1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for initializers.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/DeclObjC.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/AST/ExprObjC.h"
17 #include "clang/AST/ExprOpenMP.h"
18 #include "clang/AST/TypeLoc.h"
19 #include "clang/Basic/CharInfo.h"
20 #include "clang/Basic/SourceManager.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "clang/Sema/Designator.h"
23 #include "clang/Sema/Initialization.h"
24 #include "clang/Sema/Lookup.h"
25 #include "clang/Sema/SemaInternal.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/PointerIntPair.h"
28 #include "llvm/ADT/SmallString.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/raw_ostream.h"
31 
32 using namespace clang;
33 
34 //===----------------------------------------------------------------------===//
35 // Sema Initialization Checking
36 //===----------------------------------------------------------------------===//
37 
38 /// Check whether T is compatible with a wide character type (wchar_t,
39 /// char16_t or char32_t).
40 static bool IsWideCharCompatible(QualType T, ASTContext &Context) {
41   if (Context.typesAreCompatible(Context.getWideCharType(), T))
42     return true;
43   if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) {
44     return Context.typesAreCompatible(Context.Char16Ty, T) ||
45            Context.typesAreCompatible(Context.Char32Ty, T);
46   }
47   return false;
48 }
49 
50 enum StringInitFailureKind {
51   SIF_None,
52   SIF_NarrowStringIntoWideChar,
53   SIF_WideStringIntoChar,
54   SIF_IncompatWideStringIntoWideChar,
55   SIF_UTF8StringIntoPlainChar,
56   SIF_PlainStringIntoUTF8Char,
57   SIF_Other
58 };
59 
60 /// Check whether the array of type AT can be initialized by the Init
61 /// expression by means of string initialization. Returns SIF_None if so,
62 /// otherwise returns a StringInitFailureKind that describes why the
63 /// initialization would not work.
64 static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT,
65                                           ASTContext &Context) {
66   if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
67     return SIF_Other;
68 
69   // See if this is a string literal or @encode.
70   Init = Init->IgnoreParens();
71 
72   // Handle @encode, which is a narrow string.
73   if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
74     return SIF_None;
75 
76   // Otherwise we can only handle string literals.
77   StringLiteral *SL = dyn_cast<StringLiteral>(Init);
78   if (!SL)
79     return SIF_Other;
80 
81   const QualType ElemTy =
82       Context.getCanonicalType(AT->getElementType()).getUnqualifiedType();
83 
84   switch (SL->getKind()) {
85   case StringLiteral::UTF8:
86     // char8_t array can be initialized with a UTF-8 string.
87     if (ElemTy->isChar8Type())
88       return SIF_None;
89     LLVM_FALLTHROUGH;
90   case StringLiteral::Ascii:
91     // char array can be initialized with a narrow string.
92     // Only allow char x[] = "foo";  not char x[] = L"foo";
93     if (ElemTy->isCharType())
94       return (SL->getKind() == StringLiteral::UTF8 &&
95               Context.getLangOpts().Char8)
96                  ? SIF_UTF8StringIntoPlainChar
97                  : SIF_None;
98     if (ElemTy->isChar8Type())
99       return SIF_PlainStringIntoUTF8Char;
100     if (IsWideCharCompatible(ElemTy, Context))
101       return SIF_NarrowStringIntoWideChar;
102     return SIF_Other;
103   // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15:
104   // "An array with element type compatible with a qualified or unqualified
105   // version of wchar_t, char16_t, or char32_t may be initialized by a wide
106   // string literal with the corresponding encoding prefix (L, u, or U,
107   // respectively), optionally enclosed in braces.
108   case StringLiteral::UTF16:
109     if (Context.typesAreCompatible(Context.Char16Ty, ElemTy))
110       return SIF_None;
111     if (ElemTy->isCharType() || ElemTy->isChar8Type())
112       return SIF_WideStringIntoChar;
113     if (IsWideCharCompatible(ElemTy, Context))
114       return SIF_IncompatWideStringIntoWideChar;
115     return SIF_Other;
116   case StringLiteral::UTF32:
117     if (Context.typesAreCompatible(Context.Char32Ty, ElemTy))
118       return SIF_None;
119     if (ElemTy->isCharType() || ElemTy->isChar8Type())
120       return SIF_WideStringIntoChar;
121     if (IsWideCharCompatible(ElemTy, Context))
122       return SIF_IncompatWideStringIntoWideChar;
123     return SIF_Other;
124   case StringLiteral::Wide:
125     if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy))
126       return SIF_None;
127     if (ElemTy->isCharType() || ElemTy->isChar8Type())
128       return SIF_WideStringIntoChar;
129     if (IsWideCharCompatible(ElemTy, Context))
130       return SIF_IncompatWideStringIntoWideChar;
131     return SIF_Other;
132   }
133 
134   llvm_unreachable("missed a StringLiteral kind?");
135 }
136 
137 static StringInitFailureKind IsStringInit(Expr *init, QualType declType,
138                                           ASTContext &Context) {
139   const ArrayType *arrayType = Context.getAsArrayType(declType);
140   if (!arrayType)
141     return SIF_Other;
142   return IsStringInit(init, arrayType, Context);
143 }
144 
145 bool Sema::IsStringInit(Expr *Init, const ArrayType *AT) {
146   return ::IsStringInit(Init, AT, Context) == SIF_None;
147 }
148 
149 /// Update the type of a string literal, including any surrounding parentheses,
150 /// to match the type of the object which it is initializing.
151 static void updateStringLiteralType(Expr *E, QualType Ty) {
152   while (true) {
153     E->setType(Ty);
154     E->setValueKind(VK_PRValue);
155     if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E)) {
156       break;
157     } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
158       E = PE->getSubExpr();
159     } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
160       assert(UO->getOpcode() == UO_Extension);
161       E = UO->getSubExpr();
162     } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) {
163       E = GSE->getResultExpr();
164     } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) {
165       E = CE->getChosenSubExpr();
166     } else {
167       llvm_unreachable("unexpected expr in string literal init");
168     }
169   }
170 }
171 
172 /// Fix a compound literal initializing an array so it's correctly marked
173 /// as an rvalue.
174 static void updateGNUCompoundLiteralRValue(Expr *E) {
175   while (true) {
176     E->setValueKind(VK_PRValue);
177     if (isa<CompoundLiteralExpr>(E)) {
178       break;
179     } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
180       E = PE->getSubExpr();
181     } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
182       assert(UO->getOpcode() == UO_Extension);
183       E = UO->getSubExpr();
184     } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) {
185       E = GSE->getResultExpr();
186     } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) {
187       E = CE->getChosenSubExpr();
188     } else {
189       llvm_unreachable("unexpected expr in array compound literal init");
190     }
191   }
192 }
193 
194 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
195                             Sema &S) {
196   // Get the length of the string as parsed.
197   auto *ConstantArrayTy =
198       cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe());
199   uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue();
200 
201   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
202     // C99 6.7.8p14. We have an array of character type with unknown size
203     // being initialized to a string literal.
204     llvm::APInt ConstVal(32, StrLength);
205     // Return a new array type (C99 6.7.8p22).
206     DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
207                                            ConstVal, nullptr,
208                                            ArrayType::Normal, 0);
209     updateStringLiteralType(Str, DeclT);
210     return;
211   }
212 
213   const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
214 
215   // We have an array of character type with known size.  However,
216   // the size may be smaller or larger than the string we are initializing.
217   // FIXME: Avoid truncation for 64-bit length strings.
218   if (S.getLangOpts().CPlusPlus) {
219     if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
220       // For Pascal strings it's OK to strip off the terminating null character,
221       // so the example below is valid:
222       //
223       // unsigned char a[2] = "\pa";
224       if (SL->isPascal())
225         StrLength--;
226     }
227 
228     // [dcl.init.string]p2
229     if (StrLength > CAT->getSize().getZExtValue())
230       S.Diag(Str->getBeginLoc(),
231              diag::err_initializer_string_for_char_array_too_long)
232           << Str->getSourceRange();
233   } else {
234     // C99 6.7.8p14.
235     if (StrLength-1 > CAT->getSize().getZExtValue())
236       S.Diag(Str->getBeginLoc(),
237              diag::ext_initializer_string_for_char_array_too_long)
238           << Str->getSourceRange();
239   }
240 
241   // Set the type to the actual size that we are initializing.  If we have
242   // something like:
243   //   char x[1] = "foo";
244   // then this will set the string literal's type to char[1].
245   updateStringLiteralType(Str, DeclT);
246 }
247 
248 //===----------------------------------------------------------------------===//
249 // Semantic checking for initializer lists.
250 //===----------------------------------------------------------------------===//
251 
252 namespace {
253 
254 /// Semantic checking for initializer lists.
255 ///
256 /// The InitListChecker class contains a set of routines that each
257 /// handle the initialization of a certain kind of entity, e.g.,
258 /// arrays, vectors, struct/union types, scalars, etc. The
259 /// InitListChecker itself performs a recursive walk of the subobject
260 /// structure of the type to be initialized, while stepping through
261 /// the initializer list one element at a time. The IList and Index
262 /// parameters to each of the Check* routines contain the active
263 /// (syntactic) initializer list and the index into that initializer
264 /// list that represents the current initializer. Each routine is
265 /// responsible for moving that Index forward as it consumes elements.
266 ///
267 /// Each Check* routine also has a StructuredList/StructuredIndex
268 /// arguments, which contains the current "structured" (semantic)
269 /// initializer list and the index into that initializer list where we
270 /// are copying initializers as we map them over to the semantic
271 /// list. Once we have completed our recursive walk of the subobject
272 /// structure, we will have constructed a full semantic initializer
273 /// list.
274 ///
275 /// C99 designators cause changes in the initializer list traversal,
276 /// because they make the initialization "jump" into a specific
277 /// subobject and then continue the initialization from that
278 /// point. CheckDesignatedInitializer() recursively steps into the
279 /// designated subobject and manages backing out the recursion to
280 /// initialize the subobjects after the one designated.
281 ///
282 /// If an initializer list contains any designators, we build a placeholder
283 /// structured list even in 'verify only' mode, so that we can track which
284 /// elements need 'empty' initializtion.
285 class InitListChecker {
286   Sema &SemaRef;
287   bool hadError = false;
288   bool VerifyOnly; // No diagnostics.
289   bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode.
290   bool InOverloadResolution;
291   InitListExpr *FullyStructuredList = nullptr;
292   NoInitExpr *DummyExpr = nullptr;
293 
294   NoInitExpr *getDummyInit() {
295     if (!DummyExpr)
296       DummyExpr = new (SemaRef.Context) NoInitExpr(SemaRef.Context.VoidTy);
297     return DummyExpr;
298   }
299 
300   void CheckImplicitInitList(const InitializedEntity &Entity,
301                              InitListExpr *ParentIList, QualType T,
302                              unsigned &Index, InitListExpr *StructuredList,
303                              unsigned &StructuredIndex);
304   void CheckExplicitInitList(const InitializedEntity &Entity,
305                              InitListExpr *IList, QualType &T,
306                              InitListExpr *StructuredList,
307                              bool TopLevelObject = false);
308   void CheckListElementTypes(const InitializedEntity &Entity,
309                              InitListExpr *IList, QualType &DeclType,
310                              bool SubobjectIsDesignatorContext,
311                              unsigned &Index,
312                              InitListExpr *StructuredList,
313                              unsigned &StructuredIndex,
314                              bool TopLevelObject = false);
315   void CheckSubElementType(const InitializedEntity &Entity,
316                            InitListExpr *IList, QualType ElemType,
317                            unsigned &Index,
318                            InitListExpr *StructuredList,
319                            unsigned &StructuredIndex,
320                            bool DirectlyDesignated = false);
321   void CheckComplexType(const InitializedEntity &Entity,
322                         InitListExpr *IList, QualType DeclType,
323                         unsigned &Index,
324                         InitListExpr *StructuredList,
325                         unsigned &StructuredIndex);
326   void CheckScalarType(const InitializedEntity &Entity,
327                        InitListExpr *IList, QualType DeclType,
328                        unsigned &Index,
329                        InitListExpr *StructuredList,
330                        unsigned &StructuredIndex);
331   void CheckReferenceType(const InitializedEntity &Entity,
332                           InitListExpr *IList, QualType DeclType,
333                           unsigned &Index,
334                           InitListExpr *StructuredList,
335                           unsigned &StructuredIndex);
336   void CheckVectorType(const InitializedEntity &Entity,
337                        InitListExpr *IList, QualType DeclType, unsigned &Index,
338                        InitListExpr *StructuredList,
339                        unsigned &StructuredIndex);
340   void CheckStructUnionTypes(const InitializedEntity &Entity,
341                              InitListExpr *IList, QualType DeclType,
342                              CXXRecordDecl::base_class_range Bases,
343                              RecordDecl::field_iterator Field,
344                              bool SubobjectIsDesignatorContext, unsigned &Index,
345                              InitListExpr *StructuredList,
346                              unsigned &StructuredIndex,
347                              bool TopLevelObject = false);
348   void CheckArrayType(const InitializedEntity &Entity,
349                       InitListExpr *IList, QualType &DeclType,
350                       llvm::APSInt elementIndex,
351                       bool SubobjectIsDesignatorContext, unsigned &Index,
352                       InitListExpr *StructuredList,
353                       unsigned &StructuredIndex);
354   bool CheckDesignatedInitializer(const InitializedEntity &Entity,
355                                   InitListExpr *IList, DesignatedInitExpr *DIE,
356                                   unsigned DesigIdx,
357                                   QualType &CurrentObjectType,
358                                   RecordDecl::field_iterator *NextField,
359                                   llvm::APSInt *NextElementIndex,
360                                   unsigned &Index,
361                                   InitListExpr *StructuredList,
362                                   unsigned &StructuredIndex,
363                                   bool FinishSubobjectInit,
364                                   bool TopLevelObject);
365   InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
366                                            QualType CurrentObjectType,
367                                            InitListExpr *StructuredList,
368                                            unsigned StructuredIndex,
369                                            SourceRange InitRange,
370                                            bool IsFullyOverwritten = false);
371   void UpdateStructuredListElement(InitListExpr *StructuredList,
372                                    unsigned &StructuredIndex,
373                                    Expr *expr);
374   InitListExpr *createInitListExpr(QualType CurrentObjectType,
375                                    SourceRange InitRange,
376                                    unsigned ExpectedNumInits);
377   int numArrayElements(QualType DeclType);
378   int numStructUnionElements(QualType DeclType);
379 
380   ExprResult PerformEmptyInit(SourceLocation Loc,
381                               const InitializedEntity &Entity);
382 
383   /// Diagnose that OldInit (or part thereof) has been overridden by NewInit.
384   void diagnoseInitOverride(Expr *OldInit, SourceRange NewInitRange,
385                             bool FullyOverwritten = true) {
386     // Overriding an initializer via a designator is valid with C99 designated
387     // initializers, but ill-formed with C++20 designated initializers.
388     unsigned DiagID = SemaRef.getLangOpts().CPlusPlus
389                           ? diag::ext_initializer_overrides
390                           : diag::warn_initializer_overrides;
391 
392     if (InOverloadResolution && SemaRef.getLangOpts().CPlusPlus) {
393       // In overload resolution, we have to strictly enforce the rules, and so
394       // don't allow any overriding of prior initializers. This matters for a
395       // case such as:
396       //
397       //   union U { int a, b; };
398       //   struct S { int a, b; };
399       //   void f(U), f(S);
400       //
401       // Here, f({.a = 1, .b = 2}) is required to call the struct overload. For
402       // consistency, we disallow all overriding of prior initializers in
403       // overload resolution, not only overriding of union members.
404       hadError = true;
405     } else if (OldInit->getType().isDestructedType() && !FullyOverwritten) {
406       // If we'll be keeping around the old initializer but overwriting part of
407       // the object it initialized, and that object is not trivially
408       // destructible, this can leak. Don't allow that, not even as an
409       // extension.
410       //
411       // FIXME: It might be reasonable to allow this in cases where the part of
412       // the initializer that we're overriding has trivial destruction.
413       DiagID = diag::err_initializer_overrides_destructed;
414     } else if (!OldInit->getSourceRange().isValid()) {
415       // We need to check on source range validity because the previous
416       // initializer does not have to be an explicit initializer. e.g.,
417       //
418       // struct P { int a, b; };
419       // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
420       //
421       // There is an overwrite taking place because the first braced initializer
422       // list "{ .a = 2 }" already provides value for .p.b (which is zero).
423       //
424       // Such overwrites are harmless, so we don't diagnose them. (Note that in
425       // C++, this cannot be reached unless we've already seen and diagnosed a
426       // different conformance issue, such as a mixture of designated and
427       // non-designated initializers or a multi-level designator.)
428       return;
429     }
430 
431     if (!VerifyOnly) {
432       SemaRef.Diag(NewInitRange.getBegin(), DiagID)
433           << NewInitRange << FullyOverwritten << OldInit->getType();
434       SemaRef.Diag(OldInit->getBeginLoc(), diag::note_previous_initializer)
435           << (OldInit->HasSideEffects(SemaRef.Context) && FullyOverwritten)
436           << OldInit->getSourceRange();
437     }
438   }
439 
440   // Explanation on the "FillWithNoInit" mode:
441   //
442   // Assume we have the following definitions (Case#1):
443   // struct P { char x[6][6]; } xp = { .x[1] = "bar" };
444   // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' };
445   //
446   // l.lp.x[1][0..1] should not be filled with implicit initializers because the
447   // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf".
448   //
449   // But if we have (Case#2):
450   // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } };
451   //
452   // l.lp.x[1][0..1] are implicitly initialized and do not use values from the
453   // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0".
454   //
455   // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes"
456   // in the InitListExpr, the "holes" in Case#1 are filled not with empty
457   // initializers but with special "NoInitExpr" place holders, which tells the
458   // CodeGen not to generate any initializers for these parts.
459   void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base,
460                               const InitializedEntity &ParentEntity,
461                               InitListExpr *ILE, bool &RequiresSecondPass,
462                               bool FillWithNoInit);
463   void FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
464                                const InitializedEntity &ParentEntity,
465                                InitListExpr *ILE, bool &RequiresSecondPass,
466                                bool FillWithNoInit = false);
467   void FillInEmptyInitializations(const InitializedEntity &Entity,
468                                   InitListExpr *ILE, bool &RequiresSecondPass,
469                                   InitListExpr *OuterILE, unsigned OuterIndex,
470                                   bool FillWithNoInit = false);
471   bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
472                               Expr *InitExpr, FieldDecl *Field,
473                               bool TopLevelObject);
474   void CheckEmptyInitializable(const InitializedEntity &Entity,
475                                SourceLocation Loc);
476 
477 public:
478   InitListChecker(Sema &S, const InitializedEntity &Entity, InitListExpr *IL,
479                   QualType &T, bool VerifyOnly, bool TreatUnavailableAsInvalid,
480                   bool InOverloadResolution = false);
481   bool HadError() { return hadError; }
482 
483   // Retrieves the fully-structured initializer list used for
484   // semantic analysis and code generation.
485   InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
486 };
487 
488 } // end anonymous namespace
489 
490 ExprResult InitListChecker::PerformEmptyInit(SourceLocation Loc,
491                                              const InitializedEntity &Entity) {
492   InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
493                                                             true);
494   MultiExprArg SubInit;
495   Expr *InitExpr;
496   InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc);
497 
498   // C++ [dcl.init.aggr]p7:
499   //   If there are fewer initializer-clauses in the list than there are
500   //   members in the aggregate, then each member not explicitly initialized
501   //   ...
502   bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 &&
503       Entity.getType()->getBaseElementTypeUnsafe()->isRecordType();
504   if (EmptyInitList) {
505     // C++1y / DR1070:
506     //   shall be initialized [...] from an empty initializer list.
507     //
508     // We apply the resolution of this DR to C++11 but not C++98, since C++98
509     // does not have useful semantics for initialization from an init list.
510     // We treat this as copy-initialization, because aggregate initialization
511     // always performs copy-initialization on its elements.
512     //
513     // Only do this if we're initializing a class type, to avoid filling in
514     // the initializer list where possible.
515     InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context)
516                    InitListExpr(SemaRef.Context, Loc, None, Loc);
517     InitExpr->setType(SemaRef.Context.VoidTy);
518     SubInit = InitExpr;
519     Kind = InitializationKind::CreateCopy(Loc, Loc);
520   } else {
521     // C++03:
522     //   shall be value-initialized.
523   }
524 
525   InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit);
526   // libstdc++4.6 marks the vector default constructor as explicit in
527   // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case.
528   // stlport does so too. Look for std::__debug for libstdc++, and for
529   // std:: for stlport.  This is effectively a compiler-side implementation of
530   // LWG2193.
531   if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() ==
532           InitializationSequence::FK_ExplicitConstructor) {
533     OverloadCandidateSet::iterator Best;
534     OverloadingResult O =
535         InitSeq.getFailedCandidateSet()
536             .BestViableFunction(SemaRef, Kind.getLocation(), Best);
537     (void)O;
538     assert(O == OR_Success && "Inconsistent overload resolution");
539     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
540     CXXRecordDecl *R = CtorDecl->getParent();
541 
542     if (CtorDecl->getMinRequiredArguments() == 0 &&
543         CtorDecl->isExplicit() && R->getDeclName() &&
544         SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) {
545       bool IsInStd = false;
546       for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext());
547            ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) {
548         if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND))
549           IsInStd = true;
550       }
551 
552       if (IsInStd && llvm::StringSwitch<bool>(R->getName())
553               .Cases("basic_string", "deque", "forward_list", true)
554               .Cases("list", "map", "multimap", "multiset", true)
555               .Cases("priority_queue", "queue", "set", "stack", true)
556               .Cases("unordered_map", "unordered_set", "vector", true)
557               .Default(false)) {
558         InitSeq.InitializeFrom(
559             SemaRef, Entity,
560             InitializationKind::CreateValue(Loc, Loc, Loc, true),
561             MultiExprArg(), /*TopLevelOfInitList=*/false,
562             TreatUnavailableAsInvalid);
563         // Emit a warning for this.  System header warnings aren't shown
564         // by default, but people working on system headers should see it.
565         if (!VerifyOnly) {
566           SemaRef.Diag(CtorDecl->getLocation(),
567                        diag::warn_invalid_initializer_from_system_header);
568           if (Entity.getKind() == InitializedEntity::EK_Member)
569             SemaRef.Diag(Entity.getDecl()->getLocation(),
570                          diag::note_used_in_initialization_here);
571           else if (Entity.getKind() == InitializedEntity::EK_ArrayElement)
572             SemaRef.Diag(Loc, diag::note_used_in_initialization_here);
573         }
574       }
575     }
576   }
577   if (!InitSeq) {
578     if (!VerifyOnly) {
579       InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit);
580       if (Entity.getKind() == InitializedEntity::EK_Member)
581         SemaRef.Diag(Entity.getDecl()->getLocation(),
582                      diag::note_in_omitted_aggregate_initializer)
583           << /*field*/1 << Entity.getDecl();
584       else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) {
585         bool IsTrailingArrayNewMember =
586             Entity.getParent() &&
587             Entity.getParent()->isVariableLengthArrayNew();
588         SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer)
589           << (IsTrailingArrayNewMember ? 2 : /*array element*/0)
590           << Entity.getElementIndex();
591       }
592     }
593     hadError = true;
594     return ExprError();
595   }
596 
597   return VerifyOnly ? ExprResult()
598                     : InitSeq.Perform(SemaRef, Entity, Kind, SubInit);
599 }
600 
601 void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity,
602                                               SourceLocation Loc) {
603   // If we're building a fully-structured list, we'll check this at the end
604   // once we know which elements are actually initialized. Otherwise, we know
605   // that there are no designators so we can just check now.
606   if (FullyStructuredList)
607     return;
608   PerformEmptyInit(Loc, Entity);
609 }
610 
611 void InitListChecker::FillInEmptyInitForBase(
612     unsigned Init, const CXXBaseSpecifier &Base,
613     const InitializedEntity &ParentEntity, InitListExpr *ILE,
614     bool &RequiresSecondPass, bool FillWithNoInit) {
615   InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
616       SemaRef.Context, &Base, false, &ParentEntity);
617 
618   if (Init >= ILE->getNumInits() || !ILE->getInit(Init)) {
619     ExprResult BaseInit = FillWithNoInit
620                               ? new (SemaRef.Context) NoInitExpr(Base.getType())
621                               : PerformEmptyInit(ILE->getEndLoc(), BaseEntity);
622     if (BaseInit.isInvalid()) {
623       hadError = true;
624       return;
625     }
626 
627     if (!VerifyOnly) {
628       assert(Init < ILE->getNumInits() && "should have been expanded");
629       ILE->setInit(Init, BaseInit.getAs<Expr>());
630     }
631   } else if (InitListExpr *InnerILE =
632                  dyn_cast<InitListExpr>(ILE->getInit(Init))) {
633     FillInEmptyInitializations(BaseEntity, InnerILE, RequiresSecondPass,
634                                ILE, Init, FillWithNoInit);
635   } else if (DesignatedInitUpdateExpr *InnerDIUE =
636                dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
637     FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(),
638                                RequiresSecondPass, ILE, Init,
639                                /*FillWithNoInit =*/true);
640   }
641 }
642 
643 void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
644                                         const InitializedEntity &ParentEntity,
645                                               InitListExpr *ILE,
646                                               bool &RequiresSecondPass,
647                                               bool FillWithNoInit) {
648   SourceLocation Loc = ILE->getEndLoc();
649   unsigned NumInits = ILE->getNumInits();
650   InitializedEntity MemberEntity
651     = InitializedEntity::InitializeMember(Field, &ParentEntity);
652 
653   if (Init >= NumInits || !ILE->getInit(Init)) {
654     if (const RecordType *RType = ILE->getType()->getAs<RecordType>())
655       if (!RType->getDecl()->isUnion())
656         assert((Init < NumInits || VerifyOnly) &&
657                "This ILE should have been expanded");
658 
659     if (FillWithNoInit) {
660       assert(!VerifyOnly && "should not fill with no-init in verify-only mode");
661       Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType());
662       if (Init < NumInits)
663         ILE->setInit(Init, Filler);
664       else
665         ILE->updateInit(SemaRef.Context, Init, Filler);
666       return;
667     }
668     // C++1y [dcl.init.aggr]p7:
669     //   If there are fewer initializer-clauses in the list than there are
670     //   members in the aggregate, then each member not explicitly initialized
671     //   shall be initialized from its brace-or-equal-initializer [...]
672     if (Field->hasInClassInitializer()) {
673       if (VerifyOnly)
674         return;
675 
676       ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field);
677       if (DIE.isInvalid()) {
678         hadError = true;
679         return;
680       }
681       SemaRef.checkInitializerLifetime(MemberEntity, DIE.get());
682       if (Init < NumInits)
683         ILE->setInit(Init, DIE.get());
684       else {
685         ILE->updateInit(SemaRef.Context, Init, DIE.get());
686         RequiresSecondPass = true;
687       }
688       return;
689     }
690 
691     if (Field->getType()->isReferenceType()) {
692       if (!VerifyOnly) {
693         // C++ [dcl.init.aggr]p9:
694         //   If an incomplete or empty initializer-list leaves a
695         //   member of reference type uninitialized, the program is
696         //   ill-formed.
697         SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
698           << Field->getType()
699           << ILE->getSyntacticForm()->getSourceRange();
700         SemaRef.Diag(Field->getLocation(),
701                      diag::note_uninit_reference_member);
702       }
703       hadError = true;
704       return;
705     }
706 
707     ExprResult MemberInit = PerformEmptyInit(Loc, MemberEntity);
708     if (MemberInit.isInvalid()) {
709       hadError = true;
710       return;
711     }
712 
713     if (hadError || VerifyOnly) {
714       // Do nothing
715     } else if (Init < NumInits) {
716       ILE->setInit(Init, MemberInit.getAs<Expr>());
717     } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) {
718       // Empty initialization requires a constructor call, so
719       // extend the initializer list to include the constructor
720       // call and make a note that we'll need to take another pass
721       // through the initializer list.
722       ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>());
723       RequiresSecondPass = true;
724     }
725   } else if (InitListExpr *InnerILE
726                = dyn_cast<InitListExpr>(ILE->getInit(Init))) {
727     FillInEmptyInitializations(MemberEntity, InnerILE,
728                                RequiresSecondPass, ILE, Init, FillWithNoInit);
729   } else if (DesignatedInitUpdateExpr *InnerDIUE =
730                  dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
731     FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(),
732                                RequiresSecondPass, ILE, Init,
733                                /*FillWithNoInit =*/true);
734   }
735 }
736 
737 /// Recursively replaces NULL values within the given initializer list
738 /// with expressions that perform value-initialization of the
739 /// appropriate type, and finish off the InitListExpr formation.
740 void
741 InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity,
742                                             InitListExpr *ILE,
743                                             bool &RequiresSecondPass,
744                                             InitListExpr *OuterILE,
745                                             unsigned OuterIndex,
746                                             bool FillWithNoInit) {
747   assert((ILE->getType() != SemaRef.Context.VoidTy) &&
748          "Should not have void type");
749 
750   // We don't need to do any checks when just filling NoInitExprs; that can't
751   // fail.
752   if (FillWithNoInit && VerifyOnly)
753     return;
754 
755   // If this is a nested initializer list, we might have changed its contents
756   // (and therefore some of its properties, such as instantiation-dependence)
757   // while filling it in. Inform the outer initializer list so that its state
758   // can be updated to match.
759   // FIXME: We should fully build the inner initializers before constructing
760   // the outer InitListExpr instead of mutating AST nodes after they have
761   // been used as subexpressions of other nodes.
762   struct UpdateOuterILEWithUpdatedInit {
763     InitListExpr *Outer;
764     unsigned OuterIndex;
765     ~UpdateOuterILEWithUpdatedInit() {
766       if (Outer)
767         Outer->setInit(OuterIndex, Outer->getInit(OuterIndex));
768     }
769   } UpdateOuterRAII = {OuterILE, OuterIndex};
770 
771   // A transparent ILE is not performing aggregate initialization and should
772   // not be filled in.
773   if (ILE->isTransparent())
774     return;
775 
776   if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
777     const RecordDecl *RDecl = RType->getDecl();
778     if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
779       FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(),
780                               Entity, ILE, RequiresSecondPass, FillWithNoInit);
781     else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
782              cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
783       for (auto *Field : RDecl->fields()) {
784         if (Field->hasInClassInitializer()) {
785           FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass,
786                                   FillWithNoInit);
787           break;
788         }
789       }
790     } else {
791       // The fields beyond ILE->getNumInits() are default initialized, so in
792       // order to leave them uninitialized, the ILE is expanded and the extra
793       // fields are then filled with NoInitExpr.
794       unsigned NumElems = numStructUnionElements(ILE->getType());
795       if (RDecl->hasFlexibleArrayMember())
796         ++NumElems;
797       if (!VerifyOnly && ILE->getNumInits() < NumElems)
798         ILE->resizeInits(SemaRef.Context, NumElems);
799 
800       unsigned Init = 0;
801 
802       if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) {
803         for (auto &Base : CXXRD->bases()) {
804           if (hadError)
805             return;
806 
807           FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass,
808                                  FillWithNoInit);
809           ++Init;
810         }
811       }
812 
813       for (auto *Field : RDecl->fields()) {
814         if (Field->isUnnamedBitfield())
815           continue;
816 
817         if (hadError)
818           return;
819 
820         FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass,
821                                 FillWithNoInit);
822         if (hadError)
823           return;
824 
825         ++Init;
826 
827         // Only look at the first initialization of a union.
828         if (RDecl->isUnion())
829           break;
830       }
831     }
832 
833     return;
834   }
835 
836   QualType ElementType;
837 
838   InitializedEntity ElementEntity = Entity;
839   unsigned NumInits = ILE->getNumInits();
840   unsigned NumElements = NumInits;
841   if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
842     ElementType = AType->getElementType();
843     if (const auto *CAType = dyn_cast<ConstantArrayType>(AType))
844       NumElements = CAType->getSize().getZExtValue();
845     // For an array new with an unknown bound, ask for one additional element
846     // in order to populate the array filler.
847     if (Entity.isVariableLengthArrayNew())
848       ++NumElements;
849     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
850                                                          0, Entity);
851   } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
852     ElementType = VType->getElementType();
853     NumElements = VType->getNumElements();
854     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
855                                                          0, Entity);
856   } else
857     ElementType = ILE->getType();
858 
859   bool SkipEmptyInitChecks = false;
860   for (unsigned Init = 0; Init != NumElements; ++Init) {
861     if (hadError)
862       return;
863 
864     if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
865         ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
866       ElementEntity.setElementIndex(Init);
867 
868     if (Init >= NumInits && (ILE->hasArrayFiller() || SkipEmptyInitChecks))
869       return;
870 
871     Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr);
872     if (!InitExpr && Init < NumInits && ILE->hasArrayFiller())
873       ILE->setInit(Init, ILE->getArrayFiller());
874     else if (!InitExpr && !ILE->hasArrayFiller()) {
875       // In VerifyOnly mode, there's no point performing empty initialization
876       // more than once.
877       if (SkipEmptyInitChecks)
878         continue;
879 
880       Expr *Filler = nullptr;
881 
882       if (FillWithNoInit)
883         Filler = new (SemaRef.Context) NoInitExpr(ElementType);
884       else {
885         ExprResult ElementInit =
886             PerformEmptyInit(ILE->getEndLoc(), ElementEntity);
887         if (ElementInit.isInvalid()) {
888           hadError = true;
889           return;
890         }
891 
892         Filler = ElementInit.getAs<Expr>();
893       }
894 
895       if (hadError) {
896         // Do nothing
897       } else if (VerifyOnly) {
898         SkipEmptyInitChecks = true;
899       } else if (Init < NumInits) {
900         // For arrays, just set the expression used for value-initialization
901         // of the "holes" in the array.
902         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
903           ILE->setArrayFiller(Filler);
904         else
905           ILE->setInit(Init, Filler);
906       } else {
907         // For arrays, just set the expression used for value-initialization
908         // of the rest of elements and exit.
909         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
910           ILE->setArrayFiller(Filler);
911           return;
912         }
913 
914         if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) {
915           // Empty initialization requires a constructor call, so
916           // extend the initializer list to include the constructor
917           // call and make a note that we'll need to take another pass
918           // through the initializer list.
919           ILE->updateInit(SemaRef.Context, Init, Filler);
920           RequiresSecondPass = true;
921         }
922       }
923     } else if (InitListExpr *InnerILE
924                  = dyn_cast_or_null<InitListExpr>(InitExpr)) {
925       FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass,
926                                  ILE, Init, FillWithNoInit);
927     } else if (DesignatedInitUpdateExpr *InnerDIUE =
928                    dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr)) {
929       FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(),
930                                  RequiresSecondPass, ILE, Init,
931                                  /*FillWithNoInit =*/true);
932     }
933   }
934 }
935 
936 static bool hasAnyDesignatedInits(const InitListExpr *IL) {
937   for (const Stmt *Init : *IL)
938     if (Init && isa<DesignatedInitExpr>(Init))
939       return true;
940   return false;
941 }
942 
943 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
944                                  InitListExpr *IL, QualType &T, bool VerifyOnly,
945                                  bool TreatUnavailableAsInvalid,
946                                  bool InOverloadResolution)
947     : SemaRef(S), VerifyOnly(VerifyOnly),
948       TreatUnavailableAsInvalid(TreatUnavailableAsInvalid),
949       InOverloadResolution(InOverloadResolution) {
950   if (!VerifyOnly || hasAnyDesignatedInits(IL)) {
951     FullyStructuredList =
952         createInitListExpr(T, IL->getSourceRange(), IL->getNumInits());
953 
954     // FIXME: Check that IL isn't already the semantic form of some other
955     // InitListExpr. If it is, we'd create a broken AST.
956     if (!VerifyOnly)
957       FullyStructuredList->setSyntacticForm(IL);
958   }
959 
960   CheckExplicitInitList(Entity, IL, T, FullyStructuredList,
961                         /*TopLevelObject=*/true);
962 
963   if (!hadError && FullyStructuredList) {
964     bool RequiresSecondPass = false;
965     FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass,
966                                /*OuterILE=*/nullptr, /*OuterIndex=*/0);
967     if (RequiresSecondPass && !hadError)
968       FillInEmptyInitializations(Entity, FullyStructuredList,
969                                  RequiresSecondPass, nullptr, 0);
970   }
971   if (hadError && FullyStructuredList)
972     FullyStructuredList->markError();
973 }
974 
975 int InitListChecker::numArrayElements(QualType DeclType) {
976   // FIXME: use a proper constant
977   int maxElements = 0x7FFFFFFF;
978   if (const ConstantArrayType *CAT =
979         SemaRef.Context.getAsConstantArrayType(DeclType)) {
980     maxElements = static_cast<int>(CAT->getSize().getZExtValue());
981   }
982   return maxElements;
983 }
984 
985 int InitListChecker::numStructUnionElements(QualType DeclType) {
986   RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl();
987   int InitializableMembers = 0;
988   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl))
989     InitializableMembers += CXXRD->getNumBases();
990   for (const auto *Field : structDecl->fields())
991     if (!Field->isUnnamedBitfield())
992       ++InitializableMembers;
993 
994   if (structDecl->isUnion())
995     return std::min(InitializableMembers, 1);
996   return InitializableMembers - structDecl->hasFlexibleArrayMember();
997 }
998 
999 /// Determine whether Entity is an entity for which it is idiomatic to elide
1000 /// the braces in aggregate initialization.
1001 static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) {
1002   // Recursive initialization of the one and only field within an aggregate
1003   // class is considered idiomatic. This case arises in particular for
1004   // initialization of std::array, where the C++ standard suggests the idiom of
1005   //
1006   //   std::array<T, N> arr = {1, 2, 3};
1007   //
1008   // (where std::array is an aggregate struct containing a single array field.
1009 
1010   if (!Entity.getParent())
1011     return false;
1012 
1013   // Allows elide brace initialization for aggregates with empty base.
1014   if (Entity.getKind() == InitializedEntity::EK_Base) {
1015     auto *ParentRD =
1016         Entity.getParent()->getType()->castAs<RecordType>()->getDecl();
1017     CXXRecordDecl *CXXRD = cast<CXXRecordDecl>(ParentRD);
1018     return CXXRD->getNumBases() == 1 && CXXRD->field_empty();
1019   }
1020 
1021   // Allow brace elision if the only subobject is a field.
1022   if (Entity.getKind() == InitializedEntity::EK_Member) {
1023     auto *ParentRD =
1024         Entity.getParent()->getType()->castAs<RecordType>()->getDecl();
1025     if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(ParentRD)) {
1026       if (CXXRD->getNumBases()) {
1027         return false;
1028       }
1029     }
1030     auto FieldIt = ParentRD->field_begin();
1031     assert(FieldIt != ParentRD->field_end() &&
1032            "no fields but have initializer for member?");
1033     return ++FieldIt == ParentRD->field_end();
1034   }
1035 
1036   return false;
1037 }
1038 
1039 /// Check whether the range of the initializer \p ParentIList from element
1040 /// \p Index onwards can be used to initialize an object of type \p T. Update
1041 /// \p Index to indicate how many elements of the list were consumed.
1042 ///
1043 /// This also fills in \p StructuredList, from element \p StructuredIndex
1044 /// onwards, with the fully-braced, desugared form of the initialization.
1045 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
1046                                             InitListExpr *ParentIList,
1047                                             QualType T, unsigned &Index,
1048                                             InitListExpr *StructuredList,
1049                                             unsigned &StructuredIndex) {
1050   int maxElements = 0;
1051 
1052   if (T->isArrayType())
1053     maxElements = numArrayElements(T);
1054   else if (T->isRecordType())
1055     maxElements = numStructUnionElements(T);
1056   else if (T->isVectorType())
1057     maxElements = T->castAs<VectorType>()->getNumElements();
1058   else
1059     llvm_unreachable("CheckImplicitInitList(): Illegal type");
1060 
1061   if (maxElements == 0) {
1062     if (!VerifyOnly)
1063       SemaRef.Diag(ParentIList->getInit(Index)->getBeginLoc(),
1064                    diag::err_implicit_empty_initializer);
1065     ++Index;
1066     hadError = true;
1067     return;
1068   }
1069 
1070   // Build a structured initializer list corresponding to this subobject.
1071   InitListExpr *StructuredSubobjectInitList = getStructuredSubobjectInit(
1072       ParentIList, Index, T, StructuredList, StructuredIndex,
1073       SourceRange(ParentIList->getInit(Index)->getBeginLoc(),
1074                   ParentIList->getSourceRange().getEnd()));
1075   unsigned StructuredSubobjectInitIndex = 0;
1076 
1077   // Check the element types and build the structural subobject.
1078   unsigned StartIndex = Index;
1079   CheckListElementTypes(Entity, ParentIList, T,
1080                         /*SubobjectIsDesignatorContext=*/false, Index,
1081                         StructuredSubobjectInitList,
1082                         StructuredSubobjectInitIndex);
1083 
1084   if (StructuredSubobjectInitList) {
1085     StructuredSubobjectInitList->setType(T);
1086 
1087     unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
1088     // Update the structured sub-object initializer so that it's ending
1089     // range corresponds with the end of the last initializer it used.
1090     if (EndIndex < ParentIList->getNumInits() &&
1091         ParentIList->getInit(EndIndex)) {
1092       SourceLocation EndLoc
1093         = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
1094       StructuredSubobjectInitList->setRBraceLoc(EndLoc);
1095     }
1096 
1097     // Complain about missing braces.
1098     if (!VerifyOnly && (T->isArrayType() || T->isRecordType()) &&
1099         !ParentIList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) &&
1100         !isIdiomaticBraceElisionEntity(Entity)) {
1101       SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
1102                    diag::warn_missing_braces)
1103           << StructuredSubobjectInitList->getSourceRange()
1104           << FixItHint::CreateInsertion(
1105                  StructuredSubobjectInitList->getBeginLoc(), "{")
1106           << FixItHint::CreateInsertion(
1107                  SemaRef.getLocForEndOfToken(
1108                      StructuredSubobjectInitList->getEndLoc()),
1109                  "}");
1110     }
1111 
1112     // Warn if this type won't be an aggregate in future versions of C++.
1113     auto *CXXRD = T->getAsCXXRecordDecl();
1114     if (!VerifyOnly && CXXRD && CXXRD->hasUserDeclaredConstructor()) {
1115       SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
1116                    diag::warn_cxx20_compat_aggregate_init_with_ctors)
1117           << StructuredSubobjectInitList->getSourceRange() << T;
1118     }
1119   }
1120 }
1121 
1122 /// Warn that \p Entity was of scalar type and was initialized by a
1123 /// single-element braced initializer list.
1124 static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity,
1125                                  SourceRange Braces) {
1126   // Don't warn during template instantiation. If the initialization was
1127   // non-dependent, we warned during the initial parse; otherwise, the
1128   // type might not be scalar in some uses of the template.
1129   if (S.inTemplateInstantiation())
1130     return;
1131 
1132   unsigned DiagID = 0;
1133 
1134   switch (Entity.getKind()) {
1135   case InitializedEntity::EK_VectorElement:
1136   case InitializedEntity::EK_ComplexElement:
1137   case InitializedEntity::EK_ArrayElement:
1138   case InitializedEntity::EK_Parameter:
1139   case InitializedEntity::EK_Parameter_CF_Audited:
1140   case InitializedEntity::EK_TemplateParameter:
1141   case InitializedEntity::EK_Result:
1142     // Extra braces here are suspicious.
1143     DiagID = diag::warn_braces_around_init;
1144     break;
1145 
1146   case InitializedEntity::EK_Member:
1147     // Warn on aggregate initialization but not on ctor init list or
1148     // default member initializer.
1149     if (Entity.getParent())
1150       DiagID = diag::warn_braces_around_init;
1151     break;
1152 
1153   case InitializedEntity::EK_Variable:
1154   case InitializedEntity::EK_LambdaCapture:
1155     // No warning, might be direct-list-initialization.
1156     // FIXME: Should we warn for copy-list-initialization in these cases?
1157     break;
1158 
1159   case InitializedEntity::EK_New:
1160   case InitializedEntity::EK_Temporary:
1161   case InitializedEntity::EK_CompoundLiteralInit:
1162     // No warning, braces are part of the syntax of the underlying construct.
1163     break;
1164 
1165   case InitializedEntity::EK_RelatedResult:
1166     // No warning, we already warned when initializing the result.
1167     break;
1168 
1169   case InitializedEntity::EK_Exception:
1170   case InitializedEntity::EK_Base:
1171   case InitializedEntity::EK_Delegating:
1172   case InitializedEntity::EK_BlockElement:
1173   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
1174   case InitializedEntity::EK_Binding:
1175   case InitializedEntity::EK_StmtExprResult:
1176     llvm_unreachable("unexpected braced scalar init");
1177   }
1178 
1179   if (DiagID) {
1180     S.Diag(Braces.getBegin(), DiagID)
1181         << Entity.getType()->isSizelessBuiltinType() << Braces
1182         << FixItHint::CreateRemoval(Braces.getBegin())
1183         << FixItHint::CreateRemoval(Braces.getEnd());
1184   }
1185 }
1186 
1187 /// Check whether the initializer \p IList (that was written with explicit
1188 /// braces) can be used to initialize an object of type \p T.
1189 ///
1190 /// This also fills in \p StructuredList with the fully-braced, desugared
1191 /// form of the initialization.
1192 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
1193                                             InitListExpr *IList, QualType &T,
1194                                             InitListExpr *StructuredList,
1195                                             bool TopLevelObject) {
1196   unsigned Index = 0, StructuredIndex = 0;
1197   CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
1198                         Index, StructuredList, StructuredIndex, TopLevelObject);
1199   if (StructuredList) {
1200     QualType ExprTy = T;
1201     if (!ExprTy->isArrayType())
1202       ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
1203     if (!VerifyOnly)
1204       IList->setType(ExprTy);
1205     StructuredList->setType(ExprTy);
1206   }
1207   if (hadError)
1208     return;
1209 
1210   // Don't complain for incomplete types, since we'll get an error elsewhere.
1211   if (Index < IList->getNumInits() && !T->isIncompleteType()) {
1212     // We have leftover initializers
1213     bool ExtraInitsIsError = SemaRef.getLangOpts().CPlusPlus ||
1214           (SemaRef.getLangOpts().OpenCL && T->isVectorType());
1215     hadError = ExtraInitsIsError;
1216     if (VerifyOnly) {
1217       return;
1218     } else if (StructuredIndex == 1 &&
1219                IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) ==
1220                    SIF_None) {
1221       unsigned DK =
1222           ExtraInitsIsError
1223               ? diag::err_excess_initializers_in_char_array_initializer
1224               : diag::ext_excess_initializers_in_char_array_initializer;
1225       SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1226           << IList->getInit(Index)->getSourceRange();
1227     } else if (T->isSizelessBuiltinType()) {
1228       unsigned DK = ExtraInitsIsError
1229                         ? diag::err_excess_initializers_for_sizeless_type
1230                         : diag::ext_excess_initializers_for_sizeless_type;
1231       SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1232           << T << IList->getInit(Index)->getSourceRange();
1233     } else {
1234       int initKind = T->isArrayType() ? 0 :
1235                      T->isVectorType() ? 1 :
1236                      T->isScalarType() ? 2 :
1237                      T->isUnionType() ? 3 :
1238                      4;
1239 
1240       unsigned DK = ExtraInitsIsError ? diag::err_excess_initializers
1241                                       : diag::ext_excess_initializers;
1242       SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1243           << initKind << IList->getInit(Index)->getSourceRange();
1244     }
1245   }
1246 
1247   if (!VerifyOnly) {
1248     if (T->isScalarType() && IList->getNumInits() == 1 &&
1249         !isa<InitListExpr>(IList->getInit(0)))
1250       warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange());
1251 
1252     // Warn if this is a class type that won't be an aggregate in future
1253     // versions of C++.
1254     auto *CXXRD = T->getAsCXXRecordDecl();
1255     if (CXXRD && CXXRD->hasUserDeclaredConstructor()) {
1256       // Don't warn if there's an equivalent default constructor that would be
1257       // used instead.
1258       bool HasEquivCtor = false;
1259       if (IList->getNumInits() == 0) {
1260         auto *CD = SemaRef.LookupDefaultConstructor(CXXRD);
1261         HasEquivCtor = CD && !CD->isDeleted();
1262       }
1263 
1264       if (!HasEquivCtor) {
1265         SemaRef.Diag(IList->getBeginLoc(),
1266                      diag::warn_cxx20_compat_aggregate_init_with_ctors)
1267             << IList->getSourceRange() << T;
1268       }
1269     }
1270   }
1271 }
1272 
1273 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
1274                                             InitListExpr *IList,
1275                                             QualType &DeclType,
1276                                             bool SubobjectIsDesignatorContext,
1277                                             unsigned &Index,
1278                                             InitListExpr *StructuredList,
1279                                             unsigned &StructuredIndex,
1280                                             bool TopLevelObject) {
1281   if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
1282     // Explicitly braced initializer for complex type can be real+imaginary
1283     // parts.
1284     CheckComplexType(Entity, IList, DeclType, Index,
1285                      StructuredList, StructuredIndex);
1286   } else if (DeclType->isScalarType()) {
1287     CheckScalarType(Entity, IList, DeclType, Index,
1288                     StructuredList, StructuredIndex);
1289   } else if (DeclType->isVectorType()) {
1290     CheckVectorType(Entity, IList, DeclType, Index,
1291                     StructuredList, StructuredIndex);
1292   } else if (DeclType->isRecordType()) {
1293     assert(DeclType->isAggregateType() &&
1294            "non-aggregate records should be handed in CheckSubElementType");
1295     RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl();
1296     auto Bases =
1297         CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
1298                                         CXXRecordDecl::base_class_iterator());
1299     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1300       Bases = CXXRD->bases();
1301     CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(),
1302                           SubobjectIsDesignatorContext, Index, StructuredList,
1303                           StructuredIndex, TopLevelObject);
1304   } else if (DeclType->isArrayType()) {
1305     llvm::APSInt Zero(
1306                     SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
1307                     false);
1308     CheckArrayType(Entity, IList, DeclType, Zero,
1309                    SubobjectIsDesignatorContext, Index,
1310                    StructuredList, StructuredIndex);
1311   } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
1312     // This type is invalid, issue a diagnostic.
