1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements semantic analysis for initializers. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Sema/Initialization.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/DeclObjC.h" 17 #include "clang/AST/ExprCXX.h" 18 #include "clang/AST/ExprObjC.h" 19 #include "clang/AST/TypeLoc.h" 20 #include "clang/Sema/Designator.h" 21 #include "clang/Sema/Lookup.h" 22 #include "clang/Sema/SemaInternal.h" 23 #include "llvm/ADT/APInt.h" 24 #include "llvm/ADT/SmallString.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include <map> 28 using namespace clang; 29 30 //===----------------------------------------------------------------------===// 31 // Sema Initialization Checking 32 //===----------------------------------------------------------------------===// 33 34 /// \brief Check whether T is compatible with a wide character type (wchar_t, 35 /// char16_t or char32_t). 36 static bool IsWideCharCompatible(QualType T, ASTContext &Context) { 37 if (Context.typesAreCompatible(Context.getWideCharType(), T)) 38 return true; 39 if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) { 40 return Context.typesAreCompatible(Context.Char16Ty, T) || 41 Context.typesAreCompatible(Context.Char32Ty, T); 42 } 43 return false; 44 } 45 46 enum StringInitFailureKind { 47 SIF_None, 48 SIF_NarrowStringIntoWideChar, 49 SIF_WideStringIntoChar, 50 SIF_IncompatWideStringIntoWideChar, 51 SIF_Other 52 }; 53 54 /// \brief Check whether the array of type AT can be initialized by the Init 55 /// expression by means of string initialization. Returns SIF_None if so, 56 /// otherwise returns a StringInitFailureKind that describes why the 57 /// initialization would not work. 58 static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT, 59 ASTContext &Context) { 60 if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT)) 61 return SIF_Other; 62 63 // See if this is a string literal or @encode. 64 Init = Init->IgnoreParens(); 65 66 // Handle @encode, which is a narrow string. 67 if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType()) 68 return SIF_None; 69 70 // Otherwise we can only handle string literals. 71 StringLiteral *SL = dyn_cast<StringLiteral>(Init); 72 if (!SL) 73 return SIF_Other; 74 75 const QualType ElemTy = 76 Context.getCanonicalType(AT->getElementType()).getUnqualifiedType(); 77 78 switch (SL->getKind()) { 79 case StringLiteral::Ascii: 80 case StringLiteral::UTF8: 81 // char array can be initialized with a narrow string. 82 // Only allow char x[] = "foo"; not char x[] = L"foo"; 83 if (ElemTy->isCharType()) 84 return SIF_None; 85 if (IsWideCharCompatible(ElemTy, Context)) 86 return SIF_NarrowStringIntoWideChar; 87 return SIF_Other; 88 // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15: 89 // "An array with element type compatible with a qualified or unqualified 90 // version of wchar_t, char16_t, or char32_t may be initialized by a wide 91 // string literal with the corresponding encoding prefix (L, u, or U, 92 // respectively), optionally enclosed in braces. 93 case StringLiteral::UTF16: 94 if (Context.typesAreCompatible(Context.Char16Ty, ElemTy)) 95 return SIF_None; 96 if (ElemTy->isCharType()) 97 return SIF_WideStringIntoChar; 98 if (IsWideCharCompatible(ElemTy, Context)) 99 return SIF_IncompatWideStringIntoWideChar; 100 return SIF_Other; 101 case StringLiteral::UTF32: 102 if (Context.typesAreCompatible(Context.Char32Ty, ElemTy)) 103 return SIF_None; 104 if (ElemTy->isCharType()) 105 return SIF_WideStringIntoChar; 106 if (IsWideCharCompatible(ElemTy, Context)) 107 return SIF_IncompatWideStringIntoWideChar; 108 return SIF_Other; 109 case StringLiteral::Wide: 110 if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy)) 111 return SIF_None; 112 if (ElemTy->isCharType()) 113 return SIF_WideStringIntoChar; 114 if (IsWideCharCompatible(ElemTy, Context)) 115 return SIF_IncompatWideStringIntoWideChar; 116 return SIF_Other; 117 } 118 119 llvm_unreachable("missed a StringLiteral kind?"); 120 } 121 122 static StringInitFailureKind IsStringInit(Expr *init, QualType declType, 123 ASTContext &Context) { 124 const ArrayType *arrayType = Context.getAsArrayType(declType); 125 if (!arrayType) 126 return SIF_Other; 127 return IsStringInit(init, arrayType, Context); 128 } 129 130 /// Update the type of a string literal, including any surrounding parentheses, 131 /// to match the type of the object which it is initializing. 132 static void updateStringLiteralType(Expr *E, QualType Ty) { 133 while (true) { 134 E->setType(Ty); 135 if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E)) 136 break; 137 else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) 138 E = PE->getSubExpr(); 139 else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) 140 E = UO->getSubExpr(); 141 else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) 142 E = GSE->getResultExpr(); 143 else 144 llvm_unreachable("unexpected expr in string literal init"); 145 } 146 } 147 148 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT, 149 Sema &S) { 150 // Get the length of the string as parsed. 151 uint64_t StrLength = 152 cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue(); 153 154 155 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) { 156 // C99 6.7.8p14. We have an array of character type with unknown size 157 // being initialized to a string literal. 158 llvm::APInt ConstVal(32, StrLength); 159 // Return a new array type (C99 6.7.8p22). 160 DeclT = S.Context.getConstantArrayType(IAT->getElementType(), 161 ConstVal, 162 ArrayType::Normal, 0); 163 updateStringLiteralType(Str, DeclT); 164 return; 165 } 166 167 const ConstantArrayType *CAT = cast<ConstantArrayType>(AT); 168 169 // We have an array of character type with known size. However, 170 // the size may be smaller or larger than the string we are initializing. 171 // FIXME: Avoid truncation for 64-bit length strings. 172 if (S.getLangOpts().CPlusPlus) { 173 if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) { 174 // For Pascal strings it's OK to strip off the terminating null character, 175 // so the example below is valid: 176 // 177 // unsigned char a[2] = "\pa"; 178 if (SL->isPascal()) 179 StrLength--; 180 } 181 182 // [dcl.init.string]p2 183 if (StrLength > CAT->getSize().getZExtValue()) 184 S.Diag(Str->getLocStart(), 185 diag::err_initializer_string_for_char_array_too_long) 186 << Str->getSourceRange(); 187 } else { 188 // C99 6.7.8p14. 189 if (StrLength-1 > CAT->getSize().getZExtValue()) 190 S.Diag(Str->getLocStart(), 191 diag::warn_initializer_string_for_char_array_too_long) 192 << Str->getSourceRange(); 193 } 194 195 // Set the type to the actual size that we are initializing. If we have 196 // something like: 197 // char x[1] = "foo"; 198 // then this will set the string literal's type to char[1]. 199 updateStringLiteralType(Str, DeclT); 200 } 201 202 //===----------------------------------------------------------------------===// 203 // Semantic checking for initializer lists. 204 //===----------------------------------------------------------------------===// 205 206 /// @brief Semantic checking for initializer lists. 207 /// 208 /// The InitListChecker class contains a set of routines that each 209 /// handle the initialization of a certain kind of entity, e.g., 210 /// arrays, vectors, struct/union types, scalars, etc. The 211 /// InitListChecker itself performs a recursive walk of the subobject 212 /// structure of the type to be initialized, while stepping through 213 /// the initializer list one element at a time. The IList and Index 214 /// parameters to each of the Check* routines contain the active 215 /// (syntactic) initializer list and the index into that initializer 216 /// list that represents the current initializer. Each routine is 217 /// responsible for moving that Index forward as it consumes elements. 218 /// 219 /// Each Check* routine also has a StructuredList/StructuredIndex 220 /// arguments, which contains the current "structured" (semantic) 221 /// initializer list and the index into that initializer list where we 222 /// are copying initializers as we map them over to the semantic 223 /// list. Once we have completed our recursive walk of the subobject 224 /// structure, we will have constructed a full semantic initializer 225 /// list. 226 /// 227 /// C99 designators cause changes in the initializer list traversal, 228 /// because they make the initialization "jump" into a specific 229 /// subobject and then continue the initialization from that 230 /// point. CheckDesignatedInitializer() recursively steps into the 231 /// designated subobject and manages backing out the recursion to 232 /// initialize the subobjects after the one designated. 233 namespace { 234 class InitListChecker { 235 Sema &SemaRef; 236 bool hadError; 237 bool VerifyOnly; // no diagnostics, no structure building 238 llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic; 239 InitListExpr *FullyStructuredList; 240 241 void CheckImplicitInitList(const InitializedEntity &Entity, 242 InitListExpr *ParentIList, QualType T, 243 unsigned &Index, InitListExpr *StructuredList, 244 unsigned &StructuredIndex); 245 void CheckExplicitInitList(const InitializedEntity &Entity, 246 InitListExpr *IList, QualType &T, 247 InitListExpr *StructuredList, 248 bool TopLevelObject = false); 249 void CheckListElementTypes(const InitializedEntity &Entity, 250 InitListExpr *IList, QualType &DeclType, 251 bool SubobjectIsDesignatorContext, 252 unsigned &Index, 253 InitListExpr *StructuredList, 254 unsigned &StructuredIndex, 255 bool TopLevelObject = false); 256 void CheckSubElementType(const InitializedEntity &Entity, 257 InitListExpr *IList, QualType ElemType, 258 unsigned &Index, 259 InitListExpr *StructuredList, 260 unsigned &StructuredIndex); 261 void CheckComplexType(const InitializedEntity &Entity, 262 InitListExpr *IList, QualType DeclType, 263 unsigned &Index, 264 InitListExpr *StructuredList, 265 unsigned &StructuredIndex); 266 void CheckScalarType(const InitializedEntity &Entity, 267 InitListExpr *IList, QualType DeclType, 268 unsigned &Index, 269 InitListExpr *StructuredList, 270 unsigned &StructuredIndex); 271 void CheckReferenceType(const InitializedEntity &Entity, 272 InitListExpr *IList, QualType DeclType, 273 unsigned &Index, 274 InitListExpr *StructuredList, 275 unsigned &StructuredIndex); 276 void CheckVectorType(const InitializedEntity &Entity, 277 InitListExpr *IList, QualType DeclType, unsigned &Index, 278 InitListExpr *StructuredList, 279 unsigned &StructuredIndex); 280 void CheckStructUnionTypes(const InitializedEntity &Entity, 281 InitListExpr *IList, QualType DeclType, 282 RecordDecl::field_iterator Field, 283 bool SubobjectIsDesignatorContext, unsigned &Index, 284 InitListExpr *StructuredList, 285 unsigned &StructuredIndex, 286 bool TopLevelObject = false); 287 void CheckArrayType(const InitializedEntity &Entity, 288 InitListExpr *IList, QualType &DeclType, 289 llvm::APSInt elementIndex, 290 bool SubobjectIsDesignatorContext, unsigned &Index, 291 InitListExpr *StructuredList, 292 unsigned &StructuredIndex); 293 bool CheckDesignatedInitializer(const InitializedEntity &Entity, 294 InitListExpr *IList, DesignatedInitExpr *DIE, 295 unsigned DesigIdx, 296 QualType &CurrentObjectType, 297 RecordDecl::field_iterator *NextField, 298 llvm::APSInt *NextElementIndex, 299 unsigned &Index, 300 InitListExpr *StructuredList, 301 unsigned &StructuredIndex, 302 bool FinishSubobjectInit, 303 bool TopLevelObject); 304 InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, 305 QualType CurrentObjectType, 306 InitListExpr *StructuredList, 307 unsigned StructuredIndex, 308 SourceRange InitRange); 309 void UpdateStructuredListElement(InitListExpr *StructuredList, 310 unsigned &StructuredIndex, 311 Expr *expr); 312 int numArrayElements(QualType DeclType); 313 int numStructUnionElements(QualType DeclType); 314 315 void FillInValueInitForField(unsigned Init, FieldDecl *Field, 316 const InitializedEntity &ParentEntity, 317 InitListExpr *ILE, bool &RequiresSecondPass); 318 void FillInValueInitializations(const InitializedEntity &Entity, 319 InitListExpr *ILE, bool &RequiresSecondPass); 320 bool CheckFlexibleArrayInit(const InitializedEntity &Entity, 321 Expr *InitExpr, FieldDecl *Field, 322 bool TopLevelObject); 323 void CheckValueInitializable(const InitializedEntity &Entity); 324 325 public: 326 InitListChecker(Sema &S, const InitializedEntity &Entity, 327 InitListExpr *IL, QualType &T, bool VerifyOnly); 328 bool HadError() { return hadError; } 329 330 // @brief Retrieves the fully-structured initializer list used for 331 // semantic analysis and code generation. 332 InitListExpr *getFullyStructuredList() const { return FullyStructuredList; } 333 }; 334 } // end anonymous namespace 335 336 void InitListChecker::CheckValueInitializable(const InitializedEntity &Entity) { 337 assert(VerifyOnly && 338 "CheckValueInitializable is only inteded for verification mode."); 339 340 SourceLocation Loc; 341 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc, 342 true); 343 InitializationSequence InitSeq(SemaRef, Entity, Kind, None); 344 if (InitSeq.Failed()) 345 hadError = true; 346 } 347 348 void InitListChecker::FillInValueInitForField(unsigned Init, FieldDecl *Field, 349 const InitializedEntity &ParentEntity, 350 InitListExpr *ILE, 351 bool &RequiresSecondPass) { 352 SourceLocation Loc = ILE->getLocStart(); 353 unsigned NumInits = ILE->getNumInits(); 354 InitializedEntity MemberEntity 355 = InitializedEntity::InitializeMember(Field, &ParentEntity); 356 if (Init >= NumInits || !ILE->getInit(Init)) { 357 // If there's no explicit initializer but we have a default initializer, use 358 // that. This only happens in C++1y, since classes with default 359 // initializers are not aggregates in C++11. 360 if (Field->hasInClassInitializer()) { 361 Expr *DIE = CXXDefaultInitExpr::Create(SemaRef.Context, 362 ILE->getRBraceLoc(), Field); 363 if (Init < NumInits) 364 ILE->setInit(Init, DIE); 365 else { 366 ILE->updateInit(SemaRef.Context, Init, DIE); 367 RequiresSecondPass = true; 368 } 369 return; 370 } 371 372 // FIXME: We probably don't need to handle references 373 // specially here, since value-initialization of references is 374 // handled in InitializationSequence. 375 if (Field->getType()->isReferenceType()) { 376 // C++ [dcl.init.aggr]p9: 377 // If an incomplete or empty initializer-list leaves a 378 // member of reference type uninitialized, the program is 379 // ill-formed. 380 SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized) 381 << Field->getType() 382 << ILE->getSyntacticForm()->getSourceRange(); 383 SemaRef.Diag(Field->getLocation(), 384 diag::note_uninit_reference_member); 385 hadError = true; 386 return; 387 } 388 389 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc, 390 true); 391 InitializationSequence InitSeq(SemaRef, MemberEntity, Kind, None); 392 if (!InitSeq) { 393 InitSeq.Diagnose(SemaRef, MemberEntity, Kind, None); 394 hadError = true; 395 return; 396 } 397 398 ExprResult MemberInit 399 = InitSeq.Perform(SemaRef, MemberEntity, Kind, None); 400 if (MemberInit.isInvalid()) { 401 hadError = true; 402 return; 403 } 404 405 if (hadError) { 406 // Do nothing 407 } else if (Init < NumInits) { 408 ILE->setInit(Init, MemberInit.getAs<Expr>()); 409 } else if (InitSeq.isConstructorInitialization()) { 410 // Value-initialization requires a constructor call, so 411 // extend the initializer list to include the constructor 412 // call and make a note that we'll need to take another pass 413 // through the initializer list. 414 ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>()); 415 RequiresSecondPass = true; 416 } 417 } else if (InitListExpr *InnerILE 418 = dyn_cast<InitListExpr>(ILE->getInit(Init))) 419 FillInValueInitializations(MemberEntity, InnerILE, 420 RequiresSecondPass); 421 } 422 423 /// Recursively replaces NULL values within the given initializer list 424 /// with expressions that perform value-initialization of the 425 /// appropriate type. 426 void 427 InitListChecker::FillInValueInitializations(const InitializedEntity &Entity, 428 InitListExpr *ILE, 429 bool &RequiresSecondPass) { 430 assert((ILE->getType() != SemaRef.Context.VoidTy) && 431 "Should not have void type"); 432 SourceLocation Loc = ILE->getLocStart(); 433 if (ILE->getSyntacticForm()) 434 Loc = ILE->getSyntacticForm()->getLocStart(); 435 436 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 437 const RecordDecl *RDecl = RType->getDecl(); 438 if (RDecl->isUnion() && ILE->getInitializedFieldInUnion()) 439 FillInValueInitForField(0, ILE->getInitializedFieldInUnion(), 440 Entity, ILE, RequiresSecondPass); 441 else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) && 442 cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) { 443 for (auto *Field : RDecl->fields()) { 444 if (Field->hasInClassInitializer()) { 445 FillInValueInitForField(0, Field, Entity, ILE, RequiresSecondPass); 446 break; 447 } 448 } 449 } else { 450 unsigned Init = 0; 451 for (auto *Field : RDecl->fields()) { 452 if (Field->isUnnamedBitfield()) 453 continue; 454 455 if (hadError) 456 return; 457 458 FillInValueInitForField(Init, Field, Entity, ILE, RequiresSecondPass); 459 if (hadError) 460 return; 461 462 ++Init; 463 464 // Only look at the first initialization of a union. 465 if (RDecl->isUnion()) 466 break; 467 } 468 } 469 470 return; 471 } 472 473 QualType ElementType; 474 475 InitializedEntity ElementEntity = Entity; 476 unsigned NumInits = ILE->getNumInits(); 477 unsigned NumElements = NumInits; 478 if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) { 479 ElementType = AType->getElementType(); 480 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) 481 NumElements = CAType->getSize().getZExtValue(); 482 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, 483 0, Entity); 484 } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) { 485 ElementType = VType->getElementType(); 486 NumElements = VType->getNumElements(); 487 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, 488 0, Entity); 489 } else 490 ElementType = ILE->getType(); 491 492 493 for (unsigned Init = 0; Init != NumElements; ++Init) { 494 if (hadError) 495 return; 496 497 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement || 498 ElementEntity.getKind() == InitializedEntity::EK_VectorElement) 499 ElementEntity.setElementIndex(Init); 500 501 Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr); 502 if (!InitExpr && !ILE->hasArrayFiller()) { 503 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc, 504 true); 505 InitializationSequence InitSeq(SemaRef, ElementEntity, Kind, None); 506 if (!InitSeq) { 507 InitSeq.Diagnose(SemaRef, ElementEntity, Kind, None); 508 hadError = true; 509 return; 510 } 511 512 ExprResult ElementInit 513 = InitSeq.Perform(SemaRef, ElementEntity, Kind, None); 514 if (ElementInit.isInvalid()) { 515 hadError = true; 516 return; 517 } 518 519 if (hadError) { 520 // Do nothing 521 } else if (Init < NumInits) { 522 // For arrays, just set the expression used for value-initialization 523 // of the "holes" in the array. 524 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) 525 ILE->setArrayFiller(ElementInit.getAs<Expr>()); 526 else 527 ILE->setInit(Init, ElementInit.getAs<Expr>()); 528 } else { 529 // For arrays, just set the expression used for value-initialization 530 // of the rest of elements and exit. 531 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) { 532 ILE->setArrayFiller(ElementInit.getAs<Expr>()); 533 return; 534 } 535 536 if (InitSeq.isConstructorInitialization()) { 537 // Value-initialization requires a constructor call, so 538 // extend the initializer list to include the constructor 539 // call and make a note that we'll need to take another pass 540 // through the initializer list. 541 ILE->updateInit(SemaRef.Context, Init, ElementInit.getAs<Expr>()); 542 RequiresSecondPass = true; 543 } 544 } 545 } else if (InitListExpr *InnerILE 546 = dyn_cast_or_null<InitListExpr>(InitExpr)) 547 FillInValueInitializations(ElementEntity, InnerILE, RequiresSecondPass); 548 } 549 } 550 551 552 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity, 553 InitListExpr *IL, QualType &T, 554 bool VerifyOnly) 555 : SemaRef(S), VerifyOnly(VerifyOnly) { 556 hadError = false; 557 558 FullyStructuredList = 559 getStructuredSubobjectInit(IL, 0, T, nullptr, 0, IL->getSourceRange()); 560 CheckExplicitInitList(Entity, IL, T, FullyStructuredList, 561 /*TopLevelObject=*/true); 562 563 if (!hadError && !VerifyOnly) { 564 bool RequiresSecondPass = false; 565 FillInValueInitializations(Entity, FullyStructuredList, RequiresSecondPass); 566 if (RequiresSecondPass && !hadError) 567 FillInValueInitializations(Entity, FullyStructuredList, 568 RequiresSecondPass); 569 } 570 } 571 572 int InitListChecker::numArrayElements(QualType DeclType) { 573 // FIXME: use a proper constant 574 int maxElements = 0x7FFFFFFF; 575 if (const ConstantArrayType *CAT = 576 SemaRef.Context.getAsConstantArrayType(DeclType)) { 577 maxElements = static_cast<int>(CAT->getSize().getZExtValue()); 578 } 579 return maxElements; 580 } 581 582 int InitListChecker::numStructUnionElements(QualType DeclType) { 583 RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl(); 584 int InitializableMembers = 0; 585 for (const auto *Field : structDecl->fields()) 586 if (!Field->isUnnamedBitfield()) 587 ++InitializableMembers; 588 589 if (structDecl->isUnion()) 590 return std::min(InitializableMembers, 1); 591 return InitializableMembers - structDecl->hasFlexibleArrayMember(); 592 } 593 594 /// Check whether the range of the initializer \p ParentIList from element 595 /// \p Index onwards can be used to initialize an object of type \p T. Update 596 /// \p Index to indicate how many elements of the list were consumed. 597 /// 598 /// This also fills in \p StructuredList, from element \p StructuredIndex 599 /// onwards, with the fully-braced, desugared form of the initialization. 600 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity, 601 InitListExpr *ParentIList, 602 QualType T, unsigned &Index, 603 InitListExpr *StructuredList, 604 unsigned &StructuredIndex) { 605 int maxElements = 0; 606 607 if (T->isArrayType()) 608 maxElements = numArrayElements(T); 609 else if (T->isRecordType()) 610 maxElements = numStructUnionElements(T); 611 else if (T->isVectorType()) 612 maxElements = T->getAs<VectorType>()->getNumElements(); 613 else 614 llvm_unreachable("CheckImplicitInitList(): Illegal type"); 615 616 if (maxElements == 0) { 617 if (!VerifyOnly) 618 SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(), 619 diag::err_implicit_empty_initializer); 620 ++Index; 621 hadError = true; 622 return; 623 } 624 625 // Build a structured initializer list corresponding to this subobject. 626 InitListExpr *StructuredSubobjectInitList 627 = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList, 628 StructuredIndex, 629 SourceRange(ParentIList->getInit(Index)->getLocStart(), 630 ParentIList->getSourceRange().getEnd())); 631 unsigned StructuredSubobjectInitIndex = 0; 632 633 // Check the element types and build the structural subobject. 634 unsigned StartIndex = Index; 635 CheckListElementTypes(Entity, ParentIList, T, 636 /*SubobjectIsDesignatorContext=*/false, Index, 637 StructuredSubobjectInitList, 638 StructuredSubobjectInitIndex); 639 640 if (!VerifyOnly) { 641 StructuredSubobjectInitList->setType(T); 642 643 unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1); 644 // Update the structured sub-object initializer so that it's ending 645 // range corresponds with the end of the last initializer it used. 646 if (EndIndex < ParentIList->getNumInits()) { 647 SourceLocation EndLoc 648 = ParentIList->getInit(EndIndex)->getSourceRange().getEnd(); 649 StructuredSubobjectInitList->setRBraceLoc(EndLoc); 650 } 651 652 // Complain about missing braces. 653 if (T->isArrayType() || T->isRecordType()) { 654 SemaRef.Diag(StructuredSubobjectInitList->getLocStart(), 655 diag::warn_missing_braces) 656 << StructuredSubobjectInitList->getSourceRange() 657 << FixItHint::CreateInsertion( 658 StructuredSubobjectInitList->getLocStart(), "{") 659 << FixItHint::CreateInsertion( 660 SemaRef.getLocForEndOfToken( 661 StructuredSubobjectInitList->getLocEnd()), 662 "}"); 663 } 664 } 665 } 666 667 /// Check whether the initializer \p IList (that was written with explicit 668 /// braces) can be used to initialize an object of type \p T. 669 /// 670 /// This also fills in \p StructuredList with the fully-braced, desugared 671 /// form of the initialization. 672 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity, 673 InitListExpr *IList, QualType &T, 674 InitListExpr *StructuredList, 675 bool TopLevelObject) { 676 assert(IList->isExplicit() && "Illegal Implicit InitListExpr"); 677 if (!VerifyOnly) { 678 SyntacticToSemantic[IList] = StructuredList; 679 StructuredList->setSyntacticForm(IList); 680 } 681 682 unsigned Index = 0, StructuredIndex = 0; 683 CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true, 684 Index, StructuredList, StructuredIndex, TopLevelObject); 685 if (!VerifyOnly) { 686 QualType ExprTy = T; 687 if (!ExprTy->isArrayType()) 688 ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context); 689 IList->setType(ExprTy); 690 StructuredList->setType(ExprTy); 691 } 692 if (hadError) 693 return; 694 695 if (Index < IList->getNumInits()) { 696 // We have leftover initializers 697 if (VerifyOnly) { 698 if (SemaRef.getLangOpts().CPlusPlus || 699 (SemaRef.getLangOpts().OpenCL && 700 IList->getType()->isVectorType())) { 701 hadError = true; 702 } 703 return; 704 } 705 706 if (StructuredIndex == 1 && 707 IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) == 708 SIF_None) { 709 unsigned DK = diag::warn_excess_initializers_in_char_array_initializer; 710 if (SemaRef.getLangOpts().CPlusPlus) { 711 DK = diag::err_excess_initializers_in_char_array_initializer; 712 hadError = true; 713 } 714 // Special-case 715 SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK) 716 << IList->getInit(Index)->getSourceRange(); 717 } else if (!T->isIncompleteType()) { 718 // Don't complain for incomplete types, since we'll get an error 719 // elsewhere 720 QualType CurrentObjectType = StructuredList->getType(); 721 int initKind = 722 CurrentObjectType->isArrayType()? 0 : 723 CurrentObjectType->isVectorType()? 1 : 724 CurrentObjectType->isScalarType()? 2 : 725 CurrentObjectType->isUnionType()? 3 : 726 4; 727 728 unsigned DK = diag::warn_excess_initializers; 729 if (SemaRef.getLangOpts().CPlusPlus) { 730 DK = diag::err_excess_initializers; 731 hadError = true; 732 } 733 if (SemaRef.getLangOpts().OpenCL && initKind == 1) { 734 DK = diag::err_excess_initializers; 735 hadError = true; 736 } 737 738 SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK) 739 << initKind << IList->getInit(Index)->getSourceRange(); 740 } 741 } 742 743 if (!VerifyOnly && T->isScalarType() && IList->getNumInits() == 1 && 744 !TopLevelObject) 745 SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init) 746 << IList->getSourceRange() 747 << FixItHint::CreateRemoval(IList->getLocStart()) 748 << FixItHint::CreateRemoval(IList->getLocEnd()); 749 } 750 751 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity, 752 InitListExpr *IList, 753 QualType &DeclType, 754 bool SubobjectIsDesignatorContext, 755 unsigned &Index, 756 InitListExpr *StructuredList, 757 unsigned &StructuredIndex, 758 bool TopLevelObject) { 759 if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) { 760 // Explicitly braced initializer for complex type can be real+imaginary 761 // parts. 762 CheckComplexType(Entity, IList, DeclType, Index, 763 StructuredList, StructuredIndex); 764 } else if (DeclType->isScalarType()) { 765 CheckScalarType(Entity, IList, DeclType, Index, 766 StructuredList, StructuredIndex); 767 } else if (DeclType->isVectorType()) { 768 CheckVectorType(Entity, IList, DeclType, Index, 769 StructuredList, StructuredIndex); 770 } else if (DeclType->isRecordType()) { 771 assert(DeclType->isAggregateType() && 772 "non-aggregate records should be handed in CheckSubElementType"); 773 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl(); 774 CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(), 775 SubobjectIsDesignatorContext, Index, 776 StructuredList, StructuredIndex, 777 TopLevelObject); 778 } else if (DeclType->isArrayType()) { 779 llvm::APSInt Zero( 780 SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()), 781 false); 782 CheckArrayType(Entity, IList, DeclType, Zero, 783 SubobjectIsDesignatorContext, Index, 784 StructuredList, StructuredIndex); 785 } else if (DeclType->isVoidType() || DeclType->isFunctionType()) { 786 // This type is invalid, issue a diagnostic. 787 ++Index; 788 if (!VerifyOnly) 789 SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type) 790 << DeclType; 791 hadError = true; 792 } else if (DeclType->isReferenceType()) { 793 CheckReferenceType(Entity, IList, DeclType, Index, 794 StructuredList, StructuredIndex); 795 } else if (DeclType->isObjCObjectType()) { 796 if (!VerifyOnly) 797 SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class) 798 << DeclType; 799 hadError = true; 800 } else { 801 if (!VerifyOnly) 802 SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type) 803 << DeclType; 804 hadError = true; 805 } 806 } 807 808 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity, 809 InitListExpr *IList, 810 QualType ElemType, 811 unsigned &Index, 812 InitListExpr *StructuredList, 813 unsigned &StructuredIndex) { 814 Expr *expr = IList->getInit(Index); 815 816 if (ElemType->isReferenceType()) 817 return CheckReferenceType(Entity, IList, ElemType, Index, 818 StructuredList, StructuredIndex); 819 820 if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) { 821 if (!ElemType->isRecordType() || ElemType->isAggregateType()) { 822 InitListExpr *InnerStructuredList 823 = getStructuredSubobjectInit(IList, Index, ElemType, 824 StructuredList, StructuredIndex, 825 SubInitList->getSourceRange()); 826 CheckExplicitInitList(Entity, SubInitList, ElemType, 827 InnerStructuredList); 828 ++StructuredIndex; 829 ++Index; 830 return; 831 } 832 assert(SemaRef.getLangOpts().CPlusPlus && 833 "non-aggregate records are only possible in C++"); 834 // C++ initialization is handled later. 835 } 836 837 // FIXME: Need to handle atomic aggregate types with implicit init lists. 838 if (ElemType->isScalarType() || ElemType->isAtomicType()) 839 return CheckScalarType(Entity, IList, ElemType, Index, 840 StructuredList, StructuredIndex); 841 842 assert((ElemType->isRecordType() || ElemType->isVectorType() || 843 ElemType->isArrayType()) && "Unexpected type"); 844 845 if (const ArrayType *arrayType = SemaRef.Context.getAsArrayType(ElemType)) { 846 // arrayType can be incomplete if we're initializing a flexible 847 // array member. There's nothing we can do with the completed 848 // type here, though. 849 850 if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) { 851 if (!VerifyOnly) { 852 CheckStringInit(expr, ElemType, arrayType, SemaRef); 853 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 854 } 855 ++Index; 856 return; 857 } 858 859 // Fall through for subaggregate initialization. 860 861 } else if (SemaRef.getLangOpts().CPlusPlus) { 862 // C++ [dcl.init.aggr]p12: 863 // All implicit type conversions (clause 4) are considered when 864 // initializing the aggregate member with an initializer from 865 // an initializer-list. If the initializer can initialize a 866 // member, the member is initialized. [...] 867 868 // FIXME: Better EqualLoc? 869 InitializationKind Kind = 870 InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation()); 871 InitializationSequence Seq(SemaRef, Entity, Kind, expr); 872 873 if (Seq) { 874 if (!VerifyOnly) { 875 ExprResult Result = 876 Seq.Perform(SemaRef, Entity, Kind, expr); 877 if (Result.isInvalid()) 878 hadError = true; 879 880 UpdateStructuredListElement(StructuredList, StructuredIndex, 881 Result.getAs<Expr>()); 882 } 883 ++Index; 884 return; 885 } 886 887 // Fall through for subaggregate initialization 888 } else { 889 // C99 6.7.8p13: 890 // 891 // The initializer for a structure or union object that has 892 // automatic storage duration shall be either an initializer 893 // list as described below, or a single expression that has 894 // compatible structure or union type. In the latter case, the 895 // initial value of the object, including unnamed members, is 896 // that of the expression. 