1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for initializers. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ASTContext.h" 14 #include "clang/AST/DeclObjC.h" 15 #include "clang/AST/ExprCXX.h" 16 #include "clang/AST/ExprObjC.h" 17 #include "clang/AST/ExprOpenMP.h" 18 #include "clang/AST/TypeLoc.h" 19 #include "clang/Basic/CharInfo.h" 20 #include "clang/Basic/TargetInfo.h" 21 #include "clang/Sema/Designator.h" 22 #include "clang/Sema/Initialization.h" 23 #include "clang/Sema/Lookup.h" 24 #include "clang/Sema/SemaInternal.h" 25 #include "llvm/ADT/APInt.h" 26 #include "llvm/ADT/SmallString.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/raw_ostream.h" 29 30 using namespace clang; 31 32 //===----------------------------------------------------------------------===// 33 // Sema Initialization Checking 34 //===----------------------------------------------------------------------===// 35 36 /// Check whether T is compatible with a wide character type (wchar_t, 37 /// char16_t or char32_t). 38 static bool IsWideCharCompatible(QualType T, ASTContext &Context) { 39 if (Context.typesAreCompatible(Context.getWideCharType(), T)) 40 return true; 41 if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) { 42 return Context.typesAreCompatible(Context.Char16Ty, T) || 43 Context.typesAreCompatible(Context.Char32Ty, T); 44 } 45 return false; 46 } 47 48 enum StringInitFailureKind { 49 SIF_None, 50 SIF_NarrowStringIntoWideChar, 51 SIF_WideStringIntoChar, 52 SIF_IncompatWideStringIntoWideChar, 53 SIF_UTF8StringIntoPlainChar, 54 SIF_PlainStringIntoUTF8Char, 55 SIF_Other 56 }; 57 58 /// Check whether the array of type AT can be initialized by the Init 59 /// expression by means of string initialization. Returns SIF_None if so, 60 /// otherwise returns a StringInitFailureKind that describes why the 61 /// initialization would not work. 62 static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT, 63 ASTContext &Context) { 64 if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT)) 65 return SIF_Other; 66 67 // See if this is a string literal or @encode. 68 Init = Init->IgnoreParens(); 69 70 // Handle @encode, which is a narrow string. 71 if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType()) 72 return SIF_None; 73 74 // Otherwise we can only handle string literals. 75 StringLiteral *SL = dyn_cast<StringLiteral>(Init); 76 if (!SL) 77 return SIF_Other; 78 79 const QualType ElemTy = 80 Context.getCanonicalType(AT->getElementType()).getUnqualifiedType(); 81 82 switch (SL->getKind()) { 83 case StringLiteral::UTF8: 84 // char8_t array can be initialized with a UTF-8 string. 85 if (ElemTy->isChar8Type()) 86 return SIF_None; 87 LLVM_FALLTHROUGH; 88 case StringLiteral::Ascii: 89 // char array can be initialized with a narrow string. 90 // Only allow char x[] = "foo"; not char x[] = L"foo"; 91 if (ElemTy->isCharType()) 92 return (SL->getKind() == StringLiteral::UTF8 && 93 Context.getLangOpts().Char8) 94 ? SIF_UTF8StringIntoPlainChar 95 : SIF_None; 96 if (ElemTy->isChar8Type()) 97 return SIF_PlainStringIntoUTF8Char; 98 if (IsWideCharCompatible(ElemTy, Context)) 99 return SIF_NarrowStringIntoWideChar; 100 return SIF_Other; 101 // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15: 102 // "An array with element type compatible with a qualified or unqualified 103 // version of wchar_t, char16_t, or char32_t may be initialized by a wide 104 // string literal with the corresponding encoding prefix (L, u, or U, 105 // respectively), optionally enclosed in braces. 106 case StringLiteral::UTF16: 107 if (Context.typesAreCompatible(Context.Char16Ty, ElemTy)) 108 return SIF_None; 109 if (ElemTy->isCharType() || ElemTy->isChar8Type()) 110 return SIF_WideStringIntoChar; 111 if (IsWideCharCompatible(ElemTy, Context)) 112 return SIF_IncompatWideStringIntoWideChar; 113 return SIF_Other; 114 case StringLiteral::UTF32: 115 if (Context.typesAreCompatible(Context.Char32Ty, ElemTy)) 116 return SIF_None; 117 if (ElemTy->isCharType() || ElemTy->isChar8Type()) 118 return SIF_WideStringIntoChar; 119 if (IsWideCharCompatible(ElemTy, Context)) 120 return SIF_IncompatWideStringIntoWideChar; 121 return SIF_Other; 122 case StringLiteral::Wide: 123 if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy)) 124 return SIF_None; 125 if (ElemTy->isCharType() || ElemTy->isChar8Type()) 126 return SIF_WideStringIntoChar; 127 if (IsWideCharCompatible(ElemTy, Context)) 128 return SIF_IncompatWideStringIntoWideChar; 129 return SIF_Other; 130 } 131 132 llvm_unreachable("missed a StringLiteral kind?"); 133 } 134 135 static StringInitFailureKind IsStringInit(Expr *init, QualType declType, 136 ASTContext &Context) { 137 const ArrayType *arrayType = Context.getAsArrayType(declType); 138 if (!arrayType) 139 return SIF_Other; 140 return IsStringInit(init, arrayType, Context); 141 } 142 143 /// Update the type of a string literal, including any surrounding parentheses, 144 /// to match the type of the object which it is initializing. 145 static void updateStringLiteralType(Expr *E, QualType Ty) { 146 while (true) { 147 E->setType(Ty); 148 E->setValueKind(VK_RValue); 149 if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E)) { 150 break; 151 } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 152 E = PE->getSubExpr(); 153 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 154 assert(UO->getOpcode() == UO_Extension); 155 E = UO->getSubExpr(); 156 } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) { 157 E = GSE->getResultExpr(); 158 } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) { 159 E = CE->getChosenSubExpr(); 160 } else { 161 llvm_unreachable("unexpected expr in string literal init"); 162 } 163 } 164 } 165 166 /// Fix a compound literal initializing an array so it's correctly marked 167 /// as an rvalue. 168 static void updateGNUCompoundLiteralRValue(Expr *E) { 169 while (true) { 170 E->setValueKind(VK_RValue); 171 if (isa<CompoundLiteralExpr>(E)) { 172 break; 173 } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 174 E = PE->getSubExpr(); 175 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 176 assert(UO->getOpcode() == UO_Extension); 177 E = UO->getSubExpr(); 178 } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) { 179 E = GSE->getResultExpr(); 180 } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) { 181 E = CE->getChosenSubExpr(); 182 } else { 183 llvm_unreachable("unexpected expr in array compound literal init"); 184 } 185 } 186 } 187 188 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT, 189 Sema &S) { 190 // Get the length of the string as parsed. 191 auto *ConstantArrayTy = 192 cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe()); 193 uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue(); 194 195 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) { 196 // C99 6.7.8p14. We have an array of character type with unknown size 197 // being initialized to a string literal. 198 llvm::APInt ConstVal(32, StrLength); 199 // Return a new array type (C99 6.7.8p22). 200 DeclT = S.Context.getConstantArrayType(IAT->getElementType(), 201 ConstVal, nullptr, 202 ArrayType::Normal, 0); 203 updateStringLiteralType(Str, DeclT); 204 return; 205 } 206 207 const ConstantArrayType *CAT = cast<ConstantArrayType>(AT); 208 209 // We have an array of character type with known size. However, 210 // the size may be smaller or larger than the string we are initializing. 211 // FIXME: Avoid truncation for 64-bit length strings. 212 if (S.getLangOpts().CPlusPlus) { 213 if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) { 214 // For Pascal strings it's OK to strip off the terminating null character, 215 // so the example below is valid: 216 // 217 // unsigned char a[2] = "\pa"; 218 if (SL->isPascal()) 219 StrLength--; 220 } 221 222 // [dcl.init.string]p2 223 if (StrLength > CAT->getSize().getZExtValue()) 224 S.Diag(Str->getBeginLoc(), 225 diag::err_initializer_string_for_char_array_too_long) 226 << Str->getSourceRange(); 227 } else { 228 // C99 6.7.8p14. 229 if (StrLength-1 > CAT->getSize().getZExtValue()) 230 S.Diag(Str->getBeginLoc(), 231 diag::ext_initializer_string_for_char_array_too_long) 232 << Str->getSourceRange(); 233 } 234 235 // Set the type to the actual size that we are initializing. If we have 236 // something like: 237 // char x[1] = "foo"; 238 // then this will set the string literal's type to char[1]. 239 updateStringLiteralType(Str, DeclT); 240 } 241 242 //===----------------------------------------------------------------------===// 243 // Semantic checking for initializer lists. 244 //===----------------------------------------------------------------------===// 245 246 namespace { 247 248 /// Semantic checking for initializer lists. 249 /// 250 /// The InitListChecker class contains a set of routines that each 251 /// handle the initialization of a certain kind of entity, e.g., 252 /// arrays, vectors, struct/union types, scalars, etc. The 253 /// InitListChecker itself performs a recursive walk of the subobject 254 /// structure of the type to be initialized, while stepping through 255 /// the initializer list one element at a time. The IList and Index 256 /// parameters to each of the Check* routines contain the active 257 /// (syntactic) initializer list and the index into that initializer 258 /// list that represents the current initializer. Each routine is 259 /// responsible for moving that Index forward as it consumes elements. 260 /// 261 /// Each Check* routine also has a StructuredList/StructuredIndex 262 /// arguments, which contains the current "structured" (semantic) 263 /// initializer list and the index into that initializer list where we 264 /// are copying initializers as we map them over to the semantic 265 /// list. Once we have completed our recursive walk of the subobject 266 /// structure, we will have constructed a full semantic initializer 267 /// list. 268 /// 269 /// C99 designators cause changes in the initializer list traversal, 270 /// because they make the initialization "jump" into a specific 271 /// subobject and then continue the initialization from that 272 /// point. CheckDesignatedInitializer() recursively steps into the 273 /// designated subobject and manages backing out the recursion to 274 /// initialize the subobjects after the one designated. 275 /// 276 /// If an initializer list contains any designators, we build a placeholder 277 /// structured list even in 'verify only' mode, so that we can track which 278 /// elements need 'empty' initializtion. 279 class InitListChecker { 280 Sema &SemaRef; 281 bool hadError = false; 282 bool VerifyOnly; // No diagnostics. 283 bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode. 284 bool InOverloadResolution; 285 InitListExpr *FullyStructuredList = nullptr; 286 NoInitExpr *DummyExpr = nullptr; 287 288 NoInitExpr *getDummyInit() { 289 if (!DummyExpr) 290 DummyExpr = new (SemaRef.Context) NoInitExpr(SemaRef.Context.VoidTy); 291 return DummyExpr; 292 } 293 294 void CheckImplicitInitList(const InitializedEntity &Entity, 295 InitListExpr *ParentIList, QualType T, 296 unsigned &Index, InitListExpr *StructuredList, 297 unsigned &StructuredIndex); 298 void CheckExplicitInitList(const InitializedEntity &Entity, 299 InitListExpr *IList, QualType &T, 300 InitListExpr *StructuredList, 301 bool TopLevelObject = false); 302 void CheckListElementTypes(const InitializedEntity &Entity, 303 InitListExpr *IList, QualType &DeclType, 304 bool SubobjectIsDesignatorContext, 305 unsigned &Index, 306 InitListExpr *StructuredList, 307 unsigned &StructuredIndex, 308 bool TopLevelObject = false); 309 void CheckSubElementType(const InitializedEntity &Entity, 310 InitListExpr *IList, QualType ElemType, 311 unsigned &Index, 312 InitListExpr *StructuredList, 313 unsigned &StructuredIndex); 314 void CheckComplexType(const InitializedEntity &Entity, 315 InitListExpr *IList, QualType DeclType, 316 unsigned &Index, 317 InitListExpr *StructuredList, 318 unsigned &StructuredIndex); 319 void CheckScalarType(const InitializedEntity &Entity, 320 InitListExpr *IList, QualType DeclType, 321 unsigned &Index, 322 InitListExpr *StructuredList, 323 unsigned &StructuredIndex); 324 void CheckReferenceType(const InitializedEntity &Entity, 325 InitListExpr *IList, QualType DeclType, 326 unsigned &Index, 327 InitListExpr *StructuredList, 328 unsigned &StructuredIndex); 329 void CheckVectorType(const InitializedEntity &Entity, 330 InitListExpr *IList, QualType DeclType, unsigned &Index, 331 InitListExpr *StructuredList, 332 unsigned &StructuredIndex); 333 void CheckStructUnionTypes(const InitializedEntity &Entity, 334 InitListExpr *IList, QualType DeclType, 335 CXXRecordDecl::base_class_range Bases, 336 RecordDecl::field_iterator Field, 337 bool SubobjectIsDesignatorContext, unsigned &Index, 338 InitListExpr *StructuredList, 339 unsigned &StructuredIndex, 340 bool TopLevelObject = false); 341 void CheckArrayType(const InitializedEntity &Entity, 342 InitListExpr *IList, QualType &DeclType, 343 llvm::APSInt elementIndex, 344 bool SubobjectIsDesignatorContext, unsigned &Index, 345 InitListExpr *StructuredList, 346 unsigned &StructuredIndex); 347 bool CheckDesignatedInitializer(const InitializedEntity &Entity, 348 InitListExpr *IList, DesignatedInitExpr *DIE, 349 unsigned DesigIdx, 350 QualType &CurrentObjectType, 351 RecordDecl::field_iterator *NextField, 352 llvm::APSInt *NextElementIndex, 353 unsigned &Index, 354 InitListExpr *StructuredList, 355 unsigned &StructuredIndex, 356 bool FinishSubobjectInit, 357 bool TopLevelObject); 358 InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, 359 QualType CurrentObjectType, 360 InitListExpr *StructuredList, 361 unsigned StructuredIndex, 362 SourceRange InitRange, 363 bool IsFullyOverwritten = false); 364 void UpdateStructuredListElement(InitListExpr *StructuredList, 365 unsigned &StructuredIndex, 366 Expr *expr); 367 InitListExpr *createInitListExpr(QualType CurrentObjectType, 368 SourceRange InitRange, 369 unsigned ExpectedNumInits); 370 int numArrayElements(QualType DeclType); 371 int numStructUnionElements(QualType DeclType); 372 373 ExprResult PerformEmptyInit(SourceLocation Loc, 374 const InitializedEntity &Entity); 375 376 /// Diagnose that OldInit (or part thereof) has been overridden by NewInit. 377 void diagnoseInitOverride(Expr *OldInit, SourceRange NewInitRange, 378 bool FullyOverwritten = true) { 379 // Overriding an initializer via a designator is valid with C99 designated 380 // initializers, but ill-formed with C++20 designated initializers. 381 unsigned DiagID = SemaRef.getLangOpts().CPlusPlus 382 ? diag::ext_initializer_overrides 383 : diag::warn_initializer_overrides; 384 385 if (InOverloadResolution && SemaRef.getLangOpts().CPlusPlus) { 386 // In overload resolution, we have to strictly enforce the rules, and so 387 // don't allow any overriding of prior initializers. This matters for a 388 // case such as: 389 // 390 // union U { int a, b; }; 391 // struct S { int a, b; }; 392 // void f(U), f(S); 393 // 394 // Here, f({.a = 1, .b = 2}) is required to call the struct overload. For 395 // consistency, we disallow all overriding of prior initializers in 396 // overload resolution, not only overriding of union members. 397 hadError = true; 398 } else if (OldInit->getType().isDestructedType() && !FullyOverwritten) { 399 // If we'll be keeping around the old initializer but overwriting part of 400 // the object it initialized, and that object is not trivially 401 // destructible, this can leak. Don't allow that, not even as an 402 // extension. 403 // 404 // FIXME: It might be reasonable to allow this in cases where the part of 405 // the initializer that we're overriding has trivial destruction. 406 DiagID = diag::err_initializer_overrides_destructed; 407 } else if (!OldInit->getSourceRange().isValid()) { 408 // We need to check on source range validity because the previous 409 // initializer does not have to be an explicit initializer. e.g., 410 // 411 // struct P { int a, b; }; 412 // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 }; 413 // 414 // There is an overwrite taking place because the first braced initializer 415 // list "{ .a = 2 }" already provides value for .p.b (which is zero). 416 // 417 // Such overwrites are harmless, so we don't diagnose them. (Note that in 418 // C++, this cannot be reached unless we've already seen and diagnosed a 419 // different conformance issue, such as a mixture of designated and 420 // non-designated initializers or a multi-level designator.) 421 return; 422 } 423 424 if (!VerifyOnly) { 425 SemaRef.Diag(NewInitRange.getBegin(), DiagID) 426 << NewInitRange << FullyOverwritten << OldInit->getType(); 427 SemaRef.Diag(OldInit->getBeginLoc(), diag::note_previous_initializer) 428 << (OldInit->HasSideEffects(SemaRef.Context) && FullyOverwritten) 429 << OldInit->getSourceRange(); 430 } 431 } 432 433 // Explanation on the "FillWithNoInit" mode: 434 // 435 // Assume we have the following definitions (Case#1): 436 // struct P { char x[6][6]; } xp = { .x[1] = "bar" }; 437 // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' }; 438 // 439 // l.lp.x[1][0..1] should not be filled with implicit initializers because the 440 // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf". 441 // 442 // But if we have (Case#2): 443 // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } }; 444 // 445 // l.lp.x[1][0..1] are implicitly initialized and do not use values from the 446 // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0". 447 // 448 // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes" 449 // in the InitListExpr, the "holes" in Case#1 are filled not with empty 450 // initializers but with special "NoInitExpr" place holders, which tells the 451 // CodeGen not to generate any initializers for these parts. 452 void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base, 453 const InitializedEntity &ParentEntity, 454 InitListExpr *ILE, bool &RequiresSecondPass, 455 bool FillWithNoInit); 456 void FillInEmptyInitForField(unsigned Init, FieldDecl *Field, 457 const InitializedEntity &ParentEntity, 458 InitListExpr *ILE, bool &RequiresSecondPass, 459 bool FillWithNoInit = false); 460 void FillInEmptyInitializations(const InitializedEntity &Entity, 461 InitListExpr *ILE, bool &RequiresSecondPass, 462 InitListExpr *OuterILE, unsigned OuterIndex, 463 bool FillWithNoInit = false); 464 bool CheckFlexibleArrayInit(const InitializedEntity &Entity, 465 Expr *InitExpr, FieldDecl *Field, 466 bool TopLevelObject); 467 void CheckEmptyInitializable(const InitializedEntity &Entity, 468 SourceLocation Loc); 469 470 public: 471 InitListChecker(Sema &S, const InitializedEntity &Entity, InitListExpr *IL, 472 QualType &T, bool VerifyOnly, bool TreatUnavailableAsInvalid, 473 bool InOverloadResolution = false); 474 bool HadError() { return hadError; } 475 476 // Retrieves the fully-structured initializer list used for 477 // semantic analysis and code generation. 478 InitListExpr *getFullyStructuredList() const { return FullyStructuredList; } 479 }; 480 481 } // end anonymous namespace 482 483 ExprResult InitListChecker::PerformEmptyInit(SourceLocation Loc, 484 const InitializedEntity &Entity) { 485 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc, 486 true); 487 MultiExprArg SubInit; 488 Expr *InitExpr; 489 InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc); 490 491 // C++ [dcl.init.aggr]p7: 492 // If there are fewer initializer-clauses in the list than there are 493 // members in the aggregate, then each member not explicitly initialized 494 // ... 495 bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 && 496 Entity.getType()->getBaseElementTypeUnsafe()->isRecordType(); 497 if (EmptyInitList) { 498 // C++1y / DR1070: 499 // shall be initialized [...] from an empty initializer list. 500 // 501 // We apply the resolution of this DR to C++11 but not C++98, since C++98 502 // does not have useful semantics for initialization from an init list. 503 // We treat this as copy-initialization, because aggregate initialization 504 // always performs copy-initialization on its elements. 505 // 506 // Only do this if we're initializing a class type, to avoid filling in 507 // the initializer list where possible. 508 InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context) 509 InitListExpr(SemaRef.Context, Loc, None, Loc); 510 InitExpr->setType(SemaRef.Context.VoidTy); 511 SubInit = InitExpr; 512 Kind = InitializationKind::CreateCopy(Loc, Loc); 513 } else { 514 // C++03: 515 // shall be value-initialized. 516 } 517 518 InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit); 519 // libstdc++4.6 marks the vector default constructor as explicit in 520 // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case. 521 // stlport does so too. Look for std::__debug for libstdc++, and for 522 // std:: for stlport. This is effectively a compiler-side implementation of 523 // LWG2193. 524 if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() == 525 InitializationSequence::FK_ExplicitConstructor) { 526 OverloadCandidateSet::iterator Best; 527 OverloadingResult O = 528 InitSeq.getFailedCandidateSet() 529 .BestViableFunction(SemaRef, Kind.getLocation(), Best); 530 (void)O; 531 assert(O == OR_Success && "Inconsistent overload resolution"); 532 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 533 CXXRecordDecl *R = CtorDecl->getParent(); 534 535 if (CtorDecl->getMinRequiredArguments() == 0 && 536 CtorDecl->isExplicit() && R->getDeclName() && 537 SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) { 538 bool IsInStd = false; 539 for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext()); 540 ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) { 541 if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND)) 542 IsInStd = true; 543 } 544 545 if (IsInStd && llvm::StringSwitch<bool>(R->getName()) 546 .Cases("basic_string", "deque", "forward_list", true) 547 .Cases("list", "map", "multimap", "multiset", true) 548 .Cases("priority_queue", "queue", "set", "stack", true) 549 .Cases("unordered_map", "unordered_set", "vector", true) 550 .Default(false)) { 551 InitSeq.InitializeFrom( 552 SemaRef, Entity, 553 InitializationKind::CreateValue(Loc, Loc, Loc, true), 554 MultiExprArg(), /*TopLevelOfInitList=*/false, 555 TreatUnavailableAsInvalid); 556 // Emit a warning for this. System header warnings aren't shown 557 // by default, but people working on system headers should see it. 558 if (!VerifyOnly) { 559 SemaRef.Diag(CtorDecl->getLocation(), 560 diag::warn_invalid_initializer_from_system_header); 561 if (Entity.getKind() == InitializedEntity::EK_Member) 562 SemaRef.Diag(Entity.getDecl()->getLocation(), 563 diag::note_used_in_initialization_here); 564 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) 565 SemaRef.Diag(Loc, diag::note_used_in_initialization_here); 566 } 567 } 568 } 569 } 570 if (!InitSeq) { 571 if (!VerifyOnly) { 572 InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit); 573 if (Entity.getKind() == InitializedEntity::EK_Member) 574 SemaRef.Diag(Entity.getDecl()->getLocation(), 575 diag::note_in_omitted_aggregate_initializer) 576 << /*field*/1 << Entity.getDecl(); 577 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) { 578 bool IsTrailingArrayNewMember = 579 Entity.getParent() && 580 Entity.getParent()->isVariableLengthArrayNew(); 581 SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer) 582 << (IsTrailingArrayNewMember ? 2 : /*array element*/0) 583 << Entity.getElementIndex(); 584 } 585 } 586 hadError = true; 587 return ExprError(); 588 } 589 590 return VerifyOnly ? ExprResult() 591 : InitSeq.Perform(SemaRef, Entity, Kind, SubInit); 592 } 593 594 void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity, 595 SourceLocation Loc) { 596 // If we're building a fully-structured list, we'll check this at the end 597 // once we know which elements are actually initialized. Otherwise, we know 598 // that there are no designators so we can just check now. 599 if (FullyStructuredList) 600 return; 601 PerformEmptyInit(Loc, Entity); 602 } 603 604 void InitListChecker::FillInEmptyInitForBase( 605 unsigned Init, const CXXBaseSpecifier &Base, 606 const InitializedEntity &ParentEntity, InitListExpr *ILE, 607 bool &RequiresSecondPass, bool FillWithNoInit) { 608 InitializedEntity BaseEntity = InitializedEntity::InitializeBase( 609 SemaRef.Context, &Base, false, &ParentEntity); 610 611 if (Init >= ILE->getNumInits() || !ILE->getInit(Init)) { 612 ExprResult BaseInit = FillWithNoInit 613 ? new (SemaRef.Context) NoInitExpr(Base.getType()) 614 : PerformEmptyInit(ILE->getEndLoc(), BaseEntity); 615 if (BaseInit.isInvalid()) { 616 hadError = true; 617 return; 618 } 619 620 if (!VerifyOnly) { 621 assert(Init < ILE->getNumInits() && "should have been expanded"); 622 ILE->setInit(Init, BaseInit.getAs<Expr>()); 623 } 624 } else if (InitListExpr *InnerILE = 625 dyn_cast<InitListExpr>(ILE->getInit(Init))) { 626 FillInEmptyInitializations(BaseEntity, InnerILE, RequiresSecondPass, 627 ILE, Init, FillWithNoInit); 628 } else if (DesignatedInitUpdateExpr *InnerDIUE = 629 dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) { 630 FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(), 631 RequiresSecondPass, ILE, Init, 632 /*FillWithNoInit =*/true); 633 } 634 } 635 636 void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field, 637 const InitializedEntity &ParentEntity, 638 InitListExpr *ILE, 639 bool &RequiresSecondPass, 640 bool FillWithNoInit) { 641 SourceLocation Loc = ILE->getEndLoc(); 642 unsigned NumInits = ILE->getNumInits(); 643 InitializedEntity MemberEntity 644 = InitializedEntity::InitializeMember(Field, &ParentEntity); 645 646 if (Init >= NumInits || !ILE->getInit(Init)) { 647 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) 648 if (!RType->getDecl()->isUnion()) 649 assert((Init < NumInits || VerifyOnly) && 650 "This ILE should have been expanded"); 651 652 if (FillWithNoInit) { 653 assert(!VerifyOnly && "should not fill with no-init in verify-only mode"); 654 Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType()); 655 if (Init < NumInits) 656 ILE->setInit(Init, Filler); 657 else 658 ILE->updateInit(SemaRef.Context, Init, Filler); 659 return; 660 } 661 // C++1y [dcl.init.aggr]p7: 662 // If there are fewer initializer-clauses in the list than there are 663 // members in the aggregate, then each member not explicitly initialized 664 // shall be initialized from its brace-or-equal-initializer [...] 665 if (Field->hasInClassInitializer()) { 666 if (VerifyOnly) 667 return; 668 669 ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field); 670 if (DIE.isInvalid()) { 671 hadError = true; 672 return; 673 } 674 SemaRef.checkInitializerLifetime(MemberEntity, DIE.get()); 675 if (Init < NumInits) 676 ILE->setInit(Init, DIE.get()); 677 else { 678 ILE->updateInit(SemaRef.Context, Init, DIE.get()); 679 RequiresSecondPass = true; 680 } 681 return; 682 } 683 684 if (Field->getType()->isReferenceType()) { 685 if (!VerifyOnly) { 686 // C++ [dcl.init.aggr]p9: 687 // If an incomplete or empty initializer-list leaves a 688 // member of reference type uninitialized, the program is 689 // ill-formed. 690 SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized) 691 << Field->getType() 692 << ILE->getSyntacticForm()->getSourceRange(); 693 SemaRef.Diag(Field->getLocation(), 694 diag::note_uninit_reference_member); 695 } 696 hadError = true; 697 return; 698 } 699 700 ExprResult MemberInit = PerformEmptyInit(Loc, MemberEntity); 701 if (MemberInit.isInvalid()) { 702 hadError = true; 703 return; 704 } 705 706 if (hadError || VerifyOnly) { 707 // Do nothing 708 } else if (Init < NumInits) { 709 ILE->setInit(Init, MemberInit.getAs<Expr>()); 710 } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) { 711 // Empty initialization requires a constructor call, so 712 // extend the initializer list to include the constructor 713 // call and make a note that we'll need to take another pass 714 // through the initializer list. 715 ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>()); 716 RequiresSecondPass = true; 717 } 718 } else if (InitListExpr *InnerILE 719 = dyn_cast<InitListExpr>(ILE->getInit(Init))) { 720 FillInEmptyInitializations(MemberEntity, InnerILE, 721 RequiresSecondPass, ILE, Init, FillWithNoInit); 722 } else if (DesignatedInitUpdateExpr *InnerDIUE = 723 dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) { 724 FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(), 725 RequiresSecondPass, ILE, Init, 726 /*FillWithNoInit =*/true); 727 } 728 } 729 730 /// Recursively replaces NULL values within the given initializer list 731 /// with expressions that perform value-initialization of the 732 /// appropriate type, and finish off the InitListExpr formation. 733 void 734 InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity, 735 InitListExpr *ILE, 736 bool &RequiresSecondPass, 737 InitListExpr *OuterILE, 738 unsigned OuterIndex, 739 bool FillWithNoInit) { 740 assert((ILE->getType() != SemaRef.Context.VoidTy) && 741 "Should not have void type"); 742 743 // We don't need to do any checks when just filling NoInitExprs; that can't 744 // fail. 745 if (FillWithNoInit && VerifyOnly) 746 return; 747 748 // If this is a nested initializer list, we might have changed its contents 749 // (and therefore some of its properties, such as instantiation-dependence) 750 // while filling it in. Inform the outer initializer list so that its state 751 // can be updated to match. 752 // FIXME: We should fully build the inner initializers before constructing 753 // the outer InitListExpr instead of mutating AST nodes after they have 754 // been used as subexpressions of other nodes. 755 struct UpdateOuterILEWithUpdatedInit { 756 InitListExpr *Outer; 757 unsigned OuterIndex; 758 ~UpdateOuterILEWithUpdatedInit() { 759 if (Outer) 760 Outer->setInit(OuterIndex, Outer->getInit(OuterIndex)); 761 } 762 } UpdateOuterRAII = {OuterILE, OuterIndex}; 763 764 // A transparent ILE is not performing aggregate initialization and should 765 // not be filled in. 766 if (ILE->isTransparent()) 767 return; 768 769 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 770 const RecordDecl *RDecl = RType->getDecl(); 771 if (RDecl->isUnion() && ILE->getInitializedFieldInUnion()) 772 FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(), 773 Entity, ILE, RequiresSecondPass, FillWithNoInit); 774 else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) && 775 cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) { 776 for (auto *Field : RDecl->fields()) { 777 if (Field->hasInClassInitializer()) { 778 FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass, 779 FillWithNoInit); 780 break; 781 } 782 } 783 } else { 784 // The fields beyond ILE->getNumInits() are default initialized, so in 785 // order to leave them uninitialized, the ILE is expanded and the extra 786 // fields are then filled with NoInitExpr. 787 unsigned NumElems = numStructUnionElements(ILE->getType()); 788 if (RDecl->hasFlexibleArrayMember()) 789 ++NumElems; 790 if (!VerifyOnly && ILE->getNumInits() < NumElems) 791 ILE->resizeInits(SemaRef.Context, NumElems); 792 793 unsigned Init = 0; 794 795 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) { 796 for (auto &Base : CXXRD->bases()) { 797 if (hadError) 798 return; 799 800 FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass, 801 FillWithNoInit); 802 ++Init; 803 } 804 } 805 806 for (auto *Field : RDecl->fields()) { 807 if (Field->isUnnamedBitfield()) 808 continue; 809 810 if (hadError) 811 return; 812 813 FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass, 814 FillWithNoInit); 815 if (hadError) 816 return; 817 818 ++Init; 819 820 // Only look at the first initialization of a union. 821 if (RDecl->isUnion()) 822 break; 823 } 824 } 825 826 return; 827 } 828 829 QualType ElementType; 830 831 InitializedEntity ElementEntity = Entity; 832 unsigned NumInits = ILE->getNumInits(); 833 unsigned NumElements = NumInits; 834 if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) { 835 ElementType = AType->getElementType(); 836 if (const auto *CAType = dyn_cast<ConstantArrayType>(AType)) 837 NumElements = CAType->getSize().getZExtValue(); 838 // For an array new with an unknown bound, ask for one additional element 839 // in order to populate the array filler. 840 if (Entity.isVariableLengthArrayNew()) 841 ++NumElements; 842 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, 843 0, Entity); 844 } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) { 845 ElementType = VType->getElementType(); 846 NumElements = VType->getNumElements(); 847 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, 848 0, Entity); 849 } else 850 ElementType = ILE->getType(); 851 852 bool SkipEmptyInitChecks = false; 853 for (unsigned Init = 0; Init != NumElements; ++Init) { 854 if (hadError) 855 return; 856 857 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement || 858 ElementEntity.getKind() == InitializedEntity::EK_VectorElement) 859 ElementEntity.setElementIndex(Init); 860 861 if (Init >= NumInits && (ILE->hasArrayFiller() || SkipEmptyInitChecks)) 862 return; 863 864 Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr); 865 if (!InitExpr && Init < NumInits && ILE->hasArrayFiller()) 866 ILE->setInit(Init, ILE->getArrayFiller()); 867 else if (!InitExpr && !ILE->hasArrayFiller()) { 868 // In VerifyOnly mode, there's no point performing empty initialization 869 // more than once. 870 if (SkipEmptyInitChecks) 871 continue; 872 873 Expr *Filler = nullptr; 874 875 if (FillWithNoInit) 876 Filler = new (SemaRef.Context) NoInitExpr(ElementType); 877 else { 878 ExprResult ElementInit = 879 PerformEmptyInit(ILE->getEndLoc(), ElementEntity); 880 if (ElementInit.isInvalid()) { 881 hadError = true; 882 return; 883 } 884 885 Filler = ElementInit.getAs<Expr>(); 886 } 887 888 if (hadError) { 889 // Do nothing 890 } else if (VerifyOnly) { 891 SkipEmptyInitChecks = true; 892 } else if (Init < NumInits) { 893 // For arrays, just set the expression used for value-initialization 894 // of the "holes" in the array. 895 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) 896 ILE->setArrayFiller(Filler); 897 else 898 ILE->setInit(Init, Filler); 899 } else { 900 // For arrays, just set the expression used for value-initialization 901 // of the rest of elements and exit. 902 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) { 903 ILE->setArrayFiller(Filler); 904 return; 905 } 906 907 if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) { 908 // Empty initialization requires a constructor call, so 909 // extend the initializer list to include the constructor 910 // call and make a note that we'll need to take another pass 911 // through the initializer list. 912 ILE->updateInit(SemaRef.Context, Init, Filler); 913 RequiresSecondPass = true; 914 } 915 } 916 } else if (InitListExpr *InnerILE 917 = dyn_cast_or_null<InitListExpr>(InitExpr)) { 918 FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass, 919 ILE, Init, FillWithNoInit); 920 } else if (DesignatedInitUpdateExpr *InnerDIUE = 921 dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr)) { 922 FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(), 923 RequiresSecondPass, ILE, Init, 924 /*FillWithNoInit =*/true); 925 } 926 } 927 } 928 929 static bool hasAnyDesignatedInits(const InitListExpr *IL) { 930 for (const Stmt *Init : *IL) 931 if (Init && isa<DesignatedInitExpr>(Init)) 932 return true; 933 return false; 934 } 935 936 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity, 937 InitListExpr *IL, QualType &T, bool VerifyOnly, 938 bool TreatUnavailableAsInvalid, 939 bool InOverloadResolution) 940 : SemaRef(S), VerifyOnly(VerifyOnly), 941 TreatUnavailableAsInvalid(TreatUnavailableAsInvalid), 942 InOverloadResolution(InOverloadResolution) { 943 if (!VerifyOnly || hasAnyDesignatedInits(IL)) { 944 FullyStructuredList = 945 createInitListExpr(T, IL->getSourceRange(), IL->getNumInits()); 946 947 // FIXME: Check that IL isn't already the semantic form of some other 948 // InitListExpr. If it is, we'd create a broken AST. 949 if (!VerifyOnly) 950 FullyStructuredList->setSyntacticForm(IL); 951 } 952 953 CheckExplicitInitList(Entity, IL, T, FullyStructuredList, 954 /*TopLevelObject=*/true); 955 956 if (!hadError && FullyStructuredList) { 957 bool RequiresSecondPass = false; 958 FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass, 959 /*OuterILE=*/nullptr, /*OuterIndex=*/0); 960 if (RequiresSecondPass && !hadError) 961 FillInEmptyInitializations(Entity, FullyStructuredList, 962 RequiresSecondPass, nullptr, 0); 963 } 964 } 965 966 int InitListChecker::numArrayElements(QualType DeclType) { 967 // FIXME: use a proper constant 968 int maxElements = 0x7FFFFFFF; 969 if (const ConstantArrayType *CAT = 970 SemaRef.Context.getAsConstantArrayType(DeclType)) { 971 maxElements = static_cast<int>(CAT->getSize().getZExtValue()); 972 } 973 return maxElements; 974 } 975 976 int InitListChecker::numStructUnionElements(QualType DeclType) { 977 RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl(); 978 int InitializableMembers = 0; 979 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl)) 980 InitializableMembers += CXXRD->getNumBases(); 981 for (const auto *Field : structDecl->fields()) 982 if (!Field->isUnnamedBitfield()) 983 ++InitializableMembers; 984 985 if (structDecl->isUnion()) 986 return std::min(InitializableMembers, 1); 987 return InitializableMembers - structDecl->hasFlexibleArrayMember(); 988 } 989 990 /// Determine whether Entity is an entity for which it is idiomatic to elide 991 /// the braces in aggregate initialization. 992 static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) { 993 // Recursive initialization of the one and only field within an aggregate 994 // class is considered idiomatic. This case arises in particular for 995 // initialization of std::array, where the C++ standard suggests the idiom of 996 // 997 // std::array<T, N> arr = {1, 2, 3}; 998 // 999 // (where std::array is an aggregate struct containing a single array field. 1000 1001 // FIXME: Should aggregate initialization of a struct with a single 1002 // base class and no members also suppress the warning? 1003 if (Entity.getKind() != InitializedEntity::EK_Member || !Entity.getParent()) 1004 return false; 1005 1006 auto *ParentRD = 1007 Entity.getParent()->getType()->castAs<RecordType>()->getDecl(); 1008 if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(ParentRD)) 1009 if (CXXRD->getNumBases()) 1010 return false; 1011 1012 auto FieldIt = ParentRD->field_begin(); 1013 assert(FieldIt != ParentRD->field_end() && 1014 "no fields but have initializer for member?"); 1015 return ++FieldIt == ParentRD->field_end(); 1016 } 1017 1018 /// Check whether the range of the initializer \p ParentIList from element 1019 /// \p Index onwards can be used to initialize an object of type \p T. Update 1020 /// \p Index to indicate how many elements of the list were consumed. 1021 /// 1022 /// This also fills in \p StructuredList, from element \p StructuredIndex 1023 /// onwards, with the fully-braced, desugared form of the initialization. 1024 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity, 1025 InitListExpr *ParentIList, 1026 QualType T, unsigned &Index, 1027 InitListExpr *StructuredList, 1028 unsigned &StructuredIndex) { 1029 int maxElements = 0; 1030 1031 if (T->isArrayType()) 1032 maxElements = numArrayElements(T); 1033 else if (T->isRecordType()) 1034 maxElements = numStructUnionElements(T); 1035 else if (T->isVectorType()) 1036 maxElements = T->castAs<VectorType>()->getNumElements(); 1037 else 1038 llvm_unreachable("CheckImplicitInitList(): Illegal type"); 1039 1040 if (maxElements == 0) { 1041 if (!VerifyOnly) 1042 SemaRef.Diag(ParentIList->getInit(Index)->getBeginLoc(), 1043 diag::err_implicit_empty_initializer); 1044 ++Index; 1045 hadError = true; 1046 return; 1047 } 1048 1049 // Build a structured initializer list corresponding to this subobject. 1050 InitListExpr *StructuredSubobjectInitList = getStructuredSubobjectInit( 1051 ParentIList, Index, T, StructuredList, StructuredIndex, 1052 SourceRange(ParentIList->getInit(Index)->getBeginLoc(), 1053 ParentIList->getSourceRange().getEnd())); 1054 unsigned StructuredSubobjectInitIndex = 0; 1055 1056 // Check the element types and build the structural subobject. 1057 unsigned StartIndex = Index; 1058 CheckListElementTypes(Entity, ParentIList, T, 1059 /*SubobjectIsDesignatorContext=*/false, Index, 1060 StructuredSubobjectInitList, 1061 StructuredSubobjectInitIndex); 1062 1063 if (StructuredSubobjectInitList) { 1064 StructuredSubobjectInitList->setType(T); 1065 1066 unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1); 1067 // Update the structured sub-object initializer so that it's ending 1068 // range corresponds with the end of the last initializer it used. 1069 if (EndIndex < ParentIList->getNumInits() && 1070 ParentIList->getInit(EndIndex)) { 1071 SourceLocation EndLoc 1072 = ParentIList->getInit(EndIndex)->getSourceRange().getEnd(); 1073 StructuredSubobjectInitList->setRBraceLoc(EndLoc); 1074 } 1075 1076 // Complain about missing braces. 1077 if (!VerifyOnly && (T->isArrayType() || T->isRecordType()) && 1078 !ParentIList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) && 1079 !isIdiomaticBraceElisionEntity(Entity)) { 1080 SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(), 1081 diag::warn_missing_braces) 1082 << StructuredSubobjectInitList->getSourceRange() 1083 << FixItHint::CreateInsertion( 1084 StructuredSubobjectInitList->getBeginLoc(), "{") 1085 << FixItHint::CreateInsertion( 1086 SemaRef.getLocForEndOfToken( 1087 StructuredSubobjectInitList->getEndLoc()), 1088 "}"); 1089 } 1090 1091 // Warn if this type won't be an aggregate in future versions of C++. 1092 auto *CXXRD = T->getAsCXXRecordDecl(); 1093 if (!VerifyOnly && CXXRD && CXXRD->hasUserDeclaredConstructor()) { 1094 SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(), 1095 diag::warn_cxx2a_compat_aggregate_init_with_ctors) 1096 << StructuredSubobjectInitList->getSourceRange() << T; 1097 } 1098 } 1099 } 1100 1101 /// Warn that \p Entity was of scalar type and was initialized by a 1102 /// single-element braced initializer list. 1103 static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity, 1104 SourceRange Braces) { 1105 // Don't warn during template instantiation. If the initialization was 1106 // non-dependent, we warned during the initial parse; otherwise, the 1107 // type might not be scalar in some uses of the template. 1108 if (S.inTemplateInstantiation()) 1109 return; 1110 1111 unsigned DiagID = 0; 1112 1113 switch (Entity.getKind()) { 1114 case InitializedEntity::EK_VectorElement: 1115 case InitializedEntity::EK_ComplexElement: 1116 case InitializedEntity::EK_ArrayElement: 1117 case InitializedEntity::EK_Parameter: 1118 case InitializedEntity::EK_Parameter_CF_Audited: 1119 case InitializedEntity::EK_Result: 1120 // Extra braces here are suspicious. 1121 DiagID = diag::warn_braces_around_scalar_init; 1122 break; 1123 1124 case InitializedEntity::EK_Member: 1125 // Warn on aggregate initialization but not on ctor init list or 1126 // default member initializer. 1127 if (Entity.getParent()) 1128 DiagID = diag::warn_braces_around_scalar_init; 1129 break; 1130 1131 case InitializedEntity::EK_Variable: 1132 case InitializedEntity::EK_LambdaCapture: 1133 // No warning, might be direct-list-initialization. 1134 // FIXME: Should we warn for copy-list-initialization in these cases? 1135 break; 1136 1137 case InitializedEntity::EK_New: 1138 case InitializedEntity::EK_Temporary: 1139 case InitializedEntity::EK_CompoundLiteralInit: 1140 // No warning, braces are part of the syntax of the underlying construct. 1141 break; 1142 1143 case InitializedEntity::EK_RelatedResult: 1144 // No warning, we already warned when initializing the result. 1145 break; 1146 1147 case InitializedEntity::EK_Exception: 1148 case InitializedEntity::EK_Base: 1149 case InitializedEntity::EK_Delegating: 1150 case InitializedEntity::EK_BlockElement: 1151 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 1152 case InitializedEntity::EK_Binding: 1153 case InitializedEntity::EK_StmtExprResult: 1154 llvm_unreachable("unexpected braced scalar init"); 1155 } 1156 1157 if (DiagID) { 1158 S.Diag(Braces.getBegin(), DiagID) 1159 << Braces 1160 << FixItHint::CreateRemoval(Braces.getBegin()) 1161 << FixItHint::CreateRemoval(Braces.getEnd()); 1162 } 1163 } 1164 1165 /// Check whether the initializer \p IList (that was written with explicit 1166 /// braces) can be used to initialize an object of type \p T. 1167 /// 1168 /// This also fills in \p StructuredList with the fully-braced, desugared 1169 /// form of the initialization. 1170 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity, 1171 InitListExpr *IList, QualType &T, 1172 InitListExpr *StructuredList, 1173 bool TopLevelObject) { 1174 unsigned Index = 0, StructuredIndex = 0; 1175 CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true, 1176 Index, StructuredList, StructuredIndex, TopLevelObject); 1177 if (StructuredList) { 1178 QualType ExprTy = T; 1179 if (!ExprTy->isArrayType()) 1180 ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context); 1181 if (!VerifyOnly) 1182 IList->setType(ExprTy); 1183 StructuredList->setType(ExprTy); 1184 } 1185 if (hadError) 1186 return; 1187 1188 // Don't complain for incomplete types, since we'll get an error elsewhere. 1189 if (Index < IList->getNumInits() && !T->isIncompleteType()) { 1190 // We have leftover initializers 1191 bool ExtraInitsIsError = SemaRef.getLangOpts().CPlusPlus || 1192 (SemaRef.getLangOpts().OpenCL && T->isVectorType()); 1193 hadError = ExtraInitsIsError; 1194 if (VerifyOnly) { 1195 return; 1196 } else if (StructuredIndex == 1 && 1197 IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) == 1198 SIF_None) { 1199 unsigned DK = 1200 ExtraInitsIsError 1201 ? diag::err_excess_initializers_in_char_array_initializer 1202 : diag::ext_excess_initializers_in_char_array_initializer; 1203 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK) 1204 << IList->getInit(Index)->getSourceRange(); 1205 } else { 1206 int initKind = T->isArrayType() ? 0 : 1207 T->isVectorType() ? 1 : 1208 T->isScalarType() ? 2 : 1209 T->isUnionType() ? 