1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for initializers.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/Designator.h"
15 #include "clang/Sema/Initialization.h"
16 #include "clang/Sema/Lookup.h"
17 #include "clang/Sema/SemaInternal.h"
18 #include "clang/Lex/Preprocessor.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/ExprObjC.h"
23 #include "clang/AST/TypeLoc.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include <map>
29 using namespace clang;
30 
31 //===----------------------------------------------------------------------===//
32 // Sema Initialization Checking
33 //===----------------------------------------------------------------------===//
34 
35 static Expr *IsStringInit(Expr *Init, const ArrayType *AT,
36                           ASTContext &Context) {
37   if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
38     return 0;
39 
40   // See if this is a string literal or @encode.
41   Init = Init->IgnoreParens();
42 
43   // Handle @encode, which is a narrow string.
44   if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
45     return Init;
46 
47   // Otherwise we can only handle string literals.
48   StringLiteral *SL = dyn_cast<StringLiteral>(Init);
49   if (SL == 0) return 0;
50 
51   QualType ElemTy = Context.getCanonicalType(AT->getElementType());
52 
53   switch (SL->getKind()) {
54   case StringLiteral::Ascii:
55   case StringLiteral::UTF8:
56     // char array can be initialized with a narrow string.
57     // Only allow char x[] = "foo";  not char x[] = L"foo";
58     return ElemTy->isCharType() ? Init : 0;
59   case StringLiteral::UTF16:
60     return ElemTy->isChar16Type() ? Init : 0;
61   case StringLiteral::UTF32:
62     return ElemTy->isChar32Type() ? Init : 0;
63   case StringLiteral::Wide:
64     // wchar_t array can be initialized with a wide string: C99 6.7.8p15 (with
65     // correction from DR343): "An array with element type compatible with a
66     // qualified or unqualified version of wchar_t may be initialized by a wide
67     // string literal, optionally enclosed in braces."
68     if (Context.typesAreCompatible(Context.getWCharType(),
69                                    ElemTy.getUnqualifiedType()))
70       return Init;
71 
72     return 0;
73   }
74 
75   llvm_unreachable("missed a StringLiteral kind?");
76 }
77 
78 static Expr *IsStringInit(Expr *init, QualType declType, ASTContext &Context) {
79   const ArrayType *arrayType = Context.getAsArrayType(declType);
80   if (!arrayType) return 0;
81 
82   return IsStringInit(init, arrayType, Context);
83 }
84 
85 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
86                             Sema &S) {
87   // Get the length of the string as parsed.
88   uint64_t StrLength =
89     cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue();
90 
91 
92   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
93     // C99 6.7.8p14. We have an array of character type with unknown size
94     // being initialized to a string literal.
95     llvm::APSInt ConstVal(32);
96     ConstVal = StrLength;
97     // Return a new array type (C99 6.7.8p22).
98     DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
99                                            ConstVal,
100                                            ArrayType::Normal, 0);
101     return;
102   }
103 
104   const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
105 
106   // We have an array of character type with known size.  However,
107   // the size may be smaller or larger than the string we are initializing.
108   // FIXME: Avoid truncation for 64-bit length strings.
109   if (S.getLangOpts().CPlusPlus) {
110     if (StringLiteral *SL = dyn_cast<StringLiteral>(Str)) {
111       // For Pascal strings it's OK to strip off the terminating null character,
112       // so the example below is valid:
113       //
114       // unsigned char a[2] = "\pa";
115       if (SL->isPascal())
116         StrLength--;
117     }
118 
119     // [dcl.init.string]p2
120     if (StrLength > CAT->getSize().getZExtValue())
121       S.Diag(Str->getLocStart(),
122              diag::err_initializer_string_for_char_array_too_long)
123         << Str->getSourceRange();
124   } else {
125     // C99 6.7.8p14.
126     if (StrLength-1 > CAT->getSize().getZExtValue())
127       S.Diag(Str->getLocStart(),
128              diag::warn_initializer_string_for_char_array_too_long)
129         << Str->getSourceRange();
130   }
131 
132   // Set the type to the actual size that we are initializing.  If we have
133   // something like:
134   //   char x[1] = "foo";
135   // then this will set the string literal's type to char[1].
136   Str->setType(DeclT);
137 }
138 
139 //===----------------------------------------------------------------------===//
140 // Semantic checking for initializer lists.
141 //===----------------------------------------------------------------------===//
142 
143 /// @brief Semantic checking for initializer lists.
144 ///
145 /// The InitListChecker class contains a set of routines that each
146 /// handle the initialization of a certain kind of entity, e.g.,
147 /// arrays, vectors, struct/union types, scalars, etc. The
148 /// InitListChecker itself performs a recursive walk of the subobject
149 /// structure of the type to be initialized, while stepping through
150 /// the initializer list one element at a time. The IList and Index
151 /// parameters to each of the Check* routines contain the active
152 /// (syntactic) initializer list and the index into that initializer
153 /// list that represents the current initializer. Each routine is
154 /// responsible for moving that Index forward as it consumes elements.
155 ///
156 /// Each Check* routine also has a StructuredList/StructuredIndex
157 /// arguments, which contains the current "structured" (semantic)
158 /// initializer list and the index into that initializer list where we
159 /// are copying initializers as we map them over to the semantic
160 /// list. Once we have completed our recursive walk of the subobject
161 /// structure, we will have constructed a full semantic initializer
162 /// list.
163 ///
164 /// C99 designators cause changes in the initializer list traversal,
165 /// because they make the initialization "jump" into a specific
166 /// subobject and then continue the initialization from that
167 /// point. CheckDesignatedInitializer() recursively steps into the
168 /// designated subobject and manages backing out the recursion to
169 /// initialize the subobjects after the one designated.
170 namespace {
171 class InitListChecker {
172   Sema &SemaRef;
173   bool hadError;
174   bool VerifyOnly; // no diagnostics, no structure building
175   bool AllowBraceElision;
176   llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic;
177   InitListExpr *FullyStructuredList;
178 
179   void CheckImplicitInitList(const InitializedEntity &Entity,
180                              InitListExpr *ParentIList, QualType T,
181                              unsigned &Index, InitListExpr *StructuredList,
182                              unsigned &StructuredIndex);
183   void CheckExplicitInitList(const InitializedEntity &Entity,
184                              InitListExpr *IList, QualType &T,
185                              unsigned &Index, InitListExpr *StructuredList,
186                              unsigned &StructuredIndex,
187                              bool TopLevelObject = false);
188   void CheckListElementTypes(const InitializedEntity &Entity,
189                              InitListExpr *IList, QualType &DeclType,
190                              bool SubobjectIsDesignatorContext,
191                              unsigned &Index,
192                              InitListExpr *StructuredList,
193                              unsigned &StructuredIndex,
194                              bool TopLevelObject = false);
195   void CheckSubElementType(const InitializedEntity &Entity,
196                            InitListExpr *IList, QualType ElemType,
197                            unsigned &Index,
198                            InitListExpr *StructuredList,
199                            unsigned &StructuredIndex);
200   void CheckComplexType(const InitializedEntity &Entity,
201                         InitListExpr *IList, QualType DeclType,
202                         unsigned &Index,
203                         InitListExpr *StructuredList,
204                         unsigned &StructuredIndex);
205   void CheckScalarType(const InitializedEntity &Entity,
206                        InitListExpr *IList, QualType DeclType,
207                        unsigned &Index,
208                        InitListExpr *StructuredList,
209                        unsigned &StructuredIndex);
210   void CheckReferenceType(const InitializedEntity &Entity,
211                           InitListExpr *IList, QualType DeclType,
212                           unsigned &Index,
213                           InitListExpr *StructuredList,
214                           unsigned &StructuredIndex);
215   void CheckVectorType(const InitializedEntity &Entity,
216                        InitListExpr *IList, QualType DeclType, unsigned &Index,
217                        InitListExpr *StructuredList,
218                        unsigned &StructuredIndex);
219   void CheckStructUnionTypes(const InitializedEntity &Entity,
220                              InitListExpr *IList, QualType DeclType,
221                              RecordDecl::field_iterator Field,
222                              bool SubobjectIsDesignatorContext, unsigned &Index,
223                              InitListExpr *StructuredList,
224                              unsigned &StructuredIndex,
225                              bool TopLevelObject = false);
226   void CheckArrayType(const InitializedEntity &Entity,
227                       InitListExpr *IList, QualType &DeclType,
228                       llvm::APSInt elementIndex,
229                       bool SubobjectIsDesignatorContext, unsigned &Index,
230                       InitListExpr *StructuredList,
231                       unsigned &StructuredIndex);
232   bool CheckDesignatedInitializer(const InitializedEntity &Entity,
233                                   InitListExpr *IList, DesignatedInitExpr *DIE,
234                                   unsigned DesigIdx,
235                                   QualType &CurrentObjectType,
236                                   RecordDecl::field_iterator *NextField,
237                                   llvm::APSInt *NextElementIndex,
238                                   unsigned &Index,
239                                   InitListExpr *StructuredList,
240                                   unsigned &StructuredIndex,
241                                   bool FinishSubobjectInit,
242                                   bool TopLevelObject);
243   InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
244                                            QualType CurrentObjectType,
245                                            InitListExpr *StructuredList,
246                                            unsigned StructuredIndex,
247                                            SourceRange InitRange);
248   void UpdateStructuredListElement(InitListExpr *StructuredList,
249                                    unsigned &StructuredIndex,
250                                    Expr *expr);
251   int numArrayElements(QualType DeclType);
252   int numStructUnionElements(QualType DeclType);
253 
254   void FillInValueInitForField(unsigned Init, FieldDecl *Field,
255                                const InitializedEntity &ParentEntity,
256                                InitListExpr *ILE, bool &RequiresSecondPass);
257   void FillInValueInitializations(const InitializedEntity &Entity,
258                                   InitListExpr *ILE, bool &RequiresSecondPass);
259   bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
260                               Expr *InitExpr, FieldDecl *Field,
261                               bool TopLevelObject);
262   void CheckValueInitializable(const InitializedEntity &Entity);
263 
264 public:
265   InitListChecker(Sema &S, const InitializedEntity &Entity,
266                   InitListExpr *IL, QualType &T, bool VerifyOnly,
267                   bool AllowBraceElision);
268   bool HadError() { return hadError; }
269 
270   // @brief Retrieves the fully-structured initializer list used for
271   // semantic analysis and code generation.
272   InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
273 };
274 } // end anonymous namespace
275 
276 void InitListChecker::CheckValueInitializable(const InitializedEntity &Entity) {
277   assert(VerifyOnly &&
278          "CheckValueInitializable is only inteded for verification mode.");
279 
280   SourceLocation Loc;
281   InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
282                                                             true);
283   InitializationSequence InitSeq(SemaRef, Entity, Kind, 0, 0);
284   if (InitSeq.Failed())
285     hadError = true;
286 }
287 
288 void InitListChecker::FillInValueInitForField(unsigned Init, FieldDecl *Field,
289                                         const InitializedEntity &ParentEntity,
290                                               InitListExpr *ILE,
291                                               bool &RequiresSecondPass) {
292   SourceLocation Loc = ILE->getLocStart();
293   unsigned NumInits = ILE->getNumInits();
294   InitializedEntity MemberEntity
295     = InitializedEntity::InitializeMember(Field, &ParentEntity);
296   if (Init >= NumInits || !ILE->getInit(Init)) {
297     // FIXME: We probably don't need to handle references
298     // specially here, since value-initialization of references is
299     // handled in InitializationSequence.
300     if (Field->getType()->isReferenceType()) {
301       // C++ [dcl.init.aggr]p9:
302       //   If an incomplete or empty initializer-list leaves a
303       //   member of reference type uninitialized, the program is
304       //   ill-formed.
305       SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
306         << Field->getType()
307         << ILE->getSyntacticForm()->getSourceRange();
308       SemaRef.Diag(Field->getLocation(),
309                    diag::note_uninit_reference_member);
310       hadError = true;
311       return;
312     }
313 
314     InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
315                                                               true);
316     InitializationSequence InitSeq(SemaRef, MemberEntity, Kind, 0, 0);
317     if (!InitSeq) {
318       InitSeq.Diagnose(SemaRef, MemberEntity, Kind, 0, 0);
319       hadError = true;
320       return;
321     }
322 
323     ExprResult MemberInit
324       = InitSeq.Perform(SemaRef, MemberEntity, Kind, MultiExprArg());
325     if (MemberInit.isInvalid()) {
326       hadError = true;
327       return;
328     }
329 
330     if (hadError) {
331       // Do nothing
332     } else if (Init < NumInits) {
333       ILE->setInit(Init, MemberInit.takeAs<Expr>());
334     } else if (InitSeq.isConstructorInitialization()) {
335       // Value-initialization requires a constructor call, so
336       // extend the initializer list to include the constructor
337       // call and make a note that we'll need to take another pass
338       // through the initializer list.
339       ILE->updateInit(SemaRef.Context, Init, MemberInit.takeAs<Expr>());
340       RequiresSecondPass = true;
341     }
342   } else if (InitListExpr *InnerILE
343                = dyn_cast<InitListExpr>(ILE->getInit(Init)))
344     FillInValueInitializations(MemberEntity, InnerILE,
345                                RequiresSecondPass);
346 }
347 
348 /// Recursively replaces NULL values within the given initializer list
349 /// with expressions that perform value-initialization of the
350 /// appropriate type.
351 void
352 InitListChecker::FillInValueInitializations(const InitializedEntity &Entity,
353                                             InitListExpr *ILE,
354                                             bool &RequiresSecondPass) {
355   assert((ILE->getType() != SemaRef.Context.VoidTy) &&
356          "Should not have void type");
357   SourceLocation Loc = ILE->getLocStart();
358   if (ILE->getSyntacticForm())
359     Loc = ILE->getSyntacticForm()->getLocStart();
360 
361   if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
362     if (RType->getDecl()->isUnion() &&
363         ILE->getInitializedFieldInUnion())
364       FillInValueInitForField(0, ILE->getInitializedFieldInUnion(),
365                               Entity, ILE, RequiresSecondPass);
366     else {
367       unsigned Init = 0;
368       for (RecordDecl::field_iterator
369              Field = RType->getDecl()->field_begin(),
370              FieldEnd = RType->getDecl()->field_end();
371            Field != FieldEnd; ++Field) {
372         if (Field->isUnnamedBitfield())
373           continue;
374 
375         if (hadError)
376           return;
377 
378         FillInValueInitForField(Init, *Field, Entity, ILE, RequiresSecondPass);
379         if (hadError)
380           return;
381 
382         ++Init;
383 
384         // Only look at the first initialization of a union.
385         if (RType->getDecl()->isUnion())
386           break;
387       }
388     }
389 
390     return;
391   }
392 
393   QualType ElementType;
394 
395   InitializedEntity ElementEntity = Entity;
396   unsigned NumInits = ILE->getNumInits();
397   unsigned NumElements = NumInits;
398   if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
399     ElementType = AType->getElementType();
400     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
401       NumElements = CAType->getSize().getZExtValue();
402     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
403                                                          0, Entity);
404   } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
405     ElementType = VType->getElementType();
406     NumElements = VType->getNumElements();
407     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
408                                                          0, Entity);
409   } else
410     ElementType = ILE->getType();
411 
412 
413   for (unsigned Init = 0; Init != NumElements; ++Init) {
414     if (hadError)
415       return;
416 
417     if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
418         ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
419       ElementEntity.setElementIndex(Init);
420 
421     Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : 0);
422     if (!InitExpr && !ILE->hasArrayFiller()) {
423       InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
424                                                                 true);
425       InitializationSequence InitSeq(SemaRef, ElementEntity, Kind, 0, 0);
426       if (!InitSeq) {
427         InitSeq.Diagnose(SemaRef, ElementEntity, Kind, 0, 0);
428         hadError = true;
429         return;
430       }
431 
432       ExprResult ElementInit
433         = InitSeq.Perform(SemaRef, ElementEntity, Kind, MultiExprArg());
434       if (ElementInit.isInvalid()) {
435         hadError = true;
436         return;
437       }
438 
439       if (hadError) {
440         // Do nothing
441       } else if (Init < NumInits) {
442         // For arrays, just set the expression used for value-initialization
443         // of the "holes" in the array.
444         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
445           ILE->setArrayFiller(ElementInit.takeAs<Expr>());
446         else
447           ILE->setInit(Init, ElementInit.takeAs<Expr>());
448       } else {
449         // For arrays, just set the expression used for value-initialization
450         // of the rest of elements and exit.
451         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
452           ILE->setArrayFiller(ElementInit.takeAs<Expr>());
453           return;
454         }
455 
456         if (InitSeq.isConstructorInitialization()) {
457           // Value-initialization requires a constructor call, so
458           // extend the initializer list to include the constructor
459           // call and make a note that we'll need to take another pass
460           // through the initializer list.
461           ILE->updateInit(SemaRef.Context, Init, ElementInit.takeAs<Expr>());
462           RequiresSecondPass = true;
463         }
464       }
465     } else if (InitListExpr *InnerILE
466                  = dyn_cast_or_null<InitListExpr>(InitExpr))
467       FillInValueInitializations(ElementEntity, InnerILE, RequiresSecondPass);
468   }
469 }
470 
471 
472 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
473                                  InitListExpr *IL, QualType &T,
474                                  bool VerifyOnly, bool AllowBraceElision)
475   : SemaRef(S), VerifyOnly(VerifyOnly), AllowBraceElision(AllowBraceElision) {
476   hadError = false;
477 
478   unsigned newIndex = 0;
479   unsigned newStructuredIndex = 0;
480   FullyStructuredList
481     = getStructuredSubobjectInit(IL, newIndex, T, 0, 0, IL->getSourceRange());
482   CheckExplicitInitList(Entity, IL, T, newIndex,
483                         FullyStructuredList, newStructuredIndex,
484                         /*TopLevelObject=*/true);
485 
486   if (!hadError && !VerifyOnly) {
487     bool RequiresSecondPass = false;
488     FillInValueInitializations(Entity, FullyStructuredList, RequiresSecondPass);
489     if (RequiresSecondPass && !hadError)
490       FillInValueInitializations(Entity, FullyStructuredList,
491                                  RequiresSecondPass);
492   }
493 }
494 
495 int InitListChecker::numArrayElements(QualType DeclType) {
496   // FIXME: use a proper constant
497   int maxElements = 0x7FFFFFFF;
498   if (const ConstantArrayType *CAT =
499         SemaRef.Context.getAsConstantArrayType(DeclType)) {
500     maxElements = static_cast<int>(CAT->getSize().getZExtValue());
501   }
502   return maxElements;
503 }
504 
505 int InitListChecker::numStructUnionElements(QualType DeclType) {
506   RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
507   int InitializableMembers = 0;
508   for (RecordDecl::field_iterator
509          Field = structDecl->field_begin(),
510          FieldEnd = structDecl->field_end();
511        Field != FieldEnd; ++Field) {
512     if (!Field->isUnnamedBitfield())
513       ++InitializableMembers;
514   }
515   if (structDecl->isUnion())
516     return std::min(InitializableMembers, 1);
517   return InitializableMembers - structDecl->hasFlexibleArrayMember();
518 }
519 
520 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
521                                             InitListExpr *ParentIList,
522                                             QualType T, unsigned &Index,
523                                             InitListExpr *StructuredList,
524                                             unsigned &StructuredIndex) {
525   int maxElements = 0;
526 
527   if (T->isArrayType())
528     maxElements = numArrayElements(T);
529   else if (T->isRecordType())
530     maxElements = numStructUnionElements(T);
531   else if (T->isVectorType())
532     maxElements = T->getAs<VectorType>()->getNumElements();
533   else
534     llvm_unreachable("CheckImplicitInitList(): Illegal type");
535 
536   if (maxElements == 0) {
537     if (!VerifyOnly)
538       SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
539                    diag::err_implicit_empty_initializer);
540     ++Index;
541     hadError = true;
542     return;
543   }
544 
545   // Build a structured initializer list corresponding to this subobject.
546   InitListExpr *StructuredSubobjectInitList
547     = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
548                                  StructuredIndex,
549           SourceRange(ParentIList->getInit(Index)->getLocStart(),
550                       ParentIList->getSourceRange().getEnd()));
551   unsigned StructuredSubobjectInitIndex = 0;
552 
553   // Check the element types and build the structural subobject.
554   unsigned StartIndex = Index;
555   CheckListElementTypes(Entity, ParentIList, T,
556                         /*SubobjectIsDesignatorContext=*/false, Index,
557                         StructuredSubobjectInitList,
558                         StructuredSubobjectInitIndex);
559 
560   if (VerifyOnly) {
561     if (!AllowBraceElision && (T->isArrayType() || T->isRecordType()))
562       hadError = true;
563   } else {
564     StructuredSubobjectInitList->setType(T);
565 
566     unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
567     // Update the structured sub-object initializer so that it's ending
568     // range corresponds with the end of the last initializer it used.
569     if (EndIndex < ParentIList->getNumInits()) {
570       SourceLocation EndLoc
571         = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
572       StructuredSubobjectInitList->setRBraceLoc(EndLoc);
573     }
574 
575     // Complain about missing braces.
576     if (T->isArrayType() || T->isRecordType()) {
577       SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
578                     AllowBraceElision ? diag::warn_missing_braces :
579                                         diag::err_missing_braces)
580         << StructuredSubobjectInitList->getSourceRange()
581         << FixItHint::CreateInsertion(
582               StructuredSubobjectInitList->getLocStart(), "{")
583         << FixItHint::CreateInsertion(
584               SemaRef.PP.getLocForEndOfToken(
585                                       StructuredSubobjectInitList->getLocEnd()),
586               "}");
587       if (!AllowBraceElision)
588         hadError = true;
589     }
590   }
591 }
592 
593 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
594                                             InitListExpr *IList, QualType &T,
595                                             unsigned &Index,
596                                             InitListExpr *StructuredList,
597                                             unsigned &StructuredIndex,
598                                             bool TopLevelObject) {
599   assert(IList->isExplicit() && "Illegal Implicit InitListExpr");
600   if (!VerifyOnly) {
601     SyntacticToSemantic[IList] = StructuredList;
602     StructuredList->setSyntacticForm(IList);
603   }
604   CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
605                         Index, StructuredList, StructuredIndex, TopLevelObject);
606   if (!VerifyOnly) {
607     QualType ExprTy = T;
608     if (!ExprTy->isArrayType())
609       ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
610     IList->setType(ExprTy);
611     StructuredList->setType(ExprTy);
612   }
613   if (hadError)
614     return;
615 
616   if (Index < IList->getNumInits()) {
617     // We have leftover initializers
618     if (VerifyOnly) {
619       if (SemaRef.getLangOpts().CPlusPlus ||
620           (SemaRef.getLangOpts().OpenCL &&
621            IList->getType()->isVectorType())) {
622         hadError = true;
623       }
624       return;
625     }
626 
627     if (StructuredIndex == 1 &&
628         IsStringInit(StructuredList->getInit(0), T, SemaRef.Context)) {
629       unsigned DK = diag::warn_excess_initializers_in_char_array_initializer;
630       if (SemaRef.getLangOpts().CPlusPlus) {
631         DK = diag::err_excess_initializers_in_char_array_initializer;
632         hadError = true;
633       }
634       // Special-case
635       SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
636         << IList->getInit(Index)->getSourceRange();
637     } else if (!T->isIncompleteType()) {
638       // Don't complain for incomplete types, since we'll get an error
639       // elsewhere
640       QualType CurrentObjectType = StructuredList->getType();
641       int initKind =
642         CurrentObjectType->isArrayType()? 0 :
643         CurrentObjectType->isVectorType()? 1 :
644         CurrentObjectType->isScalarType()? 2 :
645         CurrentObjectType->isUnionType()? 3 :
646         4;
647 
648       unsigned DK = diag::warn_excess_initializers;
649       if (SemaRef.getLangOpts().CPlusPlus) {
650         DK = diag::err_excess_initializers;
651         hadError = true;
652       }
653       if (SemaRef.getLangOpts().OpenCL && initKind == 1) {
654         DK = diag::err_excess_initializers;
655         hadError = true;
656       }
657 
658       SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
659         << initKind << IList->getInit(Index)->getSourceRange();
660     }
661   }
662 
663   if (!VerifyOnly && T->isScalarType() && IList->getNumInits() == 1 &&
664       !TopLevelObject)
665     SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init)
666       << IList->getSourceRange()
667       << FixItHint::CreateRemoval(IList->getLocStart())
668       << FixItHint::CreateRemoval(IList->getLocEnd());
669 }
670 
671 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
672                                             InitListExpr *IList,
673                                             QualType &DeclType,
674                                             bool SubobjectIsDesignatorContext,
675                                             unsigned &Index,
676                                             InitListExpr *StructuredList,
677                                             unsigned &StructuredIndex,
678                                             bool TopLevelObject) {
679   if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
680     // Explicitly braced initializer for complex type can be real+imaginary
681     // parts.
682     CheckComplexType(Entity, IList, DeclType, Index,
683                      StructuredList, StructuredIndex);
684   } else if (DeclType->isScalarType()) {
685     CheckScalarType(Entity, IList, DeclType, Index,
686                     StructuredList, StructuredIndex);
687   } else if (DeclType->isVectorType()) {
688     CheckVectorType(Entity, IList, DeclType, Index,
689                     StructuredList, StructuredIndex);
690   } else if (DeclType->isRecordType()) {
691     assert(DeclType->isAggregateType() &&
692            "non-aggregate records should be handed in CheckSubElementType");
693     RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
694     CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(),
695                           SubobjectIsDesignatorContext, Index,
696                           StructuredList, StructuredIndex,
697                           TopLevelObject);
698   } else if (DeclType->isArrayType()) {
699     llvm::APSInt Zero(
700                     SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
701                     false);
702     CheckArrayType(Entity, IList, DeclType, Zero,
703                    SubobjectIsDesignatorContext, Index,
704                    StructuredList, StructuredIndex);
705   } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
706     // This type is invalid, issue a diagnostic.
707     ++Index;
708     if (!VerifyOnly)
709       SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
710         << DeclType;
711     hadError = true;
712   } else if (DeclType->isReferenceType()) {
713     CheckReferenceType(Entity, IList, DeclType, Index,
714                        StructuredList, StructuredIndex);
715   } else if (DeclType->isObjCObjectType()) {
716     if (!VerifyOnly)
717       SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class)
718         << DeclType;
719     hadError = true;
720   } else {
721     if (!VerifyOnly)
722       SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
723         << DeclType;
724     hadError = true;
725   }
726 }
727 
728 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
729                                           InitListExpr *IList,
730                                           QualType ElemType,
731                                           unsigned &Index,
732                                           InitListExpr *StructuredList,
733                                           unsigned &StructuredIndex) {
734   Expr *expr = IList->getInit(Index);
735   if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
736     if (!ElemType->isRecordType() || ElemType->isAggregateType()) {
737       unsigned newIndex = 0;
738       unsigned newStructuredIndex = 0;
739       InitListExpr *newStructuredList
740         = getStructuredSubobjectInit(IList, Index, ElemType,
741                                      StructuredList, StructuredIndex,
742                                      SubInitList->getSourceRange());
743       CheckExplicitInitList(Entity, SubInitList, ElemType, newIndex,
744                             newStructuredList, newStructuredIndex);
745       ++StructuredIndex;
746       ++Index;
747       return;
748     }
749     assert(SemaRef.getLangOpts().CPlusPlus &&
750            "non-aggregate records are only possible in C++");
751     // C++ initialization is handled later.
752   }
753 
754   if (ElemType->isScalarType()) {
755     return CheckScalarType(Entity, IList, ElemType, Index,
756                            StructuredList, StructuredIndex);
757   } else if (ElemType->isReferenceType()) {
758     return CheckReferenceType(Entity, IList, ElemType, Index,
759                               StructuredList, StructuredIndex);
760   }
761 
762   if (const ArrayType *arrayType = SemaRef.Context.getAsArrayType(ElemType)) {
763     // arrayType can be incomplete if we're initializing a flexible
764     // array member.  There's nothing we can do with the completed
765     // type here, though.
766 
767     if (Expr *Str = IsStringInit(expr, arrayType, SemaRef.Context)) {
768       if (!VerifyOnly) {
769         CheckStringInit(Str, ElemType, arrayType, SemaRef);
770         UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
771       }
772       ++Index;
773       return;
774     }
775 
776     // Fall through for subaggregate initialization.
777 
778   } else if (SemaRef.getLangOpts().CPlusPlus) {
779     // C++ [dcl.init.aggr]p12:
780     //   All implicit type conversions (clause 4) are considered when
781     //   initializing the aggregate member with an initializer from
782     //   an initializer-list. If the initializer can initialize a
783     //   member, the member is initialized. [...]
784 
785     // FIXME: Better EqualLoc?