897 ExprResult ExprRes = expr; 898 if ((ElemType->isRecordType() || ElemType->isVectorType()) && 899 SemaRef.CheckSingleAssignmentConstraints(ElemType, ExprRes, 900 !VerifyOnly) 901 != Sema::Incompatible) { 902 if (ExprRes.isInvalid()) 903 hadError = true; 904 else { 905 ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get()); 906 if (ExprRes.isInvalid()) 907 hadError = true; 908 } 909 UpdateStructuredListElement(StructuredList, StructuredIndex, 910 ExprRes.getAs<Expr>()); 911 ++Index; 912 return; 913 } 914 ExprRes.get(); 915 // Fall through for subaggregate initialization 916 } 917 918 // C++ [dcl.init.aggr]p12: 919 // 920 // [...] Otherwise, if the member is itself a non-empty 921 // subaggregate, brace elision is assumed and the initializer is 922 // considered for the initialization of the first member of 923 // the subaggregate. 924 if (!SemaRef.getLangOpts().OpenCL && 925 (ElemType->isAggregateType() || ElemType->isVectorType())) { 926 CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList, 927 StructuredIndex); 928 ++StructuredIndex; 929 } else { 930 if (!VerifyOnly) { 931 // We cannot initialize this element, so let 932 // PerformCopyInitialization produce the appropriate diagnostic. 933 SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr, 934 /*TopLevelOfInitList=*/true); 935 } 936 hadError = true; 937 ++Index; 938 ++StructuredIndex; 939 } 940 } 941 942 void InitListChecker::CheckComplexType(const InitializedEntity &Entity, 943 InitListExpr *IList, QualType DeclType, 944 unsigned &Index, 945 InitListExpr *StructuredList, 946 unsigned &StructuredIndex) { 947 assert(Index == 0 && "Index in explicit init list must be zero"); 948 949 // As an extension, clang supports complex initializers, which initialize 950 // a complex number component-wise. When an explicit initializer list for 951 // a complex number contains two two initializers, this extension kicks in: 952 // it exepcts the initializer list to contain two elements convertible to 953 // the element type of the complex type. The first element initializes 954 // the real part, and the second element intitializes the imaginary part. 955 956 if (IList->getNumInits() != 2) 957 return CheckScalarType(Entity, IList, DeclType, Index, StructuredList, 958 StructuredIndex); 959 960 // This is an extension in C. (The builtin _Complex type does not exist 961 // in the C++ standard.) 962 if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly) 963 SemaRef.Diag(IList->getLocStart(), diag::ext_complex_component_init) 964 << IList->getSourceRange(); 965 966 // Initialize the complex number. 967 QualType elementType = DeclType->getAs<ComplexType>()->getElementType(); 968 InitializedEntity ElementEntity = 969 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 970 971 for (unsigned i = 0; i < 2; ++i) { 972 ElementEntity.setElementIndex(Index); 973 CheckSubElementType(ElementEntity, IList, elementType, Index, 974 StructuredList, StructuredIndex); 975 } 976 } 977 978 979 void InitListChecker::CheckScalarType(const InitializedEntity &Entity, 980 InitListExpr *IList, QualType DeclType, 981 unsigned &Index, 982 InitListExpr *StructuredList, 983 unsigned &StructuredIndex) { 984 if (Index >= IList->getNumInits()) { 985 if (!VerifyOnly) 986 SemaRef.Diag(IList->getLocStart(), 987 SemaRef.getLangOpts().CPlusPlus11 ? 988 diag::warn_cxx98_compat_empty_scalar_initializer : 989 diag::err_empty_scalar_initializer) 990 << IList->getSourceRange(); 991 hadError = !SemaRef.getLangOpts().CPlusPlus11; 992 ++Index; 993 ++StructuredIndex; 994 return; 995 } 996 997 Expr *expr = IList->getInit(Index); 998 if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) { 999 // FIXME: This is invalid, and accepting it causes overload resolution 1000 // to pick the wrong overload in some corner cases. 1001 if (!VerifyOnly) 1002 SemaRef.Diag(SubIList->getLocStart(), 1003 diag::ext_many_braces_around_scalar_init) 1004 << SubIList->getSourceRange(); 1005 1006 CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList, 1007 StructuredIndex); 1008 return; 1009 } else if (isa<DesignatedInitExpr>(expr)) { 1010 if (!VerifyOnly) 1011 SemaRef.Diag(expr->getLocStart(), 1012 diag::err_designator_for_scalar_init) 1013 << DeclType << expr->getSourceRange(); 1014 hadError = true; 1015 ++Index; 1016 ++StructuredIndex; 1017 return; 1018 } 1019 1020 if (VerifyOnly) { 1021 if (!SemaRef.CanPerformCopyInitialization(Entity,expr)) 1022 hadError = true; 1023 ++Index; 1024 return; 1025 } 1026 1027 ExprResult Result = 1028 SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(), expr, 1029 /*TopLevelOfInitList=*/true); 1030 1031 Expr *ResultExpr = nullptr; 1032 1033 if (Result.isInvalid()) 1034 hadError = true; // types weren't compatible. 1035 else { 1036 ResultExpr = Result.getAs<Expr>(); 1037 1038 if (ResultExpr != expr) { 1039 // The type was promoted, update initializer list. 1040 IList->setInit(Index, ResultExpr); 1041 } 1042 } 1043 if (hadError) 1044 ++StructuredIndex; 1045 else 1046 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr); 1047 ++Index; 1048 } 1049 1050 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity, 1051 InitListExpr *IList, QualType DeclType, 1052 unsigned &Index, 1053 InitListExpr *StructuredList, 1054 unsigned &StructuredIndex) { 1055 if (Index >= IList->getNumInits()) { 1056 // FIXME: It would be wonderful if we could point at the actual member. In 1057 // general, it would be useful to pass location information down the stack, 1058 // so that we know the location (or decl) of the "current object" being 1059 // initialized. 1060 if (!VerifyOnly) 1061 SemaRef.Diag(IList->getLocStart(), 1062 diag::err_init_reference_member_uninitialized) 1063 << DeclType 1064 << IList->getSourceRange(); 1065 hadError = true; 1066 ++Index; 1067 ++StructuredIndex; 1068 return; 1069 } 1070 1071 Expr *expr = IList->getInit(Index); 1072 if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) { 1073 if (!VerifyOnly) 1074 SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list) 1075 << DeclType << IList->getSourceRange(); 1076 hadError = true; 1077 ++Index; 1078 ++StructuredIndex; 1079 return; 1080 } 1081 1082 if (VerifyOnly) { 1083 if (!SemaRef.CanPerformCopyInitialization(Entity,expr)) 1084 hadError = true; 1085 ++Index; 1086 return; 1087 } 1088 1089 ExprResult Result = 1090 SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(), expr, 1091 /*TopLevelOfInitList=*/true); 1092 1093 if (Result.isInvalid()) 1094 hadError = true; 1095 1096 expr = Result.getAs<Expr>(); 1097 IList->setInit(Index, expr); 1098 1099 if (hadError) 1100 ++StructuredIndex; 1101 else 1102 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1103 ++Index; 1104 } 1105 1106 void InitListChecker::CheckVectorType(const InitializedEntity &Entity, 1107 InitListExpr *IList, QualType DeclType, 1108 unsigned &Index, 1109 InitListExpr *StructuredList, 1110 unsigned &StructuredIndex) { 1111 const VectorType *VT = DeclType->getAs<VectorType>(); 1112 unsigned maxElements = VT->getNumElements(); 1113 unsigned numEltsInit = 0; 1114 QualType elementType = VT->getElementType(); 1115 1116 if (Index >= IList->getNumInits()) { 1117 // Make sure the element type can be value-initialized. 1118 if (VerifyOnly) 1119 CheckValueInitializable( 1120 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity)); 1121 return; 1122 } 1123 1124 if (!SemaRef.getLangOpts().OpenCL) { 1125 // If the initializing element is a vector, try to copy-initialize 1126 // instead of breaking it apart (which is doomed to failure anyway). 1127 Expr *Init = IList->getInit(Index); 1128 if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) { 1129 if (VerifyOnly) { 1130 if (!SemaRef.CanPerformCopyInitialization(Entity, Init)) 1131 hadError = true; 1132 ++Index; 1133 return; 1134 } 1135 1136 ExprResult Result = 1137 SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(), Init, 1138 /*TopLevelOfInitList=*/true); 1139 1140 Expr *ResultExpr = nullptr; 1141 if (Result.isInvalid()) 1142 hadError = true; // types weren't compatible. 1143 else { 1144 ResultExpr = Result.getAs<Expr>(); 1145 1146 if (ResultExpr != Init) { 1147 // The type was promoted, update initializer list. 1148 IList->setInit(Index, ResultExpr); 1149 } 1150 } 1151 if (hadError) 1152 ++StructuredIndex; 1153 else 1154 UpdateStructuredListElement(StructuredList, StructuredIndex, 1155 ResultExpr); 1156 ++Index; 1157 return; 1158 } 1159 1160 InitializedEntity ElementEntity = 1161 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1162 1163 for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) { 1164 // Don't attempt to go past the end of the init list 1165 if (Index >= IList->getNumInits()) { 1166 if (VerifyOnly) 1167 CheckValueInitializable(ElementEntity); 1168 break; 1169 } 1170 1171 ElementEntity.setElementIndex(Index); 1172 CheckSubElementType(ElementEntity, IList, elementType, Index, 1173 StructuredList, StructuredIndex); 1174 } 1175 return; 1176 } 1177 1178 InitializedEntity ElementEntity = 1179 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1180 1181 // OpenCL initializers allows vectors to be constructed from vectors. 1182 for (unsigned i = 0; i < maxElements; ++i) { 1183 // Don't attempt to go past the end of the init list 1184 if (Index >= IList->getNumInits()) 1185 break; 1186 1187 ElementEntity.setElementIndex(Index); 1188 1189 QualType IType = IList->getInit(Index)->getType(); 1190 if (!IType->isVectorType()) { 1191 CheckSubElementType(ElementEntity, IList, elementType, Index, 1192 StructuredList, StructuredIndex); 1193 ++numEltsInit; 1194 } else { 1195 QualType VecType; 1196 const VectorType *IVT = IType->getAs<VectorType>(); 1197 unsigned numIElts = IVT->getNumElements(); 1198 1199 if (IType->isExtVectorType()) 1200 VecType = SemaRef.Context.getExtVectorType(elementType, numIElts); 1201 else 1202 VecType = SemaRef.Context.getVectorType(elementType, numIElts, 1203 IVT->getVectorKind()); 1204 CheckSubElementType(ElementEntity, IList, VecType, Index, 1205 StructuredList, StructuredIndex); 1206 numEltsInit += numIElts; 1207 } 1208 } 1209 1210 // OpenCL requires all elements to be initialized. 1211 if (numEltsInit != maxElements) { 1212 if (!VerifyOnly) 1213 SemaRef.Diag(IList->getLocStart(), 1214 diag::err_vector_incorrect_num_initializers) 1215 << (numEltsInit < maxElements) << maxElements << numEltsInit; 1216 hadError = true; 1217 } 1218 } 1219 1220 void InitListChecker::CheckArrayType(const InitializedEntity &Entity, 1221 InitListExpr *IList, QualType &DeclType, 1222 llvm::APSInt elementIndex, 1223 bool SubobjectIsDesignatorContext, 1224 unsigned &Index, 1225 InitListExpr *StructuredList, 1226 unsigned &StructuredIndex) { 1227 const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType); 1228 1229 // Check for the special-case of initializing an array with a string. 1230 if (Index < IList->getNumInits()) { 1231 if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) == 1232 SIF_None) { 1233 // We place the string literal directly into the resulting 1234 // initializer list. This is the only place where the structure 1235 // of the structured initializer list doesn't match exactly, 1236 // because doing so would involve allocating one character 1237 // constant for each string. 1238 if (!VerifyOnly) { 1239 CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef); 1240 UpdateStructuredListElement(StructuredList, StructuredIndex, 1241 IList->getInit(Index)); 1242 StructuredList->resizeInits(SemaRef.Context, StructuredIndex); 1243 } 1244 ++Index; 1245 return; 1246 } 1247 } 1248 if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) { 1249 // Check for VLAs; in standard C it would be possible to check this 1250 // earlier, but I don't know where clang accepts VLAs (gcc accepts 1251 // them in all sorts of strange places). 1252 if (!VerifyOnly) 1253 SemaRef.Diag(VAT->getSizeExpr()->getLocStart(), 1254 diag::err_variable_object_no_init) 1255 << VAT->getSizeExpr()->getSourceRange(); 1256 hadError = true; 1257 ++Index; 1258 ++StructuredIndex; 1259 return; 1260 } 1261 1262 // We might know the maximum number of elements in advance. 1263 llvm::APSInt maxElements(elementIndex.getBitWidth(), 1264 elementIndex.isUnsigned()); 1265 bool maxElementsKnown = false; 1266 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) { 1267 maxElements = CAT->getSize(); 1268 elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth()); 1269 elementIndex.setIsUnsigned(maxElements.isUnsigned()); 1270 maxElementsKnown = true; 1271 } 1272 1273 QualType elementType = arrayType->getElementType(); 1274 while (Index < IList->getNumInits()) { 1275 Expr *Init = IList->getInit(Index); 1276 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { 1277 // If we're not the subobject that matches up with the '{' for 1278 // the designator, we shouldn't be handling the 1279 // designator. Return immediately. 1280 if (!SubobjectIsDesignatorContext) 1281 return; 1282 1283 // Handle this designated initializer. elementIndex will be 1284 // updated to be the next array element we'll initialize. 1285 if (CheckDesignatedInitializer(Entity, IList, DIE, 0, 1286 DeclType, nullptr, &elementIndex, Index, 1287 StructuredList, StructuredIndex, true, 1288 false)) { 1289 hadError = true; 1290 continue; 1291 } 1292 1293 if (elementIndex.getBitWidth() > maxElements.getBitWidth()) 1294 maxElements = maxElements.extend(elementIndex.getBitWidth()); 1295 else if (elementIndex.getBitWidth() < maxElements.getBitWidth()) 1296 elementIndex = elementIndex.extend(maxElements.getBitWidth()); 1297 elementIndex.setIsUnsigned(maxElements.isUnsigned()); 1298 1299 // If the array is of incomplete type, keep track of the number of 1300 // elements in the initializer. 1301 if (!maxElementsKnown && elementIndex > maxElements) 1302 maxElements = elementIndex; 1303 1304 continue; 1305 } 1306 1307 // If we know the maximum number of elements, and we've already 1308 // hit it, stop consuming elements in the initializer list. 1309 if (maxElementsKnown && elementIndex == maxElements) 1310 break; 1311 1312 InitializedEntity ElementEntity = 1313 InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex, 1314 Entity); 1315 // Check this element. 1316 CheckSubElementType(ElementEntity, IList, elementType, Index, 1317 StructuredList, StructuredIndex); 1318 ++elementIndex; 1319 1320 // If the array is of incomplete type, keep track of the number of 1321 // elements in the initializer. 1322 if (!maxElementsKnown && elementIndex > maxElements) 1323 maxElements = elementIndex; 1324 } 1325 if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) { 1326 // If this is an incomplete array type, the actual type needs to 1327 // be calculated here. 1328 llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned()); 1329 if (maxElements == Zero) { 1330 // Sizing an array implicitly to zero is not allowed by ISO C, 1331 // but is supported by GNU. 1332 SemaRef.Diag(IList->getLocStart(), 1333 diag::ext_typecheck_zero_array_size); 1334 } 1335 1336 DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements, 1337 ArrayType::Normal, 0); 1338 } 1339 if (!hadError && VerifyOnly) { 1340 // Check if there are any members of the array that get value-initialized. 1341 // If so, check if doing that is possible. 1342 // FIXME: This needs to detect holes left by designated initializers too. 1343 if (maxElementsKnown && elementIndex < maxElements) 1344 CheckValueInitializable(InitializedEntity::InitializeElement( 1345 SemaRef.Context, 0, Entity)); 1346 } 1347 } 1348 1349 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity, 1350 Expr *InitExpr, 1351 FieldDecl *Field, 1352 bool TopLevelObject) { 1353 // Handle GNU flexible array initializers. 1354 unsigned FlexArrayDiag; 1355 if (isa<InitListExpr>(InitExpr) && 1356 cast<InitListExpr>(InitExpr)->getNumInits() == 0) { 1357 // Empty flexible array init always allowed as an extension 1358 FlexArrayDiag = diag::ext_flexible_array_init; 1359 } else if (SemaRef.getLangOpts().CPlusPlus) { 1360 // Disallow flexible array init in C++; it is not required for gcc 1361 // compatibility, and it needs work to IRGen correctly in general. 1362 FlexArrayDiag = diag::err_flexible_array_init; 1363 } else if (!TopLevelObject) { 1364 // Disallow flexible array init on non-top-level object 1365 FlexArrayDiag = diag::err_flexible_array_init; 1366 } else if (Entity.getKind() != InitializedEntity::EK_Variable) { 1367 // Disallow flexible array init on anything which is not a variable. 1368 FlexArrayDiag = diag::err_flexible_array_init; 1369 } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) { 1370 // Disallow flexible array init on local variables. 1371 FlexArrayDiag = diag::err_flexible_array_init; 1372 } else { 1373 // Allow other cases. 1374 FlexArrayDiag = diag::ext_flexible_array_init; 1375 } 1376 1377 if (!VerifyOnly) { 1378 SemaRef.Diag(InitExpr->getLocStart(), 1379 FlexArrayDiag) 1380 << InitExpr->getLocStart(); 1381 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 1382 << Field; 1383 } 1384 1385 return FlexArrayDiag != diag::ext_flexible_array_init; 1386 } 1387 1388 void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity, 1389 InitListExpr *IList, 1390 QualType DeclType, 1391 RecordDecl::field_iterator Field, 1392 bool SubobjectIsDesignatorContext, 1393 unsigned &Index, 1394 InitListExpr *StructuredList, 1395 unsigned &StructuredIndex, 1396 bool TopLevelObject) { 1397 RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl(); 1398 1399 // If the record is invalid, some of it's members are invalid. To avoid 1400 // confusion, we forgo checking the intializer for the entire record. 1401 if (structDecl->isInvalidDecl()) { 1402 // Assume it was supposed to consume a single initializer. 1403 ++Index; 1404 hadError = true; 1405 return; 1406 } 1407 1408 if (DeclType->isUnionType() && IList->getNumInits() == 0) { 1409 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl(); 1410 1411 // If there's a default initializer, use it. 1412 if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->hasInClassInitializer()) { 1413 if (VerifyOnly) 1414 return; 1415 for (RecordDecl::field_iterator FieldEnd = RD->field_end(); 1416 Field != FieldEnd; ++Field) { 1417 if (Field->hasInClassInitializer()) { 1418 StructuredList->setInitializedFieldInUnion(*Field); 1419 // FIXME: Actually build a CXXDefaultInitExpr? 1420 return; 1421 } 1422 } 1423 } 1424 1425 // Value-initialize the first named member of the union. 1426 for (RecordDecl::field_iterator FieldEnd = RD->field_end(); 1427 Field != FieldEnd; ++Field) { 1428 if (Field->getDeclName()) { 1429 if (VerifyOnly) 1430 CheckValueInitializable( 1431 InitializedEntity::InitializeMember(*Field, &Entity)); 1432 else 1433 StructuredList->setInitializedFieldInUnion(*Field); 1434 break; 1435 } 1436 } 1437 return; 1438 } 1439 1440 // If structDecl is a forward declaration, this loop won't do 1441 // anything except look at designated initializers; That's okay, 1442 // because an error should get printed out elsewhere. It might be 1443 // worthwhile to skip over the rest of the initializer, though. 1444 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl(); 1445 RecordDecl::field_iterator FieldEnd = RD->field_end(); 1446 bool InitializedSomething = false; 1447 bool CheckForMissingFields = true; 1448 while (Index < IList->getNumInits()) { 1449 Expr *Init = IList->getInit(Index); 1450 1451 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { 1452 // If we're not the subobject that matches up with the '{' for 1453 // the designator, we shouldn't be handling the 1454 // designator. Return immediately. 1455 if (!SubobjectIsDesignatorContext) 1456 return; 1457 1458 // Handle this designated initializer. Field will be updated to 1459 // the next field that we'll be initializing. 1460 if (CheckDesignatedInitializer(Entity, IList, DIE, 0, 1461 DeclType, &Field, nullptr, Index, 1462 StructuredList, StructuredIndex, 1463 true, TopLevelObject)) 1464 hadError = true; 1465 1466 InitializedSomething = true; 1467 1468 // Disable check for missing fields when designators are used. 1469 // This matches gcc behaviour. 1470 CheckForMissingFields = false; 1471 continue; 1472 } 1473 1474 if (Field == FieldEnd) { 1475 // We've run out of fields. We're done. 1476 break; 1477 } 1478 1479 // We've already initialized a member of a union. We're done. 1480 if (InitializedSomething && DeclType->isUnionType()) 1481 break; 1482 1483 // If we've hit the flexible array member at the end, we're done. 1484 if (Field->getType()->isIncompleteArrayType()) 1485 break; 1486 1487 if (Field->isUnnamedBitfield()) { 1488 // Don't initialize unnamed bitfields, e.g. "int : 20;" 1489 ++Field; 1490 continue; 1491 } 1492 1493 // Make sure we can use this declaration. 1494 bool InvalidUse; 1495 if (VerifyOnly) 1496 InvalidUse = !SemaRef.CanUseDecl(*Field); 1497 else 1498 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, 1499 IList->getInit(Index)->getLocStart()); 1500 if (InvalidUse) { 1501 ++Index; 1502 ++Field; 1503 hadError = true; 1504 continue; 1505 } 1506 1507 InitializedEntity MemberEntity = 1508 InitializedEntity::InitializeMember(*Field, &Entity); 1509 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 1510 StructuredList, StructuredIndex); 1511 InitializedSomething = true; 1512 1513 if (DeclType->isUnionType() && !VerifyOnly) { 1514 // Initialize the first field within the union. 1515 StructuredList->setInitializedFieldInUnion(*Field); 1516 } 1517 1518 ++Field; 1519 } 1520 1521 // Emit warnings for missing struct field initializers. 1522 if (!VerifyOnly && InitializedSomething && CheckForMissingFields && 1523 Field != FieldEnd && !Field->getType()->isIncompleteArrayType() && 1524 !DeclType->isUnionType()) { 1525 // It is possible we have one or more unnamed bitfields remaining. 1526 // Find first (if any) named field and emit warning. 1527 for (RecordDecl::field_iterator it = Field, end = RD->field_end(); 1528 it != end; ++it) { 1529 if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) { 1530 SemaRef.Diag(IList->getSourceRange().getEnd(), 1531 diag::warn_missing_field_initializers) << *it; 1532 break; 1533 } 1534 } 1535 } 1536 1537 // Check that any remaining fields can be value-initialized. 1538 if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() && 1539 !Field->getType()->isIncompleteArrayType()) { 1540 // FIXME: Should check for holes left by designated initializers too. 1541 for (; Field != FieldEnd && !hadError; ++Field) { 1542 if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer()) 1543 CheckValueInitializable( 1544 InitializedEntity::InitializeMember(*Field, &Entity)); 1545 } 1546 } 1547 1548 if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() || 1549 Index >= IList->getNumInits()) 1550 return; 1551 1552 if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field, 1553 TopLevelObject)) { 1554 hadError = true; 1555 ++Index; 1556 return; 1557 } 1558 1559 InitializedEntity MemberEntity = 1560 InitializedEntity::InitializeMember(*Field, &Entity); 1561 1562 if (isa<InitListExpr>(IList->getInit(Index))) 1563 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 1564 StructuredList, StructuredIndex); 1565 else 1566 CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index, 1567 StructuredList, StructuredIndex); 1568 } 1569 1570 /// \brief Expand a field designator that refers to a member of an 1571 /// anonymous struct or union into a series of field designators that 1572 /// refers to the field within the appropriate subobject. 1573 /// 1574 static void ExpandAnonymousFieldDesignator(Sema &SemaRef, 1575 DesignatedInitExpr *DIE, 1576 unsigned DesigIdx, 1577 IndirectFieldDecl *IndirectField) { 1578 typedef DesignatedInitExpr::Designator Designator; 1579 1580 // Build the replacement designators. 1581 SmallVector<Designator, 4> Replacements; 1582 for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(), 1583 PE = IndirectField->chain_end(); PI != PE; ++PI) { 1584 if (PI + 1 == PE) 1585 Replacements.push_back(Designator((IdentifierInfo *)nullptr, 1586 DIE->getDesignator(DesigIdx)->getDotLoc(), 1587 DIE->getDesignator(DesigIdx)->getFieldLoc())); 1588 else 1589 Replacements.push_back(Designator((IdentifierInfo *)nullptr, 1590 SourceLocation(), SourceLocation())); 1591 assert(isa<FieldDecl>(*PI)); 1592 Replacements.back().setField(cast<FieldDecl>(*PI)); 1593 } 1594 1595 // Expand the current designator into the set of replacement 1596 // designators, so we have a full subobject path down to where the 1597 // member of the anonymous struct/union is actually stored. 1598 DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0], 1599 &Replacements[0] + Replacements.size()); 1600 } 1601 1602 /// \brief Given an implicit anonymous field, search the IndirectField that 1603 /// corresponds to FieldName. 1604 static IndirectFieldDecl *FindIndirectFieldDesignator(FieldDecl *AnonField, 1605 IdentifierInfo *FieldName) { 1606 if (!FieldName) 1607 return nullptr; 1608 1609 assert(AnonField->isAnonymousStructOrUnion()); 1610 Decl *NextDecl = AnonField->getNextDeclInContext(); 1611 while (IndirectFieldDecl *IF = 1612 dyn_cast_or_null<IndirectFieldDecl>(NextDecl)) { 1613 if (FieldName == IF->getAnonField()->getIdentifier()) 1614 return IF; 1615 NextDecl = NextDecl->getNextDeclInContext(); 1616 } 1617 return nullptr; 1618 } 1619 1620 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef, 1621 DesignatedInitExpr *DIE) { 1622 unsigned NumIndexExprs = DIE->getNumSubExprs() - 1; 1623 SmallVector<Expr*, 4> IndexExprs(NumIndexExprs); 1624 for (unsigned I = 0; I < NumIndexExprs; ++I) 1625 IndexExprs[I] = DIE->getSubExpr(I + 1); 1626 return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators_begin(), 1627 DIE->size(), IndexExprs, 1628 DIE->getEqualOrColonLoc(), 1629 DIE->usesGNUSyntax(), DIE->getInit()); 1630 } 1631 1632 namespace { 1633 1634 // Callback to only accept typo corrections that are for field members of 1635 // the given struct or union. 1636 class FieldInitializerValidatorCCC : public CorrectionCandidateCallback { 1637 public: 1638 explicit FieldInitializerValidatorCCC(RecordDecl *RD) 1639 : Record(RD) {} 1640 1641 bool ValidateCandidate(const TypoCorrection &candidate) override { 1642 FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>(); 1643 return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record); 1644 } 1645 1646 private: 1647 RecordDecl *Record; 1648 }; 1649 1650 } 1651 1652 /// @brief Check the well-formedness of a C99 designated initializer. 1653 /// 1654 /// Determines whether the designated initializer @p DIE, which 1655 /// resides at the given @p Index within the initializer list @p 1656 /// IList, is well-formed for a current object of type @p DeclType 1657 /// (C99 6.7.8). The actual subobject that this designator refers to 1658 /// within the current subobject is returned in either 1659 /// @p NextField or @p NextElementIndex (whichever is appropriate). 1660 /// 1661 /// @param IList The initializer list in which this designated 1662 /// initializer occurs. 1663 /// 1664 /// @param DIE The designated initializer expression. 1665 /// 1666 /// @param DesigIdx The index of the current designator. 1667 /// 1668 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17), 1669 /// into which the designation in @p DIE should refer. 1670 /// 1671 /// @param NextField If non-NULL and the first designator in @p DIE is 1672 /// a field, this will be set to the field declaration corresponding 1673 /// to the field named by the designator. 1674 /// 1675 /// @param NextElementIndex If non-NULL and the first designator in @p 1676 /// DIE is an array designator or GNU array-range designator, this 1677 /// will be set to the last index initialized by this designator. 1678 /// 1679 /// @param Index Index into @p IList where the designated initializer 1680 /// @p DIE occurs. 1681 /// 1682 /// @param StructuredList The initializer list expression that 1683 /// describes all of the subobject initializers in the order they'll 1684 /// actually be initialized. 1685 /// 1686 /// @returns true if there was an error, false otherwise. 1687 bool 1688 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity, 1689 InitListExpr *IList, 1690 DesignatedInitExpr *DIE, 1691 unsigned DesigIdx, 1692 QualType &CurrentObjectType, 1693 RecordDecl::field_iterator *NextField, 1694 llvm::APSInt *NextElementIndex, 1695 unsigned &Index, 1696 InitListExpr *StructuredList, 1697 unsigned &StructuredIndex, 1698 bool FinishSubobjectInit, 1699 bool TopLevelObject) { 1700 if (DesigIdx == DIE->size()) { 1701 // Check the actual initialization for the designated object type. 1702 bool prevHadError = hadError; 1703 1704 // Temporarily remove the designator expression from the 1705 // initializer list that the child calls see, so that we don't try 1706 // to re-process the designator. 1707 unsigned OldIndex = Index; 1708 IList->setInit(OldIndex, DIE->getInit()); 1709 1710 CheckSubElementType(Entity, IList, CurrentObjectType, Index, 1711 StructuredList, StructuredIndex); 1712 1713 // Restore the designated initializer expression in the syntactic 1714 // form of the initializer list. 1715 if (IList->getInit(OldIndex) != DIE->getInit()) 1716 DIE->setInit(IList->getInit(OldIndex)); 1717 IList->setInit(OldIndex, DIE); 1718 1719 return hadError && !prevHadError; 1720 } 1721 1722 DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx); 1723 bool IsFirstDesignator = (DesigIdx == 0); 1724 if (!VerifyOnly) { 1725 assert((IsFirstDesignator || StructuredList) && 1726 "Need a non-designated initializer list to start from"); 1727 1728 // Determine the structural initializer list that corresponds to the 1729 // current subobject. 1730 StructuredList = IsFirstDesignator? SyntacticToSemantic.lookup(IList) 1731 : getStructuredSubobjectInit(IList, Index, CurrentObjectType, 1732 StructuredList, StructuredIndex, 1733 SourceRange(D->getLocStart(), 1734 DIE->getLocEnd())); 1735 assert(StructuredList && "Expected a structured initializer list"); 1736 } 1737 1738 if (D->isFieldDesignator()) { 1739 // C99 6.7.8p7: 1740 // 1741 // If a designator has the form 1742 // 1743 // . identifier 1744 // 1745 // then the current object (defined below) shall have 1746 // structure or union type and the identifier shall be the 1747 // name of a member of that type. 1748 const RecordType *RT = CurrentObjectType->getAs<RecordType>(); 1749 if (!RT) { 1750 SourceLocation Loc = D->getDotLoc(); 1751 if (Loc.isInvalid()) 1752 Loc = D->getFieldLoc(); 1753 if (!VerifyOnly) 1754 SemaRef.Diag(Loc, diag::err_field_designator_non_aggr) 1755 << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType; 1756 ++Index; 1757 return true; 1758 } 1759 1760 // Note: we perform a linear search of the fields here, despite 1761 // the fact that we have a faster lookup method, because we always 1762 // need to compute the field's index. 1763 FieldDecl *KnownField = D->getField(); 1764 IdentifierInfo *FieldName = D->getFieldName(); 1765 unsigned FieldIndex = 0; 1766 RecordDecl::field_iterator 1767 Field = RT->getDecl()->field_begin(), 1768 FieldEnd = RT->getDecl()->field_end(); 1769 for (; Field != FieldEnd; ++Field) { 1770 if (Field->isUnnamedBitfield()) 1771 continue; 1772 1773 // If we find a field representing an anonymous field, look in the 1774 // IndirectFieldDecl that follow for the designated initializer. 1775 if (!KnownField && Field->isAnonymousStructOrUnion()) { 1776 if (IndirectFieldDecl *IF = 1777 FindIndirectFieldDesignator(*Field, FieldName)) { 1778 // In verify mode, don't modify the original. 1779 if (VerifyOnly) 1780 DIE = CloneDesignatedInitExpr(SemaRef, DIE); 1781 ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IF); 1782 D = DIE->getDesignator(DesigIdx); 1783 break; 1784 } 1785 } 1786 if (KnownField && KnownField == *Field) 1787 break; 1788 if (FieldName && FieldName == Field->getIdentifier()) 1789 break; 1790 1791 ++FieldIndex; 1792 } 1793 1794 if (Field == FieldEnd) { 1795 if (VerifyOnly) { 1796 ++Index; 1797 return true; // No typo correction when just trying this out. 1798 } 1799 1800 // There was no normal field in the struct with the designated 1801 // name. Perform another lookup for this name, which may find 1802 // something that we can't designate (e.g., a member function), 1803 // may find nothing, or may find a member of an anonymous 1804 // struct/union. 