1313     ++Index;
1314     if (!VerifyOnly)
1315       SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
1316           << DeclType;
1317     hadError = true;
1318   } else if (DeclType->isReferenceType()) {
1319     CheckReferenceType(Entity, IList, DeclType, Index,
1320                        StructuredList, StructuredIndex);
1321   } else if (DeclType->isObjCObjectType()) {
1322     if (!VerifyOnly)
1323       SemaRef.Diag(IList->getBeginLoc(), diag::err_init_objc_class) << DeclType;
1324     hadError = true;
1325   } else if (DeclType->isOCLIntelSubgroupAVCType() ||
1326              DeclType->isSizelessBuiltinType()) {
1327     // Checks for scalar type are sufficient for these types too.
1328     CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1329                     StructuredIndex);
1330   } else {
1331     if (!VerifyOnly)
1332       SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
1333           << DeclType;
1334     hadError = true;
1335   }
1336 }
1337 
1338 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
1339                                           InitListExpr *IList,
1340                                           QualType ElemType,
1341                                           unsigned &Index,
1342                                           InitListExpr *StructuredList,
1343                                           unsigned &StructuredIndex,
1344                                           bool DirectlyDesignated) {
1345   Expr *expr = IList->getInit(Index);
1346 
1347   if (ElemType->isReferenceType())
1348     return CheckReferenceType(Entity, IList, ElemType, Index,
1349                               StructuredList, StructuredIndex);
1350 
1351   if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
1352     if (SubInitList->getNumInits() == 1 &&
1353         IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) ==
1354         SIF_None) {
1355       // FIXME: It would be more faithful and no less correct to include an
1356       // InitListExpr in the semantic form of the initializer list in this case.
1357       expr = SubInitList->getInit(0);
1358     }
1359     // Nested aggregate initialization and C++ initialization are handled later.
1360   } else if (isa<ImplicitValueInitExpr>(expr)) {
1361     // This happens during template instantiation when we see an InitListExpr
1362     // that we've already checked once.
1363     assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) &&
1364            "found implicit initialization for the wrong type");
1365     UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1366     ++Index;
1367     return;
1368   }
1369 
1370   if (SemaRef.getLangOpts().CPlusPlus || isa<InitListExpr>(expr)) {
1371     // C++ [dcl.init.aggr]p2:
1372     //   Each member is copy-initialized from the corresponding
1373     //   initializer-clause.
1374 
1375     // FIXME: Better EqualLoc?
1376     InitializationKind Kind =
1377         InitializationKind::CreateCopy(expr->getBeginLoc(), SourceLocation());
1378 
1379     // Vector elements can be initialized from other vectors in which case
1380     // we need initialization entity with a type of a vector (and not a vector
1381     // element!) initializing multiple vector elements.
1382     auto TmpEntity =
1383         (ElemType->isExtVectorType() && !Entity.getType()->isExtVectorType())
1384             ? InitializedEntity::InitializeTemporary(ElemType)
1385             : Entity;
1386 
1387     InitializationSequence Seq(SemaRef, TmpEntity, Kind, expr,
1388                                /*TopLevelOfInitList*/ true);
1389 
1390     // C++14 [dcl.init.aggr]p13:
1391     //   If the assignment-expression can initialize a member, the member is
1392     //   initialized. Otherwise [...] brace elision is assumed
1393     //
1394     // Brace elision is never performed if the element is not an
1395     // assignment-expression.
1396     if (Seq || isa<InitListExpr>(expr)) {
1397       if (!VerifyOnly) {
1398         ExprResult Result = Seq.Perform(SemaRef, TmpEntity, Kind, expr);
1399         if (Result.isInvalid())
1400           hadError = true;
1401 
1402         UpdateStructuredListElement(StructuredList, StructuredIndex,
1403                                     Result.getAs<Expr>());
1404       } else if (!Seq) {
1405         hadError = true;
1406       } else if (StructuredList) {
1407         UpdateStructuredListElement(StructuredList, StructuredIndex,
1408                                     getDummyInit());
1409       }
1410       ++Index;
1411       return;
1412     }
1413 
1414     // Fall through for subaggregate initialization
1415   } else if (ElemType->isScalarType() || ElemType->isAtomicType()) {
1416     // FIXME: Need to handle atomic aggregate types with implicit init lists.
1417     return CheckScalarType(Entity, IList, ElemType, Index,
1418                            StructuredList, StructuredIndex);
1419   } else if (const ArrayType *arrayType =
1420                  SemaRef.Context.getAsArrayType(ElemType)) {
1421     // arrayType can be incomplete if we're initializing a flexible
1422     // array member.  There's nothing we can do with the completed
1423     // type here, though.
1424 
1425     if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) {
1426       // FIXME: Should we do this checking in verify-only mode?
1427       if (!VerifyOnly)
1428         CheckStringInit(expr, ElemType, arrayType, SemaRef);
1429       if (StructuredList)
1430         UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1431       ++Index;
1432       return;
1433     }
1434 
1435     // Fall through for subaggregate initialization.
1436 
1437   } else {
1438     assert((ElemType->isRecordType() || ElemType->isVectorType() ||
1439             ElemType->isOpenCLSpecificType()) && "Unexpected type");
1440 
1441     // C99 6.7.8p13:
1442     //
1443     //   The initializer for a structure or union object that has
1444     //   automatic storage duration shall be either an initializer
1445     //   list as described below, or a single expression that has
1446     //   compatible structure or union type. In the latter case, the
1447     //   initial value of the object, including unnamed members, is
1448     //   that of the expression.
1449     ExprResult ExprRes = expr;
1450     if (SemaRef.CheckSingleAssignmentConstraints(
1451             ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) {
1452       if (ExprRes.isInvalid())
1453         hadError = true;
1454       else {
1455         ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get());
1456         if (ExprRes.isInvalid())
1457           hadError = true;
1458       }
1459       UpdateStructuredListElement(StructuredList, StructuredIndex,
1460                                   ExprRes.getAs<Expr>());
1461       ++Index;
1462       return;
1463     }
1464     ExprRes.get();
1465     // Fall through for subaggregate initialization
1466   }
1467 
1468   // C++ [dcl.init.aggr]p12:
1469   //
1470   //   [...] Otherwise, if the member is itself a non-empty
1471   //   subaggregate, brace elision is assumed and the initializer is
1472   //   considered for the initialization of the first member of
1473   //   the subaggregate.
1474   // OpenCL vector initializer is handled elsewhere.
1475   if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) ||
1476       ElemType->isAggregateType()) {
1477     CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
1478                           StructuredIndex);
1479     ++StructuredIndex;
1480 
1481     // In C++20, brace elision is not permitted for a designated initializer.
1482     if (DirectlyDesignated && SemaRef.getLangOpts().CPlusPlus && !hadError) {
1483       if (InOverloadResolution)
1484         hadError = true;
1485       if (!VerifyOnly) {
1486         SemaRef.Diag(expr->getBeginLoc(),
1487                      diag::ext_designated_init_brace_elision)
1488             << expr->getSourceRange()
1489             << FixItHint::CreateInsertion(expr->getBeginLoc(), "{")
1490             << FixItHint::CreateInsertion(
1491                    SemaRef.getLocForEndOfToken(expr->getEndLoc()), "}");
1492       }
1493     }
1494   } else {
1495     if (!VerifyOnly) {
1496       // We cannot initialize this element, so let PerformCopyInitialization
1497       // produce the appropriate diagnostic. We already checked that this
1498       // initialization will fail.
1499       ExprResult Copy =
1500           SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr,
1501                                             /*TopLevelOfInitList=*/true);
1502       (void)Copy;
1503       assert(Copy.isInvalid() &&
1504              "expected non-aggregate initialization to fail");
1505     }
1506     hadError = true;
1507     ++Index;
1508     ++StructuredIndex;
1509   }
1510 }
1511 
1512 void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
1513                                        InitListExpr *IList, QualType DeclType,
1514                                        unsigned &Index,
1515                                        InitListExpr *StructuredList,
1516                                        unsigned &StructuredIndex) {
1517   assert(Index == 0 && "Index in explicit init list must be zero");
1518 
1519   // As an extension, clang supports complex initializers, which initialize
1520   // a complex number component-wise.  When an explicit initializer list for
1521   // a complex number contains two two initializers, this extension kicks in:
1522   // it exepcts the initializer list to contain two elements convertible to
1523   // the element type of the complex type. The first element initializes
1524   // the real part, and the second element intitializes the imaginary part.
1525 
1526   if (IList->getNumInits() != 2)
1527     return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1528                            StructuredIndex);
1529 
1530   // This is an extension in C.  (The builtin _Complex type does not exist
1531   // in the C++ standard.)
1532   if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
1533     SemaRef.Diag(IList->getBeginLoc(), diag::ext_complex_component_init)
1534         << IList->getSourceRange();
1535 
1536   // Initialize the complex number.
1537   QualType elementType = DeclType->castAs<ComplexType>()->getElementType();
1538   InitializedEntity ElementEntity =
1539     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1540 
1541   for (unsigned i = 0; i < 2; ++i) {
1542     ElementEntity.setElementIndex(Index);
1543     CheckSubElementType(ElementEntity, IList, elementType, Index,
1544                         StructuredList, StructuredIndex);
1545   }
1546 }
1547 
1548 void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
1549                                       InitListExpr *IList, QualType DeclType,
1550                                       unsigned &Index,
1551                                       InitListExpr *StructuredList,
1552                                       unsigned &StructuredIndex) {
1553   if (Index >= IList->getNumInits()) {
1554     if (!VerifyOnly) {
1555       if (DeclType->isSizelessBuiltinType())
1556         SemaRef.Diag(IList->getBeginLoc(),
1557                      SemaRef.getLangOpts().CPlusPlus11
1558                          ? diag::warn_cxx98_compat_empty_sizeless_initializer
1559                          : diag::err_empty_sizeless_initializer)
1560             << DeclType << IList->getSourceRange();
1561       else
1562         SemaRef.Diag(IList->getBeginLoc(),
1563                      SemaRef.getLangOpts().CPlusPlus11
1564                          ? diag::warn_cxx98_compat_empty_scalar_initializer
1565                          : diag::err_empty_scalar_initializer)
1566             << IList->getSourceRange();
1567     }
1568     hadError = !SemaRef.getLangOpts().CPlusPlus11;
1569     ++Index;
1570     ++StructuredIndex;
1571     return;
1572   }
1573 
1574   Expr *expr = IList->getInit(Index);
1575   if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
1576     // FIXME: This is invalid, and accepting it causes overload resolution
1577     // to pick the wrong overload in some corner cases.
1578     if (!VerifyOnly)
1579       SemaRef.Diag(SubIList->getBeginLoc(), diag::ext_many_braces_around_init)
1580           << DeclType->isSizelessBuiltinType() << SubIList->getSourceRange();
1581 
1582     CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
1583                     StructuredIndex);
1584     return;
1585   } else if (isa<DesignatedInitExpr>(expr)) {
1586     if (!VerifyOnly)
1587       SemaRef.Diag(expr->getBeginLoc(),
1588                    diag::err_designator_for_scalar_or_sizeless_init)
1589           << DeclType->isSizelessBuiltinType() << DeclType
1590           << expr->getSourceRange();
1591     hadError = true;
1592     ++Index;
1593     ++StructuredIndex;
1594     return;
1595   }
1596 
1597   ExprResult Result;
1598   if (VerifyOnly) {
1599     if (SemaRef.CanPerformCopyInitialization(Entity, expr))
1600       Result = getDummyInit();
1601     else
1602       Result = ExprError();
1603   } else {
1604     Result =
1605         SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
1606                                           /*TopLevelOfInitList=*/true);
1607   }
1608 
1609   Expr *ResultExpr = nullptr;
1610 
1611   if (Result.isInvalid())
1612     hadError = true; // types weren't compatible.
1613   else {
1614     ResultExpr = Result.getAs<Expr>();
1615 
1616     if (ResultExpr != expr && !VerifyOnly) {
1617       // The type was promoted, update initializer list.
1618       // FIXME: Why are we updating the syntactic init list?
1619       IList->setInit(Index, ResultExpr);
1620     }
1621   }
1622   UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1623   ++Index;
1624 }
1625 
1626 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
1627                                          InitListExpr *IList, QualType DeclType,
1628                                          unsigned &Index,
1629                                          InitListExpr *StructuredList,
1630                                          unsigned &StructuredIndex) {
1631   if (Index >= IList->getNumInits()) {
1632     // FIXME: It would be wonderful if we could point at the actual member. In
1633     // general, it would be useful to pass location information down the stack,
1634     // so that we know the location (or decl) of the "current object" being
1635     // initialized.
1636     if (!VerifyOnly)
1637       SemaRef.Diag(IList->getBeginLoc(),
1638                    diag::err_init_reference_member_uninitialized)
1639           << DeclType << IList->getSourceRange();
1640     hadError = true;
1641     ++Index;
1642     ++StructuredIndex;
1643     return;
1644   }
1645 
1646   Expr *expr = IList->getInit(Index);
1647   if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
1648     if (!VerifyOnly)
1649       SemaRef.Diag(IList->getBeginLoc(), diag::err_init_non_aggr_init_list)
1650           << DeclType << IList->getSourceRange();
1651     hadError = true;
1652     ++Index;
1653     ++StructuredIndex;
1654     return;
1655   }
1656 
1657   ExprResult Result;
1658   if (VerifyOnly) {
1659     if (SemaRef.CanPerformCopyInitialization(Entity,expr))
1660       Result = getDummyInit();
1661     else
1662       Result = ExprError();
1663   } else {
1664     Result =
1665         SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
1666                                           /*TopLevelOfInitList=*/true);
1667   }
1668 
1669   if (Result.isInvalid())
1670     hadError = true;
1671 
1672   expr = Result.getAs<Expr>();
1673   // FIXME: Why are we updating the syntactic init list?
1674   if (!VerifyOnly && expr)
1675     IList->setInit(Index, expr);
1676 
1677   UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1678   ++Index;
1679 }
1680 
1681 void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1682                                       InitListExpr *IList, QualType DeclType,
1683                                       unsigned &Index,
1684                                       InitListExpr *StructuredList,
1685                                       unsigned &StructuredIndex) {
1686   const VectorType *VT = DeclType->castAs<VectorType>();
1687   unsigned maxElements = VT->getNumElements();
1688   unsigned numEltsInit = 0;
1689   QualType elementType = VT->getElementType();
1690 
1691   if (Index >= IList->getNumInits()) {
1692     // Make sure the element type can be value-initialized.
1693     CheckEmptyInitializable(
1694         InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1695         IList->getEndLoc());
1696     return;
1697   }
1698 
1699   if (!SemaRef.getLangOpts().OpenCL) {
1700     // If the initializing element is a vector, try to copy-initialize
1701     // instead of breaking it apart (which is doomed to failure anyway).
1702     Expr *Init = IList->getInit(Index);
1703     if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1704       ExprResult Result;
1705       if (VerifyOnly) {
1706         if (SemaRef.CanPerformCopyInitialization(Entity, Init))
1707           Result = getDummyInit();
1708         else
1709           Result = ExprError();
1710       } else {
1711         Result =
1712             SemaRef.PerformCopyInitialization(Entity, Init->getBeginLoc(), Init,
1713                                               /*TopLevelOfInitList=*/true);
1714       }
1715 
1716       Expr *ResultExpr = nullptr;
1717       if (Result.isInvalid())
1718         hadError = true; // types weren't compatible.
1719       else {
1720         ResultExpr = Result.getAs<Expr>();
1721 
1722         if (ResultExpr != Init && !VerifyOnly) {
1723           // The type was promoted, update initializer list.
1724           // FIXME: Why are we updating the syntactic init list?
1725           IList->setInit(Index, ResultExpr);
1726         }
1727       }
1728       UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1729       ++Index;
1730       return;
1731     }
1732 
1733     InitializedEntity ElementEntity =
1734       InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1735 
1736     for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1737       // Don't attempt to go past the end of the init list
1738       if (Index >= IList->getNumInits()) {
1739         CheckEmptyInitializable(ElementEntity, IList->getEndLoc());
1740         break;
1741       }
1742 
1743       ElementEntity.setElementIndex(Index);
1744       CheckSubElementType(ElementEntity, IList, elementType, Index,
1745                           StructuredList, StructuredIndex);
1746     }
1747 
1748     if (VerifyOnly)
1749       return;
1750 
1751     bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian();
1752     const VectorType *T = Entity.getType()->castAs<VectorType>();
1753     if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector ||
1754                         T->getVectorKind() == VectorType::NeonPolyVector)) {
1755       // The ability to use vector initializer lists is a GNU vector extension
1756       // and is unrelated to the NEON intrinsics in arm_neon.h. On little
1757       // endian machines it works fine, however on big endian machines it
1758       // exhibits surprising behaviour:
1759       //
1760       //   uint32x2_t x = {42, 64};
1761       //   return vget_lane_u32(x, 0); // Will return 64.
1762       //
1763       // Because of this, explicitly call out that it is non-portable.
1764       //
1765       SemaRef.Diag(IList->getBeginLoc(),
1766                    diag::warn_neon_vector_initializer_non_portable);
1767 
1768       const char *typeCode;
1769       unsigned typeSize = SemaRef.Context.getTypeSize(elementType);
1770 
1771       if (elementType->isFloatingType())
1772         typeCode = "f";
1773       else if (elementType->isSignedIntegerType())
1774         typeCode = "s";
1775       else if (elementType->isUnsignedIntegerType())
1776         typeCode = "u";
1777       else
1778         llvm_unreachable("Invalid element type!");
1779 
1780       SemaRef.Diag(IList->getBeginLoc(),
1781                    SemaRef.Context.getTypeSize(VT) > 64
1782                        ? diag::note_neon_vector_initializer_non_portable_q
1783                        : diag::note_neon_vector_initializer_non_portable)
1784           << typeCode << typeSize;
1785     }
1786 
1787     return;
1788   }
1789 
1790   InitializedEntity ElementEntity =
1791     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1792 
1793   // OpenCL initializers allows vectors to be constructed from vectors.
1794   for (unsigned i = 0; i < maxElements; ++i) {
1795     // Don't attempt to go past the end of the init list
1796     if (Index >= IList->getNumInits())
1797       break;
1798 
1799     ElementEntity.setElementIndex(Index);
1800 
1801     QualType IType = IList->getInit(Index)->getType();
1802     if (!IType->isVectorType()) {
1803       CheckSubElementType(ElementEntity, IList, elementType, Index,
1804                           StructuredList, StructuredIndex);
1805       ++numEltsInit;
1806     } else {
1807       QualType VecType;
1808       const VectorType *IVT = IType->castAs<VectorType>();
1809       unsigned numIElts = IVT->getNumElements();
1810 
1811       if (IType->isExtVectorType())
1812         VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1813       else
1814         VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1815                                                 IVT->getVectorKind());
1816       CheckSubElementType(ElementEntity, IList, VecType, Index,
1817                           StructuredList, StructuredIndex);
1818       numEltsInit += numIElts;
1819     }
1820   }
1821 
1822   // OpenCL requires all elements to be initialized.
1823   if (numEltsInit != maxElements) {
1824     if (!VerifyOnly)
1825       SemaRef.Diag(IList->getBeginLoc(),
1826                    diag::err_vector_incorrect_num_initializers)
1827           << (numEltsInit < maxElements) << maxElements << numEltsInit;
1828     hadError = true;
1829   }
1830 }
1831 
1832 /// Check if the type of a class element has an accessible destructor, and marks
1833 /// it referenced. Returns true if we shouldn't form a reference to the
1834 /// destructor.
1835 ///
1836 /// Aggregate initialization requires a class element's destructor be
1837 /// accessible per 11.6.1 [dcl.init.aggr]:
1838 ///
1839 /// The destructor for each element of class type is potentially invoked
1840 /// (15.4 [class.dtor]) from the context where the aggregate initialization
1841 /// occurs.
1842 static bool checkDestructorReference(QualType ElementType, SourceLocation Loc,
1843                                      Sema &SemaRef) {
1844   auto *CXXRD = ElementType->getAsCXXRecordDecl();
1845   if (!CXXRD)
1846     return false;
1847 
1848   CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(CXXRD);
1849   SemaRef.CheckDestructorAccess(Loc, Destructor,
1850                                 SemaRef.PDiag(diag::err_access_dtor_temp)
1851                                 << ElementType);
1852   SemaRef.MarkFunctionReferenced(Loc, Destructor);
1853   return SemaRef.DiagnoseUseOfDecl(Destructor, Loc);
1854 }
1855 
1856 void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1857                                      InitListExpr *IList, QualType &DeclType,
1858                                      llvm::APSInt elementIndex,
1859                                      bool SubobjectIsDesignatorContext,
1860                                      unsigned &Index,
1861                                      InitListExpr *StructuredList,
1862                                      unsigned &StructuredIndex) {
1863   const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1864 
1865   if (!VerifyOnly) {
1866     if (checkDestructorReference(arrayType->getElementType(),
1867                                  IList->getEndLoc(), SemaRef)) {
1868       hadError = true;
1869       return;
1870     }
1871   }
1872 
1873   // Check for the special-case of initializing an array with a string.
1874   if (Index < IList->getNumInits()) {
1875     if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) ==
1876         SIF_None) {
1877       // We place the string literal directly into the resulting
1878       // initializer list. This is the only place where the structure
1879       // of the structured initializer list doesn't match exactly,
1880       // because doing so would involve allocating one character
1881       // constant for each string.
1882       // FIXME: Should we do these checks in verify-only mode too?
1883       if (!VerifyOnly)
1884         CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef);
1885       if (StructuredList) {
1886         UpdateStructuredListElement(StructuredList, StructuredIndex,
1887                                     IList->getInit(Index));
1888         StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1889       }
1890       ++Index;
1891       return;
1892     }
1893   }
1894   if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1895     // Check for VLAs; in standard C it would be possible to check this
1896     // earlier, but I don't know where clang accepts VLAs (gcc accepts
1897     // them in all sorts of strange places).
1898     if (!VerifyOnly)
1899       SemaRef.Diag(VAT->getSizeExpr()->getBeginLoc(),
1900                    diag::err_variable_object_no_init)
1901           << VAT->getSizeExpr()->getSourceRange();
1902     hadError = true;
1903     ++Index;
1904     ++StructuredIndex;
1905     return;
1906   }
1907 
1908   // We might know the maximum number of elements in advance.
1909   llvm::APSInt maxElements(elementIndex.getBitWidth(),
1910                            elementIndex.isUnsigned());
1911   bool maxElementsKnown = false;
1912   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1913     maxElements = CAT->getSize();
1914     elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1915     elementIndex.setIsUnsigned(maxElements.isUnsigned());
1916     maxElementsKnown = true;
1917   }
1918 
1919   QualType elementType = arrayType->getElementType();
1920   while (Index < IList->getNumInits()) {
1921     Expr *Init = IList->getInit(Index);
1922     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1923       // If we're not the subobject that matches up with the '{' for
1924       // the designator, we shouldn't be handling the
1925       // designator. Return immediately.
1926       if (!SubobjectIsDesignatorContext)
1927         return;
1928 
1929       // Handle this designated initializer. elementIndex will be
1930       // updated to be the next array element we'll initialize.
1931       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1932                                      DeclType, nullptr, &elementIndex, Index,
1933                                      StructuredList, StructuredIndex, true,
1934                                      false)) {
1935         hadError = true;
1936         continue;
1937       }
1938 
1939       if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1940         maxElements = maxElements.extend(elementIndex.getBitWidth());
1941       else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1942         elementIndex = elementIndex.extend(maxElements.getBitWidth());
1943       elementIndex.setIsUnsigned(maxElements.isUnsigned());
1944 
1945       // If the array is of incomplete type, keep track of the number of
1946       // elements in the initializer.
1947       if (!maxElementsKnown && elementIndex > maxElements)
1948         maxElements = elementIndex;
1949 
1950       continue;
1951     }
1952 
1953     // If we know the maximum number of elements, and we've already
1954     // hit it, stop consuming elements in the initializer list.
1955     if (maxElementsKnown && elementIndex == maxElements)
1956       break;
1957 
1958     InitializedEntity ElementEntity =
1959       InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1960                                            Entity);
1961     // Check this element.
1962     CheckSubElementType(ElementEntity, IList, elementType, Index,
1963                         StructuredList, StructuredIndex);
1964     ++elementIndex;
1965 
1966     // If the array is of incomplete type, keep track of the number of
1967     // elements in the initializer.
1968     if (!maxElementsKnown && elementIndex > maxElements)
1969       maxElements = elementIndex;
1970   }
1971   if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1972     // If this is an incomplete array type, the actual type needs to
1973     // be calculated here.
1974     llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1975     if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) {
1976       // Sizing an array implicitly to zero is not allowed by ISO C,
1977       // but is supported by GNU.
1978       SemaRef.Diag(IList->getBeginLoc(), diag::ext_typecheck_zero_array_size);
1979     }
1980 
1981     DeclType = SemaRef.Context.getConstantArrayType(
1982         elementType, maxElements, nullptr, ArrayType::Normal, 0);
1983   }
1984   if (!hadError) {
1985     // If there are any members of the array that get value-initialized, check
1986     // that is possible. That happens if we know the bound and don't have
1987     // enough elements, or if we're performing an array new with an unknown
1988     // bound.
1989     if ((maxElementsKnown && elementIndex < maxElements) ||
1990         Entity.isVariableLengthArrayNew())
1991       CheckEmptyInitializable(
1992           InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1993           IList->getEndLoc());
1994   }
1995 }
1996 
1997 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1998                                              Expr *InitExpr,
1999                                              FieldDecl *Field,
2000                                              bool TopLevelObject) {
2001   // Handle GNU flexible array initializers.
2002   unsigned FlexArrayDiag;
2003   if (isa<InitListExpr>(InitExpr) &&
2004       cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
2005     // Empty flexible array init always allowed as an extension
2006     FlexArrayDiag = diag::ext_flexible_array_init;
2007   } else if (!TopLevelObject) {
2008     // Disallow flexible array init on non-top-level object
2009     FlexArrayDiag = diag::err_flexible_array_init;
2010   } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
2011     // Disallow flexible array init on anything which is not a variable.
2012     FlexArrayDiag = diag::err_flexible_array_init;
2013   } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
2014     // Disallow flexible array init on local variables.
2015     FlexArrayDiag = diag::err_flexible_array_init;
2016   } else {
2017     // Allow other cases.
2018     FlexArrayDiag = diag::ext_flexible_array_init;
2019   }
2020 
2021   if (!VerifyOnly) {
2022     SemaRef.Diag(InitExpr->getBeginLoc(), FlexArrayDiag)
2023         << InitExpr->getBeginLoc();
2024     SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2025       << Field;
2026   }
2027 
2028   return FlexArrayDiag != diag::ext_flexible_array_init;
2029 }
2030 
2031 void InitListChecker::CheckStructUnionTypes(
2032     const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType,
2033     CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field,
2034     bool SubobjectIsDesignatorContext, unsigned &Index,
2035     InitListExpr *StructuredList, unsigned &StructuredIndex,
2036     bool TopLevelObject) {
2037   RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl();
2038 
2039   // If the record is invalid, some of it's members are invalid. To avoid
2040   // confusion, we forgo checking the initializer for the entire record.
2041   if (structDecl->isInvalidDecl()) {
2042     // Assume it was supposed to consume a single initializer.
2043     ++Index;
2044     hadError = true;
2045     return;
2046   }
2047 
2048   if (DeclType->isUnionType() && IList->getNumInits() == 0) {
2049     RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl();
2050 
2051     if (!VerifyOnly)
2052       for (FieldDecl *FD : RD->fields()) {
2053         QualType ET = SemaRef.Context.getBaseElementType(FD->getType());
2054         if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) {
2055           hadError = true;
2056           return;
2057         }
2058       }
2059 
2060     // If there's a default initializer, use it.
2061     if (isa<CXXRecordDecl>(RD) &&
2062         cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
2063       if (!StructuredList)
2064         return;
2065       for (RecordDecl::field_iterator FieldEnd = RD->field_end();
2066            Field != FieldEnd; ++Field) {
2067         if (Field->hasInClassInitializer()) {
2068           StructuredList->setInitializedFieldInUnion(*Field);
2069           // FIXME: Actually build a CXXDefaultInitExpr?
2070           return;
2071         }
2072       }
2073     }
2074 
2075     // Value-initialize the first member of the union that isn't an unnamed
2076     // bitfield.
2077     for (RecordDecl::field_iterator FieldEnd = RD->field_end();
2078          Field != FieldEnd; ++Field) {
2079       if (!Field->isUnnamedBitfield()) {
2080         CheckEmptyInitializable(
2081             InitializedEntity::InitializeMember(*Field, &Entity),
2082             IList->getEndLoc());
2083         if (StructuredList)
2084           StructuredList->setInitializedFieldInUnion(*Field);
2085         break;
2086       }
2087     }
2088     return;
2089   }
2090 
2091   bool InitializedSomething = false;
2092 
2093   // If we have any base classes, they are initialized prior to the fields.
2094   for (auto &Base : Bases) {
2095     Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr;
2096 
2097     // Designated inits always initialize fields, so if we see one, all
2098     // remaining base classes have no explicit initializer.
2099     if (Init && isa<DesignatedInitExpr>(Init))
2100       Init = nullptr;
2101 
2102     SourceLocation InitLoc = Init ? Init->getBeginLoc() : IList->getEndLoc();
2103     InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
2104         SemaRef.Context, &Base, false, &Entity);
2105     if (Init) {
2106       CheckSubElementType(BaseEntity, IList, Base.getType(), Index,
2107                           StructuredList, StructuredIndex);
2108       InitializedSomething = true;
2109     } else {
2110       CheckEmptyInitializable(BaseEntity, InitLoc);
2111     }
2112 
2113     if (!VerifyOnly)
2114       if (checkDestructorReference(Base.getType(), InitLoc, SemaRef)) {
2115         hadError = true;
2116         return;
2117       }
2118   }
2119 
2120   // If structDecl is a forward declaration, this loop won't do
2121   // anything except look at designated initializers; That's okay,
2122   // because an error should get printed out elsewhere. It might be
2123   // worthwhile to skip over the rest of the initializer, though.
2124   RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl();
2125   RecordDecl::field_iterator FieldEnd = RD->field_end();
2126   size_t NumRecordDecls = llvm::count_if(RD->decls(), [&](const Decl *D) {
2127     return isa<FieldDecl>(D) || isa<RecordDecl>(D);
2128   });
2129   bool CheckForMissingFields =
2130     !IList->isIdiomaticZeroInitializer(SemaRef.getLangOpts());
2131   bool HasDesignatedInit = false;
2132 
2133   while (Index < IList->getNumInits()) {
2134     Expr *Init = IList->getInit(Index);
2135     SourceLocation InitLoc = Init->getBeginLoc();
2136 
2137     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
2138       // If we're not the subobject that matches up with the '{' for
2139       // the designator, we shouldn't be handling the
2140       // designator. Return immediately.
2141       if (!SubobjectIsDesignatorContext)
2142         return;
2143 
2144       HasDesignatedInit = true;
2145 
2146       // Handle this designated initializer. Field will be updated to
2147       // the next field that we'll be initializing.
2148       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
2149                                      DeclType, &Field, nullptr, Index,
2150                                      StructuredList, StructuredIndex,
2151                                      true, TopLevelObject))
2152         hadError = true;
2153       else if (!VerifyOnly) {
2154         // Find the field named by the designated initializer.
2155         RecordDecl::field_iterator F = RD->field_begin();
2156         while (std::next(F) != Field)
2157           ++F;
2158         QualType ET = SemaRef.Context.getBaseElementType(F->getType());
2159         if (checkDestructorReference(ET, InitLoc, SemaRef)) {
2160           hadError = true;
2161           return;
2162         }
2163       }
2164 
2165       InitializedSomething = true;
2166 
2167       // Disable check for missing fields when designators are used.
2168       // This matches gcc behaviour.
2169       CheckForMissingFields = false;
2170       continue;
2171     }
2172 
2173     // Check if this is an initializer of forms:
2174     //
2175     //   struct foo f = {};
2176     //   struct foo g = {0};
2177     //
2178     // These are okay for randomized structures. [C99 6.7.8p19]
2179     //
2180     // Also, if there is only one element in the structure, we allow something
2181     // like this, because it's really not randomized in the tranditional sense.
2182     //
2183     //   struct foo h = {bar};
2184     auto IsZeroInitializer = [&](const Expr *I) {
2185       if (IList->getNumInits() == 1) {
2186         if (NumRecordDecls == 1)
2187           return true;
2188         if (const auto *IL = dyn_cast<IntegerLiteral>(I))
2189           return IL->getValue().isZero();
2190       }
2191       return false;
2192     };
2193 
2194     // Don't allow non-designated initializers on randomized structures.
2195     if (RD->isRandomized() && !IsZeroInitializer(Init)) {
2196       if (!VerifyOnly)
2197         SemaRef.Diag(InitLoc, diag::err_non_designated_init_used);
2198       hadError = true;
2199       break;
2200     }
2201 
2202     if (Field == FieldEnd) {
2203       // We've run out of fields. We're done.
2204       break;
2205     }
2206 
2207     // We've already initialized a member of a union. We're done.
2208     if (InitializedSomething && DeclType->isUnionType())
2209       break;
2210 
2211     // If we've hit the flexible array member at the end, we're done.
2212     if (Field->getType()->isIncompleteArrayType())
2213       break;
2214 
2215     if (Field->isUnnamedBitfield()) {
2216       // Don't initialize unnamed bitfields, e.g. "int : 20;"
2217       ++Field;
2218       continue;
2219     }
2220 
2221     // Make sure we can use this declaration.
2222     bool InvalidUse;
2223     if (VerifyOnly)
2224       InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2225     else
2226       InvalidUse = SemaRef.DiagnoseUseOfDecl(
2227           *Field, IList->getInit(Index)->getBeginLoc());
2228     if (InvalidUse) {
2229       ++Index;
2230       ++Field;
2231       hadError = true;
2232       continue;
2233     }
2234 
2235     if (!VerifyOnly) {
2236       QualType ET = SemaRef.Context.getBaseElementType(Field->getType());
2237       if (checkDestructorReference(ET, InitLoc, SemaRef)) {
2238         hadError = true;
2239         return;
2240       }
2241     }
2242 
2243     InitializedEntity MemberEntity =
2244       InitializedEntity::InitializeMember(*Field, &Entity);
2245     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2246                         StructuredList, StructuredIndex);
2247     InitializedSomething = true;
2248 
2249     if (DeclType->isUnionType() && StructuredList) {
2250       // Initialize the first field within the union.
2251       StructuredList->setInitializedFieldInUnion(*Field);
2252     }
2253 
2254     ++Field;
2255   }
2256 
2257   // Emit warnings for missing struct field initializers.
2258   if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
2259       Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
2260       !DeclType->isUnionType()) {
2261     // It is possible we have one or more unnamed bitfields remaining.
2262     // Find first (if any) named field and emit warning.
2263     for (RecordDecl::field_iterator it = Field, end = RD->field_end();
2264          it != end; ++it) {
2265       if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
2266         SemaRef.Diag(IList->getSourceRange().getEnd(),
2267                      diag::warn_missing_field_initializers) << *it;
2268         break;
2269       }
2270     }
2271   }
2272 
2273   // Check that any remaining fields can be value-initialized if we're not
2274   // building a structured list. (If we are, we'll check this later.)
2275   if (!StructuredList && Field != FieldEnd && !DeclType->isUnionType() &&
2276       !Field->getType()->isIncompleteArrayType()) {
2277     for (; Field != FieldEnd && !hadError; ++Field) {
2278       if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
2279         CheckEmptyInitializable(
2280             InitializedEntity::InitializeMember(*Field, &Entity),
2281             IList->getEndLoc());
2282     }
2283   }
2284 
2285   // Check that the types of the remaining fields have accessible destructors.
2286   if (!VerifyOnly) {
2287     // If the initializer expression has a designated initializer, check the
2288     // elements for which a designated initializer is not provided too.
2289     RecordDecl::field_iterator I = HasDesignatedInit ? RD->field_begin()
2290                                                      : Field;
2291     for (RecordDecl::field_iterator E = RD->field_end(); I != E; ++I) {
2292       QualType ET = SemaRef.Context.getBaseElementType(I->getType());
2293       if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) {
2294         hadError = true;
2295         return;
2296       }
2297     }
2298   }
2299 
2300   if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
2301       Index >= IList->getNumInits())
2302     return;
2303 
2304   if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
2305                              TopLevelObject)) {
2306     hadError = true;
2307     ++Index;
2308     return;
2309   }
2310 
2311   InitializedEntity MemberEntity =
2312     InitializedEntity::InitializeMember(*Field, &Entity);
2313 
2314   if (isa<InitListExpr>(IList->getInit(Index)))
2315     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2316                         StructuredList, StructuredIndex);
2317   else
2318     CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
2319                           StructuredList, StructuredIndex);
2320 }
2321 
2322 /// Expand a field designator that refers to a member of an
2323 /// anonymous struct or union into a series of field designators that
2324 /// refers to the field within the appropriate subobject.
2325 ///
2326 static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
2327                                            DesignatedInitExpr *DIE,
2328                                            unsigned DesigIdx,
2329                                            IndirectFieldDecl *IndirectField) {
2330   typedef DesignatedInitExpr::Designator Designator;
2331 
2332   // Build the replacement designators.
2333   SmallVector<Designator, 4> Replacements;
2334   for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
2335        PE = IndirectField->chain_end(); PI != PE; ++PI) {
2336     if (PI + 1 == PE)
2337       Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2338                                     DIE->getDesignator(DesigIdx)->getDotLoc(),
2339                                 DIE->getDesignator(DesigIdx)->getFieldLoc()));
2340     else
2341       Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2342                                         SourceLocation(), SourceLocation()));
2343     assert(isa<FieldDecl>(*PI));
2344     Replacements.back().setField(cast<FieldDecl>(*PI));
2345   }
2346 
2347   // Expand the current designator into the set of replacement
2348   // designators, so we have a full subobject path down to where the
2349   // member of the anonymous struct/union is actually stored.
2350   DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
2351                         &Replacements[0] + Replacements.size());
2352 }
2353 
2354 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
2355                                                    DesignatedInitExpr *DIE) {
2356   unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
2357   SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
2358   for (unsigned I = 0; I < NumIndexExprs; ++I)
2359     IndexExprs[I] = DIE->getSubExpr(I + 1);
2360   return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(),
2361                                     IndexExprs,
2362                                     DIE->getEqualOrColonLoc(),
2363                                     DIE->usesGNUSyntax(), DIE->getInit());
2364 }
2365 
2366 namespace {
2367 
2368 // Callback to only accept typo corrections that are for field members of
2369 // the given struct or union.
2370 class FieldInitializerValidatorCCC final : public CorrectionCandidateCallback {
2371  public:
2372   explicit FieldInitializerValidatorCCC(RecordDecl *RD)
2373       : Record(RD) {}
2374 
2375   bool ValidateCandidate(const TypoCorrection &candidate) override {
2376     FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
2377     return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
2378   }
2379 
2380   std::unique_ptr<CorrectionCandidateCallback> clone() override {
2381     return std::make_unique<FieldInitializerValidatorCCC>(*this);
2382   }
2383 
2384  private:
2385   RecordDecl *Record;
2386 };
2387 
2388 } // end anonymous namespace
2389 
2390 /// Check the well-formedness of a C99 designated initializer.
2391 ///
2392 /// Determines whether the designated initializer @p DIE, which
2393 /// resides at the given @p Index within the initializer list @p
2394 /// IList, is well-formed for a current object of type @p DeclType
2395 /// (C99 6.7.8). The actual subobject that this designator refers to
2396 /// within the current subobject is returned in either
2397 /// @p NextField or @p NextElementIndex (whichever is appropriate).
2398 ///
2399 /// @param IList  The initializer list in which this designated
2400 /// initializer occurs.
2401 ///
2402 /// @param DIE The designated initializer expression.
2403 ///
2404 /// @param DesigIdx  The index of the current designator.
2405 ///
2406 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
2407 /// into which the designation in @p DIE should refer.
2408 ///
2409 /// @param NextField  If non-NULL and the first designator in @p DIE is
2410 /// a field, this will be set to the field declaration corresponding
2411 /// to the field named by the designator. On input, this is expected to be
2412 /// the next field that would be initialized in the absence of designation,
2413 /// if the complete object being initialized is a struct.
2414 ///
2415 /// @param NextElementIndex  If non-NULL and the first designator in @p
2416 /// DIE is an array designator or GNU array-range designator, this
2417 /// will be set to the last index initialized by this designator.
2418 ///
2419 /// @param Index  Index into @p IList where the designated initializer
2420 /// @p DIE occurs.
2421 ///
2422 /// @param StructuredList  The initializer list expression that
2423 /// describes all of the subobject initializers in the order they'll
2424 /// actually be initialized.
2425 ///
2426 /// @returns true if there was an error, false otherwise.
2427 bool
2428 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
2429                                             InitListExpr *IList,
2430                                             DesignatedInitExpr *DIE,
2431                                             unsigned DesigIdx,
2432                                             QualType &CurrentObjectType,
2433                                           RecordDecl::field_iterator *NextField,
2434                                             llvm::APSInt *NextElementIndex,
2435                                             unsigned &Index,
2436                                             InitListExpr *StructuredList,
2437                                             unsigned &StructuredIndex,
2438                                             bool FinishSubobjectInit,
2439                                             bool TopLevelObject) {
2440   if (DesigIdx == DIE->size()) {
2441     // C++20 designated initialization can result in direct-list-initialization
2442     // of the designated subobject. This is the only way that we can end up
2443     // performing direct initialization as part of aggregate initialization, so
2444     // it needs special handling.
2445     if (DIE->isDirectInit()) {
2446       Expr *Init = DIE->getInit();
2447       assert(isa<InitListExpr>(Init) &&
2448              "designator result in direct non-list initialization?");
2449       InitializationKind Kind = InitializationKind::CreateDirectList(
2450           DIE->getBeginLoc(), Init->getBeginLoc(), Init->getEndLoc());
2451       InitializationSequence Seq(SemaRef, Entity, Kind, Init,
2452                                  /*TopLevelOfInitList*/ true);
2453       if (StructuredList) {
2454         ExprResult Result = VerifyOnly
2455                                 ? getDummyInit()
2456                                 : Seq.Perform(SemaRef, Entity, Kind, Init);
2457         UpdateStructuredListElement(StructuredList, StructuredIndex,
2458                                     Result.get());
2459       }
2460       ++Index;
2461       return !Seq;
2462     }
2463 
2464     // Check the actual initialization for the designated object type.
2465     bool prevHadError = hadError;
2466 
2467     // Temporarily remove the designator expression from the
2468     // initializer list that the child calls see, so that we don't try
2469     // to re-process the designator.
2470     unsigned OldIndex = Index;
2471     IList->setInit(OldIndex, DIE->getInit());
2472 
2473     CheckSubElementType(Entity, IList, CurrentObjectType, Index, StructuredList,
2474                         StructuredIndex, /*DirectlyDesignated=*/true);
2475 
2476     // Restore the designated initializer expression in the syntactic
2477     // form of the initializer list.
2478     if (IList->getInit(OldIndex) != DIE->getInit())
2479       DIE->setInit(IList->getInit(OldIndex));
2480     IList->setInit(OldIndex, DIE);
2481 
2482     return hadError && !prevHadError;
2483   }
2484 
2485   DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
2486   bool IsFirstDesignator = (DesigIdx == 0);
2487   if (IsFirstDesignator ? FullyStructuredList : StructuredList) {
2488     // Determine the structural initializer list that corresponds to the
2489     // current subobject.
2490     if (IsFirstDesignator)
2491       StructuredList = FullyStructuredList;
2492     else {
2493       Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ?
2494           StructuredList->getInit(StructuredIndex) : nullptr;
2495       if (!ExistingInit && StructuredList->hasArrayFiller())
2496         ExistingInit = StructuredList->getArrayFiller();
2497 
2498       if (!ExistingInit)
2499         StructuredList = getStructuredSubobjectInit(
2500             IList, Index, CurrentObjectType, StructuredList, StructuredIndex,
2501             SourceRange(D->getBeginLoc(), DIE->getEndLoc()));
2502       else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit))
2503         StructuredList = Result;
2504       else {
2505         // We are creating an initializer list that initializes the
2506         // subobjects of the current object, but there was already an
2507         // initialization that completely initialized the current
2508         // subobject, e.g., by a compound literal:
2509         //
2510         // struct X { int a, b; };
2511         // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2512         //
2513         // Here, xs[0].a == 1 and xs[0].b == 3, since the second,
2514         // designated initializer re-initializes only its current object
2515         // subobject [0].b.
2516         diagnoseInitOverride(ExistingInit,
2517                              SourceRange(D->getBeginLoc(), DIE->getEndLoc()),
2518                              /*FullyOverwritten=*/false);
2519 
2520         if (!VerifyOnly) {
2521           if (DesignatedInitUpdateExpr *E =
2522                   dyn_cast<DesignatedInitUpdateExpr>(ExistingInit))
2523             StructuredList = E->getUpdater();
2524           else {
2525             DesignatedInitUpdateExpr *DIUE = new (SemaRef.Context)
2526                 DesignatedInitUpdateExpr(SemaRef.Context, D->getBeginLoc(),
2527                                          ExistingInit, DIE->getEndLoc());
2528             StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE);
2529             StructuredList = DIUE->getUpdater();
2530           }
2531         } else {
2532           // We don't need to track the structured representation of a
2533           // designated init update of an already-fully-initialized object in
2534           // verify-only mode. The only reason we would need the structure is
2535           // to determine where the uninitialized "holes" are, and in this
2536           // case, we know there aren't any and we can't introduce any.
2537           StructuredList = nullptr;
2538         }
2539       }
2540     }
2541   }
2542 
2543   if (D->isFieldDesignator()) {
2544     // C99 6.7.8p7:
2545     //
2546     //   If a designator has the form
2547     //
2548     //      . identifier
2549     //
2550     //   then the current object (defined below) shall have
2551     //   structure or union type and the identifier shall be the
2552     //   name of a member of that type.
2553     const RecordType *RT = CurrentObjectType->getAs<RecordType>();
2554     if (!RT) {
2555       SourceLocation Loc = D->getDotLoc();
2556       if (Loc.isInvalid())
2557         Loc = D->getFieldLoc();
2558       if (!VerifyOnly)
2559         SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
2560           << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
2561       ++Index;
2562       return true;
2563     }
2564 
2565     FieldDecl *KnownField = D->getField();
2566     if (!KnownField) {
2567       IdentifierInfo *FieldName = D->getFieldName();
2568       DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
2569       for (NamedDecl *ND : Lookup) {
2570         if (auto *FD = dyn_cast<FieldDecl>(ND)) {
2571           KnownField = FD;
2572           break;
2573         }
2574         if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) {
2575           // In verify mode, don't modify the original.
2576           if (VerifyOnly)
2577             DIE = CloneDesignatedInitExpr(SemaRef, DIE);
2578           ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD);
2579           D = DIE->getDesignator(DesigIdx);
2580           KnownField = cast<FieldDecl>(*IFD->chain_begin());
2581           break;
2582         }
2583       }
2584       if (!KnownField) {
2585         if (VerifyOnly) {
2586           ++Index;
2587           return true;  // No typo correction when just trying this out.
2588         }
2589 
2590         // Name lookup found something, but it wasn't a field.
2591         if (!Lookup.empty()) {
2592           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
2593             << FieldName;
2594           SemaRef.Diag(Lookup.front()->getLocation(),
2595                        diag::note_field_designator_found);
2596           ++Index;
2597           return true;
2598         }
2599 
2600         // Name lookup didn't find anything.
2601         // Determine whether this was a typo for another field name.
2602         FieldInitializerValidatorCCC CCC(RT->getDecl());
2603         if (TypoCorrection Corrected = SemaRef.CorrectTypo(
2604                 DeclarationNameInfo(FieldName, D->getFieldLoc()),
2605                 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr, CCC,
2606                 Sema::CTK_ErrorRecovery, RT->getDecl())) {
2607           SemaRef.diagnoseTypo(
2608               Corrected,
2609               SemaRef.PDiag(diag::err_field_designator_unknown_suggest)
2610                 << FieldName << CurrentObjectType);
2611           KnownField = Corrected.getCorrectionDeclAs<FieldDecl>();
2612           hadError = true;
2613         } else {
2614           // Typo correction didn't find anything.
2615           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
2616             << FieldName << CurrentObjectType;
2617           ++Index;
2618           return true;
2619         }
2620       }
2621     }
2622 
2623     unsigned NumBases = 0;
2624     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2625       NumBases = CXXRD->getNumBases();
2626 
2627     unsigned FieldIndex = NumBases;
2628 
2629     for (auto *FI : RT->getDecl()->fields()) {
2630       if (FI->isUnnamedBitfield())
2631         continue;
2632       if (declaresSameEntity(KnownField, FI)) {
2633         KnownField = FI;
2634         break;
2635       }
2636       ++FieldIndex;
2637     }
2638 
2639     RecordDecl::field_iterator Field =
2640         RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField));
2641 
2642     // All of the fields of a union are located at the same place in
2643     // the initializer list.
2644     if (RT->getDecl()->isUnion()) {
2645       FieldIndex = 0;
2646       if (StructuredList) {
2647         FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion();
2648         if (CurrentField && !declaresSameEntity(CurrentField, *Field)) {
2649           assert(StructuredList->getNumInits() == 1
2650                  && "A union should never have more than one initializer!");
2651 
2652           Expr *ExistingInit = StructuredList->getInit(0);
2653           if (ExistingInit) {
2654             // We're about to throw away an initializer, emit warning.
