1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for initializers.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/DeclObjC.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/AST/ExprObjC.h"
17 #include "clang/AST/ExprOpenMP.h"
18 #include "clang/AST/TypeLoc.h"
19 #include "clang/Basic/CharInfo.h"
20 #include "clang/Basic/SourceManager.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "clang/Sema/Designator.h"
23 #include "clang/Sema/Initialization.h"
24 #include "clang/Sema/Lookup.h"
25 #include "clang/Sema/SemaInternal.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/SmallString.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/raw_ostream.h"
30 
31 using namespace clang;
32 
33 //===----------------------------------------------------------------------===//
34 // Sema Initialization Checking
35 //===----------------------------------------------------------------------===//
36 
37 /// Check whether T is compatible with a wide character type (wchar_t,
38 /// char16_t or char32_t).
39 static bool IsWideCharCompatible(QualType T, ASTContext &Context) {
40   if (Context.typesAreCompatible(Context.getWideCharType(), T))
41     return true;
42   if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) {
43     return Context.typesAreCompatible(Context.Char16Ty, T) ||
44            Context.typesAreCompatible(Context.Char32Ty, T);
45   }
46   return false;
47 }
48 
49 enum StringInitFailureKind {
50   SIF_None,
51   SIF_NarrowStringIntoWideChar,
52   SIF_WideStringIntoChar,
53   SIF_IncompatWideStringIntoWideChar,
54   SIF_UTF8StringIntoPlainChar,
55   SIF_PlainStringIntoUTF8Char,
56   SIF_Other
57 };
58 
59 /// Check whether the array of type AT can be initialized by the Init
60 /// expression by means of string initialization. Returns SIF_None if so,
61 /// otherwise returns a StringInitFailureKind that describes why the
62 /// initialization would not work.
63 static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT,
64                                           ASTContext &Context) {
65   if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
66     return SIF_Other;
67 
68   // See if this is a string literal or @encode.
69   Init = Init->IgnoreParens();
70 
71   // Handle @encode, which is a narrow string.
72   if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
73     return SIF_None;
74 
75   // Otherwise we can only handle string literals.
76   StringLiteral *SL = dyn_cast<StringLiteral>(Init);
77   if (!SL)
78     return SIF_Other;
79 
80   const QualType ElemTy =
81       Context.getCanonicalType(AT->getElementType()).getUnqualifiedType();
82 
83   switch (SL->getKind()) {
84   case StringLiteral::UTF8:
85     // char8_t array can be initialized with a UTF-8 string.
86     if (ElemTy->isChar8Type())
87       return SIF_None;
88     LLVM_FALLTHROUGH;
89   case StringLiteral::Ascii:
90     // char array can be initialized with a narrow string.
91     // Only allow char x[] = "foo";  not char x[] = L"foo";
92     if (ElemTy->isCharType())
93       return (SL->getKind() == StringLiteral::UTF8 &&
94               Context.getLangOpts().Char8)
95                  ? SIF_UTF8StringIntoPlainChar
96                  : SIF_None;
97     if (ElemTy->isChar8Type())
98       return SIF_PlainStringIntoUTF8Char;
99     if (IsWideCharCompatible(ElemTy, Context))
100       return SIF_NarrowStringIntoWideChar;
101     return SIF_Other;
102   // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15:
103   // "An array with element type compatible with a qualified or unqualified
104   // version of wchar_t, char16_t, or char32_t may be initialized by a wide
105   // string literal with the corresponding encoding prefix (L, u, or U,
106   // respectively), optionally enclosed in braces.
107   case StringLiteral::UTF16:
108     if (Context.typesAreCompatible(Context.Char16Ty, ElemTy))
109       return SIF_None;
110     if (ElemTy->isCharType() || ElemTy->isChar8Type())
111       return SIF_WideStringIntoChar;
112     if (IsWideCharCompatible(ElemTy, Context))
113       return SIF_IncompatWideStringIntoWideChar;
114     return SIF_Other;
115   case StringLiteral::UTF32:
116     if (Context.typesAreCompatible(Context.Char32Ty, ElemTy))
117       return SIF_None;
118     if (ElemTy->isCharType() || ElemTy->isChar8Type())
119       return SIF_WideStringIntoChar;
120     if (IsWideCharCompatible(ElemTy, Context))
121       return SIF_IncompatWideStringIntoWideChar;
122     return SIF_Other;
123   case StringLiteral::Wide:
124     if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy))
125       return SIF_None;
126     if (ElemTy->isCharType() || ElemTy->isChar8Type())
127       return SIF_WideStringIntoChar;
128     if (IsWideCharCompatible(ElemTy, Context))
129       return SIF_IncompatWideStringIntoWideChar;
130     return SIF_Other;
131   }
132 
133   llvm_unreachable("missed a StringLiteral kind?");
134 }
135 
136 static StringInitFailureKind IsStringInit(Expr *init, QualType declType,
137                                           ASTContext &Context) {
138   const ArrayType *arrayType = Context.getAsArrayType(declType);
139   if (!arrayType)
140     return SIF_Other;
141   return IsStringInit(init, arrayType, Context);
142 }
143 
144 /// Update the type of a string literal, including any surrounding parentheses,
145 /// to match the type of the object which it is initializing.
146 static void updateStringLiteralType(Expr *E, QualType Ty) {
147   while (true) {
148     E->setType(Ty);
149     E->setValueKind(VK_RValue);
150     if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E)) {
151       break;
152     } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
153       E = PE->getSubExpr();
154     } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
155       assert(UO->getOpcode() == UO_Extension);
156       E = UO->getSubExpr();
157     } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) {
158       E = GSE->getResultExpr();
159     } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) {
160       E = CE->getChosenSubExpr();
161     } else {
162       llvm_unreachable("unexpected expr in string literal init");
163     }
164   }
165 }
166 
167 /// Fix a compound literal initializing an array so it's correctly marked
168 /// as an rvalue.
169 static void updateGNUCompoundLiteralRValue(Expr *E) {
170   while (true) {
171     E->setValueKind(VK_RValue);
172     if (isa<CompoundLiteralExpr>(E)) {
173       break;
174     } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
175       E = PE->getSubExpr();
176     } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
177       assert(UO->getOpcode() == UO_Extension);
178       E = UO->getSubExpr();
179     } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) {
180       E = GSE->getResultExpr();
181     } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) {
182       E = CE->getChosenSubExpr();
183     } else {
184       llvm_unreachable("unexpected expr in array compound literal init");
185     }
186   }
187 }
188 
189 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
190                             Sema &S) {
191   // Get the length of the string as parsed.
192   auto *ConstantArrayTy =
193       cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe());
194   uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue();
195 
196   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
197     // C99 6.7.8p14. We have an array of character type with unknown size
198     // being initialized to a string literal.
199     llvm::APInt ConstVal(32, StrLength);
200     // Return a new array type (C99 6.7.8p22).
201     DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
202                                            ConstVal, nullptr,
203                                            ArrayType::Normal, 0);
204     updateStringLiteralType(Str, DeclT);
205     return;
206   }
207 
208   const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
209 
210   // We have an array of character type with known size.  However,
211   // the size may be smaller or larger than the string we are initializing.
212   // FIXME: Avoid truncation for 64-bit length strings.
213   if (S.getLangOpts().CPlusPlus) {
214     if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
215       // For Pascal strings it's OK to strip off the terminating null character,
216       // so the example below is valid:
217       //
218       // unsigned char a[2] = "\pa";
219       if (SL->isPascal())
220         StrLength--;
221     }
222 
223     // [dcl.init.string]p2
224     if (StrLength > CAT->getSize().getZExtValue())
225       S.Diag(Str->getBeginLoc(),
226              diag::err_initializer_string_for_char_array_too_long)
227           << Str->getSourceRange();
228   } else {
229     // C99 6.7.8p14.
230     if (StrLength-1 > CAT->getSize().getZExtValue())
231       S.Diag(Str->getBeginLoc(),
232              diag::ext_initializer_string_for_char_array_too_long)
233           << Str->getSourceRange();
234   }
235 
236   // Set the type to the actual size that we are initializing.  If we have
237   // something like:
238   //   char x[1] = "foo";
239   // then this will set the string literal's type to char[1].
240   updateStringLiteralType(Str, DeclT);
241 }
242 
243 //===----------------------------------------------------------------------===//
244 // Semantic checking for initializer lists.
245 //===----------------------------------------------------------------------===//
246 
247 namespace {
248 
249 /// Semantic checking for initializer lists.
250 ///
251 /// The InitListChecker class contains a set of routines that each
252 /// handle the initialization of a certain kind of entity, e.g.,
253 /// arrays, vectors, struct/union types, scalars, etc. The
254 /// InitListChecker itself performs a recursive walk of the subobject
255 /// structure of the type to be initialized, while stepping through
256 /// the initializer list one element at a time. The IList and Index
257 /// parameters to each of the Check* routines contain the active
258 /// (syntactic) initializer list and the index into that initializer
259 /// list that represents the current initializer. Each routine is
260 /// responsible for moving that Index forward as it consumes elements.
261 ///
262 /// Each Check* routine also has a StructuredList/StructuredIndex
263 /// arguments, which contains the current "structured" (semantic)
264 /// initializer list and the index into that initializer list where we
265 /// are copying initializers as we map them over to the semantic
266 /// list. Once we have completed our recursive walk of the subobject
267 /// structure, we will have constructed a full semantic initializer
268 /// list.
269 ///
270 /// C99 designators cause changes in the initializer list traversal,
271 /// because they make the initialization "jump" into a specific
272 /// subobject and then continue the initialization from that
273 /// point. CheckDesignatedInitializer() recursively steps into the
274 /// designated subobject and manages backing out the recursion to
275 /// initialize the subobjects after the one designated.
276 ///
277 /// If an initializer list contains any designators, we build a placeholder
278 /// structured list even in 'verify only' mode, so that we can track which
279 /// elements need 'empty' initializtion.
280 class InitListChecker {
281   Sema &SemaRef;
282   bool hadError = false;
283   bool VerifyOnly; // No diagnostics.
284   bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode.
285   bool InOverloadResolution;
286   InitListExpr *FullyStructuredList = nullptr;
287   NoInitExpr *DummyExpr = nullptr;
288 
289   NoInitExpr *getDummyInit() {
290     if (!DummyExpr)
291       DummyExpr = new (SemaRef.Context) NoInitExpr(SemaRef.Context.VoidTy);
292     return DummyExpr;
293   }
294 
295   void CheckImplicitInitList(const InitializedEntity &Entity,
296                              InitListExpr *ParentIList, QualType T,
297                              unsigned &Index, InitListExpr *StructuredList,
298                              unsigned &StructuredIndex);
299   void CheckExplicitInitList(const InitializedEntity &Entity,
300                              InitListExpr *IList, QualType &T,
301                              InitListExpr *StructuredList,
302                              bool TopLevelObject = false);
303   void CheckListElementTypes(const InitializedEntity &Entity,
304                              InitListExpr *IList, QualType &DeclType,
305                              bool SubobjectIsDesignatorContext,
306                              unsigned &Index,
307                              InitListExpr *StructuredList,
308                              unsigned &StructuredIndex,
309                              bool TopLevelObject = false);
310   void CheckSubElementType(const InitializedEntity &Entity,
311                            InitListExpr *IList, QualType ElemType,
312                            unsigned &Index,
313                            InitListExpr *StructuredList,
314                            unsigned &StructuredIndex);
315   void CheckComplexType(const InitializedEntity &Entity,
316                         InitListExpr *IList, QualType DeclType,
317                         unsigned &Index,
318                         InitListExpr *StructuredList,
319                         unsigned &StructuredIndex);
320   void CheckScalarType(const InitializedEntity &Entity,
321                        InitListExpr *IList, QualType DeclType,
322                        unsigned &Index,
323                        InitListExpr *StructuredList,
324                        unsigned &StructuredIndex);
325   void CheckReferenceType(const InitializedEntity &Entity,
326                           InitListExpr *IList, QualType DeclType,
327                           unsigned &Index,
328                           InitListExpr *StructuredList,
329                           unsigned &StructuredIndex);
330   void CheckVectorType(const InitializedEntity &Entity,
331                        InitListExpr *IList, QualType DeclType, unsigned &Index,
332                        InitListExpr *StructuredList,
333                        unsigned &StructuredIndex);
334   void CheckStructUnionTypes(const InitializedEntity &Entity,
335                              InitListExpr *IList, QualType DeclType,
336                              CXXRecordDecl::base_class_range Bases,
337                              RecordDecl::field_iterator Field,
338                              bool SubobjectIsDesignatorContext, unsigned &Index,
339                              InitListExpr *StructuredList,
340                              unsigned &StructuredIndex,
341                              bool TopLevelObject = false);
342   void CheckArrayType(const InitializedEntity &Entity,
343                       InitListExpr *IList, QualType &DeclType,
344                       llvm::APSInt elementIndex,
345                       bool SubobjectIsDesignatorContext, unsigned &Index,
346                       InitListExpr *StructuredList,
347                       unsigned &StructuredIndex);
348   bool CheckDesignatedInitializer(const InitializedEntity &Entity,
349                                   InitListExpr *IList, DesignatedInitExpr *DIE,
350                                   unsigned DesigIdx,
351                                   QualType &CurrentObjectType,
352                                   RecordDecl::field_iterator *NextField,
353                                   llvm::APSInt *NextElementIndex,
354                                   unsigned &Index,
355                                   InitListExpr *StructuredList,
356                                   unsigned &StructuredIndex,
357                                   bool FinishSubobjectInit,
358                                   bool TopLevelObject);
359   InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
360                                            QualType CurrentObjectType,
361                                            InitListExpr *StructuredList,
362                                            unsigned StructuredIndex,
363                                            SourceRange InitRange,
364                                            bool IsFullyOverwritten = false);
365   void UpdateStructuredListElement(InitListExpr *StructuredList,
366                                    unsigned &StructuredIndex,
367                                    Expr *expr);
368   InitListExpr *createInitListExpr(QualType CurrentObjectType,
369                                    SourceRange InitRange,
370                                    unsigned ExpectedNumInits);
371   int numArrayElements(QualType DeclType);
372   int numStructUnionElements(QualType DeclType);
373 
374   ExprResult PerformEmptyInit(SourceLocation Loc,
375                               const InitializedEntity &Entity);
376 
377   /// Diagnose that OldInit (or part thereof) has been overridden by NewInit.
378   void diagnoseInitOverride(Expr *OldInit, SourceRange NewInitRange,
379                             bool FullyOverwritten = true) {
380     // Overriding an initializer via a designator is valid with C99 designated
381     // initializers, but ill-formed with C++20 designated initializers.
382     unsigned DiagID = SemaRef.getLangOpts().CPlusPlus
383                           ? diag::ext_initializer_overrides
384                           : diag::warn_initializer_overrides;
385 
386     if (InOverloadResolution && SemaRef.getLangOpts().CPlusPlus) {
387       // In overload resolution, we have to strictly enforce the rules, and so
388       // don't allow any overriding of prior initializers. This matters for a
389       // case such as:
390       //
391       //   union U { int a, b; };
392       //   struct S { int a, b; };
393       //   void f(U), f(S);
394       //
395       // Here, f({.a = 1, .b = 2}) is required to call the struct overload. For
396       // consistency, we disallow all overriding of prior initializers in
397       // overload resolution, not only overriding of union members.
398       hadError = true;
399     } else if (OldInit->getType().isDestructedType() && !FullyOverwritten) {
400       // If we'll be keeping around the old initializer but overwriting part of
401       // the object it initialized, and that object is not trivially
402       // destructible, this can leak. Don't allow that, not even as an
403       // extension.
404       //
405       // FIXME: It might be reasonable to allow this in cases where the part of
406       // the initializer that we're overriding has trivial destruction.
407       DiagID = diag::err_initializer_overrides_destructed;
408     } else if (!OldInit->getSourceRange().isValid()) {
409       // We need to check on source range validity because the previous
410       // initializer does not have to be an explicit initializer. e.g.,
411       //
412       // struct P { int a, b; };
413       // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
414       //
415       // There is an overwrite taking place because the first braced initializer
416       // list "{ .a = 2 }" already provides value for .p.b (which is zero).
417       //
418       // Such overwrites are harmless, so we don't diagnose them. (Note that in
419       // C++, this cannot be reached unless we've already seen and diagnosed a
420       // different conformance issue, such as a mixture of designated and
421       // non-designated initializers or a multi-level designator.)
422       return;
423     }
424 
425     if (!VerifyOnly) {
426       SemaRef.Diag(NewInitRange.getBegin(), DiagID)
427           << NewInitRange << FullyOverwritten << OldInit->getType();
428       SemaRef.Diag(OldInit->getBeginLoc(), diag::note_previous_initializer)
429           << (OldInit->HasSideEffects(SemaRef.Context) && FullyOverwritten)
430           << OldInit->getSourceRange();
431     }
432   }
433 
434   // Explanation on the "FillWithNoInit" mode:
435   //
436   // Assume we have the following definitions (Case#1):
437   // struct P { char x[6][6]; } xp = { .x[1] = "bar" };
438   // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' };
439   //
440   // l.lp.x[1][0..1] should not be filled with implicit initializers because the
441   // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf".
442   //
443   // But if we have (Case#2):
444   // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } };
445   //
446   // l.lp.x[1][0..1] are implicitly initialized and do not use values from the
447   // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0".
448   //
449   // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes"
450   // in the InitListExpr, the "holes" in Case#1 are filled not with empty
451   // initializers but with special "NoInitExpr" place holders, which tells the
452   // CodeGen not to generate any initializers for these parts.
453   void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base,
454                               const InitializedEntity &ParentEntity,
455                               InitListExpr *ILE, bool &RequiresSecondPass,
456                               bool FillWithNoInit);
457   void FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
458                                const InitializedEntity &ParentEntity,
459                                InitListExpr *ILE, bool &RequiresSecondPass,
460                                bool FillWithNoInit = false);
461   void FillInEmptyInitializations(const InitializedEntity &Entity,
462                                   InitListExpr *ILE, bool &RequiresSecondPass,
463                                   InitListExpr *OuterILE, unsigned OuterIndex,
464                                   bool FillWithNoInit = false);
465   bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
466                               Expr *InitExpr, FieldDecl *Field,
467                               bool TopLevelObject);
468   void CheckEmptyInitializable(const InitializedEntity &Entity,
469                                SourceLocation Loc);
470 
471 public:
472   InitListChecker(Sema &S, const InitializedEntity &Entity, InitListExpr *IL,
473                   QualType &T, bool VerifyOnly, bool TreatUnavailableAsInvalid,
474                   bool InOverloadResolution = false);
475   bool HadError() { return hadError; }
476 
477   // Retrieves the fully-structured initializer list used for
478   // semantic analysis and code generation.
479   InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
480 };
481 
482 } // end anonymous namespace
483 
484 ExprResult InitListChecker::PerformEmptyInit(SourceLocation Loc,
485                                              const InitializedEntity &Entity) {
486   InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
487                                                             true);
488   MultiExprArg SubInit;
489   Expr *InitExpr;
490   InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc);
491 
492   // C++ [dcl.init.aggr]p7:
493   //   If there are fewer initializer-clauses in the list than there are
494   //   members in the aggregate, then each member not explicitly initialized
495   //   ...
496   bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 &&
497       Entity.getType()->getBaseElementTypeUnsafe()->isRecordType();
498   if (EmptyInitList) {
499     // C++1y / DR1070:
500     //   shall be initialized [...] from an empty initializer list.
501     //
502     // We apply the resolution of this DR to C++11 but not C++98, since C++98
503     // does not have useful semantics for initialization from an init list.
504     // We treat this as copy-initialization, because aggregate initialization
505     // always performs copy-initialization on its elements.
506     //
507     // Only do this if we're initializing a class type, to avoid filling in
508     // the initializer list where possible.
509     InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context)
510                    InitListExpr(SemaRef.Context, Loc, None, Loc);
511     InitExpr->setType(SemaRef.Context.VoidTy);
512     SubInit = InitExpr;
513     Kind = InitializationKind::CreateCopy(Loc, Loc);
514   } else {
515     // C++03:
516     //   shall be value-initialized.
517   }
518 
519   InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit);
520   // libstdc++4.6 marks the vector default constructor as explicit in
521   // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case.
522   // stlport does so too. Look for std::__debug for libstdc++, and for
523   // std:: for stlport.  This is effectively a compiler-side implementation of
524   // LWG2193.
525   if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() ==
526           InitializationSequence::FK_ExplicitConstructor) {
527     OverloadCandidateSet::iterator Best;
528     OverloadingResult O =
529         InitSeq.getFailedCandidateSet()
530             .BestViableFunction(SemaRef, Kind.getLocation(), Best);
531     (void)O;
532     assert(O == OR_Success && "Inconsistent overload resolution");
533     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
534     CXXRecordDecl *R = CtorDecl->getParent();
535 
536     if (CtorDecl->getMinRequiredArguments() == 0 &&
537         CtorDecl->isExplicit() && R->getDeclName() &&
538         SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) {
539       bool IsInStd = false;
540       for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext());
541            ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) {
542         if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND))
543           IsInStd = true;
544       }
545 
546       if (IsInStd && llvm::StringSwitch<bool>(R->getName())
547               .Cases("basic_string", "deque", "forward_list", true)
548               .Cases("list", "map", "multimap", "multiset", true)
549               .Cases("priority_queue", "queue", "set", "stack", true)
550               .Cases("unordered_map", "unordered_set", "vector", true)
551               .Default(false)) {
552         InitSeq.InitializeFrom(
553             SemaRef, Entity,
554             InitializationKind::CreateValue(Loc, Loc, Loc, true),
555             MultiExprArg(), /*TopLevelOfInitList=*/false,
556             TreatUnavailableAsInvalid);
557         // Emit a warning for this.  System header warnings aren't shown
558         // by default, but people working on system headers should see it.
559         if (!VerifyOnly) {
560           SemaRef.Diag(CtorDecl->getLocation(),
561                        diag::warn_invalid_initializer_from_system_header);
562           if (Entity.getKind() == InitializedEntity::EK_Member)
563             SemaRef.Diag(Entity.getDecl()->getLocation(),
564                          diag::note_used_in_initialization_here);
565           else if (Entity.getKind() == InitializedEntity::EK_ArrayElement)
566             SemaRef.Diag(Loc, diag::note_used_in_initialization_here);
567         }
568       }
569     }
570   }
571   if (!InitSeq) {
572     if (!VerifyOnly) {
573       InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit);
574       if (Entity.getKind() == InitializedEntity::EK_Member)
575         SemaRef.Diag(Entity.getDecl()->getLocation(),
576                      diag::note_in_omitted_aggregate_initializer)
577           << /*field*/1 << Entity.getDecl();
578       else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) {
579         bool IsTrailingArrayNewMember =
580             Entity.getParent() &&
581             Entity.getParent()->isVariableLengthArrayNew();
582         SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer)
583           << (IsTrailingArrayNewMember ? 2 : /*array element*/0)
584           << Entity.getElementIndex();
585       }
586     }
587     hadError = true;
588     return ExprError();
589   }
590 
591   return VerifyOnly ? ExprResult()
592                     : InitSeq.Perform(SemaRef, Entity, Kind, SubInit);
593 }
594 
595 void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity,
596                                               SourceLocation Loc) {
597   // If we're building a fully-structured list, we'll check this at the end
598   // once we know which elements are actually initialized. Otherwise, we know
599   // that there are no designators so we can just check now.
600   if (FullyStructuredList)
601     return;
602   PerformEmptyInit(Loc, Entity);
603 }
604 
605 void InitListChecker::FillInEmptyInitForBase(
606     unsigned Init, const CXXBaseSpecifier &Base,
607     const InitializedEntity &ParentEntity, InitListExpr *ILE,
608     bool &RequiresSecondPass, bool FillWithNoInit) {
609   InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
610       SemaRef.Context, &Base, false, &ParentEntity);
611 
612   if (Init >= ILE->getNumInits() || !ILE->getInit(Init)) {
613     ExprResult BaseInit = FillWithNoInit
614                               ? new (SemaRef.Context) NoInitExpr(Base.getType())
615                               : PerformEmptyInit(ILE->getEndLoc(), BaseEntity);
616     if (BaseInit.isInvalid()) {
617       hadError = true;
618       return;
619     }
620 
621     if (!VerifyOnly) {
622       assert(Init < ILE->getNumInits() && "should have been expanded");
623       ILE->setInit(Init, BaseInit.getAs<Expr>());
624     }
625   } else if (InitListExpr *InnerILE =
626                  dyn_cast<InitListExpr>(ILE->getInit(Init))) {
627     FillInEmptyInitializations(BaseEntity, InnerILE, RequiresSecondPass,
628                                ILE, Init, FillWithNoInit);
629   } else if (DesignatedInitUpdateExpr *InnerDIUE =
630                dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
631     FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(),
632                                RequiresSecondPass, ILE, Init,
633                                /*FillWithNoInit =*/true);
634   }
635 }
636 
637 void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
638                                         const InitializedEntity &ParentEntity,
639                                               InitListExpr *ILE,
640                                               bool &RequiresSecondPass,
641                                               bool FillWithNoInit) {
642   SourceLocation Loc = ILE->getEndLoc();
643   unsigned NumInits = ILE->getNumInits();
644   InitializedEntity MemberEntity
645     = InitializedEntity::InitializeMember(Field, &ParentEntity);
646 
647   if (Init >= NumInits || !ILE->getInit(Init)) {
648     if (const RecordType *RType = ILE->getType()->getAs<RecordType>())
649       if (!RType->getDecl()->isUnion())
650         assert((Init < NumInits || VerifyOnly) &&
651                "This ILE should have been expanded");
652 
653     if (FillWithNoInit) {
654       assert(!VerifyOnly && "should not fill with no-init in verify-only mode");
655       Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType());
656       if (Init < NumInits)
657         ILE->setInit(Init, Filler);
658       else
659         ILE->updateInit(SemaRef.Context, Init, Filler);
660       return;
661     }
662     // C++1y [dcl.init.aggr]p7:
663     //   If there are fewer initializer-clauses in the list than there are
664     //   members in the aggregate, then each member not explicitly initialized
665     //   shall be initialized from its brace-or-equal-initializer [...]
666     if (Field->hasInClassInitializer()) {
667       if (VerifyOnly)
668         return;
669 
670       ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field);
671       if (DIE.isInvalid()) {
672         hadError = true;
673         return;
674       }
675       SemaRef.checkInitializerLifetime(MemberEntity, DIE.get());
676       if (Init < NumInits)
677         ILE->setInit(Init, DIE.get());
678       else {
679         ILE->updateInit(SemaRef.Context, Init, DIE.get());
680         RequiresSecondPass = true;
681       }
682       return;
683     }
684 
685     if (Field->getType()->isReferenceType()) {
686       if (!VerifyOnly) {
687         // C++ [dcl.init.aggr]p9:
688         //   If an incomplete or empty initializer-list leaves a
689         //   member of reference type uninitialized, the program is
690         //   ill-formed.
691         SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
692           << Field->getType()
693           << ILE->getSyntacticForm()->getSourceRange();
694         SemaRef.Diag(Field->getLocation(),
695                      diag::note_uninit_reference_member);
696       }
697       hadError = true;
698       return;
699     }
700 
701     ExprResult MemberInit = PerformEmptyInit(Loc, MemberEntity);
702     if (MemberInit.isInvalid()) {
703       hadError = true;
704       return;
705     }
706 
707     if (hadError || VerifyOnly) {
708       // Do nothing
709     } else if (Init < NumInits) {
710       ILE->setInit(Init, MemberInit.getAs<Expr>());
711     } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) {
712       // Empty initialization requires a constructor call, so
713       // extend the initializer list to include the constructor
714       // call and make a note that we'll need to take another pass
715       // through the initializer list.
716       ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>());
717       RequiresSecondPass = true;
718     }
719   } else if (InitListExpr *InnerILE
720                = dyn_cast<InitListExpr>(ILE->getInit(Init))) {
721     FillInEmptyInitializations(MemberEntity, InnerILE,
722                                RequiresSecondPass, ILE, Init, FillWithNoInit);
723   } else if (DesignatedInitUpdateExpr *InnerDIUE =
724                  dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
725     FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(),
726                                RequiresSecondPass, ILE, Init,
727                                /*FillWithNoInit =*/true);
728   }
729 }
730 
731 /// Recursively replaces NULL values within the given initializer list
732 /// with expressions that perform value-initialization of the
733 /// appropriate type, and finish off the InitListExpr formation.
734 void
735 InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity,
736                                             InitListExpr *ILE,
737                                             bool &RequiresSecondPass,
738                                             InitListExpr *OuterILE,
739                                             unsigned OuterIndex,
740                                             bool FillWithNoInit) {
741   assert((ILE->getType() != SemaRef.Context.VoidTy) &&
742          "Should not have void type");
743 
744   // We don't need to do any checks when just filling NoInitExprs; that can't
745   // fail.
746   if (FillWithNoInit && VerifyOnly)
747     return;
748 
749   // If this is a nested initializer list, we might have changed its contents
750   // (and therefore some of its properties, such as instantiation-dependence)
751   // while filling it in. Inform the outer initializer list so that its state
752   // can be updated to match.
753   // FIXME: We should fully build the inner initializers before constructing
754   // the outer InitListExpr instead of mutating AST nodes after they have
755   // been used as subexpressions of other nodes.
756   struct UpdateOuterILEWithUpdatedInit {
757     InitListExpr *Outer;
758     unsigned OuterIndex;
759     ~UpdateOuterILEWithUpdatedInit() {
760       if (Outer)
761         Outer->setInit(OuterIndex, Outer->getInit(OuterIndex));
762     }
763   } UpdateOuterRAII = {OuterILE, OuterIndex};
764 
765   // A transparent ILE is not performing aggregate initialization and should
766   // not be filled in.
767   if (ILE->isTransparent())
768     return;
769 
770   if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
771     const RecordDecl *RDecl = RType->getDecl();
772     if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
773       FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(),
774                               Entity, ILE, RequiresSecondPass, FillWithNoInit);
775     else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
776              cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
777       for (auto *Field : RDecl->fields()) {
778         if (Field->hasInClassInitializer()) {
779           FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass,
780                                   FillWithNoInit);
781           break;
782         }
783       }
784     } else {
785       // The fields beyond ILE->getNumInits() are default initialized, so in
786       // order to leave them uninitialized, the ILE is expanded and the extra
787       // fields are then filled with NoInitExpr.
788       unsigned NumElems = numStructUnionElements(ILE->getType());
789       if (RDecl->hasFlexibleArrayMember())
790         ++NumElems;
791       if (!VerifyOnly && ILE->getNumInits() < NumElems)
792         ILE->resizeInits(SemaRef.Context, NumElems);
793 
794       unsigned Init = 0;
795 
796       if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) {
797         for (auto &Base : CXXRD->bases()) {
798           if (hadError)
799             return;
800 
801           FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass,
802                                  FillWithNoInit);
803           ++Init;
804         }
805       }
806 
807       for (auto *Field : RDecl->fields()) {
808         if (Field->isUnnamedBitfield())
809           continue;
810 
811         if (hadError)
812           return;
813 
814         FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass,
815                                 FillWithNoInit);
816         if (hadError)
817           return;
818 
819         ++Init;
820 
821         // Only look at the first initialization of a union.
822         if (RDecl->isUnion())
823           break;
824       }
825     }
826 
827     return;
828   }
829 
830   QualType ElementType;
831 
832   InitializedEntity ElementEntity = Entity;
833   unsigned NumInits = ILE->getNumInits();
834   unsigned NumElements = NumInits;
835   if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
836     ElementType = AType->getElementType();
837     if (const auto *CAType = dyn_cast<ConstantArrayType>(AType))
838       NumElements = CAType->getSize().getZExtValue();
839     // For an array new with an unknown bound, ask for one additional element
840     // in order to populate the array filler.
841     if (Entity.isVariableLengthArrayNew())
842       ++NumElements;
843     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
844                                                          0, Entity);
845   } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
846     ElementType = VType->getElementType();
847     NumElements = VType->getNumElements();
848     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
849                                                          0, Entity);
850   } else
851     ElementType = ILE->getType();
852 
853   bool SkipEmptyInitChecks = false;
854   for (unsigned Init = 0; Init != NumElements; ++Init) {
855     if (hadError)
856       return;
857 
858     if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
859         ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
860       ElementEntity.setElementIndex(Init);
861 
862     if (Init >= NumInits && (ILE->hasArrayFiller() || SkipEmptyInitChecks))
863       return;
864 
865     Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr);
866     if (!InitExpr && Init < NumInits && ILE->hasArrayFiller())
867       ILE->setInit(Init, ILE->getArrayFiller());
868     else if (!InitExpr && !ILE->hasArrayFiller()) {
869       // In VerifyOnly mode, there's no point performing empty initialization
870       // more than once.
871       if (SkipEmptyInitChecks)
872         continue;
873 
874       Expr *Filler = nullptr;
875 
876       if (FillWithNoInit)
877         Filler = new (SemaRef.Context) NoInitExpr(ElementType);
878       else {
879         ExprResult ElementInit =
880             PerformEmptyInit(ILE->getEndLoc(), ElementEntity);
881         if (ElementInit.isInvalid()) {
882           hadError = true;
883           return;
884         }
885 
886         Filler = ElementInit.getAs<Expr>();
887       }
888 
889       if (hadError) {
890         // Do nothing
891       } else if (VerifyOnly) {
892         SkipEmptyInitChecks = true;
893       } else if (Init < NumInits) {
894         // For arrays, just set the expression used for value-initialization
895         // of the "holes" in the array.
896         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
897           ILE->setArrayFiller(Filler);
898         else
899           ILE->setInit(Init, Filler);
900       } else {
901         // For arrays, just set the expression used for value-initialization
902         // of the rest of elements and exit.
903         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
904           ILE->setArrayFiller(Filler);
905           return;
906         }
907 
908         if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) {
909           // Empty initialization requires a constructor call, so
910           // extend the initializer list to include the constructor
911           // call and make a note that we'll need to take another pass
912           // through the initializer list.
913           ILE->updateInit(SemaRef.Context, Init, Filler);
914           RequiresSecondPass = true;
915         }
916       }
917     } else if (InitListExpr *InnerILE
918                  = dyn_cast_or_null<InitListExpr>(InitExpr)) {
919       FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass,
920                                  ILE, Init, FillWithNoInit);
921     } else if (DesignatedInitUpdateExpr *InnerDIUE =
922                    dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr)) {
923       FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(),
924                                  RequiresSecondPass, ILE, Init,
925                                  /*FillWithNoInit =*/true);
926     }
927   }
928 }
929 
930 static bool hasAnyDesignatedInits(const InitListExpr *IL) {
931   for (const Stmt *Init : *IL)
932     if (Init && isa<DesignatedInitExpr>(Init))
933       return true;
934   return false;
935 }
936 
937 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
938                                  InitListExpr *IL, QualType &T, bool VerifyOnly,
939                                  bool TreatUnavailableAsInvalid,
940                                  bool InOverloadResolution)
941     : SemaRef(S), VerifyOnly(VerifyOnly),
942       TreatUnavailableAsInvalid(TreatUnavailableAsInvalid),
943       InOverloadResolution(InOverloadResolution) {
944   if (!VerifyOnly || hasAnyDesignatedInits(IL)) {
945     FullyStructuredList =
946         createInitListExpr(T, IL->getSourceRange(), IL->getNumInits());
947 
948     // FIXME: Check that IL isn't already the semantic form of some other
949     // InitListExpr. If it is, we'd create a broken AST.
950     if (!VerifyOnly)
951       FullyStructuredList->setSyntacticForm(IL);
952   }
953 
954   CheckExplicitInitList(Entity, IL, T, FullyStructuredList,
955                         /*TopLevelObject=*/true);
956 
957   if (!hadError && FullyStructuredList) {
958     bool RequiresSecondPass = false;
959     FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass,
960                                /*OuterILE=*/nullptr, /*OuterIndex=*/0);
961     if (RequiresSecondPass && !hadError)
962       FillInEmptyInitializations(Entity, FullyStructuredList,
963                                  RequiresSecondPass, nullptr, 0);
964   }
965   if (hadError && FullyStructuredList)
966     FullyStructuredList->markError();
967 }
968 
969 int InitListChecker::numArrayElements(QualType DeclType) {
970   // FIXME: use a proper constant
971   int maxElements = 0x7FFFFFFF;
972   if (const ConstantArrayType *CAT =
973         SemaRef.Context.getAsConstantArrayType(DeclType)) {
974     maxElements = static_cast<int>(CAT->getSize().getZExtValue());
975   }
976   return maxElements;
977 }
978 
979 int InitListChecker::numStructUnionElements(QualType DeclType) {
980   RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl();
981   int InitializableMembers = 0;
982   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl))
983     InitializableMembers += CXXRD->getNumBases();
984   for (const auto *Field : structDecl->fields())
985     if (!Field->isUnnamedBitfield())
986       ++InitializableMembers;
987 
988   if (structDecl->isUnion())
989     return std::min(InitializableMembers, 1);
990   return InitializableMembers - structDecl->hasFlexibleArrayMember();
991 }
992 
993 /// Determine whether Entity is an entity for which it is idiomatic to elide
994 /// the braces in aggregate initialization.
995 static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) {
996   // Recursive initialization of the one and only field within an aggregate
997   // class is considered idiomatic. This case arises in particular for
998   // initialization of std::array, where the C++ standard suggests the idiom of
999   //
1000   //   std::array<T, N> arr = {1, 2, 3};
1001   //
1002   // (where std::array is an aggregate struct containing a single array field.
1003 
1004   // FIXME: Should aggregate initialization of a struct with a single
1005   // base class and no members also suppress the warning?
1006   if (Entity.getKind() != InitializedEntity::EK_Member || !Entity.getParent())
1007     return false;
1008 
1009   auto *ParentRD =
1010       Entity.getParent()->getType()->castAs<RecordType>()->getDecl();
1011   if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(ParentRD))
1012     if (CXXRD->getNumBases())
1013       return false;
1014 
1015   auto FieldIt = ParentRD->field_begin();
1016   assert(FieldIt != ParentRD->field_end() &&
1017          "no fields but have initializer for member?");
1018   return ++FieldIt == ParentRD->field_end();
1019 }
1020 
1021 /// Check whether the range of the initializer \p ParentIList from element
1022 /// \p Index onwards can be used to initialize an object of type \p T. Update
1023 /// \p Index to indicate how many elements of the list were consumed.
1024 ///
1025 /// This also fills in \p StructuredList, from element \p StructuredIndex
1026 /// onwards, with the fully-braced, desugared form of the initialization.
1027 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
1028                                             InitListExpr *ParentIList,
1029                                             QualType T, unsigned &Index,
1030                                             InitListExpr *StructuredList,
1031                                             unsigned &StructuredIndex) {
1032   int maxElements = 0;
1033 
1034   if (T->isArrayType())
1035     maxElements = numArrayElements(T);
1036   else if (T->isRecordType())
1037     maxElements = numStructUnionElements(T);
1038   else if (T->isVectorType())
1039     maxElements = T->castAs<VectorType>()->getNumElements();
1040   else
1041     llvm_unreachable("CheckImplicitInitList(): Illegal type");
1042 
1043   if (maxElements == 0) {
1044     if (!VerifyOnly)
1045       SemaRef.Diag(ParentIList->getInit(Index)->getBeginLoc(),
1046                    diag::err_implicit_empty_initializer);
1047     ++Index;
1048     hadError = true;
1049     return;
1050   }
1051 
1052   // Build a structured initializer list corresponding to this subobject.
1053   InitListExpr *StructuredSubobjectInitList = getStructuredSubobjectInit(
1054       ParentIList, Index, T, StructuredList, StructuredIndex,
1055       SourceRange(ParentIList->getInit(Index)->getBeginLoc(),
1056                   ParentIList->getSourceRange().getEnd()));
1057   unsigned StructuredSubobjectInitIndex = 0;
1058 
1059   // Check the element types and build the structural subobject.
1060   unsigned StartIndex = Index;
1061   CheckListElementTypes(Entity, ParentIList, T,
1062                         /*SubobjectIsDesignatorContext=*/false, Index,
1063                         StructuredSubobjectInitList,
1064                         StructuredSubobjectInitIndex);
1065 
1066   if (StructuredSubobjectInitList) {
1067     StructuredSubobjectInitList->setType(T);
1068 
1069     unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
1070     // Update the structured sub-object initializer so that it's ending
1071     // range corresponds with the end of the last initializer it used.
1072     if (EndIndex < ParentIList->getNumInits() &&
1073         ParentIList->getInit(EndIndex)) {
1074       SourceLocation EndLoc
1075         = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
1076       StructuredSubobjectInitList->setRBraceLoc(EndLoc);
1077     }
1078 
1079     // Complain about missing braces.
1080     if (!VerifyOnly && (T->isArrayType() || T->isRecordType()) &&
1081         !ParentIList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) &&
1082         !isIdiomaticBraceElisionEntity(Entity)) {
1083       SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
1084                    diag::warn_missing_braces)
1085           << StructuredSubobjectInitList->getSourceRange()
1086           << FixItHint::CreateInsertion(
1087                  StructuredSubobjectInitList->getBeginLoc(), "{")
1088           << FixItHint::CreateInsertion(
1089                  SemaRef.getLocForEndOfToken(
1090                      StructuredSubobjectInitList->getEndLoc()),
1091                  "}");
1092     }
1093 
1094     // Warn if this type won't be an aggregate in future versions of C++.
1095     auto *CXXRD = T->getAsCXXRecordDecl();
1096     if (!VerifyOnly && CXXRD && CXXRD->hasUserDeclaredConstructor()) {
1097       SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
1098                    diag::warn_cxx20_compat_aggregate_init_with_ctors)
1099           << StructuredSubobjectInitList->getSourceRange() << T;
1100     }
1101   }
1102 }
1103 
1104 /// Warn that \p Entity was of scalar type and was initialized by a
1105 /// single-element braced initializer list.
1106 static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity,
1107                                  SourceRange Braces) {
1108   // Don't warn during template instantiation. If the initialization was
1109   // non-dependent, we warned during the initial parse; otherwise, the
1110   // type might not be scalar in some uses of the template.
1111   if (S.inTemplateInstantiation())
1112     return;
1113 
1114   unsigned DiagID = 0;
1115 
1116   switch (Entity.getKind()) {
1117   case InitializedEntity::EK_VectorElement:
1118   case InitializedEntity::EK_ComplexElement:
1119   case InitializedEntity::EK_ArrayElement:
1120   case InitializedEntity::EK_Parameter:
1121   case InitializedEntity::EK_Parameter_CF_Audited:
1122   case InitializedEntity::EK_Result:
1123     // Extra braces here are suspicious.
1124     DiagID = diag::warn_braces_around_init;
1125     break;
1126 
1127   case InitializedEntity::EK_Member:
1128     // Warn on aggregate initialization but not on ctor init list or
1129     // default member initializer.
1130     if (Entity.getParent())
1131       DiagID = diag::warn_braces_around_init;
1132     break;
1133 
1134   case InitializedEntity::EK_Variable:
1135   case InitializedEntity::EK_LambdaCapture:
1136     // No warning, might be direct-list-initialization.
1137     // FIXME: Should we warn for copy-list-initialization in these cases?
1138     break;
1139 
1140   case InitializedEntity::EK_New:
1141   case InitializedEntity::EK_Temporary:
1142   case InitializedEntity::EK_CompoundLiteralInit:
1143     // No warning, braces are part of the syntax of the underlying construct.
1144     break;
1145 
1146   case InitializedEntity::EK_RelatedResult:
1147     // No warning, we already warned when initializing the result.
1148     break;
1149 
1150   case InitializedEntity::EK_Exception:
1151   case InitializedEntity::EK_Base:
1152   case InitializedEntity::EK_Delegating:
1153   case InitializedEntity::EK_BlockElement:
1154   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
1155   case InitializedEntity::EK_Binding:
1156   case InitializedEntity::EK_StmtExprResult:
1157     llvm_unreachable("unexpected braced scalar init");
1158   }
1159 
1160   if (DiagID) {
1161     S.Diag(Braces.getBegin(), DiagID)
1162         << Entity.getType()->isSizelessBuiltinType() << Braces
1163         << FixItHint::CreateRemoval(Braces.getBegin())
1164         << FixItHint::CreateRemoval(Braces.getEnd());
1165   }
1166 }
1167 
1168 /// Check whether the initializer \p IList (that was written with explicit
1169 /// braces) can be used to initialize an object of type \p T.
1170 ///
1171 /// This also fills in \p StructuredList with the fully-braced, desugared
1172 /// form of the initialization.
1173 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
1174                                             InitListExpr *IList, QualType &T,
1175                                             InitListExpr *StructuredList,
1176                                             bool TopLevelObject) {
1177   unsigned Index = 0, StructuredIndex = 0;
1178   CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
1179                         Index, StructuredList, StructuredIndex, TopLevelObject);
1180   if (StructuredList) {
1181     QualType ExprTy = T;
1182     if (!ExprTy->isArrayType())
1183       ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
1184     if (!VerifyOnly)
1185       IList->setType(ExprTy);
1186     StructuredList->setType(ExprTy);
1187   }
1188   if (hadError)
1189     return;
1190 
1191   // Don't complain for incomplete types, since we'll get an error elsewhere.
1192   if (Index < IList->getNumInits() && !T->isIncompleteType()) {
1193     // We have leftover initializers
1194     bool ExtraInitsIsError = SemaRef.getLangOpts().CPlusPlus ||
1195           (SemaRef.getLangOpts().OpenCL && T->isVectorType());
1196     hadError = ExtraInitsIsError;
1197     if (VerifyOnly) {
1198       return;
1199     } else if (StructuredIndex == 1 &&
1200                IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) ==
1201                    SIF_None) {
1202       unsigned DK =
1203           ExtraInitsIsError
1204               ? diag::err_excess_initializers_in_char_array_initializer
1205               : diag::ext_excess_initializers_in_char_array_initializer;
1206       SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1207           << IList->getInit(Index)->getSourceRange();
1208     } else if (T->isSizelessBuiltinType()) {
1209       unsigned DK = ExtraInitsIsError
1210                         ? diag::err_excess_initializers_for_sizeless_type
1211                         : diag::ext_excess_initializers_for_sizeless_type;
1212       SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1213           << T << IList->getInit(Index)->getSourceRange();
1214     } else {
1215       int initKind = T->isArrayType() ? 0 :
1216                      T->isVectorType() ? 1 :
1217                      T->isScalarType() ? 2 :
1218                      T->isUnionType() ? 3 :
1219                      4;
1220 
1221       unsigned DK = ExtraInitsIsError ? diag::err_excess_initializers
1222                                       : diag::ext_excess_initializers;
1223       SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1224           << initKind << IList->getInit(Index)->getSourceRange();
1225     }
1226   }
1227 
1228   if (!VerifyOnly) {
1229     if (T->isScalarType() && IList->getNumInits() == 1 &&
1230         !isa<InitListExpr>(IList->getInit(0)))
1231       warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange());
1232 
1233     // Warn if this is a class type that won't be an aggregate in future
1234     // versions of C++.
1235     auto *CXXRD = T->getAsCXXRecordDecl();
1236     if (CXXRD && CXXRD->hasUserDeclaredConstructor()) {
1237       // Don't warn if there's an equivalent default constructor that would be
1238       // used instead.
1239       bool HasEquivCtor = false;
1240       if (IList->getNumInits() == 0) {
1241         auto *CD = SemaRef.LookupDefaultConstructor(CXXRD);
1242         HasEquivCtor = CD && !CD->isDeleted();
1243       }
1244 
1245       if (!HasEquivCtor) {
1246         SemaRef.Diag(IList->getBeginLoc(),
1247                      diag::warn_cxx20_compat_aggregate_init_with_ctors)
1248             << IList->getSourceRange() << T;
1249       }
1250     }
1251   }
1252 }
1253 
1254 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
1255                                             InitListExpr *IList,
1256                                             QualType &DeclType,
1257                                             bool SubobjectIsDesignatorContext,
1258                                             unsigned &Index,
1259                                             InitListExpr *StructuredList,
1260                                             unsigned &StructuredIndex,
1261                                             bool TopLevelObject) {
1262   if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
1263     // Explicitly braced initializer for complex type can be real+imaginary
1264     // parts.