1805 DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName); 1806 FieldDecl *ReplacementField = nullptr; 1807 if (Lookup.empty()) { 1808 // Name lookup didn't find anything. Determine whether this 1809 // was a typo for another field name. 1810 FieldInitializerValidatorCCC Validator(RT->getDecl()); 1811 if (TypoCorrection Corrected = SemaRef.CorrectTypo( 1812 DeclarationNameInfo(FieldName, D->getFieldLoc()), 1813 Sema::LookupMemberName, /*Scope=*/ nullptr, /*SS=*/ nullptr, 1814 Validator, Sema::CTK_ErrorRecovery, RT->getDecl())) { 1815 SemaRef.diagnoseTypo( 1816 Corrected, 1817 SemaRef.PDiag(diag::err_field_designator_unknown_suggest) 1818 << FieldName << CurrentObjectType); 1819 ReplacementField = Corrected.getCorrectionDeclAs<FieldDecl>(); 1820 hadError = true; 1821 } else { 1822 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown) 1823 << FieldName << CurrentObjectType; 1824 ++Index; 1825 return true; 1826 } 1827 } 1828 1829 if (!ReplacementField) { 1830 // Name lookup found something, but it wasn't a field. 1831 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield) 1832 << FieldName; 1833 SemaRef.Diag(Lookup.front()->getLocation(), 1834 diag::note_field_designator_found); 1835 ++Index; 1836 return true; 1837 } 1838 1839 if (!KnownField) { 1840 // The replacement field comes from typo correction; find it 1841 // in the list of fields. 1842 FieldIndex = 0; 1843 Field = RT->getDecl()->field_begin(); 1844 for (; Field != FieldEnd; ++Field) { 1845 if (Field->isUnnamedBitfield()) 1846 continue; 1847 1848 if (ReplacementField == *Field || 1849 Field->getIdentifier() == ReplacementField->getIdentifier()) 1850 break; 1851 1852 ++FieldIndex; 1853 } 1854 } 1855 } 1856 1857 // All of the fields of a union are located at the same place in 1858 // the initializer list. 1859 if (RT->getDecl()->isUnion()) { 1860 FieldIndex = 0; 1861 if (!VerifyOnly) { 1862 FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion(); 1863 if (CurrentField && CurrentField != *Field) { 1864 assert(StructuredList->getNumInits() == 1 1865 && "A union should never have more than one initializer!"); 1866 1867 // we're about to throw away an initializer, emit warning 1868 SemaRef.Diag(D->getFieldLoc(), 1869 diag::warn_initializer_overrides) 1870 << D->getSourceRange(); 1871 Expr *ExistingInit = StructuredList->getInit(0); 1872 SemaRef.Diag(ExistingInit->getLocStart(), 1873 diag::note_previous_initializer) 1874 << /*FIXME:has side effects=*/0 1875 << ExistingInit->getSourceRange(); 1876 1877 // remove existing initializer 1878 StructuredList->resizeInits(SemaRef.Context, 0); 1879 StructuredList->setInitializedFieldInUnion(nullptr); 1880 } 1881 1882 StructuredList->setInitializedFieldInUnion(*Field); 1883 } 1884 } 1885 1886 // Make sure we can use this declaration. 1887 bool InvalidUse; 1888 if (VerifyOnly) 1889 InvalidUse = !SemaRef.CanUseDecl(*Field); 1890 else 1891 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc()); 1892 if (InvalidUse) { 1893 ++Index; 1894 return true; 1895 } 1896 1897 if (!VerifyOnly) { 1898 // Update the designator with the field declaration. 1899 D->setField(*Field); 1900 1901 // Make sure that our non-designated initializer list has space 1902 // for a subobject corresponding to this field. 1903 if (FieldIndex >= StructuredList->getNumInits()) 1904 StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1); 1905 } 1906 1907 // This designator names a flexible array member. 1908 if (Field->getType()->isIncompleteArrayType()) { 1909 bool Invalid = false; 1910 if ((DesigIdx + 1) != DIE->size()) { 1911 // We can't designate an object within the flexible array 1912 // member (because GCC doesn't allow it). 1913 if (!VerifyOnly) { 1914 DesignatedInitExpr::Designator *NextD 1915 = DIE->getDesignator(DesigIdx + 1); 1916 SemaRef.Diag(NextD->getLocStart(), 1917 diag::err_designator_into_flexible_array_member) 1918 << SourceRange(NextD->getLocStart(), 1919 DIE->getLocEnd()); 1920 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 1921 << *Field; 1922 } 1923 Invalid = true; 1924 } 1925 1926 if (!hadError && !isa<InitListExpr>(DIE->getInit()) && 1927 !isa<StringLiteral>(DIE->getInit())) { 1928 // The initializer is not an initializer list. 1929 if (!VerifyOnly) { 1930 SemaRef.Diag(DIE->getInit()->getLocStart(), 1931 diag::err_flexible_array_init_needs_braces) 1932 << DIE->getInit()->getSourceRange(); 1933 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 1934 << *Field; 1935 } 1936 Invalid = true; 1937 } 1938 1939 // Check GNU flexible array initializer. 1940 if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field, 1941 TopLevelObject)) 1942 Invalid = true; 1943 1944 if (Invalid) { 1945 ++Index; 1946 return true; 1947 } 1948 1949 // Initialize the array. 1950 bool prevHadError = hadError; 1951 unsigned newStructuredIndex = FieldIndex; 1952 unsigned OldIndex = Index; 1953 IList->setInit(Index, DIE->getInit()); 1954 1955 InitializedEntity MemberEntity = 1956 InitializedEntity::InitializeMember(*Field, &Entity); 1957 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 1958 StructuredList, newStructuredIndex); 1959 1960 IList->setInit(OldIndex, DIE); 1961 if (hadError && !prevHadError) { 1962 ++Field; 1963 ++FieldIndex; 1964 if (NextField) 1965 *NextField = Field; 1966 StructuredIndex = FieldIndex; 1967 return true; 1968 } 1969 } else { 1970 // Recurse to check later designated subobjects. 1971 QualType FieldType = Field->getType(); 1972 unsigned newStructuredIndex = FieldIndex; 1973 1974 InitializedEntity MemberEntity = 1975 InitializedEntity::InitializeMember(*Field, &Entity); 1976 if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1, 1977 FieldType, nullptr, nullptr, Index, 1978 StructuredList, newStructuredIndex, 1979 true, false)) 1980 return true; 1981 } 1982 1983 // Find the position of the next field to be initialized in this 1984 // subobject. 1985 ++Field; 1986 ++FieldIndex; 1987 1988 // If this the first designator, our caller will continue checking 1989 // the rest of this struct/class/union subobject. 1990 if (IsFirstDesignator) { 1991 if (NextField) 1992 *NextField = Field; 1993 StructuredIndex = FieldIndex; 1994 return false; 1995 } 1996 1997 if (!FinishSubobjectInit) 1998 return false; 1999 2000 // We've already initialized something in the union; we're done. 2001 if (RT->getDecl()->isUnion()) 2002 return hadError; 2003 2004 // Check the remaining fields within this class/struct/union subobject. 2005 bool prevHadError = hadError; 2006 2007 CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index, 2008 StructuredList, FieldIndex); 2009 return hadError && !prevHadError; 2010 } 2011 2012 // C99 6.7.8p6: 2013 // 2014 // If a designator has the form 2015 // 2016 // [ constant-expression ] 2017 // 2018 // then the current object (defined below) shall have array 2019 // type and the expression shall be an integer constant 2020 // expression. If the array is of unknown size, any 2021 // nonnegative value is valid. 2022 // 2023 // Additionally, cope with the GNU extension that permits 2024 // designators of the form 2025 // 2026 // [ constant-expression ... constant-expression ] 2027 const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType); 2028 if (!AT) { 2029 if (!VerifyOnly) 2030 SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array) 2031 << CurrentObjectType; 2032 ++Index; 2033 return true; 2034 } 2035 2036 Expr *IndexExpr = nullptr; 2037 llvm::APSInt DesignatedStartIndex, DesignatedEndIndex; 2038 if (D->isArrayDesignator()) { 2039 IndexExpr = DIE->getArrayIndex(*D); 2040 DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context); 2041 DesignatedEndIndex = DesignatedStartIndex; 2042 } else { 2043 assert(D->isArrayRangeDesignator() && "Need array-range designator"); 2044 2045 DesignatedStartIndex = 2046 DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context); 2047 DesignatedEndIndex = 2048 DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context); 2049 IndexExpr = DIE->getArrayRangeEnd(*D); 2050 2051 // Codegen can't handle evaluating array range designators that have side 2052 // effects, because we replicate the AST value for each initialized element. 2053 // As such, set the sawArrayRangeDesignator() bit if we initialize multiple 2054 // elements with something that has a side effect, so codegen can emit an 2055 // "error unsupported" error instead of miscompiling the app. 2056 if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&& 2057 DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly) 2058 FullyStructuredList->sawArrayRangeDesignator(); 2059 } 2060 2061 if (isa<ConstantArrayType>(AT)) { 2062 llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false); 2063 DesignatedStartIndex 2064 = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth()); 2065 DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned()); 2066 DesignatedEndIndex 2067 = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth()); 2068 DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned()); 2069 if (DesignatedEndIndex >= MaxElements) { 2070 if (!VerifyOnly) 2071 SemaRef.Diag(IndexExpr->getLocStart(), 2072 diag::err_array_designator_too_large) 2073 << DesignatedEndIndex.toString(10) << MaxElements.toString(10) 2074 << IndexExpr->getSourceRange(); 2075 ++Index; 2076 return true; 2077 } 2078 } else { 2079 // Make sure the bit-widths and signedness match. 2080 if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth()) 2081 DesignatedEndIndex 2082 = DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth()); 2083 else if (DesignatedStartIndex.getBitWidth() < 2084 DesignatedEndIndex.getBitWidth()) 2085 DesignatedStartIndex 2086 = DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth()); 2087 DesignatedStartIndex.setIsUnsigned(true); 2088 DesignatedEndIndex.setIsUnsigned(true); 2089 } 2090 2091 if (!VerifyOnly && StructuredList->isStringLiteralInit()) { 2092 // We're modifying a string literal init; we have to decompose the string 2093 // so we can modify the individual characters. 2094 ASTContext &Context = SemaRef.Context; 2095 Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens(); 2096 2097 // Compute the character type 2098 QualType CharTy = AT->getElementType(); 2099 2100 // Compute the type of the integer literals. 2101 QualType PromotedCharTy = CharTy; 2102 if (CharTy->isPromotableIntegerType()) 2103 PromotedCharTy = Context.getPromotedIntegerType(CharTy); 2104 unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy); 2105 2106 if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) { 2107 // Get the length of the string. 2108 uint64_t StrLen = SL->getLength(); 2109 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen)) 2110 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue(); 2111 StructuredList->resizeInits(Context, StrLen); 2112 2113 // Build a literal for each character in the string, and put them into 2114 // the init list. 2115 for (unsigned i = 0, e = StrLen; i != e; ++i) { 2116 llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i)); 2117 Expr *Init = new (Context) IntegerLiteral( 2118 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); 2119 if (CharTy != PromotedCharTy) 2120 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, 2121 Init, nullptr, VK_RValue); 2122 StructuredList->updateInit(Context, i, Init); 2123 } 2124 } else { 2125 ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr); 2126 std::string Str; 2127 Context.getObjCEncodingForType(E->getEncodedType(), Str); 2128 2129 // Get the length of the string. 2130 uint64_t StrLen = Str.size(); 2131 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen)) 2132 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue(); 2133 StructuredList->resizeInits(Context, StrLen); 2134 2135 // Build a literal for each character in the string, and put them into 2136 // the init list. 2137 for (unsigned i = 0, e = StrLen; i != e; ++i) { 2138 llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]); 2139 Expr *Init = new (Context) IntegerLiteral( 2140 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); 2141 if (CharTy != PromotedCharTy) 2142 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, 2143 Init, nullptr, VK_RValue); 2144 StructuredList->updateInit(Context, i, Init); 2145 } 2146 } 2147 } 2148 2149 // Make sure that our non-designated initializer list has space 2150 // for a subobject corresponding to this array element. 2151 if (!VerifyOnly && 2152 DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits()) 2153 StructuredList->resizeInits(SemaRef.Context, 2154 DesignatedEndIndex.getZExtValue() + 1); 2155 2156 // Repeatedly perform subobject initializations in the range 2157 // [DesignatedStartIndex, DesignatedEndIndex]. 2158 2159 // Move to the next designator 2160 unsigned ElementIndex = DesignatedStartIndex.getZExtValue(); 2161 unsigned OldIndex = Index; 2162 2163 InitializedEntity ElementEntity = 2164 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 2165 2166 while (DesignatedStartIndex <= DesignatedEndIndex) { 2167 // Recurse to check later designated subobjects. 2168 QualType ElementType = AT->getElementType(); 2169 Index = OldIndex; 2170 2171 ElementEntity.setElementIndex(ElementIndex); 2172 if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1, 2173 ElementType, nullptr, nullptr, Index, 2174 StructuredList, ElementIndex, 2175 (DesignatedStartIndex == DesignatedEndIndex), 2176 false)) 2177 return true; 2178 2179 // Move to the next index in the array that we'll be initializing. 2180 ++DesignatedStartIndex; 2181 ElementIndex = DesignatedStartIndex.getZExtValue(); 2182 } 2183 2184 // If this the first designator, our caller will continue checking 2185 // the rest of this array subobject. 2186 if (IsFirstDesignator) { 2187 if (NextElementIndex) 2188 *NextElementIndex = DesignatedStartIndex; 2189 StructuredIndex = ElementIndex; 2190 return false; 2191 } 2192 2193 if (!FinishSubobjectInit) 2194 return false; 2195 2196 // Check the remaining elements within this array subobject. 2197 bool prevHadError = hadError; 2198 CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex, 2199 /*SubobjectIsDesignatorContext=*/false, Index, 2200 StructuredList, ElementIndex); 2201 return hadError && !prevHadError; 2202 } 2203 2204 // Get the structured initializer list for a subobject of type 2205 // @p CurrentObjectType. 2206 InitListExpr * 2207 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, 2208 QualType CurrentObjectType, 2209 InitListExpr *StructuredList, 2210 unsigned StructuredIndex, 2211 SourceRange InitRange) { 2212 if (VerifyOnly) 2213 return nullptr; // No structured list in verification-only mode. 2214 Expr *ExistingInit = nullptr; 2215 if (!StructuredList) 2216 ExistingInit = SyntacticToSemantic.lookup(IList); 2217 else if (StructuredIndex < StructuredList->getNumInits()) 2218 ExistingInit = StructuredList->getInit(StructuredIndex); 2219 2220 if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit)) 2221 return Result; 2222 2223 if (ExistingInit) { 2224 // We are creating an initializer list that initializes the 2225 // subobjects of the current object, but there was already an 2226 // initialization that completely initialized the current 2227 // subobject, e.g., by a compound literal: 2228 // 2229 // struct X { int a, b; }; 2230 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; 2231 // 2232 // Here, xs[0].a == 0 and xs[0].b == 3, since the second, 2233 // designated initializer re-initializes the whole 2234 // subobject [0], overwriting previous initializers. 2235 SemaRef.Diag(InitRange.getBegin(), 2236 diag::warn_subobject_initializer_overrides) 2237 << InitRange; 2238 SemaRef.Diag(ExistingInit->getLocStart(), 2239 diag::note_previous_initializer) 2240 << /*FIXME:has side effects=*/0 2241 << ExistingInit->getSourceRange(); 2242 } 2243 2244 InitListExpr *Result 2245 = new (SemaRef.Context) InitListExpr(SemaRef.Context, 2246 InitRange.getBegin(), None, 2247 InitRange.getEnd()); 2248 2249 QualType ResultType = CurrentObjectType; 2250 if (!ResultType->isArrayType()) 2251 ResultType = ResultType.getNonLValueExprType(SemaRef.Context); 2252 Result->setType(ResultType); 2253 2254 // Pre-allocate storage for the structured initializer list. 2255 unsigned NumElements = 0; 2256 unsigned NumInits = 0; 2257 bool GotNumInits = false; 2258 if (!StructuredList) { 2259 NumInits = IList->getNumInits(); 2260 GotNumInits = true; 2261 } else if (Index < IList->getNumInits()) { 2262 if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) { 2263 NumInits = SubList->getNumInits(); 2264 GotNumInits = true; 2265 } 2266 } 2267 2268 if (const ArrayType *AType 2269 = SemaRef.Context.getAsArrayType(CurrentObjectType)) { 2270 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) { 2271 NumElements = CAType->getSize().getZExtValue(); 2272 // Simple heuristic so that we don't allocate a very large 2273 // initializer with many empty entries at the end. 2274 if (GotNumInits && NumElements > NumInits) 2275 NumElements = 0; 2276 } 2277 } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>()) 2278 NumElements = VType->getNumElements(); 2279 else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) { 2280 RecordDecl *RDecl = RType->getDecl(); 2281 if (RDecl->isUnion()) 2282 NumElements = 1; 2283 else 2284 NumElements = std::distance(RDecl->field_begin(), RDecl->field_end()); 2285 } 2286 2287 Result->reserveInits(SemaRef.Context, NumElements); 2288 2289 // Link this new initializer list into the structured initializer 2290 // lists. 2291 if (StructuredList) 2292 StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result); 2293 else { 2294 Result->setSyntacticForm(IList); 2295 SyntacticToSemantic[IList] = Result; 2296 } 2297 2298 return Result; 2299 } 2300 2301 /// Update the initializer at index @p StructuredIndex within the 2302 /// structured initializer list to the value @p expr. 2303 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList, 2304 unsigned &StructuredIndex, 2305 Expr *expr) { 2306 // No structured initializer list to update 2307 if (!StructuredList) 2308 return; 2309 2310 if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context, 2311 StructuredIndex, expr)) { 2312 // This initializer overwrites a previous initializer. Warn. 2313 SemaRef.Diag(expr->getLocStart(), 2314 diag::warn_initializer_overrides) 2315 << expr->getSourceRange(); 2316 SemaRef.Diag(PrevInit->getLocStart(), 2317 diag::note_previous_initializer) 2318 << /*FIXME:has side effects=*/0 2319 << PrevInit->getSourceRange(); 2320 } 2321 2322 ++StructuredIndex; 2323 } 2324 2325 /// Check that the given Index expression is a valid array designator 2326 /// value. This is essentially just a wrapper around 2327 /// VerifyIntegerConstantExpression that also checks for negative values 2328 /// and produces a reasonable diagnostic if there is a 2329 /// failure. Returns the index expression, possibly with an implicit cast 2330 /// added, on success. If everything went okay, Value will receive the 2331 /// value of the constant expression. 2332 static ExprResult 2333 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) { 2334 SourceLocation Loc = Index->getLocStart(); 2335 2336 // Make sure this is an integer constant expression. 2337 ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value); 2338 if (Result.isInvalid()) 2339 return Result; 2340 2341 if (Value.isSigned() && Value.isNegative()) 2342 return S.Diag(Loc, diag::err_array_designator_negative) 2343 << Value.toString(10) << Index->getSourceRange(); 2344 2345 Value.setIsUnsigned(true); 2346 return Result; 2347 } 2348 2349 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig, 2350 SourceLocation Loc, 2351 bool GNUSyntax, 2352 ExprResult Init) { 2353 typedef DesignatedInitExpr::Designator ASTDesignator; 2354 2355 bool Invalid = false; 2356 SmallVector<ASTDesignator, 32> Designators; 2357 SmallVector<Expr *, 32> InitExpressions; 2358 2359 // Build designators and check array designator expressions. 2360 for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) { 2361 const Designator &D = Desig.getDesignator(Idx); 2362 switch (D.getKind()) { 2363 case Designator::FieldDesignator: 2364 Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(), 2365 D.getFieldLoc())); 2366 break; 2367 2368 case Designator::ArrayDesignator: { 2369 Expr *Index = static_cast<Expr *>(D.getArrayIndex()); 2370 llvm::APSInt IndexValue; 2371 if (!Index->isTypeDependent() && !Index->isValueDependent()) 2372 Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get(); 2373 if (!Index) 2374 Invalid = true; 2375 else { 2376 Designators.push_back(ASTDesignator(InitExpressions.size(), 2377 D.getLBracketLoc(), 2378 D.getRBracketLoc())); 2379 InitExpressions.push_back(Index); 2380 } 2381 break; 2382 } 2383 2384 case Designator::ArrayRangeDesignator: { 2385 Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart()); 2386 Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd()); 2387 llvm::APSInt StartValue; 2388 llvm::APSInt EndValue; 2389 bool StartDependent = StartIndex->isTypeDependent() || 2390 StartIndex->isValueDependent(); 2391 bool EndDependent = EndIndex->isTypeDependent() || 2392 EndIndex->isValueDependent(); 2393 if (!StartDependent) 2394 StartIndex = 2395 CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get(); 2396 if (!EndDependent) 2397 EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get(); 2398 2399 if (!StartIndex || !EndIndex) 2400 Invalid = true; 2401 else { 2402 // Make sure we're comparing values with the same bit width. 2403 if (StartDependent || EndDependent) { 2404 // Nothing to compute. 2405 } else if (StartValue.getBitWidth() > EndValue.getBitWidth()) 2406 EndValue = EndValue.extend(StartValue.getBitWidth()); 2407 else if (StartValue.getBitWidth() < EndValue.getBitWidth()) 2408 StartValue = StartValue.extend(EndValue.getBitWidth()); 2409 2410 if (!StartDependent && !EndDependent && EndValue < StartValue) { 2411 Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range) 2412 << StartValue.toString(10) << EndValue.toString(10) 2413 << StartIndex->getSourceRange() << EndIndex->getSourceRange(); 2414 Invalid = true; 2415 } else { 2416 Designators.push_back(ASTDesignator(InitExpressions.size(), 2417 D.getLBracketLoc(), 2418 D.getEllipsisLoc(), 2419 D.getRBracketLoc())); 2420 InitExpressions.push_back(StartIndex); 2421 InitExpressions.push_back(EndIndex); 2422 } 2423 } 2424 break; 2425 } 2426 } 2427 } 2428 2429 if (Invalid || Init.isInvalid()) 2430 return ExprError(); 2431 2432 // Clear out the expressions within the designation. 2433 Desig.ClearExprs(*this); 2434 2435 DesignatedInitExpr *DIE 2436 = DesignatedInitExpr::Create(Context, 2437 Designators.data(), Designators.size(), 2438 InitExpressions, Loc, GNUSyntax, 2439 Init.getAs<Expr>()); 2440 2441 if (!getLangOpts().C99) 2442 Diag(DIE->getLocStart(), diag::ext_designated_init) 2443 << DIE->getSourceRange(); 2444 2445 return DIE; 2446 } 2447 2448 //===----------------------------------------------------------------------===// 2449 // Initialization entity 2450 //===----------------------------------------------------------------------===// 2451 2452 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index, 2453 const InitializedEntity &Parent) 2454 : Parent(&Parent), Index(Index) 2455 { 2456 if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) { 2457 Kind = EK_ArrayElement; 2458 Type = AT->getElementType(); 2459 } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) { 2460 Kind = EK_VectorElement; 2461 Type = VT->getElementType(); 2462 } else { 2463 const ComplexType *CT = Parent.getType()->getAs<ComplexType>(); 2464 assert(CT && "Unexpected type"); 2465 Kind = EK_ComplexElement; 2466 Type = CT->getElementType(); 2467 } 2468 } 2469 2470 InitializedEntity 2471 InitializedEntity::InitializeBase(ASTContext &Context, 2472 const CXXBaseSpecifier *Base, 2473 bool IsInheritedVirtualBase) { 2474 InitializedEntity Result; 2475 Result.Kind = EK_Base; 2476 Result.Parent = nullptr; 2477 Result.Base = reinterpret_cast<uintptr_t>(Base); 2478 if (IsInheritedVirtualBase) 2479 Result.Base |= 0x01; 2480 2481 Result.Type = Base->getType(); 2482 return Result; 2483 } 2484 2485 DeclarationName InitializedEntity::getName() const { 2486 switch (getKind()) { 2487 case EK_Parameter: 2488 case EK_Parameter_CF_Audited: { 2489 ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1); 2490 return (D ? D->getDeclName() : DeclarationName()); 2491 } 2492 2493 case EK_Variable: 2494 case EK_Member: 2495 return VariableOrMember->getDeclName(); 2496 2497 case EK_LambdaCapture: 2498 return DeclarationName(Capture.VarID); 2499 2500 case EK_Result: 2501 case EK_Exception: 2502 case EK_New: 2503 case EK_Temporary: 2504 case EK_Base: 2505 case EK_Delegating: 2506 case EK_ArrayElement: 2507 case EK_VectorElement: 2508 case EK_ComplexElement: 2509 case EK_BlockElement: 2510 case EK_CompoundLiteralInit: 2511 case EK_RelatedResult: 2512 return DeclarationName(); 2513 } 2514 2515 llvm_unreachable("Invalid EntityKind!"); 2516 } 2517 2518 DeclaratorDecl *InitializedEntity::getDecl() const { 2519 switch (getKind()) { 2520 case EK_Variable: 2521 case EK_Member: 2522 return VariableOrMember; 2523 2524 case EK_Parameter: 2525 case EK_Parameter_CF_Audited: 2526 return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1); 2527 2528 case EK_Result: 2529 case EK_Exception: 2530 case EK_New: 2531 case EK_Temporary: 2532 case EK_Base: 2533 case EK_Delegating: 2534 case EK_ArrayElement: 2535 case EK_VectorElement: 2536 case EK_ComplexElement: 2537 case EK_BlockElement: 2538 case EK_LambdaCapture: 2539 case EK_CompoundLiteralInit: 2540 case EK_RelatedResult: 2541 return nullptr; 2542 } 2543 2544 llvm_unreachable("Invalid EntityKind!"); 2545 } 2546 2547 bool InitializedEntity::allowsNRVO() const { 2548 switch (getKind()) { 2549 case EK_Result: 2550 case EK_Exception: 2551 return LocAndNRVO.NRVO; 2552 2553 case EK_Variable: 2554 case EK_Parameter: 2555 case EK_Parameter_CF_Audited: 2556 case EK_Member: 2557 case EK_New: 2558 case EK_Temporary: 2559 case EK_CompoundLiteralInit: 2560 case EK_Base: 2561 case EK_Delegating: 2562 case EK_ArrayElement: 2563 case EK_VectorElement: 2564 case EK_ComplexElement: 2565 case EK_BlockElement: 2566 case EK_LambdaCapture: 2567 case EK_RelatedResult: 2568 break; 2569 } 2570 2571 return false; 2572 } 2573 2574 unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const { 2575 assert(getParent() != this); 2576 unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0; 2577 for (unsigned I = 0; I != Depth; ++I) 2578 OS << "`-"; 2579 2580 switch (getKind()) { 2581 case EK_Variable: OS << "Variable"; break; 2582 case EK_Parameter: OS << "Parameter"; break; 2583 case EK_Parameter_CF_Audited: OS << "CF audited function Parameter"; 2584 break; 2585 case EK_Result: OS << "Result"; break; 2586 case EK_Exception: OS << "Exception"; break; 2587 case EK_Member: OS << "Member"; break; 2588 case EK_New: OS << "New"; break; 2589 case EK_Temporary: OS << "Temporary"; break; 2590 case EK_CompoundLiteralInit: OS << "CompoundLiteral";break; 2591 case EK_RelatedResult: OS << "RelatedResult"; break; 2592 case EK_Base: OS << "Base"; break; 2593 case EK_Delegating: OS << "Delegating"; break; 2594 case EK_ArrayElement: OS << "ArrayElement " << Index; break; 2595 case EK_VectorElement: OS << "VectorElement " << Index; break; 2596 case EK_ComplexElement: OS << "ComplexElement " << Index; break; 2597 case EK_BlockElement: OS << "Block"; break; 2598 case EK_LambdaCapture: 2599 OS << "LambdaCapture "; 2600 OS << DeclarationName(Capture.VarID); 2601 break; 2602 } 2603 2604 if (Decl *D = getDecl()) { 2605 OS << " "; 2606 cast<NamedDecl>(D)->printQualifiedName(OS); 2607 } 2608 2609 OS << " '" << getType().getAsString() << "'\n"; 2610 2611 return Depth + 1; 2612 } 2613 2614 void InitializedEntity::dump() const { 2615 dumpImpl(llvm::errs()); 2616 } 2617 2618 //===----------------------------------------------------------------------===// 2619 // Initialization sequence 2620 //===----------------------------------------------------------------------===// 2621 2622 void InitializationSequence::Step::Destroy() { 2623 switch (Kind) { 2624 case SK_ResolveAddressOfOverloadedFunction: 2625 case SK_CastDerivedToBaseRValue: 2626 case SK_CastDerivedToBaseXValue: 2627 case SK_CastDerivedToBaseLValue: 2628 case SK_BindReference: 2629 case SK_BindReferenceToTemporary: 2630 case SK_ExtraneousCopyToTemporary: 2631 case SK_UserConversion: 2632 case SK_QualificationConversionRValue: 2633 case SK_QualificationConversionXValue: 2634 case SK_QualificationConversionLValue: 2635 case SK_LValueToRValue: 2636 case SK_ListInitialization: 2637 case SK_ListConstructorCall: 2638 case SK_UnwrapInitList: 2639 case SK_RewrapInitList: 2640 case SK_ConstructorInitialization: 2641 case SK_ZeroInitialization: 2642 case SK_CAssignment: 2643 case SK_StringInit: 2644 case SK_ObjCObjectConversion: 2645 case SK_ArrayInit: 2646 case SK_ParenthesizedArrayInit: 2647 case SK_PassByIndirectCopyRestore: 2648 case SK_PassByIndirectRestore: 2649 case SK_ProduceObjCObject: 2650 case SK_StdInitializerList: 2651 case SK_OCLSamplerInit: 2652 case SK_OCLZeroEvent: 2653 break; 2654 2655 case SK_ConversionSequence: 2656 case SK_ConversionSequenceNoNarrowing: 2657 delete ICS; 2658 } 2659 } 2660 2661 bool InitializationSequence::isDirectReferenceBinding() const { 2662 return !Steps.empty() && Steps.back().Kind == SK_BindReference; 2663 } 2664 2665 bool InitializationSequence::isAmbiguous() const { 2666 if (!Failed()) 2667 return false; 2668 2669 switch (getFailureKind()) { 2670 case FK_TooManyInitsForReference: 2671 case FK_ArrayNeedsInitList: 2672 case FK_ArrayNeedsInitListOrStringLiteral: 2673 case FK_ArrayNeedsInitListOrWideStringLiteral: 2674 case FK_NarrowStringIntoWideCharArray: 2675 case FK_WideStringIntoCharArray: 2676 case FK_IncompatWideStringIntoWideChar: 2677 case FK_AddressOfOverloadFailed: // FIXME: Could do better 2678 case FK_NonConstLValueReferenceBindingToTemporary: 2679 case FK_NonConstLValueReferenceBindingToUnrelated: 2680 case FK_RValueReferenceBindingToLValue: 2681 case FK_ReferenceInitDropsQualifiers: 2682 case FK_ReferenceInitFailed: 2683 case FK_ConversionFailed: 2684 case FK_ConversionFromPropertyFailed: 2685 case FK_TooManyInitsForScalar: 2686 case FK_ReferenceBindingToInitList: 2687 case FK_InitListBadDestinationType: 2688 case FK_DefaultInitOfConst: 2689 case FK_Incomplete: 2690 case FK_ArrayTypeMismatch: 2691 case FK_NonConstantArrayInit: 2692 case FK_ListInitializationFailed: 2693 case FK_VariableLengthArrayHasInitializer: 2694 case FK_PlaceholderType: 2695 case FK_ExplicitConstructor: 2696 return false; 2697 2698 case FK_ReferenceInitOverloadFailed: 2699 case FK_UserConversionOverloadFailed: 2700 case FK_ConstructorOverloadFailed: 2701 case FK_ListConstructorOverloadFailed: 2702 return FailedOverloadResult == OR_Ambiguous; 2703 } 2704 2705 llvm_unreachable("Invalid EntityKind!"); 2706 } 2707 2708 bool InitializationSequence::isConstructorInitialization() const { 2709 return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization; 2710 } 2711 2712 void 2713 InitializationSequence 2714 ::AddAddressOverloadResolutionStep(FunctionDecl *Function, 2715 DeclAccessPair Found, 2716 bool HadMultipleCandidates) { 2717 Step S; 2718 S.Kind = SK_ResolveAddressOfOverloadedFunction; 2719 S.Type = Function->getType(); 2720 S.Function.HadMultipleCandidates = HadMultipleCandidates; 2721 S.Function.Function = Function; 2722 S.Function.FoundDecl = Found; 2723 Steps.push_back(S); 2724 } 2725 2726 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType, 2727 ExprValueKind VK) { 2728 Step S; 2729 switch (VK) { 2730 case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break; 2731 case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break; 2732 case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break; 2733 } 2734 S.Type = BaseType; 2735 Steps.push_back(S); 2736 } 2737 2738 void InitializationSequence::AddReferenceBindingStep(QualType T, 2739 bool BindingTemporary) { 2740 Step S; 2741 S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference; 2742 S.Type = T; 2743 Steps.push_back(S); 2744 } 2745 2746 