2655             diagnoseInitOverride(
2656                 ExistingInit, SourceRange(D->getBeginLoc(), DIE->getEndLoc()));
2657           }
2658 
2659           // remove existing initializer
2660           StructuredList->resizeInits(SemaRef.Context, 0);
2661           StructuredList->setInitializedFieldInUnion(nullptr);
2662         }
2663 
2664         StructuredList->setInitializedFieldInUnion(*Field);
2665       }
2666     }
2667 
2668     // Make sure we can use this declaration.
2669     bool InvalidUse;
2670     if (VerifyOnly)
2671       InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2672     else
2673       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
2674     if (InvalidUse) {
2675       ++Index;
2676       return true;
2677     }
2678 
2679     // C++20 [dcl.init.list]p3:
2680     //   The ordered identifiers in the designators of the designated-
2681     //   initializer-list shall form a subsequence of the ordered identifiers
2682     //   in the direct non-static data members of T.
2683     //
2684     // Note that this is not a condition on forming the aggregate
2685     // initialization, only on actually performing initialization,
2686     // so it is not checked in VerifyOnly mode.
2687     //
2688     // FIXME: This is the only reordering diagnostic we produce, and it only
2689     // catches cases where we have a top-level field designator that jumps
2690     // backwards. This is the only such case that is reachable in an
2691     // otherwise-valid C++20 program, so is the only case that's required for
2692     // conformance, but for consistency, we should diagnose all the other
2693     // cases where a designator takes us backwards too.
2694     if (IsFirstDesignator && !VerifyOnly && SemaRef.getLangOpts().CPlusPlus &&
2695         NextField &&
2696         (*NextField == RT->getDecl()->field_end() ||
2697          (*NextField)->getFieldIndex() > Field->getFieldIndex() + 1)) {
2698       // Find the field that we just initialized.
2699       FieldDecl *PrevField = nullptr;
2700       for (auto FI = RT->getDecl()->field_begin();
2701            FI != RT->getDecl()->field_end(); ++FI) {
2702         if (FI->isUnnamedBitfield())
2703           continue;
2704         if (*NextField != RT->getDecl()->field_end() &&
2705             declaresSameEntity(*FI, **NextField))
2706           break;
2707         PrevField = *FI;
2708       }
2709 
2710       if (PrevField &&
2711           PrevField->getFieldIndex() > KnownField->getFieldIndex()) {
2712         SemaRef.Diag(DIE->getBeginLoc(), diag::ext_designated_init_reordered)
2713             << KnownField << PrevField << DIE->getSourceRange();
2714 
2715         unsigned OldIndex = NumBases + PrevField->getFieldIndex();
2716         if (StructuredList && OldIndex <= StructuredList->getNumInits()) {
2717           if (Expr *PrevInit = StructuredList->getInit(OldIndex)) {
2718             SemaRef.Diag(PrevInit->getBeginLoc(),
2719                          diag::note_previous_field_init)
2720                 << PrevField << PrevInit->getSourceRange();
2721           }
2722         }
2723       }
2724     }
2725 
2726 
2727     // Update the designator with the field declaration.
2728     if (!VerifyOnly)
2729       D->setField(*Field);
2730 
2731     // Make sure that our non-designated initializer list has space
2732     // for a subobject corresponding to this field.
2733     if (StructuredList && FieldIndex >= StructuredList->getNumInits())
2734       StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
2735 
2736     // This designator names a flexible array member.
2737     if (Field->getType()->isIncompleteArrayType()) {
2738       bool Invalid = false;
2739       if ((DesigIdx + 1) != DIE->size()) {
2740         // We can't designate an object within the flexible array
2741         // member (because GCC doesn't allow it).
2742         if (!VerifyOnly) {
2743           DesignatedInitExpr::Designator *NextD
2744             = DIE->getDesignator(DesigIdx + 1);
2745           SemaRef.Diag(NextD->getBeginLoc(),
2746                        diag::err_designator_into_flexible_array_member)
2747               << SourceRange(NextD->getBeginLoc(), DIE->getEndLoc());
2748           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2749             << *Field;
2750         }
2751         Invalid = true;
2752       }
2753 
2754       if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
2755           !isa<StringLiteral>(DIE->getInit())) {
2756         // The initializer is not an initializer list.
2757         if (!VerifyOnly) {
2758           SemaRef.Diag(DIE->getInit()->getBeginLoc(),
2759                        diag::err_flexible_array_init_needs_braces)
2760               << DIE->getInit()->getSourceRange();
2761           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2762             << *Field;
2763         }
2764         Invalid = true;
2765       }
2766 
2767       // Check GNU flexible array initializer.
2768       if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
2769                                              TopLevelObject))
2770         Invalid = true;
2771 
2772       if (Invalid) {
2773         ++Index;
2774         return true;
2775       }
2776 
2777       // Initialize the array.
2778       bool prevHadError = hadError;
2779       unsigned newStructuredIndex = FieldIndex;
2780       unsigned OldIndex = Index;
2781       IList->setInit(Index, DIE->getInit());
2782 
2783       InitializedEntity MemberEntity =
2784         InitializedEntity::InitializeMember(*Field, &Entity);
2785       CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2786                           StructuredList, newStructuredIndex);
2787 
2788       IList->setInit(OldIndex, DIE);
2789       if (hadError && !prevHadError) {
2790         ++Field;
2791         ++FieldIndex;
2792         if (NextField)
2793           *NextField = Field;
2794         StructuredIndex = FieldIndex;
2795         return true;
2796       }
2797     } else {
2798       // Recurse to check later designated subobjects.
2799       QualType FieldType = Field->getType();
2800       unsigned newStructuredIndex = FieldIndex;
2801 
2802       InitializedEntity MemberEntity =
2803         InitializedEntity::InitializeMember(*Field, &Entity);
2804       if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
2805                                      FieldType, nullptr, nullptr, Index,
2806                                      StructuredList, newStructuredIndex,
2807                                      FinishSubobjectInit, false))
2808         return true;
2809     }
2810 
2811     // Find the position of the next field to be initialized in this
2812     // subobject.
2813     ++Field;
2814     ++FieldIndex;
2815 
2816     // If this the first designator, our caller will continue checking
2817     // the rest of this struct/class/union subobject.
2818     if (IsFirstDesignator) {
2819       if (NextField)
2820         *NextField = Field;
2821       StructuredIndex = FieldIndex;
2822       return false;
2823     }
2824 
2825     if (!FinishSubobjectInit)
2826       return false;
2827 
2828     // We've already initialized something in the union; we're done.
2829     if (RT->getDecl()->isUnion())
2830       return hadError;
2831 
2832     // Check the remaining fields within this class/struct/union subobject.
2833     bool prevHadError = hadError;
2834 
2835     auto NoBases =
2836         CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
2837                                         CXXRecordDecl::base_class_iterator());
2838     CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field,
2839                           false, Index, StructuredList, FieldIndex);
2840     return hadError && !prevHadError;
2841   }
2842 
2843   // C99 6.7.8p6:
2844   //
2845   //   If a designator has the form
2846   //
2847   //      [ constant-expression ]
2848   //
2849   //   then the current object (defined below) shall have array
2850   //   type and the expression shall be an integer constant
2851   //   expression. If the array is of unknown size, any
2852   //   nonnegative value is valid.
2853   //
2854   // Additionally, cope with the GNU extension that permits
2855   // designators of the form
2856   //
2857   //      [ constant-expression ... constant-expression ]
2858   const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
2859   if (!AT) {
2860     if (!VerifyOnly)
2861       SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
2862         << CurrentObjectType;
2863     ++Index;
2864     return true;
2865   }
2866 
2867   Expr *IndexExpr = nullptr;
2868   llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
2869   if (D->isArrayDesignator()) {
2870     IndexExpr = DIE->getArrayIndex(*D);
2871     DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
2872     DesignatedEndIndex = DesignatedStartIndex;
2873   } else {
2874     assert(D->isArrayRangeDesignator() && "Need array-range designator");
2875 
2876     DesignatedStartIndex =
2877       DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
2878     DesignatedEndIndex =
2879       DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
2880     IndexExpr = DIE->getArrayRangeEnd(*D);
2881 
2882     // Codegen can't handle evaluating array range designators that have side
2883     // effects, because we replicate the AST value for each initialized element.
2884     // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
2885     // elements with something that has a side effect, so codegen can emit an
2886     // "error unsupported" error instead of miscompiling the app.
2887     if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
2888         DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
2889       FullyStructuredList->sawArrayRangeDesignator();
2890   }
2891 
2892   if (isa<ConstantArrayType>(AT)) {
2893     llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
2894     DesignatedStartIndex
2895       = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
2896     DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
2897     DesignatedEndIndex
2898       = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
2899     DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
2900     if (DesignatedEndIndex >= MaxElements) {
2901       if (!VerifyOnly)
2902         SemaRef.Diag(IndexExpr->getBeginLoc(),
2903                      diag::err_array_designator_too_large)
2904             << toString(DesignatedEndIndex, 10) << toString(MaxElements, 10)
2905             << IndexExpr->getSourceRange();
2906       ++Index;
2907       return true;
2908     }
2909   } else {
2910     unsigned DesignatedIndexBitWidth =
2911       ConstantArrayType::getMaxSizeBits(SemaRef.Context);
2912     DesignatedStartIndex =
2913       DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth);
2914     DesignatedEndIndex =
2915       DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth);
2916     DesignatedStartIndex.setIsUnsigned(true);
2917     DesignatedEndIndex.setIsUnsigned(true);
2918   }
2919 
2920   bool IsStringLiteralInitUpdate =
2921       StructuredList && StructuredList->isStringLiteralInit();
2922   if (IsStringLiteralInitUpdate && VerifyOnly) {
2923     // We're just verifying an update to a string literal init. We don't need
2924     // to split the string up into individual characters to do that.
2925     StructuredList = nullptr;
2926   } else if (IsStringLiteralInitUpdate) {
2927     // We're modifying a string literal init; we have to decompose the string
2928     // so we can modify the individual characters.
2929     ASTContext &Context = SemaRef.Context;
2930     Expr *SubExpr = StructuredList->getInit(0)->IgnoreParenImpCasts();
2931 
2932     // Compute the character type
2933     QualType CharTy = AT->getElementType();
2934 
2935     // Compute the type of the integer literals.
2936     QualType PromotedCharTy = CharTy;
2937     if (CharTy->isPromotableIntegerType())
2938       PromotedCharTy = Context.getPromotedIntegerType(CharTy);
2939     unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy);
2940 
2941     if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) {
2942       // Get the length of the string.
2943       uint64_t StrLen = SL->getLength();
2944       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2945         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2946       StructuredList->resizeInits(Context, StrLen);
2947 
2948       // Build a literal for each character in the string, and put them into
2949       // the init list.
2950       for (unsigned i = 0, e = StrLen; i != e; ++i) {
2951         llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i));
2952         Expr *Init = new (Context) IntegerLiteral(
2953             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2954         if (CharTy != PromotedCharTy)
2955           Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2956                                           Init, nullptr, VK_PRValue,
2957                                           FPOptionsOverride());
2958         StructuredList->updateInit(Context, i, Init);
2959       }
2960     } else {
2961       ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr);
2962       std::string Str;
2963       Context.getObjCEncodingForType(E->getEncodedType(), Str);
2964 
2965       // Get the length of the string.
2966       uint64_t StrLen = Str.size();
2967       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2968         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2969       StructuredList->resizeInits(Context, StrLen);
2970 
2971       // Build a literal for each character in the string, and put them into
2972       // the init list.
2973       for (unsigned i = 0, e = StrLen; i != e; ++i) {
2974         llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]);
2975         Expr *Init = new (Context) IntegerLiteral(
2976             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2977         if (CharTy != PromotedCharTy)
2978           Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2979                                           Init, nullptr, VK_PRValue,
2980                                           FPOptionsOverride());
2981         StructuredList->updateInit(Context, i, Init);
2982       }
2983     }
2984   }
2985 
2986   // Make sure that our non-designated initializer list has space
2987   // for a subobject corresponding to this array element.
2988   if (StructuredList &&
2989       DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
2990     StructuredList->resizeInits(SemaRef.Context,
2991                                 DesignatedEndIndex.getZExtValue() + 1);
2992 
2993   // Repeatedly perform subobject initializations in the range
2994   // [DesignatedStartIndex, DesignatedEndIndex].
2995 
2996   // Move to the next designator
2997   unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
2998   unsigned OldIndex = Index;
2999 
3000   InitializedEntity ElementEntity =
3001     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
3002 
3003   while (DesignatedStartIndex <= DesignatedEndIndex) {
3004     // Recurse to check later designated subobjects.
3005     QualType ElementType = AT->getElementType();
3006     Index = OldIndex;
3007 
3008     ElementEntity.setElementIndex(ElementIndex);
3009     if (CheckDesignatedInitializer(
3010             ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr,
3011             nullptr, Index, StructuredList, ElementIndex,
3012             FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex),
3013             false))
3014       return true;
3015 
3016     // Move to the next index in the array that we'll be initializing.
3017     ++DesignatedStartIndex;
3018     ElementIndex = DesignatedStartIndex.getZExtValue();
3019   }
3020 
3021   // If this the first designator, our caller will continue checking
3022   // the rest of this array subobject.
3023   if (IsFirstDesignator) {
3024     if (NextElementIndex)
3025       *NextElementIndex = DesignatedStartIndex;
3026     StructuredIndex = ElementIndex;
3027     return false;
3028   }
3029 
3030   if (!FinishSubobjectInit)
3031     return false;
3032 
3033   // Check the remaining elements within this array subobject.
3034   bool prevHadError = hadError;
3035   CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
3036                  /*SubobjectIsDesignatorContext=*/false, Index,
3037                  StructuredList, ElementIndex);
3038   return hadError && !prevHadError;
3039 }
3040 
3041 // Get the structured initializer list for a subobject of type
3042 // @p CurrentObjectType.
3043 InitListExpr *
3044 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
3045                                             QualType CurrentObjectType,
3046                                             InitListExpr *StructuredList,
3047                                             unsigned StructuredIndex,
3048                                             SourceRange InitRange,
3049                                             bool IsFullyOverwritten) {
3050   if (!StructuredList)
3051     return nullptr;
3052 
3053   Expr *ExistingInit = nullptr;
3054   if (StructuredIndex < StructuredList->getNumInits())
3055     ExistingInit = StructuredList->getInit(StructuredIndex);
3056 
3057   if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
3058     // There might have already been initializers for subobjects of the current
3059     // object, but a subsequent initializer list will overwrite the entirety
3060     // of the current object. (See DR 253 and C99 6.7.8p21). e.g.,
3061     //
3062     // struct P { char x[6]; };
3063     // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } };
3064     //
3065     // The first designated initializer is ignored, and l.x is just "f".
3066     if (!IsFullyOverwritten)
3067       return Result;
3068 
3069   if (ExistingInit) {
3070     // We are creating an initializer list that initializes the
3071     // subobjects of the current object, but there was already an
3072     // initialization that completely initialized the current
3073     // subobject:
3074     //
3075     // struct X { int a, b; };
3076     // struct X xs[] = { [0] = { 1, 2 }, [0].b = 3 };
3077     //
3078     // Here, xs[0].a == 1 and xs[0].b == 3, since the second,
3079     // designated initializer overwrites the [0].b initializer
3080     // from the prior initialization.
3081     //
3082     // When the existing initializer is an expression rather than an
3083     // initializer list, we cannot decompose and update it in this way.
3084     // For example:
3085     //
3086     // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
3087     //
3088     // This case is handled by CheckDesignatedInitializer.
3089     diagnoseInitOverride(ExistingInit, InitRange);
3090   }
3091 
3092   unsigned ExpectedNumInits = 0;
3093   if (Index < IList->getNumInits()) {
3094     if (auto *Init = dyn_cast_or_null<InitListExpr>(IList->getInit(Index)))
3095       ExpectedNumInits = Init->getNumInits();
3096     else
3097       ExpectedNumInits = IList->getNumInits() - Index;
3098   }
3099 
3100   InitListExpr *Result =
3101       createInitListExpr(CurrentObjectType, InitRange, ExpectedNumInits);
3102 
3103   // Link this new initializer list into the structured initializer
3104   // lists.
3105   StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
3106   return Result;
3107 }
3108 
3109 InitListExpr *
3110 InitListChecker::createInitListExpr(QualType CurrentObjectType,
3111                                     SourceRange InitRange,
3112                                     unsigned ExpectedNumInits) {
3113   InitListExpr *Result
3114     = new (SemaRef.Context) InitListExpr(SemaRef.Context,
3115                                          InitRange.getBegin(), None,
3116                                          InitRange.getEnd());
3117 
3118   QualType ResultType = CurrentObjectType;
3119   if (!ResultType->isArrayType())
3120     ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
3121   Result->setType(ResultType);
3122 
3123   // Pre-allocate storage for the structured initializer list.
3124   unsigned NumElements = 0;
3125 
3126   if (const ArrayType *AType
3127       = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
3128     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
3129       NumElements = CAType->getSize().getZExtValue();
3130       // Simple heuristic so that we don't allocate a very large
3131       // initializer with many empty entries at the end.
3132       if (NumElements > ExpectedNumInits)
3133         NumElements = 0;
3134     }
3135   } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>()) {
3136     NumElements = VType->getNumElements();
3137   } else if (CurrentObjectType->isRecordType()) {
3138     NumElements = numStructUnionElements(CurrentObjectType);
3139   }
3140 
3141   Result->reserveInits(SemaRef.Context, NumElements);
3142 
3143   return Result;
3144 }
3145 
3146 /// Update the initializer at index @p StructuredIndex within the
3147 /// structured initializer list to the value @p expr.
3148 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
3149                                                   unsigned &StructuredIndex,
3150                                                   Expr *expr) {
3151   // No structured initializer list to update
3152   if (!StructuredList)
3153     return;
3154 
3155   if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
3156                                                   StructuredIndex, expr)) {
3157     // This initializer overwrites a previous initializer.
3158     // No need to diagnose when `expr` is nullptr because a more relevant
3159     // diagnostic has already been issued and this diagnostic is potentially
3160     // noise.
3161     if (expr)
3162       diagnoseInitOverride(PrevInit, expr->getSourceRange());
3163   }
3164 
3165   ++StructuredIndex;
3166 }
3167 
3168 /// Determine whether we can perform aggregate initialization for the purposes
3169 /// of overload resolution.
3170 bool Sema::CanPerformAggregateInitializationForOverloadResolution(
3171     const InitializedEntity &Entity, InitListExpr *From) {
3172   QualType Type = Entity.getType();
3173   InitListChecker Check(*this, Entity, From, Type, /*VerifyOnly=*/true,
3174                         /*TreatUnavailableAsInvalid=*/false,
3175                         /*InOverloadResolution=*/true);
3176   return !Check.HadError();
3177 }
3178 
3179 /// Check that the given Index expression is a valid array designator
3180 /// value. This is essentially just a wrapper around
3181 /// VerifyIntegerConstantExpression that also checks for negative values
3182 /// and produces a reasonable diagnostic if there is a
3183 /// failure. Returns the index expression, possibly with an implicit cast
3184 /// added, on success.  If everything went okay, Value will receive the
3185 /// value of the constant expression.
3186 static ExprResult
3187 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
3188   SourceLocation Loc = Index->getBeginLoc();
3189 
3190   // Make sure this is an integer constant expression.
3191   ExprResult Result =
3192       S.VerifyIntegerConstantExpression(Index, &Value, Sema::AllowFold);
3193   if (Result.isInvalid())
3194     return Result;
3195 
3196   if (Value.isSigned() && Value.isNegative())
3197     return S.Diag(Loc, diag::err_array_designator_negative)
3198            << toString(Value, 10) << Index->getSourceRange();
3199 
3200   Value.setIsUnsigned(true);
3201   return Result;
3202 }
3203 
3204 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
3205                                             SourceLocation EqualOrColonLoc,
3206                                             bool GNUSyntax,
3207                                             ExprResult Init) {
3208   typedef DesignatedInitExpr::Designator ASTDesignator;
3209 
3210   bool Invalid = false;
3211   SmallVector<ASTDesignator, 32> Designators;
3212   SmallVector<Expr *, 32> InitExpressions;
3213 
3214   // Build designators and check array designator expressions.
3215   for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
3216     const Designator &D = Desig.getDesignator(Idx);
3217     switch (D.getKind()) {
3218     case Designator::FieldDesignator:
3219       Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
3220                                           D.getFieldLoc()));
3221       break;
3222 
3223     case Designator::ArrayDesignator: {
3224       Expr *Index = static_cast<Expr *>(D.getArrayIndex());
3225       llvm::APSInt IndexValue;
3226       if (!Index->isTypeDependent() && !Index->isValueDependent())
3227         Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get();
3228       if (!Index)
3229         Invalid = true;
3230       else {
3231         Designators.push_back(ASTDesignator(InitExpressions.size(),
3232                                             D.getLBracketLoc(),
3233                                             D.getRBracketLoc()));
3234         InitExpressions.push_back(Index);
3235       }
3236       break;
3237     }
3238 
3239     case Designator::ArrayRangeDesignator: {
3240       Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
3241       Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
3242       llvm::APSInt StartValue;
3243       llvm::APSInt EndValue;
3244       bool StartDependent = StartIndex->isTypeDependent() ||
3245                             StartIndex->isValueDependent();
3246       bool EndDependent = EndIndex->isTypeDependent() ||
3247                           EndIndex->isValueDependent();
3248       if (!StartDependent)
3249         StartIndex =
3250             CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get();
3251       if (!EndDependent)
3252         EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get();
3253 
3254       if (!StartIndex || !EndIndex)
3255         Invalid = true;
3256       else {
3257         // Make sure we're comparing values with the same bit width.
3258         if (StartDependent || EndDependent) {
3259           // Nothing to compute.
3260         } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
3261           EndValue = EndValue.extend(StartValue.getBitWidth());
3262         else if (StartValue.getBitWidth() < EndValue.getBitWidth())
3263           StartValue = StartValue.extend(EndValue.getBitWidth());
3264 
3265         if (!StartDependent && !EndDependent && EndValue < StartValue) {
3266           Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
3267             << toString(StartValue, 10) << toString(EndValue, 10)
3268             << StartIndex->getSourceRange() << EndIndex->getSourceRange();
3269           Invalid = true;
3270         } else {
3271           Designators.push_back(ASTDesignator(InitExpressions.size(),
3272                                               D.getLBracketLoc(),
3273                                               D.getEllipsisLoc(),
3274                                               D.getRBracketLoc()));
3275           InitExpressions.push_back(StartIndex);
3276           InitExpressions.push_back(EndIndex);
3277         }
3278       }
3279       break;
3280     }
3281     }
3282   }
3283 
3284   if (Invalid || Init.isInvalid())
3285     return ExprError();
3286 
3287   // Clear out the expressions within the designation.
3288   Desig.ClearExprs(*this);
3289 
3290   return DesignatedInitExpr::Create(Context, Designators, InitExpressions,
3291                                     EqualOrColonLoc, GNUSyntax,
3292                                     Init.getAs<Expr>());
3293 }
3294 
3295 //===----------------------------------------------------------------------===//
3296 // Initialization entity
3297 //===----------------------------------------------------------------------===//
3298 
3299 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
3300                                      const InitializedEntity &Parent)
3301   : Parent(&Parent), Index(Index)
3302 {
3303   if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
3304     Kind = EK_ArrayElement;
3305     Type = AT->getElementType();
3306   } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
3307     Kind = EK_VectorElement;
3308     Type = VT->getElementType();
3309   } else {
3310     const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
3311     assert(CT && "Unexpected type");
3312     Kind = EK_ComplexElement;
3313     Type = CT->getElementType();
3314   }
3315 }
3316 
3317 InitializedEntity
3318 InitializedEntity::InitializeBase(ASTContext &Context,
3319                                   const CXXBaseSpecifier *Base,
3320                                   bool IsInheritedVirtualBase,
3321                                   const InitializedEntity *Parent) {
3322   InitializedEntity Result;
3323   Result.Kind = EK_Base;
3324   Result.Parent = Parent;
3325   Result.Base = {Base, IsInheritedVirtualBase};
3326   Result.Type = Base->getType();
3327   return Result;
3328 }
3329 
3330 DeclarationName InitializedEntity::getName() const {
3331   switch (getKind()) {
3332   case EK_Parameter:
3333   case EK_Parameter_CF_Audited: {
3334     ParmVarDecl *D = Parameter.getPointer();
3335     return (D ? D->getDeclName() : DeclarationName());
3336   }
3337 
3338   case EK_Variable:
3339   case EK_Member:
3340   case EK_Binding:
3341   case EK_TemplateParameter:
3342     return Variable.VariableOrMember->getDeclName();
3343 
3344   case EK_LambdaCapture:
3345     return DeclarationName(Capture.VarID);
3346 
3347   case EK_Result:
3348   case EK_StmtExprResult:
3349   case EK_Exception:
3350   case EK_New:
3351   case EK_Temporary:
3352   case EK_Base:
3353   case EK_Delegating:
3354   case EK_ArrayElement:
3355   case EK_VectorElement:
3356   case EK_ComplexElement:
3357   case EK_BlockElement:
3358   case EK_LambdaToBlockConversionBlockElement:
3359   case EK_CompoundLiteralInit:
3360   case EK_RelatedResult:
3361     return DeclarationName();
3362   }
3363 
3364   llvm_unreachable("Invalid EntityKind!");
3365 }
3366 
3367 ValueDecl *InitializedEntity::getDecl() const {
3368   switch (getKind()) {
3369   case EK_Variable:
3370   case EK_Member:
3371   case EK_Binding:
3372   case EK_TemplateParameter:
3373     return Variable.VariableOrMember;
3374 
3375   case EK_Parameter:
3376   case EK_Parameter_CF_Audited:
3377     return Parameter.getPointer();
3378 
3379   case EK_Result:
3380   case EK_StmtExprResult:
3381   case EK_Exception:
3382   case EK_New:
3383   case EK_Temporary:
3384   case EK_Base:
3385   case EK_Delegating:
3386   case EK_ArrayElement:
3387   case EK_VectorElement:
3388   case EK_ComplexElement:
3389   case EK_BlockElement:
3390   case EK_LambdaToBlockConversionBlockElement:
3391   case EK_LambdaCapture:
3392   case EK_CompoundLiteralInit:
3393   case EK_RelatedResult:
3394     return nullptr;
3395   }
3396 
3397   llvm_unreachable("Invalid EntityKind!");
3398 }
3399 
3400 bool InitializedEntity::allowsNRVO() const {
3401   switch (getKind()) {
3402   case EK_Result:
3403   case EK_Exception:
3404     return LocAndNRVO.NRVO;
3405 
3406   case EK_StmtExprResult:
3407   case EK_Variable:
3408   case EK_Parameter:
3409   case EK_Parameter_CF_Audited:
3410   case EK_TemplateParameter:
3411   case EK_Member:
3412   case EK_Binding:
3413   case EK_New:
3414   case EK_Temporary:
3415   case EK_CompoundLiteralInit:
3416   case EK_Base:
3417   case EK_Delegating:
3418   case EK_ArrayElement:
3419   case EK_VectorElement:
3420   case EK_ComplexElement:
3421   case EK_BlockElement:
3422   case EK_LambdaToBlockConversionBlockElement:
3423   case EK_LambdaCapture:
3424   case EK_RelatedResult:
3425     break;
3426   }
3427 
3428   return false;
3429 }
3430 
3431 unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const {
3432   assert(getParent() != this);
3433   unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0;
3434   for (unsigned I = 0; I != Depth; ++I)
3435     OS << "`-";
3436 
3437   switch (getKind()) {
3438   case EK_Variable: OS << "Variable"; break;
3439   case EK_Parameter: OS << "Parameter"; break;
3440   case EK_Parameter_CF_Audited: OS << "CF audited function Parameter";
3441     break;
3442   case EK_TemplateParameter: OS << "TemplateParameter"; break;
3443   case EK_Result: OS << "Result"; break;
3444   case EK_StmtExprResult: OS << "StmtExprResult"; break;
3445   case EK_Exception: OS << "Exception"; break;
3446   case EK_Member: OS << "Member"; break;
3447   case EK_Binding: OS << "Binding"; break;
3448   case EK_New: OS << "New"; break;
3449   case EK_Temporary: OS << "Temporary"; break;
3450   case EK_CompoundLiteralInit: OS << "CompoundLiteral";break;
3451   case EK_RelatedResult: OS << "RelatedResult"; break;
3452   case EK_Base: OS << "Base"; break;
3453   case EK_Delegating: OS << "Delegating"; break;
3454   case EK_ArrayElement: OS << "ArrayElement " << Index; break;
3455   case EK_VectorElement: OS << "VectorElement " << Index; break;
3456   case EK_ComplexElement: OS << "ComplexElement " << Index; break;
3457   case EK_BlockElement: OS << "Block"; break;
3458   case EK_LambdaToBlockConversionBlockElement:
3459     OS << "Block (lambda)";
3460     break;
3461   case EK_LambdaCapture:
3462     OS << "LambdaCapture ";
3463     OS << DeclarationName(Capture.VarID);
3464     break;
3465   }
3466 
3467   if (auto *D = getDecl()) {
3468     OS << " ";
3469     D->printQualifiedName(OS);
3470   }
3471 
3472   OS << " '" << getType() << "'\n";
3473 
3474   return Depth + 1;
3475 }
3476 
3477 LLVM_DUMP_METHOD void InitializedEntity::dump() const {
3478   dumpImpl(llvm::errs());
3479 }
3480 
3481 //===----------------------------------------------------------------------===//
3482 // Initialization sequence
3483 //===----------------------------------------------------------------------===//
3484 
3485 void InitializationSequence::Step::Destroy() {
3486   switch (Kind) {
3487   case SK_ResolveAddressOfOverloadedFunction:
3488   case SK_CastDerivedToBasePRValue:
3489   case SK_CastDerivedToBaseXValue:
3490   case SK_CastDerivedToBaseLValue:
3491   case SK_BindReference:
3492   case SK_BindReferenceToTemporary:
3493   case SK_FinalCopy:
3494   case SK_ExtraneousCopyToTemporary:
3495   case SK_UserConversion:
3496   case SK_QualificationConversionPRValue:
3497   case SK_QualificationConversionXValue:
3498   case SK_QualificationConversionLValue:
3499   case SK_FunctionReferenceConversion:
3500   case SK_AtomicConversion:
3501   case SK_ListInitialization:
3502   case SK_UnwrapInitList:
3503   case SK_RewrapInitList:
3504   case SK_ConstructorInitialization:
3505   case SK_ConstructorInitializationFromList:
3506   case SK_ZeroInitialization:
3507   case SK_CAssignment:
3508   case SK_StringInit:
3509   case SK_ObjCObjectConversion:
3510   case SK_ArrayLoopIndex:
3511   case SK_ArrayLoopInit:
3512   case SK_ArrayInit:
3513   case SK_GNUArrayInit:
3514   case SK_ParenthesizedArrayInit:
3515   case SK_PassByIndirectCopyRestore:
3516   case SK_PassByIndirectRestore:
3517   case SK_ProduceObjCObject:
3518   case SK_StdInitializerList:
3519   case SK_StdInitializerListConstructorCall:
3520   case SK_OCLSamplerInit:
3521   case SK_OCLZeroOpaqueType:
3522     break;
3523 
3524   case SK_ConversionSequence:
3525   case SK_ConversionSequenceNoNarrowing:
3526     delete ICS;
3527   }
3528 }
3529 
3530 bool InitializationSequence::isDirectReferenceBinding() const {
3531   // There can be some lvalue adjustments after the SK_BindReference step.
3532   for (const Step &S : llvm::reverse(Steps)) {
3533     if (S.Kind == SK_BindReference)
3534       return true;
3535     if (S.Kind == SK_BindReferenceToTemporary)
3536       return false;
3537   }
3538   return false;
3539 }
3540 
3541 bool InitializationSequence::isAmbiguous() const {
3542   if (!Failed())
3543     return false;
3544 
3545   switch (getFailureKind()) {
3546   case FK_TooManyInitsForReference:
3547   case FK_ParenthesizedListInitForReference:
3548   case FK_ArrayNeedsInitList:
3549   case FK_ArrayNeedsInitListOrStringLiteral:
3550   case FK_ArrayNeedsInitListOrWideStringLiteral:
3551   case FK_NarrowStringIntoWideCharArray:
3552   case FK_WideStringIntoCharArray:
3553   case FK_IncompatWideStringIntoWideChar:
3554   case FK_PlainStringIntoUTF8Char:
3555   case FK_UTF8StringIntoPlainChar:
3556   case FK_AddressOfOverloadFailed: // FIXME: Could do better
3557   case FK_NonConstLValueReferenceBindingToTemporary:
3558   case FK_NonConstLValueReferenceBindingToBitfield:
3559   case FK_NonConstLValueReferenceBindingToVectorElement:
3560   case FK_NonConstLValueReferenceBindingToMatrixElement:
3561   case FK_NonConstLValueReferenceBindingToUnrelated:
3562   case FK_RValueReferenceBindingToLValue:
3563   case FK_ReferenceAddrspaceMismatchTemporary:
3564   case FK_ReferenceInitDropsQualifiers:
3565   case FK_ReferenceInitFailed:
3566   case FK_ConversionFailed:
3567   case FK_ConversionFromPropertyFailed:
3568   case FK_TooManyInitsForScalar:
3569   case FK_ParenthesizedListInitForScalar:
3570   case FK_ReferenceBindingToInitList:
3571   case FK_InitListBadDestinationType:
3572   case FK_DefaultInitOfConst:
3573   case FK_Incomplete:
3574   case FK_ArrayTypeMismatch:
3575   case FK_NonConstantArrayInit:
3576   case FK_ListInitializationFailed:
3577   case FK_VariableLengthArrayHasInitializer:
3578   case FK_PlaceholderType:
3579   case FK_ExplicitConstructor:
3580   case FK_AddressOfUnaddressableFunction:
3581     return false;
3582 
3583   case FK_ReferenceInitOverloadFailed:
3584   case FK_UserConversionOverloadFailed:
3585   case FK_ConstructorOverloadFailed:
3586   case FK_ListConstructorOverloadFailed:
3587     return FailedOverloadResult == OR_Ambiguous;
3588   }
3589 
3590   llvm_unreachable("Invalid EntityKind!");
3591 }
3592 
3593 bool InitializationSequence::isConstructorInitialization() const {
3594   return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
3595 }
3596 
3597 void
3598 InitializationSequence
3599 ::AddAddressOverloadResolutionStep(FunctionDecl *Function,
3600                                    DeclAccessPair Found,
3601                                    bool HadMultipleCandidates) {
3602   Step S;
3603   S.Kind = SK_ResolveAddressOfOverloadedFunction;
3604   S.Type = Function->getType();
3605   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3606   S.Function.Function = Function;
3607   S.Function.FoundDecl = Found;
3608   Steps.push_back(S);
3609 }
3610 
3611 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
3612                                                       ExprValueKind VK) {
3613   Step S;
3614   switch (VK) {
3615   case VK_PRValue:
3616     S.Kind = SK_CastDerivedToBasePRValue;
3617     break;
3618   case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
3619   case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
3620   }
3621   S.Type = BaseType;
3622   Steps.push_back(S);
3623 }
3624 
3625 void InitializationSequence::AddReferenceBindingStep(QualType T,
3626                                                      bool BindingTemporary) {
3627   Step S;
3628   S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
3629   S.Type = T;
3630   Steps.push_back(S);
3631 }
3632 
3633 void InitializationSequence::AddFinalCopy(QualType T) {
3634   Step S;
3635   S.Kind = SK_FinalCopy;
3636   S.Type = T;
3637   Steps.push_back(S);
3638 }
3639 
3640 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
3641   Step S;
3642   S.Kind = SK_ExtraneousCopyToTemporary;
3643   S.Type = T;
3644   Steps.push_back(S);
3645 }
3646 
3647 void
3648 InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
3649                                               DeclAccessPair FoundDecl,
3650                                               QualType T,
3651                                               bool HadMultipleCandidates) {
3652   Step S;
3653   S.Kind = SK_UserConversion;
3654   S.Type = T;
3655   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3656   S.Function.Function = Function;
3657   S.Function.FoundDecl = FoundDecl;
3658   Steps.push_back(S);
3659 }
3660 
3661 void InitializationSequence::AddQualificationConversionStep(QualType Ty,
3662                                                             ExprValueKind VK) {
3663   Step S;
3664   S.Kind = SK_QualificationConversionPRValue; // work around a gcc warning
3665   switch (VK) {
3666   case VK_PRValue:
3667     S.Kind = SK_QualificationConversionPRValue;
3668     break;
3669   case VK_XValue:
3670     S.Kind = SK_QualificationConversionXValue;
3671     break;
3672   case VK_LValue:
3673     S.Kind = SK_QualificationConversionLValue;
3674     break;
3675   }
3676   S.Type = Ty;
3677   Steps.push_back(S);
3678 }
3679 
3680 void InitializationSequence::AddFunctionReferenceConversionStep(QualType Ty) {
3681   Step S;
3682   S.Kind = SK_FunctionReferenceConversion;
3683   S.Type = Ty;
3684   Steps.push_back(S);
3685 }
3686 
3687 void InitializationSequence::AddAtomicConversionStep(QualType Ty) {
3688   Step S;
3689   S.Kind = SK_AtomicConversion;
3690   S.Type = Ty;
3691   Steps.push_back(S);
3692 }
3693 
3694 void InitializationSequence::AddConversionSequenceStep(
3695     const ImplicitConversionSequence &ICS, QualType T,
3696     bool TopLevelOfInitList) {
3697   Step S;
3698   S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing
3699                               : SK_ConversionSequence;
3700   S.Type = T;
3701   S.ICS = new ImplicitConversionSequence(ICS);
3702   Steps.push_back(S);
3703 }
3704 
3705 void InitializationSequence::AddListInitializationStep(QualType T) {
3706   Step S;
3707   S.Kind = SK_ListInitialization;
3708   S.Type = T;
3709   Steps.push_back(S);
3710 }
3711 
3712 void InitializationSequence::AddConstructorInitializationStep(
3713     DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T,
3714     bool HadMultipleCandidates, bool FromInitList, bool AsInitList) {
3715   Step S;
3716   S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall
3717                                      : SK_ConstructorInitializationFromList
3718                         : SK_ConstructorInitialization;
3719   S.Type = T;
3720   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3721   S.Function.Function = Constructor;
3722   S.Function.FoundDecl = FoundDecl;
3723   Steps.push_back(S);
3724 }
3725 
3726 void InitializationSequence::AddZeroInitializationStep(QualType T) {
3727   Step S;
3728   S.Kind = SK_ZeroInitialization;
3729   S.Type = T;
3730   Steps.push_back(S);
3731 }
3732 
3733 void InitializationSequence::AddCAssignmentStep(QualType T) {
3734   Step S;
3735   S.Kind = SK_CAssignment;
3736   S.Type = T;
3737   Steps.push_back(S);
3738 }
3739 
3740 void InitializationSequence::AddStringInitStep(QualType T) {
3741   Step S;
3742   S.Kind = SK_StringInit;
3743   S.Type = T;
3744   Steps.push_back(S);
3745 }
3746 
3747 void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
3748   Step S;
3749   S.Kind = SK_ObjCObjectConversion;
3750   S.Type = T;
3751   Steps.push_back(S);
3752 }
3753 
3754 void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) {
3755   Step S;
3756   S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit;
3757   S.Type = T;
3758   Steps.push_back(S);
3759 }
3760 
3761 void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) {
3762   Step S;
3763   S.Kind = SK_ArrayLoopIndex;
3764   S.Type = EltT;
3765   Steps.insert(Steps.begin(), S);
3766 
3767   S.Kind = SK_ArrayLoopInit;
3768   S.Type = T;
3769   Steps.push_back(S);
3770 }
3771 
3772 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
3773   Step S;
3774   S.Kind = SK_ParenthesizedArrayInit;
3775   S.Type = T;
3776   Steps.push_back(S);
3777 }
3778 
3779 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
3780                                                               bool shouldCopy) {
3781   Step s;
3782   s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
3783                        : SK_PassByIndirectRestore);
3784   s.Type = type;
3785   Steps.push_back(s);
3786 }
3787 
3788 void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
3789   Step S;
3790   S.Kind = SK_ProduceObjCObject;
3791   S.Type = T;
3792   Steps.push_back(S);
3793 }
3794 
3795 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
3796   Step S;
3797   S.Kind = SK_StdInitializerList;
3798   S.Type = T;
3799   Steps.push_back(S);
3800 }
3801 
3802 void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
3803   Step S;
3804   S.Kind = SK_OCLSamplerInit;
3805   S.Type = T;
3806   Steps.push_back(S);
3807 }
3808 
3809 void InitializationSequence::AddOCLZeroOpaqueTypeStep(QualType T) {
3810   Step S;
3811   S.Kind = SK_OCLZeroOpaqueType;
3812   S.Type = T;
3813   Steps.push_back(S);
3814 }
3815 
3816 void InitializationSequence::RewrapReferenceInitList(QualType T,
3817                                                      InitListExpr *Syntactic) {
3818   assert(Syntactic->getNumInits() == 1 &&
3819          "Can only rewrap trivial init lists.");
3820   Step S;
3821   S.Kind = SK_UnwrapInitList;
3822   S.Type = Syntactic->getInit(0)->getType();
3823   Steps.insert(Steps.begin(), S);
3824 
3825   S.Kind = SK_RewrapInitList;
3826   S.Type = T;
3827   S.WrappingSyntacticList = Syntactic;
3828   Steps.push_back(S);
3829 }
3830 
3831 void InitializationSequence::SetOverloadFailure(FailureKind Failure,
3832                                                 OverloadingResult Result) {
3833   setSequenceKind(FailedSequence);
3834   this->Failure = Failure;
3835   this->FailedOverloadResult = Result;
3836 }
3837 
3838 //===----------------------------------------------------------------------===//
3839 // Attempt initialization
3840 //===----------------------------------------------------------------------===//
3841 
3842 /// Tries to add a zero initializer. Returns true if that worked.
3843 static bool
3844 maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence,
3845                                    const InitializedEntity &Entity) {
3846   if (Entity.getKind() != InitializedEntity::EK_Variable)
3847     return false;
3848 
3849   VarDecl *VD = cast<VarDecl>(Entity.getDecl());
3850   if (VD->getInit() || VD->getEndLoc().isMacroID())
3851     return false;
3852 
3853   QualType VariableTy = VD->getType().getCanonicalType();
3854   SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc());
3855   std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
3856   if (!Init.empty()) {
3857     Sequence.AddZeroInitializationStep(Entity.getType());
3858     Sequence.SetZeroInitializationFixit(Init, Loc);
3859     return true;
3860   }
3861   return false;
3862 }
3863 
3864 static void MaybeProduceObjCObject(Sema &S,
3865                                    InitializationSequence &Sequence,
3866                                    const InitializedEntity &Entity) {
3867   if (!S.getLangOpts().ObjCAutoRefCount) return;
3868 
3869   /// When initializing a parameter, produce the value if it's marked
3870   /// __attribute__((ns_consumed)).
3871   if (Entity.isParameterKind()) {
3872     if (!Entity.isParameterConsumed())
3873       return;
3874 
3875     assert(Entity.getType()->isObjCRetainableType() &&
3876            "consuming an object of unretainable type?");
3877     Sequence.AddProduceObjCObjectStep(Entity.getType());
3878 
3879   /// When initializing a return value, if the return type is a
3880   /// retainable type, then returns need to immediately retain the
3881   /// object.  If an autorelease is required, it will be done at the
3882   /// last instant.
3883   } else if (Entity.getKind() == InitializedEntity::EK_Result ||
3884              Entity.getKind() == InitializedEntity::EK_StmtExprResult) {
3885     if (!Entity.getType()->isObjCRetainableType())
3886       return;
3887 
3888     Sequence.AddProduceObjCObjectStep(Entity.getType());
3889   }
3890 }
3891 
3892 static void TryListInitialization(Sema &S,
3893                                   const InitializedEntity &Entity,
3894                                   const InitializationKind &Kind,
3895                                   InitListExpr *InitList,
3896                                   InitializationSequence &Sequence,
3897                                   bool TreatUnavailableAsInvalid);
3898 
3899 /// When initializing from init list via constructor, handle
3900 /// initialization of an object of type std::initializer_list<T>.
3901 ///
3902 /// \return true if we have handled initialization of an object of type
3903 /// std::initializer_list<T>, false otherwise.
3904 static bool TryInitializerListConstruction(Sema &S,
3905                                            InitListExpr *List,
3906                                            QualType DestType,
3907                                            InitializationSequence &Sequence,
3908                                            bool TreatUnavailableAsInvalid) {
3909   QualType E;
3910   if (!S.isStdInitializerList(DestType, &E))
3911     return false;
3912 
3913   if (!S.isCompleteType(List->getExprLoc(), E)) {
3914     Sequence.setIncompleteTypeFailure(E);
3915     return true;
3916   }
3917 
3918   // Try initializing a temporary array from the init list.
3919   QualType ArrayType = S.Context.getConstantArrayType(
3920       E.withConst(),
3921       llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
3922                   List->getNumInits()),
3923       nullptr, clang::ArrayType::Normal, 0);
3924   InitializedEntity HiddenArray =
3925       InitializedEntity::InitializeTemporary(ArrayType);
3926   InitializationKind Kind = InitializationKind::CreateDirectList(
3927       List->getExprLoc(), List->getBeginLoc(), List->getEndLoc());
3928   TryListInitialization(S, HiddenArray, Kind, List, Sequence,
3929                         TreatUnavailableAsInvalid);
3930   if (Sequence)
3931     Sequence.AddStdInitializerListConstructionStep(DestType);
3932   return true;
3933 }
3934 
3935 /// Determine if the constructor has the signature of a copy or move
3936 /// constructor for the type T of the class in which it was found. That is,
3937 /// determine if its first parameter is of type T or reference to (possibly
3938 /// cv-qualified) T.
3939 static bool hasCopyOrMoveCtorParam(ASTContext &Ctx,
3940                                    const ConstructorInfo &Info) {
3941   if (Info.Constructor->getNumParams() == 0)
3942     return false;
3943 
3944   QualType ParmT =
3945       Info.Constructor->getParamDecl(0)->getType().getNonReferenceType();
3946   QualType ClassT =
3947       Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext()));
3948 
3949   return Ctx.hasSameUnqualifiedType(ParmT, ClassT);
3950 }
3951 
3952 static OverloadingResult
3953 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
3954                            MultiExprArg Args,
3955                            OverloadCandidateSet &CandidateSet,
3956                            QualType DestType,
3957                            DeclContext::lookup_result Ctors,
3958                            OverloadCandidateSet::iterator &Best,
3959                            bool CopyInitializing, bool AllowExplicit,
3960                            bool OnlyListConstructors, bool IsListInit,
3961                            bool SecondStepOfCopyInit = false) {
3962   CandidateSet.clear(OverloadCandidateSet::CSK_InitByConstructor);
3963   CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace());
3964 
3965   for (NamedDecl *D : Ctors) {
3966     auto Info = getConstructorInfo(D);
3967     if (!Info.Constructor || Info.Constructor->isInvalidDecl())
3968       continue;
3969 
3970     if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor))
3971       continue;
3972 
3973     // C++11 [over.best.ics]p4:
3974     //   ... and the constructor or user-defined conversion function is a
3975     //   candidate by
3976     //   - 13.3.1.3, when the argument is the temporary in the second step
3977     //     of a class copy-initialization, or
3978     //   - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here]
3979     //   - the second phase of 13.3.1.7 when the initializer list has exactly
3980     //     one element that is itself an initializer list, and the target is
3981     //     the first parameter of a constructor of class X, and the conversion
3982     //     is to X or reference to (possibly cv-qualified X),
3983     //   user-defined conversion sequences are not considered.
3984     bool SuppressUserConversions =
3985         SecondStepOfCopyInit ||
3986         (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
3987          hasCopyOrMoveCtorParam(S.Context, Info));
3988 
3989     if (Info.ConstructorTmpl)
3990       S.AddTemplateOverloadCandidate(
3991           Info.ConstructorTmpl, Info.FoundDecl,
3992           /*ExplicitArgs*/ nullptr, Args, CandidateSet, SuppressUserConversions,
3993           /*PartialOverloading=*/false, AllowExplicit);
3994     else {
3995       // C++ [over.match.copy]p1:
3996       //   - When initializing a temporary to be bound to the first parameter
3997       //     of a constructor [for type T] that takes a reference to possibly
3998       //     cv-qualified T as its first argument, called with a single
3999       //     argument in the context of direct-initialization, explicit
4000       //     conversion functions are also considered.
4001       // FIXME: What if a constructor template instantiates to such a signature?
4002       bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
4003                                Args.size() == 1 &&
4004                                hasCopyOrMoveCtorParam(S.Context, Info);
4005       S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args,
4006                              CandidateSet, SuppressUserConversions,
4007                              /*PartialOverloading=*/false, AllowExplicit,
4008                              AllowExplicitConv);
4009     }
4010   }
4011 
4012   // FIXME: Work around a bug in C++17 guaranteed copy elision.
4013   //
4014   // When initializing an object of class type T by constructor
4015   // ([over.match.ctor]) or by list-initialization ([over.match.list])
4016   // from a single expression of class type U, conversion functions of
4017   // U that convert to the non-reference type cv T are candidates.
4018   // Explicit conversion functions are only candidates during
4019   // direct-initialization.
4020   //
4021   // Note: SecondStepOfCopyInit is only ever true in this case when
4022   // evaluating whether to produce a C++98 compatibility warning.
4023   if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 &&
4024       !SecondStepOfCopyInit) {
4025     Expr *Initializer = Args[0];
4026     auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl();
4027     if (SourceRD && S.isCompleteType(DeclLoc, Initializer->getType())) {
4028       const auto &Conversions = SourceRD->getVisibleConversionFunctions();
4029       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4030         NamedDecl *D = *I;
4031         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4032         D = D->getUnderlyingDecl();
4033 
4034         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4035         CXXConversionDecl *Conv;
4036         if (ConvTemplate)
4037           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4038         else
4039           Conv = cast<CXXConversionDecl>(D);
4040 
4041         if (ConvTemplate)
4042           S.AddTemplateConversionCandidate(
4043               ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
4044               CandidateSet, AllowExplicit, AllowExplicit,
4045               /*AllowResultConversion*/ false);
4046         else
4047           S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer,
4048                                    DestType, CandidateSet, AllowExplicit,
4049                                    AllowExplicit,
4050                                    /*AllowResultConversion*/ false);
4051       }
4052     }
4053   }
4054 
4055   // Perform overload resolution and return the result.