1265     CheckComplexType(Entity, IList, DeclType, Index,
1266                      StructuredList, StructuredIndex);
1267   } else if (DeclType->isScalarType()) {
1268     CheckScalarType(Entity, IList, DeclType, Index,
1269                     StructuredList, StructuredIndex);
1270   } else if (DeclType->isVectorType()) {
1271     CheckVectorType(Entity, IList, DeclType, Index,
1272                     StructuredList, StructuredIndex);
1273   } else if (DeclType->isRecordType()) {
1274     assert(DeclType->isAggregateType() &&
1275            "non-aggregate records should be handed in CheckSubElementType");
1276     RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl();
1277     auto Bases =
1278         CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
1279                                         CXXRecordDecl::base_class_iterator());
1280     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1281       Bases = CXXRD->bases();
1282     CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(),
1283                           SubobjectIsDesignatorContext, Index, StructuredList,
1284                           StructuredIndex, TopLevelObject);
1285   } else if (DeclType->isArrayType()) {
1286     llvm::APSInt Zero(
1287                     SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
1288                     false);
1289     CheckArrayType(Entity, IList, DeclType, Zero,
1290                    SubobjectIsDesignatorContext, Index,
1291                    StructuredList, StructuredIndex);
1292   } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
1293     // This type is invalid, issue a diagnostic.
1294     ++Index;
1295     if (!VerifyOnly)
1296       SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
1297           << DeclType;
1298     hadError = true;
1299   } else if (DeclType->isReferenceType()) {
1300     CheckReferenceType(Entity, IList, DeclType, Index,
1301                        StructuredList, StructuredIndex);
1302   } else if (DeclType->isObjCObjectType()) {
1303     if (!VerifyOnly)
1304       SemaRef.Diag(IList->getBeginLoc(), diag::err_init_objc_class) << DeclType;
1305     hadError = true;
1306   } else if (DeclType->isOCLIntelSubgroupAVCType() ||
1307              DeclType->isSizelessBuiltinType()) {
1308     // Checks for scalar type are sufficient for these types too.
1309     CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1310                     StructuredIndex);
1311   } else {
1312     if (!VerifyOnly)
1313       SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
1314           << DeclType;
1315     hadError = true;
1316   }
1317 }
1318 
1319 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
1320                                           InitListExpr *IList,
1321                                           QualType ElemType,
1322                                           unsigned &Index,
1323                                           InitListExpr *StructuredList,
1324                                           unsigned &StructuredIndex) {
1325   Expr *expr = IList->getInit(Index);
1326 
1327   if (ElemType->isReferenceType())
1328     return CheckReferenceType(Entity, IList, ElemType, Index,
1329                               StructuredList, StructuredIndex);
1330 
1331   if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
1332     if (SubInitList->getNumInits() == 1 &&
1333         IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) ==
1334         SIF_None) {
1335       // FIXME: It would be more faithful and no less correct to include an
1336       // InitListExpr in the semantic form of the initializer list in this case.
1337       expr = SubInitList->getInit(0);
1338     }
1339     // Nested aggregate initialization and C++ initialization are handled later.
1340   } else if (isa<ImplicitValueInitExpr>(expr)) {
1341     // This happens during template instantiation when we see an InitListExpr
1342     // that we've already checked once.
1343     assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) &&
1344            "found implicit initialization for the wrong type");
1345     UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1346     ++Index;
1347     return;
1348   }
1349 
1350   if (SemaRef.getLangOpts().CPlusPlus || isa<InitListExpr>(expr)) {
1351     // C++ [dcl.init.aggr]p2:
1352     //   Each member is copy-initialized from the corresponding
1353     //   initializer-clause.
1354 
1355     // FIXME: Better EqualLoc?
1356     InitializationKind Kind =
1357         InitializationKind::CreateCopy(expr->getBeginLoc(), SourceLocation());
1358 
1359     // Vector elements can be initialized from other vectors in which case
1360     // we need initialization entity with a type of a vector (and not a vector
1361     // element!) initializing multiple vector elements.
1362     auto TmpEntity =
1363         (ElemType->isExtVectorType() && !Entity.getType()->isExtVectorType())
1364             ? InitializedEntity::InitializeTemporary(ElemType)
1365             : Entity;
1366 
1367     InitializationSequence Seq(SemaRef, TmpEntity, Kind, expr,
1368                                /*TopLevelOfInitList*/ true);
1369 
1370     // C++14 [dcl.init.aggr]p13:
1371     //   If the assignment-expression can initialize a member, the member is
1372     //   initialized. Otherwise [...] brace elision is assumed
1373     //
1374     // Brace elision is never performed if the element is not an
1375     // assignment-expression.
1376     if (Seq || isa<InitListExpr>(expr)) {
1377       if (!VerifyOnly) {
1378         ExprResult Result = Seq.Perform(SemaRef, TmpEntity, Kind, expr);
1379         if (Result.isInvalid())
1380           hadError = true;
1381 
1382         UpdateStructuredListElement(StructuredList, StructuredIndex,
1383                                     Result.getAs<Expr>());
1384       } else if (!Seq) {
1385         hadError = true;
1386       } else if (StructuredList) {
1387         UpdateStructuredListElement(StructuredList, StructuredIndex,
1388                                     getDummyInit());
1389       }
1390       ++Index;
1391       return;
1392     }
1393 
1394     // Fall through for subaggregate initialization
1395   } else if (ElemType->isScalarType() || ElemType->isAtomicType()) {
1396     // FIXME: Need to handle atomic aggregate types with implicit init lists.
1397     return CheckScalarType(Entity, IList, ElemType, Index,
1398                            StructuredList, StructuredIndex);
1399   } else if (const ArrayType *arrayType =
1400                  SemaRef.Context.getAsArrayType(ElemType)) {
1401     // arrayType can be incomplete if we're initializing a flexible
1402     // array member.  There's nothing we can do with the completed
1403     // type here, though.
1404 
1405     if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) {
1406       // FIXME: Should we do this checking in verify-only mode?
1407       if (!VerifyOnly)
1408         CheckStringInit(expr, ElemType, arrayType, SemaRef);
1409       if (StructuredList)
1410         UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1411       ++Index;
1412       return;
1413     }
1414 
1415     // Fall through for subaggregate initialization.
1416 
1417   } else {
1418     assert((ElemType->isRecordType() || ElemType->isVectorType() ||
1419             ElemType->isOpenCLSpecificType()) && "Unexpected type");
1420 
1421     // C99 6.7.8p13:
1422     //
1423     //   The initializer for a structure or union object that has
1424     //   automatic storage duration shall be either an initializer
1425     //   list as described below, or a single expression that has
1426     //   compatible structure or union type. In the latter case, the
1427     //   initial value of the object, including unnamed members, is
1428     //   that of the expression.
1429     ExprResult ExprRes = expr;
1430     if (SemaRef.CheckSingleAssignmentConstraints(
1431             ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) {
1432       if (ExprRes.isInvalid())
1433         hadError = true;
1434       else {
1435         ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get());
1436         if (ExprRes.isInvalid())
1437           hadError = true;
1438       }
1439       UpdateStructuredListElement(StructuredList, StructuredIndex,
1440                                   ExprRes.getAs<Expr>());
1441       ++Index;
1442       return;
1443     }
1444     ExprRes.get();
1445     // Fall through for subaggregate initialization
1446   }
1447 
1448   // C++ [dcl.init.aggr]p12:
1449   //
1450   //   [...] Otherwise, if the member is itself a non-empty
1451   //   subaggregate, brace elision is assumed and the initializer is
1452   //   considered for the initialization of the first member of
1453   //   the subaggregate.
1454   // OpenCL vector initializer is handled elsewhere.
1455   if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) ||
1456       ElemType->isAggregateType()) {
1457     CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
1458                           StructuredIndex);
1459     ++StructuredIndex;
1460   } else {
1461     if (!VerifyOnly) {
1462       // We cannot initialize this element, so let PerformCopyInitialization
1463       // produce the appropriate diagnostic. We already checked that this
1464       // initialization will fail.
1465       ExprResult Copy =
1466           SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr,
1467                                             /*TopLevelOfInitList=*/true);
1468       (void)Copy;
1469       assert(Copy.isInvalid() &&
1470              "expected non-aggregate initialization to fail");
1471     }
1472     hadError = true;
1473     ++Index;
1474     ++StructuredIndex;
1475   }
1476 }
1477 
1478 void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
1479                                        InitListExpr *IList, QualType DeclType,
1480                                        unsigned &Index,
1481                                        InitListExpr *StructuredList,
1482                                        unsigned &StructuredIndex) {
1483   assert(Index == 0 && "Index in explicit init list must be zero");
1484 
1485   // As an extension, clang supports complex initializers, which initialize
1486   // a complex number component-wise.  When an explicit initializer list for
1487   // a complex number contains two two initializers, this extension kicks in:
1488   // it exepcts the initializer list to contain two elements convertible to
1489   // the element type of the complex type. The first element initializes
1490   // the real part, and the second element intitializes the imaginary part.
1491 
1492   if (IList->getNumInits() != 2)
1493     return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1494                            StructuredIndex);
1495 
1496   // This is an extension in C.  (The builtin _Complex type does not exist
1497   // in the C++ standard.)
1498   if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
1499     SemaRef.Diag(IList->getBeginLoc(), diag::ext_complex_component_init)
1500         << IList->getSourceRange();
1501 
1502   // Initialize the complex number.
1503   QualType elementType = DeclType->castAs<ComplexType>()->getElementType();
1504   InitializedEntity ElementEntity =
1505     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1506 
1507   for (unsigned i = 0; i < 2; ++i) {
1508     ElementEntity.setElementIndex(Index);
1509     CheckSubElementType(ElementEntity, IList, elementType, Index,
1510                         StructuredList, StructuredIndex);
1511   }
1512 }
1513 
1514 void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
1515                                       InitListExpr *IList, QualType DeclType,
1516                                       unsigned &Index,
1517                                       InitListExpr *StructuredList,
1518                                       unsigned &StructuredIndex) {
1519   if (Index >= IList->getNumInits()) {
1520     if (!VerifyOnly) {
1521       if (DeclType->isSizelessBuiltinType())
1522         SemaRef.Diag(IList->getBeginLoc(),
1523                      SemaRef.getLangOpts().CPlusPlus11
1524                          ? diag::warn_cxx98_compat_empty_sizeless_initializer
1525                          : diag::err_empty_sizeless_initializer)
1526             << DeclType << IList->getSourceRange();
1527       else
1528         SemaRef.Diag(IList->getBeginLoc(),
1529                      SemaRef.getLangOpts().CPlusPlus11
1530                          ? diag::warn_cxx98_compat_empty_scalar_initializer
1531                          : diag::err_empty_scalar_initializer)
1532             << IList->getSourceRange();
1533     }
1534     hadError = !SemaRef.getLangOpts().CPlusPlus11;
1535     ++Index;
1536     ++StructuredIndex;
1537     return;
1538   }
1539 
1540   Expr *expr = IList->getInit(Index);
1541   if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
1542     // FIXME: This is invalid, and accepting it causes overload resolution
1543     // to pick the wrong overload in some corner cases.
1544     if (!VerifyOnly)
1545       SemaRef.Diag(SubIList->getBeginLoc(), diag::ext_many_braces_around_init)
1546           << DeclType->isSizelessBuiltinType() << SubIList->getSourceRange();
1547 
1548     CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
1549                     StructuredIndex);
1550     return;
1551   } else if (isa<DesignatedInitExpr>(expr)) {
1552     if (!VerifyOnly)
1553       SemaRef.Diag(expr->getBeginLoc(),
1554                    diag::err_designator_for_scalar_or_sizeless_init)
1555           << DeclType->isSizelessBuiltinType() << DeclType
1556           << expr->getSourceRange();
1557     hadError = true;
1558     ++Index;
1559     ++StructuredIndex;
1560     return;
1561   }
1562 
1563   ExprResult Result;
1564   if (VerifyOnly) {
1565     if (SemaRef.CanPerformCopyInitialization(Entity, expr))
1566       Result = getDummyInit();
1567     else
1568       Result = ExprError();
1569   } else {
1570     Result =
1571         SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
1572                                           /*TopLevelOfInitList=*/true);
1573   }
1574 
1575   Expr *ResultExpr = nullptr;
1576 
1577   if (Result.isInvalid())
1578     hadError = true; // types weren't compatible.
1579   else {
1580     ResultExpr = Result.getAs<Expr>();
1581 
1582     if (ResultExpr != expr && !VerifyOnly) {
1583       // The type was promoted, update initializer list.
1584       // FIXME: Why are we updating the syntactic init list?
1585       IList->setInit(Index, ResultExpr);
1586     }
1587   }
1588   UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1589   ++Index;
1590 }
1591 
1592 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
1593                                          InitListExpr *IList, QualType DeclType,
1594                                          unsigned &Index,
1595                                          InitListExpr *StructuredList,
1596                                          unsigned &StructuredIndex) {
1597   if (Index >= IList->getNumInits()) {
1598     // FIXME: It would be wonderful if we could point at the actual member. In
1599     // general, it would be useful to pass location information down the stack,
1600     // so that we know the location (or decl) of the "current object" being
1601     // initialized.
1602     if (!VerifyOnly)
1603       SemaRef.Diag(IList->getBeginLoc(),
1604                    diag::err_init_reference_member_uninitialized)
1605           << DeclType << IList->getSourceRange();
1606     hadError = true;
1607     ++Index;
1608     ++StructuredIndex;
1609     return;
1610   }
1611 
1612   Expr *expr = IList->getInit(Index);
1613   if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
1614     if (!VerifyOnly)
1615       SemaRef.Diag(IList->getBeginLoc(), diag::err_init_non_aggr_init_list)
1616           << DeclType << IList->getSourceRange();
1617     hadError = true;
1618     ++Index;
1619     ++StructuredIndex;
1620     return;
1621   }
1622 
1623   ExprResult Result;
1624   if (VerifyOnly) {
1625     if (SemaRef.CanPerformCopyInitialization(Entity,expr))
1626       Result = getDummyInit();
1627     else
1628       Result = ExprError();
1629   } else {
1630     Result =
1631         SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
1632                                           /*TopLevelOfInitList=*/true);
1633   }
1634 
1635   if (Result.isInvalid())
1636     hadError = true;
1637 
1638   expr = Result.getAs<Expr>();
1639   // FIXME: Why are we updating the syntactic init list?
1640   if (!VerifyOnly && expr)
1641     IList->setInit(Index, expr);
1642 
1643   UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1644   ++Index;
1645 }
1646 
1647 void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1648                                       InitListExpr *IList, QualType DeclType,
1649                                       unsigned &Index,
1650                                       InitListExpr *StructuredList,
1651                                       unsigned &StructuredIndex) {
1652   const VectorType *VT = DeclType->castAs<VectorType>();
1653   unsigned maxElements = VT->getNumElements();
1654   unsigned numEltsInit = 0;
1655   QualType elementType = VT->getElementType();
1656 
1657   if (Index >= IList->getNumInits()) {
1658     // Make sure the element type can be value-initialized.
1659     CheckEmptyInitializable(
1660         InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1661         IList->getEndLoc());
1662     return;
1663   }
1664 
1665   if (!SemaRef.getLangOpts().OpenCL) {
1666     // If the initializing element is a vector, try to copy-initialize
1667     // instead of breaking it apart (which is doomed to failure anyway).
1668     Expr *Init = IList->getInit(Index);
1669     if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1670       ExprResult Result;
1671       if (VerifyOnly) {
1672         if (SemaRef.CanPerformCopyInitialization(Entity, Init))
1673           Result = getDummyInit();
1674         else
1675           Result = ExprError();
1676       } else {
1677         Result =
1678             SemaRef.PerformCopyInitialization(Entity, Init->getBeginLoc(), Init,
1679                                               /*TopLevelOfInitList=*/true);
1680       }
1681 
1682       Expr *ResultExpr = nullptr;
1683       if (Result.isInvalid())
1684         hadError = true; // types weren't compatible.
1685       else {
1686         ResultExpr = Result.getAs<Expr>();
1687 
1688         if (ResultExpr != Init && !VerifyOnly) {
1689           // The type was promoted, update initializer list.
1690           // FIXME: Why are we updating the syntactic init list?
1691           IList->setInit(Index, ResultExpr);
1692         }
1693       }
1694       UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1695       ++Index;
1696       return;
1697     }
1698 
1699     InitializedEntity ElementEntity =
1700       InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1701 
1702     for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1703       // Don't attempt to go past the end of the init list
1704       if (Index >= IList->getNumInits()) {
1705         CheckEmptyInitializable(ElementEntity, IList->getEndLoc());
1706         break;
1707       }
1708 
1709       ElementEntity.setElementIndex(Index);
1710       CheckSubElementType(ElementEntity, IList, elementType, Index,
1711                           StructuredList, StructuredIndex);
1712     }
1713 
1714     if (VerifyOnly)
1715       return;
1716 
1717     bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian();
1718     const VectorType *T = Entity.getType()->castAs<VectorType>();
1719     if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector ||
1720                         T->getVectorKind() == VectorType::NeonPolyVector)) {
1721       // The ability to use vector initializer lists is a GNU vector extension
1722       // and is unrelated to the NEON intrinsics in arm_neon.h. On little
1723       // endian machines it works fine, however on big endian machines it
1724       // exhibits surprising behaviour:
1725       //
1726       //   uint32x2_t x = {42, 64};
1727       //   return vget_lane_u32(x, 0); // Will return 64.
1728       //
1729       // Because of this, explicitly call out that it is non-portable.
1730       //
1731       SemaRef.Diag(IList->getBeginLoc(),
1732                    diag::warn_neon_vector_initializer_non_portable);
1733 
1734       const char *typeCode;
1735       unsigned typeSize = SemaRef.Context.getTypeSize(elementType);
1736 
1737       if (elementType->isFloatingType())
1738         typeCode = "f";
1739       else if (elementType->isSignedIntegerType())
1740         typeCode = "s";
1741       else if (elementType->isUnsignedIntegerType())
1742         typeCode = "u";
1743       else
1744         llvm_unreachable("Invalid element type!");
1745 
1746       SemaRef.Diag(IList->getBeginLoc(),
1747                    SemaRef.Context.getTypeSize(VT) > 64
1748                        ? diag::note_neon_vector_initializer_non_portable_q
1749                        : diag::note_neon_vector_initializer_non_portable)
1750           << typeCode << typeSize;
1751     }
1752 
1753     return;
1754   }
1755 
1756   InitializedEntity ElementEntity =
1757     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1758 
1759   // OpenCL initializers allows vectors to be constructed from vectors.
1760   for (unsigned i = 0; i < maxElements; ++i) {
1761     // Don't attempt to go past the end of the init list
1762     if (Index >= IList->getNumInits())
1763       break;
1764 
1765     ElementEntity.setElementIndex(Index);
1766 
1767     QualType IType = IList->getInit(Index)->getType();
1768     if (!IType->isVectorType()) {
1769       CheckSubElementType(ElementEntity, IList, elementType, Index,
1770                           StructuredList, StructuredIndex);
1771       ++numEltsInit;
1772     } else {
1773       QualType VecType;
1774       const VectorType *IVT = IType->castAs<VectorType>();
1775       unsigned numIElts = IVT->getNumElements();
1776 
1777       if (IType->isExtVectorType())
1778         VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1779       else
1780         VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1781                                                 IVT->getVectorKind());
1782       CheckSubElementType(ElementEntity, IList, VecType, Index,
1783                           StructuredList, StructuredIndex);
1784       numEltsInit += numIElts;
1785     }
1786   }
1787 
1788   // OpenCL requires all elements to be initialized.
1789   if (numEltsInit != maxElements) {
1790     if (!VerifyOnly)
1791       SemaRef.Diag(IList->getBeginLoc(),
1792                    diag::err_vector_incorrect_num_initializers)
1793           << (numEltsInit < maxElements) << maxElements << numEltsInit;
1794     hadError = true;
1795   }
1796 }
1797 
1798 /// Check if the type of a class element has an accessible destructor, and marks
1799 /// it referenced. Returns true if we shouldn't form a reference to the
1800 /// destructor.
1801 ///
1802 /// Aggregate initialization requires a class element's destructor be
1803 /// accessible per 11.6.1 [dcl.init.aggr]:
1804 ///
1805 /// The destructor for each element of class type is potentially invoked
1806 /// (15.4 [class.dtor]) from the context where the aggregate initialization
1807 /// occurs.
1808 static bool checkDestructorReference(QualType ElementType, SourceLocation Loc,
1809                                      Sema &SemaRef) {
1810   auto *CXXRD = ElementType->getAsCXXRecordDecl();
1811   if (!CXXRD)
1812     return false;
1813 
1814   CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(CXXRD);
1815   SemaRef.CheckDestructorAccess(Loc, Destructor,
1816                                 SemaRef.PDiag(diag::err_access_dtor_temp)
1817                                 << ElementType);
1818   SemaRef.MarkFunctionReferenced(Loc, Destructor);
1819   return SemaRef.DiagnoseUseOfDecl(Destructor, Loc);
1820 }
1821 
1822 void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1823                                      InitListExpr *IList, QualType &DeclType,
1824                                      llvm::APSInt elementIndex,
1825                                      bool SubobjectIsDesignatorContext,
1826                                      unsigned &Index,
1827                                      InitListExpr *StructuredList,
1828                                      unsigned &StructuredIndex) {
1829   const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1830 
1831   if (!VerifyOnly) {
1832     if (checkDestructorReference(arrayType->getElementType(),
1833                                  IList->getEndLoc(), SemaRef)) {
1834       hadError = true;
1835       return;
1836     }
1837   }
1838 
1839   // Check for the special-case of initializing an array with a string.
1840   if (Index < IList->getNumInits()) {
1841     if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) ==
1842         SIF_None) {
1843       // We place the string literal directly into the resulting
1844       // initializer list. This is the only place where the structure
1845       // of the structured initializer list doesn't match exactly,
1846       // because doing so would involve allocating one character
1847       // constant for each string.
1848       // FIXME: Should we do these checks in verify-only mode too?
1849       if (!VerifyOnly)
1850         CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef);
1851       if (StructuredList) {
1852         UpdateStructuredListElement(StructuredList, StructuredIndex,
1853                                     IList->getInit(Index));
1854         StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1855       }
1856       ++Index;
1857       return;
1858     }
1859   }
1860   if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1861     // Check for VLAs; in standard C it would be possible to check this
1862     // earlier, but I don't know where clang accepts VLAs (gcc accepts
1863     // them in all sorts of strange places).
1864     if (!VerifyOnly)
1865       SemaRef.Diag(VAT->getSizeExpr()->getBeginLoc(),
1866                    diag::err_variable_object_no_init)
1867           << VAT->getSizeExpr()->getSourceRange();
1868     hadError = true;
1869     ++Index;
1870     ++StructuredIndex;
1871     return;
1872   }
1873 
1874   // We might know the maximum number of elements in advance.
1875   llvm::APSInt maxElements(elementIndex.getBitWidth(),
1876                            elementIndex.isUnsigned());
1877   bool maxElementsKnown = false;
1878   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1879     maxElements = CAT->getSize();
1880     elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1881     elementIndex.setIsUnsigned(maxElements.isUnsigned());
1882     maxElementsKnown = true;
1883   }
1884 
1885   QualType elementType = arrayType->getElementType();
1886   while (Index < IList->getNumInits()) {
1887     Expr *Init = IList->getInit(Index);
1888     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1889       // If we're not the subobject that matches up with the '{' for
1890       // the designator, we shouldn't be handling the
1891       // designator. Return immediately.
1892       if (!SubobjectIsDesignatorContext)
1893         return;
1894 
1895       // Handle this designated initializer. elementIndex will be
1896       // updated to be the next array element we'll initialize.
1897       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1898                                      DeclType, nullptr, &elementIndex, Index,
1899                                      StructuredList, StructuredIndex, true,
1900                                      false)) {
1901         hadError = true;
1902         continue;
1903       }
1904 
1905       if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1906         maxElements = maxElements.extend(elementIndex.getBitWidth());
1907       else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1908         elementIndex = elementIndex.extend(maxElements.getBitWidth());
1909       elementIndex.setIsUnsigned(maxElements.isUnsigned());
1910 
1911       // If the array is of incomplete type, keep track of the number of
1912       // elements in the initializer.
1913       if (!maxElementsKnown && elementIndex > maxElements)
1914         maxElements = elementIndex;
1915 
1916       continue;
1917     }
1918 
1919     // If we know the maximum number of elements, and we've already
1920     // hit it, stop consuming elements in the initializer list.
1921     if (maxElementsKnown && elementIndex == maxElements)
1922       break;
1923 
1924     InitializedEntity ElementEntity =
1925       InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1926                                            Entity);
1927     // Check this element.
1928     CheckSubElementType(ElementEntity, IList, elementType, Index,
1929                         StructuredList, StructuredIndex);
1930     ++elementIndex;
1931 
1932     // If the array is of incomplete type, keep track of the number of
1933     // elements in the initializer.
1934     if (!maxElementsKnown && elementIndex > maxElements)
1935       maxElements = elementIndex;
1936   }
1937   if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1938     // If this is an incomplete array type, the actual type needs to
1939     // be calculated here.
1940     llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1941     if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) {
1942       // Sizing an array implicitly to zero is not allowed by ISO C,
1943       // but is supported by GNU.
1944       SemaRef.Diag(IList->getBeginLoc(), diag::ext_typecheck_zero_array_size);
1945     }
1946 
1947     DeclType = SemaRef.Context.getConstantArrayType(
1948         elementType, maxElements, nullptr, ArrayType::Normal, 0);
1949   }
1950   if (!hadError) {
1951     // If there are any members of the array that get value-initialized, check
1952     // that is possible. That happens if we know the bound and don't have
1953     // enough elements, or if we're performing an array new with an unknown
1954     // bound.
1955     if ((maxElementsKnown && elementIndex < maxElements) ||
1956         Entity.isVariableLengthArrayNew())
1957       CheckEmptyInitializable(
1958           InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1959           IList->getEndLoc());
1960   }
1961 }
1962 
1963 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1964                                              Expr *InitExpr,
1965                                              FieldDecl *Field,
1966                                              bool TopLevelObject) {
1967   // Handle GNU flexible array initializers.
1968   unsigned FlexArrayDiag;
1969   if (isa<InitListExpr>(InitExpr) &&
1970       cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
1971     // Empty flexible array init always allowed as an extension
1972     FlexArrayDiag = diag::ext_flexible_array_init;
1973   } else if (SemaRef.getLangOpts().CPlusPlus) {
1974     // Disallow flexible array init in C++; it is not required for gcc
1975     // compatibility, and it needs work to IRGen correctly in general.
1976     FlexArrayDiag = diag::err_flexible_array_init;
1977   } else if (!TopLevelObject) {
1978     // Disallow flexible array init on non-top-level object
1979     FlexArrayDiag = diag::err_flexible_array_init;
1980   } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
1981     // Disallow flexible array init on anything which is not a variable.
1982     FlexArrayDiag = diag::err_flexible_array_init;
1983   } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
1984     // Disallow flexible array init on local variables.
1985     FlexArrayDiag = diag::err_flexible_array_init;
1986   } else {
1987     // Allow other cases.
1988     FlexArrayDiag = diag::ext_flexible_array_init;
1989   }
1990 
1991   if (!VerifyOnly) {
1992     SemaRef.Diag(InitExpr->getBeginLoc(), FlexArrayDiag)
1993         << InitExpr->getBeginLoc();
1994     SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1995       << Field;
1996   }
1997 
1998   return FlexArrayDiag != diag::ext_flexible_array_init;
1999 }
2000 
2001 void InitListChecker::CheckStructUnionTypes(
2002     const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType,
2003     CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field,
2004     bool SubobjectIsDesignatorContext, unsigned &Index,
2005     InitListExpr *StructuredList, unsigned &StructuredIndex,
2006     bool TopLevelObject) {
2007   RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl();
2008 
2009   // If the record is invalid, some of it's members are invalid. To avoid
2010   // confusion, we forgo checking the intializer for the entire record.
2011   if (structDecl->isInvalidDecl()) {
2012     // Assume it was supposed to consume a single initializer.
2013     ++Index;
2014     hadError = true;
2015     return;
2016   }
2017 
2018   if (DeclType->isUnionType() && IList->getNumInits() == 0) {
2019     RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl();
2020 
2021     if (!VerifyOnly)
2022       for (FieldDecl *FD : RD->fields()) {
2023         QualType ET = SemaRef.Context.getBaseElementType(FD->getType());
2024         if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) {
2025           hadError = true;
2026           return;
2027         }
2028       }
2029 
2030     // If there's a default initializer, use it.
2031     if (isa<CXXRecordDecl>(RD) &&
2032         cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
2033       if (!StructuredList)
2034         return;
2035       for (RecordDecl::field_iterator FieldEnd = RD->field_end();
2036            Field != FieldEnd; ++Field) {
2037         if (Field->hasInClassInitializer()) {
2038           StructuredList->setInitializedFieldInUnion(*Field);
2039           // FIXME: Actually build a CXXDefaultInitExpr?
2040           return;
2041         }
2042       }
2043     }
2044 
2045     // Value-initialize the first member of the union that isn't an unnamed
2046     // bitfield.
2047     for (RecordDecl::field_iterator FieldEnd = RD->field_end();
2048          Field != FieldEnd; ++Field) {
2049       if (!Field->isUnnamedBitfield()) {
2050         CheckEmptyInitializable(
2051             InitializedEntity::InitializeMember(*Field, &Entity),
2052             IList->getEndLoc());
2053         if (StructuredList)
2054           StructuredList->setInitializedFieldInUnion(*Field);
2055         break;
2056       }
2057     }
2058     return;
2059   }
2060 
2061   bool InitializedSomething = false;
2062 
2063   // If we have any base classes, they are initialized prior to the fields.
2064   for (auto &Base : Bases) {
2065     Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr;
2066 
2067     // Designated inits always initialize fields, so if we see one, all
2068     // remaining base classes have no explicit initializer.
2069     if (Init && isa<DesignatedInitExpr>(Init))
2070       Init = nullptr;
2071 
2072     SourceLocation InitLoc = Init ? Init->getBeginLoc() : IList->getEndLoc();
2073     InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
2074         SemaRef.Context, &Base, false, &Entity);
2075     if (Init) {
2076       CheckSubElementType(BaseEntity, IList, Base.getType(), Index,
2077                           StructuredList, StructuredIndex);
2078       InitializedSomething = true;
2079     } else {
2080       CheckEmptyInitializable(BaseEntity, InitLoc);
2081     }
2082 
2083     if (!VerifyOnly)
2084       if (checkDestructorReference(Base.getType(), InitLoc, SemaRef)) {
2085         hadError = true;
2086         return;
2087       }
2088   }
2089 
2090   // If structDecl is a forward declaration, this loop won't do
2091   // anything except look at designated initializers; That's okay,
2092   // because an error should get printed out elsewhere. It might be
2093   // worthwhile to skip over the rest of the initializer, though.
2094   RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl();
2095   RecordDecl::field_iterator FieldEnd = RD->field_end();
2096   bool CheckForMissingFields =
2097     !IList->isIdiomaticZeroInitializer(SemaRef.getLangOpts());
2098   bool HasDesignatedInit = false;
2099 
2100   while (Index < IList->getNumInits()) {
2101     Expr *Init = IList->getInit(Index);
2102     SourceLocation InitLoc = Init->getBeginLoc();
2103 
2104     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
2105       // If we're not the subobject that matches up with the '{' for
2106       // the designator, we shouldn't be handling the
2107       // designator. Return immediately.
2108       if (!SubobjectIsDesignatorContext)
2109         return;
2110 
2111       HasDesignatedInit = true;
2112 
2113       // Handle this designated initializer. Field will be updated to
2114       // the next field that we'll be initializing.
2115       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
2116                                      DeclType, &Field, nullptr, Index,
2117                                      StructuredList, StructuredIndex,
2118                                      true, TopLevelObject))
2119         hadError = true;
2120       else if (!VerifyOnly) {
2121         // Find the field named by the designated initializer.
2122         RecordDecl::field_iterator F = RD->field_begin();
2123         while (std::next(F) != Field)
2124           ++F;
2125         QualType ET = SemaRef.Context.getBaseElementType(F->getType());
2126         if (checkDestructorReference(ET, InitLoc, SemaRef)) {
2127           hadError = true;
2128           return;
2129         }
2130       }
2131 
2132       InitializedSomething = true;
2133 
2134       // Disable check for missing fields when designators are used.
2135       // This matches gcc behaviour.
2136       CheckForMissingFields = false;
2137       continue;
2138     }
2139 
2140     if (Field == FieldEnd) {
2141       // We've run out of fields. We're done.
2142       break;
2143     }
2144 
2145     // We've already initialized a member of a union. We're done.
2146     if (InitializedSomething && DeclType->isUnionType())
2147       break;
2148 
2149     // If we've hit the flexible array member at the end, we're done.
2150     if (Field->getType()->isIncompleteArrayType())
2151       break;
2152 
2153     if (Field->isUnnamedBitfield()) {
2154       // Don't initialize unnamed bitfields, e.g. "int : 20;"
2155       ++Field;
2156       continue;
2157     }
2158 
2159     // Make sure we can use this declaration.
2160     bool InvalidUse;
2161     if (VerifyOnly)
2162       InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2163     else
2164       InvalidUse = SemaRef.DiagnoseUseOfDecl(
2165           *Field, IList->getInit(Index)->getBeginLoc());
2166     if (InvalidUse) {
2167       ++Index;
2168       ++Field;
2169       hadError = true;
2170       continue;
2171     }
2172 
2173     if (!VerifyOnly) {
2174       QualType ET = SemaRef.Context.getBaseElementType(Field->getType());
2175       if (checkDestructorReference(ET, InitLoc, SemaRef)) {
2176         hadError = true;
2177         return;
2178       }
2179     }
2180 
2181     InitializedEntity MemberEntity =
2182       InitializedEntity::InitializeMember(*Field, &Entity);
2183     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2184                         StructuredList, StructuredIndex);
2185     InitializedSomething = true;
2186 
2187     if (DeclType->isUnionType() && StructuredList) {
2188       // Initialize the first field within the union.
2189       StructuredList->setInitializedFieldInUnion(*Field);
2190     }
2191 
2192     ++Field;
2193   }
2194 
2195   // Emit warnings for missing struct field initializers.
2196   if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
2197       Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
2198       !DeclType->isUnionType()) {
2199     // It is possible we have one or more unnamed bitfields remaining.
2200     // Find first (if any) named field and emit warning.
2201     for (RecordDecl::field_iterator it = Field, end = RD->field_end();
2202          it != end; ++it) {
2203       if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
2204         SemaRef.Diag(IList->getSourceRange().getEnd(),
2205                      diag::warn_missing_field_initializers) << *it;
2206         break;
2207       }
2208     }
2209   }
2210 
2211   // Check that any remaining fields can be value-initialized if we're not
2212   // building a structured list. (If we are, we'll check this later.)
2213   if (!StructuredList && Field != FieldEnd && !DeclType->isUnionType() &&
2214       !Field->getType()->isIncompleteArrayType()) {
2215     for (; Field != FieldEnd && !hadError; ++Field) {
2216       if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
2217         CheckEmptyInitializable(
2218             InitializedEntity::InitializeMember(*Field, &Entity),
2219             IList->getEndLoc());
2220     }
2221   }
2222 
2223   // Check that the types of the remaining fields have accessible destructors.
2224   if (!VerifyOnly) {
2225     // If the initializer expression has a designated initializer, check the
2226     // elements for which a designated initializer is not provided too.
2227     RecordDecl::field_iterator I = HasDesignatedInit ? RD->field_begin()
2228                                                      : Field;
2229     for (RecordDecl::field_iterator E = RD->field_end(); I != E; ++I) {
2230       QualType ET = SemaRef.Context.getBaseElementType(I->getType());
2231       if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) {
2232         hadError = true;
2233         return;
2234       }
2235     }
2236   }
2237 
2238   if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
2239       Index >= IList->getNumInits())
2240     return;
2241 
2242   if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
2243                              TopLevelObject)) {
2244     hadError = true;
2245     ++Index;
2246     return;
2247   }
2248 
2249   InitializedEntity MemberEntity =
2250     InitializedEntity::InitializeMember(*Field, &Entity);
2251 
2252   if (isa<InitListExpr>(IList->getInit(Index)))
2253     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2254                         StructuredList, StructuredIndex);
2255   else
2256     CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
2257                           StructuredList, StructuredIndex);
2258 }
2259 
2260 /// Expand a field designator that refers to a member of an
2261 /// anonymous struct or union into a series of field designators that
2262 /// refers to the field within the appropriate subobject.
2263 ///
2264 static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
2265                                            DesignatedInitExpr *DIE,
2266                                            unsigned DesigIdx,
2267                                            IndirectFieldDecl *IndirectField) {
2268   typedef DesignatedInitExpr::Designator Designator;
2269 
2270   // Build the replacement designators.
2271   SmallVector<Designator, 4> Replacements;
2272   for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
2273        PE = IndirectField->chain_end(); PI != PE; ++PI) {
2274     if (PI + 1 == PE)
2275       Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2276                                     DIE->getDesignator(DesigIdx)->getDotLoc(),
2277                                 DIE->getDesignator(DesigIdx)->getFieldLoc()));
2278     else
2279       Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2280                                         SourceLocation(), SourceLocation()));
2281     assert(isa<FieldDecl>(*PI));
2282     Replacements.back().setField(cast<FieldDecl>(*PI));
2283   }
2284 
2285   // Expand the current designator into the set of replacement
2286   // designators, so we have a full subobject path down to where the
2287   // member of the anonymous struct/union is actually stored.
2288   DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
2289                         &Replacements[0] + Replacements.size());
2290 }
2291 
2292 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
2293                                                    DesignatedInitExpr *DIE) {
2294   unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
2295   SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
2296   for (unsigned I = 0; I < NumIndexExprs; ++I)
2297     IndexExprs[I] = DIE->getSubExpr(I + 1);
2298   return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(),
2299                                     IndexExprs,
2300                                     DIE->getEqualOrColonLoc(),
2301                                     DIE->usesGNUSyntax(), DIE->getInit());
2302 }
2303 
2304 namespace {
2305 
2306 // Callback to only accept typo corrections that are for field members of
2307 // the given struct or union.
2308 class FieldInitializerValidatorCCC final : public CorrectionCandidateCallback {
2309  public:
2310   explicit FieldInitializerValidatorCCC(RecordDecl *RD)
2311       : Record(RD) {}
2312 
2313   bool ValidateCandidate(const TypoCorrection &candidate) override {
2314     FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
2315     return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
2316   }
2317 
2318   std::unique_ptr<CorrectionCandidateCallback> clone() override {
2319     return std::make_unique<FieldInitializerValidatorCCC>(*this);
2320   }
2321 
2322  private:
2323   RecordDecl *Record;
2324 };
2325 
2326 } // end anonymous namespace
2327 
2328 /// Check the well-formedness of a C99 designated initializer.
2329 ///
2330 /// Determines whether the designated initializer @p DIE, which
2331 /// resides at the given @p Index within the initializer list @p
2332 /// IList, is well-formed for a current object of type @p DeclType
2333 /// (C99 6.7.8). The actual subobject that this designator refers to
2334 /// within the current subobject is returned in either
2335 /// @p NextField or @p NextElementIndex (whichever is appropriate).
2336 ///
2337 /// @param IList  The initializer list in which this designated
2338 /// initializer occurs.
2339 ///
2340 /// @param DIE The designated initializer expression.
2341 ///
2342 /// @param DesigIdx  The index of the current designator.
2343 ///
2344 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
2345 /// into which the designation in @p DIE should refer.
2346 ///
2347 /// @param NextField  If non-NULL and the first designator in @p DIE is
2348 /// a field, this will be set to the field declaration corresponding
2349 /// to the field named by the designator. On input, this is expected to be
2350 /// the next field that would be initialized in the absence of designation,
2351 /// if the complete object being initialized is a struct.
2352 ///
2353 /// @param NextElementIndex  If non-NULL and the first designator in @p
2354 /// DIE is an array designator or GNU array-range designator, this
2355 /// will be set to the last index initialized by this designator.
2356 ///
2357 /// @param Index  Index into @p IList where the designated initializer
2358 /// @p DIE occurs.
2359 ///
2360 /// @param StructuredList  The initializer list expression that
2361 /// describes all of the subobject initializers in the order they'll
2362 /// actually be initialized.
2363 ///
2364 /// @returns true if there was an error, false otherwise.
2365 bool
2366 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
2367                                             InitListExpr *IList,
2368                                             DesignatedInitExpr *DIE,
2369                                             unsigned DesigIdx,
2370                                             QualType &CurrentObjectType,
2371                                           RecordDecl::field_iterator *NextField,
2372                                             llvm::APSInt *NextElementIndex,
2373                                             unsigned &Index,
2374                                             InitListExpr *StructuredList,
2375                                             unsigned &StructuredIndex,
2376                                             bool FinishSubobjectInit,
2377                                             bool TopLevelObject) {
2378   if (DesigIdx == DIE->size()) {
2379     // C++20 designated initialization can result in direct-list-initialization
2380     // of the designated subobject. This is the only way that we can end up
2381     // performing direct initialization as part of aggregate initialization, so
2382     // it needs special handling.
2383     if (DIE->isDirectInit()) {
2384       Expr *Init = DIE->getInit();
2385       assert(isa<InitListExpr>(Init) &&
2386              "designator result in direct non-list initialization?");
2387       InitializationKind Kind = InitializationKind::CreateDirectList(
2388           DIE->getBeginLoc(), Init->getBeginLoc(), Init->getEndLoc());
2389       InitializationSequence Seq(SemaRef, Entity, Kind, Init,
2390                                  /*TopLevelOfInitList*/ true);
2391       if (StructuredList) {
2392         ExprResult Result = VerifyOnly
2393                                 ? getDummyInit()
2394                                 : Seq.Perform(SemaRef, Entity, Kind, Init);
2395         UpdateStructuredListElement(StructuredList, StructuredIndex,
2396                                     Result.get());
2397       }
2398       ++Index;
2399       return !Seq;
2400     }
2401 
2402     // Check the actual initialization for the designated object type.
2403     bool prevHadError = hadError;
2404 
2405     // Temporarily remove the designator expression from the
2406     // initializer list that the child calls see, so that we don't try
2407     // to re-process the designator.
2408     unsigned OldIndex = Index;
2409     IList->setInit(OldIndex, DIE->getInit());
2410 
2411     CheckSubElementType(Entity, IList, CurrentObjectType, Index,
2412                         StructuredList, StructuredIndex);
2413 
2414     // Restore the designated initializer expression in the syntactic
2415     // form of the initializer list.
2416     if (IList->getInit(OldIndex) != DIE->getInit())
2417       DIE->setInit(IList->getInit(OldIndex));
2418     IList->setInit(OldIndex, DIE);
2419 
2420     return hadError && !prevHadError;
2421   }
2422 
2423   DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
2424   bool IsFirstDesignator = (DesigIdx == 0);
2425   if (IsFirstDesignator ? FullyStructuredList : StructuredList) {
2426     // Determine the structural initializer list that corresponds to the
2427     // current subobject.
2428     if (IsFirstDesignator)
2429       StructuredList = FullyStructuredList;
2430     else {
2431       Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ?
2432           StructuredList->getInit(StructuredIndex) : nullptr;
2433       if (!ExistingInit && StructuredList->hasArrayFiller())
2434         ExistingInit = StructuredList->getArrayFiller();
2435 
2436       if (!ExistingInit)
2437         StructuredList = getStructuredSubobjectInit(
2438             IList, Index, CurrentObjectType, StructuredList, StructuredIndex,
2439             SourceRange(D->getBeginLoc(), DIE->getEndLoc()));
2440       else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit))
2441         StructuredList = Result;
2442       else {
2443         // We are creating an initializer list that initializes the
2444         // subobjects of the current object, but there was already an
2445         // initialization that completely initialized the current
2446         // subobject, e.g., by a compound literal:
2447         //
2448         // struct X { int a, b; };
2449         // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2450         //
2451         // Here, xs[0].a == 1 and xs[0].b == 3, since the second,
2452         // designated initializer re-initializes only its current object
2453         // subobject [0].b.
2454         diagnoseInitOverride(ExistingInit,
2455                              SourceRange(D->getBeginLoc(), DIE->getEndLoc()),
2456                              /*FullyOverwritten=*/false);
2457 
2458         if (!VerifyOnly) {
2459           if (DesignatedInitUpdateExpr *E =
2460                   dyn_cast<DesignatedInitUpdateExpr>(ExistingInit))
2461             StructuredList = E->getUpdater();
2462           else {
2463             DesignatedInitUpdateExpr *DIUE = new (SemaRef.Context)
2464                 DesignatedInitUpdateExpr(SemaRef.Context, D->getBeginLoc(),
2465                                          ExistingInit, DIE->getEndLoc());
2466             StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE);
2467             StructuredList = DIUE->getUpdater();
2468           }
2469         } else {
2470           // We don't need to track the structured representation of a
2471           // designated init update of an already-fully-initialized object in
2472           // verify-only mode. The only reason we would need the structure is
2473           // to determine where the uninitialized "holes" are, and in this
2474           // case, we know there aren't any and we can't introduce any.
2475           StructuredList = nullptr;
2476         }
2477       }
2478     }
2479   }
2480 
2481   if (D->isFieldDesignator()) {
2482     // C99 6.7.8p7:
2483     //
2484     //   If a designator has the form
2485     //
2486     //      . identifier
2487     //
2488     //   then the current object (defined below) shall have
2489     //   structure or union type and the identifier shall be the
2490     //   name of a member of that type.
2491     const RecordType *RT = CurrentObjectType->getAs<RecordType>();
2492     if (!RT) {
2493       SourceLocation Loc = D->getDotLoc();
2494       if (Loc.isInvalid())
2495         Loc = D->getFieldLoc();
2496       if (!VerifyOnly)
2497         SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
2498           << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
2499       ++Index;
2500       return true;
2501     }
2502 
2503     FieldDecl *KnownField = D->getField();
2504     if (!KnownField) {
2505       IdentifierInfo *FieldName = D->getFieldName();
2506       DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
2507       for (NamedDecl *ND : Lookup) {
2508         if (auto *FD = dyn_cast<FieldDecl>(ND)) {
2509           KnownField = FD;
2510           break;
2511         }
2512         if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) {
2513           // In verify mode, don't modify the original.
2514           if (VerifyOnly)
2515             DIE = CloneDesignatedInitExpr(SemaRef, DIE);
2516           ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD);
2517           D = DIE->getDesignator(DesigIdx);
2518           KnownField = cast<FieldDecl>(*IFD->chain_begin());
2519           break;
2520         }
2521       }
2522       if (!KnownField) {
2523         if (VerifyOnly) {
2524           ++Index;
2525           return true;  // No typo correction when just trying this out.
2526         }
2527 
2528         // Name lookup found something, but it wasn't a field.
2529         if (!Lookup.empty()) {
2530           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
2531             << FieldName;
2532           SemaRef.Diag(Lookup.front()->getLocation(),
2533                        diag::note_field_designator_found);
2534           ++Index;
2535           return true;
2536         }
2537 
2538         // Name lookup didn't find anything.
2539         // Determine whether this was a typo for another field name.
2540         FieldInitializerValidatorCCC CCC(RT->getDecl());
2541         if (TypoCorrection Corrected = SemaRef.CorrectTypo(
2542                 DeclarationNameInfo(FieldName, D->getFieldLoc()),
2543                 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr, CCC,
2544                 Sema::CTK_ErrorRecovery, RT->getDecl())) {
2545           SemaRef.diagnoseTypo(
2546               Corrected,
2547               SemaRef.PDiag(diag::err_field_designator_unknown_suggest)
2548                 << FieldName << CurrentObjectType);
2549           KnownField = Corrected.getCorrectionDeclAs<FieldDecl>();
2550           hadError = true;
2551         } else {
2552           // Typo correction didn't find anything.
2553           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
2554             << FieldName << CurrentObjectType;
2555           ++Index;
2556           return true;
2557         }
2558       }
2559     }
2560 
2561     unsigned NumBases = 0;
2562     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2563       NumBases = CXXRD->getNumBases();
2564 
2565     unsigned FieldIndex = NumBases;
2566 
2567     for (auto *FI : RT->getDecl()->fields()) {
2568       if (FI->isUnnamedBitfield())
2569         continue;
2570       if (declaresSameEntity(KnownField, FI)) {
2571         KnownField = FI;
2572         break;
2573       }
2574       ++FieldIndex;
2575     }
2576 
2577     RecordDecl::field_iterator Field =
2578         RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField));
2579 
2580     // All of the fields of a union are located at the same place in
2581     // the initializer list.