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) { 2747 Step S; 2748 S.Kind = SK_ExtraneousCopyToTemporary; 2749 S.Type = T; 2750 Steps.push_back(S); 2751 } 2752 2753 void 2754 InitializationSequence::AddUserConversionStep(FunctionDecl *Function, 2755 DeclAccessPair FoundDecl, 2756 QualType T, 2757 bool HadMultipleCandidates) { 2758 Step S; 2759 S.Kind = SK_UserConversion; 2760 S.Type = T; 2761 S.Function.HadMultipleCandidates = HadMultipleCandidates; 2762 S.Function.Function = Function; 2763 S.Function.FoundDecl = FoundDecl; 2764 Steps.push_back(S); 2765 } 2766 2767 void InitializationSequence::AddQualificationConversionStep(QualType Ty, 2768 ExprValueKind VK) { 2769 Step S; 2770 S.Kind = SK_QualificationConversionRValue; // work around a gcc warning 2771 switch (VK) { 2772 case VK_RValue: 2773 S.Kind = SK_QualificationConversionRValue; 2774 break; 2775 case VK_XValue: 2776 S.Kind = SK_QualificationConversionXValue; 2777 break; 2778 case VK_LValue: 2779 S.Kind = SK_QualificationConversionLValue; 2780 break; 2781 } 2782 S.Type = Ty; 2783 Steps.push_back(S); 2784 } 2785 2786 void InitializationSequence::AddLValueToRValueStep(QualType Ty) { 2787 assert(!Ty.hasQualifiers() && "rvalues may not have qualifiers"); 2788 2789 Step S; 2790 S.Kind = SK_LValueToRValue; 2791 S.Type = Ty; 2792 Steps.push_back(S); 2793 } 2794 2795 void InitializationSequence::AddConversionSequenceStep( 2796 const ImplicitConversionSequence &ICS, QualType T, 2797 bool TopLevelOfInitList) { 2798 Step S; 2799 S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing 2800 : SK_ConversionSequence; 2801 S.Type = T; 2802 S.ICS = new ImplicitConversionSequence(ICS); 2803 Steps.push_back(S); 2804 } 2805 2806 void InitializationSequence::AddListInitializationStep(QualType T) { 2807 Step S; 2808 S.Kind = SK_ListInitialization; 2809 S.Type = T; 2810 Steps.push_back(S); 2811 } 2812 2813 void 2814 InitializationSequence 2815 ::AddConstructorInitializationStep(CXXConstructorDecl *Constructor, 2816 AccessSpecifier Access, 2817 QualType T, 2818 bool HadMultipleCandidates, 2819 bool FromInitList, bool AsInitList) { 2820 Step S; 2821 S.Kind = FromInitList && !AsInitList ? SK_ListConstructorCall 2822 : SK_ConstructorInitialization; 2823 S.Type = T; 2824 S.Function.HadMultipleCandidates = HadMultipleCandidates; 2825 S.Function.Function = Constructor; 2826 S.Function.FoundDecl = DeclAccessPair::make(Constructor, Access); 2827 Steps.push_back(S); 2828 } 2829 2830 void InitializationSequence::AddZeroInitializationStep(QualType T) { 2831 Step S; 2832 S.Kind = SK_ZeroInitialization; 2833 S.Type = T; 2834 Steps.push_back(S); 2835 } 2836 2837 void InitializationSequence::AddCAssignmentStep(QualType T) { 2838 Step S; 2839 S.Kind = SK_CAssignment; 2840 S.Type = T; 2841 Steps.push_back(S); 2842 } 2843 2844 void InitializationSequence::AddStringInitStep(QualType T) { 2845 Step S; 2846 S.Kind = SK_StringInit; 2847 S.Type = T; 2848 Steps.push_back(S); 2849 } 2850 2851 void InitializationSequence::AddObjCObjectConversionStep(QualType T) { 2852 Step S; 2853 S.Kind = SK_ObjCObjectConversion; 2854 S.Type = T; 2855 Steps.push_back(S); 2856 } 2857 2858 void InitializationSequence::AddArrayInitStep(QualType T) { 2859 Step S; 2860 S.Kind = SK_ArrayInit; 2861 S.Type = T; 2862 Steps.push_back(S); 2863 } 2864 2865 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) { 2866 Step S; 2867 S.Kind = SK_ParenthesizedArrayInit; 2868 S.Type = T; 2869 Steps.push_back(S); 2870 } 2871 2872 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type, 2873 bool shouldCopy) { 2874 Step s; 2875 s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore 2876 : SK_PassByIndirectRestore); 2877 s.Type = type; 2878 Steps.push_back(s); 2879 } 2880 2881 void InitializationSequence::AddProduceObjCObjectStep(QualType T) { 2882 Step S; 2883 S.Kind = SK_ProduceObjCObject; 2884 S.Type = T; 2885 Steps.push_back(S); 2886 } 2887 2888 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) { 2889 Step S; 2890 S.Kind = SK_StdInitializerList; 2891 S.Type = T; 2892 Steps.push_back(S); 2893 } 2894 2895 void InitializationSequence::AddOCLSamplerInitStep(QualType T) { 2896 Step S; 2897 S.Kind = SK_OCLSamplerInit; 2898 S.Type = T; 2899 Steps.push_back(S); 2900 } 2901 2902 void InitializationSequence::AddOCLZeroEventStep(QualType T) { 2903 Step S; 2904 S.Kind = SK_OCLZeroEvent; 2905 S.Type = T; 2906 Steps.push_back(S); 2907 } 2908 2909 void InitializationSequence::RewrapReferenceInitList(QualType T, 2910 InitListExpr *Syntactic) { 2911 assert(Syntactic->getNumInits() == 1 && 2912 "Can only rewrap trivial init lists."); 2913 Step S; 2914 S.Kind = SK_UnwrapInitList; 2915 S.Type = Syntactic->getInit(0)->getType(); 2916 Steps.insert(Steps.begin(), S); 2917 2918 S.Kind = SK_RewrapInitList; 2919 S.Type = T; 2920 S.WrappingSyntacticList = Syntactic; 2921 Steps.push_back(S); 2922 } 2923 2924 void InitializationSequence::SetOverloadFailure(FailureKind Failure, 2925 OverloadingResult Result) { 2926 setSequenceKind(FailedSequence); 2927 this->Failure = Failure; 2928 this->FailedOverloadResult = Result; 2929 } 2930 2931 //===----------------------------------------------------------------------===// 2932 // Attempt initialization 2933 //===----------------------------------------------------------------------===// 2934 2935 static void MaybeProduceObjCObject(Sema &S, 2936 InitializationSequence &Sequence, 2937 const InitializedEntity &Entity) { 2938 if (!S.getLangOpts().ObjCAutoRefCount) return; 2939 2940 /// When initializing a parameter, produce the value if it's marked 2941 /// __attribute__((ns_consumed)). 2942 if (Entity.isParameterKind()) { 2943 if (!Entity.isParameterConsumed()) 2944 return; 2945 2946 assert(Entity.getType()->isObjCRetainableType() && 2947 "consuming an object of unretainable type?"); 2948 Sequence.AddProduceObjCObjectStep(Entity.getType()); 2949 2950 /// When initializing a return value, if the return type is a 2951 /// retainable type, then returns need to immediately retain the 2952 /// object. If an autorelease is required, it will be done at the 2953 /// last instant. 2954 } else if (Entity.getKind() == InitializedEntity::EK_Result) { 2955 if (!Entity.getType()->isObjCRetainableType()) 2956 return; 2957 2958 Sequence.AddProduceObjCObjectStep(Entity.getType()); 2959 } 2960 } 2961 2962 static void TryListInitialization(Sema &S, 2963 const InitializedEntity &Entity, 2964 const InitializationKind &Kind, 2965 InitListExpr *InitList, 2966 InitializationSequence &Sequence); 2967 2968 /// \brief When initializing from init list via constructor, handle 2969 /// initialization of an object of type std::initializer_list<T>. 2970 /// 2971 /// \return true if we have handled initialization of an object of type 2972 /// std::initializer_list<T>, false otherwise. 2973 static bool TryInitializerListConstruction(Sema &S, 2974 InitListExpr *List, 2975 QualType DestType, 2976 InitializationSequence &Sequence) { 2977 QualType E; 2978 if (!S.isStdInitializerList(DestType, &E)) 2979 return false; 2980 2981 if (S.RequireCompleteType(List->getExprLoc(), E, 0)) { 2982 Sequence.setIncompleteTypeFailure(E); 2983 return true; 2984 } 2985 2986 // Try initializing a temporary array from the init list. 2987 QualType ArrayType = S.Context.getConstantArrayType( 2988 E.withConst(), llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()), 2989 List->getNumInits()), 2990 clang::ArrayType::Normal, 0); 2991 InitializedEntity HiddenArray = 2992 InitializedEntity::InitializeTemporary(ArrayType); 2993 InitializationKind Kind = 2994 InitializationKind::CreateDirectList(List->getExprLoc()); 2995 TryListInitialization(S, HiddenArray, Kind, List, Sequence); 2996 if (Sequence) 2997 Sequence.AddStdInitializerListConstructionStep(DestType); 2998 return true; 2999 } 3000 3001 static OverloadingResult 3002 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc, 3003 MultiExprArg Args, 3004 OverloadCandidateSet &CandidateSet, 3005 ArrayRef<NamedDecl *> Ctors, 3006 OverloadCandidateSet::iterator &Best, 3007 bool CopyInitializing, bool AllowExplicit, 3008 bool OnlyListConstructors, bool InitListSyntax) { 3009 CandidateSet.clear(); 3010 3011 for (ArrayRef<NamedDecl *>::iterator 3012 Con = Ctors.begin(), ConEnd = Ctors.end(); Con != ConEnd; ++Con) { 3013 NamedDecl *D = *Con; 3014 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess()); 3015 bool SuppressUserConversions = false; 3016 3017 // Find the constructor (which may be a template). 3018 CXXConstructorDecl *Constructor = nullptr; 3019 FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D); 3020 if (ConstructorTmpl) 3021 Constructor = cast<CXXConstructorDecl>( 3022 ConstructorTmpl->getTemplatedDecl()); 3023 else { 3024 Constructor = cast<CXXConstructorDecl>(D); 3025 3026 // C++11 [over.best.ics]p4: 3027 // However, when considering the argument of a constructor or 3028 // user-defined conversion function that is a candidate: 3029 // -- by 13.3.1.3 when invoked for the copying/moving of a temporary 3030 // in the second step of a class copy-initialization, 3031 // -- by 13.3.1.7 when passing the initializer list as a single 3032 // argument or when the initializer list has exactly one elementand 3033 // a conversion to some class X or reference to (possibly 3034 // cv-qualified) X is considered for the first parameter of a 3035 // constructor of X, or 3036 // -- by 13.3.1.4, 13.3.1.5, or 13.3.1.6 in all cases, 3037 // only standard conversion sequences and ellipsis conversion sequences 3038 // are considered. 3039 if ((CopyInitializing || (InitListSyntax && Args.size() == 1)) && 3040 Constructor->isCopyOrMoveConstructor()) 3041 SuppressUserConversions = true; 3042 } 3043 3044 if (!Constructor->isInvalidDecl() && 3045 (AllowExplicit || !Constructor->isExplicit()) && 3046 (!OnlyListConstructors || S.isInitListConstructor(Constructor))) { 3047 if (ConstructorTmpl) 3048 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 3049 /*ExplicitArgs*/ nullptr, Args, 3050 CandidateSet, SuppressUserConversions); 3051 else { 3052 // C++ [over.match.copy]p1: 3053 // - When initializing a temporary to be bound to the first parameter 3054 // of a constructor that takes a reference to possibly cv-qualified 3055 // T as its first argument, called with a single argument in the 3056 // context of direct-initialization, explicit conversion functions 3057 // are also considered. 3058 bool AllowExplicitConv = AllowExplicit && !CopyInitializing && 3059 Args.size() == 1 && 3060 Constructor->isCopyOrMoveConstructor(); 3061 S.AddOverloadCandidate(Constructor, FoundDecl, Args, CandidateSet, 3062 SuppressUserConversions, 3063 /*PartialOverloading=*/false, 3064 /*AllowExplicit=*/AllowExplicitConv); 3065 } 3066 } 3067 } 3068 3069 // Perform overload resolution and return the result. 3070 return CandidateSet.BestViableFunction(S, DeclLoc, Best); 3071 } 3072 3073 /// \brief Attempt initialization by constructor (C++ [dcl.init]), which 3074 /// enumerates the constructors of the initialized entity and performs overload 3075 /// resolution to select the best. 3076 /// If InitListSyntax is true, this is list-initialization of a non-aggregate 3077 /// class type. 3078 static void TryConstructorInitialization(Sema &S, 3079 const InitializedEntity &Entity, 3080 const InitializationKind &Kind, 3081 MultiExprArg Args, QualType DestType, 3082 InitializationSequence &Sequence, 3083 bool InitListSyntax = false) { 3084 assert((!InitListSyntax || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && 3085 "InitListSyntax must come with a single initializer list argument."); 3086 3087 // The type we're constructing needs to be complete. 3088 if (S.RequireCompleteType(Kind.getLocation(), DestType, 0)) { 3089 Sequence.setIncompleteTypeFailure(DestType); 3090 return; 3091 } 3092 3093 const RecordType *DestRecordType = DestType->getAs<RecordType>(); 3094 assert(DestRecordType && "Constructor initialization requires record type"); 3095 CXXRecordDecl *DestRecordDecl 3096 = cast<CXXRecordDecl>(DestRecordType->getDecl()); 3097 3098 // Build the candidate set directly in the initialization sequence 3099 // structure, so that it will persist if we fail. 3100 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 3101 3102 // Determine whether we are allowed to call explicit constructors or 3103 // explicit conversion operators. 3104 bool AllowExplicit = Kind.AllowExplicit() || InitListSyntax; 3105 bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy; 3106 3107 // - Otherwise, if T is a class type, constructors are considered. The 3108 // applicable constructors are enumerated, and the best one is chosen 3109 // through overload resolution. 3110 DeclContext::lookup_result R = S.LookupConstructors(DestRecordDecl); 3111 // The container holding the constructors can under certain conditions 3112 // be changed while iterating (e.g. because of deserialization). 3113 // To be safe we copy the lookup results to a new container. 3114 SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end()); 3115 3116 OverloadingResult Result = OR_No_Viable_Function; 3117 OverloadCandidateSet::iterator Best; 3118 bool AsInitializerList = false; 3119 3120 // C++11 [over.match.list]p1: 3121 // When objects of non-aggregate type T are list-initialized, overload 3122 // resolution selects the constructor in two phases: 3123 // - Initially, the candidate functions are the initializer-list 3124 // constructors of the class T and the argument list consists of the 3125 // initializer list as a single argument. 3126 if (InitListSyntax) { 3127 InitListExpr *ILE = cast<InitListExpr>(Args[0]); 3128 AsInitializerList = true; 3129 3130 // If the initializer list has no elements and T has a default constructor, 3131 // the first phase is omitted. 3132 if (ILE->getNumInits() != 0 || !DestRecordDecl->hasDefaultConstructor()) 3133 Result = ResolveConstructorOverload(S, Kind.getLocation(), Args, 3134 CandidateSet, Ctors, Best, 3135 CopyInitialization, AllowExplicit, 3136 /*OnlyListConstructor=*/true, 3137 InitListSyntax); 3138 3139 // Time to unwrap the init list. 3140 Args = MultiExprArg(ILE->getInits(), ILE->getNumInits()); 3141 } 3142 3143 // C++11 [over.match.list]p1: 3144 // - If no viable initializer-list constructor is found, overload resolution 3145 // is performed again, where the candidate functions are all the 3146 // constructors of the class T and the argument list consists of the 3147 // elements of the initializer list. 3148 if (Result == OR_No_Viable_Function) { 3149 AsInitializerList = false; 3150 Result = ResolveConstructorOverload(S, Kind.getLocation(), Args, 3151 CandidateSet, Ctors, Best, 3152 CopyInitialization, AllowExplicit, 3153 /*OnlyListConstructors=*/false, 3154 InitListSyntax); 3155 } 3156 if (Result) { 3157 Sequence.SetOverloadFailure(InitListSyntax ? 3158 InitializationSequence::FK_ListConstructorOverloadFailed : 3159 InitializationSequence::FK_ConstructorOverloadFailed, 3160 Result); 3161 return; 3162 } 3163 3164 // C++11 [dcl.init]p6: 3165 // If a program calls for the default initialization of an object 3166 // of a const-qualified type T, T shall be a class type with a 3167 // user-provided default constructor. 3168 if (Kind.getKind() == InitializationKind::IK_Default && 3169 Entity.getType().isConstQualified() && 3170 !cast<CXXConstructorDecl>(Best->Function)->isUserProvided()) { 3171 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); 3172 return; 3173 } 3174 3175 // C++11 [over.match.list]p1: 3176 // In copy-list-initialization, if an explicit constructor is chosen, the 3177 // initializer is ill-formed. 3178 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 3179 if (InitListSyntax && !Kind.AllowExplicit() && CtorDecl->isExplicit()) { 3180 Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor); 3181 return; 3182 } 3183 3184 // Add the constructor initialization step. Any cv-qualification conversion is 3185 // subsumed by the initialization. 3186 bool HadMultipleCandidates = (CandidateSet.size() > 1); 3187 Sequence.AddConstructorInitializationStep(CtorDecl, 3188 Best->FoundDecl.getAccess(), 3189 DestType, HadMultipleCandidates, 3190 InitListSyntax, AsInitializerList); 3191 } 3192 3193 static bool 3194 ResolveOverloadedFunctionForReferenceBinding(Sema &S, 3195 Expr *Initializer, 3196 QualType &SourceType, 3197 QualType &UnqualifiedSourceType, 3198 QualType UnqualifiedTargetType, 3199 InitializationSequence &Sequence) { 3200 if (S.Context.getCanonicalType(UnqualifiedSourceType) == 3201 S.Context.OverloadTy) { 3202 DeclAccessPair Found; 3203 bool HadMultipleCandidates = false; 3204 if (FunctionDecl *Fn 3205 = S.ResolveAddressOfOverloadedFunction(Initializer, 3206 UnqualifiedTargetType, 3207 false, Found, 3208 &HadMultipleCandidates)) { 3209 Sequence.AddAddressOverloadResolutionStep(Fn, Found, 3210 HadMultipleCandidates); 3211 SourceType = Fn->getType(); 3212 UnqualifiedSourceType = SourceType.getUnqualifiedType(); 3213 } else if (!UnqualifiedTargetType->isRecordType()) { 3214 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 3215 return true; 3216 } 3217 } 3218 return false; 3219 } 3220 3221 static void TryReferenceInitializationCore(Sema &S, 3222 const InitializedEntity &Entity, 3223 const InitializationKind &Kind, 3224 Expr *Initializer, 3225 QualType cv1T1, QualType T1, 3226 Qualifiers T1Quals, 3227 QualType cv2T2, QualType T2, 3228 Qualifiers T2Quals, 3229 InitializationSequence &Sequence); 3230 3231 static void TryValueInitialization(Sema &S, 3232 const InitializedEntity &Entity, 3233 const InitializationKind &Kind, 3234 InitializationSequence &Sequence, 3235 InitListExpr *InitList = nullptr); 3236 3237 /// \brief Attempt list initialization of a reference. 3238 static void TryReferenceListInitialization(Sema &S, 3239 const InitializedEntity &Entity, 3240 const InitializationKind &Kind, 3241 InitListExpr *InitList, 3242 InitializationSequence &Sequence) { 3243 // First, catch C++03 where this isn't possible. 3244 if (!S.getLangOpts().CPlusPlus11) { 3245 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); 3246 return; 3247 } 3248 3249 QualType DestType = Entity.getType(); 3250 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType(); 3251 Qualifiers T1Quals; 3252 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); 3253 3254 // Reference initialization via an initializer list works thus: 3255 // If the initializer list consists of a single element that is 3256 // reference-related to the referenced type, bind directly to that element 3257 // (possibly creating temporaries). 3258 // Otherwise, initialize a temporary with the initializer list and 3259 // bind to that. 3260 if (InitList->getNumInits() == 1) { 3261 Expr *Initializer = InitList->getInit(0); 3262 QualType cv2T2 = Initializer->getType(); 3263 Qualifiers T2Quals; 3264 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); 3265 3266 // If this fails, creating a temporary wouldn't work either. 3267 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, 3268 T1, Sequence)) 3269 return; 3270 3271 SourceLocation DeclLoc = Initializer->getLocStart(); 3272 bool dummy1, dummy2, dummy3; 3273 Sema::ReferenceCompareResult RefRelationship 3274 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1, 3275 dummy2, dummy3); 3276 if (RefRelationship >= Sema::Ref_Related) { 3277 // Try to bind the reference here. 3278 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, 3279 T1Quals, cv2T2, T2, T2Quals, Sequence); 3280 if (Sequence) 3281 Sequence.RewrapReferenceInitList(cv1T1, InitList); 3282 return; 3283 } 3284 3285 // Update the initializer if we've resolved an overloaded function. 3286 if (Sequence.step_begin() != Sequence.step_end()) 3287 Sequence.RewrapReferenceInitList(cv1T1, InitList); 3288 } 3289 3290 // Not reference-related. Create a temporary and bind to that. 3291 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1); 3292 3293 TryListInitialization(S, TempEntity, Kind, InitList, Sequence); 3294 if (Sequence) { 3295 if (DestType->isRValueReferenceType() || 3296 (T1Quals.hasConst() && !T1Quals.hasVolatile())) 3297 Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true); 3298 else 3299 Sequence.SetFailed( 3300 InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary); 3301 } 3302 } 3303 3304 /// \brief Attempt list initialization (C++0x [dcl.init.list]) 3305 static void TryListInitialization(Sema &S, 3306 const InitializedEntity &Entity, 3307 const InitializationKind &Kind, 3308 InitListExpr *InitList, 3309 InitializationSequence &Sequence) { 3310 QualType DestType = Entity.getType(); 3311 3312 // C++ doesn't allow scalar initialization with more than one argument. 3313 // But C99 complex numbers are scalars and it makes sense there. 3314 if (S.getLangOpts().CPlusPlus && DestType->isScalarType() && 3315 !DestType->isAnyComplexType() && InitList->getNumInits() > 1) { 3316 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar); 3317 return; 3318 } 3319 if (DestType->isReferenceType()) { 3320 TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence); 3321 return; 3322 } 3323 if (DestType->isRecordType()) { 3324 if (S.RequireCompleteType(InitList->getLocStart(), DestType, 0)) { 3325 Sequence.setIncompleteTypeFailure(DestType); 3326 return; 3327 } 3328 3329 // C++11 [dcl.init.list]p3: 3330 // - If T is an aggregate, aggregate initialization is performed. 3331 if (!DestType->isAggregateType()) { 3332 if (S.getLangOpts().CPlusPlus11) { 3333 // - Otherwise, if the initializer list has no elements and T is a 3334 // class type with a default constructor, the object is 3335 // value-initialized. 3336 if (InitList->getNumInits() == 0) { 3337 CXXRecordDecl *RD = DestType->getAsCXXRecordDecl(); 3338 if (RD->hasDefaultConstructor()) { 3339 TryValueInitialization(S, Entity, Kind, Sequence, InitList); 3340 return; 3341 } 3342 } 3343 3344 // - Otherwise, if T is a specialization of std::initializer_list<E>, 3345 // an initializer_list object constructed [...] 3346 if (TryInitializerListConstruction(S, InitList, DestType, Sequence)) 3347 return; 3348 3349 // - Otherwise, if T is a class type, constructors are considered. 3350 Expr *InitListAsExpr = InitList; 3351 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType, 3352 Sequence, /*InitListSyntax*/true); 3353 } else 3354 Sequence.SetFailed( 3355 InitializationSequence::FK_InitListBadDestinationType); 3356 return; 3357 } 3358 } 3359 if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() && 3360 InitList->getNumInits() == 1 && 3361 InitList->getInit(0)->getType()->isRecordType()) { 3362 // - Otherwise, if the initializer list has a single element of type E 3363 // [...references are handled above...], the object or reference is 3364 // initialized from that element; if a narrowing conversion is required 3365 // to convert the element to T, the program is ill-formed. 3366 // 3367 // Per core-24034, this is direct-initialization if we were performing 3368 // direct-list-initialization and copy-initialization otherwise. 3369 // We can't use InitListChecker for this, because it always performs 3370 // copy-initialization. This only matters if we might use an 'explicit' 3371 // conversion operator, so we only need to handle the cases where the source 3372 // is of record type. 3373 InitializationKind SubKind = 3374 Kind.getKind() == InitializationKind::IK_DirectList 3375 ? InitializationKind::CreateDirect(Kind.getLocation(), 3376 InitList->getLBraceLoc(), 3377 InitList->getRBraceLoc()) 3378 : Kind; 3379 Expr *SubInit[1] = { InitList->getInit(0) }; 3380 Sequence.InitializeFrom(S, Entity, SubKind, SubInit, 3381 /*TopLevelOfInitList*/true); 3382 if (Sequence) 3383 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 3384 return; 3385 } 3386 3387 InitListChecker CheckInitList(S, Entity, InitList, 3388 DestType, /*VerifyOnly=*/true); 3389 if (CheckInitList.HadError()) { 3390 Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed); 3391 return; 3392 } 3393 3394 // Add the list initialization step with the built init list. 3395 Sequence.AddListInitializationStep(DestType); 3396 } 3397 3398 /// \brief Try a reference initialization that involves calling a conversion 3399 /// function. 3400 static OverloadingResult TryRefInitWithConversionFunction(Sema &S, 3401 const InitializedEntity &Entity, 3402 const InitializationKind &Kind, 3403 Expr *Initializer, 3404 bool AllowRValues, 3405 InitializationSequence &Sequence) { 3406 QualType DestType = Entity.getType(); 3407 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType(); 3408 QualType T1 = cv1T1.getUnqualifiedType(); 3409 QualType cv2T2 = Initializer->getType(); 3410 QualType T2 = cv2T2.getUnqualifiedType(); 3411 3412 bool DerivedToBase; 3413 bool ObjCConversion; 3414 bool ObjCLifetimeConversion; 3415 assert(!S.CompareReferenceRelationship(Initializer->getLocStart(), 3416 T1, T2, DerivedToBase, 3417 ObjCConversion, 3418 ObjCLifetimeConversion) && 3419 "Must have incompatible references when binding via conversion"); 3420 (void)DerivedToBase; 3421 (void)ObjCConversion; 3422 (void)ObjCLifetimeConversion; 3423 3424 // Build the candidate set directly in the initialization sequence 3425 // structure, so that it will persist if we fail. 3426 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 3427 CandidateSet.clear(); 3428 3429 // Determine whether we are allowed to call explicit constructors or 3430 // explicit conversion operators. 3431 bool AllowExplicit = Kind.AllowExplicit(); 3432 bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding(); 3433 3434 const RecordType *T1RecordType = nullptr; 3435 if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) && 3436 !S.RequireCompleteType(Kind.getLocation(), T1, 0)) { 3437 // The type we're converting to is a class type. Enumerate its constructors 3438 // to see if there is a suitable conversion. 3439 CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl()); 3440 3441 DeclContext::lookup_result R = S.LookupConstructors(T1RecordDecl); 3442 // The container holding the constructors can under certain conditions 3443 // be changed while iterating (e.g. because of deserialization). 3444 // To be safe we copy the lookup results to a new container. 3445 SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end()); 3446 for (SmallVectorImpl<NamedDecl *>::iterator 3447 CI = Ctors.begin(), CE = Ctors.end(); CI != CE; ++CI) { 3448 NamedDecl *D = *CI; 3449 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess()); 3450 3451 // Find the constructor (which may be a template). 3452 CXXConstructorDecl *Constructor = nullptr; 3453 FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D); 3454 if (ConstructorTmpl) 3455 Constructor = cast<CXXConstructorDecl>( 3456 ConstructorTmpl->getTemplatedDecl()); 3457 else 3458 Constructor = cast<CXXConstructorDecl>(D); 3459 3460 if (!Constructor->isInvalidDecl() && 3461 Constructor->isConvertingConstructor(AllowExplicit)) { 3462 if (ConstructorTmpl) 3463 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 3464 /*ExplicitArgs*/ nullptr, 3465 Initializer, CandidateSet, 3466 /*SuppressUserConversions=*/true); 3467 else 3468 S.AddOverloadCandidate(Constructor, FoundDecl, 3469 Initializer, CandidateSet, 3470 /*SuppressUserConversions=*/true); 3471 } 3472 } 3473 } 3474 if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl()) 3475 return OR_No_Viable_Function; 3476 3477 const RecordType *T2RecordType = nullptr; 3478 if ((T2RecordType = T2->getAs<RecordType>()) && 3479 !S.RequireCompleteType(Kind.getLocation(), T2, 0)) { 3480 // The type we're converting from is a class type, enumerate its conversion 3481 // functions. 3482 CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl()); 3483 3484 std::pair<CXXRecordDecl::conversion_iterator, 3485 CXXRecordDecl::conversion_iterator> 3486 Conversions = T2RecordDecl->getVisibleConversionFunctions(); 3487 for (CXXRecordDecl::conversion_iterator 3488 I = Conversions.first, E = Conversions.second; I != E; ++I) { 3489 NamedDecl *D = *I; 3490 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 3491 if (isa<UsingShadowDecl>(D)) 3492 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 3493 3494 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 3495 CXXConversionDecl *Conv; 3496 if (ConvTemplate) 3497 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 3498 else 3499 Conv = cast<CXXConversionDecl>(D); 3500 3501 // If the conversion function doesn't return a reference type, 3502 // it can't be considered for this conversion unless we're allowed to 3503 // consider rvalues. 3504 // FIXME: Do we need to make sure that we only consider conversion 3505 // candidates with reference-compatible results? That might be needed to 3506 // break recursion. 3507 if ((AllowExplicitConvs || !Conv->isExplicit()) && 3508 (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){ 3509 if (ConvTemplate) 3510 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), 3511 ActingDC, Initializer, 3512 DestType, CandidateSet, 3513 /*AllowObjCConversionOnExplicit=*/ 3514 false); 3515 else 3516 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, 3517 Initializer, DestType, CandidateSet, 3518 /*AllowObjCConversionOnExplicit=*/false); 3519 } 3520 } 3521 } 3522 if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl()) 3523 return OR_No_Viable_Function; 3524 3525 SourceLocation DeclLoc = Initializer->getLocStart(); 3526 3527 // Perform overload resolution. If it fails, return the failed result. 3528 OverloadCandidateSet::iterator Best; 3529 if (OverloadingResult Result 3530 = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) 3531 return Result; 3532 3533 FunctionDecl *Function = Best->Function; 3534 // This is the overload that will be used for this initialization step if we 3535 // use this initialization. Mark it as referenced. 3536 Function->setReferenced(); 3537 3538 // Compute the returned type of the conversion. 3539 if (isa<CXXConversionDecl>(Function)) 3540 T2 = Function->getReturnType(); 3541 else 3542 T2 = cv1T1; 3543 3544 // Add the user-defined conversion step. 3545 bool HadMultipleCandidates = (CandidateSet.size() > 1); 3546 Sequence.AddUserConversionStep(Function, Best->FoundDecl, 3547 T2.getNonLValueExprType(S.Context), 3548 HadMultipleCandidates); 3549 3550 // Determine whether we need to perform derived-to-base or 3551 // cv-qualification adjustments. 3552 ExprValueKind VK = VK_RValue; 3553 if (T2->isLValueReferenceType()) 3554 VK = VK_LValue; 3555 else if (const RValueReferenceType *RRef = T2->getAs<RValueReferenceType>()) 3556 VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue; 3557 3558 bool NewDerivedToBase = false; 3559 bool NewObjCConversion = false; 3560 bool NewObjCLifetimeConversion = false; 3561 Sema::ReferenceCompareResult NewRefRelationship 3562 = S.CompareReferenceRelationship(DeclLoc, T1, 3563 T2.getNonLValueExprType(S.Context), 3564 NewDerivedToBase, NewObjCConversion, 3565 NewObjCLifetimeConversion); 3566 if (NewRefRelationship == Sema::Ref_Incompatible) { 3567 // If the type we've converted to is not reference-related to the 3568 // type we're looking for, then there is another conversion step 3569 // we need to perform to produce a temporary of the right type 3570 // that we'll be binding to. 3571 ImplicitConversionSequence ICS; 3572 ICS.setStandard(); 3573 ICS.Standard = Best->FinalConversion; 3574 T2 = ICS.Standard.getToType(2); 3575 Sequence.AddConversionSequenceStep(ICS, T2); 3576 } else if (NewDerivedToBase) 3577 Sequence.AddDerivedToBaseCastStep( 3578 S.Context.getQualifiedType(T1, 3579 T2.getNonReferenceType().getQualifiers()), 3580 VK); 3581 else if (NewObjCConversion) 3582 Sequence.AddObjCObjectConversionStep( 3583 S.Context.getQualifiedType(T1, 3584 T2.getNonReferenceType().getQualifiers())); 3585 3586 if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers()) 3587 Sequence.AddQualificationConversionStep(cv1T1, VK); 3588 3589 Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType()); 3590 return OR_Success; 3591 } 3592 3593 static void CheckCXX98CompatAccessibleCopy(Sema &S, 3594 const InitializedEntity &Entity, 3595 Expr *CurInitExpr); 3596 3597 /// \brief Attempt reference initialization (C++0x [dcl.init.ref]) 3598 static void TryReferenceInitialization(Sema &S, 3599 const InitializedEntity &Entity, 3600 const InitializationKind &Kind, 3601 Expr *Initializer, 3602 InitializationSequence &Sequence) { 3603 QualType DestType = Entity.getType(); 3604 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType(); 3605 Qualifiers T1Quals; 3606 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); 3607 QualType cv2T2 = Initializer->getType(); 3608 Qualifiers T2Quals; 3609 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); 3610 3611 // If the initializer is the address of an overloaded function, try 3612 // to resolve the overloaded function. If all goes well, T2 is the 3613 // type of the resulting function. 