786     InitializationKind Kind =
787       InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
788     InitializationSequence Seq(SemaRef, Entity, Kind, &expr, 1);
789 
790     if (Seq) {
791       if (!VerifyOnly) {
792         ExprResult Result =
793           Seq.Perform(SemaRef, Entity, Kind, MultiExprArg(&expr, 1));
794         if (Result.isInvalid())
795           hadError = true;
796 
797         UpdateStructuredListElement(StructuredList, StructuredIndex,
798                                     Result.takeAs<Expr>());
799       }
800       ++Index;
801       return;
802     }
803 
804     // Fall through for subaggregate initialization
805   } else {
806     // C99 6.7.8p13:
807     //
808     //   The initializer for a structure or union object that has
809     //   automatic storage duration shall be either an initializer
810     //   list as described below, or a single expression that has
811     //   compatible structure or union type. In the latter case, the
812     //   initial value of the object, including unnamed members, is
813     //   that of the expression.
814     ExprResult ExprRes = SemaRef.Owned(expr);
815     if ((ElemType->isRecordType() || ElemType->isVectorType()) &&
816         SemaRef.CheckSingleAssignmentConstraints(ElemType, ExprRes,
817                                                  !VerifyOnly)
818           == Sema::Compatible) {
819       if (ExprRes.isInvalid())
820         hadError = true;
821       else {
822         ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.take());
823 	      if (ExprRes.isInvalid())
824 	        hadError = true;
825       }
826       UpdateStructuredListElement(StructuredList, StructuredIndex,
827                                   ExprRes.takeAs<Expr>());
828       ++Index;
829       return;
830     }
831     ExprRes.release();
832     // Fall through for subaggregate initialization
833   }
834 
835   // C++ [dcl.init.aggr]p12:
836   //
837   //   [...] Otherwise, if the member is itself a non-empty
838   //   subaggregate, brace elision is assumed and the initializer is
839   //   considered for the initialization of the first member of
840   //   the subaggregate.
841   if (!SemaRef.getLangOpts().OpenCL &&
842       (ElemType->isAggregateType() || ElemType->isVectorType())) {
843     CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
844                           StructuredIndex);
845     ++StructuredIndex;
846   } else {
847     if (!VerifyOnly) {
848       // We cannot initialize this element, so let
849       // PerformCopyInitialization produce the appropriate diagnostic.
850       SemaRef.PerformCopyInitialization(Entity, SourceLocation(),
851                                         SemaRef.Owned(expr),
852                                         /*TopLevelOfInitList=*/true);
853     }
854     hadError = true;
855     ++Index;
856     ++StructuredIndex;
857   }
858 }
859 
860 void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
861                                        InitListExpr *IList, QualType DeclType,
862                                        unsigned &Index,
863                                        InitListExpr *StructuredList,
864                                        unsigned &StructuredIndex) {
865   assert(Index == 0 && "Index in explicit init list must be zero");
866 
867   // As an extension, clang supports complex initializers, which initialize
868   // a complex number component-wise.  When an explicit initializer list for
869   // a complex number contains two two initializers, this extension kicks in:
870   // it exepcts the initializer list to contain two elements convertible to
871   // the element type of the complex type. The first element initializes
872   // the real part, and the second element intitializes the imaginary part.
873 
874   if (IList->getNumInits() != 2)
875     return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
876                            StructuredIndex);
877 
878   // This is an extension in C.  (The builtin _Complex type does not exist
879   // in the C++ standard.)
880   if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
881     SemaRef.Diag(IList->getLocStart(), diag::ext_complex_component_init)
882       << IList->getSourceRange();
883 
884   // Initialize the complex number.
885   QualType elementType = DeclType->getAs<ComplexType>()->getElementType();
886   InitializedEntity ElementEntity =
887     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
888 
889   for (unsigned i = 0; i < 2; ++i) {
890     ElementEntity.setElementIndex(Index);
891     CheckSubElementType(ElementEntity, IList, elementType, Index,
892                         StructuredList, StructuredIndex);
893   }
894 }
895 
896 
897 void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
898                                       InitListExpr *IList, QualType DeclType,
899                                       unsigned &Index,
900                                       InitListExpr *StructuredList,
901                                       unsigned &StructuredIndex) {
902   if (Index >= IList->getNumInits()) {
903     if (!VerifyOnly)
904       SemaRef.Diag(IList->getLocStart(),
905                    SemaRef.getLangOpts().CPlusPlus0x ?
906                      diag::warn_cxx98_compat_empty_scalar_initializer :
907                      diag::err_empty_scalar_initializer)
908         << IList->getSourceRange();
909     hadError = !SemaRef.getLangOpts().CPlusPlus0x;
910     ++Index;
911     ++StructuredIndex;
912     return;
913   }
914 
915   Expr *expr = IList->getInit(Index);
916   if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
917     if (!VerifyOnly)
918       SemaRef.Diag(SubIList->getLocStart(),
919                    diag::warn_many_braces_around_scalar_init)
920         << SubIList->getSourceRange();
921 
922     CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
923                     StructuredIndex);
924     return;
925   } else if (isa<DesignatedInitExpr>(expr)) {
926     if (!VerifyOnly)
927       SemaRef.Diag(expr->getLocStart(),
928                    diag::err_designator_for_scalar_init)
929         << DeclType << expr->getSourceRange();
930     hadError = true;
931     ++Index;
932     ++StructuredIndex;
933     return;
934   }
935 
936   if (VerifyOnly) {
937     if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr)))
938       hadError = true;
939     ++Index;
940     return;
941   }
942 
943   ExprResult Result =
944     SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
945                                       SemaRef.Owned(expr),
946                                       /*TopLevelOfInitList=*/true);
947 
948   Expr *ResultExpr = 0;
949 
950   if (Result.isInvalid())
951     hadError = true; // types weren't compatible.
952   else {
953     ResultExpr = Result.takeAs<Expr>();
954 
955     if (ResultExpr != expr) {
956       // The type was promoted, update initializer list.
957       IList->setInit(Index, ResultExpr);
958     }
959   }
960   if (hadError)
961     ++StructuredIndex;
962   else
963     UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
964   ++Index;
965 }
966 
967 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
968                                          InitListExpr *IList, QualType DeclType,
969                                          unsigned &Index,
970                                          InitListExpr *StructuredList,
971                                          unsigned &StructuredIndex) {
972   if (Index >= IList->getNumInits()) {
973     // FIXME: It would be wonderful if we could point at the actual member. In
974     // general, it would be useful to pass location information down the stack,
975     // so that we know the location (or decl) of the "current object" being
976     // initialized.
977     if (!VerifyOnly)
978       SemaRef.Diag(IList->getLocStart(),
979                     diag::err_init_reference_member_uninitialized)
980         << DeclType
981         << IList->getSourceRange();
982     hadError = true;
983     ++Index;
984     ++StructuredIndex;
985     return;
986   }
987 
988   Expr *expr = IList->getInit(Index);
989   if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus0x) {
990     if (!VerifyOnly)
991       SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
992         << DeclType << IList->getSourceRange();
993     hadError = true;
994     ++Index;
995     ++StructuredIndex;
996     return;
997   }
998 
999   if (VerifyOnly) {
1000     if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(expr)))
1001       hadError = true;
1002     ++Index;
1003     return;
1004   }
1005 
1006   ExprResult Result =
1007     SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(),
1008                                       SemaRef.Owned(expr),
1009                                       /*TopLevelOfInitList=*/true);
1010 
1011   if (Result.isInvalid())
1012     hadError = true;
1013 
1014   expr = Result.takeAs<Expr>();
1015   IList->setInit(Index, expr);
1016 
1017   if (hadError)
1018     ++StructuredIndex;
1019   else
1020     UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1021   ++Index;
1022 }
1023 
1024 void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1025                                       InitListExpr *IList, QualType DeclType,
1026                                       unsigned &Index,
1027                                       InitListExpr *StructuredList,
1028                                       unsigned &StructuredIndex) {
1029   const VectorType *VT = DeclType->getAs<VectorType>();
1030   unsigned maxElements = VT->getNumElements();
1031   unsigned numEltsInit = 0;
1032   QualType elementType = VT->getElementType();
1033 
1034   if (Index >= IList->getNumInits()) {
1035     // Make sure the element type can be value-initialized.
1036     if (VerifyOnly)
1037       CheckValueInitializable(
1038           InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity));
1039     return;
1040   }
1041 
1042   if (!SemaRef.getLangOpts().OpenCL) {
1043     // If the initializing element is a vector, try to copy-initialize
1044     // instead of breaking it apart (which is doomed to failure anyway).
1045     Expr *Init = IList->getInit(Index);
1046     if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1047       if (VerifyOnly) {
1048         if (!SemaRef.CanPerformCopyInitialization(Entity, SemaRef.Owned(Init)))
1049           hadError = true;
1050         ++Index;
1051         return;
1052       }
1053 
1054       ExprResult Result =
1055         SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(),
1056                                           SemaRef.Owned(Init),
1057                                           /*TopLevelOfInitList=*/true);
1058 
1059       Expr *ResultExpr = 0;
1060       if (Result.isInvalid())
1061         hadError = true; // types weren't compatible.
1062       else {
1063         ResultExpr = Result.takeAs<Expr>();
1064 
1065         if (ResultExpr != Init) {
1066           // The type was promoted, update initializer list.
1067           IList->setInit(Index, ResultExpr);
1068         }
1069       }
1070       if (hadError)
1071         ++StructuredIndex;
1072       else
1073         UpdateStructuredListElement(StructuredList, StructuredIndex,
1074                                     ResultExpr);
1075       ++Index;
1076       return;
1077     }
1078 
1079     InitializedEntity ElementEntity =
1080       InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1081 
1082     for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1083       // Don't attempt to go past the end of the init list
1084       if (Index >= IList->getNumInits()) {
1085         if (VerifyOnly)
1086           CheckValueInitializable(ElementEntity);
1087         break;
1088       }
1089 
1090       ElementEntity.setElementIndex(Index);
1091       CheckSubElementType(ElementEntity, IList, elementType, Index,
1092                           StructuredList, StructuredIndex);
1093     }
1094     return;
1095   }
1096 
1097   InitializedEntity ElementEntity =
1098     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1099 
1100   // OpenCL initializers allows vectors to be constructed from vectors.
1101   for (unsigned i = 0; i < maxElements; ++i) {
1102     // Don't attempt to go past the end of the init list
1103     if (Index >= IList->getNumInits())
1104       break;
1105 
1106     ElementEntity.setElementIndex(Index);
1107 
1108     QualType IType = IList->getInit(Index)->getType();
1109     if (!IType->isVectorType()) {
1110       CheckSubElementType(ElementEntity, IList, elementType, Index,
1111                           StructuredList, StructuredIndex);
1112       ++numEltsInit;
1113     } else {
1114       QualType VecType;
1115       const VectorType *IVT = IType->getAs<VectorType>();
1116       unsigned numIElts = IVT->getNumElements();
1117 
1118       if (IType->isExtVectorType())
1119         VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1120       else
1121         VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1122                                                 IVT->getVectorKind());
1123       CheckSubElementType(ElementEntity, IList, VecType, Index,
1124                           StructuredList, StructuredIndex);
1125       numEltsInit += numIElts;
1126     }
1127   }
1128 
1129   // OpenCL requires all elements to be initialized.
1130   if (numEltsInit != maxElements) {
1131     if (!VerifyOnly)
1132       SemaRef.Diag(IList->getLocStart(),
1133                    diag::err_vector_incorrect_num_initializers)
1134         << (numEltsInit < maxElements) << maxElements << numEltsInit;
1135     hadError = true;
1136   }
1137 }
1138 
1139 void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1140                                      InitListExpr *IList, QualType &DeclType,
1141                                      llvm::APSInt elementIndex,
1142                                      bool SubobjectIsDesignatorContext,
1143                                      unsigned &Index,
1144                                      InitListExpr *StructuredList,
1145                                      unsigned &StructuredIndex) {
1146   const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1147 
1148   // Check for the special-case of initializing an array with a string.
1149   if (Index < IList->getNumInits()) {
1150     if (Expr *Str = IsStringInit(IList->getInit(Index), arrayType,
1151                                  SemaRef.Context)) {
1152       // We place the string literal directly into the resulting
1153       // initializer list. This is the only place where the structure
1154       // of the structured initializer list doesn't match exactly,
1155       // because doing so would involve allocating one character
1156       // constant for each string.
1157       if (!VerifyOnly) {
1158         CheckStringInit(Str, DeclType, arrayType, SemaRef);
1159         UpdateStructuredListElement(StructuredList, StructuredIndex, Str);
1160         StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1161       }
1162       ++Index;
1163       return;
1164     }
1165   }
1166   if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1167     // Check for VLAs; in standard C it would be possible to check this
1168     // earlier, but I don't know where clang accepts VLAs (gcc accepts
1169     // them in all sorts of strange places).
1170     if (!VerifyOnly)
1171       SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
1172                     diag::err_variable_object_no_init)
1173         << VAT->getSizeExpr()->getSourceRange();
1174     hadError = true;
1175     ++Index;
1176     ++StructuredIndex;
1177     return;
1178   }
1179 
1180   // We might know the maximum number of elements in advance.
1181   llvm::APSInt maxElements(elementIndex.getBitWidth(),
1182                            elementIndex.isUnsigned());
1183   bool maxElementsKnown = false;
1184   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1185     maxElements = CAT->getSize();
1186     elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1187     elementIndex.setIsUnsigned(maxElements.isUnsigned());
1188     maxElementsKnown = true;
1189   }
1190 
1191   QualType elementType = arrayType->getElementType();
1192   while (Index < IList->getNumInits()) {
1193     Expr *Init = IList->getInit(Index);
1194     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1195       // If we're not the subobject that matches up with the '{' for
1196       // the designator, we shouldn't be handling the
1197       // designator. Return immediately.
1198       if (!SubobjectIsDesignatorContext)
1199         return;
1200 
1201       // Handle this designated initializer. elementIndex will be
1202       // updated to be the next array element we'll initialize.
1203       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1204                                      DeclType, 0, &elementIndex, Index,
1205                                      StructuredList, StructuredIndex, true,
1206                                      false)) {
1207         hadError = true;
1208         continue;
1209       }
1210 
1211       if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1212         maxElements = maxElements.extend(elementIndex.getBitWidth());
1213       else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1214         elementIndex = elementIndex.extend(maxElements.getBitWidth());
1215       elementIndex.setIsUnsigned(maxElements.isUnsigned());
1216 
1217       // If the array is of incomplete type, keep track of the number of
1218       // elements in the initializer.
1219       if (!maxElementsKnown && elementIndex > maxElements)
1220         maxElements = elementIndex;
1221 
1222       continue;
1223     }
1224 
1225     // If we know the maximum number of elements, and we've already
1226     // hit it, stop consuming elements in the initializer list.
1227     if (maxElementsKnown && elementIndex == maxElements)
1228       break;
1229 
1230     InitializedEntity ElementEntity =
1231       InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1232                                            Entity);
1233     // Check this element.
1234     CheckSubElementType(ElementEntity, IList, elementType, Index,
1235                         StructuredList, StructuredIndex);
1236     ++elementIndex;
1237 
1238     // If the array is of incomplete type, keep track of the number of
1239     // elements in the initializer.
1240     if (!maxElementsKnown && elementIndex > maxElements)
1241       maxElements = elementIndex;
1242   }
1243   if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1244     // If this is an incomplete array type, the actual type needs to
1245     // be calculated here.
1246     llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1247     if (maxElements == Zero) {
1248       // Sizing an array implicitly to zero is not allowed by ISO C,
1249       // but is supported by GNU.
1250       SemaRef.Diag(IList->getLocStart(),
1251                     diag::ext_typecheck_zero_array_size);
1252     }
1253 
1254     DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1255                                                      ArrayType::Normal, 0);
1256   }
1257   if (!hadError && VerifyOnly) {
1258     // Check if there are any members of the array that get value-initialized.
1259     // If so, check if doing that is possible.
1260     // FIXME: This needs to detect holes left by designated initializers too.
1261     if (maxElementsKnown && elementIndex < maxElements)
1262       CheckValueInitializable(InitializedEntity::InitializeElement(
1263                                                   SemaRef.Context, 0, Entity));
1264   }
1265 }
1266 
1267 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1268                                              Expr *InitExpr,
1269                                              FieldDecl *Field,
1270                                              bool TopLevelObject) {
1271   // Handle GNU flexible array initializers.
1272   unsigned FlexArrayDiag;
1273   if (isa<InitListExpr>(InitExpr) &&
1274       cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
1275     // Empty flexible array init always allowed as an extension
1276     FlexArrayDiag = diag::ext_flexible_array_init;
1277   } else if (SemaRef.getLangOpts().CPlusPlus) {
1278     // Disallow flexible array init in C++; it is not required for gcc
1279     // compatibility, and it needs work to IRGen correctly in general.
1280     FlexArrayDiag = diag::err_flexible_array_init;
1281   } else if (!TopLevelObject) {
1282     // Disallow flexible array init on non-top-level object
1283     FlexArrayDiag = diag::err_flexible_array_init;
1284   } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
1285     // Disallow flexible array init on anything which is not a variable.
1286     FlexArrayDiag = diag::err_flexible_array_init;
1287   } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
1288     // Disallow flexible array init on local variables.
1289     FlexArrayDiag = diag::err_flexible_array_init;
1290   } else {
1291     // Allow other cases.
1292     FlexArrayDiag = diag::ext_flexible_array_init;
1293   }
1294 
1295   if (!VerifyOnly) {
1296     SemaRef.Diag(InitExpr->getLocStart(),
1297                  FlexArrayDiag)
1298       << InitExpr->getLocStart();
1299     SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1300       << Field;
1301   }
1302 
1303   return FlexArrayDiag != diag::ext_flexible_array_init;
1304 }
1305 
1306 void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity,
1307                                             InitListExpr *IList,
1308                                             QualType DeclType,
1309                                             RecordDecl::field_iterator Field,
1310                                             bool SubobjectIsDesignatorContext,
1311                                             unsigned &Index,
1312                                             InitListExpr *StructuredList,
1313                                             unsigned &StructuredIndex,
1314                                             bool TopLevelObject) {
1315   RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl();
1316 
1317   // If the record is invalid, some of it's members are invalid. To avoid
1318   // confusion, we forgo checking the intializer for the entire record.
1319   if (structDecl->isInvalidDecl()) {
1320     hadError = true;
1321     return;
1322   }
1323 
1324   if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1325     // Value-initialize the first named member of the union.
1326     RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1327     for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1328          Field != FieldEnd; ++Field) {
1329       if (Field->getDeclName()) {
1330         if (VerifyOnly)
1331           CheckValueInitializable(
1332               InitializedEntity::InitializeMember(*Field, &Entity));
1333         else
1334           StructuredList->setInitializedFieldInUnion(*Field);
1335         break;
1336       }
1337     }
1338     return;
1339   }
1340 
1341   // If structDecl is a forward declaration, this loop won't do
1342   // anything except look at designated initializers; That's okay,
1343   // because an error should get printed out elsewhere. It might be
1344   // worthwhile to skip over the rest of the initializer, though.
1345   RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1346   RecordDecl::field_iterator FieldEnd = RD->field_end();
1347   bool InitializedSomething = false;
1348   bool CheckForMissingFields = true;
1349   while (Index < IList->getNumInits()) {
1350     Expr *Init = IList->getInit(Index);
1351 
1352     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1353       // If we're not the subobject that matches up with the '{' for
1354       // the designator, we shouldn't be handling the
1355       // designator. Return immediately.
1356       if (!SubobjectIsDesignatorContext)
1357         return;
1358 
1359       // Handle this designated initializer. Field will be updated to
1360       // the next field that we'll be initializing.
1361       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1362                                      DeclType, &Field, 0, Index,
1363                                      StructuredList, StructuredIndex,
1364                                      true, TopLevelObject))
1365         hadError = true;
1366 
1367       InitializedSomething = true;
1368 
1369       // Disable check for missing fields when designators are used.
1370       // This matches gcc behaviour.
1371       CheckForMissingFields = false;
1372       continue;
1373     }
1374 
1375     if (Field == FieldEnd) {
1376       // We've run out of fields. We're done.
1377       break;
1378     }
1379 
1380     // We've already initialized a member of a union. We're done.
1381     if (InitializedSomething && DeclType->isUnionType())
1382       break;
1383 
1384     // If we've hit the flexible array member at the end, we're done.
1385     if (Field->getType()->isIncompleteArrayType())
1386       break;
1387 
1388     if (Field->isUnnamedBitfield()) {
1389       // Don't initialize unnamed bitfields, e.g. "int : 20;"
1390       ++Field;
1391       continue;
1392     }
1393 
1394     // Make sure we can use this declaration.
1395     bool InvalidUse;
1396     if (VerifyOnly)
1397       InvalidUse = !SemaRef.CanUseDecl(*Field);
1398     else
1399       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field,
1400                                           IList->getInit(Index)->getLocStart());
1401     if (InvalidUse) {
1402       ++Index;
1403       ++Field;
1404       hadError = true;
1405       continue;
1406     }
1407 
1408     InitializedEntity MemberEntity =
1409       InitializedEntity::InitializeMember(*Field, &Entity);
1410     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1411                         StructuredList, StructuredIndex);
1412     InitializedSomething = true;
1413 
1414     if (DeclType->isUnionType() && !VerifyOnly) {
1415       // Initialize the first field within the union.
1416       StructuredList->setInitializedFieldInUnion(*Field);
1417     }
1418 
1419     ++Field;
1420   }
1421 
1422   // Emit warnings for missing struct field initializers.
1423   if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
1424       Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
1425       !DeclType->isUnionType()) {
1426     // It is possible we have one or more unnamed bitfields remaining.
1427     // Find first (if any) named field and emit warning.
1428     for (RecordDecl::field_iterator it = Field, end = RD->field_end();
1429          it != end; ++it) {
1430       if (!it->isUnnamedBitfield()) {
1431         SemaRef.Diag(IList->getSourceRange().getEnd(),
1432                      diag::warn_missing_field_initializers) << it->getName();
1433         break;
1434       }
1435     }
1436   }
1437 
1438   // Check that any remaining fields can be value-initialized.
1439   if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() &&
1440       !Field->getType()->isIncompleteArrayType()) {
1441     // FIXME: Should check for holes left by designated initializers too.
1442     for (; Field != FieldEnd && !hadError; ++Field) {
1443       if (!Field->isUnnamedBitfield())
1444         CheckValueInitializable(
1445             InitializedEntity::InitializeMember(*Field, &Entity));
1446     }
1447   }
1448 
1449   if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1450       Index >= IList->getNumInits())
1451     return;
1452 
1453   if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
1454                              TopLevelObject)) {
1455     hadError = true;
1456     ++Index;
1457     return;
1458   }
1459 
1460   InitializedEntity MemberEntity =
1461     InitializedEntity::InitializeMember(*Field, &Entity);
1462 
1463   if (isa<InitListExpr>(IList->getInit(Index)))
1464     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1465                         StructuredList, StructuredIndex);
1466   else
1467     CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
1468                           StructuredList, StructuredIndex);
1469 }
1470 
1471 /// \brief Expand a field designator that refers to a member of an
1472 /// anonymous struct or union into a series of field designators that
1473 /// refers to the field within the appropriate subobject.
1474 ///
1475 static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1476                                            DesignatedInitExpr *DIE,
1477                                            unsigned DesigIdx,
1478                                            IndirectFieldDecl *IndirectField) {
1479   typedef DesignatedInitExpr::Designator Designator;
1480 
1481   // Build the replacement designators.
1482   SmallVector<Designator, 4> Replacements;
1483   for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
1484        PE = IndirectField->chain_end(); PI != PE; ++PI) {
1485     if (PI + 1 == PE)
1486       Replacements.push_back(Designator((IdentifierInfo *)0,
1487                                     DIE->getDesignator(DesigIdx)->getDotLoc(),
1488                                 DIE->getDesignator(DesigIdx)->getFieldLoc()));
1489     else
1490       Replacements.push_back(Designator((IdentifierInfo *)0, SourceLocation(),
1491                                         SourceLocation()));
1492     assert(isa<FieldDecl>(*PI));
1493     Replacements.back().setField(cast<FieldDecl>(*PI));
1494   }
1495 
1496   // Expand the current designator into the set of replacement
1497   // designators, so we have a full subobject path down to where the
1498   // member of the anonymous struct/union is actually stored.
1499   DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
1500                         &Replacements[0] + Replacements.size());
1501 }
1502 
1503 /// \brief Given an implicit anonymous field, search the IndirectField that
1504 ///  corresponds to FieldName.
1505 static IndirectFieldDecl *FindIndirectFieldDesignator(FieldDecl *AnonField,
1506                                                  IdentifierInfo *FieldName) {
1507   assert(AnonField->isAnonymousStructOrUnion());
1508   Decl *NextDecl = AnonField->getNextDeclInContext();
1509   while (IndirectFieldDecl *IF =
1510           dyn_cast_or_null<IndirectFieldDecl>(NextDecl)) {
1511     if (FieldName && FieldName == IF->getAnonField()->getIdentifier())
1512       return IF;
1513     NextDecl = NextDecl->getNextDeclInContext();
1514   }
1515   return 0;
1516 }
1517 
1518 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
1519                                                    DesignatedInitExpr *DIE) {
1520   unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
1521   SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
1522   for (unsigned I = 0; I < NumIndexExprs; ++I)
1523     IndexExprs[I] = DIE->getSubExpr(I + 1);
1524   return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators_begin(),
1525                                     DIE->size(), IndexExprs.data(),
1526                                     NumIndexExprs, DIE->getEqualOrColonLoc(),
1527                                     DIE->usesGNUSyntax(), DIE->getInit());
1528 }
1529 
1530 namespace {
1531 
1532 // Callback to only accept typo corrections that are for field members of
1533 // the given struct or union.
1534 class FieldInitializerValidatorCCC : public CorrectionCandidateCallback {
1535  public:
1536   explicit FieldInitializerValidatorCCC(RecordDecl *RD)
1537       : Record(RD) {}
1538 
1539   virtual bool ValidateCandidate(const TypoCorrection &candidate) {
1540     FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
1541     return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
1542   }
1543 
1544  private:
1545   RecordDecl *Record;
1546 };
1547 
1548 }
1549 
1550 /// @brief Check the well-formedness of a C99 designated initializer.
1551 ///
1552 /// Determines whether the designated initializer @p DIE, which
1553 /// resides at the given @p Index within the initializer list @p
1554 /// IList, is well-formed for a current object of type @p DeclType
1555 /// (C99 6.7.8). The actual subobject that this designator refers to
1556 /// within the current subobject is returned in either
1557 /// @p NextField or @p NextElementIndex (whichever is appropriate).
1558 ///
1559 /// @param IList  The initializer list in which this designated
1560 /// initializer occurs.
1561 ///
1562 /// @param DIE The designated initializer expression.
1563 ///
1564 /// @param DesigIdx  The index of the current designator.
1565 ///
1566 /// @param DeclType  The type of the "current object" (C99 6.7.8p17),
1567 /// into which the designation in @p DIE should refer.
1568 ///
1569 /// @param NextField  If non-NULL and the first designator in @p DIE is
1570 /// a field, this will be set to the field declaration corresponding
1571 /// to the field named by the designator.
1572 ///
1573 /// @param NextElementIndex  If non-NULL and the first designator in @p
1574 /// DIE is an array designator or GNU array-range designator, this
1575 /// will be set to the last index initialized by this designator.
1576 ///
1577 /// @param Index  Index into @p IList where the designated initializer
1578 /// @p DIE occurs.
1579 ///
1580 /// @param StructuredList  The initializer list expression that
1581 /// describes all of the subobject initializers in the order they'll
1582 /// actually be initialized.
1583 ///
1584 /// @returns true if there was an error, false otherwise.
1585 bool
1586 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
1587                                             InitListExpr *IList,
1588                                             DesignatedInitExpr *DIE,
1589                                             unsigned DesigIdx,
1590                                             QualType &CurrentObjectType,
1591                                           RecordDecl::field_iterator *NextField,
1592                                             llvm::APSInt *NextElementIndex,
1593                                             unsigned &Index,
1594                                             InitListExpr *StructuredList,
1595                                             unsigned &StructuredIndex,
1596                                             bool FinishSubobjectInit,
1597                                             bool TopLevelObject) {
1598   if (DesigIdx == DIE->size()) {
1599     // Check the actual initialization for the designated object type.
1600     bool prevHadError = hadError;
1601 
1602     // Temporarily remove the designator expression from the
1603     // initializer list that the child calls see, so that we don't try
1604     // to re-process the designator.
1605     unsigned OldIndex = Index;
1606     IList->setInit(OldIndex, DIE->getInit());
1607 
1608     CheckSubElementType(Entity, IList, CurrentObjectType, Index,
1609                         StructuredList, StructuredIndex);
1610 
1611     // Restore the designated initializer expression in the syntactic
1612     // form of the initializer list.
1613     if (IList->getInit(OldIndex) != DIE->getInit())
1614       DIE->setInit(IList->getInit(OldIndex));
1615     IList->setInit(OldIndex, DIE);
1616 
1617     return hadError && !prevHadError;
1618   }
1619 
1620   DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
1621   bool IsFirstDesignator = (DesigIdx == 0);
1622   if (!VerifyOnly) {
1623     assert((IsFirstDesignator || StructuredList) &&
1624            "Need a non-designated initializer list to start from");
1625 
1626     // Determine the structural initializer list that corresponds to the
1627     // current subobject.