2582     if (RT->getDecl()->isUnion()) {
2583       FieldIndex = 0;
2584       if (StructuredList) {
2585         FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion();
2586         if (CurrentField && !declaresSameEntity(CurrentField, *Field)) {
2587           assert(StructuredList->getNumInits() == 1
2588                  && "A union should never have more than one initializer!");
2589 
2590           Expr *ExistingInit = StructuredList->getInit(0);
2591           if (ExistingInit) {
2592             // We're about to throw away an initializer, emit warning.
2593             diagnoseInitOverride(
2594                 ExistingInit, SourceRange(D->getBeginLoc(), DIE->getEndLoc()));
2595           }
2596 
2597           // remove existing initializer
2598           StructuredList->resizeInits(SemaRef.Context, 0);
2599           StructuredList->setInitializedFieldInUnion(nullptr);
2600         }
2601 
2602         StructuredList->setInitializedFieldInUnion(*Field);
2603       }
2604     }
2605 
2606     // Make sure we can use this declaration.
2607     bool InvalidUse;
2608     if (VerifyOnly)
2609       InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2610     else
2611       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
2612     if (InvalidUse) {
2613       ++Index;
2614       return true;
2615     }
2616 
2617     // C++20 [dcl.init.list]p3:
2618     //   The ordered identifiers in the designators of the designated-
2619     //   initializer-list shall form a subsequence of the ordered identifiers
2620     //   in the direct non-static data members of T.
2621     //
2622     // Note that this is not a condition on forming the aggregate
2623     // initialization, only on actually performing initialization,
2624     // so it is not checked in VerifyOnly mode.
2625     //
2626     // FIXME: This is the only reordering diagnostic we produce, and it only
2627     // catches cases where we have a top-level field designator that jumps
2628     // backwards. This is the only such case that is reachable in an
2629     // otherwise-valid C++20 program, so is the only case that's required for
2630     // conformance, but for consistency, we should diagnose all the other
2631     // cases where a designator takes us backwards too.
2632     if (IsFirstDesignator && !VerifyOnly && SemaRef.getLangOpts().CPlusPlus &&
2633         NextField &&
2634         (*NextField == RT->getDecl()->field_end() ||
2635          (*NextField)->getFieldIndex() > Field->getFieldIndex() + 1)) {
2636       // Find the field that we just initialized.
2637       FieldDecl *PrevField = nullptr;
2638       for (auto FI = RT->getDecl()->field_begin();
2639            FI != RT->getDecl()->field_end(); ++FI) {
2640         if (FI->isUnnamedBitfield())
2641           continue;
2642         if (*NextField != RT->getDecl()->field_end() &&
2643             declaresSameEntity(*FI, **NextField))
2644           break;
2645         PrevField = *FI;
2646       }
2647 
2648       if (PrevField &&
2649           PrevField->getFieldIndex() > KnownField->getFieldIndex()) {
2650         SemaRef.Diag(DIE->getBeginLoc(), diag::ext_designated_init_reordered)
2651             << KnownField << PrevField << DIE->getSourceRange();
2652 
2653         unsigned OldIndex = NumBases + PrevField->getFieldIndex();
2654         if (StructuredList && OldIndex <= StructuredList->getNumInits()) {
2655           if (Expr *PrevInit = StructuredList->getInit(OldIndex)) {
2656             SemaRef.Diag(PrevInit->getBeginLoc(),
2657                          diag::note_previous_field_init)
2658                 << PrevField << PrevInit->getSourceRange();
2659           }
2660         }
2661       }
2662     }
2663 
2664 
2665     // Update the designator with the field declaration.
2666     if (!VerifyOnly)
2667       D->setField(*Field);
2668 
2669     // Make sure that our non-designated initializer list has space
2670     // for a subobject corresponding to this field.
2671     if (StructuredList && FieldIndex >= StructuredList->getNumInits())
2672       StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
2673 
2674     // This designator names a flexible array member.
2675     if (Field->getType()->isIncompleteArrayType()) {
2676       bool Invalid = false;
2677       if ((DesigIdx + 1) != DIE->size()) {
2678         // We can't designate an object within the flexible array
2679         // member (because GCC doesn't allow it).
2680         if (!VerifyOnly) {
2681           DesignatedInitExpr::Designator *NextD
2682             = DIE->getDesignator(DesigIdx + 1);
2683           SemaRef.Diag(NextD->getBeginLoc(),
2684                        diag::err_designator_into_flexible_array_member)
2685               << SourceRange(NextD->getBeginLoc(), DIE->getEndLoc());
2686           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2687             << *Field;
2688         }
2689         Invalid = true;
2690       }
2691 
2692       if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
2693           !isa<StringLiteral>(DIE->getInit())) {
2694         // The initializer is not an initializer list.
2695         if (!VerifyOnly) {
2696           SemaRef.Diag(DIE->getInit()->getBeginLoc(),
2697                        diag::err_flexible_array_init_needs_braces)
2698               << DIE->getInit()->getSourceRange();
2699           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2700             << *Field;
2701         }
2702         Invalid = true;
2703       }
2704 
2705       // Check GNU flexible array initializer.
2706       if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
2707                                              TopLevelObject))
2708         Invalid = true;
2709 
2710       if (Invalid) {
2711         ++Index;
2712         return true;
2713       }
2714 
2715       // Initialize the array.
2716       bool prevHadError = hadError;
2717       unsigned newStructuredIndex = FieldIndex;
2718       unsigned OldIndex = Index;
2719       IList->setInit(Index, DIE->getInit());
2720 
2721       InitializedEntity MemberEntity =
2722         InitializedEntity::InitializeMember(*Field, &Entity);
2723       CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2724                           StructuredList, newStructuredIndex);
2725 
2726       IList->setInit(OldIndex, DIE);
2727       if (hadError && !prevHadError) {
2728         ++Field;
2729         ++FieldIndex;
2730         if (NextField)
2731           *NextField = Field;
2732         StructuredIndex = FieldIndex;
2733         return true;
2734       }
2735     } else {
2736       // Recurse to check later designated subobjects.
2737       QualType FieldType = Field->getType();
2738       unsigned newStructuredIndex = FieldIndex;
2739 
2740       InitializedEntity MemberEntity =
2741         InitializedEntity::InitializeMember(*Field, &Entity);
2742       if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
2743                                      FieldType, nullptr, nullptr, Index,
2744                                      StructuredList, newStructuredIndex,
2745                                      FinishSubobjectInit, false))
2746         return true;
2747     }
2748 
2749     // Find the position of the next field to be initialized in this
2750     // subobject.
2751     ++Field;
2752     ++FieldIndex;
2753 
2754     // If this the first designator, our caller will continue checking
2755     // the rest of this struct/class/union subobject.
2756     if (IsFirstDesignator) {
2757       if (NextField)
2758         *NextField = Field;
2759       StructuredIndex = FieldIndex;
2760       return false;
2761     }
2762 
2763     if (!FinishSubobjectInit)
2764       return false;
2765 
2766     // We've already initialized something in the union; we're done.
2767     if (RT->getDecl()->isUnion())
2768       return hadError;
2769 
2770     // Check the remaining fields within this class/struct/union subobject.
2771     bool prevHadError = hadError;
2772 
2773     auto NoBases =
2774         CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
2775                                         CXXRecordDecl::base_class_iterator());
2776     CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field,
2777                           false, Index, StructuredList, FieldIndex);
2778     return hadError && !prevHadError;
2779   }
2780 
2781   // C99 6.7.8p6:
2782   //
2783   //   If a designator has the form
2784   //
2785   //      [ constant-expression ]
2786   //
2787   //   then the current object (defined below) shall have array
2788   //   type and the expression shall be an integer constant
2789   //   expression. If the array is of unknown size, any
2790   //   nonnegative value is valid.
2791   //
2792   // Additionally, cope with the GNU extension that permits
2793   // designators of the form
2794   //
2795   //      [ constant-expression ... constant-expression ]
2796   const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
2797   if (!AT) {
2798     if (!VerifyOnly)
2799       SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
2800         << CurrentObjectType;
2801     ++Index;
2802     return true;
2803   }
2804 
2805   Expr *IndexExpr = nullptr;
2806   llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
2807   if (D->isArrayDesignator()) {
2808     IndexExpr = DIE->getArrayIndex(*D);
2809     DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
2810     DesignatedEndIndex = DesignatedStartIndex;
2811   } else {
2812     assert(D->isArrayRangeDesignator() && "Need array-range designator");
2813 
2814     DesignatedStartIndex =
2815       DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
2816     DesignatedEndIndex =
2817       DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
2818     IndexExpr = DIE->getArrayRangeEnd(*D);
2819 
2820     // Codegen can't handle evaluating array range designators that have side
2821     // effects, because we replicate the AST value for each initialized element.
2822     // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
2823     // elements with something that has a side effect, so codegen can emit an
2824     // "error unsupported" error instead of miscompiling the app.
2825     if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
2826         DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
2827       FullyStructuredList->sawArrayRangeDesignator();
2828   }
2829 
2830   if (isa<ConstantArrayType>(AT)) {
2831     llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
2832     DesignatedStartIndex
2833       = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
2834     DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
2835     DesignatedEndIndex
2836       = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
2837     DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
2838     if (DesignatedEndIndex >= MaxElements) {
2839       if (!VerifyOnly)
2840         SemaRef.Diag(IndexExpr->getBeginLoc(),
2841                      diag::err_array_designator_too_large)
2842             << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
2843             << IndexExpr->getSourceRange();
2844       ++Index;
2845       return true;
2846     }
2847   } else {
2848     unsigned DesignatedIndexBitWidth =
2849       ConstantArrayType::getMaxSizeBits(SemaRef.Context);
2850     DesignatedStartIndex =
2851       DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth);
2852     DesignatedEndIndex =
2853       DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth);
2854     DesignatedStartIndex.setIsUnsigned(true);
2855     DesignatedEndIndex.setIsUnsigned(true);
2856   }
2857 
2858   bool IsStringLiteralInitUpdate =
2859       StructuredList && StructuredList->isStringLiteralInit();
2860   if (IsStringLiteralInitUpdate && VerifyOnly) {
2861     // We're just verifying an update to a string literal init. We don't need
2862     // to split the string up into individual characters to do that.
2863     StructuredList = nullptr;
2864   } else if (IsStringLiteralInitUpdate) {
2865     // We're modifying a string literal init; we have to decompose the string
2866     // so we can modify the individual characters.
2867     ASTContext &Context = SemaRef.Context;
2868     Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens();
2869 
2870     // Compute the character type
2871     QualType CharTy = AT->getElementType();
2872 
2873     // Compute the type of the integer literals.
2874     QualType PromotedCharTy = CharTy;
2875     if (CharTy->isPromotableIntegerType())
2876       PromotedCharTy = Context.getPromotedIntegerType(CharTy);
2877     unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy);
2878 
2879     if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) {
2880       // Get the length of the string.
2881       uint64_t StrLen = SL->getLength();
2882       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2883         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2884       StructuredList->resizeInits(Context, StrLen);
2885 
2886       // Build a literal for each character in the string, and put them into
2887       // the init list.
2888       for (unsigned i = 0, e = StrLen; i != e; ++i) {
2889         llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i));
2890         Expr *Init = new (Context) IntegerLiteral(
2891             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2892         if (CharTy != PromotedCharTy)
2893           Init =
2894               ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, Init,
2895                                        nullptr, VK_RValue, FPOptionsOverride());
2896         StructuredList->updateInit(Context, i, Init);
2897       }
2898     } else {
2899       ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr);
2900       std::string Str;
2901       Context.getObjCEncodingForType(E->getEncodedType(), Str);
2902 
2903       // Get the length of the string.
2904       uint64_t StrLen = Str.size();
2905       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2906         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2907       StructuredList->resizeInits(Context, StrLen);
2908 
2909       // Build a literal for each character in the string, and put them into
2910       // the init list.
2911       for (unsigned i = 0, e = StrLen; i != e; ++i) {
2912         llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]);
2913         Expr *Init = new (Context) IntegerLiteral(
2914             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2915         if (CharTy != PromotedCharTy)
2916           Init =
2917               ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, Init,
2918                                        nullptr, VK_RValue, FPOptionsOverride());
2919         StructuredList->updateInit(Context, i, Init);
2920       }
2921     }
2922   }
2923 
2924   // Make sure that our non-designated initializer list has space
2925   // for a subobject corresponding to this array element.
2926   if (StructuredList &&
2927       DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
2928     StructuredList->resizeInits(SemaRef.Context,
2929                                 DesignatedEndIndex.getZExtValue() + 1);
2930 
2931   // Repeatedly perform subobject initializations in the range
2932   // [DesignatedStartIndex, DesignatedEndIndex].
2933 
2934   // Move to the next designator
2935   unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
2936   unsigned OldIndex = Index;
2937 
2938   InitializedEntity ElementEntity =
2939     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
2940 
2941   while (DesignatedStartIndex <= DesignatedEndIndex) {
2942     // Recurse to check later designated subobjects.
2943     QualType ElementType = AT->getElementType();
2944     Index = OldIndex;
2945 
2946     ElementEntity.setElementIndex(ElementIndex);
2947     if (CheckDesignatedInitializer(
2948             ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr,
2949             nullptr, Index, StructuredList, ElementIndex,
2950             FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex),
2951             false))
2952       return true;
2953 
2954     // Move to the next index in the array that we'll be initializing.
2955     ++DesignatedStartIndex;
2956     ElementIndex = DesignatedStartIndex.getZExtValue();
2957   }
2958 
2959   // If this the first designator, our caller will continue checking
2960   // the rest of this array subobject.
2961   if (IsFirstDesignator) {
2962     if (NextElementIndex)
2963       *NextElementIndex = DesignatedStartIndex;
2964     StructuredIndex = ElementIndex;
2965     return false;
2966   }
2967 
2968   if (!FinishSubobjectInit)
2969     return false;
2970 
2971   // Check the remaining elements within this array subobject.
2972   bool prevHadError = hadError;
2973   CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
2974                  /*SubobjectIsDesignatorContext=*/false, Index,
2975                  StructuredList, ElementIndex);
2976   return hadError && !prevHadError;
2977 }
2978 
2979 // Get the structured initializer list for a subobject of type
2980 // @p CurrentObjectType.
2981 InitListExpr *
2982 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
2983                                             QualType CurrentObjectType,
2984                                             InitListExpr *StructuredList,
2985                                             unsigned StructuredIndex,
2986                                             SourceRange InitRange,
2987                                             bool IsFullyOverwritten) {
2988   if (!StructuredList)
2989     return nullptr;
2990 
2991   Expr *ExistingInit = nullptr;
2992   if (StructuredIndex < StructuredList->getNumInits())
2993     ExistingInit = StructuredList->getInit(StructuredIndex);
2994 
2995   if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
2996     // There might have already been initializers for subobjects of the current
2997     // object, but a subsequent initializer list will overwrite the entirety
2998     // of the current object. (See DR 253 and C99 6.7.8p21). e.g.,
2999     //
3000     // struct P { char x[6]; };
3001     // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } };
3002     //
3003     // The first designated initializer is ignored, and l.x is just "f".
3004     if (!IsFullyOverwritten)
3005       return Result;
3006 
3007   if (ExistingInit) {
3008     // We are creating an initializer list that initializes the
3009     // subobjects of the current object, but there was already an
3010     // initialization that completely initialized the current
3011     // subobject:
3012     //
3013     // struct X { int a, b; };
3014     // struct X xs[] = { [0] = { 1, 2 }, [0].b = 3 };
3015     //
3016     // Here, xs[0].a == 1 and xs[0].b == 3, since the second,
3017     // designated initializer overwrites the [0].b initializer
3018     // from the prior initialization.
3019     //
3020     // When the existing initializer is an expression rather than an
3021     // initializer list, we cannot decompose and update it in this way.
3022     // For example:
3023     //
3024     // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
3025     //
3026     // This case is handled by CheckDesignatedInitializer.
3027     diagnoseInitOverride(ExistingInit, InitRange);
3028   }
3029 
3030   unsigned ExpectedNumInits = 0;
3031   if (Index < IList->getNumInits()) {
3032     if (auto *Init = dyn_cast_or_null<InitListExpr>(IList->getInit(Index)))
3033       ExpectedNumInits = Init->getNumInits();
3034     else
3035       ExpectedNumInits = IList->getNumInits() - Index;
3036   }
3037 
3038   InitListExpr *Result =
3039       createInitListExpr(CurrentObjectType, InitRange, ExpectedNumInits);
3040 
3041   // Link this new initializer list into the structured initializer
3042   // lists.
3043   StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
3044   return Result;
3045 }
3046 
3047 InitListExpr *
3048 InitListChecker::createInitListExpr(QualType CurrentObjectType,
3049                                     SourceRange InitRange,
3050                                     unsigned ExpectedNumInits) {
3051   InitListExpr *Result
3052     = new (SemaRef.Context) InitListExpr(SemaRef.Context,
3053                                          InitRange.getBegin(), None,
3054                                          InitRange.getEnd());
3055 
3056   QualType ResultType = CurrentObjectType;
3057   if (!ResultType->isArrayType())
3058     ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
3059   Result->setType(ResultType);
3060 
3061   // Pre-allocate storage for the structured initializer list.
3062   unsigned NumElements = 0;
3063 
3064   if (const ArrayType *AType
3065       = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
3066     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
3067       NumElements = CAType->getSize().getZExtValue();
3068       // Simple heuristic so that we don't allocate a very large
3069       // initializer with many empty entries at the end.
3070       if (NumElements > ExpectedNumInits)
3071         NumElements = 0;
3072     }
3073   } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>()) {
3074     NumElements = VType->getNumElements();
3075   } else if (CurrentObjectType->isRecordType()) {
3076     NumElements = numStructUnionElements(CurrentObjectType);
3077   }
3078 
3079   Result->reserveInits(SemaRef.Context, NumElements);
3080 
3081   return Result;
3082 }
3083 
3084 /// Update the initializer at index @p StructuredIndex within the
3085 /// structured initializer list to the value @p expr.
3086 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
3087                                                   unsigned &StructuredIndex,
3088                                                   Expr *expr) {
3089   // No structured initializer list to update
3090   if (!StructuredList)
3091     return;
3092 
3093   if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
3094                                                   StructuredIndex, expr)) {
3095     // This initializer overwrites a previous initializer.
3096     // No need to diagnose when `expr` is nullptr because a more relevant
3097     // diagnostic has already been issued and this diagnostic is potentially
3098     // noise.
3099     if (expr)
3100       diagnoseInitOverride(PrevInit, expr->getSourceRange());
3101   }
3102 
3103   ++StructuredIndex;
3104 }
3105 
3106 /// Determine whether we can perform aggregate initialization for the purposes
3107 /// of overload resolution.
3108 bool Sema::CanPerformAggregateInitializationForOverloadResolution(
3109     const InitializedEntity &Entity, InitListExpr *From) {
3110   QualType Type = Entity.getType();
3111   InitListChecker Check(*this, Entity, From, Type, /*VerifyOnly=*/true,
3112                         /*TreatUnavailableAsInvalid=*/false,
3113                         /*InOverloadResolution=*/true);
3114   return !Check.HadError();
3115 }
3116 
3117 /// Check that the given Index expression is a valid array designator
3118 /// value. This is essentially just a wrapper around
3119 /// VerifyIntegerConstantExpression that also checks for negative values
3120 /// and produces a reasonable diagnostic if there is a
3121 /// failure. Returns the index expression, possibly with an implicit cast
3122 /// added, on success.  If everything went okay, Value will receive the
3123 /// value of the constant expression.
3124 static ExprResult
3125 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
3126   SourceLocation Loc = Index->getBeginLoc();
3127 
3128   // Make sure this is an integer constant expression.
3129   ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value);
3130   if (Result.isInvalid())
3131     return Result;
3132 
3133   if (Value.isSigned() && Value.isNegative())
3134     return S.Diag(Loc, diag::err_array_designator_negative)
3135       << Value.toString(10) << Index->getSourceRange();
3136 
3137   Value.setIsUnsigned(true);
3138   return Result;
3139 }
3140 
3141 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
3142                                             SourceLocation EqualOrColonLoc,
3143                                             bool GNUSyntax,
3144                                             ExprResult Init) {
3145   typedef DesignatedInitExpr::Designator ASTDesignator;
3146 
3147   bool Invalid = false;
3148   SmallVector<ASTDesignator, 32> Designators;
3149   SmallVector<Expr *, 32> InitExpressions;
3150 
3151   // Build designators and check array designator expressions.
3152   for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
3153     const Designator &D = Desig.getDesignator(Idx);
3154     switch (D.getKind()) {
3155     case Designator::FieldDesignator:
3156       Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
3157                                           D.getFieldLoc()));
3158       break;
3159 
3160     case Designator::ArrayDesignator: {
3161       Expr *Index = static_cast<Expr *>(D.getArrayIndex());
3162       llvm::APSInt IndexValue;
3163       if (!Index->isTypeDependent() && !Index->isValueDependent())
3164         Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get();
3165       if (!Index)
3166         Invalid = true;
3167       else {
3168         Designators.push_back(ASTDesignator(InitExpressions.size(),
3169                                             D.getLBracketLoc(),
3170                                             D.getRBracketLoc()));
3171         InitExpressions.push_back(Index);
3172       }
3173       break;
3174     }
3175 
3176     case Designator::ArrayRangeDesignator: {
3177       Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
3178       Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
3179       llvm::APSInt StartValue;
3180       llvm::APSInt EndValue;
3181       bool StartDependent = StartIndex->isTypeDependent() ||
3182                             StartIndex->isValueDependent();
3183       bool EndDependent = EndIndex->isTypeDependent() ||
3184                           EndIndex->isValueDependent();
3185       if (!StartDependent)
3186         StartIndex =
3187             CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get();
3188       if (!EndDependent)
3189         EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get();
3190 
3191       if (!StartIndex || !EndIndex)
3192         Invalid = true;
3193       else {
3194         // Make sure we're comparing values with the same bit width.
3195         if (StartDependent || EndDependent) {
3196           // Nothing to compute.
3197         } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
3198           EndValue = EndValue.extend(StartValue.getBitWidth());
3199         else if (StartValue.getBitWidth() < EndValue.getBitWidth())
3200           StartValue = StartValue.extend(EndValue.getBitWidth());
3201 
3202         if (!StartDependent && !EndDependent && EndValue < StartValue) {
3203           Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
3204             << StartValue.toString(10) << EndValue.toString(10)
3205             << StartIndex->getSourceRange() << EndIndex->getSourceRange();
3206           Invalid = true;
3207         } else {
3208           Designators.push_back(ASTDesignator(InitExpressions.size(),
3209                                               D.getLBracketLoc(),
3210                                               D.getEllipsisLoc(),
3211                                               D.getRBracketLoc()));
3212           InitExpressions.push_back(StartIndex);
3213           InitExpressions.push_back(EndIndex);
3214         }
3215       }
3216       break;
3217     }
3218     }
3219   }
3220 
3221   if (Invalid || Init.isInvalid())
3222     return ExprError();
3223 
3224   // Clear out the expressions within the designation.
3225   Desig.ClearExprs(*this);
3226 
3227   return DesignatedInitExpr::Create(Context, Designators, InitExpressions,
3228                                     EqualOrColonLoc, GNUSyntax,
3229                                     Init.getAs<Expr>());
3230 }
3231 
3232 //===----------------------------------------------------------------------===//
3233 // Initialization entity
3234 //===----------------------------------------------------------------------===//
3235 
3236 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
3237                                      const InitializedEntity &Parent)
3238   : Parent(&Parent), Index(Index)
3239 {
3240   if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
3241     Kind = EK_ArrayElement;
3242     Type = AT->getElementType();
3243   } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
3244     Kind = EK_VectorElement;
3245     Type = VT->getElementType();
3246   } else {
3247     const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
3248     assert(CT && "Unexpected type");
3249     Kind = EK_ComplexElement;
3250     Type = CT->getElementType();
3251   }
3252 }
3253 
3254 InitializedEntity
3255 InitializedEntity::InitializeBase(ASTContext &Context,
3256                                   const CXXBaseSpecifier *Base,
3257                                   bool IsInheritedVirtualBase,
3258                                   const InitializedEntity *Parent) {
3259   InitializedEntity Result;
3260   Result.Kind = EK_Base;
3261   Result.Parent = Parent;
3262   Result.Base = reinterpret_cast<uintptr_t>(Base);
3263   if (IsInheritedVirtualBase)
3264     Result.Base |= 0x01;
3265 
3266   Result.Type = Base->getType();
3267   return Result;
3268 }
3269 
3270 DeclarationName InitializedEntity::getName() const {
3271   switch (getKind()) {
3272   case EK_Parameter:
3273   case EK_Parameter_CF_Audited: {
3274     ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
3275     return (D ? D->getDeclName() : DeclarationName());
3276   }
3277 
3278   case EK_Variable:
3279   case EK_Member:
3280   case EK_Binding:
3281     return Variable.VariableOrMember->getDeclName();
3282 
3283   case EK_LambdaCapture:
3284     return DeclarationName(Capture.VarID);
3285 
3286   case EK_Result:
3287   case EK_StmtExprResult:
3288   case EK_Exception:
3289   case EK_New:
3290   case EK_Temporary:
3291   case EK_Base:
3292   case EK_Delegating:
3293   case EK_ArrayElement:
3294   case EK_VectorElement:
3295   case EK_ComplexElement:
3296   case EK_BlockElement:
3297   case EK_LambdaToBlockConversionBlockElement:
3298   case EK_CompoundLiteralInit:
3299   case EK_RelatedResult:
3300     return DeclarationName();
3301   }
3302 
3303   llvm_unreachable("Invalid EntityKind!");
3304 }
3305 
3306 ValueDecl *InitializedEntity::getDecl() const {
3307   switch (getKind()) {
3308   case EK_Variable:
3309   case EK_Member:
3310   case EK_Binding:
3311     return Variable.VariableOrMember;
3312 
3313   case EK_Parameter:
3314   case EK_Parameter_CF_Audited:
3315     return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
3316 
3317   case EK_Result:
3318   case EK_StmtExprResult:
3319   case EK_Exception:
3320   case EK_New:
3321   case EK_Temporary:
3322   case EK_Base:
3323   case EK_Delegating:
3324   case EK_ArrayElement:
3325   case EK_VectorElement:
3326   case EK_ComplexElement:
3327   case EK_BlockElement:
3328   case EK_LambdaToBlockConversionBlockElement:
3329   case EK_LambdaCapture:
3330   case EK_CompoundLiteralInit:
3331   case EK_RelatedResult:
3332     return nullptr;
3333   }
3334 
3335   llvm_unreachable("Invalid EntityKind!");
3336 }
3337 
3338 bool InitializedEntity::allowsNRVO() const {
3339   switch (getKind()) {
3340   case EK_Result:
3341   case EK_Exception:
3342     return LocAndNRVO.NRVO;
3343 
3344   case EK_StmtExprResult:
3345   case EK_Variable:
3346   case EK_Parameter:
3347   case EK_Parameter_CF_Audited:
3348   case EK_Member:
3349   case EK_Binding:
3350   case EK_New:
3351   case EK_Temporary:
3352   case EK_CompoundLiteralInit:
3353   case EK_Base:
3354   case EK_Delegating:
3355   case EK_ArrayElement:
3356   case EK_VectorElement:
3357   case EK_ComplexElement:
3358   case EK_BlockElement:
3359   case EK_LambdaToBlockConversionBlockElement:
3360   case EK_LambdaCapture:
3361   case EK_RelatedResult:
3362     break;
3363   }
3364 
3365   return false;
3366 }
3367 
3368 unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const {
3369   assert(getParent() != this);
3370   unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0;
3371   for (unsigned I = 0; I != Depth; ++I)
3372     OS << "`-";
3373 
3374   switch (getKind()) {
3375   case EK_Variable: OS << "Variable"; break;
3376   case EK_Parameter: OS << "Parameter"; break;
3377   case EK_Parameter_CF_Audited: OS << "CF audited function Parameter";
3378     break;
3379   case EK_Result: OS << "Result"; break;
3380   case EK_StmtExprResult: OS << "StmtExprResult"; break;
3381   case EK_Exception: OS << "Exception"; break;
3382   case EK_Member: OS << "Member"; break;
3383   case EK_Binding: OS << "Binding"; break;
3384   case EK_New: OS << "New"; break;
3385   case EK_Temporary: OS << "Temporary"; break;
3386   case EK_CompoundLiteralInit: OS << "CompoundLiteral";break;
3387   case EK_RelatedResult: OS << "RelatedResult"; break;
3388   case EK_Base: OS << "Base"; break;
3389   case EK_Delegating: OS << "Delegating"; break;
3390   case EK_ArrayElement: OS << "ArrayElement " << Index; break;
3391   case EK_VectorElement: OS << "VectorElement " << Index; break;
3392   case EK_ComplexElement: OS << "ComplexElement " << Index; break;
3393   case EK_BlockElement: OS << "Block"; break;
3394   case EK_LambdaToBlockConversionBlockElement:
3395     OS << "Block (lambda)";
3396     break;
3397   case EK_LambdaCapture:
3398     OS << "LambdaCapture ";
3399     OS << DeclarationName(Capture.VarID);
3400     break;
3401   }
3402 
3403   if (auto *D = getDecl()) {
3404     OS << " ";
3405     D->printQualifiedName(OS);
3406   }
3407 
3408   OS << " '" << getType().getAsString() << "'\n";
3409 
3410   return Depth + 1;
3411 }
3412 
3413 LLVM_DUMP_METHOD void InitializedEntity::dump() const {
3414   dumpImpl(llvm::errs());
3415 }
3416 
3417 //===----------------------------------------------------------------------===//
3418 // Initialization sequence
3419 //===----------------------------------------------------------------------===//
3420 
3421 void InitializationSequence::Step::Destroy() {
3422   switch (Kind) {
3423   case SK_ResolveAddressOfOverloadedFunction:
3424   case SK_CastDerivedToBaseRValue:
3425   case SK_CastDerivedToBaseXValue:
3426   case SK_CastDerivedToBaseLValue:
3427   case SK_BindReference:
3428   case SK_BindReferenceToTemporary:
3429   case SK_FinalCopy:
3430   case SK_ExtraneousCopyToTemporary:
3431   case SK_UserConversion:
3432   case SK_QualificationConversionRValue:
3433   case SK_QualificationConversionXValue:
3434   case SK_QualificationConversionLValue:
3435   case SK_AtomicConversion:
3436   case SK_ListInitialization:
3437   case SK_UnwrapInitList:
3438   case SK_RewrapInitList:
3439   case SK_ConstructorInitialization:
3440   case SK_ConstructorInitializationFromList:
3441   case SK_ZeroInitialization:
3442   case SK_CAssignment:
3443   case SK_StringInit:
3444   case SK_ObjCObjectConversion:
3445   case SK_ArrayLoopIndex:
3446   case SK_ArrayLoopInit:
3447   case SK_ArrayInit:
3448   case SK_GNUArrayInit:
3449   case SK_ParenthesizedArrayInit:
3450   case SK_PassByIndirectCopyRestore:
3451   case SK_PassByIndirectRestore:
3452   case SK_ProduceObjCObject:
3453   case SK_StdInitializerList:
3454   case SK_StdInitializerListConstructorCall:
3455   case SK_OCLSamplerInit:
3456   case SK_OCLZeroOpaqueType:
3457     break;
3458 
3459   case SK_ConversionSequence:
3460   case SK_ConversionSequenceNoNarrowing:
3461     delete ICS;
3462   }
3463 }
3464 
3465 bool InitializationSequence::isDirectReferenceBinding() const {
3466   // There can be some lvalue adjustments after the SK_BindReference step.
3467   for (auto I = Steps.rbegin(); I != Steps.rend(); ++I) {
3468     if (I->Kind == SK_BindReference)
3469       return true;
3470     if (I->Kind == SK_BindReferenceToTemporary)
3471       return false;
3472   }
3473   return false;
3474 }
3475 
3476 bool InitializationSequence::isAmbiguous() const {
3477   if (!Failed())
3478     return false;
3479 
3480   switch (getFailureKind()) {
3481   case FK_TooManyInitsForReference:
3482   case FK_ParenthesizedListInitForReference:
3483   case FK_ArrayNeedsInitList:
3484   case FK_ArrayNeedsInitListOrStringLiteral:
3485   case FK_ArrayNeedsInitListOrWideStringLiteral:
3486   case FK_NarrowStringIntoWideCharArray:
3487   case FK_WideStringIntoCharArray:
3488   case FK_IncompatWideStringIntoWideChar:
3489   case FK_PlainStringIntoUTF8Char:
3490   case FK_UTF8StringIntoPlainChar:
3491   case FK_AddressOfOverloadFailed: // FIXME: Could do better
3492   case FK_NonConstLValueReferenceBindingToTemporary:
3493   case FK_NonConstLValueReferenceBindingToBitfield:
3494   case FK_NonConstLValueReferenceBindingToVectorElement:
3495   case FK_NonConstLValueReferenceBindingToMatrixElement:
3496   case FK_NonConstLValueReferenceBindingToUnrelated:
3497   case FK_RValueReferenceBindingToLValue:
3498   case FK_ReferenceAddrspaceMismatchTemporary:
3499   case FK_ReferenceInitDropsQualifiers:
3500   case FK_ReferenceInitFailed:
3501   case FK_ConversionFailed:
3502   case FK_ConversionFromPropertyFailed:
3503   case FK_TooManyInitsForScalar:
3504   case FK_ParenthesizedListInitForScalar:
3505   case FK_ReferenceBindingToInitList:
3506   case FK_InitListBadDestinationType:
3507   case FK_DefaultInitOfConst:
3508   case FK_Incomplete:
3509   case FK_ArrayTypeMismatch:
3510   case FK_NonConstantArrayInit:
3511   case FK_ListInitializationFailed:
3512   case FK_VariableLengthArrayHasInitializer:
3513   case FK_PlaceholderType:
3514   case FK_ExplicitConstructor:
3515   case FK_AddressOfUnaddressableFunction:
3516     return false;
3517 
3518   case FK_ReferenceInitOverloadFailed:
3519   case FK_UserConversionOverloadFailed:
3520   case FK_ConstructorOverloadFailed:
3521   case FK_ListConstructorOverloadFailed:
3522     return FailedOverloadResult == OR_Ambiguous;
3523   }
3524 
3525   llvm_unreachable("Invalid EntityKind!");
3526 }
3527 
3528 bool InitializationSequence::isConstructorInitialization() const {
3529   return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
3530 }
3531 
3532 void
3533 InitializationSequence
3534 ::AddAddressOverloadResolutionStep(FunctionDecl *Function,
3535                                    DeclAccessPair Found,
3536                                    bool HadMultipleCandidates) {
3537   Step S;
3538   S.Kind = SK_ResolveAddressOfOverloadedFunction;
3539   S.Type = Function->getType();
3540   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3541   S.Function.Function = Function;
3542   S.Function.FoundDecl = Found;
3543   Steps.push_back(S);
3544 }
3545 
3546 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
3547                                                       ExprValueKind VK) {
3548   Step S;
3549   switch (VK) {
3550   case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
3551   case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
3552   case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
3553   }
3554   S.Type = BaseType;
3555   Steps.push_back(S);
3556 }
3557 
3558 void InitializationSequence::AddReferenceBindingStep(QualType T,
3559                                                      bool BindingTemporary) {
3560   Step S;
3561   S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
3562   S.Type = T;
3563   Steps.push_back(S);
3564 }
3565 
3566 void InitializationSequence::AddFinalCopy(QualType T) {
3567   Step S;
3568   S.Kind = SK_FinalCopy;
3569   S.Type = T;
3570   Steps.push_back(S);
3571 }
3572 
3573 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
3574   Step S;
3575   S.Kind = SK_ExtraneousCopyToTemporary;
3576   S.Type = T;
3577   Steps.push_back(S);
3578 }
3579 
3580 void
3581 InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
3582                                               DeclAccessPair FoundDecl,
3583                                               QualType T,
3584                                               bool HadMultipleCandidates) {
3585   Step S;
3586   S.Kind = SK_UserConversion;
3587   S.Type = T;
3588   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3589   S.Function.Function = Function;
3590   S.Function.FoundDecl = FoundDecl;
3591   Steps.push_back(S);
3592 }
3593 
3594 void InitializationSequence::AddQualificationConversionStep(QualType Ty,
3595                                                             ExprValueKind VK) {
3596   Step S;
3597   S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
3598   switch (VK) {
3599   case VK_RValue:
3600     S.Kind = SK_QualificationConversionRValue;
3601     break;
3602   case VK_XValue:
3603     S.Kind = SK_QualificationConversionXValue;
3604     break;
3605   case VK_LValue:
3606     S.Kind = SK_QualificationConversionLValue;
3607     break;
3608   }
3609   S.Type = Ty;
3610   Steps.push_back(S);
3611 }
3612 
3613 void InitializationSequence::AddAtomicConversionStep(QualType Ty) {
3614   Step S;
3615   S.Kind = SK_AtomicConversion;
3616   S.Type = Ty;
3617   Steps.push_back(S);
3618 }
3619 
3620 void InitializationSequence::AddConversionSequenceStep(
3621     const ImplicitConversionSequence &ICS, QualType T,
3622     bool TopLevelOfInitList) {
3623   Step S;
3624   S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing
3625                               : SK_ConversionSequence;
3626   S.Type = T;
3627   S.ICS = new ImplicitConversionSequence(ICS);
3628   Steps.push_back(S);
3629 }
3630 
3631 void InitializationSequence::AddListInitializationStep(QualType T) {
3632   Step S;
3633   S.Kind = SK_ListInitialization;
3634   S.Type = T;
3635   Steps.push_back(S);
3636 }
3637 
3638 void InitializationSequence::AddConstructorInitializationStep(
3639     DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T,
3640     bool HadMultipleCandidates, bool FromInitList, bool AsInitList) {
3641   Step S;
3642   S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall
3643                                      : SK_ConstructorInitializationFromList
3644                         : SK_ConstructorInitialization;
3645   S.Type = T;
3646   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3647   S.Function.Function = Constructor;
3648   S.Function.FoundDecl = FoundDecl;
3649   Steps.push_back(S);
3650 }
3651 
3652 void InitializationSequence::AddZeroInitializationStep(QualType T) {
3653   Step S;
3654   S.Kind = SK_ZeroInitialization;
3655   S.Type = T;
3656   Steps.push_back(S);
3657 }
3658 
3659 void InitializationSequence::AddCAssignmentStep(QualType T) {
3660   Step S;
3661   S.Kind = SK_CAssignment;
3662   S.Type = T;
3663   Steps.push_back(S);
3664 }
3665 
3666 void InitializationSequence::AddStringInitStep(QualType T) {
3667   Step S;
3668   S.Kind = SK_StringInit;
3669   S.Type = T;
3670   Steps.push_back(S);
3671 }
3672 
3673 void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
3674   Step S;
3675   S.Kind = SK_ObjCObjectConversion;
3676   S.Type = T;
3677   Steps.push_back(S);
3678 }
3679 
3680 void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) {
3681   Step S;
3682   S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit;
3683   S.Type = T;
3684   Steps.push_back(S);
3685 }
3686 
3687 void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) {
3688   Step S;
3689   S.Kind = SK_ArrayLoopIndex;
3690   S.Type = EltT;
3691   Steps.insert(Steps.begin(), S);
3692 
3693   S.Kind = SK_ArrayLoopInit;
3694   S.Type = T;
3695   Steps.push_back(S);
3696 }
3697 
3698 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
3699   Step S;
3700   S.Kind = SK_ParenthesizedArrayInit;
3701   S.Type = T;
3702   Steps.push_back(S);
3703 }
3704 
3705 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
3706                                                               bool shouldCopy) {
3707   Step s;
3708   s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
3709                        : SK_PassByIndirectRestore);
3710   s.Type = type;
3711   Steps.push_back(s);
3712 }
3713 
3714 void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
3715   Step S;
3716   S.Kind = SK_ProduceObjCObject;
3717   S.Type = T;
3718   Steps.push_back(S);
3719 }
3720 
3721 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
3722   Step S;
3723   S.Kind = SK_StdInitializerList;
3724   S.Type = T;
3725   Steps.push_back(S);
3726 }
3727 
3728 void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
3729   Step S;
3730   S.Kind = SK_OCLSamplerInit;
3731   S.Type = T;
3732   Steps.push_back(S);
3733 }
3734 
3735 void InitializationSequence::AddOCLZeroOpaqueTypeStep(QualType T) {
3736   Step S;
3737   S.Kind = SK_OCLZeroOpaqueType;
3738   S.Type = T;
3739   Steps.push_back(S);
3740 }
3741 
3742 void InitializationSequence::RewrapReferenceInitList(QualType T,
3743                                                      InitListExpr *Syntactic) {
3744   assert(Syntactic->getNumInits() == 1 &&
3745          "Can only rewrap trivial init lists.");
3746   Step S;
3747   S.Kind = SK_UnwrapInitList;
3748   S.Type = Syntactic->getInit(0)->getType();
3749   Steps.insert(Steps.begin(), S);
3750 
3751   S.Kind = SK_RewrapInitList;
3752   S.Type = T;
3753   S.WrappingSyntacticList = Syntactic;
3754   Steps.push_back(S);
3755 }
3756 
3757 void InitializationSequence::SetOverloadFailure(FailureKind Failure,
3758                                                 OverloadingResult Result) {
3759   setSequenceKind(FailedSequence);
3760   this->Failure = Failure;
3761   this->FailedOverloadResult = Result;
3762 }
3763 
3764 //===----------------------------------------------------------------------===//
3765 // Attempt initialization
3766 //===----------------------------------------------------------------------===//
3767 
3768 /// Tries to add a zero initializer. Returns true if that worked.
3769 static bool
3770 maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence,
3771                                    const InitializedEntity &Entity) {
3772   if (Entity.getKind() != InitializedEntity::EK_Variable)
3773     return false;
3774 
3775   VarDecl *VD = cast<VarDecl>(Entity.getDecl());
3776   if (VD->getInit() || VD->getEndLoc().isMacroID())
3777     return false;
3778 
3779   QualType VariableTy = VD->getType().getCanonicalType();
3780   SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc());
3781   std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
3782   if (!Init.empty()) {
3783     Sequence.AddZeroInitializationStep(Entity.getType());
3784     Sequence.SetZeroInitializationFixit(Init, Loc);
3785     return true;
3786   }
3787   return false;
3788 }
3789 
3790 static void MaybeProduceObjCObject(Sema &S,
3791                                    InitializationSequence &Sequence,
3792                                    const InitializedEntity &Entity) {
3793   if (!S.getLangOpts().ObjCAutoRefCount) return;
3794 
3795   /// When initializing a parameter, produce the value if it's marked
3796   /// __attribute__((ns_consumed)).
3797   if (Entity.isParameterKind()) {
3798     if (!Entity.isParameterConsumed())
3799       return;
3800 
3801     assert(Entity.getType()->isObjCRetainableType() &&
3802            "consuming an object of unretainable type?");
3803     Sequence.AddProduceObjCObjectStep(Entity.getType());
3804 
3805   /// When initializing a return value, if the return type is a
3806   /// retainable type, then returns need to immediately retain the
3807   /// object.  If an autorelease is required, it will be done at the
3808   /// last instant.
3809   } else if (Entity.getKind() == InitializedEntity::EK_Result ||
3810              Entity.getKind() == InitializedEntity::EK_StmtExprResult) {
3811     if (!Entity.getType()->isObjCRetainableType())
3812       return;
3813 
3814     Sequence.AddProduceObjCObjectStep(Entity.getType());
3815   }
3816 }
3817 
3818 static void TryListInitialization(Sema &S,
3819                                   const InitializedEntity &Entity,
3820                                   const InitializationKind &Kind,
3821                                   InitListExpr *InitList,
3822                                   InitializationSequence &Sequence,
3823                                   bool TreatUnavailableAsInvalid);
3824 
3825 /// When initializing from init list via constructor, handle
3826 /// initialization of an object of type std::initializer_list<T>.
3827 ///
3828 /// \return true if we have handled initialization of an object of type
3829 /// std::initializer_list<T>, false otherwise.
3830 static bool TryInitializerListConstruction(Sema &S,
3831                                            InitListExpr *List,
3832                                            QualType DestType,
3833                                            InitializationSequence &Sequence,
3834                                            bool TreatUnavailableAsInvalid) {
3835   QualType E;
3836   if (!S.isStdInitializerList(DestType, &E))
3837     return false;
3838 
3839   if (!S.isCompleteType(List->getExprLoc(), E)) {
3840     Sequence.setIncompleteTypeFailure(E);
3841     return true;
3842   }
3843 
3844   // Try initializing a temporary array from the init list.
3845   QualType ArrayType = S.Context.getConstantArrayType(
3846       E.withConst(),
3847       llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
3848                   List->getNumInits()),
3849       nullptr, clang::ArrayType::Normal, 0);
3850   InitializedEntity HiddenArray =
3851       InitializedEntity::InitializeTemporary(ArrayType);
3852   InitializationKind Kind = InitializationKind::CreateDirectList(
3853       List->getExprLoc(), List->getBeginLoc(), List->getEndLoc());
3854   TryListInitialization(S, HiddenArray, Kind, List, Sequence,
3855                         TreatUnavailableAsInvalid);
3856   if (Sequence)
3857     Sequence.AddStdInitializerListConstructionStep(DestType);
3858   return true;
3859 }
3860 
3861 /// Determine if the constructor has the signature of a copy or move
3862 /// constructor for the type T of the class in which it was found. That is,
3863 /// determine if its first parameter is of type T or reference to (possibly
3864 /// cv-qualified) T.
3865 static bool hasCopyOrMoveCtorParam(ASTContext &Ctx,
3866                                    const ConstructorInfo &Info) {
3867   if (Info.Constructor->getNumParams() == 0)
3868     return false;
3869 
3870   QualType ParmT =
3871       Info.Constructor->getParamDecl(0)->getType().getNonReferenceType();
3872   QualType ClassT =
3873       Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext()));
3874 
3875   return Ctx.hasSameUnqualifiedType(ParmT, ClassT);
3876 }
3877 
3878 static OverloadingResult
3879 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
3880                            MultiExprArg Args,
3881                            OverloadCandidateSet &CandidateSet,
3882                            QualType DestType,
3883                            DeclContext::lookup_result Ctors,
3884                            OverloadCandidateSet::iterator &Best,
3885                            bool CopyInitializing, bool AllowExplicit,
3886                            bool OnlyListConstructors, bool IsListInit,
3887                            bool SecondStepOfCopyInit = false) {
3888   CandidateSet.clear(OverloadCandidateSet::CSK_InitByConstructor);
3889   CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace());
3890 
3891   for (NamedDecl *D : Ctors) {
3892     auto Info = getConstructorInfo(D);
3893     if (!Info.Constructor || Info.Constructor->isInvalidDecl())
3894       continue;
3895 
3896     if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor))
3897       continue;
3898 
3899     // C++11 [over.best.ics]p4:
3900     //   ... and the constructor or user-defined conversion function is a
3901     //   candidate by
3902     //   - 13.3.1.3, when the argument is the temporary in the second step
3903     //     of a class copy-initialization, or
3904     //   - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here]
3905     //   - the second phase of 13.3.1.7 when the initializer list has exactly
3906     //     one element that is itself an initializer list, and the target is
3907     //     the first parameter of a constructor of class X, and the conversion
3908     //     is to X or reference to (possibly cv-qualified X),
3909     //   user-defined conversion sequences are not considered.
3910     bool SuppressUserConversions =
3911         SecondStepOfCopyInit ||
3912         (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
3913          hasCopyOrMoveCtorParam(S.Context, Info));
3914 
3915     if (Info.ConstructorTmpl)
3916       S.AddTemplateOverloadCandidate(
3917           Info.ConstructorTmpl, Info.FoundDecl,
3918           /*ExplicitArgs*/ nullptr, Args, CandidateSet, SuppressUserConversions,
3919           /*PartialOverloading=*/false, AllowExplicit);
3920     else {
3921       // C++ [over.match.copy]p1:
3922       //   - When initializing a temporary to be bound to the first parameter
3923       //     of a constructor [for type T] that takes a reference to possibly
3924       //     cv-qualified T as its first argument, called with a single
3925       //     argument in the context of direct-initialization, explicit
3926       //     conversion functions are also considered.
3927       // FIXME: What if a constructor template instantiates to such a signature?
3928       bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
3929                                Args.size() == 1 &&
3930                                hasCopyOrMoveCtorParam(S.Context, Info);
3931       S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args,
3932                              CandidateSet, SuppressUserConversions,
3933                              /*PartialOverloading=*/false, AllowExplicit,
3934                              AllowExplicitConv);
3935     }
3936   }
3937 
3938   // FIXME: Work around a bug in C++17 guaranteed copy elision.