3614 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, 3615 T1, Sequence)) 3616 return; 3617 3618 // Delegate everything else to a subfunction. 3619 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, 3620 T1Quals, cv2T2, T2, T2Quals, Sequence); 3621 } 3622 3623 /// Converts the target of reference initialization so that it has the 3624 /// appropriate qualifiers and value kind. 3625 /// 3626 /// In this case, 'x' is an 'int' lvalue, but it needs to be 'const int'. 3627 /// \code 3628 /// int x; 3629 /// const int &r = x; 3630 /// \endcode 3631 /// 3632 /// In this case the reference is binding to a bitfield lvalue, which isn't 3633 /// valid. Perform a load to create a lifetime-extended temporary instead. 3634 /// \code 3635 /// const int &r = someStruct.bitfield; 3636 /// \endcode 3637 static ExprValueKind 3638 convertQualifiersAndValueKindIfNecessary(Sema &S, 3639 InitializationSequence &Sequence, 3640 Expr *Initializer, 3641 QualType cv1T1, 3642 Qualifiers T1Quals, 3643 Qualifiers T2Quals, 3644 bool IsLValueRef) { 3645 bool IsNonAddressableType = Initializer->refersToBitField() || 3646 Initializer->refersToVectorElement(); 3647 3648 if (IsNonAddressableType) { 3649 // C++11 [dcl.init.ref]p5: [...] Otherwise, the reference shall be an 3650 // lvalue reference to a non-volatile const type, or the reference shall be 3651 // an rvalue reference. 3652 // 3653 // If not, we can't make a temporary and bind to that. Give up and allow the 3654 // error to be diagnosed later. 3655 if (IsLValueRef && (!T1Quals.hasConst() || T1Quals.hasVolatile())) { 3656 assert(Initializer->isGLValue()); 3657 return Initializer->getValueKind(); 3658 } 3659 3660 // Force a load so we can materialize a temporary. 3661 Sequence.AddLValueToRValueStep(cv1T1.getUnqualifiedType()); 3662 return VK_RValue; 3663 } 3664 3665 if (T1Quals != T2Quals) { 3666 Sequence.AddQualificationConversionStep(cv1T1, 3667 Initializer->getValueKind()); 3668 } 3669 3670 return Initializer->getValueKind(); 3671 } 3672 3673 3674 /// \brief Reference initialization without resolving overloaded functions. 3675 static void TryReferenceInitializationCore(Sema &S, 3676 const InitializedEntity &Entity, 3677 const InitializationKind &Kind, 3678 Expr *Initializer, 3679 QualType cv1T1, QualType T1, 3680 Qualifiers T1Quals, 3681 QualType cv2T2, QualType T2, 3682 Qualifiers T2Quals, 3683 InitializationSequence &Sequence) { 3684 QualType DestType = Entity.getType(); 3685 SourceLocation DeclLoc = Initializer->getLocStart(); 3686 // Compute some basic properties of the types and the initializer. 3687 bool isLValueRef = DestType->isLValueReferenceType(); 3688 bool isRValueRef = !isLValueRef; 3689 bool DerivedToBase = false; 3690 bool ObjCConversion = false; 3691 bool ObjCLifetimeConversion = false; 3692 Expr::Classification InitCategory = Initializer->Classify(S.Context); 3693 Sema::ReferenceCompareResult RefRelationship 3694 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase, 3695 ObjCConversion, ObjCLifetimeConversion); 3696 3697 // C++0x [dcl.init.ref]p5: 3698 // A reference to type "cv1 T1" is initialized by an expression of type 3699 // "cv2 T2" as follows: 3700 // 3701 // - If the reference is an lvalue reference and the initializer 3702 // expression 3703 // Note the analogous bullet points for rvalue refs to functions. Because 3704 // there are no function rvalues in C++, rvalue refs to functions are treated 3705 // like lvalue refs. 3706 OverloadingResult ConvOvlResult = OR_Success; 3707 bool T1Function = T1->isFunctionType(); 3708 if (isLValueRef || T1Function) { 3709 if (InitCategory.isLValue() && 3710 (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification || 3711 (Kind.isCStyleOrFunctionalCast() && 3712 RefRelationship == Sema::Ref_Related))) { 3713 // - is an lvalue (but is not a bit-field), and "cv1 T1" is 3714 // reference-compatible with "cv2 T2," or 3715 // 3716 // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a 3717 // bit-field when we're determining whether the reference initialization 3718 // can occur. However, we do pay attention to whether it is a bit-field 3719 // to decide whether we're actually binding to a temporary created from 3720 // the bit-field. 3721 if (DerivedToBase) 3722 Sequence.AddDerivedToBaseCastStep( 3723 S.Context.getQualifiedType(T1, T2Quals), 3724 VK_LValue); 3725 else if (ObjCConversion) 3726 Sequence.AddObjCObjectConversionStep( 3727 S.Context.getQualifiedType(T1, T2Quals)); 3728 3729 ExprValueKind ValueKind = 3730 convertQualifiersAndValueKindIfNecessary(S, Sequence, Initializer, 3731 cv1T1, T1Quals, T2Quals, 3732 isLValueRef); 3733 Sequence.AddReferenceBindingStep(cv1T1, ValueKind == VK_RValue); 3734 return; 3735 } 3736 3737 // - has a class type (i.e., T2 is a class type), where T1 is not 3738 // reference-related to T2, and can be implicitly converted to an 3739 // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible 3740 // with "cv3 T3" (this conversion is selected by enumerating the 3741 // applicable conversion functions (13.3.1.6) and choosing the best 3742 // one through overload resolution (13.3)), 3743 // If we have an rvalue ref to function type here, the rhs must be 3744 // an rvalue. DR1287 removed the "implicitly" here. 3745 if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() && 3746 (isLValueRef || InitCategory.isRValue())) { 3747 ConvOvlResult = TryRefInitWithConversionFunction( 3748 S, Entity, Kind, Initializer, /*AllowRValues*/isRValueRef, Sequence); 3749 if (ConvOvlResult == OR_Success) 3750 return; 3751 if (ConvOvlResult != OR_No_Viable_Function) 3752 Sequence.SetOverloadFailure( 3753 InitializationSequence::FK_ReferenceInitOverloadFailed, 3754 ConvOvlResult); 3755 } 3756 } 3757 3758 // - Otherwise, the reference shall be an lvalue reference to a 3759 // non-volatile const type (i.e., cv1 shall be const), or the reference 3760 // shall be an rvalue reference. 3761 if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) { 3762 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) 3763 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 3764 else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) 3765 Sequence.SetOverloadFailure( 3766 InitializationSequence::FK_ReferenceInitOverloadFailed, 3767 ConvOvlResult); 3768 else 3769 Sequence.SetFailed(InitCategory.isLValue() 3770 ? (RefRelationship == Sema::Ref_Related 3771 ? InitializationSequence::FK_ReferenceInitDropsQualifiers 3772 : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated) 3773 : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary); 3774 3775 return; 3776 } 3777 3778 // - If the initializer expression 3779 // - is an xvalue, class prvalue, array prvalue, or function lvalue and 3780 // "cv1 T1" is reference-compatible with "cv2 T2" 3781 // Note: functions are handled below. 3782 if (!T1Function && 3783 (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification || 3784 (Kind.isCStyleOrFunctionalCast() && 3785 RefRelationship == Sema::Ref_Related)) && 3786 (InitCategory.isXValue() || 3787 (InitCategory.isPRValue() && T2->isRecordType()) || 3788 (InitCategory.isPRValue() && T2->isArrayType()))) { 3789 ExprValueKind ValueKind = InitCategory.isXValue()? VK_XValue : VK_RValue; 3790 if (InitCategory.isPRValue() && T2->isRecordType()) { 3791 // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the 3792 // compiler the freedom to perform a copy here or bind to the 3793 // object, while C++0x requires that we bind directly to the 3794 // object. Hence, we always bind to the object without making an 3795 // extra copy. However, in C++03 requires that we check for the 3796 // presence of a suitable copy constructor: 3797 // 3798 // The constructor that would be used to make the copy shall 3799 // be callable whether or not the copy is actually done. 3800 if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt) 3801 Sequence.AddExtraneousCopyToTemporary(cv2T2); 3802 else if (S.getLangOpts().CPlusPlus11) 3803 CheckCXX98CompatAccessibleCopy(S, Entity, Initializer); 3804 } 3805 3806 if (DerivedToBase) 3807 Sequence.AddDerivedToBaseCastStep(S.Context.getQualifiedType(T1, T2Quals), 3808 ValueKind); 3809 else if (ObjCConversion) 3810 Sequence.AddObjCObjectConversionStep( 3811 S.Context.getQualifiedType(T1, T2Quals)); 3812 3813 ValueKind = convertQualifiersAndValueKindIfNecessary(S, Sequence, 3814 Initializer, cv1T1, 3815 T1Quals, T2Quals, 3816 isLValueRef); 3817 3818 Sequence.AddReferenceBindingStep(cv1T1, ValueKind == VK_RValue); 3819 return; 3820 } 3821 3822 // - has a class type (i.e., T2 is a class type), where T1 is not 3823 // reference-related to T2, and can be implicitly converted to an 3824 // xvalue, class prvalue, or function lvalue of type "cv3 T3", 3825 // where "cv1 T1" is reference-compatible with "cv3 T3", 3826 // 3827 // DR1287 removes the "implicitly" here. 3828 if (T2->isRecordType()) { 3829 if (RefRelationship == Sema::Ref_Incompatible) { 3830 ConvOvlResult = TryRefInitWithConversionFunction( 3831 S, Entity, Kind, Initializer, /*AllowRValues*/true, Sequence); 3832 if (ConvOvlResult) 3833 Sequence.SetOverloadFailure( 3834 InitializationSequence::FK_ReferenceInitOverloadFailed, 3835 ConvOvlResult); 3836 3837 return; 3838 } 3839 3840 if ((RefRelationship == Sema::Ref_Compatible || 3841 RefRelationship == Sema::Ref_Compatible_With_Added_Qualification) && 3842 isRValueRef && InitCategory.isLValue()) { 3843 Sequence.SetFailed( 3844 InitializationSequence::FK_RValueReferenceBindingToLValue); 3845 return; 3846 } 3847 3848 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); 3849 return; 3850 } 3851 3852 // - Otherwise, a temporary of type "cv1 T1" is created and initialized 3853 // from the initializer expression using the rules for a non-reference 3854 // copy-initialization (8.5). The reference is then bound to the 3855 // temporary. [...] 3856 3857 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1); 3858 3859 // FIXME: Why do we use an implicit conversion here rather than trying 3860 // copy-initialization? 3861 ImplicitConversionSequence ICS 3862 = S.TryImplicitConversion(Initializer, TempEntity.getType(), 3863 /*SuppressUserConversions=*/false, 3864 /*AllowExplicit=*/false, 3865 /*FIXME:InOverloadResolution=*/false, 3866 /*CStyle=*/Kind.isCStyleOrFunctionalCast(), 3867 /*AllowObjCWritebackConversion=*/false); 3868 3869 if (ICS.isBad()) { 3870 // FIXME: Use the conversion function set stored in ICS to turn 3871 // this into an overloading ambiguity diagnostic. However, we need 3872 // to keep that set as an OverloadCandidateSet rather than as some 3873 // other kind of set. 3874 if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) 3875 Sequence.SetOverloadFailure( 3876 InitializationSequence::FK_ReferenceInitOverloadFailed, 3877 ConvOvlResult); 3878 else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) 3879 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 3880 else 3881 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed); 3882 return; 3883 } else { 3884 Sequence.AddConversionSequenceStep(ICS, TempEntity.getType()); 3885 } 3886 3887 // [...] If T1 is reference-related to T2, cv1 must be the 3888 // same cv-qualification as, or greater cv-qualification 3889 // than, cv2; otherwise, the program is ill-formed. 3890 unsigned T1CVRQuals = T1Quals.getCVRQualifiers(); 3891 unsigned T2CVRQuals = T2Quals.getCVRQualifiers(); 3892 if (RefRelationship == Sema::Ref_Related && 3893 (T1CVRQuals | T2CVRQuals) != T1CVRQuals) { 3894 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); 3895 return; 3896 } 3897 3898 // [...] If T1 is reference-related to T2 and the reference is an rvalue 3899 // reference, the initializer expression shall not be an lvalue. 3900 if (RefRelationship >= Sema::Ref_Related && !isLValueRef && 3901 InitCategory.isLValue()) { 3902 Sequence.SetFailed( 3903 InitializationSequence::FK_RValueReferenceBindingToLValue); 3904 return; 3905 } 3906 3907 Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true); 3908 return; 3909 } 3910 3911 /// \brief Attempt character array initialization from a string literal 3912 /// (C++ [dcl.init.string], C99 6.7.8). 3913 static void TryStringLiteralInitialization(Sema &S, 3914 const InitializedEntity &Entity, 3915 const InitializationKind &Kind, 3916 Expr *Initializer, 3917 InitializationSequence &Sequence) { 3918 Sequence.AddStringInitStep(Entity.getType()); 3919 } 3920 3921 /// \brief Attempt value initialization (C++ [dcl.init]p7). 3922 static void TryValueInitialization(Sema &S, 3923 const InitializedEntity &Entity, 3924 const InitializationKind &Kind, 3925 InitializationSequence &Sequence, 3926 InitListExpr *InitList) { 3927 assert((!InitList || InitList->getNumInits() == 0) && 3928 "Shouldn't use value-init for non-empty init lists"); 3929 3930 // C++98 [dcl.init]p5, C++11 [dcl.init]p7: 3931 // 3932 // To value-initialize an object of type T means: 3933 QualType T = Entity.getType(); 3934 3935 // -- if T is an array type, then each element is value-initialized; 3936 T = S.Context.getBaseElementType(T); 3937 3938 if (const RecordType *RT = T->getAs<RecordType>()) { 3939 if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3940 bool NeedZeroInitialization = true; 3941 if (!S.getLangOpts().CPlusPlus11) { 3942 // C++98: 3943 // -- if T is a class type (clause 9) with a user-declared constructor 3944 // (12.1), then the default constructor for T is called (and the 3945 // initialization is ill-formed if T has no accessible default 3946 // constructor); 3947 if (ClassDecl->hasUserDeclaredConstructor()) 3948 NeedZeroInitialization = false; 3949 } else { 3950 // C++11: 3951 // -- if T is a class type (clause 9) with either no default constructor 3952 // (12.1 [class.ctor]) or a default constructor that is user-provided 3953 // or deleted, then the object is default-initialized; 3954 CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl); 3955 if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted()) 3956 NeedZeroInitialization = false; 3957 } 3958 3959 // -- if T is a (possibly cv-qualified) non-union class type without a 3960 // user-provided or deleted default constructor, then the object is 3961 // zero-initialized and, if T has a non-trivial default constructor, 3962 // default-initialized; 3963 // The 'non-union' here was removed by DR1502. The 'non-trivial default 3964 // constructor' part was removed by DR1507. 3965 if (NeedZeroInitialization) 3966 Sequence.AddZeroInitializationStep(Entity.getType()); 3967 3968 // C++03: 3969 // -- if T is a non-union class type without a user-declared constructor, 3970 // then every non-static data member and base class component of T is 3971 // value-initialized; 3972 // [...] A program that calls for [...] value-initialization of an 3973 // entity of reference type is ill-formed. 3974 // 3975 // C++11 doesn't need this handling, because value-initialization does not 3976 // occur recursively there, and the implicit default constructor is 3977 // defined as deleted in the problematic cases. 3978 if (!S.getLangOpts().CPlusPlus11 && 3979 ClassDecl->hasUninitializedReferenceMember()) { 3980 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference); 3981 return; 3982 } 3983 3984 // If this is list-value-initialization, pass the empty init list on when 3985 // building the constructor call. This affects the semantics of a few 3986 // things (such as whether an explicit default constructor can be called). 3987 Expr *InitListAsExpr = InitList; 3988 MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0); 3989 bool InitListSyntax = InitList; 3990 3991 return TryConstructorInitialization(S, Entity, Kind, Args, T, Sequence, 3992 InitListSyntax); 3993 } 3994 } 3995 3996 Sequence.AddZeroInitializationStep(Entity.getType()); 3997 } 3998 3999 /// \brief Attempt default initialization (C++ [dcl.init]p6). 4000 static void TryDefaultInitialization(Sema &S, 4001 const InitializedEntity &Entity, 4002 const InitializationKind &Kind, 4003 InitializationSequence &Sequence) { 4004 assert(Kind.getKind() == InitializationKind::IK_Default); 4005 4006 // C++ [dcl.init]p6: 4007 // To default-initialize an object of type T means: 4008 // - if T is an array type, each element is default-initialized; 4009 QualType DestType = S.Context.getBaseElementType(Entity.getType()); 4010 4011 // - if T is a (possibly cv-qualified) class type (Clause 9), the default 4012 // constructor for T is called (and the initialization is ill-formed if 4013 // T has no accessible default constructor); 4014 if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) { 4015 TryConstructorInitialization(S, Entity, Kind, None, DestType, Sequence); 4016 return; 4017 } 4018 4019 // - otherwise, no initialization is performed. 4020 4021 // If a program calls for the default initialization of an object of 4022 // a const-qualified type T, T shall be a class type with a user-provided 4023 // default constructor. 4024 if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) { 4025 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); 4026 return; 4027 } 4028 4029 // If the destination type has a lifetime property, zero-initialize it. 4030 if (DestType.getQualifiers().hasObjCLifetime()) { 4031 Sequence.AddZeroInitializationStep(Entity.getType()); 4032 return; 4033 } 4034 } 4035 4036 /// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]), 4037 /// which enumerates all conversion functions and performs overload resolution 4038 /// to select the best. 4039 static void TryUserDefinedConversion(Sema &S, 4040 const InitializedEntity &Entity, 4041 const InitializationKind &Kind, 4042 Expr *Initializer, 4043 InitializationSequence &Sequence, 4044 bool TopLevelOfInitList) { 4045 QualType DestType = Entity.getType(); 4046 assert(!DestType->isReferenceType() && "References are handled elsewhere"); 4047 QualType SourceType = Initializer->getType(); 4048 assert((DestType->isRecordType() || SourceType->isRecordType()) && 4049 "Must have a class type to perform a user-defined conversion"); 4050 4051 // Build the candidate set directly in the initialization sequence 4052 // structure, so that it will persist if we fail. 4053 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 4054 CandidateSet.clear(); 4055 4056 // Determine whether we are allowed to call explicit constructors or 4057 // explicit conversion operators. 4058 bool AllowExplicit = Kind.AllowExplicit(); 4059 4060 if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) { 4061 // The type we're converting to is a class type. Enumerate its constructors 4062 // to see if there is a suitable conversion. 4063 CXXRecordDecl *DestRecordDecl 4064 = cast<CXXRecordDecl>(DestRecordType->getDecl()); 4065 4066 // Try to complete the type we're converting to. 4067 if (!S.RequireCompleteType(Kind.getLocation(), DestType, 0)) { 4068 DeclContext::lookup_result R = S.LookupConstructors(DestRecordDecl); 4069 // The container holding the constructors can under certain conditions 4070 // be changed while iterating. To be safe we copy the lookup results 4071 // to a new container. 4072 SmallVector<NamedDecl*, 8> CopyOfCon(R.begin(), R.end()); 4073 for (SmallVectorImpl<NamedDecl *>::iterator 4074 Con = CopyOfCon.begin(), ConEnd = CopyOfCon.end(); 4075 Con != ConEnd; ++Con) { 4076 NamedDecl *D = *Con; 4077 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess()); 4078 4079 // Find the constructor (which may be a template). 4080 CXXConstructorDecl *Constructor = nullptr; 4081 FunctionTemplateDecl *ConstructorTmpl 4082 = dyn_cast<FunctionTemplateDecl>(D); 4083 if (ConstructorTmpl) 4084 Constructor = cast<CXXConstructorDecl>( 4085 ConstructorTmpl->getTemplatedDecl()); 4086 else 4087 Constructor = cast<CXXConstructorDecl>(D); 4088 4089 if (!Constructor->isInvalidDecl() && 4090 Constructor->isConvertingConstructor(AllowExplicit)) { 4091 if (ConstructorTmpl) 4092 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 4093 /*ExplicitArgs*/ nullptr, 4094 Initializer, CandidateSet, 4095 /*SuppressUserConversions=*/true); 4096 else 4097 S.AddOverloadCandidate(Constructor, FoundDecl, 4098 Initializer, CandidateSet, 4099 /*SuppressUserConversions=*/true); 4100 } 4101 } 4102 } 4103 } 4104 4105 SourceLocation DeclLoc = Initializer->getLocStart(); 4106 4107 if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) { 4108 // The type we're converting from is a class type, enumerate its conversion 4109 // functions. 4110 4111 // We can only enumerate the conversion functions for a complete type; if 4112 // the type isn't complete, simply skip this step. 4113 if (!S.RequireCompleteType(DeclLoc, SourceType, 0)) { 4114 CXXRecordDecl *SourceRecordDecl 4115 = cast<CXXRecordDecl>(SourceRecordType->getDecl()); 4116 4117 std::pair<CXXRecordDecl::conversion_iterator, 4118 CXXRecordDecl::conversion_iterator> 4119 Conversions = SourceRecordDecl->getVisibleConversionFunctions(); 4120 for (CXXRecordDecl::conversion_iterator 4121 I = Conversions.first, E = Conversions.second; I != E; ++I) { 4122 NamedDecl *D = *I; 4123 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 4124 if (isa<UsingShadowDecl>(D)) 4125 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 4126 4127 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 4128 CXXConversionDecl *Conv; 4129 if (ConvTemplate) 4130 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 4131 else 4132 Conv = cast<CXXConversionDecl>(D); 4133 4134 if (AllowExplicit || !Conv->isExplicit()) { 4135 if (ConvTemplate) 4136 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), 4137 ActingDC, Initializer, DestType, 4138 CandidateSet, AllowExplicit); 4139 else 4140 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, 4141 Initializer, DestType, CandidateSet, 4142 AllowExplicit); 4143 } 4144 } 4145 } 4146 } 4147 4148 // Perform overload resolution. If it fails, return the failed result. 4149 OverloadCandidateSet::iterator Best; 4150 if (OverloadingResult Result 4151 = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) { 4152 Sequence.SetOverloadFailure( 4153 InitializationSequence::FK_UserConversionOverloadFailed, 4154 Result); 4155 return; 4156 } 4157 4158 FunctionDecl *Function = Best->Function; 4159 Function->setReferenced(); 4160 bool HadMultipleCandidates = (CandidateSet.size() > 1); 4161 4162 if (isa<CXXConstructorDecl>(Function)) { 4163 // Add the user-defined conversion step. Any cv-qualification conversion is 4164 // subsumed by the initialization. Per DR5, the created temporary is of the 4165 // cv-unqualified type of the destination. 4166 Sequence.AddUserConversionStep(Function, Best->FoundDecl, 4167 DestType.getUnqualifiedType(), 4168 HadMultipleCandidates); 4169 return; 4170 } 4171 4172 // Add the user-defined conversion step that calls the conversion function. 4173 QualType ConvType = Function->getCallResultType(); 4174 if (ConvType->getAs<RecordType>()) { 4175 // If we're converting to a class type, there may be an copy of 4176 // the resulting temporary object (possible to create an object of 4177 // a base class type). That copy is not a separate conversion, so 4178 // we just make a note of the actual destination type (possibly a 4179 // base class of the type returned by the conversion function) and 4180 // let the user-defined conversion step handle the conversion. 4181 Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType, 4182 HadMultipleCandidates); 4183 return; 4184 } 4185 4186 Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType, 4187 HadMultipleCandidates); 4188 4189 // If the conversion following the call to the conversion function 4190 // is interesting, add it as a separate step. 4191 if (Best->FinalConversion.First || Best->FinalConversion.Second || 4192 Best->FinalConversion.Third) { 4193 ImplicitConversionSequence ICS; 4194 ICS.setStandard(); 4195 ICS.Standard = Best->FinalConversion; 4196 Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList); 4197 } 4198 } 4199 4200 /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>, 4201 /// a function with a pointer return type contains a 'return false;' statement. 4202 /// In C++11, 'false' is not a null pointer, so this breaks the build of any 4203 /// code using that header. 4204 /// 4205 /// Work around this by treating 'return false;' as zero-initializing the result 4206 /// if it's used in a pointer-returning function in a system header. 4207 static bool isLibstdcxxPointerReturnFalseHack(Sema &S, 4208 const InitializedEntity &Entity, 4209 const Expr *Init) { 4210 return S.getLangOpts().CPlusPlus11 && 4211 Entity.getKind() == InitializedEntity::EK_Result && 4212 Entity.getType()->isPointerType() && 4213 isa<CXXBoolLiteralExpr>(Init) && 4214 !cast<CXXBoolLiteralExpr>(Init)->getValue() && 4215 S.getSourceManager().isInSystemHeader(Init->getExprLoc()); 4216 } 4217 4218 /// The non-zero enum values here are indexes into diagnostic alternatives. 4219 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar }; 4220 4221 /// Determines whether this expression is an acceptable ICR source. 4222 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e, 4223 bool isAddressOf, bool &isWeakAccess) { 4224 // Skip parens. 4225 e = e->IgnoreParens(); 4226 4227 // Skip address-of nodes. 4228 if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) { 4229 if (op->getOpcode() == UO_AddrOf) 4230 return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true, 4231 isWeakAccess); 4232 4233 // Skip certain casts. 4234 } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) { 4235 switch (ce->getCastKind()) { 4236 case CK_Dependent: 4237 case CK_BitCast: 4238 case CK_LValueBitCast: 4239 case CK_NoOp: 4240 return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess); 4241 4242 case CK_ArrayToPointerDecay: 4243 return IIK_nonscalar; 4244 4245 case CK_NullToPointer: 4246 return IIK_okay; 4247 4248 default: 4249 break; 4250 } 4251 4252 // If we have a declaration reference, it had better be a local variable. 4253 } else if (isa<DeclRefExpr>(e)) { 4254 // set isWeakAccess to true, to mean that there will be an implicit 4255 // load which requires a cleanup. 4256 if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak) 4257 isWeakAccess = true; 4258 4259 if (!isAddressOf) return IIK_nonlocal; 4260 4261 VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl()); 4262 if (!var) return IIK_nonlocal; 4263 4264 return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal); 4265 4266 // If we have a conditional operator, check both sides. 4267 } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) { 4268 if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf, 4269 isWeakAccess)) 4270 return iik; 4271 4272 return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess); 4273 4274 // These are never scalar. 4275 } else if (isa<ArraySubscriptExpr>(e)) { 4276 return IIK_nonscalar; 4277 4278 // Otherwise, it needs to be a null pointer constant. 4279 } else { 4280 return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull) 4281 ? IIK_okay : IIK_nonlocal); 4282 } 4283 4284 return IIK_nonlocal; 4285 } 4286 4287 /// Check whether the given expression is a valid operand for an 4288 /// indirect copy/restore. 4289 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) { 4290 assert(src->isRValue()); 4291 bool isWeakAccess = false; 4292 InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess); 4293 // If isWeakAccess to true, there will be an implicit 4294 // load which requires a cleanup. 4295 if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess) 4296 S.ExprNeedsCleanups = true; 4297 4298 if (iik == IIK_okay) return; 4299 4300 S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback) 4301 << ((unsigned) iik - 1) // shift index into diagnostic explanations 4302 << src->getSourceRange(); 4303 } 4304 4305 /// \brief Determine whether we have compatible array types for the 4306 /// purposes of GNU by-copy array initialization. 4307 static bool hasCompatibleArrayTypes(ASTContext &Context, 4308 const ArrayType *Dest, 4309 const ArrayType *Source) { 4310 // If the source and destination array types are equivalent, we're 4311 // done. 4312 if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0))) 4313 return true; 4314 4315 // Make sure that the element types are the same. 4316 if (!Context.hasSameType(Dest->getElementType(), Source->getElementType())) 4317 return false; 4318 4319 // The only mismatch we allow is when the destination is an 4320 // incomplete array type and the source is a constant array type. 4321 return Source->isConstantArrayType() && Dest->isIncompleteArrayType(); 4322 } 4323 4324 static bool tryObjCWritebackConversion(Sema &S, 4325 InitializationSequence &Sequence, 4326 const InitializedEntity &Entity, 4327 Expr *Initializer) { 4328 bool ArrayDecay = false; 4329 QualType ArgType = Initializer->getType(); 4330 QualType ArgPointee; 4331 if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) { 4332 ArrayDecay = true; 4333 ArgPointee = ArgArrayType->getElementType(); 4334 ArgType = S.Context.getPointerType(ArgPointee); 4335 } 4336 4337 // Handle write-back conversion. 4338 QualType ConvertedArgType; 4339 if (!S.isObjCWritebackConversion(ArgType, Entity.getType(), 4340 ConvertedArgType)) 4341 return false; 4342 4343 // We should copy unless we're passing to an argument explicitly 4344 // marked 'out'. 4345 bool ShouldCopy = true; 4346 if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl())) 4347 ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); 4348 4349 // Do we need an lvalue conversion? 4350 if (ArrayDecay || Initializer->isGLValue()) { 4351 ImplicitConversionSequence ICS; 4352 ICS.setStandard(); 4353 ICS.Standard.setAsIdentityConversion(); 4354 4355 QualType ResultType; 4356 if (ArrayDecay) { 4357 ICS.Standard.First = ICK_Array_To_Pointer; 4358 ResultType = S.Context.getPointerType(ArgPointee); 4359 } else { 4360 ICS.Standard.First = ICK_Lvalue_To_Rvalue; 4361 ResultType = Initializer->getType().getNonLValueExprType(S.Context); 4362 } 4363 4364 Sequence.AddConversionSequenceStep(ICS, ResultType); 4365 } 4366 4367 Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy); 4368 return true; 4369 } 4370 4371 static bool TryOCLSamplerInitialization(Sema &S, 4372 InitializationSequence &Sequence, 4373 QualType DestType, 4374 Expr *Initializer) { 4375 if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() || 4376 !Initializer->isIntegerConstantExpr(S.getASTContext())) 4377 return false; 4378 4379 Sequence.AddOCLSamplerInitStep(DestType); 4380 return true; 4381 } 4382 4383 // 4384 // OpenCL 1.2 spec, s6.12.10 4385 // 4386 // The event argument can also be used to associate the 4387 // async_work_group_copy with a previous async copy allowing 4388 // an event to be shared by multiple async copies; otherwise 4389 // event should be zero. 4390 // 4391 static bool TryOCLZeroEventInitialization(Sema &S, 4392 InitializationSequence &Sequence, 4393 QualType DestType, 4394 Expr *Initializer) { 4395 if (!S.getLangOpts().OpenCL || !DestType->isEventT() || 4396 !Initializer->isIntegerConstantExpr(S.getASTContext()) || 4397 (Initializer->EvaluateKnownConstInt(S.getASTContext()) != 0)) 4398 return false; 4399 4400 Sequence.AddOCLZeroEventStep(DestType); 4401 return true; 4402 } 4403 4404 InitializationSequence::InitializationSequence(Sema &S, 4405 const InitializedEntity &Entity, 4406 const InitializationKind &Kind, 4407 MultiExprArg Args, 4408 bool TopLevelOfInitList) 4409 : FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) { 4410 InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList); 4411 } 4412 4413 void InitializationSequence::InitializeFrom(Sema &S, 4414 const InitializedEntity &Entity, 4415 const InitializationKind &Kind, 4416 MultiExprArg Args, 4417 bool TopLevelOfInitList) { 4418 ASTContext &Context = S.Context; 4419 4420 // Eliminate non-overload placeholder types in the arguments. We 4421 // need to do this before checking whether types are dependent 4422 // because lowering a pseudo-object expression might well give us 4423 // something of dependent type. 4424 for (unsigned I = 0, E = Args.size(); I != E; ++I) 4425 if (Args[I]->getType()->isNonOverloadPlaceholderType()) { 4426 // FIXME: should we be doing this here? 4427 ExprResult result = S.CheckPlaceholderExpr(Args[I]); 4428 if (result.isInvalid()) { 4429 SetFailed(FK_PlaceholderType); 4430 return; 4431 } 4432 Args[I] = result.get(); 4433 } 4434 4435 // C++0x [dcl.init]p16: 4436 // The semantics of initializers are as follows. The destination type is 4437 // the type of the object or reference being initialized and the source 4438 // type is the type of the initializer expression. The source type is not 4439 // defined when the initializer is a braced-init-list or when it is a 4440 // parenthesized list of expressions. 