1628     StructuredList = IsFirstDesignator? SyntacticToSemantic.lookup(IList)
1629       : getStructuredSubobjectInit(IList, Index, CurrentObjectType,
1630                                    StructuredList, StructuredIndex,
1631                                    SourceRange(D->getStartLocation(),
1632                                                DIE->getSourceRange().getEnd()));
1633     assert(StructuredList && "Expected a structured initializer list");
1634   }
1635 
1636   if (D->isFieldDesignator()) {
1637     // C99 6.7.8p7:
1638     //
1639     //   If a designator has the form
1640     //
1641     //      . identifier
1642     //
1643     //   then the current object (defined below) shall have
1644     //   structure or union type and the identifier shall be the
1645     //   name of a member of that type.
1646     const RecordType *RT = CurrentObjectType->getAs<RecordType>();
1647     if (!RT) {
1648       SourceLocation Loc = D->getDotLoc();
1649       if (Loc.isInvalid())
1650         Loc = D->getFieldLoc();
1651       if (!VerifyOnly)
1652         SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
1653           << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
1654       ++Index;
1655       return true;
1656     }
1657 
1658     // Note: we perform a linear search of the fields here, despite
1659     // the fact that we have a faster lookup method, because we always
1660     // need to compute the field's index.
1661     FieldDecl *KnownField = D->getField();
1662     IdentifierInfo *FieldName = D->getFieldName();
1663     unsigned FieldIndex = 0;
1664     RecordDecl::field_iterator
1665       Field = RT->getDecl()->field_begin(),
1666       FieldEnd = RT->getDecl()->field_end();
1667     for (; Field != FieldEnd; ++Field) {
1668       if (Field->isUnnamedBitfield())
1669         continue;
1670 
1671       // If we find a field representing an anonymous field, look in the
1672       // IndirectFieldDecl that follow for the designated initializer.
1673       if (!KnownField && Field->isAnonymousStructOrUnion()) {
1674         if (IndirectFieldDecl *IF =
1675             FindIndirectFieldDesignator(*Field, FieldName)) {
1676           // In verify mode, don't modify the original.
1677           if (VerifyOnly)
1678             DIE = CloneDesignatedInitExpr(SemaRef, DIE);
1679           ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IF);
1680           D = DIE->getDesignator(DesigIdx);
1681           break;
1682         }
1683       }
1684       if (KnownField && KnownField == *Field)
1685         break;
1686       if (FieldName && FieldName == Field->getIdentifier())
1687         break;
1688 
1689       ++FieldIndex;
1690     }
1691 
1692     if (Field == FieldEnd) {
1693       if (VerifyOnly) {
1694         ++Index;
1695         return true; // No typo correction when just trying this out.
1696       }
1697 
1698       // There was no normal field in the struct with the designated
1699       // name. Perform another lookup for this name, which may find
1700       // something that we can't designate (e.g., a member function),
1701       // may find nothing, or may find a member of an anonymous
1702       // struct/union.
1703       DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
1704       FieldDecl *ReplacementField = 0;
1705       if (Lookup.first == Lookup.second) {
1706         // Name lookup didn't find anything. Determine whether this
1707         // was a typo for another field name.
1708         FieldInitializerValidatorCCC Validator(RT->getDecl());
1709         TypoCorrection Corrected = SemaRef.CorrectTypo(
1710             DeclarationNameInfo(FieldName, D->getFieldLoc()),
1711             Sema::LookupMemberName, /*Scope=*/0, /*SS=*/0, Validator,
1712             RT->getDecl());
1713         if (Corrected) {
1714           std::string CorrectedStr(
1715               Corrected.getAsString(SemaRef.getLangOpts()));
1716           std::string CorrectedQuotedStr(
1717               Corrected.getQuoted(SemaRef.getLangOpts()));
1718           ReplacementField = Corrected.getCorrectionDeclAs<FieldDecl>();
1719           SemaRef.Diag(D->getFieldLoc(),
1720                        diag::err_field_designator_unknown_suggest)
1721             << FieldName << CurrentObjectType << CorrectedQuotedStr
1722             << FixItHint::CreateReplacement(D->getFieldLoc(), CorrectedStr);
1723           SemaRef.Diag(ReplacementField->getLocation(),
1724                        diag::note_previous_decl) << CorrectedQuotedStr;
1725           hadError = true;
1726         } else {
1727           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
1728             << FieldName << CurrentObjectType;
1729           ++Index;
1730           return true;
1731         }
1732       }
1733 
1734       if (!ReplacementField) {
1735         // Name lookup found something, but it wasn't a field.
1736         SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
1737           << FieldName;
1738         SemaRef.Diag((*Lookup.first)->getLocation(),
1739                       diag::note_field_designator_found);
1740         ++Index;
1741         return true;
1742       }
1743 
1744       if (!KnownField) {
1745         // The replacement field comes from typo correction; find it
1746         // in the list of fields.
1747         FieldIndex = 0;
1748         Field = RT->getDecl()->field_begin();
1749         for (; Field != FieldEnd; ++Field) {
1750           if (Field->isUnnamedBitfield())
1751             continue;
1752 
1753           if (ReplacementField == *Field ||
1754               Field->getIdentifier() == ReplacementField->getIdentifier())
1755             break;
1756 
1757           ++FieldIndex;
1758         }
1759       }
1760     }
1761 
1762     // All of the fields of a union are located at the same place in
1763     // the initializer list.
1764     if (RT->getDecl()->isUnion()) {
1765       FieldIndex = 0;
1766       if (!VerifyOnly)
1767         StructuredList->setInitializedFieldInUnion(*Field);
1768     }
1769 
1770     // Make sure we can use this declaration.
1771     bool InvalidUse;
1772     if (VerifyOnly)
1773       InvalidUse = !SemaRef.CanUseDecl(*Field);
1774     else
1775       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
1776     if (InvalidUse) {
1777       ++Index;
1778       return true;
1779     }
1780 
1781     if (!VerifyOnly) {
1782       // Update the designator with the field declaration.
1783       D->setField(*Field);
1784 
1785       // Make sure that our non-designated initializer list has space
1786       // for a subobject corresponding to this field.
1787       if (FieldIndex >= StructuredList->getNumInits())
1788         StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
1789     }
1790 
1791     // This designator names a flexible array member.
1792     if (Field->getType()->isIncompleteArrayType()) {
1793       bool Invalid = false;
1794       if ((DesigIdx + 1) != DIE->size()) {
1795         // We can't designate an object within the flexible array
1796         // member (because GCC doesn't allow it).
1797         if (!VerifyOnly) {
1798           DesignatedInitExpr::Designator *NextD
1799             = DIE->getDesignator(DesigIdx + 1);
1800           SemaRef.Diag(NextD->getStartLocation(),
1801                         diag::err_designator_into_flexible_array_member)
1802             << SourceRange(NextD->getStartLocation(),
1803                            DIE->getSourceRange().getEnd());
1804           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1805             << *Field;
1806         }
1807         Invalid = true;
1808       }
1809 
1810       if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
1811           !isa<StringLiteral>(DIE->getInit())) {
1812         // The initializer is not an initializer list.
1813         if (!VerifyOnly) {
1814           SemaRef.Diag(DIE->getInit()->getLocStart(),
1815                         diag::err_flexible_array_init_needs_braces)
1816             << DIE->getInit()->getSourceRange();
1817           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1818             << *Field;
1819         }
1820         Invalid = true;
1821       }
1822 
1823       // Check GNU flexible array initializer.
1824       if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
1825                                              TopLevelObject))
1826         Invalid = true;
1827 
1828       if (Invalid) {
1829         ++Index;
1830         return true;
1831       }
1832 
1833       // Initialize the array.
1834       bool prevHadError = hadError;
1835       unsigned newStructuredIndex = FieldIndex;
1836       unsigned OldIndex = Index;
1837       IList->setInit(Index, DIE->getInit());
1838 
1839       InitializedEntity MemberEntity =
1840         InitializedEntity::InitializeMember(*Field, &Entity);
1841       CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1842                           StructuredList, newStructuredIndex);
1843 
1844       IList->setInit(OldIndex, DIE);
1845       if (hadError && !prevHadError) {
1846         ++Field;
1847         ++FieldIndex;
1848         if (NextField)
1849           *NextField = Field;
1850         StructuredIndex = FieldIndex;
1851         return true;
1852       }
1853     } else {
1854       // Recurse to check later designated subobjects.
1855       QualType FieldType = Field->getType();
1856       unsigned newStructuredIndex = FieldIndex;
1857 
1858       InitializedEntity MemberEntity =
1859         InitializedEntity::InitializeMember(*Field, &Entity);
1860       if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
1861                                      FieldType, 0, 0, Index,
1862                                      StructuredList, newStructuredIndex,
1863                                      true, false))
1864         return true;
1865     }
1866 
1867     // Find the position of the next field to be initialized in this
1868     // subobject.
1869     ++Field;
1870     ++FieldIndex;
1871 
1872     // If this the first designator, our caller will continue checking
1873     // the rest of this struct/class/union subobject.
1874     if (IsFirstDesignator) {
1875       if (NextField)
1876         *NextField = Field;
1877       StructuredIndex = FieldIndex;
1878       return false;
1879     }
1880 
1881     if (!FinishSubobjectInit)
1882       return false;
1883 
1884     // We've already initialized something in the union; we're done.
1885     if (RT->getDecl()->isUnion())
1886       return hadError;
1887 
1888     // Check the remaining fields within this class/struct/union subobject.
1889     bool prevHadError = hadError;
1890 
1891     CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index,
1892                           StructuredList, FieldIndex);
1893     return hadError && !prevHadError;
1894   }
1895 
1896   // C99 6.7.8p6:
1897   //
1898   //   If a designator has the form
1899   //
1900   //      [ constant-expression ]
1901   //
1902   //   then the current object (defined below) shall have array
1903   //   type and the expression shall be an integer constant
1904   //   expression. If the array is of unknown size, any
1905   //   nonnegative value is valid.
1906   //
1907   // Additionally, cope with the GNU extension that permits
1908   // designators of the form
1909   //
1910   //      [ constant-expression ... constant-expression ]
1911   const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
1912   if (!AT) {
1913     if (!VerifyOnly)
1914       SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
1915         << CurrentObjectType;
1916     ++Index;
1917     return true;
1918   }
1919 
1920   Expr *IndexExpr = 0;
1921   llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
1922   if (D->isArrayDesignator()) {
1923     IndexExpr = DIE->getArrayIndex(*D);
1924     DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
1925     DesignatedEndIndex = DesignatedStartIndex;
1926   } else {
1927     assert(D->isArrayRangeDesignator() && "Need array-range designator");
1928 
1929     DesignatedStartIndex =
1930       DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
1931     DesignatedEndIndex =
1932       DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
1933     IndexExpr = DIE->getArrayRangeEnd(*D);
1934 
1935     // Codegen can't handle evaluating array range designators that have side
1936     // effects, because we replicate the AST value for each initialized element.
1937     // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
1938     // elements with something that has a side effect, so codegen can emit an
1939     // "error unsupported" error instead of miscompiling the app.
1940     if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
1941         DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
1942       FullyStructuredList->sawArrayRangeDesignator();
1943   }
1944 
1945   if (isa<ConstantArrayType>(AT)) {
1946     llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
1947     DesignatedStartIndex
1948       = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
1949     DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
1950     DesignatedEndIndex
1951       = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
1952     DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
1953     if (DesignatedEndIndex >= MaxElements) {
1954       if (!VerifyOnly)
1955         SemaRef.Diag(IndexExpr->getLocStart(),
1956                       diag::err_array_designator_too_large)
1957           << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
1958           << IndexExpr->getSourceRange();
1959       ++Index;
1960       return true;
1961     }
1962   } else {
1963     // Make sure the bit-widths and signedness match.
1964     if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
1965       DesignatedEndIndex
1966         = DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
1967     else if (DesignatedStartIndex.getBitWidth() <
1968              DesignatedEndIndex.getBitWidth())
1969       DesignatedStartIndex
1970         = DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
1971     DesignatedStartIndex.setIsUnsigned(true);
1972     DesignatedEndIndex.setIsUnsigned(true);
1973   }
1974 
1975   // Make sure that our non-designated initializer list has space
1976   // for a subobject corresponding to this array element.
1977   if (!VerifyOnly &&
1978       DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
1979     StructuredList->resizeInits(SemaRef.Context,
1980                                 DesignatedEndIndex.getZExtValue() + 1);
1981 
1982   // Repeatedly perform subobject initializations in the range
1983   // [DesignatedStartIndex, DesignatedEndIndex].
1984 
1985   // Move to the next designator
1986   unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
1987   unsigned OldIndex = Index;
1988 
1989   InitializedEntity ElementEntity =
1990     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1991 
1992   while (DesignatedStartIndex <= DesignatedEndIndex) {
1993     // Recurse to check later designated subobjects.
1994     QualType ElementType = AT->getElementType();
1995     Index = OldIndex;
1996 
1997     ElementEntity.setElementIndex(ElementIndex);
1998     if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1,
1999                                    ElementType, 0, 0, Index,
2000                                    StructuredList, ElementIndex,
2001                                    (DesignatedStartIndex == DesignatedEndIndex),
2002                                    false))
2003       return true;
2004 
2005     // Move to the next index in the array that we'll be initializing.
2006     ++DesignatedStartIndex;
2007     ElementIndex = DesignatedStartIndex.getZExtValue();
2008   }
2009 
2010   // If this the first designator, our caller will continue checking
2011   // the rest of this array subobject.
2012   if (IsFirstDesignator) {
2013     if (NextElementIndex)
2014       *NextElementIndex = DesignatedStartIndex;
2015     StructuredIndex = ElementIndex;
2016     return false;
2017   }
2018 
2019   if (!FinishSubobjectInit)
2020     return false;
2021 
2022   // Check the remaining elements within this array subobject.
2023   bool prevHadError = hadError;
2024   CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
2025                  /*SubobjectIsDesignatorContext=*/false, Index,
2026                  StructuredList, ElementIndex);
2027   return hadError && !prevHadError;
2028 }
2029 
2030 // Get the structured initializer list for a subobject of type
2031 // @p CurrentObjectType.
2032 InitListExpr *
2033 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
2034                                             QualType CurrentObjectType,
2035                                             InitListExpr *StructuredList,
2036                                             unsigned StructuredIndex,
2037                                             SourceRange InitRange) {
2038   if (VerifyOnly)
2039     return 0; // No structured list in verification-only mode.
2040   Expr *ExistingInit = 0;
2041   if (!StructuredList)
2042     ExistingInit = SyntacticToSemantic.lookup(IList);
2043   else if (StructuredIndex < StructuredList->getNumInits())
2044     ExistingInit = StructuredList->getInit(StructuredIndex);
2045 
2046   if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
2047     return Result;
2048 
2049   if (ExistingInit) {
2050     // We are creating an initializer list that initializes the
2051     // subobjects of the current object, but there was already an
2052     // initialization that completely initialized the current
2053     // subobject, e.g., by a compound literal:
2054     //
2055     // struct X { int a, b; };
2056     // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2057     //
2058     // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2059     // designated initializer re-initializes the whole
2060     // subobject [0], overwriting previous initializers.
2061     SemaRef.Diag(InitRange.getBegin(),
2062                  diag::warn_subobject_initializer_overrides)
2063       << InitRange;
2064     SemaRef.Diag(ExistingInit->getLocStart(),
2065                   diag::note_previous_initializer)
2066       << /*FIXME:has side effects=*/0
2067       << ExistingInit->getSourceRange();
2068   }
2069 
2070   InitListExpr *Result
2071     = new (SemaRef.Context) InitListExpr(SemaRef.Context,
2072                                          InitRange.getBegin(), 0, 0,
2073                                          InitRange.getEnd());
2074 
2075   QualType ResultType = CurrentObjectType;
2076   if (!ResultType->isArrayType())
2077     ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
2078   Result->setType(ResultType);
2079 
2080   // Pre-allocate storage for the structured initializer list.
2081   unsigned NumElements = 0;
2082   unsigned NumInits = 0;
2083   bool GotNumInits = false;
2084   if (!StructuredList) {
2085     NumInits = IList->getNumInits();
2086     GotNumInits = true;
2087   } else if (Index < IList->getNumInits()) {
2088     if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
2089       NumInits = SubList->getNumInits();
2090       GotNumInits = true;
2091     }
2092   }
2093 
2094   if (const ArrayType *AType
2095       = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
2096     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
2097       NumElements = CAType->getSize().getZExtValue();
2098       // Simple heuristic so that we don't allocate a very large
2099       // initializer with many empty entries at the end.
2100       if (GotNumInits && NumElements > NumInits)
2101         NumElements = 0;
2102     }
2103   } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
2104     NumElements = VType->getNumElements();
2105   else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
2106     RecordDecl *RDecl = RType->getDecl();
2107     if (RDecl->isUnion())
2108       NumElements = 1;
2109     else
2110       NumElements = std::distance(RDecl->field_begin(),
2111                                   RDecl->field_end());
2112   }
2113 
2114   Result->reserveInits(SemaRef.Context, NumElements);
2115 
2116   // Link this new initializer list into the structured initializer
2117   // lists.
2118   if (StructuredList)
2119     StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
2120   else {
2121     Result->setSyntacticForm(IList);
2122     SyntacticToSemantic[IList] = Result;
2123   }
2124 
2125   return Result;
2126 }
2127 
2128 /// Update the initializer at index @p StructuredIndex within the
2129 /// structured initializer list to the value @p expr.
2130 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
2131                                                   unsigned &StructuredIndex,
2132                                                   Expr *expr) {
2133   // No structured initializer list to update
2134   if (!StructuredList)
2135     return;
2136 
2137   if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
2138                                                   StructuredIndex, expr)) {
2139     // This initializer overwrites a previous initializer. Warn.
2140     SemaRef.Diag(expr->getLocStart(),
2141                   diag::warn_initializer_overrides)
2142       << expr->getSourceRange();
2143     SemaRef.Diag(PrevInit->getLocStart(),
2144                   diag::note_previous_initializer)
2145       << /*FIXME:has side effects=*/0
2146       << PrevInit->getSourceRange();
2147   }
2148 
2149   ++StructuredIndex;
2150 }
2151 
2152 /// Check that the given Index expression is a valid array designator
2153 /// value. This is essentially just a wrapper around
2154 /// VerifyIntegerConstantExpression that also checks for negative values
2155 /// and produces a reasonable diagnostic if there is a
2156 /// failure. Returns the index expression, possibly with an implicit cast
2157 /// added, on success.  If everything went okay, Value will receive the
2158 /// value of the constant expression.
2159 static ExprResult
2160 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
2161   SourceLocation Loc = Index->getLocStart();
2162 
2163   // Make sure this is an integer constant expression.
2164   ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value);
2165   if (Result.isInvalid())
2166     return Result;
2167 
2168   if (Value.isSigned() && Value.isNegative())
2169     return S.Diag(Loc, diag::err_array_designator_negative)
2170       << Value.toString(10) << Index->getSourceRange();
2171 
2172   Value.setIsUnsigned(true);
2173   return Result;
2174 }
2175 
2176 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
2177                                             SourceLocation Loc,
2178                                             bool GNUSyntax,
2179                                             ExprResult Init) {
2180   typedef DesignatedInitExpr::Designator ASTDesignator;
2181 
2182   bool Invalid = false;
2183   SmallVector<ASTDesignator, 32> Designators;
2184   SmallVector<Expr *, 32> InitExpressions;
2185 
2186   // Build designators and check array designator expressions.
2187   for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
2188     const Designator &D = Desig.getDesignator(Idx);
2189     switch (D.getKind()) {
2190     case Designator::FieldDesignator:
2191       Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
2192                                           D.getFieldLoc()));
2193       break;
2194 
2195     case Designator::ArrayDesignator: {
2196       Expr *Index = static_cast<Expr *>(D.getArrayIndex());
2197       llvm::APSInt IndexValue;
2198       if (!Index->isTypeDependent() && !Index->isValueDependent())
2199         Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).take();
2200       if (!Index)
2201         Invalid = true;
2202       else {
2203         Designators.push_back(ASTDesignator(InitExpressions.size(),
2204                                             D.getLBracketLoc(),
2205                                             D.getRBracketLoc()));
2206         InitExpressions.push_back(Index);
2207       }
2208       break;
2209     }
2210 
2211     case Designator::ArrayRangeDesignator: {
2212       Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
2213       Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
2214       llvm::APSInt StartValue;
2215       llvm::APSInt EndValue;
2216       bool StartDependent = StartIndex->isTypeDependent() ||
2217                             StartIndex->isValueDependent();
2218       bool EndDependent = EndIndex->isTypeDependent() ||
2219                           EndIndex->isValueDependent();
2220       if (!StartDependent)
2221         StartIndex =
2222             CheckArrayDesignatorExpr(*this, StartIndex, StartValue).take();
2223       if (!EndDependent)
2224         EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).take();
2225 
2226       if (!StartIndex || !EndIndex)
2227         Invalid = true;
2228       else {
2229         // Make sure we're comparing values with the same bit width.
2230         if (StartDependent || EndDependent) {
2231           // Nothing to compute.
2232         } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
2233           EndValue = EndValue.extend(StartValue.getBitWidth());
2234         else if (StartValue.getBitWidth() < EndValue.getBitWidth())
2235           StartValue = StartValue.extend(EndValue.getBitWidth());
2236 
2237         if (!StartDependent && !EndDependent && EndValue < StartValue) {
2238           Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
2239             << StartValue.toString(10) << EndValue.toString(10)
2240             << StartIndex->getSourceRange() << EndIndex->getSourceRange();
2241           Invalid = true;
2242         } else {
2243           Designators.push_back(ASTDesignator(InitExpressions.size(),
2244                                               D.getLBracketLoc(),
2245                                               D.getEllipsisLoc(),
2246                                               D.getRBracketLoc()));
2247           InitExpressions.push_back(StartIndex);
2248           InitExpressions.push_back(EndIndex);
2249         }
2250       }
2251       break;
2252     }
2253     }
2254   }
2255 
2256   if (Invalid || Init.isInvalid())
2257     return ExprError();
2258 
2259   // Clear out the expressions within the designation.