3939   //
3940   // When initializing an object of class type T by constructor
3941   // ([over.match.ctor]) or by list-initialization ([over.match.list])
3942   // from a single expression of class type U, conversion functions of
3943   // U that convert to the non-reference type cv T are candidates.
3944   // Explicit conversion functions are only candidates during
3945   // direct-initialization.
3946   //
3947   // Note: SecondStepOfCopyInit is only ever true in this case when
3948   // evaluating whether to produce a C++98 compatibility warning.
3949   if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 &&
3950       !SecondStepOfCopyInit) {
3951     Expr *Initializer = Args[0];
3952     auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl();
3953     if (SourceRD && S.isCompleteType(DeclLoc, Initializer->getType())) {
3954       const auto &Conversions = SourceRD->getVisibleConversionFunctions();
3955       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
3956         NamedDecl *D = *I;
3957         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3958         D = D->getUnderlyingDecl();
3959 
3960         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3961         CXXConversionDecl *Conv;
3962         if (ConvTemplate)
3963           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3964         else
3965           Conv = cast<CXXConversionDecl>(D);
3966 
3967         if (ConvTemplate)
3968           S.AddTemplateConversionCandidate(
3969               ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
3970               CandidateSet, AllowExplicit, AllowExplicit,
3971               /*AllowResultConversion*/ false);
3972         else
3973           S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer,
3974                                    DestType, CandidateSet, AllowExplicit,
3975                                    AllowExplicit,
3976                                    /*AllowResultConversion*/ false);
3977       }
3978     }
3979   }
3980 
3981   // Perform overload resolution and return the result.
3982   return CandidateSet.BestViableFunction(S, DeclLoc, Best);
3983 }
3984 
3985 /// Attempt initialization by constructor (C++ [dcl.init]), which
3986 /// enumerates the constructors of the initialized entity and performs overload
3987 /// resolution to select the best.
3988 /// \param DestType       The destination class type.
3989 /// \param DestArrayType  The destination type, which is either DestType or
3990 ///                       a (possibly multidimensional) array of DestType.
3991 /// \param IsListInit     Is this list-initialization?
3992 /// \param IsInitListCopy Is this non-list-initialization resulting from a
3993 ///                       list-initialization from {x} where x is the same
3994 ///                       type as the entity?
3995 static void TryConstructorInitialization(Sema &S,
3996                                          const InitializedEntity &Entity,
3997                                          const InitializationKind &Kind,
3998                                          MultiExprArg Args, QualType DestType,
3999                                          QualType DestArrayType,
4000                                          InitializationSequence &Sequence,
4001                                          bool IsListInit = false,
4002                                          bool IsInitListCopy = false) {
4003   assert(((!IsListInit && !IsInitListCopy) ||
4004           (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&
4005          "IsListInit/IsInitListCopy must come with a single initializer list "
4006          "argument.");
4007   InitListExpr *ILE =
4008       (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr;
4009   MultiExprArg UnwrappedArgs =
4010       ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args;
4011 
4012   // The type we're constructing needs to be complete.
4013   if (!S.isCompleteType(Kind.getLocation(), DestType)) {
4014     Sequence.setIncompleteTypeFailure(DestType);
4015     return;
4016   }
4017 
4018   // C++17 [dcl.init]p17:
4019   //     - If the initializer expression is a prvalue and the cv-unqualified
4020   //       version of the source type is the same class as the class of the
4021   //       destination, the initializer expression is used to initialize the
4022   //       destination object.
4023   // Per DR (no number yet), this does not apply when initializing a base
4024   // class or delegating to another constructor from a mem-initializer.
4025   // ObjC++: Lambda captured by the block in the lambda to block conversion
4026   // should avoid copy elision.
4027   if (S.getLangOpts().CPlusPlus17 &&
4028       Entity.getKind() != InitializedEntity::EK_Base &&
4029       Entity.getKind() != InitializedEntity::EK_Delegating &&
4030       Entity.getKind() !=
4031           InitializedEntity::EK_LambdaToBlockConversionBlockElement &&
4032       UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isRValue() &&
4033       S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) {
4034     // Convert qualifications if necessary.
4035     Sequence.AddQualificationConversionStep(DestType, VK_RValue);
4036     if (ILE)
4037       Sequence.RewrapReferenceInitList(DestType, ILE);
4038     return;
4039   }
4040 
4041   const RecordType *DestRecordType = DestType->getAs<RecordType>();
4042   assert(DestRecordType && "Constructor initialization requires record type");
4043   CXXRecordDecl *DestRecordDecl
4044     = cast<CXXRecordDecl>(DestRecordType->getDecl());
4045 
4046   // Build the candidate set directly in the initialization sequence
4047   // structure, so that it will persist if we fail.
4048   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4049 
4050   // Determine whether we are allowed to call explicit constructors or
4051   // explicit conversion operators.
4052   bool AllowExplicit = Kind.AllowExplicit() || IsListInit;
4053   bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
4054 
4055   //   - Otherwise, if T is a class type, constructors are considered. The
4056   //     applicable constructors are enumerated, and the best one is chosen
4057   //     through overload resolution.
4058   DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl);
4059 
4060   OverloadingResult Result = OR_No_Viable_Function;
4061   OverloadCandidateSet::iterator Best;
4062   bool AsInitializerList = false;
4063 
4064   // C++11 [over.match.list]p1, per DR1467:
4065   //   When objects of non-aggregate type T are list-initialized, such that
4066   //   8.5.4 [dcl.init.list] specifies that overload resolution is performed
4067   //   according to the rules in this section, overload resolution selects
4068   //   the constructor in two phases:
4069   //
4070   //   - Initially, the candidate functions are the initializer-list
4071   //     constructors of the class T and the argument list consists of the
4072   //     initializer list as a single argument.
4073   if (IsListInit) {
4074     AsInitializerList = true;
4075 
4076     // If the initializer list has no elements and T has a default constructor,
4077     // the first phase is omitted.
4078     if (!(UnwrappedArgs.empty() && S.LookupDefaultConstructor(DestRecordDecl)))
4079       Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
4080                                           CandidateSet, DestType, Ctors, Best,
4081                                           CopyInitialization, AllowExplicit,
4082                                           /*OnlyListConstructors=*/true,
4083                                           IsListInit);
4084   }
4085 
4086   // C++11 [over.match.list]p1:
4087   //   - If no viable initializer-list constructor is found, overload resolution
4088   //     is performed again, where the candidate functions are all the
4089   //     constructors of the class T and the argument list consists of the
4090   //     elements of the initializer list.
4091   if (Result == OR_No_Viable_Function) {
4092     AsInitializerList = false;
4093     Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs,
4094                                         CandidateSet, DestType, Ctors, Best,
4095                                         CopyInitialization, AllowExplicit,
4096                                         /*OnlyListConstructors=*/false,
4097                                         IsListInit);
4098   }
4099   if (Result) {
4100     Sequence.SetOverloadFailure(IsListInit ?
4101                       InitializationSequence::FK_ListConstructorOverloadFailed :
4102                       InitializationSequence::FK_ConstructorOverloadFailed,
4103                                 Result);
4104     return;
4105   }
4106 
4107   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4108 
4109   // In C++17, ResolveConstructorOverload can select a conversion function
4110   // instead of a constructor.
4111   if (auto *CD = dyn_cast<CXXConversionDecl>(Best->Function)) {
4112     // Add the user-defined conversion step that calls the conversion function.
4113     QualType ConvType = CD->getConversionType();
4114     assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) &&
4115            "should not have selected this conversion function");
4116     Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType,
4117                                    HadMultipleCandidates);
4118     if (!S.Context.hasSameType(ConvType, DestType))
4119       Sequence.AddQualificationConversionStep(DestType, VK_RValue);
4120     if (IsListInit)
4121       Sequence.RewrapReferenceInitList(Entity.getType(), ILE);
4122     return;
4123   }
4124 
4125   // C++11 [dcl.init]p6:
4126   //   If a program calls for the default initialization of an object
4127   //   of a const-qualified type T, T shall be a class type with a
4128   //   user-provided default constructor.
4129   // C++ core issue 253 proposal:
4130   //   If the implicit default constructor initializes all subobjects, no
4131   //   initializer should be required.
4132   // The 253 proposal is for example needed to process libstdc++ headers in 5.x.
4133   CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
4134   if (Kind.getKind() == InitializationKind::IK_Default &&
4135       Entity.getType().isConstQualified()) {
4136     if (!CtorDecl->getParent()->allowConstDefaultInit()) {
4137       if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
4138         Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
4139       return;
4140     }
4141   }
4142 
4143   // C++11 [over.match.list]p1:
4144   //   In copy-list-initialization, if an explicit constructor is chosen, the
4145   //   initializer is ill-formed.
4146   if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
4147     Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
4148     return;
4149   }
4150 
4151   // Add the constructor initialization step. Any cv-qualification conversion is
4152   // subsumed by the initialization.
4153   Sequence.AddConstructorInitializationStep(
4154       Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates,
4155       IsListInit | IsInitListCopy, AsInitializerList);
4156 }
4157 
4158 static bool
4159 ResolveOverloadedFunctionForReferenceBinding(Sema &S,
4160                                              Expr *Initializer,
4161                                              QualType &SourceType,
4162                                              QualType &UnqualifiedSourceType,
4163                                              QualType UnqualifiedTargetType,
4164                                              InitializationSequence &Sequence) {
4165   if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
4166         S.Context.OverloadTy) {
4167     DeclAccessPair Found;
4168     bool HadMultipleCandidates = false;
4169     if (FunctionDecl *Fn
4170         = S.ResolveAddressOfOverloadedFunction(Initializer,
4171                                                UnqualifiedTargetType,
4172                                                false, Found,
4173                                                &HadMultipleCandidates)) {
4174       Sequence.AddAddressOverloadResolutionStep(Fn, Found,
4175                                                 HadMultipleCandidates);
4176       SourceType = Fn->getType();
4177       UnqualifiedSourceType = SourceType.getUnqualifiedType();
4178     } else if (!UnqualifiedTargetType->isRecordType()) {
4179       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4180       return true;
4181     }
4182   }
4183   return false;
4184 }
4185 
4186 static void TryReferenceInitializationCore(Sema &S,
4187                                            const InitializedEntity &Entity,
4188                                            const InitializationKind &Kind,
4189                                            Expr *Initializer,
4190                                            QualType cv1T1, QualType T1,
4191                                            Qualifiers T1Quals,
4192                                            QualType cv2T2, QualType T2,
4193                                            Qualifiers T2Quals,
4194                                            InitializationSequence &Sequence);
4195 
4196 static void TryValueInitialization(Sema &S,
4197                                    const InitializedEntity &Entity,
4198                                    const InitializationKind &Kind,
4199                                    InitializationSequence &Sequence,
4200                                    InitListExpr *InitList = nullptr);
4201 
4202 /// Attempt list initialization of a reference.
4203 static void TryReferenceListInitialization(Sema &S,
4204                                            const InitializedEntity &Entity,
4205                                            const InitializationKind &Kind,
4206                                            InitListExpr *InitList,
4207                                            InitializationSequence &Sequence,
4208                                            bool TreatUnavailableAsInvalid) {
4209   // First, catch C++03 where this isn't possible.
4210   if (!S.getLangOpts().CPlusPlus11) {
4211     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
4212     return;
4213   }
4214   // Can't reference initialize a compound literal.
4215   if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) {
4216     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
4217     return;
4218   }
4219 
4220   QualType DestType = Entity.getType();
4221   QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
4222   Qualifiers T1Quals;
4223   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4224 
4225   // Reference initialization via an initializer list works thus:
4226   // If the initializer list consists of a single element that is
4227   // reference-related to the referenced type, bind directly to that element
4228   // (possibly creating temporaries).
4229   // Otherwise, initialize a temporary with the initializer list and
4230   // bind to that.
4231   if (InitList->getNumInits() == 1) {
4232     Expr *Initializer = InitList->getInit(0);
4233     QualType cv2T2 = Initializer->getType();
4234     Qualifiers T2Quals;
4235     QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4236 
4237     // If this fails, creating a temporary wouldn't work either.
4238     if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4239                                                      T1, Sequence))
4240       return;
4241 
4242     SourceLocation DeclLoc = Initializer->getBeginLoc();
4243     Sema::ReferenceCompareResult RefRelationship
4244       = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2);
4245     if (RefRelationship >= Sema::Ref_Related) {
4246       // Try to bind the reference here.
4247       TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4248                                      T1Quals, cv2T2, T2, T2Quals, Sequence);
4249       if (Sequence)
4250         Sequence.RewrapReferenceInitList(cv1T1, InitList);
4251       return;
4252     }
4253 
4254     // Update the initializer if we've resolved an overloaded function.
4255     if (Sequence.step_begin() != Sequence.step_end())
4256       Sequence.RewrapReferenceInitList(cv1T1, InitList);
4257   }
4258 
4259   // Not reference-related. Create a temporary and bind to that.
4260   InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
4261 
4262   TryListInitialization(S, TempEntity, Kind, InitList, Sequence,
4263                         TreatUnavailableAsInvalid);
4264   if (Sequence) {
4265     if (DestType->isRValueReferenceType() ||
4266         (T1Quals.hasConst() && !T1Quals.hasVolatile()))
4267       Sequence.AddReferenceBindingStep(cv1T1, /*BindingTemporary=*/true);
4268     else
4269       Sequence.SetFailed(
4270           InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
4271   }
4272 }
4273 
4274 /// Attempt list initialization (C++0x [dcl.init.list])
4275 static void TryListInitialization(Sema &S,
4276                                   const InitializedEntity &Entity,
4277                                   const InitializationKind &Kind,
4278                                   InitListExpr *InitList,
4279                                   InitializationSequence &Sequence,
4280                                   bool TreatUnavailableAsInvalid) {
4281   QualType DestType = Entity.getType();
4282 
4283   // C++ doesn't allow scalar initialization with more than one argument.
4284   // But C99 complex numbers are scalars and it makes sense there.
4285   if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
4286       !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
4287     Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
4288     return;
4289   }
4290   if (DestType->isReferenceType()) {
4291     TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence,
4292                                    TreatUnavailableAsInvalid);
4293     return;
4294   }
4295 
4296   if (DestType->isRecordType() &&
4297       !S.isCompleteType(InitList->getBeginLoc(), DestType)) {
4298     Sequence.setIncompleteTypeFailure(DestType);
4299     return;
4300   }
4301 
4302   // C++11 [dcl.init.list]p3, per DR1467:
4303   // - If T is a class type and the initializer list has a single element of
4304   //   type cv U, where U is T or a class derived from T, the object is
4305   //   initialized from that element (by copy-initialization for
4306   //   copy-list-initialization, or by direct-initialization for
4307   //   direct-list-initialization).
4308   // - Otherwise, if T is a character array and the initializer list has a
4309   //   single element that is an appropriately-typed string literal
4310   //   (8.5.2 [dcl.init.string]), initialization is performed as described
4311   //   in that section.
4312   // - Otherwise, if T is an aggregate, [...] (continue below).
4313   if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) {
4314     if (DestType->isRecordType()) {
4315       QualType InitType = InitList->getInit(0)->getType();
4316       if (S.Context.hasSameUnqualifiedType(InitType, DestType) ||
4317           S.IsDerivedFrom(InitList->getBeginLoc(), InitType, DestType)) {
4318         Expr *InitListAsExpr = InitList;
4319         TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4320                                      DestType, Sequence,
4321                                      /*InitListSyntax*/false,
4322                                      /*IsInitListCopy*/true);
4323         return;
4324       }
4325     }
4326     if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) {
4327       Expr *SubInit[1] = {InitList->getInit(0)};
4328       if (!isa<VariableArrayType>(DestAT) &&
4329           IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) {
4330         InitializationKind SubKind =
4331             Kind.getKind() == InitializationKind::IK_DirectList
4332                 ? InitializationKind::CreateDirect(Kind.getLocation(),
4333                                                    InitList->getLBraceLoc(),
4334                                                    InitList->getRBraceLoc())
4335                 : Kind;
4336         Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4337                                 /*TopLevelOfInitList*/ true,
4338                                 TreatUnavailableAsInvalid);
4339 
4340         // TryStringLiteralInitialization() (in InitializeFrom()) will fail if
4341         // the element is not an appropriately-typed string literal, in which
4342         // case we should proceed as in C++11 (below).
4343         if (Sequence) {
4344           Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4345           return;
4346         }
4347       }
4348     }
4349   }
4350 
4351   // C++11 [dcl.init.list]p3:
4352   //   - If T is an aggregate, aggregate initialization is performed.
4353   if ((DestType->isRecordType() && !DestType->isAggregateType()) ||
4354       (S.getLangOpts().CPlusPlus11 &&
4355        S.isStdInitializerList(DestType, nullptr))) {
4356     if (S.getLangOpts().CPlusPlus11) {
4357       //   - Otherwise, if the initializer list has no elements and T is a
4358       //     class type with a default constructor, the object is
4359       //     value-initialized.
4360       if (InitList->getNumInits() == 0) {
4361         CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
4362         if (S.LookupDefaultConstructor(RD)) {
4363           TryValueInitialization(S, Entity, Kind, Sequence, InitList);
4364           return;
4365         }
4366       }
4367 
4368       //   - Otherwise, if T is a specialization of std::initializer_list<E>,
4369       //     an initializer_list object constructed [...]
4370       if (TryInitializerListConstruction(S, InitList, DestType, Sequence,
4371                                          TreatUnavailableAsInvalid))
4372         return;
4373 
4374       //   - Otherwise, if T is a class type, constructors are considered.
4375       Expr *InitListAsExpr = InitList;
4376       TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4377                                    DestType, Sequence, /*InitListSyntax*/true);
4378     } else
4379       Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
4380     return;
4381   }
4382 
4383   if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() &&
4384       InitList->getNumInits() == 1) {
4385     Expr *E = InitList->getInit(0);
4386 
4387     //   - Otherwise, if T is an enumeration with a fixed underlying type,
4388     //     the initializer-list has a single element v, and the initialization
4389     //     is direct-list-initialization, the object is initialized with the
4390     //     value T(v); if a narrowing conversion is required to convert v to
4391     //     the underlying type of T, the program is ill-formed.
4392     auto *ET = DestType->getAs<EnumType>();
4393     if (S.getLangOpts().CPlusPlus17 &&
4394         Kind.getKind() == InitializationKind::IK_DirectList &&
4395         ET && ET->getDecl()->isFixed() &&
4396         !S.Context.hasSameUnqualifiedType(E->getType(), DestType) &&
4397         (E->getType()->isIntegralOrEnumerationType() ||
4398          E->getType()->isFloatingType())) {
4399       // There are two ways that T(v) can work when T is an enumeration type.
4400       // If there is either an implicit conversion sequence from v to T or
4401       // a conversion function that can convert from v to T, then we use that.
4402       // Otherwise, if v is of integral, enumeration, or floating-point type,
4403       // it is converted to the enumeration type via its underlying type.
4404       // There is no overlap possible between these two cases (except when the
4405       // source value is already of the destination type), and the first
4406       // case is handled by the general case for single-element lists below.
4407       ImplicitConversionSequence ICS;
4408       ICS.setStandard();
4409       ICS.Standard.setAsIdentityConversion();
4410       if (!E->isRValue())
4411         ICS.Standard.First = ICK_Lvalue_To_Rvalue;
4412       // If E is of a floating-point type, then the conversion is ill-formed
4413       // due to narrowing, but go through the motions in order to produce the
4414       // right diagnostic.
4415       ICS.Standard.Second = E->getType()->isFloatingType()
4416                                 ? ICK_Floating_Integral
4417                                 : ICK_Integral_Conversion;
4418       ICS.Standard.setFromType(E->getType());
4419       ICS.Standard.setToType(0, E->getType());
4420       ICS.Standard.setToType(1, DestType);
4421       ICS.Standard.setToType(2, DestType);
4422       Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2),
4423                                          /*TopLevelOfInitList*/true);
4424       Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4425       return;
4426     }
4427 
4428     //   - Otherwise, if the initializer list has a single element of type E
4429     //     [...references are handled above...], the object or reference is
4430     //     initialized from that element (by copy-initialization for
4431     //     copy-list-initialization, or by direct-initialization for
4432     //     direct-list-initialization); if a narrowing conversion is required
4433     //     to convert the element to T, the program is ill-formed.
4434     //
4435     // Per core-24034, this is direct-initialization if we were performing
4436     // direct-list-initialization and copy-initialization otherwise.
4437     // We can't use InitListChecker for this, because it always performs
4438     // copy-initialization. This only matters if we might use an 'explicit'
4439     // conversion operator, or for the special case conversion of nullptr_t to
4440     // bool, so we only need to handle those cases.
4441     //
4442     // FIXME: Why not do this in all cases?
4443     Expr *Init = InitList->getInit(0);
4444     if (Init->getType()->isRecordType() ||
4445         (Init->getType()->isNullPtrType() && DestType->isBooleanType())) {
4446       InitializationKind SubKind =
4447           Kind.getKind() == InitializationKind::IK_DirectList
4448               ? InitializationKind::CreateDirect(Kind.getLocation(),
4449                                                  InitList->getLBraceLoc(),
4450                                                  InitList->getRBraceLoc())
4451               : Kind;
4452       Expr *SubInit[1] = { Init };
4453       Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4454                               /*TopLevelOfInitList*/true,
4455                               TreatUnavailableAsInvalid);
4456       if (Sequence)
4457         Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4458       return;
4459     }
4460   }
4461 
4462   InitListChecker CheckInitList(S, Entity, InitList,
4463           DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid);
4464   if (CheckInitList.HadError()) {
4465     Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
4466     return;
4467   }
4468 
4469   // Add the list initialization step with the built init list.
4470   Sequence.AddListInitializationStep(DestType);
4471 }
4472 
4473 /// Try a reference initialization that involves calling a conversion
4474 /// function.
4475 static OverloadingResult TryRefInitWithConversionFunction(
4476     Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind,
4477     Expr *Initializer, bool AllowRValues, bool IsLValueRef,
4478     InitializationSequence &Sequence) {
4479   QualType DestType = Entity.getType();
4480   QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
4481   QualType T1 = cv1T1.getUnqualifiedType();
4482   QualType cv2T2 = Initializer->getType();
4483   QualType T2 = cv2T2.getUnqualifiedType();
4484 
4485   assert(!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2) &&
4486          "Must have incompatible references when binding via conversion");
4487 
4488   // Build the candidate set directly in the initialization sequence
4489   // structure, so that it will persist if we fail.
4490   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4491   CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4492 
4493   // Determine whether we are allowed to call explicit conversion operators.
4494   // Note that none of [over.match.copy], [over.match.conv], nor
4495   // [over.match.ref] permit an explicit constructor to be chosen when
4496   // initializing a reference, not even for direct-initialization.
4497   bool AllowExplicitCtors = false;
4498   bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding();
4499 
4500   const RecordType *T1RecordType = nullptr;
4501   if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
4502       S.isCompleteType(Kind.getLocation(), T1)) {
4503     // The type we're converting to is a class type. Enumerate its constructors
4504     // to see if there is a suitable conversion.
4505     CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
4506 
4507     for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) {
4508       auto Info = getConstructorInfo(D);
4509       if (!Info.Constructor)
4510         continue;
4511 
4512       if (!Info.Constructor->isInvalidDecl() &&
4513           Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) {
4514         if (Info.ConstructorTmpl)
4515           S.AddTemplateOverloadCandidate(
4516               Info.ConstructorTmpl, Info.FoundDecl,
4517               /*ExplicitArgs*/ nullptr, Initializer, CandidateSet,
4518               /*SuppressUserConversions=*/true,
4519               /*PartialOverloading*/ false, AllowExplicitCtors);
4520         else
4521           S.AddOverloadCandidate(
4522               Info.Constructor, Info.FoundDecl, Initializer, CandidateSet,
4523               /*SuppressUserConversions=*/true,
4524               /*PartialOverloading*/ false, AllowExplicitCtors);
4525       }
4526     }
4527   }
4528   if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
4529     return OR_No_Viable_Function;
4530 
4531   const RecordType *T2RecordType = nullptr;
4532   if ((T2RecordType = T2->getAs<RecordType>()) &&
4533       S.isCompleteType(Kind.getLocation(), T2)) {
4534     // The type we're converting from is a class type, enumerate its conversion
4535     // functions.
4536     CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
4537 
4538     const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4539     for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4540       NamedDecl *D = *I;
4541       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4542       if (isa<UsingShadowDecl>(D))
4543         D = cast<UsingShadowDecl>(D)->getTargetDecl();
4544 
4545       FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4546       CXXConversionDecl *Conv;
4547       if (ConvTemplate)
4548         Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4549       else
4550         Conv = cast<CXXConversionDecl>(D);
4551 
4552       // If the conversion function doesn't return a reference type,
4553       // it can't be considered for this conversion unless we're allowed to
4554       // consider rvalues.
4555       // FIXME: Do we need to make sure that we only consider conversion
4556       // candidates with reference-compatible results? That might be needed to
4557       // break recursion.
4558       if ((AllowRValues ||
4559            Conv->getConversionType()->isLValueReferenceType())) {
4560         if (ConvTemplate)
4561           S.AddTemplateConversionCandidate(
4562               ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
4563               CandidateSet,
4564               /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs);
4565         else
4566           S.AddConversionCandidate(
4567               Conv, I.getPair(), ActingDC, Initializer, DestType, CandidateSet,
4568               /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs);
4569       }
4570     }
4571   }
4572   if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
4573     return OR_No_Viable_Function;
4574 
4575   SourceLocation DeclLoc = Initializer->getBeginLoc();
4576 
4577   // Perform overload resolution. If it fails, return the failed result.
4578   OverloadCandidateSet::iterator Best;
4579   if (OverloadingResult Result
4580         = CandidateSet.BestViableFunction(S, DeclLoc, Best))
4581     return Result;
4582 
4583   FunctionDecl *Function = Best->Function;
4584   // This is the overload that will be used for this initialization step if we
4585   // use this initialization. Mark it as referenced.
4586   Function->setReferenced();
4587 
4588   // Compute the returned type and value kind of the conversion.
4589   QualType cv3T3;
4590   if (isa<CXXConversionDecl>(Function))
4591     cv3T3 = Function->getReturnType();
4592   else
4593     cv3T3 = T1;
4594 
4595   ExprValueKind VK = VK_RValue;
4596   if (cv3T3->isLValueReferenceType())
4597     VK = VK_LValue;
4598   else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>())
4599     VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
4600   cv3T3 = cv3T3.getNonLValueExprType(S.Context);
4601 
4602   // Add the user-defined conversion step.
4603   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4604   Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3,
4605                                  HadMultipleCandidates);
4606 
4607   // Determine whether we'll need to perform derived-to-base adjustments or
4608   // other conversions.
4609   Sema::ReferenceConversions RefConv;
4610   Sema::ReferenceCompareResult NewRefRelationship =
4611       S.CompareReferenceRelationship(DeclLoc, T1, cv3T3, &RefConv);
4612 
4613   // Add the final conversion sequence, if necessary.
4614   if (NewRefRelationship == Sema::Ref_Incompatible) {
4615     assert(!isa<CXXConstructorDecl>(Function) &&
4616            "should not have conversion after constructor");
4617 
4618     ImplicitConversionSequence ICS;
4619     ICS.setStandard();
4620     ICS.Standard = Best->FinalConversion;
4621     Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2));
4622 
4623     // Every implicit conversion results in a prvalue, except for a glvalue
4624     // derived-to-base conversion, which we handle below.
4625     cv3T3 = ICS.Standard.getToType(2);
4626     VK = VK_RValue;
4627   }
4628 
4629   //   If the converted initializer is a prvalue, its type T4 is adjusted to
4630   //   type "cv1 T4" and the temporary materialization conversion is applied.
4631   //
4632   // We adjust the cv-qualifications to match the reference regardless of
4633   // whether we have a prvalue so that the AST records the change. In this
4634   // case, T4 is "cv3 T3".
4635   QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers());
4636   if (cv1T4.getQualifiers() != cv3T3.getQualifiers())
4637     Sequence.AddQualificationConversionStep(cv1T4, VK);
4638   Sequence.AddReferenceBindingStep(cv1T4, VK == VK_RValue);
4639   VK = IsLValueRef ? VK_LValue : VK_XValue;
4640 
4641   if (RefConv & Sema::ReferenceConversions::DerivedToBase)
4642     Sequence.AddDerivedToBaseCastStep(cv1T1, VK);
4643   else if (RefConv & Sema::ReferenceConversions::ObjC)
4644     Sequence.AddObjCObjectConversionStep(cv1T1);
4645   else if (RefConv & Sema::ReferenceConversions::Function)
4646     Sequence.AddQualificationConversionStep(cv1T1, VK);
4647   else if (RefConv & Sema::ReferenceConversions::Qualification) {
4648     if (!S.Context.hasSameType(cv1T4, cv1T1))
4649       Sequence.AddQualificationConversionStep(cv1T1, VK);
4650   }
4651 
4652   return OR_Success;
4653 }
4654 
4655 static void CheckCXX98CompatAccessibleCopy(Sema &S,
4656                                            const InitializedEntity &Entity,
4657                                            Expr *CurInitExpr);
4658 
4659 /// Attempt reference initialization (C++0x [dcl.init.ref])
4660 static void TryReferenceInitialization(Sema &S,
4661                                        const InitializedEntity &Entity,
4662                                        const InitializationKind &Kind,
4663                                        Expr *Initializer,
4664                                        InitializationSequence &Sequence) {
4665   QualType DestType = Entity.getType();
4666   QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
4667   Qualifiers T1Quals;
4668   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4669   QualType cv2T2 = Initializer->getType();
4670   Qualifiers T2Quals;
4671   QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4672 
4673   // If the initializer is the address of an overloaded function, try
4674   // to resolve the overloaded function. If all goes well, T2 is the
4675   // type of the resulting function.
4676   if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4677                                                    T1, Sequence))
4678     return;
4679 
4680   // Delegate everything else to a subfunction.
4681   TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4682                                  T1Quals, cv2T2, T2, T2Quals, Sequence);
4683 }
4684 
4685 /// Determine whether an expression is a non-referenceable glvalue (one to
4686 /// which a reference can never bind). Attempting to bind a reference to
4687 /// such a glvalue will always create a temporary.
4688 static bool isNonReferenceableGLValue(Expr *E) {
4689   return E->refersToBitField() || E->refersToVectorElement() ||
4690          E->refersToMatrixElement();
4691 }
4692 
4693 /// Reference initialization without resolving overloaded functions.
4694 ///
4695 /// We also can get here in C if we call a builtin which is declared as
4696 /// a function with a parameter of reference type (such as __builtin_va_end()).
4697 static void TryReferenceInitializationCore(Sema &S,
4698                                            const InitializedEntity &Entity,
4699                                            const InitializationKind &Kind,
4700                                            Expr *Initializer,
4701                                            QualType cv1T1, QualType T1,
4702                                            Qualifiers T1Quals,
4703                                            QualType cv2T2, QualType T2,
4704                                            Qualifiers T2Quals,
4705                                            InitializationSequence &Sequence) {
4706   QualType DestType = Entity.getType();
4707   SourceLocation DeclLoc = Initializer->getBeginLoc();
4708 
4709   // Compute some basic properties of the types and the initializer.
4710   bool isLValueRef = DestType->isLValueReferenceType();
4711   bool isRValueRef = !isLValueRef;
4712   Expr::Classification InitCategory = Initializer->Classify(S.Context);
4713 
4714   Sema::ReferenceConversions RefConv;
4715   Sema::ReferenceCompareResult RefRelationship =
4716       S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, &RefConv);
4717 
4718   // C++0x [dcl.init.ref]p5:
4719   //   A reference to type "cv1 T1" is initialized by an expression of type
4720   //   "cv2 T2" as follows:
4721   //
4722   //     - If the reference is an lvalue reference and the initializer
4723   //       expression
4724   // Note the analogous bullet points for rvalue refs to functions. Because
4725   // there are no function rvalues in C++, rvalue refs to functions are treated
4726   // like lvalue refs.
4727   OverloadingResult ConvOvlResult = OR_Success;
4728   bool T1Function = T1->isFunctionType();
4729   if (isLValueRef || T1Function) {
4730     if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) &&
4731         (RefRelationship == Sema::Ref_Compatible ||
4732          (Kind.isCStyleOrFunctionalCast() &&
4733           RefRelationship == Sema::Ref_Related))) {
4734       //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
4735       //     reference-compatible with "cv2 T2," or
4736       if (RefConv & (Sema::ReferenceConversions::DerivedToBase |
4737                      Sema::ReferenceConversions::ObjC)) {
4738         // If we're converting the pointee, add any qualifiers first;
4739         // these qualifiers must all be top-level, so just convert to "cv1 T2".
4740         if (RefConv & (Sema::ReferenceConversions::Qualification))
4741           Sequence.AddQualificationConversionStep(
4742               S.Context.getQualifiedType(T2, T1Quals),
4743               Initializer->getValueKind());
4744         if (RefConv & Sema::ReferenceConversions::DerivedToBase)
4745           Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue);
4746         else
4747           Sequence.AddObjCObjectConversionStep(cv1T1);
4748       } else if (RefConv & (Sema::ReferenceConversions::Qualification |
4749                             Sema::ReferenceConversions::Function)) {
4750         // Perform a (possibly multi-level) qualification conversion.
4751         // FIXME: Should we use a different step kind for function conversions?
4752         Sequence.AddQualificationConversionStep(cv1T1,
4753                                                 Initializer->getValueKind());
4754       }
4755 
4756       // We only create a temporary here when binding a reference to a
4757       // bit-field or vector element. Those cases are't supposed to be
4758       // handled by this bullet, but the outcome is the same either way.
4759       Sequence.AddReferenceBindingStep(cv1T1, false);
4760       return;
4761     }
4762 
4763     //     - has a class type (i.e., T2 is a class type), where T1 is not
4764     //       reference-related to T2, and can be implicitly converted to an
4765     //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
4766     //       with "cv3 T3" (this conversion is selected by enumerating the
4767     //       applicable conversion functions (13.3.1.6) and choosing the best
4768     //       one through overload resolution (13.3)),
4769     // If we have an rvalue ref to function type here, the rhs must be
4770     // an rvalue. DR1287 removed the "implicitly" here.
4771     if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
4772         (isLValueRef || InitCategory.isRValue())) {
4773       if (S.getLangOpts().CPlusPlus) {
4774         // Try conversion functions only for C++.
4775         ConvOvlResult = TryRefInitWithConversionFunction(
4776             S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef,
4777             /*IsLValueRef*/ isLValueRef, Sequence);
4778         if (ConvOvlResult == OR_Success)
4779           return;
4780         if (ConvOvlResult != OR_No_Viable_Function)
4781           Sequence.SetOverloadFailure(
4782               InitializationSequence::FK_ReferenceInitOverloadFailed,
4783               ConvOvlResult);
4784       } else {
4785         ConvOvlResult = OR_No_Viable_Function;
4786       }
4787     }
4788   }
4789 
4790   //     - Otherwise, the reference shall be an lvalue reference to a
4791   //       non-volatile const type (i.e., cv1 shall be const), or the reference
4792   //       shall be an rvalue reference.
4793   //       For address spaces, we interpret this to mean that an addr space
4794   //       of a reference "cv1 T1" is a superset of addr space of "cv2 T2".
4795   if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile() &&
4796                        T1Quals.isAddressSpaceSupersetOf(T2Quals))) {
4797     if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4798       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4799     else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4800       Sequence.SetOverloadFailure(
4801                         InitializationSequence::FK_ReferenceInitOverloadFailed,
4802                                   ConvOvlResult);
4803     else if (!InitCategory.isLValue())
4804       Sequence.SetFailed(
4805           T1Quals.isAddressSpaceSupersetOf(T2Quals)
4806               ? InitializationSequence::
4807                     FK_NonConstLValueReferenceBindingToTemporary
4808               : InitializationSequence::FK_ReferenceInitDropsQualifiers);
4809     else {
4810       InitializationSequence::FailureKind FK;
4811       switch (RefRelationship) {
4812       case Sema::Ref_Compatible:
4813         if (Initializer->refersToBitField())
4814           FK = InitializationSequence::
4815               FK_NonConstLValueReferenceBindingToBitfield;
4816         else if (Initializer->refersToVectorElement())
4817           FK = InitializationSequence::
4818               FK_NonConstLValueReferenceBindingToVectorElement;
4819         else if (Initializer->refersToMatrixElement())
4820           FK = InitializationSequence::
4821               FK_NonConstLValueReferenceBindingToMatrixElement;
4822         else
4823           llvm_unreachable("unexpected kind of compatible initializer");
4824         break;
4825       case Sema::Ref_Related:
4826         FK = InitializationSequence::FK_ReferenceInitDropsQualifiers;
4827         break;
4828       case Sema::Ref_Incompatible:
4829         FK = InitializationSequence::
4830             FK_NonConstLValueReferenceBindingToUnrelated;
4831         break;
4832       }
4833       Sequence.SetFailed(FK);
4834     }
4835     return;
4836   }
4837 
4838   //    - If the initializer expression
4839   //      - is an
4840   // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or
4841   // [1z]   rvalue (but not a bit-field) or
4842   //        function lvalue and "cv1 T1" is reference-compatible with "cv2 T2"
4843   //
4844   // Note: functions are handled above and below rather than here...
4845   if (!T1Function &&
4846       (RefRelationship == Sema::Ref_Compatible ||
4847        (Kind.isCStyleOrFunctionalCast() &&
4848         RefRelationship == Sema::Ref_Related)) &&
4849       ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) ||
4850        (InitCategory.isPRValue() &&
4851         (S.getLangOpts().CPlusPlus17 || T2->isRecordType() ||
4852          T2->isArrayType())))) {
4853     ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_RValue;
4854     if (InitCategory.isPRValue() && T2->isRecordType()) {
4855       // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
4856       // compiler the freedom to perform a copy here or bind to the
4857       // object, while C++0x requires that we bind directly to the
4858       // object. Hence, we always bind to the object without making an
4859       // extra copy. However, in C++03 requires that we check for the
4860       // presence of a suitable copy constructor:
4861       //
4862       //   The constructor that would be used to make the copy shall
4863       //   be callable whether or not the copy is actually done.
4864       if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
4865         Sequence.AddExtraneousCopyToTemporary(cv2T2);
4866       else if (S.getLangOpts().CPlusPlus11)
4867         CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
4868     }
4869 
4870     // C++1z [dcl.init.ref]/5.2.1.2:
4871     //   If the converted initializer is a prvalue, its type T4 is adjusted
4872     //   to type "cv1 T4" and the temporary materialization conversion is
4873     //   applied.
4874     // Postpone address space conversions to after the temporary materialization
4875     // conversion to allow creating temporaries in the alloca address space.
4876     auto T1QualsIgnoreAS = T1Quals;
4877     auto T2QualsIgnoreAS = T2Quals;
4878     if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) {
4879       T1QualsIgnoreAS.removeAddressSpace();
4880       T2QualsIgnoreAS.removeAddressSpace();
4881     }
4882     QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1QualsIgnoreAS);
4883     if (T1QualsIgnoreAS != T2QualsIgnoreAS)
4884       Sequence.AddQualificationConversionStep(cv1T4, ValueKind);
4885     Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_RValue);
4886     ValueKind = isLValueRef ? VK_LValue : VK_XValue;
4887     // Add addr space conversion if required.
4888     if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) {
4889       auto T4Quals = cv1T4.getQualifiers();
4890       T4Quals.addAddressSpace(T1Quals.getAddressSpace());
4891       QualType cv1T4WithAS = S.Context.getQualifiedType(T2, T4Quals);
4892       Sequence.AddQualificationConversionStep(cv1T4WithAS, ValueKind);
4893       cv1T4 = cv1T4WithAS;
4894     }
4895 
4896     //   In any case, the reference is bound to the resulting glvalue (or to
4897     //   an appropriate base class subobject).
4898     if (RefConv & Sema::ReferenceConversions::DerivedToBase)
4899       Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind);
4900     else if (RefConv & Sema::ReferenceConversions::ObjC)
4901       Sequence.AddObjCObjectConversionStep(cv1T1);
4902     else if (RefConv & Sema::ReferenceConversions::Qualification) {
4903       if (!S.Context.hasSameType(cv1T4, cv1T1))
4904         Sequence.AddQualificationConversionStep(cv1T1, ValueKind);
4905     }
4906     return;
4907   }
4908 
4909   //       - has a class type (i.e., T2 is a class type), where T1 is not
4910   //         reference-related to T2, and can be implicitly converted to an
4911   //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
4912   //         where "cv1 T1" is reference-compatible with "cv3 T3",
4913   //
4914   // DR1287 removes the "implicitly" here.
4915   if (T2->isRecordType()) {
4916     if (RefRelationship == Sema::Ref_Incompatible) {
4917       ConvOvlResult = TryRefInitWithConversionFunction(
4918           S, Entity, Kind, Initializer, /*AllowRValues*/ true,
4919           /*IsLValueRef*/ isLValueRef, Sequence);
4920       if (ConvOvlResult)
4921         Sequence.SetOverloadFailure(
4922             InitializationSequence::FK_ReferenceInitOverloadFailed,
4923             ConvOvlResult);
4924 
4925       return;
4926     }
4927 
4928     if (RefRelationship == Sema::Ref_Compatible &&
4929         isRValueRef && InitCategory.isLValue()) {
4930       Sequence.SetFailed(
4931         InitializationSequence::FK_RValueReferenceBindingToLValue);
4932       return;
4933     }
4934 
4935     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4936     return;
4937   }
4938 
4939   //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
4940   //        from the initializer expression using the rules for a non-reference
4941   //        copy-initialization (8.5). The reference is then bound to the
4942   //        temporary. [...]
4943 
4944   // Ignore address space of reference type at this point and perform address
4945   // space conversion after the reference binding step.
4946   QualType cv1T1IgnoreAS =
4947       T1Quals.hasAddressSpace()
4948           ? S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace())
4949           : cv1T1;
4950 
4951   InitializedEntity TempEntity =
4952       InitializedEntity::InitializeTemporary(cv1T1IgnoreAS);
4953 
4954   // FIXME: Why do we use an implicit conversion here rather than trying
4955   // copy-initialization?
4956   ImplicitConversionSequence ICS
4957     = S.TryImplicitConversion(Initializer, TempEntity.getType(),
4958                               /*SuppressUserConversions=*/false,
4959                               Sema::AllowedExplicit::None,
4960                               /*FIXME:InOverloadResolution=*/false,
4961                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
4962                               /*AllowObjCWritebackConversion=*/false);
4963 
4964   if (ICS.isBad()) {
4965     // FIXME: Use the conversion function set stored in ICS to turn
4966     // this into an overloading ambiguity diagnostic. However, we need
4967     // to keep that set as an OverloadCandidateSet rather than as some
4968     // other kind of set.
4969     if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4970       Sequence.SetOverloadFailure(
4971                         InitializationSequence::FK_ReferenceInitOverloadFailed,
4972                                   ConvOvlResult);
4973     else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4974       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4975     else
4976       Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
4977     return;
4978   } else {
4979     Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
4980   }
4981 
4982   //        [...] If T1 is reference-related to T2, cv1 must be the
4983   //        same cv-qualification as, or greater cv-qualification
4984   //        than, cv2; otherwise, the program is ill-formed.
4985   unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
4986   unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
4987   if ((RefRelationship == Sema::Ref_Related &&
4988        (T1CVRQuals | T2CVRQuals) != T1CVRQuals) ||
4989       !T1Quals.isAddressSpaceSupersetOf(T2Quals)) {
4990     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4991     return;
4992   }
4993 
4994   //   [...] If T1 is reference-related to T2 and the reference is an rvalue
4995   //   reference, the initializer expression shall not be an lvalue.
4996   if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
4997       InitCategory.isLValue()) {
4998     Sequence.SetFailed(
4999                     InitializationSequence::FK_RValueReferenceBindingToLValue);
5000     return;
5001   }
5002 
5003   Sequence.AddReferenceBindingStep(cv1T1IgnoreAS, /*BindingTemporary=*/true);
5004 
5005   if (T1Quals.hasAddressSpace()) {
5006     if (!Qualifiers::isAddressSpaceSupersetOf(T1Quals.getAddressSpace(),
5007                                               LangAS::Default)) {
5008       Sequence.SetFailed(
5009           InitializationSequence::FK_ReferenceAddrspaceMismatchTemporary);
5010       return;
5011     }
5012     Sequence.AddQualificationConversionStep(cv1T1, isLValueRef ? VK_LValue
5013                                                                : VK_XValue);
5014   }
5015 }
5016 
5017 /// Attempt character array initialization from a string literal
5018 /// (C++ [dcl.init.string], C99 6.7.8).
5019 static void TryStringLiteralInitialization(Sema &S,
5020                                            const InitializedEntity &Entity,
5021                                            const InitializationKind &Kind,
5022                                            Expr *Initializer,
5023                                        InitializationSequence &Sequence) {
5024   Sequence.AddStringInitStep(Entity.getType());
5025 }
5026 
5027 /// Attempt value initialization (C++ [dcl.init]p7).
5028 static void TryValueInitialization(Sema &S,
5029                                    const InitializedEntity &Entity,
5030                                    const InitializationKind &Kind,
5031                                    InitializationSequence &Sequence,
5032                                    InitListExpr *InitList) {
5033   assert((!InitList || InitList->getNumInits() == 0) &&
5034          "Shouldn't use value-init for non-empty init lists");
5035 
5036   // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
5037   //
5038   //   To value-initialize an object of type T means:
5039   QualType T = Entity.getType();
5040 
5041   //     -- if T is an array type, then each element is value-initialized;
5042   T = S.Context.getBaseElementType(T);
5043 
5044   if (const RecordType *RT = T->getAs<RecordType>()) {
5045     if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
5046       bool NeedZeroInitialization = true;
5047       // C++98:
5048       // -- if T is a class type (clause 9) with a user-declared constructor
5049       //    (12.1), then the default constructor for T is called (and the
5050       //    initialization is ill-formed if T has no accessible default
5051       //    constructor);
5052       // C++11:
5053       // -- if T is a class type (clause 9) with either no default constructor
5054       //    (12.1 [class.ctor]) or a default constructor that is user-provided
5055       //    or deleted, then the object is default-initialized;
5056       //
5057       // Note that the C++11 rule is the same as the C++98 rule if there are no
5058       // defaulted or deleted constructors, so we just use it unconditionally.
5059       CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
5060       if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
5061         NeedZeroInitialization = false;
5062 
5063       // -- if T is a (possibly cv-qualified) non-union class type without a
5064       //    user-provided or deleted default constructor, then the object is
5065       //    zero-initialized and, if T has a non-trivial default constructor,
5066       //    default-initialized;
5067       // The 'non-union' here was removed by DR1502. The 'non-trivial default
5068       // constructor' part was removed by DR1507.
5069       if (NeedZeroInitialization)
5070         Sequence.AddZeroInitializationStep(Entity.getType());
5071 
5072       // C++03:
5073       // -- if T is a non-union class type without a user-declared constructor,
5074       //    then every non-static data member and base class component of T is
5075       //    value-initialized;
5076       // [...] A program that calls for [...] value-initialization of an
5077       // entity of reference type is ill-formed.
5078       //
5079       // C++11 doesn't need this handling, because value-initialization does not
5080       // occur recursively there, and the implicit default constructor is
5081       // defined as deleted in the problematic cases.
5082       if (!S.getLangOpts().CPlusPlus11 &&
5083           ClassDecl->hasUninitializedReferenceMember()) {
5084         Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
5085         return;
5086       }
5087 
5088       // If this is list-value-initialization, pass the empty init list on when
5089       // building the constructor call. This affects the semantics of a few
5090       // things (such as whether an explicit default constructor can be called).
5091       Expr *InitListAsExpr = InitList;
5092       MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
5093       bool InitListSyntax = InitList;
5094 
5095       // FIXME: Instead of creating a CXXConstructExpr of array type here,
5096       // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr.
5097       return TryConstructorInitialization(
5098           S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax);
5099     }
5100   }
5101 
5102   Sequence.AddZeroInitializationStep(Entity.getType());
5103 }
5104 
5105 /// Attempt default initialization (C++ [dcl.init]p6).