3 : 1210 4; 1211 1212 unsigned DK = ExtraInitsIsError ? diag::err_excess_initializers 1213 : diag::ext_excess_initializers; 1214 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK) 1215 << initKind << IList->getInit(Index)->getSourceRange(); 1216 } 1217 } 1218 1219 if (!VerifyOnly) { 1220 if (T->isScalarType() && IList->getNumInits() == 1 && 1221 !isa<InitListExpr>(IList->getInit(0))) 1222 warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange()); 1223 1224 // Warn if this is a class type that won't be an aggregate in future 1225 // versions of C++. 1226 auto *CXXRD = T->getAsCXXRecordDecl(); 1227 if (CXXRD && CXXRD->hasUserDeclaredConstructor()) { 1228 // Don't warn if there's an equivalent default constructor that would be 1229 // used instead. 1230 bool HasEquivCtor = false; 1231 if (IList->getNumInits() == 0) { 1232 auto *CD = SemaRef.LookupDefaultConstructor(CXXRD); 1233 HasEquivCtor = CD && !CD->isDeleted(); 1234 } 1235 1236 if (!HasEquivCtor) { 1237 SemaRef.Diag(IList->getBeginLoc(), 1238 diag::warn_cxx2a_compat_aggregate_init_with_ctors) 1239 << IList->getSourceRange() << T; 1240 } 1241 } 1242 } 1243 } 1244 1245 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity, 1246 InitListExpr *IList, 1247 QualType &DeclType, 1248 bool SubobjectIsDesignatorContext, 1249 unsigned &Index, 1250 InitListExpr *StructuredList, 1251 unsigned &StructuredIndex, 1252 bool TopLevelObject) { 1253 if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) { 1254 // Explicitly braced initializer for complex type can be real+imaginary 1255 // parts. 1256 CheckComplexType(Entity, IList, DeclType, Index, 1257 StructuredList, StructuredIndex); 1258 } else if (DeclType->isScalarType()) { 1259 CheckScalarType(Entity, IList, DeclType, Index, 1260 StructuredList, StructuredIndex); 1261 } else if (DeclType->isVectorType()) { 1262 CheckVectorType(Entity, IList, DeclType, Index, 1263 StructuredList, StructuredIndex); 1264 } else if (DeclType->isRecordType()) { 1265 assert(DeclType->isAggregateType() && 1266 "non-aggregate records should be handed in CheckSubElementType"); 1267 RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl(); 1268 auto Bases = 1269 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(), 1270 CXXRecordDecl::base_class_iterator()); 1271 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1272 Bases = CXXRD->bases(); 1273 CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(), 1274 SubobjectIsDesignatorContext, Index, StructuredList, 1275 StructuredIndex, TopLevelObject); 1276 } else if (DeclType->isArrayType()) { 1277 llvm::APSInt Zero( 1278 SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()), 1279 false); 1280 CheckArrayType(Entity, IList, DeclType, Zero, 1281 SubobjectIsDesignatorContext, Index, 1282 StructuredList, StructuredIndex); 1283 } else if (DeclType->isVoidType() || DeclType->isFunctionType()) { 1284 // This type is invalid, issue a diagnostic. 1285 ++Index; 1286 if (!VerifyOnly) 1287 SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type) 1288 << DeclType; 1289 hadError = true; 1290 } else if (DeclType->isReferenceType()) { 1291 CheckReferenceType(Entity, IList, DeclType, Index, 1292 StructuredList, StructuredIndex); 1293 } else if (DeclType->isObjCObjectType()) { 1294 if (!VerifyOnly) 1295 SemaRef.Diag(IList->getBeginLoc(), diag::err_init_objc_class) << DeclType; 1296 hadError = true; 1297 } else if (DeclType->isOCLIntelSubgroupAVCType()) { 1298 // Checks for scalar type are sufficient for these types too. 1299 CheckScalarType(Entity, IList, DeclType, Index, StructuredList, 1300 StructuredIndex); 1301 } else { 1302 if (!VerifyOnly) 1303 SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type) 1304 << DeclType; 1305 hadError = true; 1306 } 1307 } 1308 1309 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity, 1310 InitListExpr *IList, 1311 QualType ElemType, 1312 unsigned &Index, 1313 InitListExpr *StructuredList, 1314 unsigned &StructuredIndex) { 1315 Expr *expr = IList->getInit(Index); 1316 1317 if (ElemType->isReferenceType()) 1318 return CheckReferenceType(Entity, IList, ElemType, Index, 1319 StructuredList, StructuredIndex); 1320 1321 if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) { 1322 if (SubInitList->getNumInits() == 1 && 1323 IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) == 1324 SIF_None) { 1325 // FIXME: It would be more faithful and no less correct to include an 1326 // InitListExpr in the semantic form of the initializer list in this case. 1327 expr = SubInitList->getInit(0); 1328 } 1329 // Nested aggregate initialization and C++ initialization are handled later. 1330 } else if (isa<ImplicitValueInitExpr>(expr)) { 1331 // This happens during template instantiation when we see an InitListExpr 1332 // that we've already checked once. 1333 assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) && 1334 "found implicit initialization for the wrong type"); 1335 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1336 ++Index; 1337 return; 1338 } 1339 1340 if (SemaRef.getLangOpts().CPlusPlus || isa<InitListExpr>(expr)) { 1341 // C++ [dcl.init.aggr]p2: 1342 // Each member is copy-initialized from the corresponding 1343 // initializer-clause. 1344 1345 // FIXME: Better EqualLoc? 1346 InitializationKind Kind = 1347 InitializationKind::CreateCopy(expr->getBeginLoc(), SourceLocation()); 1348 1349 // Vector elements can be initialized from other vectors in which case 1350 // we need initialization entity with a type of a vector (and not a vector 1351 // element!) initializing multiple vector elements. 1352 auto TmpEntity = 1353 (ElemType->isExtVectorType() && !Entity.getType()->isExtVectorType()) 1354 ? InitializedEntity::InitializeTemporary(ElemType) 1355 : Entity; 1356 1357 InitializationSequence Seq(SemaRef, TmpEntity, Kind, expr, 1358 /*TopLevelOfInitList*/ true); 1359 1360 // C++14 [dcl.init.aggr]p13: 1361 // If the assignment-expression can initialize a member, the member is 1362 // initialized. Otherwise [...] brace elision is assumed 1363 // 1364 // Brace elision is never performed if the element is not an 1365 // assignment-expression. 1366 if (Seq || isa<InitListExpr>(expr)) { 1367 if (!VerifyOnly) { 1368 ExprResult Result = Seq.Perform(SemaRef, TmpEntity, Kind, expr); 1369 if (Result.isInvalid()) 1370 hadError = true; 1371 1372 UpdateStructuredListElement(StructuredList, StructuredIndex, 1373 Result.getAs<Expr>()); 1374 } else if (!Seq) { 1375 hadError = true; 1376 } else if (StructuredList) { 1377 UpdateStructuredListElement(StructuredList, StructuredIndex, 1378 getDummyInit()); 1379 } 1380 ++Index; 1381 return; 1382 } 1383 1384 // Fall through for subaggregate initialization 1385 } else if (ElemType->isScalarType() || ElemType->isAtomicType()) { 1386 // FIXME: Need to handle atomic aggregate types with implicit init lists. 1387 return CheckScalarType(Entity, IList, ElemType, Index, 1388 StructuredList, StructuredIndex); 1389 } else if (const ArrayType *arrayType = 1390 SemaRef.Context.getAsArrayType(ElemType)) { 1391 // arrayType can be incomplete if we're initializing a flexible 1392 // array member. There's nothing we can do with the completed 1393 // type here, though. 1394 1395 if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) { 1396 // FIXME: Should we do this checking in verify-only mode? 1397 if (!VerifyOnly) 1398 CheckStringInit(expr, ElemType, arrayType, SemaRef); 1399 if (StructuredList) 1400 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1401 ++Index; 1402 return; 1403 } 1404 1405 // Fall through for subaggregate initialization. 1406 1407 } else { 1408 assert((ElemType->isRecordType() || ElemType->isVectorType() || 1409 ElemType->isOpenCLSpecificType()) && "Unexpected type"); 1410 1411 // C99 6.7.8p13: 1412 // 1413 // The initializer for a structure or union object that has 1414 // automatic storage duration shall be either an initializer 1415 // list as described below, or a single expression that has 1416 // compatible structure or union type. In the latter case, the 1417 // initial value of the object, including unnamed members, is 1418 // that of the expression. 1419 ExprResult ExprRes = expr; 1420 if (SemaRef.CheckSingleAssignmentConstraints( 1421 ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) { 1422 if (ExprRes.isInvalid()) 1423 hadError = true; 1424 else { 1425 ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get()); 1426 if (ExprRes.isInvalid()) 1427 hadError = true; 1428 } 1429 UpdateStructuredListElement(StructuredList, StructuredIndex, 1430 ExprRes.getAs<Expr>()); 1431 ++Index; 1432 return; 1433 } 1434 ExprRes.get(); 1435 // Fall through for subaggregate initialization 1436 } 1437 1438 // C++ [dcl.init.aggr]p12: 1439 // 1440 // [...] Otherwise, if the member is itself a non-empty 1441 // subaggregate, brace elision is assumed and the initializer is 1442 // considered for the initialization of the first member of 1443 // the subaggregate. 1444 // OpenCL vector initializer is handled elsewhere. 1445 if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) || 1446 ElemType->isAggregateType()) { 1447 CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList, 1448 StructuredIndex); 1449 ++StructuredIndex; 1450 } else { 1451 if (!VerifyOnly) { 1452 // We cannot initialize this element, so let PerformCopyInitialization 1453 // produce the appropriate diagnostic. We already checked that this 1454 // initialization will fail. 1455 ExprResult Copy = 1456 SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr, 1457 /*TopLevelOfInitList=*/true); 1458 (void)Copy; 1459 assert(Copy.isInvalid() && 1460 "expected non-aggregate initialization to fail"); 1461 } 1462 hadError = true; 1463 ++Index; 1464 ++StructuredIndex; 1465 } 1466 } 1467 1468 void InitListChecker::CheckComplexType(const InitializedEntity &Entity, 1469 InitListExpr *IList, QualType DeclType, 1470 unsigned &Index, 1471 InitListExpr *StructuredList, 1472 unsigned &StructuredIndex) { 1473 assert(Index == 0 && "Index in explicit init list must be zero"); 1474 1475 // As an extension, clang supports complex initializers, which initialize 1476 // a complex number component-wise. When an explicit initializer list for 1477 // a complex number contains two two initializers, this extension kicks in: 1478 // it exepcts the initializer list to contain two elements convertible to 1479 // the element type of the complex type. The first element initializes 1480 // the real part, and the second element intitializes the imaginary part. 1481 1482 if (IList->getNumInits() != 2) 1483 return CheckScalarType(Entity, IList, DeclType, Index, StructuredList, 1484 StructuredIndex); 1485 1486 // This is an extension in C. (The builtin _Complex type does not exist 1487 // in the C++ standard.) 1488 if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly) 1489 SemaRef.Diag(IList->getBeginLoc(), diag::ext_complex_component_init) 1490 << IList->getSourceRange(); 1491 1492 // Initialize the complex number. 1493 QualType elementType = DeclType->castAs<ComplexType>()->getElementType(); 1494 InitializedEntity ElementEntity = 1495 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1496 1497 for (unsigned i = 0; i < 2; ++i) { 1498 ElementEntity.setElementIndex(Index); 1499 CheckSubElementType(ElementEntity, IList, elementType, Index, 1500 StructuredList, StructuredIndex); 1501 } 1502 } 1503 1504 void InitListChecker::CheckScalarType(const InitializedEntity &Entity, 1505 InitListExpr *IList, QualType DeclType, 1506 unsigned &Index, 1507 InitListExpr *StructuredList, 1508 unsigned &StructuredIndex) { 1509 if (Index >= IList->getNumInits()) { 1510 if (!VerifyOnly) 1511 SemaRef.Diag(IList->getBeginLoc(), 1512 SemaRef.getLangOpts().CPlusPlus11 1513 ? diag::warn_cxx98_compat_empty_scalar_initializer 1514 : diag::err_empty_scalar_initializer) 1515 << IList->getSourceRange(); 1516 hadError = !SemaRef.getLangOpts().CPlusPlus11; 1517 ++Index; 1518 ++StructuredIndex; 1519 return; 1520 } 1521 1522 Expr *expr = IList->getInit(Index); 1523 if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) { 1524 // FIXME: This is invalid, and accepting it causes overload resolution 1525 // to pick the wrong overload in some corner cases. 1526 if (!VerifyOnly) 1527 SemaRef.Diag(SubIList->getBeginLoc(), 1528 diag::ext_many_braces_around_scalar_init) 1529 << SubIList->getSourceRange(); 1530 1531 CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList, 1532 StructuredIndex); 1533 return; 1534 } else if (isa<DesignatedInitExpr>(expr)) { 1535 if (!VerifyOnly) 1536 SemaRef.Diag(expr->getBeginLoc(), diag::err_designator_for_scalar_init) 1537 << DeclType << expr->getSourceRange(); 1538 hadError = true; 1539 ++Index; 1540 ++StructuredIndex; 1541 return; 1542 } 1543 1544 ExprResult Result; 1545 if (VerifyOnly) { 1546 if (SemaRef.CanPerformCopyInitialization(Entity, expr)) 1547 Result = getDummyInit(); 1548 else 1549 Result = ExprError(); 1550 } else { 1551 Result = 1552 SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr, 1553 /*TopLevelOfInitList=*/true); 1554 } 1555 1556 Expr *ResultExpr = nullptr; 1557 1558 if (Result.isInvalid()) 1559 hadError = true; // types weren't compatible. 1560 else { 1561 ResultExpr = Result.getAs<Expr>(); 1562 1563 if (ResultExpr != expr && !VerifyOnly) { 1564 // The type was promoted, update initializer list. 1565 // FIXME: Why are we updating the syntactic init list? 1566 IList->setInit(Index, ResultExpr); 1567 } 1568 } 1569 if (hadError) 1570 ++StructuredIndex; 1571 else 1572 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr); 1573 ++Index; 1574 } 1575 1576 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity, 1577 InitListExpr *IList, QualType DeclType, 1578 unsigned &Index, 1579 InitListExpr *StructuredList, 1580 unsigned &StructuredIndex) { 1581 if (Index >= IList->getNumInits()) { 1582 // FIXME: It would be wonderful if we could point at the actual member. In 1583 // general, it would be useful to pass location information down the stack, 1584 // so that we know the location (or decl) of the "current object" being 1585 // initialized. 1586 if (!VerifyOnly) 1587 SemaRef.Diag(IList->getBeginLoc(), 1588 diag::err_init_reference_member_uninitialized) 1589 << DeclType << IList->getSourceRange(); 1590 hadError = true; 1591 ++Index; 1592 ++StructuredIndex; 1593 return; 1594 } 1595 1596 Expr *expr = IList->getInit(Index); 1597 if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) { 1598 if (!VerifyOnly) 1599 SemaRef.Diag(IList->getBeginLoc(), diag::err_init_non_aggr_init_list) 1600 << DeclType << IList->getSourceRange(); 1601 hadError = true; 1602 ++Index; 1603 ++StructuredIndex; 1604 return; 1605 } 1606 1607 ExprResult Result; 1608 if (VerifyOnly) { 1609 if (SemaRef.CanPerformCopyInitialization(Entity,expr)) 1610 Result = getDummyInit(); 1611 else 1612 Result = ExprError(); 1613 } else { 1614 Result = 1615 SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr, 1616 /*TopLevelOfInitList=*/true); 1617 } 1618 1619 if (Result.isInvalid()) 1620 hadError = true; 1621 1622 expr = Result.getAs<Expr>(); 1623 // FIXME: Why are we updating the syntactic init list? 1624 if (!VerifyOnly) 1625 IList->setInit(Index, expr); 1626 1627 if (hadError) 1628 ++StructuredIndex; 1629 else 1630 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1631 ++Index; 1632 } 1633 1634 void InitListChecker::CheckVectorType(const InitializedEntity &Entity, 1635 InitListExpr *IList, QualType DeclType, 1636 unsigned &Index, 1637 InitListExpr *StructuredList, 1638 unsigned &StructuredIndex) { 1639 const VectorType *VT = DeclType->castAs<VectorType>(); 1640 unsigned maxElements = VT->getNumElements(); 1641 unsigned numEltsInit = 0; 1642 QualType elementType = VT->getElementType(); 1643 1644 if (Index >= IList->getNumInits()) { 1645 // Make sure the element type can be value-initialized. 1646 CheckEmptyInitializable( 1647 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity), 1648 IList->getEndLoc()); 1649 return; 1650 } 1651 1652 if (!SemaRef.getLangOpts().OpenCL) { 1653 // If the initializing element is a vector, try to copy-initialize 1654 // instead of breaking it apart (which is doomed to failure anyway). 1655 Expr *Init = IList->getInit(Index); 1656 if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) { 1657 ExprResult Result; 1658 if (VerifyOnly) { 1659 if (SemaRef.CanPerformCopyInitialization(Entity, Init)) 1660 Result = getDummyInit(); 1661 else 1662 Result = ExprError(); 1663 } else { 1664 Result = 1665 SemaRef.PerformCopyInitialization(Entity, Init->getBeginLoc(), Init, 1666 /*TopLevelOfInitList=*/true); 1667 } 1668 1669 Expr *ResultExpr = nullptr; 1670 if (Result.isInvalid()) 1671 hadError = true; // types weren't compatible. 1672 else { 1673 ResultExpr = Result.getAs<Expr>(); 1674 1675 if (ResultExpr != Init && !VerifyOnly) { 1676 // The type was promoted, update initializer list. 1677 // FIXME: Why are we updating the syntactic init list? 1678 IList->setInit(Index, ResultExpr); 1679 } 1680 } 1681 if (hadError) 1682 ++StructuredIndex; 1683 else 1684 UpdateStructuredListElement(StructuredList, StructuredIndex, 1685 ResultExpr); 1686 ++Index; 1687 return; 1688 } 1689 1690 InitializedEntity ElementEntity = 1691 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1692 1693 for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) { 1694 // Don't attempt to go past the end of the init list 1695 if (Index >= IList->getNumInits()) { 1696 CheckEmptyInitializable(ElementEntity, IList->getEndLoc()); 1697 break; 1698 } 1699 1700 ElementEntity.setElementIndex(Index); 1701 CheckSubElementType(ElementEntity, IList, elementType, Index, 1702 StructuredList, StructuredIndex); 1703 } 1704 1705 if (VerifyOnly) 1706 return; 1707 1708 bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian(); 1709 const VectorType *T = Entity.getType()->castAs<VectorType>(); 1710 if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector || 1711 T->getVectorKind() == VectorType::NeonPolyVector)) { 1712 // The ability to use vector initializer lists is a GNU vector extension 1713 // and is unrelated to the NEON intrinsics in arm_neon.h. On little 1714 // endian machines it works fine, however on big endian machines it 1715 // exhibits surprising behaviour: 1716 // 1717 // uint32x2_t x = {42, 64}; 1718 // return vget_lane_u32(x, 0); // Will return 64. 1719 // 1720 // Because of this, explicitly call out that it is non-portable. 1721 // 1722 SemaRef.Diag(IList->getBeginLoc(), 1723 diag::warn_neon_vector_initializer_non_portable); 1724 1725 const char *typeCode; 1726 unsigned typeSize = SemaRef.Context.getTypeSize(elementType); 1727 1728 if (elementType->isFloatingType()) 1729 typeCode = "f"; 1730 else if (elementType->isSignedIntegerType()) 1731 typeCode = "s"; 1732 else if (elementType->isUnsignedIntegerType()) 1733 typeCode = "u"; 1734 else 1735 llvm_unreachable("Invalid element type!"); 1736 1737 SemaRef.Diag(IList->getBeginLoc(), 1738 SemaRef.Context.getTypeSize(VT) > 64 1739 ? diag::note_neon_vector_initializer_non_portable_q 1740 : diag::note_neon_vector_initializer_non_portable) 1741 << typeCode << typeSize; 1742 } 1743 1744 return; 1745 } 1746 1747 InitializedEntity ElementEntity = 1748 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1749 1750 // OpenCL initializers allows vectors to be constructed from vectors. 1751 for (unsigned i = 0; i < maxElements; ++i) { 1752 // Don't attempt to go past the end of the init list 1753 if (Index >= IList->getNumInits()) 1754 break; 1755 1756 ElementEntity.setElementIndex(Index); 1757 1758 QualType IType = IList->getInit(Index)->getType(); 1759 if (!IType->isVectorType()) { 1760 CheckSubElementType(ElementEntity, IList, elementType, Index, 1761 StructuredList, StructuredIndex); 1762 ++numEltsInit; 1763 } else { 1764 QualType VecType; 1765 const VectorType *IVT = IType->castAs<VectorType>(); 1766 unsigned numIElts = IVT->getNumElements(); 1767 1768 if (IType->isExtVectorType()) 1769 VecType = SemaRef.Context.getExtVectorType(elementType, numIElts); 1770 else 1771 VecType = SemaRef.Context.getVectorType(elementType, numIElts, 1772 IVT->getVectorKind()); 1773 CheckSubElementType(ElementEntity, IList, VecType, Index, 1774 StructuredList, StructuredIndex); 1775 numEltsInit += numIElts; 1776 } 1777 } 1778 1779 // OpenCL requires all elements to be initialized. 1780 if (numEltsInit != maxElements) { 1781 if (!VerifyOnly) 1782 SemaRef.Diag(IList->getBeginLoc(), 1783 diag::err_vector_incorrect_num_initializers) 1784 << (numEltsInit < maxElements) << maxElements << numEltsInit; 1785 hadError = true; 1786 } 1787 } 1788 1789 /// Check if the type of a class element has an accessible destructor, and marks 1790 /// it referenced. Returns true if we shouldn't form a reference to the 1791 /// destructor. 1792 /// 1793 /// Aggregate initialization requires a class element's destructor be 1794 /// accessible per 11.6.1 [dcl.init.aggr]: 1795 /// 1796 /// The destructor for each element of class type is potentially invoked 1797 /// (15.4 [class.dtor]) from the context where the aggregate initialization 1798 /// occurs. 1799 static bool checkDestructorReference(QualType ElementType, SourceLocation Loc, 1800 Sema &SemaRef) { 1801 auto *CXXRD = ElementType->getAsCXXRecordDecl(); 1802 if (!CXXRD) 1803 return false; 1804 1805 CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(CXXRD); 1806 SemaRef.CheckDestructorAccess(Loc, Destructor, 1807 SemaRef.PDiag(diag::err_access_dtor_temp) 1808 << ElementType); 1809 SemaRef.MarkFunctionReferenced(Loc, Destructor); 1810 return SemaRef.DiagnoseUseOfDecl(Destructor, Loc); 1811 } 1812 1813 void InitListChecker::CheckArrayType(const InitializedEntity &Entity, 1814 InitListExpr *IList, QualType &DeclType, 1815 llvm::APSInt elementIndex, 1816 bool SubobjectIsDesignatorContext, 1817 unsigned &Index, 1818 InitListExpr *StructuredList, 1819 unsigned &StructuredIndex) { 1820 const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType); 1821 1822 if (!VerifyOnly) { 1823 if (checkDestructorReference(arrayType->getElementType(), 1824 IList->getEndLoc(), SemaRef)) { 1825 hadError = true; 1826 return; 1827 } 1828 } 1829 1830 // Check for the special-case of initializing an array with a string. 1831 if (Index < IList->getNumInits()) { 1832 if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) == 1833 SIF_None) { 1834 // We place the string literal directly into the resulting 1835 // initializer list. This is the only place where the structure 1836 // of the structured initializer list doesn't match exactly, 1837 // because doing so would involve allocating one character 1838 // constant for each string. 1839 // FIXME: Should we do these checks in verify-only mode too? 1840 if (!VerifyOnly) 1841 CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef); 1842 if (StructuredList) { 1843 UpdateStructuredListElement(StructuredList, StructuredIndex, 1844 IList->getInit(Index)); 1845 StructuredList->resizeInits(SemaRef.Context, StructuredIndex); 1846 } 1847 ++Index; 1848 return; 1849 } 1850 } 1851 if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) { 1852 // Check for VLAs; in standard C it would be possible to check this 1853 // earlier, but I don't know where clang accepts VLAs (gcc accepts 1854 // them in all sorts of strange places). 1855 if (!VerifyOnly) 1856 SemaRef.Diag(VAT->getSizeExpr()->getBeginLoc(), 1857 diag::err_variable_object_no_init) 1858 << VAT->getSizeExpr()->getSourceRange(); 1859 hadError = true; 1860 ++Index; 1861 ++StructuredIndex; 1862 return; 1863 } 1864 1865 // We might know the maximum number of elements in advance. 1866 llvm::APSInt maxElements(elementIndex.getBitWidth(), 1867 elementIndex.isUnsigned()); 1868 bool maxElementsKnown = false; 1869 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) { 1870 maxElements = CAT->getSize(); 1871 elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth()); 1872 elementIndex.setIsUnsigned(maxElements.isUnsigned()); 1873 maxElementsKnown = true; 1874 } 1875 1876 QualType elementType = arrayType->getElementType(); 1877 while (Index < IList->getNumInits()) { 1878 Expr *Init = IList->getInit(Index); 1879 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { 1880 // If we're not the subobject that matches up with the '{' for 1881 // the designator, we shouldn't be handling the 1882 // designator. Return immediately. 1883 if (!SubobjectIsDesignatorContext) 1884 return; 1885 1886 // Handle this designated initializer. elementIndex will be 1887 // updated to be the next array element we'll initialize. 1888 if (CheckDesignatedInitializer(Entity, IList, DIE, 0, 1889 DeclType, nullptr, &elementIndex, Index, 1890 StructuredList, StructuredIndex, true, 1891 false)) { 1892 hadError = true; 1893 continue; 1894 } 1895 1896 if (elementIndex.getBitWidth() > maxElements.getBitWidth()) 1897 maxElements = maxElements.extend(elementIndex.getBitWidth()); 1898 else if (elementIndex.getBitWidth() < maxElements.getBitWidth()) 1899 elementIndex = elementIndex.extend(maxElements.getBitWidth()); 1900 elementIndex.setIsUnsigned(maxElements.isUnsigned()); 1901 1902 // If the array is of incomplete type, keep track of the number of 1903 // elements in the initializer. 1904 if (!maxElementsKnown && elementIndex > maxElements) 1905 maxElements = elementIndex; 1906 1907 continue; 1908 } 1909 1910 // If we know the maximum number of elements, and we've already 1911 // hit it, stop consuming elements in the initializer list. 1912 if (maxElementsKnown && elementIndex == maxElements) 1913 break; 1914 1915 InitializedEntity ElementEntity = 1916 InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex, 1917 Entity); 1918 // Check this element. 1919 CheckSubElementType(ElementEntity, IList, elementType, Index, 1920 StructuredList, StructuredIndex); 1921 ++elementIndex; 1922 1923 // If the array is of incomplete type, keep track of the number of 1924 // elements in the initializer. 1925 if (!maxElementsKnown && elementIndex > maxElements) 1926 maxElements = elementIndex; 1927 } 1928 if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) { 1929 // If this is an incomplete array type, the actual type needs to 1930 // be calculated here. 1931 llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned()); 1932 if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) { 1933 // Sizing an array implicitly to zero is not allowed by ISO C, 1934 // but is supported by GNU. 1935 SemaRef.Diag(IList->getBeginLoc(), diag::ext_typecheck_zero_array_size); 1936 } 1937 1938 DeclType = SemaRef.Context.getConstantArrayType( 1939 elementType, maxElements, nullptr, ArrayType::Normal, 0); 1940 } 1941 if (!hadError) { 1942 // If there are any members of the array that get value-initialized, check 1943 // that is possible. That happens if we know the bound and don't have 1944 // enough elements, or if we're performing an array new with an unknown 1945 // bound. 1946 if ((maxElementsKnown && elementIndex < maxElements) || 1947 Entity.isVariableLengthArrayNew()) 1948 CheckEmptyInitializable( 1949 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity), 1950 IList->getEndLoc()); 1951 } 1952 } 1953 1954 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity, 1955 Expr *InitExpr, 1956 FieldDecl *Field, 1957 bool TopLevelObject) { 1958 // Handle GNU flexible array initializers. 1959 unsigned FlexArrayDiag; 1960 if (isa<InitListExpr>(InitExpr) && 1961 cast<InitListExpr>(InitExpr)->getNumInits() == 0) { 1962 // Empty flexible array init always allowed as an extension 1963 FlexArrayDiag = diag::ext_flexible_array_init; 1964 } else if (SemaRef.getLangOpts().CPlusPlus) { 1965 // Disallow flexible array init in C++; it is not required for gcc 1966 // compatibility, and it needs work to IRGen correctly in general. 1967 FlexArrayDiag = diag::err_flexible_array_init; 1968 } else if (!TopLevelObject) { 1969 // Disallow flexible array init on non-top-level object 1970 FlexArrayDiag = diag::err_flexible_array_init; 1971 } else if (Entity.getKind() != InitializedEntity::EK_Variable) { 1972 // Disallow flexible array init on anything which is not a variable. 1973 FlexArrayDiag = diag::err_flexible_array_init; 1974 } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) { 1975 // Disallow flexible array init on local variables. 1976 FlexArrayDiag = diag::err_flexible_array_init; 1977 } else { 1978 // Allow other cases. 1979 FlexArrayDiag = diag::ext_flexible_array_init; 1980 } 1981 1982 if (!VerifyOnly) { 1983 SemaRef.Diag(InitExpr->getBeginLoc(), FlexArrayDiag) 1984 << InitExpr->getBeginLoc(); 1985 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 1986 << Field; 1987 } 1988 1989 return FlexArrayDiag != diag::ext_flexible_array_init; 1990 } 1991 1992 void InitListChecker::CheckStructUnionTypes( 1993 const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType, 1994 CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field, 1995 bool SubobjectIsDesignatorContext, unsigned &Index, 1996 InitListExpr *StructuredList, unsigned &StructuredIndex, 1997 bool TopLevelObject) { 1998 RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl(); 1999 2000 // If the record is invalid, some of it's members are invalid. To avoid 2001 // confusion, we forgo checking the intializer for the entire record. 2002 if (structDecl->isInvalidDecl()) { 2003 // Assume it was supposed to consume a single initializer. 2004 ++Index; 2005 hadError = true; 2006 return; 2007 } 2008 2009 if (DeclType->isUnionType() && IList->getNumInits() == 0) { 2010 RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl(); 2011 2012 if (!VerifyOnly) 2013 for (FieldDecl *FD : RD->fields()) { 2014 QualType ET = SemaRef.Context.getBaseElementType(FD->getType()); 2015 if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) { 2016 hadError = true; 2017 return; 2018 } 2019 } 2020 2021 // If there's a default initializer, use it. 2022 if (isa<CXXRecordDecl>(RD) && 2023 cast<CXXRecordDecl>(RD)->hasInClassInitializer()) { 2024 if (!StructuredList) 2025 return; 2026 for (RecordDecl::field_iterator FieldEnd = RD->field_end(); 2027 Field != FieldEnd; ++Field) { 2028 if (Field->hasInClassInitializer()) { 2029 StructuredList->setInitializedFieldInUnion(*Field); 2030 // FIXME: Actually build a CXXDefaultInitExpr? 2031 return; 2032 } 2033 } 2034 } 2035 2036 // Value-initialize the first member of the union that isn't an unnamed 2037 // bitfield. 2038 for (RecordDecl::field_iterator FieldEnd = RD->field_end(); 2039 Field != FieldEnd; ++Field) { 2040 if (!Field->isUnnamedBitfield()) { 2041 CheckEmptyInitializable( 2042 InitializedEntity::InitializeMember(*Field, &Entity), 2043 IList->getEndLoc()); 2044 if (StructuredList) 2045 StructuredList->setInitializedFieldInUnion(*Field); 2046 break; 2047 } 2048 } 2049 return; 2050 } 2051 2052 bool InitializedSomething = false; 2053 2054 // If we have any base classes, they are initialized prior to the fields. 2055 for (auto &Base : Bases) { 2056 Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr; 2057 2058 // Designated inits always initialize fields, so if we see one, all 2059 // remaining base classes have no explicit initializer. 2060 if (Init && isa<DesignatedInitExpr>(Init)) 2061 Init = nullptr; 2062 2063 SourceLocation InitLoc = Init ? Init->getBeginLoc() : IList->getEndLoc(); 2064 InitializedEntity BaseEntity = InitializedEntity::InitializeBase( 2065 SemaRef.Context, &Base, false, &Entity); 2066 if (Init) { 2067 CheckSubElementType(BaseEntity, IList, Base.getType(), Index, 2068 StructuredList, StructuredIndex); 2069 InitializedSomething = true; 2070 } else { 2071 CheckEmptyInitializable(BaseEntity, InitLoc); 2072 } 2073 2074 if (!VerifyOnly) 2075 if (checkDestructorReference(Base.getType(), InitLoc, SemaRef)) { 2076 hadError = true; 2077 return; 2078 } 2079 } 2080 2081 // If structDecl is a forward declaration, this loop won't do 2082 // anything except look at designated initializers; That's okay, 2083 // because an error should get printed out elsewhere. It might be 2084 // worthwhile to skip over the rest of the initializer, though. 2085 RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl(); 2086 RecordDecl::field_iterator FieldEnd = RD->field_end(); 2087 bool CheckForMissingFields = 2088 !IList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()); 2089 bool HasDesignatedInit = false; 2090 2091 while (Index < IList->getNumInits()) { 2092 Expr *Init = IList->getInit(Index); 2093 SourceLocation InitLoc = Init->getBeginLoc(); 2094 2095 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { 2096 // If we're not the subobject that matches up with the '{' for 2097 // the designator, we shouldn't be handling the 2098 // designator. Return immediately. 2099 if (!SubobjectIsDesignatorContext) 2100 return; 2101 2102 HasDesignatedInit = true; 2103 2104 // Handle this designated initializer. Field will be updated to 2105 // the next field that we'll be initializing. 2106 if (CheckDesignatedInitializer(Entity, IList, DIE, 0, 2107 DeclType, &Field, nullptr, Index, 2108 StructuredList, StructuredIndex, 2109 true, TopLevelObject)) 2110 hadError = true; 2111 else if (!VerifyOnly) { 2112 // Find the field named by the designated initializer. 2113 RecordDecl::field_iterator F = RD->field_begin(); 2114 while (std::next(F) != Field) 2115 ++F; 2116 QualType ET = SemaRef.Context.getBaseElementType(F->getType()); 2117 if (checkDestructorReference(ET, InitLoc, SemaRef)) { 2118 hadError = true; 2119 return; 2120 } 2121 } 2122 2123 InitializedSomething = true; 2124 2125 // Disable check for missing fields when designators are used. 2126 // This matches gcc behaviour. 2127 CheckForMissingFields = false; 2128 continue; 2129 } 2130 2131 if (Field == FieldEnd) { 2132 // We've run out of fields. We're done. 2133 break; 2134 } 2135 2136 // We've already initialized a member of a union. We're done. 2137 if (InitializedSomething && DeclType->isUnionType()) 2138 break; 2139 2140 // If we've hit the flexible array member at the end, we're done. 2141 if (Field->getType()->isIncompleteArrayType()) 2142 break; 2143 2144 if (Field->isUnnamedBitfield()) { 2145 // Don't initialize unnamed bitfields, e.g. "int : 20;" 2146 ++Field; 2147 continue; 2148 } 2149 2150 // Make sure we can use this declaration. 2151 bool InvalidUse; 2152 if (VerifyOnly) 2153 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid); 2154 else 2155 InvalidUse = SemaRef.DiagnoseUseOfDecl( 2156 *Field, IList->getInit(Index)->getBeginLoc()); 2157 if (InvalidUse) { 2158 ++Index; 2159 ++Field; 2160 hadError = true; 2161 continue; 2162 } 2163 2164 if (!VerifyOnly) { 2165 QualType ET = SemaRef.Context.getBaseElementType(Field->getType()); 2166 if (checkDestructorReference(ET, InitLoc, SemaRef)) { 2167 hadError = true; 2168 return; 2169 } 2170 } 2171 2172 InitializedEntity MemberEntity = 2173 InitializedEntity::InitializeMember(*Field, &Entity); 2174 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 2175 StructuredList, StructuredIndex); 2176 InitializedSomething = true; 2177 2178 if (DeclType->isUnionType() && StructuredList) { 2179 // Initialize the first field within the union. 2180 StructuredList->setInitializedFieldInUnion(*Field); 2181 } 2182 2183 ++Field; 2184 } 2185 2186 // Emit warnings for missing struct field initializers. 2187 if (!VerifyOnly && InitializedSomething && CheckForMissingFields && 2188 Field != FieldEnd && !Field->getType()->isIncompleteArrayType() && 2189 !DeclType->isUnionType()) { 2190 // It is possible we have one or more unnamed bitfields remaining. 2191 // Find first (if any) named field and emit warning. 2192 for (RecordDecl::field_iterator it = Field, end = RD->field_end(); 2193 it != end; ++it) { 2194 if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) { 2195 SemaRef.Diag(IList->getSourceRange().getEnd(), 2196 diag::warn_missing_field_initializers) << *it; 2197 break; 2198 } 2199 } 2200 } 2201 2202 // Check that any remaining fields can be value-initialized if we're not 2203 // building a structured list. (If we are, we'll check this later.) 2204 if (!StructuredList && Field != FieldEnd && !DeclType->isUnionType() && 2205 !Field->getType()->isIncompleteArrayType()) { 2206 for (; Field != FieldEnd && !hadError; ++Field) { 2207 if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer()) 2208 CheckEmptyInitializable( 2209 InitializedEntity::InitializeMember(*Field, &Entity), 2210 IList->getEndLoc()); 2211 } 2212 } 2213 2214 // Check that the types of the remaining fields have accessible destructors. 2215 if (!VerifyOnly) { 2216 // If the initializer expression has a designated initializer, check the 2217 // elements for which a designated initializer is not provided too. 2218 RecordDecl::field_iterator I = HasDesignatedInit ? RD->field_begin() 2219 : Field; 2220 for (RecordDecl::field_iterator E = RD->field_end(); I != E; ++I) { 2221 QualType ET = SemaRef.Context.getBaseElementType(I->getType()); 2222 if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) { 2223 hadError = true; 2224 return; 2225 } 2226 } 2227 } 2228 2229 if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() || 2230 Index >= IList->getNumInits()) 2231 return; 2232 2233 if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field, 2234 TopLevelObject)) { 2235 hadError = true; 2236 ++Index; 2237 return; 2238 } 2239 2240 InitializedEntity MemberEntity = 2241 InitializedEntity::InitializeMember(*Field, &Entity); 2242 2243 if (isa<InitListExpr>(IList->getInit(Index))) 2244 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 2245 StructuredList, StructuredIndex); 2246 else 2247 CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index, 2248 StructuredList, StructuredIndex); 2249 } 2250 2251 /// Expand a field designator that refers to a member of an 2252 /// anonymous struct or union into a series of field designators that 2253 /// refers to the field within the appropriate subobject. 2254 /// 2255 static void ExpandAnonymousFieldDesignator(Sema &SemaRef, 2256 DesignatedInitExpr *DIE, 2257 unsigned DesigIdx, 2258 IndirectFieldDecl *IndirectField) { 2259 typedef DesignatedInitExpr::Designator Designator; 2260 2261 // Build the replacement designators. 2262 SmallVector<Designator, 4> Replacements; 2263 for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(), 2264 PE = IndirectField->chain_end(); PI != PE; ++PI) { 2265 if (PI + 1 == PE) 2266 Replacements.push_back(Designator((IdentifierInfo *)nullptr, 2267 DIE->getDesignator(DesigIdx)->getDotLoc(), 2268 DIE->getDesignator(DesigIdx)->getFieldLoc())); 2269 else 2270 Replacements.push_back(Designator((IdentifierInfo *)nullptr, 2271 SourceLocation(), SourceLocation())); 2272 assert(isa<FieldDecl>(*PI)); 2273 Replacements.back().setField(cast<FieldDecl>(*PI)); 2274 } 2275 2276 // Expand the current designator into the set of replacement 2277 // designators, so we have a full subobject path down to where the 2278 // member of the anonymous struct/union is actually stored. 2279 DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0], 2280 &Replacements[0] + Replacements.size()); 2281 } 2282 2283 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef, 2284 DesignatedInitExpr *DIE) { 2285 unsigned NumIndexExprs = DIE->getNumSubExprs() - 1; 2286 SmallVector<Expr*, 4> IndexExprs(NumIndexExprs); 2287 for (unsigned I = 0; I < NumIndexExprs; ++I) 2288 IndexExprs[I] = DIE->getSubExpr(I + 1); 2289 return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(), 2290 IndexExprs, 2291 DIE->getEqualOrColonLoc(), 2292 DIE->usesGNUSyntax(), DIE->getInit()); 2293 } 2294 2295 namespace { 2296 2297 // Callback to only accept typo corrections that are for field members of 2298 // the given struct or union. 2299 class FieldInitializerValidatorCCC final : public CorrectionCandidateCallback { 2300 public: 2301 explicit FieldInitializerValidatorCCC(RecordDecl *RD) 2302 : Record(RD) {} 2303 2304 bool ValidateCandidate(const TypoCorrection &candidate) override { 2305 FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>(); 2306 return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record); 2307 } 2308 2309 std::unique_ptr<CorrectionCandidateCallback> clone() override { 2310 return std::make_unique<FieldInitializerValidatorCCC>(*this); 2311 } 2312 2313 private: 2314 RecordDecl *Record; 2315 }; 2316 2317 } // end anonymous namespace 2318 2319 /// Check the well-formedness of a C99 designated initializer. 2320 /// 2321 /// Determines whether the designated initializer @p DIE, which 2322 /// resides at the given @p Index within the initializer list @p 2323 /// IList, is well-formed for a current object of type @p DeclType 2324 /// (C99 6.7.8). The actual subobject that this designator refers to 2325 /// within the current subobject is returned in either 2326 /// @p NextField or @p NextElementIndex (whichever is appropriate). 2327 /// 2328 /// @param IList The initializer list in which this designated 2329 /// initializer occurs. 2330 /// 2331 /// @param DIE The designated initializer expression. 2332 /// 2333 /// @param DesigIdx The index of the current designator. 2334 /// 2335 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17), 2336 /// into which the designation in @p DIE should refer. 2337 /// 2338 /// @param NextField If non-NULL and the first designator in @p DIE is 2339 /// a field, this will be set to the field declaration corresponding 2340 /// to the field named by the designator. On input, this is expected to be 2341 /// the next field that would be initialized in the absence of designation, 2342 /// if the complete object being initialized is a struct. 2343 /// 2344 /// @param NextElementIndex If non-NULL and the first designator in @p 2345 /// DIE is an array designator or GNU array-range designator, this 2346 /// will be set to the last index initialized by this designator. 2347 /// 2348 /// @param Index Index into @p IList where the designated initializer 2349 /// @p DIE occurs. 2350 /// 2351 /// @param StructuredList The initializer list expression that 2352 /// describes all of the subobject initializers in the order they'll 2353 /// actually be initialized. 2354 /// 2355 /// @returns true if there was an error, false otherwise. 2356 bool 2357 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity, 2358 InitListExpr *IList, 2359 DesignatedInitExpr *DIE, 2360 unsigned DesigIdx, 2361 QualType &CurrentObjectType, 2362 RecordDecl::field_iterator *NextField, 2363 llvm::APSInt *NextElementIndex, 2364 unsigned &Index, 2365 InitListExpr *StructuredList, 2366 unsigned &StructuredIndex, 2367 bool FinishSubobjectInit, 2368 bool TopLevelObject) { 2369 if (DesigIdx == DIE->size()) { 2370 // C++20 designated initialization can result in direct-list-initialization 2371 // of the designated subobject. This is the only way that we can end up 2372 // performing direct initialization as part of aggregate initialization, so 2373 // it needs special handling. 2374 if (DIE->isDirectInit()) { 2375 Expr *Init = DIE->getInit(); 2376 assert(isa<InitListExpr>(Init) && 2377 "designator result in direct non-list initialization?"); 2378 InitializationKind Kind = InitializationKind::CreateDirectList( 2379 DIE->getBeginLoc(), Init->getBeginLoc(), Init->getEndLoc()); 2380 InitializationSequence Seq(SemaRef, Entity, Kind, Init, 2381 /*TopLevelOfInitList*/ true); 2382 if (StructuredList) { 2383 ExprResult Result = VerifyOnly 2384 ? getDummyInit() 2385 : Seq.Perform(SemaRef, Entity, Kind, Init); 2386 UpdateStructuredListElement(StructuredList, StructuredIndex, 2387 Result.get()); 2388 } 2389 ++Index; 2390 return !Seq; 2391 } 2392 2393 // Check the actual initialization for the designated object type. 2394 bool prevHadError = hadError; 2395 2396 // Temporarily remove the designator expression from the 2397 // initializer list that the child calls see, so that we don't try 2398 // to re-process the designator. 2399 unsigned OldIndex = Index; 2400 IList->setInit(OldIndex, DIE->getInit()); 2401 2402 CheckSubElementType(Entity, IList, CurrentObjectType, Index, 2403 StructuredList, StructuredIndex); 2404 2405 // Restore the designated initializer expression in the syntactic 2406 // form of the initializer list. 2407 if (IList->getInit(OldIndex) != DIE->getInit()) 2408 DIE->setInit(IList->getInit(OldIndex)); 2409 IList->setInit(OldIndex, DIE); 2410 2411 return hadError && !prevHadError; 2412 } 2413 2414 DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx); 2415 bool IsFirstDesignator = (DesigIdx == 0); 2416 if (IsFirstDesignator ? FullyStructuredList : StructuredList) { 2417 // Determine the structural initializer list that corresponds to the 2418 // current subobject. 2419 if (IsFirstDesignator) 2420 StructuredList = FullyStructuredList; 2421 else { 2422 Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ? 2423 StructuredList->getInit(StructuredIndex) : nullptr; 2424 if (!ExistingInit && StructuredList->hasArrayFiller()) 2425 ExistingInit = StructuredList->getArrayFiller(); 2426 2427 if (!ExistingInit) 2428 StructuredList = getStructuredSubobjectInit( 2429 IList, Index, CurrentObjectType, StructuredList, StructuredIndex, 2430 SourceRange(D->getBeginLoc(), DIE->getEndLoc())); 2431 else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit)) 2432 StructuredList = Result; 2433 else { 2434 // We are creating an initializer list that initializes the 2435 // subobjects of the current object, but there was already an 2436 // initialization that completely initialized the current 2437 // subobject, e.g., by a compound literal: 2438 // 2439 // struct X { int a, b; }; 2440 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; 2441 // 2442 // Here, xs[0].a == 1 and xs[0].b == 3, since the second, 2443 // designated initializer re-initializes only its current object 2444 // subobject [0].b. 2445 diagnoseInitOverride(ExistingInit, 2446 SourceRange(D->getBeginLoc(), DIE->getEndLoc()), 2447 /*FullyOverwritten=*/false); 2448 2449 if (!VerifyOnly) { 2450 if (DesignatedInitUpdateExpr *E = 2451 dyn_cast<DesignatedInitUpdateExpr>(ExistingInit)) 2452 StructuredList = E->getUpdater(); 2453 else { 2454 DesignatedInitUpdateExpr *DIUE = new (SemaRef.Context) 2455 DesignatedInitUpdateExpr(SemaRef.Context, D->getBeginLoc(), 2456 ExistingInit, DIE->getEndLoc()); 2457 StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE); 2458 StructuredList = DIUE->getUpdater(); 2459 } 2460 } else { 2461 // We don't need to track the structured representation of a 2462 // designated init update of an already-fully-initialized object in 2463 // verify-only mode. The only reason we would need the structure is 2464 // to determine where the uninitialized "holes" are, and in this 2465 // case, we know there aren't any and we can't introduce any. 2466 StructuredList = nullptr; 2467 } 2468 } 2469 } 2470 } 2471 2472 if (D->isFieldDesignator()) { 2473 // C99 6.7.8p7: 2474 // 2475 // If a designator has the form 2476 // 2477 // . identifier 2478 // 2479 // then the current object (defined below) shall have 2480 // structure or union type and the identifier shall be the 2481 // name of a member of that type. 2482 const RecordType *RT = CurrentObjectType->getAs<RecordType>(); 2483 if (!RT) { 2484 SourceLocation Loc = D->getDotLoc(); 2485 if (Loc.isInvalid()) 2486 Loc = D->getFieldLoc(); 2487 if (!VerifyOnly) 2488 SemaRef.Diag(Loc, diag::err_field_designator_non_aggr) 2489 << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType; 2490 ++Index; 2491 return true; 2492 } 2493 2494 FieldDecl *KnownField = D->getField(); 2495 if (!KnownField) { 2496 IdentifierInfo *FieldName = D->getFieldName(); 2497 DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName); 2498 for (NamedDecl *ND : Lookup) { 2499 if (auto *FD = dyn_cast<FieldDecl>(ND)) { 2500 KnownField = FD; 2501 break; 2502 } 2503 if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) { 2504 // In verify mode, don't modify the original. 