2260   Desig.ClearExprs(*this);
2261 
2262   DesignatedInitExpr *DIE
2263     = DesignatedInitExpr::Create(Context,
2264                                  Designators.data(), Designators.size(),
2265                                  InitExpressions.data(), InitExpressions.size(),
2266                                  Loc, GNUSyntax, Init.takeAs<Expr>());
2267 
2268   if (!getLangOpts().C99)
2269     Diag(DIE->getLocStart(), diag::ext_designated_init)
2270       << DIE->getSourceRange();
2271 
2272   return Owned(DIE);
2273 }
2274 
2275 //===----------------------------------------------------------------------===//
2276 // Initialization entity
2277 //===----------------------------------------------------------------------===//
2278 
2279 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
2280                                      const InitializedEntity &Parent)
2281   : Parent(&Parent), Index(Index)
2282 {
2283   if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
2284     Kind = EK_ArrayElement;
2285     Type = AT->getElementType();
2286   } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
2287     Kind = EK_VectorElement;
2288     Type = VT->getElementType();
2289   } else {
2290     const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
2291     assert(CT && "Unexpected type");
2292     Kind = EK_ComplexElement;
2293     Type = CT->getElementType();
2294   }
2295 }
2296 
2297 InitializedEntity InitializedEntity::InitializeBase(ASTContext &Context,
2298                                                     CXXBaseSpecifier *Base,
2299                                                     bool IsInheritedVirtualBase)
2300 {
2301   InitializedEntity Result;
2302   Result.Kind = EK_Base;
2303   Result.Base = reinterpret_cast<uintptr_t>(Base);
2304   if (IsInheritedVirtualBase)
2305     Result.Base |= 0x01;
2306 
2307   Result.Type = Base->getType();
2308   return Result;
2309 }
2310 
2311 DeclarationName InitializedEntity::getName() const {
2312   switch (getKind()) {
2313   case EK_Parameter: {
2314     ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2315     return (D ? D->getDeclName() : DeclarationName());
2316   }
2317 
2318   case EK_Variable:
2319   case EK_Member:
2320     return VariableOrMember->getDeclName();
2321 
2322   case EK_LambdaCapture:
2323     return Capture.Var->getDeclName();
2324 
2325   case EK_Result:
2326   case EK_Exception:
2327   case EK_New:
2328   case EK_Temporary:
2329   case EK_Base:
2330   case EK_Delegating:
2331   case EK_ArrayElement:
2332   case EK_VectorElement:
2333   case EK_ComplexElement:
2334   case EK_BlockElement:
2335     return DeclarationName();
2336   }
2337 
2338   llvm_unreachable("Invalid EntityKind!");
2339 }
2340 
2341 DeclaratorDecl *InitializedEntity::getDecl() const {
2342   switch (getKind()) {
2343   case EK_Variable:
2344   case EK_Member:
2345     return VariableOrMember;
2346 
2347   case EK_Parameter:
2348     return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2349 
2350   case EK_Result:
2351   case EK_Exception:
2352   case EK_New:
2353   case EK_Temporary:
2354   case EK_Base:
2355   case EK_Delegating:
2356   case EK_ArrayElement:
2357   case EK_VectorElement:
2358   case EK_ComplexElement:
2359   case EK_BlockElement:
2360   case EK_LambdaCapture:
2361     return 0;
2362   }
2363 
2364   llvm_unreachable("Invalid EntityKind!");
2365 }
2366 
2367 bool InitializedEntity::allowsNRVO() const {
2368   switch (getKind()) {
2369   case EK_Result:
2370   case EK_Exception:
2371     return LocAndNRVO.NRVO;
2372 
2373   case EK_Variable:
2374   case EK_Parameter:
2375   case EK_Member:
2376   case EK_New:
2377   case EK_Temporary:
2378   case EK_Base:
2379   case EK_Delegating:
2380   case EK_ArrayElement:
2381   case EK_VectorElement:
2382   case EK_ComplexElement:
2383   case EK_BlockElement:
2384   case EK_LambdaCapture:
2385     break;
2386   }
2387 
2388   return false;
2389 }
2390 
2391 //===----------------------------------------------------------------------===//
2392 // Initialization sequence
2393 //===----------------------------------------------------------------------===//
2394 
2395 void InitializationSequence::Step::Destroy() {
2396   switch (Kind) {
2397   case SK_ResolveAddressOfOverloadedFunction:
2398   case SK_CastDerivedToBaseRValue:
2399   case SK_CastDerivedToBaseXValue:
2400   case SK_CastDerivedToBaseLValue:
2401   case SK_BindReference:
2402   case SK_BindReferenceToTemporary:
2403   case SK_ExtraneousCopyToTemporary:
2404   case SK_UserConversion:
2405   case SK_QualificationConversionRValue:
2406   case SK_QualificationConversionXValue:
2407   case SK_QualificationConversionLValue:
2408   case SK_ListInitialization:
2409   case SK_ListConstructorCall:
2410   case SK_UnwrapInitList:
2411   case SK_RewrapInitList:
2412   case SK_ConstructorInitialization:
2413   case SK_ZeroInitialization:
2414   case SK_CAssignment:
2415   case SK_StringInit:
2416   case SK_ObjCObjectConversion:
2417   case SK_ArrayInit:
2418   case SK_ParenthesizedArrayInit:
2419   case SK_PassByIndirectCopyRestore:
2420   case SK_PassByIndirectRestore:
2421   case SK_ProduceObjCObject:
2422   case SK_StdInitializerList:
2423     break;
2424 
2425   case SK_ConversionSequence:
2426     delete ICS;
2427   }
2428 }
2429 
2430 bool InitializationSequence::isDirectReferenceBinding() const {
2431   return !Steps.empty() && Steps.back().Kind == SK_BindReference;
2432 }
2433 
2434 bool InitializationSequence::isAmbiguous() const {
2435   if (!Failed())
2436     return false;
2437 
2438   switch (getFailureKind()) {
2439   case FK_TooManyInitsForReference:
2440   case FK_ArrayNeedsInitList:
2441   case FK_ArrayNeedsInitListOrStringLiteral:
2442   case FK_AddressOfOverloadFailed: // FIXME: Could do better
2443   case FK_NonConstLValueReferenceBindingToTemporary:
2444   case FK_NonConstLValueReferenceBindingToUnrelated:
2445   case FK_RValueReferenceBindingToLValue:
2446   case FK_ReferenceInitDropsQualifiers:
2447   case FK_ReferenceInitFailed:
2448   case FK_ConversionFailed:
2449   case FK_ConversionFromPropertyFailed:
2450   case FK_TooManyInitsForScalar:
2451   case FK_ReferenceBindingToInitList:
2452   case FK_InitListBadDestinationType:
2453   case FK_DefaultInitOfConst:
2454   case FK_Incomplete:
2455   case FK_ArrayTypeMismatch:
2456   case FK_NonConstantArrayInit:
2457   case FK_ListInitializationFailed:
2458   case FK_VariableLengthArrayHasInitializer:
2459   case FK_PlaceholderType:
2460   case FK_InitListElementCopyFailure:
2461   case FK_ExplicitConstructor:
2462     return false;
2463 
2464   case FK_ReferenceInitOverloadFailed:
2465   case FK_UserConversionOverloadFailed:
2466   case FK_ConstructorOverloadFailed:
2467   case FK_ListConstructorOverloadFailed:
2468     return FailedOverloadResult == OR_Ambiguous;
2469   }
2470 
2471   llvm_unreachable("Invalid EntityKind!");
2472 }
2473 
2474 bool InitializationSequence::isConstructorInitialization() const {
2475   return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
2476 }
2477 
2478 void
2479 InitializationSequence
2480 ::AddAddressOverloadResolutionStep(FunctionDecl *Function,
2481                                    DeclAccessPair Found,
2482                                    bool HadMultipleCandidates) {
2483   Step S;
2484   S.Kind = SK_ResolveAddressOfOverloadedFunction;
2485   S.Type = Function->getType();
2486   S.Function.HadMultipleCandidates = HadMultipleCandidates;
2487   S.Function.Function = Function;
2488   S.Function.FoundDecl = Found;
2489   Steps.push_back(S);
2490 }
2491 
2492 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
2493                                                       ExprValueKind VK) {
2494   Step S;
2495   switch (VK) {
2496   case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
2497   case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
2498   case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
2499   }
2500   S.Type = BaseType;
2501   Steps.push_back(S);
2502 }
2503 
2504 void InitializationSequence::AddReferenceBindingStep(QualType T,
2505                                                      bool BindingTemporary) {
2506   Step S;
2507   S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
2508   S.Type = T;
2509   Steps.push_back(S);
2510 }
2511 
2512 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
2513   Step S;
2514   S.Kind = SK_ExtraneousCopyToTemporary;
2515   S.Type = T;
2516   Steps.push_back(S);
2517 }
2518 
2519 void
2520 InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
2521                                               DeclAccessPair FoundDecl,
2522                                               QualType T,
2523                                               bool HadMultipleCandidates) {
2524   Step S;
2525   S.Kind = SK_UserConversion;
2526   S.Type = T;
2527   S.Function.HadMultipleCandidates = HadMultipleCandidates;
2528   S.Function.Function = Function;
2529   S.Function.FoundDecl = FoundDecl;
2530   Steps.push_back(S);
2531 }
2532 
2533 void InitializationSequence::AddQualificationConversionStep(QualType Ty,
2534                                                             ExprValueKind VK) {
2535   Step S;
2536   S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
2537   switch (VK) {
2538   case VK_RValue:
2539     S.Kind = SK_QualificationConversionRValue;
2540     break;
2541   case VK_XValue:
2542     S.Kind = SK_QualificationConversionXValue;
2543     break;
2544   case VK_LValue:
2545     S.Kind = SK_QualificationConversionLValue;
2546     break;
2547   }
2548   S.Type = Ty;
2549   Steps.push_back(S);
2550 }
2551 
2552 void InitializationSequence::AddConversionSequenceStep(
2553                                        const ImplicitConversionSequence &ICS,
2554                                                        QualType T) {
2555   Step S;
2556   S.Kind = SK_ConversionSequence;
2557   S.Type = T;
2558   S.ICS = new ImplicitConversionSequence(ICS);
2559   Steps.push_back(S);
2560 }
2561 
2562 void InitializationSequence::AddListInitializationStep(QualType T) {
2563   Step S;
2564   S.Kind = SK_ListInitialization;
2565   S.Type = T;
2566   Steps.push_back(S);
2567 }
2568 
2569 void
2570 InitializationSequence
2571 ::AddConstructorInitializationStep(CXXConstructorDecl *Constructor,
2572                                    AccessSpecifier Access,
2573                                    QualType T,
2574                                    bool HadMultipleCandidates,
2575                                    bool FromInitList, bool AsInitList) {
2576   Step S;
2577   S.Kind = FromInitList && !AsInitList ? SK_ListConstructorCall
2578                                        : SK_ConstructorInitialization;
2579   S.Type = T;
2580   S.Function.HadMultipleCandidates = HadMultipleCandidates;
2581   S.Function.Function = Constructor;
2582   S.Function.FoundDecl = DeclAccessPair::make(Constructor, Access);
2583   Steps.push_back(S);
2584 }
2585 
2586 void InitializationSequence::AddZeroInitializationStep(QualType T) {
2587   Step S;
2588   S.Kind = SK_ZeroInitialization;
2589   S.Type = T;
2590   Steps.push_back(S);
2591 }
2592 
2593 void InitializationSequence::AddCAssignmentStep(QualType T) {
2594   Step S;
2595   S.Kind = SK_CAssignment;
2596   S.Type = T;
2597   Steps.push_back(S);
2598 }
2599 
2600 void InitializationSequence::AddStringInitStep(QualType T) {
2601   Step S;
2602   S.Kind = SK_StringInit;
2603   S.Type = T;
2604   Steps.push_back(S);
2605 }
2606 
2607 void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
2608   Step S;
2609   S.Kind = SK_ObjCObjectConversion;
2610   S.Type = T;
2611   Steps.push_back(S);
2612 }
2613 
2614 void InitializationSequence::AddArrayInitStep(QualType T) {
2615   Step S;
2616   S.Kind = SK_ArrayInit;
2617   S.Type = T;
2618   Steps.push_back(S);
2619 }
2620 
2621 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
2622   Step S;
2623   S.Kind = SK_ParenthesizedArrayInit;
2624   S.Type = T;
2625   Steps.push_back(S);
2626 }
2627 
2628 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
2629                                                               bool shouldCopy) {
2630   Step s;
2631   s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
2632                        : SK_PassByIndirectRestore);
2633   s.Type = type;
2634   Steps.push_back(s);
2635 }
2636 
2637 void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
2638   Step S;
2639   S.Kind = SK_ProduceObjCObject;
2640   S.Type = T;
2641   Steps.push_back(S);
2642 }
2643 
2644 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
2645   Step S;
2646   S.Kind = SK_StdInitializerList;
2647   S.Type = T;
2648   Steps.push_back(S);
2649 }
2650 
2651 void InitializationSequence::RewrapReferenceInitList(QualType T,
2652                                                      InitListExpr *Syntactic) {
2653   assert(Syntactic->getNumInits() == 1 &&
2654          "Can only rewrap trivial init lists.");
2655   Step S;
2656   S.Kind = SK_UnwrapInitList;
2657   S.Type = Syntactic->getInit(0)->getType();
2658   Steps.insert(Steps.begin(), S);
2659 
2660   S.Kind = SK_RewrapInitList;
2661   S.Type = T;
2662   S.WrappingSyntacticList = Syntactic;
2663   Steps.push_back(S);
2664 }
2665 
2666 void InitializationSequence::SetOverloadFailure(FailureKind Failure,
2667                                                 OverloadingResult Result) {
2668   setSequenceKind(FailedSequence);
2669   this->Failure = Failure;
2670   this->FailedOverloadResult = Result;
2671 }
2672 
2673 //===----------------------------------------------------------------------===//
2674 // Attempt initialization
2675 //===----------------------------------------------------------------------===//
2676 
2677 static void MaybeProduceObjCObject(Sema &S,
2678                                    InitializationSequence &Sequence,
2679                                    const InitializedEntity &Entity) {
2680   if (!S.getLangOpts().ObjCAutoRefCount) return;
2681 
2682   /// When initializing a parameter, produce the value if it's marked
2683   /// __attribute__((ns_consumed)).
2684   if (Entity.getKind() == InitializedEntity::EK_Parameter) {
2685     if (!Entity.isParameterConsumed())
2686       return;
2687 
2688     assert(Entity.getType()->isObjCRetainableType() &&
2689            "consuming an object of unretainable type?");
2690     Sequence.AddProduceObjCObjectStep(Entity.getType());
2691 
2692   /// When initializing a return value, if the return type is a
2693   /// retainable type, then returns need to immediately retain the
2694   /// object.  If an autorelease is required, it will be done at the
2695   /// last instant.
2696   } else if (Entity.getKind() == InitializedEntity::EK_Result) {
2697     if (!Entity.getType()->isObjCRetainableType())
2698       return;
2699 
2700     Sequence.AddProduceObjCObjectStep(Entity.getType());
2701   }
2702 }
2703 
2704 /// \brief When initializing from init list via constructor, handle
2705 /// initialization of an object of type std::initializer_list<T>.
2706 ///
2707 /// \return true if we have handled initialization of an object of type
2708 /// std::initializer_list<T>, false otherwise.
2709 static bool TryInitializerListConstruction(Sema &S,
2710                                            InitListExpr *List,
2711                                            QualType DestType,
2712                                            InitializationSequence &Sequence) {
2713   QualType E;
2714   if (!S.isStdInitializerList(DestType, &E))
2715     return false;
2716 
2717   // Check that each individual element can be copy-constructed. But since we
2718   // have no place to store further information, we'll recalculate everything
2719   // later.
2720   InitializedEntity HiddenArray = InitializedEntity::InitializeTemporary(
2721       S.Context.getConstantArrayType(E,
2722           llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
2723                       List->getNumInits()),
2724           ArrayType::Normal, 0));
2725   InitializedEntity Element = InitializedEntity::InitializeElement(S.Context,
2726       0, HiddenArray);
2727   for (unsigned i = 0, n = List->getNumInits(); i < n; ++i) {
2728     Element.setElementIndex(i);
2729     if (!S.CanPerformCopyInitialization(Element, List->getInit(i))) {
2730       Sequence.SetFailed(
2731           InitializationSequence::FK_InitListElementCopyFailure);
2732       return true;
2733     }
2734   }
2735   Sequence.AddStdInitializerListConstructionStep(DestType);
2736   return true;
2737 }
2738 
2739 static OverloadingResult
2740 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
2741                            Expr **Args, unsigned NumArgs,
2742                            OverloadCandidateSet &CandidateSet,
2743                            DeclContext::lookup_iterator Con,
2744                            DeclContext::lookup_iterator ConEnd,
2745                            OverloadCandidateSet::iterator &Best,
2746                            bool CopyInitializing, bool AllowExplicit,
2747                            bool OnlyListConstructors, bool InitListSyntax) {
2748   CandidateSet.clear();
2749 
2750   for (; Con != ConEnd; ++Con) {
2751     NamedDecl *D = *Con;
2752     DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
2753     bool SuppressUserConversions = false;
2754 
2755     // Find the constructor (which may be a template).
2756     CXXConstructorDecl *Constructor = 0;
2757     FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
2758     if (ConstructorTmpl)
2759       Constructor = cast<CXXConstructorDecl>(
2760                                            ConstructorTmpl->getTemplatedDecl());
2761     else {
2762       Constructor = cast<CXXConstructorDecl>(D);
2763 
2764       // If we're performing copy initialization using a copy constructor, we
2765       // suppress user-defined conversions on the arguments. We do the same for
2766       // move constructors.
2767       if ((CopyInitializing || (InitListSyntax && NumArgs == 1)) &&
2768           Constructor->isCopyOrMoveConstructor())
2769         SuppressUserConversions = true;
2770     }
2771 
2772     if (!Constructor->isInvalidDecl() &&
2773         (AllowExplicit || !Constructor->isExplicit()) &&
2774         (!OnlyListConstructors || S.isInitListConstructor(Constructor))) {
2775       if (ConstructorTmpl)
2776         S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
2777                                        /*ExplicitArgs*/ 0,
2778                                        llvm::makeArrayRef(Args, NumArgs),
2779                                        CandidateSet, SuppressUserConversions);
2780       else {
2781         // C++ [over.match.copy]p1:
2782         //   - When initializing a temporary to be bound to the first parameter
2783         //     of a constructor that takes a reference to possibly cv-qualified
2784         //     T as its first argument, called with a single argument in the
2785         //     context of direct-initialization, explicit conversion functions
2786         //     are also considered.
2787         bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
2788                                  NumArgs == 1 &&
2789                                  Constructor->isCopyOrMoveConstructor();
2790         S.AddOverloadCandidate(Constructor, FoundDecl,
2791                                llvm::makeArrayRef(Args, NumArgs), CandidateSet,
2792                                SuppressUserConversions,
2793                                /*PartialOverloading=*/false,
2794                                /*AllowExplicit=*/AllowExplicitConv);
2795       }
2796     }
2797   }
2798 
2799   // Perform overload resolution and return the result.
2800   return CandidateSet.BestViableFunction(S, DeclLoc, Best);
2801 }
2802 
2803 /// \brief Attempt initialization by constructor (C++ [dcl.init]), which
2804 /// enumerates the constructors of the initialized entity and performs overload
2805 /// resolution to select the best.
2806 /// If InitListSyntax is true, this is list-initialization of a non-aggregate
2807 /// class type.
2808 static void TryConstructorInitialization(Sema &S,
2809                                          const InitializedEntity &Entity,
2810                                          const InitializationKind &Kind,
2811                                          Expr **Args, unsigned NumArgs,
2812                                          QualType DestType,
2813                                          InitializationSequence &Sequence,
2814                                          bool InitListSyntax = false) {
2815   assert((!InitListSyntax || (NumArgs == 1 && isa<InitListExpr>(Args[0]))) &&
2816          "InitListSyntax must come with a single initializer list argument.");
2817 
2818   // Check constructor arguments for self reference.
2819   if (DeclaratorDecl *DD = Entity.getDecl())
2820     // Parameters arguments are occassionially constructed with itself,
2821     // for instance, in recursive functions.  Skip them.
2822     if (!isa<ParmVarDecl>(DD))
2823       for (unsigned i = 0; i < NumArgs; ++i)
2824         S.CheckSelfReference(DD, Args[i]);
2825 
2826   // The type we're constructing needs to be complete.
2827   if (S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
2828     Sequence.setIncompleteTypeFailure(DestType);
2829     return;
2830   }
2831 
2832   const RecordType *DestRecordType = DestType->getAs<RecordType>();
2833   assert(DestRecordType && "Constructor initialization requires record type");
2834   CXXRecordDecl *DestRecordDecl
2835     = cast<CXXRecordDecl>(DestRecordType->getDecl());
2836 
2837   // Build the candidate set directly in the initialization sequence
2838   // structure, so that it will persist if we fail.
2839   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
2840 
2841   // Determine whether we are allowed to call explicit constructors or
2842   // explicit conversion operators.
2843   bool AllowExplicit = Kind.AllowExplicit() || InitListSyntax;
2844   bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
2845 
2846   //   - Otherwise, if T is a class type, constructors are considered. The
2847   //     applicable constructors are enumerated, and the best one is chosen
2848   //     through overload resolution.
2849   DeclContext::lookup_iterator ConStart, ConEnd;
2850   llvm::tie(ConStart, ConEnd) = S.LookupConstructors(DestRecordDecl);
2851 
2852   OverloadingResult Result = OR_No_Viable_Function;
2853   OverloadCandidateSet::iterator Best;
2854   bool AsInitializerList = false;
2855 
2856   // C++11 [over.match.list]p1:
2857   //   When objects of non-aggregate type T are list-initialized, overload
2858   //   resolution selects the constructor in two phases:
2859   //   - Initially, the candidate functions are the initializer-list
2860   //     constructors of the class T and the argument list consists of the
2861   //     initializer list as a single argument.
2862   if (InitListSyntax) {
2863     InitListExpr *ILE = cast<InitListExpr>(Args[0]);
2864     AsInitializerList = true;
2865 
2866     // If the initializer list has no elements and T has a default constructor,
2867     // the first phase is omitted.
2868     if (ILE->getNumInits() != 0 ||
2869         (!DestRecordDecl->hasDeclaredDefaultConstructor() &&
2870          !DestRecordDecl->needsImplicitDefaultConstructor()))
2871       Result = ResolveConstructorOverload(S, Kind.getLocation(), Args, NumArgs,
2872                                           CandidateSet, ConStart, ConEnd, Best,
2873                                           CopyInitialization, AllowExplicit,
2874                                           /*OnlyListConstructor=*/true,
2875                                           InitListSyntax);
2876 
2877     // Time to unwrap the init list.
2878     Args = ILE->getInits();
2879     NumArgs = ILE->getNumInits();
2880   }
2881 
2882   // C++11 [over.match.list]p1:
2883   //   - If no viable initializer-list constructor is found, overload resolution
2884   //     is performed again, where the candidate functions are all the
2885   //     constructors of the class T and the argument list consists of the
2886   //     elements of the initializer list.
2887   if (Result == OR_No_Viable_Function) {
2888     AsInitializerList = false;
2889     Result = ResolveConstructorOverload(S, Kind.getLocation(), Args, NumArgs,
2890                                         CandidateSet, ConStart, ConEnd, Best,
2891                                         CopyInitialization, AllowExplicit,
2892                                         /*OnlyListConstructors=*/false,
2893                                         InitListSyntax);
2894   }
2895   if (Result) {
2896     Sequence.SetOverloadFailure(InitListSyntax ?
2897                       InitializationSequence::FK_ListConstructorOverloadFailed :
2898                       InitializationSequence::FK_ConstructorOverloadFailed,
2899                                 Result);
2900     return;
2901   }
2902 
2903   // C++11 [dcl.init]p6:
2904   //   If a program calls for the default initialization of an object
2905   //   of a const-qualified type T, T shall be a class type with a
2906   //   user-provided default constructor.
2907   if (Kind.getKind() == InitializationKind::IK_Default &&
2908       Entity.getType().isConstQualified() &&
2909       cast<CXXConstructorDecl>(Best->Function)->isImplicit()) {
2910     Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
2911     return;
2912   }
2913 
2914   // C++11 [over.match.list]p1:
2915   //   In copy-list-initialization, if an explicit constructor is chosen, the
2916   //   initializer is ill-formed.
2917   CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
2918   if (InitListSyntax && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
2919     Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
2920     return;
2921   }
2922 
2923   // Add the constructor initialization step. Any cv-qualification conversion is
2924   // subsumed by the initialization.
2925   bool HadMultipleCandidates = (CandidateSet.size() > 1);
2926   Sequence.AddConstructorInitializationStep(CtorDecl,
2927                                             Best->FoundDecl.getAccess(),
2928                                             DestType, HadMultipleCandidates,
2929                                             InitListSyntax, AsInitializerList);
2930 }
2931 
2932 static bool
2933 ResolveOverloadedFunctionForReferenceBinding(Sema &S,
2934                                              Expr *Initializer,
2935                                              QualType &SourceType,
2936                                              QualType &UnqualifiedSourceType,
2937                                              QualType UnqualifiedTargetType,
2938                                              InitializationSequence &Sequence) {
2939   if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
2940         S.Context.OverloadTy) {
2941     DeclAccessPair Found;
2942     bool HadMultipleCandidates = false;
2943     if (FunctionDecl *Fn
2944         = S.ResolveAddressOfOverloadedFunction(Initializer,
2945                                                UnqualifiedTargetType,
2946                                                false, Found,
2947                                                &HadMultipleCandidates)) {
2948       Sequence.AddAddressOverloadResolutionStep(Fn, Found,
2949                                                 HadMultipleCandidates);
2950       SourceType = Fn->getType();
2951       UnqualifiedSourceType = SourceType.getUnqualifiedType();
2952     } else if (!UnqualifiedTargetType->isRecordType()) {
2953       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
2954       return true;
2955     }
2956   }
2957   return false;
2958 }
2959 
2960 static void TryReferenceInitializationCore(Sema &S,
2961                                            const InitializedEntity &Entity,
2962                                            const InitializationKind &Kind,
2963                                            Expr *Initializer,
2964                                            QualType cv1T1, QualType T1,
2965                                            Qualifiers T1Quals,
2966                                            QualType cv2T2, QualType T2,
2967                                            Qualifiers T2Quals,
2968                                            InitializationSequence &Sequence);
2969 
2970 static void TryValueInitialization(Sema &S,
2971                                    const InitializedEntity &Entity,
2972                                    const InitializationKind &Kind,
2973                                    InitializationSequence &Sequence,
2974                                    InitListExpr *InitList = 0);
2975 
2976 static void TryListInitialization(Sema &S,
2977                                   const InitializedEntity &Entity,
2978                                   const InitializationKind &Kind,
2979                                   InitListExpr *InitList,
2980                                   InitializationSequence &Sequence);
2981 
2982 /// \brief Attempt list initialization of a reference.
2983 static void TryReferenceListInitialization(Sema &S,
2984                                            const InitializedEntity &Entity,
2985                                            const InitializationKind &Kind,
2986                                            InitListExpr *InitList,
2987                                            InitializationSequence &Sequence)
2988 {
2989   // First, catch C++03 where this isn't possible.
2990   if (!S.getLangOpts().CPlusPlus0x) {
2991     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
2992     return;
2993   }
2994 
2995   QualType DestType = Entity.getType();
2996   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
2997   Qualifiers T1Quals;
2998   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
2999 
3000   // Reference initialization via an initializer list works thus:
3001   // If the initializer list consists of a single element that is
3002   // reference-related to the referenced type, bind directly to that element
3003   // (possibly creating temporaries).
3004   // Otherwise, initialize a temporary with the initializer list and
3005   // bind to that.
3006   if (InitList->getNumInits() == 1) {
3007     Expr *Initializer = InitList->getInit(0);
3008     QualType cv2T2 = Initializer->getType();
3009     Qualifiers T2Quals;
3010     QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3011 
3012     // If this fails, creating a temporary wouldn't work either.
3013     if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3014                                                      T1, Sequence))
3015       return;
3016 
3017     SourceLocation DeclLoc = Initializer->getLocStart();
3018     bool dummy1, dummy2, dummy3;
3019     Sema::ReferenceCompareResult RefRelationship
3020       = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1,
3021                                        dummy2, dummy3);
3022     if (RefRelationship >= Sema::Ref_Related) {
3023       // Try to bind the reference here.
3024       TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3025                                      T1Quals, cv2T2, T2, T2Quals, Sequence);
3026       if (Sequence)
3027         Sequence.RewrapReferenceInitList(cv1T1, InitList);
3028       return;
3029     }
3030   }
3031 
3032   // Not reference-related. Create a temporary and bind to that.
3033   InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3034 
3035   TryListInitialization(S, TempEntity, Kind, InitList, Sequence);
3036   if (Sequence) {
3037     if (DestType->isRValueReferenceType() ||
3038         (T1Quals.hasConst() && !T1Quals.hasVolatile()))
3039       Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3040     else
3041       Sequence.SetFailed(
3042           InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3043   }
3044 }
3045 
3046 /// \brief Attempt list initialization (C++0x [dcl.init.list])
3047 static void TryListInitialization(Sema &S,
3048                                   const InitializedEntity &Entity,
3049                                   const InitializationKind &Kind,
3050                                   InitListExpr *InitList,
3051                                   InitializationSequence &Sequence) {
3052   QualType DestType = Entity.getType();
3053 
3054   // C++ doesn't allow scalar initialization with more than one argument.
3055   // But C99 complex numbers are scalars and it makes sense there.
3056   if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
3057       !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
3058     Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
3059     return;
3060   }
3061   if (DestType->isReferenceType()) {
3062     TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence);
3063     return;
3064   }
3065   if (DestType->isRecordType()) {
3066     if (S.RequireCompleteType(InitList->getLocStart(), DestType, 0)) {
3067       Sequence.setIncompleteTypeFailure(DestType);
3068       return;
3069     }
3070 
3071     // C++11 [dcl.init.list]p3:
3072     //   - If T is an aggregate, aggregate initialization is performed.
3073     if (!DestType->isAggregateType()) {
3074       if (S.getLangOpts().CPlusPlus0x) {
3075         //   - Otherwise, if the initializer list has no elements and T is a
3076         //     class type with a default constructor, the object is
3077         //     value-initialized.
3078         if (InitList->getNumInits() == 0) {
3079           CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
3080           if (RD->hasDeclaredDefaultConstructor() ||
3081               RD->needsImplicitDefaultConstructor()) {
3082             TryValueInitialization(S, Entity, Kind, Sequence, InitList);
3083             return;
3084           }
3085         }
3086 
3087         //   - Otherwise, if T is a specialization of std::initializer_list<E>,
3088         //     an initializer_list object constructed [...]
3089         if (TryInitializerListConstruction(S, InitList, DestType, Sequence))
3090           return;
3091 
3092         //   - Otherwise, if T is a class type, constructors are considered.
3093         Expr *Arg = InitList;
3094         TryConstructorInitialization(S, Entity, Kind, &Arg, 1, DestType,
3095                                      Sequence, /*InitListSyntax*/true);
3096       } else
3097         Sequence.SetFailed(
3098             InitializationSequence::FK_InitListBadDestinationType);
3099       return;
3100     }
3101   }
3102 
3103   InitListChecker CheckInitList(S, Entity, InitList,
3104           DestType, /*VerifyOnly=*/true,
3105           Kind.getKind() != InitializationKind::IK_DirectList ||
3106             !S.getLangOpts().CPlusPlus0x);
3107   if (CheckInitList.HadError()) {
3108     Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
3109     return;
3110   }
3111 
3112   // Add the list initialization step with the built init list.
3113   Sequence.AddListInitializationStep(DestType);
3114 }
3115 
3116 /// \brief Try a reference initialization that involves calling a conversion
3117 /// function.
3118 static OverloadingResult TryRefInitWithConversionFunction(Sema &S,
3119                                              const InitializedEntity &Entity,
3120                                              const InitializationKind &Kind,
3121                                              Expr *Initializer,
3122                                              bool AllowRValues,
3123                                              InitializationSequence &Sequence) {
3124   QualType DestType = Entity.getType();
3125   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3126   QualType T1 = cv1T1.getUnqualifiedType();
3127   QualType cv2T2 = Initializer->getType();
3128   QualType T2 = cv2T2.getUnqualifiedType();
3129 
3130   bool DerivedToBase;
3131   bool ObjCConversion;
3132   bool ObjCLifetimeConversion;
3133   assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),
3134                                          T1, T2, DerivedToBase,
3135                                          ObjCConversion,
3136                                          ObjCLifetimeConversion) &&
3137          "Must have incompatible references when binding via conversion");
3138   (void)DerivedToBase;
3139   (void)ObjCConversion;
3140   (void)ObjCLifetimeConversion;
3141 
3142   // Build the candidate set directly in the initialization sequence
3143   // structure, so that it will persist if we fail.
3144   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3145   CandidateSet.clear();
3146 
3147   // Determine whether we are allowed to call explicit constructors or
3148   // explicit conversion operators.
3149   bool AllowExplicit = Kind.AllowExplicit();
3150   bool AllowExplicitConvs = Kind.allowExplicitConversionFunctions();
3151 
3152   const RecordType *T1RecordType = 0;
3153   if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
3154       !S.RequireCompleteType(Kind.getLocation(), T1, 0)) {
3155     // The type we're converting to is a class type. Enumerate its constructors
3156     // to see if there is a suitable conversion.
3157     CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
3158 
3159     DeclContext::lookup_iterator Con, ConEnd;
3160     for (llvm::tie(Con, ConEnd) = S.LookupConstructors(T1RecordDecl);
3161          Con != ConEnd; ++Con) {
3162       NamedDecl *D = *Con;
3163       DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3164 
3165       // Find the constructor (which may be a template).
3166       CXXConstructorDecl *Constructor = 0;
3167       FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
3168       if (ConstructorTmpl)
3169         Constructor = cast<CXXConstructorDecl>(
3170                                          ConstructorTmpl->getTemplatedDecl());
3171       else
3172         Constructor = cast<CXXConstructorDecl>(D);
3173 
3174       if (!Constructor->isInvalidDecl() &&
3175           Constructor->isConvertingConstructor(AllowExplicit)) {
3176         if (ConstructorTmpl)
3177           S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3178                                          /*ExplicitArgs*/ 0,
3179                                          Initializer, CandidateSet,
3180                                          /*SuppressUserConversions=*/true);
3181         else
3182           S.AddOverloadCandidate(Constructor, FoundDecl,
3183                                  Initializer, CandidateSet,
3184                                  /*SuppressUserConversions=*/true);
3185       }
3186     }
3187   }
3188   if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
3189     return OR_No_Viable_Function;
3190 
3191   const RecordType *T2RecordType = 0;
3192   if ((T2RecordType = T2->getAs<RecordType>()) &&
3193       !S.RequireCompleteType(Kind.getLocation(), T2, 0)) {
3194     // The type we're converting from is a class type, enumerate its conversion
3195     // functions.
3196     CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
3197 
3198     const UnresolvedSetImpl *Conversions
3199       = T2RecordDecl->getVisibleConversionFunctions();
3200     for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
3201            E = Conversions->end(); I != E; ++I) {
3202       NamedDecl *D = *I;
3203       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3204       if (isa<UsingShadowDecl>(D))
3205         D = cast<UsingShadowDecl>(D)->getTargetDecl();
3206 
3207       FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3208       CXXConversionDecl *Conv;
3209       if (ConvTemplate)
3210         Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3211       else
3212         Conv = cast<CXXConversionDecl>(D);
3213 
3214       // If the conversion function doesn't return a reference type,
3215       // it can't be considered for this conversion unless we're allowed to
3216       // consider rvalues.
