copy initialization using a copy constructor, we 2935 // suppress user-defined conversions on the arguments. 2936 // FIXME: Move constructors? 2937 if (Kind.getKind() == InitializationKind::IK_Copy && 2938 Constructor->isCopyConstructor()) 2939 SuppressUserConversions = true; 2940 } 2941 2942 if (!Constructor->isInvalidDecl() && 2943 (AllowExplicit || !Constructor->isExplicit())) { 2944 if (ConstructorTmpl) 2945 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 2946 /*ExplicitArgs*/ 0, 2947 Args, NumArgs, CandidateSet, 2948 SuppressUserConversions); 2949 else 2950 S.AddOverloadCandidate(Constructor, FoundDecl, 2951 Args, NumArgs, CandidateSet, 2952 SuppressUserConversions); 2953 } 2954 } 2955 2956 SourceLocation DeclLoc = Kind.getLocation(); 2957 2958 // Perform overload resolution. If it fails, return the failed result. 2959 OverloadCandidateSet::iterator Best; 2960 if (OverloadingResult Result 2961 = CandidateSet.BestViableFunction(S, DeclLoc, Best)) { 2962 Sequence.SetOverloadFailure(FromInitList ? 2963 InitializationSequence::FK_ListConstructorOverloadFailed : 2964 InitializationSequence::FK_ConstructorOverloadFailed, 2965 Result); 2966 return; 2967 } 2968 2969 // C++0x [dcl.init]p6: 2970 // If a program calls for the default initialization of an object 2971 // of a const-qualified type T, T shall be a class type with a 2972 // user-provided default constructor. 2973 if (Kind.getKind() == InitializationKind::IK_Default && 2974 Entity.getType().isConstQualified() && 2975 cast<CXXConstructorDecl>(Best->Function)->isImplicit()) { 2976 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); 2977 return; 2978 } 2979 2980 // Add the constructor initialization step. Any cv-qualification conversion is 2981 // subsumed by the initialization. 2982 bool HadMultipleCandidates = (CandidateSet.size() > 1); 2983 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 2984 Sequence.AddConstructorInitializationStep(CtorDecl, 2985 Best->FoundDecl.getAccess(), 2986 DestType, HadMultipleCandidates, 2987 FromInitList); 2988 } 2989 2990 static bool 2991 ResolveOverloadedFunctionForReferenceBinding(Sema &S, 2992 Expr *Initializer, 2993 QualType &SourceType, 2994 QualType &UnqualifiedSourceType, 2995 QualType UnqualifiedTargetType, 2996 InitializationSequence &Sequence) { 2997 if (S.Context.getCanonicalType(UnqualifiedSourceType) == 2998 S.Context.OverloadTy) { 2999 DeclAccessPair Found; 3000 bool HadMultipleCandidates = false; 3001 if (FunctionDecl *Fn 3002 = S.ResolveAddressOfOverloadedFunction(Initializer, 3003 UnqualifiedTargetType, 3004 false, Found, 3005 &HadMultipleCandidates)) { 3006 Sequence.AddAddressOverloadResolutionStep(Fn, Found, 3007 HadMultipleCandidates); 3008 SourceType = Fn->getType(); 3009 UnqualifiedSourceType = SourceType.getUnqualifiedType(); 3010 } else if (!UnqualifiedTargetType->isRecordType()) { 3011 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 3012 return true; 3013 } 3014 } 3015 return false; 3016 } 3017 3018 static void TryReferenceInitializationCore(Sema &S, 3019 const InitializedEntity &Entity, 3020 const InitializationKind &Kind, 3021 Expr *Initializer, 3022 QualType cv1T1, QualType T1, 3023 Qualifiers T1Quals, 3024 QualType cv2T2, QualType T2, 3025 Qualifiers T2Quals, 3026 InitializationSequence &Sequence); 3027 3028 static void TryListInitialization(Sema &S, 3029 const InitializedEntity &Entity, 3030 const InitializationKind &Kind, 3031 InitListExpr *InitList, 3032 InitializationSequence &Sequence); 3033 3034 /// \brief Attempt list initialization of a reference. 3035 static void TryReferenceListInitialization(Sema &S, 3036 const InitializedEntity &Entity, 3037 const InitializationKind &Kind, 3038 InitListExpr *InitList, 3039 InitializationSequence &Sequence) 3040 { 3041 // First, catch C++03 where this isn't possible. 3042 if (!S.getLangOptions().CPlusPlus0x) { 3043 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); 3044 return; 3045 } 3046 3047 QualType DestType = Entity.getType(); 3048 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType(); 3049 Qualifiers T1Quals; 3050 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); 3051 3052 // Reference initialization via an initializer list works thus: 3053 // If the initializer list consists of a single element that is 3054 // reference-related to the referenced type, bind directly to that element 3055 // (possibly creating temporaries). 3056 // Otherwise, initialize a temporary with the initializer list and 3057 // bind to that. 3058 if (InitList->getNumInits() == 1) { 3059 Expr *Initializer = InitList->getInit(0); 3060 QualType cv2T2 = Initializer->getType(); 3061 Qualifiers T2Quals; 3062 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); 3063 3064 // If this fails, creating a temporary wouldn't work either. 3065 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, 3066 T1, Sequence)) 3067 return; 3068 3069 SourceLocation DeclLoc = Initializer->getLocStart(); 3070 bool dummy1, dummy2, dummy3; 3071 Sema::ReferenceCompareResult RefRelationship 3072 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1, 3073 dummy2, dummy3); 3074 if (RefRelationship >= Sema::Ref_Related) { 3075 // Try to bind the reference here. 3076 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, 3077 T1Quals, cv2T2, T2, T2Quals, Sequence); 3078 if (Sequence) 3079 Sequence.RewrapReferenceInitList(cv1T1, InitList); 3080 return; 3081 } 3082 } 3083 3084 // Not reference-related. Create a temporary and bind to that. 3085 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1); 3086 3087 TryListInitialization(S, TempEntity, Kind, InitList, Sequence); 3088 if (Sequence) { 3089 if (DestType->isRValueReferenceType() || 3090 (T1Quals.hasConst() && !T1Quals.hasVolatile())) 3091 Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true); 3092 else 3093 Sequence.SetFailed( 3094 InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary); 3095 } 3096 } 3097 3098 /// \brief Attempt list initialization (C++0x [dcl.init.list]) 3099 static void TryListInitialization(Sema &S, 3100 const InitializedEntity &Entity, 3101 const InitializationKind &Kind, 3102 InitListExpr *InitList, 3103 InitializationSequence &Sequence) { 3104 QualType DestType = Entity.getType(); 3105 3106 // C++ doesn't allow scalar initialization with more than one argument. 3107 // But C99 complex numbers are scalars and it makes sense there. 3108 if (S.getLangOptions().CPlusPlus && DestType->isScalarType() && 3109 !DestType->isAnyComplexType() && InitList->getNumInits() > 1) { 3110 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar); 3111 return; 3112 } 3113 if (DestType->isReferenceType()) { 3114 TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence); 3115 return; 3116 } 3117 if (DestType->isRecordType() && !DestType->isAggregateType()) { 3118 if (S.getLangOptions().CPlusPlus0x) 3119 TryConstructorInitialization(S, Entity, Kind, InitList->getInits(), 3120 InitList->getNumInits(), DestType, Sequence, 3121 /*FromInitList=*/true); 3122 else 3123 Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType); 3124 return; 3125 } 3126 3127 InitListChecker CheckInitList(S, Entity, InitList, 3128 DestType, /*VerifyOnly=*/true, 3129 Kind.getKind() != InitializationKind::IK_Direct || 3130 !S.getLangOptions().CPlusPlus0x); 3131 if (CheckInitList.HadError()) { 3132 Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed); 3133 return; 3134 } 3135 3136 // Add the list initialization step with the built init list. 3137 Sequence.AddListInitializationStep(DestType); 3138 } 3139 3140 /// \brief Try a reference initialization that involves calling a conversion 3141 /// function. 3142 static OverloadingResult TryRefInitWithConversionFunction(Sema &S, 3143 const InitializedEntity &Entity, 3144 const InitializationKind &Kind, 3145 Expr *Initializer, 3146 bool AllowRValues, 3147 InitializationSequence &Sequence) { 3148 QualType DestType = Entity.getType(); 3149 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType(); 3150 QualType T1 = cv1T1.getUnqualifiedType(); 3151 QualType cv2T2 = Initializer->getType(); 3152 QualType T2 = cv2T2.getUnqualifiedType(); 3153 3154 bool DerivedToBase; 3155 bool ObjCConversion; 3156 bool ObjCLifetimeConversion; 3157 assert(!S.CompareReferenceRelationship(Initializer->getLocStart(), 3158 T1, T2, DerivedToBase, 3159 ObjCConversion, 3160 ObjCLifetimeConversion) && 3161 "Must have incompatible references when binding via conversion"); 3162 (void)DerivedToBase; 3163 (void)ObjCConversion; 3164 (void)ObjCLifetimeConversion; 3165 3166 // Build the candidate set directly in the initialization sequence 3167 // structure, so that it will persist if we fail. 3168 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 3169 CandidateSet.clear(); 3170 3171 // Determine whether we are allowed to call explicit constructors or 3172 // explicit conversion operators. 3173 bool AllowExplicit = Kind.getKind() == InitializationKind::IK_Direct; 3174 3175 const RecordType *T1RecordType = 0; 3176 if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) && 3177 !S.RequireCompleteType(Kind.getLocation(), T1, 0)) { 3178 // The type we're converting to is a class type. Enumerate its constructors 3179 // to see if there is a suitable conversion. 3180 CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl()); 3181 3182 DeclContext::lookup_iterator Con, ConEnd; 3183 for (llvm::tie(Con, ConEnd) = S.LookupConstructors(T1RecordDecl); 3184 Con != ConEnd; ++Con) { 3185 NamedDecl *D = *Con; 3186 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess()); 3187 3188 // Find the constructor (which may be a template). 3189 CXXConstructorDecl *Constructor = 0; 3190 FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D); 3191 if (ConstructorTmpl) 3192 Constructor = cast<CXXConstructorDecl>( 3193 ConstructorTmpl->getTemplatedDecl()); 3194 else 3195 Constructor = cast<CXXConstructorDecl>(D); 3196 3197 if (!Constructor->isInvalidDecl() && 3198 Constructor->isConvertingConstructor(AllowExplicit)) { 3199 if (ConstructorTmpl) 3200 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 3201 /*ExplicitArgs*/ 0, 3202 &Initializer, 1, CandidateSet, 3203 /*SuppressUserConversions=*/true); 3204 else 3205 S.AddOverloadCandidate(Constructor, FoundDecl, 3206 &Initializer, 1, CandidateSet, 3207 /*SuppressUserConversions=*/true); 3208 } 3209 } 3210 } 3211 if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl()) 3212 return OR_No_Viable_Function; 3213 3214 const RecordType *T2RecordType = 0; 3215 if ((T2RecordType = T2->getAs<RecordType>()) && 3216 !S.RequireCompleteType(Kind.getLocation(), T2, 0)) { 3217 // The type we're converting from is a class type, enumerate its conversion 3218 // functions. 3219 CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl()); 3220 3221 const UnresolvedSetImpl *Conversions 3222 = T2RecordDecl->getVisibleConversionFunctions(); 3223 for (UnresolvedSetImpl::const_iterator I = Conversions->begin(), 3224 E = Conversions->end(); I != E; ++I) { 3225 NamedDecl *D = *I; 3226 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 3227 if (isa<UsingShadowDecl>(D)) 3228 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 3229 3230 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 3231 CXXConversionDecl *Conv; 3232 if (ConvTemplate) 3233 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 3234 else 3235 Conv = cast<CXXConversionDecl>(D); 3236 3237 // If the conversion function doesn't return a reference type, 3238 // it can't be considered for this conversion unless we're allowed to 3239 // consider rvalues. 3240 // FIXME: Do we need to make sure that we only consider conversion 3241 // candidates with reference-compatible results? That might be needed to 3242 // break recursion. 3243 if ((AllowExplicit || !Conv->isExplicit()) && 3244 (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){ 3245 if (ConvTemplate) 3246 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), 3247 ActingDC, Initializer, 3248 DestType, CandidateSet); 3249 else 3250 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, 3251 Initializer, DestType, CandidateSet); 3252 } 3253 } 3254 } 3255 if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl()) 3256 return OR_No_Viable_Function; 3257 3258 SourceLocation DeclLoc = Initializer->getLocStart(); 3259 3260 // Perform overload resolution. If it fails, return the failed result. 3261 OverloadCandidateSet::iterator Best; 3262 if (OverloadingResult Result 3263 = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) 3264 return Result; 3265 3266 FunctionDecl *Function = Best->Function; 3267 3268 // This is the overload that will actually be used for the initialization, so 3269 // mark it as used. 3270 S.MarkDeclarationReferenced(DeclLoc, Function); 3271 3272 // Compute the returned type of the conversion. 3273 if (isa<CXXConversionDecl>(Function)) 3274 T2 = Function->getResultType(); 3275 else 3276 T2 = cv1T1; 3277 3278 // Add the user-defined conversion step. 3279 bool HadMultipleCandidates = (CandidateSet.size() > 1); 3280 Sequence.AddUserConversionStep(Function, Best->FoundDecl, 3281 T2.getNonLValueExprType(S.Context), 3282 HadMultipleCandidates); 3283 3284 // Determine whether we need to perform derived-to-base or 3285 // cv-qualification adjustments. 