5106 static void TryDefaultInitialization(Sema &S,
5107                                      const InitializedEntity &Entity,
5108                                      const InitializationKind &Kind,
5109                                      InitializationSequence &Sequence) {
5110   assert(Kind.getKind() == InitializationKind::IK_Default);
5111 
5112   // C++ [dcl.init]p6:
5113   //   To default-initialize an object of type T means:
5114   //     - if T is an array type, each element is default-initialized;
5115   QualType DestType = S.Context.getBaseElementType(Entity.getType());
5116 
5117   //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
5118   //       constructor for T is called (and the initialization is ill-formed if
5119   //       T has no accessible default constructor);
5120   if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
5121     TryConstructorInitialization(S, Entity, Kind, None, DestType,
5122                                  Entity.getType(), Sequence);
5123     return;
5124   }
5125 
5126   //     - otherwise, no initialization is performed.
5127 
5128   //   If a program calls for the default initialization of an object of
5129   //   a const-qualified type T, T shall be a class type with a user-provided
5130   //   default constructor.
5131   if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
5132     if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
5133       Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
5134     return;
5135   }
5136 
5137   // If the destination type has a lifetime property, zero-initialize it.
5138   if (DestType.getQualifiers().hasObjCLifetime()) {
5139     Sequence.AddZeroInitializationStep(Entity.getType());
5140     return;
5141   }
5142 }
5143 
5144 /// Attempt a user-defined conversion between two types (C++ [dcl.init]),
5145 /// which enumerates all conversion functions and performs overload resolution
5146 /// to select the best.
5147 static void TryUserDefinedConversion(Sema &S,
5148                                      QualType DestType,
5149                                      const InitializationKind &Kind,
5150                                      Expr *Initializer,
5151                                      InitializationSequence &Sequence,
5152                                      bool TopLevelOfInitList) {
5153   assert(!DestType->isReferenceType() && "References are handled elsewhere");
5154   QualType SourceType = Initializer->getType();
5155   assert((DestType->isRecordType() || SourceType->isRecordType()) &&
5156          "Must have a class type to perform a user-defined conversion");
5157 
5158   // Build the candidate set directly in the initialization sequence
5159   // structure, so that it will persist if we fail.
5160   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
5161   CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
5162   CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace());
5163 
5164   // Determine whether we are allowed to call explicit constructors or
5165   // explicit conversion operators.
5166   bool AllowExplicit = Kind.AllowExplicit();
5167 
5168   if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
5169     // The type we're converting to is a class type. Enumerate its constructors
5170     // to see if there is a suitable conversion.
5171     CXXRecordDecl *DestRecordDecl
5172       = cast<CXXRecordDecl>(DestRecordType->getDecl());
5173 
5174     // Try to complete the type we're converting to.
5175     if (S.isCompleteType(Kind.getLocation(), DestType)) {
5176       for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) {
5177         auto Info = getConstructorInfo(D);
5178         if (!Info.Constructor)
5179           continue;
5180 
5181         if (!Info.Constructor->isInvalidDecl() &&
5182             Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) {
5183           if (Info.ConstructorTmpl)
5184             S.AddTemplateOverloadCandidate(
5185                 Info.ConstructorTmpl, Info.FoundDecl,
5186                 /*ExplicitArgs*/ nullptr, Initializer, CandidateSet,
5187                 /*SuppressUserConversions=*/true,
5188                 /*PartialOverloading*/ false, AllowExplicit);
5189           else
5190             S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
5191                                    Initializer, CandidateSet,
5192                                    /*SuppressUserConversions=*/true,
5193                                    /*PartialOverloading*/ false, AllowExplicit);
5194         }
5195       }
5196     }
5197   }
5198 
5199   SourceLocation DeclLoc = Initializer->getBeginLoc();
5200 
5201   if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
5202     // The type we're converting from is a class type, enumerate its conversion
5203     // functions.
5204 
5205     // We can only enumerate the conversion functions for a complete type; if
5206     // the type isn't complete, simply skip this step.
5207     if (S.isCompleteType(DeclLoc, SourceType)) {
5208       CXXRecordDecl *SourceRecordDecl
5209         = cast<CXXRecordDecl>(SourceRecordType->getDecl());
5210 
5211       const auto &Conversions =
5212           SourceRecordDecl->getVisibleConversionFunctions();
5213       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
5214         NamedDecl *D = *I;
5215         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
5216         if (isa<UsingShadowDecl>(D))
5217           D = cast<UsingShadowDecl>(D)->getTargetDecl();
5218 
5219         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
5220         CXXConversionDecl *Conv;
5221         if (ConvTemplate)
5222           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5223         else
5224           Conv = cast<CXXConversionDecl>(D);
5225 
5226         if (ConvTemplate)
5227           S.AddTemplateConversionCandidate(
5228               ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
5229               CandidateSet, AllowExplicit, AllowExplicit);
5230         else
5231           S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer,
5232                                    DestType, CandidateSet, AllowExplicit,
5233                                    AllowExplicit);
5234       }
5235     }
5236   }
5237 
5238   // Perform overload resolution. If it fails, return the failed result.
5239   OverloadCandidateSet::iterator Best;
5240   if (OverloadingResult Result
5241         = CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
5242     Sequence.SetOverloadFailure(
5243                         InitializationSequence::FK_UserConversionOverloadFailed,
5244                                 Result);
5245     return;
5246   }
5247 
5248   FunctionDecl *Function = Best->Function;
5249   Function->setReferenced();
5250   bool HadMultipleCandidates = (CandidateSet.size() > 1);
5251 
5252   if (isa<CXXConstructorDecl>(Function)) {
5253     // Add the user-defined conversion step. Any cv-qualification conversion is
5254     // subsumed by the initialization. Per DR5, the created temporary is of the
5255     // cv-unqualified type of the destination.
5256     Sequence.AddUserConversionStep(Function, Best->FoundDecl,
5257                                    DestType.getUnqualifiedType(),
5258                                    HadMultipleCandidates);
5259 
5260     // C++14 and before:
5261     //   - if the function is a constructor, the call initializes a temporary
5262     //     of the cv-unqualified version of the destination type. The [...]
5263     //     temporary [...] is then used to direct-initialize, according to the
5264     //     rules above, the object that is the destination of the
5265     //     copy-initialization.
5266     // Note that this just performs a simple object copy from the temporary.
5267     //
5268     // C++17:
5269     //   - if the function is a constructor, the call is a prvalue of the
5270     //     cv-unqualified version of the destination type whose return object
5271     //     is initialized by the constructor. The call is used to
5272     //     direct-initialize, according to the rules above, the object that
5273     //     is the destination of the copy-initialization.
5274     // Therefore we need to do nothing further.
5275     //
5276     // FIXME: Mark this copy as extraneous.
5277     if (!S.getLangOpts().CPlusPlus17)
5278       Sequence.AddFinalCopy(DestType);
5279     else if (DestType.hasQualifiers())
5280       Sequence.AddQualificationConversionStep(DestType, VK_RValue);
5281     return;
5282   }
5283 
5284   // Add the user-defined conversion step that calls the conversion function.
5285   QualType ConvType = Function->getCallResultType();
5286   Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
5287                                  HadMultipleCandidates);
5288 
5289   if (ConvType->getAs<RecordType>()) {
5290     //   The call is used to direct-initialize [...] the object that is the
5291     //   destination of the copy-initialization.
5292     //
5293     // In C++17, this does not call a constructor if we enter /17.6.1:
5294     //   - If the initializer expression is a prvalue and the cv-unqualified
5295     //     version of the source type is the same as the class of the
5296     //     destination [... do not make an extra copy]
5297     //
5298     // FIXME: Mark this copy as extraneous.
5299     if (!S.getLangOpts().CPlusPlus17 ||
5300         Function->getReturnType()->isReferenceType() ||
5301         !S.Context.hasSameUnqualifiedType(ConvType, DestType))
5302       Sequence.AddFinalCopy(DestType);
5303     else if (!S.Context.hasSameType(ConvType, DestType))
5304       Sequence.AddQualificationConversionStep(DestType, VK_RValue);
5305     return;
5306   }
5307 
5308   // If the conversion following the call to the conversion function
5309   // is interesting, add it as a separate step.
5310   if (Best->FinalConversion.First || Best->FinalConversion.Second ||
5311       Best->FinalConversion.Third) {
5312     ImplicitConversionSequence ICS;
5313     ICS.setStandard();
5314     ICS.Standard = Best->FinalConversion;
5315     Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5316   }
5317 }
5318 
5319 /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>,
5320 /// a function with a pointer return type contains a 'return false;' statement.
5321 /// In C++11, 'false' is not a null pointer, so this breaks the build of any
5322 /// code using that header.
5323 ///
5324 /// Work around this by treating 'return false;' as zero-initializing the result
5325 /// if it's used in a pointer-returning function in a system header.
5326 static bool isLibstdcxxPointerReturnFalseHack(Sema &S,
5327                                               const InitializedEntity &Entity,
5328                                               const Expr *Init) {
5329   return S.getLangOpts().CPlusPlus11 &&
5330          Entity.getKind() == InitializedEntity::EK_Result &&
5331          Entity.getType()->isPointerType() &&
5332          isa<CXXBoolLiteralExpr>(Init) &&
5333          !cast<CXXBoolLiteralExpr>(Init)->getValue() &&
5334          S.getSourceManager().isInSystemHeader(Init->getExprLoc());
5335 }
5336 
5337 /// The non-zero enum values here are indexes into diagnostic alternatives.
5338 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
5339 
5340 /// Determines whether this expression is an acceptable ICR source.
5341 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
5342                                          bool isAddressOf, bool &isWeakAccess) {
5343   // Skip parens.
5344   e = e->IgnoreParens();
5345 
5346   // Skip address-of nodes.
5347   if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
5348     if (op->getOpcode() == UO_AddrOf)
5349       return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
5350                                 isWeakAccess);
5351 
5352   // Skip certain casts.
5353   } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
5354     switch (ce->getCastKind()) {
5355     case CK_Dependent:
5356     case CK_BitCast:
5357     case CK_LValueBitCast:
5358     case CK_NoOp:
5359       return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
5360 
5361     case CK_ArrayToPointerDecay:
5362       return IIK_nonscalar;
5363 
5364     case CK_NullToPointer:
5365       return IIK_okay;
5366 
5367     default:
5368       break;
5369     }
5370 
5371   // If we have a declaration reference, it had better be a local variable.
5372   } else if (isa<DeclRefExpr>(e)) {
5373     // set isWeakAccess to true, to mean that there will be an implicit
5374     // load which requires a cleanup.
5375     if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
5376       isWeakAccess = true;
5377 
5378     if (!isAddressOf) return IIK_nonlocal;
5379 
5380     VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
5381     if (!var) return IIK_nonlocal;
5382 
5383     return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
5384 
5385   // If we have a conditional operator, check both sides.
5386   } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
5387     if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
5388                                                 isWeakAccess))
5389       return iik;
5390 
5391     return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
5392 
5393   // These are never scalar.
5394   } else if (isa<ArraySubscriptExpr>(e)) {
5395     return IIK_nonscalar;
5396 
5397   // Otherwise, it needs to be a null pointer constant.
5398   } else {
5399     return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
5400             ? IIK_okay : IIK_nonlocal);
5401   }
5402 
5403   return IIK_nonlocal;
5404 }
5405 
5406 /// Check whether the given expression is a valid operand for an
5407 /// indirect copy/restore.
5408 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
5409   assert(src->isRValue());
5410   bool isWeakAccess = false;
5411   InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
5412   // If isWeakAccess to true, there will be an implicit
5413   // load which requires a cleanup.
5414   if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
5415     S.Cleanup.setExprNeedsCleanups(true);
5416 
5417   if (iik == IIK_okay) return;
5418 
5419   S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
5420     << ((unsigned) iik - 1)  // shift index into diagnostic explanations
5421     << src->getSourceRange();
5422 }
5423 
5424 /// Determine whether we have compatible array types for the
5425 /// purposes of GNU by-copy array initialization.
5426 static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest,
5427                                     const ArrayType *Source) {
5428   // If the source and destination array types are equivalent, we're
5429   // done.
5430   if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
5431     return true;
5432 
5433   // Make sure that the element types are the same.
5434   if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
5435     return false;
5436 
5437   // The only mismatch we allow is when the destination is an
5438   // incomplete array type and the source is a constant array type.
5439   return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
5440 }
5441 
5442 static bool tryObjCWritebackConversion(Sema &S,
5443                                        InitializationSequence &Sequence,
5444                                        const InitializedEntity &Entity,
5445                                        Expr *Initializer) {
5446   bool ArrayDecay = false;
5447   QualType ArgType = Initializer->getType();
5448   QualType ArgPointee;
5449   if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
5450     ArrayDecay = true;
5451     ArgPointee = ArgArrayType->getElementType();
5452     ArgType = S.Context.getPointerType(ArgPointee);
5453   }
5454 
5455   // Handle write-back conversion.
5456   QualType ConvertedArgType;
5457   if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
5458                                    ConvertedArgType))
5459     return false;
5460 
5461   // We should copy unless we're passing to an argument explicitly
5462   // marked 'out'.
5463   bool ShouldCopy = true;
5464   if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5465     ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5466 
5467   // Do we need an lvalue conversion?
5468   if (ArrayDecay || Initializer->isGLValue()) {
5469     ImplicitConversionSequence ICS;
5470     ICS.setStandard();
5471     ICS.Standard.setAsIdentityConversion();
5472 
5473     QualType ResultType;
5474     if (ArrayDecay) {
5475       ICS.Standard.First = ICK_Array_To_Pointer;
5476       ResultType = S.Context.getPointerType(ArgPointee);
5477     } else {
5478       ICS.Standard.First = ICK_Lvalue_To_Rvalue;
5479       ResultType = Initializer->getType().getNonLValueExprType(S.Context);
5480     }
5481 
5482     Sequence.AddConversionSequenceStep(ICS, ResultType);
5483   }
5484 
5485   Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
5486   return true;
5487 }
5488 
5489 static bool TryOCLSamplerInitialization(Sema &S,
5490                                         InitializationSequence &Sequence,
5491                                         QualType DestType,
5492                                         Expr *Initializer) {
5493   if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
5494       (!Initializer->isIntegerConstantExpr(S.Context) &&
5495       !Initializer->getType()->isSamplerT()))
5496     return false;
5497 
5498   Sequence.AddOCLSamplerInitStep(DestType);
5499   return true;
5500 }
5501 
5502 static bool IsZeroInitializer(Expr *Initializer, Sema &S) {
5503   return Initializer->isIntegerConstantExpr(S.getASTContext()) &&
5504     (Initializer->EvaluateKnownConstInt(S.getASTContext()) == 0);
5505 }
5506 
5507 static bool TryOCLZeroOpaqueTypeInitialization(Sema &S,
5508                                                InitializationSequence &Sequence,
5509                                                QualType DestType,
5510                                                Expr *Initializer) {
5511   if (!S.getLangOpts().OpenCL)
5512     return false;
5513 
5514   //
5515   // OpenCL 1.2 spec, s6.12.10
5516   //
5517   // The event argument can also be used to associate the
5518   // async_work_group_copy with a previous async copy allowing
5519   // an event to be shared by multiple async copies; otherwise
5520   // event should be zero.
5521   //
5522   if (DestType->isEventT() || DestType->isQueueT()) {
5523     if (!IsZeroInitializer(Initializer, S))
5524       return false;
5525 
5526     Sequence.AddOCLZeroOpaqueTypeStep(DestType);
5527     return true;
5528   }
5529 
5530   // We should allow zero initialization for all types defined in the
5531   // cl_intel_device_side_avc_motion_estimation extension, except
5532   // intel_sub_group_avc_mce_payload_t and intel_sub_group_avc_mce_result_t.
5533   if (S.getOpenCLOptions().isEnabled(
5534           "cl_intel_device_side_avc_motion_estimation") &&
5535       DestType->isOCLIntelSubgroupAVCType()) {
5536     if (DestType->isOCLIntelSubgroupAVCMcePayloadType() ||
5537         DestType->isOCLIntelSubgroupAVCMceResultType())
5538       return false;
5539     if (!IsZeroInitializer(Initializer, S))
5540       return false;
5541 
5542     Sequence.AddOCLZeroOpaqueTypeStep(DestType);
5543     return true;
5544   }
5545 
5546   return false;
5547 }
5548 
5549 InitializationSequence::InitializationSequence(Sema &S,
5550                                                const InitializedEntity &Entity,
5551                                                const InitializationKind &Kind,
5552                                                MultiExprArg Args,
5553                                                bool TopLevelOfInitList,
5554                                                bool TreatUnavailableAsInvalid)
5555     : FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) {
5556   InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList,
5557                  TreatUnavailableAsInvalid);
5558 }
5559 
5560 /// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the
5561 /// address of that function, this returns true. Otherwise, it returns false.
5562 static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) {
5563   auto *DRE = dyn_cast<DeclRefExpr>(E);
5564   if (!DRE || !isa<FunctionDecl>(DRE->getDecl()))
5565     return false;
5566 
5567   return !S.checkAddressOfFunctionIsAvailable(
5568       cast<FunctionDecl>(DRE->getDecl()));
5569 }
5570 
5571 /// Determine whether we can perform an elementwise array copy for this kind
5572 /// of entity.
5573 static bool canPerformArrayCopy(const InitializedEntity &Entity) {
5574   switch (Entity.getKind()) {
5575   case InitializedEntity::EK_LambdaCapture:
5576     // C++ [expr.prim.lambda]p24:
5577     //   For array members, the array elements are direct-initialized in
5578     //   increasing subscript order.
5579     return true;
5580 
5581   case InitializedEntity::EK_Variable:
5582     // C++ [dcl.decomp]p1:
5583     //   [...] each element is copy-initialized or direct-initialized from the
5584     //   corresponding element of the assignment-expression [...]
5585     return isa<DecompositionDecl>(Entity.getDecl());
5586 
5587   case InitializedEntity::EK_Member:
5588     // C++ [class.copy.ctor]p14:
5589     //   - if the member is an array, each element is direct-initialized with
5590     //     the corresponding subobject of x
5591     return Entity.isImplicitMemberInitializer();
5592 
5593   case InitializedEntity::EK_ArrayElement:
5594     // All the above cases are intended to apply recursively, even though none
5595     // of them actually say that.
5596     if (auto *E = Entity.getParent())
5597       return canPerformArrayCopy(*E);
5598     break;
5599 
5600   default:
5601     break;
5602   }
5603 
5604   return false;
5605 }
5606 
5607 void InitializationSequence::InitializeFrom(Sema &S,
5608                                             const InitializedEntity &Entity,
5609                                             const InitializationKind &Kind,
5610                                             MultiExprArg Args,
5611                                             bool TopLevelOfInitList,
5612                                             bool TreatUnavailableAsInvalid) {
5613   ASTContext &Context = S.Context;
5614 
5615   // Eliminate non-overload placeholder types in the arguments.  We
5616   // need to do this before checking whether types are dependent
5617   // because lowering a pseudo-object expression might well give us
5618   // something of dependent type.
5619   for (unsigned I = 0, E = Args.size(); I != E; ++I)
5620     if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
5621       // FIXME: should we be doing this here?
5622       ExprResult result = S.CheckPlaceholderExpr(Args[I]);
5623       if (result.isInvalid()) {
5624         SetFailed(FK_PlaceholderType);
5625         return;
5626       }
5627       Args[I] = result.get();
5628     }
5629 
5630   // C++0x [dcl.init]p16:
5631   //   The semantics of initializers are as follows. The destination type is
5632   //   the type of the object or reference being initialized and the source
5633   //   type is the type of the initializer expression. The source type is not
5634   //   defined when the initializer is a braced-init-list or when it is a
5635   //   parenthesized list of expressions.
5636   QualType DestType = Entity.getType();
5637 
5638   if (DestType->isDependentType() ||
5639       Expr::hasAnyTypeDependentArguments(Args)) {
5640     SequenceKind = DependentSequence;
5641     return;
5642   }
5643 
5644   // Almost everything is a normal sequence.
5645   setSequenceKind(NormalSequence);
5646 
5647   QualType SourceType;
5648   Expr *Initializer = nullptr;
5649   if (Args.size() == 1) {
5650     Initializer = Args[0];
5651     if (S.getLangOpts().ObjC) {
5652       if (S.CheckObjCBridgeRelatedConversions(Initializer->getBeginLoc(),
5653                                               DestType, Initializer->getType(),
5654                                               Initializer) ||
5655           S.CheckConversionToObjCLiteral(DestType, Initializer))
5656         Args[0] = Initializer;
5657     }
5658     if (!isa<InitListExpr>(Initializer))
5659       SourceType = Initializer->getType();
5660   }
5661 
5662   //     - If the initializer is a (non-parenthesized) braced-init-list, the
5663   //       object is list-initialized (8.5.4).
5664   if (Kind.getKind() != InitializationKind::IK_Direct) {
5665     if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
5666       TryListInitialization(S, Entity, Kind, InitList, *this,
5667                             TreatUnavailableAsInvalid);
5668       return;
5669     }
5670   }
5671 
5672   //     - If the destination type is a reference type, see 8.5.3.
5673   if (DestType->isReferenceType()) {
5674     // C++0x [dcl.init.ref]p1:
5675     //   A variable declared to be a T& or T&&, that is, "reference to type T"
5676     //   (8.3.2), shall be initialized by an object, or function, of type T or
5677     //   by an object that can be converted into a T.
5678     // (Therefore, multiple arguments are not permitted.)
5679     if (Args.size() != 1)
5680       SetFailed(FK_TooManyInitsForReference);
5681     // C++17 [dcl.init.ref]p5:
5682     //   A reference [...] is initialized by an expression [...] as follows:
5683     // If the initializer is not an expression, presumably we should reject,
5684     // but the standard fails to actually say so.
5685     else if (isa<InitListExpr>(Args[0]))
5686       SetFailed(FK_ParenthesizedListInitForReference);
5687     else
5688       TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
5689     return;
5690   }
5691 
5692   //     - If the initializer is (), the object is value-initialized.
5693   if (Kind.getKind() == InitializationKind::IK_Value ||
5694       (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
5695     TryValueInitialization(S, Entity, Kind, *this);
5696     return;
5697   }
5698 
5699   // Handle default initialization.
5700   if (Kind.getKind() == InitializationKind::IK_Default) {
5701     TryDefaultInitialization(S, Entity, Kind, *this);
5702     return;
5703   }
5704 
5705   //     - If the destination type is an array of characters, an array of
5706   //       char16_t, an array of char32_t, or an array of wchar_t, and the
5707   //       initializer is a string literal, see 8.5.2.
5708   //     - Otherwise, if the destination type is an array, the program is
5709   //       ill-formed.
5710   if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
5711     if (Initializer && isa<VariableArrayType>(DestAT)) {
5712       SetFailed(FK_VariableLengthArrayHasInitializer);
5713       return;
5714     }
5715 
5716     if (Initializer) {
5717       switch (IsStringInit(Initializer, DestAT, Context)) {
5718       case SIF_None:
5719         TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
5720         return;
5721       case SIF_NarrowStringIntoWideChar:
5722         SetFailed(FK_NarrowStringIntoWideCharArray);
5723         return;
5724       case SIF_WideStringIntoChar:
5725         SetFailed(FK_WideStringIntoCharArray);
5726         return;
5727       case SIF_IncompatWideStringIntoWideChar:
5728         SetFailed(FK_IncompatWideStringIntoWideChar);
5729         return;
5730       case SIF_PlainStringIntoUTF8Char:
5731         SetFailed(FK_PlainStringIntoUTF8Char);
5732         return;
5733       case SIF_UTF8StringIntoPlainChar:
5734         SetFailed(FK_UTF8StringIntoPlainChar);
5735         return;
5736       case SIF_Other:
5737         break;
5738       }
5739     }
5740 
5741     // Some kinds of initialization permit an array to be initialized from
5742     // another array of the same type, and perform elementwise initialization.
5743     if (Initializer && isa<ConstantArrayType>(DestAT) &&
5744         S.Context.hasSameUnqualifiedType(Initializer->getType(),
5745                                          Entity.getType()) &&
5746         canPerformArrayCopy(Entity)) {
5747       // If source is a prvalue, use it directly.
5748       if (Initializer->getValueKind() == VK_RValue) {
5749         AddArrayInitStep(DestType, /*IsGNUExtension*/false);
5750         return;
5751       }
5752 
5753       // Emit element-at-a-time copy loop.
5754       InitializedEntity Element =
5755           InitializedEntity::InitializeElement(S.Context, 0, Entity);
5756       QualType InitEltT =
5757           Context.getAsArrayType(Initializer->getType())->getElementType();
5758       OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT,
5759                           Initializer->getValueKind(),
5760                           Initializer->getObjectKind());
5761       Expr *OVEAsExpr = &OVE;
5762       InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList,
5763                      TreatUnavailableAsInvalid);
5764       if (!Failed())
5765         AddArrayInitLoopStep(Entity.getType(), InitEltT);
5766       return;
5767     }
5768 
5769     // Note: as an GNU C extension, we allow initialization of an
5770     // array from a compound literal that creates an array of the same
5771     // type, so long as the initializer has no side effects.
5772     if (!S.getLangOpts().CPlusPlus && Initializer &&
5773         isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
5774         Initializer->getType()->isArrayType()) {
5775       const ArrayType *SourceAT
5776         = Context.getAsArrayType(Initializer->getType());
5777       if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
5778         SetFailed(FK_ArrayTypeMismatch);
5779       else if (Initializer->HasSideEffects(S.Context))
5780         SetFailed(FK_NonConstantArrayInit);
5781       else {
5782         AddArrayInitStep(DestType, /*IsGNUExtension*/true);
5783       }
5784     }
5785     // Note: as a GNU C++ extension, we allow list-initialization of a
5786     // class member of array type from a parenthesized initializer list.
5787     else if (S.getLangOpts().CPlusPlus &&
5788              Entity.getKind() == InitializedEntity::EK_Member &&
5789              Initializer && isa<InitListExpr>(Initializer)) {
5790       TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
5791                             *this, TreatUnavailableAsInvalid);
5792       AddParenthesizedArrayInitStep(DestType);
5793     } else if (DestAT->getElementType()->isCharType())
5794       SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
5795     else if (IsWideCharCompatible(DestAT->getElementType(), Context))
5796       SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral);
5797     else
5798       SetFailed(FK_ArrayNeedsInitList);
5799 
5800     return;
5801   }
5802 
5803   // Determine whether we should consider writeback conversions for
5804   // Objective-C ARC.
5805   bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
5806          Entity.isParameterKind();
5807 
5808   if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
5809     return;
5810 
5811   // We're at the end of the line for C: it's either a write-back conversion
5812   // or it's a C assignment. There's no need to check anything else.
5813   if (!S.getLangOpts().CPlusPlus) {
5814     // If allowed, check whether this is an Objective-C writeback conversion.
5815     if (allowObjCWritebackConversion &&
5816         tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
5817       return;
5818     }
5819 
5820     if (TryOCLZeroOpaqueTypeInitialization(S, *this, DestType, Initializer))
5821       return;
5822 
5823     // Handle initialization in C
5824     AddCAssignmentStep(DestType);
5825     MaybeProduceObjCObject(S, *this, Entity);
5826     return;
5827   }
5828 
5829   assert(S.getLangOpts().CPlusPlus);
5830 
5831   //     - If the destination type is a (possibly cv-qualified) class type:
5832   if (DestType->isRecordType()) {
5833     //     - If the initialization is direct-initialization, or if it is
5834     //       copy-initialization where the cv-unqualified version of the
5835     //       source type is the same class as, or a derived class of, the
5836     //       class of the destination, constructors are considered. [...]
5837     if (Kind.getKind() == InitializationKind::IK_Direct ||
5838         (Kind.getKind() == InitializationKind::IK_Copy &&
5839          (Context.hasSameUnqualifiedType(SourceType, DestType) ||
5840           S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, DestType))))
5841       TryConstructorInitialization(S, Entity, Kind, Args,
5842                                    DestType, DestType, *this);
5843     //     - Otherwise (i.e., for the remaining copy-initialization cases),
5844     //       user-defined conversion sequences that can convert from the source
5845     //       type to the destination type or (when a conversion function is
5846     //       used) to a derived class thereof are enumerated as described in
5847     //       13.3.1.4, and the best one is chosen through overload resolution
5848     //       (13.3).
5849     else
5850       TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5851                                TopLevelOfInitList);
5852     return;
5853   }
5854 
5855   assert(Args.size() >= 1 && "Zero-argument case handled above");
5856 
5857   // The remaining cases all need a source type.
5858   if (Args.size() > 1) {
5859     SetFailed(FK_TooManyInitsForScalar);
5860     return;
5861   } else if (isa<InitListExpr>(Args[0])) {
5862     SetFailed(FK_ParenthesizedListInitForScalar);
5863     return;
5864   }
5865 
5866   //    - Otherwise, if the source type is a (possibly cv-qualified) class
5867   //      type, conversion functions are considered.
5868   if (!SourceType.isNull() && SourceType->isRecordType()) {
5869     // For a conversion to _Atomic(T) from either T or a class type derived
5870     // from T, initialize the T object then convert to _Atomic type.
5871     bool NeedAtomicConversion = false;
5872     if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) {
5873       if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) ||
5874           S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType,
5875                           Atomic->getValueType())) {
5876         DestType = Atomic->getValueType();
5877         NeedAtomicConversion = true;
5878       }
5879     }
5880 
5881     TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5882                              TopLevelOfInitList);
5883     MaybeProduceObjCObject(S, *this, Entity);
5884     if (!Failed() && NeedAtomicConversion)
5885       AddAtomicConversionStep(Entity.getType());
5886     return;
5887   }
5888 
5889   //    - Otherwise, if the initialization is direct-initialization, the source
5890   //    type is std::nullptr_t, and the destination type is bool, the initial
5891   //    value of the object being initialized is false.
5892   if (!SourceType.isNull() && SourceType->isNullPtrType() &&
5893       DestType->isBooleanType() &&
5894       Kind.getKind() == InitializationKind::IK_Direct) {
5895     AddConversionSequenceStep(
5896         ImplicitConversionSequence::getNullptrToBool(SourceType, DestType,
5897                                                      Initializer->isGLValue()),
5898         DestType);
5899     return;
5900   }
5901 
5902   //    - Otherwise, the initial value of the object being initialized is the
5903   //      (possibly converted) value of the initializer expression. Standard
5904   //      conversions (Clause 4) will be used, if necessary, to convert the
5905   //      initializer expression to the cv-unqualified version of the
5906   //      destination type; no user-defined conversions are considered.
5907 
5908   ImplicitConversionSequence ICS
5909     = S.TryImplicitConversion(Initializer, DestType,
5910                               /*SuppressUserConversions*/true,
5911                               Sema::AllowedExplicit::None,
5912                               /*InOverloadResolution*/ false,
5913                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
5914                               allowObjCWritebackConversion);
5915 
5916   if (ICS.isStandard() &&
5917       ICS.Standard.Second == ICK_Writeback_Conversion) {
5918     // Objective-C ARC writeback conversion.
5919 
5920     // We should copy unless we're passing to an argument explicitly
5921     // marked 'out'.
5922     bool ShouldCopy = true;
5923     if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5924       ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5925 
5926     // If there was an lvalue adjustment, add it as a separate conversion.
5927     if (ICS.Standard.First == ICK_Array_To_Pointer ||
5928         ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
5929       ImplicitConversionSequence LvalueICS;
5930       LvalueICS.setStandard();
5931       LvalueICS.Standard.setAsIdentityConversion();
5932       LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
5933       LvalueICS.Standard.First = ICS.Standard.First;
5934       AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
5935     }
5936 
5937     AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy);
5938   } else if (ICS.isBad()) {
5939     DeclAccessPair dap;
5940     if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) {
5941       AddZeroInitializationStep(Entity.getType());
5942     } else if (Initializer->getType() == Context.OverloadTy &&
5943                !S.ResolveAddressOfOverloadedFunction(Initializer, DestType,
5944                                                      false, dap))
5945       SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
5946     else if (Initializer->getType()->isFunctionType() &&
5947              isExprAnUnaddressableFunction(S, Initializer))
5948       SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction);
5949     else
5950       SetFailed(InitializationSequence::FK_ConversionFailed);
5951   } else {
5952     AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5953 
5954     MaybeProduceObjCObject(S, *this, Entity);
5955   }
5956 }
5957 
5958 InitializationSequence::~InitializationSequence() {
5959   for (auto &S : Steps)
5960     S.Destroy();
5961 }
5962 
5963 //===----------------------------------------------------------------------===//
5964 // Perform initialization
5965 //===----------------------------------------------------------------------===//
5966 static Sema::AssignmentAction
5967 getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) {
5968   switch(Entity.getKind()) {
5969   case InitializedEntity::EK_Variable:
5970   case InitializedEntity::EK_New:
5971   case InitializedEntity::EK_Exception:
5972   case InitializedEntity::EK_Base:
5973   case InitializedEntity::EK_Delegating:
5974     return Sema::AA_Initializing;
5975 
5976   case InitializedEntity::EK_Parameter:
5977     if (Entity.getDecl() &&
5978         isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5979       return Sema::AA_Sending;
5980 
5981     return Sema::AA_Passing;
5982 
5983   case InitializedEntity::EK_Parameter_CF_Audited:
5984     if (Entity.getDecl() &&
5985       isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5986       return Sema::AA_Sending;
5987 
5988     return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited;
5989 
5990   case InitializedEntity::EK_Result:
5991   case InitializedEntity::EK_StmtExprResult: // FIXME: Not quite right.
5992     return Sema::AA_Returning;
5993 
5994   case InitializedEntity::EK_Temporary:
5995   case InitializedEntity::EK_RelatedResult:
5996     // FIXME: Can we tell apart casting vs. converting?
5997     return Sema::AA_Casting;
5998 
5999   case InitializedEntity::EK_Member:
6000   case InitializedEntity::EK_Binding:
6001   case InitializedEntity::EK_ArrayElement:
6002   case InitializedEntity::EK_VectorElement:
6003   case InitializedEntity::EK_ComplexElement:
6004   case InitializedEntity::EK_BlockElement:
6005   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6006   case InitializedEntity::EK_LambdaCapture:
6007   case InitializedEntity::EK_CompoundLiteralInit:
6008     return Sema::AA_Initializing;
6009   }
6010 
6011   llvm_unreachable("Invalid EntityKind!");
6012 }
6013 
6014 /// Whether we should bind a created object as a temporary when
6015 /// initializing the given entity.
6016 static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
6017   switch (Entity.getKind()) {
6018   case InitializedEntity::EK_ArrayElement:
6019   case InitializedEntity::EK_Member:
6020   case InitializedEntity::EK_Result:
6021   case InitializedEntity::EK_StmtExprResult:
6022   case InitializedEntity::EK_New:
6023   case InitializedEntity::EK_Variable:
6024   case InitializedEntity::EK_Base:
6025   case InitializedEntity::EK_Delegating:
6026   case InitializedEntity::EK_VectorElement:
6027   case InitializedEntity::EK_ComplexElement:
6028   case InitializedEntity::EK_Exception:
6029   case InitializedEntity::EK_BlockElement:
6030   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6031   case InitializedEntity::EK_LambdaCapture:
6032   case InitializedEntity::EK_CompoundLiteralInit:
6033     return false;
6034 
6035   case InitializedEntity::EK_Parameter:
6036   case InitializedEntity::EK_Parameter_CF_Audited:
6037   case InitializedEntity::EK_Temporary:
6038   case InitializedEntity::EK_RelatedResult:
6039   case InitializedEntity::EK_Binding:
6040     return true;
6041   }
6042 
6043   llvm_unreachable("missed an InitializedEntity kind?");
6044 }
6045 
6046 /// Whether the given entity, when initialized with an object
6047 /// created for that initialization, requires destruction.
6048 static bool shouldDestroyEntity(const InitializedEntity &Entity) {
6049   switch (Entity.getKind()) {
6050     case InitializedEntity::EK_Result:
6051     case InitializedEntity::EK_StmtExprResult:
6052     case InitializedEntity::EK_New:
6053     case InitializedEntity::EK_Base:
6054     case InitializedEntity::EK_Delegating:
6055     case InitializedEntity::EK_VectorElement:
6056     case InitializedEntity::EK_ComplexElement:
6057     case InitializedEntity::EK_BlockElement:
6058     case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6059     case InitializedEntity::EK_LambdaCapture:
6060       return false;
6061 
6062     case InitializedEntity::EK_Member:
6063     case InitializedEntity::EK_Binding:
6064     case InitializedEntity::EK_Variable:
6065     case InitializedEntity::EK_Parameter:
6066     case InitializedEntity::EK_Parameter_CF_Audited:
6067     case InitializedEntity::EK_Temporary:
6068     case InitializedEntity::EK_ArrayElement:
6069     case InitializedEntity::EK_Exception:
6070     case InitializedEntity::EK_CompoundLiteralInit:
6071     case InitializedEntity::EK_RelatedResult:
6072       return true;
6073   }
6074 
6075   llvm_unreachable("missed an InitializedEntity kind?");
6076 }
6077 
6078 /// Get the location at which initialization diagnostics should appear.
6079 static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
6080                                            Expr *Initializer) {
6081   switch (Entity.getKind()) {
6082   case InitializedEntity::EK_Result:
6083   case InitializedEntity::EK_StmtExprResult:
6084     return Entity.getReturnLoc();
6085 
6086   case InitializedEntity::EK_Exception:
6087     return Entity.getThrowLoc();
6088 
6089   case InitializedEntity::EK_Variable:
6090   case InitializedEntity::EK_Binding:
6091     return Entity.getDecl()->getLocation();
6092 
6093   case InitializedEntity::EK_LambdaCapture:
6094     return Entity.getCaptureLoc();
6095 
6096   case InitializedEntity::EK_ArrayElement:
6097   case InitializedEntity::EK_Member:
6098   case InitializedEntity::EK_Parameter:
6099   case InitializedEntity::EK_Parameter_CF_Audited:
6100   case InitializedEntity::EK_Temporary:
6101   case InitializedEntity::EK_New:
6102   case InitializedEntity::EK_Base:
6103   case InitializedEntity::EK_Delegating:
6104   case InitializedEntity::EK_VectorElement:
6105   case InitializedEntity::EK_ComplexElement:
6106   case InitializedEntity::EK_BlockElement:
6107   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6108   case InitializedEntity::EK_CompoundLiteralInit:
6109   case InitializedEntity::EK_RelatedResult:
6110     return Initializer->getBeginLoc();
6111   }
6112   llvm_unreachable("missed an InitializedEntity kind?");
6113 }
6114 
6115 /// Make a (potentially elidable) temporary copy of the object
6116 /// provided by the given initializer by calling the appropriate copy
6117 /// constructor.
6118 ///
6119 /// \param S The Sema object used for type-checking.
6120 ///
6121 /// \param T The type of the temporary object, which must either be
6122 /// the type of the initializer expression or a superclass thereof.
6123 ///
6124 /// \param Entity The entity being initialized.
6125 ///
6126 /// \param CurInit The initializer expression.
6127 ///
6128 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that
6129 /// is permitted in C++03 (but not C++0x) when binding a reference to
6130 /// an rvalue.
6131 ///
6132 /// \returns An expression that copies the initializer expression into
6133 /// a temporary object, or an error expression if a copy could not be
6134 /// created.
6135 static ExprResult CopyObject(Sema &S,
6136                              QualType T,
6137                              const InitializedEntity &Entity,
6138                              ExprResult CurInit,
6139                              bool IsExtraneousCopy) {
6140   if (CurInit.isInvalid())
6141     return CurInit;
6142   // Determine which class type we're copying to.
6143   Expr *CurInitExpr = (Expr *)CurInit.get();
6144   CXXRecordDecl *Class = nullptr;
6145   if (const RecordType *Record = T->getAs<RecordType>())
6146     Class = cast<CXXRecordDecl>(Record->getDecl());
6147   if (!Class)
6148     return CurInit;
6149 
6150   SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
6151 
6152   // Make sure that the type we are copying is complete.
6153   if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
6154     return CurInit;
6155 
6156   // Perform overload resolution using the class's constructors. Per
6157   // C++11 [dcl.init]p16, second bullet for class types, this initialization
6158   // is direct-initialization.
6159   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
6160   DeclContext::lookup_result Ctors = S.LookupConstructors(Class);
6161 
6162   OverloadCandidateSet::iterator Best;
6163   switch (ResolveConstructorOverload(
6164       S, Loc, CurInitExpr, CandidateSet, T, Ctors, Best,
6165       /*CopyInitializing=*/false, /*AllowExplicit=*/true,
6166       /*OnlyListConstructors=*/false, /*IsListInit=*/false,
6167       /*SecondStepOfCopyInit=*/true)) {
6168   case OR_Success:
6169     break;
6170 
6171   case OR_No_Viable_Function:
6172     CandidateSet.NoteCandidates(
6173         PartialDiagnosticAt(
6174             Loc, S.PDiag(IsExtraneousCopy && !S.isSFINAEContext()
6175                              ? diag::ext_rvalue_to_reference_temp_copy_no_viable
6176                              : diag::err_temp_copy_no_viable)
6177                      << (int)Entity.getKind() << CurInitExpr->getType()
6178                      << CurInitExpr->getSourceRange()),
6179         S, OCD_AllCandidates, CurInitExpr);
6180     if (!IsExtraneousCopy || S.isSFINAEContext())
6181       return ExprError();
6182     return CurInit;
6183 
6184   case OR_Ambiguous:
6185     CandidateSet.NoteCandidates(
6186         PartialDiagnosticAt(Loc, S.PDiag(diag::err_temp_copy_ambiguous)
6187                                      << (int)Entity.getKind()
6188                                      << CurInitExpr->getType()
6189                                      << CurInitExpr->getSourceRange()),
6190         S, OCD_AmbiguousCandidates, CurInitExpr);
6191     return ExprError();
6192 
6193   case OR_Deleted:
6194     S.Diag(Loc, diag::err_temp_copy_deleted)
6195       << (int)Entity.getKind() << CurInitExpr->getType()
6196       << CurInitExpr->getSourceRange();
6197     S.NoteDeletedFunction(Best->Function);
6198     return ExprError();
6199   }
6200 
6201   bool HadMultipleCandidates = CandidateSet.size() > 1;
6202 
6203   CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
6204   SmallVector<Expr*, 8> ConstructorArgs;
6205   CurInit.get(); // Ownership transferred into MultiExprArg, below.
6206 
6207   S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity,
6208                            IsExtraneousCopy);
6209 
6210   if (IsExtraneousCopy) {
6211     // If this is a totally extraneous copy for C++03 reference
6212     // binding purposes, just return the original initialization
6213     // expression. We don't generate an (elided) copy operation here
6214     // because doing so would require us to pass down a flag to avoid
6215     // infinite recursion, where each step adds another extraneous,
6216     // elidable copy.
6217 
6218     // Instantiate the default arguments of any extra parameters in
6219     // the selected copy constructor, as if we were going to create a
6220     // proper call to the copy constructor.
6221     for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
6222       ParmVarDecl *Parm = Constructor->getParamDecl(I);
6223       if (S.RequireCompleteType(Loc, Parm->getType(),
6224                                 diag::err_call_incomplete_argument))
6225         break;
6226 
6227       // Build the default argument expression; we don't actually care
6228       // if this succeeds or not, because this routine will complain
6229       // if there was a problem.
6230       S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
6231     }
6232 
6233     return CurInitExpr;
6234   }
6235 
6236   // Determine the arguments required to actually perform the
6237   // constructor call (we might have derived-to-base conversions, or
6238   // the copy constructor may have default arguments).
6239   if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs))
6240     return ExprError();
6241 
6242   // C++0x [class.copy]p32:
6243   //   When certain criteria are met, an implementation is allowed to
6244   //   omit the copy/move construction of a class object, even if the
6245   //   copy/move constructor and/or destructor for the object have
6246   //   side effects. [...]
6247   //     - when a temporary class object that has not been bound to a
6248   //       reference (12.2) would be copied/moved to a class object
6249   //       with the same cv-unqualified type, the copy/move operation
6250   //       can be omitted by constructing the temporary object
6251   //       directly into the target of the omitted copy/move
6252   //
6253   // Note that the other three bullets are handled elsewhere. Copy
6254   // elision for return statements and throw expressions are handled as part
6255   // of constructor initialization, while copy elision for exception handlers
6256   // is handled by the run-time.
6257   //
6258   // FIXME: If the function parameter is not the same type as the temporary, we
6259   // should still be able to elide the copy, but we don't have a way to
6260   // represent in the AST how much should be elided in this case.
6261   bool Elidable =
6262       CurInitExpr->isTemporaryObject(S.Context, Class) &&
6263       S.Context.hasSameUnqualifiedType(
6264           Best->Function->getParamDecl(0)->getType().getNonReferenceType(),
6265           CurInitExpr->getType());
6266 
6267   // Actually perform the constructor call.
6268   CurInit = S.BuildCXXConstructExpr(Loc, T, Best->FoundDecl, Constructor,
6269                                     Elidable,
6270                                     ConstructorArgs,
6271                                     HadMultipleCandidates,
6272                                     /*ListInit*/ false,
6273                                     /*StdInitListInit*/ false,
6274                                     /*ZeroInit*/ false,
6275                                     CXXConstructExpr::CK_Complete,
6276                                     SourceRange());
6277 
6278   // If we're supposed to bind temporaries, do so.
6279   if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
6280     CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
6281   return CurInit;
6282 }
6283 
6284 /// Check whether elidable copy construction for binding a reference to
6285 /// a temporary would have succeeded if we were building in C++98 mode, for
6286 /// -Wc++98-compat.
6287 static void CheckCXX98CompatAccessibleCopy(Sema &S,
6288                                            const InitializedEntity &Entity,
6289                                            Expr *CurInitExpr) {
6290   assert(S.getLangOpts().CPlusPlus11);
6291 
6292   const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
6293   if (!Record)
6294     return;
6295 
6296   SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
6297   if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc))
6298     return;
6299 
6300   // Find constructors which would have been considered.
6301   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
6302   DeclContext::lookup_result Ctors =
6303       S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl()));
6304 
6305   // Perform overload resolution.
6306   OverloadCandidateSet::iterator Best;
6307   OverloadingResult OR = ResolveConstructorOverload(
6308       S, Loc, CurInitExpr, CandidateSet, CurInitExpr->getType(), Ctors, Best,
6309       /*CopyInitializing=*/false, /*AllowExplicit=*/true,
6310       /*OnlyListConstructors=*/false, /*IsListInit=*/false,
6311       /*SecondStepOfCopyInit=*/true);
6312 
6313   PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
6314     << OR << (int)Entity.getKind() << CurInitExpr->getType()
6315     << CurInitExpr->getSourceRange();
6316 
6317   switch (OR) {
6318   case OR_Success:
6319     S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
6320                              Best->FoundDecl, Entity, Diag);
6321     // FIXME: Check default arguments as far as that's possible.
6322     break;
6323 
6324   case OR_No_Viable_Function:
6325     CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S,
6326                                 OCD_AllCandidates, CurInitExpr);
6327     break;
6328 
6329   case OR_Ambiguous:
6330     CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S,
6331                                 OCD_AmbiguousCandidates, CurInitExpr);
6332     break;
6333 
6334   case OR_Deleted:
6335     S.Diag(Loc, Diag);
6336     S.NoteDeletedFunction(Best->Function);
6337     break;
6338   }
6339 }
6340 
6341 void InitializationSequence::PrintInitLocationNote(Sema &S,
6342                                               const InitializedEntity &Entity) {
6343   if (Entity.isParameterKind() && Entity.getDecl()) {
6344     if (Entity.getDecl()->getLocation().isInvalid())
6345       return;
6346 
6347     if (Entity.getDecl()->getDeclName())
6348       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
6349         << Entity.getDecl()->getDeclName();
6350     else
6351       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
6352   }
6353   else if (Entity.getKind() == InitializedEntity::EK_RelatedResult &&
6354            Entity.getMethodDecl())
6355     S.Diag(Entity.getMethodDecl()->getLocation(),
6356            diag::note_method_return_type_change)
6357       << Entity.getMethodDecl()->getDeclName();
6358 }
6359 
6360 /// Returns true if the parameters describe a constructor initialization of
6361 /// an explicit temporary object, e.g. "Point(x, y)".
6362 static bool isExplicitTemporary(const InitializedEntity &Entity,
6363                                 const InitializationKind &Kind,
6364                                 unsigned NumArgs) {
6365   switch (Entity.getKind()) {
6366   case InitializedEntity::EK_Temporary:
6367   case InitializedEntity::EK_CompoundLiteralInit:
6368   case InitializedEntity::EK_RelatedResult:
6369     break;
6370   default:
6371     return false;
6372   }
6373 
6374   switch (Kind.getKind()) {
6375   case InitializationKind::IK_DirectList:
6376     return true;
6377   // FIXME: Hack to work around cast weirdness.