4056   return CandidateSet.BestViableFunction(S, DeclLoc, Best);
4057 }
4058 
4059 /// Attempt initialization by constructor (C++ [dcl.init]), which
4060 /// enumerates the constructors of the initialized entity and performs overload
4061 /// resolution to select the best.
4062 /// \param DestType       The destination class type.
4063 /// \param DestArrayType  The destination type, which is either DestType or
4064 ///                       a (possibly multidimensional) array of DestType.
4065 /// \param IsListInit     Is this list-initialization?
4066 /// \param IsInitListCopy Is this non-list-initialization resulting from a
4067 ///                       list-initialization from {x} where x is the same
4068 ///                       type as the entity?
4069 static void TryConstructorInitialization(Sema &S,
4070                                          const InitializedEntity &Entity,
4071                                          const InitializationKind &Kind,
4072                                          MultiExprArg Args, QualType DestType,
4073                                          QualType DestArrayType,
4074                                          InitializationSequence &Sequence,
4075                                          bool IsListInit = false,
4076                                          bool IsInitListCopy = false) {
4077   assert(((!IsListInit && !IsInitListCopy) ||
4078           (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&
4079          "IsListInit/IsInitListCopy must come with a single initializer list "
4080          "argument.");
4081   InitListExpr *ILE =
4082       (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr;
4083   MultiExprArg UnwrappedArgs =
4084       ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args;
4085 
4086   // The type we're constructing needs to be complete.
4087   if (!S.isCompleteType(Kind.getLocation(), DestType)) {
4088     Sequence.setIncompleteTypeFailure(DestType);
4089     return;
4090   }
4091 
4092   // C++17 [dcl.init]p17:
4093   //     - If the initializer expression is a prvalue and the cv-unqualified
4094   //       version of the source type is the same class as the class of the
4095   //       destination, the initializer expression is used to initialize the
4096   //       destination object.
4097   // Per DR (no number yet), this does not apply when initializing a base
4098   // class or delegating to another constructor from a mem-initializer.
4099   // ObjC++: Lambda captured by the block in the lambda to block conversion
4100   // should avoid copy elision.
4101   if (S.getLangOpts().CPlusPlus17 &&
4102       Entity.getKind() != InitializedEntity::EK_Base &&
4103       Entity.getKind() != InitializedEntity::EK_Delegating &&
4104       Entity.getKind() !=
4105           InitializedEntity::EK_LambdaToBlockConversionBlockElement &&
4106       UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isPRValue() &&
4107       S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) {
4108     // Convert qualifications if necessary.
4109     Sequence.AddQualificationConversionStep(DestType, VK_PRValue);
4110     if (ILE)
4111       Sequence.RewrapReferenceInitList(DestType, ILE);
4112     return;
4113   }
4114 
4115   const RecordType *DestRecordType = DestType->getAs<RecordType>();
4116   assert(DestRecordType && "Constructor initialization requires record type");
4117   CXXRecordDecl *DestRecordDecl
4118     = cast<CXXRecordDecl>(DestRecordType->getDecl());
4119 
4120   // Build the candidate set directly in the initialization sequence
4121   // structure, so that it will persist if we fail.
4122   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4123 
4124   // Determine whether we are allowed to call explicit constructors or
4125   // explicit conversion operators.
4126   bool AllowExplicit = Kind.AllowExplicit() || IsListInit;
4127   bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
4128 
4129   //   - Otherwise, if T is a class type, constructors are considered. The
4130   //     applicable constructors are enumerated, and the best one is chosen
4131   //     through overload resolution.
4132   DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl);
4133 
4134   OverloadingResult Result = OR_No_Viable_Function;
4135   OverloadCandidateSet::iterator Best;
4136   bool AsInitializerList = false;
4137 
4138   // C++11 [over.match.list]p1, per DR1467:
4139   //   When objects of non-aggregate type T are list-initialized, such that
4140   //   8.5.4 [dcl.init.list] specifies that overload resolution is performed
4141   //   according to the rules in this section, overload resolution selects
4142   //   the constructor in two phases:
4143   //
4144   //   - Initially, the candidate functions are the initializer-list
4145   //     constructors of the class T and the argument list consists of the
4146   //     initializer list as a single argument.
4147   if (IsListInit) {
4148     AsInitializerList = true;
4149 
4150     // If the initializer list has no elements and T has a default constructor,
4151     // the first phase is omitted.
4152     if (!(UnwrappedArgs.empty() && S.LookupDefaultConstructor(DestRecordDecl)))
4153       Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
4154                                           CandidateSet, DestType, Ctors, Best,
4155                                           CopyInitialization, AllowExplicit,
4156                                           /*OnlyListConstructors=*/true,
4157                                           IsListInit);
4158   }
4159 
4160   // C++11 [over.match.list]p1:
4161   //   - If no viable initializer-list constructor is found, overload resolution
4162   //     is performed again, where the candidate functions are all the
4163   //     constructors of the class T and the argument list consists of the
4164   //     elements of the initializer list.
4165   if (Result == OR_No_Viable_Function) {
4166     AsInitializerList = false;
4167     Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs,
4168                                         CandidateSet, DestType, Ctors, Best,
4169                                         CopyInitialization, AllowExplicit,
4170                                         /*OnlyListConstructors=*/false,
4171                                         IsListInit);
4172   }
4173   if (Result) {
4174     Sequence.SetOverloadFailure(
4175         IsListInit ? InitializationSequence::FK_ListConstructorOverloadFailed
4176                    : InitializationSequence::FK_ConstructorOverloadFailed,
4177         Result);
4178 
4179     if (Result != OR_Deleted)
4180       return;
4181   }
4182 
4183   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4184 
4185   // In C++17, ResolveConstructorOverload can select a conversion function
4186   // instead of a constructor.
4187   if (auto *CD = dyn_cast<CXXConversionDecl>(Best->Function)) {
4188     // Add the user-defined conversion step that calls the conversion function.
4189     QualType ConvType = CD->getConversionType();
4190     assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) &&
4191            "should not have selected this conversion function");
4192     Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType,
4193                                    HadMultipleCandidates);
4194     if (!S.Context.hasSameType(ConvType, DestType))
4195       Sequence.AddQualificationConversionStep(DestType, VK_PRValue);
4196     if (IsListInit)
4197       Sequence.RewrapReferenceInitList(Entity.getType(), ILE);
4198     return;
4199   }
4200 
4201   CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
4202   if (Result != OR_Deleted) {
4203     // C++11 [dcl.init]p6:
4204     //   If a program calls for the default initialization of an object
4205     //   of a const-qualified type T, T shall be a class type with a
4206     //   user-provided default constructor.
4207     // C++ core issue 253 proposal:
4208     //   If the implicit default constructor initializes all subobjects, no
4209     //   initializer should be required.
4210     // The 253 proposal is for example needed to process libstdc++ headers
4211     // in 5.x.
4212     if (Kind.getKind() == InitializationKind::IK_Default &&
4213         Entity.getType().isConstQualified()) {
4214       if (!CtorDecl->getParent()->allowConstDefaultInit()) {
4215         if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
4216           Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
4217         return;
4218       }
4219     }
4220 
4221     // C++11 [over.match.list]p1:
4222     //   In copy-list-initialization, if an explicit constructor is chosen, the
4223     //   initializer is ill-formed.
4224     if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
4225       Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
4226       return;
4227     }
4228   }
4229 
4230   // [class.copy.elision]p3:
4231   // In some copy-initialization contexts, a two-stage overload resolution
4232   // is performed.
4233   // If the first overload resolution selects a deleted function, we also
4234   // need the initialization sequence to decide whether to perform the second
4235   // overload resolution.
4236   // For deleted functions in other contexts, there is no need to get the
4237   // initialization sequence.
4238   if (Result == OR_Deleted && Kind.getKind() != InitializationKind::IK_Copy)
4239     return;
4240 
4241   // Add the constructor initialization step. Any cv-qualification conversion is
4242   // subsumed by the initialization.
4243   Sequence.AddConstructorInitializationStep(
4244       Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates,
4245       IsListInit | IsInitListCopy, AsInitializerList);
4246 }
4247 
4248 static bool
4249 ResolveOverloadedFunctionForReferenceBinding(Sema &S,
4250                                              Expr *Initializer,
4251                                              QualType &SourceType,
4252                                              QualType &UnqualifiedSourceType,
4253                                              QualType UnqualifiedTargetType,
4254                                              InitializationSequence &Sequence) {
4255   if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
4256         S.Context.OverloadTy) {
4257     DeclAccessPair Found;
4258     bool HadMultipleCandidates = false;
4259     if (FunctionDecl *Fn
4260         = S.ResolveAddressOfOverloadedFunction(Initializer,
4261                                                UnqualifiedTargetType,
4262                                                false, Found,
4263                                                &HadMultipleCandidates)) {
4264       Sequence.AddAddressOverloadResolutionStep(Fn, Found,
4265                                                 HadMultipleCandidates);
4266       SourceType = Fn->getType();
4267       UnqualifiedSourceType = SourceType.getUnqualifiedType();
4268     } else if (!UnqualifiedTargetType->isRecordType()) {
4269       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4270       return true;
4271     }
4272   }
4273   return false;
4274 }
4275 
4276 static void TryReferenceInitializationCore(Sema &S,
4277                                            const InitializedEntity &Entity,
4278                                            const InitializationKind &Kind,
4279                                            Expr *Initializer,
4280                                            QualType cv1T1, QualType T1,
4281                                            Qualifiers T1Quals,
4282                                            QualType cv2T2, QualType T2,
4283                                            Qualifiers T2Quals,
4284                                            InitializationSequence &Sequence);
4285 
4286 static void TryValueInitialization(Sema &S,
4287                                    const InitializedEntity &Entity,
4288                                    const InitializationKind &Kind,
4289                                    InitializationSequence &Sequence,
4290                                    InitListExpr *InitList = nullptr);
4291 
4292 /// Attempt list initialization of a reference.
4293 static void TryReferenceListInitialization(Sema &S,
4294                                            const InitializedEntity &Entity,
4295                                            const InitializationKind &Kind,
4296                                            InitListExpr *InitList,
4297                                            InitializationSequence &Sequence,
4298                                            bool TreatUnavailableAsInvalid) {
4299   // First, catch C++03 where this isn't possible.
4300   if (!S.getLangOpts().CPlusPlus11) {
4301     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
4302     return;
4303   }
4304   // Can't reference initialize a compound literal.
4305   if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) {
4306     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
4307     return;
4308   }
4309 
4310   QualType DestType = Entity.getType();
4311   QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
4312   Qualifiers T1Quals;
4313   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4314 
4315   // Reference initialization via an initializer list works thus:
4316   // If the initializer list consists of a single element that is
4317   // reference-related to the referenced type, bind directly to that element
4318   // (possibly creating temporaries).
4319   // Otherwise, initialize a temporary with the initializer list and
4320   // bind to that.
4321   if (InitList->getNumInits() == 1) {
4322     Expr *Initializer = InitList->getInit(0);
4323     QualType cv2T2 = S.getCompletedType(Initializer);
4324     Qualifiers T2Quals;
4325     QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4326 
4327     // If this fails, creating a temporary wouldn't work either.
4328     if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4329                                                      T1, Sequence))
4330       return;
4331 
4332     SourceLocation DeclLoc = Initializer->getBeginLoc();
4333     Sema::ReferenceCompareResult RefRelationship
4334       = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2);
4335     if (RefRelationship >= Sema::Ref_Related) {
4336       // Try to bind the reference here.
4337       TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4338                                      T1Quals, cv2T2, T2, T2Quals, Sequence);
4339       if (Sequence)
4340         Sequence.RewrapReferenceInitList(cv1T1, InitList);
4341       return;
4342     }
4343 
4344     // Update the initializer if we've resolved an overloaded function.
4345     if (Sequence.step_begin() != Sequence.step_end())
4346       Sequence.RewrapReferenceInitList(cv1T1, InitList);
4347   }
4348   // Perform address space compatibility check.
4349   QualType cv1T1IgnoreAS = cv1T1;
4350   if (T1Quals.hasAddressSpace()) {
4351     Qualifiers T2Quals;
4352     (void)S.Context.getUnqualifiedArrayType(InitList->getType(), T2Quals);
4353     if (!T1Quals.isAddressSpaceSupersetOf(T2Quals)) {
4354       Sequence.SetFailed(
4355           InitializationSequence::FK_ReferenceInitDropsQualifiers);
4356       return;
4357     }
4358     // Ignore address space of reference type at this point and perform address
4359     // space conversion after the reference binding step.
4360     cv1T1IgnoreAS =
4361         S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace());
4362   }
4363   // Not reference-related. Create a temporary and bind to that.
4364   InitializedEntity TempEntity =
4365       InitializedEntity::InitializeTemporary(cv1T1IgnoreAS);
4366 
4367   TryListInitialization(S, TempEntity, Kind, InitList, Sequence,
4368                         TreatUnavailableAsInvalid);
4369   if (Sequence) {
4370     if (DestType->isRValueReferenceType() ||
4371         (T1Quals.hasConst() && !T1Quals.hasVolatile())) {
4372       Sequence.AddReferenceBindingStep(cv1T1IgnoreAS,
4373                                        /*BindingTemporary=*/true);
4374       if (T1Quals.hasAddressSpace())
4375         Sequence.AddQualificationConversionStep(
4376             cv1T1, DestType->isRValueReferenceType() ? VK_XValue : VK_LValue);
4377     } else
4378       Sequence.SetFailed(
4379           InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
4380   }
4381 }
4382 
4383 /// Attempt list initialization (C++0x [dcl.init.list])
4384 static void TryListInitialization(Sema &S,
4385                                   const InitializedEntity &Entity,
4386                                   const InitializationKind &Kind,
4387                                   InitListExpr *InitList,
4388                                   InitializationSequence &Sequence,
4389                                   bool TreatUnavailableAsInvalid) {
4390   QualType DestType = Entity.getType();
4391 
4392   // C++ doesn't allow scalar initialization with more than one argument.
4393   // But C99 complex numbers are scalars and it makes sense there.
4394   if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
4395       !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
4396     Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
4397     return;
4398   }
4399   if (DestType->isReferenceType()) {
4400     TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence,
4401                                    TreatUnavailableAsInvalid);
4402     return;
4403   }
4404 
4405   if (DestType->isRecordType() &&
4406       !S.isCompleteType(InitList->getBeginLoc(), DestType)) {
4407     Sequence.setIncompleteTypeFailure(DestType);
4408     return;
4409   }
4410 
4411   // C++11 [dcl.init.list]p3, per DR1467:
4412   // - If T is a class type and the initializer list has a single element of
4413   //   type cv U, where U is T or a class derived from T, the object is
4414   //   initialized from that element (by copy-initialization for
4415   //   copy-list-initialization, or by direct-initialization for
4416   //   direct-list-initialization).
4417   // - Otherwise, if T is a character array and the initializer list has a
4418   //   single element that is an appropriately-typed string literal
4419   //   (8.5.2 [dcl.init.string]), initialization is performed as described
4420   //   in that section.
4421   // - Otherwise, if T is an aggregate, [...] (continue below).
4422   if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) {
4423     if (DestType->isRecordType()) {
4424       QualType InitType = InitList->getInit(0)->getType();
4425       if (S.Context.hasSameUnqualifiedType(InitType, DestType) ||
4426           S.IsDerivedFrom(InitList->getBeginLoc(), InitType, DestType)) {
4427         Expr *InitListAsExpr = InitList;
4428         TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4429                                      DestType, Sequence,
4430                                      /*InitListSyntax*/false,
4431                                      /*IsInitListCopy*/true);
4432         return;
4433       }
4434     }
4435     if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) {
4436       Expr *SubInit[1] = {InitList->getInit(0)};
4437       if (!isa<VariableArrayType>(DestAT) &&
4438           IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) {
4439         InitializationKind SubKind =
4440             Kind.getKind() == InitializationKind::IK_DirectList
4441                 ? InitializationKind::CreateDirect(Kind.getLocation(),
4442                                                    InitList->getLBraceLoc(),
4443                                                    InitList->getRBraceLoc())
4444                 : Kind;
4445         Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4446                                 /*TopLevelOfInitList*/ true,
4447                                 TreatUnavailableAsInvalid);
4448 
4449         // TryStringLiteralInitialization() (in InitializeFrom()) will fail if
4450         // the element is not an appropriately-typed string literal, in which
4451         // case we should proceed as in C++11 (below).
4452         if (Sequence) {
4453           Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4454           return;
4455         }
4456       }
4457     }
4458   }
4459 
4460   // C++11 [dcl.init.list]p3:
4461   //   - If T is an aggregate, aggregate initialization is performed.
4462   if ((DestType->isRecordType() && !DestType->isAggregateType()) ||
4463       (S.getLangOpts().CPlusPlus11 &&
4464        S.isStdInitializerList(DestType, nullptr))) {
4465     if (S.getLangOpts().CPlusPlus11) {
4466       //   - Otherwise, if the initializer list has no elements and T is a
4467       //     class type with a default constructor, the object is
4468       //     value-initialized.
4469       if (InitList->getNumInits() == 0) {
4470         CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
4471         if (S.LookupDefaultConstructor(RD)) {
4472           TryValueInitialization(S, Entity, Kind, Sequence, InitList);
4473           return;
4474         }
4475       }
4476 
4477       //   - Otherwise, if T is a specialization of std::initializer_list<E>,
4478       //     an initializer_list object constructed [...]
4479       if (TryInitializerListConstruction(S, InitList, DestType, Sequence,
4480                                          TreatUnavailableAsInvalid))
4481         return;
4482 
4483       //   - Otherwise, if T is a class type, constructors are considered.
4484       Expr *InitListAsExpr = InitList;
4485       TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4486                                    DestType, Sequence, /*InitListSyntax*/true);
4487     } else
4488       Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
4489     return;
4490   }
4491 
4492   if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() &&
4493       InitList->getNumInits() == 1) {
4494     Expr *E = InitList->getInit(0);
4495 
4496     //   - Otherwise, if T is an enumeration with a fixed underlying type,
4497     //     the initializer-list has a single element v, and the initialization
4498     //     is direct-list-initialization, the object is initialized with the
4499     //     value T(v); if a narrowing conversion is required to convert v to
4500     //     the underlying type of T, the program is ill-formed.
4501     auto *ET = DestType->getAs<EnumType>();
4502     if (S.getLangOpts().CPlusPlus17 &&
4503         Kind.getKind() == InitializationKind::IK_DirectList &&
4504         ET && ET->getDecl()->isFixed() &&
4505         !S.Context.hasSameUnqualifiedType(E->getType(), DestType) &&
4506         (E->getType()->isIntegralOrEnumerationType() ||
4507          E->getType()->isFloatingType())) {
4508       // There are two ways that T(v) can work when T is an enumeration type.
4509       // If there is either an implicit conversion sequence from v to T or
4510       // a conversion function that can convert from v to T, then we use that.
4511       // Otherwise, if v is of integral, enumeration, or floating-point type,
4512       // it is converted to the enumeration type via its underlying type.
4513       // There is no overlap possible between these two cases (except when the
4514       // source value is already of the destination type), and the first
4515       // case is handled by the general case for single-element lists below.
4516       ImplicitConversionSequence ICS;
4517       ICS.setStandard();
4518       ICS.Standard.setAsIdentityConversion();
4519       if (!E->isPRValue())
4520         ICS.Standard.First = ICK_Lvalue_To_Rvalue;
4521       // If E is of a floating-point type, then the conversion is ill-formed
4522       // due to narrowing, but go through the motions in order to produce the
4523       // right diagnostic.
4524       ICS.Standard.Second = E->getType()->isFloatingType()
4525                                 ? ICK_Floating_Integral
4526                                 : ICK_Integral_Conversion;
4527       ICS.Standard.setFromType(E->getType());
4528       ICS.Standard.setToType(0, E->getType());
4529       ICS.Standard.setToType(1, DestType);
4530       ICS.Standard.setToType(2, DestType);
4531       Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2),
4532                                          /*TopLevelOfInitList*/true);
4533       Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4534       return;
4535     }
4536 
4537     //   - Otherwise, if the initializer list has a single element of type E
4538     //     [...references are handled above...], the object or reference is
4539     //     initialized from that element (by copy-initialization for
4540     //     copy-list-initialization, or by direct-initialization for
4541     //     direct-list-initialization); if a narrowing conversion is required
4542     //     to convert the element to T, the program is ill-formed.
4543     //
4544     // Per core-24034, this is direct-initialization if we were performing
4545     // direct-list-initialization and copy-initialization otherwise.
4546     // We can't use InitListChecker for this, because it always performs
4547     // copy-initialization. This only matters if we might use an 'explicit'
4548     // conversion operator, or for the special case conversion of nullptr_t to
4549     // bool, so we only need to handle those cases.
4550     //
4551     // FIXME: Why not do this in all cases?
4552     Expr *Init = InitList->getInit(0);
4553     if (Init->getType()->isRecordType() ||
4554         (Init->getType()->isNullPtrType() && DestType->isBooleanType())) {
4555       InitializationKind SubKind =
4556           Kind.getKind() == InitializationKind::IK_DirectList
4557               ? InitializationKind::CreateDirect(Kind.getLocation(),
4558                                                  InitList->getLBraceLoc(),
4559                                                  InitList->getRBraceLoc())
4560               : Kind;
4561       Expr *SubInit[1] = { Init };
4562       Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4563                               /*TopLevelOfInitList*/true,
4564                               TreatUnavailableAsInvalid);
4565       if (Sequence)
4566         Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4567       return;
4568     }
4569   }
4570 
4571   InitListChecker CheckInitList(S, Entity, InitList,
4572           DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid);
4573   if (CheckInitList.HadError()) {
4574     Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
4575     return;
4576   }
4577 
4578   // Add the list initialization step with the built init list.
4579   Sequence.AddListInitializationStep(DestType);
4580 }
4581 
4582 /// Try a reference initialization that involves calling a conversion
4583 /// function.
4584 static OverloadingResult TryRefInitWithConversionFunction(
4585     Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind,
4586     Expr *Initializer, bool AllowRValues, bool IsLValueRef,
4587     InitializationSequence &Sequence) {
4588   QualType DestType = Entity.getType();
4589   QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
4590   QualType T1 = cv1T1.getUnqualifiedType();
4591   QualType cv2T2 = Initializer->getType();
4592   QualType T2 = cv2T2.getUnqualifiedType();
4593 
4594   assert(!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2) &&
4595          "Must have incompatible references when binding via conversion");
4596 
4597   // Build the candidate set directly in the initialization sequence
4598   // structure, so that it will persist if we fail.
4599   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4600   CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4601 
4602   // Determine whether we are allowed to call explicit conversion operators.
4603   // Note that none of [over.match.copy], [over.match.conv], nor
4604   // [over.match.ref] permit an explicit constructor to be chosen when
4605   // initializing a reference, not even for direct-initialization.
4606   bool AllowExplicitCtors = false;
4607   bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding();
4608 
4609   const RecordType *T1RecordType = nullptr;
4610   if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
4611       S.isCompleteType(Kind.getLocation(), T1)) {
4612     // The type we're converting to is a class type. Enumerate its constructors
4613     // to see if there is a suitable conversion.
4614     CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
4615 
4616     for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) {
4617       auto Info = getConstructorInfo(D);
4618       if (!Info.Constructor)
4619         continue;
4620 
4621       if (!Info.Constructor->isInvalidDecl() &&
4622           Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) {
4623         if (Info.ConstructorTmpl)
4624           S.AddTemplateOverloadCandidate(
4625               Info.ConstructorTmpl, Info.FoundDecl,
4626               /*ExplicitArgs*/ nullptr, Initializer, CandidateSet,
4627               /*SuppressUserConversions=*/true,
4628               /*PartialOverloading*/ false, AllowExplicitCtors);
4629         else
4630           S.AddOverloadCandidate(
4631               Info.Constructor, Info.FoundDecl, Initializer, CandidateSet,
4632               /*SuppressUserConversions=*/true,
4633               /*PartialOverloading*/ false, AllowExplicitCtors);
4634       }
4635     }
4636   }
4637   if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
4638     return OR_No_Viable_Function;
4639 
4640   const RecordType *T2RecordType = nullptr;
4641   if ((T2RecordType = T2->getAs<RecordType>()) &&
4642       S.isCompleteType(Kind.getLocation(), T2)) {
4643     // The type we're converting from is a class type, enumerate its conversion
4644     // functions.
4645     CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
4646 
4647     const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4648     for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4649       NamedDecl *D = *I;
4650       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4651       if (isa<UsingShadowDecl>(D))
4652         D = cast<UsingShadowDecl>(D)->getTargetDecl();
4653 
4654       FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4655       CXXConversionDecl *Conv;
4656       if (ConvTemplate)
4657         Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4658       else
4659         Conv = cast<CXXConversionDecl>(D);
4660 
4661       // If the conversion function doesn't return a reference type,
4662       // it can't be considered for this conversion unless we're allowed to
4663       // consider rvalues.
4664       // FIXME: Do we need to make sure that we only consider conversion
4665       // candidates with reference-compatible results? That might be needed to
4666       // break recursion.
4667       if ((AllowRValues ||
4668            Conv->getConversionType()->isLValueReferenceType())) {
4669         if (ConvTemplate)
4670           S.AddTemplateConversionCandidate(
4671               ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
4672               CandidateSet,
4673               /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs);
4674         else
4675           S.AddConversionCandidate(
4676               Conv, I.getPair(), ActingDC, Initializer, DestType, CandidateSet,
4677               /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs);
4678       }
4679     }
4680   }
4681   if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
4682     return OR_No_Viable_Function;
4683 
4684   SourceLocation DeclLoc = Initializer->getBeginLoc();
4685 
4686   // Perform overload resolution. If it fails, return the failed result.
4687   OverloadCandidateSet::iterator Best;
4688   if (OverloadingResult Result
4689         = CandidateSet.BestViableFunction(S, DeclLoc, Best))
4690     return Result;
4691 
4692   FunctionDecl *Function = Best->Function;
4693   // This is the overload that will be used for this initialization step if we
4694   // use this initialization. Mark it as referenced.
4695   Function->setReferenced();
4696 
4697   // Compute the returned type and value kind of the conversion.
4698   QualType cv3T3;
4699   if (isa<CXXConversionDecl>(Function))
4700     cv3T3 = Function->getReturnType();
4701   else
4702     cv3T3 = T1;
4703 
4704   ExprValueKind VK = VK_PRValue;
4705   if (cv3T3->isLValueReferenceType())
4706     VK = VK_LValue;
4707   else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>())
4708     VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
4709   cv3T3 = cv3T3.getNonLValueExprType(S.Context);
4710 
4711   // Add the user-defined conversion step.
4712   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4713   Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3,
4714                                  HadMultipleCandidates);
4715 
4716   // Determine whether we'll need to perform derived-to-base adjustments or
4717   // other conversions.
4718   Sema::ReferenceConversions RefConv;
4719   Sema::ReferenceCompareResult NewRefRelationship =
4720       S.CompareReferenceRelationship(DeclLoc, T1, cv3T3, &RefConv);
4721 
4722   // Add the final conversion sequence, if necessary.
4723   if (NewRefRelationship == Sema::Ref_Incompatible) {
4724     assert(!isa<CXXConstructorDecl>(Function) &&
4725            "should not have conversion after constructor");
4726 
4727     ImplicitConversionSequence ICS;
4728     ICS.setStandard();
4729     ICS.Standard = Best->FinalConversion;
4730     Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2));
4731 
4732     // Every implicit conversion results in a prvalue, except for a glvalue
4733     // derived-to-base conversion, which we handle below.
4734     cv3T3 = ICS.Standard.getToType(2);
4735     VK = VK_PRValue;
4736   }
4737 
4738   //   If the converted initializer is a prvalue, its type T4 is adjusted to
4739   //   type "cv1 T4" and the temporary materialization conversion is applied.
4740   //
4741   // We adjust the cv-qualifications to match the reference regardless of
4742   // whether we have a prvalue so that the AST records the change. In this
4743   // case, T4 is "cv3 T3".
4744   QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers());
4745   if (cv1T4.getQualifiers() != cv3T3.getQualifiers())
4746     Sequence.AddQualificationConversionStep(cv1T4, VK);
4747   Sequence.AddReferenceBindingStep(cv1T4, VK == VK_PRValue);
4748   VK = IsLValueRef ? VK_LValue : VK_XValue;
4749 
4750   if (RefConv & Sema::ReferenceConversions::DerivedToBase)
4751     Sequence.AddDerivedToBaseCastStep(cv1T1, VK);
4752   else if (RefConv & Sema::ReferenceConversions::ObjC)
4753     Sequence.AddObjCObjectConversionStep(cv1T1);
4754   else if (RefConv & Sema::ReferenceConversions::Function)
4755     Sequence.AddFunctionReferenceConversionStep(cv1T1);
4756   else if (RefConv & Sema::ReferenceConversions::Qualification) {
4757     if (!S.Context.hasSameType(cv1T4, cv1T1))
4758       Sequence.AddQualificationConversionStep(cv1T1, VK);
4759   }
4760 
4761   return OR_Success;
4762 }
4763 
4764 static void CheckCXX98CompatAccessibleCopy(Sema &S,
4765                                            const InitializedEntity &Entity,
4766                                            Expr *CurInitExpr);
4767 
4768 /// Attempt reference initialization (C++0x [dcl.init.ref])
4769 static void TryReferenceInitialization(Sema &S,
4770                                        const InitializedEntity &Entity,
4771                                        const InitializationKind &Kind,
4772                                        Expr *Initializer,
4773                                        InitializationSequence &Sequence) {
4774   QualType DestType = Entity.getType();
4775   QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
4776   Qualifiers T1Quals;
4777   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4778   QualType cv2T2 = S.getCompletedType(Initializer);
4779   Qualifiers T2Quals;
4780   QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4781 
4782   // If the initializer is the address of an overloaded function, try
4783   // to resolve the overloaded function. If all goes well, T2 is the
4784   // type of the resulting function.
4785   if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4786                                                    T1, Sequence))
4787     return;
4788 
4789   // Delegate everything else to a subfunction.
4790   TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4791                                  T1Quals, cv2T2, T2, T2Quals, Sequence);
4792 }
4793 
4794 /// Determine whether an expression is a non-referenceable glvalue (one to
4795 /// which a reference can never bind). Attempting to bind a reference to
4796 /// such a glvalue will always create a temporary.
4797 static bool isNonReferenceableGLValue(Expr *E) {
4798   return E->refersToBitField() || E->refersToVectorElement() ||
4799          E->refersToMatrixElement();
4800 }
4801 
4802 /// Reference initialization without resolving overloaded functions.
4803 ///
4804 /// We also can get here in C if we call a builtin which is declared as
4805 /// a function with a parameter of reference type (such as __builtin_va_end()).
4806 static void TryReferenceInitializationCore(Sema &S,
4807                                            const InitializedEntity &Entity,
4808                                            const InitializationKind &Kind,
4809                                            Expr *Initializer,
4810                                            QualType cv1T1, QualType T1,
4811                                            Qualifiers T1Quals,
4812                                            QualType cv2T2, QualType T2,
4813                                            Qualifiers T2Quals,
4814                                            InitializationSequence &Sequence) {
4815   QualType DestType = Entity.getType();
4816   SourceLocation DeclLoc = Initializer->getBeginLoc();
4817 
4818   // Compute some basic properties of the types and the initializer.
4819   bool isLValueRef = DestType->isLValueReferenceType();
4820   bool isRValueRef = !isLValueRef;
4821   Expr::Classification InitCategory = Initializer->Classify(S.Context);
4822 
4823   Sema::ReferenceConversions RefConv;
4824   Sema::ReferenceCompareResult RefRelationship =
4825       S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, &RefConv);
4826 
4827   // C++0x [dcl.init.ref]p5:
4828   //   A reference to type "cv1 T1" is initialized by an expression of type
4829   //   "cv2 T2" as follows:
4830   //
4831   //     - If the reference is an lvalue reference and the initializer
4832   //       expression
4833   // Note the analogous bullet points for rvalue refs to functions. Because
4834   // there are no function rvalues in C++, rvalue refs to functions are treated
4835   // like lvalue refs.
4836   OverloadingResult ConvOvlResult = OR_Success;
4837   bool T1Function = T1->isFunctionType();
4838   if (isLValueRef || T1Function) {
4839     if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) &&
4840         (RefRelationship == Sema::Ref_Compatible ||
4841          (Kind.isCStyleOrFunctionalCast() &&
4842           RefRelationship == Sema::Ref_Related))) {
4843       //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
4844       //     reference-compatible with "cv2 T2," or
4845       if (RefConv & (Sema::ReferenceConversions::DerivedToBase |
4846                      Sema::ReferenceConversions::ObjC)) {
4847         // If we're converting the pointee, add any qualifiers first;
4848         // these qualifiers must all be top-level, so just convert to "cv1 T2".
4849         if (RefConv & (Sema::ReferenceConversions::Qualification))
4850           Sequence.AddQualificationConversionStep(
4851               S.Context.getQualifiedType(T2, T1Quals),
4852               Initializer->getValueKind());
4853         if (RefConv & Sema::ReferenceConversions::DerivedToBase)
4854           Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue);
4855         else
4856           Sequence.AddObjCObjectConversionStep(cv1T1);
4857       } else if (RefConv & Sema::ReferenceConversions::Qualification) {
4858         // Perform a (possibly multi-level) qualification conversion.
4859         Sequence.AddQualificationConversionStep(cv1T1,
4860                                                 Initializer->getValueKind());
4861       } else if (RefConv & Sema::ReferenceConversions::Function) {
4862         Sequence.AddFunctionReferenceConversionStep(cv1T1);
4863       }
4864 
4865       // We only create a temporary here when binding a reference to a
4866       // bit-field or vector element. Those cases are't supposed to be
4867       // handled by this bullet, but the outcome is the same either way.
4868       Sequence.AddReferenceBindingStep(cv1T1, false);
4869       return;
4870     }
4871 
4872     //     - has a class type (i.e., T2 is a class type), where T1 is not
4873     //       reference-related to T2, and can be implicitly converted to an
4874     //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
4875     //       with "cv3 T3" (this conversion is selected by enumerating the
4876     //       applicable conversion functions (13.3.1.6) and choosing the best
4877     //       one through overload resolution (13.3)),
4878     // If we have an rvalue ref to function type here, the rhs must be
4879     // an rvalue. DR1287 removed the "implicitly" here.
4880     if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
4881         (isLValueRef || InitCategory.isRValue())) {
4882       if (S.getLangOpts().CPlusPlus) {
4883         // Try conversion functions only for C++.
4884         ConvOvlResult = TryRefInitWithConversionFunction(
4885             S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef,
4886             /*IsLValueRef*/ isLValueRef, Sequence);
4887         if (ConvOvlResult == OR_Success)
4888           return;
4889         if (ConvOvlResult != OR_No_Viable_Function)
4890           Sequence.SetOverloadFailure(
4891               InitializationSequence::FK_ReferenceInitOverloadFailed,
4892               ConvOvlResult);
4893       } else {
4894         ConvOvlResult = OR_No_Viable_Function;
4895       }
4896     }
4897   }
4898 
4899   //     - Otherwise, the reference shall be an lvalue reference to a
4900   //       non-volatile const type (i.e., cv1 shall be const), or the reference
4901   //       shall be an rvalue reference.
4902   //       For address spaces, we interpret this to mean that an addr space
4903   //       of a reference "cv1 T1" is a superset of addr space of "cv2 T2".
4904   if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile() &&
4905                        T1Quals.isAddressSpaceSupersetOf(T2Quals))) {
4906     if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4907       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4908     else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4909       Sequence.SetOverloadFailure(
4910                         InitializationSequence::FK_ReferenceInitOverloadFailed,
4911                                   ConvOvlResult);
4912     else if (!InitCategory.isLValue())
4913       Sequence.SetFailed(
4914           T1Quals.isAddressSpaceSupersetOf(T2Quals)
4915               ? InitializationSequence::
4916                     FK_NonConstLValueReferenceBindingToTemporary
4917               : InitializationSequence::FK_ReferenceInitDropsQualifiers);
4918     else {
4919       InitializationSequence::FailureKind FK;
4920       switch (RefRelationship) {
4921       case Sema::Ref_Compatible:
4922         if (Initializer->refersToBitField())
4923           FK = InitializationSequence::
4924               FK_NonConstLValueReferenceBindingToBitfield;
4925         else if (Initializer->refersToVectorElement())
4926           FK = InitializationSequence::
4927               FK_NonConstLValueReferenceBindingToVectorElement;
4928         else if (Initializer->refersToMatrixElement())
4929           FK = InitializationSequence::
4930               FK_NonConstLValueReferenceBindingToMatrixElement;
4931         else
4932           llvm_unreachable("unexpected kind of compatible initializer");
4933         break;
4934       case Sema::Ref_Related:
4935         FK = InitializationSequence::FK_ReferenceInitDropsQualifiers;
4936         break;
4937       case Sema::Ref_Incompatible:
4938         FK = InitializationSequence::
4939             FK_NonConstLValueReferenceBindingToUnrelated;
4940         break;
4941       }
4942       Sequence.SetFailed(FK);
4943     }
4944     return;
4945   }
4946 
4947   //    - If the initializer expression
4948   //      - is an
4949   // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or
4950   // [1z]   rvalue (but not a bit-field) or
4951   //        function lvalue and "cv1 T1" is reference-compatible with "cv2 T2"
4952   //
4953   // Note: functions are handled above and below rather than here...
4954   if (!T1Function &&
4955       (RefRelationship == Sema::Ref_Compatible ||
4956        (Kind.isCStyleOrFunctionalCast() &&
4957         RefRelationship == Sema::Ref_Related)) &&
4958       ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) ||
4959        (InitCategory.isPRValue() &&
4960         (S.getLangOpts().CPlusPlus17 || T2->isRecordType() ||
4961          T2->isArrayType())))) {
4962     ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_PRValue;
4963     if (InitCategory.isPRValue() && T2->isRecordType()) {
4964       // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
4965       // compiler the freedom to perform a copy here or bind to the
4966       // object, while C++0x requires that we bind directly to the
4967       // object. Hence, we always bind to the object without making an
4968       // extra copy. However, in C++03 requires that we check for the
4969       // presence of a suitable copy constructor:
4970       //
4971       //   The constructor that would be used to make the copy shall
4972       //   be callable whether or not the copy is actually done.
4973       if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
4974         Sequence.AddExtraneousCopyToTemporary(cv2T2);
4975       else if (S.getLangOpts().CPlusPlus11)
4976         CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
4977     }
4978 
4979     // C++1z [dcl.init.ref]/5.2.1.2:
4980     //   If the converted initializer is a prvalue, its type T4 is adjusted
4981     //   to type "cv1 T4" and the temporary materialization conversion is
4982     //   applied.
4983     // Postpone address space conversions to after the temporary materialization
4984     // conversion to allow creating temporaries in the alloca address space.
4985     auto T1QualsIgnoreAS = T1Quals;
4986     auto T2QualsIgnoreAS = T2Quals;
4987     if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) {
4988       T1QualsIgnoreAS.removeAddressSpace();
4989       T2QualsIgnoreAS.removeAddressSpace();
4990     }
4991     QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1QualsIgnoreAS);
4992     if (T1QualsIgnoreAS != T2QualsIgnoreAS)
4993       Sequence.AddQualificationConversionStep(cv1T4, ValueKind);
4994     Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_PRValue);
4995     ValueKind = isLValueRef ? VK_LValue : VK_XValue;
4996     // Add addr space conversion if required.
4997     if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) {
4998       auto T4Quals = cv1T4.getQualifiers();
4999       T4Quals.addAddressSpace(T1Quals.getAddressSpace());
5000       QualType cv1T4WithAS = S.Context.getQualifiedType(T2, T4Quals);
5001       Sequence.AddQualificationConversionStep(cv1T4WithAS, ValueKind);
5002       cv1T4 = cv1T4WithAS;
5003     }
5004 
5005     //   In any case, the reference is bound to the resulting glvalue (or to
5006     //   an appropriate base class subobject).
5007     if (RefConv & Sema::ReferenceConversions::DerivedToBase)
5008       Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind);
5009     else if (RefConv & Sema::ReferenceConversions::ObjC)
5010       Sequence.AddObjCObjectConversionStep(cv1T1);
5011     else if (RefConv & Sema::ReferenceConversions::Qualification) {
5012       if (!S.Context.hasSameType(cv1T4, cv1T1))
5013         Sequence.AddQualificationConversionStep(cv1T1, ValueKind);
5014     }
5015     return;
5016   }
5017 
5018   //       - has a class type (i.e., T2 is a class type), where T1 is not
5019   //         reference-related to T2, and can be implicitly converted to an
5020   //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
5021   //         where "cv1 T1" is reference-compatible with "cv3 T3",
5022   //
5023   // DR1287 removes the "implicitly" here.
5024   if (T2->isRecordType()) {
5025     if (RefRelationship == Sema::Ref_Incompatible) {
5026       ConvOvlResult = TryRefInitWithConversionFunction(
5027           S, Entity, Kind, Initializer, /*AllowRValues*/ true,
5028           /*IsLValueRef*/ isLValueRef, Sequence);
5029       if (ConvOvlResult)
5030         Sequence.SetOverloadFailure(
5031             InitializationSequence::FK_ReferenceInitOverloadFailed,
5032             ConvOvlResult);
5033 
5034       return;
5035     }
5036 
5037     if (RefRelationship == Sema::Ref_Compatible &&
5038         isRValueRef && InitCategory.isLValue()) {
5039       Sequence.SetFailed(
5040         InitializationSequence::FK_RValueReferenceBindingToLValue);
5041       return;
5042     }
5043 
5044     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
5045     return;
5046   }
5047 
5048   //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
5049   //        from the initializer expression using the rules for a non-reference
5050   //        copy-initialization (8.5). The reference is then bound to the
5051   //        temporary. [...]
5052 
5053   // Ignore address space of reference type at this point and perform address
5054   // space conversion after the reference binding step.
5055   QualType cv1T1IgnoreAS =
5056       T1Quals.hasAddressSpace()
5057           ? S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace())
5058           : cv1T1;
5059 
5060   InitializedEntity TempEntity =
5061       InitializedEntity::InitializeTemporary(cv1T1IgnoreAS);
5062 
5063   // FIXME: Why do we use an implicit conversion here rather than trying
5064   // copy-initialization?
5065   ImplicitConversionSequence ICS
5066     = S.TryImplicitConversion(Initializer, TempEntity.getType(),
5067                               /*SuppressUserConversions=*/false,
5068                               Sema::AllowedExplicit::None,
5069                               /*FIXME:InOverloadResolution=*/false,
5070                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
5071                               /*AllowObjCWritebackConversion=*/false);
5072 
5073   if (ICS.isBad()) {
5074     // FIXME: Use the conversion function set stored in ICS to turn
5075     // this into an overloading ambiguity diagnostic. However, we need
5076     // to keep that set as an OverloadCandidateSet rather than as some
5077     // other kind of set.
5078     if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
5079       Sequence.SetOverloadFailure(
5080                         InitializationSequence::FK_ReferenceInitOverloadFailed,
5081                                   ConvOvlResult);
5082     else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
5083       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
5084     else
5085       Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
5086     return;
5087   } else {
5088     Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
5089   }
5090 
5091   //        [...] If T1 is reference-related to T2, cv1 must be the
5092   //        same cv-qualification as, or greater cv-qualification
5093   //        than, cv2; otherwise, the program is ill-formed.
5094   unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
5095   unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
5096   if (RefRelationship == Sema::Ref_Related &&
5097       ((T1CVRQuals | T2CVRQuals) != T1CVRQuals ||
5098        !T1Quals.isAddressSpaceSupersetOf(T2Quals))) {
5099     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
5100     return;
5101   }
5102 
5103   //   [...] If T1 is reference-related to T2 and the reference is an rvalue
5104   //   reference, the initializer expression shall not be an lvalue.
5105   if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
5106       InitCategory.isLValue()) {
5107     Sequence.SetFailed(
5108                     InitializationSequence::FK_RValueReferenceBindingToLValue);
5109     return;
5110   }
5111 
5112   Sequence.AddReferenceBindingStep(cv1T1IgnoreAS, /*BindingTemporary=*/true);
5113 
5114   if (T1Quals.hasAddressSpace()) {
5115     if (!Qualifiers::isAddressSpaceSupersetOf(T1Quals.getAddressSpace(),
5116                                               LangAS::Default)) {
5117       Sequence.SetFailed(
5118           InitializationSequence::FK_ReferenceAddrspaceMismatchTemporary);
5119       return;
5120     }
5121     Sequence.AddQualificationConversionStep(cv1T1, isLValueRef ? VK_LValue
5122                                                                : VK_XValue);
5123   }
5124 }
5125 
5126 /// Attempt character array initialization from a string literal
5127 /// (C++ [dcl.init.string], C99 6.7.8).
5128 static void TryStringLiteralInitialization(Sema &S,
5129                                            const InitializedEntity &Entity,
5130                                            const InitializationKind &Kind,
5131                                            Expr *Initializer,
5132                                        InitializationSequence &Sequence) {
5133   Sequence.AddStringInitStep(Entity.getType());
5134 }
5135 
5136 /// Attempt value initialization (C++ [dcl.init]p7).
5137 static void TryValueInitialization(Sema &S,
5138                                    const InitializedEntity &Entity,
5139                                    const InitializationKind &Kind,
5140                                    InitializationSequence &Sequence,
5141                                    InitListExpr *InitList) {
5142   assert((!InitList || InitList->getNumInits() == 0) &&
5143          "Shouldn't use value-init for non-empty init lists");
5144 
5145   // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
5146   //
5147   //   To value-initialize an object of type T means:
5148   QualType T = Entity.getType();
5149 
5150   //     -- if T is an array type, then each element is value-initialized;
5151   T = S.Context.getBaseElementType(T);
5152 
5153   if (const RecordType *RT = T->getAs<RecordType>()) {
5154     if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
5155       bool NeedZeroInitialization = true;
5156       // C++98:
5157       // -- if T is a class type (clause 9) with a user-declared constructor
5158       //    (12.1), then the default constructor for T is called (and the
5159       //    initialization is ill-formed if T has no accessible default
5160       //    constructor);
5161       // C++11:
5162       // -- if T is a class type (clause 9) with either no default constructor
5163       //    (12.1 [class.ctor]) or a default constructor that is user-provided
5164       //    or deleted, then the object is default-initialized;
5165       //
5166       // Note that the C++11 rule is the same as the C++98 rule if there are no
5167       // defaulted or deleted constructors, so we just use it unconditionally.
5168       CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
5169       if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
5170         NeedZeroInitialization = false;
5171 
5172       // -- if T is a (possibly cv-qualified) non-union class type without a
5173       //    user-provided or deleted default constructor, then the object is
5174       //    zero-initialized and, if T has a non-trivial default constructor,
5175       //    default-initialized;
5176       // The 'non-union' here was removed by DR1502. The 'non-trivial default
5177       // constructor' part was removed by DR1507.
5178       if (NeedZeroInitialization)
5179         Sequence.AddZeroInitializationStep(Entity.getType());
5180 
5181       // C++03:
5182       // -- if T is a non-union class type without a user-declared constructor,
5183       //    then every non-static data member and base class component of T is
5184       //    value-initialized;
5185       // [...] A program that calls for [...] value-initialization of an
5186       // entity of reference type is ill-formed.
5187       //
5188       // C++11 doesn't need this handling, because value-initialization does not
5189       // occur recursively there, and the implicit default constructor is
5190       // defined as deleted in the problematic cases.
5191       if (!S.getLangOpts().CPlusPlus11 &&
5192           ClassDecl->hasUninitializedReferenceMember()) {
5193         Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
5194         return;
5195       }
5196 
5197       // If this is list-value-initialization, pass the empty init list on when
5198       // building the constructor call. This affects the semantics of a few
5199       // things (such as whether an explicit default constructor can be called).
5200       Expr *InitListAsExpr = InitList;
5201       MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
5202       bool InitListSyntax = InitList;
5203 
5204       // FIXME: Instead of creating a CXXConstructExpr of array type here,
5205       // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr.
5206       return TryConstructorInitialization(
5207           S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax);
5208     }
5209   }
5210 
5211   Sequence.AddZeroInitializationStep(Entity.getType());
5212 }
5213 
5214 /// Attempt default initialization (C++ [dcl.init]p6).
5215 static void TryDefaultInitialization(Sema &S,
5216                                      const InitializedEntity &Entity,
5217                                      const InitializationKind &Kind,
5218                                      InitializationSequence &Sequence) {
5219   assert(Kind.getKind() == InitializationKind::IK_Default);
5220 
5221   // C++ [dcl.init]p6:
5222   //   To default-initialize an object of type T means:
5223   //     - if T is an array type, each element is default-initialized;
5224   QualType DestType = S.Context.getBaseElementType(Entity.getType());
5225 
5226   //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
5227   //       constructor for T is called (and the initialization is ill-formed if
5228   //       T has no accessible default constructor);
5229   if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
5230     TryConstructorInitialization(S, Entity, Kind, None, DestType,
5231                                  Entity.getType(), Sequence);
5232     return;
5233   }
5234 
5235   //     - otherwise, no initialization is performed.
5236 
5237   //   If a program calls for the default initialization of an object of
5238   //   a const-qualified type T, T shall be a class type with a user-provided
5239   //   default constructor.
5240   if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
5241     if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
5242       Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
5243     return;
5244   }
5245 
5246   // If the destination type has a lifetime property, zero-initialize it.
5247   if (DestType.getQualifiers().hasObjCLifetime()) {
5248     Sequence.AddZeroInitializationStep(Entity.getType());
5249     return;
5250   }
5251 }
5252 
5253 /// Attempt a user-defined conversion between two types (C++ [dcl.init]),
5254 /// which enumerates all conversion functions and performs overload resolution
5255 /// to select the best.