3217       // FIXME: Do we need to make sure that we only consider conversion
3218       // candidates with reference-compatible results? That might be needed to
3219       // break recursion.
3220       if ((AllowExplicitConvs || !Conv->isExplicit()) &&
3221           (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
3222         if (ConvTemplate)
3223           S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3224                                            ActingDC, Initializer,
3225                                            DestType, CandidateSet);
3226         else
3227           S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
3228                                    Initializer, DestType, CandidateSet);
3229       }
3230     }
3231   }
3232   if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
3233     return OR_No_Viable_Function;
3234 
3235   SourceLocation DeclLoc = Initializer->getLocStart();
3236 
3237   // Perform overload resolution. If it fails, return the failed result.
3238   OverloadCandidateSet::iterator Best;
3239   if (OverloadingResult Result
3240         = CandidateSet.BestViableFunction(S, DeclLoc, Best, true))
3241     return Result;
3242 
3243   FunctionDecl *Function = Best->Function;
3244 
3245   // This is the overload that will actually be used for the initialization, so
3246   // mark it as used.
3247   S.MarkFunctionReferenced(DeclLoc, Function);
3248 
3249   // Compute the returned type of the conversion.
3250   if (isa<CXXConversionDecl>(Function))
3251     T2 = Function->getResultType();
3252   else
3253     T2 = cv1T1;
3254 
3255   // Add the user-defined conversion step.
3256   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3257   Sequence.AddUserConversionStep(Function, Best->FoundDecl,
3258                                  T2.getNonLValueExprType(S.Context),
3259                                  HadMultipleCandidates);
3260 
3261   // Determine whether we need to perform derived-to-base or
3262   // cv-qualification adjustments.
3263   ExprValueKind VK = VK_RValue;
3264   if (T2->isLValueReferenceType())
3265     VK = VK_LValue;
3266   else if (const RValueReferenceType *RRef = T2->getAs<RValueReferenceType>())
3267     VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
3268 
3269   bool NewDerivedToBase = false;
3270   bool NewObjCConversion = false;
3271   bool NewObjCLifetimeConversion = false;
3272   Sema::ReferenceCompareResult NewRefRelationship
3273     = S.CompareReferenceRelationship(DeclLoc, T1,
3274                                      T2.getNonLValueExprType(S.Context),
3275                                      NewDerivedToBase, NewObjCConversion,
3276                                      NewObjCLifetimeConversion);
3277   if (NewRefRelationship == Sema::Ref_Incompatible) {
3278     // If the type we've converted to is not reference-related to the
3279     // type we're looking for, then there is another conversion step
3280     // we need to perform to produce a temporary of the right type
3281     // that we'll be binding to.
3282     ImplicitConversionSequence ICS;
3283     ICS.setStandard();
3284     ICS.Standard = Best->FinalConversion;
3285     T2 = ICS.Standard.getToType(2);
3286     Sequence.AddConversionSequenceStep(ICS, T2);
3287   } else if (NewDerivedToBase)
3288     Sequence.AddDerivedToBaseCastStep(
3289                                 S.Context.getQualifiedType(T1,
3290                                   T2.getNonReferenceType().getQualifiers()),
3291                                       VK);
3292   else if (NewObjCConversion)
3293     Sequence.AddObjCObjectConversionStep(
3294                                 S.Context.getQualifiedType(T1,
3295                                   T2.getNonReferenceType().getQualifiers()));
3296 
3297   if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers())
3298     Sequence.AddQualificationConversionStep(cv1T1, VK);
3299 
3300   Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType());
3301   return OR_Success;
3302 }
3303 
3304 static void CheckCXX98CompatAccessibleCopy(Sema &S,
3305                                            const InitializedEntity &Entity,
3306                                            Expr *CurInitExpr);
3307 
3308 /// \brief Attempt reference initialization (C++0x [dcl.init.ref])
3309 static void TryReferenceInitialization(Sema &S,
3310                                        const InitializedEntity &Entity,
3311                                        const InitializationKind &Kind,
3312                                        Expr *Initializer,
3313                                        InitializationSequence &Sequence) {
3314   QualType DestType = Entity.getType();
3315   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3316   Qualifiers T1Quals;
3317   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3318   QualType cv2T2 = Initializer->getType();
3319   Qualifiers T2Quals;
3320   QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3321 
3322   // If the initializer is the address of an overloaded function, try
3323   // to resolve the overloaded function. If all goes well, T2 is the
3324   // type of the resulting function.
3325   if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3326                                                    T1, Sequence))
3327     return;
3328 
3329   // Delegate everything else to a subfunction.
3330   TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3331                                  T1Quals, cv2T2, T2, T2Quals, Sequence);
3332 }
3333 
3334 /// \brief Reference initialization without resolving overloaded functions.
3335 static void TryReferenceInitializationCore(Sema &S,
3336                                            const InitializedEntity &Entity,
3337                                            const InitializationKind &Kind,
3338                                            Expr *Initializer,
3339                                            QualType cv1T1, QualType T1,
3340                                            Qualifiers T1Quals,
3341                                            QualType cv2T2, QualType T2,
3342                                            Qualifiers T2Quals,
3343                                            InitializationSequence &Sequence) {
3344   QualType DestType = Entity.getType();
3345   SourceLocation DeclLoc = Initializer->getLocStart();
3346   // Compute some basic properties of the types and the initializer.
3347   bool isLValueRef = DestType->isLValueReferenceType();
3348   bool isRValueRef = !isLValueRef;
3349   bool DerivedToBase = false;
3350   bool ObjCConversion = false;
3351   bool ObjCLifetimeConversion = false;
3352   Expr::Classification InitCategory = Initializer->Classify(S.Context);
3353   Sema::ReferenceCompareResult RefRelationship
3354     = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
3355                                      ObjCConversion, ObjCLifetimeConversion);
3356 
3357   // C++0x [dcl.init.ref]p5:
3358   //   A reference to type "cv1 T1" is initialized by an expression of type
3359   //   "cv2 T2" as follows:
3360   //
3361   //     - If the reference is an lvalue reference and the initializer
3362   //       expression
3363   // Note the analogous bullet points for rvlaue refs to functions. Because
3364   // there are no function rvalues in C++, rvalue refs to functions are treated
3365   // like lvalue refs.
3366   OverloadingResult ConvOvlResult = OR_Success;
3367   bool T1Function = T1->isFunctionType();
3368   if (isLValueRef || T1Function) {
3369     if (InitCategory.isLValue() &&
3370         (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
3371          (Kind.isCStyleOrFunctionalCast() &&
3372           RefRelationship == Sema::Ref_Related))) {
3373       //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
3374       //     reference-compatible with "cv2 T2," or
3375       //
3376       // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a
3377       // bit-field when we're determining whether the reference initialization
3378       // can occur. However, we do pay attention to whether it is a bit-field
3379       // to decide whether we're actually binding to a temporary created from
3380       // the bit-field.
3381       if (DerivedToBase)
3382         Sequence.AddDerivedToBaseCastStep(
3383                          S.Context.getQualifiedType(T1, T2Quals),
3384                          VK_LValue);
3385       else if (ObjCConversion)
3386         Sequence.AddObjCObjectConversionStep(
3387                                      S.Context.getQualifiedType(T1, T2Quals));
3388 
3389       if (T1Quals != T2Quals)
3390         Sequence.AddQualificationConversionStep(cv1T1, VK_LValue);
3391       bool BindingTemporary = T1Quals.hasConst() && !T1Quals.hasVolatile() &&
3392         (Initializer->getBitField() || Initializer->refersToVectorElement());
3393       Sequence.AddReferenceBindingStep(cv1T1, BindingTemporary);
3394       return;
3395     }
3396 
3397     //     - has a class type (i.e., T2 is a class type), where T1 is not
3398     //       reference-related to T2, and can be implicitly converted to an
3399     //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
3400     //       with "cv3 T3" (this conversion is selected by enumerating the
3401     //       applicable conversion functions (13.3.1.6) and choosing the best
3402     //       one through overload resolution (13.3)),
3403     // If we have an rvalue ref to function type here, the rhs must be
3404     // an rvalue.
3405     if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
3406         (isLValueRef || InitCategory.isRValue())) {
3407       ConvOvlResult = TryRefInitWithConversionFunction(S, Entity, Kind,
3408                                                        Initializer,
3409                                                    /*AllowRValues=*/isRValueRef,
3410                                                        Sequence);
3411       if (ConvOvlResult == OR_Success)
3412         return;
3413       if (ConvOvlResult != OR_No_Viable_Function) {
3414         Sequence.SetOverloadFailure(
3415                       InitializationSequence::FK_ReferenceInitOverloadFailed,
3416                                     ConvOvlResult);
3417       }
3418     }
3419   }
3420 
3421   //     - Otherwise, the reference shall be an lvalue reference to a
3422   //       non-volatile const type (i.e., cv1 shall be const), or the reference
3423   //       shall be an rvalue reference.
3424   if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
3425     if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
3426       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3427     else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
3428       Sequence.SetOverloadFailure(
3429                         InitializationSequence::FK_ReferenceInitOverloadFailed,
3430                                   ConvOvlResult);
3431     else
3432       Sequence.SetFailed(InitCategory.isLValue()
3433         ? (RefRelationship == Sema::Ref_Related
3434              ? InitializationSequence::FK_ReferenceInitDropsQualifiers
3435              : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated)
3436         : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3437 
3438     return;
3439   }
3440 
3441   //    - If the initializer expression
3442   //      - is an xvalue, class prvalue, array prvalue, or function lvalue and
3443   //        "cv1 T1" is reference-compatible with "cv2 T2"
3444   // Note: functions are handled below.
3445   if (!T1Function &&
3446       (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
3447        (Kind.isCStyleOrFunctionalCast() &&
3448         RefRelationship == Sema::Ref_Related)) &&
3449       (InitCategory.isXValue() ||
3450        (InitCategory.isPRValue() && T2->isRecordType()) ||
3451        (InitCategory.isPRValue() && T2->isArrayType()))) {
3452     ExprValueKind ValueKind = InitCategory.isXValue()? VK_XValue : VK_RValue;
3453     if (InitCategory.isPRValue() && T2->isRecordType()) {
3454       // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
3455       // compiler the freedom to perform a copy here or bind to the
3456       // object, while C++0x requires that we bind directly to the
3457       // object. Hence, we always bind to the object without making an
3458       // extra copy. However, in C++03 requires that we check for the
3459       // presence of a suitable copy constructor:
3460       //
3461       //   The constructor that would be used to make the copy shall
3462       //   be callable whether or not the copy is actually done.
3463       if (!S.getLangOpts().CPlusPlus0x && !S.getLangOpts().MicrosoftExt)
3464         Sequence.AddExtraneousCopyToTemporary(cv2T2);
3465       else if (S.getLangOpts().CPlusPlus0x)
3466         CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
3467     }
3468 
3469     if (DerivedToBase)
3470       Sequence.AddDerivedToBaseCastStep(S.Context.getQualifiedType(T1, T2Quals),
3471                                         ValueKind);
3472     else if (ObjCConversion)
3473       Sequence.AddObjCObjectConversionStep(
3474                                        S.Context.getQualifiedType(T1, T2Quals));
3475 
3476     if (T1Quals != T2Quals)
3477       Sequence.AddQualificationConversionStep(cv1T1, ValueKind);
3478     Sequence.AddReferenceBindingStep(cv1T1,
3479                                  /*bindingTemporary=*/InitCategory.isPRValue());
3480     return;
3481   }
3482 
3483   //       - has a class type (i.e., T2 is a class type), where T1 is not
3484   //         reference-related to T2, and can be implicitly converted to an
3485   //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
3486   //         where "cv1 T1" is reference-compatible with "cv3 T3",
3487   if (T2->isRecordType()) {
3488     if (RefRelationship == Sema::Ref_Incompatible) {
3489       ConvOvlResult = TryRefInitWithConversionFunction(S, Entity,
3490                                                        Kind, Initializer,
3491                                                        /*AllowRValues=*/true,
3492                                                        Sequence);
3493       if (ConvOvlResult)
3494         Sequence.SetOverloadFailure(
3495                       InitializationSequence::FK_ReferenceInitOverloadFailed,
3496                                     ConvOvlResult);
3497 
3498       return;
3499     }
3500 
3501     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
3502     return;
3503   }
3504 
3505   //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
3506   //        from the initializer expression using the rules for a non-reference
3507   //        copy initialization (8.5). The reference is then bound to the
3508   //        temporary. [...]
3509 
3510   // Determine whether we are allowed to call explicit constructors or
3511   // explicit conversion operators.
3512   bool AllowExplicit = Kind.AllowExplicit();
3513 
3514   InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3515 
3516   ImplicitConversionSequence ICS
3517     = S.TryImplicitConversion(Initializer, TempEntity.getType(),
3518                               /*SuppressUserConversions*/ false,
3519                               AllowExplicit,
3520                               /*FIXME:InOverloadResolution=*/false,
3521                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
3522                               /*AllowObjCWritebackConversion=*/false);
3523 
3524   if (ICS.isBad()) {
3525     // FIXME: Use the conversion function set stored in ICS to turn
3526     // this into an overloading ambiguity diagnostic. However, we need
3527     // to keep that set as an OverloadCandidateSet rather than as some
3528     // other kind of set.
3529     if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
3530       Sequence.SetOverloadFailure(
3531                         InitializationSequence::FK_ReferenceInitOverloadFailed,
3532                                   ConvOvlResult);
3533     else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
3534       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3535     else
3536       Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
3537     return;
3538   } else {
3539     Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
3540   }
3541 
3542   //        [...] If T1 is reference-related to T2, cv1 must be the
3543   //        same cv-qualification as, or greater cv-qualification
3544   //        than, cv2; otherwise, the program is ill-formed.
3545   unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
3546   unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
3547   if (RefRelationship == Sema::Ref_Related &&
3548       (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
3549     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
3550     return;
3551   }
3552 
3553   //   [...] If T1 is reference-related to T2 and the reference is an rvalue
3554   //   reference, the initializer expression shall not be an lvalue.
3555   if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
3556       InitCategory.isLValue()) {
3557     Sequence.SetFailed(
3558                     InitializationSequence::FK_RValueReferenceBindingToLValue);
3559     return;
3560   }
3561 
3562   Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3563   return;
3564 }
3565 
3566 /// \brief Attempt character array initialization from a string literal
3567 /// (C++ [dcl.init.string], C99 6.7.8).
3568 static void TryStringLiteralInitialization(Sema &S,
3569                                            const InitializedEntity &Entity,
3570                                            const InitializationKind &Kind,
3571                                            Expr *Initializer,
3572                                        InitializationSequence &Sequence) {
3573   Sequence.AddStringInitStep(Entity.getType());
3574 }
3575 
3576 /// \brief Attempt value initialization (C++ [dcl.init]p7).
3577 static void TryValueInitialization(Sema &S,
3578                                    const InitializedEntity &Entity,
3579                                    const InitializationKind &Kind,
3580                                    InitializationSequence &Sequence,
3581                                    InitListExpr *InitList) {
3582   assert((!InitList || InitList->getNumInits() == 0) &&
3583          "Shouldn't use value-init for non-empty init lists");
3584 
3585   // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
3586   //
3587   //   To value-initialize an object of type T means:
3588   QualType T = Entity.getType();
3589 
3590   //     -- if T is an array type, then each element is value-initialized;
3591   T = S.Context.getBaseElementType(T);
3592 
3593   if (const RecordType *RT = T->getAs<RecordType>()) {
3594     if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3595       bool NeedZeroInitialization = true;
3596       if (!S.getLangOpts().CPlusPlus0x) {
3597         // C++98:
3598         // -- if T is a class type (clause 9) with a user-declared constructor
3599         //    (12.1), then the default constructor for T is called (and the
3600         //    initialization is ill-formed if T has no accessible default
3601         //    constructor);
3602         if (ClassDecl->hasUserDeclaredConstructor())
3603           NeedZeroInitialization = false;
3604       } else {
3605         // C++11:
3606         // -- if T is a class type (clause 9) with either no default constructor
3607         //    (12.1 [class.ctor]) or a default constructor that is user-provided
3608         //    or deleted, then the object is default-initialized;
3609         CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
3610         if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
3611           NeedZeroInitialization = false;
3612       }
3613 
3614       // -- if T is a (possibly cv-qualified) non-union class type without a
3615       //    user-provided or deleted default constructor, then the object is
3616       //    zero-initialized and, if T has a non-trivial default constructor,
3617       //    default-initialized;
3618       // FIXME: The 'non-union' here is a defect (not yet assigned an issue
3619       // number). Update the quotation when the defect is resolved.
3620       if (NeedZeroInitialization)
3621         Sequence.AddZeroInitializationStep(Entity.getType());
3622 
3623       // If this is list-value-initialization, pass the empty init list on when
3624       // building the constructor call. This affects the semantics of a few
3625       // things (such as whether an explicit default constructor can be called).
3626       Expr *InitListAsExpr = InitList;
3627       Expr **Args = InitList ? &InitListAsExpr : 0;
3628       unsigned NumArgs = InitList ? 1 : 0;
3629       bool InitListSyntax = InitList;
3630 
3631       return TryConstructorInitialization(S, Entity, Kind, Args, NumArgs, T,
3632                                           Sequence, InitListSyntax);
3633     }
3634   }
3635 
3636   Sequence.AddZeroInitializationStep(Entity.getType());
3637 }
3638 
3639 /// \brief Attempt default initialization (C++ [dcl.init]p6).
3640 static void TryDefaultInitialization(Sema &S,
3641                                      const InitializedEntity &Entity,
3642                                      const InitializationKind &Kind,
3643                                      InitializationSequence &Sequence) {
3644   assert(Kind.getKind() == InitializationKind::IK_Default);
3645 
3646   // C++ [dcl.init]p6:
3647   //   To default-initialize an object of type T means:
3648   //     - if T is an array type, each element is default-initialized;
3649   QualType DestType = S.Context.getBaseElementType(Entity.getType());
3650 
3651   //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
3652   //       constructor for T is called (and the initialization is ill-formed if
3653   //       T has no accessible default constructor);
3654   if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
3655     TryConstructorInitialization(S, Entity, Kind, 0, 0, DestType, Sequence);
3656     return;
3657   }
3658 
3659   //     - otherwise, no initialization is performed.
3660 
3661   //   If a program calls for the default initialization of an object of
3662   //   a const-qualified type T, T shall be a class type with a user-provided
3663   //   default constructor.
3664   if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
3665     Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3666     return;
3667   }
3668 
3669   // If the destination type has a lifetime property, zero-initialize it.
3670   if (DestType.getQualifiers().hasObjCLifetime()) {
3671     Sequence.AddZeroInitializationStep(Entity.getType());
3672     return;
3673   }
3674 }
3675 
3676 /// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
3677 /// which enumerates all conversion functions and performs overload resolution
3678 /// to select the best.
3679 static void TryUserDefinedConversion(Sema &S,
3680                                      const InitializedEntity &Entity,
3681                                      const InitializationKind &Kind,
3682                                      Expr *Initializer,
3683                                      InitializationSequence &Sequence) {
3684   QualType DestType = Entity.getType();
3685   assert(!DestType->isReferenceType() && "References are handled elsewhere");
3686   QualType SourceType = Initializer->getType();
3687   assert((DestType->isRecordType() || SourceType->isRecordType()) &&
3688          "Must have a class type to perform a user-defined conversion");
3689 
3690   // Build the candidate set directly in the initialization sequence
3691   // structure, so that it will persist if we fail.
3692   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3693   CandidateSet.clear();
3694 
3695   // Determine whether we are allowed to call explicit constructors or
3696   // explicit conversion operators.
3697   bool AllowExplicit = Kind.AllowExplicit();
3698 
3699   if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
3700     // The type we're converting to is a class type. Enumerate its constructors
3701     // to see if there is a suitable conversion.
3702     CXXRecordDecl *DestRecordDecl
3703       = cast<CXXRecordDecl>(DestRecordType->getDecl());
3704 
3705     // Try to complete the type we're converting to.
3706     if (!S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
3707       DeclContext::lookup_iterator Con, ConEnd;
3708       for (llvm::tie(Con, ConEnd) = S.LookupConstructors(DestRecordDecl);
3709            Con != ConEnd; ++Con) {
3710         NamedDecl *D = *Con;
3711         DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3712 
3713         // Find the constructor (which may be a template).
3714         CXXConstructorDecl *Constructor = 0;
3715         FunctionTemplateDecl *ConstructorTmpl
3716           = dyn_cast<FunctionTemplateDecl>(D);
3717         if (ConstructorTmpl)
3718           Constructor = cast<CXXConstructorDecl>(
3719                                            ConstructorTmpl->getTemplatedDecl());
3720         else
3721           Constructor = cast<CXXConstructorDecl>(D);
3722 
3723         if (!Constructor->isInvalidDecl() &&
3724             Constructor->isConvertingConstructor(AllowExplicit)) {
3725           if (ConstructorTmpl)
3726             S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3727                                            /*ExplicitArgs*/ 0,
3728                                            Initializer, CandidateSet,
3729                                            /*SuppressUserConversions=*/true);
3730           else
3731             S.AddOverloadCandidate(Constructor, FoundDecl,
3732                                    Initializer, CandidateSet,
3733                                    /*SuppressUserConversions=*/true);
3734         }
3735       }
3736     }
3737   }
3738 
3739   SourceLocation DeclLoc = Initializer->getLocStart();
3740 
3741   if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
3742     // The type we're converting from is a class type, enumerate its conversion
3743     // functions.
3744 
3745     // We can only enumerate the conversion functions for a complete type; if
3746     // the type isn't complete, simply skip this step.
3747     if (!S.RequireCompleteType(DeclLoc, SourceType, 0)) {
3748       CXXRecordDecl *SourceRecordDecl
3749         = cast<CXXRecordDecl>(SourceRecordType->getDecl());
3750 
3751       const UnresolvedSetImpl *Conversions
3752         = SourceRecordDecl->getVisibleConversionFunctions();
3753       for (UnresolvedSetImpl::const_iterator I = Conversions->begin(),
3754            E = Conversions->end();
3755            I != E; ++I) {
3756         NamedDecl *D = *I;
3757         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3758         if (isa<UsingShadowDecl>(D))
3759           D = cast<UsingShadowDecl>(D)->getTargetDecl();
3760 
3761         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3762         CXXConversionDecl *Conv;
3763         if (ConvTemplate)
3764           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3765         else
3766           Conv = cast<CXXConversionDecl>(D);
3767 
3768         if (AllowExplicit || !Conv->isExplicit()) {
3769           if (ConvTemplate)
3770             S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3771                                              ActingDC, Initializer, DestType,
3772                                              CandidateSet);
3773           else
3774             S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
3775                                      Initializer, DestType, CandidateSet);
3776         }
3777       }
3778     }
3779   }
3780 
3781   // Perform overload resolution. If it fails, return the failed result.
3782   OverloadCandidateSet::iterator Best;
3783   if (OverloadingResult Result
3784         = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
3785     Sequence.SetOverloadFailure(
3786                         InitializationSequence::FK_UserConversionOverloadFailed,
3787                                 Result);
3788     return;
3789   }
3790 
3791   FunctionDecl *Function = Best->Function;
3792   S.MarkFunctionReferenced(DeclLoc, Function);
3793   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3794 
3795   if (isa<CXXConstructorDecl>(Function)) {
3796     // Add the user-defined conversion step. Any cv-qualification conversion is
3797     // subsumed by the initialization. Per DR5, the created temporary is of the
3798     // cv-unqualified type of the destination.
3799     Sequence.AddUserConversionStep(Function, Best->FoundDecl,
3800                                    DestType.getUnqualifiedType(),
3801                                    HadMultipleCandidates);
3802     return;
3803   }
3804 
3805   // Add the user-defined conversion step that calls the conversion function.
3806   QualType ConvType = Function->getCallResultType();
3807   if (ConvType->getAs<RecordType>()) {
3808     // If we're converting to a class type, there may be an copy of
3809     // the resulting temporary object (possible to create an object of
3810     // a base class type). That copy is not a separate conversion, so
3811     // we just make a note of the actual destination type (possibly a
3812     // base class of the type returned by the conversion function) and
3813     // let the user-defined conversion step handle the conversion.
3814     Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType,
3815                                    HadMultipleCandidates);
3816     return;
3817   }
3818 
3819   Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
3820                                  HadMultipleCandidates);
3821 
3822   // If the conversion following the call to the conversion function
3823   // is interesting, add it as a separate step.
3824   if (Best->FinalConversion.First || Best->FinalConversion.Second ||
3825       Best->FinalConversion.Third) {
3826     ImplicitConversionSequence ICS;
3827     ICS.setStandard();
3828     ICS.Standard = Best->FinalConversion;
3829     Sequence.AddConversionSequenceStep(ICS, DestType);
3830   }
3831 }
3832 
3833 /// The non-zero enum values here are indexes into diagnostic alternatives.
3834 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
3835 
3836 /// Determines whether this expression is an acceptable ICR source.
3837 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
3838                                          bool isAddressOf) {
3839   // Skip parens.
3840   e = e->IgnoreParens();
3841 
3842   // Skip address-of nodes.
3843   if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
3844     if (op->getOpcode() == UO_AddrOf)
3845       return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true);
3846 
3847   // Skip certain casts.
3848   } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
3849     switch (ce->getCastKind()) {
3850     case CK_Dependent:
3851     case CK_BitCast:
3852     case CK_LValueBitCast:
3853     case CK_NoOp:
3854       return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf);
3855 
3856     case CK_ArrayToPointerDecay:
3857       return IIK_nonscalar;
3858 
3859     case CK_NullToPointer:
3860       return IIK_okay;
3861 
3862     default:
3863       break;
3864     }
3865 
3866   // If we have a declaration reference, it had better be a local variable.
3867   } else if (isa<DeclRefExpr>(e)) {
3868     if (!isAddressOf) return IIK_nonlocal;
3869 
3870     VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
3871     if (!var) return IIK_nonlocal;
3872 
3873     return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
3874 
3875   // If we have a conditional operator, check both sides.
3876   } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
3877     if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf))
3878       return iik;
3879 
3880     return isInvalidICRSource(C, cond->getRHS(), isAddressOf);
3881 
3882   // These are never scalar.
3883   } else if (isa<ArraySubscriptExpr>(e)) {
3884     return IIK_nonscalar;
3885 
3886   // Otherwise, it needs to be a null pointer constant.
3887   } else {
3888     return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
3889             ? IIK_okay : IIK_nonlocal);
3890   }
3891 
3892   return IIK_nonlocal;
3893 }
3894 
3895 /// Check whether the given expression is a valid operand for an
3896 /// indirect copy/restore.
3897 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
3898   assert(src->isRValue());
3899 
3900   InvalidICRKind iik = isInvalidICRSource(S.Context, src, false);
3901   if (iik == IIK_okay) return;
3902 
3903   S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
3904     << ((unsigned) iik - 1)  // shift index into diagnostic explanations
3905     << src->getSourceRange();
3906 }
3907 
3908 /// \brief Determine whether we have compatible array types for the
3909 /// purposes of GNU by-copy array initialization.
3910 static bool hasCompatibleArrayTypes(ASTContext &Context,
3911                                     const ArrayType *Dest,
3912                                     const ArrayType *Source) {
3913   // If the source and destination array types are equivalent, we're
3914   // done.
3915   if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
3916     return true;
3917 
3918   // Make sure that the element types are the same.
3919   if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
3920     return false;
3921 
3922   // The only mismatch we allow is when the destination is an
3923   // incomplete array type and the source is a constant array type.
3924   return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
3925 }
3926 
3927 static bool tryObjCWritebackConversion(Sema &S,
3928                                        InitializationSequence &Sequence,
3929                                        const InitializedEntity &Entity,
3930                                        Expr *Initializer) {
3931   bool ArrayDecay = false;
3932   QualType ArgType = Initializer->getType();
3933   QualType ArgPointee;
3934   if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
3935     ArrayDecay = true;
3936     ArgPointee = ArgArrayType->getElementType();
3937     ArgType = S.Context.getPointerType(ArgPointee);
3938   }
3939 
3940   // Handle write-back conversion.
3941   QualType ConvertedArgType;
3942   if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
3943                                    ConvertedArgType))
3944     return false;
3945 
3946   // We should copy unless we're passing to an argument explicitly
3947   // marked 'out'.
3948   bool ShouldCopy = true;
3949   if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
3950     ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
3951 
3952   // Do we need an lvalue conversion?