2505 if (VerifyOnly) 2506 DIE = CloneDesignatedInitExpr(SemaRef, DIE); 2507 ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD); 2508 D = DIE->getDesignator(DesigIdx); 2509 KnownField = cast<FieldDecl>(*IFD->chain_begin()); 2510 break; 2511 } 2512 } 2513 if (!KnownField) { 2514 if (VerifyOnly) { 2515 ++Index; 2516 return true; // No typo correction when just trying this out. 2517 } 2518 2519 // Name lookup found something, but it wasn't a field. 2520 if (!Lookup.empty()) { 2521 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield) 2522 << FieldName; 2523 SemaRef.Diag(Lookup.front()->getLocation(), 2524 diag::note_field_designator_found); 2525 ++Index; 2526 return true; 2527 } 2528 2529 // Name lookup didn't find anything. 2530 // Determine whether this was a typo for another field name. 2531 FieldInitializerValidatorCCC CCC(RT->getDecl()); 2532 if (TypoCorrection Corrected = SemaRef.CorrectTypo( 2533 DeclarationNameInfo(FieldName, D->getFieldLoc()), 2534 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr, CCC, 2535 Sema::CTK_ErrorRecovery, RT->getDecl())) { 2536 SemaRef.diagnoseTypo( 2537 Corrected, 2538 SemaRef.PDiag(diag::err_field_designator_unknown_suggest) 2539 << FieldName << CurrentObjectType); 2540 KnownField = Corrected.getCorrectionDeclAs<FieldDecl>(); 2541 hadError = true; 2542 } else { 2543 // Typo correction didn't find anything. 2544 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown) 2545 << FieldName << CurrentObjectType; 2546 ++Index; 2547 return true; 2548 } 2549 } 2550 } 2551 2552 unsigned NumBases = 0; 2553 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2554 NumBases = CXXRD->getNumBases(); 2555 2556 unsigned FieldIndex = NumBases; 2557 2558 for (auto *FI : RT->getDecl()->fields()) { 2559 if (FI->isUnnamedBitfield()) 2560 continue; 2561 if (declaresSameEntity(KnownField, FI)) { 2562 KnownField = FI; 2563 break; 2564 } 2565 ++FieldIndex; 2566 } 2567 2568 RecordDecl::field_iterator Field = 2569 RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField)); 2570 2571 // All of the fields of a union are located at the same place in 2572 // the initializer list. 2573 if (RT->getDecl()->isUnion()) { 2574 FieldIndex = 0; 2575 if (StructuredList) { 2576 FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion(); 2577 if (CurrentField && !declaresSameEntity(CurrentField, *Field)) { 2578 assert(StructuredList->getNumInits() == 1 2579 && "A union should never have more than one initializer!"); 2580 2581 Expr *ExistingInit = StructuredList->getInit(0); 2582 if (ExistingInit) { 2583 // We're about to throw away an initializer, emit warning. 2584 diagnoseInitOverride( 2585 ExistingInit, SourceRange(D->getBeginLoc(), DIE->getEndLoc())); 2586 } 2587 2588 // remove existing initializer 2589 StructuredList->resizeInits(SemaRef.Context, 0); 2590 StructuredList->setInitializedFieldInUnion(nullptr); 2591 } 2592 2593 StructuredList->setInitializedFieldInUnion(*Field); 2594 } 2595 } 2596 2597 // Make sure we can use this declaration. 2598 bool InvalidUse; 2599 if (VerifyOnly) 2600 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid); 2601 else 2602 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc()); 2603 if (InvalidUse) { 2604 ++Index; 2605 return true; 2606 } 2607 2608 // C++20 [dcl.init.list]p3: 2609 // The ordered identifiers in the designators of the designated- 2610 // initializer-list shall form a subsequence of the ordered identifiers 2611 // in the direct non-static data members of T. 2612 // 2613 // Note that this is not a condition on forming the aggregate 2614 // initialization, only on actually performing initialization, 2615 // so it is not checked in VerifyOnly mode. 2616 // 2617 // FIXME: This is the only reordering diagnostic we produce, and it only 2618 // catches cases where we have a top-level field designator that jumps 2619 // backwards. This is the only such case that is reachable in an 2620 // otherwise-valid C++20 program, so is the only case that's required for 2621 // conformance, but for consistency, we should diagnose all the other 2622 // cases where a designator takes us backwards too. 2623 if (IsFirstDesignator && !VerifyOnly && SemaRef.getLangOpts().CPlusPlus && 2624 NextField && 2625 (*NextField == RT->getDecl()->field_end() || 2626 (*NextField)->getFieldIndex() > Field->getFieldIndex() + 1)) { 2627 // Find the field that we just initialized. 2628 FieldDecl *PrevField = nullptr; 2629 for (auto FI = RT->getDecl()->field_begin(); 2630 FI != RT->getDecl()->field_end(); ++FI) { 2631 if (FI->isUnnamedBitfield()) 2632 continue; 2633 if (*NextField != RT->getDecl()->field_end() && 2634 declaresSameEntity(*FI, **NextField)) 2635 break; 2636 PrevField = *FI; 2637 } 2638 2639 if (PrevField && 2640 PrevField->getFieldIndex() > KnownField->getFieldIndex()) { 2641 SemaRef.Diag(DIE->getBeginLoc(), diag::ext_designated_init_reordered) 2642 << KnownField << PrevField << DIE->getSourceRange(); 2643 2644 unsigned OldIndex = NumBases + PrevField->getFieldIndex(); 2645 if (StructuredList && OldIndex <= StructuredList->getNumInits()) { 2646 if (Expr *PrevInit = StructuredList->getInit(OldIndex)) { 2647 SemaRef.Diag(PrevInit->getBeginLoc(), 2648 diag::note_previous_field_init) 2649 << PrevField << PrevInit->getSourceRange(); 2650 } 2651 } 2652 } 2653 } 2654 2655 2656 // Update the designator with the field declaration. 2657 if (!VerifyOnly) 2658 D->setField(*Field); 2659 2660 // Make sure that our non-designated initializer list has space 2661 // for a subobject corresponding to this field. 2662 if (StructuredList && FieldIndex >= StructuredList->getNumInits()) 2663 StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1); 2664 2665 // This designator names a flexible array member. 2666 if (Field->getType()->isIncompleteArrayType()) { 2667 bool Invalid = false; 2668 if ((DesigIdx + 1) != DIE->size()) { 2669 // We can't designate an object within the flexible array 2670 // member (because GCC doesn't allow it). 2671 if (!VerifyOnly) { 2672 DesignatedInitExpr::Designator *NextD 2673 = DIE->getDesignator(DesigIdx + 1); 2674 SemaRef.Diag(NextD->getBeginLoc(), 2675 diag::err_designator_into_flexible_array_member) 2676 << SourceRange(NextD->getBeginLoc(), DIE->getEndLoc()); 2677 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 2678 << *Field; 2679 } 2680 Invalid = true; 2681 } 2682 2683 if (!hadError && !isa<InitListExpr>(DIE->getInit()) && 2684 !isa<StringLiteral>(DIE->getInit())) { 2685 // The initializer is not an initializer list. 2686 if (!VerifyOnly) { 2687 SemaRef.Diag(DIE->getInit()->getBeginLoc(), 2688 diag::err_flexible_array_init_needs_braces) 2689 << DIE->getInit()->getSourceRange(); 2690 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 2691 << *Field; 2692 } 2693 Invalid = true; 2694 } 2695 2696 // Check GNU flexible array initializer. 2697 if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field, 2698 TopLevelObject)) 2699 Invalid = true; 2700 2701 if (Invalid) { 2702 ++Index; 2703 return true; 2704 } 2705 2706 // Initialize the array. 2707 bool prevHadError = hadError; 2708 unsigned newStructuredIndex = FieldIndex; 2709 unsigned OldIndex = Index; 2710 IList->setInit(Index, DIE->getInit()); 2711 2712 InitializedEntity MemberEntity = 2713 InitializedEntity::InitializeMember(*Field, &Entity); 2714 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 2715 StructuredList, newStructuredIndex); 2716 2717 IList->setInit(OldIndex, DIE); 2718 if (hadError && !prevHadError) { 2719 ++Field; 2720 ++FieldIndex; 2721 if (NextField) 2722 *NextField = Field; 2723 StructuredIndex = FieldIndex; 2724 return true; 2725 } 2726 } else { 2727 // Recurse to check later designated subobjects. 2728 QualType FieldType = Field->getType(); 2729 unsigned newStructuredIndex = FieldIndex; 2730 2731 InitializedEntity MemberEntity = 2732 InitializedEntity::InitializeMember(*Field, &Entity); 2733 if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1, 2734 FieldType, nullptr, nullptr, Index, 2735 StructuredList, newStructuredIndex, 2736 FinishSubobjectInit, false)) 2737 return true; 2738 } 2739 2740 // Find the position of the next field to be initialized in this 2741 // subobject. 2742 ++Field; 2743 ++FieldIndex; 2744 2745 // If this the first designator, our caller will continue checking 2746 // the rest of this struct/class/union subobject. 2747 if (IsFirstDesignator) { 2748 if (NextField) 2749 *NextField = Field; 2750 StructuredIndex = FieldIndex; 2751 return false; 2752 } 2753 2754 if (!FinishSubobjectInit) 2755 return false; 2756 2757 // We've already initialized something in the union; we're done. 2758 if (RT->getDecl()->isUnion()) 2759 return hadError; 2760 2761 // Check the remaining fields within this class/struct/union subobject. 2762 bool prevHadError = hadError; 2763 2764 auto NoBases = 2765 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(), 2766 CXXRecordDecl::base_class_iterator()); 2767 CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field, 2768 false, Index, StructuredList, FieldIndex); 2769 return hadError && !prevHadError; 2770 } 2771 2772 // C99 6.7.8p6: 2773 // 2774 // If a designator has the form 2775 // 2776 // [ constant-expression ] 2777 // 2778 // then the current object (defined below) shall have array 2779 // type and the expression shall be an integer constant 2780 // expression. If the array is of unknown size, any 2781 // nonnegative value is valid. 2782 // 2783 // Additionally, cope with the GNU extension that permits 2784 // designators of the form 2785 // 2786 // [ constant-expression ... constant-expression ] 2787 const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType); 2788 if (!AT) { 2789 if (!VerifyOnly) 2790 SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array) 2791 << CurrentObjectType; 2792 ++Index; 2793 return true; 2794 } 2795 2796 Expr *IndexExpr = nullptr; 2797 llvm::APSInt DesignatedStartIndex, DesignatedEndIndex; 2798 if (D->isArrayDesignator()) { 2799 IndexExpr = DIE->getArrayIndex(*D); 2800 DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context); 2801 DesignatedEndIndex = DesignatedStartIndex; 2802 } else { 2803 assert(D->isArrayRangeDesignator() && "Need array-range designator"); 2804 2805 DesignatedStartIndex = 2806 DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context); 2807 DesignatedEndIndex = 2808 DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context); 2809 IndexExpr = DIE->getArrayRangeEnd(*D); 2810 2811 // Codegen can't handle evaluating array range designators that have side 2812 // effects, because we replicate the AST value for each initialized element. 2813 // As such, set the sawArrayRangeDesignator() bit if we initialize multiple 2814 // elements with something that has a side effect, so codegen can emit an 2815 // "error unsupported" error instead of miscompiling the app. 2816 if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&& 2817 DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly) 2818 FullyStructuredList->sawArrayRangeDesignator(); 2819 } 2820 2821 if (isa<ConstantArrayType>(AT)) { 2822 llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false); 2823 DesignatedStartIndex 2824 = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth()); 2825 DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned()); 2826 DesignatedEndIndex 2827 = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth()); 2828 DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned()); 2829 if (DesignatedEndIndex >= MaxElements) { 2830 if (!VerifyOnly) 2831 SemaRef.Diag(IndexExpr->getBeginLoc(), 2832 diag::err_array_designator_too_large) 2833 << DesignatedEndIndex.toString(10) << MaxElements.toString(10) 2834 << IndexExpr->getSourceRange(); 2835 ++Index; 2836 return true; 2837 } 2838 } else { 2839 unsigned DesignatedIndexBitWidth = 2840 ConstantArrayType::getMaxSizeBits(SemaRef.Context); 2841 DesignatedStartIndex = 2842 DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth); 2843 DesignatedEndIndex = 2844 DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth); 2845 DesignatedStartIndex.setIsUnsigned(true); 2846 DesignatedEndIndex.setIsUnsigned(true); 2847 } 2848 2849 bool IsStringLiteralInitUpdate = 2850 StructuredList && StructuredList->isStringLiteralInit(); 2851 if (IsStringLiteralInitUpdate && VerifyOnly) { 2852 // We're just verifying an update to a string literal init. We don't need 2853 // to split the string up into individual characters to do that. 2854 StructuredList = nullptr; 2855 } else if (IsStringLiteralInitUpdate) { 2856 // We're modifying a string literal init; we have to decompose the string 2857 // so we can modify the individual characters. 2858 ASTContext &Context = SemaRef.Context; 2859 Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens(); 2860 2861 // Compute the character type 2862 QualType CharTy = AT->getElementType(); 2863 2864 // Compute the type of the integer literals. 2865 QualType PromotedCharTy = CharTy; 2866 if (CharTy->isPromotableIntegerType()) 2867 PromotedCharTy = Context.getPromotedIntegerType(CharTy); 2868 unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy); 2869 2870 if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) { 2871 // Get the length of the string. 2872 uint64_t StrLen = SL->getLength(); 2873 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen)) 2874 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue(); 2875 StructuredList->resizeInits(Context, StrLen); 2876 2877 // Build a literal for each character in the string, and put them into 2878 // the init list. 2879 for (unsigned i = 0, e = StrLen; i != e; ++i) { 2880 llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i)); 2881 Expr *Init = new (Context) IntegerLiteral( 2882 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); 2883 if (CharTy != PromotedCharTy) 2884 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, 2885 Init, nullptr, VK_RValue); 2886 StructuredList->updateInit(Context, i, Init); 2887 } 2888 } else { 2889 ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr); 2890 std::string Str; 2891 Context.getObjCEncodingForType(E->getEncodedType(), Str); 2892 2893 // Get the length of the string. 2894 uint64_t StrLen = Str.size(); 2895 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen)) 2896 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue(); 2897 StructuredList->resizeInits(Context, StrLen); 2898 2899 // Build a literal for each character in the string, and put them into 2900 // the init list. 2901 for (unsigned i = 0, e = StrLen; i != e; ++i) { 2902 llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]); 2903 Expr *Init = new (Context) IntegerLiteral( 2904 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); 2905 if (CharTy != PromotedCharTy) 2906 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, 2907 Init, nullptr, VK_RValue); 2908 StructuredList->updateInit(Context, i, Init); 2909 } 2910 } 2911 } 2912 2913 // Make sure that our non-designated initializer list has space 2914 // for a subobject corresponding to this array element. 2915 if (StructuredList && 2916 DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits()) 2917 StructuredList->resizeInits(SemaRef.Context, 2918 DesignatedEndIndex.getZExtValue() + 1); 2919 2920 // Repeatedly perform subobject initializations in the range 2921 // [DesignatedStartIndex, DesignatedEndIndex]. 2922 2923 // Move to the next designator 2924 unsigned ElementIndex = DesignatedStartIndex.getZExtValue(); 2925 unsigned OldIndex = Index; 2926 2927 InitializedEntity ElementEntity = 2928 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 2929 2930 while (DesignatedStartIndex <= DesignatedEndIndex) { 2931 // Recurse to check later designated subobjects. 2932 QualType ElementType = AT->getElementType(); 2933 Index = OldIndex; 2934 2935 ElementEntity.setElementIndex(ElementIndex); 2936 if (CheckDesignatedInitializer( 2937 ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr, 2938 nullptr, Index, StructuredList, ElementIndex, 2939 FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex), 2940 false)) 2941 return true; 2942 2943 // Move to the next index in the array that we'll be initializing. 2944 ++DesignatedStartIndex; 2945 ElementIndex = DesignatedStartIndex.getZExtValue(); 2946 } 2947 2948 // If this the first designator, our caller will continue checking 2949 // the rest of this array subobject. 2950 if (IsFirstDesignator) { 2951 if (NextElementIndex) 2952 *NextElementIndex = DesignatedStartIndex; 2953 StructuredIndex = ElementIndex; 2954 return false; 2955 } 2956 2957 if (!FinishSubobjectInit) 2958 return false; 2959 2960 // Check the remaining elements within this array subobject. 2961 bool prevHadError = hadError; 2962 CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex, 2963 /*SubobjectIsDesignatorContext=*/false, Index, 2964 StructuredList, ElementIndex); 2965 return hadError && !prevHadError; 2966 } 2967 2968 // Get the structured initializer list for a subobject of type 2969 // @p CurrentObjectType. 2970 InitListExpr * 2971 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, 2972 QualType CurrentObjectType, 2973 InitListExpr *StructuredList, 2974 unsigned StructuredIndex, 2975 SourceRange InitRange, 2976 bool IsFullyOverwritten) { 2977 if (!StructuredList) 2978 return nullptr; 2979 2980 Expr *ExistingInit = nullptr; 2981 if (StructuredIndex < StructuredList->getNumInits()) 2982 ExistingInit = StructuredList->getInit(StructuredIndex); 2983 2984 if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit)) 2985 // There might have already been initializers for subobjects of the current 2986 // object, but a subsequent initializer list will overwrite the entirety 2987 // of the current object. (See DR 253 and C99 6.7.8p21). e.g., 2988 // 2989 // struct P { char x[6]; }; 2990 // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } }; 2991 // 2992 // The first designated initializer is ignored, and l.x is just "f". 2993 if (!IsFullyOverwritten) 2994 return Result; 2995 2996 if (ExistingInit) { 2997 // We are creating an initializer list that initializes the 2998 // subobjects of the current object, but there was already an 2999 // initialization that completely initialized the current 3000 // subobject: 3001 // 3002 // struct X { int a, b; }; 3003 // struct X xs[] = { [0] = { 1, 2 }, [0].b = 3 }; 3004 // 3005 // Here, xs[0].a == 1 and xs[0].b == 3, since the second, 3006 // designated initializer overwrites the [0].b initializer 3007 // from the prior initialization. 3008 // 3009 // When the existing initializer is an expression rather than an 3010 // initializer list, we cannot decompose and update it in this way. 3011 // For example: 3012 // 3013 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; 3014 // 3015 // This case is handled by CheckDesignatedInitializer. 3016 diagnoseInitOverride(ExistingInit, InitRange); 3017 } 3018 3019 unsigned ExpectedNumInits = 0; 3020 if (Index < IList->getNumInits()) { 3021 if (auto *Init = dyn_cast_or_null<InitListExpr>(IList->getInit(Index))) 3022 ExpectedNumInits = Init->getNumInits(); 3023 else 3024 ExpectedNumInits = IList->getNumInits() - Index; 3025 } 3026 3027 InitListExpr *Result = 3028 createInitListExpr(CurrentObjectType, InitRange, ExpectedNumInits); 3029 3030 // Link this new initializer list into the structured initializer 3031 // lists. 3032 StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result); 3033 return Result; 3034 } 3035 3036 InitListExpr * 3037 InitListChecker::createInitListExpr(QualType CurrentObjectType, 3038 SourceRange InitRange, 3039 unsigned ExpectedNumInits) { 3040 InitListExpr *Result 3041 = new (SemaRef.Context) InitListExpr(SemaRef.Context, 3042 InitRange.getBegin(), None, 3043 InitRange.getEnd()); 3044 3045 QualType ResultType = CurrentObjectType; 3046 if (!ResultType->isArrayType()) 3047 ResultType = ResultType.getNonLValueExprType(SemaRef.Context); 3048 Result->setType(ResultType); 3049 3050 // Pre-allocate storage for the structured initializer list. 3051 unsigned NumElements = 0; 3052 3053 if (const ArrayType *AType 3054 = SemaRef.Context.getAsArrayType(CurrentObjectType)) { 3055 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) { 3056 NumElements = CAType->getSize().getZExtValue(); 3057 // Simple heuristic so that we don't allocate a very large 3058 // initializer with many empty entries at the end. 3059 if (NumElements > ExpectedNumInits) 3060 NumElements = 0; 3061 } 3062 } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>()) { 3063 NumElements = VType->getNumElements(); 3064 } else if (CurrentObjectType->isRecordType()) { 3065 NumElements = numStructUnionElements(CurrentObjectType); 3066 } 3067 3068 Result->reserveInits(SemaRef.Context, NumElements); 3069 3070 return Result; 3071 } 3072 3073 /// Update the initializer at index @p StructuredIndex within the 3074 /// structured initializer list to the value @p expr. 3075 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList, 3076 unsigned &StructuredIndex, 3077 Expr *expr) { 3078 // No structured initializer list to update 3079 if (!StructuredList) 3080 return; 3081 3082 if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context, 3083 StructuredIndex, expr)) { 3084 // This initializer overwrites a previous initializer. Warn. 3085 diagnoseInitOverride(PrevInit, expr->getSourceRange()); 3086 } 3087 3088 ++StructuredIndex; 3089 } 3090 3091 /// Determine whether we can perform aggregate initialization for the purposes 3092 /// of overload resolution. 3093 bool Sema::CanPerformAggregateInitializationForOverloadResolution( 3094 const InitializedEntity &Entity, InitListExpr *From) { 3095 QualType Type = Entity.getType(); 3096 InitListChecker Check(*this, Entity, From, Type, /*VerifyOnly=*/true, 3097 /*TreatUnavailableAsInvalid=*/false, 3098 /*InOverloadResolution=*/true); 3099 return !Check.HadError(); 3100 } 3101 3102 /// Check that the given Index expression is a valid array designator 3103 /// value. This is essentially just a wrapper around 3104 /// VerifyIntegerConstantExpression that also checks for negative values 3105 /// and produces a reasonable diagnostic if there is a 3106 /// failure. Returns the index expression, possibly with an implicit cast 3107 /// added, on success. If everything went okay, Value will receive the 3108 /// value of the constant expression. 3109 static ExprResult 3110 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) { 3111 SourceLocation Loc = Index->getBeginLoc(); 3112 3113 // Make sure this is an integer constant expression. 3114 ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value); 3115 if (Result.isInvalid()) 3116 return Result; 3117 3118 if (Value.isSigned() && Value.isNegative()) 3119 return S.Diag(Loc, diag::err_array_designator_negative) 3120 << Value.toString(10) << Index->getSourceRange(); 3121 3122 Value.setIsUnsigned(true); 3123 return Result; 3124 } 3125 3126 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig, 3127 SourceLocation EqualOrColonLoc, 3128 bool GNUSyntax, 3129 ExprResult Init) { 3130 typedef DesignatedInitExpr::Designator ASTDesignator; 3131 3132 bool Invalid = false; 3133 SmallVector<ASTDesignator, 32> Designators; 3134 SmallVector<Expr *, 32> InitExpressions; 3135 3136 // Build designators and check array designator expressions. 3137 for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) { 3138 const Designator &D = Desig.getDesignator(Idx); 3139 switch (D.getKind()) { 3140 case Designator::FieldDesignator: 3141 Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(), 3142 D.getFieldLoc())); 3143 break; 3144 3145 case Designator::ArrayDesignator: { 3146 Expr *Index = static_cast<Expr *>(D.getArrayIndex()); 3147 llvm::APSInt IndexValue; 3148 if (!Index->isTypeDependent() && !Index->isValueDependent()) 3149 Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get(); 3150 if (!Index) 3151 Invalid = true; 3152 else { 3153 Designators.push_back(ASTDesignator(InitExpressions.size(), 3154 D.getLBracketLoc(), 3155 D.getRBracketLoc())); 3156 InitExpressions.push_back(Index); 3157 } 3158 break; 3159 } 3160 3161 case Designator::ArrayRangeDesignator: { 3162 Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart()); 3163 Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd()); 3164 llvm::APSInt StartValue; 3165 llvm::APSInt EndValue; 3166 bool StartDependent = StartIndex->isTypeDependent() || 3167 StartIndex->isValueDependent(); 3168 bool EndDependent = EndIndex->isTypeDependent() || 3169 EndIndex->isValueDependent(); 3170 if (!StartDependent) 3171 StartIndex = 3172 CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get(); 3173 if (!EndDependent) 3174 EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get(); 3175 3176 if (!StartIndex || !EndIndex) 3177 Invalid = true; 3178 else { 3179 // Make sure we're comparing values with the same bit width. 3180 if (StartDependent || EndDependent) { 3181 // Nothing to compute. 3182 } else if (StartValue.getBitWidth() > EndValue.getBitWidth()) 3183 EndValue = EndValue.extend(StartValue.getBitWidth()); 3184 else if (StartValue.getBitWidth() < EndValue.getBitWidth()) 3185 StartValue = StartValue.extend(EndValue.getBitWidth()); 3186 3187 if (!StartDependent && !EndDependent && EndValue < StartValue) { 3188 Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range) 3189 << StartValue.toString(10) << EndValue.toString(10) 3190 << StartIndex->getSourceRange() << EndIndex->getSourceRange(); 3191 Invalid = true; 3192 } else { 3193 Designators.push_back(ASTDesignator(InitExpressions.size(), 3194 D.getLBracketLoc(), 3195 D.getEllipsisLoc(), 3196 D.getRBracketLoc())); 3197 InitExpressions.push_back(StartIndex); 3198 InitExpressions.push_back(EndIndex); 3199 } 3200 } 3201 break; 3202 } 3203 } 3204 } 3205 3206 if (Invalid || Init.isInvalid()) 3207 return ExprError(); 3208 3209 // Clear out the expressions within the designation. 3210 Desig.ClearExprs(*this); 3211 3212 return DesignatedInitExpr::Create(Context, Designators, InitExpressions, 3213 EqualOrColonLoc, GNUSyntax, 3214 Init.getAs<Expr>()); 3215 } 3216 3217 //===----------------------------------------------------------------------===// 3218 // Initialization entity 3219 //===----------------------------------------------------------------------===// 3220 3221 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index, 3222 const InitializedEntity &Parent) 3223 : Parent(&Parent), Index(Index) 3224 { 3225 if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) { 3226 Kind = EK_ArrayElement; 3227 Type = AT->getElementType(); 3228 } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) { 3229 Kind = EK_VectorElement; 3230 Type = VT->getElementType(); 3231 } else { 3232 const ComplexType *CT = Parent.getType()->getAs<ComplexType>(); 3233 assert(CT && "Unexpected type"); 3234 Kind = EK_ComplexElement; 3235 Type = CT->getElementType(); 3236 } 3237 } 3238 3239 InitializedEntity 3240 InitializedEntity::InitializeBase(ASTContext &Context, 3241 const CXXBaseSpecifier *Base, 3242 bool IsInheritedVirtualBase, 3243 const InitializedEntity *Parent) { 3244 InitializedEntity Result; 3245 Result.Kind = EK_Base; 3246 Result.Parent = Parent; 3247 Result.Base = reinterpret_cast<uintptr_t>(Base); 3248 if (IsInheritedVirtualBase) 3249 Result.Base |= 0x01; 3250 3251 Result.Type = Base->getType(); 3252 return Result; 3253 } 3254 3255 DeclarationName InitializedEntity::getName() const { 3256 switch (getKind()) { 3257 case EK_Parameter: 3258 case EK_Parameter_CF_Audited: { 3259 ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1); 3260 return (D ? D->getDeclName() : DeclarationName()); 3261 } 3262 3263 case EK_Variable: 3264 case EK_Member: 3265 case EK_Binding: 3266 return Variable.VariableOrMember->getDeclName(); 3267 3268 case EK_LambdaCapture: 3269 return DeclarationName(Capture.VarID); 3270 3271 case EK_Result: 3272 case EK_StmtExprResult: 3273 case EK_Exception: 3274 case EK_New: 3275 case EK_Temporary: 3276 case EK_Base: 3277 case EK_Delegating: 3278 case EK_ArrayElement: 3279 case EK_VectorElement: 3280 case EK_ComplexElement: 3281 case EK_BlockElement: 3282 case EK_LambdaToBlockConversionBlockElement: 3283 case EK_CompoundLiteralInit: 3284 case EK_RelatedResult: 3285 return DeclarationName(); 3286 } 3287 3288 llvm_unreachable("Invalid EntityKind!"); 3289 } 3290 3291 ValueDecl *InitializedEntity::getDecl() const { 3292 switch (getKind()) { 3293 case EK_Variable: 3294 case EK_Member: 3295 case EK_Binding: 3296 return Variable.VariableOrMember; 3297 3298 case EK_Parameter: 3299 case EK_Parameter_CF_Audited: 3300 return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1); 3301 3302 case EK_Result: 3303 case EK_StmtExprResult: 3304 case EK_Exception: 3305 case EK_New: 3306 case EK_Temporary: 3307 case EK_Base: 3308 case EK_Delegating: 3309 case EK_ArrayElement: 3310 case EK_VectorElement: 3311 case EK_ComplexElement: 3312 case EK_BlockElement: 3313 case EK_LambdaToBlockConversionBlockElement: 3314 case EK_LambdaCapture: 3315 case EK_CompoundLiteralInit: 3316 case EK_RelatedResult: 3317 return nullptr; 3318 } 3319 3320 llvm_unreachable("Invalid EntityKind!"); 3321 } 3322 3323 bool InitializedEntity::allowsNRVO() const { 3324 switch (getKind()) { 3325 case EK_Result: 3326 case EK_Exception: 3327 return LocAndNRVO.NRVO; 3328 3329 case EK_StmtExprResult: 3330 case EK_Variable: 3331 case EK_Parameter: 3332 case EK_Parameter_CF_Audited: 3333 case EK_Member: 3334 case EK_Binding: 3335 case EK_New: 3336 case EK_Temporary: 3337 case EK_CompoundLiteralInit: 3338 case EK_Base: 3339 case EK_Delegating: 3340 case EK_ArrayElement: 3341 case EK_VectorElement: 3342 case EK_ComplexElement: 3343 case EK_BlockElement: 3344 case EK_LambdaToBlockConversionBlockElement: 3345 case EK_LambdaCapture: 3346 case EK_RelatedResult: 3347 break; 3348 } 3349 3350 return false; 3351 } 3352 3353 unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const { 3354 assert(getParent() != this); 3355 unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0; 3356 for (unsigned I = 0; I != Depth; ++I) 3357 OS << "`-"; 3358 3359 switch (getKind()) { 3360 case EK_Variable: OS << "Variable"; break; 3361 case EK_Parameter: OS << "Parameter"; break; 3362 case EK_Parameter_CF_Audited: OS << "CF audited function Parameter"; 3363 break; 3364 case EK_Result: OS << "Result"; break; 3365 case EK_StmtExprResult: OS << "StmtExprResult"; break; 3366 case EK_Exception: OS << "Exception"; break; 3367 case EK_Member: OS << "Member"; break; 3368 case EK_Binding: OS << "Binding"; break; 3369 case EK_New: OS << "New"; break; 3370 case EK_Temporary: OS << "Temporary"; break; 3371 case EK_CompoundLiteralInit: OS << "CompoundLiteral";break; 3372 case EK_RelatedResult: OS << "RelatedResult"; break; 3373 case EK_Base: OS << "Base"; break; 3374 case EK_Delegating: OS << "Delegating"; break; 3375 case EK_ArrayElement: OS << "ArrayElement " << Index; break; 3376 case EK_VectorElement: OS << "VectorElement " << Index; break; 3377 case EK_ComplexElement: OS << "ComplexElement " << Index; break; 3378 case EK_BlockElement: OS << "Block"; break; 3379 case EK_LambdaToBlockConversionBlockElement: 3380 OS << "Block (lambda)"; 3381 break; 3382 case EK_LambdaCapture: 3383 OS << "LambdaCapture "; 3384 OS << DeclarationName(Capture.VarID); 3385 break; 3386 } 3387 3388 if (auto *D = getDecl()) { 3389 OS << " "; 3390 D->printQualifiedName(OS); 3391 } 3392 3393 OS << " '" << getType().getAsString() << "'\n"; 3394 3395 return Depth + 1; 3396 } 3397 3398 LLVM_DUMP_METHOD void InitializedEntity::dump() const { 3399 dumpImpl(llvm::errs()); 3400 } 3401 3402 //===----------------------------------------------------------------------===// 3403 // Initialization sequence 3404 //===----------------------------------------------------------------------===// 3405 3406 void InitializationSequence::Step::Destroy() { 3407 switch (Kind) { 3408 case SK_ResolveAddressOfOverloadedFunction: 3409 case SK_CastDerivedToBaseRValue: 3410 case SK_CastDerivedToBaseXValue: 3411 case SK_CastDerivedToBaseLValue: 3412 case SK_BindReference: 3413 case SK_BindReferenceToTemporary: 3414 case SK_FinalCopy: 3415 case SK_ExtraneousCopyToTemporary: 3416 case SK_UserConversion: 3417 case SK_QualificationConversionRValue: 3418 case SK_QualificationConversionXValue: 3419 case SK_QualificationConversionLValue: 3420 case SK_AtomicConversion: 3421 case SK_ListInitialization: 3422 case SK_UnwrapInitList: 3423 case SK_RewrapInitList: 3424 case SK_ConstructorInitialization: 3425 case SK_ConstructorInitializationFromList: 3426 case SK_ZeroInitialization: 3427 case SK_CAssignment: 3428 case SK_StringInit: 3429 case SK_ObjCObjectConversion: 3430 case SK_ArrayLoopIndex: 3431 case SK_ArrayLoopInit: 3432 case SK_ArrayInit: 3433 case SK_GNUArrayInit: 3434 case SK_ParenthesizedArrayInit: 3435 case SK_PassByIndirectCopyRestore: 3436 case SK_PassByIndirectRestore: 3437 case SK_ProduceObjCObject: 3438 case SK_StdInitializerList: 3439 case SK_StdInitializerListConstructorCall: 3440 case SK_OCLSamplerInit: 3441 case SK_OCLZeroOpaqueType: 3442 break; 3443 3444 case SK_ConversionSequence: 3445 case SK_ConversionSequenceNoNarrowing: 3446 delete ICS; 3447 } 3448 } 3449 3450 bool InitializationSequence::isDirectReferenceBinding() const { 3451 // There can be some lvalue adjustments after the SK_BindReference step. 3452 for (auto I = Steps.rbegin(); I != Steps.rend(); ++I) { 3453 if (I->Kind == SK_BindReference) 3454 return true; 3455 if (I->Kind == SK_BindReferenceToTemporary) 3456 return false; 3457 } 3458 return false; 3459 } 3460 3461 bool InitializationSequence::isAmbiguous() const { 3462 if (!Failed()) 3463 return false; 3464 3465 switch (getFailureKind()) { 3466 case FK_TooManyInitsForReference: 3467 case FK_ParenthesizedListInitForReference: 3468 case FK_ArrayNeedsInitList: 3469 case FK_ArrayNeedsInitListOrStringLiteral: 3470 case FK_ArrayNeedsInitListOrWideStringLiteral: 3471 case FK_NarrowStringIntoWideCharArray: 3472 case FK_WideStringIntoCharArray: 3473 case FK_IncompatWideStringIntoWideChar: 3474 case FK_PlainStringIntoUTF8Char: 3475 case FK_UTF8StringIntoPlainChar: 3476 case FK_AddressOfOverloadFailed: // FIXME: Could do better 3477 case FK_NonConstLValueReferenceBindingToTemporary: 3478 case FK_NonConstLValueReferenceBindingToBitfield: 3479 case FK_NonConstLValueReferenceBindingToVectorElement: 3480 case FK_NonConstLValueReferenceBindingToUnrelated: 3481 case FK_RValueReferenceBindingToLValue: 3482 case FK_ReferenceAddrspaceMismatchTemporary: 3483 case FK_ReferenceInitDropsQualifiers: 3484 case FK_ReferenceInitFailed: 3485 case FK_ConversionFailed: 3486 case FK_ConversionFromPropertyFailed: 3487 case FK_TooManyInitsForScalar: 3488 case FK_ParenthesizedListInitForScalar: 3489 case FK_ReferenceBindingToInitList: 3490 case FK_InitListBadDestinationType: 3491 case FK_DefaultInitOfConst: 3492 case FK_Incomplete: 3493 case FK_ArrayTypeMismatch: 3494 case FK_NonConstantArrayInit: 3495 case FK_ListInitializationFailed: 3496 case FK_VariableLengthArrayHasInitializer: 3497 case FK_PlaceholderType: 3498 case FK_ExplicitConstructor: 3499 case FK_AddressOfUnaddressableFunction: 3500 return false; 3501 3502 case FK_ReferenceInitOverloadFailed: 3503 case FK_UserConversionOverloadFailed: 3504 case FK_ConstructorOverloadFailed: 3505 case FK_ListConstructorOverloadFailed: 3506 return FailedOverloadResult == OR_Ambiguous; 3507 } 3508 3509 llvm_unreachable("Invalid EntityKind!"); 3510 } 3511 3512 bool InitializationSequence::isConstructorInitialization() const { 3513 return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization; 3514 } 3515 3516 void 3517 InitializationSequence 3518 ::AddAddressOverloadResolutionStep(FunctionDecl *Function, 3519 DeclAccessPair Found, 3520 bool HadMultipleCandidates) { 3521 Step S; 3522 S.Kind = SK_ResolveAddressOfOverloadedFunction; 3523 S.Type = Function->getType(); 3524 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3525 S.Function.Function = Function; 3526 S.Function.FoundDecl = Found; 3527 Steps.push_back(S); 3528 } 3529 3530 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType, 3531 ExprValueKind VK) { 3532 Step S; 3533 switch (VK) { 3534 case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break; 3535 case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break; 3536 case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break; 3537 } 3538 S.Type = BaseType; 3539 Steps.push_back(S); 3540 } 3541 3542 void InitializationSequence::AddReferenceBindingStep(QualType T, 3543 bool BindingTemporary) { 3544 Step S; 3545 S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference; 3546 S.Type = T; 3547 Steps.push_back(S); 3548 } 3549 3550 void InitializationSequence::AddFinalCopy(QualType T) { 3551 Step S; 3552 S.Kind = SK_FinalCopy; 3553 S.Type = T; 3554 Steps.push_back(S); 3555 } 3556 3557 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) { 3558 Step S; 3559 S.Kind = SK_ExtraneousCopyToTemporary; 3560 S.Type = T; 3561 Steps.push_back(S); 3562 } 3563 3564 void 3565 InitializationSequence::AddUserConversionStep(FunctionDecl *Function, 3566 DeclAccessPair FoundDecl, 3567 QualType T, 3568 bool HadMultipleCandidates) { 3569 Step S; 3570 S.Kind = SK_UserConversion; 3571 S.Type = T; 3572 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3573 S.Function.Function = Function; 3574 S.Function.FoundDecl = FoundDecl; 3575 Steps.push_back(S); 3576 } 3577 3578 void InitializationSequence::AddQualificationConversionStep(QualType Ty, 3579 ExprValueKind VK) { 3580 Step S; 3581 S.Kind = SK_QualificationConversionRValue; // work around a gcc warning 3582 switch (VK) { 3583 case VK_RValue: 3584 S.Kind = SK_QualificationConversionRValue; 3585 break; 3586 case VK_XValue: 3587 S.Kind = SK_QualificationConversionXValue; 3588 break; 3589 case VK_LValue: 3590 S.Kind = SK_QualificationConversionLValue; 3591 break; 3592 } 3593 S.Type = Ty; 3594 Steps.push_back(S); 3595 } 3596 3597 void InitializationSequence::AddAtomicConversionStep(QualType Ty) { 3598 Step S; 3599 S.Kind = SK_AtomicConversion; 3600 S.Type = Ty; 3601 Steps.push_back(S); 3602 } 3603 3604 void InitializationSequence::AddConversionSequenceStep( 3605 const ImplicitConversionSequence &ICS, QualType T, 3606 bool TopLevelOfInitList) { 3607 Step S; 3608 S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing 3609 : SK_ConversionSequence; 3610 S.Type = T; 3611 S.ICS = new ImplicitConversionSequence(ICS); 3612 Steps.push_back(S); 3613 } 3614 3615 void InitializationSequence::AddListInitializationStep(QualType T) { 3616 Step S; 3617 S.Kind = SK_ListInitialization; 3618 S.Type = T; 3619 Steps.push_back(S); 3620 } 3621 3622 void InitializationSequence::AddConstructorInitializationStep( 3623 DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T, 3624 bool HadMultipleCandidates, bool FromInitList, bool AsInitList) { 3625 Step S; 3626 S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall 3627 : SK_ConstructorInitializationFromList 3628 : SK_ConstructorInitialization; 3629 S.Type = T; 3630 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3631 S.Function.Function = Constructor; 3632 S.Function.FoundDecl = FoundDecl; 3633 Steps.push_back(S); 3634 } 3635 3636 void InitializationSequence::AddZeroInitializationStep(QualType T) { 3637 Step S; 3638 S.Kind = SK_ZeroInitialization; 3639 S.Type = T; 3640 Steps.push_back(S); 3641 } 3642 3643 void InitializationSequence::AddCAssignmentStep(QualType T) { 3644 Step S; 3645 S.Kind = SK_CAssignment; 3646 S.Type = T; 3647 Steps.push_back(S); 3648 } 3649 3650 void InitializationSequence::AddStringInitStep(QualType T) { 3651 Step S; 3652 S.Kind = SK_StringInit; 3653 S.Type = T; 3654 Steps.push_back(S); 3655 } 3656 3657 void InitializationSequence::AddObjCObjectConversionStep(QualType T) { 3658 Step S; 3659 S.Kind = SK_ObjCObjectConversion; 3660 S.Type = T; 3661 Steps.push_back(S); 3662 } 3663 3664 void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) { 3665 Step S; 3666 S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit; 3667 S.Type = T; 3668 Steps.push_back(S); 3669 } 3670 3671 void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) { 3672 Step S; 3673 S.Kind = SK_ArrayLoopIndex; 3674 S.Type = EltT; 3675 Steps.insert(Steps.begin(), S); 3676 3677 S.Kind = SK_ArrayLoopInit; 3678 S.Type = T; 3679 Steps.push_back(S); 3680 } 3681 3682 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) { 3683 Step S; 3684 S.Kind = SK_ParenthesizedArrayInit; 3685 S.Type = T; 3686 Steps.push_back(S); 3687 } 3688 3689 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type, 3690 bool shouldCopy) { 3691 Step s; 3692 s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore 3693 : SK_PassByIndirectRestore); 3694 s.Type = type; 3695 Steps.push_back(s); 3696 } 3697 3698 void InitializationSequence::AddProduceObjCObjectStep(QualType T) { 3699 Step S; 3700 S.Kind = SK_ProduceObjCObject; 3701 S.Type = T; 3702 Steps.push_back(S); 3703 } 3704 3705 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) { 3706 Step S; 3707 S.Kind = SK_StdInitializerList; 3708 S.Type = T; 3709 Steps.push_back(S); 3710 } 3711 3712 void InitializationSequence::AddOCLSamplerInitStep(QualType T) { 3713 Step S; 3714 S.Kind = SK_OCLSamplerInit; 3715 S.Type = T; 3716 Steps.push_back(S); 3717 } 3718 3719 void InitializationSequence::AddOCLZeroOpaqueTypeStep(QualType T) { 3720 Step S; 3721 S.Kind = SK_OCLZeroOpaqueType; 3722 S.Type = T; 3723 Steps.push_back(S); 3724 } 3725 3726 void InitializationSequence::RewrapReferenceInitList(QualType T, 3727 InitListExpr *Syntactic) { 3728 assert(Syntactic->getNumInits() == 1 && 3729 "Can only rewrap trivial init lists."); 3730 Step S; 3731 S.Kind = SK_UnwrapInitList; 3732 S.Type = Syntactic->getInit(0)->getType(); 3733 Steps.insert(Steps.begin(), S); 3734 3735 S.Kind = SK_RewrapInitList; 3736 S.Type = T; 3737 S.WrappingSyntacticList = Syntactic; 3738 Steps.push_back(S); 3739 } 3740 3741 void InitializationSequence::SetOverloadFailure(FailureKind Failure, 3742 OverloadingResult Result) { 3743 setSequenceKind(FailedSequence); 3744 this->Failure = Failure; 3745 this->FailedOverloadResult = Result; 3746 } 3747 3748 //===----------------------------------------------------------------------===// 3749 // Attempt initialization 3750 //===----------------------------------------------------------------------===// 3751 3752 /// Tries to add a zero initializer. Returns true if that worked. 3753 static bool 3754 maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence, 3755 const InitializedEntity &Entity) { 3756 if (Entity.getKind() != InitializedEntity::EK_Variable) 3757 return false; 3758 3759 VarDecl *VD = cast<VarDecl>(Entity.getDecl()); 3760 if (VD->getInit() || VD->getEndLoc().isMacroID()) 3761 return false; 3762 3763 QualType VariableTy = VD->getType().getCanonicalType(); 3764 SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc()); 3765 std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc); 3766 if (!Init.empty()) { 3767 Sequence.AddZeroInitializationStep(Entity.getType()); 3768 Sequence.SetZeroInitializationFixit(Init, Loc); 3769 return true; 3770 } 3771 return false; 3772 } 3773 3774 static void MaybeProduceObjCObject(Sema &S, 3775 InitializationSequence &Sequence, 3776 const InitializedEntity &Entity) { 3777 if (!S.getLangOpts().ObjCAutoRefCount) return; 3778 3779 /// When initializing a parameter, produce the value if it's marked 3780 /// __attribute__((ns_consumed)). 3781 if (Entity.isParameterKind()) { 3782 if (!Entity.isParameterConsumed()) 3783 return; 3784 3785 assert(Entity.getType()->isObjCRetainableType() && 3786 "consuming an object of unretainable type?"); 3787 Sequence.AddProduceObjCObjectStep(Entity.getType()); 3788 3789 /// When initializing a return value, if the return type is a 3790 /// retainable type, then returns need to immediately retain the 3791 /// object. If an autorelease is required, it will be done at the 3792 /// last instant. 3793 } else if (Entity.getKind() == InitializedEntity::EK_Result || 3794 Entity.getKind() == InitializedEntity::EK_StmtExprResult) { 3795 if (!Entity.getType()->isObjCRetainableType()) 3796 return; 3797 3798 Sequence.AddProduceObjCObjectStep(Entity.getType()); 3799 } 3800 } 3801 3802 static void TryListInitialization(Sema &S, 3803 const InitializedEntity &Entity, 3804 const InitializationKind &Kind, 3805 InitListExpr *InitList, 3806 InitializationSequence &Sequence, 3807 bool TreatUnavailableAsInvalid); 3808 3809 /// When initializing from init list via constructor, handle 3810 /// initialization of an object of type std::initializer_list<T>. 3811 /// 3812 /// \return true if we have handled initialization of an object of type 3813 /// std::initializer_list<T>, false otherwise. 