3286 ExprValueKind VK = VK_RValue; 3287 if (T2->isLValueReferenceType()) 3288 VK = VK_LValue; 3289 else if (const RValueReferenceType *RRef = T2->getAs<RValueReferenceType>()) 3290 VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue; 3291 3292 bool NewDerivedToBase = false; 3293 bool NewObjCConversion = false; 3294 bool NewObjCLifetimeConversion = false; 3295 Sema::ReferenceCompareResult NewRefRelationship 3296 = S.CompareReferenceRelationship(DeclLoc, T1, 3297 T2.getNonLValueExprType(S.Context), 3298 NewDerivedToBase, NewObjCConversion, 3299 NewObjCLifetimeConversion); 3300 if (NewRefRelationship == Sema::Ref_Incompatible) { 3301 // If the type we've converted to is not reference-related to the 3302 // type we're looking for, then there is another conversion step 3303 // we need to perform to produce a temporary of the right type 3304 // that we'll be binding to. 3305 ImplicitConversionSequence ICS; 3306 ICS.setStandard(); 3307 ICS.Standard = Best->FinalConversion; 3308 T2 = ICS.Standard.getToType(2); 3309 Sequence.AddConversionSequenceStep(ICS, T2); 3310 } else if (NewDerivedToBase) 3311 Sequence.AddDerivedToBaseCastStep( 3312 S.Context.getQualifiedType(T1, 3313 T2.getNonReferenceType().getQualifiers()), 3314 VK); 3315 else if (NewObjCConversion) 3316 Sequence.AddObjCObjectConversionStep( 3317 S.Context.getQualifiedType(T1, 3318 T2.getNonReferenceType().getQualifiers())); 3319 3320 if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers()) 3321 Sequence.AddQualificationConversionStep(cv1T1, VK); 3322 3323 Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType()); 3324 return OR_Success; 3325 } 3326 3327 static void CheckCXX98CompatAccessibleCopy(Sema &S, 3328 const InitializedEntity &Entity, 3329 Expr *CurInitExpr); 3330 3331 /// \brief Attempt reference initialization (C++0x [dcl.init.ref]) 3332 static void TryReferenceInitialization(Sema &S, 3333 const InitializedEntity &Entity, 3334 const InitializationKind &Kind, 3335 Expr *Initializer, 3336 InitializationSequence &Sequence) { 3337 QualType DestType = Entity.getType(); 3338 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType(); 3339 Qualifiers T1Quals; 3340 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); 3341 QualType cv2T2 = Initializer->getType(); 3342 Qualifiers T2Quals; 3343 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); 3344 3345 // If the initializer is the address of an overloaded function, try 3346 // to resolve the overloaded function. If all goes well, T2 is the 3347 // type of the resulting function. 3348 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, 3349 T1, Sequence)) 3350 return; 3351 3352 // Delegate everything else to a subfunction. 3353 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, 3354 T1Quals, cv2T2, T2, T2Quals, Sequence); 3355 } 3356 3357 /// \brief Reference initialization without resolving overloaded functions. 3358 static void TryReferenceInitializationCore(Sema &S, 3359 const InitializedEntity &Entity, 3360 const InitializationKind &Kind, 3361 Expr *Initializer, 3362 QualType cv1T1, QualType T1, 3363 Qualifiers T1Quals, 3364 QualType cv2T2, QualType T2, 3365 Qualifiers T2Quals, 3366 InitializationSequence &Sequence) { 3367 QualType DestType = Entity.getType(); 3368 SourceLocation DeclLoc = Initializer->getLocStart(); 3369 // Compute some basic properties of the types and the initializer. 3370 bool isLValueRef = DestType->isLValueReferenceType(); 3371 bool isRValueRef = !isLValueRef; 3372 bool DerivedToBase = false; 3373 bool ObjCConversion = false; 3374 bool ObjCLifetimeConversion = false; 3375 Expr::Classification InitCategory = Initializer->Classify(S.Context); 3376 Sema::ReferenceCompareResult RefRelationship 3377 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase, 3378 ObjCConversion, ObjCLifetimeConversion); 3379 3380 // C++0x [dcl.init.ref]p5: 3381 // A reference to type "cv1 T1" is initialized by an expression of type 3382 // "cv2 T2" as follows: 3383 // 3384 // - If the reference is an lvalue reference and the initializer 3385 // expression 3386 // Note the analogous bullet points for rvlaue refs to functions. Because 3387 // there are no function rvalues in C++, rvalue refs to functions are treated 3388 // like lvalue refs. 3389 OverloadingResult ConvOvlResult = OR_Success; 3390 bool T1Function = T1->isFunctionType(); 3391 if (isLValueRef || T1Function) { 3392 if (InitCategory.isLValue() && 3393 (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification || 3394 (Kind.isCStyleOrFunctionalCast() && 3395 RefRelationship == Sema::Ref_Related))) { 3396 // - is an lvalue (but is not a bit-field), and "cv1 T1" is 3397 // reference-compatible with "cv2 T2," or 3398 // 3399 // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a 3400 // bit-field when we're determining whether the reference initialization 3401 // can occur. However, we do pay attention to whether it is a bit-field 3402 // to decide whether we're actually binding to a temporary created from 3403 // the bit-field. 3404 if (DerivedToBase) 3405 Sequence.AddDerivedToBaseCastStep( 3406 S.Context.getQualifiedType(T1, T2Quals), 3407 VK_LValue); 3408 else if (ObjCConversion) 3409 Sequence.AddObjCObjectConversionStep( 3410 S.Context.getQualifiedType(T1, T2Quals)); 3411 3412 if (T1Quals != T2Quals) 3413 Sequence.AddQualificationConversionStep(cv1T1, VK_LValue); 3414 bool BindingTemporary = T1Quals.hasConst() && !T1Quals.hasVolatile() && 3415 (Initializer->getBitField() || Initializer->refersToVectorElement()); 3416 Sequence.AddReferenceBindingStep(cv1T1, BindingTemporary); 3417 return; 3418 } 3419 3420 // - has a class type (i.e., T2 is a class type), where T1 is not 3421 // reference-related to T2, and can be implicitly converted to an 3422 // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible 3423 // with "cv3 T3" (this conversion is selected by enumerating the 3424 // applicable conversion functions (13.3.1.6) and choosing the best 3425 // one through overload resolution (13.3)), 3426 // If we have an rvalue ref to function type here, the rhs must be 3427 // an rvalue. 3428 if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() && 3429 (isLValueRef || InitCategory.isRValue())) { 3430 ConvOvlResult = TryRefInitWithConversionFunction(S, Entity, Kind, 3431 Initializer, 3432 /*AllowRValues=*/isRValueRef, 3433 Sequence); 3434 if (ConvOvlResult == OR_Success) 3435 return; 3436 if (ConvOvlResult != OR_No_Viable_Function) { 3437 Sequence.SetOverloadFailure( 3438 InitializationSequence::FK_ReferenceInitOverloadFailed, 3439 ConvOvlResult); 3440 } 3441 } 3442 } 3443 3444 // - Otherwise, the reference shall be an lvalue reference to a 3445 // non-volatile const type (i.e., cv1 shall be const), or the reference 3446 // shall be an rvalue reference. 3447 if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) { 3448 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) 3449 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 3450 else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) 3451 Sequence.SetOverloadFailure( 3452 InitializationSequence::FK_ReferenceInitOverloadFailed, 3453 ConvOvlResult); 3454 else 3455 Sequence.SetFailed(InitCategory.isLValue() 3456 ? (RefRelationship == Sema::Ref_Related 3457 ? InitializationSequence::FK_ReferenceInitDropsQualifiers 3458 : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated) 3459 : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary); 3460 3461 return; 3462 } 3463 3464 // - If the initializer expression 3465 // - is an xvalue, class prvalue, array prvalue, or function lvalue and 3466 // "cv1 T1" is reference-compatible with "cv2 T2" 3467 // Note: functions are handled below. 3468 if (!T1Function && 3469 (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification || 3470 (Kind.isCStyleOrFunctionalCast() && 3471 RefRelationship == Sema::Ref_Related)) && 3472 (InitCategory.isXValue() || 3473 (InitCategory.isPRValue() && T2->isRecordType()) || 3474 (InitCategory.isPRValue() && T2->isArrayType()))) { 3475 ExprValueKind ValueKind = InitCategory.isXValue()? VK_XValue : VK_RValue; 3476 if (InitCategory.isPRValue() && T2->isRecordType()) { 3477 // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the 3478 // compiler the freedom to perform a copy here or bind to the 3479 // object, while C++0x requires that we bind directly to the 3480 // object. Hence, we always bind to the object without making an 3481 // extra copy. However, in C++03 requires that we check for the 3482 // presence of a suitable copy constructor: 3483 // 3484 // The constructor that would be used to make the copy shall 3485 // be callable whether or not the copy is actually done. 3486 if (!S.getLangOptions().CPlusPlus0x && !S.getLangOptions().MicrosoftExt) 3487 Sequence.AddExtraneousCopyToTemporary(cv2T2); 3488 else if (S.getLangOptions().CPlusPlus0x) 3489 CheckCXX98CompatAccessibleCopy(S, Entity, Initializer); 3490 } 3491 3492 if (DerivedToBase) 3493 Sequence.AddDerivedToBaseCastStep(S.Context.getQualifiedType(T1, T2Quals), 3494 ValueKind); 3495 else if (ObjCConversion) 3496 Sequence.AddObjCObjectConversionStep( 3497 S.Context.getQualifiedType(T1, T2Quals)); 3498 3499 if (T1Quals != T2Quals) 3500 Sequence.AddQualificationConversionStep(cv1T1, ValueKind); 3501 Sequence.AddReferenceBindingStep(cv1T1, 3502 /*bindingTemporary=*/InitCategory.isPRValue()); 3503 return; 3504 } 3505 3506 // - has a class type (i.e., T2 is a class type), where T1 is not 3507 // reference-related to T2, and can be implicitly converted to an 3508 // xvalue, class prvalue, or function lvalue of type "cv3 T3", 3509 // where "cv1 T1" is reference-compatible with "cv3 T3", 3510 if (T2->isRecordType()) { 3511 if (RefRelationship == Sema::Ref_Incompatible) { 3512 ConvOvlResult = TryRefInitWithConversionFunction(S, Entity, 3513 Kind, Initializer, 3514 /*AllowRValues=*/true, 3515 Sequence); 3516 if (ConvOvlResult) 3517 Sequence.SetOverloadFailure( 3518 InitializationSequence::FK_ReferenceInitOverloadFailed, 3519 ConvOvlResult); 3520 3521 return; 3522 } 3523 3524 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); 3525 return; 3526 } 3527 3528 // - Otherwise, a temporary of type "cv1 T1" is created and initialized 3529 // from the initializer expression using the rules for a non-reference 3530 // copy initialization (8.5). The reference is then bound to the 3531 // temporary. [...] 3532 3533 // Determine whether we are allowed to call explicit constructors or 3534 // explicit conversion operators. 3535 bool AllowExplicit = (Kind.getKind() == InitializationKind::IK_Direct); 3536 3537 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1); 3538 3539 ImplicitConversionSequence ICS 3540 = S.TryImplicitConversion(Initializer, TempEntity.getType(), 3541 /*SuppressUserConversions*/ false, 3542 AllowExplicit, 3543 /*FIXME:InOverloadResolution=*/false, 3544 /*CStyle=*/Kind.isCStyleOrFunctionalCast(), 3545 /*AllowObjCWritebackConversion=*/false); 3546 3547 if (ICS.isBad()) { 3548 // FIXME: Use the conversion function set stored in ICS to turn 3549 // this into an overloading ambiguity diagnostic. However, we need 3550 // to keep that set as an OverloadCandidateSet rather than as some 3551 // other kind of set. 3552 if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) 3553 Sequence.SetOverloadFailure( 3554 InitializationSequence::FK_ReferenceInitOverloadFailed, 3555 ConvOvlResult); 3556 else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) 3557 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 3558 else 3559 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed); 3560 return; 3561 } else { 3562 Sequence.AddConversionSequenceStep(ICS, TempEntity.getType()); 3563 } 3564 3565 // [...] If T1 is reference-related to T2, cv1 must be the 3566 // same cv-qualification as, or greater cv-qualification 3567 // than, cv2; otherwise, the program is ill-formed. 3568 unsigned T1CVRQuals = T1Quals.getCVRQualifiers(); 3569 unsigned T2CVRQuals = T2Quals.getCVRQualifiers(); 3570 if (RefRelationship == Sema::Ref_Related && 3571 (T1CVRQuals | T2CVRQuals) != T1CVRQuals) { 3572 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); 3573 return; 3574 } 3575 3576 // [...] If T1 is reference-related to T2 and the reference is an rvalue 3577 // reference, the initializer expression shall not be an lvalue. 3578 if (RefRelationship >= Sema::Ref_Related && !isLValueRef && 3579 InitCategory.isLValue()) { 3580 Sequence.SetFailed( 3581 InitializationSequence::FK_RValueReferenceBindingToLValue); 3582 return; 3583 } 3584 3585 Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true); 3586 return; 3587 } 3588 3589 /// \brief Attempt character array initialization from a string literal 3590 /// (C++ [dcl.init.string], C99 6.7.8). 3591 static void TryStringLiteralInitialization(Sema &S, 3592 const InitializedEntity &Entity, 3593 const InitializationKind &Kind, 3594 Expr *Initializer, 3595 InitializationSequence &Sequence) { 3596 Sequence.AddStringInitStep(Entity.getType()); 3597 } 3598 3599 /// \brief Attempt value initialization (C++ [dcl.init]p7). 3600 static void TryValueInitialization(Sema &S, 3601 const InitializedEntity &Entity, 3602 const InitializationKind &Kind, 3603 InitializationSequence &Sequence) { 3604 // C++ [dcl.init]p5: 3605 // 3606 // To value-initialize an object of type T means: 3607 QualType T = Entity.getType(); 3608 3609 // -- if T is an array type, then each element is value-initialized; 3610 while (const ArrayType *AT = S.Context.getAsArrayType(T)) 3611 T = AT->getElementType(); 3612 3613 if (const RecordType *RT = T->getAs<RecordType>()) { 3614 if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3615 // -- if T is a class type (clause 9) with a user-declared 3616 // constructor (12.1), then the default constructor for T is 3617 // called (and the initialization is ill-formed if T has no 3618 // accessible default constructor); 3619 // 3620 // FIXME: we really want to refer to a single subobject of the array, 3621 // but Entity doesn't have a way to capture that (yet). 