3953   if (ArrayDecay || Initializer->isGLValue()) {
3954     ImplicitConversionSequence ICS;
3955     ICS.setStandard();
3956     ICS.Standard.setAsIdentityConversion();
3957 
3958     QualType ResultType;
3959     if (ArrayDecay) {
3960       ICS.Standard.First = ICK_Array_To_Pointer;
3961       ResultType = S.Context.getPointerType(ArgPointee);
3962     } else {
3963       ICS.Standard.First = ICK_Lvalue_To_Rvalue;
3964       ResultType = Initializer->getType().getNonLValueExprType(S.Context);
3965     }
3966 
3967     Sequence.AddConversionSequenceStep(ICS, ResultType);
3968   }
3969 
3970   Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
3971   return true;
3972 }
3973 
3974 InitializationSequence::InitializationSequence(Sema &S,
3975                                                const InitializedEntity &Entity,
3976                                                const InitializationKind &Kind,
3977                                                Expr **Args,
3978                                                unsigned NumArgs)
3979     : FailedCandidateSet(Kind.getLocation()) {
3980   ASTContext &Context = S.Context;
3981 
3982   // C++0x [dcl.init]p16:
3983   //   The semantics of initializers are as follows. The destination type is
3984   //   the type of the object or reference being initialized and the source
3985   //   type is the type of the initializer expression. The source type is not
3986   //   defined when the initializer is a braced-init-list or when it is a
3987   //   parenthesized list of expressions.
3988   QualType DestType = Entity.getType();
3989 
3990   if (DestType->isDependentType() ||
3991       Expr::hasAnyTypeDependentArguments(llvm::makeArrayRef(Args, NumArgs))) {
3992     SequenceKind = DependentSequence;
3993     return;
3994   }
3995 
3996   // Almost everything is a normal sequence.
3997   setSequenceKind(NormalSequence);
3998 
3999   for (unsigned I = 0; I != NumArgs; ++I)
4000     if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
4001       // FIXME: should we be doing this here?
4002       ExprResult result = S.CheckPlaceholderExpr(Args[I]);
4003       if (result.isInvalid()) {
4004         SetFailed(FK_PlaceholderType);
4005         return;
4006       }
4007       Args[I] = result.take();
4008     }
4009 
4010 
4011   QualType SourceType;
4012   Expr *Initializer = 0;
4013   if (NumArgs == 1) {
4014     Initializer = Args[0];
4015     if (!isa<InitListExpr>(Initializer))
4016       SourceType = Initializer->getType();
4017   }
4018 
4019   //     - If the initializer is a (non-parenthesized) braced-init-list, the
4020   //       object is list-initialized (8.5.4).
4021   if (Kind.getKind() != InitializationKind::IK_Direct) {
4022     if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
4023       TryListInitialization(S, Entity, Kind, InitList, *this);
4024       return;
4025     }
4026   }
4027 
4028   //     - If the destination type is a reference type, see 8.5.3.
4029   if (DestType->isReferenceType()) {
4030     // C++0x [dcl.init.ref]p1:
4031     //   A variable declared to be a T& or T&&, that is, "reference to type T"
4032     //   (8.3.2), shall be initialized by an object, or function, of type T or
4033     //   by an object that can be converted into a T.
4034     // (Therefore, multiple arguments are not permitted.)
4035     if (NumArgs != 1)
4036       SetFailed(FK_TooManyInitsForReference);
4037     else
4038       TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
4039     return;
4040   }
4041 
4042   //     - If the initializer is (), the object is value-initialized.
4043   if (Kind.getKind() == InitializationKind::IK_Value ||
4044       (Kind.getKind() == InitializationKind::IK_Direct && NumArgs == 0)) {
4045     TryValueInitialization(S, Entity, Kind, *this);
4046     return;
4047   }
4048 
4049   // Handle default initialization.
4050   if (Kind.getKind() == InitializationKind::IK_Default) {
4051     TryDefaultInitialization(S, Entity, Kind, *this);
4052     return;
4053   }
4054 
4055   //     - If the destination type is an array of characters, an array of
4056   //       char16_t, an array of char32_t, or an array of wchar_t, and the
4057   //       initializer is a string literal, see 8.5.2.
4058   //     - Otherwise, if the destination type is an array, the program is
4059   //       ill-formed.
4060   if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
4061     if (Initializer && isa<VariableArrayType>(DestAT)) {
4062       SetFailed(FK_VariableLengthArrayHasInitializer);
4063       return;
4064     }
4065 
4066     if (Initializer && IsStringInit(Initializer, DestAT, Context)) {
4067       TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
4068       return;
4069     }
4070 
4071     // Note: as an GNU C extension, we allow initialization of an
4072     // array from a compound literal that creates an array of the same
4073     // type, so long as the initializer has no side effects.
4074     if (!S.getLangOpts().CPlusPlus && Initializer &&
4075         isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
4076         Initializer->getType()->isArrayType()) {
4077       const ArrayType *SourceAT
4078         = Context.getAsArrayType(Initializer->getType());
4079       if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
4080         SetFailed(FK_ArrayTypeMismatch);
4081       else if (Initializer->HasSideEffects(S.Context))
4082         SetFailed(FK_NonConstantArrayInit);
4083       else {
4084         AddArrayInitStep(DestType);
4085       }
4086     }
4087     // Note: as a GNU C++ extension, we allow list-initialization of a
4088     // class member of array type from a parenthesized initializer list.
4089     else if (S.getLangOpts().CPlusPlus &&
4090              Entity.getKind() == InitializedEntity::EK_Member &&
4091              Initializer && isa<InitListExpr>(Initializer)) {
4092       TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
4093                             *this);
4094       AddParenthesizedArrayInitStep(DestType);
4095     } else if (DestAT->getElementType()->isAnyCharacterType())
4096       SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
4097     else
4098       SetFailed(FK_ArrayNeedsInitList);
4099 
4100     return;
4101   }
4102 
4103   // Determine whether we should consider writeback conversions for
4104   // Objective-C ARC.
4105   bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
4106     Entity.getKind() == InitializedEntity::EK_Parameter;
4107 
4108   // We're at the end of the line for C: it's either a write-back conversion
4109   // or it's a C assignment. There's no need to check anything else.
4110   if (!S.getLangOpts().CPlusPlus) {
4111     // If allowed, check whether this is an Objective-C writeback conversion.
4112     if (allowObjCWritebackConversion &&
4113         tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
4114       return;
4115     }
4116 
4117     // Handle initialization in C
4118     AddCAssignmentStep(DestType);
4119     MaybeProduceObjCObject(S, *this, Entity);
4120     return;
4121   }
4122 
4123   assert(S.getLangOpts().CPlusPlus);
4124 
4125   //     - If the destination type is a (possibly cv-qualified) class type:
4126   if (DestType->isRecordType()) {
4127     //     - If the initialization is direct-initialization, or if it is
4128     //       copy-initialization where the cv-unqualified version of the
4129     //       source type is the same class as, or a derived class of, the
4130     //       class of the destination, constructors are considered. [...]
4131     if (Kind.getKind() == InitializationKind::IK_Direct ||
4132         (Kind.getKind() == InitializationKind::IK_Copy &&
4133          (Context.hasSameUnqualifiedType(SourceType, DestType) ||
4134           S.IsDerivedFrom(SourceType, DestType))))
4135       TryConstructorInitialization(S, Entity, Kind, Args, NumArgs,
4136                                    Entity.getType(), *this);
4137     //     - Otherwise (i.e., for the remaining copy-initialization cases),
4138     //       user-defined conversion sequences that can convert from the source
4139     //       type to the destination type or (when a conversion function is
4140     //       used) to a derived class thereof are enumerated as described in
4141     //       13.3.1.4, and the best one is chosen through overload resolution
4142     //       (13.3).
4143     else
4144       TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
4145     return;
4146   }
4147 
4148   if (NumArgs > 1) {
4149     SetFailed(FK_TooManyInitsForScalar);
4150     return;
4151   }
4152   assert(NumArgs == 1 && "Zero-argument case handled above");
4153 
4154   //    - Otherwise, if the source type is a (possibly cv-qualified) class
4155   //      type, conversion functions are considered.
4156   if (!SourceType.isNull() && SourceType->isRecordType()) {
4157     TryUserDefinedConversion(S, Entity, Kind, Initializer, *this);
4158     MaybeProduceObjCObject(S, *this, Entity);
4159     return;
4160   }
4161 
4162   //    - Otherwise, the initial value of the object being initialized is the
4163   //      (possibly converted) value of the initializer expression. Standard
4164   //      conversions (Clause 4) will be used, if necessary, to convert the
4165   //      initializer expression to the cv-unqualified version of the
4166   //      destination type; no user-defined conversions are considered.
4167 
4168   ImplicitConversionSequence ICS
4169     = S.TryImplicitConversion(Initializer, Entity.getType(),
4170                               /*SuppressUserConversions*/true,
4171                               /*AllowExplicitConversions*/ false,
4172                               /*InOverloadResolution*/ false,
4173                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
4174                               allowObjCWritebackConversion);
4175 
4176   if (ICS.isStandard() &&
4177       ICS.Standard.Second == ICK_Writeback_Conversion) {
4178     // Objective-C ARC writeback conversion.
4179 
4180     // We should copy unless we're passing to an argument explicitly
4181     // marked 'out'.
4182     bool ShouldCopy = true;
4183     if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
4184       ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
4185 
4186     // If there was an lvalue adjustment, add it as a separate conversion.
4187     if (ICS.Standard.First == ICK_Array_To_Pointer ||
4188         ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
4189       ImplicitConversionSequence LvalueICS;
4190       LvalueICS.setStandard();
4191       LvalueICS.Standard.setAsIdentityConversion();
4192       LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
4193       LvalueICS.Standard.First = ICS.Standard.First;
4194       AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
4195     }
4196 
4197     AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
4198   } else if (ICS.isBad()) {
4199     DeclAccessPair dap;
4200     if (Initializer->getType() == Context.OverloadTy &&
4201           !S.ResolveAddressOfOverloadedFunction(Initializer
4202                       , DestType, false, dap))
4203       SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4204     else
4205       SetFailed(InitializationSequence::FK_ConversionFailed);
4206   } else {
4207     AddConversionSequenceStep(ICS, Entity.getType());
4208 
4209     MaybeProduceObjCObject(S, *this, Entity);
4210   }
4211 }
4212 
4213 InitializationSequence::~InitializationSequence() {
4214   for (SmallVectorImpl<Step>::iterator Step = Steps.begin(),
4215                                           StepEnd = Steps.end();
4216        Step != StepEnd; ++Step)
4217     Step->Destroy();
4218 }
4219 
4220 //===----------------------------------------------------------------------===//
4221 // Perform initialization
4222 //===----------------------------------------------------------------------===//
4223 static Sema::AssignmentAction
4224 getAssignmentAction(const InitializedEntity &Entity) {
4225   switch(Entity.getKind()) {
4226   case InitializedEntity::EK_Variable:
4227   case InitializedEntity::EK_New:
4228   case InitializedEntity::EK_Exception:
4229   case InitializedEntity::EK_Base:
4230   case InitializedEntity::EK_Delegating:
4231     return Sema::AA_Initializing;
4232 
4233   case InitializedEntity::EK_Parameter:
4234     if (Entity.getDecl() &&
4235         isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
4236       return Sema::AA_Sending;
4237 
4238     return Sema::AA_Passing;
4239 
4240   case InitializedEntity::EK_Result:
4241     return Sema::AA_Returning;
4242 
4243   case InitializedEntity::EK_Temporary:
4244     // FIXME: Can we tell apart casting vs. converting?
4245     return Sema::AA_Casting;
4246 
4247   case InitializedEntity::EK_Member:
4248   case InitializedEntity::EK_ArrayElement:
4249   case InitializedEntity::EK_VectorElement:
4250   case InitializedEntity::EK_ComplexElement:
4251   case InitializedEntity::EK_BlockElement:
4252   case InitializedEntity::EK_LambdaCapture:
4253     return Sema::AA_Initializing;
4254   }
4255 
4256   llvm_unreachable("Invalid EntityKind!");
4257 }
4258 
4259 /// \brief Whether we should binding a created object as a temporary when
4260 /// initializing the given entity.
4261 static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
4262   switch (Entity.getKind()) {
4263   case InitializedEntity::EK_ArrayElement:
4264   case InitializedEntity::EK_Member:
4265   case InitializedEntity::EK_Result:
4266   case InitializedEntity::EK_New:
4267   case InitializedEntity::EK_Variable:
4268   case InitializedEntity::EK_Base:
4269   case InitializedEntity::EK_Delegating:
4270   case InitializedEntity::EK_VectorElement:
4271   case InitializedEntity::EK_ComplexElement:
4272   case InitializedEntity::EK_Exception:
4273   case InitializedEntity::EK_BlockElement:
4274   case InitializedEntity::EK_LambdaCapture:
4275     return false;
4276 
4277   case InitializedEntity::EK_Parameter:
4278   case InitializedEntity::EK_Temporary:
4279     return true;
4280   }
4281 
4282   llvm_unreachable("missed an InitializedEntity kind?");
4283 }
4284 
4285 /// \brief Whether the given entity, when initialized with an object
4286 /// created for that initialization, requires destruction.
4287 static bool shouldDestroyTemporary(const InitializedEntity &Entity) {
4288   switch (Entity.getKind()) {
4289     case InitializedEntity::EK_Member:
4290     case InitializedEntity::EK_Result:
4291     case InitializedEntity::EK_New:
4292     case InitializedEntity::EK_Base:
4293     case InitializedEntity::EK_Delegating:
4294     case InitializedEntity::EK_VectorElement:
4295     case InitializedEntity::EK_ComplexElement:
4296     case InitializedEntity::EK_BlockElement:
4297     case InitializedEntity::EK_LambdaCapture:
4298       return false;
4299 
4300     case InitializedEntity::EK_Variable:
4301     case InitializedEntity::EK_Parameter:
4302     case InitializedEntity::EK_Temporary:
4303     case InitializedEntity::EK_ArrayElement:
4304     case InitializedEntity::EK_Exception:
4305       return true;
4306   }
4307 
4308   llvm_unreachable("missed an InitializedEntity kind?");
4309 }
4310 
4311 /// \brief Look for copy and move constructors and constructor templates, for
4312 /// copying an object via direct-initialization (per C++11 [dcl.init]p16).
4313 static void LookupCopyAndMoveConstructors(Sema &S,
4314                                           OverloadCandidateSet &CandidateSet,
4315                                           CXXRecordDecl *Class,
4316                                           Expr *CurInitExpr) {
4317   DeclContext::lookup_iterator Con, ConEnd;
4318   for (llvm::tie(Con, ConEnd) = S.LookupConstructors(Class);
4319        Con != ConEnd; ++Con) {
4320     CXXConstructorDecl *Constructor = 0;
4321 
4322     if ((Constructor = dyn_cast<CXXConstructorDecl>(*Con))) {
4323       // Handle copy/moveconstructors, only.
4324       if (!Constructor || Constructor->isInvalidDecl() ||
4325           !Constructor->isCopyOrMoveConstructor() ||
4326           !Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
4327         continue;
4328 
4329       DeclAccessPair FoundDecl
4330         = DeclAccessPair::make(Constructor, Constructor->getAccess());
4331       S.AddOverloadCandidate(Constructor, FoundDecl,
4332                              CurInitExpr, CandidateSet);
4333       continue;
4334     }
4335 
4336     // Handle constructor templates.
4337     FunctionTemplateDecl *ConstructorTmpl = cast<FunctionTemplateDecl>(*Con);
4338     if (ConstructorTmpl->isInvalidDecl())
4339       continue;
4340 
4341     Constructor = cast<CXXConstructorDecl>(
4342                                          ConstructorTmpl->getTemplatedDecl());
4343     if (!Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
4344       continue;
4345 
4346     // FIXME: Do we need to limit this to copy-constructor-like
4347     // candidates?
4348     DeclAccessPair FoundDecl
4349       = DeclAccessPair::make(ConstructorTmpl, ConstructorTmpl->getAccess());
4350     S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 0,
4351                                    CurInitExpr, CandidateSet, true);
4352   }
4353 }
4354 
4355 /// \brief Get the location at which initialization diagnostics should appear.
4356 static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
4357                                            Expr *Initializer) {
4358   switch (Entity.getKind()) {
4359   case InitializedEntity::EK_Result:
4360     return Entity.getReturnLoc();
4361 
4362   case InitializedEntity::EK_Exception:
4363     return Entity.getThrowLoc();
4364 
4365   case InitializedEntity::EK_Variable:
4366     return Entity.getDecl()->getLocation();
4367 
4368   case InitializedEntity::EK_LambdaCapture:
4369     return Entity.getCaptureLoc();
4370 
4371   case InitializedEntity::EK_ArrayElement:
4372   case InitializedEntity::EK_Member:
4373   case InitializedEntity::EK_Parameter:
4374   case InitializedEntity::EK_Temporary:
4375   case InitializedEntity::EK_New:
4376   case InitializedEntity::EK_Base:
4377   case InitializedEntity::EK_Delegating:
4378   case InitializedEntity::EK_VectorElement:
4379   case InitializedEntity::EK_ComplexElement:
4380   case InitializedEntity::EK_BlockElement:
4381     return Initializer->getLocStart();
4382   }
4383   llvm_unreachable("missed an InitializedEntity kind?");
4384 }
4385 
4386 /// \brief Make a (potentially elidable) temporary copy of the object
4387 /// provided by the given initializer by calling the appropriate copy
4388 /// constructor.
4389 ///
4390 /// \param S The Sema object used for type-checking.
4391 ///
4392 /// \param T The type of the temporary object, which must either be
4393 /// the type of the initializer expression or a superclass thereof.
4394 ///
4395 /// \param Entity The entity being initialized.
4396 ///
4397 /// \param CurInit The initializer expression.
4398 ///
4399 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that
4400 /// is permitted in C++03 (but not C++0x) when binding a reference to
4401 /// an rvalue.
4402 ///
4403 /// \returns An expression that copies the initializer expression into
4404 /// a temporary object, or an error expression if a copy could not be
4405 /// created.
4406 static ExprResult CopyObject(Sema &S,
4407                              QualType T,
4408                              const InitializedEntity &Entity,
4409                              ExprResult CurInit,
4410                              bool IsExtraneousCopy) {
4411   // Determine which class type we're copying to.
4412   Expr *CurInitExpr = (Expr *)CurInit.get();
4413   CXXRecordDecl *Class = 0;
4414   if (const RecordType *Record = T->getAs<RecordType>())
4415     Class = cast<CXXRecordDecl>(Record->getDecl());
4416   if (!Class)
4417     return move(CurInit);
4418 
4419   // C++0x [class.copy]p32:
4420   //   When certain criteria are met, an implementation is allowed to
4421   //   omit the copy/move construction of a class object, even if the
4422   //   copy/move constructor and/or destructor for the object have
4423   //   side effects. [...]
4424   //     - when a temporary class object that has not been bound to a
4425   //       reference (12.2) would be copied/moved to a class object
4426   //       with the same cv-unqualified type, the copy/move operation
4427   //       can be omitted by constructing the temporary object
4428   //       directly into the target of the omitted copy/move
4429   //
4430   // Note that the other three bullets are handled elsewhere. Copy
4431   // elision for return statements and throw expressions are handled as part
4432   // of constructor initialization, while copy elision for exception handlers
4433   // is handled by the run-time.
4434   bool Elidable = CurInitExpr->isTemporaryObject(S.Context, Class);
4435   SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
4436 
4437   // Make sure that the type we are copying is complete.
4438   if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
4439     return move(CurInit);
4440 
4441   // Perform overload resolution using the class's copy/move constructors.
4442   // Only consider constructors and constructor templates. Per
4443   // C++0x [dcl.init]p16, second bullet to class types, this initialization
4444   // is direct-initialization.
4445   OverloadCandidateSet CandidateSet(Loc);
4446   LookupCopyAndMoveConstructors(S, CandidateSet, Class, CurInitExpr);
4447 
4448   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4449 
4450   OverloadCandidateSet::iterator Best;
4451   switch (CandidateSet.BestViableFunction(S, Loc, Best)) {
4452   case OR_Success:
4453     break;
4454 
4455   case OR_No_Viable_Function:
4456     S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
4457            ? diag::ext_rvalue_to_reference_temp_copy_no_viable
4458            : diag::err_temp_copy_no_viable)
4459       << (int)Entity.getKind() << CurInitExpr->getType()
4460       << CurInitExpr->getSourceRange();
4461     CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
4462     if (!IsExtraneousCopy || S.isSFINAEContext())
4463       return ExprError();
4464     return move(CurInit);
4465 
4466   case OR_Ambiguous:
4467     S.Diag(Loc, diag::err_temp_copy_ambiguous)
4468       << (int)Entity.getKind() << CurInitExpr->getType()
4469       << CurInitExpr->getSourceRange();
4470     CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
4471     return ExprError();
4472 
4473   case OR_Deleted:
4474     S.Diag(Loc, diag::err_temp_copy_deleted)
4475       << (int)Entity.getKind() << CurInitExpr->getType()
4476       << CurInitExpr->getSourceRange();
4477     S.NoteDeletedFunction(Best->Function);
4478     return ExprError();
4479   }
4480 
4481   CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
4482   ASTOwningVector<Expr*> ConstructorArgs(S);
4483   CurInit.release(); // Ownership transferred into MultiExprArg, below.
4484 
4485   S.CheckConstructorAccess(Loc, Constructor, Entity,
4486                            Best->FoundDecl.getAccess(), IsExtraneousCopy);
4487 
4488   if (IsExtraneousCopy) {
4489     // If this is a totally extraneous copy for C++03 reference
4490     // binding purposes, just return the original initialization
4491     // expression. We don't generate an (elided) copy operation here
4492     // because doing so would require us to pass down a flag to avoid
4493     // infinite recursion, where each step adds another extraneous,
4494     // elidable copy.
4495 
4496     // Instantiate the default arguments of any extra parameters in
4497     // the selected copy constructor, as if we were going to create a
4498     // proper call to the copy constructor.
4499     for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
4500       ParmVarDecl *Parm = Constructor->getParamDecl(I);
4501       if (S.RequireCompleteType(Loc, Parm->getType(),
4502                                 diag::err_call_incomplete_argument))
4503         break;
4504 
4505       // Build the default argument expression; we don't actually care
4506       // if this succeeds or not, because this routine will complain
4507       // if there was a problem.
4508       S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
4509     }
4510 
4511     return S.Owned(CurInitExpr);
4512   }
4513 
4514   S.MarkFunctionReferenced(Loc, Constructor);
4515 
4516   // Determine the arguments required to actually perform the
4517   // constructor call (we might have derived-to-base conversions, or
4518   // the copy constructor may have default arguments).
4519   if (S.CompleteConstructorCall(Constructor, MultiExprArg(&CurInitExpr, 1),
4520                                 Loc, ConstructorArgs))
4521     return ExprError();
4522 
4523   // Actually perform the constructor call.
4524   CurInit = S.BuildCXXConstructExpr(Loc, T, Constructor, Elidable,
4525                                     move_arg(ConstructorArgs),
4526                                     HadMultipleCandidates,
4527                                     /*ZeroInit*/ false,
4528                                     CXXConstructExpr::CK_Complete,
4529                                     SourceRange());
4530 
4531   // If we're supposed to bind temporaries, do so.
4532   if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
4533     CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
4534   return move(CurInit);
4535 }
4536 
4537 /// \brief Check whether elidable copy construction for binding a reference to
4538 /// a temporary would have succeeded if we were building in C++98 mode, for
4539 /// -Wc++98-compat.
4540 static void CheckCXX98CompatAccessibleCopy(Sema &S,
4541                                            const InitializedEntity &Entity,
4542                                            Expr *CurInitExpr) {
4543   assert(S.getLangOpts().CPlusPlus0x);
4544 
4545   const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
4546   if (!Record)
4547     return;
4548 
4549   SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
4550   if (S.Diags.getDiagnosticLevel(diag::warn_cxx98_compat_temp_copy, Loc)
4551         == DiagnosticsEngine::Ignored)
4552     return;
4553 
4554   // Find constructors which would have been considered.
4555   OverloadCandidateSet CandidateSet(Loc);
4556   LookupCopyAndMoveConstructors(
4557       S, CandidateSet, cast<CXXRecordDecl>(Record->getDecl()), CurInitExpr);
4558 
4559   // Perform overload resolution.
4560   OverloadCandidateSet::iterator Best;
4561   OverloadingResult OR = CandidateSet.BestViableFunction(S, Loc, Best);
4562 
4563   PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
4564     << OR << (int)Entity.getKind() << CurInitExpr->getType()
4565     << CurInitExpr->getSourceRange();
4566 
4567   switch (OR) {
4568   case OR_Success:
4569     S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
4570                              Entity, Best->FoundDecl.getAccess(), Diag);
4571     // FIXME: Check default arguments as far as that's possible.
4572     break;
4573 
4574   case OR_No_Viable_Function:
4575     S.Diag(Loc, Diag);
4576     CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
4577     break;
4578 
4579   case OR_Ambiguous:
4580     S.Diag(Loc, Diag);
4581     CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
4582     break;
4583 
4584   case OR_Deleted:
4585     S.Diag(Loc, Diag);
4586     S.NoteDeletedFunction(Best->Function);
4587     break;
4588   }
4589 }
4590 
4591 void InitializationSequence::PrintInitLocationNote(Sema &S,
4592                                               const InitializedEntity &Entity) {
4593   if (Entity.getKind() == InitializedEntity::EK_Parameter && Entity.getDecl()) {
4594     if (Entity.getDecl()->getLocation().isInvalid())
4595       return;
4596 
4597     if (Entity.getDecl()->getDeclName())
4598       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
4599         << Entity.getDecl()->getDeclName();
4600     else
4601       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
4602   }
4603 }
4604 
4605 static bool isReferenceBinding(const InitializationSequence::Step &s) {
4606   return s.Kind == InitializationSequence::SK_BindReference ||
4607          s.Kind == InitializationSequence::SK_BindReferenceToTemporary;
4608 }
4609 
4610 static ExprResult
4611 PerformConstructorInitialization(Sema &S,
4612                                  const InitializedEntity &Entity,
4613                                  const InitializationKind &Kind,
4614                                  MultiExprArg Args,
4615                                  const InitializationSequence::Step& Step,
4616                                  bool &ConstructorInitRequiresZeroInit) {
4617   unsigned NumArgs = Args.size();
4618   CXXConstructorDecl *Constructor
4619     = cast<CXXConstructorDecl>(Step.Function.Function);
4620   bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
4621 
4622   // Build a call to the selected constructor.
4623   ASTOwningVector<Expr*> ConstructorArgs(S);
4624   SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
4625                          ? Kind.getEqualLoc()
4626                          : Kind.getLocation();
4627 
4628   if (Kind.getKind() == InitializationKind::IK_Default) {
4629     // Force even a trivial, implicit default constructor to be
4630     // semantically checked. We do this explicitly because we don't build
4631     // the definition for completely trivial constructors.
4632     assert(Constructor->getParent() && "No parent class for constructor.");
4633     if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
4634         Constructor->isTrivial() && !Constructor->isUsed(false))
4635       S.DefineImplicitDefaultConstructor(Loc, Constructor);
4636   }
4637 
4638   ExprResult CurInit = S.Owned((Expr *)0);
4639 
4640   // C++ [over.match.copy]p1:
4641   //   - When initializing a temporary to be bound to the first parameter
4642   //     of a constructor that takes a reference to possibly cv-qualified
4643   //     T as its first argument, called with a single argument in the
4644   //     context of direct-initialization, explicit conversion functions
4645   //     are also considered.
4646   bool AllowExplicitConv = Kind.AllowExplicit() && !Kind.isCopyInit() &&
4647                            Args.size() == 1 &&
4648                            Constructor->isCopyOrMoveConstructor();
4649 
4650   // Determine the arguments required to actually perform the constructor
4651   // call.
4652   if (S.CompleteConstructorCall(Constructor, move(Args),
4653                                 Loc, ConstructorArgs,
4654                                 AllowExplicitConv))
4655     return ExprError();
4656 
4657 
4658   if (Entity.getKind() == InitializedEntity::EK_Temporary &&
4659       (Kind.getKind() == InitializationKind::IK_DirectList ||
4660        (NumArgs != 1 && // FIXME: Hack to work around cast weirdness
4661         (Kind.getKind() == InitializationKind::IK_Direct ||
4662          Kind.getKind() == InitializationKind::IK_Value)))) {
4663     // An explicitly-constructed temporary, e.g., X(1, 2).
4664     unsigned NumExprs = ConstructorArgs.size();
4665     Expr **Exprs = (Expr **)ConstructorArgs.take();
4666     S.MarkFunctionReferenced(Loc, Constructor);
4667     S.DiagnoseUseOfDecl(Constructor, Loc);
4668 
4669     TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
4670     if (!TSInfo)
4671       TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
4672     SourceRange ParenRange;
4673     if (Kind.getKind() != InitializationKind::IK_DirectList)
4674       ParenRange = Kind.getParenRange();
4675 
4676     CurInit = S.Owned(new (S.Context) CXXTemporaryObjectExpr(S.Context,
4677                                                              Constructor,
4678                                                              TSInfo,
4679                                                              Exprs,
4680                                                              NumExprs,
4681                                                              ParenRange,
4682                                                      HadMultipleCandidates,
4683                                          ConstructorInitRequiresZeroInit));
4684   } else {
4685     CXXConstructExpr::ConstructionKind ConstructKind =
4686       CXXConstructExpr::CK_Complete;
4687 
4688     if (Entity.getKind() == InitializedEntity::EK_Base) {
4689       ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
4690         CXXConstructExpr::CK_VirtualBase :
4691         CXXConstructExpr::CK_NonVirtualBase;
4692     } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
4693       ConstructKind = CXXConstructExpr::CK_Delegating;
4694     }
4695 
4696     // Only get the parenthesis range if it is a direct construction.