3814 static bool TryInitializerListConstruction(Sema &S, 3815 InitListExpr *List, 3816 QualType DestType, 3817 InitializationSequence &Sequence, 3818 bool TreatUnavailableAsInvalid) { 3819 QualType E; 3820 if (!S.isStdInitializerList(DestType, &E)) 3821 return false; 3822 3823 if (!S.isCompleteType(List->getExprLoc(), E)) { 3824 Sequence.setIncompleteTypeFailure(E); 3825 return true; 3826 } 3827 3828 // Try initializing a temporary array from the init list. 3829 QualType ArrayType = S.Context.getConstantArrayType( 3830 E.withConst(), 3831 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()), 3832 List->getNumInits()), 3833 nullptr, clang::ArrayType::Normal, 0); 3834 InitializedEntity HiddenArray = 3835 InitializedEntity::InitializeTemporary(ArrayType); 3836 InitializationKind Kind = InitializationKind::CreateDirectList( 3837 List->getExprLoc(), List->getBeginLoc(), List->getEndLoc()); 3838 TryListInitialization(S, HiddenArray, Kind, List, Sequence, 3839 TreatUnavailableAsInvalid); 3840 if (Sequence) 3841 Sequence.AddStdInitializerListConstructionStep(DestType); 3842 return true; 3843 } 3844 3845 /// Determine if the constructor has the signature of a copy or move 3846 /// constructor for the type T of the class in which it was found. That is, 3847 /// determine if its first parameter is of type T or reference to (possibly 3848 /// cv-qualified) T. 3849 static bool hasCopyOrMoveCtorParam(ASTContext &Ctx, 3850 const ConstructorInfo &Info) { 3851 if (Info.Constructor->getNumParams() == 0) 3852 return false; 3853 3854 QualType ParmT = 3855 Info.Constructor->getParamDecl(0)->getType().getNonReferenceType(); 3856 QualType ClassT = 3857 Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext())); 3858 3859 return Ctx.hasSameUnqualifiedType(ParmT, ClassT); 3860 } 3861 3862 static OverloadingResult 3863 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc, 3864 MultiExprArg Args, 3865 OverloadCandidateSet &CandidateSet, 3866 QualType DestType, 3867 DeclContext::lookup_result Ctors, 3868 OverloadCandidateSet::iterator &Best, 3869 bool CopyInitializing, bool AllowExplicit, 3870 bool OnlyListConstructors, bool IsListInit, 3871 bool SecondStepOfCopyInit = false) { 3872 CandidateSet.clear(OverloadCandidateSet::CSK_InitByConstructor); 3873 CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace()); 3874 3875 for (NamedDecl *D : Ctors) { 3876 auto Info = getConstructorInfo(D); 3877 if (!Info.Constructor || Info.Constructor->isInvalidDecl()) 3878 continue; 3879 3880 if (!AllowExplicit && Info.Constructor->isExplicit()) 3881 continue; 3882 3883 if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor)) 3884 continue; 3885 3886 // C++11 [over.best.ics]p4: 3887 // ... and the constructor or user-defined conversion function is a 3888 // candidate by 3889 // - 13.3.1.3, when the argument is the temporary in the second step 3890 // of a class copy-initialization, or 3891 // - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here] 3892 // - the second phase of 13.3.1.7 when the initializer list has exactly 3893 // one element that is itself an initializer list, and the target is 3894 // the first parameter of a constructor of class X, and the conversion 3895 // is to X or reference to (possibly cv-qualified X), 3896 // user-defined conversion sequences are not considered. 3897 bool SuppressUserConversions = 3898 SecondStepOfCopyInit || 3899 (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) && 3900 hasCopyOrMoveCtorParam(S.Context, Info)); 3901 3902 if (Info.ConstructorTmpl) 3903 S.AddTemplateOverloadCandidate( 3904 Info.ConstructorTmpl, Info.FoundDecl, 3905 /*ExplicitArgs*/ nullptr, Args, CandidateSet, SuppressUserConversions, 3906 /*PartialOverloading=*/false, AllowExplicit); 3907 else { 3908 // C++ [over.match.copy]p1: 3909 // - When initializing a temporary to be bound to the first parameter 3910 // of a constructor [for type T] that takes a reference to possibly 3911 // cv-qualified T as its first argument, called with a single 3912 // argument in the context of direct-initialization, explicit 3913 // conversion functions are also considered. 3914 // FIXME: What if a constructor template instantiates to such a signature? 3915 bool AllowExplicitConv = AllowExplicit && !CopyInitializing && 3916 Args.size() == 1 && 3917 hasCopyOrMoveCtorParam(S.Context, Info); 3918 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args, 3919 CandidateSet, SuppressUserConversions, 3920 /*PartialOverloading=*/false, AllowExplicit, 3921 AllowExplicitConv); 3922 } 3923 } 3924 3925 // FIXME: Work around a bug in C++17 guaranteed copy elision. 3926 // 3927 // When initializing an object of class type T by constructor 3928 // ([over.match.ctor]) or by list-initialization ([over.match.list]) 3929 // from a single expression of class type U, conversion functions of 3930 // U that convert to the non-reference type cv T are candidates. 3931 // Explicit conversion functions are only candidates during 3932 // direct-initialization. 3933 // 3934 // Note: SecondStepOfCopyInit is only ever true in this case when 3935 // evaluating whether to produce a C++98 compatibility warning. 3936 if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 && 3937 !SecondStepOfCopyInit) { 3938 Expr *Initializer = Args[0]; 3939 auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl(); 3940 if (SourceRD && S.isCompleteType(DeclLoc, Initializer->getType())) { 3941 const auto &Conversions = SourceRD->getVisibleConversionFunctions(); 3942 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 3943 NamedDecl *D = *I; 3944 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 3945 D = D->getUnderlyingDecl(); 3946 3947 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 3948 CXXConversionDecl *Conv; 3949 if (ConvTemplate) 3950 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 3951 else 3952 Conv = cast<CXXConversionDecl>(D); 3953 3954 if (AllowExplicit || !Conv->isExplicit()) { 3955 if (ConvTemplate) 3956 S.AddTemplateConversionCandidate( 3957 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, 3958 CandidateSet, AllowExplicit, AllowExplicit, 3959 /*AllowResultConversion*/ false); 3960 else 3961 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer, 3962 DestType, CandidateSet, AllowExplicit, 3963 AllowExplicit, 3964 /*AllowResultConversion*/ false); 3965 } 3966 } 3967 } 3968 } 3969 3970 // Perform overload resolution and return the result. 3971 return CandidateSet.BestViableFunction(S, DeclLoc, Best); 3972 } 3973 3974 /// Attempt initialization by constructor (C++ [dcl.init]), which 3975 /// enumerates the constructors of the initialized entity and performs overload 3976 /// resolution to select the best. 3977 /// \param DestType The destination class type. 3978 /// \param DestArrayType The destination type, which is either DestType or 3979 /// a (possibly multidimensional) array of DestType. 3980 /// \param IsListInit Is this list-initialization? 3981 /// \param IsInitListCopy Is this non-list-initialization resulting from a 3982 /// list-initialization from {x} where x is the same 3983 /// type as the entity? 3984 static void TryConstructorInitialization(Sema &S, 3985 const InitializedEntity &Entity, 3986 const InitializationKind &Kind, 3987 MultiExprArg Args, QualType DestType, 3988 QualType DestArrayType, 3989 InitializationSequence &Sequence, 3990 bool IsListInit = false, 3991 bool IsInitListCopy = false) { 3992 assert(((!IsListInit && !IsInitListCopy) || 3993 (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && 3994 "IsListInit/IsInitListCopy must come with a single initializer list " 3995 "argument."); 3996 InitListExpr *ILE = 3997 (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr; 3998 MultiExprArg UnwrappedArgs = 3999 ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args; 4000 4001 // The type we're constructing needs to be complete. 4002 if (!S.isCompleteType(Kind.getLocation(), DestType)) { 4003 Sequence.setIncompleteTypeFailure(DestType); 4004 return; 4005 } 4006 4007 // C++17 [dcl.init]p17: 4008 // - If the initializer expression is a prvalue and the cv-unqualified 4009 // version of the source type is the same class as the class of the 4010 // destination, the initializer expression is used to initialize the 4011 // destination object. 4012 // Per DR (no number yet), this does not apply when initializing a base 4013 // class or delegating to another constructor from a mem-initializer. 4014 // ObjC++: Lambda captured by the block in the lambda to block conversion 4015 // should avoid copy elision. 4016 if (S.getLangOpts().CPlusPlus17 && 4017 Entity.getKind() != InitializedEntity::EK_Base && 4018 Entity.getKind() != InitializedEntity::EK_Delegating && 4019 Entity.getKind() != 4020 InitializedEntity::EK_LambdaToBlockConversionBlockElement && 4021 UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isRValue() && 4022 S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) { 4023 // Convert qualifications if necessary. 4024 Sequence.AddQualificationConversionStep(DestType, VK_RValue); 4025 if (ILE) 4026 Sequence.RewrapReferenceInitList(DestType, ILE); 4027 return; 4028 } 4029 4030 const RecordType *DestRecordType = DestType->getAs<RecordType>(); 4031 assert(DestRecordType && "Constructor initialization requires record type"); 4032 CXXRecordDecl *DestRecordDecl 4033 = cast<CXXRecordDecl>(DestRecordType->getDecl()); 4034 4035 // Build the candidate set directly in the initialization sequence 4036 // structure, so that it will persist if we fail. 4037 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 4038 4039 // Determine whether we are allowed to call explicit constructors or 4040 // explicit conversion operators. 4041 bool AllowExplicit = Kind.AllowExplicit() || IsListInit; 4042 bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy; 4043 4044 // - Otherwise, if T is a class type, constructors are considered. The 4045 // applicable constructors are enumerated, and the best one is chosen 4046 // through overload resolution. 4047 DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl); 4048 4049 OverloadingResult Result = OR_No_Viable_Function; 4050 OverloadCandidateSet::iterator Best; 4051 bool AsInitializerList = false; 4052 4053 // C++11 [over.match.list]p1, per DR1467: 4054 // When objects of non-aggregate type T are list-initialized, such that 4055 // 8.5.4 [dcl.init.list] specifies that overload resolution is performed 4056 // according to the rules in this section, overload resolution selects 4057 // the constructor in two phases: 4058 // 4059 // - Initially, the candidate functions are the initializer-list 4060 // constructors of the class T and the argument list consists of the 4061 // initializer list as a single argument. 4062 if (IsListInit) { 4063 AsInitializerList = true; 4064 4065 // If the initializer list has no elements and T has a default constructor, 4066 // the first phase is omitted. 4067 if (!(UnwrappedArgs.empty() && DestRecordDecl->hasDefaultConstructor())) 4068 Result = ResolveConstructorOverload(S, Kind.getLocation(), Args, 4069 CandidateSet, DestType, Ctors, Best, 4070 CopyInitialization, AllowExplicit, 4071 /*OnlyListConstructors=*/true, 4072 IsListInit); 4073 } 4074 4075 // C++11 [over.match.list]p1: 4076 // - If no viable initializer-list constructor is found, overload resolution 4077 // is performed again, where the candidate functions are all the 4078 // constructors of the class T and the argument list consists of the 4079 // elements of the initializer list. 4080 if (Result == OR_No_Viable_Function) { 4081 AsInitializerList = false; 4082 Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs, 4083 CandidateSet, DestType, Ctors, Best, 4084 CopyInitialization, AllowExplicit, 4085 /*OnlyListConstructors=*/false, 4086 IsListInit); 4087 } 4088 if (Result) { 4089 Sequence.SetOverloadFailure(IsListInit ? 4090 InitializationSequence::FK_ListConstructorOverloadFailed : 4091 InitializationSequence::FK_ConstructorOverloadFailed, 4092 Result); 4093 return; 4094 } 4095 4096 bool HadMultipleCandidates = (CandidateSet.size() > 1); 4097 4098 // In C++17, ResolveConstructorOverload can select a conversion function 4099 // instead of a constructor. 4100 if (auto *CD = dyn_cast<CXXConversionDecl>(Best->Function)) { 4101 // Add the user-defined conversion step that calls the conversion function. 4102 QualType ConvType = CD->getConversionType(); 4103 assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) && 4104 "should not have selected this conversion function"); 4105 Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType, 4106 HadMultipleCandidates); 4107 if (!S.Context.hasSameType(ConvType, DestType)) 4108 Sequence.AddQualificationConversionStep(DestType, VK_RValue); 4109 if (IsListInit) 4110 Sequence.RewrapReferenceInitList(Entity.getType(), ILE); 4111 return; 4112 } 4113 4114 // C++11 [dcl.init]p6: 4115 // If a program calls for the default initialization of an object 4116 // of a const-qualified type T, T shall be a class type with a 4117 // user-provided default constructor. 4118 // C++ core issue 253 proposal: 4119 // If the implicit default constructor initializes all subobjects, no 4120 // initializer should be required. 4121 // The 253 proposal is for example needed to process libstdc++ headers in 5.x. 4122 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 4123 if (Kind.getKind() == InitializationKind::IK_Default && 4124 Entity.getType().isConstQualified()) { 4125 if (!CtorDecl->getParent()->allowConstDefaultInit()) { 4126 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity)) 4127 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); 4128 return; 4129 } 4130 } 4131 4132 // C++11 [over.match.list]p1: 4133 // In copy-list-initialization, if an explicit constructor is chosen, the 4134 // initializer is ill-formed. 4135 if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) { 4136 Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor); 4137 return; 4138 } 4139 4140 // Add the constructor initialization step. Any cv-qualification conversion is 4141 // subsumed by the initialization. 4142 Sequence.AddConstructorInitializationStep( 4143 Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates, 4144 IsListInit | IsInitListCopy, AsInitializerList); 4145 } 4146 4147 static bool 4148 ResolveOverloadedFunctionForReferenceBinding(Sema &S, 4149 Expr *Initializer, 4150 QualType &SourceType, 4151 QualType &UnqualifiedSourceType, 4152 QualType UnqualifiedTargetType, 4153 InitializationSequence &Sequence) { 4154 if (S.Context.getCanonicalType(UnqualifiedSourceType) == 4155 S.Context.OverloadTy) { 4156 DeclAccessPair Found; 4157 bool HadMultipleCandidates = false; 4158 if (FunctionDecl *Fn 4159 = S.ResolveAddressOfOverloadedFunction(Initializer, 4160 UnqualifiedTargetType, 4161 false, Found, 4162 &HadMultipleCandidates)) { 4163 Sequence.AddAddressOverloadResolutionStep(Fn, Found, 4164 HadMultipleCandidates); 4165 SourceType = Fn->getType(); 4166 UnqualifiedSourceType = SourceType.getUnqualifiedType(); 4167 } else if (!UnqualifiedTargetType->isRecordType()) { 4168 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 4169 return true; 4170 } 4171 } 4172 return false; 4173 } 4174 4175 static void TryReferenceInitializationCore(Sema &S, 4176 const InitializedEntity &Entity, 4177 const InitializationKind &Kind, 4178 Expr *Initializer, 4179 QualType cv1T1, QualType T1, 4180 Qualifiers T1Quals, 4181 QualType cv2T2, QualType T2, 4182 Qualifiers T2Quals, 4183 InitializationSequence &Sequence); 4184 4185 static void TryValueInitialization(Sema &S, 4186 const InitializedEntity &Entity, 4187 const InitializationKind &Kind, 4188 InitializationSequence &Sequence, 4189 InitListExpr *InitList = nullptr); 4190 4191 /// Attempt list initialization of a reference. 4192 static void TryReferenceListInitialization(Sema &S, 4193 const InitializedEntity &Entity, 4194 const InitializationKind &Kind, 4195 InitListExpr *InitList, 4196 InitializationSequence &Sequence, 4197 bool TreatUnavailableAsInvalid) { 4198 // First, catch C++03 where this isn't possible. 4199 if (!S.getLangOpts().CPlusPlus11) { 4200 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); 4201 return; 4202 } 4203 // Can't reference initialize a compound literal. 4204 if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) { 4205 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); 4206 return; 4207 } 4208 4209 QualType DestType = Entity.getType(); 4210 QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); 4211 Qualifiers T1Quals; 4212 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); 4213 4214 // Reference initialization via an initializer list works thus: 4215 // If the initializer list consists of a single element that is 4216 // reference-related to the referenced type, bind directly to that element 4217 // (possibly creating temporaries). 4218 // Otherwise, initialize a temporary with the initializer list and 4219 // bind to that. 4220 if (InitList->getNumInits() == 1) { 4221 Expr *Initializer = InitList->getInit(0); 4222 QualType cv2T2 = Initializer->getType(); 4223 Qualifiers T2Quals; 4224 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); 4225 4226 // If this fails, creating a temporary wouldn't work either. 4227 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, 4228 T1, Sequence)) 4229 return; 4230 4231 SourceLocation DeclLoc = Initializer->getBeginLoc(); 4232 bool dummy1, dummy2, dummy3, dummy4; 4233 Sema::ReferenceCompareResult RefRelationship 4234 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1, 4235 dummy2, dummy3, dummy4); 4236 if (RefRelationship >= Sema::Ref_Related) { 4237 // Try to bind the reference here. 4238 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, 4239 T1Quals, cv2T2, T2, T2Quals, Sequence); 4240 if (Sequence) 4241 Sequence.RewrapReferenceInitList(cv1T1, InitList); 4242 return; 4243 } 4244 4245 // Update the initializer if we've resolved an overloaded function. 4246 if (Sequence.step_begin() != Sequence.step_end()) 4247 Sequence.RewrapReferenceInitList(cv1T1, InitList); 4248 } 4249 4250 // Not reference-related. Create a temporary and bind to that. 4251 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1); 4252 4253 TryListInitialization(S, TempEntity, Kind, InitList, Sequence, 4254 TreatUnavailableAsInvalid); 4255 if (Sequence) { 4256 if (DestType->isRValueReferenceType() || 4257 (T1Quals.hasConst() && !T1Quals.hasVolatile())) 4258 Sequence.AddReferenceBindingStep(cv1T1, /*BindingTemporary=*/true); 4259 else 4260 Sequence.SetFailed( 4261 InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary); 4262 } 4263 } 4264 4265 /// Attempt list initialization (C++0x [dcl.init.list]) 4266 static void TryListInitialization(Sema &S, 4267 const InitializedEntity &Entity, 4268 const InitializationKind &Kind, 4269 InitListExpr *InitList, 4270 InitializationSequence &Sequence, 4271 bool TreatUnavailableAsInvalid) { 4272 QualType DestType = Entity.getType(); 4273 4274 // C++ doesn't allow scalar initialization with more than one argument. 4275 // But C99 complex numbers are scalars and it makes sense there. 4276 if (S.getLangOpts().CPlusPlus && DestType->isScalarType() && 4277 !DestType->isAnyComplexType() && InitList->getNumInits() > 1) { 4278 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar); 4279 return; 4280 } 4281 if (DestType->isReferenceType()) { 4282 TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence, 4283 TreatUnavailableAsInvalid); 4284 return; 4285 } 4286 4287 if (DestType->isRecordType() && 4288 !S.isCompleteType(InitList->getBeginLoc(), DestType)) { 4289 Sequence.setIncompleteTypeFailure(DestType); 4290 return; 4291 } 4292 4293 // C++11 [dcl.init.list]p3, per DR1467: 4294 // - If T is a class type and the initializer list has a single element of 4295 // type cv U, where U is T or a class derived from T, the object is 4296 // initialized from that element (by copy-initialization for 4297 // copy-list-initialization, or by direct-initialization for 4298 // direct-list-initialization). 4299 // - Otherwise, if T is a character array and the initializer list has a 4300 // single element that is an appropriately-typed string literal 4301 // (8.5.2 [dcl.init.string]), initialization is performed as described 4302 // in that section. 4303 // - Otherwise, if T is an aggregate, [...] (continue below). 4304 if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) { 4305 if (DestType->isRecordType()) { 4306 QualType InitType = InitList->getInit(0)->getType(); 4307 if (S.Context.hasSameUnqualifiedType(InitType, DestType) || 4308 S.IsDerivedFrom(InitList->getBeginLoc(), InitType, DestType)) { 4309 Expr *InitListAsExpr = InitList; 4310 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType, 4311 DestType, Sequence, 4312 /*InitListSyntax*/false, 4313 /*IsInitListCopy*/true); 4314 return; 4315 } 4316 } 4317 if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) { 4318 Expr *SubInit[1] = {InitList->getInit(0)}; 4319 if (!isa<VariableArrayType>(DestAT) && 4320 IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) { 4321 InitializationKind SubKind = 4322 Kind.getKind() == InitializationKind::IK_DirectList 4323 ? InitializationKind::CreateDirect(Kind.getLocation(), 4324 InitList->getLBraceLoc(), 4325 InitList->getRBraceLoc()) 4326 : Kind; 4327 Sequence.InitializeFrom(S, Entity, SubKind, SubInit, 4328 /*TopLevelOfInitList*/ true, 4329 TreatUnavailableAsInvalid); 4330 4331 // TryStringLiteralInitialization() (in InitializeFrom()) will fail if 4332 // the element is not an appropriately-typed string literal, in which 4333 // case we should proceed as in C++11 (below). 4334 if (Sequence) { 4335 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 4336 return; 4337 } 4338 } 4339 } 4340 } 4341 4342 // C++11 [dcl.init.list]p3: 4343 // - If T is an aggregate, aggregate initialization is performed. 4344 if ((DestType->isRecordType() && !DestType->isAggregateType()) || 4345 (S.getLangOpts().CPlusPlus11 && 4346 S.isStdInitializerList(DestType, nullptr))) { 4347 if (S.getLangOpts().CPlusPlus11) { 4348 // - Otherwise, if the initializer list has no elements and T is a 4349 // class type with a default constructor, the object is 4350 // value-initialized. 4351 if (InitList->getNumInits() == 0) { 4352 CXXRecordDecl *RD = DestType->getAsCXXRecordDecl(); 4353 if (RD->hasDefaultConstructor()) { 4354 TryValueInitialization(S, Entity, Kind, Sequence, InitList); 4355 return; 4356 } 4357 } 4358 4359 // - Otherwise, if T is a specialization of std::initializer_list<E>, 4360 // an initializer_list object constructed [...] 4361 if (TryInitializerListConstruction(S, InitList, DestType, Sequence, 4362 TreatUnavailableAsInvalid)) 4363 return; 4364 4365 // - Otherwise, if T is a class type, constructors are considered. 4366 Expr *InitListAsExpr = InitList; 4367 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType, 4368 DestType, Sequence, /*InitListSyntax*/true); 4369 } else 4370 Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType); 4371 return; 4372 } 4373 4374 if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() && 4375 InitList->getNumInits() == 1) { 4376 Expr *E = InitList->getInit(0); 4377 4378 // - Otherwise, if T is an enumeration with a fixed underlying type, 4379 // the initializer-list has a single element v, and the initialization 4380 // is direct-list-initialization, the object is initialized with the 4381 // value T(v); if a narrowing conversion is required to convert v to 4382 // the underlying type of T, the program is ill-formed. 4383 auto *ET = DestType->getAs<EnumType>(); 4384 if (S.getLangOpts().CPlusPlus17 && 4385 Kind.getKind() == InitializationKind::IK_DirectList && 4386 ET && ET->getDecl()->isFixed() && 4387 !S.Context.hasSameUnqualifiedType(E->getType(), DestType) && 4388 (E->getType()->isIntegralOrEnumerationType() || 4389 E->getType()->isFloatingType())) { 4390 // There are two ways that T(v) can work when T is an enumeration type. 4391 // If there is either an implicit conversion sequence from v to T or 4392 // a conversion function that can convert from v to T, then we use that. 4393 // Otherwise, if v is of integral, enumeration, or floating-point type, 4394 // it is converted to the enumeration type via its underlying type. 4395 // There is no overlap possible between these two cases (except when the 4396 // source value is already of the destination type), and the first 4397 // case is handled by the general case for single-element lists below. 4398 ImplicitConversionSequence ICS; 4399 ICS.setStandard(); 4400 ICS.Standard.setAsIdentityConversion(); 4401 if (!E->isRValue()) 4402 ICS.Standard.First = ICK_Lvalue_To_Rvalue; 4403 // If E is of a floating-point type, then the conversion is ill-formed 4404 // due to narrowing, but go through the motions in order to produce the 4405 // right diagnostic. 4406 ICS.Standard.Second = E->getType()->isFloatingType() 4407 ? ICK_Floating_Integral 4408 : ICK_Integral_Conversion; 4409 ICS.Standard.setFromType(E->getType()); 4410 ICS.Standard.setToType(0, E->getType()); 4411 ICS.Standard.setToType(1, DestType); 4412 ICS.Standard.setToType(2, DestType); 4413 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2), 4414 /*TopLevelOfInitList*/true); 4415 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 4416 return; 4417 } 4418 4419 // - Otherwise, if the initializer list has a single element of type E 4420 // [...references are handled above...], the object or reference is 4421 // initialized from that element (by copy-initialization for 4422 // copy-list-initialization, or by direct-initialization for 4423 // direct-list-initialization); if a narrowing conversion is required 4424 // to convert the element to T, the program is ill-formed. 4425 // 4426 // Per core-24034, this is direct-initialization if we were performing 4427 // direct-list-initialization and copy-initialization otherwise. 4428 // We can't use InitListChecker for this, because it always performs 4429 // copy-initialization. This only matters if we might use an 'explicit' 4430 // conversion operator, so we only need to handle the cases where the source 4431 // is of record type. 4432 if (InitList->getInit(0)->getType()->isRecordType()) { 4433 InitializationKind SubKind = 4434 Kind.getKind() == InitializationKind::IK_DirectList 4435 ? InitializationKind::CreateDirect(Kind.getLocation(), 4436 InitList->getLBraceLoc(), 4437 InitList->getRBraceLoc()) 4438 : Kind; 4439 Expr *SubInit[1] = { InitList->getInit(0) }; 4440 Sequence.InitializeFrom(S, Entity, SubKind, SubInit, 4441 /*TopLevelOfInitList*/true, 4442 TreatUnavailableAsInvalid); 4443 if (Sequence) 4444 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 4445 return; 4446 } 4447 } 4448 4449 InitListChecker CheckInitList(S, Entity, InitList, 4450 DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid); 4451 if (CheckInitList.HadError()) { 4452 Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed); 4453 return; 4454 } 4455 4456 // Add the list initialization step with the built init list. 4457 Sequence.AddListInitializationStep(DestType); 4458 } 4459 4460 /// Try a reference initialization that involves calling a conversion 4461 /// function. 4462 static OverloadingResult TryRefInitWithConversionFunction( 4463 Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, 4464 Expr *Initializer, bool AllowRValues, bool IsLValueRef, 4465 InitializationSequence &Sequence) { 4466 QualType DestType = Entity.getType(); 4467 QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); 4468 QualType T1 = cv1T1.getUnqualifiedType(); 4469 QualType cv2T2 = Initializer->getType(); 4470 QualType T2 = cv2T2.getUnqualifiedType(); 4471 4472 bool DerivedToBase; 4473 bool ObjCConversion; 4474 bool ObjCLifetimeConversion; 4475 bool FunctionConversion; 4476 assert(!S.CompareReferenceRelationship( 4477 Initializer->getBeginLoc(), T1, T2, DerivedToBase, ObjCConversion, 4478 ObjCLifetimeConversion, FunctionConversion) && 4479 "Must have incompatible references when binding via conversion"); 4480 (void)DerivedToBase; 4481 (void)ObjCConversion; 4482 (void)ObjCLifetimeConversion; 4483 (void)FunctionConversion; 4484 4485 // Build the candidate set directly in the initialization sequence 4486 // structure, so that it will persist if we fail. 4487 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 4488 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); 4489 4490 // Determine whether we are allowed to call explicit conversion operators. 4491 // Note that none of [over.match.copy], [over.match.conv], nor 4492 // [over.match.ref] permit an explicit constructor to be chosen when 4493 // initializing a reference, not even for direct-initialization. 4494 bool AllowExplicitCtors = false; 4495 bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding(); 4496 4497 const RecordType *T1RecordType = nullptr; 4498 if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) && 4499 S.isCompleteType(Kind.getLocation(), T1)) { 4500 // The type we're converting to is a class type. Enumerate its constructors 4501 // to see if there is a suitable conversion. 4502 CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl()); 4503 4504 for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) { 4505 auto Info = getConstructorInfo(D); 4506 if (!Info.Constructor) 4507 continue; 4508 4509 if (!Info.Constructor->isInvalidDecl() && 4510 Info.Constructor->isConvertingConstructor(AllowExplicitCtors)) { 4511 if (Info.ConstructorTmpl) 4512 S.AddTemplateOverloadCandidate( 4513 Info.ConstructorTmpl, Info.FoundDecl, 4514 /*ExplicitArgs*/ nullptr, Initializer, CandidateSet, 4515 /*SuppressUserConversions=*/true, 4516 /*PartialOverloading*/ false, AllowExplicitCtors); 4517 else 4518 S.AddOverloadCandidate( 4519 Info.Constructor, Info.FoundDecl, Initializer, CandidateSet, 4520 /*SuppressUserConversions=*/true, 4521 /*PartialOverloading*/ false, AllowExplicitCtors); 4522 } 4523 } 4524 } 4525 if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl()) 4526 return OR_No_Viable_Function; 4527 4528 const RecordType *T2RecordType = nullptr; 4529 if ((T2RecordType = T2->getAs<RecordType>()) && 4530 S.isCompleteType(Kind.getLocation(), T2)) { 4531 // The type we're converting from is a class type, enumerate its conversion 4532 // functions. 4533 CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl()); 4534 4535 const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions(); 4536 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 4537 NamedDecl *D = *I; 4538 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 4539 if (isa<UsingShadowDecl>(D)) 4540 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 4541 4542 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 4543 CXXConversionDecl *Conv; 4544 if (ConvTemplate) 4545 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 4546 else 4547 Conv = cast<CXXConversionDecl>(D); 4548 4549 // If the conversion function doesn't return a reference type, 4550 // it can't be considered for this conversion unless we're allowed to 4551 // consider rvalues. 4552 // FIXME: Do we need to make sure that we only consider conversion 4553 // candidates with reference-compatible results? That might be needed to 4554 // break recursion. 4555 if ((AllowExplicitConvs || !Conv->isExplicit()) && 4556 (AllowRValues || 4557 Conv->getConversionType()->isLValueReferenceType())) { 4558 if (ConvTemplate) 4559 S.AddTemplateConversionCandidate( 4560 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, 4561 CandidateSet, 4562 /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs); 4563 else 4564 S.AddConversionCandidate( 4565 Conv, I.getPair(), ActingDC, Initializer, DestType, CandidateSet, 4566 /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs); 4567 } 4568 } 4569 } 4570 if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl()) 4571 return OR_No_Viable_Function; 4572 4573 SourceLocation DeclLoc = Initializer->getBeginLoc(); 4574 4575 // Perform overload resolution. If it fails, return the failed result. 4576 OverloadCandidateSet::iterator Best; 4577 if (OverloadingResult Result 4578 = CandidateSet.BestViableFunction(S, DeclLoc, Best)) 4579 return Result; 4580 4581 FunctionDecl *Function = Best->Function; 4582 // This is the overload that will be used for this initialization step if we 4583 // use this initialization. Mark it as referenced. 4584 Function->setReferenced(); 4585 4586 // Compute the returned type and value kind of the conversion. 4587 QualType cv3T3; 4588 if (isa<CXXConversionDecl>(Function)) 4589 cv3T3 = Function->getReturnType(); 4590 else 4591 cv3T3 = T1; 4592 4593 ExprValueKind VK = VK_RValue; 4594 if (cv3T3->isLValueReferenceType()) 4595 VK = VK_LValue; 4596 else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>()) 4597 VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue; 4598 cv3T3 = cv3T3.getNonLValueExprType(S.Context); 4599 4600 // Add the user-defined conversion step. 4601 bool HadMultipleCandidates = (CandidateSet.size() > 1); 4602 Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3, 4603 HadMultipleCandidates); 4604 4605 // Determine whether we'll need to perform derived-to-base adjustments or 4606 // other conversions. 4607 bool NewDerivedToBase = false; 4608 bool NewObjCConversion = false; 4609 bool NewObjCLifetimeConversion = false; 4610 bool NewFunctionConversion = false; 4611 Sema::ReferenceCompareResult NewRefRelationship = 4612 S.CompareReferenceRelationship( 4613 DeclLoc, T1, cv3T3, NewDerivedToBase, NewObjCConversion, 4614 NewObjCLifetimeConversion, NewFunctionConversion); 4615 4616 // Add the final conversion sequence, if necessary. 4617 if (NewRefRelationship == Sema::Ref_Incompatible) { 4618 assert(!isa<CXXConstructorDecl>(Function) && 4619 "should not have conversion after constructor"); 4620 4621 ImplicitConversionSequence ICS; 4622 ICS.setStandard(); 4623 ICS.Standard = Best->FinalConversion; 4624 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2)); 4625 4626 // Every implicit conversion results in a prvalue, except for a glvalue 4627 // derived-to-base conversion, which we handle below. 4628 cv3T3 = ICS.Standard.getToType(2); 4629 VK = VK_RValue; 4630 } 4631 4632 // If the converted initializer is a prvalue, its type T4 is adjusted to 4633 // type "cv1 T4" and the temporary materialization conversion is applied. 4634 // 4635 // We adjust the cv-qualifications to match the reference regardless of 4636 // whether we have a prvalue so that the AST records the change. In this 4637 // case, T4 is "cv3 T3". 4638 QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers()); 4639 if (cv1T4.getQualifiers() != cv3T3.getQualifiers()) 4640 Sequence.AddQualificationConversionStep(cv1T4, VK); 4641 Sequence.AddReferenceBindingStep(cv1T4, VK == VK_RValue); 4642 VK = IsLValueRef ? VK_LValue : VK_XValue; 4643 4644 if (NewDerivedToBase) 4645 Sequence.AddDerivedToBaseCastStep(cv1T1, VK); 4646 else if (NewObjCConversion) 4647 Sequence.AddObjCObjectConversionStep(cv1T1); 4648 else if (NewFunctionConversion) 4649 Sequence.AddQualificationConversionStep(cv1T1, VK); 4650 4651 return OR_Success; 4652 } 4653 4654 static void CheckCXX98CompatAccessibleCopy(Sema &S, 4655 const InitializedEntity &Entity, 4656 Expr *CurInitExpr); 4657 4658 /// Attempt reference initialization (C++0x [dcl.init.ref]) 4659 static void TryReferenceInitialization(Sema &S, 4660 const InitializedEntity &Entity, 4661 const InitializationKind &Kind, 4662 Expr *Initializer, 4663 InitializationSequence &Sequence) { 4664 QualType DestType = Entity.getType(); 4665 QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); 4666 Qualifiers T1Quals; 4667 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); 4668 QualType cv2T2 = Initializer->getType(); 4669 Qualifiers T2Quals; 4670 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); 4671 4672 // If the initializer is the address of an overloaded function, try 4673 // to resolve the overloaded function. If all goes well, T2 is the 4674 // type of the resulting function. 4675 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, 4676 T1, Sequence)) 4677 return; 4678 4679 // Delegate everything else to a subfunction. 4680 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, 4681 T1Quals, cv2T2, T2, T2Quals, Sequence); 4682 } 4683 4684 /// Determine whether an expression is a non-referenceable glvalue (one to 4685 /// which a reference can never bind). Attempting to bind a reference to 4686 /// such a glvalue will always create a temporary. 4687 static bool isNonReferenceableGLValue(Expr *E) { 4688 return E->refersToBitField() || E->refersToVectorElement(); 4689 } 4690 4691 /// Reference initialization without resolving overloaded functions. 4692 static void TryReferenceInitializationCore(Sema &S, 4693 const InitializedEntity &Entity, 4694 const InitializationKind &Kind, 4695 Expr *Initializer, 4696 QualType cv1T1, QualType T1, 4697 Qualifiers T1Quals, 4698 QualType cv2T2, QualType T2, 4699 Qualifiers T2Quals, 4700 InitializationSequence &Sequence) { 4701 QualType DestType = Entity.getType(); 4702 SourceLocation DeclLoc = Initializer->getBeginLoc(); 4703 // Compute some basic properties of the types and the initializer. 4704 bool isLValueRef = DestType->isLValueReferenceType(); 4705 bool isRValueRef = !isLValueRef; 4706 bool DerivedToBase = false; 4707 bool ObjCConversion = false; 4708 bool ObjCLifetimeConversion = false; 4709 bool FunctionConversion = false; 4710 Expr::Classification InitCategory = Initializer->Classify(S.Context); 4711 Sema::ReferenceCompareResult RefRelationship = S.CompareReferenceRelationship( 4712 DeclLoc, cv1T1, cv2T2, DerivedToBase, ObjCConversion, 4713 ObjCLifetimeConversion, FunctionConversion); 4714 4715 // C++0x [dcl.init.ref]p5: 4716 // A reference to type "cv1 T1" is initialized by an expression of type 4717 // "cv2 T2" as follows: 4718 // 4719 // - If the reference is an lvalue reference and the initializer 4720 // expression 4721 // Note the analogous bullet points for rvalue refs to functions. Because 4722 // there are no function rvalues in C++, rvalue refs to functions are treated 4723 // like lvalue refs. 4724 OverloadingResult ConvOvlResult = OR_Success; 4725 bool T1Function = T1->isFunctionType(); 4726 if (isLValueRef || T1Function) { 4727 if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) && 4728 (RefRelationship == Sema::Ref_Compatible || 4729 (Kind.isCStyleOrFunctionalCast() && 4730 RefRelationship == Sema::Ref_Related))) { 4731 // - is an lvalue (but is not a bit-field), and "cv1 T1" is 4732 // reference-compatible with "cv2 T2," or 4733 if (T1Quals != T2Quals) 4734 // Convert to cv1 T2. This should only add qualifiers unless this is a 4735 // c-style cast. The removal of qualifiers in that case notionally 4736 // happens after the reference binding, but that doesn't matter. 4737 Sequence.AddQualificationConversionStep( 4738 S.Context.getQualifiedType(T2, T1Quals), 4739 Initializer->getValueKind()); 4740 if (DerivedToBase) 4741 Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue); 4742 else if (ObjCConversion) 4743 Sequence.AddObjCObjectConversionStep(cv1T1); 4744 else if (FunctionConversion) 4745 Sequence.AddQualificationConversionStep(cv1T1, VK_LValue); 4746 4747 // We only create a temporary here when binding a reference to a 4748 // bit-field or vector element. Those cases are't supposed to be 4749 // handled by this bullet, but the outcome is the same either way. 4750 Sequence.AddReferenceBindingStep(cv1T1, false); 4751 return; 4752 } 4753 4754 // - has a class type (i.e., T2 is a class type), where T1 is not 4755 // reference-related to T2, and can be implicitly converted to an 4756 // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible 4757 // with "cv3 T3" (this conversion is selected by enumerating the 4758 // applicable conversion functions (13.3.1.6) and choosing the best 4759 // one through overload resolution (13.3)), 4760 // If we have an rvalue ref to function type here, the rhs must be 4761 // an rvalue. DR1287 removed the "implicitly" here. 4762 if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() && 4763 (isLValueRef || InitCategory.isRValue())) { 4764 ConvOvlResult = TryRefInitWithConversionFunction( 4765 S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef, 4766 /*IsLValueRef*/ isLValueRef, Sequence); 4767 if (ConvOvlResult == OR_Success) 4768 return; 4769 if (ConvOvlResult != OR_No_Viable_Function) 4770 Sequence.SetOverloadFailure( 4771 InitializationSequence::FK_ReferenceInitOverloadFailed, 4772 ConvOvlResult); 4773 } 4774 } 4775 4776 // - Otherwise, the reference shall be an lvalue reference to a 4777 // non-volatile const type (i.e., cv1 shall be const), or the reference 4778 // shall be an rvalue reference. 4779 // For address spaces, we interpret this to mean that an addr space 4780 // of a reference "cv1 T1" is a superset of addr space of "cv2 T2". 4781 if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile() && 4782 T1Quals.isAddressSpaceSupersetOf(T2Quals))) { 4783 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) 4784 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 4785 else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) 4786 Sequence.SetOverloadFailure( 4787 InitializationSequence::FK_ReferenceInitOverloadFailed, 4788 ConvOvlResult); 4789 else if (!InitCategory.isLValue()) 4790 Sequence.SetFailed( 4791 T1Quals.isAddressSpaceSupersetOf(T2Quals) 4792 ? InitializationSequence:: 4793 FK_NonConstLValueReferenceBindingToTemporary 4794 : InitializationSequence::FK_ReferenceInitDropsQualifiers); 4795 else { 4796 InitializationSequence::FailureKind FK; 4797 switch (RefRelationship) { 4798 case Sema::Ref_Compatible: 4799 if (Initializer->refersToBitField()) 4800 FK = InitializationSequence:: 4801 FK_NonConstLValueReferenceBindingToBitfield; 4802 else if (Initializer->refersToVectorElement()) 4803 FK = InitializationSequence:: 4804 FK_NonConstLValueReferenceBindingToVectorElement; 4805 else 4806 llvm_unreachable("unexpected kind of compatible initializer"); 4807 break; 4808 case Sema::Ref_Related: 4809 FK = InitializationSequence::FK_ReferenceInitDropsQualifiers; 4810 break; 4811 case Sema::Ref_Incompatible: 4812 FK = InitializationSequence:: 4813 FK_NonConstLValueReferenceBindingToUnrelated; 4814 break; 4815 } 4816 Sequence.SetFailed(FK); 4817 } 4818 return; 4819 } 4820 4821 // - If the initializer expression 4822 // - is an 4823 // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or 4824 // [1z] rvalue (but not a bit-field) or 4825 // function lvalue and "cv1 T1" is reference-compatible with "cv2 T2" 4826 // 4827 // Note: functions are handled above and below rather than here... 4828 if (!T1Function && 4829 (RefRelationship == Sema::Ref_Compatible || 4830 (Kind.isCStyleOrFunctionalCast() && 4831 RefRelationship == Sema::Ref_Related)) && 4832 ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) || 4833 (InitCategory.isPRValue() && 4834 (S.getLangOpts().CPlusPlus17 || T2->isRecordType() || 4835 T2->isArrayType())))) { 4836 ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_RValue; 4837 if (InitCategory.isPRValue() && T2->isRecordType()) { 4838 // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the 4839 // compiler the freedom to perform a copy here or bind to the 4840 // object, while C++0x requires that we bind directly to the 4841 // object. Hence, we always bind to the object without making an 4842 // extra copy. However, in C++03 requires that we check for the 4843 // presence of a suitable copy constructor: 4844 // 4845 // The constructor that would be used to make the copy shall 4846 // be callable whether or not the copy is actually done. 4847 if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt) 4848 Sequence.AddExtraneousCopyToTemporary(cv2T2); 4849 else if (S.getLangOpts().CPlusPlus11) 4850 CheckCXX98CompatAccessibleCopy(S, Entity, Initializer); 4851 } 4852 4853 // C++1z [dcl.init.ref]/5.2.1.2: 4854 // If the converted initializer is a prvalue, its type T4 is adjusted 4855 // to type "cv1 T4" and the temporary materialization conversion is 4856 // applied. 4857 // Postpone address space conversions to after the temporary materialization 4858 // conversion to allow creating temporaries in the alloca address space. 4859 auto T1QualsIgnoreAS = T1Quals; 4860 auto T2QualsIgnoreAS = T2Quals; 4861 if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) { 4862 T1QualsIgnoreAS.removeAddressSpace(); 4863 T2QualsIgnoreAS.removeAddressSpace(); 4864 } 4865 QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1QualsIgnoreAS); 4866 if (T1QualsIgnoreAS != T2QualsIgnoreAS) 4867 Sequence.AddQualificationConversionStep(cv1T4, ValueKind); 4868 Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_RValue); 4869 ValueKind = isLValueRef ? VK_LValue : VK_XValue; 4870 // Add addr space conversion if required. 4871 if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) { 4872 auto T4Quals = cv1T4.getQualifiers(); 4873 T4Quals.addAddressSpace(T1Quals.getAddressSpace()); 4874 QualType cv1T4WithAS = S.Context.getQualifiedType(T2, T4Quals); 4875 Sequence.AddQualificationConversionStep(cv1T4WithAS, ValueKind); 4876 } 4877 4878 // In any case, the reference is bound to the resulting glvalue (or to 4879 // an appropriate base class subobject). 4880 if (DerivedToBase) 4881 Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind); 4882 else if (ObjCConversion) 4883 Sequence.AddObjCObjectConversionStep(cv1T1); 4884 return; 4885 } 4886 4887 // - has a class type (i.e., T2 is a class type), where T1 is not 4888 // reference-related to T2, and can be implicitly converted to an 4889 // xvalue, class prvalue, or function lvalue of type "cv3 T3", 4890 // where "cv1 T1" is reference-compatible with "cv3 T3", 4891 // 4892 // DR1287 removes the "implicitly" here. 4893 if (T2->isRecordType()) { 4894 if (RefRelationship == Sema::Ref_Incompatible) { 4895 ConvOvlResult = TryRefInitWithConversionFunction( 4896 S, Entity, Kind, Initializer, /*AllowRValues*/ true, 4897 /*IsLValueRef*/ isLValueRef, Sequence); 4898 if (ConvOvlResult) 4899 Sequence.SetOverloadFailure( 4900 InitializationSequence::FK_ReferenceInitOverloadFailed, 4901 ConvOvlResult); 4902 4903 return; 4904 } 4905 4906 if (RefRelationship == Sema::Ref_Compatible && 4907 isRValueRef && InitCategory.isLValue()) { 4908 Sequence.SetFailed( 4909 InitializationSequence::FK_RValueReferenceBindingToLValue); 4910 return; 4911 } 4912 4913 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); 4914 return; 4915 } 4916 4917 // - Otherwise, a temporary of type "cv1 T1" is created and initialized 4918 // from the initializer expression using the rules for a non-reference 4919 // copy-initialization (8.5). The reference is then bound to the 4920 // temporary. [...] 4921 4922 // Ignore address space of reference type at this point and perform address 4923 // space conversion after the reference binding step. 4924 QualType cv1T1IgnoreAS = 4925 T1Quals.hasAddressSpace() 4926 ? S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace()) 4927 : cv1T1; 4928 4929 InitializedEntity TempEntity = 4930 InitializedEntity::InitializeTemporary(cv1T1IgnoreAS); 4931 4932 // FIXME: Why do we use an implicit conversion here rather than trying 4933 // copy-initialization? 