3622 if (ClassDecl->hasUserDeclaredConstructor()) 3623 return TryConstructorInitialization(S, Entity, Kind, 0, 0, T, Sequence); 3624 3625 // -- if T is a (possibly cv-qualified) non-union class type 3626 // without a user-provided constructor, then the object is 3627 // zero-initialized and, if T's implicitly-declared default 3628 // constructor is non-trivial, that constructor is called. 3629 if ((ClassDecl->getTagKind() == TTK_Class || 3630 ClassDecl->getTagKind() == TTK_Struct)) { 3631 Sequence.AddZeroInitializationStep(Entity.getType()); 3632 return TryConstructorInitialization(S, Entity, Kind, 0, 0, T, Sequence); 3633 } 3634 } 3635 } 3636 3637 Sequence.AddZeroInitializationStep(Entity.getType()); 3638 } 3639 3640 /// \brief Attempt default initialization (C++ [dcl.init]p6). 3641 static void TryDefaultInitialization(Sema &S, 3642 const InitializedEntity &Entity, 3643 const InitializationKind &Kind, 3644 InitializationSequence &Sequence) { 3645 assert(Kind.getKind() == InitializationKind::IK_Default); 3646 3647 // C++ [dcl.init]p6: 3648 // To default-initialize an object of type T means: 3649 // - if T is an array type, each element is default-initialized; 3650 QualType DestType = S.Context.getBaseElementType(Entity.getType()); 3651 3652 // - if T is a (possibly cv-qualified) class type (Clause 9), the default 3653 // constructor for T is called (and the initialization is ill-formed if 3654 // T has no accessible default constructor); 3655 if (DestType->isRecordType() && S.getLangOptions().CPlusPlus) { 3656 TryConstructorInitialization(S, Entity, Kind, 0, 0, DestType, Sequence); 3657 return; 3658 } 3659 3660 // - otherwise, no initialization is performed. 3661 3662 // If a program calls for the default initialization of an object of 3663 // a const-qualified type T, T shall be a class type with a user-provided 3664 // default constructor. 3665 if (DestType.isConstQualified() && S.getLangOptions().CPlusPlus) { 3666 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); 3667 return; 3668 } 3669 3670 // If the destination type has a lifetime property, zero-initialize it. 3671 if (DestType.getQualifiers().hasObjCLifetime()) { 3672 Sequence.AddZeroInitializationStep(Entity.getType()); 3673 return; 3674 } 3675 } 3676 3677 /// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]), 3678 /// which enumerates all conversion functions and performs overload resolution 3679 /// to select the best. 3680 static void TryUserDefinedConversion(Sema &S, 3681 const InitializedEntity &Entity, 3682 const InitializationKind &Kind, 3683 Expr *Initializer, 3684 InitializationSequence &Sequence) { 3685 QualType DestType = Entity.getType(); 3686 assert(!DestType->isReferenceType() && "References are handled elsewhere"); 3687 QualType SourceType = Initializer->getType(); 3688 assert((DestType->isRecordType() || SourceType->isRecordType()) && 3689 "Must have a class type to perform a user-defined conversion"); 3690 3691 // Build the candidate set directly in the initialization sequence 3692 // structure, so that it will persist if we fail. 3693 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 3694 CandidateSet.clear(); 3695 3696 // Determine whether we are allowed to call explicit constructors or 3697 // explicit conversion operators. 3698 bool AllowExplicit = Kind.getKind() == InitializationKind::IK_Direct; 3699 3700 if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) { 3701 // The type we're converting to is a class type. Enumerate its constructors 3702 // to see if there is a suitable conversion. 3703 CXXRecordDecl *DestRecordDecl 3704 = cast<CXXRecordDecl>(DestRecordType->getDecl()); 3705 3706 // Try to complete the type we're converting to. 3707 if (!S.RequireCompleteType(Kind.getLocation(), DestType, 0)) { 3708 DeclContext::lookup_iterator Con, ConEnd; 3709 for (llvm::tie(Con, ConEnd) = S.LookupConstructors(DestRecordDecl); 3710 Con != ConEnd; ++Con) { 3711 NamedDecl *D = *Con; 3712 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess()); 3713 3714 // Find the constructor (which may be a template). 3715 CXXConstructorDecl *Constructor = 0; 3716 FunctionTemplateDecl *ConstructorTmpl 3717 = dyn_cast<FunctionTemplateDecl>(D); 3718 if (ConstructorTmpl) 3719 Constructor = cast<CXXConstructorDecl>( 3720 ConstructorTmpl->getTemplatedDecl()); 3721 else 3722 Constructor = cast<CXXConstructorDecl>(D); 3723 3724 if (!Constructor->isInvalidDecl() && 3725 Constructor->isConvertingConstructor(AllowExplicit)) { 3726 if (ConstructorTmpl) 3727 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 3728 /*ExplicitArgs*/ 0, 3729 &Initializer, 1, CandidateSet, 3730 /*SuppressUserConversions=*/true); 3731 else 3732 S.AddOverloadCandidate(Constructor, FoundDecl, 3733 &Initializer, 1, CandidateSet, 3734 /*SuppressUserConversions=*/true); 3735 } 3736 } 3737 } 3738 } 3739 3740 SourceLocation DeclLoc = Initializer->getLocStart(); 3741 3742 if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) { 3743 // The type we're converting from is a class type, enumerate its conversion 3744 // functions. 3745 3746 // We can only enumerate the conversion functions for a complete type; if 3747 // the type isn't complete, simply skip this step. 3748 if (!S.RequireCompleteType(DeclLoc, SourceType, 0)) { 3749 CXXRecordDecl *SourceRecordDecl 3750 = cast<CXXRecordDecl>(SourceRecordType->getDecl()); 3751 3752 const UnresolvedSetImpl *Conversions 3753 = SourceRecordDecl->getVisibleConversionFunctions(); 3754 for (UnresolvedSetImpl::const_iterator I = Conversions->begin(), 3755 E = Conversions->end(); 3756 I != E; ++I) { 3757 NamedDecl *D = *I; 3758 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 3759 if (isa<UsingShadowDecl>(D)) 3760 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 3761 3762 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 3763 CXXConversionDecl *Conv; 3764 if (ConvTemplate) 3765 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 3766 else 3767 Conv = cast<CXXConversionDecl>(D); 3768 3769 if (AllowExplicit || !Conv->isExplicit()) { 3770 if (ConvTemplate) 3771 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), 3772 ActingDC, Initializer, DestType, 3773 CandidateSet); 3774 else 3775 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, 3776 Initializer, DestType, CandidateSet); 3777 } 3778 } 3779 } 3780 } 3781 3782 // Perform overload resolution. If it fails, return the failed result. 3783 OverloadCandidateSet::iterator Best; 3784 if (OverloadingResult Result 3785 = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) { 3786 Sequence.SetOverloadFailure( 3787 InitializationSequence::FK_UserConversionOverloadFailed, 3788 Result); 3789 return; 3790 } 3791 3792 FunctionDecl *Function = Best->Function; 3793 S.MarkDeclarationReferenced(DeclLoc, Function); 3794 bool HadMultipleCandidates = (CandidateSet.size() > 1); 3795 3796 if (isa<CXXConstructorDecl>(Function)) { 3797 // Add the user-defined conversion step. Any cv-qualification conversion is 3798 // subsumed by the initialization. 3799 Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType, 3800 HadMultipleCandidates); 3801 return; 3802 } 3803 3804 // Add the user-defined conversion step that calls the conversion function. 3805 QualType ConvType = Function->getCallResultType(); 3806 if (ConvType->getAs<RecordType>()) { 3807 // If we're converting to a class type, there may be an copy if 3808 // the resulting temporary object (possible to create an object of 3809 // a base class type). That copy is not a separate conversion, so 3810 // we just make a note of the actual destination type (possibly a 3811 // base class of the type returned by the conversion function) and 3812 // let the user-defined conversion step handle the conversion. 3813 Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType, 3814 HadMultipleCandidates); 3815 return; 3816 } 3817 3818 Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType, 3819 HadMultipleCandidates); 3820 3821 // If the conversion following the call to the conversion function 3822 // is interesting, add it as a separate step. 3823 if (Best->FinalConversion.First || Best->FinalConversion.Second || 3824 Best->FinalConversion.Third) { 3825 ImplicitConversionSequence ICS; 3826 ICS.setStandard(); 3827 ICS.Standard = Best->FinalConversion; 3828 Sequence.AddConversionSequenceStep(ICS, DestType); 3829 } 3830 } 3831 3832 /// The non-zero enum values here are indexes into diagnostic alternatives. 3833 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar }; 3834 3835 /// Determines whether this expression is an acceptable ICR source. 3836 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e, 3837 bool isAddressOf) { 3838 // Skip parens. 3839 e = e->IgnoreParens(); 3840 3841 // Skip address-of nodes. 3842 if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) { 3843 if (op->getOpcode() == UO_AddrOf) 3844 return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true); 3845 3846 // Skip certain casts. 3847 } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) { 3848 switch (ce->getCastKind()) { 3849 case CK_Dependent: 3850 case CK_BitCast: 3851 case CK_LValueBitCast: 3852 case CK_NoOp: 3853 return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf); 3854 3855 case CK_ArrayToPointerDecay: 3856 return IIK_nonscalar; 3857 3858 case CK_NullToPointer: 3859 return IIK_okay; 3860 3861 default: 3862 break; 3863 } 3864 3865 // If we have a declaration reference, it had better be a local variable. 3866 } else if (isa<DeclRefExpr>(e) || isa<BlockDeclRefExpr>(e)) { 3867 if (!isAddressOf) return IIK_nonlocal; 3868 3869 VarDecl *var; 3870 if (isa<DeclRefExpr>(e)) { 3871 var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl()); 3872 if (!var) return IIK_nonlocal; 3873 } else { 3874 var = cast<BlockDeclRefExpr>(e)->getDecl(); 3875 } 3876 3877 return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal); 3878 3879 // If we have a conditional operator, check both sides. 3880 } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) { 3881 if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf)) 3882 return iik; 3883 3884 return isInvalidICRSource(C, cond->getRHS(), isAddressOf); 3885 3886 // These are never scalar. 3887 } else if (isa<ArraySubscriptExpr>(e)) { 3888 return IIK_nonscalar; 3889 3890 // Otherwise, it needs to be a null pointer constant. 3891 } else { 3892 return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull) 3893 ? IIK_okay : IIK_nonlocal); 3894 } 3895 3896 return IIK_nonlocal; 3897 } 3898 3899 /// Check whether the given expression is a valid operand for an 3900 /// indirect copy/restore. 3901 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) { 3902 assert(src->isRValue()); 3903 3904 InvalidICRKind iik = isInvalidICRSource(S.Context, src, false); 3905 if (iik == IIK_okay) return; 3906 3907 S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback) 3908 << ((unsigned) iik - 1) // shift index into diagnostic explanations 3909 << src->getSourceRange(); 3910 } 3911 3912 /// \brief Determine whether we have compatible array types for the 3913 /// purposes of GNU by-copy array initialization. 3914 static bool hasCompatibleArrayTypes(ASTContext &Context, 3915 const ArrayType *Dest, 3916 const ArrayType *Source) { 3917 // If the source and destination array types are equivalent, we're 3918 // done. 3919 if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0))) 3920 return true; 3921 3922 // Make sure that the element types are the same. 3923 if (!Context.hasSameType(Dest->getElementType(), Source->getElementType())) 3924 return false; 3925 3926 // The only mismatch we allow is when the destination is an 3927 // incomplete array type and the source is a constant array type. 3928 return Source->isConstantArrayType() && Dest->isIncompleteArrayType(); 3929 } 3930 3931 static bool tryObjCWritebackConversion(Sema &S, 3932 InitializationSequence &Sequence, 3933 const InitializedEntity &Entity, 3934 Expr *Initializer) { 3935 bool ArrayDecay = false; 3936 QualType ArgType = Initializer->getType(); 3937 QualType ArgPointee; 3938 if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) { 3939 ArrayDecay = true; 3940 ArgPointee = ArgArrayType->getElementType(); 3941 ArgType = S.Context.getPointerType(ArgPointee); 3942 } 3943 3944 // Handle write-back conversion. 3945 QualType ConvertedArgType; 3946 if (!S.isObjCWritebackConversion(ArgType, Entity.getType(), 3947 ConvertedArgType)) 3948 return false; 3949 3950 // We should copy unless we're passing to an argument explicitly 3951 // marked 'out'. 3952 bool ShouldCopy = true; 3953 if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl())) 3954 ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); 3955 3956 // Do we need an lvalue conversion? 3957 if (ArrayDecay || Initializer->isGLValue()) { 3958 ImplicitConversionSequence ICS; 3959 ICS.setStandard(); 3960 ICS.Standard.setAsIdentityConversion(); 3961 3962 QualType ResultType; 3963 if (ArrayDecay) { 3964 ICS.Standard.First = ICK_Array_To_Pointer; 3965 ResultType = S.Context.getPointerType(ArgPointee); 3966 } else { 3967 ICS.Standard.First = ICK_Lvalue_To_Rvalue; 3968 ResultType = Initializer->getType().getNonLValueExprType(S.Context); 3969 } 3970 3971 Sequence.AddConversionSequenceStep(ICS, ResultType); 3972 } 3973 3974 Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy); 3975 return true; 3976 } 3977 3978 InitializationSequence::InitializationSequence(Sema &S, 3979 const InitializedEntity &Entity, 3980 const InitializationKind &Kind, 3981 Expr **Args, 3982 unsigned NumArgs) 3983 : FailedCandidateSet(Kind.getLocation()) { 3984 ASTContext &Context = S.Context; 3985 3986 // C++0x [dcl.init]p16: 3987 // The semantics of initializers are as follows. The destination type is 3988 // the type of the object or reference being initialized and the source 3989 // type is the type of the initializer expression. The source type is not 3990 // defined when the initializer is a braced-init-list or when it is a 3991 // parenthesized list of expressions. 