5256 static void TryUserDefinedConversion(Sema &S,
5257                                      QualType DestType,
5258                                      const InitializationKind &Kind,
5259                                      Expr *Initializer,
5260                                      InitializationSequence &Sequence,
5261                                      bool TopLevelOfInitList) {
5262   assert(!DestType->isReferenceType() && "References are handled elsewhere");
5263   QualType SourceType = Initializer->getType();
5264   assert((DestType->isRecordType() || SourceType->isRecordType()) &&
5265          "Must have a class type to perform a user-defined conversion");
5266 
5267   // Build the candidate set directly in the initialization sequence
5268   // structure, so that it will persist if we fail.
5269   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
5270   CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
5271   CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace());
5272 
5273   // Determine whether we are allowed to call explicit constructors or
5274   // explicit conversion operators.
5275   bool AllowExplicit = Kind.AllowExplicit();
5276 
5277   if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
5278     // The type we're converting to is a class type. Enumerate its constructors
5279     // to see if there is a suitable conversion.
5280     CXXRecordDecl *DestRecordDecl
5281       = cast<CXXRecordDecl>(DestRecordType->getDecl());
5282 
5283     // Try to complete the type we're converting to.
5284     if (S.isCompleteType(Kind.getLocation(), DestType)) {
5285       for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) {
5286         auto Info = getConstructorInfo(D);
5287         if (!Info.Constructor)
5288           continue;
5289 
5290         if (!Info.Constructor->isInvalidDecl() &&
5291             Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) {
5292           if (Info.ConstructorTmpl)
5293             S.AddTemplateOverloadCandidate(
5294                 Info.ConstructorTmpl, Info.FoundDecl,
5295                 /*ExplicitArgs*/ nullptr, Initializer, CandidateSet,
5296                 /*SuppressUserConversions=*/true,
5297                 /*PartialOverloading*/ false, AllowExplicit);
5298           else
5299             S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
5300                                    Initializer, CandidateSet,
5301                                    /*SuppressUserConversions=*/true,
5302                                    /*PartialOverloading*/ false, AllowExplicit);
5303         }
5304       }
5305     }
5306   }
5307 
5308   SourceLocation DeclLoc = Initializer->getBeginLoc();
5309 
5310   if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
5311     // The type we're converting from is a class type, enumerate its conversion
5312     // functions.
5313 
5314     // We can only enumerate the conversion functions for a complete type; if
5315     // the type isn't complete, simply skip this step.
5316     if (S.isCompleteType(DeclLoc, SourceType)) {
5317       CXXRecordDecl *SourceRecordDecl
5318         = cast<CXXRecordDecl>(SourceRecordType->getDecl());
5319 
5320       const auto &Conversions =
5321           SourceRecordDecl->getVisibleConversionFunctions();
5322       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
5323         NamedDecl *D = *I;
5324         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
5325         if (isa<UsingShadowDecl>(D))
5326           D = cast<UsingShadowDecl>(D)->getTargetDecl();
5327 
5328         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
5329         CXXConversionDecl *Conv;
5330         if (ConvTemplate)
5331           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5332         else
5333           Conv = cast<CXXConversionDecl>(D);
5334 
5335         if (ConvTemplate)
5336           S.AddTemplateConversionCandidate(
5337               ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
5338               CandidateSet, AllowExplicit, AllowExplicit);
5339         else
5340           S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer,
5341                                    DestType, CandidateSet, AllowExplicit,
5342                                    AllowExplicit);
5343       }
5344     }
5345   }
5346 
5347   // Perform overload resolution. If it fails, return the failed result.
5348   OverloadCandidateSet::iterator Best;
5349   if (OverloadingResult Result
5350         = CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
5351     Sequence.SetOverloadFailure(
5352         InitializationSequence::FK_UserConversionOverloadFailed, Result);
5353 
5354     // [class.copy.elision]p3:
5355     // In some copy-initialization contexts, a two-stage overload resolution
5356     // is performed.
5357     // If the first overload resolution selects a deleted function, we also
5358     // need the initialization sequence to decide whether to perform the second
5359     // overload resolution.
5360     if (!(Result == OR_Deleted &&
5361           Kind.getKind() == InitializationKind::IK_Copy))
5362       return;
5363   }
5364 
5365   FunctionDecl *Function = Best->Function;
5366   Function->setReferenced();
5367   bool HadMultipleCandidates = (CandidateSet.size() > 1);
5368 
5369   if (isa<CXXConstructorDecl>(Function)) {
5370     // Add the user-defined conversion step. Any cv-qualification conversion is
5371     // subsumed by the initialization. Per DR5, the created temporary is of the
5372     // cv-unqualified type of the destination.
5373     Sequence.AddUserConversionStep(Function, Best->FoundDecl,
5374                                    DestType.getUnqualifiedType(),
5375                                    HadMultipleCandidates);
5376 
5377     // C++14 and before:
5378     //   - if the function is a constructor, the call initializes a temporary
5379     //     of the cv-unqualified version of the destination type. The [...]
5380     //     temporary [...] is then used to direct-initialize, according to the
5381     //     rules above, the object that is the destination of the
5382     //     copy-initialization.
5383     // Note that this just performs a simple object copy from the temporary.
5384     //
5385     // C++17:
5386     //   - if the function is a constructor, the call is a prvalue of the
5387     //     cv-unqualified version of the destination type whose return object
5388     //     is initialized by the constructor. The call is used to
5389     //     direct-initialize, according to the rules above, the object that
5390     //     is the destination of the copy-initialization.
5391     // Therefore we need to do nothing further.
5392     //
5393     // FIXME: Mark this copy as extraneous.
5394     if (!S.getLangOpts().CPlusPlus17)
5395       Sequence.AddFinalCopy(DestType);
5396     else if (DestType.hasQualifiers())
5397       Sequence.AddQualificationConversionStep(DestType, VK_PRValue);
5398     return;
5399   }
5400 
5401   // Add the user-defined conversion step that calls the conversion function.
5402   QualType ConvType = Function->getCallResultType();
5403   Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
5404                                  HadMultipleCandidates);
5405 
5406   if (ConvType->getAs<RecordType>()) {
5407     //   The call is used to direct-initialize [...] the object that is the
5408     //   destination of the copy-initialization.
5409     //
5410     // In C++17, this does not call a constructor if we enter /17.6.1:
5411     //   - If the initializer expression is a prvalue and the cv-unqualified
5412     //     version of the source type is the same as the class of the
5413     //     destination [... do not make an extra copy]
5414     //
5415     // FIXME: Mark this copy as extraneous.
5416     if (!S.getLangOpts().CPlusPlus17 ||
5417         Function->getReturnType()->isReferenceType() ||
5418         !S.Context.hasSameUnqualifiedType(ConvType, DestType))
5419       Sequence.AddFinalCopy(DestType);
5420     else if (!S.Context.hasSameType(ConvType, DestType))
5421       Sequence.AddQualificationConversionStep(DestType, VK_PRValue);
5422     return;
5423   }
5424 
5425   // If the conversion following the call to the conversion function
5426   // is interesting, add it as a separate step.
5427   if (Best->FinalConversion.First || Best->FinalConversion.Second ||
5428       Best->FinalConversion.Third) {
5429     ImplicitConversionSequence ICS;
5430     ICS.setStandard();
5431     ICS.Standard = Best->FinalConversion;
5432     Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5433   }
5434 }
5435 
5436 /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>,
5437 /// a function with a pointer return type contains a 'return false;' statement.
5438 /// In C++11, 'false' is not a null pointer, so this breaks the build of any
5439 /// code using that header.
5440 ///
5441 /// Work around this by treating 'return false;' as zero-initializing the result
5442 /// if it's used in a pointer-returning function in a system header.
5443 static bool isLibstdcxxPointerReturnFalseHack(Sema &S,
5444                                               const InitializedEntity &Entity,
5445                                               const Expr *Init) {
5446   return S.getLangOpts().CPlusPlus11 &&
5447          Entity.getKind() == InitializedEntity::EK_Result &&
5448          Entity.getType()->isPointerType() &&
5449          isa<CXXBoolLiteralExpr>(Init) &&
5450          !cast<CXXBoolLiteralExpr>(Init)->getValue() &&
5451          S.getSourceManager().isInSystemHeader(Init->getExprLoc());
5452 }
5453 
5454 /// The non-zero enum values here are indexes into diagnostic alternatives.
5455 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
5456 
5457 /// Determines whether this expression is an acceptable ICR source.
5458 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
5459                                          bool isAddressOf, bool &isWeakAccess) {
5460   // Skip parens.
5461   e = e->IgnoreParens();
5462 
5463   // Skip address-of nodes.
5464   if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
5465     if (op->getOpcode() == UO_AddrOf)
5466       return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
5467                                 isWeakAccess);
5468 
5469   // Skip certain casts.
5470   } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
5471     switch (ce->getCastKind()) {
5472     case CK_Dependent:
5473     case CK_BitCast:
5474     case CK_LValueBitCast:
5475     case CK_NoOp:
5476       return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
5477 
5478     case CK_ArrayToPointerDecay:
5479       return IIK_nonscalar;
5480 
5481     case CK_NullToPointer:
5482       return IIK_okay;
5483 
5484     default:
5485       break;
5486     }
5487 
5488   // If we have a declaration reference, it had better be a local variable.
5489   } else if (isa<DeclRefExpr>(e)) {
5490     // set isWeakAccess to true, to mean that there will be an implicit
5491     // load which requires a cleanup.
5492     if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
5493       isWeakAccess = true;
5494 
5495     if (!isAddressOf) return IIK_nonlocal;
5496 
5497     VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
5498     if (!var) return IIK_nonlocal;
5499 
5500     return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
5501 
5502   // If we have a conditional operator, check both sides.
5503   } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
5504     if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
5505                                                 isWeakAccess))
5506       return iik;
5507 
5508     return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
5509 
5510   // These are never scalar.
5511   } else if (isa<ArraySubscriptExpr>(e)) {
5512     return IIK_nonscalar;
5513 
5514   // Otherwise, it needs to be a null pointer constant.
5515   } else {
5516     return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
5517             ? IIK_okay : IIK_nonlocal);
5518   }
5519 
5520   return IIK_nonlocal;
5521 }
5522 
5523 /// Check whether the given expression is a valid operand for an
5524 /// indirect copy/restore.
5525 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
5526   assert(src->isPRValue());
5527   bool isWeakAccess = false;
5528   InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
5529   // If isWeakAccess to true, there will be an implicit
5530   // load which requires a cleanup.
5531   if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
5532     S.Cleanup.setExprNeedsCleanups(true);
5533 
5534   if (iik == IIK_okay) return;
5535 
5536   S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
5537     << ((unsigned) iik - 1)  // shift index into diagnostic explanations
5538     << src->getSourceRange();
5539 }
5540 
5541 /// Determine whether we have compatible array types for the
5542 /// purposes of GNU by-copy array initialization.
5543 static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest,
5544                                     const ArrayType *Source) {
5545   // If the source and destination array types are equivalent, we're
5546   // done.
5547   if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
5548     return true;
5549 
5550   // Make sure that the element types are the same.
5551   if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
5552     return false;
5553 
5554   // The only mismatch we allow is when the destination is an
5555   // incomplete array type and the source is a constant array type.
5556   return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
5557 }
5558 
5559 static bool tryObjCWritebackConversion(Sema &S,
5560                                        InitializationSequence &Sequence,
5561                                        const InitializedEntity &Entity,
5562                                        Expr *Initializer) {
5563   bool ArrayDecay = false;
5564   QualType ArgType = Initializer->getType();
5565   QualType ArgPointee;
5566   if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
5567     ArrayDecay = true;
5568     ArgPointee = ArgArrayType->getElementType();
5569     ArgType = S.Context.getPointerType(ArgPointee);
5570   }
5571 
5572   // Handle write-back conversion.
5573   QualType ConvertedArgType;
5574   if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
5575                                    ConvertedArgType))
5576     return false;
5577 
5578   // We should copy unless we're passing to an argument explicitly
5579   // marked 'out'.
5580   bool ShouldCopy = true;
5581   if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5582     ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5583 
5584   // Do we need an lvalue conversion?
5585   if (ArrayDecay || Initializer->isGLValue()) {
5586     ImplicitConversionSequence ICS;
5587     ICS.setStandard();
5588     ICS.Standard.setAsIdentityConversion();
5589 
5590     QualType ResultType;
5591     if (ArrayDecay) {
5592       ICS.Standard.First = ICK_Array_To_Pointer;
5593       ResultType = S.Context.getPointerType(ArgPointee);
5594     } else {
5595       ICS.Standard.First = ICK_Lvalue_To_Rvalue;
5596       ResultType = Initializer->getType().getNonLValueExprType(S.Context);
5597     }
5598 
5599     Sequence.AddConversionSequenceStep(ICS, ResultType);
5600   }
5601 
5602   Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
5603   return true;
5604 }
5605 
5606 static bool TryOCLSamplerInitialization(Sema &S,
5607                                         InitializationSequence &Sequence,
5608                                         QualType DestType,
5609                                         Expr *Initializer) {
5610   if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
5611       (!Initializer->isIntegerConstantExpr(S.Context) &&
5612       !Initializer->getType()->isSamplerT()))
5613     return false;
5614 
5615   Sequence.AddOCLSamplerInitStep(DestType);
5616   return true;
5617 }
5618 
5619 static bool IsZeroInitializer(Expr *Initializer, Sema &S) {
5620   return Initializer->isIntegerConstantExpr(S.getASTContext()) &&
5621     (Initializer->EvaluateKnownConstInt(S.getASTContext()) == 0);
5622 }
5623 
5624 static bool TryOCLZeroOpaqueTypeInitialization(Sema &S,
5625                                                InitializationSequence &Sequence,
5626                                                QualType DestType,
5627                                                Expr *Initializer) {
5628   if (!S.getLangOpts().OpenCL)
5629     return false;
5630 
5631   //
5632   // OpenCL 1.2 spec, s6.12.10
5633   //
5634   // The event argument can also be used to associate the
5635   // async_work_group_copy with a previous async copy allowing
5636   // an event to be shared by multiple async copies; otherwise
5637   // event should be zero.
5638   //
5639   if (DestType->isEventT() || DestType->isQueueT()) {
5640     if (!IsZeroInitializer(Initializer, S))
5641       return false;
5642 
5643     Sequence.AddOCLZeroOpaqueTypeStep(DestType);
5644     return true;
5645   }
5646 
5647   // We should allow zero initialization for all types defined in the
5648   // cl_intel_device_side_avc_motion_estimation extension, except
5649   // intel_sub_group_avc_mce_payload_t and intel_sub_group_avc_mce_result_t.
5650   if (S.getOpenCLOptions().isAvailableOption(
5651           "cl_intel_device_side_avc_motion_estimation", S.getLangOpts()) &&
5652       DestType->isOCLIntelSubgroupAVCType()) {
5653     if (DestType->isOCLIntelSubgroupAVCMcePayloadType() ||
5654         DestType->isOCLIntelSubgroupAVCMceResultType())
5655       return false;
5656     if (!IsZeroInitializer(Initializer, S))
5657       return false;
5658 
5659     Sequence.AddOCLZeroOpaqueTypeStep(DestType);
5660     return true;
5661   }
5662 
5663   return false;
5664 }
5665 
5666 InitializationSequence::InitializationSequence(
5667     Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind,
5668     MultiExprArg Args, bool TopLevelOfInitList, bool TreatUnavailableAsInvalid)
5669     : FailedOverloadResult(OR_Success),
5670       FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) {
5671   InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList,
5672                  TreatUnavailableAsInvalid);
5673 }
5674 
5675 /// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the
5676 /// address of that function, this returns true. Otherwise, it returns false.
5677 static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) {
5678   auto *DRE = dyn_cast<DeclRefExpr>(E);
5679   if (!DRE || !isa<FunctionDecl>(DRE->getDecl()))
5680     return false;
5681 
5682   return !S.checkAddressOfFunctionIsAvailable(
5683       cast<FunctionDecl>(DRE->getDecl()));
5684 }
5685 
5686 /// Determine whether we can perform an elementwise array copy for this kind
5687 /// of entity.
5688 static bool canPerformArrayCopy(const InitializedEntity &Entity) {
5689   switch (Entity.getKind()) {
5690   case InitializedEntity::EK_LambdaCapture:
5691     // C++ [expr.prim.lambda]p24:
5692     //   For array members, the array elements are direct-initialized in
5693     //   increasing subscript order.
5694     return true;
5695 
5696   case InitializedEntity::EK_Variable:
5697     // C++ [dcl.decomp]p1:
5698     //   [...] each element is copy-initialized or direct-initialized from the
5699     //   corresponding element of the assignment-expression [...]
5700     return isa<DecompositionDecl>(Entity.getDecl());
5701 
5702   case InitializedEntity::EK_Member:
5703     // C++ [class.copy.ctor]p14:
5704     //   - if the member is an array, each element is direct-initialized with
5705     //     the corresponding subobject of x
5706     return Entity.isImplicitMemberInitializer();
5707 
5708   case InitializedEntity::EK_ArrayElement:
5709     // All the above cases are intended to apply recursively, even though none
5710     // of them actually say that.
5711     if (auto *E = Entity.getParent())
5712       return canPerformArrayCopy(*E);
5713     break;
5714 
5715   default:
5716     break;
5717   }
5718 
5719   return false;
5720 }
5721 
5722 void InitializationSequence::InitializeFrom(Sema &S,
5723                                             const InitializedEntity &Entity,
5724                                             const InitializationKind &Kind,
5725                                             MultiExprArg Args,
5726                                             bool TopLevelOfInitList,
5727                                             bool TreatUnavailableAsInvalid) {
5728   ASTContext &Context = S.Context;
5729 
5730   // Eliminate non-overload placeholder types in the arguments.  We
5731   // need to do this before checking whether types are dependent
5732   // because lowering a pseudo-object expression might well give us
5733   // something of dependent type.
5734   for (unsigned I = 0, E = Args.size(); I != E; ++I)
5735     if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
5736       // FIXME: should we be doing this here?
5737       ExprResult result = S.CheckPlaceholderExpr(Args[I]);
5738       if (result.isInvalid()) {
5739         SetFailed(FK_PlaceholderType);
5740         return;
5741       }
5742       Args[I] = result.get();
5743     }
5744 
5745   // C++0x [dcl.init]p16:
5746   //   The semantics of initializers are as follows. The destination type is
5747   //   the type of the object or reference being initialized and the source
5748   //   type is the type of the initializer expression. The source type is not
5749   //   defined when the initializer is a braced-init-list or when it is a
5750   //   parenthesized list of expressions.
5751   QualType DestType = Entity.getType();
5752 
5753   if (DestType->isDependentType() ||
5754       Expr::hasAnyTypeDependentArguments(Args)) {
5755     SequenceKind = DependentSequence;
5756     return;
5757   }
5758 
5759   // Almost everything is a normal sequence.
5760   setSequenceKind(NormalSequence);
5761 
5762   QualType SourceType;
5763   Expr *Initializer = nullptr;
5764   if (Args.size() == 1) {
5765     Initializer = Args[0];
5766     if (S.getLangOpts().ObjC) {
5767       if (S.CheckObjCBridgeRelatedConversions(Initializer->getBeginLoc(),
5768                                               DestType, Initializer->getType(),
5769                                               Initializer) ||
5770           S.CheckConversionToObjCLiteral(DestType, Initializer))
5771         Args[0] = Initializer;
5772     }
5773     if (!isa<InitListExpr>(Initializer))
5774       SourceType = Initializer->getType();
5775   }
5776 
5777   //     - If the initializer is a (non-parenthesized) braced-init-list, the
5778   //       object is list-initialized (8.5.4).
5779   if (Kind.getKind() != InitializationKind::IK_Direct) {
5780     if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
5781       TryListInitialization(S, Entity, Kind, InitList, *this,
5782                             TreatUnavailableAsInvalid);
5783       return;
5784     }
5785   }
5786 
5787   //     - If the destination type is a reference type, see 8.5.3.
5788   if (DestType->isReferenceType()) {
5789     // C++0x [dcl.init.ref]p1:
5790     //   A variable declared to be a T& or T&&, that is, "reference to type T"
5791     //   (8.3.2), shall be initialized by an object, or function, of type T or
5792     //   by an object that can be converted into a T.
5793     // (Therefore, multiple arguments are not permitted.)
5794     if (Args.size() != 1)
5795       SetFailed(FK_TooManyInitsForReference);
5796     // C++17 [dcl.init.ref]p5:
5797     //   A reference [...] is initialized by an expression [...] as follows:
5798     // If the initializer is not an expression, presumably we should reject,
5799     // but the standard fails to actually say so.
5800     else if (isa<InitListExpr>(Args[0]))
5801       SetFailed(FK_ParenthesizedListInitForReference);
5802     else
5803       TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
5804     return;
5805   }
5806 
5807   //     - If the initializer is (), the object is value-initialized.
5808   if (Kind.getKind() == InitializationKind::IK_Value ||
5809       (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
5810     TryValueInitialization(S, Entity, Kind, *this);
5811     return;
5812   }
5813 
5814   // Handle default initialization.
5815   if (Kind.getKind() == InitializationKind::IK_Default) {
5816     TryDefaultInitialization(S, Entity, Kind, *this);
5817     return;
5818   }
5819 
5820   //     - If the destination type is an array of characters, an array of
5821   //       char16_t, an array of char32_t, or an array of wchar_t, and the
5822   //       initializer is a string literal, see 8.5.2.
5823   //     - Otherwise, if the destination type is an array, the program is
5824   //       ill-formed.
5825   if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
5826     if (Initializer && isa<VariableArrayType>(DestAT)) {
5827       SetFailed(FK_VariableLengthArrayHasInitializer);
5828       return;
5829     }
5830 
5831     if (Initializer) {
5832       switch (IsStringInit(Initializer, DestAT, Context)) {
5833       case SIF_None:
5834         TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
5835         return;
5836       case SIF_NarrowStringIntoWideChar:
5837         SetFailed(FK_NarrowStringIntoWideCharArray);
5838         return;
5839       case SIF_WideStringIntoChar:
5840         SetFailed(FK_WideStringIntoCharArray);
5841         return;
5842       case SIF_IncompatWideStringIntoWideChar:
5843         SetFailed(FK_IncompatWideStringIntoWideChar);
5844         return;
5845       case SIF_PlainStringIntoUTF8Char:
5846         SetFailed(FK_PlainStringIntoUTF8Char);
5847         return;
5848       case SIF_UTF8StringIntoPlainChar:
5849         SetFailed(FK_UTF8StringIntoPlainChar);
5850         return;
5851       case SIF_Other:
5852         break;
5853       }
5854     }
5855 
5856     // Some kinds of initialization permit an array to be initialized from
5857     // another array of the same type, and perform elementwise initialization.
5858     if (Initializer && isa<ConstantArrayType>(DestAT) &&
5859         S.Context.hasSameUnqualifiedType(Initializer->getType(),
5860                                          Entity.getType()) &&
5861         canPerformArrayCopy(Entity)) {
5862       // If source is a prvalue, use it directly.
5863       if (Initializer->isPRValue()) {
5864         AddArrayInitStep(DestType, /*IsGNUExtension*/false);
5865         return;
5866       }
5867 
5868       // Emit element-at-a-time copy loop.
5869       InitializedEntity Element =
5870           InitializedEntity::InitializeElement(S.Context, 0, Entity);
5871       QualType InitEltT =
5872           Context.getAsArrayType(Initializer->getType())->getElementType();
5873       OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT,
5874                           Initializer->getValueKind(),
5875                           Initializer->getObjectKind());
5876       Expr *OVEAsExpr = &OVE;
5877       InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList,
5878                      TreatUnavailableAsInvalid);
5879       if (!Failed())
5880         AddArrayInitLoopStep(Entity.getType(), InitEltT);
5881       return;
5882     }
5883 
5884     // Note: as an GNU C extension, we allow initialization of an
5885     // array from a compound literal that creates an array of the same
5886     // type, so long as the initializer has no side effects.
5887     if (!S.getLangOpts().CPlusPlus && Initializer &&
5888         isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
5889         Initializer->getType()->isArrayType()) {
5890       const ArrayType *SourceAT
5891         = Context.getAsArrayType(Initializer->getType());
5892       if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
5893         SetFailed(FK_ArrayTypeMismatch);
5894       else if (Initializer->HasSideEffects(S.Context))
5895         SetFailed(FK_NonConstantArrayInit);
5896       else {
5897         AddArrayInitStep(DestType, /*IsGNUExtension*/true);
5898       }
5899     }
5900     // Note: as a GNU C++ extension, we allow list-initialization of a
5901     // class member of array type from a parenthesized initializer list.
5902     else if (S.getLangOpts().CPlusPlus &&
5903              Entity.getKind() == InitializedEntity::EK_Member &&
5904              Initializer && isa<InitListExpr>(Initializer)) {
5905       TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
5906                             *this, TreatUnavailableAsInvalid);
5907       AddParenthesizedArrayInitStep(DestType);
5908     } else if (DestAT->getElementType()->isCharType())
5909       SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
5910     else if (IsWideCharCompatible(DestAT->getElementType(), Context))
5911       SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral);
5912     else
5913       SetFailed(FK_ArrayNeedsInitList);
5914 
5915     return;
5916   }
5917 
5918   // Determine whether we should consider writeback conversions for
5919   // Objective-C ARC.
5920   bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
5921          Entity.isParameterKind();
5922 
5923   if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
5924     return;
5925 
5926   // We're at the end of the line for C: it's either a write-back conversion
5927   // or it's a C assignment. There's no need to check anything else.
5928   if (!S.getLangOpts().CPlusPlus) {
5929     // If allowed, check whether this is an Objective-C writeback conversion.
5930     if (allowObjCWritebackConversion &&
5931         tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
5932       return;
5933     }
5934 
5935     if (TryOCLZeroOpaqueTypeInitialization(S, *this, DestType, Initializer))
5936       return;
5937 
5938     // Handle initialization in C
5939     AddCAssignmentStep(DestType);
5940     MaybeProduceObjCObject(S, *this, Entity);
5941     return;
5942   }
5943 
5944   assert(S.getLangOpts().CPlusPlus);
5945 
5946   //     - If the destination type is a (possibly cv-qualified) class type:
5947   if (DestType->isRecordType()) {
5948     //     - If the initialization is direct-initialization, or if it is
5949     //       copy-initialization where the cv-unqualified version of the
5950     //       source type is the same class as, or a derived class of, the
5951     //       class of the destination, constructors are considered. [...]
5952     if (Kind.getKind() == InitializationKind::IK_Direct ||
5953         (Kind.getKind() == InitializationKind::IK_Copy &&
5954          (Context.hasSameUnqualifiedType(SourceType, DestType) ||
5955           S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, DestType))))
5956       TryConstructorInitialization(S, Entity, Kind, Args,
5957                                    DestType, DestType, *this);
5958     //     - Otherwise (i.e., for the remaining copy-initialization cases),
5959     //       user-defined conversion sequences that can convert from the source
5960     //       type to the destination type or (when a conversion function is
5961     //       used) to a derived class thereof are enumerated as described in
5962     //       13.3.1.4, and the best one is chosen through overload resolution
5963     //       (13.3).
5964     else
5965       TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5966                                TopLevelOfInitList);
5967     return;
5968   }
5969 
5970   assert(Args.size() >= 1 && "Zero-argument case handled above");
5971 
5972   // The remaining cases all need a source type.
5973   if (Args.size() > 1) {
5974     SetFailed(FK_TooManyInitsForScalar);
5975     return;
5976   } else if (isa<InitListExpr>(Args[0])) {
5977     SetFailed(FK_ParenthesizedListInitForScalar);
5978     return;
5979   }
5980 
5981   //    - Otherwise, if the source type is a (possibly cv-qualified) class
5982   //      type, conversion functions are considered.
5983   if (!SourceType.isNull() && SourceType->isRecordType()) {
5984     // For a conversion to _Atomic(T) from either T or a class type derived
5985     // from T, initialize the T object then convert to _Atomic type.
5986     bool NeedAtomicConversion = false;
5987     if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) {
5988       if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) ||
5989           S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType,
5990                           Atomic->getValueType())) {
5991         DestType = Atomic->getValueType();
5992         NeedAtomicConversion = true;
5993       }
5994     }
5995 
5996     TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5997                              TopLevelOfInitList);
5998     MaybeProduceObjCObject(S, *this, Entity);
5999     if (!Failed() && NeedAtomicConversion)
6000       AddAtomicConversionStep(Entity.getType());
6001     return;
6002   }
6003 
6004   //    - Otherwise, if the initialization is direct-initialization, the source
6005   //    type is std::nullptr_t, and the destination type is bool, the initial
6006   //    value of the object being initialized is false.
6007   if (!SourceType.isNull() && SourceType->isNullPtrType() &&
6008       DestType->isBooleanType() &&
6009       Kind.getKind() == InitializationKind::IK_Direct) {
6010     AddConversionSequenceStep(
6011         ImplicitConversionSequence::getNullptrToBool(SourceType, DestType,
6012                                                      Initializer->isGLValue()),
6013         DestType);
6014     return;
6015   }
6016 
6017   //    - Otherwise, the initial value of the object being initialized is the
6018   //      (possibly converted) value of the initializer expression. Standard
6019   //      conversions (Clause 4) will be used, if necessary, to convert the
6020   //      initializer expression to the cv-unqualified version of the
6021   //      destination type; no user-defined conversions are considered.
6022 
6023   ImplicitConversionSequence ICS
6024     = S.TryImplicitConversion(Initializer, DestType,
6025                               /*SuppressUserConversions*/true,
6026                               Sema::AllowedExplicit::None,
6027                               /*InOverloadResolution*/ false,
6028                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
6029                               allowObjCWritebackConversion);
6030 
6031   if (ICS.isStandard() &&
6032       ICS.Standard.Second == ICK_Writeback_Conversion) {
6033     // Objective-C ARC writeback conversion.
6034 
6035     // We should copy unless we're passing to an argument explicitly
6036     // marked 'out'.
6037     bool ShouldCopy = true;
6038     if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
6039       ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
6040 
6041     // If there was an lvalue adjustment, add it as a separate conversion.
6042     if (ICS.Standard.First == ICK_Array_To_Pointer ||
6043         ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
6044       ImplicitConversionSequence LvalueICS;
6045       LvalueICS.setStandard();
6046       LvalueICS.Standard.setAsIdentityConversion();
6047       LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
6048       LvalueICS.Standard.First = ICS.Standard.First;
6049       AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
6050     }
6051 
6052     AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy);
6053   } else if (ICS.isBad()) {
6054     DeclAccessPair dap;
6055     if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) {
6056       AddZeroInitializationStep(Entity.getType());
6057     } else if (Initializer->getType() == Context.OverloadTy &&
6058                !S.ResolveAddressOfOverloadedFunction(Initializer, DestType,
6059                                                      false, dap))
6060       SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
6061     else if (Initializer->getType()->isFunctionType() &&
6062              isExprAnUnaddressableFunction(S, Initializer))
6063       SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction);
6064     else
6065       SetFailed(InitializationSequence::FK_ConversionFailed);
6066   } else {
6067     AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
6068 
6069     MaybeProduceObjCObject(S, *this, Entity);
6070   }
6071 }
6072 
6073 InitializationSequence::~InitializationSequence() {
6074   for (auto &S : Steps)
6075     S.Destroy();
6076 }
6077 
6078 //===----------------------------------------------------------------------===//
6079 // Perform initialization
6080 //===----------------------------------------------------------------------===//
6081 static Sema::AssignmentAction
6082 getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) {
6083   switch(Entity.getKind()) {
6084   case InitializedEntity::EK_Variable:
6085   case InitializedEntity::EK_New:
6086   case InitializedEntity::EK_Exception:
6087   case InitializedEntity::EK_Base:
6088   case InitializedEntity::EK_Delegating:
6089     return Sema::AA_Initializing;
6090 
6091   case InitializedEntity::EK_Parameter:
6092     if (Entity.getDecl() &&
6093         isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
6094       return Sema::AA_Sending;
6095 
6096     return Sema::AA_Passing;
6097 
6098   case InitializedEntity::EK_Parameter_CF_Audited:
6099     if (Entity.getDecl() &&
6100       isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
6101       return Sema::AA_Sending;
6102 
6103     return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited;
6104 
6105   case InitializedEntity::EK_Result:
6106   case InitializedEntity::EK_StmtExprResult: // FIXME: Not quite right.
6107     return Sema::AA_Returning;
6108 
6109   case InitializedEntity::EK_Temporary:
6110   case InitializedEntity::EK_RelatedResult:
6111     // FIXME: Can we tell apart casting vs. converting?
6112     return Sema::AA_Casting;
6113 
6114   case InitializedEntity::EK_TemplateParameter:
6115     // This is really initialization, but refer to it as conversion for
6116     // consistency with CheckConvertedConstantExpression.
6117     return Sema::AA_Converting;
6118 
6119   case InitializedEntity::EK_Member:
6120   case InitializedEntity::EK_Binding:
6121   case InitializedEntity::EK_ArrayElement:
6122   case InitializedEntity::EK_VectorElement:
6123   case InitializedEntity::EK_ComplexElement:
6124   case InitializedEntity::EK_BlockElement:
6125   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6126   case InitializedEntity::EK_LambdaCapture:
6127   case InitializedEntity::EK_CompoundLiteralInit:
6128     return Sema::AA_Initializing;
6129   }
6130 
6131   llvm_unreachable("Invalid EntityKind!");
6132 }
6133 
6134 /// Whether we should bind a created object as a temporary when
6135 /// initializing the given entity.
6136 static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
6137   switch (Entity.getKind()) {
6138   case InitializedEntity::EK_ArrayElement:
6139   case InitializedEntity::EK_Member:
6140   case InitializedEntity::EK_Result:
6141   case InitializedEntity::EK_StmtExprResult:
6142   case InitializedEntity::EK_New:
6143   case InitializedEntity::EK_Variable:
6144   case InitializedEntity::EK_Base:
6145   case InitializedEntity::EK_Delegating:
6146   case InitializedEntity::EK_VectorElement:
6147   case InitializedEntity::EK_ComplexElement:
6148   case InitializedEntity::EK_Exception:
6149   case InitializedEntity::EK_BlockElement:
6150   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6151   case InitializedEntity::EK_LambdaCapture:
6152   case InitializedEntity::EK_CompoundLiteralInit:
6153   case InitializedEntity::EK_TemplateParameter:
6154     return false;
6155 
6156   case InitializedEntity::EK_Parameter:
6157   case InitializedEntity::EK_Parameter_CF_Audited:
6158   case InitializedEntity::EK_Temporary:
6159   case InitializedEntity::EK_RelatedResult:
6160   case InitializedEntity::EK_Binding:
6161     return true;
6162   }
6163 
6164   llvm_unreachable("missed an InitializedEntity kind?");
6165 }
6166 
6167 /// Whether the given entity, when initialized with an object
6168 /// created for that initialization, requires destruction.
6169 static bool shouldDestroyEntity(const InitializedEntity &Entity) {
6170   switch (Entity.getKind()) {
6171     case InitializedEntity::EK_Result:
6172     case InitializedEntity::EK_StmtExprResult:
6173     case InitializedEntity::EK_New:
6174     case InitializedEntity::EK_Base:
6175     case InitializedEntity::EK_Delegating:
6176     case InitializedEntity::EK_VectorElement:
6177     case InitializedEntity::EK_ComplexElement:
6178     case InitializedEntity::EK_BlockElement:
6179     case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6180     case InitializedEntity::EK_LambdaCapture:
6181       return false;
6182 
6183     case InitializedEntity::EK_Member:
6184     case InitializedEntity::EK_Binding:
6185     case InitializedEntity::EK_Variable:
6186     case InitializedEntity::EK_Parameter:
6187     case InitializedEntity::EK_Parameter_CF_Audited:
6188     case InitializedEntity::EK_TemplateParameter:
6189     case InitializedEntity::EK_Temporary:
6190     case InitializedEntity::EK_ArrayElement:
6191     case InitializedEntity::EK_Exception:
6192     case InitializedEntity::EK_CompoundLiteralInit:
6193     case InitializedEntity::EK_RelatedResult:
6194       return true;
6195   }
6196 
6197   llvm_unreachable("missed an InitializedEntity kind?");
6198 }
6199 
6200 /// Get the location at which initialization diagnostics should appear.
6201 static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
6202                                            Expr *Initializer) {
6203   switch (Entity.getKind()) {
6204   case InitializedEntity::EK_Result:
6205   case InitializedEntity::EK_StmtExprResult:
6206     return Entity.getReturnLoc();
6207 
6208   case InitializedEntity::EK_Exception:
6209     return Entity.getThrowLoc();
6210 
6211   case InitializedEntity::EK_Variable:
6212   case InitializedEntity::EK_Binding:
6213     return Entity.getDecl()->getLocation();
6214 
6215   case InitializedEntity::EK_LambdaCapture:
6216     return Entity.getCaptureLoc();
6217 
6218   case InitializedEntity::EK_ArrayElement:
6219   case InitializedEntity::EK_Member:
6220   case InitializedEntity::EK_Parameter:
6221   case InitializedEntity::EK_Parameter_CF_Audited:
6222   case InitializedEntity::EK_TemplateParameter:
6223   case InitializedEntity::EK_Temporary:
6224   case InitializedEntity::EK_New:
6225   case InitializedEntity::EK_Base:
6226   case InitializedEntity::EK_Delegating:
6227   case InitializedEntity::EK_VectorElement:
6228   case InitializedEntity::EK_ComplexElement:
6229   case InitializedEntity::EK_BlockElement:
6230   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6231   case InitializedEntity::EK_CompoundLiteralInit:
6232   case InitializedEntity::EK_RelatedResult:
6233     return Initializer->getBeginLoc();
6234   }
6235   llvm_unreachable("missed an InitializedEntity kind?");
6236 }
6237 
6238 /// Make a (potentially elidable) temporary copy of the object
6239 /// provided by the given initializer by calling the appropriate copy
6240 /// constructor.
6241 ///
6242 /// \param S The Sema object used for type-checking.
6243 ///
6244 /// \param T The type of the temporary object, which must either be
6245 /// the type of the initializer expression or a superclass thereof.
6246 ///
6247 /// \param Entity The entity being initialized.
6248 ///
6249 /// \param CurInit The initializer expression.
6250 ///
6251 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that
6252 /// is permitted in C++03 (but not C++0x) when binding a reference to
6253 /// an rvalue.
6254 ///
6255 /// \returns An expression that copies the initializer expression into
6256 /// a temporary object, or an error expression if a copy could not be
6257 /// created.
6258 static ExprResult CopyObject(Sema &S,
6259                              QualType T,
6260                              const InitializedEntity &Entity,
6261                              ExprResult CurInit,
6262                              bool IsExtraneousCopy) {
6263   if (CurInit.isInvalid())
6264     return CurInit;
6265   // Determine which class type we're copying to.
6266   Expr *CurInitExpr = (Expr *)CurInit.get();
6267   CXXRecordDecl *Class = nullptr;
6268   if (const RecordType *Record = T->getAs<RecordType>())
6269     Class = cast<CXXRecordDecl>(Record->getDecl());
6270   if (!Class)
6271     return CurInit;
6272 
6273   SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
6274 
6275   // Make sure that the type we are copying is complete.
6276   if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
6277     return CurInit;
6278 
6279   // Perform overload resolution using the class's constructors. Per
6280   // C++11 [dcl.init]p16, second bullet for class types, this initialization
6281   // is direct-initialization.
6282   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
6283   DeclContext::lookup_result Ctors = S.LookupConstructors(Class);
6284 
6285   OverloadCandidateSet::iterator Best;
6286   switch (ResolveConstructorOverload(
6287       S, Loc, CurInitExpr, CandidateSet, T, Ctors, Best,
6288       /*CopyInitializing=*/false, /*AllowExplicit=*/true,
6289       /*OnlyListConstructors=*/false, /*IsListInit=*/false,
6290       /*SecondStepOfCopyInit=*/true)) {
6291   case OR_Success:
6292     break;
6293 
6294   case OR_No_Viable_Function:
6295     CandidateSet.NoteCandidates(
6296         PartialDiagnosticAt(
6297             Loc, S.PDiag(IsExtraneousCopy && !S.isSFINAEContext()
6298                              ? diag::ext_rvalue_to_reference_temp_copy_no_viable
6299                              : diag::err_temp_copy_no_viable)
6300                      << (int)Entity.getKind() << CurInitExpr->getType()
6301                      << CurInitExpr->getSourceRange()),
6302         S, OCD_AllCandidates, CurInitExpr);
6303     if (!IsExtraneousCopy || S.isSFINAEContext())
6304       return ExprError();
6305     return CurInit;
6306 
6307   case OR_Ambiguous:
6308     CandidateSet.NoteCandidates(
6309         PartialDiagnosticAt(Loc, S.PDiag(diag::err_temp_copy_ambiguous)
6310                                      << (int)Entity.getKind()
6311                                      << CurInitExpr->getType()
6312                                      << CurInitExpr->getSourceRange()),
6313         S, OCD_AmbiguousCandidates, CurInitExpr);
6314     return ExprError();
6315 
6316   case OR_Deleted:
6317     S.Diag(Loc, diag::err_temp_copy_deleted)
6318       << (int)Entity.getKind() << CurInitExpr->getType()
6319       << CurInitExpr->getSourceRange();
6320     S.NoteDeletedFunction(Best->Function);
6321     return ExprError();
6322   }
6323 
6324   bool HadMultipleCandidates = CandidateSet.size() > 1;
6325 
6326   CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
6327   SmallVector<Expr*, 8> ConstructorArgs;
6328   CurInit.get(); // Ownership transferred into MultiExprArg, below.
6329 
6330   S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity,
6331                            IsExtraneousCopy);
6332 
6333   if (IsExtraneousCopy) {
6334     // If this is a totally extraneous copy for C++03 reference
6335     // binding purposes, just return the original initialization
6336     // expression. We don't generate an (elided) copy operation here
6337     // because doing so would require us to pass down a flag to avoid
6338     // infinite recursion, where each step adds another extraneous,
6339     // elidable copy.
6340 
6341     // Instantiate the default arguments of any extra parameters in
6342     // the selected copy constructor, as if we were going to create a
6343     // proper call to the copy constructor.
6344     for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
6345       ParmVarDecl *Parm = Constructor->getParamDecl(I);
6346       if (S.RequireCompleteType(Loc, Parm->getType(),
6347                                 diag::err_call_incomplete_argument))
6348         break;
6349 
6350       // Build the default argument expression; we don't actually care
6351       // if this succeeds or not, because this routine will complain
6352       // if there was a problem.
6353       S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
6354     }
6355 
6356     return CurInitExpr;
6357   }
6358 
6359   // Determine the arguments required to actually perform the
6360   // constructor call (we might have derived-to-base conversions, or
6361   // the copy constructor may have default arguments).
6362   if (S.CompleteConstructorCall(Constructor, T, CurInitExpr, Loc,
6363                                 ConstructorArgs))
6364     return ExprError();
6365 
6366   // C++0x [class.copy]p32:
6367   //   When certain criteria are met, an implementation is allowed to
6368   //   omit the copy/move construction of a class object, even if the
6369   //   copy/move constructor and/or destructor for the object have
6370   //   side effects. [...]
6371   //     - when a temporary class object that has not been bound to a
6372   //       reference (12.2) would be copied/moved to a class object
6373   //       with the same cv-unqualified type, the copy/move operation
6374   //       can be omitted by constructing the temporary object
6375   //       directly into the target of the omitted copy/move
6376   //
6377   // Note that the other three bullets are handled elsewhere. Copy
6378   // elision for return statements and throw expressions are handled as part
6379   // of constructor initialization, while copy elision for exception handlers
6380   // is handled by the run-time.
6381   //
6382   // FIXME: If the function parameter is not the same type as the temporary, we
6383   // should still be able to elide the copy, but we don't have a way to
6384   // represent in the AST how much should be elided in this case.
6385   bool Elidable =
6386       CurInitExpr->isTemporaryObject(S.Context, Class) &&
6387       S.Context.hasSameUnqualifiedType(
6388           Best->Function->getParamDecl(0)->getType().getNonReferenceType(),
6389           CurInitExpr->getType());
6390 
6391   // Actually perform the constructor call.
6392   CurInit = S.BuildCXXConstructExpr(Loc, T, Best->FoundDecl, Constructor,
6393                                     Elidable,
6394                                     ConstructorArgs,
6395                                     HadMultipleCandidates,
6396                                     /*ListInit*/ false,
6397                                     /*StdInitListInit*/ false,
6398                                     /*ZeroInit*/ false,
6399                                     CXXConstructExpr::CK_Complete,
6400                                     SourceRange());
6401 
6402   // If we're supposed to bind temporaries, do so.
6403   if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
6404     CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
6405   return CurInit;
6406 }
6407 
6408 /// Check whether elidable copy construction for binding a reference to
6409 /// a temporary would have succeeded if we were building in C++98 mode, for
6410 /// -Wc++98-compat.
6411 static void CheckCXX98CompatAccessibleCopy(Sema &S,
6412                                            const InitializedEntity &Entity,
6413                                            Expr *CurInitExpr) {
6414   assert(S.getLangOpts().CPlusPlus11);
6415 
6416   const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
6417   if (!Record)
6418     return;
6419 
6420   SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
6421   if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc))
6422     return;
6423 
6424   // Find constructors which would have been considered.
6425   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
6426   DeclContext::lookup_result Ctors =
6427       S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl()));
6428 
6429   // Perform overload resolution.
6430   OverloadCandidateSet::iterator Best;
6431   OverloadingResult OR = ResolveConstructorOverload(
6432       S, Loc, CurInitExpr, CandidateSet, CurInitExpr->getType(), Ctors, Best,
6433       /*CopyInitializing=*/false, /*AllowExplicit=*/true,
6434       /*OnlyListConstructors=*/false, /*IsListInit=*/false,
6435       /*SecondStepOfCopyInit=*/true);
6436 
6437   PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
6438     << OR << (int)Entity.getKind() << CurInitExpr->getType()
6439     << CurInitExpr->getSourceRange();
6440 
6441   switch (OR) {
6442   case OR_Success:
6443     S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
6444                              Best->FoundDecl, Entity, Diag);
6445     // FIXME: Check default arguments as far as that's possible.
6446     break;
6447 
6448   case OR_No_Viable_Function:
6449     CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S,
6450                                 OCD_AllCandidates, CurInitExpr);
6451     break;
6452 
6453   case OR_Ambiguous:
6454     CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S,
6455                                 OCD_AmbiguousCandidates, CurInitExpr);
6456     break;
6457 
6458   case OR_Deleted:
6459     S.Diag(Loc, Diag);
6460     S.NoteDeletedFunction(Best->Function);
6461     break;
6462   }
6463 }
6464 
6465 void InitializationSequence::PrintInitLocationNote(Sema &S,
6466                                               const InitializedEntity &Entity) {
6467   if (Entity.isParamOrTemplateParamKind() && Entity.getDecl()) {
6468     if (Entity.getDecl()->getLocation().isInvalid())
6469       return;
6470 
6471     if (Entity.getDecl()->getDeclName())
6472       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
6473         << Entity.getDecl()->getDeclName();
6474     else
6475       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
6476   }
6477   else if (Entity.getKind() == InitializedEntity::EK_RelatedResult &&
6478            Entity.getMethodDecl())
6479     S.Diag(Entity.getMethodDecl()->getLocation(),
6480            diag::note_method_return_type_change)
6481       << Entity.getMethodDecl()->getDeclName();
6482 }
6483 
6484 /// Returns true if the parameters describe a constructor initialization of
6485 /// an explicit temporary object, e.g. "Point(x, y)".
6486 static bool isExplicitTemporary(const InitializedEntity &Entity,
6487                                 const InitializationKind &Kind,
6488                                 unsigned NumArgs) {
6489   switch (Entity.getKind()) {
6490   case InitializedEntity::EK_Temporary:
6491   case InitializedEntity::EK_CompoundLiteralInit:
6492   case InitializedEntity::EK_RelatedResult:
6493     break;
6494   default:
6495     return false;
6496   }
6497 
6498   switch (Kind.getKind()) {
6499   case InitializationKind::IK_DirectList:
6500     return true;
6501   // FIXME: Hack to work around cast weirdness.
6502   case InitializationKind::IK_Direct:
6503   case InitializationKind::IK_Value:
6504     return NumArgs != 1;
6505   default:
6506     return false;
6507   }
6508 }
6509 
6510 static ExprResult
6511 PerformConstructorInitialization(Sema &S,
6512                                  const InitializedEntity &Entity,
6513                                  const InitializationKind &Kind,
6514                                  MultiExprArg Args,
6515                                  const InitializationSequence::Step& Step,
6516                                  bool &ConstructorInitRequiresZeroInit,
6517                                  bool IsListInitialization,
6518                                  bool IsStdInitListInitialization,
6519                                  SourceLocation LBraceLoc,
6520                                  SourceLocation RBraceLoc) {
6521   unsigned NumArgs = Args.size();
6522   CXXConstructorDecl *Constructor
6523     = cast<CXXConstructorDecl>(Step.Function.Function);
6524   bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
6525 
6526   // Build a call to the selected constructor.
6527   SmallVector<Expr*, 8> ConstructorArgs;
6528   SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
6529                          ? Kind.getEqualLoc()
6530                          : Kind.getLocation();
6531 
6532   if (Kind.getKind() == InitializationKind::IK_Default) {
6533     // Force even a trivial, implicit default constructor to be
6534     // semantically checked. We do this explicitly because we don't build
6535     // the definition for completely trivial constructors.
6536     assert(Constructor->getParent() && "No parent class for constructor.");
6537     if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6538         Constructor->isTrivial() && !Constructor->isUsed(false)) {
6539       S.runWithSufficientStackSpace(Loc, [&] {
6540         S.DefineImplicitDefaultConstructor(Loc, Constructor);
6541       });
6542     }
6543   }
6544 
6545   ExprResult CurInit((Expr *)nullptr);
6546 
6547   // C++ [over.match.copy]p1:
6548   //   - When initializing a temporary to be bound to the first parameter
6549   //     of a constructor that takes a reference to possibly cv-qualified
6550   //     T as its first argument, called with a single argument in the
6551   //     context of direct-initialization, explicit conversion functions
6552   //     are also considered.