4697     SourceRange parenRange =
4698         Kind.getKind() == InitializationKind::IK_Direct ?
4699         Kind.getParenRange() : SourceRange();
4700 
4701     // If the entity allows NRVO, mark the construction as elidable
4702     // unconditionally.
4703     if (Entity.allowsNRVO())
4704       CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
4705                                         Constructor, /*Elidable=*/true,
4706                                         move_arg(ConstructorArgs),
4707                                         HadMultipleCandidates,
4708                                         ConstructorInitRequiresZeroInit,
4709                                         ConstructKind,
4710                                         parenRange);
4711     else
4712       CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
4713                                         Constructor,
4714                                         move_arg(ConstructorArgs),
4715                                         HadMultipleCandidates,
4716                                         ConstructorInitRequiresZeroInit,
4717                                         ConstructKind,
4718                                         parenRange);
4719   }
4720   if (CurInit.isInvalid())
4721     return ExprError();
4722 
4723   // Only check access if all of that succeeded.
4724   S.CheckConstructorAccess(Loc, Constructor, Entity,
4725                            Step.Function.FoundDecl.getAccess());
4726   S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc);
4727 
4728   if (shouldBindAsTemporary(Entity))
4729     CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
4730 
4731   return move(CurInit);
4732 }
4733 
4734 /// Determine whether the specified InitializedEntity definitely has a lifetime
4735 /// longer than the current full-expression. Conservatively returns false if
4736 /// it's unclear.
4737 static bool
4738 InitializedEntityOutlivesFullExpression(const InitializedEntity &Entity) {
4739   const InitializedEntity *Top = &Entity;
4740   while (Top->getParent())
4741     Top = Top->getParent();
4742 
4743   switch (Top->getKind()) {
4744   case InitializedEntity::EK_Variable:
4745   case InitializedEntity::EK_Result:
4746   case InitializedEntity::EK_Exception:
4747   case InitializedEntity::EK_Member:
4748   case InitializedEntity::EK_New:
4749   case InitializedEntity::EK_Base:
4750   case InitializedEntity::EK_Delegating:
4751     return true;
4752 
4753   case InitializedEntity::EK_ArrayElement:
4754   case InitializedEntity::EK_VectorElement:
4755   case InitializedEntity::EK_BlockElement:
4756   case InitializedEntity::EK_ComplexElement:
4757     // Could not determine what the full initialization is. Assume it might not
4758     // outlive the full-expression.
4759     return false;
4760 
4761   case InitializedEntity::EK_Parameter:
4762   case InitializedEntity::EK_Temporary:
4763   case InitializedEntity::EK_LambdaCapture:
4764     // The entity being initialized might not outlive the full-expression.
4765     return false;
4766   }
4767 
4768   llvm_unreachable("unknown entity kind");
4769 }
4770 
4771 ExprResult
4772 InitializationSequence::Perform(Sema &S,
4773                                 const InitializedEntity &Entity,
4774                                 const InitializationKind &Kind,
4775                                 MultiExprArg Args,
4776                                 QualType *ResultType) {
4777   if (Failed()) {
4778     unsigned NumArgs = Args.size();
4779     Diagnose(S, Entity, Kind, (Expr **)Args.release(), NumArgs);
4780     return ExprError();
4781   }
4782 
4783   if (getKind() == DependentSequence) {
4784     // If the declaration is a non-dependent, incomplete array type
4785     // that has an initializer, then its type will be completed once
4786     // the initializer is instantiated.
4787     if (ResultType && !Entity.getType()->isDependentType() &&
4788         Args.size() == 1) {
4789       QualType DeclType = Entity.getType();
4790       if (const IncompleteArrayType *ArrayT
4791                            = S.Context.getAsIncompleteArrayType(DeclType)) {
4792         // FIXME: We don't currently have the ability to accurately
4793         // compute the length of an initializer list without
4794         // performing full type-checking of the initializer list
4795         // (since we have to determine where braces are implicitly
4796         // introduced and such).  So, we fall back to making the array
4797         // type a dependently-sized array type with no specified
4798         // bound.
4799         if (isa<InitListExpr>((Expr *)Args.get()[0])) {
4800           SourceRange Brackets;
4801 
4802           // Scavange the location of the brackets from the entity, if we can.
4803           if (DeclaratorDecl *DD = Entity.getDecl()) {
4804             if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
4805               TypeLoc TL = TInfo->getTypeLoc();
4806               if (IncompleteArrayTypeLoc *ArrayLoc
4807                                       = dyn_cast<IncompleteArrayTypeLoc>(&TL))
4808               Brackets = ArrayLoc->getBracketsRange();
4809             }
4810           }
4811 
4812           *ResultType
4813             = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
4814                                                    /*NumElts=*/0,
4815                                                    ArrayT->getSizeModifier(),
4816                                        ArrayT->getIndexTypeCVRQualifiers(),
4817                                                    Brackets);
4818         }
4819 
4820       }
4821     }
4822     if (Kind.getKind() == InitializationKind::IK_Direct &&
4823         !Kind.isExplicitCast()) {
4824       // Rebuild the ParenListExpr.
4825       SourceRange ParenRange = Kind.getParenRange();
4826       return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
4827                                   move(Args));
4828     }
4829     assert(Kind.getKind() == InitializationKind::IK_Copy ||
4830            Kind.isExplicitCast() ||
4831            Kind.getKind() == InitializationKind::IK_DirectList);
4832     return ExprResult(Args.release()[0]);
4833   }
4834 
4835   // No steps means no initialization.
4836   if (Steps.empty())
4837     return S.Owned((Expr *)0);
4838 
4839   if (S.getLangOpts().CPlusPlus0x && Entity.getType()->isReferenceType() &&
4840       Args.size() == 1 && isa<InitListExpr>(Args.get()[0]) &&
4841       Entity.getKind() != InitializedEntity::EK_Parameter) {
4842     // Produce a C++98 compatibility warning if we are initializing a reference
4843     // from an initializer list. For parameters, we produce a better warning
4844     // elsewhere.
4845     Expr *Init = Args.get()[0];
4846     S.Diag(Init->getLocStart(), diag::warn_cxx98_compat_reference_list_init)
4847       << Init->getSourceRange();
4848   }
4849 
4850   // Diagnose cases where we initialize a pointer to an array temporary, and the
4851   // pointer obviously outlives the temporary.
4852   if (Args.size() == 1 && Args.get()[0]->getType()->isArrayType() &&
4853       Entity.getType()->isPointerType() &&
4854       InitializedEntityOutlivesFullExpression(Entity)) {
4855     Expr *Init = Args.get()[0];
4856     Expr::LValueClassification Kind = Init->ClassifyLValue(S.Context);
4857     if (Kind == Expr::LV_ClassTemporary || Kind == Expr::LV_ArrayTemporary)
4858       S.Diag(Init->getLocStart(), diag::warn_temporary_array_to_pointer_decay)
4859         << Init->getSourceRange();
4860   }
4861 
4862   QualType DestType = Entity.getType().getNonReferenceType();
4863   // FIXME: Ugly hack around the fact that Entity.getType() is not
4864   // the same as Entity.getDecl()->getType() in cases involving type merging,
4865   //  and we want latter when it makes sense.
4866   if (ResultType)
4867     *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
4868                                      Entity.getType();
4869 
4870   ExprResult CurInit = S.Owned((Expr *)0);
4871 
4872   // For initialization steps that start with a single initializer,
4873   // grab the only argument out the Args and place it into the "current"
4874   // initializer.
4875   switch (Steps.front().Kind) {
4876   case SK_ResolveAddressOfOverloadedFunction:
4877   case SK_CastDerivedToBaseRValue:
4878   case SK_CastDerivedToBaseXValue:
4879   case SK_CastDerivedToBaseLValue:
4880   case SK_BindReference:
4881   case SK_BindReferenceToTemporary:
4882   case SK_ExtraneousCopyToTemporary:
4883   case SK_UserConversion:
4884   case SK_QualificationConversionLValue:
4885   case SK_QualificationConversionXValue:
4886   case SK_QualificationConversionRValue:
4887   case SK_ConversionSequence:
4888   case SK_ListInitialization:
4889   case SK_UnwrapInitList:
4890   case SK_RewrapInitList:
4891   case SK_CAssignment:
4892   case SK_StringInit:
4893   case SK_ObjCObjectConversion:
4894   case SK_ArrayInit:
4895   case SK_ParenthesizedArrayInit:
4896   case SK_PassByIndirectCopyRestore:
4897   case SK_PassByIndirectRestore:
4898   case SK_ProduceObjCObject:
4899   case SK_StdInitializerList: {
4900     assert(Args.size() == 1);
4901     CurInit = Args.get()[0];
4902     if (!CurInit.get()) return ExprError();
4903     break;
4904   }
4905 
4906   case SK_ConstructorInitialization:
4907   case SK_ListConstructorCall:
4908   case SK_ZeroInitialization:
4909     break;
4910   }
4911 
4912   // Walk through the computed steps for the initialization sequence,
4913   // performing the specified conversions along the way.
4914   bool ConstructorInitRequiresZeroInit = false;
4915   for (step_iterator Step = step_begin(), StepEnd = step_end();
4916        Step != StepEnd; ++Step) {
4917     if (CurInit.isInvalid())
4918       return ExprError();
4919 
4920     QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
4921 
4922     switch (Step->Kind) {
4923     case SK_ResolveAddressOfOverloadedFunction:
4924       // Overload resolution determined which function invoke; update the
4925       // initializer to reflect that choice.
4926       S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
4927       S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation());
4928       CurInit = S.FixOverloadedFunctionReference(move(CurInit),
4929                                                  Step->Function.FoundDecl,
4930                                                  Step->Function.Function);
4931       break;
4932 
4933     case SK_CastDerivedToBaseRValue:
4934     case SK_CastDerivedToBaseXValue:
4935     case SK_CastDerivedToBaseLValue: {
4936       // We have a derived-to-base cast that produces either an rvalue or an
4937       // lvalue. Perform that cast.
4938 
4939       CXXCastPath BasePath;
4940 
4941       // Casts to inaccessible base classes are allowed with C-style casts.
4942       bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
4943       if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
4944                                          CurInit.get()->getLocStart(),
4945                                          CurInit.get()->getSourceRange(),
4946                                          &BasePath, IgnoreBaseAccess))
4947         return ExprError();
4948 
4949       if (S.BasePathInvolvesVirtualBase(BasePath)) {
4950         QualType T = SourceType;
4951         if (const PointerType *Pointer = T->getAs<PointerType>())
4952           T = Pointer->getPointeeType();
4953         if (const RecordType *RecordTy = T->getAs<RecordType>())
4954           S.MarkVTableUsed(CurInit.get()->getLocStart(),
4955                            cast<CXXRecordDecl>(RecordTy->getDecl()));
4956       }
4957 
4958       ExprValueKind VK =
4959           Step->Kind == SK_CastDerivedToBaseLValue ?
4960               VK_LValue :
4961               (Step->Kind == SK_CastDerivedToBaseXValue ?
4962                    VK_XValue :
4963                    VK_RValue);
4964       CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
4965                                                  Step->Type,
4966                                                  CK_DerivedToBase,
4967                                                  CurInit.get(),
4968                                                  &BasePath, VK));
4969       break;
4970     }
4971 
4972     case SK_BindReference:
4973       if (FieldDecl *BitField = CurInit.get()->getBitField()) {
4974         // References cannot bind to bit fields (C++ [dcl.init.ref]p5).
4975         S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
4976           << Entity.getType().isVolatileQualified()
4977           << BitField->getDeclName()
4978           << CurInit.get()->getSourceRange();
4979         S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
4980         return ExprError();
4981       }
4982 
4983       if (CurInit.get()->refersToVectorElement()) {
4984         // References cannot bind to vector elements.
4985         S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
4986           << Entity.getType().isVolatileQualified()
4987           << CurInit.get()->getSourceRange();
4988         PrintInitLocationNote(S, Entity);
4989         return ExprError();
4990       }
4991 
4992       // Reference binding does not have any corresponding ASTs.
4993 
4994       // Check exception specifications
4995       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
4996         return ExprError();
4997 
4998       break;
4999 
5000     case SK_BindReferenceToTemporary:
5001       // Check exception specifications
5002       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
5003         return ExprError();
5004 
5005       // Materialize the temporary into memory.
5006       CurInit = new (S.Context) MaterializeTemporaryExpr(
5007                                          Entity.getType().getNonReferenceType(),
5008                                                          CurInit.get(),
5009                                      Entity.getType()->isLValueReferenceType());
5010 
5011       // If we're binding to an Objective-C object that has lifetime, we
5012       // need cleanups.
5013       if (S.getLangOpts().ObjCAutoRefCount &&
5014           CurInit.get()->getType()->isObjCLifetimeType())
5015         S.ExprNeedsCleanups = true;
5016 
5017       break;
5018 
5019     case SK_ExtraneousCopyToTemporary:
5020       CurInit = CopyObject(S, Step->Type, Entity, move(CurInit),
5021                            /*IsExtraneousCopy=*/true);
5022       break;
5023 
5024     case SK_UserConversion: {
5025       // We have a user-defined conversion that invokes either a constructor
5026       // or a conversion function.
5027       CastKind CastKind;
5028       bool IsCopy = false;
5029       FunctionDecl *Fn = Step->Function.Function;
5030       DeclAccessPair FoundFn = Step->Function.FoundDecl;
5031       bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
5032       bool CreatedObject = false;
5033       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
5034         // Build a call to the selected constructor.
5035         ASTOwningVector<Expr*> ConstructorArgs(S);
5036         SourceLocation Loc = CurInit.get()->getLocStart();
5037         CurInit.release(); // Ownership transferred into MultiExprArg, below.
5038 
5039         // Determine the arguments required to actually perform the constructor
5040         // call.
5041         Expr *Arg = CurInit.get();
5042         if (S.CompleteConstructorCall(Constructor,
5043                                       MultiExprArg(&Arg, 1),
5044                                       Loc, ConstructorArgs))
5045           return ExprError();
5046 
5047         // Build an expression that constructs a temporary.
5048         CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor,
5049                                           move_arg(ConstructorArgs),
5050                                           HadMultipleCandidates,
5051                                           /*ZeroInit*/ false,
5052                                           CXXConstructExpr::CK_Complete,
5053                                           SourceRange());
5054         if (CurInit.isInvalid())
5055           return ExprError();
5056 
5057         S.CheckConstructorAccess(Kind.getLocation(), Constructor, Entity,
5058                                  FoundFn.getAccess());
5059         S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation());
5060 
5061         CastKind = CK_ConstructorConversion;
5062         QualType Class = S.Context.getTypeDeclType(Constructor->getParent());
5063         if (S.Context.hasSameUnqualifiedType(SourceType, Class) ||
5064             S.IsDerivedFrom(SourceType, Class))
5065           IsCopy = true;
5066 
5067         CreatedObject = true;
5068       } else {
5069         // Build a call to the conversion function.
5070         CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
5071         S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), 0,
5072                                     FoundFn);
5073         S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation());
5074 
5075         // FIXME: Should we move this initialization into a separate
5076         // derived-to-base conversion? I believe the answer is "no", because
5077         // we don't want to turn off access control here for c-style casts.
5078         ExprResult CurInitExprRes =
5079           S.PerformObjectArgumentInitialization(CurInit.take(), /*Qualifier=*/0,
5080                                                 FoundFn, Conversion);
5081         if(CurInitExprRes.isInvalid())
5082           return ExprError();
5083         CurInit = move(CurInitExprRes);
5084 
5085         // Build the actual call to the conversion function.
5086         CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
5087                                            HadMultipleCandidates);
5088         if (CurInit.isInvalid() || !CurInit.get())
5089           return ExprError();
5090 
5091         CastKind = CK_UserDefinedConversion;
5092 
5093         CreatedObject = Conversion->getResultType()->isRecordType();
5094       }
5095 
5096       bool RequiresCopy = !IsCopy && !isReferenceBinding(Steps.back());
5097       bool MaybeBindToTemp = RequiresCopy || shouldBindAsTemporary(Entity);
5098 
5099       if (!MaybeBindToTemp && CreatedObject && shouldDestroyTemporary(Entity)) {
5100         QualType T = CurInit.get()->getType();
5101         if (const RecordType *Record = T->getAs<RecordType>()) {
5102           CXXDestructorDecl *Destructor
5103             = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
5104           S.CheckDestructorAccess(CurInit.get()->getLocStart(), Destructor,
5105                                   S.PDiag(diag::err_access_dtor_temp) << T);
5106           S.MarkFunctionReferenced(CurInit.get()->getLocStart(), Destructor);
5107           S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getLocStart());
5108         }
5109       }
5110 
5111       CurInit = S.Owned(ImplicitCastExpr::Create(S.Context,
5112                                                  CurInit.get()->getType(),
5113                                                  CastKind, CurInit.get(), 0,
5114                                                 CurInit.get()->getValueKind()));
5115       if (MaybeBindToTemp)
5116         CurInit = S.MaybeBindToTemporary(CurInit.takeAs<Expr>());
5117       if (RequiresCopy)
5118         CurInit = CopyObject(S, Entity.getType().getNonReferenceType(), Entity,
5119                              move(CurInit), /*IsExtraneousCopy=*/false);
5120       break;
5121     }
5122 
5123     case SK_QualificationConversionLValue:
5124     case SK_QualificationConversionXValue:
5125     case SK_QualificationConversionRValue: {
5126       // Perform a qualification conversion; these can never go wrong.
5127       ExprValueKind VK =
5128           Step->Kind == SK_QualificationConversionLValue ?
5129               VK_LValue :
5130               (Step->Kind == SK_QualificationConversionXValue ?
5131                    VK_XValue :
5132                    VK_RValue);
5133       CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type, CK_NoOp, VK);
5134       break;
5135     }
5136 
5137     case SK_ConversionSequence: {
5138       Sema::CheckedConversionKind CCK
5139         = Kind.isCStyleCast()? Sema::CCK_CStyleCast
5140         : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
5141         : Kind.isExplicitCast()? Sema::CCK_OtherCast
5142         : Sema::CCK_ImplicitConversion;
5143       ExprResult CurInitExprRes =
5144         S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
5145                                     getAssignmentAction(Entity), CCK);
5146       if (CurInitExprRes.isInvalid())
5147         return ExprError();
5148       CurInit = move(CurInitExprRes);
5149       break;
5150     }
5151 
5152     case SK_ListInitialization: {
5153       InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
5154       // Hack: We must pass *ResultType if available in order to set the type
5155       // of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
5156       // But in 'const X &x = {1, 2, 3};' we're supposed to initialize a
5157       // temporary, not a reference, so we should pass Ty.
5158       // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
5159       // Since this step is never used for a reference directly, we explicitly
5160       // unwrap references here and rewrap them afterwards.
5161       // We also need to create a InitializeTemporary entity for this.
5162       QualType Ty = ResultType ? ResultType->getNonReferenceType() : Step->Type;
5163       bool IsTemporary = Entity.getType()->isReferenceType();
5164       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
5165       InitListChecker PerformInitList(S, IsTemporary ? TempEntity : Entity,
5166           InitList, Ty, /*VerifyOnly=*/false,
5167           Kind.getKind() != InitializationKind::IK_DirectList ||
5168             !S.getLangOpts().CPlusPlus0x);
5169       if (PerformInitList.HadError())
5170         return ExprError();
5171 
5172       if (ResultType) {
5173         if ((*ResultType)->isRValueReferenceType())
5174           Ty = S.Context.getRValueReferenceType(Ty);
5175         else if ((*ResultType)->isLValueReferenceType())
5176           Ty = S.Context.getLValueReferenceType(Ty,
5177             (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue());
5178         *ResultType = Ty;
5179       }
5180 
5181       InitListExpr *StructuredInitList =
5182           PerformInitList.getFullyStructuredList();
5183       CurInit.release();
5184       CurInit = S.Owned(StructuredInitList);
5185       break;
5186     }
5187 
5188     case SK_ListConstructorCall: {
5189       // When an initializer list is passed for a parameter of type "reference
5190       // to object", we don't get an EK_Temporary entity, but instead an
5191       // EK_Parameter entity with reference type.
5192       // FIXME: This is a hack. What we really should do is create a user
5193       // conversion step for this case, but this makes it considerably more
5194       // complicated. For now, this will do.
5195       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
5196                                         Entity.getType().getNonReferenceType());
5197       bool UseTemporary = Entity.getType()->isReferenceType();
5198       assert(Args.size() == 1 && "expected a single argument for list init");
5199       InitListExpr *InitList = cast<InitListExpr>(Args.get()[0]);
5200       S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
5201         << InitList->getSourceRange();
5202       MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
5203       CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
5204                                                                    Entity,
5205                                                  Kind, move(Arg), *Step,
5206                                                ConstructorInitRequiresZeroInit);
5207       break;
5208     }
5209 
5210     case SK_UnwrapInitList:
5211       CurInit = S.Owned(cast<InitListExpr>(CurInit.take())->getInit(0));
5212       break;
5213 
5214     case SK_RewrapInitList: {
5215       Expr *E = CurInit.take();
5216       InitListExpr *Syntactic = Step->WrappingSyntacticList;
5217       InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
5218           Syntactic->getLBraceLoc(), &E, 1, Syntactic->getRBraceLoc());
5219       ILE->setSyntacticForm(Syntactic);
5220       ILE->setType(E->getType());
5221       ILE->setValueKind(E->getValueKind());
5222       CurInit = S.Owned(ILE);
5223       break;
5224     }
5225 
5226     case SK_ConstructorInitialization: {
5227       // When an initializer list is passed for a parameter of type "reference
5228       // to object", we don't get an EK_Temporary entity, but instead an
5229       // EK_Parameter entity with reference type.
5230       // FIXME: This is a hack. What we really should do is create a user
5231       // conversion step for this case, but this makes it considerably more
5232       // complicated. For now, this will do.
5233       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
5234                                         Entity.getType().getNonReferenceType());
5235       bool UseTemporary = Entity.getType()->isReferenceType();
5236       CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity
5237                                                                  : Entity,
5238                                                  Kind, move(Args), *Step,
5239                                                ConstructorInitRequiresZeroInit);
5240       break;
5241     }
5242 
5243     case SK_ZeroInitialization: {
5244       step_iterator NextStep = Step;
5245       ++NextStep;
5246       if (NextStep != StepEnd &&
5247           (NextStep->Kind == SK_ConstructorInitialization ||
5248            NextStep->Kind == SK_ListConstructorCall)) {
5249         // The need for zero-initialization is recorded directly into
5250         // the call to the object's constructor within the next step.
5251         ConstructorInitRequiresZeroInit = true;
5252       } else if (Kind.getKind() == InitializationKind::IK_Value &&
5253                  S.getLangOpts().CPlusPlus &&
5254                  !Kind.isImplicitValueInit()) {
5255         TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
5256         if (!TSInfo)
5257           TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
5258                                                     Kind.getRange().getBegin());
5259 
5260         CurInit = S.Owned(new (S.Context) CXXScalarValueInitExpr(
5261                               TSInfo->getType().getNonLValueExprType(S.Context),
5262                                                                  TSInfo,
5263                                                     Kind.getRange().getEnd()));
5264       } else {
5265         CurInit = S.Owned(new (S.Context) ImplicitValueInitExpr(Step->Type));
5266       }
5267       break;
5268     }
5269 
5270     case SK_CAssignment: {
5271       QualType SourceType = CurInit.get()->getType();
5272       ExprResult Result = move(CurInit);
5273       Sema::AssignConvertType ConvTy =
5274         S.CheckSingleAssignmentConstraints(Step->Type, Result);
5275       if (Result.isInvalid())
5276         return ExprError();
5277       CurInit = move(Result);
5278 
5279       // If this is a call, allow conversion to a transparent union.
5280       ExprResult CurInitExprRes = move(CurInit);
5281       if (ConvTy != Sema::Compatible &&
5282           Entity.getKind() == InitializedEntity::EK_Parameter &&
5283           S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
5284             == Sema::Compatible)
5285         ConvTy = Sema::Compatible;
5286       if (CurInitExprRes.isInvalid())
5287         return ExprError();
5288       CurInit = move(CurInitExprRes);
5289 
5290       bool Complained;
5291       if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
5292                                      Step->Type, SourceType,
5293                                      CurInit.get(),
5294                                      getAssignmentAction(Entity),
5295                                      &Complained)) {
5296         PrintInitLocationNote(S, Entity);
5297         return ExprError();
5298       } else if (Complained)
5299         PrintInitLocationNote(S, Entity);
5300       break;
5301     }
5302 
5303     case SK_StringInit: {
5304       QualType Ty = Step->Type;
5305       CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
5306                       S.Context.getAsArrayType(Ty), S);
5307       break;
5308     }
5309 
5310     case SK_ObjCObjectConversion:
5311       CurInit = S.ImpCastExprToType(CurInit.take(), Step->Type,
5312                           CK_ObjCObjectLValueCast,
5313                           CurInit.get()->getValueKind());
5314       break;
5315 
5316     case SK_ArrayInit:
5317       // Okay: we checked everything before creating this step. Note that
5318       // this is a GNU extension.
5319       S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
5320         << Step->Type << CurInit.get()->getType()
5321         << CurInit.get()->getSourceRange();
5322 
5323       // If the destination type is an incomplete array type, update the
5324       // type accordingly.
5325       if (ResultType) {
5326         if (const IncompleteArrayType *IncompleteDest
5327                            = S.Context.getAsIncompleteArrayType(Step->Type)) {
5328           if (const ConstantArrayType *ConstantSource
5329                  = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
5330             *ResultType = S.Context.getConstantArrayType(
5331                                              IncompleteDest->getElementType(),
5332                                              ConstantSource->getSize(),
5333                                              ArrayType::Normal, 0);
5334           }
5335         }
5336       }
5337       break;
5338 
5339     case SK_ParenthesizedArrayInit:
5340       // Okay: we checked everything before creating this step. Note that
5341       // this is a GNU extension.
5342       S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
5343         << CurInit.get()->getSourceRange();
5344       break;
5345 
5346     case SK_PassByIndirectCopyRestore:
5347     case SK_PassByIndirectRestore:
5348       checkIndirectCopyRestoreSource(S, CurInit.get());
5349       CurInit = S.Owned(new (S.Context)
5350                         ObjCIndirectCopyRestoreExpr(CurInit.take(), Step->Type,
5351                                 Step->Kind == SK_PassByIndirectCopyRestore));
5352       break;
5353 
5354     case SK_ProduceObjCObject:
5355       CurInit = S.Owned(ImplicitCastExpr::Create(S.Context, Step->Type,
5356                                                  CK_ARCProduceObject,
5357                                                  CurInit.take(), 0, VK_RValue));
5358       break;
5359 
5360     case SK_StdInitializerList: {
5361       QualType Dest = Step->Type;
5362       QualType E;
5363       bool Success = S.isStdInitializerList(Dest, &E);
5364       (void)Success;
5365       assert(Success && "Destination type changed?");
5366 
5367       // If the element type has a destructor, check it.
5368       if (CXXRecordDecl *RD = E->getAsCXXRecordDecl()) {
5369         if (!RD->hasIrrelevantDestructor()) {
5370           if (CXXDestructorDecl *Destructor = S.LookupDestructor(RD)) {
5371             S.MarkFunctionReferenced(Kind.getLocation(), Destructor);
5372             S.CheckDestructorAccess(Kind.getLocation(), Destructor,
5373                                     S.PDiag(diag::err_access_dtor_temp) << E);
5374             S.DiagnoseUseOfDecl(Destructor, Kind.getLocation());
5375           }
5376         }
5377       }
5378 
5379       InitListExpr *ILE = cast<InitListExpr>(CurInit.take());
5380       S.Diag(ILE->getExprLoc(), diag::warn_cxx98_compat_initializer_list_init)
5381         << ILE->getSourceRange();
5382       unsigned NumInits = ILE->getNumInits();
5383       SmallVector<Expr*, 16> Converted(NumInits);
5384       InitializedEntity HiddenArray = InitializedEntity::InitializeTemporary(
5385           S.Context.getConstantArrayType(E,
5386               llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
5387                           NumInits),
5388               ArrayType::Normal, 0));
5389       InitializedEntity Element =InitializedEntity::InitializeElement(S.Context,
5390           0, HiddenArray);
5391       for (unsigned i = 0; i < NumInits; ++i) {
5392         Element.setElementIndex(i);
5393         ExprResult Init = S.Owned(ILE->getInit(i));
5394         ExprResult Res = S.PerformCopyInitialization(Element,
5395                                                      Init.get()->getExprLoc(),
5396                                                      Init);
5397         assert(!Res.isInvalid() && "Result changed since try phase.");
5398         Converted[i] = Res.take();
5399       }
5400       InitListExpr *Semantic = new (S.Context)
5401           InitListExpr(S.Context, ILE->getLBraceLoc(),
5402                        Converted.data(), NumInits, ILE->getRBraceLoc());
5403       Semantic->setSyntacticForm(ILE);
5404       Semantic->setType(Dest);
5405       Semantic->setInitializesStdInitializerList();
5406       CurInit = S.Owned(Semantic);
5407       break;
5408     }
5409     }
5410   }
5411 
5412   // Diagnose non-fatal problems with the completed initialization.