4441 QualType DestType = Entity.getType(); 4442 4443 if (DestType->isDependentType() || 4444 Expr::hasAnyTypeDependentArguments(Args)) { 4445 SequenceKind = DependentSequence; 4446 return; 4447 } 4448 4449 // Almost everything is a normal sequence. 4450 setSequenceKind(NormalSequence); 4451 4452 QualType SourceType; 4453 Expr *Initializer = nullptr; 4454 if (Args.size() == 1) { 4455 Initializer = Args[0]; 4456 if (S.getLangOpts().ObjC1) { 4457 if (S.CheckObjCBridgeRelatedConversions(Initializer->getLocStart(), 4458 DestType, Initializer->getType(), 4459 Initializer) || 4460 S.ConversionToObjCStringLiteralCheck(DestType, Initializer)) 4461 Args[0] = Initializer; 4462 4463 } 4464 if (!isa<InitListExpr>(Initializer)) 4465 SourceType = Initializer->getType(); 4466 } 4467 4468 // - If the initializer is a (non-parenthesized) braced-init-list, the 4469 // object is list-initialized (8.5.4). 4470 if (Kind.getKind() != InitializationKind::IK_Direct) { 4471 if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) { 4472 TryListInitialization(S, Entity, Kind, InitList, *this); 4473 return; 4474 } 4475 } 4476 4477 // - If the destination type is a reference type, see 8.5.3. 4478 if (DestType->isReferenceType()) { 4479 // C++0x [dcl.init.ref]p1: 4480 // A variable declared to be a T& or T&&, that is, "reference to type T" 4481 // (8.3.2), shall be initialized by an object, or function, of type T or 4482 // by an object that can be converted into a T. 4483 // (Therefore, multiple arguments are not permitted.) 4484 if (Args.size() != 1) 4485 SetFailed(FK_TooManyInitsForReference); 4486 else 4487 TryReferenceInitialization(S, Entity, Kind, Args[0], *this); 4488 return; 4489 } 4490 4491 // - If the initializer is (), the object is value-initialized. 4492 if (Kind.getKind() == InitializationKind::IK_Value || 4493 (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) { 4494 TryValueInitialization(S, Entity, Kind, *this); 4495 return; 4496 } 4497 4498 // Handle default initialization. 4499 if (Kind.getKind() == InitializationKind::IK_Default) { 4500 TryDefaultInitialization(S, Entity, Kind, *this); 4501 return; 4502 } 4503 4504 // - If the destination type is an array of characters, an array of 4505 // char16_t, an array of char32_t, or an array of wchar_t, and the 4506 // initializer is a string literal, see 8.5.2. 4507 // - Otherwise, if the destination type is an array, the program is 4508 // ill-formed. 4509 if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) { 4510 if (Initializer && isa<VariableArrayType>(DestAT)) { 4511 SetFailed(FK_VariableLengthArrayHasInitializer); 4512 return; 4513 } 4514 4515 if (Initializer) { 4516 switch (IsStringInit(Initializer, DestAT, Context)) { 4517 case SIF_None: 4518 TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this); 4519 return; 4520 case SIF_NarrowStringIntoWideChar: 4521 SetFailed(FK_NarrowStringIntoWideCharArray); 4522 return; 4523 case SIF_WideStringIntoChar: 4524 SetFailed(FK_WideStringIntoCharArray); 4525 return; 4526 case SIF_IncompatWideStringIntoWideChar: 4527 SetFailed(FK_IncompatWideStringIntoWideChar); 4528 return; 4529 case SIF_Other: 4530 break; 4531 } 4532 } 4533 4534 // Note: as an GNU C extension, we allow initialization of an 4535 // array from a compound literal that creates an array of the same 4536 // type, so long as the initializer has no side effects. 4537 if (!S.getLangOpts().CPlusPlus && Initializer && 4538 isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) && 4539 Initializer->getType()->isArrayType()) { 4540 const ArrayType *SourceAT 4541 = Context.getAsArrayType(Initializer->getType()); 4542 if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT)) 4543 SetFailed(FK_ArrayTypeMismatch); 4544 else if (Initializer->HasSideEffects(S.Context)) 4545 SetFailed(FK_NonConstantArrayInit); 4546 else { 4547 AddArrayInitStep(DestType); 4548 } 4549 } 4550 // Note: as a GNU C++ extension, we allow list-initialization of a 4551 // class member of array type from a parenthesized initializer list. 4552 else if (S.getLangOpts().CPlusPlus && 4553 Entity.getKind() == InitializedEntity::EK_Member && 4554 Initializer && isa<InitListExpr>(Initializer)) { 4555 TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer), 4556 *this); 4557 AddParenthesizedArrayInitStep(DestType); 4558 } else if (DestAT->getElementType()->isCharType()) 4559 SetFailed(FK_ArrayNeedsInitListOrStringLiteral); 4560 else if (IsWideCharCompatible(DestAT->getElementType(), Context)) 4561 SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral); 4562 else 4563 SetFailed(FK_ArrayNeedsInitList); 4564 4565 return; 4566 } 4567 4568 // Determine whether we should consider writeback conversions for 4569 // Objective-C ARC. 4570 bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount && 4571 Entity.isParameterKind(); 4572 4573 // We're at the end of the line for C: it's either a write-back conversion 4574 // or it's a C assignment. There's no need to check anything else. 4575 if (!S.getLangOpts().CPlusPlus) { 4576 // If allowed, check whether this is an Objective-C writeback conversion. 4577 if (allowObjCWritebackConversion && 4578 tryObjCWritebackConversion(S, *this, Entity, Initializer)) { 4579 return; 4580 } 4581 4582 if (TryOCLSamplerInitialization(S, *this, DestType, Initializer)) 4583 return; 4584 4585 if (TryOCLZeroEventInitialization(S, *this, DestType, Initializer)) 4586 return; 4587 4588 // Handle initialization in C 4589 AddCAssignmentStep(DestType); 4590 MaybeProduceObjCObject(S, *this, Entity); 4591 return; 4592 } 4593 4594 assert(S.getLangOpts().CPlusPlus); 4595 4596 // - If the destination type is a (possibly cv-qualified) class type: 4597 if (DestType->isRecordType()) { 4598 // - If the initialization is direct-initialization, or if it is 4599 // copy-initialization where the cv-unqualified version of the 4600 // source type is the same class as, or a derived class of, the 4601 // class of the destination, constructors are considered. [...] 4602 if (Kind.getKind() == InitializationKind::IK_Direct || 4603 (Kind.getKind() == InitializationKind::IK_Copy && 4604 (Context.hasSameUnqualifiedType(SourceType, DestType) || 4605 S.IsDerivedFrom(SourceType, DestType)))) 4606 TryConstructorInitialization(S, Entity, Kind, Args, 4607 Entity.getType(), *this); 4608 // - Otherwise (i.e., for the remaining copy-initialization cases), 4609 // user-defined conversion sequences that can convert from the source 4610 // type to the destination type or (when a conversion function is 4611 // used) to a derived class thereof are enumerated as described in 4612 // 13.3.1.4, and the best one is chosen through overload resolution 4613 // (13.3). 4614 else 4615 TryUserDefinedConversion(S, Entity, Kind, Initializer, *this, 4616 TopLevelOfInitList); 4617 return; 4618 } 4619 4620 if (Args.size() > 1) { 4621 SetFailed(FK_TooManyInitsForScalar); 4622 return; 4623 } 4624 assert(Args.size() == 1 && "Zero-argument case handled above"); 4625 4626 // - Otherwise, if the source type is a (possibly cv-qualified) class 4627 // type, conversion functions are considered. 4628 if (!SourceType.isNull() && SourceType->isRecordType()) { 4629 TryUserDefinedConversion(S, Entity, Kind, Initializer, *this, 4630 TopLevelOfInitList); 4631 MaybeProduceObjCObject(S, *this, Entity); 4632 return; 4633 } 4634 4635 // - Otherwise, the initial value of the object being initialized is the 4636 // (possibly converted) value of the initializer expression. Standard 4637 // conversions (Clause 4) will be used, if necessary, to convert the 4638 // initializer expression to the cv-unqualified version of the 4639 // destination type; no user-defined conversions are considered. 4640 4641 ImplicitConversionSequence ICS 4642 = S.TryImplicitConversion(Initializer, Entity.getType(), 4643 /*SuppressUserConversions*/true, 4644 /*AllowExplicitConversions*/ false, 4645 /*InOverloadResolution*/ false, 4646 /*CStyle=*/Kind.isCStyleOrFunctionalCast(), 4647 allowObjCWritebackConversion); 4648 4649 if (ICS.isStandard() && 4650 ICS.Standard.Second == ICK_Writeback_Conversion) { 4651 // Objective-C ARC writeback conversion. 4652 4653 // We should copy unless we're passing to an argument explicitly 4654 // marked 'out'. 4655 bool ShouldCopy = true; 4656 if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl())) 4657 ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); 4658 4659 // If there was an lvalue adjustment, add it as a separate conversion. 4660 if (ICS.Standard.First == ICK_Array_To_Pointer || 4661 ICS.Standard.First == ICK_Lvalue_To_Rvalue) { 4662 ImplicitConversionSequence LvalueICS; 4663 LvalueICS.setStandard(); 4664 LvalueICS.Standard.setAsIdentityConversion(); 4665 LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0)); 4666 LvalueICS.Standard.First = ICS.Standard.First; 4667 AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0)); 4668 } 4669 4670 AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy); 4671 } else if (ICS.isBad()) { 4672 DeclAccessPair dap; 4673 if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) { 4674 AddZeroInitializationStep(Entity.getType()); 4675 } else if (Initializer->getType() == Context.OverloadTy && 4676 !S.ResolveAddressOfOverloadedFunction(Initializer, DestType, 4677 false, dap)) 4678 SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 4679 else 4680 SetFailed(InitializationSequence::FK_ConversionFailed); 4681 } else { 4682 AddConversionSequenceStep(ICS, Entity.getType(), TopLevelOfInitList); 4683 4684 MaybeProduceObjCObject(S, *this, Entity); 4685 } 4686 } 4687 4688 InitializationSequence::~InitializationSequence() { 4689 for (SmallVectorImpl<Step>::iterator Step = Steps.begin(), 4690 StepEnd = Steps.end(); 4691 Step != StepEnd; ++Step) 4692 Step->Destroy(); 4693 } 4694 4695 //===----------------------------------------------------------------------===// 4696 // Perform initialization 4697 //===----------------------------------------------------------------------===// 4698 static Sema::AssignmentAction 4699 getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) { 4700 switch(Entity.getKind()) { 4701 case InitializedEntity::EK_Variable: 4702 case InitializedEntity::EK_New: 4703 case InitializedEntity::EK_Exception: 4704 case InitializedEntity::EK_Base: 4705 case InitializedEntity::EK_Delegating: 4706 return Sema::AA_Initializing; 4707 4708 case InitializedEntity::EK_Parameter: 4709 if (Entity.getDecl() && 4710 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) 4711 return Sema::AA_Sending; 4712 4713 return Sema::AA_Passing; 4714 4715 case InitializedEntity::EK_Parameter_CF_Audited: 4716 if (Entity.getDecl() && 4717 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) 4718 return Sema::AA_Sending; 4719 4720 return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited; 4721 4722 case InitializedEntity::EK_Result: 4723 return Sema::AA_Returning; 4724 4725 case InitializedEntity::EK_Temporary: 4726 case InitializedEntity::EK_RelatedResult: 4727 // FIXME: Can we tell apart casting vs. converting? 4728 return Sema::AA_Casting; 4729 4730 case InitializedEntity::EK_Member: 4731 case InitializedEntity::EK_ArrayElement: 4732 case InitializedEntity::EK_VectorElement: 4733 case InitializedEntity::EK_ComplexElement: 4734 case InitializedEntity::EK_BlockElement: 4735 case InitializedEntity::EK_LambdaCapture: 4736 case InitializedEntity::EK_CompoundLiteralInit: 4737 return Sema::AA_Initializing; 4738 } 4739 4740 llvm_unreachable("Invalid EntityKind!"); 4741 } 4742 4743 /// \brief Whether we should bind a created object as a temporary when 4744 /// initializing the given entity. 4745 static bool shouldBindAsTemporary(const InitializedEntity &Entity) { 4746 switch (Entity.getKind()) { 4747 case InitializedEntity::EK_ArrayElement: 4748 case InitializedEntity::EK_Member: 4749 case InitializedEntity::EK_Result: 4750 case InitializedEntity::EK_New: 4751 case InitializedEntity::EK_Variable: 4752 case InitializedEntity::EK_Base: 4753 case InitializedEntity::EK_Delegating: 4754 case InitializedEntity::EK_VectorElement: 4755 case InitializedEntity::EK_ComplexElement: 4756 case InitializedEntity::EK_Exception: 4757 case InitializedEntity::EK_BlockElement: 4758 case InitializedEntity::EK_LambdaCapture: 4759 case InitializedEntity::EK_CompoundLiteralInit: 4760 return false; 4761 4762 case InitializedEntity::EK_Parameter: 4763 case InitializedEntity::EK_Parameter_CF_Audited: 4764 case InitializedEntity::EK_Temporary: 4765 case InitializedEntity::EK_RelatedResult: 4766 return true; 4767 } 4768 4769 llvm_unreachable("missed an InitializedEntity kind?"); 4770 } 4771 4772 /// \brief Whether the given entity, when initialized with an object 4773 /// created for that initialization, requires destruction. 4774 static bool shouldDestroyTemporary(const InitializedEntity &Entity) { 4775 switch (Entity.getKind()) { 4776 case InitializedEntity::EK_Result: 4777 case InitializedEntity::EK_New: 4778 case InitializedEntity::EK_Base: 4779 case InitializedEntity::EK_Delegating: 4780 case InitializedEntity::EK_VectorElement: 4781 case InitializedEntity::EK_ComplexElement: 4782 case InitializedEntity::EK_BlockElement: 4783 case InitializedEntity::EK_LambdaCapture: 4784 return false; 4785 4786 case InitializedEntity::EK_Member: 4787 case InitializedEntity::EK_Variable: 4788 case InitializedEntity::EK_Parameter: 4789 case InitializedEntity::EK_Parameter_CF_Audited: 4790 case InitializedEntity::EK_Temporary: 4791 case InitializedEntity::EK_ArrayElement: 4792 case InitializedEntity::EK_Exception: 4793 case InitializedEntity::EK_CompoundLiteralInit: 4794 case InitializedEntity::EK_RelatedResult: 4795 return true; 4796 } 4797 4798 llvm_unreachable("missed an InitializedEntity kind?"); 4799 } 4800 4801 /// \brief Look for copy and move constructors and constructor templates, for 4802 /// copying an object via direct-initialization (per C++11 [dcl.init]p16). 4803 static void LookupCopyAndMoveConstructors(Sema &S, 4804 OverloadCandidateSet &CandidateSet, 4805 CXXRecordDecl *Class, 4806 Expr *CurInitExpr) { 4807 DeclContext::lookup_result R = S.LookupConstructors(Class); 4808 // The container holding the constructors can under certain conditions 4809 // be changed while iterating (e.g. because of deserialization). 4810 // To be safe we copy the lookup results to a new container. 4811 SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end()); 4812 for (SmallVectorImpl<NamedDecl *>::iterator 4813 CI = Ctors.begin(), CE = Ctors.end(); CI != CE; ++CI) { 4814 NamedDecl *D = *CI; 4815 CXXConstructorDecl *Constructor = nullptr; 4816 4817 if ((Constructor = dyn_cast<CXXConstructorDecl>(D))) { 4818 // Handle copy/moveconstructors, only. 4819 if (!Constructor || Constructor->isInvalidDecl() || 4820 !Constructor->isCopyOrMoveConstructor() || 4821 !Constructor->isConvertingConstructor(/*AllowExplicit=*/true)) 4822 continue; 4823 4824 DeclAccessPair FoundDecl 4825 = DeclAccessPair::make(Constructor, Constructor->getAccess()); 4826 S.AddOverloadCandidate(Constructor, FoundDecl, 4827 CurInitExpr, CandidateSet); 4828 continue; 4829 } 4830 4831 // Handle constructor templates. 4832 FunctionTemplateDecl *ConstructorTmpl = cast<FunctionTemplateDecl>(D); 4833 if (ConstructorTmpl->isInvalidDecl()) 4834 continue; 4835 4836 Constructor = cast<CXXConstructorDecl>( 4837 ConstructorTmpl->getTemplatedDecl()); 4838 if (!Constructor->isConvertingConstructor(/*AllowExplicit=*/true)) 4839 continue; 4840 4841 // FIXME: Do we need to limit this to copy-constructor-like 4842 // candidates? 4843 DeclAccessPair FoundDecl 4844 = DeclAccessPair::make(ConstructorTmpl, ConstructorTmpl->getAccess()); 4845 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, nullptr, 4846 CurInitExpr, CandidateSet, true); 4847 } 4848 } 4849 4850 /// \brief Get the location at which initialization diagnostics should appear. 4851 static SourceLocation getInitializationLoc(const InitializedEntity &Entity, 4852 Expr *Initializer) { 4853 switch (Entity.getKind()) { 4854 case InitializedEntity::EK_Result: 4855 return Entity.getReturnLoc(); 4856 4857 case InitializedEntity::EK_Exception: 4858 return Entity.getThrowLoc(); 4859 4860 case InitializedEntity::EK_Variable: 4861 return Entity.getDecl()->getLocation(); 4862 4863 case InitializedEntity::EK_LambdaCapture: 4864 return Entity.getCaptureLoc(); 4865 4866 case InitializedEntity::EK_ArrayElement: 4867 case InitializedEntity::EK_Member: 4868 case InitializedEntity::EK_Parameter: 4869 case InitializedEntity::EK_Parameter_CF_Audited: 4870 case InitializedEntity::EK_Temporary: 4871 case InitializedEntity::EK_New: 4872 case InitializedEntity::EK_Base: 4873 case InitializedEntity::EK_Delegating: 4874 case InitializedEntity::EK_VectorElement: 4875 case InitializedEntity::EK_ComplexElement: 4876 case InitializedEntity::EK_BlockElement: 4877 case InitializedEntity::EK_CompoundLiteralInit: 4878 case InitializedEntity::EK_RelatedResult: 4879 return Initializer->getLocStart(); 4880 } 4881 llvm_unreachable("missed an InitializedEntity kind?"); 4882 } 4883 4884 /// \brief Make a (potentially elidable) temporary copy of the object 4885 /// provided by the given initializer by calling the appropriate copy 4886 /// constructor. 4887 /// 4888 /// \param S The Sema object used for type-checking. 4889 /// 4890 /// \param T The type of the temporary object, which must either be 4891 /// the type of the initializer expression or a superclass thereof. 4892 /// 4893 /// \param Entity The entity being initialized. 4894 /// 4895 /// \param CurInit The initializer expression. 4896 /// 4897 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that 4898 /// is permitted in C++03 (but not C++0x) when binding a reference to 4899 /// an rvalue. 4900 /// 4901 /// \returns An expression that copies the initializer expression into 4902 /// a temporary object, or an error expression if a copy could not be 4903 /// created. 4904 static ExprResult CopyObject(Sema &S, 4905 QualType T, 4906 const InitializedEntity &Entity, 4907 ExprResult CurInit, 4908 bool IsExtraneousCopy) { 4909 // Determine which class type we're copying to. 4910 Expr *CurInitExpr = (Expr *)CurInit.get(); 4911 CXXRecordDecl *Class = nullptr; 4912 if (const RecordType *Record = T->getAs<RecordType>()) 4913 Class = cast<CXXRecordDecl>(Record->getDecl()); 4914 if (!Class) 4915 return CurInit; 4916 4917 // C++0x [class.copy]p32: 4918 // When certain criteria are met, an implementation is allowed to 4919 // omit the copy/move construction of a class object, even if the 4920 // copy/move constructor and/or destructor for the object have 4921 // side effects. [...] 4922 // - when a temporary class object that has not been bound to a 4923 // reference (12.2) would be copied/moved to a class object 4924 // with the same cv-unqualified type, the copy/move operation 4925 // can be omitted by constructing the temporary object 4926 // directly into the target of the omitted copy/move 4927 // 4928 // Note that the other three bullets are handled elsewhere. Copy 4929 // elision for return statements and throw expressions are handled as part 4930 // of constructor initialization, while copy elision for exception handlers 4931 // is handled by the run-time. 4932 bool Elidable = CurInitExpr->isTemporaryObject(S.Context, Class); 4933 SourceLocation Loc = getInitializationLoc(Entity, CurInit.get()); 4934 4935 // Make sure that the type we are copying is complete. 4936 if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete)) 4937 return CurInit; 4938 4939 // Perform overload resolution using the class's copy/move constructors. 4940 // Only consider constructors and constructor templates. Per 4941 // C++0x [dcl.init]p16, second bullet to class types, this initialization 4942 // is direct-initialization. 4943 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); 4944 LookupCopyAndMoveConstructors(S, CandidateSet, Class, CurInitExpr); 4945 4946 bool HadMultipleCandidates = (CandidateSet.size() > 1); 4947 4948 OverloadCandidateSet::iterator Best; 4949 switch (CandidateSet.BestViableFunction(S, Loc, Best)) { 4950 case OR_Success: 4951 break; 4952 4953 case OR_No_Viable_Function: 4954 S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext() 4955 ? diag::ext_rvalue_to_reference_temp_copy_no_viable 4956 : diag::err_temp_copy_no_viable) 4957 << (int)Entity.getKind() << CurInitExpr->getType() 4958 << CurInitExpr->getSourceRange(); 4959 CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr); 4960 if (!IsExtraneousCopy || S.isSFINAEContext()) 4961 return ExprError(); 4962 return CurInit; 4963 4964 case OR_Ambiguous: 4965 S.Diag(Loc, diag::err_temp_copy_ambiguous) 4966 << (int)Entity.getKind() << CurInitExpr->getType() 4967 << CurInitExpr->getSourceRange(); 4968 CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr); 4969 return ExprError(); 4970 4971 case OR_Deleted: 4972 S.Diag(Loc, diag::err_temp_copy_deleted) 4973 << (int)Entity.getKind() << CurInitExpr->getType() 4974 << CurInitExpr->getSourceRange(); 4975 S.NoteDeletedFunction(Best->Function); 4976 return ExprError(); 4977 } 4978 4979 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function); 4980 SmallVector<Expr*, 8> ConstructorArgs; 4981 CurInit.get(); // Ownership transferred into MultiExprArg, below. 4982 4983 S.CheckConstructorAccess(Loc, Constructor, Entity, 4984 Best->FoundDecl.getAccess(), IsExtraneousCopy); 4985 4986 if (IsExtraneousCopy) { 4987 // If this is a totally extraneous copy for C++03 reference 4988 // binding purposes, just return the original initialization 4989 // expression. We don't generate an (elided) copy operation here 4990 // because doing so would require us to pass down a flag to avoid 4991 // infinite recursion, where each step adds another extraneous, 4992 // elidable copy. 4993 4994 // Instantiate the default arguments of any extra parameters in 4995 // the selected copy constructor, as if we were going to create a 4996 // proper call to the copy constructor. 4997 for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) { 4998 ParmVarDecl *Parm = Constructor->getParamDecl(I); 4999 if (S.RequireCompleteType(Loc, Parm->getType(), 5000 diag::err_call_incomplete_argument)) 5001 break; 5002 5003 // Build the default argument expression; we don't actually care 5004 // if this succeeds or not, because this routine will complain 5005 // if there was a problem. 5006 S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm); 5007 } 5008 5009 return CurInitExpr; 5010 } 5011 5012 // Determine the arguments required to actually perform the 5013 // constructor call (we might have derived-to-base conversions, or 5014 // the copy constructor may have default arguments). 5015 if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs)) 5016 return ExprError(); 5017 5018 // Actually perform the constructor call. 5019 CurInit = S.BuildCXXConstructExpr(Loc, T, Constructor, Elidable, 5020 ConstructorArgs, 5021 HadMultipleCandidates, 5022 /*ListInit*/ false, 5023 /*ZeroInit*/ false, 5024 CXXConstructExpr::CK_Complete, 5025 SourceRange()); 5026 5027 // If we're supposed to bind temporaries, do so. 5028 if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity)) 5029 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>()); 5030 return CurInit; 5031 } 5032 5033 /// \brief Check whether elidable copy construction for binding a reference to 5034 /// a temporary would have succeeded if we were building in C++98 mode, for 5035 /// -Wc++98-compat. 5036 static void CheckCXX98CompatAccessibleCopy(Sema &S, 5037 const InitializedEntity &Entity, 5038 Expr *CurInitExpr) { 5039 assert(S.getLangOpts().CPlusPlus11); 5040 5041 const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>(); 5042 if (!Record) 5043 return; 5044 5045 SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr); 5046 if (S.Diags.getDiagnosticLevel(diag::warn_cxx98_compat_temp_copy, Loc) 5047 == DiagnosticsEngine::Ignored) 5048 return; 5049 5050 // Find constructors which would have been considered. 5051 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); 5052 LookupCopyAndMoveConstructors( 5053 S, CandidateSet, cast<CXXRecordDecl>(Record->getDecl()), CurInitExpr); 5054 5055 // Perform overload resolution. 5056 OverloadCandidateSet::iterator Best; 5057 OverloadingResult OR = CandidateSet.BestViableFunction(S, Loc, Best); 5058 5059 PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy) 5060 << OR << (int)Entity.getKind() << CurInitExpr->getType() 5061 << CurInitExpr->getSourceRange(); 5062 5063 switch (OR) { 5064 case OR_Success: 5065 S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function), 5066 Entity, Best->FoundDecl.getAccess(), Diag); 5067 // FIXME: Check default arguments as far as that's possible. 5068 break; 5069 5070 case OR_No_Viable_Function: 5071 S.Diag(Loc, Diag); 5072 CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr); 5073 break; 5074 5075 case OR_Ambiguous: 5076 S.Diag(Loc, Diag); 5077 CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr); 5078 break; 5079 5080 case OR_Deleted: 5081 S.Diag(Loc, Diag); 5082 S.NoteDeletedFunction(Best->Function); 5083 break; 5084 } 5085 } 5086 5087 void InitializationSequence::PrintInitLocationNote(Sema &S, 5088 const InitializedEntity &Entity) { 5089 if (Entity.isParameterKind() && Entity.getDecl()) { 5090 if (Entity.getDecl()->getLocation().isInvalid()) 5091 return; 5092 5093 if (Entity.getDecl()->getDeclName()) 5094 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here) 5095 << Entity.getDecl()->getDeclName(); 5096 else 5097 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here); 5098 } 5099 else if (Entity.getKind() == InitializedEntity::EK_RelatedResult && 5100 Entity.getMethodDecl()) 5101 S.Diag(Entity.getMethodDecl()->getLocation(), 5102 diag::note_method_return_type_change) 5103 << Entity.getMethodDecl()->getDeclName(); 5104 } 5105 5106 static bool isReferenceBinding(const InitializationSequence::Step &s) { 5107 return s.Kind == InitializationSequence::SK_BindReference || 5108 s.Kind == InitializationSequence::SK_BindReferenceToTemporary; 5109 } 5110 5111 /// Returns true if the parameters describe a constructor initialization of 5112 /// an explicit temporary object, e.g. "Point(x, y)". 5113 static bool isExplicitTemporary(const InitializedEntity &Entity, 5114 const InitializationKind &Kind, 5115 unsigned NumArgs) { 5116 switch (Entity.getKind()) { 5117 case InitializedEntity::EK_Temporary: 5118 case InitializedEntity::EK_CompoundLiteralInit: 5119 case InitializedEntity::EK_RelatedResult: 5120 break; 5121 default: 5122 return false; 5123 } 5124 5125 switch (Kind.getKind()) { 5126 case InitializationKind::IK_DirectList: 5127 return true; 5128 // FIXME: Hack to work around cast weirdness. 5129 case InitializationKind::IK_Direct: 5130 case InitializationKind::IK_Value: 5131 return NumArgs != 1; 5132 default: 5133 return false; 5134 } 5135 } 5136 5137 static ExprResult 5138 PerformConstructorInitialization(Sema &S, 5139 const InitializedEntity &Entity, 5140 const InitializationKind &Kind, 5141 MultiExprArg Args, 5142 const InitializationSequence::Step& Step, 5143 bool &ConstructorInitRequiresZeroInit, 5144 bool IsListInitialization, 5145 SourceLocation LBraceLoc, 5146 SourceLocation RBraceLoc) { 5147 unsigned NumArgs = Args.size(); 5148 CXXConstructorDecl *Constructor 5149 = cast<CXXConstructorDecl>(Step.Function.Function); 5150 bool HadMultipleCandidates = Step.Function.HadMultipleCandidates; 5151 5152 // Build a call to the selected constructor. 5153 SmallVector<Expr*, 8> ConstructorArgs; 5154 SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid()) 5155 ? Kind.getEqualLoc() 5156 : Kind.getLocation(); 5157 5158 if (Kind.getKind() == InitializationKind::IK_Default) { 5159 // Force even a trivial, implicit default constructor to be 5160 // semantically checked. We do this explicitly because we don't build 5161 // the definition for completely trivial constructors. 5162 assert(Constructor->getParent() && "No parent class for constructor."); 5163 if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() && 5164 Constructor->isTrivial() && !Constructor->isUsed(false)) 5165 S.DefineImplicitDefaultConstructor(Loc, Constructor); 5166 } 5167 5168 ExprResult CurInit((Expr *)nullptr); 5169 5170 // C++ [over.match.copy]p1: 5171 // - When initializing a temporary to be bound to the first parameter 5172 // of a constructor that takes a reference to possibly cv-qualified 5173 // T as its first argument, called with a single argument in the 5174 // context of direct-initialization, explicit conversion functions 5175 // are also considered. 5176 bool AllowExplicitConv = Kind.AllowExplicit() && !Kind.isCopyInit() && 5177 Args.size() == 1 && 5178 Constructor->isCopyOrMoveConstructor(); 5179 5180 // Determine the arguments required to actually perform the constructor 5181 // call. 5182 if (S.CompleteConstructorCall(Constructor, Args, 5183 Loc, ConstructorArgs, 5184 AllowExplicitConv, 5185 IsListInitialization)) 5186 return ExprError(); 5187 5188 5189 if (isExplicitTemporary(Entity, Kind, NumArgs)) { 5190 // An explicitly-constructed temporary, e.g., X(1, 2). 5191 S.MarkFunctionReferenced(Loc, Constructor); 5192 if (S.DiagnoseUseOfDecl(Constructor, Loc)) 5193 return ExprError(); 5194 5195 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); 5196 if (!TSInfo) 5197 TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc); 5198 SourceRange ParenOrBraceRange = 5199 (Kind.getKind() == InitializationKind::IK_DirectList) 5200 ? SourceRange(LBraceLoc, RBraceLoc) 5201 : Kind.getParenRange(); 5202 5203 CurInit = new (S.Context) CXXTemporaryObjectExpr( 5204 S.Context, Constructor, TSInfo, ConstructorArgs, ParenOrBraceRange, 5205 HadMultipleCandidates, IsListInitialization, 5206 ConstructorInitRequiresZeroInit); 5207 } else { 5208 CXXConstructExpr::ConstructionKind ConstructKind = 5209 CXXConstructExpr::CK_Complete; 5210 5211 if (Entity.getKind() == InitializedEntity::EK_Base) { 5212 ConstructKind = Entity.getBaseSpecifier()->isVirtual() ? 5213 CXXConstructExpr::CK_VirtualBase : 5214 CXXConstructExpr::CK_NonVirtualBase; 5215 } else if (Entity.getKind() == InitializedEntity::EK_Delegating) { 5216 ConstructKind = CXXConstructExpr::CK_Delegating; 5217 } 5218 5219 // Only get the parenthesis or brace range if it is a list initialization or 5220 // direct construction. 5221 SourceRange ParenOrBraceRange; 5222 if (IsListInitialization) 5223 ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc); 5224 else if (Kind.getKind() == InitializationKind::IK_Direct) 5225 ParenOrBraceRange = Kind.getParenRange(); 5226 5227 // If the entity allows NRVO, mark the construction as elidable 5228 // unconditionally. 5229 if (Entity.allowsNRVO()) 5230 CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(), 5231 Constructor, /*Elidable=*/true, 5232 ConstructorArgs, 5233 HadMultipleCandidates, 5234 IsListInitialization, 5235 ConstructorInitRequiresZeroInit, 5236 ConstructKind, 5237 ParenOrBraceRange); 5238 else 5239 CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(), 5240 Constructor, 5241 ConstructorArgs, 5242 HadMultipleCandidates, 5243 IsListInitialization, 5244 ConstructorInitRequiresZeroInit, 5245 ConstructKind, 5246 ParenOrBraceRange); 5247 } 5248 if (CurInit.isInvalid()) 5249 return ExprError(); 5250 5251 // Only check access if all of that succeeded. 