6553   bool AllowExplicitConv =
6554       Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 &&
6555       hasCopyOrMoveCtorParam(S.Context,
6556                              getConstructorInfo(Step.Function.FoundDecl));
6557 
6558   // Determine the arguments required to actually perform the constructor
6559   // call.
6560   if (S.CompleteConstructorCall(Constructor, Step.Type, Args, Loc,
6561                                 ConstructorArgs, AllowExplicitConv,
6562                                 IsListInitialization))
6563     return ExprError();
6564 
6565   if (isExplicitTemporary(Entity, Kind, NumArgs)) {
6566     // An explicitly-constructed temporary, e.g., X(1, 2).
6567     if (S.DiagnoseUseOfDecl(Constructor, Loc))
6568       return ExprError();
6569 
6570     TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
6571     if (!TSInfo)
6572       TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
6573     SourceRange ParenOrBraceRange =
6574         (Kind.getKind() == InitializationKind::IK_DirectList)
6575         ? SourceRange(LBraceLoc, RBraceLoc)
6576         : Kind.getParenOrBraceRange();
6577 
6578     CXXConstructorDecl *CalleeDecl = Constructor;
6579     if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(
6580             Step.Function.FoundDecl.getDecl())) {
6581       CalleeDecl = S.findInheritingConstructor(Loc, Constructor, Shadow);
6582       if (S.DiagnoseUseOfDecl(CalleeDecl, Loc))
6583         return ExprError();
6584     }
6585     S.MarkFunctionReferenced(Loc, CalleeDecl);
6586 
6587     CurInit = S.CheckForImmediateInvocation(
6588         CXXTemporaryObjectExpr::Create(
6589             S.Context, CalleeDecl,
6590             Entity.getType().getNonLValueExprType(S.Context), TSInfo,
6591             ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates,
6592             IsListInitialization, IsStdInitListInitialization,
6593             ConstructorInitRequiresZeroInit),
6594         CalleeDecl);
6595   } else {
6596     CXXConstructExpr::ConstructionKind ConstructKind =
6597       CXXConstructExpr::CK_Complete;
6598 
6599     if (Entity.getKind() == InitializedEntity::EK_Base) {
6600       ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
6601         CXXConstructExpr::CK_VirtualBase :
6602         CXXConstructExpr::CK_NonVirtualBase;
6603     } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
6604       ConstructKind = CXXConstructExpr::CK_Delegating;
6605     }
6606 
6607     // Only get the parenthesis or brace range if it is a list initialization or
6608     // direct construction.
6609     SourceRange ParenOrBraceRange;
6610     if (IsListInitialization)
6611       ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc);
6612     else if (Kind.getKind() == InitializationKind::IK_Direct)
6613       ParenOrBraceRange = Kind.getParenOrBraceRange();
6614 
6615     // If the entity allows NRVO, mark the construction as elidable
6616     // unconditionally.
6617     if (Entity.allowsNRVO())
6618       CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
6619                                         Step.Function.FoundDecl,
6620                                         Constructor, /*Elidable=*/true,
6621                                         ConstructorArgs,
6622                                         HadMultipleCandidates,
6623                                         IsListInitialization,
6624                                         IsStdInitListInitialization,
6625                                         ConstructorInitRequiresZeroInit,
6626                                         ConstructKind,
6627                                         ParenOrBraceRange);
6628     else
6629       CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
6630                                         Step.Function.FoundDecl,
6631                                         Constructor,
6632                                         ConstructorArgs,
6633                                         HadMultipleCandidates,
6634                                         IsListInitialization,
6635                                         IsStdInitListInitialization,
6636                                         ConstructorInitRequiresZeroInit,
6637                                         ConstructKind,
6638                                         ParenOrBraceRange);
6639   }
6640   if (CurInit.isInvalid())
6641     return ExprError();
6642 
6643   // Only check access if all of that succeeded.
6644   S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity);
6645   if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc))
6646     return ExprError();
6647 
6648   if (const ArrayType *AT = S.Context.getAsArrayType(Entity.getType()))
6649     if (checkDestructorReference(S.Context.getBaseElementType(AT), Loc, S))
6650       return ExprError();
6651 
6652   if (shouldBindAsTemporary(Entity))
6653     CurInit = S.MaybeBindToTemporary(CurInit.get());
6654 
6655   return CurInit;
6656 }
6657 
6658 namespace {
6659 enum LifetimeKind {
6660   /// The lifetime of a temporary bound to this entity ends at the end of the
6661   /// full-expression, and that's (probably) fine.
6662   LK_FullExpression,
6663 
6664   /// The lifetime of a temporary bound to this entity is extended to the
6665   /// lifeitme of the entity itself.
6666   LK_Extended,
6667 
6668   /// The lifetime of a temporary bound to this entity probably ends too soon,
6669   /// because the entity is allocated in a new-expression.
6670   LK_New,
6671 
6672   /// The lifetime of a temporary bound to this entity ends too soon, because
6673   /// the entity is a return object.
6674   LK_Return,
6675 
6676   /// The lifetime of a temporary bound to this entity ends too soon, because
6677   /// the entity is the result of a statement expression.
6678   LK_StmtExprResult,
6679 
6680   /// This is a mem-initializer: if it would extend a temporary (other than via
6681   /// a default member initializer), the program is ill-formed.
6682   LK_MemInitializer,
6683 };
6684 using LifetimeResult =
6685     llvm::PointerIntPair<const InitializedEntity *, 3, LifetimeKind>;
6686 }
6687 
6688 /// Determine the declaration which an initialized entity ultimately refers to,
6689 /// for the purpose of lifetime-extending a temporary bound to a reference in
6690 /// the initialization of \p Entity.
6691 static LifetimeResult getEntityLifetime(
6692     const InitializedEntity *Entity,
6693     const InitializedEntity *InitField = nullptr) {
6694   // C++11 [class.temporary]p5:
6695   switch (Entity->getKind()) {
6696   case InitializedEntity::EK_Variable:
6697     //   The temporary [...] persists for the lifetime of the reference
6698     return {Entity, LK_Extended};
6699 
6700   case InitializedEntity::EK_Member:
6701     // For subobjects, we look at the complete object.
6702     if (Entity->getParent())
6703       return getEntityLifetime(Entity->getParent(), Entity);
6704 
6705     //   except:
6706     // C++17 [class.base.init]p8:
6707     //   A temporary expression bound to a reference member in a
6708     //   mem-initializer is ill-formed.
6709     // C++17 [class.base.init]p11:
6710     //   A temporary expression bound to a reference member from a
6711     //   default member initializer is ill-formed.
6712     //
6713     // The context of p11 and its example suggest that it's only the use of a
6714     // default member initializer from a constructor that makes the program
6715     // ill-formed, not its mere existence, and that it can even be used by
6716     // aggregate initialization.
6717     return {Entity, Entity->isDefaultMemberInitializer() ? LK_Extended
6718                                                          : LK_MemInitializer};
6719 
6720   case InitializedEntity::EK_Binding:
6721     // Per [dcl.decomp]p3, the binding is treated as a variable of reference
6722     // type.
6723     return {Entity, LK_Extended};
6724 
6725   case InitializedEntity::EK_Parameter:
6726   case InitializedEntity::EK_Parameter_CF_Audited:
6727     //   -- A temporary bound to a reference parameter in a function call
6728     //      persists until the completion of the full-expression containing
6729     //      the call.
6730     return {nullptr, LK_FullExpression};
6731 
6732   case InitializedEntity::EK_TemplateParameter:
6733     // FIXME: This will always be ill-formed; should we eagerly diagnose it here?
6734     return {nullptr, LK_FullExpression};
6735 
6736   case InitializedEntity::EK_Result:
6737     //   -- The lifetime of a temporary bound to the returned value in a
6738     //      function return statement is not extended; the temporary is
6739     //      destroyed at the end of the full-expression in the return statement.
6740     return {nullptr, LK_Return};
6741 
6742   case InitializedEntity::EK_StmtExprResult:
6743     // FIXME: Should we lifetime-extend through the result of a statement
6744     // expression?
6745     return {nullptr, LK_StmtExprResult};
6746 
6747   case InitializedEntity::EK_New:
6748     //   -- A temporary bound to a reference in a new-initializer persists
6749     //      until the completion of the full-expression containing the
6750     //      new-initializer.
6751     return {nullptr, LK_New};
6752 
6753   case InitializedEntity::EK_Temporary:
6754   case InitializedEntity::EK_CompoundLiteralInit:
6755   case InitializedEntity::EK_RelatedResult:
6756     // We don't yet know the storage duration of the surrounding temporary.
6757     // Assume it's got full-expression duration for now, it will patch up our
6758     // storage duration if that's not correct.
6759     return {nullptr, LK_FullExpression};
6760 
6761   case InitializedEntity::EK_ArrayElement:
6762     // For subobjects, we look at the complete object.
6763     return getEntityLifetime(Entity->getParent(), InitField);
6764 
6765   case InitializedEntity::EK_Base:
6766     // For subobjects, we look at the complete object.
6767     if (Entity->getParent())
6768       return getEntityLifetime(Entity->getParent(), InitField);
6769     return {InitField, LK_MemInitializer};
6770 
6771   case InitializedEntity::EK_Delegating:
6772     // We can reach this case for aggregate initialization in a constructor:
6773     //   struct A { int &&r; };
6774     //   struct B : A { B() : A{0} {} };
6775     // In this case, use the outermost field decl as the context.
6776     return {InitField, LK_MemInitializer};
6777 
6778   case InitializedEntity::EK_BlockElement:
6779   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6780   case InitializedEntity::EK_LambdaCapture:
6781   case InitializedEntity::EK_VectorElement:
6782   case InitializedEntity::EK_ComplexElement:
6783     return {nullptr, LK_FullExpression};
6784 
6785   case InitializedEntity::EK_Exception:
6786     // FIXME: Can we diagnose lifetime problems with exceptions?
6787     return {nullptr, LK_FullExpression};
6788   }
6789   llvm_unreachable("unknown entity kind");
6790 }
6791 
6792 namespace {
6793 enum ReferenceKind {
6794   /// Lifetime would be extended by a reference binding to a temporary.
6795   RK_ReferenceBinding,
6796   /// Lifetime would be extended by a std::initializer_list object binding to
6797   /// its backing array.
6798   RK_StdInitializerList,
6799 };
6800 
6801 /// A temporary or local variable. This will be one of:
6802 ///  * A MaterializeTemporaryExpr.
6803 ///  * A DeclRefExpr whose declaration is a local.
6804 ///  * An AddrLabelExpr.
6805 ///  * A BlockExpr for a block with captures.
6806 using Local = Expr*;
6807 
6808 /// Expressions we stepped over when looking for the local state. Any steps
6809 /// that would inhibit lifetime extension or take us out of subexpressions of
6810 /// the initializer are included.
6811 struct IndirectLocalPathEntry {
6812   enum EntryKind {
6813     DefaultInit,
6814     AddressOf,
6815     VarInit,
6816     LValToRVal,
6817     LifetimeBoundCall,
6818     TemporaryCopy,
6819     LambdaCaptureInit,
6820     GslReferenceInit,
6821     GslPointerInit
6822   } Kind;
6823   Expr *E;
6824   union {
6825     const Decl *D = nullptr;
6826     const LambdaCapture *Capture;
6827   };
6828   IndirectLocalPathEntry() {}
6829   IndirectLocalPathEntry(EntryKind K, Expr *E) : Kind(K), E(E) {}
6830   IndirectLocalPathEntry(EntryKind K, Expr *E, const Decl *D)
6831       : Kind(K), E(E), D(D) {}
6832   IndirectLocalPathEntry(EntryKind K, Expr *E, const LambdaCapture *Capture)
6833       : Kind(K), E(E), Capture(Capture) {}
6834 };
6835 
6836 using IndirectLocalPath = llvm::SmallVectorImpl<IndirectLocalPathEntry>;
6837 
6838 struct RevertToOldSizeRAII {
6839   IndirectLocalPath &Path;
6840   unsigned OldSize = Path.size();
6841   RevertToOldSizeRAII(IndirectLocalPath &Path) : Path(Path) {}
6842   ~RevertToOldSizeRAII() { Path.resize(OldSize); }
6843 };
6844 
6845 using LocalVisitor = llvm::function_ref<bool(IndirectLocalPath &Path, Local L,
6846                                              ReferenceKind RK)>;
6847 }
6848 
6849 static bool isVarOnPath(IndirectLocalPath &Path, VarDecl *VD) {
6850   for (auto E : Path)
6851     if (E.Kind == IndirectLocalPathEntry::VarInit && E.D == VD)
6852       return true;
6853   return false;
6854 }
6855 
6856 static bool pathContainsInit(IndirectLocalPath &Path) {
6857   return llvm::any_of(Path, [=](IndirectLocalPathEntry E) {
6858     return E.Kind == IndirectLocalPathEntry::DefaultInit ||
6859            E.Kind == IndirectLocalPathEntry::VarInit;
6860   });
6861 }
6862 
6863 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
6864                                              Expr *Init, LocalVisitor Visit,
6865                                              bool RevisitSubinits,
6866                                              bool EnableLifetimeWarnings);
6867 
6868 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
6869                                                   Expr *Init, ReferenceKind RK,
6870                                                   LocalVisitor Visit,
6871                                                   bool EnableLifetimeWarnings);
6872 
6873 template <typename T> static bool isRecordWithAttr(QualType Type) {
6874   if (auto *RD = Type->getAsCXXRecordDecl())
6875     return RD->hasAttr<T>();
6876   return false;
6877 }
6878 
6879 // Decl::isInStdNamespace will return false for iterators in some STL
6880 // implementations due to them being defined in a namespace outside of the std
6881 // namespace.
6882 static bool isInStlNamespace(const Decl *D) {
6883   const DeclContext *DC = D->getDeclContext();
6884   if (!DC)
6885     return false;
6886   if (const auto *ND = dyn_cast<NamespaceDecl>(DC))
6887     if (const IdentifierInfo *II = ND->getIdentifier()) {
6888       StringRef Name = II->getName();
6889       if (Name.size() >= 2 && Name.front() == '_' &&
6890           (Name[1] == '_' || isUppercase(Name[1])))
6891         return true;
6892     }
6893 
6894   return DC->isStdNamespace();
6895 }
6896 
6897 static bool shouldTrackImplicitObjectArg(const CXXMethodDecl *Callee) {
6898   if (auto *Conv = dyn_cast_or_null<CXXConversionDecl>(Callee))
6899     if (isRecordWithAttr<PointerAttr>(Conv->getConversionType()))
6900       return true;
6901   if (!isInStlNamespace(Callee->getParent()))
6902     return false;
6903   if (!isRecordWithAttr<PointerAttr>(Callee->getThisObjectType()) &&
6904       !isRecordWithAttr<OwnerAttr>(Callee->getThisObjectType()))
6905     return false;
6906   if (Callee->getReturnType()->isPointerType() ||
6907       isRecordWithAttr<PointerAttr>(Callee->getReturnType())) {
6908     if (!Callee->getIdentifier())
6909       return false;
6910     return llvm::StringSwitch<bool>(Callee->getName())
6911         .Cases("begin", "rbegin", "cbegin", "crbegin", true)
6912         .Cases("end", "rend", "cend", "crend", true)
6913         .Cases("c_str", "data", "get", true)
6914         // Map and set types.
6915         .Cases("find", "equal_range", "lower_bound", "upper_bound", true)
6916         .Default(false);
6917   } else if (Callee->getReturnType()->isReferenceType()) {
6918     if (!Callee->getIdentifier()) {
6919       auto OO = Callee->getOverloadedOperator();
6920       return OO == OverloadedOperatorKind::OO_Subscript ||
6921              OO == OverloadedOperatorKind::OO_Star;
6922     }
6923     return llvm::StringSwitch<bool>(Callee->getName())
6924         .Cases("front", "back", "at", "top", "value", true)
6925         .Default(false);
6926   }
6927   return false;
6928 }
6929 
6930 static bool shouldTrackFirstArgument(const FunctionDecl *FD) {
6931   if (!FD->getIdentifier() || FD->getNumParams() != 1)
6932     return false;
6933   const auto *RD = FD->getParamDecl(0)->getType()->getPointeeCXXRecordDecl();
6934   if (!FD->isInStdNamespace() || !RD || !RD->isInStdNamespace())
6935     return false;
6936   if (!isRecordWithAttr<PointerAttr>(QualType(RD->getTypeForDecl(), 0)) &&
6937       !isRecordWithAttr<OwnerAttr>(QualType(RD->getTypeForDecl(), 0)))
6938     return false;
6939   if (FD->getReturnType()->isPointerType() ||
6940       isRecordWithAttr<PointerAttr>(FD->getReturnType())) {
6941     return llvm::StringSwitch<bool>(FD->getName())
6942         .Cases("begin", "rbegin", "cbegin", "crbegin", true)
6943         .Cases("end", "rend", "cend", "crend", true)
6944         .Case("data", true)
6945         .Default(false);
6946   } else if (FD->getReturnType()->isReferenceType()) {
6947     return llvm::StringSwitch<bool>(FD->getName())
6948         .Cases("get", "any_cast", true)
6949         .Default(false);
6950   }
6951   return false;
6952 }
6953 
6954 static void handleGslAnnotatedTypes(IndirectLocalPath &Path, Expr *Call,
6955                                     LocalVisitor Visit) {
6956   auto VisitPointerArg = [&](const Decl *D, Expr *Arg, bool Value) {
6957     // We are not interested in the temporary base objects of gsl Pointers:
6958     //   Temp().ptr; // Here ptr might not dangle.
6959     if (isa<MemberExpr>(Arg->IgnoreImpCasts()))
6960       return;
6961     // Once we initialized a value with a reference, it can no longer dangle.
6962     if (!Value) {
6963       for (const IndirectLocalPathEntry &PE : llvm::reverse(Path)) {
6964         if (PE.Kind == IndirectLocalPathEntry::GslReferenceInit)
6965           continue;
6966         if (PE.Kind == IndirectLocalPathEntry::GslPointerInit)
6967           return;
6968         break;
6969       }
6970     }
6971     Path.push_back({Value ? IndirectLocalPathEntry::GslPointerInit
6972                           : IndirectLocalPathEntry::GslReferenceInit,
6973                     Arg, D});
6974     if (Arg->isGLValue())
6975       visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding,
6976                                             Visit,
6977                                             /*EnableLifetimeWarnings=*/true);
6978     else
6979       visitLocalsRetainedByInitializer(Path, Arg, Visit, true,
6980                                        /*EnableLifetimeWarnings=*/true);
6981     Path.pop_back();
6982   };
6983 
6984   if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) {
6985     const auto *MD = cast_or_null<CXXMethodDecl>(MCE->getDirectCallee());
6986     if (MD && shouldTrackImplicitObjectArg(MD))
6987       VisitPointerArg(MD, MCE->getImplicitObjectArgument(),
6988                       !MD->getReturnType()->isReferenceType());
6989     return;
6990   } else if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(Call)) {
6991     FunctionDecl *Callee = OCE->getDirectCallee();
6992     if (Callee && Callee->isCXXInstanceMember() &&
6993         shouldTrackImplicitObjectArg(cast<CXXMethodDecl>(Callee)))
6994       VisitPointerArg(Callee, OCE->getArg(0),
6995                       !Callee->getReturnType()->isReferenceType());
6996     return;
6997   } else if (auto *CE = dyn_cast<CallExpr>(Call)) {
6998     FunctionDecl *Callee = CE->getDirectCallee();
6999     if (Callee && shouldTrackFirstArgument(Callee))
7000       VisitPointerArg(Callee, CE->getArg(0),
7001                       !Callee->getReturnType()->isReferenceType());
7002     return;
7003   }
7004 
7005   if (auto *CCE = dyn_cast<CXXConstructExpr>(Call)) {
7006     const auto *Ctor = CCE->getConstructor();
7007     const CXXRecordDecl *RD = Ctor->getParent();
7008     if (CCE->getNumArgs() > 0 && RD->hasAttr<PointerAttr>())
7009       VisitPointerArg(Ctor->getParamDecl(0), CCE->getArgs()[0], true);
7010   }
7011 }
7012 
7013 static bool implicitObjectParamIsLifetimeBound(const FunctionDecl *FD) {
7014   const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
7015   if (!TSI)
7016     return false;
7017   // Don't declare this variable in the second operand of the for-statement;
7018   // GCC miscompiles that by ending its lifetime before evaluating the
7019   // third operand. See gcc.gnu.org/PR86769.
7020   AttributedTypeLoc ATL;
7021   for (TypeLoc TL = TSI->getTypeLoc();
7022        (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
7023        TL = ATL.getModifiedLoc()) {
7024     if (ATL.getAttrAs<LifetimeBoundAttr>())
7025       return true;
7026   }
7027 
7028   // Assume that all assignment operators with a "normal" return type return
7029   // *this, that is, an lvalue reference that is the same type as the implicit
7030   // object parameter (or the LHS for a non-member operator$=).
7031   OverloadedOperatorKind OO = FD->getDeclName().getCXXOverloadedOperator();
7032   if (OO == OO_Equal || isCompoundAssignmentOperator(OO)) {
7033     QualType RetT = FD->getReturnType();
7034     if (RetT->isLValueReferenceType()) {
7035       ASTContext &Ctx = FD->getASTContext();
7036       QualType LHST;
7037       auto *MD = dyn_cast<CXXMethodDecl>(FD);
7038       if (MD && MD->isCXXInstanceMember())
7039         LHST = Ctx.getLValueReferenceType(MD->getThisObjectType());
7040       else
7041         LHST = MD->getParamDecl(0)->getType();
7042       if (Ctx.hasSameType(RetT, LHST))
7043         return true;
7044     }
7045   }
7046 
7047   return false;
7048 }
7049 
7050 static void visitLifetimeBoundArguments(IndirectLocalPath &Path, Expr *Call,
7051                                         LocalVisitor Visit) {
7052   const FunctionDecl *Callee;
7053   ArrayRef<Expr*> Args;
7054 
7055   if (auto *CE = dyn_cast<CallExpr>(Call)) {
7056     Callee = CE->getDirectCallee();
7057     Args = llvm::makeArrayRef(CE->getArgs(), CE->getNumArgs());
7058   } else {
7059     auto *CCE = cast<CXXConstructExpr>(Call);
7060     Callee = CCE->getConstructor();
7061     Args = llvm::makeArrayRef(CCE->getArgs(), CCE->getNumArgs());
7062   }
7063   if (!Callee)
7064     return;
7065 
7066   Expr *ObjectArg = nullptr;
7067   if (isa<CXXOperatorCallExpr>(Call) && Callee->isCXXInstanceMember()) {
7068     ObjectArg = Args[0];
7069     Args = Args.slice(1);
7070   } else if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) {
7071     ObjectArg = MCE->getImplicitObjectArgument();
7072   }
7073 
7074   auto VisitLifetimeBoundArg = [&](const Decl *D, Expr *Arg) {
7075     Path.push_back({IndirectLocalPathEntry::LifetimeBoundCall, Arg, D});
7076     if (Arg->isGLValue())
7077       visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding,
7078                                             Visit,
7079                                             /*EnableLifetimeWarnings=*/false);
7080     else
7081       visitLocalsRetainedByInitializer(Path, Arg, Visit, true,
7082                                        /*EnableLifetimeWarnings=*/false);
7083     Path.pop_back();
7084   };
7085 
7086   if (ObjectArg && implicitObjectParamIsLifetimeBound(Callee))
7087     VisitLifetimeBoundArg(Callee, ObjectArg);
7088 
7089   for (unsigned I = 0,
7090                 N = std::min<unsigned>(Callee->getNumParams(), Args.size());
7091        I != N; ++I) {
7092     if (Callee->getParamDecl(I)->hasAttr<LifetimeBoundAttr>())
7093       VisitLifetimeBoundArg(Callee->getParamDecl(I), Args[I]);
7094   }
7095 }
7096 
7097 /// Visit the locals that would be reachable through a reference bound to the
7098 /// glvalue expression \c Init.
7099 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
7100                                                   Expr *Init, ReferenceKind RK,
7101                                                   LocalVisitor Visit,
7102                                                   bool EnableLifetimeWarnings) {
7103   RevertToOldSizeRAII RAII(Path);
7104 
7105   // Walk past any constructs which we can lifetime-extend across.
7106   Expr *Old;
7107   do {
7108     Old = Init;
7109 
7110     if (auto *FE = dyn_cast<FullExpr>(Init))
7111       Init = FE->getSubExpr();
7112 
7113     if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
7114       // If this is just redundant braces around an initializer, step over it.
7115       if (ILE->isTransparent())
7116         Init = ILE->getInit(0);
7117     }
7118 
7119     // Step over any subobject adjustments; we may have a materialized
7120     // temporary inside them.
7121     Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
7122 
7123     // Per current approach for DR1376, look through casts to reference type
7124     // when performing lifetime extension.
7125     if (CastExpr *CE = dyn_cast<CastExpr>(Init))
7126       if (CE->getSubExpr()->isGLValue())
7127         Init = CE->getSubExpr();
7128 
7129     // Per the current approach for DR1299, look through array element access
7130     // on array glvalues when performing lifetime extension.
7131     if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Init)) {
7132       Init = ASE->getBase();
7133       auto *ICE = dyn_cast<ImplicitCastExpr>(Init);
7134       if (ICE && ICE->getCastKind() == CK_ArrayToPointerDecay)
7135         Init = ICE->getSubExpr();
7136       else
7137         // We can't lifetime extend through this but we might still find some
7138         // retained temporaries.
7139         return visitLocalsRetainedByInitializer(Path, Init, Visit, true,
7140                                                 EnableLifetimeWarnings);
7141     }
7142 
7143     // Step into CXXDefaultInitExprs so we can diagnose cases where a
7144     // constructor inherits one as an implicit mem-initializer.
7145     if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
7146       Path.push_back(
7147           {IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
7148       Init = DIE->getExpr();
7149     }
7150   } while (Init != Old);
7151 
7152   if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Init)) {
7153     if (Visit(Path, Local(MTE), RK))
7154       visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit, true,
7155                                        EnableLifetimeWarnings);
7156   }
7157 
7158   if (isa<CallExpr>(Init)) {
7159     if (EnableLifetimeWarnings)
7160       handleGslAnnotatedTypes(Path, Init, Visit);
7161     return visitLifetimeBoundArguments(Path, Init, Visit);
7162   }
7163 
7164   switch (Init->getStmtClass()) {
7165   case Stmt::DeclRefExprClass: {
7166     // If we find the name of a local non-reference parameter, we could have a
7167     // lifetime problem.
7168     auto *DRE = cast<DeclRefExpr>(Init);
7169     auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
7170     if (VD && VD->hasLocalStorage() &&
7171         !DRE->refersToEnclosingVariableOrCapture()) {
7172       if (!VD->getType()->isReferenceType()) {
7173         Visit(Path, Local(DRE), RK);
7174       } else if (isa<ParmVarDecl>(DRE->getDecl())) {
7175         // The lifetime of a reference parameter is unknown; assume it's OK
7176         // for now.
7177         break;
7178       } else if (VD->getInit() && !isVarOnPath(Path, VD)) {
7179         Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
7180         visitLocalsRetainedByReferenceBinding(Path, VD->getInit(),
7181                                               RK_ReferenceBinding, Visit,
7182                                               EnableLifetimeWarnings);
7183       }
7184     }
7185     break;
7186   }
7187 
7188   case Stmt::UnaryOperatorClass: {
7189     // The only unary operator that make sense to handle here
7190     // is Deref.  All others don't resolve to a "name."  This includes
7191     // handling all sorts of rvalues passed to a unary operator.
7192     const UnaryOperator *U = cast<UnaryOperator>(Init);
7193     if (U->getOpcode() == UO_Deref)
7194       visitLocalsRetainedByInitializer(Path, U->getSubExpr(), Visit, true,
7195                                        EnableLifetimeWarnings);
7196     break;
7197   }
7198 
7199   case Stmt::OMPArraySectionExprClass: {
7200     visitLocalsRetainedByInitializer(Path,
7201                                      cast<OMPArraySectionExpr>(Init)->getBase(),
7202                                      Visit, true, EnableLifetimeWarnings);
7203     break;
7204   }
7205 
7206   case Stmt::ConditionalOperatorClass:
7207   case Stmt::BinaryConditionalOperatorClass: {
7208     auto *C = cast<AbstractConditionalOperator>(Init);
7209     if (!C->getTrueExpr()->getType()->isVoidType())
7210       visitLocalsRetainedByReferenceBinding(Path, C->getTrueExpr(), RK, Visit,
7211                                             EnableLifetimeWarnings);
7212     if (!C->getFalseExpr()->getType()->isVoidType())
7213       visitLocalsRetainedByReferenceBinding(Path, C->getFalseExpr(), RK, Visit,
7214                                             EnableLifetimeWarnings);
7215     break;
7216   }
7217 
7218   // FIXME: Visit the left-hand side of an -> or ->*.
7219 
7220   default:
7221     break;
7222   }
7223 }
7224 
7225 /// Visit the locals that would be reachable through an object initialized by
7226 /// the prvalue expression \c Init.
7227 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
7228                                              Expr *Init, LocalVisitor Visit,
7229                                              bool RevisitSubinits,
7230                                              bool EnableLifetimeWarnings) {
7231   RevertToOldSizeRAII RAII(Path);
7232 
7233   Expr *Old;
7234   do {
7235     Old = Init;
7236 
7237     // Step into CXXDefaultInitExprs so we can diagnose cases where a
7238     // constructor inherits one as an implicit mem-initializer.
7239     if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
7240       Path.push_back({IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
7241       Init = DIE->getExpr();
7242     }
7243 
7244     if (auto *FE = dyn_cast<FullExpr>(Init))
7245       Init = FE->getSubExpr();
7246 
7247     // Dig out the expression which constructs the extended temporary.
7248     Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
7249 
7250     if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init))
7251       Init = BTE->getSubExpr();
7252 
7253     Init = Init->IgnoreParens();
7254 
7255     // Step over value-preserving rvalue casts.
7256     if (auto *CE = dyn_cast<CastExpr>(Init)) {
7257       switch (CE->getCastKind()) {
7258       case CK_LValueToRValue:
7259         // If we can match the lvalue to a const object, we can look at its
7260         // initializer.
7261         Path.push_back({IndirectLocalPathEntry::LValToRVal, CE});
7262         return visitLocalsRetainedByReferenceBinding(
7263             Path, Init, RK_ReferenceBinding,
7264             [&](IndirectLocalPath &Path, Local L, ReferenceKind RK) -> bool {
7265           if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
7266             auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
7267             if (VD && VD->getType().isConstQualified() && VD->getInit() &&
7268                 !isVarOnPath(Path, VD)) {
7269               Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
7270               visitLocalsRetainedByInitializer(Path, VD->getInit(), Visit, true,
7271                                                EnableLifetimeWarnings);
7272             }
7273           } else if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L)) {
7274             if (MTE->getType().isConstQualified())
7275               visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit,
7276                                                true, EnableLifetimeWarnings);
7277           }
7278           return false;
7279         }, EnableLifetimeWarnings);
7280 
7281         // We assume that objects can be retained by pointers cast to integers,
7282         // but not if the integer is cast to floating-point type or to _Complex.
7283         // We assume that casts to 'bool' do not preserve enough information to
7284         // retain a local object.
7285       case CK_NoOp:
7286       case CK_BitCast:
7287       case CK_BaseToDerived:
7288       case CK_DerivedToBase:
7289       case CK_UncheckedDerivedToBase:
7290       case CK_Dynamic:
7291       case CK_ToUnion:
7292       case CK_UserDefinedConversion:
7293       case CK_ConstructorConversion:
7294       case CK_IntegralToPointer:
7295       case CK_PointerToIntegral:
7296       case CK_VectorSplat:
7297       case CK_IntegralCast:
7298       case CK_CPointerToObjCPointerCast:
7299       case CK_BlockPointerToObjCPointerCast:
7300       case CK_AnyPointerToBlockPointerCast:
7301       case CK_AddressSpaceConversion:
7302         break;
7303 
7304       case CK_ArrayToPointerDecay:
7305         // Model array-to-pointer decay as taking the address of the array
7306         // lvalue.
7307         Path.push_back({IndirectLocalPathEntry::AddressOf, CE});
7308         return visitLocalsRetainedByReferenceBinding(Path, CE->getSubExpr(),
7309                                                      RK_ReferenceBinding, Visit,
7310                                                      EnableLifetimeWarnings);
7311 
7312       default:
7313         return;
7314       }
7315 
7316       Init = CE->getSubExpr();
7317     }
7318   } while (Old != Init);
7319 
7320   // C++17 [dcl.init.list]p6:
7321   //   initializing an initializer_list object from the array extends the
7322   //   lifetime of the array exactly like binding a reference to a temporary.
7323   if (auto *ILE = dyn_cast<CXXStdInitializerListExpr>(Init))
7324     return visitLocalsRetainedByReferenceBinding(Path, ILE->getSubExpr(),
7325                                                  RK_StdInitializerList, Visit,
7326                                                  EnableLifetimeWarnings);
7327 
7328   if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
7329     // We already visited the elements of this initializer list while
7330     // performing the initialization. Don't visit them again unless we've
7331     // changed the lifetime of the initialized entity.
7332     if (!RevisitSubinits)
7333       return;
7334 
7335     if (ILE->isTransparent())
7336       return visitLocalsRetainedByInitializer(Path, ILE->getInit(0), Visit,
7337                                               RevisitSubinits,
7338                                               EnableLifetimeWarnings);
7339 
7340     if (ILE->getType()->isArrayType()) {
7341       for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I)
7342         visitLocalsRetainedByInitializer(Path, ILE->getInit(I), Visit,
7343                                          RevisitSubinits,
7344                                          EnableLifetimeWarnings);
7345       return;
7346     }
7347 
7348     if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) {
7349       assert(RD->isAggregate() && "aggregate init on non-aggregate");
7350 
7351       // If we lifetime-extend a braced initializer which is initializing an
7352       // aggregate, and that aggregate contains reference members which are
7353       // bound to temporaries, those temporaries are also lifetime-extended.
7354       if (RD->isUnion() && ILE->getInitializedFieldInUnion() &&
7355           ILE->getInitializedFieldInUnion()->getType()->isReferenceType())
7356         visitLocalsRetainedByReferenceBinding(Path, ILE->getInit(0),
7357                                               RK_ReferenceBinding, Visit,
7358                                               EnableLifetimeWarnings);
7359       else {
7360         unsigned Index = 0;
7361         for (; Index < RD->getNumBases() && Index < ILE->getNumInits(); ++Index)
7362           visitLocalsRetainedByInitializer(Path, ILE->getInit(Index), Visit,
7363                                            RevisitSubinits,
7364                                            EnableLifetimeWarnings);
7365         for (const auto *I : RD->fields()) {
7366           if (Index >= ILE->getNumInits())
7367             break;
7368           if (I->isUnnamedBitfield())
7369             continue;
7370           Expr *SubInit = ILE->getInit(Index);
7371           if (I->getType()->isReferenceType())
7372             visitLocalsRetainedByReferenceBinding(Path, SubInit,
7373                                                   RK_ReferenceBinding, Visit,
7374                                                   EnableLifetimeWarnings);
7375           else
7376             // This might be either aggregate-initialization of a member or
7377             // initialization of a std::initializer_list object. Regardless,
7378             // we should recursively lifetime-extend that initializer.
7379             visitLocalsRetainedByInitializer(Path, SubInit, Visit,
7380                                              RevisitSubinits,
7381                                              EnableLifetimeWarnings);
7382           ++Index;
7383         }
7384       }
7385     }
7386     return;
7387   }
7388 
7389   // The lifetime of an init-capture is that of the closure object constructed
7390   // by a lambda-expression.
7391   if (auto *LE = dyn_cast<LambdaExpr>(Init)) {
7392     LambdaExpr::capture_iterator CapI = LE->capture_begin();
7393     for (Expr *E : LE->capture_inits()) {
7394       assert(CapI != LE->capture_end());
7395       const LambdaCapture &Cap = *CapI++;
7396       if (!E)
7397         continue;
7398       if (Cap.capturesVariable())
7399         Path.push_back({IndirectLocalPathEntry::LambdaCaptureInit, E, &Cap});
7400       if (E->isGLValue())
7401         visitLocalsRetainedByReferenceBinding(Path, E, RK_ReferenceBinding,
7402                                               Visit, EnableLifetimeWarnings);
7403       else
7404         visitLocalsRetainedByInitializer(Path, E, Visit, true,
7405                                          EnableLifetimeWarnings);
7406       if (Cap.capturesVariable())
7407         Path.pop_back();
7408     }
7409   }
7410 
7411   // Assume that a copy or move from a temporary references the same objects
7412   // that the temporary does.
7413   if (auto *CCE = dyn_cast<CXXConstructExpr>(Init)) {
7414     if (CCE->getConstructor()->isCopyOrMoveConstructor()) {
7415       if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(CCE->getArg(0))) {
7416         Expr *Arg = MTE->getSubExpr();
7417         Path.push_back({IndirectLocalPathEntry::TemporaryCopy, Arg,
7418                         CCE->getConstructor()});
7419         visitLocalsRetainedByInitializer(Path, Arg, Visit, true,
7420                                          /*EnableLifetimeWarnings*/false);
7421         Path.pop_back();
7422       }
7423     }
7424   }
7425 
7426   if (isa<CallExpr>(Init) || isa<CXXConstructExpr>(Init)) {
7427     if (EnableLifetimeWarnings)
7428       handleGslAnnotatedTypes(Path, Init, Visit);
7429     return visitLifetimeBoundArguments(Path, Init, Visit);
7430   }
7431 
7432   switch (Init->getStmtClass()) {
7433   case Stmt::UnaryOperatorClass: {
7434     auto *UO = cast<UnaryOperator>(Init);
7435     // If the initializer is the address of a local, we could have a lifetime
7436     // problem.
7437     if (UO->getOpcode() == UO_AddrOf) {
7438       // If this is &rvalue, then it's ill-formed and we have already diagnosed
7439       // it. Don't produce a redundant warning about the lifetime of the
7440       // temporary.
7441       if (isa<MaterializeTemporaryExpr>(UO->getSubExpr()))
7442         return;
7443 
7444       Path.push_back({IndirectLocalPathEntry::AddressOf, UO});
7445       visitLocalsRetainedByReferenceBinding(Path, UO->getSubExpr(),
7446                                             RK_ReferenceBinding, Visit,
7447                                             EnableLifetimeWarnings);
7448     }
7449     break;
7450   }
7451 
7452   case Stmt::BinaryOperatorClass: {
7453     // Handle pointer arithmetic.
7454     auto *BO = cast<BinaryOperator>(Init);
7455     BinaryOperatorKind BOK = BO->getOpcode();
7456     if (!BO->getType()->isPointerType() || (BOK != BO_Add && BOK != BO_Sub))
7457       break;
7458 
7459     if (BO->getLHS()->getType()->isPointerType())
7460       visitLocalsRetainedByInitializer(Path, BO->getLHS(), Visit, true,
7461                                        EnableLifetimeWarnings);
7462     else if (BO->getRHS()->getType()->isPointerType())
7463       visitLocalsRetainedByInitializer(Path, BO->getRHS(), Visit, true,
7464                                        EnableLifetimeWarnings);
7465     break;
7466   }
7467 
7468   case Stmt::ConditionalOperatorClass:
7469   case Stmt::BinaryConditionalOperatorClass: {
7470     auto *C = cast<AbstractConditionalOperator>(Init);
7471     // In C++, we can have a throw-expression operand, which has 'void' type
7472     // and isn't interesting from a lifetime perspective.
7473     if (!C->getTrueExpr()->getType()->isVoidType())
7474       visitLocalsRetainedByInitializer(Path, C->getTrueExpr(), Visit, true,
7475                                        EnableLifetimeWarnings);
7476     if (!C->getFalseExpr()->getType()->isVoidType())
7477       visitLocalsRetainedByInitializer(Path, C->getFalseExpr(), Visit, true,
7478                                        EnableLifetimeWarnings);
7479     break;
7480   }
7481 
7482   case Stmt::BlockExprClass:
7483     if (cast<BlockExpr>(Init)->getBlockDecl()->hasCaptures()) {
7484       // This is a local block, whose lifetime is that of the function.
7485       Visit(Path, Local(cast<BlockExpr>(Init)), RK_ReferenceBinding);
7486     }
7487     break;
7488 
7489   case Stmt::AddrLabelExprClass:
7490     // We want to warn if the address of a label would escape the function.
7491     Visit(Path, Local(cast<AddrLabelExpr>(Init)), RK_ReferenceBinding);
7492     break;
7493 
7494   default:
7495     break;
7496   }
7497 }
7498 
7499 /// Whether a path to an object supports lifetime extension.
7500 enum PathLifetimeKind {
7501   /// Lifetime-extend along this path.
7502   Extend,
7503   /// We should lifetime-extend, but we don't because (due to technical
7504   /// limitations) we can't. This happens for default member initializers,
7505   /// which we don't clone for every use, so we don't have a unique
7506   /// MaterializeTemporaryExpr to update.
7507   ShouldExtend,
7508   /// Do not lifetime extend along this path.
7509   NoExtend
7510 };
7511 
7512 /// Determine whether this is an indirect path to a temporary that we are
7513 /// supposed to lifetime-extend along.
7514 static PathLifetimeKind
7515 shouldLifetimeExtendThroughPath(const IndirectLocalPath &Path) {
7516   PathLifetimeKind Kind = PathLifetimeKind::Extend;
7517   for (auto Elem : Path) {
7518     if (Elem.Kind == IndirectLocalPathEntry::DefaultInit)
7519       Kind = PathLifetimeKind::ShouldExtend;
7520     else if (Elem.Kind != IndirectLocalPathEntry::LambdaCaptureInit)
7521       return PathLifetimeKind::NoExtend;
7522   }
7523   return Kind;
7524 }
7525 
7526 /// Find the range for the first interesting entry in the path at or after I.
7527 static SourceRange nextPathEntryRange(const IndirectLocalPath &Path, unsigned I,
7528                                       Expr *E) {
7529   for (unsigned N = Path.size(); I != N; ++I) {
7530     switch (Path[I].Kind) {
7531     case IndirectLocalPathEntry::AddressOf:
7532     case IndirectLocalPathEntry::LValToRVal:
7533     case IndirectLocalPathEntry::LifetimeBoundCall:
7534     case IndirectLocalPathEntry::TemporaryCopy:
7535     case IndirectLocalPathEntry::GslReferenceInit:
7536     case IndirectLocalPathEntry::GslPointerInit:
7537       // These exist primarily to mark the path as not permitting or
7538       // supporting lifetime extension.
7539       break;
7540 
7541     case IndirectLocalPathEntry::VarInit:
7542       if (cast<VarDecl>(Path[I].D)->isImplicit())
7543         return SourceRange();
7544       LLVM_FALLTHROUGH;
7545     case IndirectLocalPathEntry::DefaultInit:
7546       return Path[I].E->getSourceRange();
7547 
7548     case IndirectLocalPathEntry::LambdaCaptureInit:
7549       if (!Path[I].Capture->capturesVariable())
7550         continue;
7551       return Path[I].E->getSourceRange();
7552     }
7553   }
7554   return E->getSourceRange();
7555 }
7556 
7557 static bool pathOnlyInitializesGslPointer(IndirectLocalPath &Path) {
7558   for (auto It = Path.rbegin(), End = Path.rend(); It != End; ++It) {
7559     if (It->Kind == IndirectLocalPathEntry::VarInit)
7560       continue;
7561     if (It->Kind == IndirectLocalPathEntry::AddressOf)
7562       continue;
7563     if (It->Kind == IndirectLocalPathEntry::LifetimeBoundCall)
7564       continue;
7565     return It->Kind == IndirectLocalPathEntry::GslPointerInit ||
7566            It->Kind == IndirectLocalPathEntry::GslReferenceInit;
7567   }
7568   return false;
7569 }
7570 
7571 void Sema::checkInitializerLifetime(const InitializedEntity &Entity,
7572                                     Expr *Init) {
7573   LifetimeResult LR = getEntityLifetime(&Entity);
7574   LifetimeKind LK = LR.getInt();
7575   const InitializedEntity *ExtendingEntity = LR.getPointer();
7576 
7577   // If this entity doesn't have an interesting lifetime, don't bother looking
7578   // for temporaries within its initializer.
7579   if (LK == LK_FullExpression)
7580     return;
7581 
7582   auto TemporaryVisitor = [&](IndirectLocalPath &Path, Local L,
7583                               ReferenceKind RK) -> bool {
7584     SourceRange DiagRange = nextPathEntryRange(Path, 0, L);
7585     SourceLocation DiagLoc = DiagRange.getBegin();
7586 
7587     auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L);
7588 
7589     bool IsGslPtrInitWithGslTempOwner = false;
7590     bool IsLocalGslOwner = false;
7591     if (pathOnlyInitializesGslPointer(Path)) {
7592       if (isa<DeclRefExpr>(L)) {
7593         // We do not want to follow the references when returning a pointer originating
7594         // from a local owner to avoid the following false positive:
7595         //   int &p = *localUniquePtr;
7596         //   someContainer.add(std::move(localUniquePtr));
7597         //   return p;
7598         IsLocalGslOwner = isRecordWithAttr<OwnerAttr>(L->getType());
7599         if (pathContainsInit(Path) || !IsLocalGslOwner)
7600           return false;
7601       } else {
7602         IsGslPtrInitWithGslTempOwner = MTE && !MTE->getExtendingDecl() &&
7603                             isRecordWithAttr<OwnerAttr>(MTE->getType());
7604         // Skipping a chain of initializing gsl::Pointer annotated objects.
7605         // We are looking only for the final source to find out if it was
7606         // a local or temporary owner or the address of a local variable/param.
7607         if (!IsGslPtrInitWithGslTempOwner)
7608           return true;
7609       }
7610     }
7611 
7612     switch (LK) {
7613     case LK_FullExpression:
7614       llvm_unreachable("already handled this");
7615 
7616     case LK_Extended: {
7617       if (!MTE) {
7618         // The initialized entity has lifetime beyond the full-expression,
7619         // and the local entity does too, so don't warn.
7620         //
7621         // FIXME: We should consider warning if a static / thread storage
7622         // duration variable retains an automatic storage duration local.
7623         return false;
7624       }
7625 
7626       if (IsGslPtrInitWithGslTempOwner && DiagLoc.isValid()) {
7627         Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange;
7628         return false;
7629       }
7630 
7631       switch (shouldLifetimeExtendThroughPath(Path)) {
7632       case PathLifetimeKind::Extend:
7633         // Update the storage duration of the materialized temporary.
7634         // FIXME: Rebuild the expression instead of mutating it.
7635         MTE->setExtendingDecl(ExtendingEntity->getDecl(),
7636                               ExtendingEntity->allocateManglingNumber());
7637         // Also visit the temporaries lifetime-extended by this initializer.
7638         return true;
7639 
7640       case PathLifetimeKind::ShouldExtend:
7641         // We're supposed to lifetime-extend the temporary along this path (per
7642         // the resolution of DR1815), but we don't support that yet.
7643         //
7644         // FIXME: Properly handle this situation. Perhaps the easiest approach
7645         // would be to clone the initializer expression on each use that would
7646         // lifetime extend its temporaries.
7647         Diag(DiagLoc, diag::warn_unsupported_lifetime_extension)
7648             << RK << DiagRange;
7649         break;
7650 
7651       case PathLifetimeKind::NoExtend:
7652         // If the path goes through the initialization of a variable or field,
7653         // it can't possibly reach a temporary created in this full-expression.
7654         // We will have already diagnosed any problems with the initializer.
7655         if (pathContainsInit(Path))
7656           return false;
7657 
7658         Diag(DiagLoc, diag::warn_dangling_variable)
7659             << RK << !Entity.getParent()
7660             << ExtendingEntity->getDecl()->isImplicit()
7661             << ExtendingEntity->getDecl() << Init->isGLValue() << DiagRange;
7662         break;
7663       }
7664       break;
7665     }
7666 
7667     case LK_MemInitializer: {
7668       if (isa<MaterializeTemporaryExpr>(L)) {
7669         // Under C++ DR1696, if a mem-initializer (or a default member
7670         // initializer used by the absence of one) would lifetime-extend a
7671         // temporary, the program is ill-formed.
7672         if (auto *ExtendingDecl =
7673                 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
7674           if (IsGslPtrInitWithGslTempOwner) {
7675             Diag(DiagLoc, diag::warn_dangling_lifetime_pointer_member)
7676                 << ExtendingDecl << DiagRange;
7677             Diag(ExtendingDecl->getLocation(),
7678                  diag::note_ref_or_ptr_member_declared_here)
7679                 << true;
7680             return false;
7681           }
7682           bool IsSubobjectMember = ExtendingEntity != &Entity;
7683           Diag(DiagLoc, shouldLifetimeExtendThroughPath(Path) !=
7684                                 PathLifetimeKind::NoExtend
7685                             ? diag::err_dangling_member
7686                             : diag::warn_dangling_member)
7687               << ExtendingDecl << IsSubobjectMember << RK << DiagRange;
7688           // Don't bother adding a note pointing to the field if we're inside
7689           // its default member initializer; our primary diagnostic points to
7690           // the same place in that case.
7691           if (Path.empty() ||
7692               Path.back().Kind != IndirectLocalPathEntry::DefaultInit) {
7693             Diag(ExtendingDecl->getLocation(),
7694                  diag::note_lifetime_extending_member_declared_here)
7695                 << RK << IsSubobjectMember;
7696           }
7697         } else {
7698           // We have a mem-initializer but no particular field within it; this
7699           // is either a base class or a delegating initializer directly
7700           // initializing the base-class from something that doesn't live long
7701           // enough.
7702           //
7703           // FIXME: Warn on this.