5413   if (Entity.getKind() == InitializedEntity::EK_Member &&
5414       cast<FieldDecl>(Entity.getDecl())->isBitField())
5415     S.CheckBitFieldInitialization(Kind.getLocation(),
5416                                   cast<FieldDecl>(Entity.getDecl()),
5417                                   CurInit.get());
5418 
5419   return move(CurInit);
5420 }
5421 
5422 //===----------------------------------------------------------------------===//
5423 // Diagnose initialization failures
5424 //===----------------------------------------------------------------------===//
5425 bool InitializationSequence::Diagnose(Sema &S,
5426                                       const InitializedEntity &Entity,
5427                                       const InitializationKind &Kind,
5428                                       Expr **Args, unsigned NumArgs) {
5429   if (!Failed())
5430     return false;
5431 
5432   QualType DestType = Entity.getType();
5433   switch (Failure) {
5434   case FK_TooManyInitsForReference:
5435     // FIXME: Customize for the initialized entity?
5436     if (NumArgs == 0)
5437       S.Diag(Kind.getLocation(), diag::err_reference_without_init)
5438         << DestType.getNonReferenceType();
5439     else  // FIXME: diagnostic below could be better!
5440       S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
5441         << SourceRange(Args[0]->getLocStart(), Args[NumArgs - 1]->getLocEnd());
5442     break;
5443 
5444   case FK_ArrayNeedsInitList:
5445   case FK_ArrayNeedsInitListOrStringLiteral:
5446     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list)
5447       << (Failure == FK_ArrayNeedsInitListOrStringLiteral);
5448     break;
5449 
5450   case FK_ArrayTypeMismatch:
5451   case FK_NonConstantArrayInit:
5452     S.Diag(Kind.getLocation(),
5453            (Failure == FK_ArrayTypeMismatch
5454               ? diag::err_array_init_different_type
5455               : diag::err_array_init_non_constant_array))
5456       << DestType.getNonReferenceType()
5457       << Args[0]->getType()
5458       << Args[0]->getSourceRange();
5459     break;
5460 
5461   case FK_VariableLengthArrayHasInitializer:
5462     S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
5463       << Args[0]->getSourceRange();
5464     break;
5465 
5466   case FK_AddressOfOverloadFailed: {
5467     DeclAccessPair Found;
5468     S.ResolveAddressOfOverloadedFunction(Args[0],
5469                                          DestType.getNonReferenceType(),
5470                                          true,
5471                                          Found);
5472     break;
5473   }
5474 
5475   case FK_ReferenceInitOverloadFailed:
5476   case FK_UserConversionOverloadFailed:
5477     switch (FailedOverloadResult) {
5478     case OR_Ambiguous:
5479       if (Failure == FK_UserConversionOverloadFailed)
5480         S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
5481           << Args[0]->getType() << DestType
5482           << Args[0]->getSourceRange();
5483       else
5484         S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
5485           << DestType << Args[0]->getType()
5486           << Args[0]->getSourceRange();
5487 
5488       FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates,
5489                                         llvm::makeArrayRef(Args, NumArgs));
5490       break;
5491 
5492     case OR_No_Viable_Function:
5493       S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
5494         << Args[0]->getType() << DestType.getNonReferenceType()
5495         << Args[0]->getSourceRange();
5496       FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates,
5497                                         llvm::makeArrayRef(Args, NumArgs));
5498       break;
5499 
5500     case OR_Deleted: {
5501       S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
5502         << Args[0]->getType() << DestType.getNonReferenceType()
5503         << Args[0]->getSourceRange();
5504       OverloadCandidateSet::iterator Best;
5505       OverloadingResult Ovl
5506         = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best,
5507                                                 true);
5508       if (Ovl == OR_Deleted) {
5509         S.NoteDeletedFunction(Best->Function);
5510       } else {
5511         llvm_unreachable("Inconsistent overload resolution?");
5512       }
5513       break;
5514     }
5515 
5516     case OR_Success:
5517       llvm_unreachable("Conversion did not fail!");
5518     }
5519     break;
5520 
5521   case FK_NonConstLValueReferenceBindingToTemporary:
5522     if (isa<InitListExpr>(Args[0])) {
5523       S.Diag(Kind.getLocation(),
5524              diag::err_lvalue_reference_bind_to_initlist)
5525       << DestType.getNonReferenceType().isVolatileQualified()
5526       << DestType.getNonReferenceType()
5527       << Args[0]->getSourceRange();
5528       break;
5529     }
5530     // Intentional fallthrough
5531 
5532   case FK_NonConstLValueReferenceBindingToUnrelated:
5533     S.Diag(Kind.getLocation(),
5534            Failure == FK_NonConstLValueReferenceBindingToTemporary
5535              ? diag::err_lvalue_reference_bind_to_temporary
5536              : diag::err_lvalue_reference_bind_to_unrelated)
5537       << DestType.getNonReferenceType().isVolatileQualified()
5538       << DestType.getNonReferenceType()
5539       << Args[0]->getType()
5540       << Args[0]->getSourceRange();
5541     break;
5542 
5543   case FK_RValueReferenceBindingToLValue:
5544     S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
5545       << DestType.getNonReferenceType() << Args[0]->getType()
5546       << Args[0]->getSourceRange();
5547     break;
5548 
5549   case FK_ReferenceInitDropsQualifiers:
5550     S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
5551       << DestType.getNonReferenceType()
5552       << Args[0]->getType()
5553       << Args[0]->getSourceRange();
5554     break;
5555 
5556   case FK_ReferenceInitFailed:
5557     S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
5558       << DestType.getNonReferenceType()
5559       << Args[0]->isLValue()
5560       << Args[0]->getType()
5561       << Args[0]->getSourceRange();
5562     if (DestType.getNonReferenceType()->isObjCObjectPointerType() &&
5563         Args[0]->getType()->isObjCObjectPointerType())
5564       S.EmitRelatedResultTypeNote(Args[0]);
5565     break;
5566 
5567   case FK_ConversionFailed: {
5568     QualType FromType = Args[0]->getType();
5569     PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
5570       << (int)Entity.getKind()
5571       << DestType
5572       << Args[0]->isLValue()
5573       << FromType
5574       << Args[0]->getSourceRange();
5575     S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
5576     S.Diag(Kind.getLocation(), PDiag);
5577     if (DestType.getNonReferenceType()->isObjCObjectPointerType() &&
5578         Args[0]->getType()->isObjCObjectPointerType())
5579       S.EmitRelatedResultTypeNote(Args[0]);
5580     break;
5581   }
5582 
5583   case FK_ConversionFromPropertyFailed:
5584     // No-op. This error has already been reported.
5585     break;
5586 
5587   case FK_TooManyInitsForScalar: {
5588     SourceRange R;
5589 
5590     if (InitListExpr *InitList = dyn_cast<InitListExpr>(Args[0]))
5591       R = SourceRange(InitList->getInit(0)->getLocEnd(),
5592                       InitList->getLocEnd());
5593     else
5594       R = SourceRange(Args[0]->getLocEnd(), Args[NumArgs - 1]->getLocEnd());
5595 
5596     R.setBegin(S.PP.getLocForEndOfToken(R.getBegin()));
5597     if (Kind.isCStyleOrFunctionalCast())
5598       S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
5599         << R;
5600     else
5601       S.Diag(Kind.getLocation(), diag::err_excess_initializers)
5602         << /*scalar=*/2 << R;
5603     break;
5604   }
5605 
5606   case FK_ReferenceBindingToInitList:
5607     S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
5608       << DestType.getNonReferenceType() << Args[0]->getSourceRange();
5609     break;
5610 
5611   case FK_InitListBadDestinationType:
5612     S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
5613       << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
5614     break;
5615 
5616   case FK_ListConstructorOverloadFailed:
5617   case FK_ConstructorOverloadFailed: {
5618     SourceRange ArgsRange;
5619     if (NumArgs)
5620       ArgsRange = SourceRange(Args[0]->getLocStart(),
5621                               Args[NumArgs - 1]->getLocEnd());
5622 
5623     if (Failure == FK_ListConstructorOverloadFailed) {
5624       assert(NumArgs == 1 && "List construction from other than 1 argument.");
5625       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
5626       Args = InitList->getInits();
5627       NumArgs = InitList->getNumInits();
5628     }
5629 
5630     // FIXME: Using "DestType" for the entity we're printing is probably
5631     // bad.
5632     switch (FailedOverloadResult) {
5633       case OR_Ambiguous:
5634         S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
5635           << DestType << ArgsRange;
5636         FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates,
5637                                           llvm::makeArrayRef(Args, NumArgs));
5638         break;
5639 
5640       case OR_No_Viable_Function:
5641         if (Kind.getKind() == InitializationKind::IK_Default &&
5642             (Entity.getKind() == InitializedEntity::EK_Base ||
5643              Entity.getKind() == InitializedEntity::EK_Member) &&
5644             isa<CXXConstructorDecl>(S.CurContext)) {
5645           // This is implicit default initialization of a member or
5646           // base within a constructor. If no viable function was
5647           // found, notify the user that she needs to explicitly
5648           // initialize this base/member.
5649           CXXConstructorDecl *Constructor
5650             = cast<CXXConstructorDecl>(S.CurContext);
5651           if (Entity.getKind() == InitializedEntity::EK_Base) {
5652             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
5653               << Constructor->isImplicit()
5654               << S.Context.getTypeDeclType(Constructor->getParent())
5655               << /*base=*/0
5656               << Entity.getType();
5657 
5658             RecordDecl *BaseDecl
5659               = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
5660                                                                   ->getDecl();
5661             S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
5662               << S.Context.getTagDeclType(BaseDecl);
5663           } else {
5664             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
5665               << Constructor->isImplicit()
5666               << S.Context.getTypeDeclType(Constructor->getParent())
5667               << /*member=*/1
5668               << Entity.getName();
5669             S.Diag(Entity.getDecl()->getLocation(), diag::note_field_decl);
5670 
5671             if (const RecordType *Record
5672                                  = Entity.getType()->getAs<RecordType>())
5673               S.Diag(Record->getDecl()->getLocation(),
5674                      diag::note_previous_decl)
5675                 << S.Context.getTagDeclType(Record->getDecl());
5676           }
5677           break;
5678         }
5679 
5680         S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
5681           << DestType << ArgsRange;
5682         FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates,
5683                                           llvm::makeArrayRef(Args, NumArgs));
5684         break;
5685 
5686       case OR_Deleted: {
5687         OverloadCandidateSet::iterator Best;
5688         OverloadingResult Ovl
5689           = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
5690         if (Ovl != OR_Deleted) {
5691           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
5692             << true << DestType << ArgsRange;
5693           llvm_unreachable("Inconsistent overload resolution?");
5694           break;
5695         }
5696 
5697         // If this is a defaulted or implicitly-declared function, then
5698         // it was implicitly deleted. Make it clear that the deletion was
5699         // implicit.
5700         if (S.isImplicitlyDeleted(Best->Function))
5701           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
5702             << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
5703             << DestType << ArgsRange;
5704         else
5705           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
5706             << true << DestType << ArgsRange;
5707 
5708         S.NoteDeletedFunction(Best->Function);
5709         break;
5710       }
5711 
5712       case OR_Success:
5713         llvm_unreachable("Conversion did not fail!");
5714     }
5715   }
5716   break;
5717 
5718   case FK_DefaultInitOfConst:
5719     if (Entity.getKind() == InitializedEntity::EK_Member &&
5720         isa<CXXConstructorDecl>(S.CurContext)) {
5721       // This is implicit default-initialization of a const member in
5722       // a constructor. Complain that it needs to be explicitly
5723       // initialized.
5724       CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
5725       S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
5726         << Constructor->isImplicit()
5727         << S.Context.getTypeDeclType(Constructor->getParent())
5728         << /*const=*/1
5729         << Entity.getName();
5730       S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
5731         << Entity.getName();
5732     } else {
5733       S.Diag(Kind.getLocation(), diag::err_default_init_const)
5734         << DestType << (bool)DestType->getAs<RecordType>();
5735     }
5736     break;
5737 
5738   case FK_Incomplete:
5739     S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
5740                           diag::err_init_incomplete_type);
5741     break;
5742 
5743   case FK_ListInitializationFailed: {
5744     // Run the init list checker again to emit diagnostics.
5745     InitListExpr* InitList = cast<InitListExpr>(Args[0]);
5746     QualType DestType = Entity.getType();
5747     InitListChecker DiagnoseInitList(S, Entity, InitList,
5748             DestType, /*VerifyOnly=*/false,
5749             Kind.getKind() != InitializationKind::IK_DirectList ||
5750               !S.getLangOpts().CPlusPlus0x);
5751     assert(DiagnoseInitList.HadError() &&
5752            "Inconsistent init list check result.");
5753     break;
5754   }
5755 
5756   case FK_PlaceholderType: {
5757     // FIXME: Already diagnosed!
5758     break;
5759   }
5760 
5761   case FK_InitListElementCopyFailure: {
5762     // Try to perform all copies again.
5763     InitListExpr* InitList = cast<InitListExpr>(Args[0]);
5764     unsigned NumInits = InitList->getNumInits();
5765     QualType DestType = Entity.getType();
5766     QualType E;
5767     bool Success = S.isStdInitializerList(DestType, &E);
5768     (void)Success;
5769     assert(Success && "Where did the std::initializer_list go?");
5770     InitializedEntity HiddenArray = InitializedEntity::InitializeTemporary(
5771         S.Context.getConstantArrayType(E,
5772             llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
5773                         NumInits),
5774             ArrayType::Normal, 0));
5775     InitializedEntity Element = InitializedEntity::InitializeElement(S.Context,
5776         0, HiddenArray);
5777     // Show at most 3 errors. Otherwise, you'd get a lot of errors for errors
5778     // where the init list type is wrong, e.g.
5779     //   std::initializer_list<void*> list = { 1, 2, 3, 4, 5, 6, 7, 8 };
5780     // FIXME: Emit a note if we hit the limit?
5781     int ErrorCount = 0;
5782     for (unsigned i = 0; i < NumInits && ErrorCount < 3; ++i) {
5783       Element.setElementIndex(i);
5784       ExprResult Init = S.Owned(InitList->getInit(i));
5785       if (S.PerformCopyInitialization(Element, Init.get()->getExprLoc(), Init)
5786            .isInvalid())
5787         ++ErrorCount;
5788     }
5789     break;
5790   }
5791 
5792   case FK_ExplicitConstructor: {
5793     S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
5794       << Args[0]->getSourceRange();
5795     OverloadCandidateSet::iterator Best;
5796     OverloadingResult Ovl
5797       = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
5798     (void)Ovl;
5799     assert(Ovl == OR_Success && "Inconsistent overload resolution");
5800     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
5801     S.Diag(CtorDecl->getLocation(), diag::note_constructor_declared_here);
5802     break;
5803   }
5804   }
5805 
5806   PrintInitLocationNote(S, Entity);
5807   return true;
5808 }
5809 
5810 void InitializationSequence::dump(raw_ostream &OS) const {
5811   switch (SequenceKind) {
5812   case FailedSequence: {
5813     OS << "Failed sequence: ";
5814     switch (Failure) {
5815     case FK_TooManyInitsForReference:
5816       OS << "too many initializers for reference";
5817       break;
5818 
5819     case FK_ArrayNeedsInitList:
5820       OS << "array requires initializer list";
5821       break;
5822 
5823     case FK_ArrayNeedsInitListOrStringLiteral:
5824       OS << "array requires initializer list or string literal";
5825       break;
5826 
5827     case FK_ArrayTypeMismatch:
5828       OS << "array type mismatch";
5829       break;
5830 
5831     case FK_NonConstantArrayInit:
5832       OS << "non-constant array initializer";
5833       break;
5834 
5835     case FK_AddressOfOverloadFailed:
5836       OS << "address of overloaded function failed";
5837       break;
5838 
5839     case FK_ReferenceInitOverloadFailed:
5840       OS << "overload resolution for reference initialization failed";
5841       break;
5842 
5843     case FK_NonConstLValueReferenceBindingToTemporary:
5844       OS << "non-const lvalue reference bound to temporary";
5845       break;
5846 
5847     case FK_NonConstLValueReferenceBindingToUnrelated:
5848       OS << "non-const lvalue reference bound to unrelated type";
5849       break;
5850 
5851     case FK_RValueReferenceBindingToLValue:
5852       OS << "rvalue reference bound to an lvalue";
5853       break;
5854 
5855     case FK_ReferenceInitDropsQualifiers:
5856       OS << "reference initialization drops qualifiers";
5857       break;
5858 
5859     case FK_ReferenceInitFailed:
5860       OS << "reference initialization failed";
5861       break;
5862 
5863     case FK_ConversionFailed:
5864       OS << "conversion failed";
5865       break;
5866 
5867     case FK_ConversionFromPropertyFailed:
5868       OS << "conversion from property failed";
5869       break;
5870 
5871     case FK_TooManyInitsForScalar:
5872       OS << "too many initializers for scalar";
5873       break;
5874 
5875     case FK_ReferenceBindingToInitList:
5876       OS << "referencing binding to initializer list";
5877       break;
5878 
5879     case FK_InitListBadDestinationType:
5880       OS << "initializer list for non-aggregate, non-scalar type";
5881       break;
5882 
5883     case FK_UserConversionOverloadFailed:
5884       OS << "overloading failed for user-defined conversion";
5885       break;
5886 
5887     case FK_ConstructorOverloadFailed:
5888       OS << "constructor overloading failed";
5889       break;
5890 
5891     case FK_DefaultInitOfConst:
5892       OS << "default initialization of a const variable";
5893       break;
5894 
5895     case FK_Incomplete:
5896       OS << "initialization of incomplete type";
5897       break;
5898 
5899     case FK_ListInitializationFailed:
5900       OS << "list initialization checker failure";
5901       break;
5902 
5903     case FK_VariableLengthArrayHasInitializer:
5904       OS << "variable length array has an initializer";
5905       break;
5906 
5907     case FK_PlaceholderType:
5908       OS << "initializer expression isn't contextually valid";
5909       break;
5910 
5911     case FK_ListConstructorOverloadFailed:
5912       OS << "list constructor overloading failed";
5913       break;
5914 
5915     case FK_InitListElementCopyFailure:
5916       OS << "copy construction of initializer list element failed";
5917       break;
5918 
5919     case FK_ExplicitConstructor:
5920       OS << "list copy initialization chose explicit constructor";
5921       break;
5922     }
5923     OS << '\n';
5924     return;
5925   }
5926 
5927   case DependentSequence:
5928     OS << "Dependent sequence\n";
5929     return;
5930 
5931   case NormalSequence:
5932     OS << "Normal sequence: ";
5933     break;
5934   }
5935 
5936   for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
5937     if (S != step_begin()) {
5938       OS << " -> ";
5939     }
5940 
5941     switch (S->Kind) {
5942     case SK_ResolveAddressOfOverloadedFunction:
5943       OS << "resolve address of overloaded function";
5944       break;
5945 
5946     case SK_CastDerivedToBaseRValue:
5947       OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")";
5948       break;
5949 
5950     case SK_CastDerivedToBaseXValue:
5951       OS << "derived-to-base case (xvalue" << S->Type.getAsString() << ")";
5952       break;
5953 
5954     case SK_CastDerivedToBaseLValue:
5955       OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")";
5956       break;
5957 
5958     case SK_BindReference:
5959       OS << "bind reference to lvalue";
5960       break;
5961 
5962     case SK_BindReferenceToTemporary:
5963       OS << "bind reference to a temporary";
5964       break;
5965 
5966     case SK_ExtraneousCopyToTemporary:
5967       OS << "extraneous C++03 copy to temporary";
5968       break;
5969 
5970     case SK_UserConversion:
5971       OS << "user-defined conversion via " << *S->Function.Function;
5972       break;
5973 
5974     case SK_QualificationConversionRValue:
5975       OS << "qualification conversion (rvalue)";
5976       break;
5977 
5978     case SK_QualificationConversionXValue:
5979       OS << "qualification conversion (xvalue)";
5980       break;
5981 
5982     case SK_QualificationConversionLValue:
5983       OS << "qualification conversion (lvalue)";
5984       break;
5985 
5986     case SK_ConversionSequence:
5987       OS << "implicit conversion sequence (";
5988       S->ICS->DebugPrint(); // FIXME: use OS
5989       OS << ")";
5990       break;
5991 
5992     case SK_ListInitialization:
5993       OS << "list aggregate initialization";
5994       break;
5995 
5996     case SK_ListConstructorCall:
5997       OS << "list initialization via constructor";
5998       break;
5999 
6000     case SK_UnwrapInitList:
6001       OS << "unwrap reference initializer list";
6002       break;
6003 
6004     case SK_RewrapInitList:
6005       OS << "rewrap reference initializer list";
6006       break;
6007 
6008     case SK_ConstructorInitialization:
6009       OS << "constructor initialization";
6010       break;
6011 
6012     case SK_ZeroInitialization:
6013       OS << "zero initialization";
6014       break;
6015 
6016     case SK_CAssignment:
6017       OS << "C assignment";
6018       break;
6019 
6020     case SK_StringInit:
6021       OS << "string initialization";
6022       break;
6023 
6024     case SK_ObjCObjectConversion:
6025       OS << "Objective-C object conversion";
6026       break;
6027 
6028     case SK_ArrayInit:
6029       OS << "array initialization";
6030       break;
6031 
6032     case SK_ParenthesizedArrayInit:
6033       OS << "parenthesized array initialization";
6034       break;
6035 
6036     case SK_PassByIndirectCopyRestore:
6037       OS << "pass by indirect copy and restore";
6038       break;
6039 
6040     case SK_PassByIndirectRestore:
6041       OS << "pass by indirect restore";
6042       break;
6043 
6044     case SK_ProduceObjCObject:
6045       OS << "Objective-C object retension";
6046       break;
6047 
6048     case SK_StdInitializerList:
6049       OS << "std::initializer_list from initializer list";
6050       break;
6051     }
6052   }
6053 }
6054 
6055 void InitializationSequence::dump() const {
6056   dump(llvm::errs());
6057 }
6058 
6059 static void DiagnoseNarrowingInInitList(Sema &S, InitializationSequence &Seq,
6060                                         QualType EntityType,
6061                                         const Expr *PreInit,
6062                                         const Expr *PostInit) {
6063   if (Seq.step_begin() == Seq.step_end() || PreInit->isValueDependent())
6064     return;
6065 
6066   // A narrowing conversion can only appear as the final implicit conversion in
6067   // an initialization sequence.
6068   const InitializationSequence::Step &LastStep = Seq.step_end()[-1];
6069   if (LastStep.Kind != InitializationSequence::SK_ConversionSequence)
6070     return;
6071 
6072   const ImplicitConversionSequence &ICS = *LastStep.ICS;
6073   const StandardConversionSequence *SCS = 0;
6074   switch (ICS.getKind()) {
6075   case ImplicitConversionSequence::StandardConversion:
6076     SCS = &ICS.Standard;
6077     break;
6078   case ImplicitConversionSequence::UserDefinedConversion:
6079     SCS = &ICS.UserDefined.After;
6080     break;
6081   case ImplicitConversionSequence::AmbiguousConversion:
6082   case ImplicitConversionSequence::EllipsisConversion:
6083   case ImplicitConversionSequence::BadConversion:
6084     return;
6085   }
6086 
6087   // Determine the type prior to the narrowing conversion. If a conversion
6088   // operator was used, this may be different from both the type of the entity
6089   // and of the pre-initialization expression.
6090   QualType PreNarrowingType = PreInit->getType();
6091   if (Seq.step_begin() + 1 != Seq.step_end())
6092     PreNarrowingType = Seq.step_end()[-2].Type;
6093 
6094   // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
6095   APValue ConstantValue;
6096   QualType ConstantType;
6097   switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
6098                                 ConstantType)) {
6099   case NK_Not_Narrowing:
6100     // No narrowing occurred.
6101     return;
6102 
6103   case NK_Type_Narrowing:
6104     // This was a floating-to-integer conversion, which is always considered a
6105     // narrowing conversion even if the value is a constant and can be
6106     // represented exactly as an integer.
6107     S.Diag(PostInit->getLocStart(),
6108            S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus0x?
6109              diag::warn_init_list_type_narrowing
6110            : S.isSFINAEContext()?
6111              diag::err_init_list_type_narrowing_sfinae
6112            : diag::err_init_list_type_narrowing)
6113       << PostInit->getSourceRange()
6114       << PreNarrowingType.getLocalUnqualifiedType()
6115       << EntityType.getLocalUnqualifiedType();
6116     break;
6117 
6118   case NK_Constant_Narrowing:
6119     // A constant value was narrowed.
6120     S.Diag(PostInit->getLocStart(),
6121            S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus0x?
6122              diag::warn_init_list_constant_narrowing
6123            : S.isSFINAEContext()?
6124              diag::err_init_list_constant_narrowing_sfinae
6125            : diag::err_init_list_constant_narrowing)
6126       << PostInit->getSourceRange()
6127       << ConstantValue.getAsString(S.getASTContext(), ConstantType)
6128       << EntityType.getLocalUnqualifiedType();
6129     break;
6130 
6131   case NK_Variable_Narrowing:
6132     // A variable's value may have been narrowed.
6133     S.Diag(PostInit->getLocStart(),
6134            S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus0x?
6135              diag::warn_init_list_variable_narrowing
6136            : S.isSFINAEContext()?
6137              diag::err_init_list_variable_narrowing_sfinae
6138            : diag::err_init_list_variable_narrowing)
6139       << PostInit->getSourceRange()
6140       << PreNarrowingType.getLocalUnqualifiedType()
6141       << EntityType.getLocalUnqualifiedType();
6142     break;
6143   }
6144 
6145   SmallString<128> StaticCast;
6146   llvm::raw_svector_ostream OS(StaticCast);
6147   OS << "static_cast<";
6148   if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
6149     // It's important to use the typedef's name if there is one so that the
6150     // fixit doesn't break code using types like int64_t.
6151     //
6152     // FIXME: This will break if the typedef requires qualification.  But
6153     // getQualifiedNameAsString() includes non-machine-parsable components.
6154     OS << *TT->getDecl();
6155   } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
6156     OS << BT->getName(S.getLangOpts());
6157   else {
6158     // Oops, we didn't find the actual type of the variable.  Don't emit a fixit
6159     // with a broken cast.
6160     return;
6161   }
6162   OS << ">(";
6163   S.Diag(PostInit->getLocStart(), diag::note_init_list_narrowing_override)
6164     << PostInit->getSourceRange()
6165     << FixItHint::CreateInsertion(PostInit->getLocStart(), OS.str())
6166     << FixItHint::CreateInsertion(
6167       S.getPreprocessor().getLocForEndOfToken(PostInit->getLocEnd()), ")");
6168 }
6169 
6170 //===----------------------------------------------------------------------===//
6171 // Initialization helper functions
6172 //===----------------------------------------------------------------------===//
6173 bool
6174 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
6175                                    ExprResult Init) {
6176   if (Init.isInvalid())
6177     return false;
6178 
6179   Expr *InitE = Init.get();
6180   assert(InitE && "No initialization expression");
6181 
6182   InitializationKind Kind = InitializationKind::CreateCopy(SourceLocation(),
6183                                                            SourceLocation());
6184   InitializationSequence Seq(*this, Entity, Kind, &InitE, 1);
6185   return !Seq.Failed();
6186 }
6187 
6188 ExprResult
6189 Sema::PerformCopyInitialization(const InitializedEntity &Entity,
6190                                 SourceLocation EqualLoc,
6191                                 ExprResult Init,
6192                                 bool TopLevelOfInitList,
6193                                 bool AllowExplicit) {
6194   if (Init.isInvalid())
6195     return ExprError();
6196 
6197   Expr *InitE = Init.get();
6198   assert(InitE && "No initialization expression?");
6199 
6200   if (EqualLoc.isInvalid())
6201     EqualLoc = InitE->getLocStart();
6202 
6203   InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
6204                                                            EqualLoc,
6205                                                            AllowExplicit);
6206   InitializationSequence Seq(*this, Entity, Kind, &InitE, 1);
6207   Init.release();
6208 
6209   ExprResult Result = Seq.Perform(*this, Entity, Kind, MultiExprArg(&InitE, 1));
6210 
6211   if (!Result.isInvalid() && TopLevelOfInitList)
6212     DiagnoseNarrowingInInitList(*this, Seq, Entity.getType(),
6213                                 InitE, Result.get());
6214 
6215   return Result;
6216 }
6217