5252 S.CheckConstructorAccess(Loc, Constructor, Entity, 5253 Step.Function.FoundDecl.getAccess()); 5254 if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc)) 5255 return ExprError(); 5256 5257 if (shouldBindAsTemporary(Entity)) 5258 CurInit = S.MaybeBindToTemporary(CurInit.get()); 5259 5260 return CurInit; 5261 } 5262 5263 /// Determine whether the specified InitializedEntity definitely has a lifetime 5264 /// longer than the current full-expression. Conservatively returns false if 5265 /// it's unclear. 5266 static bool 5267 InitializedEntityOutlivesFullExpression(const InitializedEntity &Entity) { 5268 const InitializedEntity *Top = &Entity; 5269 while (Top->getParent()) 5270 Top = Top->getParent(); 5271 5272 switch (Top->getKind()) { 5273 case InitializedEntity::EK_Variable: 5274 case InitializedEntity::EK_Result: 5275 case InitializedEntity::EK_Exception: 5276 case InitializedEntity::EK_Member: 5277 case InitializedEntity::EK_New: 5278 case InitializedEntity::EK_Base: 5279 case InitializedEntity::EK_Delegating: 5280 return true; 5281 5282 case InitializedEntity::EK_ArrayElement: 5283 case InitializedEntity::EK_VectorElement: 5284 case InitializedEntity::EK_BlockElement: 5285 case InitializedEntity::EK_ComplexElement: 5286 // Could not determine what the full initialization is. Assume it might not 5287 // outlive the full-expression. 5288 return false; 5289 5290 case InitializedEntity::EK_Parameter: 5291 case InitializedEntity::EK_Parameter_CF_Audited: 5292 case InitializedEntity::EK_Temporary: 5293 case InitializedEntity::EK_LambdaCapture: 5294 case InitializedEntity::EK_CompoundLiteralInit: 5295 case InitializedEntity::EK_RelatedResult: 5296 // The entity being initialized might not outlive the full-expression. 5297 return false; 5298 } 5299 5300 llvm_unreachable("unknown entity kind"); 5301 } 5302 5303 /// Determine the declaration which an initialized entity ultimately refers to, 5304 /// for the purpose of lifetime-extending a temporary bound to a reference in 5305 /// the initialization of \p Entity. 5306 static const InitializedEntity *getEntityForTemporaryLifetimeExtension( 5307 const InitializedEntity *Entity, 5308 const InitializedEntity *FallbackDecl = nullptr) { 5309 // C++11 [class.temporary]p5: 5310 switch (Entity->getKind()) { 5311 case InitializedEntity::EK_Variable: 5312 // The temporary [...] persists for the lifetime of the reference 5313 return Entity; 5314 5315 case InitializedEntity::EK_Member: 5316 // For subobjects, we look at the complete object. 5317 if (Entity->getParent()) 5318 return getEntityForTemporaryLifetimeExtension(Entity->getParent(), 5319 Entity); 5320 5321 // except: 5322 // -- A temporary bound to a reference member in a constructor's 5323 // ctor-initializer persists until the constructor exits. 5324 return Entity; 5325 5326 case InitializedEntity::EK_Parameter: 5327 case InitializedEntity::EK_Parameter_CF_Audited: 5328 // -- A temporary bound to a reference parameter in a function call 5329 // persists until the completion of the full-expression containing 5330 // the call. 5331 case InitializedEntity::EK_Result: 5332 // -- The lifetime of a temporary bound to the returned value in a 5333 // function return statement is not extended; the temporary is 5334 // destroyed at the end of the full-expression in the return statement. 5335 case InitializedEntity::EK_New: 5336 // -- A temporary bound to a reference in a new-initializer persists 5337 // until the completion of the full-expression containing the 5338 // new-initializer. 5339 return nullptr; 5340 5341 case InitializedEntity::EK_Temporary: 5342 case InitializedEntity::EK_CompoundLiteralInit: 5343 case InitializedEntity::EK_RelatedResult: 5344 // We don't yet know the storage duration of the surrounding temporary. 5345 // Assume it's got full-expression duration for now, it will patch up our 5346 // storage duration if that's not correct. 5347 return nullptr; 5348 5349 case InitializedEntity::EK_ArrayElement: 5350 // For subobjects, we look at the complete object. 5351 return getEntityForTemporaryLifetimeExtension(Entity->getParent(), 5352 FallbackDecl); 5353 5354 case InitializedEntity::EK_Base: 5355 case InitializedEntity::EK_Delegating: 5356 // We can reach this case for aggregate initialization in a constructor: 5357 // struct A { int &&r; }; 5358 // struct B : A { B() : A{0} {} }; 5359 // In this case, use the innermost field decl as the context. 5360 return FallbackDecl; 5361 5362 case InitializedEntity::EK_BlockElement: 5363 case InitializedEntity::EK_LambdaCapture: 5364 case InitializedEntity::EK_Exception: 5365 case InitializedEntity::EK_VectorElement: 5366 case InitializedEntity::EK_ComplexElement: 5367 return nullptr; 5368 } 5369 llvm_unreachable("unknown entity kind"); 5370 } 5371 5372 static void performLifetimeExtension(Expr *Init, 5373 const InitializedEntity *ExtendingEntity); 5374 5375 /// Update a glvalue expression that is used as the initializer of a reference 5376 /// to note that its lifetime is extended. 5377 /// \return \c true if any temporary had its lifetime extended. 5378 static bool 5379 performReferenceExtension(Expr *Init, 5380 const InitializedEntity *ExtendingEntity) { 5381 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 5382 if (ILE->getNumInits() == 1 && ILE->isGLValue()) { 5383 // This is just redundant braces around an initializer. Step over it. 5384 Init = ILE->getInit(0); 5385 } 5386 } 5387 5388 // Walk past any constructs which we can lifetime-extend across. 5389 Expr *Old; 5390 do { 5391 Old = Init; 5392 5393 // Step over any subobject adjustments; we may have a materialized 5394 // temporary inside them. 5395 SmallVector<const Expr *, 2> CommaLHSs; 5396 SmallVector<SubobjectAdjustment, 2> Adjustments; 5397 Init = const_cast<Expr *>( 5398 Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments)); 5399 5400 // Per current approach for DR1376, look through casts to reference type 5401 // when performing lifetime extension. 5402 if (CastExpr *CE = dyn_cast<CastExpr>(Init)) 5403 if (CE->getSubExpr()->isGLValue()) 5404 Init = CE->getSubExpr(); 5405 5406 // FIXME: Per DR1213, subscripting on an array temporary produces an xvalue. 5407 // It's unclear if binding a reference to that xvalue extends the array 5408 // temporary. 5409 } while (Init != Old); 5410 5411 if (MaterializeTemporaryExpr *ME = dyn_cast<MaterializeTemporaryExpr>(Init)) { 5412 // Update the storage duration of the materialized temporary. 5413 // FIXME: Rebuild the expression instead of mutating it. 5414 ME->setExtendingDecl(ExtendingEntity->getDecl(), 5415 ExtendingEntity->allocateManglingNumber()); 5416 performLifetimeExtension(ME->GetTemporaryExpr(), ExtendingEntity); 5417 return true; 5418 } 5419 5420 return false; 5421 } 5422 5423 /// Update a prvalue expression that is going to be materialized as a 5424 /// lifetime-extended temporary. 5425 static void performLifetimeExtension(Expr *Init, 5426 const InitializedEntity *ExtendingEntity) { 5427 // Dig out the expression which constructs the extended temporary. 5428 SmallVector<const Expr *, 2> CommaLHSs; 5429 SmallVector<SubobjectAdjustment, 2> Adjustments; 5430 Init = const_cast<Expr *>( 5431 Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments)); 5432 5433 if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init)) 5434 Init = BTE->getSubExpr(); 5435 5436 if (CXXStdInitializerListExpr *ILE = 5437 dyn_cast<CXXStdInitializerListExpr>(Init)) { 5438 performReferenceExtension(ILE->getSubExpr(), ExtendingEntity); 5439 return; 5440 } 5441 5442 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 5443 if (ILE->getType()->isArrayType()) { 5444 for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I) 5445 performLifetimeExtension(ILE->getInit(I), ExtendingEntity); 5446 return; 5447 } 5448 5449 if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) { 5450 assert(RD->isAggregate() && "aggregate init on non-aggregate"); 5451 5452 // If we lifetime-extend a braced initializer which is initializing an 5453 // aggregate, and that aggregate contains reference members which are 5454 // bound to temporaries, those temporaries are also lifetime-extended. 5455 if (RD->isUnion() && ILE->getInitializedFieldInUnion() && 5456 ILE->getInitializedFieldInUnion()->getType()->isReferenceType()) 5457 performReferenceExtension(ILE->getInit(0), ExtendingEntity); 5458 else { 5459 unsigned Index = 0; 5460 for (const auto *I : RD->fields()) { 5461 if (Index >= ILE->getNumInits()) 5462 break; 5463 if (I->isUnnamedBitfield()) 5464 continue; 5465 Expr *SubInit = ILE->getInit(Index); 5466 if (I->getType()->isReferenceType()) 5467 performReferenceExtension(SubInit, ExtendingEntity); 5468 else if (isa<InitListExpr>(SubInit) || 5469 isa<CXXStdInitializerListExpr>(SubInit)) 5470 // This may be either aggregate-initialization of a member or 5471 // initialization of a std::initializer_list object. Either way, 5472 // we should recursively lifetime-extend that initializer. 5473 performLifetimeExtension(SubInit, ExtendingEntity); 5474 ++Index; 5475 } 5476 } 5477 } 5478 } 5479 } 5480 5481 static void warnOnLifetimeExtension(Sema &S, const InitializedEntity &Entity, 5482 const Expr *Init, bool IsInitializerList, 5483 const ValueDecl *ExtendingDecl) { 5484 // Warn if a field lifetime-extends a temporary. 5485 if (isa<FieldDecl>(ExtendingDecl)) { 5486 if (IsInitializerList) { 5487 S.Diag(Init->getExprLoc(), diag::warn_dangling_std_initializer_list) 5488 << /*at end of constructor*/true; 5489 return; 5490 } 5491 5492 bool IsSubobjectMember = false; 5493 for (const InitializedEntity *Ent = Entity.getParent(); Ent; 5494 Ent = Ent->getParent()) { 5495 if (Ent->getKind() != InitializedEntity::EK_Base) { 5496 IsSubobjectMember = true; 5497 break; 5498 } 5499 } 5500 S.Diag(Init->getExprLoc(), 5501 diag::warn_bind_ref_member_to_temporary) 5502 << ExtendingDecl << Init->getSourceRange() 5503 << IsSubobjectMember << IsInitializerList; 5504 if (IsSubobjectMember) 5505 S.Diag(ExtendingDecl->getLocation(), 5506 diag::note_ref_subobject_of_member_declared_here); 5507 else 5508 S.Diag(ExtendingDecl->getLocation(), 5509 diag::note_ref_or_ptr_member_declared_here) 5510 << /*is pointer*/false; 5511 } 5512 } 5513 5514 static void DiagnoseNarrowingInInitList(Sema &S, 5515 const ImplicitConversionSequence &ICS, 5516 QualType PreNarrowingType, 5517 QualType EntityType, 5518 const Expr *PostInit); 5519 5520 ExprResult 5521 InitializationSequence::Perform(Sema &S, 5522 const InitializedEntity &Entity, 5523 const InitializationKind &Kind, 5524 MultiExprArg Args, 5525 QualType *ResultType) { 5526 if (Failed()) { 5527 Diagnose(S, Entity, Kind, Args); 5528 return ExprError(); 5529 } 5530 5531 if (getKind() == DependentSequence) { 5532 // If the declaration is a non-dependent, incomplete array type 5533 // that has an initializer, then its type will be completed once 5534 // the initializer is instantiated. 5535 if (ResultType && !Entity.getType()->isDependentType() && 5536 Args.size() == 1) { 5537 QualType DeclType = Entity.getType(); 5538 if (const IncompleteArrayType *ArrayT 5539 = S.Context.getAsIncompleteArrayType(DeclType)) { 5540 // FIXME: We don't currently have the ability to accurately 5541 // compute the length of an initializer list without 5542 // performing full type-checking of the initializer list 5543 // (since we have to determine where braces are implicitly 5544 // introduced and such). So, we fall back to making the array 5545 // type a dependently-sized array type with no specified 5546 // bound. 5547 if (isa<InitListExpr>((Expr *)Args[0])) { 5548 SourceRange Brackets; 5549 5550 // Scavange the location of the brackets from the entity, if we can. 5551 if (DeclaratorDecl *DD = Entity.getDecl()) { 5552 if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) { 5553 TypeLoc TL = TInfo->getTypeLoc(); 5554 if (IncompleteArrayTypeLoc ArrayLoc = 5555 TL.getAs<IncompleteArrayTypeLoc>()) 5556 Brackets = ArrayLoc.getBracketsRange(); 5557 } 5558 } 5559 5560 *ResultType 5561 = S.Context.getDependentSizedArrayType(ArrayT->getElementType(), 5562 /*NumElts=*/nullptr, 5563 ArrayT->getSizeModifier(), 5564 ArrayT->getIndexTypeCVRQualifiers(), 5565 Brackets); 5566 } 5567 5568 } 5569 } 5570 if (Kind.getKind() == InitializationKind::IK_Direct && 5571 !Kind.isExplicitCast()) { 5572 // Rebuild the ParenListExpr. 5573 SourceRange ParenRange = Kind.getParenRange(); 5574 return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(), 5575 Args); 5576 } 5577 assert(Kind.getKind() == InitializationKind::IK_Copy || 5578 Kind.isExplicitCast() || 5579 Kind.getKind() == InitializationKind::IK_DirectList); 5580 return ExprResult(Args[0]); 5581 } 5582 5583 // No steps means no initialization. 5584 if (Steps.empty()) 5585 return ExprResult((Expr *)nullptr); 5586 5587 if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() && 5588 Args.size() == 1 && isa<InitListExpr>(Args[0]) && 5589 !Entity.isParameterKind()) { 5590 // Produce a C++98 compatibility warning if we are initializing a reference 5591 // from an initializer list. For parameters, we produce a better warning 5592 // elsewhere. 5593 Expr *Init = Args[0]; 5594 S.Diag(Init->getLocStart(), diag::warn_cxx98_compat_reference_list_init) 5595 << Init->getSourceRange(); 5596 } 5597 5598 // Diagnose cases where we initialize a pointer to an array temporary, and the 5599 // pointer obviously outlives the temporary. 5600 if (Args.size() == 1 && Args[0]->getType()->isArrayType() && 5601 Entity.getType()->isPointerType() && 5602 InitializedEntityOutlivesFullExpression(Entity)) { 5603 Expr *Init = Args[0]; 5604 Expr::LValueClassification Kind = Init->ClassifyLValue(S.Context); 5605 if (Kind == Expr::LV_ClassTemporary || Kind == Expr::LV_ArrayTemporary) 5606 S.Diag(Init->getLocStart(), diag::warn_temporary_array_to_pointer_decay) 5607 << Init->getSourceRange(); 5608 } 5609 5610 QualType DestType = Entity.getType().getNonReferenceType(); 5611 // FIXME: Ugly hack around the fact that Entity.getType() is not 5612 // the same as Entity.getDecl()->getType() in cases involving type merging, 5613 // and we want latter when it makes sense. 5614 if (ResultType) 5615 *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() : 5616 Entity.getType(); 5617 5618 ExprResult CurInit((Expr *)nullptr); 5619 5620 // For initialization steps that start with a single initializer, 5621 // grab the only argument out the Args and place it into the "current" 5622 // initializer. 5623 switch (Steps.front().Kind) { 5624 case SK_ResolveAddressOfOverloadedFunction: 5625 case SK_CastDerivedToBaseRValue: 5626 case SK_CastDerivedToBaseXValue: 5627 case SK_CastDerivedToBaseLValue: 5628 case SK_BindReference: 5629 case SK_BindReferenceToTemporary: 5630 case SK_ExtraneousCopyToTemporary: 5631 case SK_UserConversion: 5632 case SK_QualificationConversionLValue: 5633 case SK_QualificationConversionXValue: 5634 case SK_QualificationConversionRValue: 5635 case SK_LValueToRValue: 5636 case SK_ConversionSequence: 5637 case SK_ConversionSequenceNoNarrowing: 5638 case SK_ListInitialization: 5639 case SK_UnwrapInitList: 5640 case SK_RewrapInitList: 5641 case SK_CAssignment: 5642 case SK_StringInit: 5643 case SK_ObjCObjectConversion: 5644 case SK_ArrayInit: 5645 case SK_ParenthesizedArrayInit: 5646 case SK_PassByIndirectCopyRestore: 5647 case SK_PassByIndirectRestore: 5648 case SK_ProduceObjCObject: 5649 case SK_StdInitializerList: 5650 case SK_OCLSamplerInit: 5651 case SK_OCLZeroEvent: { 5652 assert(Args.size() == 1); 5653 CurInit = Args[0]; 5654 if (!CurInit.get()) return ExprError(); 5655 break; 5656 } 5657 5658 case SK_ConstructorInitialization: 5659 case SK_ListConstructorCall: 5660 case SK_ZeroInitialization: 5661 break; 5662 } 5663 5664 // Walk through the computed steps for the initialization sequence, 5665 // performing the specified conversions along the way. 5666 bool ConstructorInitRequiresZeroInit = false; 5667 for (step_iterator Step = step_begin(), StepEnd = step_end(); 5668 Step != StepEnd; ++Step) { 5669 if (CurInit.isInvalid()) 5670 return ExprError(); 5671 5672 QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType(); 5673 5674 switch (Step->Kind) { 5675 case SK_ResolveAddressOfOverloadedFunction: 5676 // Overload resolution determined which function invoke; update the 5677 // initializer to reflect that choice. 5678 S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl); 5679 if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation())) 5680 return ExprError(); 5681 CurInit = S.FixOverloadedFunctionReference(CurInit, 5682 Step->Function.FoundDecl, 5683 Step->Function.Function); 5684 break; 5685 5686 case SK_CastDerivedToBaseRValue: 5687 case SK_CastDerivedToBaseXValue: 5688 case SK_CastDerivedToBaseLValue: { 5689 // We have a derived-to-base cast that produces either an rvalue or an 5690 // lvalue. Perform that cast. 5691 5692 CXXCastPath BasePath; 5693 5694 // Casts to inaccessible base classes are allowed with C-style casts. 5695 bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast(); 5696 if (S.CheckDerivedToBaseConversion(SourceType, Step->Type, 5697 CurInit.get()->getLocStart(), 5698 CurInit.get()->getSourceRange(), 5699 &BasePath, IgnoreBaseAccess)) 5700 return ExprError(); 5701 5702 if (S.BasePathInvolvesVirtualBase(BasePath)) { 5703 QualType T = SourceType; 5704 if (const PointerType *Pointer = T->getAs<PointerType>()) 5705 T = Pointer->getPointeeType(); 5706 if (const RecordType *RecordTy = T->getAs<RecordType>()) 5707 S.MarkVTableUsed(CurInit.get()->getLocStart(), 5708 cast<CXXRecordDecl>(RecordTy->getDecl())); 5709 } 5710 5711 ExprValueKind VK = 5712 Step->Kind == SK_CastDerivedToBaseLValue ? 5713 VK_LValue : 5714 (Step->Kind == SK_CastDerivedToBaseXValue ? 5715 VK_XValue : 5716 VK_RValue); 5717 CurInit = 5718 ImplicitCastExpr::Create(S.Context, Step->Type, CK_DerivedToBase, 5719 CurInit.get(), &BasePath, VK); 5720 break; 5721 } 5722 5723 case SK_BindReference: 5724 // References cannot bind to bit-fields (C++ [dcl.init.ref]p5). 5725 if (CurInit.get()->refersToBitField()) { 5726 // We don't necessarily have an unambiguous source bit-field. 5727 FieldDecl *BitField = CurInit.get()->getSourceBitField(); 5728 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield) 5729 << Entity.getType().isVolatileQualified() 5730 << (BitField ? BitField->getDeclName() : DeclarationName()) 5731 << (BitField != nullptr) 5732 << CurInit.get()->getSourceRange(); 5733 if (BitField) 5734 S.Diag(BitField->getLocation(), diag::note_bitfield_decl); 5735 5736 return ExprError(); 5737 } 5738 5739 if (CurInit.get()->refersToVectorElement()) { 5740 // References cannot bind to vector elements. 5741 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element) 5742 << Entity.getType().isVolatileQualified() 5743 << CurInit.get()->getSourceRange(); 5744 PrintInitLocationNote(S, Entity); 5745 return ExprError(); 5746 } 5747 5748 // Reference binding does not have any corresponding ASTs. 5749 5750 // Check exception specifications 5751 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType)) 5752 return ExprError(); 5753 5754 // Even though we didn't materialize a temporary, the binding may still 5755 // extend the lifetime of a temporary. This happens if we bind a reference 5756 // to the result of a cast to reference type. 5757 if (const InitializedEntity *ExtendingEntity = 5758 getEntityForTemporaryLifetimeExtension(&Entity)) 5759 if (performReferenceExtension(CurInit.get(), ExtendingEntity)) 5760 warnOnLifetimeExtension(S, Entity, CurInit.get(), 5761 /*IsInitializerList=*/false, 5762 ExtendingEntity->getDecl()); 5763 5764 break; 5765 5766 case SK_BindReferenceToTemporary: { 5767 // Make sure the "temporary" is actually an rvalue. 5768 assert(CurInit.get()->isRValue() && "not a temporary"); 5769 5770 // Check exception specifications 5771 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType)) 5772 return ExprError(); 5773 5774 // Materialize the temporary into memory. 5775 MaterializeTemporaryExpr *MTE = new (S.Context) MaterializeTemporaryExpr( 5776 Entity.getType().getNonReferenceType(), CurInit.get(), 5777 Entity.getType()->isLValueReferenceType()); 5778 5779 // Maybe lifetime-extend the temporary's subobjects to match the 5780 // entity's lifetime. 5781 if (const InitializedEntity *ExtendingEntity = 5782 getEntityForTemporaryLifetimeExtension(&Entity)) 5783 if (performReferenceExtension(MTE, ExtendingEntity)) 5784 warnOnLifetimeExtension(S, Entity, CurInit.get(), /*IsInitializerList=*/false, 5785 ExtendingEntity->getDecl()); 5786 5787 // If we're binding to an Objective-C object that has lifetime, we 5788 // need cleanups. Likewise if we're extending this temporary to automatic 5789 // storage duration -- we need to register its cleanup during the 5790 // full-expression's cleanups. 5791 if ((S.getLangOpts().ObjCAutoRefCount && 5792 MTE->getType()->isObjCLifetimeType()) || 5793 (MTE->getStorageDuration() == SD_Automatic && 5794 MTE->getType().isDestructedType())) 5795 S.ExprNeedsCleanups = true; 5796 5797 CurInit = MTE; 5798 break; 5799 } 5800 5801 case SK_ExtraneousCopyToTemporary: 5802 CurInit = CopyObject(S, Step->Type, Entity, CurInit, 5803 /*IsExtraneousCopy=*/true); 5804 break; 5805 5806 case SK_UserConversion: { 5807 // We have a user-defined conversion that invokes either a constructor 5808 // or a conversion function. 5809 CastKind CastKind; 5810 bool IsCopy = false; 5811 FunctionDecl *Fn = Step->Function.Function; 5812 DeclAccessPair FoundFn = Step->Function.FoundDecl; 5813 bool HadMultipleCandidates = Step->Function.HadMultipleCandidates; 5814 bool CreatedObject = false; 5815 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) { 5816 // Build a call to the selected constructor. 5817 SmallVector<Expr*, 8> ConstructorArgs; 5818 SourceLocation Loc = CurInit.get()->getLocStart(); 5819 CurInit.get(); // Ownership transferred into MultiExprArg, below. 5820 5821 // Determine the arguments required to actually perform the constructor 5822 // call. 5823 Expr *Arg = CurInit.get(); 5824 if (S.CompleteConstructorCall(Constructor, 5825 MultiExprArg(&Arg, 1), 5826 Loc, ConstructorArgs)) 5827 return ExprError(); 5828 5829 // Build an expression that constructs a temporary. 5830 CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor, 5831 ConstructorArgs, 5832 HadMultipleCandidates, 5833 /*ListInit*/ false, 5834 /*ZeroInit*/ false, 5835 CXXConstructExpr::CK_Complete, 5836 SourceRange()); 5837 if (CurInit.isInvalid()) 5838 return ExprError(); 5839 5840 S.CheckConstructorAccess(Kind.getLocation(), Constructor, Entity, 5841 FoundFn.getAccess()); 5842 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation())) 5843 return ExprError(); 5844 5845 CastKind = CK_ConstructorConversion; 5846 QualType Class = S.Context.getTypeDeclType(Constructor->getParent()); 5847 if (S.Context.hasSameUnqualifiedType(SourceType, Class) || 5848 S.IsDerivedFrom(SourceType, Class)) 5849 IsCopy = true; 5850 5851 CreatedObject = true; 5852 } else { 5853 // Build a call to the conversion function. 5854 CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn); 5855 S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr, 5856 FoundFn); 5857 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation())) 5858 return ExprError(); 5859 5860 // FIXME: Should we move this initialization into a separate 5861 // derived-to-base conversion? I believe the answer is "no", because 5862 // we don't want to turn off access control here for c-style casts. 5863 ExprResult CurInitExprRes = 5864 S.PerformObjectArgumentInitialization(CurInit.get(), 5865 /*Qualifier=*/nullptr, 5866 FoundFn, Conversion); 5867 if(CurInitExprRes.isInvalid()) 5868 return ExprError(); 5869 CurInit = CurInitExprRes; 5870 5871 // Build the actual call to the conversion function. 5872 CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion, 5873 HadMultipleCandidates); 5874 if (CurInit.isInvalid() || !CurInit.get()) 5875 return ExprError(); 5876 5877 CastKind = CK_UserDefinedConversion; 5878 5879 CreatedObject = Conversion->getReturnType()->isRecordType(); 5880 } 5881 5882 bool RequiresCopy = !IsCopy && !isReferenceBinding(Steps.back()); 5883 bool MaybeBindToTemp = RequiresCopy || shouldBindAsTemporary(Entity); 5884 5885 if (!MaybeBindToTemp && CreatedObject && shouldDestroyTemporary(Entity)) { 5886 QualType T = CurInit.get()->getType(); 5887 if (const RecordType *Record = T->getAs<RecordType>()) { 5888 CXXDestructorDecl *Destructor 5889 = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl())); 5890 S.CheckDestructorAccess(CurInit.get()->getLocStart(), Destructor, 5891 S.PDiag(diag::err_access_dtor_temp) << T); 5892 S.MarkFunctionReferenced(CurInit.get()->getLocStart(), Destructor); 5893 if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getLocStart())) 5894 return ExprError(); 5895 } 5896 } 5897 5898 CurInit = ImplicitCastExpr::Create(S.Context, CurInit.get()->getType(), 5899 CastKind, CurInit.get(), nullptr, 5900 CurInit.get()->getValueKind()); 5901 if (MaybeBindToTemp) 5902 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>()); 5903 if (RequiresCopy) 5904 CurInit = CopyObject(S, Entity.getType().getNonReferenceType(), Entity, 5905 CurInit, /*IsExtraneousCopy=*/false); 5906 break; 5907 } 5908 5909 case SK_QualificationConversionLValue: 5910 case SK_QualificationConversionXValue: 5911 case SK_QualificationConversionRValue: { 5912 // Perform a qualification conversion; these can never go wrong. 5913 ExprValueKind VK = 5914 Step->Kind == SK_QualificationConversionLValue ? 5915 VK_LValue : 5916 (Step->Kind == SK_QualificationConversionXValue ? 5917 VK_XValue : 5918 VK_RValue); 5919 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, CK_NoOp, VK); 5920 break; 5921 } 5922 5923 case SK_LValueToRValue: { 5924 assert(CurInit.get()->isGLValue() && "cannot load from a prvalue"); 5925 CurInit = ImplicitCastExpr::Create(S.Context, Step->Type, 5926 CK_LValueToRValue, CurInit.get(), 5927 /*BasePath=*/nullptr, VK_RValue); 5928 break; 5929 } 5930 5931 case SK_ConversionSequence: 5932 case SK_ConversionSequenceNoNarrowing: { 5933 Sema::CheckedConversionKind CCK 5934 = Kind.isCStyleCast()? Sema::CCK_CStyleCast 5935 : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast 5936 : Kind.isExplicitCast()? Sema::CCK_OtherCast 5937 : Sema::CCK_ImplicitConversion; 5938 ExprResult CurInitExprRes = 5939 S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS, 5940 getAssignmentAction(Entity), CCK); 5941 if (CurInitExprRes.isInvalid()) 5942 return ExprError(); 5943 CurInit = CurInitExprRes; 5944 5945 if (Step->Kind == SK_ConversionSequenceNoNarrowing && 5946 S.getLangOpts().CPlusPlus && !CurInit.get()->isValueDependent()) 5947 DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(), 5948 CurInit.get()); 5949 break; 5950 } 5951 5952 case SK_ListInitialization: { 5953 InitListExpr *InitList = cast<InitListExpr>(CurInit.get()); 5954 // If we're not initializing the top-level entity, we need to create an 5955 // InitializeTemporary entity for our target type. 5956 QualType Ty = Step->Type; 5957 bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty); 5958 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty); 5959 InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity; 5960 InitListChecker PerformInitList(S, InitEntity, 5961 InitList, Ty, /*VerifyOnly=*/false); 5962 if (PerformInitList.HadError()) 5963 return ExprError(); 5964 5965 // Hack: We must update *ResultType if available in order to set the 5966 // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'. 5967 // Worst case: 'const int (&arref)[] = {1, 2, 3};'. 5968 if (ResultType && 5969 ResultType->getNonReferenceType()->isIncompleteArrayType()) { 5970 if ((*ResultType)->isRValueReferenceType()) 5971 Ty = S.Context.getRValueReferenceType(Ty); 5972 else if ((*ResultType)->isLValueReferenceType()) 5973 Ty = S.Context.getLValueReferenceType(Ty, 5974 (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue()); 5975 *ResultType = Ty; 5976 } 5977 5978 InitListExpr *StructuredInitList = 5979 PerformInitList.getFullyStructuredList(); 5980 CurInit.get(); 5981 CurInit = shouldBindAsTemporary(InitEntity) 5982 ? S.MaybeBindToTemporary(StructuredInitList) 5983 : StructuredInitList; 5984 break; 5985 } 5986 5987 case SK_ListConstructorCall: { 5988 // When an initializer list is passed for a parameter of type "reference 5989 // to object", we don't get an EK_Temporary entity, but instead an 5990 // EK_Parameter entity with reference type. 5991 // FIXME: This is a hack. What we really should do is create a user 5992 // conversion step for this case, but this makes it considerably more 5993 // complicated. For now, this will do. 5994 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( 5995 Entity.getType().getNonReferenceType()); 5996 bool UseTemporary = Entity.getType()->isReferenceType(); 5997 assert(Args.size() == 1 && "expected a single argument for list init"); 5998 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 5999 S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init) 6000 << InitList->getSourceRange(); 6001 MultiExprArg Arg(InitList->getInits(), InitList->getNumInits()); 6002 CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity : 6003 Entity, 6004 Kind, Arg, *Step, 6005 ConstructorInitRequiresZeroInit, 6006 /*IsListInitialization*/ true, 6007 InitList->getLBraceLoc(), 6008 InitList->getRBraceLoc()); 6009 break; 6010 } 6011 6012 case SK_UnwrapInitList: 6013 CurInit = cast<InitListExpr>(CurInit.get())->getInit(0); 6014 break; 6015 6016 case SK_RewrapInitList: { 6017 Expr *E = CurInit.get(); 6018 InitListExpr *Syntactic = Step->WrappingSyntacticList; 6019 InitListExpr *ILE = new (S.Context) InitListExpr(S.Context, 6020 Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc()); 6021 ILE->setSyntacticForm(Syntactic); 6022 ILE->setType(E->getType()); 6023 ILE->setValueKind(E->getValueKind()); 6024 CurInit = ILE; 6025 break; 6026 } 6027 6028 case SK_ConstructorInitialization: { 6029 // When an initializer list is passed for a parameter of type "reference 6030 // to object", we don't get an EK_Temporary entity, but instead an 6031 // EK_Parameter entity with reference type. 6032 // FIXME: This is a hack. What we really should do is create a user 6033 // conversion step for this case, but this makes it considerably more 6034 // complicated. For now, this will do. 6035 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( 6036 Entity.getType().getNonReferenceType()); 6037 bool UseTemporary = Entity.getType()->isReferenceType(); 6038 CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity 6039 : Entity, 6040 Kind, Args, *Step, 6041 ConstructorInitRequiresZeroInit, 6042 /*IsListInitialization*/ false, 6043 /*LBraceLoc*/ SourceLocation(), 6044 /*RBraceLoc*/ SourceLocation()); 6045 break; 6046 } 6047 6048 case SK_ZeroInitialization: { 6049 step_iterator NextStep = Step; 6050 ++NextStep; 6051 if (NextStep != StepEnd && 6052 (NextStep->Kind == SK_ConstructorInitialization || 6053 NextStep->Kind == SK_ListConstructorCall)) { 6054 // The need for zero-initialization is recorded directly into 6055 // the call to the object's constructor within the next step. 6056 ConstructorInitRequiresZeroInit = true; 6057 } else if (Kind.getKind() == InitializationKind::IK_Value && 6058 S.getLangOpts().CPlusPlus && 6059 !Kind.isImplicitValueInit()) { 6060 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); 6061 if (!TSInfo) 6062 TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type, 6063 Kind.getRange().getBegin()); 6064 6065 CurInit = new (S.Context) CXXScalarValueInitExpr( 6066 TSInfo->getType().getNonLValueExprType(S.Context), TSInfo, 6067 Kind.getRange().getEnd()); 6068 } else { 6069 CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type); 6070 } 6071 break; 6072 } 6073 6074 case SK_CAssignment: { 6075 QualType SourceType = CurInit.get()->getType(); 6076 ExprResult Result = CurInit; 6077 Sema::AssignConvertType ConvTy = 6078 S.CheckSingleAssignmentConstraints(Step->Type, Result, true, 6079 Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited); 6080 if (Result.isInvalid()) 6081 return ExprError(); 6082 CurInit = Result; 6083 6084 // If this is a call, allow conversion to a transparent union. 