1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for initializers.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/DeclObjC.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/AST/ExprObjC.h"
17 #include "clang/AST/ExprOpenMP.h"
18 #include "clang/AST/TypeLoc.h"
19 #include "clang/Basic/TargetInfo.h"
20 #include "clang/Sema/Designator.h"
21 #include "clang/Sema/Initialization.h"
22 #include "clang/Sema/Lookup.h"
23 #include "clang/Sema/SemaInternal.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/raw_ostream.h"
28 
29 using namespace clang;
30 
31 //===----------------------------------------------------------------------===//
32 // Sema Initialization Checking
33 //===----------------------------------------------------------------------===//
34 
35 /// Check whether T is compatible with a wide character type (wchar_t,
36 /// char16_t or char32_t).
37 static bool IsWideCharCompatible(QualType T, ASTContext &Context) {
38   if (Context.typesAreCompatible(Context.getWideCharType(), T))
39     return true;
40   if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) {
41     return Context.typesAreCompatible(Context.Char16Ty, T) ||
42            Context.typesAreCompatible(Context.Char32Ty, T);
43   }
44   return false;
45 }
46 
47 enum StringInitFailureKind {
48   SIF_None,
49   SIF_NarrowStringIntoWideChar,
50   SIF_WideStringIntoChar,
51   SIF_IncompatWideStringIntoWideChar,
52   SIF_UTF8StringIntoPlainChar,
53   SIF_PlainStringIntoUTF8Char,
54   SIF_Other
55 };
56 
57 /// Check whether the array of type AT can be initialized by the Init
58 /// expression by means of string initialization. Returns SIF_None if so,
59 /// otherwise returns a StringInitFailureKind that describes why the
60 /// initialization would not work.
61 static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT,
62                                           ASTContext &Context) {
63   if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
64     return SIF_Other;
65 
66   // See if this is a string literal or @encode.
67   Init = Init->IgnoreParens();
68 
69   // Handle @encode, which is a narrow string.
70   if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
71     return SIF_None;
72 
73   // Otherwise we can only handle string literals.
74   StringLiteral *SL = dyn_cast<StringLiteral>(Init);
75   if (!SL)
76     return SIF_Other;
77 
78   const QualType ElemTy =
79       Context.getCanonicalType(AT->getElementType()).getUnqualifiedType();
80 
81   switch (SL->getKind()) {
82   case StringLiteral::UTF8:
83     // char8_t array can be initialized with a UTF-8 string.
84     if (ElemTy->isChar8Type())
85       return SIF_None;
86     LLVM_FALLTHROUGH;
87   case StringLiteral::Ascii:
88     // char array can be initialized with a narrow string.
89     // Only allow char x[] = "foo";  not char x[] = L"foo";
90     if (ElemTy->isCharType())
91       return (SL->getKind() == StringLiteral::UTF8 &&
92               Context.getLangOpts().Char8)
93                  ? SIF_UTF8StringIntoPlainChar
94                  : SIF_None;
95     if (ElemTy->isChar8Type())
96       return SIF_PlainStringIntoUTF8Char;
97     if (IsWideCharCompatible(ElemTy, Context))
98       return SIF_NarrowStringIntoWideChar;
99     return SIF_Other;
100   // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15:
101   // "An array with element type compatible with a qualified or unqualified
102   // version of wchar_t, char16_t, or char32_t may be initialized by a wide
103   // string literal with the corresponding encoding prefix (L, u, or U,
104   // respectively), optionally enclosed in braces.