3992 QualType DestType = Entity.getType(); 3993 3994 if (DestType->isDependentType() || 3995 Expr::hasAnyTypeDependentArguments(Args, NumArgs)) { 3996 SequenceKind = DependentSequence; 3997 return; 3998 } 3999 4000 // Almost everything is a normal sequence. 4001 setSequenceKind(NormalSequence); 4002 4003 for (unsigned I = 0; I != NumArgs; ++I) 4004 if (Args[I]->getType()->isNonOverloadPlaceholderType()) { 4005 // FIXME: should we be doing this here? 4006 ExprResult result = S.CheckPlaceholderExpr(Args[I]); 4007 if (result.isInvalid()) { 4008 SetFailed(FK_PlaceholderType); 4009 return; 4010 } 4011 Args[I] = result.take(); 4012 } 4013 4014 4015 QualType SourceType; 4016 Expr *Initializer = 0; 4017 if (NumArgs == 1) { 4018 Initializer = Args[0]; 4019 if (!isa<InitListExpr>(Initializer)) 4020 SourceType = Initializer->getType(); 4021 } 4022 4023 // - If the initializer is a braced-init-list, the object is 4024 // list-initialized (8.5.4). 4025 if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) { 4026 TryListInitialization(S, Entity, Kind, InitList, *this); 4027 return; 4028 } 4029 4030 // - If the destination type is a reference type, see 8.5.3. 4031 if (DestType->isReferenceType()) { 4032 // C++0x [dcl.init.ref]p1: 4033 // A variable declared to be a T& or T&&, that is, "reference to type T" 4034 // (8.3.2), shall be initialized by an object, or function, of type T or 4035 // by an object that can be converted into a T. 4036 // (Therefore, multiple arguments are not permitted.) 4037 if (NumArgs != 1) 4038 SetFailed(FK_TooManyInitsForReference); 4039 else 4040 TryReferenceInitialization(S, Entity, Kind, Args[0], *this); 4041 return; 4042 } 4043 4044 // - If the initializer is (), the object is value-initialized. 4045 if (Kind.getKind() == InitializationKind::IK_Value || 4046 (Kind.getKind() == InitializationKind::IK_Direct && NumArgs == 0)) { 4047 TryValueInitialization(S, Entity, Kind, *this); 4048 return; 4049 } 4050 4051 // Handle default initialization. 4052 if (Kind.getKind() == InitializationKind::IK_Default) { 4053 TryDefaultInitialization(S, Entity, Kind, *this); 4054 return; 4055 } 4056 4057 // - If the destination type is an array of characters, an array of 4058 // char16_t, an array of char32_t, or an array of wchar_t, and the 4059 // initializer is a string literal, see 8.5.2. 4060 // - Otherwise, if the destination type is an array, the program is 4061 // ill-formed. 4062 if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) { 4063 if (Initializer && IsStringInit(Initializer, DestAT, Context)) { 4064 TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this); 4065 return; 4066 } 4067 4068 // Note: as an GNU C extension, we allow initialization of an 4069 // array from a compound literal that creates an array of the same 4070 // type, so long as the initializer has no side effects. 4071 if (!S.getLangOptions().CPlusPlus && Initializer && 4072 isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) && 4073 Initializer->getType()->isArrayType()) { 4074 const ArrayType *SourceAT 4075 = Context.getAsArrayType(Initializer->getType()); 4076 if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT)) 4077 SetFailed(FK_ArrayTypeMismatch); 4078 else if (Initializer->HasSideEffects(S.Context)) 4079 SetFailed(FK_NonConstantArrayInit); 4080 else { 4081 AddArrayInitStep(DestType); 4082 } 4083 } else if (DestAT->getElementType()->isAnyCharacterType()) 4084 SetFailed(FK_ArrayNeedsInitListOrStringLiteral); 4085 else 4086 SetFailed(FK_ArrayNeedsInitList); 4087 4088 return; 4089 } 4090 4091 // Determine whether we should consider writeback conversions for 4092 // Objective-C ARC. 4093 bool allowObjCWritebackConversion = S.getLangOptions().ObjCAutoRefCount && 4094 Entity.getKind() == InitializedEntity::EK_Parameter; 4095 4096 // We're at the end of the line for C: it's either a write-back conversion 4097 // or it's a C assignment. There's no need to check anything else. 4098 if (!S.getLangOptions().CPlusPlus) { 4099 // If allowed, check whether this is an Objective-C writeback conversion. 4100 if (allowObjCWritebackConversion && 4101 tryObjCWritebackConversion(S, *this, Entity, Initializer)) { 4102 return; 4103 } 4104 4105 // Handle initialization in C 4106 AddCAssignmentStep(DestType); 4107 MaybeProduceObjCObject(S, *this, Entity); 4108 return; 4109 } 4110 4111 assert(S.getLangOptions().CPlusPlus); 4112 4113 // - If the destination type is a (possibly cv-qualified) class type: 4114 if (DestType->isRecordType()) { 4115 // - If the initialization is direct-initialization, or if it is 4116 // copy-initialization where the cv-unqualified version of the 4117 // source type is the same class as, or a derived class of, the 4118 // class of the destination, constructors are considered. [...] 4119 if (Kind.getKind() == InitializationKind::IK_Direct || 4120 (Kind.getKind() == InitializationKind::IK_Copy && 4121 (Context.hasSameUnqualifiedType(SourceType, DestType) || 4122 S.IsDerivedFrom(SourceType, DestType)))) 4123 TryConstructorInitialization(S, Entity, Kind, Args, NumArgs, 4124 Entity.getType(), *this); 4125 // - Otherwise (i.e., for the remaining copy-initialization cases), 4126 // user-defined conversion sequences that can convert from the source 4127 // type to the destination type or (when a conversion function is 4128 // used) to a derived class thereof are enumerated as described in 4129 // 13.3.1.4, and the best one is chosen through overload resolution 4130 // (13.3). 4131 else 4132 TryUserDefinedConversion(S, Entity, Kind, Initializer, *this); 4133 return; 4134 } 4135 4136 if (NumArgs > 1) { 4137 SetFailed(FK_TooManyInitsForScalar); 4138 return; 4139 } 4140 assert(NumArgs == 1 && "Zero-argument case handled above"); 4141 4142 // - Otherwise, if the source type is a (possibly cv-qualified) class 4143 // type, conversion functions are considered. 4144 if (!SourceType.isNull() && SourceType->isRecordType()) { 4145 TryUserDefinedConversion(S, Entity, Kind, Initializer, *this); 4146 MaybeProduceObjCObject(S, *this, Entity); 4147 return; 4148 } 4149 4150 // - Otherwise, the initial value of the object being initialized is the 4151 // (possibly converted) value of the initializer expression. Standard 4152 // conversions (Clause 4) will be used, if necessary, to convert the 4153 // initializer expression to the cv-unqualified version of the 4154 // destination type; no user-defined conversions are considered. 4155 4156 ImplicitConversionSequence ICS 4157 = S.TryImplicitConversion(Initializer, Entity.getType(), 4158 /*SuppressUserConversions*/true, 4159 /*AllowExplicitConversions*/ false, 4160 /*InOverloadResolution*/ false, 4161 /*CStyle=*/Kind.isCStyleOrFunctionalCast(), 4162 allowObjCWritebackConversion); 4163 4164 if (ICS.isStandard() && 4165 ICS.Standard.Second == ICK_Writeback_Conversion) { 4166 // Objective-C ARC writeback conversion. 4167 4168 // We should copy unless we're passing to an argument explicitly 4169 // marked 'out'. 4170 bool ShouldCopy = true; 4171 if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl())) 4172 ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); 4173 4174 // If there was an lvalue adjustment, add it as a separate conversion. 4175 if (ICS.Standard.First == ICK_Array_To_Pointer || 4176 ICS.Standard.First == ICK_Lvalue_To_Rvalue) { 4177 ImplicitConversionSequence LvalueICS; 4178 LvalueICS.setStandard(); 4179 LvalueICS.Standard.setAsIdentityConversion(); 4180 LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0)); 4181 LvalueICS.Standard.First = ICS.Standard.First; 4182 AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0)); 4183 } 4184 4185 AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy); 4186 } else if (ICS.isBad()) { 4187 DeclAccessPair dap; 4188 if (Initializer->getType() == Context.OverloadTy && 4189 !S.ResolveAddressOfOverloadedFunction(Initializer 4190 , DestType, false, dap)) 4191 SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 4192 else 4193 SetFailed(InitializationSequence::FK_ConversionFailed); 4194 } else { 4195 AddConversionSequenceStep(ICS, Entity.getType()); 4196 4197 MaybeProduceObjCObject(S, *this, Entity); 4198 } 4199 } 4200 4201 InitializationSequence::~InitializationSequence() { 4202 for (SmallVectorImpl<Step>::iterator Step = Steps.begin(), 4203 StepEnd = Steps.end(); 4204 Step != StepEnd; ++Step) 4205 Step->Destroy(); 4206 } 4207 4208 //===----------------------------------------------------------------------===// 4209 // Perform initialization 4210 //===----------------------------------------------------------------------===// 4211 static Sema::AssignmentAction 4212 getAssignmentAction(const InitializedEntity &Entity) { 4213 switch(Entity.getKind()) { 4214 case InitializedEntity::EK_Variable: 4215 case InitializedEntity::EK_New: 4216 case InitializedEntity::EK_Exception: 4217 case InitializedEntity::EK_Base: 4218 case InitializedEntity::EK_Delegating: 4219 return Sema::AA_Initializing; 4220 4221 case InitializedEntity::EK_Parameter: 4222 if (Entity.getDecl() && 4223 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) 4224 return Sema::AA_Sending; 4225 4226 return Sema::AA_Passing; 4227 4228 case InitializedEntity::EK_Result: 4229 return Sema::AA_Returning; 4230 4231 case InitializedEntity::EK_Temporary: 4232 // FIXME: Can we tell apart casting vs. converting? 4233 return Sema::AA_Casting; 4234 4235 case InitializedEntity::EK_Member: 4236 case InitializedEntity::EK_ArrayElement: 4237 case InitializedEntity::EK_VectorElement: 4238 case InitializedEntity::EK_ComplexElement: 4239 case InitializedEntity::EK_BlockElement: 4240 return Sema::AA_Initializing; 4241 } 4242 4243 return Sema::AA_Converting; 4244 } 4245 4246 /// \brief Whether we should binding a created object as a temporary when 4247 /// initializing the given entity. 4248 static bool shouldBindAsTemporary(const InitializedEntity &Entity) { 4249 switch (Entity.getKind()) { 4250 case InitializedEntity::EK_ArrayElement: 4251 case InitializedEntity::EK_Member: 4252 case InitializedEntity::EK_Result: 4253 case InitializedEntity::EK_New: 4254 case InitializedEntity::EK_Variable: 4255 case InitializedEntity::EK_Base: 4256 case InitializedEntity::EK_Delegating: 4257 case InitializedEntity::EK_VectorElement: 4258 case InitializedEntity::EK_ComplexElement: 4259 case InitializedEntity::EK_Exception: 4260 case InitializedEntity::EK_BlockElement: 4261 return false; 4262 4263 case InitializedEntity::EK_Parameter: 4264 case InitializedEntity::EK_Temporary: 4265 return true; 4266 } 4267 4268 llvm_unreachable("missed an InitializedEntity kind?"); 4269 } 4270 4271 /// \brief Whether the given entity, when initialized with an object 4272 /// created for that initialization, requires destruction. 4273 static bool shouldDestroyTemporary(const InitializedEntity &Entity) { 4274 switch (Entity.getKind()) { 4275 case InitializedEntity::EK_Member: 4276 case InitializedEntity::EK_Result: 4277 case InitializedEntity::EK_New: 4278 case InitializedEntity::EK_Base: 4279 case InitializedEntity::EK_Delegating: 4280 case InitializedEntity::EK_VectorElement: 4281 case InitializedEntity::EK_ComplexElement: 4282 case InitializedEntity::EK_BlockElement: 4283 return false; 4284 4285 case InitializedEntity::EK_Variable: 4286 case InitializedEntity::EK_Parameter: 4287 case InitializedEntity::EK_Temporary: 4288 case InitializedEntity::EK_ArrayElement: 4289 case InitializedEntity::EK_Exception: 4290 return true; 4291 } 4292 4293 llvm_unreachable("missed an InitializedEntity kind?"); 4294 } 4295 4296 /// \brief Look for copy and move constructors and constructor templates, for 4297 /// copying an object via direct-initialization (per C++11 [dcl.init]p16). 4298 static void LookupCopyAndMoveConstructors(Sema &S, 4299 OverloadCandidateSet &CandidateSet, 4300 CXXRecordDecl *Class, 4301 Expr *CurInitExpr) { 4302 DeclContext::lookup_iterator Con, ConEnd; 4303 for (llvm::tie(Con, ConEnd) = S.LookupConstructors(Class); 4304 Con != ConEnd; ++Con) { 4305 CXXConstructorDecl *Constructor = 0; 4306 4307 if ((Constructor = dyn_cast<CXXConstructorDecl>(*Con))) { 4308 // Handle copy/moveconstructors, only. 4309 if (!Constructor || Constructor->isInvalidDecl() || 4310 !Constructor->isCopyOrMoveConstructor() || 4311 !Constructor->isConvertingConstructor(/*AllowExplicit=*/true)) 4312 continue; 4313 4314 DeclAccessPair FoundDecl 4315 = DeclAccessPair::make(Constructor, Constructor->getAccess()); 4316 S.AddOverloadCandidate(Constructor, FoundDecl, 4317 &CurInitExpr, 1, CandidateSet); 4318 continue; 4319 } 4320 4321 // Handle constructor templates. 4322 FunctionTemplateDecl *ConstructorTmpl = cast<FunctionTemplateDecl>(*Con); 4323 if (ConstructorTmpl->isInvalidDecl()) 4324 continue; 4325 4326 Constructor = cast<CXXConstructorDecl>( 4327 ConstructorTmpl->getTemplatedDecl()); 4328 if (!Constructor->isConvertingConstructor(/*AllowExplicit=*/true)) 4329 continue; 4330 4331 // FIXME: Do we need to limit this to copy-constructor-like 4332 // candidates? 4333 DeclAccessPair FoundDecl 4334 = DeclAccessPair::make(ConstructorTmpl, ConstructorTmpl->getAccess()); 4335 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 0, 4336 &CurInitExpr, 1, CandidateSet, true); 4337 } 4338 } 4339 4340 /// \brief Get the location at which initialization diagnostics should appear. 