4934 ImplicitConversionSequence ICS 4935 = S.TryImplicitConversion(Initializer, TempEntity.getType(), 4936 /*SuppressUserConversions=*/false, 4937 /*AllowExplicit=*/false, 4938 /*FIXME:InOverloadResolution=*/false, 4939 /*CStyle=*/Kind.isCStyleOrFunctionalCast(), 4940 /*AllowObjCWritebackConversion=*/false); 4941 4942 if (ICS.isBad()) { 4943 // FIXME: Use the conversion function set stored in ICS to turn 4944 // this into an overloading ambiguity diagnostic. However, we need 4945 // to keep that set as an OverloadCandidateSet rather than as some 4946 // other kind of set. 4947 if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) 4948 Sequence.SetOverloadFailure( 4949 InitializationSequence::FK_ReferenceInitOverloadFailed, 4950 ConvOvlResult); 4951 else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) 4952 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 4953 else 4954 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed); 4955 return; 4956 } else { 4957 Sequence.AddConversionSequenceStep(ICS, TempEntity.getType()); 4958 } 4959 4960 // [...] If T1 is reference-related to T2, cv1 must be the 4961 // same cv-qualification as, or greater cv-qualification 4962 // than, cv2; otherwise, the program is ill-formed. 4963 unsigned T1CVRQuals = T1Quals.getCVRQualifiers(); 4964 unsigned T2CVRQuals = T2Quals.getCVRQualifiers(); 4965 if ((RefRelationship == Sema::Ref_Related && 4966 (T1CVRQuals | T2CVRQuals) != T1CVRQuals) || 4967 !T1Quals.isAddressSpaceSupersetOf(T2Quals)) { 4968 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); 4969 return; 4970 } 4971 4972 // [...] If T1 is reference-related to T2 and the reference is an rvalue 4973 // reference, the initializer expression shall not be an lvalue. 4974 if (RefRelationship >= Sema::Ref_Related && !isLValueRef && 4975 InitCategory.isLValue()) { 4976 Sequence.SetFailed( 4977 InitializationSequence::FK_RValueReferenceBindingToLValue); 4978 return; 4979 } 4980 4981 Sequence.AddReferenceBindingStep(cv1T1IgnoreAS, /*BindingTemporary=*/true); 4982 4983 if (T1Quals.hasAddressSpace()) { 4984 if (!Qualifiers::isAddressSpaceSupersetOf(T1Quals.getAddressSpace(), 4985 LangAS::Default)) { 4986 Sequence.SetFailed( 4987 InitializationSequence::FK_ReferenceAddrspaceMismatchTemporary); 4988 return; 4989 } 4990 Sequence.AddQualificationConversionStep(cv1T1, isLValueRef ? VK_LValue 4991 : VK_XValue); 4992 } 4993 } 4994 4995 /// Attempt character array initialization from a string literal 4996 /// (C++ [dcl.init.string], C99 6.7.8). 4997 static void TryStringLiteralInitialization(Sema &S, 4998 const InitializedEntity &Entity, 4999 const InitializationKind &Kind, 5000 Expr *Initializer, 5001 InitializationSequence &Sequence) { 5002 Sequence.AddStringInitStep(Entity.getType()); 5003 } 5004 5005 /// Attempt value initialization (C++ [dcl.init]p7). 5006 static void TryValueInitialization(Sema &S, 5007 const InitializedEntity &Entity, 5008 const InitializationKind &Kind, 5009 InitializationSequence &Sequence, 5010 InitListExpr *InitList) { 5011 assert((!InitList || InitList->getNumInits() == 0) && 5012 "Shouldn't use value-init for non-empty init lists"); 5013 5014 // C++98 [dcl.init]p5, C++11 [dcl.init]p7: 5015 // 5016 // To value-initialize an object of type T means: 5017 QualType T = Entity.getType(); 5018 5019 // -- if T is an array type, then each element is value-initialized; 5020 T = S.Context.getBaseElementType(T); 5021 5022 if (const RecordType *RT = T->getAs<RecordType>()) { 5023 if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 5024 bool NeedZeroInitialization = true; 5025 // C++98: 5026 // -- if T is a class type (clause 9) with a user-declared constructor 5027 // (12.1), then the default constructor for T is called (and the 5028 // initialization is ill-formed if T has no accessible default 5029 // constructor); 5030 // C++11: 5031 // -- if T is a class type (clause 9) with either no default constructor 5032 // (12.1 [class.ctor]) or a default constructor that is user-provided 5033 // or deleted, then the object is default-initialized; 5034 // 5035 // Note that the C++11 rule is the same as the C++98 rule if there are no 5036 // defaulted or deleted constructors, so we just use it unconditionally. 5037 CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl); 5038 if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted()) 5039 NeedZeroInitialization = false; 5040 5041 // -- if T is a (possibly cv-qualified) non-union class type without a 5042 // user-provided or deleted default constructor, then the object is 5043 // zero-initialized and, if T has a non-trivial default constructor, 5044 // default-initialized; 5045 // The 'non-union' here was removed by DR1502. The 'non-trivial default 5046 // constructor' part was removed by DR1507. 5047 if (NeedZeroInitialization) 5048 Sequence.AddZeroInitializationStep(Entity.getType()); 5049 5050 // C++03: 5051 // -- if T is a non-union class type without a user-declared constructor, 5052 // then every non-static data member and base class component of T is 5053 // value-initialized; 5054 // [...] A program that calls for [...] value-initialization of an 5055 // entity of reference type is ill-formed. 5056 // 5057 // C++11 doesn't need this handling, because value-initialization does not 5058 // occur recursively there, and the implicit default constructor is 5059 // defined as deleted in the problematic cases. 5060 if (!S.getLangOpts().CPlusPlus11 && 5061 ClassDecl->hasUninitializedReferenceMember()) { 5062 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference); 5063 return; 5064 } 5065 5066 // If this is list-value-initialization, pass the empty init list on when 5067 // building the constructor call. This affects the semantics of a few 5068 // things (such as whether an explicit default constructor can be called). 5069 Expr *InitListAsExpr = InitList; 5070 MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0); 5071 bool InitListSyntax = InitList; 5072 5073 // FIXME: Instead of creating a CXXConstructExpr of array type here, 5074 // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr. 5075 return TryConstructorInitialization( 5076 S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax); 5077 } 5078 } 5079 5080 Sequence.AddZeroInitializationStep(Entity.getType()); 5081 } 5082 5083 /// Attempt default initialization (C++ [dcl.init]p6). 5084 static void TryDefaultInitialization(Sema &S, 5085 const InitializedEntity &Entity, 5086 const InitializationKind &Kind, 5087 InitializationSequence &Sequence) { 5088 assert(Kind.getKind() == InitializationKind::IK_Default); 5089 5090 // C++ [dcl.init]p6: 5091 // To default-initialize an object of type T means: 5092 // - if T is an array type, each element is default-initialized; 5093 QualType DestType = S.Context.getBaseElementType(Entity.getType()); 5094 5095 // - if T is a (possibly cv-qualified) class type (Clause 9), the default 5096 // constructor for T is called (and the initialization is ill-formed if 5097 // T has no accessible default constructor); 5098 if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) { 5099 TryConstructorInitialization(S, Entity, Kind, None, DestType, 5100 Entity.getType(), Sequence); 5101 return; 5102 } 5103 5104 // - otherwise, no initialization is performed. 5105 5106 // If a program calls for the default initialization of an object of 5107 // a const-qualified type T, T shall be a class type with a user-provided 5108 // default constructor. 5109 if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) { 5110 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity)) 5111 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); 5112 return; 5113 } 5114 5115 // If the destination type has a lifetime property, zero-initialize it. 5116 if (DestType.getQualifiers().hasObjCLifetime()) { 5117 Sequence.AddZeroInitializationStep(Entity.getType()); 5118 return; 5119 } 5120 } 5121 5122 /// Attempt a user-defined conversion between two types (C++ [dcl.init]), 5123 /// which enumerates all conversion functions and performs overload resolution 5124 /// to select the best. 5125 static void TryUserDefinedConversion(Sema &S, 5126 QualType DestType, 5127 const InitializationKind &Kind, 5128 Expr *Initializer, 5129 InitializationSequence &Sequence, 5130 bool TopLevelOfInitList) { 5131 assert(!DestType->isReferenceType() && "References are handled elsewhere"); 5132 QualType SourceType = Initializer->getType(); 5133 assert((DestType->isRecordType() || SourceType->isRecordType()) && 5134 "Must have a class type to perform a user-defined conversion"); 5135 5136 // Build the candidate set directly in the initialization sequence 5137 // structure, so that it will persist if we fail. 5138 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 5139 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); 5140 CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace()); 5141 5142 // Determine whether we are allowed to call explicit constructors or 5143 // explicit conversion operators. 5144 bool AllowExplicit = Kind.AllowExplicit(); 5145 5146 if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) { 5147 // The type we're converting to is a class type. Enumerate its constructors 5148 // to see if there is a suitable conversion. 5149 CXXRecordDecl *DestRecordDecl 5150 = cast<CXXRecordDecl>(DestRecordType->getDecl()); 5151 5152 // Try to complete the type we're converting to. 5153 if (S.isCompleteType(Kind.getLocation(), DestType)) { 5154 for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) { 5155 auto Info = getConstructorInfo(D); 5156 if (!Info.Constructor) 5157 continue; 5158 5159 if (!Info.Constructor->isInvalidDecl() && 5160 Info.Constructor->isConvertingConstructor(AllowExplicit)) { 5161 if (Info.ConstructorTmpl) 5162 S.AddTemplateOverloadCandidate( 5163 Info.ConstructorTmpl, Info.FoundDecl, 5164 /*ExplicitArgs*/ nullptr, Initializer, CandidateSet, 5165 /*SuppressUserConversions=*/true, 5166 /*PartialOverloading*/ false, AllowExplicit); 5167 else 5168 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, 5169 Initializer, CandidateSet, 5170 /*SuppressUserConversions=*/true, 5171 /*PartialOverloading*/ false, AllowExplicit); 5172 } 5173 } 5174 } 5175 } 5176 5177 SourceLocation DeclLoc = Initializer->getBeginLoc(); 5178 5179 if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) { 5180 // The type we're converting from is a class type, enumerate its conversion 5181 // functions. 5182 5183 // We can only enumerate the conversion functions for a complete type; if 5184 // the type isn't complete, simply skip this step. 5185 if (S.isCompleteType(DeclLoc, SourceType)) { 5186 CXXRecordDecl *SourceRecordDecl 5187 = cast<CXXRecordDecl>(SourceRecordType->getDecl()); 5188 5189 const auto &Conversions = 5190 SourceRecordDecl->getVisibleConversionFunctions(); 5191 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 5192 NamedDecl *D = *I; 5193 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 5194 if (isa<UsingShadowDecl>(D)) 5195 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 5196 5197 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 5198 CXXConversionDecl *Conv; 5199 if (ConvTemplate) 5200 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 5201 else 5202 Conv = cast<CXXConversionDecl>(D); 5203 5204 if (AllowExplicit || !Conv->isExplicit()) { 5205 if (ConvTemplate) 5206 S.AddTemplateConversionCandidate( 5207 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, 5208 CandidateSet, AllowExplicit, AllowExplicit); 5209 else 5210 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer, 5211 DestType, CandidateSet, AllowExplicit, 5212 AllowExplicit); 5213 } 5214 } 5215 } 5216 } 5217 5218 // Perform overload resolution. If it fails, return the failed result. 5219 OverloadCandidateSet::iterator Best; 5220 if (OverloadingResult Result 5221 = CandidateSet.BestViableFunction(S, DeclLoc, Best)) { 5222 Sequence.SetOverloadFailure( 5223 InitializationSequence::FK_UserConversionOverloadFailed, 5224 Result); 5225 return; 5226 } 5227 5228 FunctionDecl *Function = Best->Function; 5229 Function->setReferenced(); 5230 bool HadMultipleCandidates = (CandidateSet.size() > 1); 5231 5232 if (isa<CXXConstructorDecl>(Function)) { 5233 // Add the user-defined conversion step. Any cv-qualification conversion is 5234 // subsumed by the initialization. Per DR5, the created temporary is of the 5235 // cv-unqualified type of the destination. 5236 Sequence.AddUserConversionStep(Function, Best->FoundDecl, 5237 DestType.getUnqualifiedType(), 5238 HadMultipleCandidates); 5239 5240 // C++14 and before: 5241 // - if the function is a constructor, the call initializes a temporary 5242 // of the cv-unqualified version of the destination type. The [...] 5243 // temporary [...] is then used to direct-initialize, according to the 5244 // rules above, the object that is the destination of the 5245 // copy-initialization. 5246 // Note that this just performs a simple object copy from the temporary. 5247 // 5248 // C++17: 5249 // - if the function is a constructor, the call is a prvalue of the 5250 // cv-unqualified version of the destination type whose return object 5251 // is initialized by the constructor. The call is used to 5252 // direct-initialize, according to the rules above, the object that 5253 // is the destination of the copy-initialization. 5254 // Therefore we need to do nothing further. 5255 // 5256 // FIXME: Mark this copy as extraneous. 5257 if (!S.getLangOpts().CPlusPlus17) 5258 Sequence.AddFinalCopy(DestType); 5259 else if (DestType.hasQualifiers()) 5260 Sequence.AddQualificationConversionStep(DestType, VK_RValue); 5261 return; 5262 } 5263 5264 // Add the user-defined conversion step that calls the conversion function. 5265 QualType ConvType = Function->getCallResultType(); 5266 Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType, 5267 HadMultipleCandidates); 5268 5269 if (ConvType->getAs<RecordType>()) { 5270 // The call is used to direct-initialize [...] the object that is the 5271 // destination of the copy-initialization. 5272 // 5273 // In C++17, this does not call a constructor if we enter /17.6.1: 5274 // - If the initializer expression is a prvalue and the cv-unqualified 5275 // version of the source type is the same as the class of the 5276 // destination [... do not make an extra copy] 5277 // 5278 // FIXME: Mark this copy as extraneous. 5279 if (!S.getLangOpts().CPlusPlus17 || 5280 Function->getReturnType()->isReferenceType() || 5281 !S.Context.hasSameUnqualifiedType(ConvType, DestType)) 5282 Sequence.AddFinalCopy(DestType); 5283 else if (!S.Context.hasSameType(ConvType, DestType)) 5284 Sequence.AddQualificationConversionStep(DestType, VK_RValue); 5285 return; 5286 } 5287 5288 // If the conversion following the call to the conversion function 5289 // is interesting, add it as a separate step. 5290 if (Best->FinalConversion.First || Best->FinalConversion.Second || 5291 Best->FinalConversion.Third) { 5292 ImplicitConversionSequence ICS; 5293 ICS.setStandard(); 5294 ICS.Standard = Best->FinalConversion; 5295 Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList); 5296 } 5297 } 5298 5299 /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>, 5300 /// a function with a pointer return type contains a 'return false;' statement. 5301 /// In C++11, 'false' is not a null pointer, so this breaks the build of any 5302 /// code using that header. 5303 /// 5304 /// Work around this by treating 'return false;' as zero-initializing the result 5305 /// if it's used in a pointer-returning function in a system header. 5306 static bool isLibstdcxxPointerReturnFalseHack(Sema &S, 5307 const InitializedEntity &Entity, 5308 const Expr *Init) { 5309 return S.getLangOpts().CPlusPlus11 && 5310 Entity.getKind() == InitializedEntity::EK_Result && 5311 Entity.getType()->isPointerType() && 5312 isa<CXXBoolLiteralExpr>(Init) && 5313 !cast<CXXBoolLiteralExpr>(Init)->getValue() && 5314 S.getSourceManager().isInSystemHeader(Init->getExprLoc()); 5315 } 5316 5317 /// The non-zero enum values here are indexes into diagnostic alternatives. 5318 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar }; 5319 5320 /// Determines whether this expression is an acceptable ICR source. 5321 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e, 5322 bool isAddressOf, bool &isWeakAccess) { 5323 // Skip parens. 5324 e = e->IgnoreParens(); 5325 5326 // Skip address-of nodes. 5327 if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) { 5328 if (op->getOpcode() == UO_AddrOf) 5329 return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true, 5330 isWeakAccess); 5331 5332 // Skip certain casts. 5333 } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) { 5334 switch (ce->getCastKind()) { 5335 case CK_Dependent: 5336 case CK_BitCast: 5337 case CK_LValueBitCast: 5338 case CK_NoOp: 5339 return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess); 5340 5341 case CK_ArrayToPointerDecay: 5342 return IIK_nonscalar; 5343 5344 case CK_NullToPointer: 5345 return IIK_okay; 5346 5347 default: 5348 break; 5349 } 5350 5351 // If we have a declaration reference, it had better be a local variable. 5352 } else if (isa<DeclRefExpr>(e)) { 5353 // set isWeakAccess to true, to mean that there will be an implicit 5354 // load which requires a cleanup. 5355 if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak) 5356 isWeakAccess = true; 5357 5358 if (!isAddressOf) return IIK_nonlocal; 5359 5360 VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl()); 5361 if (!var) return IIK_nonlocal; 5362 5363 return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal); 5364 5365 // If we have a conditional operator, check both sides. 5366 } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) { 5367 if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf, 5368 isWeakAccess)) 5369 return iik; 5370 5371 return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess); 5372 5373 // These are never scalar. 5374 } else if (isa<ArraySubscriptExpr>(e)) { 5375 return IIK_nonscalar; 5376 5377 // Otherwise, it needs to be a null pointer constant. 5378 } else { 5379 return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull) 5380 ? IIK_okay : IIK_nonlocal); 5381 } 5382 5383 return IIK_nonlocal; 5384 } 5385 5386 /// Check whether the given expression is a valid operand for an 5387 /// indirect copy/restore. 5388 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) { 5389 assert(src->isRValue()); 5390 bool isWeakAccess = false; 5391 InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess); 5392 // If isWeakAccess to true, there will be an implicit 5393 // load which requires a cleanup. 5394 if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess) 5395 S.Cleanup.setExprNeedsCleanups(true); 5396 5397 if (iik == IIK_okay) return; 5398 5399 S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback) 5400 << ((unsigned) iik - 1) // shift index into diagnostic explanations 5401 << src->getSourceRange(); 5402 } 5403 5404 /// Determine whether we have compatible array types for the 5405 /// purposes of GNU by-copy array initialization. 5406 static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest, 5407 const ArrayType *Source) { 5408 // If the source and destination array types are equivalent, we're 5409 // done. 5410 if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0))) 5411 return true; 5412 5413 // Make sure that the element types are the same. 5414 if (!Context.hasSameType(Dest->getElementType(), Source->getElementType())) 5415 return false; 5416 5417 // The only mismatch we allow is when the destination is an 5418 // incomplete array type and the source is a constant array type. 5419 return Source->isConstantArrayType() && Dest->isIncompleteArrayType(); 5420 } 5421 5422 static bool tryObjCWritebackConversion(Sema &S, 5423 InitializationSequence &Sequence, 5424 const InitializedEntity &Entity, 5425 Expr *Initializer) { 5426 bool ArrayDecay = false; 5427 QualType ArgType = Initializer->getType(); 5428 QualType ArgPointee; 5429 if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) { 5430 ArrayDecay = true; 5431 ArgPointee = ArgArrayType->getElementType(); 5432 ArgType = S.Context.getPointerType(ArgPointee); 5433 } 5434 5435 // Handle write-back conversion. 5436 QualType ConvertedArgType; 5437 if (!S.isObjCWritebackConversion(ArgType, Entity.getType(), 5438 ConvertedArgType)) 5439 return false; 5440 5441 // We should copy unless we're passing to an argument explicitly 5442 // marked 'out'. 5443 bool ShouldCopy = true; 5444 if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl())) 5445 ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); 5446 5447 // Do we need an lvalue conversion? 5448 if (ArrayDecay || Initializer->isGLValue()) { 5449 ImplicitConversionSequence ICS; 5450 ICS.setStandard(); 5451 ICS.Standard.setAsIdentityConversion(); 5452 5453 QualType ResultType; 5454 if (ArrayDecay) { 5455 ICS.Standard.First = ICK_Array_To_Pointer; 5456 ResultType = S.Context.getPointerType(ArgPointee); 5457 } else { 5458 ICS.Standard.First = ICK_Lvalue_To_Rvalue; 5459 ResultType = Initializer->getType().getNonLValueExprType(S.Context); 5460 } 5461 5462 Sequence.AddConversionSequenceStep(ICS, ResultType); 5463 } 5464 5465 Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy); 5466 return true; 5467 } 5468 5469 static bool TryOCLSamplerInitialization(Sema &S, 5470 InitializationSequence &Sequence, 5471 QualType DestType, 5472 Expr *Initializer) { 5473 if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() || 5474 (!Initializer->isIntegerConstantExpr(S.Context) && 5475 !Initializer->getType()->isSamplerT())) 5476 return false; 5477 5478 Sequence.AddOCLSamplerInitStep(DestType); 5479 return true; 5480 } 5481 5482 static bool IsZeroInitializer(Expr *Initializer, Sema &S) { 5483 return Initializer->isIntegerConstantExpr(S.getASTContext()) && 5484 (Initializer->EvaluateKnownConstInt(S.getASTContext()) == 0); 5485 } 5486 5487 static bool TryOCLZeroOpaqueTypeInitialization(Sema &S, 5488 InitializationSequence &Sequence, 5489 QualType DestType, 5490 Expr *Initializer) { 5491 if (!S.getLangOpts().OpenCL) 5492 return false; 5493 5494 // 5495 // OpenCL 1.2 spec, s6.12.10 5496 // 5497 // The event argument can also be used to associate the 5498 // async_work_group_copy with a previous async copy allowing 5499 // an event to be shared by multiple async copies; otherwise 5500 // event should be zero. 5501 // 5502 if (DestType->isEventT() || DestType->isQueueT()) { 5503 if (!IsZeroInitializer(Initializer, S)) 5504 return false; 5505 5506 Sequence.AddOCLZeroOpaqueTypeStep(DestType); 5507 return true; 5508 } 5509 5510 // We should allow zero initialization for all types defined in the 5511 // cl_intel_device_side_avc_motion_estimation extension, except 5512 // intel_sub_group_avc_mce_payload_t and intel_sub_group_avc_mce_result_t. 5513 if (S.getOpenCLOptions().isEnabled( 5514 "cl_intel_device_side_avc_motion_estimation") && 5515 DestType->isOCLIntelSubgroupAVCType()) { 5516 if (DestType->isOCLIntelSubgroupAVCMcePayloadType() || 5517 DestType->isOCLIntelSubgroupAVCMceResultType()) 5518 return false; 5519 if (!IsZeroInitializer(Initializer, S)) 5520 return false; 5521 5522 Sequence.AddOCLZeroOpaqueTypeStep(DestType); 5523 return true; 5524 } 5525 5526 return false; 5527 } 5528 5529 InitializationSequence::InitializationSequence(Sema &S, 5530 const InitializedEntity &Entity, 5531 const InitializationKind &Kind, 5532 MultiExprArg Args, 5533 bool TopLevelOfInitList, 5534 bool TreatUnavailableAsInvalid) 5535 : FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) { 5536 InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList, 5537 TreatUnavailableAsInvalid); 5538 } 5539 5540 /// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the 5541 /// address of that function, this returns true. Otherwise, it returns false. 5542 static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) { 5543 auto *DRE = dyn_cast<DeclRefExpr>(E); 5544 if (!DRE || !isa<FunctionDecl>(DRE->getDecl())) 5545 return false; 5546 5547 return !S.checkAddressOfFunctionIsAvailable( 5548 cast<FunctionDecl>(DRE->getDecl())); 5549 } 5550 5551 /// Determine whether we can perform an elementwise array copy for this kind 5552 /// of entity. 5553 static bool canPerformArrayCopy(const InitializedEntity &Entity) { 5554 switch (Entity.getKind()) { 5555 case InitializedEntity::EK_LambdaCapture: 5556 // C++ [expr.prim.lambda]p24: 5557 // For array members, the array elements are direct-initialized in 5558 // increasing subscript order. 5559 return true; 5560 5561 case InitializedEntity::EK_Variable: 5562 // C++ [dcl.decomp]p1: 5563 // [...] each element is copy-initialized or direct-initialized from the 5564 // corresponding element of the assignment-expression [...] 5565 return isa<DecompositionDecl>(Entity.getDecl()); 5566 5567 case InitializedEntity::EK_Member: 5568 // C++ [class.copy.ctor]p14: 5569 // - if the member is an array, each element is direct-initialized with 5570 // the corresponding subobject of x 5571 return Entity.isImplicitMemberInitializer(); 5572 5573 case InitializedEntity::EK_ArrayElement: 5574 // All the above cases are intended to apply recursively, even though none 5575 // of them actually say that. 5576 if (auto *E = Entity.getParent()) 5577 return canPerformArrayCopy(*E); 5578 break; 5579 5580 default: 5581 break; 5582 } 5583 5584 return false; 5585 } 5586 5587 void InitializationSequence::InitializeFrom(Sema &S, 5588 const InitializedEntity &Entity, 5589 const InitializationKind &Kind, 5590 MultiExprArg Args, 5591 bool TopLevelOfInitList, 5592 bool TreatUnavailableAsInvalid) { 5593 ASTContext &Context = S.Context; 5594 5595 // Eliminate non-overload placeholder types in the arguments. We 5596 // need to do this before checking whether types are dependent 5597 // because lowering a pseudo-object expression might well give us 5598 // something of dependent type. 5599 for (unsigned I = 0, E = Args.size(); I != E; ++I) 5600 if (Args[I]->getType()->isNonOverloadPlaceholderType()) { 5601 // FIXME: should we be doing this here? 5602 ExprResult result = S.CheckPlaceholderExpr(Args[I]); 5603 if (result.isInvalid()) { 5604 SetFailed(FK_PlaceholderType); 5605 return; 5606 } 5607 Args[I] = result.get(); 5608 } 5609 5610 // C++0x [dcl.init]p16: 5611 // The semantics of initializers are as follows. The destination type is 5612 // the type of the object or reference being initialized and the source 5613 // type is the type of the initializer expression. The source type is not 5614 // defined when the initializer is a braced-init-list or when it is a 5615 // parenthesized list of expressions. 5616 QualType DestType = Entity.getType(); 5617 5618 if (DestType->isDependentType() || 5619 Expr::hasAnyTypeDependentArguments(Args)) { 5620 SequenceKind = DependentSequence; 5621 return; 5622 } 5623 5624 // Almost everything is a normal sequence. 5625 setSequenceKind(NormalSequence); 5626 5627 QualType SourceType; 5628 Expr *Initializer = nullptr; 5629 if (Args.size() == 1) { 5630 Initializer = Args[0]; 5631 if (S.getLangOpts().ObjC) { 5632 if (S.CheckObjCBridgeRelatedConversions(Initializer->getBeginLoc(), 5633 DestType, Initializer->getType(), 5634 Initializer) || 5635 S.ConversionToObjCStringLiteralCheck(DestType, Initializer)) 5636 Args[0] = Initializer; 5637 } 5638 if (!isa<InitListExpr>(Initializer)) 5639 SourceType = Initializer->getType(); 5640 } 5641 5642 // - If the initializer is a (non-parenthesized) braced-init-list, the 5643 // object is list-initialized (8.5.4). 5644 if (Kind.getKind() != InitializationKind::IK_Direct) { 5645 if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) { 5646 TryListInitialization(S, Entity, Kind, InitList, *this, 5647 TreatUnavailableAsInvalid); 5648 return; 5649 } 5650 } 5651 5652 // - If the destination type is a reference type, see 8.5.3. 5653 if (DestType->isReferenceType()) { 5654 // C++0x [dcl.init.ref]p1: 5655 // A variable declared to be a T& or T&&, that is, "reference to type T" 5656 // (8.3.2), shall be initialized by an object, or function, of type T or 5657 // by an object that can be converted into a T. 5658 // (Therefore, multiple arguments are not permitted.) 5659 if (Args.size() != 1) 5660 SetFailed(FK_TooManyInitsForReference); 5661 // C++17 [dcl.init.ref]p5: 5662 // A reference [...] is initialized by an expression [...] as follows: 5663 // If the initializer is not an expression, presumably we should reject, 5664 // but the standard fails to actually say so. 5665 else if (isa<InitListExpr>(Args[0])) 5666 SetFailed(FK_ParenthesizedListInitForReference); 5667 else 5668 TryReferenceInitialization(S, Entity, Kind, Args[0], *this); 5669 return; 5670 } 5671 5672 // - If the initializer is (), the object is value-initialized. 5673 if (Kind.getKind() == InitializationKind::IK_Value || 5674 (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) { 5675 TryValueInitialization(S, Entity, Kind, *this); 5676 return; 5677 } 5678 5679 // Handle default initialization. 5680 if (Kind.getKind() == InitializationKind::IK_Default) { 5681 TryDefaultInitialization(S, Entity, Kind, *this); 5682 return; 5683 } 5684 5685 // - If the destination type is an array of characters, an array of 5686 // char16_t, an array of char32_t, or an array of wchar_t, and the 5687 // initializer is a string literal, see 8.5.2. 5688 // - Otherwise, if the destination type is an array, the program is 5689 // ill-formed. 5690 if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) { 5691 if (Initializer && isa<VariableArrayType>(DestAT)) { 5692 SetFailed(FK_VariableLengthArrayHasInitializer); 5693 return; 5694 } 5695 5696 if (Initializer) { 5697 switch (IsStringInit(Initializer, DestAT, Context)) { 5698 case SIF_None: 5699 TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this); 5700 return; 5701 case SIF_NarrowStringIntoWideChar: 5702 SetFailed(FK_NarrowStringIntoWideCharArray); 5703 return; 5704 case SIF_WideStringIntoChar: 5705 SetFailed(FK_WideStringIntoCharArray); 5706 return; 5707 case SIF_IncompatWideStringIntoWideChar: 5708 SetFailed(FK_IncompatWideStringIntoWideChar); 5709 return; 5710 case SIF_PlainStringIntoUTF8Char: 5711 SetFailed(FK_PlainStringIntoUTF8Char); 5712 return; 5713 case SIF_UTF8StringIntoPlainChar: 5714 SetFailed(FK_UTF8StringIntoPlainChar); 5715 return; 5716 case SIF_Other: 5717 break; 5718 } 5719 } 5720 5721 // Some kinds of initialization permit an array to be initialized from 5722 // another array of the same type, and perform elementwise initialization. 5723 if (Initializer && isa<ConstantArrayType>(DestAT) && 5724 S.Context.hasSameUnqualifiedType(Initializer->getType(), 5725 Entity.getType()) && 5726 canPerformArrayCopy(Entity)) { 5727 // If source is a prvalue, use it directly. 5728 if (Initializer->getValueKind() == VK_RValue) { 5729 AddArrayInitStep(DestType, /*IsGNUExtension*/false); 5730 return; 5731 } 5732 5733 // Emit element-at-a-time copy loop. 5734 InitializedEntity Element = 5735 InitializedEntity::InitializeElement(S.Context, 0, Entity); 5736 QualType InitEltT = 5737 Context.getAsArrayType(Initializer->getType())->getElementType(); 5738 OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT, 5739 Initializer->getValueKind(), 5740 Initializer->getObjectKind()); 5741 Expr *OVEAsExpr = &OVE; 5742 InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList, 5743 TreatUnavailableAsInvalid); 5744 if (!Failed()) 5745 AddArrayInitLoopStep(Entity.getType(), InitEltT); 5746 return; 5747 } 5748 5749 // Note: as an GNU C extension, we allow initialization of an 5750 // array from a compound literal that creates an array of the same 5751 // type, so long as the initializer has no side effects. 5752 if (!S.getLangOpts().CPlusPlus && Initializer && 5753 isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) && 5754 Initializer->getType()->isArrayType()) { 5755 const ArrayType *SourceAT 5756 = Context.getAsArrayType(Initializer->getType()); 5757 if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT)) 5758 SetFailed(FK_ArrayTypeMismatch); 5759 else if (Initializer->HasSideEffects(S.Context)) 5760 SetFailed(FK_NonConstantArrayInit); 5761 else { 5762 AddArrayInitStep(DestType, /*IsGNUExtension*/true); 5763 } 5764 } 5765 // Note: as a GNU C++ extension, we allow list-initialization of a 5766 // class member of array type from a parenthesized initializer list. 5767 else if (S.getLangOpts().CPlusPlus && 5768 Entity.getKind() == InitializedEntity::EK_Member && 5769 Initializer && isa<InitListExpr>(Initializer)) { 5770 TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer), 5771 *this, TreatUnavailableAsInvalid); 5772 AddParenthesizedArrayInitStep(DestType); 5773 } else if (DestAT->getElementType()->isCharType()) 5774 SetFailed(FK_ArrayNeedsInitListOrStringLiteral); 5775 else if (IsWideCharCompatible(DestAT->getElementType(), Context)) 5776 SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral); 5777 else 5778 SetFailed(FK_ArrayNeedsInitList); 5779 5780 return; 5781 } 5782 5783 // Determine whether we should consider writeback conversions for 5784 // Objective-C ARC. 5785 bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount && 5786 Entity.isParameterKind(); 5787 5788 if (TryOCLSamplerInitialization(S, *this, DestType, Initializer)) 5789 return; 5790 5791 // We're at the end of the line for C: it's either a write-back conversion 5792 // or it's a C assignment. There's no need to check anything else. 5793 if (!S.getLangOpts().CPlusPlus) { 5794 // If allowed, check whether this is an Objective-C writeback conversion. 5795 if (allowObjCWritebackConversion && 5796 tryObjCWritebackConversion(S, *this, Entity, Initializer)) { 5797 return; 5798 } 5799 5800 if (TryOCLZeroOpaqueTypeInitialization(S, *this, DestType, Initializer)) 5801 return; 5802 5803 // Handle initialization in C 5804 AddCAssignmentStep(DestType); 5805 MaybeProduceObjCObject(S, *this, Entity); 5806 return; 5807 } 5808 5809 assert(S.getLangOpts().CPlusPlus); 5810 5811 // - If the destination type is a (possibly cv-qualified) class type: 5812 if (DestType->isRecordType()) { 5813 // - If the initialization is direct-initialization, or if it is 5814 // copy-initialization where the cv-unqualified version of the 5815 // source type is the same class as, or a derived class of, the 5816 // class of the destination, constructors are considered. [...] 5817 if (Kind.getKind() == InitializationKind::IK_Direct || 5818 (Kind.getKind() == InitializationKind::IK_Copy && 5819 (Context.hasSameUnqualifiedType(SourceType, DestType) || 5820 S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, DestType)))) 5821 TryConstructorInitialization(S, Entity, Kind, Args, 5822 DestType, DestType, *this); 5823 // - Otherwise (i.e., for the remaining copy-initialization cases), 5824 // user-defined conversion sequences that can convert from the source 5825 // type to the destination type or (when a conversion function is 5826 // used) to a derived class thereof are enumerated as described in 5827 // 13.3.1.4, and the best one is chosen through overload resolution 5828 // (13.3). 5829 else 5830 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this, 5831 TopLevelOfInitList); 5832 return; 5833 } 5834 5835 assert(Args.size() >= 1 && "Zero-argument case handled above"); 5836 5837 // The remaining cases all need a source type. 5838 if (Args.size() > 1) { 5839 SetFailed(FK_TooManyInitsForScalar); 5840 return; 5841 } else if (isa<InitListExpr>(Args[0])) { 5842 SetFailed(FK_ParenthesizedListInitForScalar); 5843 return; 5844 } 5845 5846 // - Otherwise, if the source type is a (possibly cv-qualified) class 5847 // type, conversion functions are considered. 5848 if (!SourceType.isNull() && SourceType->isRecordType()) { 5849 // For a conversion to _Atomic(T) from either T or a class type derived 5850 // from T, initialize the T object then convert to _Atomic type. 5851 bool NeedAtomicConversion = false; 5852 if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) { 5853 if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) || 5854 S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, 5855 Atomic->getValueType())) { 5856 DestType = Atomic->getValueType(); 5857 NeedAtomicConversion = true; 5858 } 5859 } 5860 5861 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this, 5862 TopLevelOfInitList); 5863 MaybeProduceObjCObject(S, *this, Entity); 5864 if (!Failed() && NeedAtomicConversion) 5865 AddAtomicConversionStep(Entity.getType()); 5866 return; 5867 } 5868 5869 // - Otherwise, the initial value of the object being initialized is the 5870 // (possibly converted) value of the initializer expression. Standard 5871 // conversions (Clause 4) will be used, if necessary, to convert the 5872 // initializer expression to the cv-unqualified version of the 5873 // destination type; no user-defined conversions are considered. 5874 5875 ImplicitConversionSequence ICS 5876 = S.TryImplicitConversion(Initializer, DestType, 5877 /*SuppressUserConversions*/true, 5878 /*AllowExplicitConversions*/ false, 5879 /*InOverloadResolution*/ false, 5880 /*CStyle=*/Kind.isCStyleOrFunctionalCast(), 5881 allowObjCWritebackConversion); 5882 5883 if (ICS.isStandard() && 5884 ICS.Standard.Second == ICK_Writeback_Conversion) { 5885 // Objective-C ARC writeback conversion. 5886 5887 // We should copy unless we're passing to an argument explicitly 5888 // marked 'out'. 5889 bool ShouldCopy = true; 5890 if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl())) 5891 ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); 5892 5893 // If there was an lvalue adjustment, add it as a separate conversion. 5894 if (ICS.Standard.First == ICK_Array_To_Pointer || 5895 ICS.Standard.First == ICK_Lvalue_To_Rvalue) { 5896 ImplicitConversionSequence LvalueICS; 5897 LvalueICS.setStandard(); 5898 LvalueICS.Standard.setAsIdentityConversion(); 5899 LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0)); 5900 LvalueICS.Standard.First = ICS.Standard.First; 5901 AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0)); 5902 } 5903 5904 AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy); 5905 } else if (ICS.isBad()) { 5906 DeclAccessPair dap; 5907 if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) { 5908 AddZeroInitializationStep(Entity.getType()); 5909 } else if (Initializer->getType() == Context.OverloadTy && 5910 !S.ResolveAddressOfOverloadedFunction(Initializer, DestType, 5911 false, dap)) 5912 SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 5913 else if (Initializer->getType()->isFunctionType() && 5914 isExprAnUnaddressableFunction(S, Initializer)) 5915 SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction); 5916 else 5917 SetFailed(InitializationSequence::FK_ConversionFailed); 5918 } else { 5919 AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList); 5920 5921 MaybeProduceObjCObject(S, *this, Entity); 5922 } 5923 } 5924 5925 InitializationSequence::~InitializationSequence() { 5926 for (auto &S : Steps) 5927 S.Destroy(); 5928 } 5929 5930 //===----------------------------------------------------------------------===// 5931 // Perform initialization 5932 //===----------------------------------------------------------------------===// 5933 static Sema::AssignmentAction 5934 getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) { 5935 switch(Entity.getKind()) { 5936 case InitializedEntity::EK_Variable: 5937 case InitializedEntity::EK_New: 5938 case InitializedEntity::EK_Exception: 5939 case InitializedEntity::EK_Base: 5940 case InitializedEntity::EK_Delegating: 5941 return Sema::AA_Initializing; 5942 5943 case InitializedEntity::EK_Parameter: 5944 if (Entity.getDecl() && 5945 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) 5946 return Sema::AA_Sending; 5947 5948 return Sema::AA_Passing; 5949 5950 case InitializedEntity::EK_Parameter_CF_Audited: 5951 if (Entity.getDecl() && 5952 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) 5953 return Sema::AA_Sending; 5954 5955 return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited; 5956 5957 case InitializedEntity::EK_Result: 5958 case InitializedEntity::EK_StmtExprResult: // FIXME: Not quite right. 5959 return Sema::AA_Returning; 5960 5961 case InitializedEntity::EK_Temporary: 5962 case InitializedEntity::EK_RelatedResult: 5963 // FIXME: Can we tell apart casting vs. converting? 5964 return Sema::AA_Casting; 5965 5966 case InitializedEntity::EK_Member: 5967 case InitializedEntity::EK_Binding: 5968 case InitializedEntity::EK_ArrayElement: 5969 case InitializedEntity::EK_VectorElement: 5970 case InitializedEntity::EK_ComplexElement: 5971 case InitializedEntity::EK_BlockElement: 5972 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 5973 case InitializedEntity::EK_LambdaCapture: 5974 case InitializedEntity::EK_CompoundLiteralInit: 5975 return Sema::AA_Initializing; 5976 } 5977 5978 llvm_unreachable("Invalid EntityKind!"); 5979 } 5980 5981 /// Whether we should bind a created object as a temporary when 5982 /// initializing the given entity. 5983 static bool shouldBindAsTemporary(const InitializedEntity &Entity) { 5984 switch (Entity.getKind()) { 5985 case InitializedEntity::EK_ArrayElement: 5986 case InitializedEntity::EK_Member: 5987 case InitializedEntity::EK_Result: 5988 case InitializedEntity::EK_StmtExprResult: 5989 case InitializedEntity::EK_New: 5990 case InitializedEntity::EK_Variable: 5991 case InitializedEntity::EK_Base: 5992 case InitializedEntity::EK_Delegating: 5993 case InitializedEntity::EK_VectorElement: 5994 case InitializedEntity::EK_ComplexElement: 5995 case InitializedEntity::EK_Exception: 5996 case InitializedEntity::EK_BlockElement: 5997 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 5998 case InitializedEntity::EK_LambdaCapture: 5999 case InitializedEntity::EK_CompoundLiteralInit: 6000 return false; 6001 6002 case InitializedEntity::EK_Parameter: 6003 case InitializedEntity::EK_Parameter_CF_Audited: 6004 case InitializedEntity::EK_Temporary: 6005 case InitializedEntity::EK_RelatedResult: 6006 case InitializedEntity::EK_Binding: 6007 return true; 6008 } 6009 6010 llvm_unreachable("missed an InitializedEntity kind?"); 6011 } 6012 6013 /// Whether the given entity, when initialized with an object 6014 /// created for that initialization, requires destruction. 6015 static bool shouldDestroyEntity(const InitializedEntity &Entity) { 6016 switch (Entity.getKind()) { 6017 case InitializedEntity::EK_Result: 6018 case InitializedEntity::EK_StmtExprResult: 6019 case InitializedEntity::EK_New: 6020 case InitializedEntity::EK_Base: 6021 case InitializedEntity::EK_Delegating: 6022 case InitializedEntity::EK_VectorElement: 6023 case InitializedEntity::EK_ComplexElement: 6024 case InitializedEntity::EK_BlockElement: 6025 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 6026 case InitializedEntity::EK_LambdaCapture: 6027 return false; 6028 6029 case InitializedEntity::EK_Member: 6030 case InitializedEntity::EK_Binding: 6031 case InitializedEntity::EK_Variable: 6032 case InitializedEntity::EK_Parameter: 6033 case InitializedEntity::EK_Parameter_CF_Audited: 6034 case InitializedEntity::EK_Temporary: 6035 case InitializedEntity::EK_ArrayElement: 6036 case InitializedEntity::EK_Exception: 6037 case InitializedEntity::EK_CompoundLiteralInit: 6038 case InitializedEntity::EK_RelatedResult: 6039 return true; 6040 } 6041 6042 llvm_unreachable("missed an InitializedEntity kind?"); 6043 } 6044 6045 /// Get the location at which initialization diagnostics should appear. 6046 static SourceLocation getInitializationLoc(const InitializedEntity &Entity, 6047 Expr *Initializer) { 6048 switch (Entity.getKind()) { 6049 case InitializedEntity::EK_Result: 6050 case InitializedEntity::EK_StmtExprResult: 6051 return Entity.getReturnLoc(); 6052 6053 case InitializedEntity::EK_Exception: 6054 return Entity.getThrowLoc(); 6055 6056 case InitializedEntity::EK_Variable: 6057 case InitializedEntity::EK_Binding: 6058 return Entity.getDecl()->getLocation(); 6059 6060 case InitializedEntity::EK_LambdaCapture: 6061 return Entity.getCaptureLoc(); 6062 6063 case InitializedEntity::EK_ArrayElement: 6064 case InitializedEntity::EK_Member: 6065 case InitializedEntity::EK_Parameter: 6066 case InitializedEntity::EK_Parameter_CF_Audited: 6067 case InitializedEntity::EK_Temporary: 6068 case InitializedEntity::EK_New: 6069 case InitializedEntity::EK_Base: 6070 case InitializedEntity::EK_Delegating: 6071 case InitializedEntity::EK_VectorElement: 6072 case InitializedEntity::EK_ComplexElement: 6073 case InitializedEntity::EK_BlockElement: 6074 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 6075 case InitializedEntity::EK_CompoundLiteralInit: 6076 case InitializedEntity::EK_RelatedResult: 6077 return Initializer->getBeginLoc(); 6078 } 6079 llvm_unreachable("missed an InitializedEntity kind?"); 6080 } 6081 6082 /// Make a (potentially elidable) temporary copy of the object 6083 /// provided by the given initializer by calling the appropriate copy 6084 /// constructor. 6085 /// 6086 /// \param S The Sema object used for type-checking. 6087 /// 6088 /// \param T The type of the temporary object, which must either be 6089 /// the type of the initializer expression or a superclass thereof. 6090 /// 6091 /// \param Entity The entity being initialized. 6092 /// 6093 /// \param CurInit The initializer expression. 6094 /// 6095 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that 6096 /// is permitted in C++03 (but not C++0x) when binding a reference to 6097 /// an rvalue. 6098 /// 6099 /// \returns An expression that copies the initializer expression into 6100 /// a temporary object, or an error expression if a copy could not be 6101 /// created. 6102 static ExprResult CopyObject(Sema &S, 6103 QualType T, 6104 const InitializedEntity &Entity, 6105 ExprResult CurInit, 6106 bool IsExtraneousCopy) { 6107 if (CurInit.isInvalid()) 6108 return CurInit; 6109 // Determine which class type we're copying to. 6110 Expr *CurInitExpr = (Expr *)CurInit.get(); 6111 CXXRecordDecl *Class = nullptr; 6112 if (const RecordType *Record = T->getAs<RecordType>()) 6113 Class = cast<CXXRecordDecl>(Record->getDecl()); 6114 if (!Class) 6115 return CurInit; 6116 6117 SourceLocation Loc = getInitializationLoc(Entity, CurInit.get()); 6118 6119 // Make sure that the type we are copying is complete. 6120 if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete)) 6121 return CurInit; 6122 6123 // Perform overload resolution using the class's constructors. Per 6124 // C++11 [dcl.init]p16, second bullet for class types, this initialization 6125 // is direct-initialization. 