6378   case InitializationKind::IK_Direct:
6379   case InitializationKind::IK_Value:
6380     return NumArgs != 1;
6381   default:
6382     return false;
6383   }
6384 }
6385 
6386 static ExprResult
6387 PerformConstructorInitialization(Sema &S,
6388                                  const InitializedEntity &Entity,
6389                                  const InitializationKind &Kind,
6390                                  MultiExprArg Args,
6391                                  const InitializationSequence::Step& Step,
6392                                  bool &ConstructorInitRequiresZeroInit,
6393                                  bool IsListInitialization,
6394                                  bool IsStdInitListInitialization,
6395                                  SourceLocation LBraceLoc,
6396                                  SourceLocation RBraceLoc) {
6397   unsigned NumArgs = Args.size();
6398   CXXConstructorDecl *Constructor
6399     = cast<CXXConstructorDecl>(Step.Function.Function);
6400   bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
6401 
6402   // Build a call to the selected constructor.
6403   SmallVector<Expr*, 8> ConstructorArgs;
6404   SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
6405                          ? Kind.getEqualLoc()
6406                          : Kind.getLocation();
6407 
6408   if (Kind.getKind() == InitializationKind::IK_Default) {
6409     // Force even a trivial, implicit default constructor to be
6410     // semantically checked. We do this explicitly because we don't build
6411     // the definition for completely trivial constructors.
6412     assert(Constructor->getParent() && "No parent class for constructor.");
6413     if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6414         Constructor->isTrivial() && !Constructor->isUsed(false)) {
6415       S.runWithSufficientStackSpace(Loc, [&] {
6416         S.DefineImplicitDefaultConstructor(Loc, Constructor);
6417       });
6418     }
6419   }
6420 
6421   ExprResult CurInit((Expr *)nullptr);
6422 
6423   // C++ [over.match.copy]p1:
6424   //   - When initializing a temporary to be bound to the first parameter
6425   //     of a constructor that takes a reference to possibly cv-qualified
6426   //     T as its first argument, called with a single argument in the
6427   //     context of direct-initialization, explicit conversion functions
6428   //     are also considered.
6429   bool AllowExplicitConv =
6430       Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 &&
6431       hasCopyOrMoveCtorParam(S.Context,
6432                              getConstructorInfo(Step.Function.FoundDecl));
6433 
6434   // Determine the arguments required to actually perform the constructor
6435   // call.
6436   if (S.CompleteConstructorCall(Constructor, Args,
6437                                 Loc, ConstructorArgs,
6438                                 AllowExplicitConv,
6439                                 IsListInitialization))
6440     return ExprError();
6441 
6442 
6443   if (isExplicitTemporary(Entity, Kind, NumArgs)) {
6444     // An explicitly-constructed temporary, e.g., X(1, 2).
6445     if (S.DiagnoseUseOfDecl(Constructor, Loc))
6446       return ExprError();
6447 
6448     TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
6449     if (!TSInfo)
6450       TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
6451     SourceRange ParenOrBraceRange =
6452         (Kind.getKind() == InitializationKind::IK_DirectList)
6453         ? SourceRange(LBraceLoc, RBraceLoc)
6454         : Kind.getParenOrBraceRange();
6455 
6456     if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(
6457             Step.Function.FoundDecl.getDecl())) {
6458       Constructor = S.findInheritingConstructor(Loc, Constructor, Shadow);
6459       if (S.DiagnoseUseOfDecl(Constructor, Loc))
6460         return ExprError();
6461     }
6462     S.MarkFunctionReferenced(Loc, Constructor);
6463 
6464     CurInit = S.CheckForImmediateInvocation(
6465         CXXTemporaryObjectExpr::Create(
6466             S.Context, Constructor,
6467             Entity.getType().getNonLValueExprType(S.Context), TSInfo,
6468             ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates,
6469             IsListInitialization, IsStdInitListInitialization,
6470             ConstructorInitRequiresZeroInit),
6471         Constructor);
6472   } else {
6473     CXXConstructExpr::ConstructionKind ConstructKind =
6474       CXXConstructExpr::CK_Complete;
6475 
6476     if (Entity.getKind() == InitializedEntity::EK_Base) {
6477       ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
6478         CXXConstructExpr::CK_VirtualBase :
6479         CXXConstructExpr::CK_NonVirtualBase;
6480     } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
6481       ConstructKind = CXXConstructExpr::CK_Delegating;
6482     }
6483 
6484     // Only get the parenthesis or brace range if it is a list initialization or
6485     // direct construction.
6486     SourceRange ParenOrBraceRange;
6487     if (IsListInitialization)
6488       ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc);
6489     else if (Kind.getKind() == InitializationKind::IK_Direct)
6490       ParenOrBraceRange = Kind.getParenOrBraceRange();
6491 
6492     // If the entity allows NRVO, mark the construction as elidable
6493     // unconditionally.
6494     if (Entity.allowsNRVO())
6495       CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
6496                                         Step.Function.FoundDecl,
6497                                         Constructor, /*Elidable=*/true,
6498                                         ConstructorArgs,
6499                                         HadMultipleCandidates,
6500                                         IsListInitialization,
6501                                         IsStdInitListInitialization,
6502                                         ConstructorInitRequiresZeroInit,
6503                                         ConstructKind,
6504                                         ParenOrBraceRange);
6505     else
6506       CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
6507                                         Step.Function.FoundDecl,
6508                                         Constructor,
6509                                         ConstructorArgs,
6510                                         HadMultipleCandidates,
6511                                         IsListInitialization,
6512                                         IsStdInitListInitialization,
6513                                         ConstructorInitRequiresZeroInit,
6514                                         ConstructKind,
6515                                         ParenOrBraceRange);
6516   }
6517   if (CurInit.isInvalid())
6518     return ExprError();
6519 
6520   // Only check access if all of that succeeded.
6521   S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity);
6522   if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc))
6523     return ExprError();
6524 
6525   if (const ArrayType *AT = S.Context.getAsArrayType(Entity.getType()))
6526     if (checkDestructorReference(S.Context.getBaseElementType(AT), Loc, S))
6527       return ExprError();
6528 
6529   if (shouldBindAsTemporary(Entity))
6530     CurInit = S.MaybeBindToTemporary(CurInit.get());
6531 
6532   return CurInit;
6533 }
6534 
6535 namespace {
6536 enum LifetimeKind {
6537   /// The lifetime of a temporary bound to this entity ends at the end of the
6538   /// full-expression, and that's (probably) fine.
6539   LK_FullExpression,
6540 
6541   /// The lifetime of a temporary bound to this entity is extended to the
6542   /// lifeitme of the entity itself.
6543   LK_Extended,
6544 
6545   /// The lifetime of a temporary bound to this entity probably ends too soon,
6546   /// because the entity is allocated in a new-expression.
6547   LK_New,
6548 
6549   /// The lifetime of a temporary bound to this entity ends too soon, because
6550   /// the entity is a return object.
6551   LK_Return,
6552 
6553   /// The lifetime of a temporary bound to this entity ends too soon, because
6554   /// the entity is the result of a statement expression.
6555   LK_StmtExprResult,
6556 
6557   /// This is a mem-initializer: if it would extend a temporary (other than via
6558   /// a default member initializer), the program is ill-formed.
6559   LK_MemInitializer,
6560 };
6561 using LifetimeResult =
6562     llvm::PointerIntPair<const InitializedEntity *, 3, LifetimeKind>;
6563 }
6564 
6565 /// Determine the declaration which an initialized entity ultimately refers to,
6566 /// for the purpose of lifetime-extending a temporary bound to a reference in
6567 /// the initialization of \p Entity.
6568 static LifetimeResult getEntityLifetime(
6569     const InitializedEntity *Entity,
6570     const InitializedEntity *InitField = nullptr) {
6571   // C++11 [class.temporary]p5:
6572   switch (Entity->getKind()) {
6573   case InitializedEntity::EK_Variable:
6574     //   The temporary [...] persists for the lifetime of the reference
6575     return {Entity, LK_Extended};
6576 
6577   case InitializedEntity::EK_Member:
6578     // For subobjects, we look at the complete object.
6579     if (Entity->getParent())
6580       return getEntityLifetime(Entity->getParent(), Entity);
6581 
6582     //   except:
6583     // C++17 [class.base.init]p8:
6584     //   A temporary expression bound to a reference member in a
6585     //   mem-initializer is ill-formed.
6586     // C++17 [class.base.init]p11:
6587     //   A temporary expression bound to a reference member from a
6588     //   default member initializer is ill-formed.
6589     //
6590     // The context of p11 and its example suggest that it's only the use of a
6591     // default member initializer from a constructor that makes the program
6592     // ill-formed, not its mere existence, and that it can even be used by
6593     // aggregate initialization.
6594     return {Entity, Entity->isDefaultMemberInitializer() ? LK_Extended
6595                                                          : LK_MemInitializer};
6596 
6597   case InitializedEntity::EK_Binding:
6598     // Per [dcl.decomp]p3, the binding is treated as a variable of reference
6599     // type.
6600     return {Entity, LK_Extended};
6601 
6602   case InitializedEntity::EK_Parameter:
6603   case InitializedEntity::EK_Parameter_CF_Audited:
6604     //   -- A temporary bound to a reference parameter in a function call
6605     //      persists until the completion of the full-expression containing
6606     //      the call.
6607     return {nullptr, LK_FullExpression};
6608 
6609   case InitializedEntity::EK_Result:
6610     //   -- The lifetime of a temporary bound to the returned value in a
6611     //      function return statement is not extended; the temporary is
6612     //      destroyed at the end of the full-expression in the return statement.
6613     return {nullptr, LK_Return};
6614 
6615   case InitializedEntity::EK_StmtExprResult:
6616     // FIXME: Should we lifetime-extend through the result of a statement
6617     // expression?
6618     return {nullptr, LK_StmtExprResult};
6619 
6620   case InitializedEntity::EK_New:
6621     //   -- A temporary bound to a reference in a new-initializer persists
6622     //      until the completion of the full-expression containing the
6623     //      new-initializer.
6624     return {nullptr, LK_New};
6625 
6626   case InitializedEntity::EK_Temporary:
6627   case InitializedEntity::EK_CompoundLiteralInit:
6628   case InitializedEntity::EK_RelatedResult:
6629     // We don't yet know the storage duration of the surrounding temporary.
6630     // Assume it's got full-expression duration for now, it will patch up our
6631     // storage duration if that's not correct.
6632     return {nullptr, LK_FullExpression};
6633 
6634   case InitializedEntity::EK_ArrayElement:
6635     // For subobjects, we look at the complete object.
6636     return getEntityLifetime(Entity->getParent(), InitField);
6637 
6638   case InitializedEntity::EK_Base:
6639     // For subobjects, we look at the complete object.
6640     if (Entity->getParent())
6641       return getEntityLifetime(Entity->getParent(), InitField);
6642     return {InitField, LK_MemInitializer};
6643 
6644   case InitializedEntity::EK_Delegating:
6645     // We can reach this case for aggregate initialization in a constructor:
6646     //   struct A { int &&r; };
6647     //   struct B : A { B() : A{0} {} };
6648     // In this case, use the outermost field decl as the context.
6649     return {InitField, LK_MemInitializer};
6650 
6651   case InitializedEntity::EK_BlockElement:
6652   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6653   case InitializedEntity::EK_LambdaCapture:
6654   case InitializedEntity::EK_VectorElement:
6655   case InitializedEntity::EK_ComplexElement:
6656     return {nullptr, LK_FullExpression};
6657 
6658   case InitializedEntity::EK_Exception:
6659     // FIXME: Can we diagnose lifetime problems with exceptions?
6660     return {nullptr, LK_FullExpression};
6661   }
6662   llvm_unreachable("unknown entity kind");
6663 }
6664 
6665 namespace {
6666 enum ReferenceKind {
6667   /// Lifetime would be extended by a reference binding to a temporary.
6668   RK_ReferenceBinding,
6669   /// Lifetime would be extended by a std::initializer_list object binding to
6670   /// its backing array.
6671   RK_StdInitializerList,
6672 };
6673 
6674 /// A temporary or local variable. This will be one of:
6675 ///  * A MaterializeTemporaryExpr.
6676 ///  * A DeclRefExpr whose declaration is a local.
6677 ///  * An AddrLabelExpr.
6678 ///  * A BlockExpr for a block with captures.
6679 using Local = Expr*;
6680 
6681 /// Expressions we stepped over when looking for the local state. Any steps
6682 /// that would inhibit lifetime extension or take us out of subexpressions of
6683 /// the initializer are included.
6684 struct IndirectLocalPathEntry {
6685   enum EntryKind {
6686     DefaultInit,
6687     AddressOf,
6688     VarInit,
6689     LValToRVal,
6690     LifetimeBoundCall,
6691     GslReferenceInit,
6692     GslPointerInit
6693   } Kind;
6694   Expr *E;
6695   const Decl *D = nullptr;
6696   IndirectLocalPathEntry() {}
6697   IndirectLocalPathEntry(EntryKind K, Expr *E) : Kind(K), E(E) {}
6698   IndirectLocalPathEntry(EntryKind K, Expr *E, const Decl *D)
6699       : Kind(K), E(E), D(D) {}
6700 };
6701 
6702 using IndirectLocalPath = llvm::SmallVectorImpl<IndirectLocalPathEntry>;
6703 
6704 struct RevertToOldSizeRAII {
6705   IndirectLocalPath &Path;
6706   unsigned OldSize = Path.size();
6707   RevertToOldSizeRAII(IndirectLocalPath &Path) : Path(Path) {}
6708   ~RevertToOldSizeRAII() { Path.resize(OldSize); }
6709 };
6710 
6711 using LocalVisitor = llvm::function_ref<bool(IndirectLocalPath &Path, Local L,
6712                                              ReferenceKind RK)>;
6713 }
6714 
6715 static bool isVarOnPath(IndirectLocalPath &Path, VarDecl *VD) {
6716   for (auto E : Path)
6717     if (E.Kind == IndirectLocalPathEntry::VarInit && E.D == VD)
6718       return true;
6719   return false;
6720 }
6721 
6722 static bool pathContainsInit(IndirectLocalPath &Path) {
6723   return llvm::any_of(Path, [=](IndirectLocalPathEntry E) {
6724     return E.Kind == IndirectLocalPathEntry::DefaultInit ||
6725            E.Kind == IndirectLocalPathEntry::VarInit;
6726   });
6727 }
6728 
6729 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
6730                                              Expr *Init, LocalVisitor Visit,
6731                                              bool RevisitSubinits,
6732                                              bool EnableLifetimeWarnings);
6733 
6734 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
6735                                                   Expr *Init, ReferenceKind RK,
6736                                                   LocalVisitor Visit,
6737                                                   bool EnableLifetimeWarnings);
6738 
6739 template <typename T> static bool isRecordWithAttr(QualType Type) {
6740   if (auto *RD = Type->getAsCXXRecordDecl())
6741     return RD->hasAttr<T>();
6742   return false;
6743 }
6744 
6745 // Decl::isInStdNamespace will return false for iterators in some STL
6746 // implementations due to them being defined in a namespace outside of the std
6747 // namespace.
6748 static bool isInStlNamespace(const Decl *D) {
6749   const DeclContext *DC = D->getDeclContext();
6750   if (!DC)
6751     return false;
6752   if (const auto *ND = dyn_cast<NamespaceDecl>(DC))
6753     if (const IdentifierInfo *II = ND->getIdentifier()) {
6754       StringRef Name = II->getName();
6755       if (Name.size() >= 2 && Name.front() == '_' &&
6756           (Name[1] == '_' || isUppercase(Name[1])))
6757         return true;
6758     }
6759 
6760   return DC->isStdNamespace();
6761 }
6762 
6763 static bool shouldTrackImplicitObjectArg(const CXXMethodDecl *Callee) {
6764   if (auto *Conv = dyn_cast_or_null<CXXConversionDecl>(Callee))
6765     if (isRecordWithAttr<PointerAttr>(Conv->getConversionType()))
6766       return true;
6767   if (!isInStlNamespace(Callee->getParent()))
6768     return false;
6769   if (!isRecordWithAttr<PointerAttr>(Callee->getThisObjectType()) &&
6770       !isRecordWithAttr<OwnerAttr>(Callee->getThisObjectType()))
6771     return false;
6772   if (Callee->getReturnType()->isPointerType() ||
6773       isRecordWithAttr<PointerAttr>(Callee->getReturnType())) {
6774     if (!Callee->getIdentifier())
6775       return false;
6776     return llvm::StringSwitch<bool>(Callee->getName())
6777         .Cases("begin", "rbegin", "cbegin", "crbegin", true)
6778         .Cases("end", "rend", "cend", "crend", true)
6779         .Cases("c_str", "data", "get", true)
6780         // Map and set types.
6781         .Cases("find", "equal_range", "lower_bound", "upper_bound", true)
6782         .Default(false);
6783   } else if (Callee->getReturnType()->isReferenceType()) {
6784     if (!Callee->getIdentifier()) {
6785       auto OO = Callee->getOverloadedOperator();
6786       return OO == OverloadedOperatorKind::OO_Subscript ||
6787              OO == OverloadedOperatorKind::OO_Star;
6788     }
6789     return llvm::StringSwitch<bool>(Callee->getName())
6790         .Cases("front", "back", "at", "top", "value", true)
6791         .Default(false);
6792   }
6793   return false;
6794 }
6795 
6796 static bool shouldTrackFirstArgument(const FunctionDecl *FD) {
6797   if (!FD->getIdentifier() || FD->getNumParams() != 1)
6798     return false;
6799   const auto *RD = FD->getParamDecl(0)->getType()->getPointeeCXXRecordDecl();
6800   if (!FD->isInStdNamespace() || !RD || !RD->isInStdNamespace())
6801     return false;
6802   if (!isRecordWithAttr<PointerAttr>(QualType(RD->getTypeForDecl(), 0)) &&
6803       !isRecordWithAttr<OwnerAttr>(QualType(RD->getTypeForDecl(), 0)))
6804     return false;
6805   if (FD->getReturnType()->isPointerType() ||
6806       isRecordWithAttr<PointerAttr>(FD->getReturnType())) {
6807     return llvm::StringSwitch<bool>(FD->getName())
6808         .Cases("begin", "rbegin", "cbegin", "crbegin", true)
6809         .Cases("end", "rend", "cend", "crend", true)
6810         .Case("data", true)
6811         .Default(false);
6812   } else if (FD->getReturnType()->isReferenceType()) {
6813     return llvm::StringSwitch<bool>(FD->getName())
6814         .Cases("get", "any_cast", true)
6815         .Default(false);
6816   }
6817   return false;
6818 }
6819 
6820 static void handleGslAnnotatedTypes(IndirectLocalPath &Path, Expr *Call,
6821                                     LocalVisitor Visit) {
6822   auto VisitPointerArg = [&](const Decl *D, Expr *Arg, bool Value) {
6823     // We are not interested in the temporary base objects of gsl Pointers:
6824     //   Temp().ptr; // Here ptr might not dangle.
6825     if (isa<MemberExpr>(Arg->IgnoreImpCasts()))
6826       return;
6827     // Once we initialized a value with a reference, it can no longer dangle.
6828     if (!Value) {
6829       for (auto It = Path.rbegin(), End = Path.rend(); It != End; ++It) {
6830         if (It->Kind == IndirectLocalPathEntry::GslReferenceInit)
6831           continue;
6832         if (It->Kind == IndirectLocalPathEntry::GslPointerInit)
6833           return;
6834         break;
6835       }
6836     }
6837     Path.push_back({Value ? IndirectLocalPathEntry::GslPointerInit
6838                           : IndirectLocalPathEntry::GslReferenceInit,
6839                     Arg, D});
6840     if (Arg->isGLValue())
6841       visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding,
6842                                             Visit,
6843                                             /*EnableLifetimeWarnings=*/true);
6844     else
6845       visitLocalsRetainedByInitializer(Path, Arg, Visit, true,
6846                                        /*EnableLifetimeWarnings=*/true);
6847     Path.pop_back();
6848   };
6849 
6850   if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) {
6851     const auto *MD = cast_or_null<CXXMethodDecl>(MCE->getDirectCallee());
6852     if (MD && shouldTrackImplicitObjectArg(MD))
6853       VisitPointerArg(MD, MCE->getImplicitObjectArgument(),
6854                       !MD->getReturnType()->isReferenceType());
6855     return;
6856   } else if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(Call)) {
6857     FunctionDecl *Callee = OCE->getDirectCallee();
6858     if (Callee && Callee->isCXXInstanceMember() &&
6859         shouldTrackImplicitObjectArg(cast<CXXMethodDecl>(Callee)))
6860       VisitPointerArg(Callee, OCE->getArg(0),
6861                       !Callee->getReturnType()->isReferenceType());
6862     return;
6863   } else if (auto *CE = dyn_cast<CallExpr>(Call)) {
6864     FunctionDecl *Callee = CE->getDirectCallee();
6865     if (Callee && shouldTrackFirstArgument(Callee))
6866       VisitPointerArg(Callee, CE->getArg(0),
6867                       !Callee->getReturnType()->isReferenceType());
6868     return;
6869   }
6870 
6871   if (auto *CCE = dyn_cast<CXXConstructExpr>(Call)) {
6872     const auto *Ctor = CCE->getConstructor();
6873     const CXXRecordDecl *RD = Ctor->getParent();
6874     if (CCE->getNumArgs() > 0 && RD->hasAttr<PointerAttr>())
6875       VisitPointerArg(Ctor->getParamDecl(0), CCE->getArgs()[0], true);
6876   }
6877 }
6878 
6879 static bool implicitObjectParamIsLifetimeBound(const FunctionDecl *FD) {
6880   const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
6881   if (!TSI)
6882     return false;
6883   // Don't declare this variable in the second operand of the for-statement;
6884   // GCC miscompiles that by ending its lifetime before evaluating the
6885   // third operand. See gcc.gnu.org/PR86769.
6886   AttributedTypeLoc ATL;
6887   for (TypeLoc TL = TSI->getTypeLoc();
6888        (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
6889        TL = ATL.getModifiedLoc()) {
6890     if (ATL.getAttrAs<LifetimeBoundAttr>())
6891       return true;
6892   }
6893   return false;
6894 }
6895 
6896 static void visitLifetimeBoundArguments(IndirectLocalPath &Path, Expr *Call,
6897                                         LocalVisitor Visit) {
6898   const FunctionDecl *Callee;
6899   ArrayRef<Expr*> Args;
6900 
6901   if (auto *CE = dyn_cast<CallExpr>(Call)) {
6902     Callee = CE->getDirectCallee();
6903     Args = llvm::makeArrayRef(CE->getArgs(), CE->getNumArgs());
6904   } else {
6905     auto *CCE = cast<CXXConstructExpr>(Call);
6906     Callee = CCE->getConstructor();
6907     Args = llvm::makeArrayRef(CCE->getArgs(), CCE->getNumArgs());
6908   }
6909   if (!Callee)
6910     return;
6911 
6912   Expr *ObjectArg = nullptr;
6913   if (isa<CXXOperatorCallExpr>(Call) && Callee->isCXXInstanceMember()) {
6914     ObjectArg = Args[0];
6915     Args = Args.slice(1);
6916   } else if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) {
6917     ObjectArg = MCE->getImplicitObjectArgument();
6918   }
6919 
6920   auto VisitLifetimeBoundArg = [&](const Decl *D, Expr *Arg) {
6921     Path.push_back({IndirectLocalPathEntry::LifetimeBoundCall, Arg, D});
6922     if (Arg->isGLValue())
6923       visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding,
6924                                             Visit,
6925                                             /*EnableLifetimeWarnings=*/false);
6926     else
6927       visitLocalsRetainedByInitializer(Path, Arg, Visit, true,
6928                                        /*EnableLifetimeWarnings=*/false);
6929     Path.pop_back();
6930   };
6931 
6932   if (ObjectArg && implicitObjectParamIsLifetimeBound(Callee))
6933     VisitLifetimeBoundArg(Callee, ObjectArg);
6934 
6935   for (unsigned I = 0,
6936                 N = std::min<unsigned>(Callee->getNumParams(), Args.size());
6937        I != N; ++I) {
6938     if (Callee->getParamDecl(I)->hasAttr<LifetimeBoundAttr>())
6939       VisitLifetimeBoundArg(Callee->getParamDecl(I), Args[I]);
6940   }
6941 }
6942 
6943 /// Visit the locals that would be reachable through a reference bound to the
6944 /// glvalue expression \c Init.
6945 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
6946                                                   Expr *Init, ReferenceKind RK,
6947                                                   LocalVisitor Visit,
6948                                                   bool EnableLifetimeWarnings) {
6949   RevertToOldSizeRAII RAII(Path);
6950 
6951   // Walk past any constructs which we can lifetime-extend across.
6952   Expr *Old;
6953   do {
6954     Old = Init;
6955 
6956     if (auto *FE = dyn_cast<FullExpr>(Init))
6957       Init = FE->getSubExpr();
6958 
6959     if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
6960       // If this is just redundant braces around an initializer, step over it.
6961       if (ILE->isTransparent())
6962         Init = ILE->getInit(0);
6963     }
6964 
6965     // Step over any subobject adjustments; we may have a materialized
6966     // temporary inside them.
6967     Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
6968 
6969     // Per current approach for DR1376, look through casts to reference type
6970     // when performing lifetime extension.
6971     if (CastExpr *CE = dyn_cast<CastExpr>(Init))
6972       if (CE->getSubExpr()->isGLValue())
6973         Init = CE->getSubExpr();
6974 
6975     // Per the current approach for DR1299, look through array element access
6976     // on array glvalues when performing lifetime extension.
6977     if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Init)) {
6978       Init = ASE->getBase();
6979       auto *ICE = dyn_cast<ImplicitCastExpr>(Init);
6980       if (ICE && ICE->getCastKind() == CK_ArrayToPointerDecay)
6981         Init = ICE->getSubExpr();
6982       else
6983         // We can't lifetime extend through this but we might still find some
6984         // retained temporaries.
6985         return visitLocalsRetainedByInitializer(Path, Init, Visit, true,
6986                                                 EnableLifetimeWarnings);
6987     }
6988 
6989     // Step into CXXDefaultInitExprs so we can diagnose cases where a
6990     // constructor inherits one as an implicit mem-initializer.
6991     if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
6992       Path.push_back(
6993           {IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
6994       Init = DIE->getExpr();
6995     }
6996   } while (Init != Old);
6997 
6998   if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Init)) {
6999     if (Visit(Path, Local(MTE), RK))
7000       visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit, true,
7001                                        EnableLifetimeWarnings);
7002   }
7003 
7004   if (isa<CallExpr>(Init)) {
7005     if (EnableLifetimeWarnings)
7006       handleGslAnnotatedTypes(Path, Init, Visit);
7007     return visitLifetimeBoundArguments(Path, Init, Visit);
7008   }
7009 
7010   switch (Init->getStmtClass()) {
7011   case Stmt::DeclRefExprClass: {
7012     // If we find the name of a local non-reference parameter, we could have a
7013     // lifetime problem.
7014     auto *DRE = cast<DeclRefExpr>(Init);
7015     auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
7016     if (VD && VD->hasLocalStorage() &&
7017         !DRE->refersToEnclosingVariableOrCapture()) {
7018       if (!VD->getType()->isReferenceType()) {
7019         Visit(Path, Local(DRE), RK);
7020       } else if (isa<ParmVarDecl>(DRE->getDecl())) {
7021         // The lifetime of a reference parameter is unknown; assume it's OK
7022         // for now.
7023         break;
7024       } else if (VD->getInit() && !isVarOnPath(Path, VD)) {
7025         Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
7026         visitLocalsRetainedByReferenceBinding(Path, VD->getInit(),
7027                                               RK_ReferenceBinding, Visit,
7028                                               EnableLifetimeWarnings);
7029       }
7030     }
7031     break;
7032   }
7033 
7034   case Stmt::UnaryOperatorClass: {
7035     // The only unary operator that make sense to handle here
7036     // is Deref.  All others don't resolve to a "name."  This includes
7037     // handling all sorts of rvalues passed to a unary operator.
7038     const UnaryOperator *U = cast<UnaryOperator>(Init);
7039     if (U->getOpcode() == UO_Deref)
7040       visitLocalsRetainedByInitializer(Path, U->getSubExpr(), Visit, true,
7041                                        EnableLifetimeWarnings);
7042     break;
7043   }
7044 
7045   case Stmt::OMPArraySectionExprClass: {
7046     visitLocalsRetainedByInitializer(Path,
7047                                      cast<OMPArraySectionExpr>(Init)->getBase(),
7048                                      Visit, true, EnableLifetimeWarnings);
7049     break;
7050   }
7051 
7052   case Stmt::ConditionalOperatorClass:
7053   case Stmt::BinaryConditionalOperatorClass: {
7054     auto *C = cast<AbstractConditionalOperator>(Init);
7055     if (!C->getTrueExpr()->getType()->isVoidType())
7056       visitLocalsRetainedByReferenceBinding(Path, C->getTrueExpr(), RK, Visit,
7057                                             EnableLifetimeWarnings);
7058     if (!C->getFalseExpr()->getType()->isVoidType())
7059       visitLocalsRetainedByReferenceBinding(Path, C->getFalseExpr(), RK, Visit,
7060                                             EnableLifetimeWarnings);
7061     break;
7062   }
7063 
7064   // FIXME: Visit the left-hand side of an -> or ->*.
7065 
7066   default:
7067     break;
7068   }
7069 }
7070 
7071 /// Visit the locals that would be reachable through an object initialized by
7072 /// the prvalue expression \c Init.
7073 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
7074                                              Expr *Init, LocalVisitor Visit,
7075                                              bool RevisitSubinits,
7076                                              bool EnableLifetimeWarnings) {
7077   RevertToOldSizeRAII RAII(Path);
7078 
7079   Expr *Old;
7080   do {
7081     Old = Init;
7082 
7083     // Step into CXXDefaultInitExprs so we can diagnose cases where a
7084     // constructor inherits one as an implicit mem-initializer.
7085     if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
7086       Path.push_back({IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
7087       Init = DIE->getExpr();
7088     }
7089 
7090     if (auto *FE = dyn_cast<FullExpr>(Init))
7091       Init = FE->getSubExpr();
7092 
7093     // Dig out the expression which constructs the extended temporary.
7094     Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
7095 
7096     if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init))
7097       Init = BTE->getSubExpr();
7098 
7099     Init = Init->IgnoreParens();
7100 
7101     // Step over value-preserving rvalue casts.
7102     if (auto *CE = dyn_cast<CastExpr>(Init)) {
7103       switch (CE->getCastKind()) {
7104       case CK_LValueToRValue:
7105         // If we can match the lvalue to a const object, we can look at its
7106         // initializer.
7107         Path.push_back({IndirectLocalPathEntry::LValToRVal, CE});
7108         return visitLocalsRetainedByReferenceBinding(
7109             Path, Init, RK_ReferenceBinding,
7110             [&](IndirectLocalPath &Path, Local L, ReferenceKind RK) -> bool {
7111           if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
7112             auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
7113             if (VD && VD->getType().isConstQualified() && VD->getInit() &&
7114                 !isVarOnPath(Path, VD)) {
7115               Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
7116               visitLocalsRetainedByInitializer(Path, VD->getInit(), Visit, true,
7117                                                EnableLifetimeWarnings);
7118             }
7119           } else if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L)) {
7120             if (MTE->getType().isConstQualified())
7121               visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit,
7122                                                true, EnableLifetimeWarnings);
7123           }
7124           return false;
7125         }, EnableLifetimeWarnings);
7126 
7127         // We assume that objects can be retained by pointers cast to integers,
7128         // but not if the integer is cast to floating-point type or to _Complex.
7129         // We assume that casts to 'bool' do not preserve enough information to
7130         // retain a local object.
7131       case CK_NoOp:
7132       case CK_BitCast:
7133       case CK_BaseToDerived:
7134       case CK_DerivedToBase:
7135       case CK_UncheckedDerivedToBase:
7136       case CK_Dynamic:
7137       case CK_ToUnion:
7138       case CK_UserDefinedConversion:
7139       case CK_ConstructorConversion:
7140       case CK_IntegralToPointer:
7141       case CK_PointerToIntegral:
7142       case CK_VectorSplat:
7143       case CK_IntegralCast:
7144       case CK_CPointerToObjCPointerCast:
7145       case CK_BlockPointerToObjCPointerCast:
7146       case CK_AnyPointerToBlockPointerCast:
7147       case CK_AddressSpaceConversion:
7148         break;
7149 
7150       case CK_ArrayToPointerDecay:
7151         // Model array-to-pointer decay as taking the address of the array
7152         // lvalue.
7153         Path.push_back({IndirectLocalPathEntry::AddressOf, CE});
7154         return visitLocalsRetainedByReferenceBinding(Path, CE->getSubExpr(),
7155                                                      RK_ReferenceBinding, Visit,
7156                                                      EnableLifetimeWarnings);
7157 
7158       default:
7159         return;
7160       }
7161 
7162       Init = CE->getSubExpr();
7163     }
7164   } while (Old != Init);
7165 
7166   // C++17 [dcl.init.list]p6:
7167   //   initializing an initializer_list object from the array extends the
7168   //   lifetime of the array exactly like binding a reference to a temporary.
7169   if (auto *ILE = dyn_cast<CXXStdInitializerListExpr>(Init))
7170     return visitLocalsRetainedByReferenceBinding(Path, ILE->getSubExpr(),
7171                                                  RK_StdInitializerList, Visit,
7172                                                  EnableLifetimeWarnings);
7173 
7174   if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
7175     // We already visited the elements of this initializer list while
7176     // performing the initialization. Don't visit them again unless we've
7177     // changed the lifetime of the initialized entity.
7178     if (!RevisitSubinits)
7179       return;
7180 
7181     if (ILE->isTransparent())
7182       return visitLocalsRetainedByInitializer(Path, ILE->getInit(0), Visit,
7183                                               RevisitSubinits,
7184                                               EnableLifetimeWarnings);
7185 
7186     if (ILE->getType()->isArrayType()) {
7187       for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I)
7188         visitLocalsRetainedByInitializer(Path, ILE->getInit(I), Visit,
7189                                          RevisitSubinits,
7190                                          EnableLifetimeWarnings);
7191       return;
7192     }
7193 
7194     if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) {
7195       assert(RD->isAggregate() && "aggregate init on non-aggregate");
7196 
7197       // If we lifetime-extend a braced initializer which is initializing an
7198       // aggregate, and that aggregate contains reference members which are
7199       // bound to temporaries, those temporaries are also lifetime-extended.
7200       if (RD->isUnion() && ILE->getInitializedFieldInUnion() &&
7201           ILE->getInitializedFieldInUnion()->getType()->isReferenceType())
7202         visitLocalsRetainedByReferenceBinding(Path, ILE->getInit(0),
7203                                               RK_ReferenceBinding, Visit,
7204                                               EnableLifetimeWarnings);
7205       else {
7206         unsigned Index = 0;
7207         for (; Index < RD->getNumBases() && Index < ILE->getNumInits(); ++Index)
7208           visitLocalsRetainedByInitializer(Path, ILE->getInit(Index), Visit,
7209                                            RevisitSubinits,
7210                                            EnableLifetimeWarnings);
7211         for (const auto *I : RD->fields()) {
7212           if (Index >= ILE->getNumInits())
7213             break;
7214           if (I->isUnnamedBitfield())
7215             continue;
7216           Expr *SubInit = ILE->getInit(Index);
7217           if (I->getType()->isReferenceType())
7218             visitLocalsRetainedByReferenceBinding(Path, SubInit,
7219                                                   RK_ReferenceBinding, Visit,
7220                                                   EnableLifetimeWarnings);
7221           else
7222             // This might be either aggregate-initialization of a member or
7223             // initialization of a std::initializer_list object. Regardless,
7224             // we should recursively lifetime-extend that initializer.
7225             visitLocalsRetainedByInitializer(Path, SubInit, Visit,
7226                                              RevisitSubinits,
7227                                              EnableLifetimeWarnings);
7228           ++Index;
7229         }
7230       }
7231     }
7232     return;
7233   }
7234 
7235   // The lifetime of an init-capture is that of the closure object constructed
7236   // by a lambda-expression.
7237   if (auto *LE = dyn_cast<LambdaExpr>(Init)) {
7238     for (Expr *E : LE->capture_inits()) {
7239       if (!E)
7240         continue;
7241       if (E->isGLValue())
7242         visitLocalsRetainedByReferenceBinding(Path, E, RK_ReferenceBinding,
7243                                               Visit, EnableLifetimeWarnings);
7244       else
7245         visitLocalsRetainedByInitializer(Path, E, Visit, true,
7246                                          EnableLifetimeWarnings);
7247     }
7248   }
7249 
7250   if (isa<CallExpr>(Init) || isa<CXXConstructExpr>(Init)) {
7251     if (EnableLifetimeWarnings)
7252       handleGslAnnotatedTypes(Path, Init, Visit);
7253     return visitLifetimeBoundArguments(Path, Init, Visit);
7254   }
7255 
7256   switch (Init->getStmtClass()) {
7257   case Stmt::UnaryOperatorClass: {
7258     auto *UO = cast<UnaryOperator>(Init);
7259     // If the initializer is the address of a local, we could have a lifetime
7260     // problem.
7261     if (UO->getOpcode() == UO_AddrOf) {
7262       // If this is &rvalue, then it's ill-formed and we have already diagnosed
7263       // it. Don't produce a redundant warning about the lifetime of the
7264       // temporary.
7265       if (isa<MaterializeTemporaryExpr>(UO->getSubExpr()))
7266         return;
7267 
7268       Path.push_back({IndirectLocalPathEntry::AddressOf, UO});
7269       visitLocalsRetainedByReferenceBinding(Path, UO->getSubExpr(),
7270                                             RK_ReferenceBinding, Visit,
7271                                             EnableLifetimeWarnings);
7272     }
7273     break;
7274   }
7275 
7276   case Stmt::BinaryOperatorClass: {
7277     // Handle pointer arithmetic.
7278     auto *BO = cast<BinaryOperator>(Init);
7279     BinaryOperatorKind BOK = BO->getOpcode();
7280     if (!BO->getType()->isPointerType() || (BOK != BO_Add && BOK != BO_Sub))
7281       break;
7282 
7283     if (BO->getLHS()->getType()->isPointerType())
7284       visitLocalsRetainedByInitializer(Path, BO->getLHS(), Visit, true,
7285                                        EnableLifetimeWarnings);
7286     else if (BO->getRHS()->getType()->isPointerType())
7287       visitLocalsRetainedByInitializer(Path, BO->getRHS(), Visit, true,
7288                                        EnableLifetimeWarnings);
7289     break;
7290   }
7291 
7292   case Stmt::ConditionalOperatorClass:
7293   case Stmt::BinaryConditionalOperatorClass: {
7294     auto *C = cast<AbstractConditionalOperator>(Init);
7295     // In C++, we can have a throw-expression operand, which has 'void' type
7296     // and isn't interesting from a lifetime perspective.
7297     if (!C->getTrueExpr()->getType()->isVoidType())
7298       visitLocalsRetainedByInitializer(Path, C->getTrueExpr(), Visit, true,
7299                                        EnableLifetimeWarnings);
7300     if (!C->getFalseExpr()->getType()->isVoidType())
7301       visitLocalsRetainedByInitializer(Path, C->getFalseExpr(), Visit, true,
7302                                        EnableLifetimeWarnings);
7303     break;
7304   }
7305 
7306   case Stmt::BlockExprClass:
7307     if (cast<BlockExpr>(Init)->getBlockDecl()->hasCaptures()) {
7308       // This is a local block, whose lifetime is that of the function.
7309       Visit(Path, Local(cast<BlockExpr>(Init)), RK_ReferenceBinding);
7310     }
7311     break;
7312 
7313   case Stmt::AddrLabelExprClass:
7314     // We want to warn if the address of a label would escape the function.
7315     Visit(Path, Local(cast<AddrLabelExpr>(Init)), RK_ReferenceBinding);
7316     break;
7317 
7318   default:
7319     break;
7320   }
7321 }
7322 
7323 /// Determine whether this is an indirect path to a temporary that we are
7324 /// supposed to lifetime-extend along (but don't).
7325 static bool shouldLifetimeExtendThroughPath(const IndirectLocalPath &Path) {
7326   for (auto Elem : Path) {
7327     if (Elem.Kind != IndirectLocalPathEntry::DefaultInit)
7328       return false;
7329   }
7330   return true;
7331 }
7332 
7333 /// Find the range for the first interesting entry in the path at or after I.
7334 static SourceRange nextPathEntryRange(const IndirectLocalPath &Path, unsigned I,
7335                                       Expr *E) {
7336   for (unsigned N = Path.size(); I != N; ++I) {
7337     switch (Path[I].Kind) {
7338     case IndirectLocalPathEntry::AddressOf:
7339     case IndirectLocalPathEntry::LValToRVal:
7340     case IndirectLocalPathEntry::LifetimeBoundCall:
7341     case IndirectLocalPathEntry::GslReferenceInit:
7342     case IndirectLocalPathEntry::GslPointerInit:
7343       // These exist primarily to mark the path as not permitting or
7344       // supporting lifetime extension.
7345       break;
7346 
7347     case IndirectLocalPathEntry::VarInit:
7348       if (cast<VarDecl>(Path[I].D)->isImplicit())
7349         return SourceRange();
7350       LLVM_FALLTHROUGH;
7351     case IndirectLocalPathEntry::DefaultInit:
7352       return Path[I].E->getSourceRange();
7353     }
7354   }
7355   return E->getSourceRange();
7356 }
7357 
7358 static bool pathOnlyInitializesGslPointer(IndirectLocalPath &Path) {
7359   for (auto It = Path.rbegin(), End = Path.rend(); It != End; ++It) {
7360     if (It->Kind == IndirectLocalPathEntry::VarInit)
7361       continue;
7362     if (It->Kind == IndirectLocalPathEntry::AddressOf)
7363       continue;
7364     return It->Kind == IndirectLocalPathEntry::GslPointerInit ||
7365            It->Kind == IndirectLocalPathEntry::GslReferenceInit;
7366   }
7367   return false;
7368 }
7369 
7370 void Sema::checkInitializerLifetime(const InitializedEntity &Entity,
7371                                     Expr *Init) {
7372   LifetimeResult LR = getEntityLifetime(&Entity);
7373   LifetimeKind LK = LR.getInt();
7374   const InitializedEntity *ExtendingEntity = LR.getPointer();
7375 
7376   // If this entity doesn't have an interesting lifetime, don't bother looking
7377   // for temporaries within its initializer.
7378   if (LK == LK_FullExpression)
7379     return;
7380 
7381   auto TemporaryVisitor = [&](IndirectLocalPath &Path, Local L,
7382                               ReferenceKind RK) -> bool {
7383     SourceRange DiagRange = nextPathEntryRange(Path, 0, L);
7384     SourceLocation DiagLoc = DiagRange.getBegin();
7385 
7386     auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L);
7387 
7388     bool IsGslPtrInitWithGslTempOwner = false;
7389     bool IsLocalGslOwner = false;
7390     if (pathOnlyInitializesGslPointer(Path)) {
7391       if (isa<DeclRefExpr>(L)) {
7392         // We do not want to follow the references when returning a pointer originating
7393         // from a local owner to avoid the following false positive:
7394         //   int &p = *localUniquePtr;
7395         //   someContainer.add(std::move(localUniquePtr));
7396         //   return p;
7397         IsLocalGslOwner = isRecordWithAttr<OwnerAttr>(L->getType());
7398         if (pathContainsInit(Path) || !IsLocalGslOwner)
7399           return false;
7400       } else {
7401         IsGslPtrInitWithGslTempOwner = MTE && !MTE->getExtendingDecl() &&
7402                             isRecordWithAttr<OwnerAttr>(MTE->getType());
7403         // Skipping a chain of initializing gsl::Pointer annotated objects.
7404         // We are looking only for the final source to find out if it was
7405         // a local or temporary owner or the address of a local variable/param.
7406         if (!IsGslPtrInitWithGslTempOwner)
7407           return true;
7408       }
7409     }
7410 
7411     switch (LK) {
7412     case LK_FullExpression:
7413       llvm_unreachable("already handled this");
7414 
7415     case LK_Extended: {
7416       if (!MTE) {
7417         // The initialized entity has lifetime beyond the full-expression,
7418         // and the local entity does too, so don't warn.
7419         //
7420         // FIXME: We should consider warning if a static / thread storage
7421         // duration variable retains an automatic storage duration local.
7422         return false;
7423       }
7424 
7425       if (IsGslPtrInitWithGslTempOwner && DiagLoc.isValid()) {
7426         Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange;
7427         return false;
7428       }
7429 
7430       // Lifetime-extend the temporary.
7431       if (Path.empty()) {
7432         // Update the storage duration of the materialized temporary.
7433         // FIXME: Rebuild the expression instead of mutating it.
7434         MTE->setExtendingDecl(ExtendingEntity->getDecl(),
7435                               ExtendingEntity->allocateManglingNumber());
7436         // Also visit the temporaries lifetime-extended by this initializer.
7437         return true;
7438       }
7439 
7440       if (shouldLifetimeExtendThroughPath(Path)) {
7441         // We're supposed to lifetime-extend the temporary along this path (per
7442         // the resolution of DR1815), but we don't support that yet.
7443         //
7444         // FIXME: Properly handle this situation. Perhaps the easiest approach
7445         // would be to clone the initializer expression on each use that would
7446         // lifetime extend its temporaries.
7447         Diag(DiagLoc, diag::warn_unsupported_lifetime_extension)
7448             << RK << DiagRange;
7449       } else {
7450         // If the path goes through the initialization of a variable or field,
7451         // it can't possibly reach a temporary created in this full-expression.
7452         // We will have already diagnosed any problems with the initializer.
7453         if (pathContainsInit(Path))
7454           return false;
7455 
7456         Diag(DiagLoc, diag::warn_dangling_variable)
7457             << RK << !Entity.getParent()
7458             << ExtendingEntity->getDecl()->isImplicit()
7459             << ExtendingEntity->getDecl() << Init->isGLValue() << DiagRange;
7460       }
7461       break;
7462     }
7463 
7464     case LK_MemInitializer: {
7465       if (isa<MaterializeTemporaryExpr>(L)) {
7466         // Under C++ DR1696, if a mem-initializer (or a default member
7467         // initializer used by the absence of one) would lifetime-extend a
7468         // temporary, the program is ill-formed.
7469         if (auto *ExtendingDecl =
7470                 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
7471           if (IsGslPtrInitWithGslTempOwner) {
7472             Diag(DiagLoc, diag::warn_dangling_lifetime_pointer_member)
7473                 << ExtendingDecl << DiagRange;
7474             Diag(ExtendingDecl->getLocation(),
7475                  diag::note_ref_or_ptr_member_declared_here)
7476                 << true;
7477             return false;
7478           }
7479           bool IsSubobjectMember = ExtendingEntity != &Entity;
7480           Diag(DiagLoc, shouldLifetimeExtendThroughPath(Path)
7481                             ? diag::err_dangling_member
7482                             : diag::warn_dangling_member)
7483               << ExtendingDecl << IsSubobjectMember << RK << DiagRange;
7484           // Don't bother adding a note pointing to the field if we're inside
7485           // its default member initializer; our primary diagnostic points to
7486           // the same place in that case.
7487           if (Path.empty() ||
7488               Path.back().Kind != IndirectLocalPathEntry::DefaultInit) {
7489             Diag(ExtendingDecl->getLocation(),
7490                  diag::note_lifetime_extending_member_declared_here)
7491                 << RK << IsSubobjectMember;
7492           }
7493         } else {
7494           // We have a mem-initializer but no particular field within it; this
7495           // is either a base class or a delegating initializer directly
7496           // initializing the base-class from something that doesn't live long
7497           // enough.
7498           //
7499           // FIXME: Warn on this.
7500           return false;
7501         }
7502       } else {
7503         // Paths via a default initializer can only occur during error recovery
7504         // (there's no other way that a default initializer can refer to a
7505         // local). Don't produce a bogus warning on those cases.
7506         if (pathContainsInit(Path))
7507           return false;
7508 
7509         // Suppress false positives for code like the one below:
7510         //   Ctor(unique_ptr<T> up) : member(*up), member2(move(up)) {}
7511         if (IsLocalGslOwner && pathOnlyInitializesGslPointer(Path))
7512           return false;
7513 
7514         auto *DRE = dyn_cast<DeclRefExpr>(L);
7515         auto *VD = DRE ? dyn_cast<VarDecl>(DRE->getDecl()) : nullptr;
7516         if (!VD) {
7517           // A member was initialized to a local block.
7518           // FIXME: Warn on this.