4341 static SourceLocation getInitializationLoc(const InitializedEntity &Entity, 4342 Expr *Initializer) { 4343 switch (Entity.getKind()) { 4344 case InitializedEntity::EK_Result: 4345 return Entity.getReturnLoc(); 4346 4347 case InitializedEntity::EK_Exception: 4348 return Entity.getThrowLoc(); 4349 4350 case InitializedEntity::EK_Variable: 4351 return Entity.getDecl()->getLocation(); 4352 4353 case InitializedEntity::EK_ArrayElement: 4354 case InitializedEntity::EK_Member: 4355 case InitializedEntity::EK_Parameter: 4356 case InitializedEntity::EK_Temporary: 4357 case InitializedEntity::EK_New: 4358 case InitializedEntity::EK_Base: 4359 case InitializedEntity::EK_Delegating: 4360 case InitializedEntity::EK_VectorElement: 4361 case InitializedEntity::EK_ComplexElement: 4362 case InitializedEntity::EK_BlockElement: 4363 return Initializer->getLocStart(); 4364 } 4365 llvm_unreachable("missed an InitializedEntity kind?"); 4366 } 4367 4368 /// \brief Make a (potentially elidable) temporary copy of the object 4369 /// provided by the given initializer by calling the appropriate copy 4370 /// constructor. 4371 /// 4372 /// \param S The Sema object used for type-checking. 4373 /// 4374 /// \param T The type of the temporary object, which must either be 4375 /// the type of the initializer expression or a superclass thereof. 4376 /// 4377 /// \param Enter The entity being initialized. 4378 /// 4379 /// \param CurInit The initializer expression. 4380 /// 4381 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that 4382 /// is permitted in C++03 (but not C++0x) when binding a reference to 4383 /// an rvalue. 4384 /// 4385 /// \returns An expression that copies the initializer expression into 4386 /// a temporary object, or an error expression if a copy could not be 4387 /// created. 4388 static ExprResult CopyObject(Sema &S, 4389 QualType T, 4390 const InitializedEntity &Entity, 4391 ExprResult CurInit, 4392 bool IsExtraneousCopy) { 4393 // Determine which class type we're copying to. 4394 Expr *CurInitExpr = (Expr *)CurInit.get(); 4395 CXXRecordDecl *Class = 0; 4396 if (const RecordType *Record = T->getAs<RecordType>()) 4397 Class = cast<CXXRecordDecl>(Record->getDecl()); 4398 if (!Class) 4399 return move(CurInit); 4400 4401 // C++0x [class.copy]p32: 4402 // When certain criteria are met, an implementation is allowed to 4403 // omit the copy/move construction of a class object, even if the 4404 // copy/move constructor and/or destructor for the object have 4405 // side effects. [...] 4406 // - when a temporary class object that has not been bound to a 4407 // reference (12.2) would be copied/moved to a class object 4408 // with the same cv-unqualified type, the copy/move operation 4409 // can be omitted by constructing the temporary object 4410 // directly into the target of the omitted copy/move 4411 // 4412 // Note that the other three bullets are handled elsewhere. Copy 4413 // elision for return statements and throw expressions are handled as part 4414 // of constructor initialization, while copy elision for exception handlers 4415 // is handled by the run-time. 4416 bool Elidable = CurInitExpr->isTemporaryObject(S.Context, Class); 4417 SourceLocation Loc = getInitializationLoc(Entity, CurInit.get()); 4418 4419 // Make sure that the type we are copying is complete. 4420 if (S.RequireCompleteType(Loc, T, S.PDiag(diag::err_temp_copy_incomplete))) 4421 return move(CurInit); 4422 4423 // Perform overload resolution using the class's copy/move constructors. 4424 // Only consider constructors and constructor templates. Per 4425 // C++0x [dcl.init]p16, second bullet to class types, this initialization 4426 // is direct-initialization. 4427 OverloadCandidateSet CandidateSet(Loc); 4428 LookupCopyAndMoveConstructors(S, CandidateSet, Class, CurInitExpr); 4429 4430 bool HadMultipleCandidates = (CandidateSet.size() > 1); 4431 4432 OverloadCandidateSet::iterator Best; 4433 switch (CandidateSet.BestViableFunction(S, Loc, Best)) { 4434 case OR_Success: 4435 break; 4436 4437 case OR_No_Viable_Function: 4438 S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext() 4439 ? diag::ext_rvalue_to_reference_temp_copy_no_viable 4440 : diag::err_temp_copy_no_viable) 4441 << (int)Entity.getKind() << CurInitExpr->getType() 4442 << CurInitExpr->getSourceRange(); 4443 CandidateSet.NoteCandidates(S, OCD_AllCandidates, &CurInitExpr, 1); 4444 if (!IsExtraneousCopy || S.isSFINAEContext()) 4445 return ExprError(); 4446 return move(CurInit); 4447 4448 case OR_Ambiguous: 4449 S.Diag(Loc, diag::err_temp_copy_ambiguous) 4450 << (int)Entity.getKind() << CurInitExpr->getType() 4451 << CurInitExpr->getSourceRange(); 4452 CandidateSet.NoteCandidates(S, OCD_ViableCandidates, &CurInitExpr, 1); 4453 return ExprError(); 4454 4455 case OR_Deleted: 4456 S.Diag(Loc, diag::err_temp_copy_deleted) 4457 << (int)Entity.getKind() << CurInitExpr->getType() 4458 << CurInitExpr->getSourceRange(); 4459 S.Diag(Best->Function->getLocation(), diag::note_unavailable_here) 4460 << 1 << Best->Function->isDeleted(); 4461 return ExprError(); 4462 } 4463 4464 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function); 4465 ASTOwningVector<Expr*> ConstructorArgs(S); 4466 CurInit.release(); // Ownership transferred into MultiExprArg, below. 4467 4468 S.CheckConstructorAccess(Loc, Constructor, Entity, 4469 Best->FoundDecl.getAccess(), IsExtraneousCopy); 4470 4471 if (IsExtraneousCopy) { 4472 // If this is a totally extraneous copy for C++03 reference 4473 // binding purposes, just return the original initialization 4474 // expression. We don't generate an (elided) copy operation here 4475 // because doing so would require us to pass down a flag to avoid 4476 // infinite recursion, where each step adds another extraneous, 4477 // elidable copy. 4478 4479 // Instantiate the default arguments of any extra parameters in 4480 // the selected copy constructor, as if we were going to create a 4481 // proper call to the copy constructor. 4482 for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) { 4483 ParmVarDecl *Parm = Constructor->getParamDecl(I); 4484 if (S.RequireCompleteType(Loc, Parm->getType(), 4485 S.PDiag(diag::err_call_incomplete_argument))) 4486 break; 4487 4488 // Build the default argument expression; we don't actually care 4489 // if this succeeds or not, because this routine will complain 4490 // if there was a problem. 4491 S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm); 4492 } 4493 4494 return S.Owned(CurInitExpr); 4495 } 4496 4497 S.MarkDeclarationReferenced(Loc, Constructor); 4498 4499 // Determine the arguments required to actually perform the 4500 // constructor call (we might have derived-to-base conversions, or 4501 // the copy constructor may have default arguments). 4502 if (S.CompleteConstructorCall(Constructor, MultiExprArg(&CurInitExpr, 1), 4503 Loc, ConstructorArgs)) 4504 return ExprError(); 4505 4506 // Actually perform the constructor call. 4507 CurInit = S.BuildCXXConstructExpr(Loc, T, Constructor, Elidable, 4508 move_arg(ConstructorArgs), 4509 HadMultipleCandidates, 4510 /*ZeroInit*/ false, 4511 CXXConstructExpr::CK_Complete, 4512 SourceRange()); 4513 4514 // If we're supposed to bind temporaries, do so. 4515 if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity)) 4516 CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>()); 4517 return move(CurInit); 4518 } 4519 4520 /// \brief Check whether elidable copy construction for binding a reference to 4521 /// a temporary would have succeeded if we were building in C++98 mode, for 4522 /// -Wc++98-compat. 4523 static void CheckCXX98CompatAccessibleCopy(Sema &S, 4524 const InitializedEntity &Entity, 4525 Expr *CurInitExpr) { 4526 assert(S.getLangOptions().CPlusPlus0x); 4527 4528 const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>(); 4529 if (!Record) 4530 return; 4531 4532 SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr); 4533 if (S.Diags.getDiagnosticLevel(diag::warn_cxx98_compat_temp_copy, Loc) 4534 == DiagnosticsEngine::Ignored) 4535 return; 4536 4537 // Find constructors which would have been considered. 4538 OverloadCandidateSet CandidateSet(Loc); 4539 LookupCopyAndMoveConstructors( 4540 S, CandidateSet, cast<CXXRecordDecl>(Record->getDecl()), CurInitExpr); 4541 4542 // Perform overload resolution. 4543 OverloadCandidateSet::iterator Best; 4544 OverloadingResult OR = CandidateSet.BestViableFunction(S, Loc, Best); 4545 4546 PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy) 4547 << OR << (int)Entity.getKind() << CurInitExpr->getType() 4548 << CurInitExpr->getSourceRange(); 4549 4550 switch (OR) { 4551 case OR_Success: 4552 S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function), 4553 Best->FoundDecl.getAccess(), Diag); 4554 // FIXME: Check default arguments as far as that's possible. 4555 break; 4556 4557 case OR_No_Viable_Function: 4558 S.Diag(Loc, Diag); 4559 CandidateSet.NoteCandidates(S, OCD_AllCandidates, &CurInitExpr, 1); 4560 break; 4561 4562 case OR_Ambiguous: 4563 S.Diag(Loc, Diag); 4564 CandidateSet.NoteCandidates(S, OCD_ViableCandidates, &CurInitExpr, 1); 4565 break; 4566 4567 case OR_Deleted: 4568 S.Diag(Loc, Diag); 4569 S.Diag(Best->Function->getLocation(), diag::note_unavailable_here) 4570 << 1 << Best->Function->isDeleted(); 4571 break; 4572 } 4573 } 4574 4575 void InitializationSequence::PrintInitLocationNote(Sema &S, 4576 const InitializedEntity &Entity) { 4577 if (Entity.getKind() == InitializedEntity::EK_Parameter && Entity.getDecl()) { 4578 if (Entity.getDecl()->getLocation().isInvalid()) 4579 return; 4580 4581 if (Entity.getDecl()->getDeclName()) 4582 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here) 4583 << Entity.getDecl()->getDeclName(); 4584 else 4585 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here); 4586 } 4587 } 4588 4589 static bool isReferenceBinding(const InitializationSequence::Step &s) { 4590 return s.Kind == InitializationSequence::SK_BindReference || 4591 s.Kind == InitializationSequence::SK_BindReferenceToTemporary; 4592 } 4593 4594 static ExprResult 4595 PerformConstructorInitialization(Sema &S, 4596 const InitializedEntity &Entity, 4597 const InitializationKind &Kind, 4598 MultiExprArg Args, 4599 const InitializationSequence::Step& Step, 4600 bool &ConstructorInitRequiresZeroInit) { 4601 unsigned NumArgs = Args.size(); 4602 CXXConstructorDecl *Constructor 4603 = cast<CXXConstructorDecl>(Step.Function.Function); 4604 bool HadMultipleCandidates = Step.Function.HadMultipleCandidates; 4605 4606 // Build a call to the selected constructor. 4607 ASTOwningVector<Expr*> ConstructorArgs(S); 4608 SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid()) 4609 ? Kind.getEqualLoc() 4610 : Kind.getLocation(); 4611 4612 if (Kind.getKind() == InitializationKind::IK_Default) { 4613 // Force even a trivial, implicit default constructor to be 4614 // semantically checked. We do this explicitly because we don't build 4615 // the definition for completely trivial constructors. 4616 CXXRecordDecl *ClassDecl = Constructor->getParent(); 4617 assert(ClassDecl && "No parent class for constructor."); 4618 if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() && 4619 ClassDecl->hasTrivialDefaultConstructor() && 4620 !Constructor->isUsed(false)) 4621 S.DefineImplicitDefaultConstructor(Loc, Constructor); 4622 } 4623 4624 ExprResult CurInit = S.Owned((Expr *)0); 4625 4626 // Determine the arguments required to actually perform the constructor 4627 // call. 4628 if (S.CompleteConstructorCall(Constructor, move(Args), 4629 Loc, ConstructorArgs)) 4630 return ExprError(); 4631 4632 4633 if (Entity.getKind() == InitializedEntity::EK_Temporary && 4634 NumArgs != 1 && // FIXME: Hack to work around cast weirdness 4635 (Kind.getKind() == InitializationKind::IK_Direct || 4636 Kind.getKind() == InitializationKind::IK_Value)) { 4637 // An explicitly-constructed temporary, e.g., X(1, 2). 4638 unsigned NumExprs = ConstructorArgs.size(); 4639 Expr **Exprs = (Expr **)ConstructorArgs.take(); 4640 S.MarkDeclarationReferenced(Loc, Constructor); 4641 S.DiagnoseUseOfDecl(Constructor, Loc); 4642 4643 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); 4644 if (!TSInfo) 4645 TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc); 4646 4647 CurInit = S.Owned(new (S.Context) CXXTemporaryObjectExpr(S.Context, 4648 Constructor, 4649 TSInfo, 4650 Exprs, 4651 NumExprs, 4652 Kind.getParenRange(), 4653 HadMultipleCandidates, 4654 ConstructorInitRequiresZeroInit)); 4655 } else { 4656 CXXConstructExpr::ConstructionKind ConstructKind = 4657 CXXConstructExpr::CK_Complete; 4658 4659 if (Entity.getKind() == InitializedEntity::EK_Base) { 4660 ConstructKind = Entity.getBaseSpecifier()->isVirtual() ? 4661 CXXConstructExpr::CK_VirtualBase : 4662 CXXConstructExpr::CK_NonVirtualBase; 4663 } else if (Entity.getKind() == InitializedEntity::EK_Delegating) { 4664 ConstructKind = CXXConstructExpr::CK_Delegating; 4665 } 4666 4667 // Only get the parenthesis range if it is a direct construction. 4668 SourceRange parenRange = 4669 Kind.getKind() == InitializationKind::IK_Direct ? 4670 Kind.getParenRange() : SourceRange(); 4671 4672 // If the entity allows NRVO, mark the construction as elidable 4673 // unconditionally. 