6126 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); 6127 DeclContext::lookup_result Ctors = S.LookupConstructors(Class); 6128 6129 OverloadCandidateSet::iterator Best; 6130 switch (ResolveConstructorOverload( 6131 S, Loc, CurInitExpr, CandidateSet, T, Ctors, Best, 6132 /*CopyInitializing=*/false, /*AllowExplicit=*/true, 6133 /*OnlyListConstructors=*/false, /*IsListInit=*/false, 6134 /*SecondStepOfCopyInit=*/true)) { 6135 case OR_Success: 6136 break; 6137 6138 case OR_No_Viable_Function: 6139 CandidateSet.NoteCandidates( 6140 PartialDiagnosticAt( 6141 Loc, S.PDiag(IsExtraneousCopy && !S.isSFINAEContext() 6142 ? diag::ext_rvalue_to_reference_temp_copy_no_viable 6143 : diag::err_temp_copy_no_viable) 6144 << (int)Entity.getKind() << CurInitExpr->getType() 6145 << CurInitExpr->getSourceRange()), 6146 S, OCD_AllCandidates, CurInitExpr); 6147 if (!IsExtraneousCopy || S.isSFINAEContext()) 6148 return ExprError(); 6149 return CurInit; 6150 6151 case OR_Ambiguous: 6152 CandidateSet.NoteCandidates( 6153 PartialDiagnosticAt(Loc, S.PDiag(diag::err_temp_copy_ambiguous) 6154 << (int)Entity.getKind() 6155 << CurInitExpr->getType() 6156 << CurInitExpr->getSourceRange()), 6157 S, OCD_AmbiguousCandidates, CurInitExpr); 6158 return ExprError(); 6159 6160 case OR_Deleted: 6161 S.Diag(Loc, diag::err_temp_copy_deleted) 6162 << (int)Entity.getKind() << CurInitExpr->getType() 6163 << CurInitExpr->getSourceRange(); 6164 S.NoteDeletedFunction(Best->Function); 6165 return ExprError(); 6166 } 6167 6168 bool HadMultipleCandidates = CandidateSet.size() > 1; 6169 6170 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function); 6171 SmallVector<Expr*, 8> ConstructorArgs; 6172 CurInit.get(); // Ownership transferred into MultiExprArg, below. 6173 6174 S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity, 6175 IsExtraneousCopy); 6176 6177 if (IsExtraneousCopy) { 6178 // If this is a totally extraneous copy for C++03 reference 6179 // binding purposes, just return the original initialization 6180 // expression. We don't generate an (elided) copy operation here 6181 // because doing so would require us to pass down a flag to avoid 6182 // infinite recursion, where each step adds another extraneous, 6183 // elidable copy. 6184 6185 // Instantiate the default arguments of any extra parameters in 6186 // the selected copy constructor, as if we were going to create a 6187 // proper call to the copy constructor. 6188 for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) { 6189 ParmVarDecl *Parm = Constructor->getParamDecl(I); 6190 if (S.RequireCompleteType(Loc, Parm->getType(), 6191 diag::err_call_incomplete_argument)) 6192 break; 6193 6194 // Build the default argument expression; we don't actually care 6195 // if this succeeds or not, because this routine will complain 6196 // if there was a problem. 6197 S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm); 6198 } 6199 6200 return CurInitExpr; 6201 } 6202 6203 // Determine the arguments required to actually perform the 6204 // constructor call (we might have derived-to-base conversions, or 6205 // the copy constructor may have default arguments). 6206 if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs)) 6207 return ExprError(); 6208 6209 // C++0x [class.copy]p32: 6210 // When certain criteria are met, an implementation is allowed to 6211 // omit the copy/move construction of a class object, even if the 6212 // copy/move constructor and/or destructor for the object have 6213 // side effects. [...] 6214 // - when a temporary class object that has not been bound to a 6215 // reference (12.2) would be copied/moved to a class object 6216 // with the same cv-unqualified type, the copy/move operation 6217 // can be omitted by constructing the temporary object 6218 // directly into the target of the omitted copy/move 6219 // 6220 // Note that the other three bullets are handled elsewhere. Copy 6221 // elision for return statements and throw expressions are handled as part 6222 // of constructor initialization, while copy elision for exception handlers 6223 // is handled by the run-time. 6224 // 6225 // FIXME: If the function parameter is not the same type as the temporary, we 6226 // should still be able to elide the copy, but we don't have a way to 6227 // represent in the AST how much should be elided in this case. 6228 bool Elidable = 6229 CurInitExpr->isTemporaryObject(S.Context, Class) && 6230 S.Context.hasSameUnqualifiedType( 6231 Best->Function->getParamDecl(0)->getType().getNonReferenceType(), 6232 CurInitExpr->getType()); 6233 6234 // Actually perform the constructor call. 6235 CurInit = S.BuildCXXConstructExpr(Loc, T, Best->FoundDecl, Constructor, 6236 Elidable, 6237 ConstructorArgs, 6238 HadMultipleCandidates, 6239 /*ListInit*/ false, 6240 /*StdInitListInit*/ false, 6241 /*ZeroInit*/ false, 6242 CXXConstructExpr::CK_Complete, 6243 SourceRange()); 6244 6245 // If we're supposed to bind temporaries, do so. 6246 if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity)) 6247 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>()); 6248 return CurInit; 6249 } 6250 6251 /// Check whether elidable copy construction for binding a reference to 6252 /// a temporary would have succeeded if we were building in C++98 mode, for 6253 /// -Wc++98-compat. 6254 static void CheckCXX98CompatAccessibleCopy(Sema &S, 6255 const InitializedEntity &Entity, 6256 Expr *CurInitExpr) { 6257 assert(S.getLangOpts().CPlusPlus11); 6258 6259 const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>(); 6260 if (!Record) 6261 return; 6262 6263 SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr); 6264 if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc)) 6265 return; 6266 6267 // Find constructors which would have been considered. 6268 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); 6269 DeclContext::lookup_result Ctors = 6270 S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl())); 6271 6272 // Perform overload resolution. 6273 OverloadCandidateSet::iterator Best; 6274 OverloadingResult OR = ResolveConstructorOverload( 6275 S, Loc, CurInitExpr, CandidateSet, CurInitExpr->getType(), Ctors, Best, 6276 /*CopyInitializing=*/false, /*AllowExplicit=*/true, 6277 /*OnlyListConstructors=*/false, /*IsListInit=*/false, 6278 /*SecondStepOfCopyInit=*/true); 6279 6280 PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy) 6281 << OR << (int)Entity.getKind() << CurInitExpr->getType() 6282 << CurInitExpr->getSourceRange(); 6283 6284 switch (OR) { 6285 case OR_Success: 6286 S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function), 6287 Best->FoundDecl, Entity, Diag); 6288 // FIXME: Check default arguments as far as that's possible. 6289 break; 6290 6291 case OR_No_Viable_Function: 6292 CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S, 6293 OCD_AllCandidates, CurInitExpr); 6294 break; 6295 6296 case OR_Ambiguous: 6297 CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S, 6298 OCD_AmbiguousCandidates, CurInitExpr); 6299 break; 6300 6301 case OR_Deleted: 6302 S.Diag(Loc, Diag); 6303 S.NoteDeletedFunction(Best->Function); 6304 break; 6305 } 6306 } 6307 6308 void InitializationSequence::PrintInitLocationNote(Sema &S, 6309 const InitializedEntity &Entity) { 6310 if (Entity.isParameterKind() && Entity.getDecl()) { 6311 if (Entity.getDecl()->getLocation().isInvalid()) 6312 return; 6313 6314 if (Entity.getDecl()->getDeclName()) 6315 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here) 6316 << Entity.getDecl()->getDeclName(); 6317 else 6318 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here); 6319 } 6320 else if (Entity.getKind() == InitializedEntity::EK_RelatedResult && 6321 Entity.getMethodDecl()) 6322 S.Diag(Entity.getMethodDecl()->getLocation(), 6323 diag::note_method_return_type_change) 6324 << Entity.getMethodDecl()->getDeclName(); 6325 } 6326 6327 /// Returns true if the parameters describe a constructor initialization of 6328 /// an explicit temporary object, e.g. "Point(x, y)". 6329 static bool isExplicitTemporary(const InitializedEntity &Entity, 6330 const InitializationKind &Kind, 6331 unsigned NumArgs) { 6332 switch (Entity.getKind()) { 6333 case InitializedEntity::EK_Temporary: 6334 case InitializedEntity::EK_CompoundLiteralInit: 6335 case InitializedEntity::EK_RelatedResult: 6336 break; 6337 default: 6338 return false; 6339 } 6340 6341 switch (Kind.getKind()) { 6342 case InitializationKind::IK_DirectList: 6343 return true; 6344 // FIXME: Hack to work around cast weirdness. 6345 case InitializationKind::IK_Direct: 6346 case InitializationKind::IK_Value: 6347 return NumArgs != 1; 6348 default: 6349 return false; 6350 } 6351 } 6352 6353 static ExprResult 6354 PerformConstructorInitialization(Sema &S, 6355 const InitializedEntity &Entity, 6356 const InitializationKind &Kind, 6357 MultiExprArg Args, 6358 const InitializationSequence::Step& Step, 6359 bool &ConstructorInitRequiresZeroInit, 6360 bool IsListInitialization, 6361 bool IsStdInitListInitialization, 6362 SourceLocation LBraceLoc, 6363 SourceLocation RBraceLoc) { 6364 unsigned NumArgs = Args.size(); 6365 CXXConstructorDecl *Constructor 6366 = cast<CXXConstructorDecl>(Step.Function.Function); 6367 bool HadMultipleCandidates = Step.Function.HadMultipleCandidates; 6368 6369 // Build a call to the selected constructor. 6370 SmallVector<Expr*, 8> ConstructorArgs; 6371 SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid()) 6372 ? Kind.getEqualLoc() 6373 : Kind.getLocation(); 6374 6375 if (Kind.getKind() == InitializationKind::IK_Default) { 6376 // Force even a trivial, implicit default constructor to be 6377 // semantically checked. We do this explicitly because we don't build 6378 // the definition for completely trivial constructors. 6379 assert(Constructor->getParent() && "No parent class for constructor."); 6380 if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() && 6381 Constructor->isTrivial() && !Constructor->isUsed(false)) { 6382 S.runWithSufficientStackSpace(Loc, [&] { 6383 S.DefineImplicitDefaultConstructor(Loc, Constructor); 6384 }); 6385 } 6386 } 6387 6388 ExprResult CurInit((Expr *)nullptr); 6389 6390 // C++ [over.match.copy]p1: 6391 // - When initializing a temporary to be bound to the first parameter 6392 // of a constructor that takes a reference to possibly cv-qualified 6393 // T as its first argument, called with a single argument in the 6394 // context of direct-initialization, explicit conversion functions 6395 // are also considered. 6396 bool AllowExplicitConv = 6397 Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 && 6398 hasCopyOrMoveCtorParam(S.Context, 6399 getConstructorInfo(Step.Function.FoundDecl)); 6400 6401 // Determine the arguments required to actually perform the constructor 6402 // call. 6403 if (S.CompleteConstructorCall(Constructor, Args, 6404 Loc, ConstructorArgs, 6405 AllowExplicitConv, 6406 IsListInitialization)) 6407 return ExprError(); 6408 6409 6410 if (isExplicitTemporary(Entity, Kind, NumArgs)) { 6411 // An explicitly-constructed temporary, e.g., X(1, 2). 6412 if (S.DiagnoseUseOfDecl(Constructor, Loc)) 6413 return ExprError(); 6414 6415 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); 6416 if (!TSInfo) 6417 TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc); 6418 SourceRange ParenOrBraceRange = 6419 (Kind.getKind() == InitializationKind::IK_DirectList) 6420 ? SourceRange(LBraceLoc, RBraceLoc) 6421 : Kind.getParenOrBraceRange(); 6422 6423 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>( 6424 Step.Function.FoundDecl.getDecl())) { 6425 Constructor = S.findInheritingConstructor(Loc, Constructor, Shadow); 6426 if (S.DiagnoseUseOfDecl(Constructor, Loc)) 6427 return ExprError(); 6428 } 6429 S.MarkFunctionReferenced(Loc, Constructor); 6430 6431 CurInit = CXXTemporaryObjectExpr::Create( 6432 S.Context, Constructor, 6433 Entity.getType().getNonLValueExprType(S.Context), TSInfo, 6434 ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates, 6435 IsListInitialization, IsStdInitListInitialization, 6436 ConstructorInitRequiresZeroInit); 6437 } else { 6438 CXXConstructExpr::ConstructionKind ConstructKind = 6439 CXXConstructExpr::CK_Complete; 6440 6441 if (Entity.getKind() == InitializedEntity::EK_Base) { 6442 ConstructKind = Entity.getBaseSpecifier()->isVirtual() ? 6443 CXXConstructExpr::CK_VirtualBase : 6444 CXXConstructExpr::CK_NonVirtualBase; 6445 } else if (Entity.getKind() == InitializedEntity::EK_Delegating) { 6446 ConstructKind = CXXConstructExpr::CK_Delegating; 6447 } 6448 6449 // Only get the parenthesis or brace range if it is a list initialization or 6450 // direct construction. 6451 SourceRange ParenOrBraceRange; 6452 if (IsListInitialization) 6453 ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc); 6454 else if (Kind.getKind() == InitializationKind::IK_Direct) 6455 ParenOrBraceRange = Kind.getParenOrBraceRange(); 6456 6457 // If the entity allows NRVO, mark the construction as elidable 6458 // unconditionally. 6459 if (Entity.allowsNRVO()) 6460 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type, 6461 Step.Function.FoundDecl, 6462 Constructor, /*Elidable=*/true, 6463 ConstructorArgs, 6464 HadMultipleCandidates, 6465 IsListInitialization, 6466 IsStdInitListInitialization, 6467 ConstructorInitRequiresZeroInit, 6468 ConstructKind, 6469 ParenOrBraceRange); 6470 else 6471 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type, 6472 Step.Function.FoundDecl, 6473 Constructor, 6474 ConstructorArgs, 6475 HadMultipleCandidates, 6476 IsListInitialization, 6477 IsStdInitListInitialization, 6478 ConstructorInitRequiresZeroInit, 6479 ConstructKind, 6480 ParenOrBraceRange); 6481 } 6482 if (CurInit.isInvalid()) 6483 return ExprError(); 6484 6485 // Only check access if all of that succeeded. 6486 S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity); 6487 if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc)) 6488 return ExprError(); 6489 6490 if (const ArrayType *AT = S.Context.getAsArrayType(Entity.getType())) 6491 if (checkDestructorReference(S.Context.getBaseElementType(AT), Loc, S)) 6492 return ExprError(); 6493 6494 if (shouldBindAsTemporary(Entity)) 6495 CurInit = S.MaybeBindToTemporary(CurInit.get()); 6496 6497 return CurInit; 6498 } 6499 6500 namespace { 6501 enum LifetimeKind { 6502 /// The lifetime of a temporary bound to this entity ends at the end of the 6503 /// full-expression, and that's (probably) fine. 6504 LK_FullExpression, 6505 6506 /// The lifetime of a temporary bound to this entity is extended to the 6507 /// lifeitme of the entity itself. 6508 LK_Extended, 6509 6510 /// The lifetime of a temporary bound to this entity probably ends too soon, 6511 /// because the entity is allocated in a new-expression. 6512 LK_New, 6513 6514 /// The lifetime of a temporary bound to this entity ends too soon, because 6515 /// the entity is a return object. 6516 LK_Return, 6517 6518 /// The lifetime of a temporary bound to this entity ends too soon, because 6519 /// the entity is the result of a statement expression. 6520 LK_StmtExprResult, 6521 6522 /// This is a mem-initializer: if it would extend a temporary (other than via 6523 /// a default member initializer), the program is ill-formed. 6524 LK_MemInitializer, 6525 }; 6526 using LifetimeResult = 6527 llvm::PointerIntPair<const InitializedEntity *, 3, LifetimeKind>; 6528 } 6529 6530 /// Determine the declaration which an initialized entity ultimately refers to, 6531 /// for the purpose of lifetime-extending a temporary bound to a reference in 6532 /// the initialization of \p Entity. 6533 static LifetimeResult getEntityLifetime( 6534 const InitializedEntity *Entity, 6535 const InitializedEntity *InitField = nullptr) { 6536 // C++11 [class.temporary]p5: 6537 switch (Entity->getKind()) { 6538 case InitializedEntity::EK_Variable: 6539 // The temporary [...] persists for the lifetime of the reference 6540 return {Entity, LK_Extended}; 6541 6542 case InitializedEntity::EK_Member: 6543 // For subobjects, we look at the complete object. 6544 if (Entity->getParent()) 6545 return getEntityLifetime(Entity->getParent(), Entity); 6546 6547 // except: 6548 // C++17 [class.base.init]p8: 6549 // A temporary expression bound to a reference member in a 6550 // mem-initializer is ill-formed. 6551 // C++17 [class.base.init]p11: 6552 // A temporary expression bound to a reference member from a 6553 // default member initializer is ill-formed. 6554 // 6555 // The context of p11 and its example suggest that it's only the use of a 6556 // default member initializer from a constructor that makes the program 6557 // ill-formed, not its mere existence, and that it can even be used by 6558 // aggregate initialization. 6559 return {Entity, Entity->isDefaultMemberInitializer() ? LK_Extended 6560 : LK_MemInitializer}; 6561 6562 case InitializedEntity::EK_Binding: 6563 // Per [dcl.decomp]p3, the binding is treated as a variable of reference 6564 // type. 6565 return {Entity, LK_Extended}; 6566 6567 case InitializedEntity::EK_Parameter: 6568 case InitializedEntity::EK_Parameter_CF_Audited: 6569 // -- A temporary bound to a reference parameter in a function call 6570 // persists until the completion of the full-expression containing 6571 // the call. 6572 return {nullptr, LK_FullExpression}; 6573 6574 case InitializedEntity::EK_Result: 6575 // -- The lifetime of a temporary bound to the returned value in a 6576 // function return statement is not extended; the temporary is 6577 // destroyed at the end of the full-expression in the return statement. 6578 return {nullptr, LK_Return}; 6579 6580 case InitializedEntity::EK_StmtExprResult: 6581 // FIXME: Should we lifetime-extend through the result of a statement 6582 // expression? 6583 return {nullptr, LK_StmtExprResult}; 6584 6585 case InitializedEntity::EK_New: 6586 // -- A temporary bound to a reference in a new-initializer persists 6587 // until the completion of the full-expression containing the 6588 // new-initializer. 6589 return {nullptr, LK_New}; 6590 6591 case InitializedEntity::EK_Temporary: 6592 case InitializedEntity::EK_CompoundLiteralInit: 6593 case InitializedEntity::EK_RelatedResult: 6594 // We don't yet know the storage duration of the surrounding temporary. 6595 // Assume it's got full-expression duration for now, it will patch up our 6596 // storage duration if that's not correct. 6597 return {nullptr, LK_FullExpression}; 6598 6599 case InitializedEntity::EK_ArrayElement: 6600 // For subobjects, we look at the complete object. 6601 return getEntityLifetime(Entity->getParent(), InitField); 6602 6603 case InitializedEntity::EK_Base: 6604 // For subobjects, we look at the complete object. 6605 if (Entity->getParent()) 6606 return getEntityLifetime(Entity->getParent(), InitField); 6607 return {InitField, LK_MemInitializer}; 6608 6609 case InitializedEntity::EK_Delegating: 6610 // We can reach this case for aggregate initialization in a constructor: 6611 // struct A { int &&r; }; 6612 // struct B : A { B() : A{0} {} }; 6613 // In this case, use the outermost field decl as the context. 6614 return {InitField, LK_MemInitializer}; 6615 6616 case InitializedEntity::EK_BlockElement: 6617 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 6618 case InitializedEntity::EK_LambdaCapture: 6619 case InitializedEntity::EK_VectorElement: 6620 case InitializedEntity::EK_ComplexElement: 6621 return {nullptr, LK_FullExpression}; 6622 6623 case InitializedEntity::EK_Exception: 6624 // FIXME: Can we diagnose lifetime problems with exceptions? 6625 return {nullptr, LK_FullExpression}; 6626 } 6627 llvm_unreachable("unknown entity kind"); 6628 } 6629 6630 namespace { 6631 enum ReferenceKind { 6632 /// Lifetime would be extended by a reference binding to a temporary. 6633 RK_ReferenceBinding, 6634 /// Lifetime would be extended by a std::initializer_list object binding to 6635 /// its backing array. 6636 RK_StdInitializerList, 6637 }; 6638 6639 /// A temporary or local variable. This will be one of: 6640 /// * A MaterializeTemporaryExpr. 6641 /// * A DeclRefExpr whose declaration is a local. 6642 /// * An AddrLabelExpr. 6643 /// * A BlockExpr for a block with captures. 6644 using Local = Expr*; 6645 6646 /// Expressions we stepped over when looking for the local state. Any steps 6647 /// that would inhibit lifetime extension or take us out of subexpressions of 6648 /// the initializer are included. 6649 struct IndirectLocalPathEntry { 6650 enum EntryKind { 6651 DefaultInit, 6652 AddressOf, 6653 VarInit, 6654 LValToRVal, 6655 LifetimeBoundCall, 6656 GslPointerInit 6657 } Kind; 6658 Expr *E; 6659 const Decl *D = nullptr; 6660 IndirectLocalPathEntry() {} 6661 IndirectLocalPathEntry(EntryKind K, Expr *E) : Kind(K), E(E) {} 6662 IndirectLocalPathEntry(EntryKind K, Expr *E, const Decl *D) 6663 : Kind(K), E(E), D(D) {} 6664 }; 6665 6666 using IndirectLocalPath = llvm::SmallVectorImpl<IndirectLocalPathEntry>; 6667 6668 struct RevertToOldSizeRAII { 6669 IndirectLocalPath &Path; 6670 unsigned OldSize = Path.size(); 6671 RevertToOldSizeRAII(IndirectLocalPath &Path) : Path(Path) {} 6672 ~RevertToOldSizeRAII() { Path.resize(OldSize); } 6673 }; 6674 6675 using LocalVisitor = llvm::function_ref<bool(IndirectLocalPath &Path, Local L, 6676 ReferenceKind RK)>; 6677 } 6678 6679 static bool isVarOnPath(IndirectLocalPath &Path, VarDecl *VD) { 6680 for (auto E : Path) 6681 if (E.Kind == IndirectLocalPathEntry::VarInit && E.D == VD) 6682 return true; 6683 return false; 6684 } 6685 6686 static bool pathContainsInit(IndirectLocalPath &Path) { 6687 return llvm::any_of(Path, [=](IndirectLocalPathEntry E) { 6688 return E.Kind == IndirectLocalPathEntry::DefaultInit || 6689 E.Kind == IndirectLocalPathEntry::VarInit; 6690 }); 6691 } 6692 6693 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path, 6694 Expr *Init, LocalVisitor Visit, 6695 bool RevisitSubinits, 6696 bool EnableLifetimeWarnings); 6697 6698 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path, 6699 Expr *Init, ReferenceKind RK, 6700 LocalVisitor Visit, 6701 bool EnableLifetimeWarnings); 6702 6703 template <typename T> static bool isRecordWithAttr(QualType Type) { 6704 if (auto *RD = Type->getAsCXXRecordDecl()) 6705 return RD->hasAttr<T>(); 6706 return false; 6707 } 6708 6709 // Decl::isInStdNamespace will return false for iterators in some STL 6710 // implementations due to them being defined in a namespace outside of the std 6711 // namespace. 6712 static bool isInStlNamespace(const Decl *D) { 6713 const DeclContext *DC = D->getDeclContext(); 6714 if (!DC) 6715 return false; 6716 if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) 6717 if (const IdentifierInfo *II = ND->getIdentifier()) { 6718 StringRef Name = II->getName(); 6719 if (Name.size() >= 2 && Name.front() == '_' && 6720 (Name[1] == '_' || isUppercase(Name[1]))) 6721 return true; 6722 } 6723 6724 return DC->isStdNamespace(); 6725 } 6726 6727 static bool shouldTrackImplicitObjectArg(const CXXMethodDecl *Callee) { 6728 if (auto *Conv = dyn_cast_or_null<CXXConversionDecl>(Callee)) 6729 if (isRecordWithAttr<PointerAttr>(Conv->getConversionType())) 6730 return true; 6731 if (!isInStlNamespace(Callee->getParent())) 6732 return false; 6733 if (!isRecordWithAttr<PointerAttr>(Callee->getThisObjectType()) && 6734 !isRecordWithAttr<OwnerAttr>(Callee->getThisObjectType())) 6735 return false; 6736 if (Callee->getReturnType()->isPointerType() || 6737 isRecordWithAttr<PointerAttr>(Callee->getReturnType())) { 6738 if (!Callee->getIdentifier()) 6739 return false; 6740 return llvm::StringSwitch<bool>(Callee->getName()) 6741 .Cases("begin", "rbegin", "cbegin", "crbegin", true) 6742 .Cases("end", "rend", "cend", "crend", true) 6743 .Cases("c_str", "data", "get", true) 6744 // Map and set types. 6745 .Cases("find", "equal_range", "lower_bound", "upper_bound", true) 6746 .Default(false); 6747 } else if (Callee->getReturnType()->isReferenceType()) { 6748 if (!Callee->getIdentifier()) { 6749 auto OO = Callee->getOverloadedOperator(); 6750 return OO == OverloadedOperatorKind::OO_Subscript || 6751 OO == OverloadedOperatorKind::OO_Star; 6752 } 6753 return llvm::StringSwitch<bool>(Callee->getName()) 6754 .Cases("front", "back", "at", "top", "value", true) 6755 .Default(false); 6756 } 6757 return false; 6758 } 6759 6760 static bool shouldTrackFirstArgument(const FunctionDecl *FD) { 6761 if (!FD->getIdentifier() || FD->getNumParams() != 1) 6762 return false; 6763 const auto *RD = FD->getParamDecl(0)->getType()->getPointeeCXXRecordDecl(); 6764 if (!FD->isInStdNamespace() || !RD || !RD->isInStdNamespace()) 6765 return false; 6766 if (!isRecordWithAttr<PointerAttr>(QualType(RD->getTypeForDecl(), 0)) && 6767 !isRecordWithAttr<OwnerAttr>(QualType(RD->getTypeForDecl(), 0))) 6768 return false; 6769 if (FD->getReturnType()->isPointerType() || 6770 isRecordWithAttr<PointerAttr>(FD->getReturnType())) { 6771 return llvm::StringSwitch<bool>(FD->getName()) 6772 .Cases("begin", "rbegin", "cbegin", "crbegin", true) 6773 .Cases("end", "rend", "cend", "crend", true) 6774 .Case("data", true) 6775 .Default(false); 6776 } else if (FD->getReturnType()->isReferenceType()) { 6777 return llvm::StringSwitch<bool>(FD->getName()) 6778 .Cases("get", "any_cast", true) 6779 .Default(false); 6780 } 6781 return false; 6782 } 6783 6784 static void handleGslAnnotatedTypes(IndirectLocalPath &Path, Expr *Call, 6785 LocalVisitor Visit) { 6786 auto VisitPointerArg = [&](const Decl *D, Expr *Arg) { 6787 // We are not interested in the temporary base objects of gsl Pointers: 6788 // Temp().ptr; // Here ptr might not dangle. 6789 if (isa<MemberExpr>(Arg->IgnoreImpCasts())) 6790 return; 6791 Path.push_back({IndirectLocalPathEntry::GslPointerInit, Arg, D}); 6792 if (Arg->isGLValue()) 6793 visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding, 6794 Visit, 6795 /*EnableLifetimeWarnings=*/true); 6796 else 6797 visitLocalsRetainedByInitializer(Path, Arg, Visit, true, 6798 /*EnableLifetimeWarnings=*/true); 6799 Path.pop_back(); 6800 }; 6801 6802 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) { 6803 const auto *MD = cast_or_null<CXXMethodDecl>(MCE->getDirectCallee()); 6804 if (MD && shouldTrackImplicitObjectArg(MD)) 6805 VisitPointerArg(MD, MCE->getImplicitObjectArgument()); 6806 return; 6807 } else if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(Call)) { 6808 FunctionDecl *Callee = OCE->getDirectCallee(); 6809 if (Callee && Callee->isCXXInstanceMember() && 6810 shouldTrackImplicitObjectArg(cast<CXXMethodDecl>(Callee))) 6811 VisitPointerArg(Callee, OCE->getArg(0)); 6812 return; 6813 } else if (auto *CE = dyn_cast<CallExpr>(Call)) { 6814 FunctionDecl *Callee = CE->getDirectCallee(); 6815 if (Callee && shouldTrackFirstArgument(Callee)) 6816 VisitPointerArg(Callee, CE->getArg(0)); 6817 return; 6818 } 6819 6820 if (auto *CCE = dyn_cast<CXXConstructExpr>(Call)) { 6821 const auto *Ctor = CCE->getConstructor(); 6822 const CXXRecordDecl *RD = Ctor->getParent(); 6823 if (CCE->getNumArgs() > 0 && RD->hasAttr<PointerAttr>()) 6824 VisitPointerArg(Ctor->getParamDecl(0), CCE->getArgs()[0]); 6825 } 6826 } 6827 6828 static bool implicitObjectParamIsLifetimeBound(const FunctionDecl *FD) { 6829 const TypeSourceInfo *TSI = FD->getTypeSourceInfo(); 6830 if (!TSI) 6831 return false; 6832 // Don't declare this variable in the second operand of the for-statement; 6833 // GCC miscompiles that by ending its lifetime before evaluating the 6834 // third operand. See gcc.gnu.org/PR86769. 6835 AttributedTypeLoc ATL; 6836 for (TypeLoc TL = TSI->getTypeLoc(); 6837 (ATL = TL.getAsAdjusted<AttributedTypeLoc>()); 6838 TL = ATL.getModifiedLoc()) { 6839 if (ATL.getAttrAs<LifetimeBoundAttr>()) 6840 return true; 6841 } 6842 return false; 6843 } 6844 6845 static void visitLifetimeBoundArguments(IndirectLocalPath &Path, Expr *Call, 6846 LocalVisitor Visit) { 6847 const FunctionDecl *Callee; 6848 ArrayRef<Expr*> Args; 6849 6850 if (auto *CE = dyn_cast<CallExpr>(Call)) { 6851 Callee = CE->getDirectCallee(); 6852 Args = llvm::makeArrayRef(CE->getArgs(), CE->getNumArgs()); 6853 } else { 6854 auto *CCE = cast<CXXConstructExpr>(Call); 6855 Callee = CCE->getConstructor(); 6856 Args = llvm::makeArrayRef(CCE->getArgs(), CCE->getNumArgs()); 6857 } 6858 if (!Callee) 6859 return; 6860 6861 Expr *ObjectArg = nullptr; 6862 if (isa<CXXOperatorCallExpr>(Call) && Callee->isCXXInstanceMember()) { 6863 ObjectArg = Args[0]; 6864 Args = Args.slice(1); 6865 } else if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) { 6866 ObjectArg = MCE->getImplicitObjectArgument(); 6867 } 6868 6869 auto VisitLifetimeBoundArg = [&](const Decl *D, Expr *Arg) { 6870 Path.push_back({IndirectLocalPathEntry::LifetimeBoundCall, Arg, D}); 6871 if (Arg->isGLValue()) 6872 visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding, 6873 Visit, 6874 /*EnableLifetimeWarnings=*/false); 6875 else 6876 visitLocalsRetainedByInitializer(Path, Arg, Visit, true, 6877 /*EnableLifetimeWarnings=*/false); 6878 Path.pop_back(); 6879 }; 6880 6881 if (ObjectArg && implicitObjectParamIsLifetimeBound(Callee)) 6882 VisitLifetimeBoundArg(Callee, ObjectArg); 6883 6884 for (unsigned I = 0, 6885 N = std::min<unsigned>(Callee->getNumParams(), Args.size()); 6886 I != N; ++I) { 6887 if (Callee->getParamDecl(I)->hasAttr<LifetimeBoundAttr>()) 6888 VisitLifetimeBoundArg(Callee->getParamDecl(I), Args[I]); 6889 } 6890 } 6891 6892 /// Visit the locals that would be reachable through a reference bound to the 6893 /// glvalue expression \c Init. 6894 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path, 6895 Expr *Init, ReferenceKind RK, 6896 LocalVisitor Visit, 6897 bool EnableLifetimeWarnings) { 6898 RevertToOldSizeRAII RAII(Path); 6899 6900 // Walk past any constructs which we can lifetime-extend across. 6901 Expr *Old; 6902 do { 6903 Old = Init; 6904 6905 if (auto *FE = dyn_cast<FullExpr>(Init)) 6906 Init = FE->getSubExpr(); 6907 6908 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 6909 // If this is just redundant braces around an initializer, step over it. 6910 if (ILE->isTransparent()) 6911 Init = ILE->getInit(0); 6912 } 6913 6914 // Step over any subobject adjustments; we may have a materialized 6915 // temporary inside them. 6916 Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments()); 6917 6918 // Per current approach for DR1376, look through casts to reference type 6919 // when performing lifetime extension. 6920 if (CastExpr *CE = dyn_cast<CastExpr>(Init)) 6921 if (CE->getSubExpr()->isGLValue()) 6922 Init = CE->getSubExpr(); 6923 6924 // Per the current approach for DR1299, look through array element access 6925 // on array glvalues when performing lifetime extension. 6926 if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Init)) { 6927 Init = ASE->getBase(); 6928 auto *ICE = dyn_cast<ImplicitCastExpr>(Init); 6929 if (ICE && ICE->getCastKind() == CK_ArrayToPointerDecay) 6930 Init = ICE->getSubExpr(); 6931 else 6932 // We can't lifetime extend through this but we might still find some 6933 // retained temporaries. 6934 return visitLocalsRetainedByInitializer(Path, Init, Visit, true, 6935 EnableLifetimeWarnings); 6936 } 6937 6938 // Step into CXXDefaultInitExprs so we can diagnose cases where a 6939 // constructor inherits one as an implicit mem-initializer. 6940 if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) { 6941 Path.push_back( 6942 {IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()}); 6943 Init = DIE->getExpr(); 6944 } 6945 } while (Init != Old); 6946 6947 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Init)) { 6948 if (Visit(Path, Local(MTE), RK)) 6949 visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit, true, 6950 EnableLifetimeWarnings); 6951 } 6952 6953 if (isa<CallExpr>(Init)) { 6954 if (EnableLifetimeWarnings) 6955 handleGslAnnotatedTypes(Path, Init, Visit); 6956 return visitLifetimeBoundArguments(Path, Init, Visit); 6957 } 6958 6959 switch (Init->getStmtClass()) { 6960 case Stmt::DeclRefExprClass: { 6961 // If we find the name of a local non-reference parameter, we could have a 6962 // lifetime problem. 6963 auto *DRE = cast<DeclRefExpr>(Init); 6964 auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); 6965 if (VD && VD->hasLocalStorage() && 6966 !DRE->refersToEnclosingVariableOrCapture()) { 6967 if (!VD->getType()->isReferenceType()) { 6968 Visit(Path, Local(DRE), RK); 6969 } else if (isa<ParmVarDecl>(DRE->getDecl())) { 6970 // The lifetime of a reference parameter is unknown; assume it's OK 6971 // for now. 6972 break; 6973 } else if (VD->getInit() && !isVarOnPath(Path, VD)) { 6974 Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD}); 6975 visitLocalsRetainedByReferenceBinding(Path, VD->getInit(), 6976 RK_ReferenceBinding, Visit, 6977 EnableLifetimeWarnings); 6978 } 6979 } 6980 break; 6981 } 6982 6983 case Stmt::UnaryOperatorClass: { 6984 // The only unary operator that make sense to handle here 6985 // is Deref. All others don't resolve to a "name." This includes 6986 // handling all sorts of rvalues passed to a unary operator. 6987 const UnaryOperator *U = cast<UnaryOperator>(Init); 6988 if (U->getOpcode() == UO_Deref) 6989 visitLocalsRetainedByInitializer(Path, U->getSubExpr(), Visit, true, 6990 EnableLifetimeWarnings); 6991 break; 6992 } 6993 6994 case Stmt::OMPArraySectionExprClass: { 6995 visitLocalsRetainedByInitializer(Path, 6996 cast<OMPArraySectionExpr>(Init)->getBase(), 6997 Visit, true, EnableLifetimeWarnings); 6998 break; 6999 } 7000 7001 case Stmt::ConditionalOperatorClass: 7002 case Stmt::BinaryConditionalOperatorClass: { 7003 auto *C = cast<AbstractConditionalOperator>(Init); 7004 if (!C->getTrueExpr()->getType()->isVoidType()) 7005 visitLocalsRetainedByReferenceBinding(Path, C->getTrueExpr(), RK, Visit, 7006 EnableLifetimeWarnings); 7007 if (!C->getFalseExpr()->getType()->isVoidType()) 7008 visitLocalsRetainedByReferenceBinding(Path, C->getFalseExpr(), RK, Visit, 7009 EnableLifetimeWarnings); 7010 break; 7011 } 7012 7013 // FIXME: Visit the left-hand side of an -> or ->*. 7014 7015 default: 7016 break; 7017 } 7018 } 7019 7020 /// Visit the locals that would be reachable through an object initialized by 7021 /// the prvalue expression \c Init. 7022 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path, 7023 Expr *Init, LocalVisitor Visit, 7024 bool RevisitSubinits, 7025 bool EnableLifetimeWarnings) { 7026 RevertToOldSizeRAII RAII(Path); 7027 7028 Expr *Old; 7029 do { 7030 Old = Init; 7031 7032 // Step into CXXDefaultInitExprs so we can diagnose cases where a 7033 // constructor inherits one as an implicit mem-initializer. 7034 if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) { 7035 Path.push_back({IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()}); 7036 Init = DIE->getExpr(); 7037 } 7038 7039 if (auto *FE = dyn_cast<FullExpr>(Init)) 7040 Init = FE->getSubExpr(); 7041 7042 // Dig out the expression which constructs the extended temporary. 7043 Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments()); 7044 7045 if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init)) 7046 Init = BTE->getSubExpr(); 7047 7048 Init = Init->IgnoreParens(); 7049 7050 // Step over value-preserving rvalue casts. 7051 if (auto *CE = dyn_cast<CastExpr>(Init)) { 7052 switch (CE->getCastKind()) { 7053 case CK_LValueToRValue: 7054 // If we can match the lvalue to a const object, we can look at its 7055 // initializer. 7056 Path.push_back({IndirectLocalPathEntry::LValToRVal, CE}); 7057 return visitLocalsRetainedByReferenceBinding( 7058 Path, Init, RK_ReferenceBinding, 7059 [&](IndirectLocalPath &Path, Local L, ReferenceKind RK) -> bool { 7060 if (auto *DRE = dyn_cast<DeclRefExpr>(L)) { 7061 auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); 7062 if (VD && VD->getType().isConstQualified() && VD->getInit() && 7063 !isVarOnPath(Path, VD)) { 7064 Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD}); 7065 visitLocalsRetainedByInitializer(Path, VD->getInit(), Visit, true, 7066 EnableLifetimeWarnings); 7067 } 7068 } else if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L)) { 7069 if (MTE->getType().isConstQualified()) 7070 visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit, 7071 true, EnableLifetimeWarnings); 7072 } 7073 return false; 7074 }, EnableLifetimeWarnings); 7075 7076 // We assume that objects can be retained by pointers cast to integers, 7077 // but not if the integer is cast to floating-point type or to _Complex. 7078 // We assume that casts to 'bool' do not preserve enough information to 7079 // retain a local object. 7080 case CK_NoOp: 7081 case CK_BitCast: 7082 case CK_BaseToDerived: 7083 case CK_DerivedToBase: 7084 case CK_UncheckedDerivedToBase: 7085 case CK_Dynamic: 7086 case CK_ToUnion: 7087 case CK_UserDefinedConversion: 7088 case CK_ConstructorConversion: 7089 case CK_IntegralToPointer: 7090 case CK_PointerToIntegral: 7091 case CK_VectorSplat: 7092 case CK_IntegralCast: 7093 case CK_CPointerToObjCPointerCast: 7094 case CK_BlockPointerToObjCPointerCast: 7095 case CK_AnyPointerToBlockPointerCast: 7096 case CK_AddressSpaceConversion: 7097 break; 7098 7099 case CK_ArrayToPointerDecay: 7100 // Model array-to-pointer decay as taking the address of the array 7101 // lvalue. 7102 Path.push_back({IndirectLocalPathEntry::AddressOf, CE}); 7103 return visitLocalsRetainedByReferenceBinding(Path, CE->getSubExpr(), 7104 RK_ReferenceBinding, Visit, 7105 EnableLifetimeWarnings); 7106 7107 default: 7108 return; 7109 } 7110 7111 Init = CE->getSubExpr(); 7112 } 7113 } while (Old != Init); 7114 7115 // C++17 [dcl.init.list]p6: 7116 // initializing an initializer_list object from the array extends the 7117 // lifetime of the array exactly like binding a reference to a temporary. 7118 if (auto *ILE = dyn_cast<CXXStdInitializerListExpr>(Init)) 7119 return visitLocalsRetainedByReferenceBinding(Path, ILE->getSubExpr(), 7120 RK_StdInitializerList, Visit, 7121 EnableLifetimeWarnings); 7122 7123 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 7124 // We already visited the elements of this initializer list while 7125 // performing the initialization. Don't visit them again unless we've 7126 // changed the lifetime of the initialized entity. 7127 if (!RevisitSubinits) 7128 return; 7129 7130 if (ILE->isTransparent()) 7131 return visitLocalsRetainedByInitializer(Path, ILE->getInit(0), Visit, 7132 RevisitSubinits, 7133 EnableLifetimeWarnings); 7134 7135 if (ILE->getType()->isArrayType()) { 7136 for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I) 7137 visitLocalsRetainedByInitializer(Path, ILE->getInit(I), Visit, 7138 RevisitSubinits, 7139 EnableLifetimeWarnings); 7140 return; 7141 } 7142 7143 if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) { 7144 assert(RD->isAggregate() && "aggregate init on non-aggregate"); 7145 7146 // If we lifetime-extend a braced initializer which is initializing an 7147 // aggregate, and that aggregate contains reference members which are 7148 // bound to temporaries, those temporaries are also lifetime-extended. 7149 if (RD->isUnion() && ILE->getInitializedFieldInUnion() && 7150 ILE->getInitializedFieldInUnion()->getType()->isReferenceType()) 7151 visitLocalsRetainedByReferenceBinding(Path, ILE->getInit(0), 7152 RK_ReferenceBinding, Visit, 7153 EnableLifetimeWarnings); 7154 else { 7155 unsigned Index = 0; 7156 for (; Index < RD->getNumBases() && Index < ILE->getNumInits(); ++Index) 7157 visitLocalsRetainedByInitializer(Path, ILE->getInit(Index), Visit, 7158 RevisitSubinits, 7159 EnableLifetimeWarnings); 7160 for (const auto *I : RD->fields()) { 7161 if (Index >= ILE->getNumInits()) 7162 break; 7163 if (I->isUnnamedBitfield()) 7164 continue; 7165 Expr *SubInit = ILE->getInit(Index); 7166 if (I->getType()->isReferenceType()) 7167 visitLocalsRetainedByReferenceBinding(Path, SubInit, 7168 RK_ReferenceBinding, Visit, 7169 EnableLifetimeWarnings); 7170 else 7171 // This might be either aggregate-initialization of a member or 7172 // initialization of a std::initializer_list object. Regardless, 7173 // we should recursively lifetime-extend that initializer. 7174 visitLocalsRetainedByInitializer(Path, SubInit, Visit, 7175 RevisitSubinits, 7176 EnableLifetimeWarnings); 7177 ++Index; 7178 } 7179 } 7180 } 7181 return; 7182 } 7183 7184 // The lifetime of an init-capture is that of the closure object constructed 7185 // by a lambda-expression. 7186 if (auto *LE = dyn_cast<LambdaExpr>(Init)) { 7187 for (Expr *E : LE->capture_inits()) { 7188 if (!E) 7189 continue; 7190 if (E->isGLValue()) 7191 visitLocalsRetainedByReferenceBinding(Path, E, RK_ReferenceBinding, 7192 Visit, EnableLifetimeWarnings); 7193 else 7194 visitLocalsRetainedByInitializer(Path, E, Visit, true, 7195 EnableLifetimeWarnings); 7196 } 7197 } 7198 7199 if (isa<CallExpr>(Init) || isa<CXXConstructExpr>(Init)) { 7200 if (EnableLifetimeWarnings) 7201 handleGslAnnotatedTypes(Path, Init, Visit); 7202 return visitLifetimeBoundArguments(Path, Init, Visit); 7203 } 7204 7205 switch (Init->getStmtClass()) { 7206 case Stmt::UnaryOperatorClass: { 7207 auto *UO = cast<UnaryOperator>(Init); 7208 // If the initializer is the address of a local, we could have a lifetime 7209 // problem. 7210 if (UO->getOpcode() == UO_AddrOf) { 7211 // If this is &rvalue, then it's ill-formed and we have already diagnosed 7212 // it. Don't produce a redundant warning about the lifetime of the 7213 // temporary. 7214 if (isa<MaterializeTemporaryExpr>(UO->getSubExpr())) 7215 return; 7216 7217 Path.push_back({IndirectLocalPathEntry::AddressOf, UO}); 7218 visitLocalsRetainedByReferenceBinding(Path, UO->getSubExpr(), 7219 RK_ReferenceBinding, Visit, 7220 EnableLifetimeWarnings); 7221 } 7222 break; 7223 } 7224 7225 case Stmt::BinaryOperatorClass: { 7226 // Handle pointer arithmetic. 7227 auto *BO = cast<BinaryOperator>(Init); 7228 BinaryOperatorKind BOK = BO->getOpcode(); 7229 if (!BO->getType()->isPointerType() || (BOK != BO_Add && BOK != BO_Sub)) 7230 break; 7231 7232 if (BO->getLHS()->getType()->isPointerType()) 7233 visitLocalsRetainedByInitializer(Path, BO->getLHS(), Visit, true, 7234 EnableLifetimeWarnings); 7235 else if (BO->getRHS()->getType()->isPointerType()) 7236 visitLocalsRetainedByInitializer(Path, BO->getRHS(), Visit, true, 7237 EnableLifetimeWarnings); 7238 break; 7239 } 7240 7241 case Stmt::ConditionalOperatorClass: 7242 case Stmt::BinaryConditionalOperatorClass: { 7243 auto *C = cast<AbstractConditionalOperator>(Init); 7244 // In C++, we can have a throw-expression operand, which has 'void' type 7245 // and isn't interesting from a lifetime perspective. 7246 if (!C->getTrueExpr()->getType()->isVoidType()) 7247 visitLocalsRetainedByInitializer(Path, C->getTrueExpr(), Visit, true, 7248 EnableLifetimeWarnings); 7249 if (!C->getFalseExpr()->getType()->isVoidType()) 7250 visitLocalsRetainedByInitializer(Path, C->getFalseExpr(), Visit, true, 7251 EnableLifetimeWarnings); 7252 break; 7253 } 7254 7255 case Stmt::BlockExprClass: 7256 if (cast<BlockExpr>(Init)->getBlockDecl()->hasCaptures()) { 7257 // This is a local block, whose lifetime is that of the function. 7258 Visit(Path, Local(cast<BlockExpr>(Init)), RK_ReferenceBinding); 7259 } 7260 break; 7261 7262 case Stmt::AddrLabelExprClass: 7263 // We want to warn if the address of a label would escape the function. 7264 Visit(Path, Local(cast<AddrLabelExpr>(Init)), RK_ReferenceBinding); 7265 break; 7266 7267 default: 7268 break; 7269 } 7270 } 7271 7272 /// Determine whether this is an indirect path to a temporary that we are 7273 /// supposed to lifetime-extend along (but don't). 7274 static bool shouldLifetimeExtendThroughPath(const IndirectLocalPath &Path) { 7275 for (auto Elem : Path) { 7276 if (Elem.Kind != IndirectLocalPathEntry::DefaultInit) 7277 return false; 7278 } 7279 return true; 7280 } 7281 7282 /// Find the range for the first interesting entry in the path at or after I. 7283 static SourceRange nextPathEntryRange(const IndirectLocalPath &Path, unsigned I, 7284 Expr *E) { 7285 for (unsigned N = Path.size(); I != N; ++I) { 7286 switch (Path[I].Kind) { 7287 case IndirectLocalPathEntry::AddressOf: 7288 case IndirectLocalPathEntry::LValToRVal: 7289 case IndirectLocalPathEntry::LifetimeBoundCall: 7290 case IndirectLocalPathEntry::GslPointerInit: 7291 // These exist primarily to mark the path as not permitting or 7292 // supporting lifetime extension. 7293 break; 7294 7295 case IndirectLocalPathEntry::VarInit: 7296 if (cast<VarDecl>(Path[I].D)->isImplicit()) 7297 return SourceRange(); 7298 LLVM_FALLTHROUGH; 7299 case IndirectLocalPathEntry::DefaultInit: 7300 return Path[I].E->getSourceRange(); 7301 } 7302 } 7303 return E->getSourceRange(); 7304 } 7305 7306 static bool pathOnlyInitializesGslPointer(IndirectLocalPath &Path) { 7307 for (auto It = Path.rbegin(), End = Path.rend(); It != End; ++It) { 7308 if (It->Kind == IndirectLocalPathEntry::VarInit) 7309 continue; 7310 if (It->Kind == IndirectLocalPathEntry::AddressOf) 7311 continue; 7312 return It->Kind == IndirectLocalPathEntry::GslPointerInit; 7313 } 7314 return false; 7315 } 7316 7317 void Sema::checkInitializerLifetime(const InitializedEntity &Entity, 7318 Expr *Init) { 7319 LifetimeResult LR = getEntityLifetime(&Entity); 7320 LifetimeKind LK = LR.getInt(); 7321 const InitializedEntity *ExtendingEntity = LR.getPointer(); 7322 7323 // If this entity doesn't have an interesting lifetime, don't bother looking 7324 // for temporaries within its initializer. 7325 if (LK == LK_FullExpression) 7326 return; 7327 7328 auto TemporaryVisitor = [&](IndirectLocalPath &Path, Local L, 7329 ReferenceKind RK) -> bool { 7330 SourceRange DiagRange = nextPathEntryRange(Path, 0, L); 7331 SourceLocation DiagLoc = DiagRange.getBegin(); 7332 7333 auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L); 7334 7335 bool IsGslPtrInitWithGslTempOwner = false; 7336 bool IsLocalGslOwner = false; 7337 if (pathOnlyInitializesGslPointer(Path)) { 7338 if (isa<DeclRefExpr>(L)) { 7339 // We do not want to follow the references when returning a pointer originating 7340 // from a local owner to avoid the following false positive: 7341 // int &p = *localUniquePtr; 7342 // someContainer.add(std::move(localUniquePtr)); 7343 // return p; 7344 IsLocalGslOwner = isRecordWithAttr<OwnerAttr>(L->getType()); 7345 if (pathContainsInit(Path) || !IsLocalGslOwner) 7346 return false; 7347 } else { 7348 IsGslPtrInitWithGslTempOwner = MTE && !MTE->getExtendingDecl() && 7349 isRecordWithAttr<OwnerAttr>(MTE->getType()); 7350 // Skipping a chain of initializing gsl::Pointer annotated objects. 