7519           return false;
7520         }
7521 
7522         if (auto *Member =
7523                 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
7524           bool IsPointer = !Member->getType()->isReferenceType();
7525           Diag(DiagLoc, IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
7526                                   : diag::warn_bind_ref_member_to_parameter)
7527               << Member << VD << isa<ParmVarDecl>(VD) << DiagRange;
7528           Diag(Member->getLocation(),
7529                diag::note_ref_or_ptr_member_declared_here)
7530               << (unsigned)IsPointer;
7531         }
7532       }
7533       break;
7534     }
7535 
7536     case LK_New:
7537       if (isa<MaterializeTemporaryExpr>(L)) {
7538         if (IsGslPtrInitWithGslTempOwner)
7539           Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange;
7540         else
7541           Diag(DiagLoc, RK == RK_ReferenceBinding
7542                             ? diag::warn_new_dangling_reference
7543                             : diag::warn_new_dangling_initializer_list)
7544               << !Entity.getParent() << DiagRange;
7545       } else {
7546         // We can't determine if the allocation outlives the local declaration.
7547         return false;
7548       }
7549       break;
7550 
7551     case LK_Return:
7552     case LK_StmtExprResult:
7553       if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
7554         // We can't determine if the local variable outlives the statement
7555         // expression.
7556         if (LK == LK_StmtExprResult)
7557           return false;
7558         Diag(DiagLoc, diag::warn_ret_stack_addr_ref)
7559             << Entity.getType()->isReferenceType() << DRE->getDecl()
7560             << isa<ParmVarDecl>(DRE->getDecl()) << DiagRange;
7561       } else if (isa<BlockExpr>(L)) {
7562         Diag(DiagLoc, diag::err_ret_local_block) << DiagRange;
7563       } else if (isa<AddrLabelExpr>(L)) {
7564         // Don't warn when returning a label from a statement expression.
7565         // Leaving the scope doesn't end its lifetime.
7566         if (LK == LK_StmtExprResult)
7567           return false;
7568         Diag(DiagLoc, diag::warn_ret_addr_label) << DiagRange;
7569       } else {
7570         Diag(DiagLoc, diag::warn_ret_local_temp_addr_ref)
7571          << Entity.getType()->isReferenceType() << DiagRange;
7572       }
7573       break;
7574     }
7575 
7576     for (unsigned I = 0; I != Path.size(); ++I) {
7577       auto Elem = Path[I];
7578 
7579       switch (Elem.Kind) {
7580       case IndirectLocalPathEntry::AddressOf:
7581       case IndirectLocalPathEntry::LValToRVal:
7582         // These exist primarily to mark the path as not permitting or
7583         // supporting lifetime extension.
7584         break;
7585 
7586       case IndirectLocalPathEntry::LifetimeBoundCall:
7587       case IndirectLocalPathEntry::GslPointerInit:
7588       case IndirectLocalPathEntry::GslReferenceInit:
7589         // FIXME: Consider adding a note for these.
7590         break;
7591 
7592       case IndirectLocalPathEntry::DefaultInit: {
7593         auto *FD = cast<FieldDecl>(Elem.D);
7594         Diag(FD->getLocation(), diag::note_init_with_default_member_initalizer)
7595             << FD << nextPathEntryRange(Path, I + 1, L);
7596         break;
7597       }
7598 
7599       case IndirectLocalPathEntry::VarInit:
7600         const VarDecl *VD = cast<VarDecl>(Elem.D);
7601         Diag(VD->getLocation(), diag::note_local_var_initializer)
7602             << VD->getType()->isReferenceType()
7603             << VD->isImplicit() << VD->getDeclName()
7604             << nextPathEntryRange(Path, I + 1, L);
7605         break;
7606       }
7607     }
7608 
7609     // We didn't lifetime-extend, so don't go any further; we don't need more
7610     // warnings or errors on inner temporaries within this one's initializer.
7611     return false;
7612   };
7613 
7614   bool EnableLifetimeWarnings = !getDiagnostics().isIgnored(
7615       diag::warn_dangling_lifetime_pointer, SourceLocation());
7616   llvm::SmallVector<IndirectLocalPathEntry, 8> Path;
7617   if (Init->isGLValue())
7618     visitLocalsRetainedByReferenceBinding(Path, Init, RK_ReferenceBinding,
7619                                           TemporaryVisitor,
7620                                           EnableLifetimeWarnings);
7621   else
7622     visitLocalsRetainedByInitializer(Path, Init, TemporaryVisitor, false,
7623                                      EnableLifetimeWarnings);
7624 }
7625 
7626 static void DiagnoseNarrowingInInitList(Sema &S,
7627                                         const ImplicitConversionSequence &ICS,
7628                                         QualType PreNarrowingType,
7629                                         QualType EntityType,
7630                                         const Expr *PostInit);
7631 
7632 /// Provide warnings when std::move is used on construction.
7633 static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr,
7634                                     bool IsReturnStmt) {
7635   if (!InitExpr)
7636     return;
7637 
7638   if (S.inTemplateInstantiation())
7639     return;
7640 
7641   QualType DestType = InitExpr->getType();
7642   if (!DestType->isRecordType())
7643     return;
7644 
7645   unsigned DiagID = 0;
7646   if (IsReturnStmt) {
7647     const CXXConstructExpr *CCE =
7648         dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens());
7649     if (!CCE || CCE->getNumArgs() != 1)
7650       return;
7651 
7652     if (!CCE->getConstructor()->isCopyOrMoveConstructor())
7653       return;
7654 
7655     InitExpr = CCE->getArg(0)->IgnoreImpCasts();
7656   }
7657 
7658   // Find the std::move call and get the argument.
7659   const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens());
7660   if (!CE || !CE->isCallToStdMove())
7661     return;
7662 
7663   const Expr *Arg = CE->getArg(0)->IgnoreImplicit();
7664 
7665   if (IsReturnStmt) {
7666     const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts());
7667     if (!DRE || DRE->refersToEnclosingVariableOrCapture())
7668       return;
7669 
7670     const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
7671     if (!VD || !VD->hasLocalStorage())
7672       return;
7673 
7674     // __block variables are not moved implicitly.
7675     if (VD->hasAttr<BlocksAttr>())
7676       return;
7677 
7678     QualType SourceType = VD->getType();
7679     if (!SourceType->isRecordType())
7680       return;
7681 
7682     if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) {
7683       return;
7684     }
7685 
7686     // If we're returning a function parameter, copy elision
7687     // is not possible.
7688     if (isa<ParmVarDecl>(VD))
7689       DiagID = diag::warn_redundant_move_on_return;
7690     else
7691       DiagID = diag::warn_pessimizing_move_on_return;
7692   } else {
7693     DiagID = diag::warn_pessimizing_move_on_initialization;
7694     const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens();
7695     if (!ArgStripped->isRValue() || !ArgStripped->getType()->isRecordType())
7696       return;
7697   }
7698 
7699   S.Diag(CE->getBeginLoc(), DiagID);
7700 
7701   // Get all the locations for a fix-it.  Don't emit the fix-it if any location
7702   // is within a macro.
7703   SourceLocation CallBegin = CE->getCallee()->getBeginLoc();
7704   if (CallBegin.isMacroID())
7705     return;
7706   SourceLocation RParen = CE->getRParenLoc();
7707   if (RParen.isMacroID())
7708     return;
7709   SourceLocation LParen;
7710   SourceLocation ArgLoc = Arg->getBeginLoc();
7711 
7712   // Special testing for the argument location.  Since the fix-it needs the
7713   // location right before the argument, the argument location can be in a
7714   // macro only if it is at the beginning of the macro.
7715   while (ArgLoc.isMacroID() &&
7716          S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) {
7717     ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).getBegin();
7718   }
7719 
7720   if (LParen.isMacroID())
7721     return;
7722 
7723   LParen = ArgLoc.getLocWithOffset(-1);
7724 
7725   S.Diag(CE->getBeginLoc(), diag::note_remove_move)
7726       << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen))
7727       << FixItHint::CreateRemoval(SourceRange(RParen, RParen));
7728 }
7729 
7730 static void CheckForNullPointerDereference(Sema &S, const Expr *E) {
7731   // Check to see if we are dereferencing a null pointer.  If so, this is
7732   // undefined behavior, so warn about it.  This only handles the pattern
7733   // "*null", which is a very syntactic check.
7734   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
7735     if (UO->getOpcode() == UO_Deref &&
7736         UO->getSubExpr()->IgnoreParenCasts()->
7737         isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) {
7738     S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
7739                           S.PDiag(diag::warn_binding_null_to_reference)
7740                             << UO->getSubExpr()->getSourceRange());
7741   }
7742 }
7743 
7744 MaterializeTemporaryExpr *
7745 Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary,
7746                                      bool BoundToLvalueReference) {
7747   auto MTE = new (Context)
7748       MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference);
7749 
7750   // Order an ExprWithCleanups for lifetime marks.
7751   //
7752   // TODO: It'll be good to have a single place to check the access of the
7753   // destructor and generate ExprWithCleanups for various uses. Currently these
7754   // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary,
7755   // but there may be a chance to merge them.
7756   Cleanup.setExprNeedsCleanups(false);
7757   return MTE;
7758 }
7759 
7760 ExprResult Sema::TemporaryMaterializationConversion(Expr *E) {
7761   // In C++98, we don't want to implicitly create an xvalue.
7762   // FIXME: This means that AST consumers need to deal with "prvalues" that
7763   // denote materialized temporaries. Maybe we should add another ValueKind
7764   // for "xvalue pretending to be a prvalue" for C++98 support.
7765   if (!E->isRValue() || !getLangOpts().CPlusPlus11)
7766     return E;
7767 
7768   // C++1z [conv.rval]/1: T shall be a complete type.
7769   // FIXME: Does this ever matter (can we form a prvalue of incomplete type)?
7770   // If so, we should check for a non-abstract class type here too.
7771   QualType T = E->getType();
7772   if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type))
7773     return ExprError();
7774 
7775   return CreateMaterializeTemporaryExpr(E->getType(), E, false);
7776 }
7777 
7778 ExprResult Sema::PerformQualificationConversion(Expr *E, QualType Ty,
7779                                                 ExprValueKind VK,
7780                                                 CheckedConversionKind CCK) {
7781 
7782   CastKind CK = CK_NoOp;
7783 
7784   if (VK == VK_RValue) {
7785     auto PointeeTy = Ty->getPointeeType();
7786     auto ExprPointeeTy = E->getType()->getPointeeType();
7787     if (!PointeeTy.isNull() &&
7788         PointeeTy.getAddressSpace() != ExprPointeeTy.getAddressSpace())
7789       CK = CK_AddressSpaceConversion;
7790   } else if (Ty.getAddressSpace() != E->getType().getAddressSpace()) {
7791     CK = CK_AddressSpaceConversion;
7792   }
7793 
7794   return ImpCastExprToType(E, Ty, CK, VK, /*BasePath=*/nullptr, CCK);
7795 }
7796 
7797 ExprResult InitializationSequence::Perform(Sema &S,
7798                                            const InitializedEntity &Entity,
7799                                            const InitializationKind &Kind,
7800                                            MultiExprArg Args,
7801                                            QualType *ResultType) {
7802   if (Failed()) {
7803     Diagnose(S, Entity, Kind, Args);
7804     return ExprError();
7805   }
7806   if (!ZeroInitializationFixit.empty()) {
7807     unsigned DiagID = diag::err_default_init_const;
7808     if (Decl *D = Entity.getDecl())
7809       if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>())
7810         DiagID = diag::ext_default_init_const;
7811 
7812     // The initialization would have succeeded with this fixit. Since the fixit
7813     // is on the error, we need to build a valid AST in this case, so this isn't
7814     // handled in the Failed() branch above.
7815     QualType DestType = Entity.getType();
7816     S.Diag(Kind.getLocation(), DiagID)
7817         << DestType << (bool)DestType->getAs<RecordType>()
7818         << FixItHint::CreateInsertion(ZeroInitializationFixitLoc,
7819                                       ZeroInitializationFixit);
7820   }
7821 
7822   if (getKind() == DependentSequence) {
7823     // If the declaration is a non-dependent, incomplete array type
7824     // that has an initializer, then its type will be completed once
7825     // the initializer is instantiated.
7826     if (ResultType && !Entity.getType()->isDependentType() &&
7827         Args.size() == 1) {
7828       QualType DeclType = Entity.getType();
7829       if (const IncompleteArrayType *ArrayT
7830                            = S.Context.getAsIncompleteArrayType(DeclType)) {
7831         // FIXME: We don't currently have the ability to accurately
7832         // compute the length of an initializer list without
7833         // performing full type-checking of the initializer list
7834         // (since we have to determine where braces are implicitly
7835         // introduced and such).  So, we fall back to making the array
7836         // type a dependently-sized array type with no specified
7837         // bound.
7838         if (isa<InitListExpr>((Expr *)Args[0])) {
7839           SourceRange Brackets;
7840 
7841           // Scavange the location of the brackets from the entity, if we can.
7842           if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Entity.getDecl())) {
7843             if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
7844               TypeLoc TL = TInfo->getTypeLoc();
7845               if (IncompleteArrayTypeLoc ArrayLoc =
7846                       TL.getAs<IncompleteArrayTypeLoc>())
7847                 Brackets = ArrayLoc.getBracketsRange();
7848             }
7849           }
7850 
7851           *ResultType
7852             = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
7853                                                    /*NumElts=*/nullptr,
7854                                                    ArrayT->getSizeModifier(),
7855                                        ArrayT->getIndexTypeCVRQualifiers(),
7856                                                    Brackets);
7857         }
7858 
7859       }
7860     }
7861     if (Kind.getKind() == InitializationKind::IK_Direct &&
7862         !Kind.isExplicitCast()) {
7863       // Rebuild the ParenListExpr.
7864       SourceRange ParenRange = Kind.getParenOrBraceRange();
7865       return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
7866                                   Args);
7867     }
7868     assert(Kind.getKind() == InitializationKind::IK_Copy ||
7869            Kind.isExplicitCast() ||
7870            Kind.getKind() == InitializationKind::IK_DirectList);
7871     return ExprResult(Args[0]);
7872   }
7873 
7874   // No steps means no initialization.
7875   if (Steps.empty())
7876     return ExprResult((Expr *)nullptr);
7877 
7878   if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
7879       Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
7880       !Entity.isParameterKind()) {
7881     // Produce a C++98 compatibility warning if we are initializing a reference
7882     // from an initializer list. For parameters, we produce a better warning
7883     // elsewhere.
7884     Expr *Init = Args[0];
7885     S.Diag(Init->getBeginLoc(), diag::warn_cxx98_compat_reference_list_init)
7886         << Init->getSourceRange();
7887   }
7888 
7889   // OpenCL v2.0 s6.13.11.1. atomic variables can be initialized in global scope
7890   QualType ETy = Entity.getType();
7891   bool HasGlobalAS = ETy.hasAddressSpace() &&
7892                      ETy.getAddressSpace() == LangAS::opencl_global;
7893 
7894   if (S.getLangOpts().OpenCLVersion >= 200 &&
7895       ETy->isAtomicType() && !HasGlobalAS &&
7896       Entity.getKind() == InitializedEntity::EK_Variable && Args.size() > 0) {
7897     S.Diag(Args[0]->getBeginLoc(), diag::err_opencl_atomic_init)
7898         << 1
7899         << SourceRange(Entity.getDecl()->getBeginLoc(), Args[0]->getEndLoc());
7900     return ExprError();
7901   }
7902 
7903   QualType DestType = Entity.getType().getNonReferenceType();
7904   // FIXME: Ugly hack around the fact that Entity.getType() is not
7905   // the same as Entity.getDecl()->getType() in cases involving type merging,
7906   //  and we want latter when it makes sense.
7907   if (ResultType)
7908     *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
7909                                      Entity.getType();
7910 
7911   ExprResult CurInit((Expr *)nullptr);
7912   SmallVector<Expr*, 4> ArrayLoopCommonExprs;
7913 
7914   // For initialization steps that start with a single initializer,
7915   // grab the only argument out the Args and place it into the "current"
7916   // initializer.
7917   switch (Steps.front().Kind) {
7918   case SK_ResolveAddressOfOverloadedFunction:
7919   case SK_CastDerivedToBaseRValue:
7920   case SK_CastDerivedToBaseXValue:
7921   case SK_CastDerivedToBaseLValue:
7922   case SK_BindReference:
7923   case SK_BindReferenceToTemporary:
7924   case SK_FinalCopy:
7925   case SK_ExtraneousCopyToTemporary:
7926   case SK_UserConversion:
7927   case SK_QualificationConversionLValue:
7928   case SK_QualificationConversionXValue:
7929   case SK_QualificationConversionRValue:
7930   case SK_AtomicConversion:
7931   case SK_ConversionSequence:
7932   case SK_ConversionSequenceNoNarrowing:
7933   case SK_ListInitialization:
7934   case SK_UnwrapInitList:
7935   case SK_RewrapInitList:
7936   case SK_CAssignment:
7937   case SK_StringInit:
7938   case SK_ObjCObjectConversion:
7939   case SK_ArrayLoopIndex:
7940   case SK_ArrayLoopInit:
7941   case SK_ArrayInit:
7942   case SK_GNUArrayInit:
7943   case SK_ParenthesizedArrayInit:
7944   case SK_PassByIndirectCopyRestore:
7945   case SK_PassByIndirectRestore:
7946   case SK_ProduceObjCObject:
7947   case SK_StdInitializerList:
7948   case SK_OCLSamplerInit:
7949   case SK_OCLZeroOpaqueType: {
7950     assert(Args.size() == 1);
7951     CurInit = Args[0];
7952     if (!CurInit.get()) return ExprError();
7953     break;
7954   }
7955 
7956   case SK_ConstructorInitialization:
7957   case SK_ConstructorInitializationFromList:
7958   case SK_StdInitializerListConstructorCall:
7959   case SK_ZeroInitialization:
7960     break;
7961   }
7962 
7963   // Promote from an unevaluated context to an unevaluated list context in
7964   // C++11 list-initialization; we need to instantiate entities usable in
7965   // constant expressions here in order to perform narrowing checks =(
7966   EnterExpressionEvaluationContext Evaluated(
7967       S, EnterExpressionEvaluationContext::InitList,
7968       CurInit.get() && isa<InitListExpr>(CurInit.get()));
7969 
7970   // C++ [class.abstract]p2:
7971   //   no objects of an abstract class can be created except as subobjects
7972   //   of a class derived from it
7973   auto checkAbstractType = [&](QualType T) -> bool {
7974     if (Entity.getKind() == InitializedEntity::EK_Base ||
7975         Entity.getKind() == InitializedEntity::EK_Delegating)
7976       return false;
7977     return S.RequireNonAbstractType(Kind.getLocation(), T,
7978                                     diag::err_allocation_of_abstract_type);
7979   };
7980 
7981   // Walk through the computed steps for the initialization sequence,
7982   // performing the specified conversions along the way.
7983   bool ConstructorInitRequiresZeroInit = false;
7984   for (step_iterator Step = step_begin(), StepEnd = step_end();
7985        Step != StepEnd; ++Step) {
7986     if (CurInit.isInvalid())
7987       return ExprError();
7988 
7989     QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
7990 
7991     switch (Step->Kind) {
7992     case SK_ResolveAddressOfOverloadedFunction:
7993       // Overload resolution determined which function invoke; update the
7994       // initializer to reflect that choice.
7995       S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
7996       if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()))
7997         return ExprError();
7998       CurInit = S.FixOverloadedFunctionReference(CurInit,
7999                                                  Step->Function.FoundDecl,
8000                                                  Step->Function.Function);
8001       break;
8002 
8003     case SK_CastDerivedToBaseRValue:
8004     case SK_CastDerivedToBaseXValue:
8005     case SK_CastDerivedToBaseLValue: {
8006       // We have a derived-to-base cast that produces either an rvalue or an
8007       // lvalue. Perform that cast.
8008 
8009       CXXCastPath BasePath;
8010 
8011       // Casts to inaccessible base classes are allowed with C-style casts.
8012       bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
8013       if (S.CheckDerivedToBaseConversion(
8014               SourceType, Step->Type, CurInit.get()->getBeginLoc(),
8015               CurInit.get()->getSourceRange(), &BasePath, IgnoreBaseAccess))
8016         return ExprError();
8017 
8018       ExprValueKind VK =
8019           Step->Kind == SK_CastDerivedToBaseLValue ?
8020               VK_LValue :
8021               (Step->Kind == SK_CastDerivedToBaseXValue ?
8022                    VK_XValue :
8023                    VK_RValue);
8024       CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
8025                                          CK_DerivedToBase, CurInit.get(),
8026                                          &BasePath, VK, FPOptionsOverride());
8027       break;
8028     }
8029 
8030     case SK_BindReference:
8031       // Reference binding does not have any corresponding ASTs.
8032 
8033       // Check exception specifications
8034       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
8035         return ExprError();
8036 
8037       // We don't check for e.g. function pointers here, since address
8038       // availability checks should only occur when the function first decays
8039       // into a pointer or reference.
8040       if (CurInit.get()->getType()->isFunctionProtoType()) {
8041         if (auto *DRE = dyn_cast<DeclRefExpr>(CurInit.get()->IgnoreParens())) {
8042           if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
8043             if (!S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
8044                                                      DRE->getBeginLoc()))
8045               return ExprError();
8046           }
8047         }
8048       }
8049 
8050       CheckForNullPointerDereference(S, CurInit.get());
8051       break;
8052 
8053     case SK_BindReferenceToTemporary: {
8054       // Make sure the "temporary" is actually an rvalue.
8055       assert(CurInit.get()->isRValue() && "not a temporary");
8056 
8057       // Check exception specifications
8058       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
8059         return ExprError();
8060 
8061       // Materialize the temporary into memory.
8062       MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
8063           Step->Type, CurInit.get(), Entity.getType()->isLValueReferenceType());
8064       CurInit = MTE;
8065 
8066       // If we're extending this temporary to automatic storage duration -- we
8067       // need to register its cleanup during the full-expression's cleanups.
8068       if (MTE->getStorageDuration() == SD_Automatic &&
8069           MTE->getType().isDestructedType())
8070         S.Cleanup.setExprNeedsCleanups(true);
8071       break;
8072     }
8073 
8074     case SK_FinalCopy:
8075       if (checkAbstractType(Step->Type))
8076         return ExprError();
8077 
8078       // If the overall initialization is initializing a temporary, we already
8079       // bound our argument if it was necessary to do so. If not (if we're
8080       // ultimately initializing a non-temporary), our argument needs to be
8081       // bound since it's initializing a function parameter.
8082       // FIXME: This is a mess. Rationalize temporary destruction.
8083       if (!shouldBindAsTemporary(Entity))
8084         CurInit = S.MaybeBindToTemporary(CurInit.get());
8085       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
8086                            /*IsExtraneousCopy=*/false);
8087       break;
8088 
8089     case SK_ExtraneousCopyToTemporary:
8090       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
8091                            /*IsExtraneousCopy=*/true);
8092       break;
8093 
8094     case SK_UserConversion: {
8095       // We have a user-defined conversion that invokes either a constructor
8096       // or a conversion function.
8097       CastKind CastKind;
8098       FunctionDecl *Fn = Step->Function.Function;
8099       DeclAccessPair FoundFn = Step->Function.FoundDecl;
8100       bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
8101       bool CreatedObject = false;
8102       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
8103         // Build a call to the selected constructor.
8104         SmallVector<Expr*, 8> ConstructorArgs;
8105         SourceLocation Loc = CurInit.get()->getBeginLoc();
8106 
8107         // Determine the arguments required to actually perform the constructor
8108         // call.
8109         Expr *Arg = CurInit.get();
8110         if (S.CompleteConstructorCall(Constructor,
8111                                       MultiExprArg(&Arg, 1),
8112                                       Loc, ConstructorArgs))
8113           return ExprError();
8114 
8115         // Build an expression that constructs a temporary.
8116         CurInit = S.BuildCXXConstructExpr(Loc, Step->Type,
8117                                           FoundFn, Constructor,
8118                                           ConstructorArgs,
8119                                           HadMultipleCandidates,
8120                                           /*ListInit*/ false,
8121                                           /*StdInitListInit*/ false,
8122                                           /*ZeroInit*/ false,
8123                                           CXXConstructExpr::CK_Complete,
8124                                           SourceRange());
8125         if (CurInit.isInvalid())
8126           return ExprError();
8127 
8128         S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn,
8129                                  Entity);
8130         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
8131           return ExprError();
8132 
8133         CastKind = CK_ConstructorConversion;
8134         CreatedObject = true;
8135       } else {
8136         // Build a call to the conversion function.
8137         CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
8138         S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr,
8139                                     FoundFn);
8140         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
8141           return ExprError();
8142 
8143         CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
8144                                            HadMultipleCandidates);
8145         if (CurInit.isInvalid())
8146           return ExprError();
8147 
8148         CastKind = CK_UserDefinedConversion;
8149         CreatedObject = Conversion->getReturnType()->isRecordType();
8150       }
8151 
8152       if (CreatedObject && checkAbstractType(CurInit.get()->getType()))
8153         return ExprError();
8154 
8155       CurInit = ImplicitCastExpr::Create(
8156           S.Context, CurInit.get()->getType(), CastKind, CurInit.get(), nullptr,
8157           CurInit.get()->getValueKind(), S.CurFPFeatureOverrides());
8158 
8159       if (shouldBindAsTemporary(Entity))
8160         // The overall entity is temporary, so this expression should be
8161         // destroyed at the end of its full-expression.
8162         CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
8163       else if (CreatedObject && shouldDestroyEntity(Entity)) {
8164         // The object outlasts the full-expression, but we need to prepare for
8165         // a destructor being run on it.
8166         // FIXME: It makes no sense to do this here. This should happen
8167         // regardless of how we initialized the entity.
8168         QualType T = CurInit.get()->getType();
8169         if (const RecordType *Record = T->getAs<RecordType>()) {
8170           CXXDestructorDecl *Destructor
8171             = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
8172           S.CheckDestructorAccess(CurInit.get()->getBeginLoc(), Destructor,
8173                                   S.PDiag(diag::err_access_dtor_temp) << T);
8174           S.MarkFunctionReferenced(CurInit.get()->getBeginLoc(), Destructor);
8175           if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getBeginLoc()))
8176             return ExprError();
8177         }
8178       }
8179       break;
8180     }
8181 
8182     case SK_QualificationConversionLValue:
8183     case SK_QualificationConversionXValue:
8184     case SK_QualificationConversionRValue: {
8185       // Perform a qualification conversion; these can never go wrong.
8186       ExprValueKind VK =
8187           Step->Kind == SK_QualificationConversionLValue
8188               ? VK_LValue
8189               : (Step->Kind == SK_QualificationConversionXValue ? VK_XValue
8190                                                                 : VK_RValue);
8191       CurInit = S.PerformQualificationConversion(CurInit.get(), Step->Type, VK);
8192       break;
8193     }
8194 
8195     case SK_AtomicConversion: {
8196       assert(CurInit.get()->isRValue() && "cannot convert glvalue to atomic");
8197       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8198                                     CK_NonAtomicToAtomic, VK_RValue);
8199       break;
8200     }
8201 
8202     case SK_ConversionSequence:
8203     case SK_ConversionSequenceNoNarrowing: {
8204       if (const auto *FromPtrType =
8205               CurInit.get()->getType()->getAs<PointerType>()) {
8206         if (const auto *ToPtrType = Step->Type->getAs<PointerType>()) {
8207           if (FromPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
8208               !ToPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
8209             // Do not check static casts here because they are checked earlier
8210             // in Sema::ActOnCXXNamedCast()
8211             if (!Kind.isStaticCast()) {
8212               S.Diag(CurInit.get()->getExprLoc(),
8213                      diag::warn_noderef_to_dereferenceable_pointer)
8214                   << CurInit.get()->getSourceRange();
8215             }
8216           }
8217         }
8218       }
8219 
8220       Sema::CheckedConversionKind CCK
8221         = Kind.isCStyleCast()? Sema::CCK_CStyleCast
8222         : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
8223         : Kind.isExplicitCast()? Sema::CCK_OtherCast
8224         : Sema::CCK_ImplicitConversion;
8225       ExprResult CurInitExprRes =
8226         S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
8227                                     getAssignmentAction(Entity), CCK);
8228       if (CurInitExprRes.isInvalid())
8229         return ExprError();
8230 
8231       S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), CurInit.get());
8232 
8233       CurInit = CurInitExprRes;
8234 
8235       if (Step->Kind == SK_ConversionSequenceNoNarrowing &&
8236           S.getLangOpts().CPlusPlus)
8237         DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(),
8238                                     CurInit.get());
8239 
8240       break;
8241     }
8242 
8243     case SK_ListInitialization: {
8244       if (checkAbstractType(Step->Type))
8245         return ExprError();
8246 
8247       InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
8248       // If we're not initializing the top-level entity, we need to create an
8249       // InitializeTemporary entity for our target type.
8250       QualType Ty = Step->Type;
8251       bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty);
8252       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
8253       InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
8254       InitListChecker PerformInitList(S, InitEntity,
8255           InitList, Ty, /*VerifyOnly=*/false,
8256           /*TreatUnavailableAsInvalid=*/false);
8257       if (PerformInitList.HadError())
8258         return ExprError();
8259 
8260       // Hack: We must update *ResultType if available in order to set the
8261       // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
8262       // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
8263       if (ResultType &&
8264           ResultType->getNonReferenceType()->isIncompleteArrayType()) {
8265         if ((*ResultType)->isRValueReferenceType())
8266           Ty = S.Context.getRValueReferenceType(Ty);
8267         else if ((*ResultType)->isLValueReferenceType())
8268           Ty = S.Context.getLValueReferenceType(Ty,
8269             (*ResultType)->castAs<LValueReferenceType>()->isSpelledAsLValue());
8270         *ResultType = Ty;
8271       }
8272 
8273       InitListExpr *StructuredInitList =
8274           PerformInitList.getFullyStructuredList();
8275       CurInit.get();
8276       CurInit = shouldBindAsTemporary(InitEntity)
8277           ? S.MaybeBindToTemporary(StructuredInitList)
8278           : StructuredInitList;
8279       break;
8280     }
8281 
8282     case SK_ConstructorInitializationFromList: {
8283       if (checkAbstractType(Step->Type))
8284         return ExprError();
8285 
8286       // When an initializer list is passed for a parameter of type "reference
8287       // to object", we don't get an EK_Temporary entity, but instead an
8288       // EK_Parameter entity with reference type.
8289       // FIXME: This is a hack. What we really should do is create a user
8290       // conversion step for this case, but this makes it considerably more
8291       // complicated. For now, this will do.
8292       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
8293                                         Entity.getType().getNonReferenceType());
8294       bool UseTemporary = Entity.getType()->isReferenceType();
8295       assert(Args.size() == 1 && "expected a single argument for list init");
8296       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
8297       S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
8298         << InitList->getSourceRange();
8299       MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
8300       CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
8301                                                                    Entity,
8302                                                  Kind, Arg, *Step,
8303                                                ConstructorInitRequiresZeroInit,
8304                                                /*IsListInitialization*/true,
8305                                                /*IsStdInitListInit*/false,
8306                                                InitList->getLBraceLoc(),
8307                                                InitList->getRBraceLoc());
8308       break;
8309     }
8310 
8311     case SK_UnwrapInitList:
8312       CurInit = cast<InitListExpr>(CurInit.get())->getInit(0);
8313       break;
8314 
8315     case SK_RewrapInitList: {
8316       Expr *E = CurInit.get();
8317       InitListExpr *Syntactic = Step->WrappingSyntacticList;
8318       InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
8319           Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
8320       ILE->setSyntacticForm(Syntactic);
8321       ILE->setType(E->getType());
8322       ILE->setValueKind(E->getValueKind());
8323       CurInit = ILE;
8324       break;
8325     }
8326 
8327     case SK_ConstructorInitialization:
8328     case SK_StdInitializerListConstructorCall: {
8329       if (checkAbstractType(Step->Type))
8330         return ExprError();
8331 
8332       // When an initializer list is passed for a parameter of type "reference
8333       // to object", we don't get an EK_Temporary entity, but instead an
8334       // EK_Parameter entity with reference type.
8335       // FIXME: This is a hack. What we really should do is create a user
8336       // conversion step for this case, but this makes it considerably more
8337       // complicated. For now, this will do.
8338       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
8339                                         Entity.getType().getNonReferenceType());
8340       bool UseTemporary = Entity.getType()->isReferenceType();
8341       bool IsStdInitListInit =
8342           Step->Kind == SK_StdInitializerListConstructorCall;
8343       Expr *Source = CurInit.get();
8344       SourceRange Range = Kind.hasParenOrBraceRange()
8345                               ? Kind.getParenOrBraceRange()
8346                               : SourceRange();
8347       CurInit = PerformConstructorInitialization(
8348           S, UseTemporary ? TempEntity : Entity, Kind,
8349           Source ? MultiExprArg(Source) : Args, *Step,
8350           ConstructorInitRequiresZeroInit,
8351           /*IsListInitialization*/ IsStdInitListInit,
8352           /*IsStdInitListInitialization*/ IsStdInitListInit,
8353           /*LBraceLoc*/ Range.getBegin(),
8354           /*RBraceLoc*/ Range.getEnd());
8355       break;
8356     }
8357 
8358     case SK_ZeroInitialization: {
8359       step_iterator NextStep = Step;
8360       ++NextStep;
8361       if (NextStep != StepEnd &&
8362           (NextStep->Kind == SK_ConstructorInitialization ||
8363            NextStep->Kind == SK_ConstructorInitializationFromList)) {
8364         // The need for zero-initialization is recorded directly into
8365         // the call to the object's constructor within the next step.
8366         ConstructorInitRequiresZeroInit = true;
8367       } else if (Kind.getKind() == InitializationKind::IK_Value &&
8368                  S.getLangOpts().CPlusPlus &&
8369                  !Kind.isImplicitValueInit()) {
8370         TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
8371         if (!TSInfo)
8372           TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
8373                                                     Kind.getRange().getBegin());
8374 
8375         CurInit = new (S.Context) CXXScalarValueInitExpr(
8376             Entity.getType().getNonLValueExprType(S.Context), TSInfo,
8377             Kind.getRange().getEnd());
8378       } else {
8379         CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type);
8380       }
8381       break;
8382     }
8383 
8384     case SK_CAssignment: {
8385       QualType SourceType = CurInit.get()->getType();
8386 
8387       // Save off the initial CurInit in case we need to emit a diagnostic
8388       ExprResult InitialCurInit = CurInit;
8389       ExprResult Result = CurInit;
8390       Sema::AssignConvertType ConvTy =
8391         S.CheckSingleAssignmentConstraints(Step->Type, Result, true,
8392             Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited);
8393       if (Result.isInvalid())
8394         return ExprError();
8395       CurInit = Result;
8396 
8397       // If this is a call, allow conversion to a transparent union.
8398       ExprResult CurInitExprRes = CurInit;
8399       if (ConvTy != Sema::Compatible &&
8400           Entity.isParameterKind() &&
8401           S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
8402             == Sema::Compatible)
8403         ConvTy = Sema::Compatible;
8404       if (CurInitExprRes.isInvalid())
8405         return ExprError();
8406       CurInit = CurInitExprRes;
8407 
8408       bool Complained;
8409       if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
8410                                      Step->Type, SourceType,
8411                                      InitialCurInit.get(),
8412                                      getAssignmentAction(Entity, true),
8413                                      &Complained)) {
8414         PrintInitLocationNote(S, Entity);
8415         return ExprError();
8416       } else if (Complained)
8417         PrintInitLocationNote(S, Entity);
8418       break;
8419     }
8420 
8421     case SK_StringInit: {
8422       QualType Ty = Step->Type;
8423       bool UpdateType = ResultType && Entity.getType()->isIncompleteArrayType();
8424       CheckStringInit(CurInit.get(), UpdateType ? *ResultType : Ty,
8425                       S.Context.getAsArrayType(Ty), S);
8426       break;
8427     }
8428 
8429     case SK_ObjCObjectConversion:
8430       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8431                           CK_ObjCObjectLValueCast,
8432                           CurInit.get()->getValueKind());
8433       break;
8434 
8435     case SK_ArrayLoopIndex: {
8436       Expr *Cur = CurInit.get();
8437       Expr *BaseExpr = new (S.Context)
8438           OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(),
8439                           Cur->getValueKind(), Cur->getObjectKind(), Cur);
8440       Expr *IndexExpr =
8441           new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType());
8442       CurInit = S.CreateBuiltinArraySubscriptExpr(
8443           BaseExpr, Kind.getLocation(), IndexExpr, Kind.getLocation());
8444       ArrayLoopCommonExprs.push_back(BaseExpr);
8445       break;
8446     }
8447 
8448     case SK_ArrayLoopInit: {
8449       assert(!ArrayLoopCommonExprs.empty() &&
8450              "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit");
8451       Expr *Common = ArrayLoopCommonExprs.pop_back_val();
8452       CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common,
8453                                                   CurInit.get());
8454       break;
8455     }
8456 
8457     case SK_GNUArrayInit:
8458       // Okay: we checked everything before creating this step. Note that
8459       // this is a GNU extension.
8460       S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
8461         << Step->Type << CurInit.get()->getType()
8462         << CurInit.get()->getSourceRange();
8463       updateGNUCompoundLiteralRValue(CurInit.get());
8464       LLVM_FALLTHROUGH;
8465     case SK_ArrayInit:
8466       // If the destination type is an incomplete array type, update the
8467       // type accordingly.
8468       if (ResultType) {
8469         if (const IncompleteArrayType *IncompleteDest
8470                            = S.Context.getAsIncompleteArrayType(Step->Type)) {
8471           if (const ConstantArrayType *ConstantSource
8472                  = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
8473             *ResultType = S.Context.getConstantArrayType(
8474                                              IncompleteDest->getElementType(),
8475                                              ConstantSource->getSize(),
8476                                              ConstantSource->getSizeExpr(),
8477                                              ArrayType::Normal, 0);
8478           }
8479         }
8480       }
8481       break;
8482 
8483     case SK_ParenthesizedArrayInit:
8484       // Okay: we checked everything before creating this step. Note that
8485       // this is a GNU extension.
8486       S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
8487         << CurInit.get()->getSourceRange();
8488       break;
8489 
8490     case SK_PassByIndirectCopyRestore:
8491     case SK_PassByIndirectRestore:
8492       checkIndirectCopyRestoreSource(S, CurInit.get());
8493       CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr(
8494           CurInit.get(), Step->Type,
8495           Step->Kind == SK_PassByIndirectCopyRestore);
8496       break;
8497 
8498     case SK_ProduceObjCObject:
8499       CurInit = ImplicitCastExpr::Create(
8500           S.Context, Step->Type, CK_ARCProduceObject, CurInit.get(), nullptr,
8501           VK_RValue, FPOptionsOverride());
8502       break;
8503 
8504     case SK_StdInitializerList: {
8505       S.Diag(CurInit.get()->getExprLoc(),
8506              diag::warn_cxx98_compat_initializer_list_init)
8507         << CurInit.get()->getSourceRange();
8508 
8509       // Materialize the temporary into memory.
8510       MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
8511           CurInit.get()->getType(), CurInit.get(),
8512           /*BoundToLvalueReference=*/false);
8513 
8514       // Wrap it in a construction of a std::initializer_list<T>.
8515       CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE);
8516 
8517       // Bind the result, in case the library has given initializer_list a
8518       // non-trivial destructor.
8519       if (shouldBindAsTemporary(Entity))
8520         CurInit = S.MaybeBindToTemporary(CurInit.get());
8521       break;
8522     }
8523 
8524     case SK_OCLSamplerInit: {
8525       // Sampler initialization have 5 cases:
8526       //   1. function argument passing
8527       //      1a. argument is a file-scope variable
8528       //      1b. argument is a function-scope variable
8529       //      1c. argument is one of caller function's parameters
8530       //   2. variable initialization
8531       //      2a. initializing a file-scope variable
8532       //      2b. initializing a function-scope variable
8533       //
8534       // For file-scope variables, since they cannot be initialized by function
8535       // call of __translate_sampler_initializer in LLVM IR, their references
8536       // need to be replaced by a cast from their literal initializers to
8537       // sampler type. Since sampler variables can only be used in function
8538       // calls as arguments, we only need to replace them when handling the
8539       // argument passing.
8540       assert(Step->Type->isSamplerT() &&
8541              "Sampler initialization on non-sampler type.");
8542       Expr *Init = CurInit.get()->IgnoreParens();
8543       QualType SourceType = Init->getType();
8544       // Case 1
8545       if (Entity.isParameterKind()) {
8546         if (!SourceType->isSamplerT() && !SourceType->isIntegerType()) {
8547           S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
8548             << SourceType;
8549           break;
8550         } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init)) {
8551           auto Var = cast<VarDecl>(DRE->getDecl());
8552           // Case 1b and 1c
8553           // No cast from integer to sampler is needed.
8554           if (!Var->hasGlobalStorage()) {
8555             CurInit = ImplicitCastExpr::Create(
8556                 S.Context, Step->Type, CK_LValueToRValue, Init,
8557                 /*BasePath=*/nullptr, VK_RValue, FPOptionsOverride());
8558             break;
8559           }
8560           // Case 1a
8561           // For function call with a file-scope sampler variable as argument,
8562           // get the integer literal.
8563           // Do not diagnose if the file-scope variable does not have initializer
8564           // since this has already been diagnosed when parsing the variable
8565           // declaration.
8566           if (!Var->getInit() || !isa<ImplicitCastExpr>(Var->getInit()))
8567             break;
8568           Init = cast<ImplicitCastExpr>(const_cast<Expr*>(
8569             Var->getInit()))->getSubExpr();
8570           SourceType = Init->getType();
8571         }
8572       } else {
8573         // Case 2
8574         // Check initializer is 32 bit integer constant.
8575         // If the initializer is taken from global variable, do not diagnose since
8576         // this has already been done when parsing the variable declaration.
8577         if (!Init->isConstantInitializer(S.Context, false))
8578           break;
8579 
8580         if (!SourceType->isIntegerType() ||
8581             32 != S.Context.getIntWidth(SourceType)) {
8582           S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer)
8583             << SourceType;
8584           break;
8585         }
8586 
8587         Expr::EvalResult EVResult;
8588         Init->EvaluateAsInt(EVResult, S.Context);
8589         llvm::APSInt Result = EVResult.Val.getInt();
8590         const uint64_t SamplerValue = Result.getLimitedValue();
8591         // 32-bit value of sampler's initializer is interpreted as
8592         // bit-field with the following structure:
8593         // |unspecified|Filter|Addressing Mode| Normalized Coords|
8594         // |31        6|5    4|3             1|                 0|
8595         // This structure corresponds to enum values of sampler properties
8596         // defined in SPIR spec v1.2 and also opencl-c.h
8597         unsigned AddressingMode  = (0x0E & SamplerValue) >> 1;
8598         unsigned FilterMode      = (0x30 & SamplerValue) >> 4;
8599         if (FilterMode != 1 && FilterMode != 2 &&
8600             !S.getOpenCLOptions().isEnabled(
8601                 "cl_intel_device_side_avc_motion_estimation"))
8602           S.Diag(Kind.getLocation(),
8603                  diag::warn_sampler_initializer_invalid_bits)
8604                  << "Filter Mode";
8605         if (AddressingMode > 4)
8606           S.Diag(Kind.getLocation(),
8607                  diag::warn_sampler_initializer_invalid_bits)
8608                  << "Addressing Mode";
8609       }
8610 
8611       // Cases 1a, 2a and 2b
8612       // Insert cast from integer to sampler.
8613       CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy,
8614                                       CK_IntToOCLSampler);
8615       break;
8616     }
8617     case SK_OCLZeroOpaqueType: {
8618       assert((Step->Type->isEventT() || Step->Type->isQueueT() ||
8619               Step->Type->isOCLIntelSubgroupAVCType()) &&
8620              "Wrong type for initialization of OpenCL opaque type.");
8621 
8622       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8623                                     CK_ZeroToOCLOpaqueType,
8624                                     CurInit.get()->getValueKind());
8625       break;
8626     }
8627     }
8628   }
8629 
8630   // Check whether the initializer has a shorter lifetime than the initialized
8631   // entity, and if not, either lifetime-extend or warn as appropriate.
8632   if (auto *Init = CurInit.get())
8633     S.checkInitializerLifetime(Entity, Init);
8634 
8635   // Diagnose non-fatal problems with the completed initialization.
8636   if (Entity.getKind() == InitializedEntity::EK_Member &&
8637       cast<FieldDecl>(Entity.getDecl())->isBitField())
8638     S.CheckBitFieldInitialization(Kind.getLocation(),
8639                                   cast<FieldDecl>(Entity.getDecl()),
8640                                   CurInit.get());
8641 
8642   // Check for std::move on construction.
8643   if (const Expr *E = CurInit.get()) {
8644     CheckMoveOnConstruction(S, E,
8645                             Entity.getKind() == InitializedEntity::EK_Result);
8646   }
8647 
8648   return CurInit;
8649 }
8650 
8651 /// Somewhere within T there is an uninitialized reference subobject.
8652 /// Dig it out and diagnose it.
8653 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
8654                                            QualType T) {
8655   if (T->isReferenceType()) {
8656     S.Diag(Loc, diag::err_reference_without_init)
8657       << T.getNonReferenceType();
8658     return true;
8659   }
8660 
8661   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
8662   if (!RD || !RD->hasUninitializedReferenceMember())
8663     return false;
8664 
8665   for (const auto *FI : RD->fields()) {
8666     if (FI->isUnnamedBitfield())
8667       continue;
8668 
8669     if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
8670       S.Diag(Loc, diag::note_value_initialization_here) << RD;
8671       return true;
8672     }
8673   }
8674 
8675   for (const auto &BI : RD->bases()) {
8676     if (DiagnoseUninitializedReference(S, BI.getBeginLoc(), BI.getType())) {
8677       S.Diag(Loc, diag::note_value_initialization_here) << RD;
8678       return true;
8679     }
8680   }
8681 
8682   return false;
8683 }
8684 
8685 
8686 //===----------------------------------------------------------------------===//
8687 // Diagnose initialization failures
8688 //===----------------------------------------------------------------------===//
8689 
8690 /// Emit notes associated with an initialization that failed due to a
8691 /// "simple" conversion failure.
8692 static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity,
8693                                    Expr *op) {
8694   QualType destType = entity.getType();
8695   if (destType.getNonReferenceType()->isObjCObjectPointerType() &&
8696       op->getType()->isObjCObjectPointerType()) {
8697 
8698     // Emit a possible note about the conversion failing because the
8699     // operand is a message send with a related result type.
8700     S.EmitRelatedResultTypeNote(op);
8701 
8702     // Emit a possible note about a return failing because we're
8703     // expecting a related result type.
8704     if (entity.getKind() == InitializedEntity::EK_Result)
8705       S.EmitRelatedResultTypeNoteForReturn(destType);
8706   }
8707   QualType fromType = op->getType();
8708   auto *fromDecl = fromType.getTypePtr()->getPointeeCXXRecordDecl();
8709   auto *destDecl = destType.getTypePtr()->getPointeeCXXRecordDecl();
8710   if (fromDecl && destDecl && fromDecl->getDeclKind() == Decl::CXXRecord &&
8711       destDecl->getDeclKind() == Decl::CXXRecord &&
8712       !fromDecl->isInvalidDecl() && !destDecl->isInvalidDecl() &&
8713       !fromDecl->hasDefinition())
8714     S.Diag(fromDecl->getLocation(), diag::note_forward_class_conversion)
8715         << S.getASTContext().getTagDeclType(fromDecl)
8716         << S.getASTContext().getTagDeclType(destDecl);
8717 }
8718 
8719 static void diagnoseListInit(Sema &S, const InitializedEntity &Entity,
8720                              InitListExpr *InitList) {
8721   QualType DestType = Entity.getType();
8722 
8723   QualType E;
8724   if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) {
8725     QualType ArrayType = S.Context.getConstantArrayType(
8726         E.withConst(),
8727         llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
8728                     InitList->getNumInits()),
8729         nullptr, clang::ArrayType::Normal, 0);
8730     InitializedEntity HiddenArray =
8731         InitializedEntity::InitializeTemporary(ArrayType);
8732     return diagnoseListInit(S, HiddenArray, InitList);
8733   }
8734 
8735   if (DestType->isReferenceType()) {
8736     // A list-initialization failure for a reference means that we tried to
8737     // create a temporary of the inner type (per [dcl.init.list]p3.6) and the
8738     // inner initialization failed.