4674 if (Entity.allowsNRVO()) 4675 CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(), 4676 Constructor, /*Elidable=*/true, 4677 move_arg(ConstructorArgs), 4678 HadMultipleCandidates, 4679 ConstructorInitRequiresZeroInit, 4680 ConstructKind, 4681 parenRange); 4682 else 4683 CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(), 4684 Constructor, 4685 move_arg(ConstructorArgs), 4686 HadMultipleCandidates, 4687 ConstructorInitRequiresZeroInit, 4688 ConstructKind, 4689 parenRange); 4690 } 4691 if (CurInit.isInvalid()) 4692 return ExprError(); 4693 4694 // Only check access if all of that succeeded. 4695 S.CheckConstructorAccess(Loc, Constructor, Entity, 4696 Step.Function.FoundDecl.getAccess()); 4697 S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc); 4698 4699 if (shouldBindAsTemporary(Entity)) 4700 CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>()); 4701 4702 return move(CurInit); 4703 } 4704 4705 ExprResult 4706 InitializationSequence::Perform(Sema &S, 4707 const InitializedEntity &Entity, 4708 const InitializationKind &Kind, 4709 MultiExprArg Args, 4710 QualType *ResultType) { 4711 if (Failed()) { 4712 unsigned NumArgs = Args.size(); 4713 Diagnose(S, Entity, Kind, (Expr **)Args.release(), NumArgs); 4714 return ExprError(); 4715 } 4716 4717 if (getKind() == DependentSequence) { 4718 // If the declaration is a non-dependent, incomplete array type 4719 // that has an initializer, then its type will be completed once 4720 // the initializer is instantiated. 4721 if (ResultType && !Entity.getType()->isDependentType() && 4722 Args.size() == 1) { 4723 QualType DeclType = Entity.getType(); 4724 if (const IncompleteArrayType *ArrayT 4725 = S.Context.getAsIncompleteArrayType(DeclType)) { 4726 // FIXME: We don't currently have the ability to accurately 4727 // compute the length of an initializer list without 4728 // performing full type-checking of the initializer list 4729 // (since we have to determine where braces are implicitly 4730 // introduced and such). So, we fall back to making the array 4731 // type a dependently-sized array type with no specified 4732 // bound. 4733 if (isa<InitListExpr>((Expr *)Args.get()[0])) { 4734 SourceRange Brackets; 4735 4736 // Scavange the location of the brackets from the entity, if we can. 4737 if (DeclaratorDecl *DD = Entity.getDecl()) { 4738 if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) { 4739 TypeLoc TL = TInfo->getTypeLoc(); 4740 if (IncompleteArrayTypeLoc *ArrayLoc 4741 = dyn_cast<IncompleteArrayTypeLoc>(&TL)) 4742 Brackets = ArrayLoc->getBracketsRange(); 4743 } 4744 } 4745 4746 *ResultType 4747 = S.Context.getDependentSizedArrayType(ArrayT->getElementType(), 4748 /*NumElts=*/0, 4749 ArrayT->getSizeModifier(), 4750 ArrayT->getIndexTypeCVRQualifiers(), 4751 Brackets); 4752 } 4753 4754 } 4755 } 4756 assert(Kind.getKind() == InitializationKind::IK_Copy || 4757 Kind.isExplicitCast()); 4758 return ExprResult(Args.release()[0]); 4759 } 4760 4761 // No steps means no initialization. 4762 if (Steps.empty()) 4763 return S.Owned((Expr *)0); 4764 4765 QualType DestType = Entity.getType().getNonReferenceType(); 4766 // FIXME: Ugly hack around the fact that Entity.getType() is not 4767 // the same as Entity.getDecl()->getType() in cases involving type merging, 4768 // and we want latter when it makes sense. 4769 if (ResultType) 4770 *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() : 4771 Entity.getType(); 4772 4773 ExprResult CurInit = S.Owned((Expr *)0); 4774 4775 // For initialization steps that start with a single initializer, 4776 // grab the only argument out the Args and place it into the "current" 4777 // initializer. 4778 switch (Steps.front().Kind) { 4779 case SK_ResolveAddressOfOverloadedFunction: 4780 case SK_CastDerivedToBaseRValue: 4781 case SK_CastDerivedToBaseXValue: 4782 case SK_CastDerivedToBaseLValue: 4783 case SK_BindReference: 4784 case SK_BindReferenceToTemporary: 4785 case SK_ExtraneousCopyToTemporary: 4786 case SK_UserConversion: 4787 case SK_QualificationConversionLValue: 4788 case SK_QualificationConversionXValue: 4789 case SK_QualificationConversionRValue: 4790 case SK_ConversionSequence: 4791 case SK_ListConstructorCall: 4792 case SK_ListInitialization: 4793 case SK_UnwrapInitList: 4794 case SK_RewrapInitList: 4795 case SK_CAssignment: 4796 case SK_StringInit: 4797 case SK_ObjCObjectConversion: 4798 case SK_ArrayInit: 4799 case SK_PassByIndirectCopyRestore: 4800 case SK_PassByIndirectRestore: 4801 case SK_ProduceObjCObject: { 4802 assert(Args.size() == 1); 4803 CurInit = Args.get()[0]; 4804 if (!CurInit.get()) return ExprError(); 4805 break; 4806 } 4807 4808 case SK_ConstructorInitialization: 4809 case SK_ZeroInitialization: 4810 break; 4811 } 4812 4813 // Walk through the computed steps for the initialization sequence, 4814 // performing the specified conversions along the way. 4815 bool ConstructorInitRequiresZeroInit = false; 4816 for (step_iterator Step = step_begin(), StepEnd = step_end(); 4817 Step != StepEnd; ++Step) { 4818 if (CurInit.isInvalid()) 4819 return ExprError(); 4820 4821 QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType(); 4822 4823 switch (Step->Kind) { 4824 case SK_ResolveAddressOfOverloadedFunction: 4825 // Overload resolution determined which function invoke; update the 4826 // initializer to reflect that choice. 4827 S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl); 4828 S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()); 4829 CurInit = S.FixOverloadedFunctionReference(move(CurInit), 4830 Step->Function.FoundDecl, 4831 Step->Function.Function); 4832 break; 4833 4834 case SK_CastDerivedToBaseRValue: 4835 case SK_CastDerivedToBaseXValue: 4836 case SK_CastDerivedToBaseLValue: { 4837 // We have a derived-to-base cast that produces either an rvalue or an 4838 // lvalue. Perform that cast. 4839 4840 CXXCastPath BasePath; 4841 4842 // Casts to inaccessible base classes are allowed with C-style casts. 4843 bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast(); 4844 if (S.CheckDerivedToBaseConversion(SourceType, Step->Type, 4845 CurInit.get()->getLocStart(), 4846 CurInit.get()->getSourceRange(), 4847 &BasePath, IgnoreBaseAccess)) 4848 return ExprError(); 4849 4850 if (S.BasePathInvolvesVirtualBase(BasePath)) { 4851 QualType T = SourceType; 4852 if (const PointerType *Pointer = T->getAs<PointerType>()) 4853 T = Pointer->getPointeeType(); 4854 if (const RecordType *RecordTy = T->getAs<RecordType>()) 4855 S.MarkVTableUsed(CurInit.get()->getLocStart(), 4856 cast<CXXRecordDecl>(RecordTy->getDecl())); 4857 } 4858 4859 ExprValueKind VK = 4860 Step->Kind == SK_CastDerivedToBaseLValue ? 4861 VK_LValue : 4862 (Step->Kind == SK_CastDerivedToBaseXValue ? 4863 VK_XValue : 4864 VK_RValue); 4865 CurInit = S.Owned(ImplicitCastExpr::Create(S.Context, 4866 Step->Type, 4867 CK_DerivedToBase, 4868 CurInit.get(), 4869 &BasePath, VK)); 4870 break; 4871 } 4872 4873 case SK_BindReference: 4874 if (FieldDecl *BitField = CurInit.get()->getBitField()) { 4875 // References cannot bind to bit fields (C++ [dcl.init.ref]p5). 4876 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield) 4877 << Entity.getType().isVolatileQualified() 4878 << BitField->getDeclName() 4879 << CurInit.get()->getSourceRange(); 4880 S.Diag(BitField->getLocation(), diag::note_bitfield_decl); 4881 return ExprError(); 4882 } 4883 4884 if (CurInit.get()->refersToVectorElement()) { 4885 // References cannot bind to vector elements. 4886 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element) 4887 << Entity.getType().isVolatileQualified() 4888 << CurInit.get()->getSourceRange(); 4889 PrintInitLocationNote(S, Entity); 4890 return ExprError(); 4891 } 4892 4893 // Reference binding does not have any corresponding ASTs. 4894 4895 // Check exception specifications 4896 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType)) 4897 return ExprError(); 4898 4899 break; 4900 4901 case SK_BindReferenceToTemporary: 4902 // Check exception specifications 4903 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType)) 4904 return ExprError(); 4905 4906 // Materialize the temporary into memory. 4907 CurInit = new (S.Context) MaterializeTemporaryExpr( 4908 Entity.getType().getNonReferenceType(), 4909 CurInit.get(), 4910 Entity.getType()->isLValueReferenceType()); 4911 4912 // If we're binding to an Objective-C object that has lifetime, we 4913 // need cleanups. 4914 if (S.getLangOptions().ObjCAutoRefCount && 4915 CurInit.get()->getType()->isObjCLifetimeType()) 4916 S.ExprNeedsCleanups = true; 4917 4918 break; 4919 4920 case SK_ExtraneousCopyToTemporary: 4921 CurInit = CopyObject(S, Step->Type, Entity, move(CurInit), 4922 /*IsExtraneousCopy=*/true); 4923 break; 4924 4925 case SK_UserConversion: { 4926 // We have a user-defined conversion that invokes either a constructor 4927 // or a conversion function. 4928 CastKind CastKind; 4929 bool IsCopy = false; 4930 FunctionDecl *Fn = Step->Function.Function; 4931 DeclAccessPair FoundFn = Step->Function.FoundDecl; 4932 bool HadMultipleCandidates = Step->Function.HadMultipleCandidates; 4933 bool CreatedObject = false; 4934 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) { 4935 // Build a call to the selected constructor. 4936 ASTOwningVector<Expr*> ConstructorArgs(S); 4937 SourceLocation Loc = CurInit.get()->getLocStart(); 4938 CurInit.release(); // Ownership transferred into MultiExprArg, below. 4939 4940 // Determine the arguments required to actually perform the constructor 4941 // call. 4942 Expr *Arg = CurInit.get(); 4943 if (S.CompleteConstructorCall(Constructor, 4944 MultiExprArg(&Arg, 1), 4945 Loc, ConstructorArgs)) 4946 return ExprError(); 4947 4948 // Build the an expression that constructs a temporary. 4949 CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor, 4950 move_arg(ConstructorArgs), 4951 HadMultipleCandidates, 4952 /*ZeroInit*/ false, 4953 CXXConstructExpr::CK_Complete, 4954 SourceRange()); 4955 if (CurInit.isInvalid()) 4956 return ExprError(); 4957 4958 S.CheckConstructorAccess(Kind.getLocation(), Constructor, Entity, 4959 FoundFn.getAccess()); 4960 S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()); 4961 4962 CastKind = CK_ConstructorConversion; 4963 QualType Class = S.Context.getTypeDeclType(Constructor->getParent()); 4964 if (S.Context.hasSameUnqualifiedType(SourceType, Class) || 4965 S.IsDerivedFrom(SourceType, Class)) 4966 IsCopy = true; 4967 4968 CreatedObject = true; 4969 } else { 4970 // Build a call to the conversion function. 4971 CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn); 4972 S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), 0, 4973 FoundFn); 4974 S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()); 4975 4976 // FIXME: Should we move this initialization into a separate 4977 // derived-to-base conversion? I believe the answer is "no", because 4978 // we don't want to turn off access control here for c-style casts. 4979 ExprResult CurInitExprRes = 4980 S.PerformObjectArgumentInitialization(CurInit.take(), /*Qualifier=*/0, 4981 FoundFn, Conversion); 4982 if(CurInitExprRes.isInvalid()) 4983 return ExprError(); 4984 CurInit = move(CurInitExprRes); 4985 4986 // Build the actual call to the conversion function. 4987 CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion, 4988 HadMultipleCandidates); 4989 if (CurInit.isInvalid() || !CurInit.get()) 4990 return ExprError(); 4991 4992 CastKind = CK_UserDefinedConversion; 4993 4994 CreatedObject = Conversion->getResultType()->isRecordType(); 4995 } 4996 4997 bool RequiresCopy = !IsCopy && !isReferenceBinding(Steps.back()); 4998 bool MaybeBindToTemp = RequiresCopy || shouldBindAsTemporary(Entity); 4999 5000 if (!MaybeBindToTemp && CreatedObject && shouldDestroyTemporary(Entity)) { 5001 QualType T = CurInit.get()->getType(); 5002 if (const RecordType *Record = T->getAs<RecordType>()) { 5003 CXXDestructorDecl *Destructor 5004 = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl())); 5005 S.CheckDestructorAccess(CurInit.get()->getLocStart(), Destructor, 5006 S.PDiag(diag::err_access_dtor_temp) << T); 5007 S.MarkDeclarationReferenced(CurInit.get()->getLocStart(), Destructor); 5008 S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getLocStart()); 5009 } 5010 } 5011 5012 CurInit = S.Owned(ImplicitCastExpr::Create(S.Context, 5013 CurInit.get()->getType(), 5014 CastKind, CurInit.get(), 0, 5015 CurInit.get()->getValueKind())); 5016 if (MaybeBindToTemp) 5017 CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>()); 5018 if (RequiresCopy) 5019 CurInit = CopyObject(S, Entity.getType().getNonReferenceType(), Entity, 5020 move(CurInit), /*IsExtraneousCopy=*/false); 5021 break; 5022 } 5023 5024 case SK_QualificationConversionLValue: 5025 case SK_QualificationConversionXValue: 5026 case SK_QualificationConversionRValue: { 5027 // Perform a qualification conversion; these can never go wrong. 5028 ExprValueKind VK = 5029 Step->Kind == SK_QualificationConversionLValue ? 5030 VK_LValue : 5031 (Step->Kind == SK_QualificationConversionXValue ? 5032 VK_XValue : 5033 VK_RValue); 5034 CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type, CK_NoOp, VK); 5035 break; 5036 } 5037 5038 case SK_ConversionSequence: { 5039 Sema::CheckedConversionKind CCK 5040 = Kind.isCStyleCast()? Sema::CCK_CStyleCast 5041 : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast 5042 : Kind.isExplicitCast()? Sema::CCK_OtherCast 5043 : Sema::CCK_ImplicitConversion; 5044 ExprResult CurInitExprRes = 5045 S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS, 5046 getAssignmentAction(Entity), CCK); 5047 if (CurInitExprRes.isInvalid()) 5048 return ExprError(); 5049 CurInit = move(CurInitExprRes); 5050 break; 5051 } 5052 5053 case SK_ListInitialization: { 5054 InitListExpr *InitList = cast<InitListExpr>(CurInit.get()); 5055 // Hack: We must pass *ResultType if available in order to set the type 5056 // of arrays, e.g. in 'int ar[] = {1, 2, 3};'. 