7351 // We are looking only for the final source to find out if it was 7352 // a local or temporary owner or the address of a local variable/param. 7353 if (!IsGslPtrInitWithGslTempOwner) 7354 return true; 7355 } 7356 } 7357 7358 switch (LK) { 7359 case LK_FullExpression: 7360 llvm_unreachable("already handled this"); 7361 7362 case LK_Extended: { 7363 if (!MTE) { 7364 // The initialized entity has lifetime beyond the full-expression, 7365 // and the local entity does too, so don't warn. 7366 // 7367 // FIXME: We should consider warning if a static / thread storage 7368 // duration variable retains an automatic storage duration local. 7369 return false; 7370 } 7371 7372 if (IsGslPtrInitWithGslTempOwner && DiagLoc.isValid()) { 7373 Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange; 7374 return false; 7375 } 7376 7377 // Lifetime-extend the temporary. 7378 if (Path.empty()) { 7379 // Update the storage duration of the materialized temporary. 7380 // FIXME: Rebuild the expression instead of mutating it. 7381 MTE->setExtendingDecl(ExtendingEntity->getDecl(), 7382 ExtendingEntity->allocateManglingNumber()); 7383 // Also visit the temporaries lifetime-extended by this initializer. 7384 return true; 7385 } 7386 7387 if (shouldLifetimeExtendThroughPath(Path)) { 7388 // We're supposed to lifetime-extend the temporary along this path (per 7389 // the resolution of DR1815), but we don't support that yet. 7390 // 7391 // FIXME: Properly handle this situation. Perhaps the easiest approach 7392 // would be to clone the initializer expression on each use that would 7393 // lifetime extend its temporaries. 7394 Diag(DiagLoc, diag::warn_unsupported_lifetime_extension) 7395 << RK << DiagRange; 7396 } else { 7397 // If the path goes through the initialization of a variable or field, 7398 // it can't possibly reach a temporary created in this full-expression. 7399 // We will have already diagnosed any problems with the initializer. 7400 if (pathContainsInit(Path)) 7401 return false; 7402 7403 Diag(DiagLoc, diag::warn_dangling_variable) 7404 << RK << !Entity.getParent() 7405 << ExtendingEntity->getDecl()->isImplicit() 7406 << ExtendingEntity->getDecl() << Init->isGLValue() << DiagRange; 7407 } 7408 break; 7409 } 7410 7411 case LK_MemInitializer: { 7412 if (isa<MaterializeTemporaryExpr>(L)) { 7413 // Under C++ DR1696, if a mem-initializer (or a default member 7414 // initializer used by the absence of one) would lifetime-extend a 7415 // temporary, the program is ill-formed. 7416 if (auto *ExtendingDecl = 7417 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) { 7418 if (IsGslPtrInitWithGslTempOwner) { 7419 Diag(DiagLoc, diag::warn_dangling_lifetime_pointer_member) 7420 << ExtendingDecl << DiagRange; 7421 Diag(ExtendingDecl->getLocation(), 7422 diag::note_ref_or_ptr_member_declared_here) 7423 << true; 7424 return false; 7425 } 7426 bool IsSubobjectMember = ExtendingEntity != &Entity; 7427 Diag(DiagLoc, shouldLifetimeExtendThroughPath(Path) 7428 ? diag::err_dangling_member 7429 : diag::warn_dangling_member) 7430 << ExtendingDecl << IsSubobjectMember << RK << DiagRange; 7431 // Don't bother adding a note pointing to the field if we're inside 7432 // its default member initializer; our primary diagnostic points to 7433 // the same place in that case. 7434 if (Path.empty() || 7435 Path.back().Kind != IndirectLocalPathEntry::DefaultInit) { 7436 Diag(ExtendingDecl->getLocation(), 7437 diag::note_lifetime_extending_member_declared_here) 7438 << RK << IsSubobjectMember; 7439 } 7440 } else { 7441 // We have a mem-initializer but no particular field within it; this 7442 // is either a base class or a delegating initializer directly 7443 // initializing the base-class from something that doesn't live long 7444 // enough. 7445 // 7446 // FIXME: Warn on this. 7447 return false; 7448 } 7449 } else { 7450 // Paths via a default initializer can only occur during error recovery 7451 // (there's no other way that a default initializer can refer to a 7452 // local). Don't produce a bogus warning on those cases. 7453 if (pathContainsInit(Path)) 7454 return false; 7455 7456 // Suppress false positives for code like the one below: 7457 // Ctor(unique_ptr<T> up) : member(*up), member2(move(up)) {} 7458 if (IsLocalGslOwner && pathOnlyInitializesGslPointer(Path)) 7459 return false; 7460 7461 auto *DRE = dyn_cast<DeclRefExpr>(L); 7462 auto *VD = DRE ? dyn_cast<VarDecl>(DRE->getDecl()) : nullptr; 7463 if (!VD) { 7464 // A member was initialized to a local block. 7465 // FIXME: Warn on this. 7466 return false; 7467 } 7468 7469 if (auto *Member = 7470 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) { 7471 bool IsPointer = !Member->getType()->isReferenceType(); 7472 Diag(DiagLoc, IsPointer ? diag::warn_init_ptr_member_to_parameter_addr 7473 : diag::warn_bind_ref_member_to_parameter) 7474 << Member << VD << isa<ParmVarDecl>(VD) << DiagRange; 7475 Diag(Member->getLocation(), 7476 diag::note_ref_or_ptr_member_declared_here) 7477 << (unsigned)IsPointer; 7478 } 7479 } 7480 break; 7481 } 7482 7483 case LK_New: 7484 if (isa<MaterializeTemporaryExpr>(L)) { 7485 if (IsGslPtrInitWithGslTempOwner) 7486 Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange; 7487 else 7488 Diag(DiagLoc, RK == RK_ReferenceBinding 7489 ? diag::warn_new_dangling_reference 7490 : diag::warn_new_dangling_initializer_list) 7491 << !Entity.getParent() << DiagRange; 7492 } else { 7493 // We can't determine if the allocation outlives the local declaration. 7494 return false; 7495 } 7496 break; 7497 7498 case LK_Return: 7499 case LK_StmtExprResult: 7500 if (auto *DRE = dyn_cast<DeclRefExpr>(L)) { 7501 // We can't determine if the local variable outlives the statement 7502 // expression. 7503 if (LK == LK_StmtExprResult) 7504 return false; 7505 Diag(DiagLoc, diag::warn_ret_stack_addr_ref) 7506 << Entity.getType()->isReferenceType() << DRE->getDecl() 7507 << isa<ParmVarDecl>(DRE->getDecl()) << DiagRange; 7508 } else if (isa<BlockExpr>(L)) { 7509 Diag(DiagLoc, diag::err_ret_local_block) << DiagRange; 7510 } else if (isa<AddrLabelExpr>(L)) { 7511 // Don't warn when returning a label from a statement expression. 7512 // Leaving the scope doesn't end its lifetime. 7513 if (LK == LK_StmtExprResult) 7514 return false; 7515 Diag(DiagLoc, diag::warn_ret_addr_label) << DiagRange; 7516 } else { 7517 Diag(DiagLoc, diag::warn_ret_local_temp_addr_ref) 7518 << Entity.getType()->isReferenceType() << DiagRange; 7519 } 7520 break; 7521 } 7522 7523 for (unsigned I = 0; I != Path.size(); ++I) { 7524 auto Elem = Path[I]; 7525 7526 switch (Elem.Kind) { 7527 case IndirectLocalPathEntry::AddressOf: 7528 case IndirectLocalPathEntry::LValToRVal: 7529 // These exist primarily to mark the path as not permitting or 7530 // supporting lifetime extension. 7531 break; 7532 7533 case IndirectLocalPathEntry::LifetimeBoundCall: 7534 case IndirectLocalPathEntry::GslPointerInit: 7535 // FIXME: Consider adding a note for these. 7536 break; 7537 7538 case IndirectLocalPathEntry::DefaultInit: { 7539 auto *FD = cast<FieldDecl>(Elem.D); 7540 Diag(FD->getLocation(), diag::note_init_with_default_member_initalizer) 7541 << FD << nextPathEntryRange(Path, I + 1, L); 7542 break; 7543 } 7544 7545 case IndirectLocalPathEntry::VarInit: 7546 const VarDecl *VD = cast<VarDecl>(Elem.D); 7547 Diag(VD->getLocation(), diag::note_local_var_initializer) 7548 << VD->getType()->isReferenceType() 7549 << VD->isImplicit() << VD->getDeclName() 7550 << nextPathEntryRange(Path, I + 1, L); 7551 break; 7552 } 7553 } 7554 7555 // We didn't lifetime-extend, so don't go any further; we don't need more 7556 // warnings or errors on inner temporaries within this one's initializer. 7557 return false; 7558 }; 7559 7560 bool EnableLifetimeWarnings = !getDiagnostics().isIgnored( 7561 diag::warn_dangling_lifetime_pointer, SourceLocation()); 7562 llvm::SmallVector<IndirectLocalPathEntry, 8> Path; 7563 if (Init->isGLValue()) 7564 visitLocalsRetainedByReferenceBinding(Path, Init, RK_ReferenceBinding, 7565 TemporaryVisitor, 7566 EnableLifetimeWarnings); 7567 else 7568 visitLocalsRetainedByInitializer(Path, Init, TemporaryVisitor, false, 7569 EnableLifetimeWarnings); 7570 } 7571 7572 static void DiagnoseNarrowingInInitList(Sema &S, 7573 const ImplicitConversionSequence &ICS, 7574 QualType PreNarrowingType, 7575 QualType EntityType, 7576 const Expr *PostInit); 7577 7578 /// Provide warnings when std::move is used on construction. 7579 static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr, 7580 bool IsReturnStmt) { 7581 if (!InitExpr) 7582 return; 7583 7584 if (S.inTemplateInstantiation()) 7585 return; 7586 7587 QualType DestType = InitExpr->getType(); 7588 if (!DestType->isRecordType()) 7589 return; 7590 7591 unsigned DiagID = 0; 7592 if (IsReturnStmt) { 7593 const CXXConstructExpr *CCE = 7594 dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens()); 7595 if (!CCE || CCE->getNumArgs() != 1) 7596 return; 7597 7598 if (!CCE->getConstructor()->isCopyOrMoveConstructor()) 7599 return; 7600 7601 InitExpr = CCE->getArg(0)->IgnoreImpCasts(); 7602 } 7603 7604 // Find the std::move call and get the argument. 7605 const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens()); 7606 if (!CE || !CE->isCallToStdMove()) 7607 return; 7608 7609 const Expr *Arg = CE->getArg(0)->IgnoreImplicit(); 7610 7611 if (IsReturnStmt) { 7612 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts()); 7613 if (!DRE || DRE->refersToEnclosingVariableOrCapture()) 7614 return; 7615 7616 const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()); 7617 if (!VD || !VD->hasLocalStorage()) 7618 return; 7619 7620 // __block variables are not moved implicitly. 7621 if (VD->hasAttr<BlocksAttr>()) 7622 return; 7623 7624 QualType SourceType = VD->getType(); 7625 if (!SourceType->isRecordType()) 7626 return; 7627 7628 if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) { 7629 return; 7630 } 7631 7632 // If we're returning a function parameter, copy elision 7633 // is not possible. 7634 if (isa<ParmVarDecl>(VD)) 7635 DiagID = diag::warn_redundant_move_on_return; 7636 else 7637 DiagID = diag::warn_pessimizing_move_on_return; 7638 } else { 7639 DiagID = diag::warn_pessimizing_move_on_initialization; 7640 const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens(); 7641 if (!ArgStripped->isRValue() || !ArgStripped->getType()->isRecordType()) 7642 return; 7643 } 7644 7645 S.Diag(CE->getBeginLoc(), DiagID); 7646 7647 // Get all the locations for a fix-it. Don't emit the fix-it if any location 7648 // is within a macro. 7649 SourceLocation CallBegin = CE->getCallee()->getBeginLoc(); 7650 if (CallBegin.isMacroID()) 7651 return; 7652 SourceLocation RParen = CE->getRParenLoc(); 7653 if (RParen.isMacroID()) 7654 return; 7655 SourceLocation LParen; 7656 SourceLocation ArgLoc = Arg->getBeginLoc(); 7657 7658 // Special testing for the argument location. Since the fix-it needs the 7659 // location right before the argument, the argument location can be in a 7660 // macro only if it is at the beginning of the macro. 7661 while (ArgLoc.isMacroID() && 7662 S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) { 7663 ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).getBegin(); 7664 } 7665 7666 if (LParen.isMacroID()) 7667 return; 7668 7669 LParen = ArgLoc.getLocWithOffset(-1); 7670 7671 S.Diag(CE->getBeginLoc(), diag::note_remove_move) 7672 << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen)) 7673 << FixItHint::CreateRemoval(SourceRange(RParen, RParen)); 7674 } 7675 7676 static void CheckForNullPointerDereference(Sema &S, const Expr *E) { 7677 // Check to see if we are dereferencing a null pointer. If so, this is 7678 // undefined behavior, so warn about it. This only handles the pattern 7679 // "*null", which is a very syntactic check. 7680 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts())) 7681 if (UO->getOpcode() == UO_Deref && 7682 UO->getSubExpr()->IgnoreParenCasts()-> 7683 isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) { 7684 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO, 7685 S.PDiag(diag::warn_binding_null_to_reference) 7686 << UO->getSubExpr()->getSourceRange()); 7687 } 7688 } 7689 7690 MaterializeTemporaryExpr * 7691 Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary, 7692 bool BoundToLvalueReference) { 7693 auto MTE = new (Context) 7694 MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference); 7695 7696 // Order an ExprWithCleanups for lifetime marks. 7697 // 7698 // TODO: It'll be good to have a single place to check the access of the 7699 // destructor and generate ExprWithCleanups for various uses. Currently these 7700 // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary, 7701 // but there may be a chance to merge them. 7702 Cleanup.setExprNeedsCleanups(false); 7703 return MTE; 7704 } 7705 7706 ExprResult Sema::TemporaryMaterializationConversion(Expr *E) { 7707 // In C++98, we don't want to implicitly create an xvalue. 7708 // FIXME: This means that AST consumers need to deal with "prvalues" that 7709 // denote materialized temporaries. Maybe we should add another ValueKind 7710 // for "xvalue pretending to be a prvalue" for C++98 support. 7711 if (!E->isRValue() || !getLangOpts().CPlusPlus11) 7712 return E; 7713 7714 // C++1z [conv.rval]/1: T shall be a complete type. 7715 // FIXME: Does this ever matter (can we form a prvalue of incomplete type)? 7716 // If so, we should check for a non-abstract class type here too. 7717 QualType T = E->getType(); 7718 if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type)) 7719 return ExprError(); 7720 7721 return CreateMaterializeTemporaryExpr(E->getType(), E, false); 7722 } 7723 7724 ExprResult Sema::PerformQualificationConversion(Expr *E, QualType Ty, 7725 ExprValueKind VK, 7726 CheckedConversionKind CCK) { 7727 7728 CastKind CK = CK_NoOp; 7729 7730 if (VK == VK_RValue) { 7731 auto PointeeTy = Ty->getPointeeType(); 7732 auto ExprPointeeTy = E->getType()->getPointeeType(); 7733 if (!PointeeTy.isNull() && 7734 PointeeTy.getAddressSpace() != ExprPointeeTy.getAddressSpace()) 7735 CK = CK_AddressSpaceConversion; 7736 } else if (Ty.getAddressSpace() != E->getType().getAddressSpace()) { 7737 CK = CK_AddressSpaceConversion; 7738 } 7739 7740 return ImpCastExprToType(E, Ty, CK, VK, /*BasePath=*/nullptr, CCK); 7741 } 7742 7743 ExprResult InitializationSequence::Perform(Sema &S, 7744 const InitializedEntity &Entity, 7745 const InitializationKind &Kind, 7746 MultiExprArg Args, 7747 QualType *ResultType) { 7748 if (Failed()) { 7749 Diagnose(S, Entity, Kind, Args); 7750 return ExprError(); 7751 } 7752 if (!ZeroInitializationFixit.empty()) { 7753 unsigned DiagID = diag::err_default_init_const; 7754 if (Decl *D = Entity.getDecl()) 7755 if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>()) 7756 DiagID = diag::ext_default_init_const; 7757 7758 // The initialization would have succeeded with this fixit. Since the fixit 7759 // is on the error, we need to build a valid AST in this case, so this isn't 7760 // handled in the Failed() branch above. 7761 QualType DestType = Entity.getType(); 7762 S.Diag(Kind.getLocation(), DiagID) 7763 << DestType << (bool)DestType->getAs<RecordType>() 7764 << FixItHint::CreateInsertion(ZeroInitializationFixitLoc, 7765 ZeroInitializationFixit); 7766 } 7767 7768 if (getKind() == DependentSequence) { 7769 // If the declaration is a non-dependent, incomplete array type 7770 // that has an initializer, then its type will be completed once 7771 // the initializer is instantiated. 7772 if (ResultType && !Entity.getType()->isDependentType() && 7773 Args.size() == 1) { 7774 QualType DeclType = Entity.getType(); 7775 if (const IncompleteArrayType *ArrayT 7776 = S.Context.getAsIncompleteArrayType(DeclType)) { 7777 // FIXME: We don't currently have the ability to accurately 7778 // compute the length of an initializer list without 7779 // performing full type-checking of the initializer list 7780 // (since we have to determine where braces are implicitly 7781 // introduced and such). So, we fall back to making the array 7782 // type a dependently-sized array type with no specified 7783 // bound. 7784 if (isa<InitListExpr>((Expr *)Args[0])) { 7785 SourceRange Brackets; 7786 7787 // Scavange the location of the brackets from the entity, if we can. 7788 if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Entity.getDecl())) { 7789 if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) { 7790 TypeLoc TL = TInfo->getTypeLoc(); 7791 if (IncompleteArrayTypeLoc ArrayLoc = 7792 TL.getAs<IncompleteArrayTypeLoc>()) 7793 Brackets = ArrayLoc.getBracketsRange(); 7794 } 7795 } 7796 7797 *ResultType 7798 = S.Context.getDependentSizedArrayType(ArrayT->getElementType(), 7799 /*NumElts=*/nullptr, 7800 ArrayT->getSizeModifier(), 7801 ArrayT->getIndexTypeCVRQualifiers(), 7802 Brackets); 7803 } 7804 7805 } 7806 } 7807 if (Kind.getKind() == InitializationKind::IK_Direct && 7808 !Kind.isExplicitCast()) { 7809 // Rebuild the ParenListExpr. 7810 SourceRange ParenRange = Kind.getParenOrBraceRange(); 7811 return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(), 7812 Args); 7813 } 7814 assert(Kind.getKind() == InitializationKind::IK_Copy || 7815 Kind.isExplicitCast() || 7816 Kind.getKind() == InitializationKind::IK_DirectList); 7817 return ExprResult(Args[0]); 7818 } 7819 7820 // No steps means no initialization. 7821 if (Steps.empty()) 7822 return ExprResult((Expr *)nullptr); 7823 7824 if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() && 7825 Args.size() == 1 && isa<InitListExpr>(Args[0]) && 7826 !Entity.isParameterKind()) { 7827 // Produce a C++98 compatibility warning if we are initializing a reference 7828 // from an initializer list. For parameters, we produce a better warning 7829 // elsewhere. 7830 Expr *Init = Args[0]; 7831 S.Diag(Init->getBeginLoc(), diag::warn_cxx98_compat_reference_list_init) 7832 << Init->getSourceRange(); 7833 } 7834 7835 // OpenCL v2.0 s6.13.11.1. atomic variables can be initialized in global scope 7836 QualType ETy = Entity.getType(); 7837 Qualifiers TyQualifiers = ETy.getQualifiers(); 7838 bool HasGlobalAS = TyQualifiers.hasAddressSpace() && 7839 TyQualifiers.getAddressSpace() == LangAS::opencl_global; 7840 7841 if (S.getLangOpts().OpenCLVersion >= 200 && 7842 ETy->isAtomicType() && !HasGlobalAS && 7843 Entity.getKind() == InitializedEntity::EK_Variable && Args.size() > 0) { 7844 S.Diag(Args[0]->getBeginLoc(), diag::err_opencl_atomic_init) 7845 << 1 7846 << SourceRange(Entity.getDecl()->getBeginLoc(), Args[0]->getEndLoc()); 7847 return ExprError(); 7848 } 7849 7850 QualType DestType = Entity.getType().getNonReferenceType(); 7851 // FIXME: Ugly hack around the fact that Entity.getType() is not 7852 // the same as Entity.getDecl()->getType() in cases involving type merging, 7853 // and we want latter when it makes sense. 7854 if (ResultType) 7855 *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() : 7856 Entity.getType(); 7857 7858 ExprResult CurInit((Expr *)nullptr); 7859 SmallVector<Expr*, 4> ArrayLoopCommonExprs; 7860 7861 // For initialization steps that start with a single initializer, 7862 // grab the only argument out the Args and place it into the "current" 7863 // initializer. 7864 switch (Steps.front().Kind) { 7865 case SK_ResolveAddressOfOverloadedFunction: 7866 case SK_CastDerivedToBaseRValue: 7867 case SK_CastDerivedToBaseXValue: 7868 case SK_CastDerivedToBaseLValue: 7869 case SK_BindReference: 7870 case SK_BindReferenceToTemporary: 7871 case SK_FinalCopy: 7872 case SK_ExtraneousCopyToTemporary: 7873 case SK_UserConversion: 7874 case SK_QualificationConversionLValue: 7875 case SK_QualificationConversionXValue: 7876 case SK_QualificationConversionRValue: 7877 case SK_AtomicConversion: 7878 case SK_ConversionSequence: 7879 case SK_ConversionSequenceNoNarrowing: 7880 case SK_ListInitialization: 7881 case SK_UnwrapInitList: 7882 case SK_RewrapInitList: 7883 case SK_CAssignment: 7884 case SK_StringInit: 7885 case SK_ObjCObjectConversion: 7886 case SK_ArrayLoopIndex: 7887 case SK_ArrayLoopInit: 7888 case SK_ArrayInit: 7889 case SK_GNUArrayInit: 7890 case SK_ParenthesizedArrayInit: 7891 case SK_PassByIndirectCopyRestore: 7892 case SK_PassByIndirectRestore: 7893 case SK_ProduceObjCObject: 7894 case SK_StdInitializerList: 7895 case SK_OCLSamplerInit: 7896 case SK_OCLZeroOpaqueType: { 7897 assert(Args.size() == 1); 7898 CurInit = Args[0]; 7899 if (!CurInit.get()) return ExprError(); 7900 break; 7901 } 7902 7903 case SK_ConstructorInitialization: 7904 case SK_ConstructorInitializationFromList: 7905 case SK_StdInitializerListConstructorCall: 7906 case SK_ZeroInitialization: 7907 break; 7908 } 7909 7910 // Promote from an unevaluated context to an unevaluated list context in 7911 // C++11 list-initialization; we need to instantiate entities usable in 7912 // constant expressions here in order to perform narrowing checks =( 7913 EnterExpressionEvaluationContext Evaluated( 7914 S, EnterExpressionEvaluationContext::InitList, 7915 CurInit.get() && isa<InitListExpr>(CurInit.get())); 7916 7917 // C++ [class.abstract]p2: 7918 // no objects of an abstract class can be created except as subobjects 7919 // of a class derived from it 7920 auto checkAbstractType = [&](QualType T) -> bool { 7921 if (Entity.getKind() == InitializedEntity::EK_Base || 7922 Entity.getKind() == InitializedEntity::EK_Delegating) 7923 return false; 7924 return S.RequireNonAbstractType(Kind.getLocation(), T, 7925 diag::err_allocation_of_abstract_type); 7926 }; 7927 7928 // Walk through the computed steps for the initialization sequence, 7929 // performing the specified conversions along the way. 7930 bool ConstructorInitRequiresZeroInit = false; 7931 for (step_iterator Step = step_begin(), StepEnd = step_end(); 7932 Step != StepEnd; ++Step) { 7933 if (CurInit.isInvalid()) 7934 return ExprError(); 7935 7936 QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType(); 7937 7938 switch (Step->Kind) { 7939 case SK_ResolveAddressOfOverloadedFunction: 7940 // Overload resolution determined which function invoke; update the 7941 // initializer to reflect that choice. 7942 S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl); 7943 if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation())) 7944 return ExprError(); 7945 CurInit = S.FixOverloadedFunctionReference(CurInit, 7946 Step->Function.FoundDecl, 7947 Step->Function.Function); 7948 break; 7949 7950 case SK_CastDerivedToBaseRValue: 7951 case SK_CastDerivedToBaseXValue: 7952 case SK_CastDerivedToBaseLValue: { 7953 // We have a derived-to-base cast that produces either an rvalue or an 7954 // lvalue. Perform that cast. 7955 7956 CXXCastPath BasePath; 7957 7958 // Casts to inaccessible base classes are allowed with C-style casts. 7959 bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast(); 7960 if (S.CheckDerivedToBaseConversion( 7961 SourceType, Step->Type, CurInit.get()->getBeginLoc(), 7962 CurInit.get()->getSourceRange(), &BasePath, IgnoreBaseAccess)) 7963 return ExprError(); 7964 7965 ExprValueKind VK = 7966 Step->Kind == SK_CastDerivedToBaseLValue ? 7967 VK_LValue : 7968 (Step->Kind == SK_CastDerivedToBaseXValue ? 7969 VK_XValue : 7970 VK_RValue); 7971 CurInit = 7972 ImplicitCastExpr::Create(S.Context, Step->Type, CK_DerivedToBase, 7973 CurInit.get(), &BasePath, VK); 7974 break; 7975 } 7976 7977 case SK_BindReference: 7978 // Reference binding does not have any corresponding ASTs. 7979 7980 // Check exception specifications 7981 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType)) 7982 return ExprError(); 7983 7984 // We don't check for e.g. function pointers here, since address 7985 // availability checks should only occur when the function first decays 7986 // into a pointer or reference. 7987 if (CurInit.get()->getType()->isFunctionProtoType()) { 7988 if (auto *DRE = dyn_cast<DeclRefExpr>(CurInit.get()->IgnoreParens())) { 7989 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 7990 if (!S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, 7991 DRE->getBeginLoc())) 7992 return ExprError(); 7993 } 7994 } 7995 } 7996 7997 CheckForNullPointerDereference(S, CurInit.get()); 7998 break; 7999 8000 case SK_BindReferenceToTemporary: { 8001 // Make sure the "temporary" is actually an rvalue. 8002 assert(CurInit.get()->isRValue() && "not a temporary"); 8003 8004 // Check exception specifications 8005 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType)) 8006 return ExprError(); 8007 8008 // Materialize the temporary into memory. 8009 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr( 8010 Step->Type, CurInit.get(), Entity.getType()->isLValueReferenceType()); 8011 CurInit = MTE; 8012 8013 // If we're extending this temporary to automatic storage duration -- we 8014 // need to register its cleanup during the full-expression's cleanups. 8015 if (MTE->getStorageDuration() == SD_Automatic && 8016 MTE->getType().isDestructedType()) 8017 S.Cleanup.setExprNeedsCleanups(true); 8018 break; 8019 } 8020 8021 case SK_FinalCopy: 8022 if (checkAbstractType(Step->Type)) 8023 return ExprError(); 8024 8025 // If the overall initialization is initializing a temporary, we already 8026 // bound our argument if it was necessary to do so. If not (if we're 8027 // ultimately initializing a non-temporary), our argument needs to be 8028 // bound since it's initializing a function parameter. 8029 // FIXME: This is a mess. Rationalize temporary destruction. 8030 if (!shouldBindAsTemporary(Entity)) 8031 CurInit = S.MaybeBindToTemporary(CurInit.get()); 8032 CurInit = CopyObject(S, Step->Type, Entity, CurInit, 8033 /*IsExtraneousCopy=*/false); 8034 break; 8035 8036 case SK_ExtraneousCopyToTemporary: 8037 CurInit = CopyObject(S, Step->Type, Entity, CurInit, 8038 /*IsExtraneousCopy=*/true); 8039 break; 8040 8041 case SK_UserConversion: { 8042 // We have a user-defined conversion that invokes either a constructor 8043 // or a conversion function. 8044 CastKind CastKind; 8045 FunctionDecl *Fn = Step->Function.Function; 8046 DeclAccessPair FoundFn = Step->Function.FoundDecl; 8047 bool HadMultipleCandidates = Step->Function.HadMultipleCandidates; 8048 bool CreatedObject = false; 8049 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) { 8050 // Build a call to the selected constructor. 8051 SmallVector<Expr*, 8> ConstructorArgs; 8052 SourceLocation Loc = CurInit.get()->getBeginLoc(); 8053 8054 // Determine the arguments required to actually perform the constructor 8055 // call. 8056 Expr *Arg = CurInit.get(); 8057 if (S.CompleteConstructorCall(Constructor, 8058 MultiExprArg(&Arg, 1), 8059 Loc, ConstructorArgs)) 8060 return ExprError(); 8061 8062 // Build an expression that constructs a temporary. 8063 CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, 8064 FoundFn, Constructor, 8065 ConstructorArgs, 8066 HadMultipleCandidates, 8067 /*ListInit*/ false, 8068 /*StdInitListInit*/ false, 8069 /*ZeroInit*/ false, 8070 CXXConstructExpr::CK_Complete, 8071 SourceRange()); 8072 if (CurInit.isInvalid()) 8073 return ExprError(); 8074 8075 S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn, 8076 Entity); 8077 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation())) 8078 return ExprError(); 8079 8080 CastKind = CK_ConstructorConversion; 8081 CreatedObject = true; 8082 } else { 8083 // Build a call to the conversion function. 8084 CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn); 8085 S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr, 8086 FoundFn); 8087 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation())) 8088 return ExprError(); 8089 8090 CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion, 8091 HadMultipleCandidates); 8092 if (CurInit.isInvalid()) 8093 return ExprError(); 8094 8095 CastKind = CK_UserDefinedConversion; 8096 CreatedObject = Conversion->getReturnType()->isRecordType(); 8097 } 8098 8099 if (CreatedObject && checkAbstractType(CurInit.get()->getType())) 8100 return ExprError(); 8101 8102 CurInit = ImplicitCastExpr::Create(S.Context, CurInit.get()->getType(), 8103 CastKind, CurInit.get(), nullptr, 8104 CurInit.get()->getValueKind()); 8105 8106 if (shouldBindAsTemporary(Entity)) 8107 // The overall entity is temporary, so this expression should be 8108 // destroyed at the end of its full-expression. 8109 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>()); 8110 else if (CreatedObject && shouldDestroyEntity(Entity)) { 8111 // The object outlasts the full-expression, but we need to prepare for 8112 // a destructor being run on it. 8113 // FIXME: It makes no sense to do this here. This should happen 8114 // regardless of how we initialized the entity. 8115 QualType T = CurInit.get()->getType(); 8116 if (const RecordType *Record = T->getAs<RecordType>()) { 8117 CXXDestructorDecl *Destructor 8118 = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl())); 8119 S.CheckDestructorAccess(CurInit.get()->getBeginLoc(), Destructor, 8120 S.PDiag(diag::err_access_dtor_temp) << T); 8121 S.MarkFunctionReferenced(CurInit.get()->getBeginLoc(), Destructor); 8122 if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getBeginLoc())) 8123 return ExprError(); 8124 } 8125 } 8126 break; 8127 } 8128 8129 case SK_QualificationConversionLValue: 8130 case SK_QualificationConversionXValue: 8131 case SK_QualificationConversionRValue: { 8132 // Perform a qualification conversion; these can never go wrong. 8133 ExprValueKind VK = 8134 Step->Kind == SK_QualificationConversionLValue 8135 ? VK_LValue 8136 : (Step->Kind == SK_QualificationConversionXValue ? VK_XValue 8137 : VK_RValue); 8138 CurInit = S.PerformQualificationConversion(CurInit.get(), Step->Type, VK); 8139 break; 8140 } 8141 8142 case SK_AtomicConversion: { 8143 assert(CurInit.get()->isRValue() && "cannot convert glvalue to atomic"); 8144 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 8145 CK_NonAtomicToAtomic, VK_RValue); 8146 break; 8147 } 8148 8149 case SK_ConversionSequence: 8150 case SK_ConversionSequenceNoNarrowing: { 8151 if (const auto *FromPtrType = 8152 CurInit.get()->getType()->getAs<PointerType>()) { 8153 if (const auto *ToPtrType = Step->Type->getAs<PointerType>()) { 8154 if (FromPtrType->getPointeeType()->hasAttr(attr::NoDeref) && 8155 !ToPtrType->getPointeeType()->hasAttr(attr::NoDeref)) { 8156 S.Diag(CurInit.get()->getExprLoc(), 8157 diag::warn_noderef_to_dereferenceable_pointer) 8158 << CurInit.get()->getSourceRange(); 8159 } 8160 } 8161 } 8162 8163 Sema::CheckedConversionKind CCK 8164 = Kind.isCStyleCast()? Sema::CCK_CStyleCast 8165 : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast 8166 : Kind.isExplicitCast()? Sema::CCK_OtherCast 8167 : Sema::CCK_ImplicitConversion; 8168 ExprResult CurInitExprRes = 8169 S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS, 8170 getAssignmentAction(Entity), CCK); 8171 if (CurInitExprRes.isInvalid()) 8172 return ExprError(); 8173 8174 S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), CurInit.get()); 8175 8176 CurInit = CurInitExprRes; 8177 8178 if (Step->Kind == SK_ConversionSequenceNoNarrowing && 8179 S.getLangOpts().CPlusPlus) 8180 DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(), 8181 CurInit.get()); 8182 8183 break; 8184 } 8185 8186 case SK_ListInitialization: { 8187 if (checkAbstractType(Step->Type)) 8188 return ExprError(); 8189 8190 InitListExpr *InitList = cast<InitListExpr>(CurInit.get()); 8191 // If we're not initializing the top-level entity, we need to create an 8192 // InitializeTemporary entity for our target type. 8193 QualType Ty = Step->Type; 8194 bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty); 8195 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty); 8196 InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity; 8197 InitListChecker PerformInitList(S, InitEntity, 8198 InitList, Ty, /*VerifyOnly=*/false, 8199 /*TreatUnavailableAsInvalid=*/false); 8200 if (PerformInitList.HadError()) 8201 return ExprError(); 8202 8203 // Hack: We must update *ResultType if available in order to set the 8204 // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'. 8205 // Worst case: 'const int (&arref)[] = {1, 2, 3};'. 8206 if (ResultType && 8207 ResultType->getNonReferenceType()->isIncompleteArrayType()) { 8208 if ((*ResultType)->isRValueReferenceType()) 8209 Ty = S.Context.getRValueReferenceType(Ty); 8210 else if ((*ResultType)->isLValueReferenceType()) 8211 Ty = S.Context.getLValueReferenceType(Ty, 8212 (*ResultType)->castAs<LValueReferenceType>()->isSpelledAsLValue()); 8213 *ResultType = Ty; 8214 } 8215 8216 InitListExpr *StructuredInitList = 8217 PerformInitList.getFullyStructuredList(); 8218 CurInit.get(); 8219 CurInit = shouldBindAsTemporary(InitEntity) 8220 ? S.MaybeBindToTemporary(StructuredInitList) 8221 : StructuredInitList; 8222 break; 8223 } 8224 8225 case SK_ConstructorInitializationFromList: { 8226 if (checkAbstractType(Step->Type)) 8227 return ExprError(); 8228 8229 // When an initializer list is passed for a parameter of type "reference 8230 // to object", we don't get an EK_Temporary entity, but instead an 8231 // EK_Parameter entity with reference type. 8232 // FIXME: This is a hack. What we really should do is create a user 8233 // conversion step for this case, but this makes it considerably more 8234 // complicated. For now, this will do. 8235 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( 8236 Entity.getType().getNonReferenceType()); 8237 bool UseTemporary = Entity.getType()->isReferenceType(); 8238 assert(Args.size() == 1 && "expected a single argument for list init"); 8239 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 8240 S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init) 8241 << InitList->getSourceRange(); 8242 MultiExprArg Arg(InitList->getInits(), InitList->getNumInits()); 8243 CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity : 8244 Entity, 8245 Kind, Arg, *Step, 8246 ConstructorInitRequiresZeroInit, 8247 /*IsListInitialization*/true, 8248 /*IsStdInitListInit*/false, 8249 InitList->getLBraceLoc(), 8250 InitList->getRBraceLoc()); 8251 break; 8252 } 8253 8254 case SK_UnwrapInitList: 8255 CurInit = cast<InitListExpr>(CurInit.get())->getInit(0); 8256 break; 8257 8258 case SK_RewrapInitList: { 8259 Expr *E = CurInit.get(); 8260 InitListExpr *Syntactic = Step->WrappingSyntacticList; 8261 InitListExpr *ILE = new (S.Context) InitListExpr(S.Context, 8262 Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc()); 8263 ILE->setSyntacticForm(Syntactic); 8264 ILE->setType(E->getType()); 8265 ILE->setValueKind(E->getValueKind()); 8266 CurInit = ILE; 8267 break; 8268 } 8269 8270 case SK_ConstructorInitialization: 8271 case SK_StdInitializerListConstructorCall: { 8272 if (checkAbstractType(Step->Type)) 8273 return ExprError(); 8274 8275 // When an initializer list is passed for a parameter of type "reference 8276 // to object", we don't get an EK_Temporary entity, but instead an 8277 // EK_Parameter entity with reference type. 8278 // FIXME: This is a hack. What we really should do is create a user 8279 // conversion step for this case, but this makes it considerably more 8280 // complicated. For now, this will do. 8281 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( 8282 Entity.getType().getNonReferenceType()); 8283 bool UseTemporary = Entity.getType()->isReferenceType(); 8284 bool IsStdInitListInit = 8285 Step->Kind == SK_StdInitializerListConstructorCall; 8286 Expr *Source = CurInit.get(); 8287 SourceRange Range = Kind.hasParenOrBraceRange() 8288 ? Kind.getParenOrBraceRange() 8289 : SourceRange(); 8290 CurInit = PerformConstructorInitialization( 8291 S, UseTemporary ? TempEntity : Entity, Kind, 8292 Source ? MultiExprArg(Source) : Args, *Step, 8293 ConstructorInitRequiresZeroInit, 8294 /*IsListInitialization*/ IsStdInitListInit, 8295 /*IsStdInitListInitialization*/ IsStdInitListInit, 8296 /*LBraceLoc*/ Range.getBegin(), 8297 /*RBraceLoc*/ Range.getEnd()); 8298 break; 8299 } 8300 8301 case SK_ZeroInitialization: { 8302 step_iterator NextStep = Step; 8303 ++NextStep; 8304 if (NextStep != StepEnd && 8305 (NextStep->Kind == SK_ConstructorInitialization || 8306 NextStep->Kind == SK_ConstructorInitializationFromList)) { 8307 // The need for zero-initialization is recorded directly into 8308 // the call to the object's constructor within the next step. 8309 ConstructorInitRequiresZeroInit = true; 8310 } else if (Kind.getKind() == InitializationKind::IK_Value && 8311 S.getLangOpts().CPlusPlus && 8312 !Kind.isImplicitValueInit()) { 8313 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); 8314 if (!TSInfo) 8315 TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type, 8316 Kind.getRange().getBegin()); 8317 8318 CurInit = new (S.Context) CXXScalarValueInitExpr( 8319 Entity.getType().getNonLValueExprType(S.Context), TSInfo, 8320 Kind.getRange().getEnd()); 8321 } else { 8322 CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type); 8323 } 8324 break; 8325 } 8326 8327 case SK_CAssignment: { 8328 QualType SourceType = CurInit.get()->getType(); 8329 8330 // Save off the initial CurInit in case we need to emit a diagnostic 8331 ExprResult InitialCurInit = CurInit; 8332 ExprResult Result = CurInit; 8333 Sema::AssignConvertType ConvTy = 8334 S.CheckSingleAssignmentConstraints(Step->Type, Result, true, 8335 Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited); 8336 if (Result.isInvalid()) 8337 return ExprError(); 8338 CurInit = Result; 8339 8340 // If this is a call, allow conversion to a transparent union. 8341 ExprResult CurInitExprRes = CurInit; 8342 if (ConvTy != Sema::Compatible && 8343 Entity.isParameterKind() && 8344 S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes) 8345 == Sema::Compatible) 8346 ConvTy = Sema::Compatible; 8347 if (CurInitExprRes.isInvalid()) 8348 return ExprError(); 8349 CurInit = CurInitExprRes; 8350 8351 bool Complained; 8352 if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(), 8353 Step->Type, SourceType, 8354 InitialCurInit.get(), 8355 getAssignmentAction(Entity, true), 8356 &Complained)) { 8357 PrintInitLocationNote(S, Entity); 8358 return ExprError(); 8359 } else if (Complained) 8360 PrintInitLocationNote(S, Entity); 8361 break; 8362 } 8363 8364 case SK_StringInit: { 8365 QualType Ty = Step->Type; 8366 CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty, 8367 S.Context.getAsArrayType(Ty), S); 8368 break; 8369 } 8370 8371 case SK_ObjCObjectConversion: 8372 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 8373 CK_ObjCObjectLValueCast, 8374 CurInit.get()->getValueKind()); 8375 break; 8376 8377 case SK_ArrayLoopIndex: { 8378 Expr *Cur = CurInit.get(); 8379 Expr *BaseExpr = new (S.Context) 8380 OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(), 8381 Cur->getValueKind(), Cur->getObjectKind(), Cur); 8382 Expr *IndexExpr = 8383 new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType()); 8384 CurInit = S.CreateBuiltinArraySubscriptExpr( 8385 BaseExpr, Kind.getLocation(), IndexExpr, Kind.getLocation()); 8386 ArrayLoopCommonExprs.push_back(BaseExpr); 8387 break; 8388 } 8389 8390 case SK_ArrayLoopInit: { 8391 assert(!ArrayLoopCommonExprs.empty() && 8392 "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit"); 8393 Expr *Common = ArrayLoopCommonExprs.pop_back_val(); 8394 CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common, 8395 CurInit.get()); 8396 break; 8397 } 8398 8399 case SK_GNUArrayInit: 8400 // Okay: we checked everything before creating this step. Note that 8401 // this is a GNU extension. 8402 S.Diag(Kind.getLocation(), diag::ext_array_init_copy) 8403 << Step->Type << CurInit.get()->getType() 8404 << CurInit.get()->getSourceRange(); 8405 updateGNUCompoundLiteralRValue(CurInit.get()); 8406 LLVM_FALLTHROUGH; 8407 case SK_ArrayInit: 8408 // If the destination type is an incomplete array type, update the 8409 // type accordingly. 8410 if (ResultType) { 8411 if (const IncompleteArrayType *IncompleteDest 8412 = S.Context.getAsIncompleteArrayType(Step->Type)) { 8413 if (const ConstantArrayType *ConstantSource 8414 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) { 8415 *ResultType = S.Context.getConstantArrayType( 8416 IncompleteDest->getElementType(), 8417 ConstantSource->getSize(), 8418 ConstantSource->getSizeExpr(), 8419 ArrayType::Normal, 0); 8420 } 8421 } 8422 } 8423 break; 8424 8425 case SK_ParenthesizedArrayInit: 8426 // Okay: we checked everything before creating this step. Note that 8427 // this is a GNU extension. 8428 S.Diag(Kind.getLocation(), diag::ext_array_init_parens) 8429 << CurInit.get()->getSourceRange(); 8430 break; 8431 8432 case SK_PassByIndirectCopyRestore: 8433 case SK_PassByIndirectRestore: 8434 checkIndirectCopyRestoreSource(S, CurInit.get()); 8435 CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr( 8436 CurInit.get(), Step->Type, 8437 Step->Kind == SK_PassByIndirectCopyRestore); 8438 break; 8439 8440 case SK_ProduceObjCObject: 8441 CurInit = 8442 ImplicitCastExpr::Create(S.Context, Step->Type, CK_ARCProduceObject, 8443 CurInit.get(), nullptr, VK_RValue); 8444 break; 8445 8446 case SK_StdInitializerList: { 8447 S.Diag(CurInit.get()->getExprLoc(), 8448 diag::warn_cxx98_compat_initializer_list_init) 8449 << CurInit.get()->getSourceRange(); 8450 8451 // Materialize the temporary into memory. 8452 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr( 8453 CurInit.get()->getType(), CurInit.get(), 8454 /*BoundToLvalueReference=*/false); 8455 8456 // Wrap it in a construction of a std::initializer_list<T>. 8457 CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE); 8458 8459 // Bind the result, in case the library has given initializer_list a 8460 // non-trivial destructor. 8461 if (shouldBindAsTemporary(Entity)) 8462 CurInit = S.MaybeBindToTemporary(CurInit.get()); 8463 break; 8464 } 8465 8466 case SK_OCLSamplerInit: { 8467 // Sampler initialization have 5 cases: 8468 // 1. function argument passing 8469 // 1a. argument is a file-scope variable 8470 // 1b. argument is a function-scope variable 8471 // 1c. argument is one of caller function's parameters 8472 // 2. variable initialization 8473 // 2a. initializing a file-scope variable 8474 // 2b. initializing a function-scope variable 8475 // 8476 // For file-scope variables, since they cannot be initialized by function 8477 // call of __translate_sampler_initializer in LLVM IR, their references 8478 // need to be replaced by a cast from their literal initializers to 8479 // sampler type. Since sampler variables can only be used in function 8480 // calls as arguments, we only need to replace them when handling the 8481 // argument passing. 8482 assert(Step->Type->isSamplerT() && 8483 "Sampler initialization on non-sampler type."); 8484 Expr *Init = CurInit.get()->IgnoreParens(); 8485 QualType SourceType = Init->getType(); 8486 // Case 1 8487 if (Entity.isParameterKind()) { 8488 if (!SourceType->isSamplerT() && !SourceType->isIntegerType()) { 8489 S.Diag(Kind.getLocation(), diag::err_sampler_argument_required) 8490 << SourceType; 8491 break; 8492 } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init)) { 8493 auto Var = cast<VarDecl>(DRE->getDecl()); 8494 // Case 1b and 1c 8495 // No cast from integer to sampler is needed. 8496 if (!Var->hasGlobalStorage()) { 8497 CurInit = ImplicitCastExpr::Create(S.Context, Step->Type, 8498 CK_LValueToRValue, Init, 8499 /*BasePath=*/nullptr, VK_RValue); 8500 break; 8501 } 8502 // Case 1a 8503 // For function call with a file-scope sampler variable as argument, 8504 // get the integer literal. 8505 // Do not diagnose if the file-scope variable does not have initializer 8506 // since this has already been diagnosed when parsing the variable 8507 // declaration. 8508 if (!Var->getInit() || !isa<ImplicitCastExpr>(Var->getInit())) 8509 break; 8510 Init = cast<ImplicitCastExpr>(const_cast<Expr*>( 8511 Var->getInit()))->getSubExpr(); 8512 SourceType = Init->getType(); 8513 } 8514 } else { 8515 // Case 2 8516 // Check initializer is 32 bit integer constant. 8517 // If the initializer is taken from global variable, do not diagnose since 8518 // this has already been done when parsing the variable declaration. 8519 if (!Init->isConstantInitializer(S.Context, false)) 8520 break; 8521 8522 if (!SourceType->isIntegerType() || 8523 32 != S.Context.getIntWidth(SourceType)) { 8524 S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer) 8525 << SourceType; 8526 break; 8527 } 8528 8529 Expr::EvalResult EVResult; 8530 Init->EvaluateAsInt(EVResult, S.Context); 8531 llvm::APSInt Result = EVResult.Val.getInt(); 8532 const uint64_t SamplerValue = Result.getLimitedValue(); 8533 // 32-bit value of sampler's initializer is interpreted as 8534 // bit-field with the following structure: 8535 // |unspecified|Filter|Addressing Mode| Normalized Coords| 8536 // |31 6|5 4|3 1| 0| 8537 // This structure corresponds to enum values of sampler properties 8538 // defined in SPIR spec v1.2 and also opencl-c.h 8539 unsigned AddressingMode = (0x0E & SamplerValue) >> 1; 8540 unsigned FilterMode = (0x30 & SamplerValue) >> 4; 8541 if (FilterMode != 1 && FilterMode != 2 && 8542 !S.getOpenCLOptions().isEnabled( 8543 "cl_intel_device_side_avc_motion_estimation")) 8544 S.Diag(Kind.getLocation(), 8545 diag::warn_sampler_initializer_invalid_bits) 8546 << "Filter Mode"; 8547 if (AddressingMode > 4) 8548 S.Diag(Kind.getLocation(), 8549 diag::warn_sampler_initializer_invalid_bits) 8550 << "Addressing Mode"; 8551 } 8552 8553 // Cases 1a, 2a and 2b 8554 // Insert cast from integer to sampler. 8555 CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy, 8556 CK_IntToOCLSampler); 8557 break; 8558 } 8559 case SK_OCLZeroOpaqueType: { 8560 assert((Step->Type->isEventT() || Step->Type->isQueueT() || 8561 Step->Type->isOCLIntelSubgroupAVCType()) && 8562 "Wrong type for initialization of OpenCL opaque type."); 8563 8564 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 8565 CK_ZeroToOCLOpaqueType, 8566 CurInit.get()->getValueKind()); 8567 break; 8568 } 8569 } 8570 } 8571 8572 // Check whether the initializer has a shorter lifetime than the initialized 8573 // entity, and if not, either lifetime-extend or warn as appropriate. 8574 if (auto *Init = CurInit.get()) 8575 S.checkInitializerLifetime(Entity, Init); 8576 8577 // Diagnose non-fatal problems with the completed initialization. 8578 if (Entity.getKind() == InitializedEntity::EK_Member && 8579 cast<FieldDecl>(Entity.getDecl())->isBitField()) 8580 S.CheckBitFieldInitialization(Kind.getLocation(), 8581 cast<FieldDecl>(Entity.getDecl()), 8582 CurInit.get()); 8583 8584 // Check for std::move on construction. 