6085 ExprResult CurInitExprRes = CurInit; 6086 if (ConvTy != Sema::Compatible && 6087 Entity.isParameterKind() && 6088 S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes) 6089 == Sema::Compatible) 6090 ConvTy = Sema::Compatible; 6091 if (CurInitExprRes.isInvalid()) 6092 return ExprError(); 6093 CurInit = CurInitExprRes; 6094 6095 bool Complained; 6096 if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(), 6097 Step->Type, SourceType, 6098 CurInit.get(), 6099 getAssignmentAction(Entity, true), 6100 &Complained)) { 6101 PrintInitLocationNote(S, Entity); 6102 return ExprError(); 6103 } else if (Complained) 6104 PrintInitLocationNote(S, Entity); 6105 break; 6106 } 6107 6108 case SK_StringInit: { 6109 QualType Ty = Step->Type; 6110 CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty, 6111 S.Context.getAsArrayType(Ty), S); 6112 break; 6113 } 6114 6115 case SK_ObjCObjectConversion: 6116 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 6117 CK_ObjCObjectLValueCast, 6118 CurInit.get()->getValueKind()); 6119 break; 6120 6121 case SK_ArrayInit: 6122 // Okay: we checked everything before creating this step. Note that 6123 // this is a GNU extension. 6124 S.Diag(Kind.getLocation(), diag::ext_array_init_copy) 6125 << Step->Type << CurInit.get()->getType() 6126 << CurInit.get()->getSourceRange(); 6127 6128 // If the destination type is an incomplete array type, update the 6129 // type accordingly. 6130 if (ResultType) { 6131 if (const IncompleteArrayType *IncompleteDest 6132 = S.Context.getAsIncompleteArrayType(Step->Type)) { 6133 if (const ConstantArrayType *ConstantSource 6134 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) { 6135 *ResultType = S.Context.getConstantArrayType( 6136 IncompleteDest->getElementType(), 6137 ConstantSource->getSize(), 6138 ArrayType::Normal, 0); 6139 } 6140 } 6141 } 6142 break; 6143 6144 case SK_ParenthesizedArrayInit: 6145 // Okay: we checked everything before creating this step. Note that 6146 // this is a GNU extension. 6147 S.Diag(Kind.getLocation(), diag::ext_array_init_parens) 6148 << CurInit.get()->getSourceRange(); 6149 break; 6150 6151 case SK_PassByIndirectCopyRestore: 6152 case SK_PassByIndirectRestore: 6153 checkIndirectCopyRestoreSource(S, CurInit.get()); 6154 CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr( 6155 CurInit.get(), Step->Type, 6156 Step->Kind == SK_PassByIndirectCopyRestore); 6157 break; 6158 6159 case SK_ProduceObjCObject: 6160 CurInit = 6161 ImplicitCastExpr::Create(S.Context, Step->Type, CK_ARCProduceObject, 6162 CurInit.get(), nullptr, VK_RValue); 6163 break; 6164 6165 case SK_StdInitializerList: { 6166 S.Diag(CurInit.get()->getExprLoc(), 6167 diag::warn_cxx98_compat_initializer_list_init) 6168 << CurInit.get()->getSourceRange(); 6169 6170 // Materialize the temporary into memory. 6171 MaterializeTemporaryExpr *MTE = new (S.Context) 6172 MaterializeTemporaryExpr(CurInit.get()->getType(), CurInit.get(), 6173 /*BoundToLvalueReference=*/false); 6174 6175 // Maybe lifetime-extend the array temporary's subobjects to match the 6176 // entity's lifetime. 6177 if (const InitializedEntity *ExtendingEntity = 6178 getEntityForTemporaryLifetimeExtension(&Entity)) 6179 if (performReferenceExtension(MTE, ExtendingEntity)) 6180 warnOnLifetimeExtension(S, Entity, CurInit.get(), 6181 /*IsInitializerList=*/true, 6182 ExtendingEntity->getDecl()); 6183 6184 // Wrap it in a construction of a std::initializer_list<T>. 6185 CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE); 6186 6187 // Bind the result, in case the library has given initializer_list a 6188 // non-trivial destructor. 6189 if (shouldBindAsTemporary(Entity)) 6190 CurInit = S.MaybeBindToTemporary(CurInit.get()); 6191 break; 6192 } 6193 6194 case SK_OCLSamplerInit: { 6195 assert(Step->Type->isSamplerT() && 6196 "Sampler initialization on non-sampler type."); 6197 6198 QualType SourceType = CurInit.get()->getType(); 6199 6200 if (Entity.isParameterKind()) { 6201 if (!SourceType->isSamplerT()) 6202 S.Diag(Kind.getLocation(), diag::err_sampler_argument_required) 6203 << SourceType; 6204 } else if (Entity.getKind() != InitializedEntity::EK_Variable) { 6205 llvm_unreachable("Invalid EntityKind!"); 6206 } 6207 6208 break; 6209 } 6210 case SK_OCLZeroEvent: { 6211 assert(Step->Type->isEventT() && 6212 "Event initialization on non-event type."); 6213 6214 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 6215 CK_ZeroToOCLEvent, 6216 CurInit.get()->getValueKind()); 6217 break; 6218 } 6219 } 6220 } 6221 6222 // Diagnose non-fatal problems with the completed initialization. 6223 if (Entity.getKind() == InitializedEntity::EK_Member && 6224 cast<FieldDecl>(Entity.getDecl())->isBitField()) 6225 S.CheckBitFieldInitialization(Kind.getLocation(), 6226 cast<FieldDecl>(Entity.getDecl()), 6227 CurInit.get()); 6228 6229 return CurInit; 6230 } 6231 6232 /// Somewhere within T there is an uninitialized reference subobject. 6233 /// Dig it out and diagnose it. 6234 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc, 6235 QualType T) { 6236 if (T->isReferenceType()) { 6237 S.Diag(Loc, diag::err_reference_without_init) 6238 << T.getNonReferenceType(); 6239 return true; 6240 } 6241 6242 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 6243 if (!RD || !RD->hasUninitializedReferenceMember()) 6244 return false; 6245 6246 for (const auto *FI : RD->fields()) { 6247 if (FI->isUnnamedBitfield()) 6248 continue; 6249 6250 if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) { 6251 S.Diag(Loc, diag::note_value_initialization_here) << RD; 6252 return true; 6253 } 6254 } 6255 6256 for (const auto &BI : RD->bases()) { 6257 if (DiagnoseUninitializedReference(S, BI.getLocStart(), BI.getType())) { 6258 S.Diag(Loc, diag::note_value_initialization_here) << RD; 6259 return true; 6260 } 6261 } 6262 6263 return false; 6264 } 6265 6266 6267 //===----------------------------------------------------------------------===// 6268 // Diagnose initialization failures 6269 //===----------------------------------------------------------------------===// 6270 6271 /// Emit notes associated with an initialization that failed due to a 6272 /// "simple" conversion failure. 6273 static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity, 6274 Expr *op) { 6275 QualType destType = entity.getType(); 6276 if (destType.getNonReferenceType()->isObjCObjectPointerType() && 6277 op->getType()->isObjCObjectPointerType()) { 6278 6279 // Emit a possible note about the conversion failing because the 6280 // operand is a message send with a related result type. 6281 S.EmitRelatedResultTypeNote(op); 6282 6283 // Emit a possible note about a return failing because we're 6284 // expecting a related result type. 6285 if (entity.getKind() == InitializedEntity::EK_Result) 6286 S.EmitRelatedResultTypeNoteForReturn(destType); 6287 } 6288 } 6289 6290 static void diagnoseListInit(Sema &S, const InitializedEntity &Entity, 6291 InitListExpr *InitList) { 6292 QualType DestType = Entity.getType(); 6293 6294 QualType E; 6295 if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) { 6296 QualType ArrayType = S.Context.getConstantArrayType( 6297 E.withConst(), 6298 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()), 6299 InitList->getNumInits()), 6300 clang::ArrayType::Normal, 0); 6301 InitializedEntity HiddenArray = 6302 InitializedEntity::InitializeTemporary(ArrayType); 6303 return diagnoseListInit(S, HiddenArray, InitList); 6304 } 6305 6306 InitListChecker DiagnoseInitList(S, Entity, InitList, DestType, 6307 /*VerifyOnly=*/false); 6308 assert(DiagnoseInitList.HadError() && 6309 "Inconsistent init list check result."); 6310 } 6311 6312 bool InitializationSequence::Diagnose(Sema &S, 6313 const InitializedEntity &Entity, 6314 const InitializationKind &Kind, 6315 ArrayRef<Expr *> Args) { 6316 if (!Failed()) 6317 return false; 6318 6319 QualType DestType = Entity.getType(); 6320 switch (Failure) { 6321 case FK_TooManyInitsForReference: 6322 // FIXME: Customize for the initialized entity? 6323 if (Args.empty()) { 6324 // Dig out the reference subobject which is uninitialized and diagnose it. 6325 // If this is value-initialization, this could be nested some way within 6326 // the target type. 6327 assert(Kind.getKind() == InitializationKind::IK_Value || 6328 DestType->isReferenceType()); 6329 bool Diagnosed = 6330 DiagnoseUninitializedReference(S, Kind.getLocation(), DestType); 6331 assert(Diagnosed && "couldn't find uninitialized reference to diagnose"); 6332 (void)Diagnosed; 6333 } else // FIXME: diagnostic below could be better! 6334 S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits) 6335 << SourceRange(Args.front()->getLocStart(), Args.back()->getLocEnd()); 6336 break; 6337 6338 case FK_ArrayNeedsInitList: 6339 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0; 6340 break; 6341 case FK_ArrayNeedsInitListOrStringLiteral: 6342 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1; 6343 break; 6344 case FK_ArrayNeedsInitListOrWideStringLiteral: 6345 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2; 6346 break; 6347 case FK_NarrowStringIntoWideCharArray: 6348 S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar); 6349 break; 6350 case FK_WideStringIntoCharArray: 6351 S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char); 6352 break; 6353 case FK_IncompatWideStringIntoWideChar: 6354 S.Diag(Kind.getLocation(), 6355 diag::err_array_init_incompat_wide_string_into_wchar); 6356 break; 6357 case FK_ArrayTypeMismatch: 6358 case FK_NonConstantArrayInit: 6359 S.Diag(Kind.getLocation(), 6360 (Failure == FK_ArrayTypeMismatch 6361 ? diag::err_array_init_different_type 6362 : diag::err_array_init_non_constant_array)) 6363 << DestType.getNonReferenceType() 6364 << Args[0]->getType() 6365 << Args[0]->getSourceRange(); 6366 break; 6367 6368 case FK_VariableLengthArrayHasInitializer: 6369 S.Diag(Kind.getLocation(), diag::err_variable_object_no_init) 6370 << Args[0]->getSourceRange(); 6371 break; 6372 6373 case FK_AddressOfOverloadFailed: { 6374 DeclAccessPair Found; 6375 S.ResolveAddressOfOverloadedFunction(Args[0], 6376 DestType.getNonReferenceType(), 6377 true, 6378 Found); 6379 break; 6380 } 6381 6382 case FK_ReferenceInitOverloadFailed: 6383 case FK_UserConversionOverloadFailed: 6384 switch (FailedOverloadResult) { 6385 case OR_Ambiguous: 6386 if (Failure == FK_UserConversionOverloadFailed) 6387 S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition) 6388 << Args[0]->getType() << DestType 6389 << Args[0]->getSourceRange(); 6390 else 6391 S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous) 6392 << DestType << Args[0]->getType() 6393 << Args[0]->getSourceRange(); 6394 6395 FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args); 6396 break; 6397 6398 case OR_No_Viable_Function: 6399 if (!S.RequireCompleteType(Kind.getLocation(), 6400 DestType.getNonReferenceType(), 6401 diag::err_typecheck_nonviable_condition_incomplete, 6402 Args[0]->getType(), Args[0]->getSourceRange())) 6403 S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition) 6404 << Args[0]->getType() << Args[0]->getSourceRange() 6405 << DestType.getNonReferenceType(); 6406 6407 FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args); 6408 break; 6409 6410 case OR_Deleted: { 6411 S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function) 6412 << Args[0]->getType() << DestType.getNonReferenceType() 6413 << Args[0]->getSourceRange(); 6414 OverloadCandidateSet::iterator Best; 6415 OverloadingResult Ovl 6416 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best, 6417 true); 6418 if (Ovl == OR_Deleted) { 6419 S.NoteDeletedFunction(Best->Function); 6420 } else { 6421 llvm_unreachable("Inconsistent overload resolution?"); 6422 } 6423 break; 6424 } 6425 6426 case OR_Success: 6427 llvm_unreachable("Conversion did not fail!"); 6428 } 6429 break; 6430 6431 case FK_NonConstLValueReferenceBindingToTemporary: 6432 if (isa<InitListExpr>(Args[0])) { 6433 S.Diag(Kind.getLocation(), 6434 diag::err_lvalue_reference_bind_to_initlist) 6435 << DestType.getNonReferenceType().isVolatileQualified() 6436 << DestType.getNonReferenceType() 6437 << Args[0]->getSourceRange(); 6438 break; 6439 } 6440 // Intentional fallthrough 6441 6442 case FK_NonConstLValueReferenceBindingToUnrelated: 6443 S.Diag(Kind.getLocation(), 6444 Failure == FK_NonConstLValueReferenceBindingToTemporary 6445 ? diag::err_lvalue_reference_bind_to_temporary 6446 : diag::err_lvalue_reference_bind_to_unrelated) 6447 << DestType.getNonReferenceType().isVolatileQualified() 6448 << DestType.getNonReferenceType() 6449 << Args[0]->getType() 6450 << Args[0]->getSourceRange(); 6451 break; 6452 6453 case FK_RValueReferenceBindingToLValue: 6454 S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref) 6455 << DestType.getNonReferenceType() << Args[0]->getType() 6456 << Args[0]->getSourceRange(); 6457 break; 6458 6459 case FK_ReferenceInitDropsQualifiers: 6460 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) 6461 << DestType.getNonReferenceType() 6462 << Args[0]->getType() 6463 << Args[0]->getSourceRange(); 6464 break; 6465 6466 case FK_ReferenceInitFailed: 6467 S.Diag(Kind.getLocation(), diag::err_reference_bind_failed) 6468 << DestType.getNonReferenceType() 6469 << Args[0]->isLValue() 6470 << Args[0]->getType() 6471 << Args[0]->getSourceRange(); 6472 emitBadConversionNotes(S, Entity, Args[0]); 6473 break; 6474 6475 case FK_ConversionFailed: { 6476 QualType FromType = Args[0]->getType(); 6477 PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed) 6478 << (int)Entity.getKind() 6479 << DestType 6480 << Args[0]->isLValue() 6481 << FromType 6482 << Args[0]->getSourceRange(); 6483 S.HandleFunctionTypeMismatch(PDiag, FromType, DestType); 6484 S.Diag(Kind.getLocation(), PDiag); 6485 emitBadConversionNotes(S, Entity, Args[0]); 6486 break; 6487 } 6488 6489 case FK_ConversionFromPropertyFailed: 6490 // No-op. This error has already been reported. 6491 break; 6492 6493 case FK_TooManyInitsForScalar: { 6494 SourceRange R; 6495 6496 if (InitListExpr *InitList = dyn_cast<InitListExpr>(Args[0])) 6497 R = SourceRange(InitList->getInit(0)->getLocEnd(), 6498 InitList->getLocEnd()); 6499 else 6500 R = SourceRange(Args.front()->getLocEnd(), Args.back()->getLocEnd()); 6501 6502 R.setBegin(S.getLocForEndOfToken(R.getBegin())); 6503 if (Kind.isCStyleOrFunctionalCast()) 6504 S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg) 6505 << R; 6506 else 6507 S.Diag(Kind.getLocation(), diag::err_excess_initializers) 6508 << /*scalar=*/2 << R; 6509 break; 6510 } 6511 6512 case FK_ReferenceBindingToInitList: 6513 S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list) 6514 << DestType.getNonReferenceType() << Args[0]->getSourceRange(); 6515 break; 6516 6517 case FK_InitListBadDestinationType: 6518 S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type) 6519 << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange(); 6520 break; 6521 6522 case FK_ListConstructorOverloadFailed: 6523 case FK_ConstructorOverloadFailed: { 6524 SourceRange ArgsRange; 6525 if (Args.size()) 6526 ArgsRange = SourceRange(Args.front()->getLocStart(), 6527 Args.back()->getLocEnd()); 6528 6529 if (Failure == FK_ListConstructorOverloadFailed) { 6530 assert(Args.size() == 1 && "List construction from other than 1 argument."); 6531 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 6532 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits()); 6533 } 6534 6535 // FIXME: Using "DestType" for the entity we're printing is probably 6536 // bad. 6537 switch (FailedOverloadResult) { 6538 case OR_Ambiguous: 6539 S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init) 6540 << DestType << ArgsRange; 6541 FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args); 6542 break; 6543 6544 case OR_No_Viable_Function: 6545 if (Kind.getKind() == InitializationKind::IK_Default && 6546 (Entity.getKind() == InitializedEntity::EK_Base || 6547 Entity.getKind() == InitializedEntity::EK_Member) && 6548 isa<CXXConstructorDecl>(S.CurContext)) { 6549 // This is implicit default initialization of a member or 6550 // base within a constructor. If no viable function was 6551 // found, notify the user that she needs to explicitly 6552 // initialize this base/member. 6553 CXXConstructorDecl *Constructor 6554 = cast<CXXConstructorDecl>(S.CurContext); 6555 if (Entity.getKind() == InitializedEntity::EK_Base) { 6556 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) 6557 << (Constructor->getInheritedConstructor() ? 2 : 6558 Constructor->isImplicit() ? 1 : 0) 6559 << S.Context.getTypeDeclType(Constructor->getParent()) 6560 << /*base=*/0 6561 << Entity.getType(); 6562 6563 RecordDecl *BaseDecl 6564 = Entity.getBaseSpecifier()->getType()->getAs<RecordType>() 6565 ->getDecl(); 6566 S.Diag(BaseDecl->getLocation(), diag::note_previous_decl) 6567 << S.Context.getTagDeclType(BaseDecl); 6568 } else { 6569 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) 6570 << (Constructor->getInheritedConstructor() ? 2 : 6571 Constructor->isImplicit() ? 1 : 0) 6572 << S.Context.getTypeDeclType(Constructor->getParent()) 6573 << /*member=*/1 6574 << Entity.getName(); 6575 S.Diag(Entity.getDecl()->getLocation(), 6576 diag::note_member_declared_at); 6577 6578 if (const RecordType *Record 6579 = Entity.getType()->getAs<RecordType>()) 6580 S.Diag(Record->getDecl()->getLocation(), 6581 diag::note_previous_decl) 6582 << S.Context.getTagDeclType(Record->getDecl()); 6583 } 6584 break; 6585 } 6586 6587 S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init) 6588 << DestType << ArgsRange; 6589 FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args); 6590 break; 6591 6592 case OR_Deleted: { 6593 OverloadCandidateSet::iterator Best; 6594 OverloadingResult Ovl 6595 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 6596 if (Ovl != OR_Deleted) { 6597 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) 6598 << true << DestType << ArgsRange; 6599 llvm_unreachable("Inconsistent overload resolution?"); 6600 break; 6601 } 6602 6603 // If this is a defaulted or implicitly-declared function, then 6604 // it was implicitly deleted. Make it clear that the deletion was 6605 // implicit. 6606 if (S.isImplicitlyDeleted(Best->Function)) 6607 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init) 6608 << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function)) 6609 << DestType << ArgsRange; 6610 else 6611 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) 6612 << true << DestType << ArgsRange; 6613 6614 S.NoteDeletedFunction(Best->Function); 6615 break; 6616 } 6617 6618 case OR_Success: 6619 llvm_unreachable("Conversion did not fail!"); 6620 } 6621 } 6622 break; 6623 6624 case FK_DefaultInitOfConst: 6625 if (Entity.getKind() == InitializedEntity::EK_Member && 6626 isa<CXXConstructorDecl>(S.CurContext)) { 6627 // This is implicit default-initialization of a const member in 6628 // a constructor. Complain that it needs to be explicitly 6629 // initialized. 6630 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext); 6631 S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor) 6632 << (Constructor->getInheritedConstructor() ? 2 : 6633 Constructor->isImplicit() ? 1 : 0) 6634 << S.Context.getTypeDeclType(Constructor->getParent()) 6635 << /*const=*/1 6636 << Entity.getName(); 6637 S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl) 6638 << Entity.getName(); 6639 } else { 6640 S.Diag(Kind.getLocation(), diag::err_default_init_const) 6641 << DestType << (bool)DestType->getAs<RecordType>(); 6642 } 6643 break; 6644 6645 case FK_Incomplete: 6646 S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType, 6647 diag::err_init_incomplete_type); 6648 break; 6649 6650 case FK_ListInitializationFailed: { 6651 // Run the init list checker again to emit diagnostics. 6652 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 6653 diagnoseListInit(S, Entity, InitList); 6654 break; 6655 } 6656 6657 case FK_PlaceholderType: { 6658 // FIXME: Already diagnosed! 6659 break; 6660 } 6661 6662 case FK_ExplicitConstructor: { 6663 S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor) 6664 << Args[0]->getSourceRange(); 6665 OverloadCandidateSet::iterator Best; 6666 OverloadingResult Ovl 6667 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 6668 (void)Ovl; 6669 assert(Ovl == OR_Success && "Inconsistent overload resolution"); 6670 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 6671 S.Diag(CtorDecl->getLocation(), diag::note_constructor_declared_here); 6672 break; 6673 } 6674 } 6675 6676 PrintInitLocationNote(S, Entity); 6677 return true; 6678 } 6679 6680 void InitializationSequence::dump(raw_ostream &OS) const { 6681 switch (SequenceKind) { 6682 case FailedSequence: { 6683 OS << "Failed sequence: "; 6684 switch (Failure) { 6685 case FK_TooManyInitsForReference: 6686 OS << "too many initializers for reference"; 6687 break; 6688 6689 case FK_ArrayNeedsInitList: 6690 OS << "array requires initializer list"; 6691 break; 6692 6693 case FK_ArrayNeedsInitListOrStringLiteral: 6694 OS << "array requires initializer list or string literal"; 6695 break; 6696 6697 case FK_ArrayNeedsInitListOrWideStringLiteral: 6698 OS << "array requires initializer list or wide string literal"; 6699 break; 6700 6701 case FK_NarrowStringIntoWideCharArray: 6702 OS << "narrow string into wide char array"; 6703 break; 6704 6705 case FK_WideStringIntoCharArray: 6706 OS << "wide string into char array"; 6707 break; 6708 6709 case FK_IncompatWideStringIntoWideChar: 6710 OS << "incompatible wide string into wide char array"; 6711 break; 6712 6713 case FK_ArrayTypeMismatch: 6714 OS << "array type mismatch"; 6715 break; 6716 6717 case FK_NonConstantArrayInit: 6718 OS << "non-constant array initializer"; 6719 break; 6720 6721 case FK_AddressOfOverloadFailed: 6722 OS << "address of overloaded function failed"; 6723 break; 6724 6725 case FK_ReferenceInitOverloadFailed: 6726 OS << "overload resolution for reference initialization failed"; 6727 break; 6728 6729 case FK_NonConstLValueReferenceBindingToTemporary: 6730 OS << "non-const lvalue reference bound to temporary"; 6731 break; 6732 6733 case FK_NonConstLValueReferenceBindingToUnrelated: 6734 OS << "non-const lvalue reference bound to unrelated type"; 6735 break; 6736 6737 case FK_RValueReferenceBindingToLValue: 6738 OS << "rvalue reference bound to an lvalue"; 6739 break; 6740 6741 case FK_ReferenceInitDropsQualifiers: 6742 OS << "reference initialization drops qualifiers"; 6743 break; 6744 6745 case FK_ReferenceInitFailed: 6746 OS << "reference initialization failed"; 6747 break; 6748 6749 case FK_ConversionFailed: 6750 OS << "conversion failed"; 6751 break; 6752 6753 case FK_ConversionFromPropertyFailed: 6754 OS << "conversion from property failed"; 6755 break; 6756 6757 case FK_TooManyInitsForScalar: 6758 OS << "too many initializers for scalar"; 6759 break; 6760 6761 case FK_ReferenceBindingToInitList: 6762 OS << "referencing binding to initializer list"; 6763 break; 6764 6765 case FK_InitListBadDestinationType: 6766 OS << "initializer list for non-aggregate, non-scalar type"; 6767 break; 6768 6769 case FK_UserConversionOverloadFailed: 6770 OS << "overloading failed for user-defined conversion"; 6771 break; 6772 6773 case FK_ConstructorOverloadFailed: 6774 OS << "constructor overloading failed"; 6775 break; 6776 6777 case FK_DefaultInitOfConst: 6778 OS << "default initialization of a const variable"; 6779 break; 6780 6781 case FK_Incomplete: 6782 OS << "initialization of incomplete type"; 6783 break; 6784 6785 case FK_ListInitializationFailed: 6786 OS << "list initialization checker failure"; 6787 break; 6788 6789 case FK_VariableLengthArrayHasInitializer: 6790 OS << "variable length array has an initializer"; 6791 break; 6792 6793 case FK_PlaceholderType: 6794 OS << "initializer expression isn't contextually valid"; 6795 break; 6796 6797 case FK_ListConstructorOverloadFailed: 6798 OS << "list constructor overloading failed"; 6799 break; 6800 6801 case FK_ExplicitConstructor: 6802 OS << "list copy initialization chose explicit constructor"; 6803 break; 6804 } 6805 OS << '\n'; 6806 return; 6807 } 6808 6809 case DependentSequence: 6810 OS << "Dependent sequence\n"; 6811 return; 6812 6813 case NormalSequence: 6814 OS << "Normal sequence: "; 6815 break; 6816 } 6817 6818 for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) { 6819 if (S != step_begin()) { 6820 OS << " -> "; 6821 } 6822 6823 switch (S->Kind) { 6824 case SK_ResolveAddressOfOverloadedFunction: 6825 OS << "resolve address of overloaded function"; 6826 break; 6827 6828 case SK_CastDerivedToBaseRValue: 6829 OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")"; 6830 break; 6831 6832 case SK_CastDerivedToBaseXValue: 6833 OS << "derived-to-base case (xvalue" << S->Type.getAsString() << ")"; 6834 break; 6835 6836 case SK_CastDerivedToBaseLValue: 6837 OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")"; 6838 break; 6839 6840 case SK_BindReference: 6841 OS << "bind reference to lvalue"; 6842 break; 6843 6844 case SK_BindReferenceToTemporary: 6845 OS << "bind reference to a temporary"; 6846 break; 6847 6848 case SK_ExtraneousCopyToTemporary: 6849 OS << "extraneous C++03 copy to temporary"; 6850 break; 6851 6852 case SK_UserConversion: 6853 OS << "user-defined conversion via " << *S->Function.Function; 6854 break; 6855 6856 case SK_QualificationConversionRValue: 6857 OS << "qualification conversion (rvalue)"; 6858 break; 6859 6860 case SK_QualificationConversionXValue: 6861 OS << "qualification conversion (xvalue)"; 6862 break; 6863 6864 case SK_QualificationConversionLValue: 6865 OS << "qualification conversion (lvalue)"; 6866 break; 6867 6868 case SK_LValueToRValue: 6869 OS << "load (lvalue to rvalue)"; 6870 break; 6871 6872 case SK_ConversionSequence: 6873 OS << "implicit conversion sequence ("; 6874 S->ICS->dump(); // FIXME: use OS 6875 OS << ")"; 6876 break; 6877 6878 case SK_ConversionSequenceNoNarrowing: 6879 OS << "implicit conversion sequence with narrowing prohibited ("; 6880 S->ICS->dump(); // FIXME: use OS 6881 OS << ")"; 6882 break; 6883 6884 case SK_ListInitialization: 6885 OS << "list aggregate initialization"; 6886 break; 6887 6888 case SK_ListConstructorCall: 6889 OS << "list initialization via constructor"; 6890 break; 6891 6892 case SK_UnwrapInitList: 6893 OS << "unwrap reference initializer list"; 6894 break; 6895 6896 case SK_RewrapInitList: 6897 OS << "rewrap reference initializer list"; 6898 break; 6899 6900 case SK_ConstructorInitialization: 6901 OS << "constructor initialization"; 6902 break; 6903 6904 case SK_ZeroInitialization: 6905 OS << "zero initialization"; 6906 break; 6907 6908 case SK_CAssignment: 6909 OS << "C assignment"; 6910 break; 6911 6912 case SK_StringInit: 6913 OS << "string initialization"; 6914 break; 6915 6916 case SK_ObjCObjectConversion: 6917 OS << "Objective-C object conversion"; 6918 break; 6919 6920 case SK_ArrayInit: 6921 OS << "array initialization"; 6922 break; 6923 6924 case SK_ParenthesizedArrayInit: 6925 OS << "parenthesized array initialization"; 6926 break; 6927 6928 case SK_PassByIndirectCopyRestore: 6929 OS << "pass by indirect copy and restore"; 6930 break; 6931 6932 case SK_PassByIndirectRestore: 6933 OS << "pass by indirect restore"; 6934 break; 6935 6936 case SK_ProduceObjCObject: 6937 OS << "Objective-C object retension"; 6938 break; 6939 6940 case SK_StdInitializerList: 6941 OS << "std::initializer_list from initializer list"; 6942 break; 6943 6944 case SK_OCLSamplerInit: 6945 OS << "OpenCL sampler_t from integer constant"; 6946 break; 6947 6948 case SK_OCLZeroEvent: 6949 OS << "OpenCL event_t from zero"; 6950 break; 6951 } 6952 6953 OS << " [" << S->Type.getAsString() << ']'; 6954 } 6955 6956 OS << '\n'; 6957 } 6958 6959 void InitializationSequence::dump() const { 6960 dump(llvm::errs()); 6961 } 6962 6963 static void DiagnoseNarrowingInInitList(Sema &S, 6964 const ImplicitConversionSequence &ICS, 6965 QualType PreNarrowingType, 6966 QualType EntityType, 6967 const Expr *PostInit) { 6968 const StandardConversionSequence *SCS = nullptr; 6969 switch (ICS.getKind()) { 6970 case ImplicitConversionSequence::StandardConversion: 6971 SCS = &ICS.Standard; 6972 break; 6973 case ImplicitConversionSequence::UserDefinedConversion: 6974 SCS = &ICS.UserDefined.After; 6975 break; 6976 case ImplicitConversionSequence::AmbiguousConversion: 6977 case ImplicitConversionSequence::EllipsisConversion: 6978 case ImplicitConversionSequence::BadConversion: 6979 return; 6980 } 6981 6982 // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion. 6983 APValue ConstantValue; 6984 QualType ConstantType; 6985 switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue, 6986 ConstantType)) { 6987 case NK_Not_Narrowing: 6988 // No narrowing occurred. 6989 return; 6990 6991 case NK_Type_Narrowing: 6992 // This was a floating-to-integer conversion, which is always considered a 6993 // narrowing conversion even if the value is a constant and can be 6994 // represented exactly as an integer. 6995 S.Diag(PostInit->getLocStart(), 6996 (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11) 6997 ? diag::warn_init_list_type_narrowing 6998 : diag::ext_init_list_type_narrowing) 6999 << PostInit->getSourceRange() 7000 << PreNarrowingType.getLocalUnqualifiedType() 7001 << EntityType.getLocalUnqualifiedType(); 7002 break; 7003 7004 case NK_Constant_Narrowing: 7005 // A constant value was narrowed. 7006 S.Diag(PostInit->getLocStart(), 7007 (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11) 7008 ? diag::warn_init_list_constant_narrowing 7009 : diag::ext_init_list_constant_narrowing) 7010 << PostInit->getSourceRange() 7011 << ConstantValue.getAsString(S.getASTContext(), ConstantType) 7012 << EntityType.getLocalUnqualifiedType(); 7013 break; 7014 7015 case NK_Variable_Narrowing: 7016 // A variable's value may have been narrowed. 7017 S.Diag(PostInit->getLocStart(), 7018 (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11) 7019 ? diag::warn_init_list_variable_narrowing 7020 : diag::ext_init_list_variable_narrowing) 7021 << PostInit->getSourceRange() 7022 << PreNarrowingType.getLocalUnqualifiedType() 7023 << EntityType.getLocalUnqualifiedType(); 7024 break; 7025 } 7026 7027 SmallString<128> StaticCast; 7028 llvm::raw_svector_ostream OS(StaticCast); 7029 OS << "static_cast<"; 7030 if (const TypedefType *TT = EntityType->getAs<TypedefType>()) { 7031 // It's important to use the typedef's name if there is one so that the 7032 // fixit doesn't break code using types like int64_t. 7033 // 7034 // FIXME: This will break if the typedef requires qualification. But 7035 // getQualifiedNameAsString() includes non-machine-parsable components. 7036 OS << *TT->getDecl(); 7037 } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>()) 7038 OS << BT->getName(S.getLangOpts()); 7039 else { 7040 // Oops, we didn't find the actual type of the variable. Don't emit a fixit 7041 // with a broken cast. 7042 return; 7043 } 7044 OS << ">("; 7045 S.Diag(PostInit->getLocStart(), diag::note_init_list_narrowing_silence) 7046 << PostInit->getSourceRange() 7047 << FixItHint::CreateInsertion(PostInit->getLocStart(), OS.str()) 7048 << FixItHint::CreateInsertion( 7049 S.getLocForEndOfToken(PostInit->getLocEnd()), ")"); 7050 } 7051 7052 //===----------------------------------------------------------------------===// 7053 // Initialization helper functions 7054 //===----------------------------------------------------------------------===// 7055 bool 7056 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity, 7057 ExprResult Init) { 7058 if (Init.isInvalid()) 7059 return false; 7060 7061 Expr *InitE = Init.get(); 7062 assert(InitE && "No initialization expression"); 7063 7064 InitializationKind Kind 7065 = InitializationKind::CreateCopy(InitE->getLocStart(), SourceLocation()); 7066 InitializationSequence Seq(*this, Entity, Kind, InitE); 7067 return !Seq.Failed(); 7068 } 7069 7070 ExprResult 7071 Sema::PerformCopyInitialization(const InitializedEntity &Entity, 7072 SourceLocation EqualLoc, 7073 ExprResult Init, 7074 bool TopLevelOfInitList, 7075 bool AllowExplicit) { 7076 if (Init.isInvalid()) 7077 return ExprError(); 7078 7079 Expr *InitE = Init.get(); 7080 assert(InitE && "No initialization expression?"); 7081 7082 if (EqualLoc.isInvalid()) 7083 EqualLoc = InitE->getLocStart(); 7084 7085 InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(), 7086 EqualLoc, 7087 AllowExplicit); 7088 InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList); 7089 Init.get(); 7090 7091 ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE); 7092 7093 return Result; 7094 } 7095