7704           return false;
7705         }
7706       } else {
7707         // Paths via a default initializer can only occur during error recovery
7708         // (there's no other way that a default initializer can refer to a
7709         // local). Don't produce a bogus warning on those cases.
7710         if (pathContainsInit(Path))
7711           return false;
7712 
7713         // Suppress false positives for code like the one below:
7714         //   Ctor(unique_ptr<T> up) : member(*up), member2(move(up)) {}
7715         if (IsLocalGslOwner && pathOnlyInitializesGslPointer(Path))
7716           return false;
7717 
7718         auto *DRE = dyn_cast<DeclRefExpr>(L);
7719         auto *VD = DRE ? dyn_cast<VarDecl>(DRE->getDecl()) : nullptr;
7720         if (!VD) {
7721           // A member was initialized to a local block.
7722           // FIXME: Warn on this.
7723           return false;
7724         }
7725 
7726         if (auto *Member =
7727                 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
7728           bool IsPointer = !Member->getType()->isReferenceType();
7729           Diag(DiagLoc, IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
7730                                   : diag::warn_bind_ref_member_to_parameter)
7731               << Member << VD << isa<ParmVarDecl>(VD) << DiagRange;
7732           Diag(Member->getLocation(),
7733                diag::note_ref_or_ptr_member_declared_here)
7734               << (unsigned)IsPointer;
7735         }
7736       }
7737       break;
7738     }
7739 
7740     case LK_New:
7741       if (isa<MaterializeTemporaryExpr>(L)) {
7742         if (IsGslPtrInitWithGslTempOwner)
7743           Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange;
7744         else
7745           Diag(DiagLoc, RK == RK_ReferenceBinding
7746                             ? diag::warn_new_dangling_reference
7747                             : diag::warn_new_dangling_initializer_list)
7748               << !Entity.getParent() << DiagRange;
7749       } else {
7750         // We can't determine if the allocation outlives the local declaration.
7751         return false;
7752       }
7753       break;
7754 
7755     case LK_Return:
7756     case LK_StmtExprResult:
7757       if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
7758         // We can't determine if the local variable outlives the statement
7759         // expression.
7760         if (LK == LK_StmtExprResult)
7761           return false;
7762         Diag(DiagLoc, diag::warn_ret_stack_addr_ref)
7763             << Entity.getType()->isReferenceType() << DRE->getDecl()
7764             << isa<ParmVarDecl>(DRE->getDecl()) << DiagRange;
7765       } else if (isa<BlockExpr>(L)) {
7766         Diag(DiagLoc, diag::err_ret_local_block) << DiagRange;
7767       } else if (isa<AddrLabelExpr>(L)) {
7768         // Don't warn when returning a label from a statement expression.
7769         // Leaving the scope doesn't end its lifetime.
7770         if (LK == LK_StmtExprResult)
7771           return false;
7772         Diag(DiagLoc, diag::warn_ret_addr_label) << DiagRange;
7773       } else {
7774         Diag(DiagLoc, diag::warn_ret_local_temp_addr_ref)
7775          << Entity.getType()->isReferenceType() << DiagRange;
7776       }
7777       break;
7778     }
7779 
7780     for (unsigned I = 0; I != Path.size(); ++I) {
7781       auto Elem = Path[I];
7782 
7783       switch (Elem.Kind) {
7784       case IndirectLocalPathEntry::AddressOf:
7785       case IndirectLocalPathEntry::LValToRVal:
7786         // These exist primarily to mark the path as not permitting or
7787         // supporting lifetime extension.
7788         break;
7789 
7790       case IndirectLocalPathEntry::LifetimeBoundCall:
7791       case IndirectLocalPathEntry::TemporaryCopy:
7792       case IndirectLocalPathEntry::GslPointerInit:
7793       case IndirectLocalPathEntry::GslReferenceInit:
7794         // FIXME: Consider adding a note for these.
7795         break;
7796 
7797       case IndirectLocalPathEntry::DefaultInit: {
7798         auto *FD = cast<FieldDecl>(Elem.D);
7799         Diag(FD->getLocation(), diag::note_init_with_default_member_initalizer)
7800             << FD << nextPathEntryRange(Path, I + 1, L);
7801         break;
7802       }
7803 
7804       case IndirectLocalPathEntry::VarInit: {
7805         const VarDecl *VD = cast<VarDecl>(Elem.D);
7806         Diag(VD->getLocation(), diag::note_local_var_initializer)
7807             << VD->getType()->isReferenceType()
7808             << VD->isImplicit() << VD->getDeclName()
7809             << nextPathEntryRange(Path, I + 1, L);
7810         break;
7811       }
7812 
7813       case IndirectLocalPathEntry::LambdaCaptureInit:
7814         if (!Elem.Capture->capturesVariable())
7815           break;
7816         // FIXME: We can't easily tell apart an init-capture from a nested
7817         // capture of an init-capture.
7818         const VarDecl *VD = Elem.Capture->getCapturedVar();
7819         Diag(Elem.Capture->getLocation(), diag::note_lambda_capture_initializer)
7820             << VD << VD->isInitCapture() << Elem.Capture->isExplicit()
7821             << (Elem.Capture->getCaptureKind() == LCK_ByRef) << VD
7822             << nextPathEntryRange(Path, I + 1, L);
7823         break;
7824       }
7825     }
7826 
7827     // We didn't lifetime-extend, so don't go any further; we don't need more
7828     // warnings or errors on inner temporaries within this one's initializer.
7829     return false;
7830   };
7831 
7832   bool EnableLifetimeWarnings = !getDiagnostics().isIgnored(
7833       diag::warn_dangling_lifetime_pointer, SourceLocation());
7834   llvm::SmallVector<IndirectLocalPathEntry, 8> Path;
7835   if (Init->isGLValue())
7836     visitLocalsRetainedByReferenceBinding(Path, Init, RK_ReferenceBinding,
7837                                           TemporaryVisitor,
7838                                           EnableLifetimeWarnings);
7839   else
7840     visitLocalsRetainedByInitializer(Path, Init, TemporaryVisitor, false,
7841                                      EnableLifetimeWarnings);
7842 }
7843 
7844 static void DiagnoseNarrowingInInitList(Sema &S,
7845                                         const ImplicitConversionSequence &ICS,
7846                                         QualType PreNarrowingType,
7847                                         QualType EntityType,
7848                                         const Expr *PostInit);
7849 
7850 /// Provide warnings when std::move is used on construction.
7851 static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr,
7852                                     bool IsReturnStmt) {
7853   if (!InitExpr)
7854     return;
7855 
7856   if (S.inTemplateInstantiation())
7857     return;
7858 
7859   QualType DestType = InitExpr->getType();
7860   if (!DestType->isRecordType())
7861     return;
7862 
7863   unsigned DiagID = 0;
7864   if (IsReturnStmt) {
7865     const CXXConstructExpr *CCE =
7866         dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens());
7867     if (!CCE || CCE->getNumArgs() != 1)
7868       return;
7869 
7870     if (!CCE->getConstructor()->isCopyOrMoveConstructor())
7871       return;
7872 
7873     InitExpr = CCE->getArg(0)->IgnoreImpCasts();
7874   }
7875 
7876   // Find the std::move call and get the argument.
7877   const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens());
7878   if (!CE || !CE->isCallToStdMove())
7879     return;
7880 
7881   const Expr *Arg = CE->getArg(0)->IgnoreImplicit();
7882 
7883   if (IsReturnStmt) {
7884     const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts());
7885     if (!DRE || DRE->refersToEnclosingVariableOrCapture())
7886       return;
7887 
7888     const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
7889     if (!VD || !VD->hasLocalStorage())
7890       return;
7891 
7892     // __block variables are not moved implicitly.
7893     if (VD->hasAttr<BlocksAttr>())
7894       return;
7895 
7896     QualType SourceType = VD->getType();
7897     if (!SourceType->isRecordType())
7898       return;
7899 
7900     if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) {
7901       return;
7902     }
7903 
7904     // If we're returning a function parameter, copy elision
7905     // is not possible.
7906     if (isa<ParmVarDecl>(VD))
7907       DiagID = diag::warn_redundant_move_on_return;
7908     else
7909       DiagID = diag::warn_pessimizing_move_on_return;
7910   } else {
7911     DiagID = diag::warn_pessimizing_move_on_initialization;
7912     const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens();
7913     if (!ArgStripped->isPRValue() || !ArgStripped->getType()->isRecordType())
7914       return;
7915   }
7916 
7917   S.Diag(CE->getBeginLoc(), DiagID);
7918 
7919   // Get all the locations for a fix-it.  Don't emit the fix-it if any location
7920   // is within a macro.
7921   SourceLocation CallBegin = CE->getCallee()->getBeginLoc();
7922   if (CallBegin.isMacroID())
7923     return;
7924   SourceLocation RParen = CE->getRParenLoc();
7925   if (RParen.isMacroID())
7926     return;
7927   SourceLocation LParen;
7928   SourceLocation ArgLoc = Arg->getBeginLoc();
7929 
7930   // Special testing for the argument location.  Since the fix-it needs the
7931   // location right before the argument, the argument location can be in a
7932   // macro only if it is at the beginning of the macro.
7933   while (ArgLoc.isMacroID() &&
7934          S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) {
7935     ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).getBegin();
7936   }
7937 
7938   if (LParen.isMacroID())
7939     return;
7940 
7941   LParen = ArgLoc.getLocWithOffset(-1);
7942 
7943   S.Diag(CE->getBeginLoc(), diag::note_remove_move)
7944       << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen))
7945       << FixItHint::CreateRemoval(SourceRange(RParen, RParen));
7946 }
7947 
7948 static void CheckForNullPointerDereference(Sema &S, const Expr *E) {
7949   // Check to see if we are dereferencing a null pointer.  If so, this is
7950   // undefined behavior, so warn about it.  This only handles the pattern
7951   // "*null", which is a very syntactic check.
7952   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
7953     if (UO->getOpcode() == UO_Deref &&
7954         UO->getSubExpr()->IgnoreParenCasts()->
7955         isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) {
7956     S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
7957                           S.PDiag(diag::warn_binding_null_to_reference)
7958                             << UO->getSubExpr()->getSourceRange());
7959   }
7960 }
7961 
7962 MaterializeTemporaryExpr *
7963 Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary,
7964                                      bool BoundToLvalueReference) {
7965   auto MTE = new (Context)
7966       MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference);
7967 
7968   // Order an ExprWithCleanups for lifetime marks.
7969   //
7970   // TODO: It'll be good to have a single place to check the access of the
7971   // destructor and generate ExprWithCleanups for various uses. Currently these
7972   // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary,
7973   // but there may be a chance to merge them.
7974   Cleanup.setExprNeedsCleanups(false);
7975   return MTE;
7976 }
7977 
7978 ExprResult Sema::TemporaryMaterializationConversion(Expr *E) {
7979   // In C++98, we don't want to implicitly create an xvalue.
7980   // FIXME: This means that AST consumers need to deal with "prvalues" that
7981   // denote materialized temporaries. Maybe we should add another ValueKind
7982   // for "xvalue pretending to be a prvalue" for C++98 support.
7983   if (!E->isPRValue() || !getLangOpts().CPlusPlus11)
7984     return E;
7985 
7986   // C++1z [conv.rval]/1: T shall be a complete type.
7987   // FIXME: Does this ever matter (can we form a prvalue of incomplete type)?
7988   // If so, we should check for a non-abstract class type here too.
7989   QualType T = E->getType();
7990   if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type))
7991     return ExprError();
7992 
7993   return CreateMaterializeTemporaryExpr(E->getType(), E, false);
7994 }
7995 
7996 ExprResult Sema::PerformQualificationConversion(Expr *E, QualType Ty,
7997                                                 ExprValueKind VK,
7998                                                 CheckedConversionKind CCK) {
7999 
8000   CastKind CK = CK_NoOp;
8001 
8002   if (VK == VK_PRValue) {
8003     auto PointeeTy = Ty->getPointeeType();
8004     auto ExprPointeeTy = E->getType()->getPointeeType();
8005     if (!PointeeTy.isNull() &&
8006         PointeeTy.getAddressSpace() != ExprPointeeTy.getAddressSpace())
8007       CK = CK_AddressSpaceConversion;
8008   } else if (Ty.getAddressSpace() != E->getType().getAddressSpace()) {
8009     CK = CK_AddressSpaceConversion;
8010   }
8011 
8012   return ImpCastExprToType(E, Ty, CK, VK, /*BasePath=*/nullptr, CCK);
8013 }
8014 
8015 ExprResult InitializationSequence::Perform(Sema &S,
8016                                            const InitializedEntity &Entity,
8017                                            const InitializationKind &Kind,
8018                                            MultiExprArg Args,
8019                                            QualType *ResultType) {
8020   if (Failed()) {
8021     Diagnose(S, Entity, Kind, Args);
8022     return ExprError();
8023   }
8024   if (!ZeroInitializationFixit.empty()) {
8025     unsigned DiagID = diag::err_default_init_const;
8026     if (Decl *D = Entity.getDecl())
8027       if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>())
8028         DiagID = diag::ext_default_init_const;
8029 
8030     // The initialization would have succeeded with this fixit. Since the fixit
8031     // is on the error, we need to build a valid AST in this case, so this isn't
8032     // handled in the Failed() branch above.
8033     QualType DestType = Entity.getType();
8034     S.Diag(Kind.getLocation(), DiagID)
8035         << DestType << (bool)DestType->getAs<RecordType>()
8036         << FixItHint::CreateInsertion(ZeroInitializationFixitLoc,
8037                                       ZeroInitializationFixit);
8038   }
8039 
8040   if (getKind() == DependentSequence) {
8041     // If the declaration is a non-dependent, incomplete array type
8042     // that has an initializer, then its type will be completed once
8043     // the initializer is instantiated.
8044     if (ResultType && !Entity.getType()->isDependentType() &&
8045         Args.size() == 1) {
8046       QualType DeclType = Entity.getType();
8047       if (const IncompleteArrayType *ArrayT
8048                            = S.Context.getAsIncompleteArrayType(DeclType)) {
8049         // FIXME: We don't currently have the ability to accurately
8050         // compute the length of an initializer list without
8051         // performing full type-checking of the initializer list
8052         // (since we have to determine where braces are implicitly
8053         // introduced and such).  So, we fall back to making the array
8054         // type a dependently-sized array type with no specified
8055         // bound.
8056         if (isa<InitListExpr>((Expr *)Args[0])) {
8057           SourceRange Brackets;
8058 
8059           // Scavange the location of the brackets from the entity, if we can.
8060           if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Entity.getDecl())) {
8061             if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
8062               TypeLoc TL = TInfo->getTypeLoc();
8063               if (IncompleteArrayTypeLoc ArrayLoc =
8064                       TL.getAs<IncompleteArrayTypeLoc>())
8065                 Brackets = ArrayLoc.getBracketsRange();
8066             }
8067           }
8068 
8069           *ResultType
8070             = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
8071                                                    /*NumElts=*/nullptr,
8072                                                    ArrayT->getSizeModifier(),
8073                                        ArrayT->getIndexTypeCVRQualifiers(),
8074                                                    Brackets);
8075         }
8076 
8077       }
8078     }
8079     if (Kind.getKind() == InitializationKind::IK_Direct &&
8080         !Kind.isExplicitCast()) {
8081       // Rebuild the ParenListExpr.
8082       SourceRange ParenRange = Kind.getParenOrBraceRange();
8083       return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
8084                                   Args);
8085     }
8086     assert(Kind.getKind() == InitializationKind::IK_Copy ||
8087            Kind.isExplicitCast() ||
8088            Kind.getKind() == InitializationKind::IK_DirectList);
8089     return ExprResult(Args[0]);
8090   }
8091 
8092   // No steps means no initialization.
8093   if (Steps.empty())
8094     return ExprResult((Expr *)nullptr);
8095 
8096   if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
8097       Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
8098       !Entity.isParamOrTemplateParamKind()) {
8099     // Produce a C++98 compatibility warning if we are initializing a reference
8100     // from an initializer list. For parameters, we produce a better warning
8101     // elsewhere.
8102     Expr *Init = Args[0];
8103     S.Diag(Init->getBeginLoc(), diag::warn_cxx98_compat_reference_list_init)
8104         << Init->getSourceRange();
8105   }
8106 
8107   // OpenCL v2.0 s6.13.11.1. atomic variables can be initialized in global scope
8108   QualType ETy = Entity.getType();
8109   bool HasGlobalAS = ETy.hasAddressSpace() &&
8110                      ETy.getAddressSpace() == LangAS::opencl_global;
8111 
8112   if (S.getLangOpts().OpenCLVersion >= 200 &&
8113       ETy->isAtomicType() && !HasGlobalAS &&
8114       Entity.getKind() == InitializedEntity::EK_Variable && Args.size() > 0) {
8115     S.Diag(Args[0]->getBeginLoc(), diag::err_opencl_atomic_init)
8116         << 1
8117         << SourceRange(Entity.getDecl()->getBeginLoc(), Args[0]->getEndLoc());
8118     return ExprError();
8119   }
8120 
8121   QualType DestType = Entity.getType().getNonReferenceType();
8122   // FIXME: Ugly hack around the fact that Entity.getType() is not
8123   // the same as Entity.getDecl()->getType() in cases involving type merging,
8124   //  and we want latter when it makes sense.
8125   if (ResultType)
8126     *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
8127                                      Entity.getType();
8128 
8129   ExprResult CurInit((Expr *)nullptr);
8130   SmallVector<Expr*, 4> ArrayLoopCommonExprs;
8131 
8132   // For initialization steps that start with a single initializer,
8133   // grab the only argument out the Args and place it into the "current"
8134   // initializer.
8135   switch (Steps.front().Kind) {
8136   case SK_ResolveAddressOfOverloadedFunction:
8137   case SK_CastDerivedToBasePRValue:
8138   case SK_CastDerivedToBaseXValue:
8139   case SK_CastDerivedToBaseLValue:
8140   case SK_BindReference:
8141   case SK_BindReferenceToTemporary:
8142   case SK_FinalCopy:
8143   case SK_ExtraneousCopyToTemporary:
8144   case SK_UserConversion:
8145   case SK_QualificationConversionLValue:
8146   case SK_QualificationConversionXValue:
8147   case SK_QualificationConversionPRValue:
8148   case SK_FunctionReferenceConversion:
8149   case SK_AtomicConversion:
8150   case SK_ConversionSequence:
8151   case SK_ConversionSequenceNoNarrowing:
8152   case SK_ListInitialization:
8153   case SK_UnwrapInitList:
8154   case SK_RewrapInitList:
8155   case SK_CAssignment:
8156   case SK_StringInit:
8157   case SK_ObjCObjectConversion:
8158   case SK_ArrayLoopIndex:
8159   case SK_ArrayLoopInit:
8160   case SK_ArrayInit:
8161   case SK_GNUArrayInit:
8162   case SK_ParenthesizedArrayInit:
8163   case SK_PassByIndirectCopyRestore:
8164   case SK_PassByIndirectRestore:
8165   case SK_ProduceObjCObject:
8166   case SK_StdInitializerList:
8167   case SK_OCLSamplerInit:
8168   case SK_OCLZeroOpaqueType: {
8169     assert(Args.size() == 1);
8170     CurInit = Args[0];
8171     if (!CurInit.get()) return ExprError();
8172     break;
8173   }
8174 
8175   case SK_ConstructorInitialization:
8176   case SK_ConstructorInitializationFromList:
8177   case SK_StdInitializerListConstructorCall:
8178   case SK_ZeroInitialization:
8179     break;
8180   }
8181 
8182   // Promote from an unevaluated context to an unevaluated list context in
8183   // C++11 list-initialization; we need to instantiate entities usable in
8184   // constant expressions here in order to perform narrowing checks =(
8185   EnterExpressionEvaluationContext Evaluated(
8186       S, EnterExpressionEvaluationContext::InitList,
8187       CurInit.get() && isa<InitListExpr>(CurInit.get()));
8188 
8189   // C++ [class.abstract]p2:
8190   //   no objects of an abstract class can be created except as subobjects
8191   //   of a class derived from it
8192   auto checkAbstractType = [&](QualType T) -> bool {
8193     if (Entity.getKind() == InitializedEntity::EK_Base ||
8194         Entity.getKind() == InitializedEntity::EK_Delegating)
8195       return false;
8196     return S.RequireNonAbstractType(Kind.getLocation(), T,
8197                                     diag::err_allocation_of_abstract_type);
8198   };
8199 
8200   // Walk through the computed steps for the initialization sequence,
8201   // performing the specified conversions along the way.
8202   bool ConstructorInitRequiresZeroInit = false;
8203   for (step_iterator Step = step_begin(), StepEnd = step_end();
8204        Step != StepEnd; ++Step) {
8205     if (CurInit.isInvalid())
8206       return ExprError();
8207 
8208     QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
8209 
8210     switch (Step->Kind) {
8211     case SK_ResolveAddressOfOverloadedFunction:
8212       // Overload resolution determined which function invoke; update the
8213       // initializer to reflect that choice.
8214       S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
8215       if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()))
8216         return ExprError();
8217       CurInit = S.FixOverloadedFunctionReference(CurInit,
8218                                                  Step->Function.FoundDecl,
8219                                                  Step->Function.Function);
8220       // We might get back another placeholder expression if we resolved to a
8221       // builtin.
8222       if (!CurInit.isInvalid())
8223         CurInit = S.CheckPlaceholderExpr(CurInit.get());
8224       break;
8225 
8226     case SK_CastDerivedToBasePRValue:
8227     case SK_CastDerivedToBaseXValue:
8228     case SK_CastDerivedToBaseLValue: {
8229       // We have a derived-to-base cast that produces either an rvalue or an
8230       // lvalue. Perform that cast.
8231 
8232       CXXCastPath BasePath;
8233 
8234       // Casts to inaccessible base classes are allowed with C-style casts.
8235       bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
8236       if (S.CheckDerivedToBaseConversion(
8237               SourceType, Step->Type, CurInit.get()->getBeginLoc(),
8238               CurInit.get()->getSourceRange(), &BasePath, IgnoreBaseAccess))
8239         return ExprError();
8240 
8241       ExprValueKind VK =
8242           Step->Kind == SK_CastDerivedToBaseLValue
8243               ? VK_LValue
8244               : (Step->Kind == SK_CastDerivedToBaseXValue ? VK_XValue
8245                                                           : VK_PRValue);
8246       CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
8247                                          CK_DerivedToBase, CurInit.get(),
8248                                          &BasePath, VK, FPOptionsOverride());
8249       break;
8250     }
8251 
8252     case SK_BindReference:
8253       // Reference binding does not have any corresponding ASTs.
8254 
8255       // Check exception specifications
8256       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
8257         return ExprError();
8258 
8259       // We don't check for e.g. function pointers here, since address
8260       // availability checks should only occur when the function first decays
8261       // into a pointer or reference.
8262       if (CurInit.get()->getType()->isFunctionProtoType()) {
8263         if (auto *DRE = dyn_cast<DeclRefExpr>(CurInit.get()->IgnoreParens())) {
8264           if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
8265             if (!S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
8266                                                      DRE->getBeginLoc()))
8267               return ExprError();
8268           }
8269         }
8270       }
8271 
8272       CheckForNullPointerDereference(S, CurInit.get());
8273       break;
8274 
8275     case SK_BindReferenceToTemporary: {
8276       // Make sure the "temporary" is actually an rvalue.
8277       assert(CurInit.get()->isPRValue() && "not a temporary");
8278 
8279       // Check exception specifications
8280       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
8281         return ExprError();
8282 
8283       QualType MTETy = Step->Type;
8284 
8285       // When this is an incomplete array type (such as when this is
8286       // initializing an array of unknown bounds from an init list), use THAT
8287       // type instead so that we propagate the array bounds.
8288       if (MTETy->isIncompleteArrayType() &&
8289           !CurInit.get()->getType()->isIncompleteArrayType() &&
8290           S.Context.hasSameType(
8291               MTETy->getPointeeOrArrayElementType(),
8292               CurInit.get()->getType()->getPointeeOrArrayElementType()))
8293         MTETy = CurInit.get()->getType();
8294 
8295       // Materialize the temporary into memory.
8296       MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
8297           MTETy, CurInit.get(), Entity.getType()->isLValueReferenceType());
8298       CurInit = MTE;
8299 
8300       // If we're extending this temporary to automatic storage duration -- we
8301       // need to register its cleanup during the full-expression's cleanups.
8302       if (MTE->getStorageDuration() == SD_Automatic &&
8303           MTE->getType().isDestructedType())
8304         S.Cleanup.setExprNeedsCleanups(true);
8305       break;
8306     }
8307 
8308     case SK_FinalCopy:
8309       if (checkAbstractType(Step->Type))
8310         return ExprError();
8311 
8312       // If the overall initialization is initializing a temporary, we already
8313       // bound our argument if it was necessary to do so. If not (if we're
8314       // ultimately initializing a non-temporary), our argument needs to be
8315       // bound since it's initializing a function parameter.
8316       // FIXME: This is a mess. Rationalize temporary destruction.
8317       if (!shouldBindAsTemporary(Entity))
8318         CurInit = S.MaybeBindToTemporary(CurInit.get());
8319       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
8320                            /*IsExtraneousCopy=*/false);
8321       break;
8322 
8323     case SK_ExtraneousCopyToTemporary:
8324       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
8325                            /*IsExtraneousCopy=*/true);
8326       break;
8327 
8328     case SK_UserConversion: {
8329       // We have a user-defined conversion that invokes either a constructor
8330       // or a conversion function.
8331       CastKind CastKind;
8332       FunctionDecl *Fn = Step->Function.Function;
8333       DeclAccessPair FoundFn = Step->Function.FoundDecl;
8334       bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
8335       bool CreatedObject = false;
8336       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
8337         // Build a call to the selected constructor.
8338         SmallVector<Expr*, 8> ConstructorArgs;
8339         SourceLocation Loc = CurInit.get()->getBeginLoc();
8340 
8341         // Determine the arguments required to actually perform the constructor
8342         // call.
8343         Expr *Arg = CurInit.get();
8344         if (S.CompleteConstructorCall(Constructor, Step->Type,
8345                                       MultiExprArg(&Arg, 1), Loc,
8346                                       ConstructorArgs))
8347           return ExprError();
8348 
8349         // Build an expression that constructs a temporary.
8350         CurInit = S.BuildCXXConstructExpr(Loc, Step->Type,
8351                                           FoundFn, Constructor,
8352                                           ConstructorArgs,
8353                                           HadMultipleCandidates,
8354                                           /*ListInit*/ false,
8355                                           /*StdInitListInit*/ false,
8356                                           /*ZeroInit*/ false,
8357                                           CXXConstructExpr::CK_Complete,
8358                                           SourceRange());
8359         if (CurInit.isInvalid())
8360           return ExprError();
8361 
8362         S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn,
8363                                  Entity);
8364         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
8365           return ExprError();
8366 
8367         CastKind = CK_ConstructorConversion;
8368         CreatedObject = true;
8369       } else {
8370         // Build a call to the conversion function.
8371         CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
8372         S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr,
8373                                     FoundFn);
8374         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
8375           return ExprError();
8376 
8377         CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
8378                                            HadMultipleCandidates);
8379         if (CurInit.isInvalid())
8380           return ExprError();
8381 
8382         CastKind = CK_UserDefinedConversion;
8383         CreatedObject = Conversion->getReturnType()->isRecordType();
8384       }
8385 
8386       if (CreatedObject && checkAbstractType(CurInit.get()->getType()))
8387         return ExprError();
8388 
8389       CurInit = ImplicitCastExpr::Create(
8390           S.Context, CurInit.get()->getType(), CastKind, CurInit.get(), nullptr,
8391           CurInit.get()->getValueKind(), S.CurFPFeatureOverrides());
8392 
8393       if (shouldBindAsTemporary(Entity))
8394         // The overall entity is temporary, so this expression should be
8395         // destroyed at the end of its full-expression.
8396         CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
8397       else if (CreatedObject && shouldDestroyEntity(Entity)) {
8398         // The object outlasts the full-expression, but we need to prepare for
8399         // a destructor being run on it.
8400         // FIXME: It makes no sense to do this here. This should happen
8401         // regardless of how we initialized the entity.
8402         QualType T = CurInit.get()->getType();
8403         if (const RecordType *Record = T->getAs<RecordType>()) {
8404           CXXDestructorDecl *Destructor
8405             = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
8406           S.CheckDestructorAccess(CurInit.get()->getBeginLoc(), Destructor,
8407                                   S.PDiag(diag::err_access_dtor_temp) << T);
8408           S.MarkFunctionReferenced(CurInit.get()->getBeginLoc(), Destructor);
8409           if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getBeginLoc()))
8410             return ExprError();
8411         }
8412       }
8413       break;
8414     }
8415 
8416     case SK_QualificationConversionLValue:
8417     case SK_QualificationConversionXValue:
8418     case SK_QualificationConversionPRValue: {
8419       // Perform a qualification conversion; these can never go wrong.
8420       ExprValueKind VK =
8421           Step->Kind == SK_QualificationConversionLValue
8422               ? VK_LValue
8423               : (Step->Kind == SK_QualificationConversionXValue ? VK_XValue
8424                                                                 : VK_PRValue);
8425       CurInit = S.PerformQualificationConversion(CurInit.get(), Step->Type, VK);
8426       break;
8427     }
8428 
8429     case SK_FunctionReferenceConversion:
8430       assert(CurInit.get()->isLValue() &&
8431              "function reference should be lvalue");
8432       CurInit =
8433           S.ImpCastExprToType(CurInit.get(), Step->Type, CK_NoOp, VK_LValue);
8434       break;
8435 
8436     case SK_AtomicConversion: {
8437       assert(CurInit.get()->isPRValue() && "cannot convert glvalue to atomic");
8438       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8439                                     CK_NonAtomicToAtomic, VK_PRValue);
8440       break;
8441     }
8442 
8443     case SK_ConversionSequence:
8444     case SK_ConversionSequenceNoNarrowing: {
8445       if (const auto *FromPtrType =
8446               CurInit.get()->getType()->getAs<PointerType>()) {
8447         if (const auto *ToPtrType = Step->Type->getAs<PointerType>()) {
8448           if (FromPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
8449               !ToPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
8450             // Do not check static casts here because they are checked earlier
8451             // in Sema::ActOnCXXNamedCast()
8452             if (!Kind.isStaticCast()) {
8453               S.Diag(CurInit.get()->getExprLoc(),
8454                      diag::warn_noderef_to_dereferenceable_pointer)
8455                   << CurInit.get()->getSourceRange();
8456             }
8457           }
8458         }
8459       }
8460 
8461       Sema::CheckedConversionKind CCK
8462         = Kind.isCStyleCast()? Sema::CCK_CStyleCast
8463         : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
8464         : Kind.isExplicitCast()? Sema::CCK_OtherCast
8465         : Sema::CCK_ImplicitConversion;
8466       ExprResult CurInitExprRes =
8467         S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
8468                                     getAssignmentAction(Entity), CCK);
8469       if (CurInitExprRes.isInvalid())
8470         return ExprError();
8471 
8472       S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), CurInit.get());
8473 
8474       CurInit = CurInitExprRes;
8475 
8476       if (Step->Kind == SK_ConversionSequenceNoNarrowing &&
8477           S.getLangOpts().CPlusPlus)
8478         DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(),
8479                                     CurInit.get());
8480 
8481       break;
8482     }
8483 
8484     case SK_ListInitialization: {
8485       if (checkAbstractType(Step->Type))
8486         return ExprError();
8487 
8488       InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
8489       // If we're not initializing the top-level entity, we need to create an
8490       // InitializeTemporary entity for our target type.
8491       QualType Ty = Step->Type;
8492       bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty);
8493       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
8494       InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
8495       InitListChecker PerformInitList(S, InitEntity,
8496           InitList, Ty, /*VerifyOnly=*/false,
8497           /*TreatUnavailableAsInvalid=*/false);
8498       if (PerformInitList.HadError())
8499         return ExprError();
8500 
8501       // Hack: We must update *ResultType if available in order to set the
8502       // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
8503       // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
8504       if (ResultType &&
8505           ResultType->getNonReferenceType()->isIncompleteArrayType()) {
8506         if ((*ResultType)->isRValueReferenceType())
8507           Ty = S.Context.getRValueReferenceType(Ty);
8508         else if ((*ResultType)->isLValueReferenceType())
8509           Ty = S.Context.getLValueReferenceType(Ty,
8510             (*ResultType)->castAs<LValueReferenceType>()->isSpelledAsLValue());
8511         *ResultType = Ty;
8512       }
8513 
8514       InitListExpr *StructuredInitList =
8515           PerformInitList.getFullyStructuredList();
8516       CurInit.get();
8517       CurInit = shouldBindAsTemporary(InitEntity)
8518           ? S.MaybeBindToTemporary(StructuredInitList)
8519           : StructuredInitList;
8520       break;
8521     }
8522 
8523     case SK_ConstructorInitializationFromList: {
8524       if (checkAbstractType(Step->Type))
8525         return ExprError();
8526 
8527       // When an initializer list is passed for a parameter of type "reference
8528       // to object", we don't get an EK_Temporary entity, but instead an
8529       // EK_Parameter entity with reference type.
8530       // FIXME: This is a hack. What we really should do is create a user
8531       // conversion step for this case, but this makes it considerably more
8532       // complicated. For now, this will do.
8533       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
8534                                         Entity.getType().getNonReferenceType());
8535       bool UseTemporary = Entity.getType()->isReferenceType();
8536       assert(Args.size() == 1 && "expected a single argument for list init");
8537       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
8538       S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
8539         << InitList->getSourceRange();
8540       MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
8541       CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
8542                                                                    Entity,
8543                                                  Kind, Arg, *Step,
8544                                                ConstructorInitRequiresZeroInit,
8545                                                /*IsListInitialization*/true,
8546                                                /*IsStdInitListInit*/false,
8547                                                InitList->getLBraceLoc(),
8548                                                InitList->getRBraceLoc());
8549       break;
8550     }
8551 
8552     case SK_UnwrapInitList:
8553       CurInit = cast<InitListExpr>(CurInit.get())->getInit(0);
8554       break;
8555 
8556     case SK_RewrapInitList: {
8557       Expr *E = CurInit.get();
8558       InitListExpr *Syntactic = Step->WrappingSyntacticList;
8559       InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
8560           Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
8561       ILE->setSyntacticForm(Syntactic);
8562       ILE->setType(E->getType());
8563       ILE->setValueKind(E->getValueKind());
8564       CurInit = ILE;
8565       break;
8566     }
8567 
8568     case SK_ConstructorInitialization:
8569     case SK_StdInitializerListConstructorCall: {
8570       if (checkAbstractType(Step->Type))
8571         return ExprError();
8572 
8573       // When an initializer list is passed for a parameter of type "reference
8574       // to object", we don't get an EK_Temporary entity, but instead an
8575       // EK_Parameter entity with reference type.
8576       // FIXME: This is a hack. What we really should do is create a user
8577       // conversion step for this case, but this makes it considerably more
8578       // complicated. For now, this will do.
8579       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
8580                                         Entity.getType().getNonReferenceType());
8581       bool UseTemporary = Entity.getType()->isReferenceType();
8582       bool IsStdInitListInit =
8583           Step->Kind == SK_StdInitializerListConstructorCall;
8584       Expr *Source = CurInit.get();
8585       SourceRange Range = Kind.hasParenOrBraceRange()
8586                               ? Kind.getParenOrBraceRange()
8587                               : SourceRange();
8588       CurInit = PerformConstructorInitialization(
8589           S, UseTemporary ? TempEntity : Entity, Kind,
8590           Source ? MultiExprArg(Source) : Args, *Step,
8591           ConstructorInitRequiresZeroInit,
8592           /*IsListInitialization*/ IsStdInitListInit,
8593           /*IsStdInitListInitialization*/ IsStdInitListInit,
8594           /*LBraceLoc*/ Range.getBegin(),
8595           /*RBraceLoc*/ Range.getEnd());
8596       break;
8597     }
8598 
8599     case SK_ZeroInitialization: {
8600       step_iterator NextStep = Step;
8601       ++NextStep;
8602       if (NextStep != StepEnd &&
8603           (NextStep->Kind == SK_ConstructorInitialization ||
8604            NextStep->Kind == SK_ConstructorInitializationFromList)) {
8605         // The need for zero-initialization is recorded directly into
8606         // the call to the object's constructor within the next step.
8607         ConstructorInitRequiresZeroInit = true;
8608       } else if (Kind.getKind() == InitializationKind::IK_Value &&
8609                  S.getLangOpts().CPlusPlus &&
8610                  !Kind.isImplicitValueInit()) {
8611         TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
8612         if (!TSInfo)
8613           TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
8614                                                     Kind.getRange().getBegin());
8615 
8616         CurInit = new (S.Context) CXXScalarValueInitExpr(
8617             Entity.getType().getNonLValueExprType(S.Context), TSInfo,
8618             Kind.getRange().getEnd());
8619       } else {
8620         CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type);
8621       }
8622       break;
8623     }
8624 
8625     case SK_CAssignment: {
8626       QualType SourceType = CurInit.get()->getType();
8627 
8628       // Save off the initial CurInit in case we need to emit a diagnostic
8629       ExprResult InitialCurInit = CurInit;
8630       ExprResult Result = CurInit;
8631       Sema::AssignConvertType ConvTy =
8632         S.CheckSingleAssignmentConstraints(Step->Type, Result, true,
8633             Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited);
8634       if (Result.isInvalid())
8635         return ExprError();
8636       CurInit = Result;
8637 
8638       // If this is a call, allow conversion to a transparent union.
8639       ExprResult CurInitExprRes = CurInit;
8640       if (ConvTy != Sema::Compatible &&
8641           Entity.isParameterKind() &&
8642           S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
8643             == Sema::Compatible)
8644         ConvTy = Sema::Compatible;
8645       if (CurInitExprRes.isInvalid())
8646         return ExprError();
8647       CurInit = CurInitExprRes;
8648 
8649       bool Complained;
8650       if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
8651                                      Step->Type, SourceType,
8652                                      InitialCurInit.get(),
8653                                      getAssignmentAction(Entity, true),
8654                                      &Complained)) {
8655         PrintInitLocationNote(S, Entity);
8656         return ExprError();
8657       } else if (Complained)
8658         PrintInitLocationNote(S, Entity);
8659       break;
8660     }
8661 
8662     case SK_StringInit: {
8663       QualType Ty = Step->Type;
8664       bool UpdateType = ResultType && Entity.getType()->isIncompleteArrayType();
8665       CheckStringInit(CurInit.get(), UpdateType ? *ResultType : Ty,
8666                       S.Context.getAsArrayType(Ty), S);
8667       break;
8668     }
8669 
8670     case SK_ObjCObjectConversion:
8671       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8672                           CK_ObjCObjectLValueCast,
8673                           CurInit.get()->getValueKind());
8674       break;
8675 
8676     case SK_ArrayLoopIndex: {
8677       Expr *Cur = CurInit.get();
8678       Expr *BaseExpr = new (S.Context)
8679           OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(),
8680                           Cur->getValueKind(), Cur->getObjectKind(), Cur);
8681       Expr *IndexExpr =
8682           new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType());
8683       CurInit = S.CreateBuiltinArraySubscriptExpr(
8684           BaseExpr, Kind.getLocation(), IndexExpr, Kind.getLocation());
8685       ArrayLoopCommonExprs.push_back(BaseExpr);
8686       break;
8687     }
8688 
8689     case SK_ArrayLoopInit: {
8690       assert(!ArrayLoopCommonExprs.empty() &&
8691              "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit");
8692       Expr *Common = ArrayLoopCommonExprs.pop_back_val();
8693       CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common,
8694                                                   CurInit.get());
8695       break;
8696     }
8697 
8698     case SK_GNUArrayInit:
8699       // Okay: we checked everything before creating this step. Note that
8700       // this is a GNU extension.
8701       S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
8702         << Step->Type << CurInit.get()->getType()
8703         << CurInit.get()->getSourceRange();
8704       updateGNUCompoundLiteralRValue(CurInit.get());
8705       LLVM_FALLTHROUGH;
8706     case SK_ArrayInit:
8707       // If the destination type is an incomplete array type, update the
8708       // type accordingly.
8709       if (ResultType) {
8710         if (const IncompleteArrayType *IncompleteDest
8711                            = S.Context.getAsIncompleteArrayType(Step->Type)) {
8712           if (const ConstantArrayType *ConstantSource
8713                  = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
8714             *ResultType = S.Context.getConstantArrayType(
8715                                              IncompleteDest->getElementType(),
8716                                              ConstantSource->getSize(),
8717                                              ConstantSource->getSizeExpr(),
8718                                              ArrayType::Normal, 0);
8719           }
8720         }
8721       }
8722       break;
8723 
8724     case SK_ParenthesizedArrayInit:
8725       // Okay: we checked everything before creating this step. Note that
8726       // this is a GNU extension.
8727       S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
8728         << CurInit.get()->getSourceRange();
8729       break;
8730 
8731     case SK_PassByIndirectCopyRestore:
8732     case SK_PassByIndirectRestore:
8733       checkIndirectCopyRestoreSource(S, CurInit.get());
8734       CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr(
8735           CurInit.get(), Step->Type,
8736           Step->Kind == SK_PassByIndirectCopyRestore);
8737       break;
8738 
8739     case SK_ProduceObjCObject:
8740       CurInit = ImplicitCastExpr::Create(
8741           S.Context, Step->Type, CK_ARCProduceObject, CurInit.get(), nullptr,
8742           VK_PRValue, FPOptionsOverride());
8743       break;
8744 
8745     case SK_StdInitializerList: {
8746       S.Diag(CurInit.get()->getExprLoc(),
8747              diag::warn_cxx98_compat_initializer_list_init)
8748         << CurInit.get()->getSourceRange();
8749 
8750       // Materialize the temporary into memory.
8751       MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
8752           CurInit.get()->getType(), CurInit.get(),
8753           /*BoundToLvalueReference=*/false);
8754 
8755       // Wrap it in a construction of a std::initializer_list<T>.
8756       CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE);
8757 
8758       // Bind the result, in case the library has given initializer_list a
8759       // non-trivial destructor.
8760       if (shouldBindAsTemporary(Entity))
8761         CurInit = S.MaybeBindToTemporary(CurInit.get());
8762       break;
8763     }
8764 
8765     case SK_OCLSamplerInit: {
8766       // Sampler initialization have 5 cases:
8767       //   1. function argument passing
8768       //      1a. argument is a file-scope variable
8769       //      1b. argument is a function-scope variable
8770       //      1c. argument is one of caller function's parameters
8771       //   2. variable initialization
8772       //      2a. initializing a file-scope variable
8773       //      2b. initializing a function-scope variable
8774       //
8775       // For file-scope variables, since they cannot be initialized by function
8776       // call of __translate_sampler_initializer in LLVM IR, their references
8777       // need to be replaced by a cast from their literal initializers to
8778       // sampler type. Since sampler variables can only be used in function
8779       // calls as arguments, we only need to replace them when handling the
8780       // argument passing.
8781       assert(Step->Type->isSamplerT() &&
8782              "Sampler initialization on non-sampler type.");
8783       Expr *Init = CurInit.get()->IgnoreParens();
8784       QualType SourceType = Init->getType();
8785       // Case 1
8786       if (Entity.isParameterKind()) {
8787         if (!SourceType->isSamplerT() && !SourceType->isIntegerType()) {
8788           S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
8789             << SourceType;
8790           break;
8791         } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init)) {
8792           auto Var = cast<VarDecl>(DRE->getDecl());
8793           // Case 1b and 1c
8794           // No cast from integer to sampler is needed.
8795           if (!Var->hasGlobalStorage()) {
8796             CurInit = ImplicitCastExpr::Create(
8797                 S.Context, Step->Type, CK_LValueToRValue, Init,
8798                 /*BasePath=*/nullptr, VK_PRValue, FPOptionsOverride());
8799             break;
8800           }
8801           // Case 1a
8802           // For function call with a file-scope sampler variable as argument,
8803           // get the integer literal.
8804           // Do not diagnose if the file-scope variable does not have initializer
8805           // since this has already been diagnosed when parsing the variable
8806           // declaration.
8807           if (!Var->getInit() || !isa<ImplicitCastExpr>(Var->getInit()))
8808             break;
8809           Init = cast<ImplicitCastExpr>(const_cast<Expr*>(
8810             Var->getInit()))->getSubExpr();
8811           SourceType = Init->getType();
8812         }
8813       } else {
8814         // Case 2
8815         // Check initializer is 32 bit integer constant.
8816         // If the initializer is taken from global variable, do not diagnose since
8817         // this has already been done when parsing the variable declaration.
8818         if (!Init->isConstantInitializer(S.Context, false))
8819           break;
8820 
8821         if (!SourceType->isIntegerType() ||
8822             32 != S.Context.getIntWidth(SourceType)) {
8823           S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer)
8824             << SourceType;
8825           break;
8826         }
8827 
8828         Expr::EvalResult EVResult;
8829         Init->EvaluateAsInt(EVResult, S.Context);
8830         llvm::APSInt Result = EVResult.Val.getInt();
8831         const uint64_t SamplerValue = Result.getLimitedValue();
8832         // 32-bit value of sampler's initializer is interpreted as
8833         // bit-field with the following structure:
8834         // |unspecified|Filter|Addressing Mode| Normalized Coords|
8835         // |31        6|5    4|3             1|                 0|
8836         // This structure corresponds to enum values of sampler properties
8837         // defined in SPIR spec v1.2 and also opencl-c.h
8838         unsigned AddressingMode  = (0x0E & SamplerValue) >> 1;
8839         unsigned FilterMode      = (0x30 & SamplerValue) >> 4;
8840         if (FilterMode != 1 && FilterMode != 2 &&
8841             !S.getOpenCLOptions().isAvailableOption(
8842                 "cl_intel_device_side_avc_motion_estimation", S.getLangOpts()))
8843           S.Diag(Kind.getLocation(),
8844                  diag::warn_sampler_initializer_invalid_bits)
8845                  << "Filter Mode";
8846         if (AddressingMode > 4)
8847           S.Diag(Kind.getLocation(),
8848                  diag::warn_sampler_initializer_invalid_bits)
8849                  << "Addressing Mode";
8850       }
8851 
8852       // Cases 1a, 2a and 2b
8853       // Insert cast from integer to sampler.
8854       CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy,
8855                                       CK_IntToOCLSampler);
8856       break;
8857     }
8858     case SK_OCLZeroOpaqueType: {
8859       assert((Step->Type->isEventT() || Step->Type->isQueueT() ||
8860               Step->Type->isOCLIntelSubgroupAVCType()) &&
8861              "Wrong type for initialization of OpenCL opaque type.");
8862 
8863       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8864                                     CK_ZeroToOCLOpaqueType,
8865                                     CurInit.get()->getValueKind());
8866       break;
8867     }
8868     }
8869   }
8870 
8871   // Check whether the initializer has a shorter lifetime than the initialized
8872   // entity, and if not, either lifetime-extend or warn as appropriate.
8873   if (auto *Init = CurInit.get())
8874     S.checkInitializerLifetime(Entity, Init);
8875 
8876   // Diagnose non-fatal problems with the completed initialization.
8877   if (Entity.getKind() == InitializedEntity::EK_Member &&
8878       cast<FieldDecl>(Entity.getDecl())->isBitField())
8879     S.CheckBitFieldInitialization(Kind.getLocation(),
8880                                   cast<FieldDecl>(Entity.getDecl()),
8881                                   CurInit.get());
8882 
8883   // Check for std::move on construction.
8884   if (const Expr *E = CurInit.get()) {
8885     CheckMoveOnConstruction(S, E,
8886                             Entity.getKind() == InitializedEntity::EK_Result);
8887   }
8888 
8889   return CurInit;
8890 }
8891 
8892 /// Somewhere within T there is an uninitialized reference subobject.
8893 /// Dig it out and diagnose it.
8894 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
8895                                            QualType T) {
8896   if (T->isReferenceType()) {
8897     S.Diag(Loc, diag::err_reference_without_init)
8898       << T.getNonReferenceType();
8899     return true;
8900   }
8901 
8902   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
8903   if (!RD || !RD->hasUninitializedReferenceMember())
8904     return false;
8905 
8906   for (const auto *FI : RD->fields()) {
8907     if (FI->isUnnamedBitfield())
8908       continue;
8909 
8910     if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
8911       S.Diag(Loc, diag::note_value_initialization_here) << RD;
8912       return true;
8913     }
8914   }
8915 
8916   for (const auto &BI : RD->bases()) {
8917     if (DiagnoseUninitializedReference(S, BI.getBeginLoc(), BI.getType())) {
8918       S.Diag(Loc, diag::note_value_initialization_here) << RD;
8919       return true;
8920     }
8921   }
8922 
8923   return false;
8924 }
8925 
8926 
8927 //===----------------------------------------------------------------------===//
8928 // Diagnose initialization failures
8929 //===----------------------------------------------------------------------===//
8930 
8931 /// Emit notes associated with an initialization that failed due to a
8932 /// "simple" conversion failure.
8933 static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity,
8934                                    Expr *op) {
8935   QualType destType = entity.getType();
8936   if (destType.getNonReferenceType()->isObjCObjectPointerType() &&
8937       op->getType()->isObjCObjectPointerType()) {
8938 
8939     // Emit a possible note about the conversion failing because the
8940     // operand is a message send with a related result type.
8941     S.EmitRelatedResultTypeNote(op);
8942 
8943     // Emit a possible note about a return failing because we're
8944     // expecting a related result type.