8585 if (const Expr *E = CurInit.get()) { 8586 CheckMoveOnConstruction(S, E, 8587 Entity.getKind() == InitializedEntity::EK_Result); 8588 } 8589 8590 return CurInit; 8591 } 8592 8593 /// Somewhere within T there is an uninitialized reference subobject. 8594 /// Dig it out and diagnose it. 8595 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc, 8596 QualType T) { 8597 if (T->isReferenceType()) { 8598 S.Diag(Loc, diag::err_reference_without_init) 8599 << T.getNonReferenceType(); 8600 return true; 8601 } 8602 8603 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 8604 if (!RD || !RD->hasUninitializedReferenceMember()) 8605 return false; 8606 8607 for (const auto *FI : RD->fields()) { 8608 if (FI->isUnnamedBitfield()) 8609 continue; 8610 8611 if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) { 8612 S.Diag(Loc, diag::note_value_initialization_here) << RD; 8613 return true; 8614 } 8615 } 8616 8617 for (const auto &BI : RD->bases()) { 8618 if (DiagnoseUninitializedReference(S, BI.getBeginLoc(), BI.getType())) { 8619 S.Diag(Loc, diag::note_value_initialization_here) << RD; 8620 return true; 8621 } 8622 } 8623 8624 return false; 8625 } 8626 8627 8628 //===----------------------------------------------------------------------===// 8629 // Diagnose initialization failures 8630 //===----------------------------------------------------------------------===// 8631 8632 /// Emit notes associated with an initialization that failed due to a 8633 /// "simple" conversion failure. 8634 static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity, 8635 Expr *op) { 8636 QualType destType = entity.getType(); 8637 if (destType.getNonReferenceType()->isObjCObjectPointerType() && 8638 op->getType()->isObjCObjectPointerType()) { 8639 8640 // Emit a possible note about the conversion failing because the 8641 // operand is a message send with a related result type. 8642 S.EmitRelatedResultTypeNote(op); 8643 8644 // Emit a possible note about a return failing because we're 8645 // expecting a related result type. 8646 if (entity.getKind() == InitializedEntity::EK_Result) 8647 S.EmitRelatedResultTypeNoteForReturn(destType); 8648 } 8649 } 8650 8651 static void diagnoseListInit(Sema &S, const InitializedEntity &Entity, 8652 InitListExpr *InitList) { 8653 QualType DestType = Entity.getType(); 8654 8655 QualType E; 8656 if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) { 8657 QualType ArrayType = S.Context.getConstantArrayType( 8658 E.withConst(), 8659 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()), 8660 InitList->getNumInits()), 8661 nullptr, clang::ArrayType::Normal, 0); 8662 InitializedEntity HiddenArray = 8663 InitializedEntity::InitializeTemporary(ArrayType); 8664 return diagnoseListInit(S, HiddenArray, InitList); 8665 } 8666 8667 if (DestType->isReferenceType()) { 8668 // A list-initialization failure for a reference means that we tried to 8669 // create a temporary of the inner type (per [dcl.init.list]p3.6) and the 8670 // inner initialization failed. 8671 QualType T = DestType->castAs<ReferenceType>()->getPointeeType(); 8672 diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList); 8673 SourceLocation Loc = InitList->getBeginLoc(); 8674 if (auto *D = Entity.getDecl()) 8675 Loc = D->getLocation(); 8676 S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T; 8677 return; 8678 } 8679 8680 InitListChecker DiagnoseInitList(S, Entity, InitList, DestType, 8681 /*VerifyOnly=*/false, 8682 /*TreatUnavailableAsInvalid=*/false); 8683 assert(DiagnoseInitList.HadError() && 8684 "Inconsistent init list check result."); 8685 } 8686 8687 bool InitializationSequence::Diagnose(Sema &S, 8688 const InitializedEntity &Entity, 8689 const InitializationKind &Kind, 8690 ArrayRef<Expr *> Args) { 8691 if (!Failed()) 8692 return false; 8693 8694 // When we want to diagnose only one element of a braced-init-list, 8695 // we need to factor it out. 8696 Expr *OnlyArg; 8697 if (Args.size() == 1) { 8698 auto *List = dyn_cast<InitListExpr>(Args[0]); 8699 if (List && List->getNumInits() == 1) 8700 OnlyArg = List->getInit(0); 8701 else 8702 OnlyArg = Args[0]; 8703 } 8704 else 8705 OnlyArg = nullptr; 8706 8707 QualType DestType = Entity.getType(); 8708 switch (Failure) { 8709 case FK_TooManyInitsForReference: 8710 // FIXME: Customize for the initialized entity? 8711 if (Args.empty()) { 8712 // Dig out the reference subobject which is uninitialized and diagnose it. 8713 // If this is value-initialization, this could be nested some way within 8714 // the target type. 8715 assert(Kind.getKind() == InitializationKind::IK_Value || 8716 DestType->isReferenceType()); 8717 bool Diagnosed = 8718 DiagnoseUninitializedReference(S, Kind.getLocation(), DestType); 8719 assert(Diagnosed && "couldn't find uninitialized reference to diagnose"); 8720 (void)Diagnosed; 8721 } else // FIXME: diagnostic below could be better! 8722 S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits) 8723 << SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc()); 8724 break; 8725 case FK_ParenthesizedListInitForReference: 8726 S.Diag(Kind.getLocation(), diag::err_list_init_in_parens) 8727 << 1 << Entity.getType() << Args[0]->getSourceRange(); 8728 break; 8729 8730 case FK_ArrayNeedsInitList: 8731 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0; 8732 break; 8733 case FK_ArrayNeedsInitListOrStringLiteral: 8734 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1; 8735 break; 8736 case FK_ArrayNeedsInitListOrWideStringLiteral: 8737 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2; 8738 break; 8739 case FK_NarrowStringIntoWideCharArray: 8740 S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar); 8741 break; 8742 case FK_WideStringIntoCharArray: 8743 S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char); 8744 break; 8745 case FK_IncompatWideStringIntoWideChar: 8746 S.Diag(Kind.getLocation(), 8747 diag::err_array_init_incompat_wide_string_into_wchar); 8748 break; 8749 case FK_PlainStringIntoUTF8Char: 8750 S.Diag(Kind.getLocation(), 8751 diag::err_array_init_plain_string_into_char8_t); 8752 S.Diag(Args.front()->getBeginLoc(), 8753 diag::note_array_init_plain_string_into_char8_t) 8754 << FixItHint::CreateInsertion(Args.front()->getBeginLoc(), "u8"); 8755 break; 8756 case FK_UTF8StringIntoPlainChar: 8757 S.Diag(Kind.getLocation(), 8758 diag::err_array_init_utf8_string_into_char) 8759 << S.getLangOpts().CPlusPlus2a; 8760 break; 8761 case FK_ArrayTypeMismatch: 8762 case FK_NonConstantArrayInit: 8763 S.Diag(Kind.getLocation(), 8764 (Failure == FK_ArrayTypeMismatch 8765 ? diag::err_array_init_different_type 8766 : diag::err_array_init_non_constant_array)) 8767 << DestType.getNonReferenceType() 8768 << OnlyArg->getType() 8769 << Args[0]->getSourceRange(); 8770 break; 8771 8772 case FK_VariableLengthArrayHasInitializer: 8773 S.Diag(Kind.getLocation(), diag::err_variable_object_no_init) 8774 << Args[0]->getSourceRange(); 8775 break; 8776 8777 case FK_AddressOfOverloadFailed: { 8778 DeclAccessPair Found; 8779 S.ResolveAddressOfOverloadedFunction(OnlyArg, 8780 DestType.getNonReferenceType(), 8781 true, 8782 Found); 8783 break; 8784 } 8785 8786 case FK_AddressOfUnaddressableFunction: { 8787 auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(OnlyArg)->getDecl()); 8788 S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, 8789 OnlyArg->getBeginLoc()); 8790 break; 8791 } 8792 8793 case FK_ReferenceInitOverloadFailed: 8794 case FK_UserConversionOverloadFailed: 8795 switch (FailedOverloadResult) { 8796 case OR_Ambiguous: 8797 8798 FailedCandidateSet.NoteCandidates( 8799 PartialDiagnosticAt( 8800 Kind.getLocation(), 8801 Failure == FK_UserConversionOverloadFailed 8802 ? (S.PDiag(diag::err_typecheck_ambiguous_condition) 8803 << OnlyArg->getType() << DestType 8804 << Args[0]->getSourceRange()) 8805 : (S.PDiag(diag::err_ref_init_ambiguous) 8806 << DestType << OnlyArg->getType() 8807 << Args[0]->getSourceRange())), 8808 S, OCD_AmbiguousCandidates, Args); 8809 break; 8810 8811 case OR_No_Viable_Function: { 8812 auto Cands = FailedCandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args); 8813 if (!S.RequireCompleteType(Kind.getLocation(), 8814 DestType.getNonReferenceType(), 8815 diag::err_typecheck_nonviable_condition_incomplete, 8816 OnlyArg->getType(), Args[0]->getSourceRange())) 8817 S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition) 8818 << (Entity.getKind() == InitializedEntity::EK_Result) 8819 << OnlyArg->getType() << Args[0]->getSourceRange() 8820 << DestType.getNonReferenceType(); 8821 8822 FailedCandidateSet.NoteCandidates(S, Args, Cands); 8823 break; 8824 } 8825 case OR_Deleted: { 8826 S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function) 8827 << OnlyArg->getType() << DestType.getNonReferenceType() 8828 << Args[0]->getSourceRange(); 8829 OverloadCandidateSet::iterator Best; 8830 OverloadingResult Ovl 8831 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 8832 if (Ovl == OR_Deleted) { 8833 S.NoteDeletedFunction(Best->Function); 8834 } else { 8835 llvm_unreachable("Inconsistent overload resolution?"); 8836 } 8837 break; 8838 } 8839 8840 case OR_Success: 8841 llvm_unreachable("Conversion did not fail!"); 8842 } 8843 break; 8844 8845 case FK_NonConstLValueReferenceBindingToTemporary: 8846 if (isa<InitListExpr>(Args[0])) { 8847 S.Diag(Kind.getLocation(), 8848 diag::err_lvalue_reference_bind_to_initlist) 8849 << DestType.getNonReferenceType().isVolatileQualified() 8850 << DestType.getNonReferenceType() 8851 << Args[0]->getSourceRange(); 8852 break; 8853 } 8854 LLVM_FALLTHROUGH; 8855 8856 case FK_NonConstLValueReferenceBindingToUnrelated: 8857 S.Diag(Kind.getLocation(), 8858 Failure == FK_NonConstLValueReferenceBindingToTemporary 8859 ? diag::err_lvalue_reference_bind_to_temporary 8860 : diag::err_lvalue_reference_bind_to_unrelated) 8861 << DestType.getNonReferenceType().isVolatileQualified() 8862 << DestType.getNonReferenceType() 8863 << OnlyArg->getType() 8864 << Args[0]->getSourceRange(); 8865 break; 8866 8867 case FK_NonConstLValueReferenceBindingToBitfield: { 8868 // We don't necessarily have an unambiguous source bit-field. 8869 FieldDecl *BitField = Args[0]->getSourceBitField(); 8870 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield) 8871 << DestType.isVolatileQualified() 8872 << (BitField ? BitField->getDeclName() : DeclarationName()) 8873 << (BitField != nullptr) 8874 << Args[0]->getSourceRange(); 8875 if (BitField) 8876 S.Diag(BitField->getLocation(), diag::note_bitfield_decl); 8877 break; 8878 } 8879 8880 case FK_NonConstLValueReferenceBindingToVectorElement: 8881 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element) 8882 << DestType.isVolatileQualified() 8883 << Args[0]->getSourceRange(); 8884 break; 8885 8886 case FK_RValueReferenceBindingToLValue: 8887 S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref) 8888 << DestType.getNonReferenceType() << OnlyArg->getType() 8889 << Args[0]->getSourceRange(); 8890 break; 8891 8892 case FK_ReferenceAddrspaceMismatchTemporary: 8893 S.Diag(Kind.getLocation(), diag::err_reference_bind_temporary_addrspace) 8894 << DestType << Args[0]->getSourceRange(); 8895 break; 8896 8897 case FK_ReferenceInitDropsQualifiers: { 8898 QualType SourceType = OnlyArg->getType(); 8899 QualType NonRefType = DestType.getNonReferenceType(); 8900 Qualifiers DroppedQualifiers = 8901 SourceType.getQualifiers() - NonRefType.getQualifiers(); 8902 8903 if (!NonRefType.getQualifiers().isAddressSpaceSupersetOf( 8904 SourceType.getQualifiers())) 8905 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) 8906 << NonRefType << SourceType << 1 /*addr space*/ 8907 << Args[0]->getSourceRange(); 8908 else 8909 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) 8910 << NonRefType << SourceType << 0 /*cv quals*/ 8911 << Qualifiers::fromCVRMask(DroppedQualifiers.getCVRQualifiers()) 8912 << DroppedQualifiers.getCVRQualifiers() << Args[0]->getSourceRange(); 8913 break; 8914 } 8915 8916 case FK_ReferenceInitFailed: 8917 S.Diag(Kind.getLocation(), diag::err_reference_bind_failed) 8918 << DestType.getNonReferenceType() 8919 << DestType.getNonReferenceType()->isIncompleteType() 8920 << OnlyArg->isLValue() 8921 << OnlyArg->getType() 8922 << Args[0]->getSourceRange(); 8923 emitBadConversionNotes(S, Entity, Args[0]); 8924 break; 8925 8926 case FK_ConversionFailed: { 8927 QualType FromType = OnlyArg->getType(); 8928 PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed) 8929 << (int)Entity.getKind() 8930 << DestType 8931 << OnlyArg->isLValue() 8932 << FromType 8933 << Args[0]->getSourceRange(); 8934 S.HandleFunctionTypeMismatch(PDiag, FromType, DestType); 8935 S.Diag(Kind.getLocation(), PDiag); 8936 emitBadConversionNotes(S, Entity, Args[0]); 8937 break; 8938 } 8939 8940 case FK_ConversionFromPropertyFailed: 8941 // No-op. This error has already been reported. 8942 break; 8943 8944 case FK_TooManyInitsForScalar: { 8945 SourceRange R; 8946 8947 auto *InitList = dyn_cast<InitListExpr>(Args[0]); 8948 if (InitList && InitList->getNumInits() >= 1) { 8949 R = SourceRange(InitList->getInit(0)->getEndLoc(), InitList->getEndLoc()); 8950 } else { 8951 assert(Args.size() > 1 && "Expected multiple initializers!"); 8952 R = SourceRange(Args.front()->getEndLoc(), Args.back()->getEndLoc()); 8953 } 8954 8955 R.setBegin(S.getLocForEndOfToken(R.getBegin())); 8956 if (Kind.isCStyleOrFunctionalCast()) 8957 S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg) 8958 << R; 8959 else 8960 S.Diag(Kind.getLocation(), diag::err_excess_initializers) 8961 << /*scalar=*/2 << R; 8962 break; 8963 } 8964 8965 case FK_ParenthesizedListInitForScalar: 8966 S.Diag(Kind.getLocation(), diag::err_list_init_in_parens) 8967 << 0 << Entity.getType() << Args[0]->getSourceRange(); 8968 break; 8969 8970 case FK_ReferenceBindingToInitList: 8971 S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list) 8972 << DestType.getNonReferenceType() << Args[0]->getSourceRange(); 8973 break; 8974 8975 case FK_InitListBadDestinationType: 8976 S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type) 8977 << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange(); 8978 break; 8979 8980 case FK_ListConstructorOverloadFailed: 8981 case FK_ConstructorOverloadFailed: { 8982 SourceRange ArgsRange; 8983 if (Args.size()) 8984 ArgsRange = 8985 SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc()); 8986 8987 if (Failure == FK_ListConstructorOverloadFailed) { 8988 assert(Args.size() == 1 && 8989 "List construction from other than 1 argument."); 8990 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 8991 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits()); 8992 } 8993 8994 // FIXME: Using "DestType" for the entity we're printing is probably 8995 // bad. 8996 switch (FailedOverloadResult) { 8997 case OR_Ambiguous: 8998 FailedCandidateSet.NoteCandidates( 8999 PartialDiagnosticAt(Kind.getLocation(), 9000 S.PDiag(diag::err_ovl_ambiguous_init) 9001 << DestType << ArgsRange), 9002 S, OCD_AmbiguousCandidates, Args); 9003 break; 9004 9005 case OR_No_Viable_Function: 9006 if (Kind.getKind() == InitializationKind::IK_Default && 9007 (Entity.getKind() == InitializedEntity::EK_Base || 9008 Entity.getKind() == InitializedEntity::EK_Member) && 9009 isa<CXXConstructorDecl>(S.CurContext)) { 9010 // This is implicit default initialization of a member or 9011 // base within a constructor. If no viable function was 9012 // found, notify the user that they need to explicitly 9013 // initialize this base/member. 9014 CXXConstructorDecl *Constructor 9015 = cast<CXXConstructorDecl>(S.CurContext); 9016 const CXXRecordDecl *InheritedFrom = nullptr; 9017 if (auto Inherited = Constructor->getInheritedConstructor()) 9018 InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass(); 9019 if (Entity.getKind() == InitializedEntity::EK_Base) { 9020 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) 9021 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0) 9022 << S.Context.getTypeDeclType(Constructor->getParent()) 9023 << /*base=*/0 9024 << Entity.getType() 9025 << InheritedFrom; 9026 9027 RecordDecl *BaseDecl 9028 = Entity.getBaseSpecifier()->getType()->castAs<RecordType>() 9029 ->getDecl(); 9030 S.Diag(BaseDecl->getLocation(), diag::note_previous_decl) 9031 << S.Context.getTagDeclType(BaseDecl); 9032 } else { 9033 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) 9034 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0) 9035 << S.Context.getTypeDeclType(Constructor->getParent()) 9036 << /*member=*/1 9037 << Entity.getName() 9038 << InheritedFrom; 9039 S.Diag(Entity.getDecl()->getLocation(), 9040 diag::note_member_declared_at); 9041 9042 if (const RecordType *Record 9043 = Entity.getType()->getAs<RecordType>()) 9044 S.Diag(Record->getDecl()->getLocation(), 9045 diag::note_previous_decl) 9046 << S.Context.getTagDeclType(Record->getDecl()); 9047 } 9048 break; 9049 } 9050 9051 FailedCandidateSet.NoteCandidates( 9052 PartialDiagnosticAt( 9053 Kind.getLocation(), 9054 S.PDiag(diag::err_ovl_no_viable_function_in_init) 9055 << DestType << ArgsRange), 9056 S, OCD_AllCandidates, Args); 9057 break; 9058 9059 case OR_Deleted: { 9060 OverloadCandidateSet::iterator Best; 9061 OverloadingResult Ovl 9062 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 9063 if (Ovl != OR_Deleted) { 9064 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) 9065 << DestType << ArgsRange; 9066 llvm_unreachable("Inconsistent overload resolution?"); 9067 break; 9068 } 9069 9070 // If this is a defaulted or implicitly-declared function, then 9071 // it was implicitly deleted. Make it clear that the deletion was 9072 // implicit. 9073 if (S.isImplicitlyDeleted(Best->Function)) 9074 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init) 9075 << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function)) 9076 << DestType << ArgsRange; 9077 else 9078 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) 9079 << DestType << ArgsRange; 9080 9081 S.NoteDeletedFunction(Best->Function); 9082 break; 9083 } 9084 9085 case OR_Success: 9086 llvm_unreachable("Conversion did not fail!"); 9087 } 9088 } 9089 break; 9090 9091 case FK_DefaultInitOfConst: 9092 if (Entity.getKind() == InitializedEntity::EK_Member && 9093 isa<CXXConstructorDecl>(S.CurContext)) { 9094 // This is implicit default-initialization of a const member in 9095 // a constructor. Complain that it needs to be explicitly 9096 // initialized. 9097 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext); 9098 S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor) 9099 << (Constructor->getInheritedConstructor() ? 2 : 9100 Constructor->isImplicit() ? 1 : 0) 9101 << S.Context.getTypeDeclType(Constructor->getParent()) 9102 << /*const=*/1 9103 << Entity.getName(); 9104 S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl) 9105 << Entity.getName(); 9106 } else { 9107 S.Diag(Kind.getLocation(), diag::err_default_init_const) 9108 << DestType << (bool)DestType->getAs<RecordType>(); 9109 } 9110 break; 9111 9112 case FK_Incomplete: 9113 S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType, 9114 diag::err_init_incomplete_type); 9115 break; 9116 9117 case FK_ListInitializationFailed: { 9118 // Run the init list checker again to emit diagnostics. 9119 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 9120 diagnoseListInit(S, Entity, InitList); 9121 break; 9122 } 9123 9124 case FK_PlaceholderType: { 9125 // FIXME: Already diagnosed! 9126 break; 9127 } 9128 9129 case FK_ExplicitConstructor: { 9130 S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor) 9131 << Args[0]->getSourceRange(); 9132 OverloadCandidateSet::iterator Best; 9133 OverloadingResult Ovl 9134 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 9135 (void)Ovl; 9136 assert(Ovl == OR_Success && "Inconsistent overload resolution"); 9137 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 9138 S.Diag(CtorDecl->getLocation(), 9139 diag::note_explicit_ctor_deduction_guide_here) << false; 9140 break; 9141 } 9142 } 9143 9144 PrintInitLocationNote(S, Entity); 9145 return true; 9146 } 9147 9148 void InitializationSequence::dump(raw_ostream &OS) const { 9149 switch (SequenceKind) { 9150 case FailedSequence: { 9151 OS << "Failed sequence: "; 9152 switch (Failure) { 9153 case FK_TooManyInitsForReference: 9154 OS << "too many initializers for reference"; 9155 break; 9156 9157 case FK_ParenthesizedListInitForReference: 9158 OS << "parenthesized list init for reference"; 9159 break; 9160 9161 case FK_ArrayNeedsInitList: 9162 OS << "array requires initializer list"; 9163 break; 9164 9165 case FK_AddressOfUnaddressableFunction: 9166 OS << "address of unaddressable function was taken"; 9167 break; 9168 9169 case FK_ArrayNeedsInitListOrStringLiteral: 9170 OS << "array requires initializer list or string literal"; 9171 break; 9172 9173 case FK_ArrayNeedsInitListOrWideStringLiteral: 9174 OS << "array requires initializer list or wide string literal"; 9175 break; 9176 9177 case FK_NarrowStringIntoWideCharArray: 9178 OS << "narrow string into wide char array"; 9179 break; 9180 9181 case FK_WideStringIntoCharArray: 9182 OS << "wide string into char array"; 9183 break; 9184 9185 case FK_IncompatWideStringIntoWideChar: 9186 OS << "incompatible wide string into wide char array"; 9187 break; 9188 9189 case FK_PlainStringIntoUTF8Char: 9190 OS << "plain string literal into char8_t array"; 9191 break; 9192 9193 case FK_UTF8StringIntoPlainChar: 9194 OS << "u8 string literal into char array"; 9195 break; 9196 9197 case FK_ArrayTypeMismatch: 9198 OS << "array type mismatch"; 9199 break; 9200 9201 case FK_NonConstantArrayInit: 9202 OS << "non-constant array initializer"; 9203 break; 9204 9205 case FK_AddressOfOverloadFailed: 9206 OS << "address of overloaded function failed"; 9207 break; 9208 9209 case FK_ReferenceInitOverloadFailed: 9210 OS << "overload resolution for reference initialization failed"; 9211 break; 9212 9213 case FK_NonConstLValueReferenceBindingToTemporary: 9214 OS << "non-const lvalue reference bound to temporary"; 9215 break; 9216 9217 case FK_NonConstLValueReferenceBindingToBitfield: 9218 OS << "non-const lvalue reference bound to bit-field"; 9219 break; 9220 9221 case FK_NonConstLValueReferenceBindingToVectorElement: 9222 OS << "non-const lvalue reference bound to vector element"; 9223 break; 9224 9225 case FK_NonConstLValueReferenceBindingToUnrelated: 9226 OS << "non-const lvalue reference bound to unrelated type"; 9227 break; 9228 9229 case FK_RValueReferenceBindingToLValue: 9230 OS << "rvalue reference bound to an lvalue"; 9231 break; 9232 9233 case FK_ReferenceInitDropsQualifiers: 9234 OS << "reference initialization drops qualifiers"; 9235 break; 9236 9237 case FK_ReferenceAddrspaceMismatchTemporary: 9238 OS << "reference with mismatching address space bound to temporary"; 9239 break; 9240 9241 case FK_ReferenceInitFailed: 9242 OS << "reference initialization failed"; 9243 break; 9244 9245 case FK_ConversionFailed: 9246 OS << "conversion failed"; 9247 break; 9248 9249 case FK_ConversionFromPropertyFailed: 9250 OS << "conversion from property failed"; 9251 break; 9252 9253 case FK_TooManyInitsForScalar: 9254 OS << "too many initializers for scalar"; 9255 break; 9256 9257 case FK_ParenthesizedListInitForScalar: 9258 OS << "parenthesized list init for reference"; 9259 break; 9260 9261 case FK_ReferenceBindingToInitList: 9262 OS << "referencing binding to initializer list"; 9263 break; 9264 9265 case FK_InitListBadDestinationType: 9266 OS << "initializer list for non-aggregate, non-scalar type"; 9267 break; 9268 9269 case FK_UserConversionOverloadFailed: 9270 OS << "overloading failed for user-defined conversion"; 9271 break; 9272 9273 case FK_ConstructorOverloadFailed: 9274 OS << "constructor overloading failed"; 9275 break; 9276 9277 case FK_DefaultInitOfConst: 9278 OS << "default initialization of a const variable"; 9279 break; 9280 9281 case FK_Incomplete: 9282 OS << "initialization of incomplete type"; 9283 break; 9284 9285 case FK_ListInitializationFailed: 9286 OS << "list initialization checker failure"; 9287 break; 9288 9289 case FK_VariableLengthArrayHasInitializer: 9290 OS << "variable length array has an initializer"; 9291 break; 9292 9293 case FK_PlaceholderType: 9294 OS << "initializer expression isn't contextually valid"; 9295 break; 9296 9297 case FK_ListConstructorOverloadFailed: 9298 OS << "list constructor overloading failed"; 9299 break; 9300 9301 case FK_ExplicitConstructor: 9302 OS << "list copy initialization chose explicit constructor"; 9303 break; 9304 } 9305 OS << '\n'; 9306 return; 9307 } 9308 9309 case DependentSequence: 9310 OS << "Dependent sequence\n"; 9311 return; 9312 9313 case NormalSequence: 9314 OS << "Normal sequence: "; 9315 break; 9316 } 9317 9318 for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) { 9319 if (S != step_begin()) { 9320 OS << " -> "; 9321 } 9322 9323 switch (S->Kind) { 9324 case SK_ResolveAddressOfOverloadedFunction: 9325 OS << "resolve address of overloaded function"; 9326 break; 9327 9328 case SK_CastDerivedToBaseRValue: 9329 OS << "derived-to-base (rvalue)"; 9330 break; 9331 9332 case SK_CastDerivedToBaseXValue: 9333 OS << "derived-to-base (xvalue)"; 9334 break; 9335 9336 case SK_CastDerivedToBaseLValue: 9337 OS << "derived-to-base (lvalue)"; 9338 break; 9339 9340 case SK_BindReference: 9341 OS << "bind reference to lvalue"; 9342 break; 9343 9344 case SK_BindReferenceToTemporary: 9345 OS << "bind reference to a temporary"; 9346 break; 9347 9348 case SK_FinalCopy: 9349 OS << "final copy in class direct-initialization"; 9350 break; 9351 9352 case SK_ExtraneousCopyToTemporary: 9353 OS << "extraneous C++03 copy to temporary"; 9354 break; 9355 9356 case SK_UserConversion: 9357 OS << "user-defined conversion via " << *S->Function.Function; 9358 break; 9359 9360 case SK_QualificationConversionRValue: 9361 OS << "qualification conversion (rvalue)"; 9362 break; 9363 9364 case SK_QualificationConversionXValue: 9365 OS << "qualification conversion (xvalue)"; 9366 break; 9367 9368 case SK_QualificationConversionLValue: 9369 OS << "qualification conversion (lvalue)"; 9370 break; 9371 9372 case SK_AtomicConversion: 9373 OS << "non-atomic-to-atomic conversion"; 9374 break; 9375 9376 case SK_ConversionSequence: 9377 OS << "implicit conversion sequence ("; 9378 S->ICS->dump(); // FIXME: use OS 9379 OS << ")"; 9380 break; 9381 9382 case SK_ConversionSequenceNoNarrowing: 9383 OS << "implicit conversion sequence with narrowing prohibited ("; 9384 S->ICS->dump(); // FIXME: use OS 9385 OS << ")"; 9386 break; 9387 9388 case SK_ListInitialization: 9389 OS << "list aggregate initialization"; 9390 break; 9391 9392 case SK_UnwrapInitList: 9393 OS << "unwrap reference initializer list"; 9394 break; 9395 9396 case SK_RewrapInitList: 9397 OS << "rewrap reference initializer list"; 9398 break; 9399 9400 case SK_ConstructorInitialization: 9401 OS << "constructor initialization"; 9402 break; 9403 9404 case SK_ConstructorInitializationFromList: 9405 OS << "list initialization via constructor"; 9406 break; 9407 9408 case SK_ZeroInitialization: 9409 OS << "zero initialization"; 9410 break; 9411 9412 case SK_CAssignment: 9413 OS << "C assignment"; 9414 break; 9415 9416 case SK_StringInit: 9417 OS << "string initialization"; 9418 break; 9419 9420 case SK_ObjCObjectConversion: 9421 OS << "Objective-C object conversion"; 9422 break; 9423 9424 case SK_ArrayLoopIndex: 9425 OS << "indexing for array initialization loop"; 9426 break; 9427 9428 case SK_ArrayLoopInit: 9429 OS << "array initialization loop"; 9430 break; 9431 9432 case SK_ArrayInit: 9433 OS << "array initialization"; 9434 break; 9435 9436 case SK_GNUArrayInit: 9437 OS << "array initialization (GNU extension)"; 9438 break; 9439 9440 case SK_ParenthesizedArrayInit: 9441 OS << "parenthesized array initialization"; 9442 break; 9443 9444 case SK_PassByIndirectCopyRestore: 9445 OS << "pass by indirect copy and restore"; 9446 break; 9447 9448 case SK_PassByIndirectRestore: 9449 OS << "pass by indirect restore"; 9450 break; 9451 9452 case SK_ProduceObjCObject: 9453 OS << "Objective-C object retension"; 9454 break; 9455 9456 case SK_StdInitializerList: 9457 OS << "std::initializer_list from initializer list"; 9458 break; 9459 9460 case SK_StdInitializerListConstructorCall: 9461 OS << "list initialization from std::initializer_list"; 9462 break; 9463 9464 case SK_OCLSamplerInit: 9465 OS << "OpenCL sampler_t from integer constant"; 9466 break; 9467 9468 case SK_OCLZeroOpaqueType: 9469 OS << "OpenCL opaque type from zero"; 9470 break; 9471 } 9472 9473 OS << " [" << S->Type.getAsString() << ']'; 9474 } 9475 9476 OS << '\n'; 9477 } 9478 9479 void InitializationSequence::dump() const { 9480 dump(llvm::errs()); 9481 } 9482 9483 static bool NarrowingErrs(const LangOptions &L) { 9484 return L.CPlusPlus11 && 9485 (!L.MicrosoftExt || L.isCompatibleWithMSVC(LangOptions::MSVC2015)); 9486 } 9487 9488 static void DiagnoseNarrowingInInitList(Sema &S, 9489 const ImplicitConversionSequence &ICS, 9490 QualType PreNarrowingType, 9491 QualType EntityType, 9492 const Expr *PostInit) { 9493 const StandardConversionSequence *SCS = nullptr; 9494 switch (ICS.getKind()) { 9495 case ImplicitConversionSequence::StandardConversion: 9496 SCS = &ICS.Standard; 9497 break; 9498 case ImplicitConversionSequence::UserDefinedConversion: 9499 SCS = &ICS.UserDefined.After; 9500 break; 9501 case ImplicitConversionSequence::AmbiguousConversion: 9502 case ImplicitConversionSequence::EllipsisConversion: 9503 case ImplicitConversionSequence::BadConversion: 9504 return; 9505 } 9506 9507 // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion. 9508 APValue ConstantValue; 9509 QualType ConstantType; 9510 switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue, 9511 ConstantType)) { 9512 case NK_Not_Narrowing: 9513 case NK_Dependent_Narrowing: 9514 // No narrowing occurred. 9515 return; 9516 9517 case NK_Type_Narrowing: 9518 // This was a floating-to-integer conversion, which is always considered a 9519 // narrowing conversion even if the value is a constant and can be 9520 // represented exactly as an integer. 9521 S.Diag(PostInit->getBeginLoc(), NarrowingErrs(S.getLangOpts()) 9522 ? diag::ext_init_list_type_narrowing 9523 : diag::warn_init_list_type_narrowing) 9524 << PostInit->getSourceRange() 9525 << PreNarrowingType.getLocalUnqualifiedType() 9526 << EntityType.getLocalUnqualifiedType(); 9527 break; 9528 9529 case NK_Constant_Narrowing: 9530 // A constant value was narrowed. 9531 S.Diag(PostInit->getBeginLoc(), 9532 NarrowingErrs(S.getLangOpts()) 9533 ? diag::ext_init_list_constant_narrowing 9534 : diag::warn_init_list_constant_narrowing) 9535 << PostInit->getSourceRange() 9536 << ConstantValue.getAsString(S.getASTContext(), ConstantType) 9537 << EntityType.getLocalUnqualifiedType(); 9538 break; 9539 9540 case NK_Variable_Narrowing: 9541 // A variable's value may have been narrowed. 9542 S.Diag(PostInit->getBeginLoc(), 9543 NarrowingErrs(S.getLangOpts()) 9544 ? diag::ext_init_list_variable_narrowing 9545 : diag::warn_init_list_variable_narrowing) 9546 << PostInit->getSourceRange() 9547 << PreNarrowingType.getLocalUnqualifiedType() 9548 << EntityType.getLocalUnqualifiedType(); 9549 break; 9550 } 9551 9552 SmallString<128> StaticCast; 9553 llvm::raw_svector_ostream OS(StaticCast); 9554 OS << "static_cast<"; 9555 if (const TypedefType *TT = EntityType->getAs<TypedefType>()) { 9556 // It's important to use the typedef's name if there is one so that the 9557 // fixit doesn't break code using types like int64_t. 9558 // 9559 // FIXME: This will break if the typedef requires qualification. But 9560 // getQualifiedNameAsString() includes non-machine-parsable components. 9561 OS << *TT->getDecl(); 9562 } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>()) 9563 OS << BT->getName(S.getLangOpts()); 9564 else { 9565 // Oops, we didn't find the actual type of the variable. Don't emit a fixit 9566 // with a broken cast. 9567 return; 9568 } 9569 OS << ">("; 9570 S.Diag(PostInit->getBeginLoc(), diag::note_init_list_narrowing_silence) 9571 << PostInit->getSourceRange() 9572 << FixItHint::CreateInsertion(PostInit->getBeginLoc(), OS.str()) 9573 << FixItHint::CreateInsertion( 9574 S.getLocForEndOfToken(PostInit->getEndLoc()), ")"); 9575 } 9576 9577 //===----------------------------------------------------------------------===// 9578 // Initialization helper functions 9579 //===----------------------------------------------------------------------===// 9580 bool 9581 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity, 9582 ExprResult Init) { 9583 if (Init.isInvalid()) 9584 return false; 9585 9586 Expr *InitE = Init.get(); 9587 assert(InitE && "No initialization expression"); 9588 9589 InitializationKind Kind = 9590 InitializationKind::CreateCopy(InitE->getBeginLoc(), SourceLocation()); 9591 InitializationSequence Seq(*this, Entity, Kind, InitE); 9592 return !Seq.Failed(); 9593 } 9594 9595 ExprResult 9596 Sema::PerformCopyInitialization(const InitializedEntity &Entity, 9597 SourceLocation EqualLoc, 9598 ExprResult Init, 9599 bool TopLevelOfInitList, 9600 bool AllowExplicit) { 9601 if (Init.isInvalid()) 9602 return ExprError(); 9603 9604 Expr *InitE = Init.get(); 9605 assert(InitE && "No initialization expression?"); 9606 9607 if (EqualLoc.isInvalid()) 9608 EqualLoc = InitE->getBeginLoc(); 9609 9610 InitializationKind Kind = InitializationKind::CreateCopy( 9611 InitE->getBeginLoc(), EqualLoc, AllowExplicit); 9612 InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList); 9613 9614 // Prevent infinite recursion when performing parameter copy-initialization. 9615 const bool ShouldTrackCopy = 9616 Entity.isParameterKind() && Seq.isConstructorInitialization(); 9617 if (ShouldTrackCopy) { 9618 if (llvm::find(CurrentParameterCopyTypes, Entity.getType()) != 9619 CurrentParameterCopyTypes.end()) { 9620 Seq.SetOverloadFailure( 9621 InitializationSequence::FK_ConstructorOverloadFailed, 9622 OR_No_Viable_Function); 9623 9624 // Try to give a meaningful diagnostic note for the problematic 9625 // constructor. 9626 const auto LastStep = Seq.step_end() - 1; 9627 assert(LastStep->Kind == 9628 InitializationSequence::SK_ConstructorInitialization); 9629 const FunctionDecl *Function = LastStep->Function.Function; 9630 auto Candidate = 9631 llvm::find_if(Seq.getFailedCandidateSet(), 9632 [Function](const OverloadCandidate &Candidate) -> bool { 9633 return Candidate.Viable && 9634 Candidate.Function == Function && 9635 Candidate.Conversions.size() > 0; 9636 }); 9637 if (Candidate != Seq.getFailedCandidateSet().end() && 9638 Function->getNumParams() > 0) { 9639 Candidate->Viable = false; 9640 Candidate->FailureKind = ovl_fail_bad_conversion; 9641 Candidate->Conversions[0].setBad(BadConversionSequence::no_conversion, 9642 InitE, 9643 Function->getParamDecl(0)->getType()); 9644 } 9645 } 9646 CurrentParameterCopyTypes.push_back(Entity.getType()); 9647 } 9648 9649 ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE); 9650 9651 if (ShouldTrackCopy) 9652 CurrentParameterCopyTypes.pop_back(); 9653 9654 return Result; 9655 } 9656 9657 /// Determine whether RD is, or is derived from, a specialization of CTD. 9658 static bool isOrIsDerivedFromSpecializationOf(CXXRecordDecl *RD, 9659 ClassTemplateDecl *CTD) { 9660 auto NotSpecialization = [&] (const CXXRecordDecl *Candidate) { 9661 auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Candidate); 9662 return !CTSD || !declaresSameEntity(CTSD->getSpecializedTemplate(), CTD); 9663 }; 9664 return !(NotSpecialization(RD) && RD->forallBases(NotSpecialization)); 9665 } 9666 9667 QualType Sema::DeduceTemplateSpecializationFromInitializer( 9668 TypeSourceInfo *TSInfo, const InitializedEntity &Entity, 9669 const InitializationKind &Kind, MultiExprArg Inits) { 9670 auto *DeducedTST = dyn_cast<DeducedTemplateSpecializationType>( 9671 TSInfo->getType()->getContainedDeducedType()); 9672 assert(DeducedTST && "not a deduced template specialization type"); 9673 9674 auto TemplateName = DeducedTST->getTemplateName(); 9675 if (TemplateName.isDependent()) 9676 return Context.DependentTy; 9677 9678 // We can only perform deduction for class templates. 9679 auto *Template = 9680 dyn_cast_or_null<ClassTemplateDecl>(TemplateName.getAsTemplateDecl()); 9681 if (!Template) { 9682 Diag(Kind.getLocation(), 9683 diag::err_deduced_non_class_template_specialization_type) 9684 << (int)getTemplateNameKindForDiagnostics(TemplateName) << TemplateName; 9685 if (auto *TD = TemplateName.getAsTemplateDecl()) 9686 Diag(TD->getLocation(), diag::note_template_decl_here); 9687 return QualType(); 9688 } 9689 9690 // Can't deduce from dependent arguments. 9691 if (Expr::hasAnyTypeDependentArguments(Inits)) { 9692 Diag(TSInfo->getTypeLoc().getBeginLoc(), 9693 diag::warn_cxx14_compat_class_template_argument_deduction) 9694 << TSInfo->getTypeLoc().getSourceRange() << 0; 9695 return Context.DependentTy; 9696 } 9697 9698 // FIXME: Perform "exact type" matching first, per CWG discussion? 9699 // Or implement this via an implied 'T(T) -> T' deduction guide? 9700 9701 // FIXME: Do we need/want a std::initializer_list<T> special case? 9702 9703 // Look up deduction guides, including those synthesized from constructors. 9704 // 9705 // C++1z [over.match.class.deduct]p1: 9706 // A set of functions and function templates is formed comprising: 9707 // - For each constructor of the class template designated by the 9708 // template-name, a function template [...] 9709 // - For each deduction-guide, a function or function template [...] 9710 DeclarationNameInfo NameInfo( 9711 Context.DeclarationNames.getCXXDeductionGuideName(Template), 9712 TSInfo->getTypeLoc().getEndLoc()); 9713 LookupResult Guides(*this, NameInfo, LookupOrdinaryName); 9714 LookupQualifiedName(Guides, Template->getDeclContext()); 9715 9716 // FIXME: Do not diagnose inaccessible deduction guides. The standard isn't 9717 // clear on this, but they're not found by name so access does not apply. 9718 Guides.suppressDiagnostics(); 9719 9720 // Figure out if this is list-initialization. 9721 InitListExpr *ListInit = 9722 (Inits.size() == 1 && Kind.getKind() != InitializationKind::IK_Direct) 9723 ? dyn_cast<InitListExpr>(Inits[0]) 9724 : nullptr; 9725 9726 // C++1z [over.match.class.deduct]p1: 9727 // Initialization and overload resolution are performed as described in 9728 // [dcl.init] and [over.match.ctor], [over.match.copy], or [over.match.list] 9729 // (as appropriate for the type of initialization performed) for an object 9730 // of a hypothetical class type, where the selected functions and function 9731 // templates are considered to be the constructors of that class type 9732 // 9733 // Since we know we're initializing a class type of a type unrelated to that 9734 // of the initializer, this reduces to something fairly reasonable. 9735 OverloadCandidateSet Candidates(Kind.getLocation(), 9736 OverloadCandidateSet::CSK_Normal); 9737 OverloadCandidateSet::iterator Best; 9738 9739 bool HasAnyDeductionGuide = false; 9740 bool AllowExplicit = !Kind.isCopyInit() || ListInit; 9741 9742 auto tryToResolveOverload = 9743 [&](bool OnlyListConstructors) -> OverloadingResult { 9744 Candidates.clear(OverloadCandidateSet::CSK_Normal); 9745 HasAnyDeductionGuide = false; 9746 9747 for (auto I = Guides.begin(), E = Guides.end(); I != E; ++I) { 9748 NamedDecl *D = (*I)->getUnderlyingDecl(); 9749 if (D->isInvalidDecl()) 9750 continue; 9751 9752 auto *TD = dyn_cast<FunctionTemplateDecl>(D); 9753 auto *GD = dyn_cast_or_null<CXXDeductionGuideDecl>( 9754 TD ? TD->getTemplatedDecl() : dyn_cast<FunctionDecl>(D)); 9755 if (!GD) 9756 continue; 9757 9758 if (!GD->isImplicit()) 9759 HasAnyDeductionGuide = true; 9760 9761 // C++ [over.match.ctor]p1: (non-list copy-initialization from non-class) 9762 // For copy-initialization, the candidate functions are all the 9763 // converting constructors (12.3.1) of that class. 9764 // C++ [over.match.copy]p1: (non-list copy-initialization from class) 9765 // The converting constructors of T are candidate functions. 9766 if (!AllowExplicit) { 9767 // Only consider converting constructors. 9768 if (GD->isExplicit()) 9769 continue; 9770 9771 // When looking for a converting constructor, deduction guides that 9772 // could never be called with one argument are not interesting to 9773 // check or note. 9774 if (GD->getMinRequiredArguments() > 1 || 9775 (GD->getNumParams() == 0 && !GD->isVariadic())) 9776 continue; 9777 } 9778 9779 // C++ [over.match.list]p1.1: (first phase list initialization) 9780 // Initially, the candidate functions are the initializer-list 9781 // constructors of the class T 9782 if (OnlyListConstructors && !isInitListConstructor(GD)) 9783 continue; 9784 9785 // C++ [over.match.list]p1.2: (second phase list initialization) 9786 // the candidate functions are all the constructors of the class T 9787 // C++ [over.match.ctor]p1: (all other cases) 9788 // the candidate functions are all the constructors of the class of 9789 // the object being initialized 9790 9791 // C++ [over.best.ics]p4: 9792 // When [...] the constructor [...] is a candidate by 9793 // - [over.match.copy] (in all cases) 9794 // FIXME: The "second phase of [over.match.list] case can also 9795 // theoretically happen here, but it's not clear whether we can 9796 // ever have a parameter of the right type. 9797 bool SuppressUserConversions = Kind.isCopyInit(); 9798 9799 if (TD) 9800 AddTemplateOverloadCandidate(TD, I.getPair(), /*ExplicitArgs*/ nullptr, 9801 Inits, Candidates, SuppressUserConversions, 9802 /*PartialOverloading*/ false, 9803 AllowExplicit); 9804 else 9805 AddOverloadCandidate(GD, I.getPair(), Inits, Candidates, 9806 SuppressUserConversions, 9807 /*PartialOverloading*/ false, AllowExplicit); 9808 } 9809 return Candidates.BestViableFunction(*this, Kind.getLocation(), Best); 9810 }; 9811 9812 OverloadingResult Result = OR_No_Viable_Function; 9813 9814 // C++11 [over.match.list]p1, per DR1467: for list-initialization, first 9815 // try initializer-list constructors. 9816 if (ListInit) { 9817 bool TryListConstructors = true; 9818 9819 // Try list constructors unless the list is empty and the class has one or 9820 // more default constructors, in which case those constructors win. 9821 if (!ListInit->getNumInits()) { 9822 for (NamedDecl *D : Guides) { 9823 auto *FD = dyn_cast<FunctionDecl>(D->getUnderlyingDecl()); 9824 if (FD && FD->getMinRequiredArguments() == 0) { 9825 TryListConstructors = false; 9826 break; 9827 } 9828 } 9829 } else if (ListInit->getNumInits() == 1) { 9830 // C++ [over.match.class.deduct]: 9831 // As an exception, the first phase in [over.match.list] (considering 9832 // initializer-list constructors) is omitted if the initializer list 9833 // consists of a single expression of type cv U, where U is a 9834 // specialization of C or a class derived from a specialization of C. 9835 Expr *E = ListInit->getInit(0); 9836 auto *RD = E->getType()->getAsCXXRecordDecl(); 9837 if (!isa<InitListExpr>(E) && RD && 9838 isCompleteType(Kind.getLocation(), E->getType()) && 9839 isOrIsDerivedFromSpecializationOf(RD, Template)) 9840 TryListConstructors = false; 9841 } 9842 9843 if (TryListConstructors) 9844 Result = tryToResolveOverload(/*OnlyListConstructor*/true); 9845 // Then unwrap the initializer list and try again considering all 9846 // constructors. 9847 Inits = MultiExprArg(ListInit->getInits(), ListInit->getNumInits()); 9848 } 9849 9850 // If list-initialization fails, or if we're doing any other kind of 9851 // initialization, we (eventually) consider constructors. 9852 if (Result == OR_No_Viable_Function) 9853 Result = tryToResolveOverload(/*OnlyListConstructor*/false); 9854 9855 switch (Result) { 9856 case OR_Ambiguous: 9857 // FIXME: For list-initialization candidates, it'd usually be better to 9858 // list why they were not viable when given the initializer list itself as 9859 // an argument. 9860 Candidates.NoteCandidates( 9861 PartialDiagnosticAt( 9862 Kind.getLocation(), 9863 PDiag(diag::err_deduced_class_template_ctor_ambiguous) 9864 << TemplateName), 9865 *this, OCD_AmbiguousCandidates, Inits); 9866 return QualType(); 9867 9868 case OR_No_Viable_Function: { 9869 CXXRecordDecl *Primary = 9870 cast<ClassTemplateDecl>(Template)->getTemplatedDecl(); 9871 bool Complete = 9872 isCompleteType(Kind.getLocation(), Context.getTypeDeclType(Primary)); 9873 Candidates.NoteCandidates( 9874 PartialDiagnosticAt( 9875 Kind.getLocation(), 9876 PDiag(Complete ? diag::err_deduced_class_template_ctor_no_viable 9877 : diag::err_deduced_class_template_incomplete) 9878 << TemplateName << !Guides.empty()), 9879 *this, OCD_AllCandidates, Inits); 9880 return QualType(); 9881 } 9882 9883 case OR_Deleted: { 9884 Diag(Kind.getLocation(), diag::err_deduced_class_template_deleted) 9885 << TemplateName; 9886 NoteDeletedFunction(Best->Function); 9887 return QualType(); 9888 } 9889 9890 case OR_Success: 9891 // C++ [over.match.list]p1: 9892 // In copy-list-initialization, if an explicit constructor is chosen, the 9893 // initialization is ill-formed. 9894 if (Kind.isCopyInit() && ListInit && 9895 cast<CXXDeductionGuideDecl>(Best->Function)->isExplicit()) { 9896 bool IsDeductionGuide = !Best->Function->isImplicit(); 9897 Diag(Kind.getLocation(), diag::err_deduced_class_template_explicit) 9898 << TemplateName << IsDeductionGuide; 9899 Diag(Best->Function->getLocation(), 9900 diag::note_explicit_ctor_deduction_guide_here) 9901 << IsDeductionGuide; 9902 return QualType(); 9903 } 9904 9905 // Make sure we didn't select an unusable deduction guide, and mark it 9906 // as referenced. 9907 DiagnoseUseOfDecl(Best->Function, Kind.getLocation()); 9908 MarkFunctionReferenced(Kind.getLocation(), Best->Function); 9909 break; 9910 } 9911 9912 // C++ [dcl.type.class.deduct]p1: 9913 // The placeholder is replaced by the return type of the function selected 9914 // by overload resolution for class template deduction. 9915 QualType DeducedType = 9916 SubstAutoType(TSInfo->getType(), Best->Function->getReturnType()); 9917 Diag(TSInfo->getTypeLoc().getBeginLoc(), 9918 diag::warn_cxx14_compat_class_template_argument_deduction) 9919 << TSInfo->getTypeLoc().getSourceRange() << 1 << DeducedType; 9920 9921 // Warn if CTAD was used on a type that does not have any user-defined 9922 // deduction guides. 9923 if (!HasAnyDeductionGuide) { 9924 Diag(TSInfo->getTypeLoc().getBeginLoc(), 9925 diag::warn_ctad_maybe_unsupported) 9926 << TemplateName; 9927 Diag(Template->getLocation(), diag::note_suppress_ctad_maybe_unsupported); 9928 } 9929 9930 return DeducedType; 9931 } 9932