8739     QualType T = DestType->castAs<ReferenceType>()->getPointeeType();
8740     diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList);
8741     SourceLocation Loc = InitList->getBeginLoc();
8742     if (auto *D = Entity.getDecl())
8743       Loc = D->getLocation();
8744     S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T;
8745     return;
8746   }
8747 
8748   InitListChecker DiagnoseInitList(S, Entity, InitList, DestType,
8749                                    /*VerifyOnly=*/false,
8750                                    /*TreatUnavailableAsInvalid=*/false);
8751   assert(DiagnoseInitList.HadError() &&
8752          "Inconsistent init list check result.");
8753 }
8754 
8755 bool InitializationSequence::Diagnose(Sema &S,
8756                                       const InitializedEntity &Entity,
8757                                       const InitializationKind &Kind,
8758                                       ArrayRef<Expr *> Args) {
8759   if (!Failed())
8760     return false;
8761 
8762   // When we want to diagnose only one element of a braced-init-list,
8763   // we need to factor it out.
8764   Expr *OnlyArg;
8765   if (Args.size() == 1) {
8766     auto *List = dyn_cast<InitListExpr>(Args[0]);
8767     if (List && List->getNumInits() == 1)
8768       OnlyArg = List->getInit(0);
8769     else
8770       OnlyArg = Args[0];
8771   }
8772   else
8773     OnlyArg = nullptr;
8774 
8775   QualType DestType = Entity.getType();
8776   switch (Failure) {
8777   case FK_TooManyInitsForReference:
8778     // FIXME: Customize for the initialized entity?
8779     if (Args.empty()) {
8780       // Dig out the reference subobject which is uninitialized and diagnose it.
8781       // If this is value-initialization, this could be nested some way within
8782       // the target type.
8783       assert(Kind.getKind() == InitializationKind::IK_Value ||
8784              DestType->isReferenceType());
8785       bool Diagnosed =
8786         DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
8787       assert(Diagnosed && "couldn't find uninitialized reference to diagnose");
8788       (void)Diagnosed;
8789     } else  // FIXME: diagnostic below could be better!
8790       S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
8791           << SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
8792     break;
8793   case FK_ParenthesizedListInitForReference:
8794     S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
8795       << 1 << Entity.getType() << Args[0]->getSourceRange();
8796     break;
8797 
8798   case FK_ArrayNeedsInitList:
8799     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0;
8800     break;
8801   case FK_ArrayNeedsInitListOrStringLiteral:
8802     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1;
8803     break;
8804   case FK_ArrayNeedsInitListOrWideStringLiteral:
8805     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2;
8806     break;
8807   case FK_NarrowStringIntoWideCharArray:
8808     S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar);
8809     break;
8810   case FK_WideStringIntoCharArray:
8811     S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char);
8812     break;
8813   case FK_IncompatWideStringIntoWideChar:
8814     S.Diag(Kind.getLocation(),
8815            diag::err_array_init_incompat_wide_string_into_wchar);
8816     break;
8817   case FK_PlainStringIntoUTF8Char:
8818     S.Diag(Kind.getLocation(),
8819            diag::err_array_init_plain_string_into_char8_t);
8820     S.Diag(Args.front()->getBeginLoc(),
8821            diag::note_array_init_plain_string_into_char8_t)
8822         << FixItHint::CreateInsertion(Args.front()->getBeginLoc(), "u8");
8823     break;
8824   case FK_UTF8StringIntoPlainChar:
8825     S.Diag(Kind.getLocation(),
8826            diag::err_array_init_utf8_string_into_char)
8827       << S.getLangOpts().CPlusPlus20;
8828     break;
8829   case FK_ArrayTypeMismatch:
8830   case FK_NonConstantArrayInit:
8831     S.Diag(Kind.getLocation(),
8832            (Failure == FK_ArrayTypeMismatch
8833               ? diag::err_array_init_different_type
8834               : diag::err_array_init_non_constant_array))
8835       << DestType.getNonReferenceType()
8836       << OnlyArg->getType()
8837       << Args[0]->getSourceRange();
8838     break;
8839 
8840   case FK_VariableLengthArrayHasInitializer:
8841     S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
8842       << Args[0]->getSourceRange();
8843     break;
8844 
8845   case FK_AddressOfOverloadFailed: {
8846     DeclAccessPair Found;
8847     S.ResolveAddressOfOverloadedFunction(OnlyArg,
8848                                          DestType.getNonReferenceType(),
8849                                          true,
8850                                          Found);
8851     break;
8852   }
8853 
8854   case FK_AddressOfUnaddressableFunction: {
8855     auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(OnlyArg)->getDecl());
8856     S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
8857                                         OnlyArg->getBeginLoc());
8858     break;
8859   }
8860 
8861   case FK_ReferenceInitOverloadFailed:
8862   case FK_UserConversionOverloadFailed:
8863     switch (FailedOverloadResult) {
8864     case OR_Ambiguous:
8865 
8866       FailedCandidateSet.NoteCandidates(
8867           PartialDiagnosticAt(
8868               Kind.getLocation(),
8869               Failure == FK_UserConversionOverloadFailed
8870                   ? (S.PDiag(diag::err_typecheck_ambiguous_condition)
8871                      << OnlyArg->getType() << DestType
8872                      << Args[0]->getSourceRange())
8873                   : (S.PDiag(diag::err_ref_init_ambiguous)
8874                      << DestType << OnlyArg->getType()
8875                      << Args[0]->getSourceRange())),
8876           S, OCD_AmbiguousCandidates, Args);
8877       break;
8878 
8879     case OR_No_Viable_Function: {
8880       auto Cands = FailedCandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args);
8881       if (!S.RequireCompleteType(Kind.getLocation(),
8882                                  DestType.getNonReferenceType(),
8883                           diag::err_typecheck_nonviable_condition_incomplete,
8884                                OnlyArg->getType(), Args[0]->getSourceRange()))
8885         S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
8886           << (Entity.getKind() == InitializedEntity::EK_Result)
8887           << OnlyArg->getType() << Args[0]->getSourceRange()
8888           << DestType.getNonReferenceType();
8889 
8890       FailedCandidateSet.NoteCandidates(S, Args, Cands);
8891       break;
8892     }
8893     case OR_Deleted: {
8894       S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
8895         << OnlyArg->getType() << DestType.getNonReferenceType()
8896         << Args[0]->getSourceRange();
8897       OverloadCandidateSet::iterator Best;
8898       OverloadingResult Ovl
8899         = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
8900       if (Ovl == OR_Deleted) {
8901         S.NoteDeletedFunction(Best->Function);
8902       } else {
8903         llvm_unreachable("Inconsistent overload resolution?");
8904       }
8905       break;
8906     }
8907 
8908     case OR_Success:
8909       llvm_unreachable("Conversion did not fail!");
8910     }
8911     break;
8912 
8913   case FK_NonConstLValueReferenceBindingToTemporary:
8914     if (isa<InitListExpr>(Args[0])) {
8915       S.Diag(Kind.getLocation(),
8916              diag::err_lvalue_reference_bind_to_initlist)
8917       << DestType.getNonReferenceType().isVolatileQualified()
8918       << DestType.getNonReferenceType()
8919       << Args[0]->getSourceRange();
8920       break;
8921     }
8922     LLVM_FALLTHROUGH;
8923 
8924   case FK_NonConstLValueReferenceBindingToUnrelated:
8925     S.Diag(Kind.getLocation(),
8926            Failure == FK_NonConstLValueReferenceBindingToTemporary
8927              ? diag::err_lvalue_reference_bind_to_temporary
8928              : diag::err_lvalue_reference_bind_to_unrelated)
8929       << DestType.getNonReferenceType().isVolatileQualified()
8930       << DestType.getNonReferenceType()
8931       << OnlyArg->getType()
8932       << Args[0]->getSourceRange();
8933     break;
8934 
8935   case FK_NonConstLValueReferenceBindingToBitfield: {
8936     // We don't necessarily have an unambiguous source bit-field.
8937     FieldDecl *BitField = Args[0]->getSourceBitField();
8938     S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
8939       << DestType.isVolatileQualified()
8940       << (BitField ? BitField->getDeclName() : DeclarationName())
8941       << (BitField != nullptr)
8942       << Args[0]->getSourceRange();
8943     if (BitField)
8944       S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
8945     break;
8946   }
8947 
8948   case FK_NonConstLValueReferenceBindingToVectorElement:
8949     S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
8950       << DestType.isVolatileQualified()
8951       << Args[0]->getSourceRange();
8952     break;
8953 
8954   case FK_NonConstLValueReferenceBindingToMatrixElement:
8955     S.Diag(Kind.getLocation(), diag::err_reference_bind_to_matrix_element)
8956         << DestType.isVolatileQualified() << Args[0]->getSourceRange();
8957     break;
8958 
8959   case FK_RValueReferenceBindingToLValue:
8960     S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
8961       << DestType.getNonReferenceType() << OnlyArg->getType()
8962       << Args[0]->getSourceRange();
8963     break;
8964 
8965   case FK_ReferenceAddrspaceMismatchTemporary:
8966     S.Diag(Kind.getLocation(), diag::err_reference_bind_temporary_addrspace)
8967         << DestType << Args[0]->getSourceRange();
8968     break;
8969 
8970   case FK_ReferenceInitDropsQualifiers: {
8971     QualType SourceType = OnlyArg->getType();
8972     QualType NonRefType = DestType.getNonReferenceType();
8973     Qualifiers DroppedQualifiers =
8974         SourceType.getQualifiers() - NonRefType.getQualifiers();
8975 
8976     if (!NonRefType.getQualifiers().isAddressSpaceSupersetOf(
8977             SourceType.getQualifiers()))
8978       S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
8979           << NonRefType << SourceType << 1 /*addr space*/
8980           << Args[0]->getSourceRange();
8981     else if (DroppedQualifiers.hasQualifiers())
8982       S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
8983           << NonRefType << SourceType << 0 /*cv quals*/
8984           << Qualifiers::fromCVRMask(DroppedQualifiers.getCVRQualifiers())
8985           << DroppedQualifiers.getCVRQualifiers() << Args[0]->getSourceRange();
8986     else
8987       // FIXME: Consider decomposing the type and explaining which qualifiers
8988       // were dropped where, or on which level a 'const' is missing, etc.
8989       S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
8990           << NonRefType << SourceType << 2 /*incompatible quals*/
8991           << Args[0]->getSourceRange();
8992     break;
8993   }
8994 
8995   case FK_ReferenceInitFailed:
8996     S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
8997       << DestType.getNonReferenceType()
8998       << DestType.getNonReferenceType()->isIncompleteType()
8999       << OnlyArg->isLValue()
9000       << OnlyArg->getType()
9001       << Args[0]->getSourceRange();
9002     emitBadConversionNotes(S, Entity, Args[0]);
9003     break;
9004 
9005   case FK_ConversionFailed: {
9006     QualType FromType = OnlyArg->getType();
9007     PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
9008       << (int)Entity.getKind()
9009       << DestType
9010       << OnlyArg->isLValue()
9011       << FromType
9012       << Args[0]->getSourceRange();
9013     S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
9014     S.Diag(Kind.getLocation(), PDiag);
9015     emitBadConversionNotes(S, Entity, Args[0]);
9016     break;
9017   }
9018 
9019   case FK_ConversionFromPropertyFailed:
9020     // No-op. This error has already been reported.
9021     break;
9022 
9023   case FK_TooManyInitsForScalar: {
9024     SourceRange R;
9025 
9026     auto *InitList = dyn_cast<InitListExpr>(Args[0]);
9027     if (InitList && InitList->getNumInits() >= 1) {
9028       R = SourceRange(InitList->getInit(0)->getEndLoc(), InitList->getEndLoc());
9029     } else {
9030       assert(Args.size() > 1 && "Expected multiple initializers!");
9031       R = SourceRange(Args.front()->getEndLoc(), Args.back()->getEndLoc());
9032     }
9033 
9034     R.setBegin(S.getLocForEndOfToken(R.getBegin()));
9035     if (Kind.isCStyleOrFunctionalCast())
9036       S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
9037         << R;
9038     else
9039       S.Diag(Kind.getLocation(), diag::err_excess_initializers)
9040         << /*scalar=*/2 << R;
9041     break;
9042   }
9043 
9044   case FK_ParenthesizedListInitForScalar:
9045     S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
9046       << 0 << Entity.getType() << Args[0]->getSourceRange();
9047     break;
9048 
9049   case FK_ReferenceBindingToInitList:
9050     S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
9051       << DestType.getNonReferenceType() << Args[0]->getSourceRange();
9052     break;
9053 
9054   case FK_InitListBadDestinationType:
9055     S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
9056       << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
9057     break;
9058 
9059   case FK_ListConstructorOverloadFailed:
9060   case FK_ConstructorOverloadFailed: {
9061     SourceRange ArgsRange;
9062     if (Args.size())
9063       ArgsRange =
9064           SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
9065 
9066     if (Failure == FK_ListConstructorOverloadFailed) {
9067       assert(Args.size() == 1 &&
9068              "List construction from other than 1 argument.");
9069       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
9070       Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
9071     }
9072 
9073     // FIXME: Using "DestType" for the entity we're printing is probably
9074     // bad.
9075     switch (FailedOverloadResult) {
9076       case OR_Ambiguous:
9077         FailedCandidateSet.NoteCandidates(
9078             PartialDiagnosticAt(Kind.getLocation(),
9079                                 S.PDiag(diag::err_ovl_ambiguous_init)
9080                                     << DestType << ArgsRange),
9081             S, OCD_AmbiguousCandidates, Args);
9082         break;
9083 
9084       case OR_No_Viable_Function:
9085         if (Kind.getKind() == InitializationKind::IK_Default &&
9086             (Entity.getKind() == InitializedEntity::EK_Base ||
9087              Entity.getKind() == InitializedEntity::EK_Member) &&
9088             isa<CXXConstructorDecl>(S.CurContext)) {
9089           // This is implicit default initialization of a member or
9090           // base within a constructor. If no viable function was
9091           // found, notify the user that they need to explicitly
9092           // initialize this base/member.
9093           CXXConstructorDecl *Constructor
9094             = cast<CXXConstructorDecl>(S.CurContext);
9095           const CXXRecordDecl *InheritedFrom = nullptr;
9096           if (auto Inherited = Constructor->getInheritedConstructor())
9097             InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass();
9098           if (Entity.getKind() == InitializedEntity::EK_Base) {
9099             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
9100               << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
9101               << S.Context.getTypeDeclType(Constructor->getParent())
9102               << /*base=*/0
9103               << Entity.getType()
9104               << InheritedFrom;
9105 
9106             RecordDecl *BaseDecl
9107               = Entity.getBaseSpecifier()->getType()->castAs<RecordType>()
9108                                                                   ->getDecl();
9109             S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
9110               << S.Context.getTagDeclType(BaseDecl);
9111           } else {
9112             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
9113               << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
9114               << S.Context.getTypeDeclType(Constructor->getParent())
9115               << /*member=*/1
9116               << Entity.getName()
9117               << InheritedFrom;
9118             S.Diag(Entity.getDecl()->getLocation(),
9119                    diag::note_member_declared_at);
9120 
9121             if (const RecordType *Record
9122                                  = Entity.getType()->getAs<RecordType>())
9123               S.Diag(Record->getDecl()->getLocation(),
9124                      diag::note_previous_decl)
9125                 << S.Context.getTagDeclType(Record->getDecl());
9126           }
9127           break;
9128         }
9129 
9130         FailedCandidateSet.NoteCandidates(
9131             PartialDiagnosticAt(
9132                 Kind.getLocation(),
9133                 S.PDiag(diag::err_ovl_no_viable_function_in_init)
9134                     << DestType << ArgsRange),
9135             S, OCD_AllCandidates, Args);
9136         break;
9137 
9138       case OR_Deleted: {
9139         OverloadCandidateSet::iterator Best;
9140         OverloadingResult Ovl
9141           = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
9142         if (Ovl != OR_Deleted) {
9143           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
9144               << DestType << ArgsRange;
9145           llvm_unreachable("Inconsistent overload resolution?");
9146           break;
9147         }
9148 
9149         // If this is a defaulted or implicitly-declared function, then
9150         // it was implicitly deleted. Make it clear that the deletion was
9151         // implicit.
9152         if (S.isImplicitlyDeleted(Best->Function))
9153           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
9154             << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
9155             << DestType << ArgsRange;
9156         else
9157           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
9158               << DestType << ArgsRange;
9159 
9160         S.NoteDeletedFunction(Best->Function);
9161         break;
9162       }
9163 
9164       case OR_Success:
9165         llvm_unreachable("Conversion did not fail!");
9166     }
9167   }
9168   break;
9169 
9170   case FK_DefaultInitOfConst:
9171     if (Entity.getKind() == InitializedEntity::EK_Member &&
9172         isa<CXXConstructorDecl>(S.CurContext)) {
9173       // This is implicit default-initialization of a const member in
9174       // a constructor. Complain that it needs to be explicitly
9175       // initialized.
9176       CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
9177       S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
9178         << (Constructor->getInheritedConstructor() ? 2 :
9179             Constructor->isImplicit() ? 1 : 0)
9180         << S.Context.getTypeDeclType(Constructor->getParent())
9181         << /*const=*/1
9182         << Entity.getName();
9183       S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
9184         << Entity.getName();
9185     } else {
9186       S.Diag(Kind.getLocation(), diag::err_default_init_const)
9187           << DestType << (bool)DestType->getAs<RecordType>();
9188     }
9189     break;
9190 
9191   case FK_Incomplete:
9192     S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
9193                           diag::err_init_incomplete_type);
9194     break;
9195 
9196   case FK_ListInitializationFailed: {
9197     // Run the init list checker again to emit diagnostics.
9198     InitListExpr *InitList = cast<InitListExpr>(Args[0]);
9199     diagnoseListInit(S, Entity, InitList);
9200     break;
9201   }
9202 
9203   case FK_PlaceholderType: {
9204     // FIXME: Already diagnosed!
9205     break;
9206   }
9207 
9208   case FK_ExplicitConstructor: {
9209     S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
9210       << Args[0]->getSourceRange();
9211     OverloadCandidateSet::iterator Best;
9212     OverloadingResult Ovl
9213       = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
9214     (void)Ovl;
9215     assert(Ovl == OR_Success && "Inconsistent overload resolution");
9216     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
9217     S.Diag(CtorDecl->getLocation(),
9218            diag::note_explicit_ctor_deduction_guide_here) << false;
9219     break;
9220   }
9221   }
9222 
9223   PrintInitLocationNote(S, Entity);
9224   return true;
9225 }
9226 
9227 void InitializationSequence::dump(raw_ostream &OS) const {
9228   switch (SequenceKind) {
9229   case FailedSequence: {
9230     OS << "Failed sequence: ";
9231     switch (Failure) {
9232     case FK_TooManyInitsForReference:
9233       OS << "too many initializers for reference";
9234       break;
9235 
9236     case FK_ParenthesizedListInitForReference:
9237       OS << "parenthesized list init for reference";
9238       break;
9239 
9240     case FK_ArrayNeedsInitList:
9241       OS << "array requires initializer list";
9242       break;
9243 
9244     case FK_AddressOfUnaddressableFunction:
9245       OS << "address of unaddressable function was taken";
9246       break;
9247 
9248     case FK_ArrayNeedsInitListOrStringLiteral:
9249       OS << "array requires initializer list or string literal";
9250       break;
9251 
9252     case FK_ArrayNeedsInitListOrWideStringLiteral:
9253       OS << "array requires initializer list or wide string literal";
9254       break;
9255 
9256     case FK_NarrowStringIntoWideCharArray:
9257       OS << "narrow string into wide char array";
9258       break;
9259 
9260     case FK_WideStringIntoCharArray:
9261       OS << "wide string into char array";
9262       break;
9263 
9264     case FK_IncompatWideStringIntoWideChar:
9265       OS << "incompatible wide string into wide char array";
9266       break;
9267 
9268     case FK_PlainStringIntoUTF8Char:
9269       OS << "plain string literal into char8_t array";
9270       break;
9271 
9272     case FK_UTF8StringIntoPlainChar:
9273       OS << "u8 string literal into char array";
9274       break;
9275 
9276     case FK_ArrayTypeMismatch:
9277       OS << "array type mismatch";
9278       break;
9279 
9280     case FK_NonConstantArrayInit:
9281       OS << "non-constant array initializer";
9282       break;
9283 
9284     case FK_AddressOfOverloadFailed:
9285       OS << "address of overloaded function failed";
9286       break;
9287 
9288     case FK_ReferenceInitOverloadFailed:
9289       OS << "overload resolution for reference initialization failed";
9290       break;
9291 
9292     case FK_NonConstLValueReferenceBindingToTemporary:
9293       OS << "non-const lvalue reference bound to temporary";
9294       break;
9295 
9296     case FK_NonConstLValueReferenceBindingToBitfield:
9297       OS << "non-const lvalue reference bound to bit-field";
9298       break;
9299 
9300     case FK_NonConstLValueReferenceBindingToVectorElement:
9301       OS << "non-const lvalue reference bound to vector element";
9302       break;
9303 
9304     case FK_NonConstLValueReferenceBindingToMatrixElement:
9305       OS << "non-const lvalue reference bound to matrix element";
9306       break;
9307 
9308     case FK_NonConstLValueReferenceBindingToUnrelated:
9309       OS << "non-const lvalue reference bound to unrelated type";
9310       break;
9311 
9312     case FK_RValueReferenceBindingToLValue:
9313       OS << "rvalue reference bound to an lvalue";
9314       break;
9315 
9316     case FK_ReferenceInitDropsQualifiers:
9317       OS << "reference initialization drops qualifiers";
9318       break;
9319 
9320     case FK_ReferenceAddrspaceMismatchTemporary:
9321       OS << "reference with mismatching address space bound to temporary";
9322       break;
9323 
9324     case FK_ReferenceInitFailed:
9325       OS << "reference initialization failed";
9326       break;
9327 
9328     case FK_ConversionFailed:
9329       OS << "conversion failed";
9330       break;
9331 
9332     case FK_ConversionFromPropertyFailed:
9333       OS << "conversion from property failed";
9334       break;
9335 
9336     case FK_TooManyInitsForScalar:
9337       OS << "too many initializers for scalar";
9338       break;
9339 
9340     case FK_ParenthesizedListInitForScalar:
9341       OS << "parenthesized list init for reference";
9342       break;
9343 
9344     case FK_ReferenceBindingToInitList:
9345       OS << "referencing binding to initializer list";
9346       break;
9347 
9348     case FK_InitListBadDestinationType:
9349       OS << "initializer list for non-aggregate, non-scalar type";
9350       break;
9351 
9352     case FK_UserConversionOverloadFailed:
9353       OS << "overloading failed for user-defined conversion";
9354       break;
9355 
9356     case FK_ConstructorOverloadFailed:
9357       OS << "constructor overloading failed";
9358       break;
9359 
9360     case FK_DefaultInitOfConst:
9361       OS << "default initialization of a const variable";
9362       break;
9363 
9364     case FK_Incomplete:
9365       OS << "initialization of incomplete type";
9366       break;
9367 
9368     case FK_ListInitializationFailed:
9369       OS << "list initialization checker failure";
9370       break;
9371 
9372     case FK_VariableLengthArrayHasInitializer:
9373       OS << "variable length array has an initializer";
9374       break;
9375 
9376     case FK_PlaceholderType:
9377       OS << "initializer expression isn't contextually valid";
9378       break;
9379 
9380     case FK_ListConstructorOverloadFailed:
9381       OS << "list constructor overloading failed";
9382       break;
9383 
9384     case FK_ExplicitConstructor:
9385       OS << "list copy initialization chose explicit constructor";
9386       break;
9387     }
9388     OS << '\n';
9389     return;
9390   }
9391 
9392   case DependentSequence:
9393     OS << "Dependent sequence\n";
9394     return;
9395 
9396   case NormalSequence:
9397     OS << "Normal sequence: ";
9398     break;
9399   }
9400 
9401   for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
9402     if (S != step_begin()) {
9403       OS << " -> ";
9404     }
9405 
9406     switch (S->Kind) {
9407     case SK_ResolveAddressOfOverloadedFunction:
9408       OS << "resolve address of overloaded function";
9409       break;
9410 
9411     case SK_CastDerivedToBaseRValue:
9412       OS << "derived-to-base (rvalue)";
9413       break;
9414 
9415     case SK_CastDerivedToBaseXValue:
9416       OS << "derived-to-base (xvalue)";
9417       break;
9418 
9419     case SK_CastDerivedToBaseLValue:
9420       OS << "derived-to-base (lvalue)";
9421       break;
9422 
9423     case SK_BindReference:
9424       OS << "bind reference to lvalue";
9425       break;
9426 
9427     case SK_BindReferenceToTemporary:
9428       OS << "bind reference to a temporary";
9429       break;
9430 
9431     case SK_FinalCopy:
9432       OS << "final copy in class direct-initialization";
9433       break;
9434 
9435     case SK_ExtraneousCopyToTemporary:
9436       OS << "extraneous C++03 copy to temporary";
9437       break;
9438 
9439     case SK_UserConversion:
9440       OS << "user-defined conversion via " << *S->Function.Function;
9441       break;
9442 
9443     case SK_QualificationConversionRValue:
9444       OS << "qualification conversion (rvalue)";
9445       break;
9446 
9447     case SK_QualificationConversionXValue:
9448       OS << "qualification conversion (xvalue)";
9449       break;
9450 
9451     case SK_QualificationConversionLValue:
9452       OS << "qualification conversion (lvalue)";
9453       break;
9454 
9455     case SK_AtomicConversion:
9456       OS << "non-atomic-to-atomic conversion";
9457       break;
9458 
9459     case SK_ConversionSequence:
9460       OS << "implicit conversion sequence (";
9461       S->ICS->dump(); // FIXME: use OS
9462       OS << ")";
9463       break;
9464 
9465     case SK_ConversionSequenceNoNarrowing:
9466       OS << "implicit conversion sequence with narrowing prohibited (";
9467       S->ICS->dump(); // FIXME: use OS
9468       OS << ")";
9469       break;
9470 
9471     case SK_ListInitialization:
9472       OS << "list aggregate initialization";
9473       break;
9474 
9475     case SK_UnwrapInitList:
9476       OS << "unwrap reference initializer list";
9477       break;
9478 
9479     case SK_RewrapInitList:
9480       OS << "rewrap reference initializer list";
9481       break;
9482 
9483     case SK_ConstructorInitialization:
9484       OS << "constructor initialization";
9485       break;
9486 
9487     case SK_ConstructorInitializationFromList:
9488       OS << "list initialization via constructor";
9489       break;
9490 
9491     case SK_ZeroInitialization:
9492       OS << "zero initialization";
9493       break;
9494 
9495     case SK_CAssignment:
9496       OS << "C assignment";
9497       break;
9498 
9499     case SK_StringInit:
9500       OS << "string initialization";
9501       break;
9502 
9503     case SK_ObjCObjectConversion:
9504       OS << "Objective-C object conversion";
9505       break;
9506 
9507     case SK_ArrayLoopIndex:
9508       OS << "indexing for array initialization loop";
9509       break;
9510 
9511     case SK_ArrayLoopInit:
9512       OS << "array initialization loop";
9513       break;
9514 
9515     case SK_ArrayInit:
9516       OS << "array initialization";
9517       break;
9518 
9519     case SK_GNUArrayInit:
9520       OS << "array initialization (GNU extension)";
9521       break;
9522 
9523     case SK_ParenthesizedArrayInit:
9524       OS << "parenthesized array initialization";
9525       break;
9526 
9527     case SK_PassByIndirectCopyRestore:
9528       OS << "pass by indirect copy and restore";
9529       break;
9530 
9531     case SK_PassByIndirectRestore:
9532       OS << "pass by indirect restore";
9533       break;
9534 
9535     case SK_ProduceObjCObject:
9536       OS << "Objective-C object retension";
9537       break;
9538 
9539     case SK_StdInitializerList:
9540       OS << "std::initializer_list from initializer list";
9541       break;
9542 
9543     case SK_StdInitializerListConstructorCall:
9544       OS << "list initialization from std::initializer_list";
9545       break;
9546 
9547     case SK_OCLSamplerInit:
9548       OS << "OpenCL sampler_t from integer constant";
9549       break;
9550 
9551     case SK_OCLZeroOpaqueType:
9552       OS << "OpenCL opaque type from zero";
9553       break;
9554     }
9555 
9556     OS << " [" << S->Type.getAsString() << ']';
9557   }
9558 
9559   OS << '\n';
9560 }
9561 
9562 void InitializationSequence::dump() const {
9563   dump(llvm::errs());
9564 }
9565 
9566 static bool NarrowingErrs(const LangOptions &L) {
9567   return L.CPlusPlus11 &&
9568          (!L.MicrosoftExt || L.isCompatibleWithMSVC(LangOptions::MSVC2015));
9569 }
9570 
9571 static void DiagnoseNarrowingInInitList(Sema &S,
9572                                         const ImplicitConversionSequence &ICS,
9573                                         QualType PreNarrowingType,
9574                                         QualType EntityType,
9575                                         const Expr *PostInit) {
9576   const StandardConversionSequence *SCS = nullptr;
9577   switch (ICS.getKind()) {
9578   case ImplicitConversionSequence::StandardConversion:
9579     SCS = &ICS.Standard;
9580     break;
9581   case ImplicitConversionSequence::UserDefinedConversion:
9582     SCS = &ICS.UserDefined.After;
9583     break;
9584   case ImplicitConversionSequence::AmbiguousConversion:
9585   case ImplicitConversionSequence::EllipsisConversion:
9586   case ImplicitConversionSequence::BadConversion:
9587     return;
9588   }
9589 
9590   // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
9591   APValue ConstantValue;
9592   QualType ConstantType;
9593   switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
9594                                 ConstantType)) {
9595   case NK_Not_Narrowing:
9596   case NK_Dependent_Narrowing:
9597     // No narrowing occurred.
9598     return;
9599 
9600   case NK_Type_Narrowing:
9601     // This was a floating-to-integer conversion, which is always considered a
9602     // narrowing conversion even if the value is a constant and can be
9603     // represented exactly as an integer.
9604     S.Diag(PostInit->getBeginLoc(), NarrowingErrs(S.getLangOpts())
9605                                         ? diag::ext_init_list_type_narrowing
9606                                         : diag::warn_init_list_type_narrowing)
9607         << PostInit->getSourceRange()
9608         << PreNarrowingType.getLocalUnqualifiedType()
9609         << EntityType.getLocalUnqualifiedType();
9610     break;
9611 
9612   case NK_Constant_Narrowing:
9613     // A constant value was narrowed.
9614     S.Diag(PostInit->getBeginLoc(),
9615            NarrowingErrs(S.getLangOpts())
9616                ? diag::ext_init_list_constant_narrowing
9617                : diag::warn_init_list_constant_narrowing)
9618         << PostInit->getSourceRange()
9619         << ConstantValue.getAsString(S.getASTContext(), ConstantType)
9620         << EntityType.getLocalUnqualifiedType();
9621     break;
9622 
9623   case NK_Variable_Narrowing:
9624     // A variable's value may have been narrowed.
9625     S.Diag(PostInit->getBeginLoc(),
9626            NarrowingErrs(S.getLangOpts())
9627                ? diag::ext_init_list_variable_narrowing
9628                : diag::warn_init_list_variable_narrowing)
9629         << PostInit->getSourceRange()
9630         << PreNarrowingType.getLocalUnqualifiedType()
9631         << EntityType.getLocalUnqualifiedType();
9632     break;
9633   }
9634 
9635   SmallString<128> StaticCast;
9636   llvm::raw_svector_ostream OS(StaticCast);
9637   OS << "static_cast<";
9638   if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
9639     // It's important to use the typedef's name if there is one so that the
9640     // fixit doesn't break code using types like int64_t.
9641     //
9642     // FIXME: This will break if the typedef requires qualification.  But
9643     // getQualifiedNameAsString() includes non-machine-parsable components.
9644     OS << *TT->getDecl();
9645   } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
9646     OS << BT->getName(S.getLangOpts());
9647   else {
9648     // Oops, we didn't find the actual type of the variable.  Don't emit a fixit
9649     // with a broken cast.
9650     return;
9651   }
9652   OS << ">(";
9653   S.Diag(PostInit->getBeginLoc(), diag::note_init_list_narrowing_silence)
9654       << PostInit->getSourceRange()
9655       << FixItHint::CreateInsertion(PostInit->getBeginLoc(), OS.str())
9656       << FixItHint::CreateInsertion(
9657              S.getLocForEndOfToken(PostInit->getEndLoc()), ")");
9658 }
9659 
9660 //===----------------------------------------------------------------------===//
9661 // Initialization helper functions
9662 //===----------------------------------------------------------------------===//
9663 bool
9664 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
9665                                    ExprResult Init) {
9666   if (Init.isInvalid())
9667     return false;
9668 
9669   Expr *InitE = Init.get();
9670   assert(InitE && "No initialization expression");
9671 
9672   InitializationKind Kind =
9673       InitializationKind::CreateCopy(InitE->getBeginLoc(), SourceLocation());
9674   InitializationSequence Seq(*this, Entity, Kind, InitE);
9675   return !Seq.Failed();
9676 }
9677 
9678 ExprResult
9679 Sema::PerformCopyInitialization(const InitializedEntity &Entity,
9680                                 SourceLocation EqualLoc,
9681                                 ExprResult Init,
9682                                 bool TopLevelOfInitList,
9683                                 bool AllowExplicit) {
9684   if (Init.isInvalid())
9685     return ExprError();
9686 
9687   Expr *InitE = Init.get();
9688   assert(InitE && "No initialization expression?");
9689 
9690   if (EqualLoc.isInvalid())
9691     EqualLoc = InitE->getBeginLoc();
9692 
9693   InitializationKind Kind = InitializationKind::CreateCopy(
9694       InitE->getBeginLoc(), EqualLoc, AllowExplicit);
9695   InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList);
9696 
9697   // Prevent infinite recursion when performing parameter copy-initialization.
9698   const bool ShouldTrackCopy =
9699       Entity.isParameterKind() && Seq.isConstructorInitialization();
9700   if (ShouldTrackCopy) {
9701     if (llvm::find(CurrentParameterCopyTypes, Entity.getType()) !=
9702         CurrentParameterCopyTypes.end()) {
9703       Seq.SetOverloadFailure(
9704           InitializationSequence::FK_ConstructorOverloadFailed,
9705           OR_No_Viable_Function);
9706 
9707       // Try to give a meaningful diagnostic note for the problematic
9708       // constructor.
9709       const auto LastStep = Seq.step_end() - 1;
9710       assert(LastStep->Kind ==
9711              InitializationSequence::SK_ConstructorInitialization);
9712       const FunctionDecl *Function = LastStep->Function.Function;
9713       auto Candidate =
9714           llvm::find_if(Seq.getFailedCandidateSet(),
9715                         [Function](const OverloadCandidate &Candidate) -> bool {
9716                           return Candidate.Viable &&
9717                                  Candidate.Function == Function &&
9718                                  Candidate.Conversions.size() > 0;
9719                         });
9720       if (Candidate != Seq.getFailedCandidateSet().end() &&
9721           Function->getNumParams() > 0) {
9722         Candidate->Viable = false;
9723         Candidate->FailureKind = ovl_fail_bad_conversion;
9724         Candidate->Conversions[0].setBad(BadConversionSequence::no_conversion,
9725                                          InitE,
9726                                          Function->getParamDecl(0)->getType());
9727       }
9728     }
9729     CurrentParameterCopyTypes.push_back(Entity.getType());
9730   }
9731 
9732   ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE);
9733 
9734   if (ShouldTrackCopy)
9735     CurrentParameterCopyTypes.pop_back();
9736 
9737   return Result;
9738 }
9739 
9740 /// Determine whether RD is, or is derived from, a specialization of CTD.
9741 static bool isOrIsDerivedFromSpecializationOf(CXXRecordDecl *RD,
9742                                               ClassTemplateDecl *CTD) {
9743   auto NotSpecialization = [&] (const CXXRecordDecl *Candidate) {
9744     auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Candidate);
9745     return !CTSD || !declaresSameEntity(CTSD->getSpecializedTemplate(), CTD);
9746   };
9747   return !(NotSpecialization(RD) && RD->forallBases(NotSpecialization));
9748 }
9749 
9750 QualType Sema::DeduceTemplateSpecializationFromInitializer(
9751     TypeSourceInfo *TSInfo, const InitializedEntity &Entity,
9752     const InitializationKind &Kind, MultiExprArg Inits) {
9753   auto *DeducedTST = dyn_cast<DeducedTemplateSpecializationType>(
9754       TSInfo->getType()->getContainedDeducedType());
9755   assert(DeducedTST && "not a deduced template specialization type");
9756 
9757   auto TemplateName = DeducedTST->getTemplateName();
9758   if (TemplateName.isDependent())
9759     return Context.DependentTy;
9760 
9761   // We can only perform deduction for class templates.
9762   auto *Template =
9763       dyn_cast_or_null<ClassTemplateDecl>(TemplateName.getAsTemplateDecl());
9764   if (!Template) {
9765     Diag(Kind.getLocation(),
9766          diag::err_deduced_non_class_template_specialization_type)
9767       << (int)getTemplateNameKindForDiagnostics(TemplateName) << TemplateName;
9768     if (auto *TD = TemplateName.getAsTemplateDecl())
9769       Diag(TD->getLocation(), diag::note_template_decl_here);
9770     return QualType();
9771   }
9772 
9773   // Can't deduce from dependent arguments.
9774   if (Expr::hasAnyTypeDependentArguments(Inits)) {
9775     Diag(TSInfo->getTypeLoc().getBeginLoc(),
9776          diag::warn_cxx14_compat_class_template_argument_deduction)
9777         << TSInfo->getTypeLoc().getSourceRange() << 0;
9778     return Context.DependentTy;
9779   }
9780 
9781   // FIXME: Perform "exact type" matching first, per CWG discussion?
9782   //        Or implement this via an implied 'T(T) -> T' deduction guide?
9783 
9784   // FIXME: Do we need/want a std::initializer_list<T> special case?
9785 
9786   // Look up deduction guides, including those synthesized from constructors.
9787   //
9788   // C++1z [over.match.class.deduct]p1:
9789   //   A set of functions and function templates is formed comprising:
9790   //   - For each constructor of the class template designated by the
9791   //     template-name, a function template [...]
9792   //  - For each deduction-guide, a function or function template [...]
9793   DeclarationNameInfo NameInfo(
9794       Context.DeclarationNames.getCXXDeductionGuideName(Template),
9795       TSInfo->getTypeLoc().getEndLoc());
9796   LookupResult Guides(*this, NameInfo, LookupOrdinaryName);
9797   LookupQualifiedName(Guides, Template->getDeclContext());
9798 
9799   // FIXME: Do not diagnose inaccessible deduction guides. The standard isn't
9800   // clear on this, but they're not found by name so access does not apply.
9801   Guides.suppressDiagnostics();
9802 
9803   // Figure out if this is list-initialization.
9804   InitListExpr *ListInit =
9805       (Inits.size() == 1 && Kind.getKind() != InitializationKind::IK_Direct)
9806           ? dyn_cast<InitListExpr>(Inits[0])
9807           : nullptr;
9808 
9809   // C++1z [over.match.class.deduct]p1:
9810   //   Initialization and overload resolution are performed as described in
9811   //   [dcl.init] and [over.match.ctor], [over.match.copy], or [over.match.list]
9812   //   (as appropriate for the type of initialization performed) for an object
9813   //   of a hypothetical class type, where the selected functions and function
9814   //   templates are considered to be the constructors of that class type
9815   //
9816   // Since we know we're initializing a class type of a type unrelated to that
9817   // of the initializer, this reduces to something fairly reasonable.
9818   OverloadCandidateSet Candidates(Kind.getLocation(),
9819                                   OverloadCandidateSet::CSK_Normal);
9820   OverloadCandidateSet::iterator Best;
9821 
9822   bool HasAnyDeductionGuide = false;
9823   bool AllowExplicit = !Kind.isCopyInit() || ListInit;
9824 
9825   auto tryToResolveOverload =
9826       [&](bool OnlyListConstructors) -> OverloadingResult {
9827     Candidates.clear(OverloadCandidateSet::CSK_Normal);
9828     HasAnyDeductionGuide = false;
9829 
9830     for (auto I = Guides.begin(), E = Guides.end(); I != E; ++I) {
9831       NamedDecl *D = (*I)->getUnderlyingDecl();
9832       if (D->isInvalidDecl())
9833         continue;
9834 
9835       auto *TD = dyn_cast<FunctionTemplateDecl>(D);
9836       auto *GD = dyn_cast_or_null<CXXDeductionGuideDecl>(
9837           TD ? TD->getTemplatedDecl() : dyn_cast<FunctionDecl>(D));
9838       if (!GD)
9839         continue;
9840 
9841       if (!GD->isImplicit())
9842         HasAnyDeductionGuide = true;
9843 
9844       // C++ [over.match.ctor]p1: (non-list copy-initialization from non-class)
9845       //   For copy-initialization, the candidate functions are all the
9846       //   converting constructors (12.3.1) of that class.
9847       // C++ [over.match.copy]p1: (non-list copy-initialization from class)
9848       //   The converting constructors of T are candidate functions.
9849       if (!AllowExplicit) {
9850         // Overload resolution checks whether the deduction guide is declared
9851         // explicit for us.
9852 
9853         // When looking for a converting constructor, deduction guides that
9854         // could never be called with one argument are not interesting to
9855         // check or note.
9856         if (GD->getMinRequiredArguments() > 1 ||
9857             (GD->getNumParams() == 0 && !GD->isVariadic()))
9858           continue;
9859       }
9860 
9861       // C++ [over.match.list]p1.1: (first phase list initialization)
9862       //   Initially, the candidate functions are the initializer-list
9863       //   constructors of the class T
9864       if (OnlyListConstructors && !isInitListConstructor(GD))
9865         continue;
9866 
9867       // C++ [over.match.list]p1.2: (second phase list initialization)
9868       //   the candidate functions are all the constructors of the class T
9869       // C++ [over.match.ctor]p1: (all other cases)
9870       //   the candidate functions are all the constructors of the class of
9871       //   the object being initialized
9872 
9873       // C++ [over.best.ics]p4:
9874       //   When [...] the constructor [...] is a candidate by
9875       //    - [over.match.copy] (in all cases)
9876       // FIXME: The "second phase of [over.match.list] case can also
9877       // theoretically happen here, but it's not clear whether we can
9878       // ever have a parameter of the right type.
9879       bool SuppressUserConversions = Kind.isCopyInit();
9880 
9881       if (TD)
9882         AddTemplateOverloadCandidate(TD, I.getPair(), /*ExplicitArgs*/ nullptr,
9883                                      Inits, Candidates, SuppressUserConversions,
9884                                      /*PartialOverloading*/ false,
9885                                      AllowExplicit);
9886       else
9887         AddOverloadCandidate(GD, I.getPair(), Inits, Candidates,
9888                              SuppressUserConversions,
9889                              /*PartialOverloading*/ false, AllowExplicit);
9890     }
9891     return Candidates.BestViableFunction(*this, Kind.getLocation(), Best);
9892   };
9893 
9894   OverloadingResult Result = OR_No_Viable_Function;
9895 
9896   // C++11 [over.match.list]p1, per DR1467: for list-initialization, first
9897   // try initializer-list constructors.
9898   if (ListInit) {
9899     bool TryListConstructors = true;
9900 
9901     // Try list constructors unless the list is empty and the class has one or
9902     // more default constructors, in which case those constructors win.
9903     if (!ListInit->getNumInits()) {
9904       for (NamedDecl *D : Guides) {
9905         auto *FD = dyn_cast<FunctionDecl>(D->getUnderlyingDecl());
9906         if (FD && FD->getMinRequiredArguments() == 0) {
9907           TryListConstructors = false;
9908           break;
9909         }
9910       }
9911     } else if (ListInit->getNumInits() == 1) {
9912       // C++ [over.match.class.deduct]:
9913       //   As an exception, the first phase in [over.match.list] (considering
9914       //   initializer-list constructors) is omitted if the initializer list
9915       //   consists of a single expression of type cv U, where U is a
9916       //   specialization of C or a class derived from a specialization of C.
9917       Expr *E = ListInit->getInit(0);
9918       auto *RD = E->getType()->getAsCXXRecordDecl();
9919       if (!isa<InitListExpr>(E) && RD &&
9920           isCompleteType(Kind.getLocation(), E->getType()) &&
9921           isOrIsDerivedFromSpecializationOf(RD, Template))
9922         TryListConstructors = false;
9923     }
9924 
9925     if (TryListConstructors)
9926       Result = tryToResolveOverload(/*OnlyListConstructor*/true);
9927     // Then unwrap the initializer list and try again considering all
9928     // constructors.
9929     Inits = MultiExprArg(ListInit->getInits(), ListInit->getNumInits());
9930   }
9931 
9932   // If list-initialization fails, or if we're doing any other kind of
9933   // initialization, we (eventually) consider constructors.
9934   if (Result == OR_No_Viable_Function)
9935     Result = tryToResolveOverload(/*OnlyListConstructor*/false);
9936 
9937   switch (Result) {
9938   case OR_Ambiguous:
9939     // FIXME: For list-initialization candidates, it'd usually be better to
9940     // list why they were not viable when given the initializer list itself as
9941     // an argument.
9942     Candidates.NoteCandidates(
9943         PartialDiagnosticAt(
9944             Kind.getLocation(),
9945             PDiag(diag::err_deduced_class_template_ctor_ambiguous)
9946                 << TemplateName),
9947         *this, OCD_AmbiguousCandidates, Inits);
9948     return QualType();
9949 
9950   case OR_No_Viable_Function: {
9951     CXXRecordDecl *Primary =
9952         cast<ClassTemplateDecl>(Template)->getTemplatedDecl();
9953     bool Complete =
9954         isCompleteType(Kind.getLocation(), Context.getTypeDeclType(Primary));
9955     Candidates.NoteCandidates(
9956         PartialDiagnosticAt(
9957             Kind.getLocation(),
9958             PDiag(Complete ? diag::err_deduced_class_template_ctor_no_viable
9959                            : diag::err_deduced_class_template_incomplete)
9960                 << TemplateName << !Guides.empty()),
9961         *this, OCD_AllCandidates, Inits);
9962     return QualType();
9963   }
9964 
9965   case OR_Deleted: {
9966     Diag(Kind.getLocation(), diag::err_deduced_class_template_deleted)
9967       << TemplateName;
9968     NoteDeletedFunction(Best->Function);
9969     return QualType();
9970   }
9971 
9972   case OR_Success:
9973     // C++ [over.match.list]p1:
9974     //   In copy-list-initialization, if an explicit constructor is chosen, the
9975     //   initialization is ill-formed.
9976     if (Kind.isCopyInit() && ListInit &&
9977         cast<CXXDeductionGuideDecl>(Best->Function)->isExplicit()) {
9978       bool IsDeductionGuide = !Best->Function->isImplicit();
9979       Diag(Kind.getLocation(), diag::err_deduced_class_template_explicit)
9980           << TemplateName << IsDeductionGuide;
9981       Diag(Best->Function->getLocation(),
9982            diag::note_explicit_ctor_deduction_guide_here)
9983           << IsDeductionGuide;
9984       return QualType();
9985     }
9986 
9987     // Make sure we didn't select an unusable deduction guide, and mark it
9988     // as referenced.
9989     DiagnoseUseOfDecl(Best->Function, Kind.getLocation());
9990     MarkFunctionReferenced(Kind.getLocation(), Best->Function);
9991     break;
9992   }
9993 
9994   // C++ [dcl.type.class.deduct]p1:
9995   //  The placeholder is replaced by the return type of the function selected
9996   //  by overload resolution for class template deduction.
9997   QualType DeducedType =
9998       SubstAutoType(TSInfo->getType(), Best->Function->getReturnType());
9999   Diag(TSInfo->getTypeLoc().getBeginLoc(),
10000        diag::warn_cxx14_compat_class_template_argument_deduction)
10001       << TSInfo->getTypeLoc().getSourceRange() << 1 << DeducedType;
10002 
10003   // Warn if CTAD was used on a type that does not have any user-defined
10004   // deduction guides.
10005   if (!HasAnyDeductionGuide) {
10006     Diag(TSInfo->getTypeLoc().getBeginLoc(),
10007          diag::warn_ctad_maybe_unsupported)
10008         << TemplateName;
10009     Diag(Template->getLocation(), diag::note_suppress_ctad_maybe_unsupported);
10010   }
10011 
10012   return DeducedType;
10013 }
10014