8945     if (entity.getKind() == InitializedEntity::EK_Result)
8946       S.EmitRelatedResultTypeNoteForReturn(destType);
8947   }
8948   QualType fromType = op->getType();
8949   QualType fromPointeeType = fromType.getCanonicalType()->getPointeeType();
8950   QualType destPointeeType = destType.getCanonicalType()->getPointeeType();
8951   auto *fromDecl = fromType->getPointeeCXXRecordDecl();
8952   auto *destDecl = destType->getPointeeCXXRecordDecl();
8953   if (fromDecl && destDecl && fromDecl->getDeclKind() == Decl::CXXRecord &&
8954       destDecl->getDeclKind() == Decl::CXXRecord &&
8955       !fromDecl->isInvalidDecl() && !destDecl->isInvalidDecl() &&
8956       !fromDecl->hasDefinition() &&
8957       destPointeeType.getQualifiers().compatiblyIncludes(
8958           fromPointeeType.getQualifiers()))
8959     S.Diag(fromDecl->getLocation(), diag::note_forward_class_conversion)
8960         << S.getASTContext().getTagDeclType(fromDecl)
8961         << S.getASTContext().getTagDeclType(destDecl);
8962 }
8963 
8964 static void diagnoseListInit(Sema &S, const InitializedEntity &Entity,
8965                              InitListExpr *InitList) {
8966   QualType DestType = Entity.getType();
8967 
8968   QualType E;
8969   if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) {
8970     QualType ArrayType = S.Context.getConstantArrayType(
8971         E.withConst(),
8972         llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
8973                     InitList->getNumInits()),
8974         nullptr, clang::ArrayType::Normal, 0);
8975     InitializedEntity HiddenArray =
8976         InitializedEntity::InitializeTemporary(ArrayType);
8977     return diagnoseListInit(S, HiddenArray, InitList);
8978   }
8979 
8980   if (DestType->isReferenceType()) {
8981     // A list-initialization failure for a reference means that we tried to
8982     // create a temporary of the inner type (per [dcl.init.list]p3.6) and the
8983     // inner initialization failed.
8984     QualType T = DestType->castAs<ReferenceType>()->getPointeeType();
8985     diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList);
8986     SourceLocation Loc = InitList->getBeginLoc();
8987     if (auto *D = Entity.getDecl())
8988       Loc = D->getLocation();
8989     S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T;
8990     return;
8991   }
8992 
8993   InitListChecker DiagnoseInitList(S, Entity, InitList, DestType,
8994                                    /*VerifyOnly=*/false,
8995                                    /*TreatUnavailableAsInvalid=*/false);
8996   assert(DiagnoseInitList.HadError() &&
8997          "Inconsistent init list check result.");
8998 }
8999 
9000 bool InitializationSequence::Diagnose(Sema &S,
9001                                       const InitializedEntity &Entity,
9002                                       const InitializationKind &Kind,
9003                                       ArrayRef<Expr *> Args) {
9004   if (!Failed())
9005     return false;
9006 
9007   // When we want to diagnose only one element of a braced-init-list,
9008   // we need to factor it out.
9009   Expr *OnlyArg;
9010   if (Args.size() == 1) {
9011     auto *List = dyn_cast<InitListExpr>(Args[0]);
9012     if (List && List->getNumInits() == 1)
9013       OnlyArg = List->getInit(0);
9014     else
9015       OnlyArg = Args[0];
9016   }
9017   else
9018     OnlyArg = nullptr;
9019 
9020   QualType DestType = Entity.getType();
9021   switch (Failure) {
9022   case FK_TooManyInitsForReference:
9023     // FIXME: Customize for the initialized entity?
9024     if (Args.empty()) {
9025       // Dig out the reference subobject which is uninitialized and diagnose it.
9026       // If this is value-initialization, this could be nested some way within
9027       // the target type.
9028       assert(Kind.getKind() == InitializationKind::IK_Value ||
9029              DestType->isReferenceType());
9030       bool Diagnosed =
9031         DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
9032       assert(Diagnosed && "couldn't find uninitialized reference to diagnose");
9033       (void)Diagnosed;
9034     } else  // FIXME: diagnostic below could be better!
9035       S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
9036           << SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
9037     break;
9038   case FK_ParenthesizedListInitForReference:
9039     S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
9040       << 1 << Entity.getType() << Args[0]->getSourceRange();
9041     break;
9042 
9043   case FK_ArrayNeedsInitList:
9044     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0;
9045     break;
9046   case FK_ArrayNeedsInitListOrStringLiteral:
9047     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1;
9048     break;
9049   case FK_ArrayNeedsInitListOrWideStringLiteral:
9050     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2;
9051     break;
9052   case FK_NarrowStringIntoWideCharArray:
9053     S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar);
9054     break;
9055   case FK_WideStringIntoCharArray:
9056     S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char);
9057     break;
9058   case FK_IncompatWideStringIntoWideChar:
9059     S.Diag(Kind.getLocation(),
9060            diag::err_array_init_incompat_wide_string_into_wchar);
9061     break;
9062   case FK_PlainStringIntoUTF8Char:
9063     S.Diag(Kind.getLocation(),
9064            diag::err_array_init_plain_string_into_char8_t);
9065     S.Diag(Args.front()->getBeginLoc(),
9066            diag::note_array_init_plain_string_into_char8_t)
9067         << FixItHint::CreateInsertion(Args.front()->getBeginLoc(), "u8");
9068     break;
9069   case FK_UTF8StringIntoPlainChar:
9070     S.Diag(Kind.getLocation(),
9071            diag::err_array_init_utf8_string_into_char)
9072       << S.getLangOpts().CPlusPlus20;
9073     break;
9074   case FK_ArrayTypeMismatch:
9075   case FK_NonConstantArrayInit:
9076     S.Diag(Kind.getLocation(),
9077            (Failure == FK_ArrayTypeMismatch
9078               ? diag::err_array_init_different_type
9079               : diag::err_array_init_non_constant_array))
9080       << DestType.getNonReferenceType()
9081       << OnlyArg->getType()
9082       << Args[0]->getSourceRange();
9083     break;
9084 
9085   case FK_VariableLengthArrayHasInitializer:
9086     S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
9087       << Args[0]->getSourceRange();
9088     break;
9089 
9090   case FK_AddressOfOverloadFailed: {
9091     DeclAccessPair Found;
9092     S.ResolveAddressOfOverloadedFunction(OnlyArg,
9093                                          DestType.getNonReferenceType(),
9094                                          true,
9095                                          Found);
9096     break;
9097   }
9098 
9099   case FK_AddressOfUnaddressableFunction: {
9100     auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(OnlyArg)->getDecl());
9101     S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
9102                                         OnlyArg->getBeginLoc());
9103     break;
9104   }
9105 
9106   case FK_ReferenceInitOverloadFailed:
9107   case FK_UserConversionOverloadFailed:
9108     switch (FailedOverloadResult) {
9109     case OR_Ambiguous:
9110 
9111       FailedCandidateSet.NoteCandidates(
9112           PartialDiagnosticAt(
9113               Kind.getLocation(),
9114               Failure == FK_UserConversionOverloadFailed
9115                   ? (S.PDiag(diag::err_typecheck_ambiguous_condition)
9116                      << OnlyArg->getType() << DestType
9117                      << Args[0]->getSourceRange())
9118                   : (S.PDiag(diag::err_ref_init_ambiguous)
9119                      << DestType << OnlyArg->getType()
9120                      << Args[0]->getSourceRange())),
9121           S, OCD_AmbiguousCandidates, Args);
9122       break;
9123 
9124     case OR_No_Viable_Function: {
9125       auto Cands = FailedCandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args);
9126       if (!S.RequireCompleteType(Kind.getLocation(),
9127                                  DestType.getNonReferenceType(),
9128                           diag::err_typecheck_nonviable_condition_incomplete,
9129                                OnlyArg->getType(), Args[0]->getSourceRange()))
9130         S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
9131           << (Entity.getKind() == InitializedEntity::EK_Result)
9132           << OnlyArg->getType() << Args[0]->getSourceRange()
9133           << DestType.getNonReferenceType();
9134 
9135       FailedCandidateSet.NoteCandidates(S, Args, Cands);
9136       break;
9137     }
9138     case OR_Deleted: {
9139       S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
9140         << OnlyArg->getType() << DestType.getNonReferenceType()
9141         << Args[0]->getSourceRange();
9142       OverloadCandidateSet::iterator Best;
9143       OverloadingResult Ovl
9144         = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
9145       if (Ovl == OR_Deleted) {
9146         S.NoteDeletedFunction(Best->Function);
9147       } else {
9148         llvm_unreachable("Inconsistent overload resolution?");
9149       }
9150       break;
9151     }
9152 
9153     case OR_Success:
9154       llvm_unreachable("Conversion did not fail!");
9155     }
9156     break;
9157 
9158   case FK_NonConstLValueReferenceBindingToTemporary:
9159     if (isa<InitListExpr>(Args[0])) {
9160       S.Diag(Kind.getLocation(),
9161              diag::err_lvalue_reference_bind_to_initlist)
9162       << DestType.getNonReferenceType().isVolatileQualified()
9163       << DestType.getNonReferenceType()
9164       << Args[0]->getSourceRange();
9165       break;
9166     }
9167     LLVM_FALLTHROUGH;
9168 
9169   case FK_NonConstLValueReferenceBindingToUnrelated:
9170     S.Diag(Kind.getLocation(),
9171            Failure == FK_NonConstLValueReferenceBindingToTemporary
9172              ? diag::err_lvalue_reference_bind_to_temporary
9173              : diag::err_lvalue_reference_bind_to_unrelated)
9174       << DestType.getNonReferenceType().isVolatileQualified()
9175       << DestType.getNonReferenceType()
9176       << OnlyArg->getType()
9177       << Args[0]->getSourceRange();
9178     break;
9179 
9180   case FK_NonConstLValueReferenceBindingToBitfield: {
9181     // We don't necessarily have an unambiguous source bit-field.
9182     FieldDecl *BitField = Args[0]->getSourceBitField();
9183     S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
9184       << DestType.isVolatileQualified()
9185       << (BitField ? BitField->getDeclName() : DeclarationName())
9186       << (BitField != nullptr)
9187       << Args[0]->getSourceRange();
9188     if (BitField)
9189       S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
9190     break;
9191   }
9192 
9193   case FK_NonConstLValueReferenceBindingToVectorElement:
9194     S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
9195       << DestType.isVolatileQualified()
9196       << Args[0]->getSourceRange();
9197     break;
9198 
9199   case FK_NonConstLValueReferenceBindingToMatrixElement:
9200     S.Diag(Kind.getLocation(), diag::err_reference_bind_to_matrix_element)
9201         << DestType.isVolatileQualified() << Args[0]->getSourceRange();
9202     break;
9203 
9204   case FK_RValueReferenceBindingToLValue:
9205     S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
9206       << DestType.getNonReferenceType() << OnlyArg->getType()
9207       << Args[0]->getSourceRange();
9208     break;
9209 
9210   case FK_ReferenceAddrspaceMismatchTemporary:
9211     S.Diag(Kind.getLocation(), diag::err_reference_bind_temporary_addrspace)
9212         << DestType << Args[0]->getSourceRange();
9213     break;
9214 
9215   case FK_ReferenceInitDropsQualifiers: {
9216     QualType SourceType = OnlyArg->getType();
9217     QualType NonRefType = DestType.getNonReferenceType();
9218     Qualifiers DroppedQualifiers =
9219         SourceType.getQualifiers() - NonRefType.getQualifiers();
9220 
9221     if (!NonRefType.getQualifiers().isAddressSpaceSupersetOf(
9222             SourceType.getQualifiers()))
9223       S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
9224           << NonRefType << SourceType << 1 /*addr space*/
9225           << Args[0]->getSourceRange();
9226     else if (DroppedQualifiers.hasQualifiers())
9227       S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
9228           << NonRefType << SourceType << 0 /*cv quals*/
9229           << Qualifiers::fromCVRMask(DroppedQualifiers.getCVRQualifiers())
9230           << DroppedQualifiers.getCVRQualifiers() << Args[0]->getSourceRange();
9231     else
9232       // FIXME: Consider decomposing the type and explaining which qualifiers
9233       // were dropped where, or on which level a 'const' is missing, etc.
9234       S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
9235           << NonRefType << SourceType << 2 /*incompatible quals*/
9236           << Args[0]->getSourceRange();
9237     break;
9238   }
9239 
9240   case FK_ReferenceInitFailed:
9241     S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
9242       << DestType.getNonReferenceType()
9243       << DestType.getNonReferenceType()->isIncompleteType()
9244       << OnlyArg->isLValue()
9245       << OnlyArg->getType()
9246       << Args[0]->getSourceRange();
9247     emitBadConversionNotes(S, Entity, Args[0]);
9248     break;
9249 
9250   case FK_ConversionFailed: {
9251     QualType FromType = OnlyArg->getType();
9252     PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
9253       << (int)Entity.getKind()
9254       << DestType
9255       << OnlyArg->isLValue()
9256       << FromType
9257       << Args[0]->getSourceRange();
9258     S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
9259     S.Diag(Kind.getLocation(), PDiag);
9260     emitBadConversionNotes(S, Entity, Args[0]);
9261     break;
9262   }
9263 
9264   case FK_ConversionFromPropertyFailed:
9265     // No-op. This error has already been reported.
9266     break;
9267 
9268   case FK_TooManyInitsForScalar: {
9269     SourceRange R;
9270 
9271     auto *InitList = dyn_cast<InitListExpr>(Args[0]);
9272     if (InitList && InitList->getNumInits() >= 1) {
9273       R = SourceRange(InitList->getInit(0)->getEndLoc(), InitList->getEndLoc());
9274     } else {
9275       assert(Args.size() > 1 && "Expected multiple initializers!");
9276       R = SourceRange(Args.front()->getEndLoc(), Args.back()->getEndLoc());
9277     }
9278 
9279     R.setBegin(S.getLocForEndOfToken(R.getBegin()));
9280     if (Kind.isCStyleOrFunctionalCast())
9281       S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
9282         << R;
9283     else
9284       S.Diag(Kind.getLocation(), diag::err_excess_initializers)
9285         << /*scalar=*/2 << R;
9286     break;
9287   }
9288 
9289   case FK_ParenthesizedListInitForScalar:
9290     S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
9291       << 0 << Entity.getType() << Args[0]->getSourceRange();
9292     break;
9293 
9294   case FK_ReferenceBindingToInitList:
9295     S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
9296       << DestType.getNonReferenceType() << Args[0]->getSourceRange();
9297     break;
9298 
9299   case FK_InitListBadDestinationType:
9300     S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
9301       << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
9302     break;
9303 
9304   case FK_ListConstructorOverloadFailed:
9305   case FK_ConstructorOverloadFailed: {
9306     SourceRange ArgsRange;
9307     if (Args.size())
9308       ArgsRange =
9309           SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
9310 
9311     if (Failure == FK_ListConstructorOverloadFailed) {
9312       assert(Args.size() == 1 &&
9313              "List construction from other than 1 argument.");
9314       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
9315       Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
9316     }
9317 
9318     // FIXME: Using "DestType" for the entity we're printing is probably
9319     // bad.
9320     switch (FailedOverloadResult) {
9321       case OR_Ambiguous:
9322         FailedCandidateSet.NoteCandidates(
9323             PartialDiagnosticAt(Kind.getLocation(),
9324                                 S.PDiag(diag::err_ovl_ambiguous_init)
9325                                     << DestType << ArgsRange),
9326             S, OCD_AmbiguousCandidates, Args);
9327         break;
9328 
9329       case OR_No_Viable_Function:
9330         if (Kind.getKind() == InitializationKind::IK_Default &&
9331             (Entity.getKind() == InitializedEntity::EK_Base ||
9332              Entity.getKind() == InitializedEntity::EK_Member) &&
9333             isa<CXXConstructorDecl>(S.CurContext)) {
9334           // This is implicit default initialization of a member or
9335           // base within a constructor. If no viable function was
9336           // found, notify the user that they need to explicitly
9337           // initialize this base/member.
9338           CXXConstructorDecl *Constructor
9339             = cast<CXXConstructorDecl>(S.CurContext);
9340           const CXXRecordDecl *InheritedFrom = nullptr;
9341           if (auto Inherited = Constructor->getInheritedConstructor())
9342             InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass();
9343           if (Entity.getKind() == InitializedEntity::EK_Base) {
9344             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
9345               << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
9346               << S.Context.getTypeDeclType(Constructor->getParent())
9347               << /*base=*/0
9348               << Entity.getType()
9349               << InheritedFrom;
9350 
9351             RecordDecl *BaseDecl
9352               = Entity.getBaseSpecifier()->getType()->castAs<RecordType>()
9353                                                                   ->getDecl();
9354             S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
9355               << S.Context.getTagDeclType(BaseDecl);
9356           } else {
9357             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
9358               << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
9359               << S.Context.getTypeDeclType(Constructor->getParent())
9360               << /*member=*/1
9361               << Entity.getName()
9362               << InheritedFrom;
9363             S.Diag(Entity.getDecl()->getLocation(),
9364                    diag::note_member_declared_at);
9365 
9366             if (const RecordType *Record
9367                                  = Entity.getType()->getAs<RecordType>())
9368               S.Diag(Record->getDecl()->getLocation(),
9369                      diag::note_previous_decl)
9370                 << S.Context.getTagDeclType(Record->getDecl());
9371           }
9372           break;
9373         }
9374 
9375         FailedCandidateSet.NoteCandidates(
9376             PartialDiagnosticAt(
9377                 Kind.getLocation(),
9378                 S.PDiag(diag::err_ovl_no_viable_function_in_init)
9379                     << DestType << ArgsRange),
9380             S, OCD_AllCandidates, Args);
9381         break;
9382 
9383       case OR_Deleted: {
9384         OverloadCandidateSet::iterator Best;
9385         OverloadingResult Ovl
9386           = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
9387         if (Ovl != OR_Deleted) {
9388           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
9389               << DestType << ArgsRange;
9390           llvm_unreachable("Inconsistent overload resolution?");
9391           break;
9392         }
9393 
9394         // If this is a defaulted or implicitly-declared function, then
9395         // it was implicitly deleted. Make it clear that the deletion was
9396         // implicit.
9397         if (S.isImplicitlyDeleted(Best->Function))
9398           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
9399             << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
9400             << DestType << ArgsRange;
9401         else
9402           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
9403               << DestType << ArgsRange;
9404 
9405         S.NoteDeletedFunction(Best->Function);
9406         break;
9407       }
9408 
9409       case OR_Success:
9410         llvm_unreachable("Conversion did not fail!");
9411     }
9412   }
9413   break;
9414 
9415   case FK_DefaultInitOfConst:
9416     if (Entity.getKind() == InitializedEntity::EK_Member &&
9417         isa<CXXConstructorDecl>(S.CurContext)) {
9418       // This is implicit default-initialization of a const member in
9419       // a constructor. Complain that it needs to be explicitly
9420       // initialized.
9421       CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
9422       S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
9423         << (Constructor->getInheritedConstructor() ? 2 :
9424             Constructor->isImplicit() ? 1 : 0)
9425         << S.Context.getTypeDeclType(Constructor->getParent())
9426         << /*const=*/1
9427         << Entity.getName();
9428       S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
9429         << Entity.getName();
9430     } else {
9431       S.Diag(Kind.getLocation(), diag::err_default_init_const)
9432           << DestType << (bool)DestType->getAs<RecordType>();
9433     }
9434     break;
9435 
9436   case FK_Incomplete:
9437     S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
9438                           diag::err_init_incomplete_type);
9439     break;
9440 
9441   case FK_ListInitializationFailed: {
9442     // Run the init list checker again to emit diagnostics.
9443     InitListExpr *InitList = cast<InitListExpr>(Args[0]);
9444     diagnoseListInit(S, Entity, InitList);
9445     break;
9446   }
9447 
9448   case FK_PlaceholderType: {
9449     // FIXME: Already diagnosed!
9450     break;
9451   }
9452 
9453   case FK_ExplicitConstructor: {
9454     S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
9455       << Args[0]->getSourceRange();
9456     OverloadCandidateSet::iterator Best;
9457     OverloadingResult Ovl
9458       = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
9459     (void)Ovl;
9460     assert(Ovl == OR_Success && "Inconsistent overload resolution");
9461     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
9462     S.Diag(CtorDecl->getLocation(),
9463            diag::note_explicit_ctor_deduction_guide_here) << false;
9464     break;
9465   }
9466   }
9467 
9468   PrintInitLocationNote(S, Entity);
9469   return true;
9470 }
9471 
9472 void InitializationSequence::dump(raw_ostream &OS) const {
9473   switch (SequenceKind) {
9474   case FailedSequence: {
9475     OS << "Failed sequence: ";
9476     switch (Failure) {
9477     case FK_TooManyInitsForReference:
9478       OS << "too many initializers for reference";
9479       break;
9480 
9481     case FK_ParenthesizedListInitForReference:
9482       OS << "parenthesized list init for reference";
9483       break;
9484 
9485     case FK_ArrayNeedsInitList:
9486       OS << "array requires initializer list";
9487       break;
9488 
9489     case FK_AddressOfUnaddressableFunction:
9490       OS << "address of unaddressable function was taken";
9491       break;
9492 
9493     case FK_ArrayNeedsInitListOrStringLiteral:
9494       OS << "array requires initializer list or string literal";
9495       break;
9496 
9497     case FK_ArrayNeedsInitListOrWideStringLiteral:
9498       OS << "array requires initializer list or wide string literal";
9499       break;
9500 
9501     case FK_NarrowStringIntoWideCharArray:
9502       OS << "narrow string into wide char array";
9503       break;
9504 
9505     case FK_WideStringIntoCharArray:
9506       OS << "wide string into char array";
9507       break;
9508 
9509     case FK_IncompatWideStringIntoWideChar:
9510       OS << "incompatible wide string into wide char array";
9511       break;
9512 
9513     case FK_PlainStringIntoUTF8Char:
9514       OS << "plain string literal into char8_t array";
9515       break;
9516 
9517     case FK_UTF8StringIntoPlainChar:
9518       OS << "u8 string literal into char array";
9519       break;
9520 
9521     case FK_ArrayTypeMismatch:
9522       OS << "array type mismatch";
9523       break;
9524 
9525     case FK_NonConstantArrayInit:
9526       OS << "non-constant array initializer";
9527       break;
9528 
9529     case FK_AddressOfOverloadFailed:
9530       OS << "address of overloaded function failed";
9531       break;
9532 
9533     case FK_ReferenceInitOverloadFailed:
9534       OS << "overload resolution for reference initialization failed";
9535       break;
9536 
9537     case FK_NonConstLValueReferenceBindingToTemporary:
9538       OS << "non-const lvalue reference bound to temporary";
9539       break;
9540 
9541     case FK_NonConstLValueReferenceBindingToBitfield:
9542       OS << "non-const lvalue reference bound to bit-field";
9543       break;
9544 
9545     case FK_NonConstLValueReferenceBindingToVectorElement:
9546       OS << "non-const lvalue reference bound to vector element";
9547       break;
9548 
9549     case FK_NonConstLValueReferenceBindingToMatrixElement:
9550       OS << "non-const lvalue reference bound to matrix element";
9551       break;
9552 
9553     case FK_NonConstLValueReferenceBindingToUnrelated:
9554       OS << "non-const lvalue reference bound to unrelated type";
9555       break;
9556 
9557     case FK_RValueReferenceBindingToLValue:
9558       OS << "rvalue reference bound to an lvalue";
9559       break;
9560 
9561     case FK_ReferenceInitDropsQualifiers:
9562       OS << "reference initialization drops qualifiers";
9563       break;
9564 
9565     case FK_ReferenceAddrspaceMismatchTemporary:
9566       OS << "reference with mismatching address space bound to temporary";
9567       break;
9568 
9569     case FK_ReferenceInitFailed:
9570       OS << "reference initialization failed";
9571       break;
9572 
9573     case FK_ConversionFailed:
9574       OS << "conversion failed";
9575       break;
9576 
9577     case FK_ConversionFromPropertyFailed:
9578       OS << "conversion from property failed";
9579       break;
9580 
9581     case FK_TooManyInitsForScalar:
9582       OS << "too many initializers for scalar";
9583       break;
9584 
9585     case FK_ParenthesizedListInitForScalar:
9586       OS << "parenthesized list init for reference";
9587       break;
9588 
9589     case FK_ReferenceBindingToInitList:
9590       OS << "referencing binding to initializer list";
9591       break;
9592 
9593     case FK_InitListBadDestinationType:
9594       OS << "initializer list for non-aggregate, non-scalar type";
9595       break;
9596 
9597     case FK_UserConversionOverloadFailed:
9598       OS << "overloading failed for user-defined conversion";
9599       break;
9600 
9601     case FK_ConstructorOverloadFailed:
9602       OS << "constructor overloading failed";
9603       break;
9604 
9605     case FK_DefaultInitOfConst:
9606       OS << "default initialization of a const variable";
9607       break;
9608 
9609     case FK_Incomplete:
9610       OS << "initialization of incomplete type";
9611       break;
9612 
9613     case FK_ListInitializationFailed:
9614       OS << "list initialization checker failure";
9615       break;
9616 
9617     case FK_VariableLengthArrayHasInitializer:
9618       OS << "variable length array has an initializer";
9619       break;
9620 
9621     case FK_PlaceholderType:
9622       OS << "initializer expression isn't contextually valid";
9623       break;
9624 
9625     case FK_ListConstructorOverloadFailed:
9626       OS << "list constructor overloading failed";
9627       break;
9628 
9629     case FK_ExplicitConstructor:
9630       OS << "list copy initialization chose explicit constructor";
9631       break;
9632     }
9633     OS << '\n';
9634     return;
9635   }
9636 
9637   case DependentSequence:
9638     OS << "Dependent sequence\n";
9639     return;
9640 
9641   case NormalSequence:
9642     OS << "Normal sequence: ";
9643     break;
9644   }
9645 
9646   for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
9647     if (S != step_begin()) {
9648       OS << " -> ";
9649     }
9650 
9651     switch (S->Kind) {
9652     case SK_ResolveAddressOfOverloadedFunction:
9653       OS << "resolve address of overloaded function";
9654       break;
9655 
9656     case SK_CastDerivedToBasePRValue:
9657       OS << "derived-to-base (prvalue)";
9658       break;
9659 
9660     case SK_CastDerivedToBaseXValue:
9661       OS << "derived-to-base (xvalue)";
9662       break;
9663 
9664     case SK_CastDerivedToBaseLValue:
9665       OS << "derived-to-base (lvalue)";
9666       break;
9667 
9668     case SK_BindReference:
9669       OS << "bind reference to lvalue";
9670       break;
9671 
9672     case SK_BindReferenceToTemporary:
9673       OS << "bind reference to a temporary";
9674       break;
9675 
9676     case SK_FinalCopy:
9677       OS << "final copy in class direct-initialization";
9678       break;
9679 
9680     case SK_ExtraneousCopyToTemporary:
9681       OS << "extraneous C++03 copy to temporary";
9682       break;
9683 
9684     case SK_UserConversion:
9685       OS << "user-defined conversion via " << *S->Function.Function;
9686       break;
9687 
9688     case SK_QualificationConversionPRValue:
9689       OS << "qualification conversion (prvalue)";
9690       break;
9691 
9692     case SK_QualificationConversionXValue:
9693       OS << "qualification conversion (xvalue)";
9694       break;
9695 
9696     case SK_QualificationConversionLValue:
9697       OS << "qualification conversion (lvalue)";
9698       break;
9699 
9700     case SK_FunctionReferenceConversion:
9701       OS << "function reference conversion";
9702       break;
9703 
9704     case SK_AtomicConversion:
9705       OS << "non-atomic-to-atomic conversion";
9706       break;
9707 
9708     case SK_ConversionSequence:
9709       OS << "implicit conversion sequence (";
9710       S->ICS->dump(); // FIXME: use OS
9711       OS << ")";
9712       break;
9713 
9714     case SK_ConversionSequenceNoNarrowing:
9715       OS << "implicit conversion sequence with narrowing prohibited (";
9716       S->ICS->dump(); // FIXME: use OS
9717       OS << ")";
9718       break;
9719 
9720     case SK_ListInitialization:
9721       OS << "list aggregate initialization";
9722       break;
9723 
9724     case SK_UnwrapInitList:
9725       OS << "unwrap reference initializer list";
9726       break;
9727 
9728     case SK_RewrapInitList:
9729       OS << "rewrap reference initializer list";
9730       break;
9731 
9732     case SK_ConstructorInitialization:
9733       OS << "constructor initialization";
9734       break;
9735 
9736     case SK_ConstructorInitializationFromList:
9737       OS << "list initialization via constructor";
9738       break;
9739 
9740     case SK_ZeroInitialization:
9741       OS << "zero initialization";
9742       break;
9743 
9744     case SK_CAssignment:
9745       OS << "C assignment";
9746       break;
9747 
9748     case SK_StringInit:
9749       OS << "string initialization";
9750       break;
9751 
9752     case SK_ObjCObjectConversion:
9753       OS << "Objective-C object conversion";
9754       break;
9755 
9756     case SK_ArrayLoopIndex:
9757       OS << "indexing for array initialization loop";
9758       break;
9759 
9760     case SK_ArrayLoopInit:
9761       OS << "array initialization loop";
9762       break;
9763 
9764     case SK_ArrayInit:
9765       OS << "array initialization";
9766       break;
9767 
9768     case SK_GNUArrayInit:
9769       OS << "array initialization (GNU extension)";
9770       break;
9771 
9772     case SK_ParenthesizedArrayInit:
9773       OS << "parenthesized array initialization";
9774       break;
9775 
9776     case SK_PassByIndirectCopyRestore:
9777       OS << "pass by indirect copy and restore";
9778       break;
9779 
9780     case SK_PassByIndirectRestore:
9781       OS << "pass by indirect restore";
9782       break;
9783 
9784     case SK_ProduceObjCObject:
9785       OS << "Objective-C object retension";
9786       break;
9787 
9788     case SK_StdInitializerList:
9789       OS << "std::initializer_list from initializer list";
9790       break;
9791 
9792     case SK_StdInitializerListConstructorCall:
9793       OS << "list initialization from std::initializer_list";
9794       break;
9795 
9796     case SK_OCLSamplerInit:
9797       OS << "OpenCL sampler_t from integer constant";
9798       break;
9799 
9800     case SK_OCLZeroOpaqueType:
9801       OS << "OpenCL opaque type from zero";
9802       break;
9803     }
9804 
9805     OS << " [" << S->Type << ']';
9806   }
9807 
9808   OS << '\n';
9809 }
9810 
9811 void InitializationSequence::dump() const {
9812   dump(llvm::errs());
9813 }
9814 
9815 static bool NarrowingErrs(const LangOptions &L) {
9816   return L.CPlusPlus11 &&
9817          (!L.MicrosoftExt || L.isCompatibleWithMSVC(LangOptions::MSVC2015));
9818 }
9819 
9820 static void DiagnoseNarrowingInInitList(Sema &S,
9821                                         const ImplicitConversionSequence &ICS,
9822                                         QualType PreNarrowingType,
9823                                         QualType EntityType,
9824                                         const Expr *PostInit) {
9825   const StandardConversionSequence *SCS = nullptr;
9826   switch (ICS.getKind()) {
9827   case ImplicitConversionSequence::StandardConversion:
9828     SCS = &ICS.Standard;
9829     break;
9830   case ImplicitConversionSequence::UserDefinedConversion:
9831     SCS = &ICS.UserDefined.After;
9832     break;
9833   case ImplicitConversionSequence::AmbiguousConversion:
9834   case ImplicitConversionSequence::EllipsisConversion:
9835   case ImplicitConversionSequence::BadConversion:
9836     return;
9837   }
9838 
9839   // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
9840   APValue ConstantValue;
9841   QualType ConstantType;
9842   switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
9843                                 ConstantType)) {
9844   case NK_Not_Narrowing:
9845   case NK_Dependent_Narrowing:
9846     // No narrowing occurred.
9847     return;
9848 
9849   case NK_Type_Narrowing:
9850     // This was a floating-to-integer conversion, which is always considered a
9851     // narrowing conversion even if the value is a constant and can be
9852     // represented exactly as an integer.
9853     S.Diag(PostInit->getBeginLoc(), NarrowingErrs(S.getLangOpts())
9854                                         ? diag::ext_init_list_type_narrowing
9855                                         : diag::warn_init_list_type_narrowing)
9856         << PostInit->getSourceRange()
9857         << PreNarrowingType.getLocalUnqualifiedType()
9858         << EntityType.getLocalUnqualifiedType();
9859     break;
9860 
9861   case NK_Constant_Narrowing:
9862     // A constant value was narrowed.
9863     S.Diag(PostInit->getBeginLoc(),
9864            NarrowingErrs(S.getLangOpts())
9865                ? diag::ext_init_list_constant_narrowing
9866                : diag::warn_init_list_constant_narrowing)
9867         << PostInit->getSourceRange()
9868         << ConstantValue.getAsString(S.getASTContext(), ConstantType)
9869         << EntityType.getLocalUnqualifiedType();
9870     break;
9871 
9872   case NK_Variable_Narrowing:
9873     // A variable's value may have been narrowed.
9874     S.Diag(PostInit->getBeginLoc(),
9875            NarrowingErrs(S.getLangOpts())
9876                ? diag::ext_init_list_variable_narrowing
9877                : diag::warn_init_list_variable_narrowing)
9878         << PostInit->getSourceRange()
9879         << PreNarrowingType.getLocalUnqualifiedType()
9880         << EntityType.getLocalUnqualifiedType();
9881     break;
9882   }
9883 
9884   SmallString<128> StaticCast;
9885   llvm::raw_svector_ostream OS(StaticCast);
9886   OS << "static_cast<";
9887   if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
9888     // It's important to use the typedef's name if there is one so that the
9889     // fixit doesn't break code using types like int64_t.
9890     //
9891     // FIXME: This will break if the typedef requires qualification.  But
9892     // getQualifiedNameAsString() includes non-machine-parsable components.
9893     OS << *TT->getDecl();
9894   } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
9895     OS << BT->getName(S.getLangOpts());
9896   else {
9897     // Oops, we didn't find the actual type of the variable.  Don't emit a fixit
9898     // with a broken cast.
9899     return;
9900   }
9901   OS << ">(";
9902   S.Diag(PostInit->getBeginLoc(), diag::note_init_list_narrowing_silence)
9903       << PostInit->getSourceRange()
9904       << FixItHint::CreateInsertion(PostInit->getBeginLoc(), OS.str())
9905       << FixItHint::CreateInsertion(
9906              S.getLocForEndOfToken(PostInit->getEndLoc()), ")");
9907 }
9908 
9909 //===----------------------------------------------------------------------===//
9910 // Initialization helper functions
9911 //===----------------------------------------------------------------------===//
9912 bool
9913 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
9914                                    ExprResult Init) {
9915   if (Init.isInvalid())
9916     return false;
9917 
9918   Expr *InitE = Init.get();
9919   assert(InitE && "No initialization expression");
9920 
9921   InitializationKind Kind =
9922       InitializationKind::CreateCopy(InitE->getBeginLoc(), SourceLocation());
9923   InitializationSequence Seq(*this, Entity, Kind, InitE);
9924   return !Seq.Failed();
9925 }
9926 
9927 ExprResult
9928 Sema::PerformCopyInitialization(const InitializedEntity &Entity,
9929                                 SourceLocation EqualLoc,
9930                                 ExprResult Init,
9931                                 bool TopLevelOfInitList,
9932                                 bool AllowExplicit) {
9933   if (Init.isInvalid())
9934     return ExprError();
9935 
9936   Expr *InitE = Init.get();
9937   assert(InitE && "No initialization expression?");
9938 
9939   if (EqualLoc.isInvalid())
9940     EqualLoc = InitE->getBeginLoc();
9941 
9942   InitializationKind Kind = InitializationKind::CreateCopy(
9943       InitE->getBeginLoc(), EqualLoc, AllowExplicit);
9944   InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList);
9945 
9946   // Prevent infinite recursion when performing parameter copy-initialization.
9947   const bool ShouldTrackCopy =
9948       Entity.isParameterKind() && Seq.isConstructorInitialization();
9949   if (ShouldTrackCopy) {
9950     if (llvm::is_contained(CurrentParameterCopyTypes, Entity.getType())) {
9951       Seq.SetOverloadFailure(
9952           InitializationSequence::FK_ConstructorOverloadFailed,
9953           OR_No_Viable_Function);
9954 
9955       // Try to give a meaningful diagnostic note for the problematic
9956       // constructor.
9957       const auto LastStep = Seq.step_end() - 1;
9958       assert(LastStep->Kind ==
9959              InitializationSequence::SK_ConstructorInitialization);
9960       const FunctionDecl *Function = LastStep->Function.Function;
9961       auto Candidate =
9962           llvm::find_if(Seq.getFailedCandidateSet(),
9963                         [Function](const OverloadCandidate &Candidate) -> bool {
9964                           return Candidate.Viable &&
9965                                  Candidate.Function == Function &&
9966                                  Candidate.Conversions.size() > 0;
9967                         });
9968       if (Candidate != Seq.getFailedCandidateSet().end() &&
9969           Function->getNumParams() > 0) {
9970         Candidate->Viable = false;
9971         Candidate->FailureKind = ovl_fail_bad_conversion;
9972         Candidate->Conversions[0].setBad(BadConversionSequence::no_conversion,
9973                                          InitE,
9974                                          Function->getParamDecl(0)->getType());
9975       }
9976     }
9977     CurrentParameterCopyTypes.push_back(Entity.getType());
9978   }
9979 
9980   ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE);
9981 
9982   if (ShouldTrackCopy)
9983     CurrentParameterCopyTypes.pop_back();
9984 
9985   return Result;
9986 }
9987 
9988 /// Determine whether RD is, or is derived from, a specialization of CTD.
9989 static bool isOrIsDerivedFromSpecializationOf(CXXRecordDecl *RD,
9990                                               ClassTemplateDecl *CTD) {
9991   auto NotSpecialization = [&] (const CXXRecordDecl *Candidate) {
9992     auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Candidate);
9993     return !CTSD || !declaresSameEntity(CTSD->getSpecializedTemplate(), CTD);
9994   };
9995   return !(NotSpecialization(RD) && RD->forallBases(NotSpecialization));
9996 }
9997 
9998 QualType Sema::DeduceTemplateSpecializationFromInitializer(
9999     TypeSourceInfo *TSInfo, const InitializedEntity &Entity,
10000     const InitializationKind &Kind, MultiExprArg Inits) {
10001   auto *DeducedTST = dyn_cast<DeducedTemplateSpecializationType>(
10002       TSInfo->getType()->getContainedDeducedType());
10003   assert(DeducedTST && "not a deduced template specialization type");
10004 
10005   auto TemplateName = DeducedTST->getTemplateName();
10006   if (TemplateName.isDependent())
10007     return SubstAutoTypeDependent(TSInfo->getType());
10008 
10009   // We can only perform deduction for class templates.
10010   auto *Template =
10011       dyn_cast_or_null<ClassTemplateDecl>(TemplateName.getAsTemplateDecl());
10012   if (!Template) {
10013     Diag(Kind.getLocation(),
10014          diag::err_deduced_non_class_template_specialization_type)
10015       << (int)getTemplateNameKindForDiagnostics(TemplateName) << TemplateName;
10016     if (auto *TD = TemplateName.getAsTemplateDecl())
10017       Diag(TD->getLocation(), diag::note_template_decl_here);
10018     return QualType();
10019   }
10020 
10021   // Can't deduce from dependent arguments.
10022   if (Expr::hasAnyTypeDependentArguments(Inits)) {
10023     Diag(TSInfo->getTypeLoc().getBeginLoc(),
10024          diag::warn_cxx14_compat_class_template_argument_deduction)
10025         << TSInfo->getTypeLoc().getSourceRange() << 0;
10026     return SubstAutoTypeDependent(TSInfo->getType());
10027   }
10028 
10029   // FIXME: Perform "exact type" matching first, per CWG discussion?
10030   //        Or implement this via an implied 'T(T) -> T' deduction guide?
10031 
10032   // FIXME: Do we need/want a std::initializer_list<T> special case?
10033 
10034   // Look up deduction guides, including those synthesized from constructors.
10035   //
10036   // C++1z [over.match.class.deduct]p1:
10037   //   A set of functions and function templates is formed comprising:
10038   //   - For each constructor of the class template designated by the
10039   //     template-name, a function template [...]
10040   //  - For each deduction-guide, a function or function template [...]
10041   DeclarationNameInfo NameInfo(
10042       Context.DeclarationNames.getCXXDeductionGuideName(Template),
10043       TSInfo->getTypeLoc().getEndLoc());
10044   LookupResult Guides(*this, NameInfo, LookupOrdinaryName);
10045   LookupQualifiedName(Guides, Template->getDeclContext());
10046 
10047   // FIXME: Do not diagnose inaccessible deduction guides. The standard isn't
10048   // clear on this, but they're not found by name so access does not apply.
10049   Guides.suppressDiagnostics();
10050 
10051   // Figure out if this is list-initialization.
10052   InitListExpr *ListInit =
10053       (Inits.size() == 1 && Kind.getKind() != InitializationKind::IK_Direct)
10054           ? dyn_cast<InitListExpr>(Inits[0])
10055           : nullptr;
10056 
10057   // C++1z [over.match.class.deduct]p1:
10058   //   Initialization and overload resolution are performed as described in
10059   //   [dcl.init] and [over.match.ctor], [over.match.copy], or [over.match.list]
10060   //   (as appropriate for the type of initialization performed) for an object
10061   //   of a hypothetical class type, where the selected functions and function
10062   //   templates are considered to be the constructors of that class type
10063   //
10064   // Since we know we're initializing a class type of a type unrelated to that
10065   // of the initializer, this reduces to something fairly reasonable.
10066   OverloadCandidateSet Candidates(Kind.getLocation(),
10067                                   OverloadCandidateSet::CSK_Normal);
10068   OverloadCandidateSet::iterator Best;
10069 
10070   bool HasAnyDeductionGuide = false;
10071   bool AllowExplicit = !Kind.isCopyInit() || ListInit;
10072 
10073   auto tryToResolveOverload =
10074       [&](bool OnlyListConstructors) -> OverloadingResult {
10075     Candidates.clear(OverloadCandidateSet::CSK_Normal);
10076     HasAnyDeductionGuide = false;
10077 
10078     for (auto I = Guides.begin(), E = Guides.end(); I != E; ++I) {
10079       NamedDecl *D = (*I)->getUnderlyingDecl();
10080       if (D->isInvalidDecl())
10081         continue;
10082 
10083       auto *TD = dyn_cast<FunctionTemplateDecl>(D);
10084       auto *GD = dyn_cast_or_null<CXXDeductionGuideDecl>(
10085           TD ? TD->getTemplatedDecl() : dyn_cast<FunctionDecl>(D));
10086       if (!GD)
10087         continue;
10088 
10089       if (!GD->isImplicit())
10090         HasAnyDeductionGuide = true;
10091 
10092       // C++ [over.match.ctor]p1: (non-list copy-initialization from non-class)
10093       //   For copy-initialization, the candidate functions are all the
10094       //   converting constructors (12.3.1) of that class.
10095       // C++ [over.match.copy]p1: (non-list copy-initialization from class)
10096       //   The converting constructors of T are candidate functions.
10097       if (!AllowExplicit) {
10098         // Overload resolution checks whether the deduction guide is declared
10099         // explicit for us.
10100 
10101         // When looking for a converting constructor, deduction guides that
10102         // could never be called with one argument are not interesting to
10103         // check or note.
10104         if (GD->getMinRequiredArguments() > 1 ||
10105             (GD->getNumParams() == 0 && !GD->isVariadic()))
10106           continue;
10107       }
10108 
10109       // C++ [over.match.list]p1.1: (first phase list initialization)
10110       //   Initially, the candidate functions are the initializer-list
10111       //   constructors of the class T
10112       if (OnlyListConstructors && !isInitListConstructor(GD))
10113         continue;
10114 
10115       // C++ [over.match.list]p1.2: (second phase list initialization)
10116       //   the candidate functions are all the constructors of the class T
10117       // C++ [over.match.ctor]p1: (all other cases)
10118       //   the candidate functions are all the constructors of the class of
10119       //   the object being initialized
10120 
10121       // C++ [over.best.ics]p4:
10122       //   When [...] the constructor [...] is a candidate by
10123       //    - [over.match.copy] (in all cases)
10124       // FIXME: The "second phase of [over.match.list] case can also
10125       // theoretically happen here, but it's not clear whether we can
10126       // ever have a parameter of the right type.
10127       bool SuppressUserConversions = Kind.isCopyInit();
10128 
10129       if (TD)
10130         AddTemplateOverloadCandidate(TD, I.getPair(), /*ExplicitArgs*/ nullptr,
10131                                      Inits, Candidates, SuppressUserConversions,
10132                                      /*PartialOverloading*/ false,
10133                                      AllowExplicit);
10134       else
10135         AddOverloadCandidate(GD, I.getPair(), Inits, Candidates,
10136                              SuppressUserConversions,
10137                              /*PartialOverloading*/ false, AllowExplicit);
10138     }
10139     return Candidates.BestViableFunction(*this, Kind.getLocation(), Best);
10140   };
10141 
10142   OverloadingResult Result = OR_No_Viable_Function;
10143 
10144   // C++11 [over.match.list]p1, per DR1467: for list-initialization, first
10145   // try initializer-list constructors.
10146   if (ListInit) {
10147     bool TryListConstructors = true;
10148 
10149     // Try list constructors unless the list is empty and the class has one or
10150     // more default constructors, in which case those constructors win.
10151     if (!ListInit->getNumInits()) {
10152       for (NamedDecl *D : Guides) {
10153         auto *FD = dyn_cast<FunctionDecl>(D->getUnderlyingDecl());
10154         if (FD && FD->getMinRequiredArguments() == 0) {
10155           TryListConstructors = false;
10156           break;
10157         }
10158       }
10159     } else if (ListInit->getNumInits() == 1) {
10160       // C++ [over.match.class.deduct]:
10161       //   As an exception, the first phase in [over.match.list] (considering
10162       //   initializer-list constructors) is omitted if the initializer list
10163       //   consists of a single expression of type cv U, where U is a
10164       //   specialization of C or a class derived from a specialization of C.
10165       Expr *E = ListInit->getInit(0);
10166       auto *RD = E->getType()->getAsCXXRecordDecl();
10167       if (!isa<InitListExpr>(E) && RD &&
10168           isCompleteType(Kind.getLocation(), E->getType()) &&
10169           isOrIsDerivedFromSpecializationOf(RD, Template))
10170         TryListConstructors = false;
10171     }
10172 
10173     if (TryListConstructors)
10174       Result = tryToResolveOverload(/*OnlyListConstructor*/true);
10175     // Then unwrap the initializer list and try again considering all
10176     // constructors.
10177     Inits = MultiExprArg(ListInit->getInits(), ListInit->getNumInits());
10178   }
10179 
10180   // If list-initialization fails, or if we're doing any other kind of
10181   // initialization, we (eventually) consider constructors.
10182   if (Result == OR_No_Viable_Function)
10183     Result = tryToResolveOverload(/*OnlyListConstructor*/false);
10184 
10185   switch (Result) {
10186   case OR_Ambiguous:
10187     // FIXME: For list-initialization candidates, it'd usually be better to
10188     // list why they were not viable when given the initializer list itself as
10189     // an argument.
10190     Candidates.NoteCandidates(
10191         PartialDiagnosticAt(
10192             Kind.getLocation(),
10193             PDiag(diag::err_deduced_class_template_ctor_ambiguous)
10194                 << TemplateName),
10195         *this, OCD_AmbiguousCandidates, Inits);
10196     return QualType();
10197 
10198   case OR_No_Viable_Function: {
10199     CXXRecordDecl *Primary =
10200         cast<ClassTemplateDecl>(Template)->getTemplatedDecl();
10201     bool Complete =
10202         isCompleteType(Kind.getLocation(), Context.getTypeDeclType(Primary));
10203     Candidates.NoteCandidates(
10204         PartialDiagnosticAt(
10205             Kind.getLocation(),
10206             PDiag(Complete ? diag::err_deduced_class_template_ctor_no_viable
10207                            : diag::err_deduced_class_template_incomplete)
10208                 << TemplateName << !Guides.empty()),
10209         *this, OCD_AllCandidates, Inits);
10210     return QualType();
10211   }
10212 
10213   case OR_Deleted: {
10214     Diag(Kind.getLocation(), diag::err_deduced_class_template_deleted)
10215       << TemplateName;
10216     NoteDeletedFunction(Best->Function);
10217     return QualType();
10218   }
10219 
10220   case OR_Success:
10221     // C++ [over.match.list]p1:
10222     //   In copy-list-initialization, if an explicit constructor is chosen, the
10223     //   initialization is ill-formed.
10224     if (Kind.isCopyInit() && ListInit &&
10225         cast<CXXDeductionGuideDecl>(Best->Function)->isExplicit()) {
10226       bool IsDeductionGuide = !Best->Function->isImplicit();
10227       Diag(Kind.getLocation(), diag::err_deduced_class_template_explicit)
10228           << TemplateName << IsDeductionGuide;
10229       Diag(Best->Function->getLocation(),
10230            diag::note_explicit_ctor_deduction_guide_here)
10231           << IsDeductionGuide;
10232       return QualType();
10233     }
10234 
10235     // Make sure we didn't select an unusable deduction guide, and mark it
10236     // as referenced.
10237     DiagnoseUseOfDecl(Best->Function, Kind.getLocation());
10238     MarkFunctionReferenced(Kind.getLocation(), Best->Function);
10239     break;
10240   }
10241 
10242   // C++ [dcl.type.class.deduct]p1:
10243   //  The placeholder is replaced by the return type of the function selected
10244   //  by overload resolution for class template deduction.
10245   QualType DeducedType =
10246       SubstAutoType(TSInfo->getType(), Best->Function->getReturnType());
10247   Diag(TSInfo->getTypeLoc().getBeginLoc(),
10248        diag::warn_cxx14_compat_class_template_argument_deduction)
10249       << TSInfo->getTypeLoc().getSourceRange() << 1 << DeducedType;
10250 
10251   // Warn if CTAD was used on a type that does not have any user-defined
10252   // deduction guides.
10253   if (!HasAnyDeductionGuide) {
10254     Diag(TSInfo->getTypeLoc().getBeginLoc(),
10255          diag::warn_ctad_maybe_unsupported)
10256         << TemplateName;
10257     Diag(Template->getLocation(), diag::note_suppress_ctad_maybe_unsupported);
10258   }
10259 
10260   return DeducedType;
10261 }
10262