5057 // But in 'const X &x = {1, 2, 3};' we're supposed to initialize a 5058 // temporary, not a reference, so we should pass Ty. 5059 // Worst case: 'const int (&arref)[] = {1, 2, 3};'. 5060 // Since this step is never used for a reference directly, we explicitly 5061 // unwrap references here and rewrap them afterwards. 5062 // We also need to create a InitializeTemporary entity for this. 5063 QualType Ty = ResultType ? ResultType->getNonReferenceType() : Step->Type; 5064 bool IsTemporary = ResultType && (*ResultType)->isReferenceType(); 5065 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty); 5066 InitListChecker PerformInitList(S, IsTemporary ? TempEntity : Entity, 5067 InitList, Ty, /*VerifyOnly=*/false, 5068 Kind.getKind() != InitializationKind::IK_Direct || 5069 !S.getLangOptions().CPlusPlus0x); 5070 if (PerformInitList.HadError()) 5071 return ExprError(); 5072 5073 if (ResultType) { 5074 if ((*ResultType)->isRValueReferenceType()) 5075 Ty = S.Context.getRValueReferenceType(Ty); 5076 else if ((*ResultType)->isLValueReferenceType()) 5077 Ty = S.Context.getLValueReferenceType(Ty, 5078 (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue()); 5079 *ResultType = Ty; 5080 } 5081 5082 InitListExpr *StructuredInitList = 5083 PerformInitList.getFullyStructuredList(); 5084 CurInit.release(); 5085 CurInit = S.Owned(StructuredInitList); 5086 break; 5087 } 5088 5089 case SK_ListConstructorCall: { 5090 InitListExpr *InitList = cast<InitListExpr>(CurInit.get()); 5091 MultiExprArg Arg(InitList->getInits(), InitList->getNumInits()); 5092 CurInit = PerformConstructorInitialization(S, Entity, Kind, 5093 move(Arg), *Step, 5094 ConstructorInitRequiresZeroInit); 5095 break; 5096 } 5097 5098 case SK_UnwrapInitList: 5099 CurInit = S.Owned(cast<InitListExpr>(CurInit.take())->getInit(0)); 5100 break; 5101 5102 case SK_RewrapInitList: { 5103 Expr *E = CurInit.take(); 5104 InitListExpr *Syntactic = Step->WrappingSyntacticList; 5105 InitListExpr *ILE = new (S.Context) InitListExpr(S.Context, 5106 Syntactic->getLBraceLoc(), &E, 1, Syntactic->getRBraceLoc()); 5107 ILE->setSyntacticForm(Syntactic); 5108 ILE->setType(E->getType()); 5109 ILE->setValueKind(E->getValueKind()); 5110 CurInit = S.Owned(ILE); 5111 break; 5112 } 5113 5114 case SK_ConstructorInitialization: 5115 CurInit = PerformConstructorInitialization(S, Entity, Kind, move(Args), 5116 *Step, 5117 ConstructorInitRequiresZeroInit); 5118 break; 5119 5120 case SK_ZeroInitialization: { 5121 step_iterator NextStep = Step; 5122 ++NextStep; 5123 if (NextStep != StepEnd && 5124 NextStep->Kind == SK_ConstructorInitialization) { 5125 // The need for zero-initialization is recorded directly into 5126 // the call to the object's constructor within the next step. 5127 ConstructorInitRequiresZeroInit = true; 5128 } else if (Kind.getKind() == InitializationKind::IK_Value && 5129 S.getLangOptions().CPlusPlus && 5130 !Kind.isImplicitValueInit()) { 5131 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); 5132 if (!TSInfo) 5133 TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type, 5134 Kind.getRange().getBegin()); 5135 5136 CurInit = S.Owned(new (S.Context) CXXScalarValueInitExpr( 5137 TSInfo->getType().getNonLValueExprType(S.Context), 5138 TSInfo, 5139 Kind.getRange().getEnd())); 5140 } else { 5141 CurInit = S.Owned(new (S.Context) ImplicitValueInitExpr(Step->Type)); 5142 } 5143 break; 5144 } 5145 5146 case SK_CAssignment: { 5147 QualType SourceType = CurInit.get()->getType(); 5148 ExprResult Result = move(CurInit); 5149 Sema::AssignConvertType ConvTy = 5150 S.CheckSingleAssignmentConstraints(Step->Type, Result); 5151 if (Result.isInvalid()) 5152 return ExprError(); 5153 CurInit = move(Result); 5154 5155 // If this is a call, allow conversion to a transparent union. 5156 ExprResult CurInitExprRes = move(CurInit); 5157 if (ConvTy != Sema::Compatible && 5158 Entity.getKind() == InitializedEntity::EK_Parameter && 5159 S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes) 5160 == Sema::Compatible) 5161 ConvTy = Sema::Compatible; 5162 if (CurInitExprRes.isInvalid()) 5163 return ExprError(); 5164 CurInit = move(CurInitExprRes); 5165 5166 bool Complained; 5167 if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(), 5168 Step->Type, SourceType, 5169 CurInit.get(), 5170 getAssignmentAction(Entity), 5171 &Complained)) { 5172 PrintInitLocationNote(S, Entity); 5173 return ExprError(); 5174 } else if (Complained) 5175 PrintInitLocationNote(S, Entity); 5176 break; 5177 } 5178 5179 case SK_StringInit: { 5180 QualType Ty = Step->Type; 5181 CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty, 5182 S.Context.getAsArrayType(Ty), S); 5183 break; 5184 } 5185 5186 case SK_ObjCObjectConversion: 5187 CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type, 5188 CK_ObjCObjectLValueCast, 5189 CurInit.get()->getValueKind()); 5190 break; 5191 5192 case SK_ArrayInit: 5193 // Okay: we checked everything before creating this step. Note that 5194 // this is a GNU extension. 5195 S.Diag(Kind.getLocation(), diag::ext_array_init_copy) 5196 << Step->Type << CurInit.get()->getType() 5197 << CurInit.get()->getSourceRange(); 5198 5199 // If the destination type is an incomplete array type, update the 5200 // type accordingly. 5201 if (ResultType) { 5202 if (const IncompleteArrayType *IncompleteDest 5203 = S.Context.getAsIncompleteArrayType(Step->Type)) { 5204 if (const ConstantArrayType *ConstantSource 5205 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) { 5206 *ResultType = S.Context.getConstantArrayType( 5207 IncompleteDest->getElementType(), 5208 ConstantSource->getSize(), 5209 ArrayType::Normal, 0); 5210 } 5211 } 5212 } 5213 break; 5214 5215 case SK_PassByIndirectCopyRestore: 5216 case SK_PassByIndirectRestore: 5217 checkIndirectCopyRestoreSource(S, CurInit.get()); 5218 CurInit = S.Owned(new (S.Context) 5219 ObjCIndirectCopyRestoreExpr(CurInit.take(), Step->Type, 5220 Step->Kind == SK_PassByIndirectCopyRestore)); 5221 break; 5222 5223 case SK_ProduceObjCObject: 5224 CurInit = S.Owned(ImplicitCastExpr::Create(S.Context, Step->Type, 5225 CK_ARCProduceObject, 5226 CurInit.take(), 0, VK_RValue)); 5227 break; 5228 } 5229 } 5230 5231 // Diagnose non-fatal problems with the completed initialization. 5232 if (Entity.getKind() == InitializedEntity::EK_Member && 5233 cast<FieldDecl>(Entity.getDecl())->isBitField()) 5234 S.CheckBitFieldInitialization(Kind.getLocation(), 5235 cast<FieldDecl>(Entity.getDecl()), 5236 CurInit.get()); 5237 5238 return move(CurInit); 5239 } 5240 5241 //===----------------------------------------------------------------------===// 5242 // Diagnose initialization failures 5243 //===----------------------------------------------------------------------===// 5244 bool InitializationSequence::Diagnose(Sema &S, 5245 const InitializedEntity &Entity, 5246 const InitializationKind &Kind, 5247 Expr **Args, unsigned NumArgs) { 5248 if (!Failed()) 5249 return false; 5250 5251 QualType DestType = Entity.getType(); 5252 switch (Failure) { 5253 case FK_TooManyInitsForReference: 5254 // FIXME: Customize for the initialized entity? 5255 if (NumArgs == 0) 5256 S.Diag(Kind.getLocation(), diag::err_reference_without_init) 5257 << DestType.getNonReferenceType(); 5258 else // FIXME: diagnostic below could be better! 5259 S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits) 5260 << SourceRange(Args[0]->getLocStart(), Args[NumArgs - 1]->getLocEnd()); 5261 break; 5262 5263 case FK_ArrayNeedsInitList: 5264 case FK_ArrayNeedsInitListOrStringLiteral: 5265 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) 5266 << (Failure == FK_ArrayNeedsInitListOrStringLiteral); 5267 break; 5268 5269 case FK_ArrayTypeMismatch: 5270 case FK_NonConstantArrayInit: 5271 S.Diag(Kind.getLocation(), 5272 (Failure == FK_ArrayTypeMismatch 5273 ? diag::err_array_init_different_type 5274 : diag::err_array_init_non_constant_array)) 5275 << DestType.getNonReferenceType() 5276 << Args[0]->getType() 5277 << Args[0]->getSourceRange(); 5278 break; 5279 5280 case FK_AddressOfOverloadFailed: { 5281 DeclAccessPair Found; 5282 S.ResolveAddressOfOverloadedFunction(Args[0], 5283 DestType.getNonReferenceType(), 5284 true, 5285 Found); 5286 break; 5287 } 5288 5289 case FK_ReferenceInitOverloadFailed: 5290 case FK_UserConversionOverloadFailed: 5291 switch (FailedOverloadResult) { 5292 case OR_Ambiguous: 5293 if (Failure == FK_UserConversionOverloadFailed) 5294 S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition) 5295 << Args[0]->getType() << DestType 5296 << Args[0]->getSourceRange(); 5297 else 5298 S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous) 5299 << DestType << Args[0]->getType() 5300 << Args[0]->getSourceRange(); 5301 5302 FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args, NumArgs); 5303 break; 5304 5305 case OR_No_Viable_Function: 5306 S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition) 5307 << Args[0]->getType() << DestType.getNonReferenceType() 5308 << Args[0]->getSourceRange(); 5309 FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args, NumArgs); 5310 break; 5311 5312 case OR_Deleted: { 5313 S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function) 5314 << Args[0]->getType() << DestType.getNonReferenceType() 5315 << Args[0]->getSourceRange(); 5316 OverloadCandidateSet::iterator Best; 5317 OverloadingResult Ovl 5318 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best, 5319 true); 5320 if (Ovl == OR_Deleted) { 5321 S.Diag(Best->Function->getLocation(), diag::note_unavailable_here) 5322 << 1 << Best->Function->isDeleted(); 5323 } else { 5324 llvm_unreachable("Inconsistent overload resolution?"); 5325 } 5326 break; 5327 } 5328 5329 case OR_Success: 5330 llvm_unreachable("Conversion did not fail!"); 5331 break; 5332 } 5333 break; 5334 5335 case FK_NonConstLValueReferenceBindingToTemporary: 5336 if (isa<InitListExpr>(Args[0])) { 5337 S.Diag(Kind.getLocation(), 5338 diag::err_lvalue_reference_bind_to_initlist) 5339 << DestType.getNonReferenceType().isVolatileQualified() 5340 << DestType.getNonReferenceType() 5341 << Args[0]->getSourceRange(); 5342 break; 5343 } 5344 // Intentional fallthrough 5345 5346 case FK_NonConstLValueReferenceBindingToUnrelated: 5347 S.Diag(Kind.getLocation(), 5348 Failure == FK_NonConstLValueReferenceBindingToTemporary 5349 ? diag::err_lvalue_reference_bind_to_temporary 5350 : diag::err_lvalue_reference_bind_to_unrelated) 5351 << DestType.getNonReferenceType().isVolatileQualified() 5352 << DestType.getNonReferenceType() 5353 << Args[0]->getType() 5354 << Args[0]->getSourceRange(); 5355 break; 5356 5357 case FK_RValueReferenceBindingToLValue: 5358 S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref) 5359 << DestType.getNonReferenceType() << Args[0]->getType() 5360 << Args[0]->getSourceRange(); 5361 break; 5362 5363 case FK_ReferenceInitDropsQualifiers: 5364 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) 5365 << DestType.getNonReferenceType() 5366 << Args[0]->getType() 5367 << Args[0]->getSourceRange(); 5368 break; 5369 5370 case FK_ReferenceInitFailed: 5371 S.Diag(Kind.getLocation(), diag::err_reference_bind_failed) 5372 << DestType.getNonReferenceType() 5373 << Args[0]->isLValue() 5374 << Args[0]->getType() 5375 << Args[0]->getSourceRange(); 5376 if (DestType.getNonReferenceType()->isObjCObjectPointerType() && 5377 Args[0]->getType()->isObjCObjectPointerType()) 5378 S.EmitRelatedResultTypeNote(Args[0]); 5379 break; 5380 5381 case FK_ConversionFailed: { 5382 QualType FromType = Args[0]->getType(); 5383 PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed) 5384 << (int)Entity.getKind() 5385 << DestType 5386 << Args[0]->isLValue() 5387 << FromType 5388 << Args[0]->getSourceRange(); 5389 S.HandleFunctionTypeMismatch(PDiag, FromType, DestType); 5390 S.Diag(Kind.getLocation(), PDiag); 5391 if (DestType.getNonReferenceType()->isObjCObjectPointerType() && 5392 Args[0]->getType()->isObjCObjectPointerType()) 5393 S.EmitRelatedResultTypeNote(Args[0]); 5394 break; 5395 } 5396 5397 case FK_ConversionFromPropertyFailed: 5398 // No-op. This error has already been reported. 5399 break; 5400 5401 case FK_TooManyInitsForScalar: { 5402 SourceRange R; 5403 5404 if (InitListExpr *InitList = dyn_cast<InitListExpr>(Args[0])) 5405 R = SourceRange(InitList->getInit(0)->getLocEnd(), 5406 InitList->getLocEnd()); 5407 else 5408 R = SourceRange(Args[0]->getLocEnd(), Args[NumArgs - 1]->getLocEnd()); 5409 5410 R.setBegin(S.PP.getLocForEndOfToken(R.getBegin())); 5411 if (Kind.isCStyleOrFunctionalCast()) 5412 S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg) 5413 << R; 5414 else 5415 S.Diag(Kind.getLocation(), diag::err_excess_initializers) 5416 << /*scalar=*/2 << R; 5417 break; 5418 } 5419 5420 case FK_ReferenceBindingToInitList: 5421 S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list) 5422 << DestType.getNonReferenceType() << Args[0]->getSourceRange(); 5423 break; 5424 5425 case FK_InitListBadDestinationType: 5426 S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type) 5427 << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange(); 5428 break; 5429 5430 case FK_ListConstructorOverloadFailed: 5431 case FK_ConstructorOverloadFailed: { 5432 SourceRange ArgsRange; 5433 if (NumArgs) 5434 ArgsRange = SourceRange(Args[0]->getLocStart(), 5435 Args[NumArgs - 1]->getLocEnd()); 5436 5437 if (Failure == FK_ListConstructorOverloadFailed) { 5438 assert(NumArgs == 1 && "List construction from other than 1 argument."); 5439 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 5440 Args = InitList->getInits(); 5441 NumArgs = InitList->getNumInits(); 5442 } 5443 5444 // FIXME: Using "DestType" for the entity we're printing is probably 5445 // bad. 5446 switch (FailedOverloadResult) { 5447 case OR_Ambiguous: 5448 S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init) 5449 << DestType << ArgsRange; 5450 FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, 5451 Args, NumArgs); 5452 break; 5453 5454 case OR_No_Viable_Function: 5455 if (Kind.getKind() == InitializationKind::IK_Default && 5456 (Entity.getKind() == InitializedEntity::EK_Base || 5457 Entity.getKind() == InitializedEntity::EK_Member) && 5458 isa<CXXConstructorDecl>(S.CurContext)) { 5459 // This is implicit default initialization of a member or 5460 // base within a constructor. If no viable function was 5461 // found, notify the user that she needs to explicitly 5462 // initialize this base/member. 5463 CXXConstructorDecl *Constructor 5464 = cast<CXXConstructorDecl>(S.CurContext); 5465 if (Entity.getKind() == InitializedEntity::EK_Base) { 5466 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) 5467 << Constructor->isImplicit() 5468 << S.Context.getTypeDeclType(Constructor->getParent()) 5469 << /*base=*/0 5470 << Entity.getType(); 5471 5472 RecordDecl *BaseDecl 5473 = Entity.getBaseSpecifier()->getType()->getAs<RecordType>() 5474 ->getDecl(); 5475 S.Diag(BaseDecl->getLocation(), diag::note_previous_decl) 5476 << S.Context.getTagDeclType(BaseDecl); 5477 } else { 5478 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) 5479 << Constructor->isImplicit() 5480 << S.Context.getTypeDeclType(Constructor->getParent()) 5481 << /*member=*/1 5482 << Entity.getName(); 5483 S.Diag(Entity.getDecl()->getLocation(), diag::note_field_decl); 5484 5485 if (const RecordType *Record 5486 = Entity.getType()->getAs<RecordType>()) 5487 S.Diag(Record->getDecl()->getLocation(), 5488 diag::note_previous_decl) 5489 << S.Context.getTagDeclType(Record->getDecl()); 5490 } 5491 break; 5492 } 5493 5494 S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init) 5495 << DestType << ArgsRange; 5496 FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args, NumArgs); 5497 break; 5498 5499 case OR_Deleted: { 5500 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) 5501 << true << DestType << ArgsRange; 5502 OverloadCandidateSet::iterator Best; 5503 OverloadingResult Ovl 5504 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 5505 if (Ovl == OR_Deleted) { 5506 S.Diag(Best->Function->getLocation(), diag::note_unavailable_here) 5507 << 1 << Best->Function->isDeleted(); 5508 } else { 5509 llvm_unreachable("Inconsistent overload resolution?"); 5510 } 5511 break; 5512 } 5513 5514 case OR_Success: 5515 llvm_unreachable("Conversion did not fail!"); 5516 break; 5517 } 5518 break; 5519 } 5520 5521 case FK_DefaultInitOfConst: 5522 if (Entity.getKind() == InitializedEntity::EK_Member && 5523 isa<CXXConstructorDecl>(S.CurContext)) { 5524 // This is implicit default-initialization of a const member in 5525 // a constructor. Complain that it needs to be explicitly 5526 // initialized. 5527 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext); 5528 S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor) 5529 << Constructor->isImplicit() 5530 << S.Context.getTypeDeclType(Constructor->getParent()) 5531 << /*const=*/1 5532 << Entity.getName(); 5533 S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl) 5534 << Entity.getName(); 5535 } else { 5536 S.Diag(Kind.getLocation(), diag::err_default_init_const) 5537 << DestType << (bool)DestType->getAs<RecordType>(); 5538 } 5539 break; 5540 5541 case FK_Incomplete: 5542 S.RequireCompleteType(Kind.getLocation(), DestType, 5543 diag::err_init_incomplete_type); 5544 break; 5545 5546 case FK_ListInitializationFailed: { 5547 // Run the init list checker again to emit diagnostics. 5548 InitListExpr* InitList = cast<InitListExpr>(Args[0]); 5549 QualType DestType = Entity.getType(); 5550 InitListChecker DiagnoseInitList(S, Entity, InitList, 5551 DestType, /*VerifyOnly=*/false, 5552 Kind.getKind() != InitializationKind::IK_Direct || 5553 !S.getLangOptions().CPlusPlus0x); 5554 assert(DiagnoseInitList.HadError() && 5555 "Inconsistent init list check result."); 5556 break; 5557 } 5558 5559 case FK_PlaceholderType: { 5560 // FIXME: Already diagnosed! 5561 break; 5562 } 5563 } 5564 5565 PrintInitLocationNote(S, Entity); 5566 return true; 5567 } 5568 5569 void InitializationSequence::dump(raw_ostream &OS) const { 5570 switch (SequenceKind) { 5571 case FailedSequence: { 5572 OS << "Failed sequence: "; 5573 switch (Failure) { 5574 case FK_TooManyInitsForReference: 5575 OS << "too many initializers for reference"; 5576 break; 5577 5578 case FK_ArrayNeedsInitList: 5579 OS << "array requires initializer list"; 5580 break; 5581 5582 case FK_ArrayNeedsInitListOrStringLiteral: 5583 OS << "array requires initializer list or string literal"; 5584 break; 5585 5586 case FK_ArrayTypeMismatch: 5587 OS << "array type mismatch"; 5588 break; 5589 5590 case FK_NonConstantArrayInit: 5591 OS << "non-constant array initializer"; 5592 break; 5593 5594 case FK_AddressOfOverloadFailed: 5595 OS << "address of overloaded function failed"; 5596 break; 5597 5598 case FK_ReferenceInitOverloadFailed: 5599 OS << "overload resolution for reference initialization failed"; 5600 break; 5601 5602 case FK_NonConstLValueReferenceBindingToTemporary: 5603 OS << "non-const lvalue reference bound to temporary"; 5604 break; 5605 5606 case FK_NonConstLValueReferenceBindingToUnrelated: 5607 OS << "non-const lvalue reference bound to unrelated type"; 5608 break; 5609 5610 case FK_RValueReferenceBindingToLValue: 5611 OS << "rvalue reference bound to an lvalue"; 5612 break; 5613 5614 case FK_ReferenceInitDropsQualifiers: 5615 OS << "reference initialization drops qualifiers"; 5616 break; 5617 5618 case FK_ReferenceInitFailed: 5619 OS << "reference initialization failed"; 5620 break; 5621 5622 case FK_ConversionFailed: 5623 OS << "conversion failed"; 5624 break; 5625 5626 case FK_ConversionFromPropertyFailed: 5627 OS << "conversion from property failed"; 5628 break; 5629 5630 case FK_TooManyInitsForScalar: 5631 OS << "too many initializers for scalar"; 5632 break; 5633 5634 case FK_ReferenceBindingToInitList: 5635 OS << "referencing binding to initializer list"; 5636 break; 5637 5638 case FK_InitListBadDestinationType: 5639 OS << "initializer list for non-aggregate, non-scalar type"; 5640 break; 5641 5642 case FK_UserConversionOverloadFailed: 5643 OS << "overloading failed for user-defined conversion"; 5644 break; 5645 5646 case FK_ConstructorOverloadFailed: 5647 OS << "constructor overloading failed"; 5648 break; 5649 5650 case FK_DefaultInitOfConst: 5651 OS << "default initialization of a const variable"; 5652 break; 5653 5654 case FK_Incomplete: 5655 OS << "initialization of incomplete type"; 5656 break; 5657 5658 case FK_ListInitializationFailed: 5659 OS << "list initialization checker failure"; 5660 break; 5661 5662 case FK_PlaceholderType: 5663 OS << "initializer expression isn't contextually valid"; 5664 break; 5665 5666 case FK_ListConstructorOverloadFailed: 5667 OS << "list constructor overloading failed"; 5668 break; 5669 } 5670 OS << '\n'; 5671 return; 5672 } 5673 5674 case DependentSequence: 5675 OS << "Dependent sequence\n"; 5676 return; 5677 5678 case NormalSequence: 5679 OS << "Normal sequence: "; 5680 break; 5681 } 5682 5683 for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) { 5684 if (S != step_begin()) { 5685 OS << " -> "; 5686 } 5687 5688 switch (S->Kind) { 5689 case SK_ResolveAddressOfOverloadedFunction: 5690 OS << "resolve address of overloaded function"; 5691 break; 5692 5693 case SK_CastDerivedToBaseRValue: 5694 OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")"; 5695 break; 5696 5697 case SK_CastDerivedToBaseXValue: 5698 OS << "derived-to-base case (xvalue" << S->Type.getAsString() << ")"; 5699 break; 5700 5701 case SK_CastDerivedToBaseLValue: 5702 OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")"; 5703 break; 5704 5705 case SK_BindReference: 5706 OS << "bind reference to lvalue"; 5707 break; 5708 5709 case SK_BindReferenceToTemporary: 5710 OS << "bind reference to a temporary"; 5711 break; 5712 5713 case SK_ExtraneousCopyToTemporary: 5714 OS << "extraneous C++03 copy to temporary"; 5715 break; 5716 5717 case SK_UserConversion: 5718 OS << "user-defined conversion via " << *S->Function.Function; 5719 break; 5720 5721 case SK_QualificationConversionRValue: 5722 OS << "qualification conversion (rvalue)"; 5723 break; 5724 5725 case SK_QualificationConversionXValue: 5726 OS << "qualification conversion (xvalue)"; 5727 break; 5728 5729 case SK_QualificationConversionLValue: 5730 OS << "qualification conversion (lvalue)"; 5731 break; 5732 5733 case SK_ConversionSequence: 5734 OS << "implicit conversion sequence ("; 5735 S->ICS->DebugPrint(); // FIXME: use OS 5736 OS << ")"; 5737 break; 5738 5739 case SK_ListInitialization: 5740 OS << "list aggregate initialization"; 5741 break; 5742 5743 case SK_ListConstructorCall: 5744 OS << "list initialization via constructor"; 5745 break; 5746 5747 case SK_UnwrapInitList: 5748 OS << "unwrap reference initializer list"; 5749 break; 5750 5751 case SK_RewrapInitList: 5752 OS << "rewrap reference initializer list"; 5753 break; 5754 5755 case SK_ConstructorInitialization: 5756 OS << "constructor initialization"; 5757 break; 5758 5759 case SK_ZeroInitialization: 5760 OS << "zero initialization"; 5761 break; 5762 5763 case SK_CAssignment: 5764 OS << "C assignment"; 5765 break; 5766 5767 case SK_StringInit: 5768 OS << "string initialization"; 5769 break; 5770 5771 case SK_ObjCObjectConversion: 5772 OS << "Objective-C object conversion"; 5773 break; 5774 5775 case SK_ArrayInit: 5776 OS << "array initialization"; 5777 break; 5778 5779 case SK_PassByIndirectCopyRestore: 5780 OS << "pass by indirect copy and restore"; 5781 break; 5782 5783 case SK_PassByIndirectRestore: 5784 OS << "pass by indirect restore"; 5785 break; 5786 5787 case SK_ProduceObjCObject: 5788 OS << "Objective-C object retension"; 5789 break; 5790 } 5791 } 5792 } 5793 5794 void InitializationSequence::dump() const { 5795 dump(llvm::errs()); 5796 } 5797 5798 static void DiagnoseNarrowingInInitList( 5799 Sema& S, QualType EntityType, const Expr *InitE, 5800 bool Constant, const APValue &ConstantValue) { 5801 if (Constant) { 5802 S.Diag(InitE->getLocStart(), 5803 S.getLangOptions().CPlusPlus0x && !S.getLangOptions().MicrosoftExt 5804 ? diag::err_init_list_constant_narrowing 5805 : diag::warn_init_list_constant_narrowing) 5806 << InitE->getSourceRange() 5807 << ConstantValue.getAsString(S.getASTContext(), EntityType) 5808 << EntityType.getLocalUnqualifiedType(); 5809 } else 5810 S.Diag(InitE->getLocStart(), 5811 S.getLangOptions().CPlusPlus0x && !S.getLangOptions().MicrosoftExt 5812 ? diag::err_init_list_variable_narrowing 5813 : diag::warn_init_list_variable_narrowing) 5814 << InitE->getSourceRange() 5815 << InitE->getType().getLocalUnqualifiedType() 5816 << EntityType.getLocalUnqualifiedType(); 5817 5818 llvm::SmallString<128> StaticCast; 5819 llvm::raw_svector_ostream OS(StaticCast); 5820 OS << "static_cast<"; 5821 if (const TypedefType *TT = EntityType->getAs<TypedefType>()) { 5822 // It's important to use the typedef's name if there is one so that the 5823 // fixit doesn't break code using types like int64_t. 5824 // 5825 // FIXME: This will break if the typedef requires qualification. But 5826 // getQualifiedNameAsString() includes non-machine-parsable components. 5827 OS << *TT->getDecl(); 5828 } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>()) 5829 OS << BT->getName(S.getLangOptions()); 5830 else { 5831 // Oops, we didn't find the actual type of the variable. Don't emit a fixit 5832 // with a broken cast. 5833 return; 5834 } 5835 OS << ">("; 5836 S.Diag(InitE->getLocStart(), diag::note_init_list_narrowing_override) 5837 << InitE->getSourceRange() 5838 << FixItHint::CreateInsertion(InitE->getLocStart(), OS.str()) 5839 << FixItHint::CreateInsertion( 5840 S.getPreprocessor().getLocForEndOfToken(InitE->getLocEnd()), ")"); 5841 } 5842 5843 //===----------------------------------------------------------------------===// 5844 // Initialization helper functions 5845 //===----------------------------------------------------------------------===// 5846 bool 5847 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity, 5848 ExprResult Init) { 5849 if (Init.isInvalid()) 5850 return false; 5851 5852 Expr *InitE = Init.get(); 5853 assert(InitE && "No initialization expression"); 5854 5855 InitializationKind Kind = InitializationKind::CreateCopy(SourceLocation(), 5856 SourceLocation()); 5857 InitializationSequence Seq(*this, Entity, Kind, &InitE, 1); 5858 return !Seq.Failed(); 5859 } 5860 5861 ExprResult 5862 Sema::PerformCopyInitialization(const InitializedEntity &Entity, 5863 SourceLocation EqualLoc, 5864 ExprResult Init, 5865 bool TopLevelOfInitList) { 5866 if (Init.isInvalid()) 5867 return ExprError(); 5868 5869 Expr *InitE = Init.get(); 5870 assert(InitE && "No initialization expression?"); 5871 5872 if (EqualLoc.isInvalid()) 5873 EqualLoc = InitE->getLocStart(); 5874 5875 InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(), 5876 EqualLoc); 5877 InitializationSequence Seq(*this, Entity, Kind, &InitE, 1); 5878 Init.release(); 5879 5880 bool Constant = false; 5881 APValue Result; 5882 if (TopLevelOfInitList && 5883 Seq.endsWithNarrowing(Context, InitE, &Constant, &Result)) { 5884 DiagnoseNarrowingInInitList(*this, Entity.getType(), InitE, 5885 Constant, Result); 5886 } 5887 return Seq.Perform(*this, Entity, Kind, MultiExprArg(&InitE, 1)); 5888 } 5889