105   case StringLiteral::UTF16:
106     if (Context.typesAreCompatible(Context.Char16Ty, ElemTy))
107       return SIF_None;
108     if (ElemTy->isCharType() || ElemTy->isChar8Type())
109       return SIF_WideStringIntoChar;
110     if (IsWideCharCompatible(ElemTy, Context))
111       return SIF_IncompatWideStringIntoWideChar;
112     return SIF_Other;
113   case StringLiteral::UTF32:
114     if (Context.typesAreCompatible(Context.Char32Ty, ElemTy))
115       return SIF_None;
116     if (ElemTy->isCharType() || ElemTy->isChar8Type())
117       return SIF_WideStringIntoChar;
118     if (IsWideCharCompatible(ElemTy, Context))
119       return SIF_IncompatWideStringIntoWideChar;
120     return SIF_Other;
121   case StringLiteral::Wide:
122     if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy))
123       return SIF_None;
124     if (ElemTy->isCharType() || ElemTy->isChar8Type())
125       return SIF_WideStringIntoChar;
126     if (IsWideCharCompatible(ElemTy, Context))
127       return SIF_IncompatWideStringIntoWideChar;
128     return SIF_Other;
129   }
130 
131   llvm_unreachable("missed a StringLiteral kind?");
132 }
133 
134 static StringInitFailureKind IsStringInit(Expr *init, QualType declType,
135                                           ASTContext &Context) {
136   const ArrayType *arrayType = Context.getAsArrayType(declType);
137   if (!arrayType)
138     return SIF_Other;
139   return IsStringInit(init, arrayType, Context);
140 }
141 
142 /// Update the type of a string literal, including any surrounding parentheses,
143 /// to match the type of the object which it is initializing.
144 static void updateStringLiteralType(Expr *E, QualType Ty) {
145   while (true) {
146     E->setType(Ty);
147     E->setValueKind(VK_RValue);
148     if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E)) {
149       break;
150     } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
151       E = PE->getSubExpr();
152     } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
153       assert(UO->getOpcode() == UO_Extension);
154       E = UO->getSubExpr();
155     } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) {
156       E = GSE->getResultExpr();
157     } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) {
158       E = CE->getChosenSubExpr();
159     } else {
160       llvm_unreachable("unexpected expr in string literal init");
161     }
162   }
163 }
164 
165 /// Fix a compound literal initializing an array so it's correctly marked
166 /// as an rvalue.
167 static void updateGNUCompoundLiteralRValue(Expr *E) {
168   while (true) {
169     E->setValueKind(VK_RValue);
170     if (isa<CompoundLiteralExpr>(E)) {
171       break;
172     } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
173       E = PE->getSubExpr();
174     } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
175       assert(UO->getOpcode() == UO_Extension);
176       E = UO->getSubExpr();
177     } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) {
178       E = GSE->getResultExpr();
179     } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) {
180       E = CE->getChosenSubExpr();
181     } else {
182       llvm_unreachable("unexpected expr in array compound literal init");
183     }
184   }
185 }
186 
187 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
188                             Sema &S) {
189   // Get the length of the string as parsed.
190   auto *ConstantArrayTy =
191       cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe());
192   uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue();
193 
194   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
195     // C99 6.7.8p14. We have an array of character type with unknown size
196     // being initialized to a string literal.
197     llvm::APInt ConstVal(32, StrLength);
198     // Return a new array type (C99 6.7.8p22).
199     DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
200                                            ConstVal,
201                                            ArrayType::Normal, 0);
202     updateStringLiteralType(Str, DeclT);
203     return;
204   }
205 
206   const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
207 
208   // We have an array of character type with known size.  However,
209   // the size may be smaller or larger than the string we are initializing.
210   // FIXME: Avoid truncation for 64-bit length strings.
211   if (S.getLangOpts().CPlusPlus) {
212     if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
213       // For Pascal strings it's OK to strip off the terminating null character,
214       // so the example below is valid:
215       //
216       // unsigned char a[2] = "\pa";
217       if (SL->isPascal())
218         StrLength--;
219     }
220 
221     // [dcl.init.string]p2
222     if (StrLength > CAT->getSize().getZExtValue())
223       S.Diag(Str->getBeginLoc(),
224              diag::err_initializer_string_for_char_array_too_long)
225           << Str->getSourceRange();
226   } else {
227     // C99 6.7.8p14.
228     if (StrLength-1 > CAT->getSize().getZExtValue())
229       S.Diag(Str->getBeginLoc(),
230              diag::ext_initializer_string_for_char_array_too_long)
231           << Str->getSourceRange();
232   }
233 
234   // Set the type to the actual size that we are initializing.  If we have
235   // something like:
236   //   char x[1] = "foo";
237   // then this will set the string literal's type to char[1].
238   updateStringLiteralType(Str, DeclT);
239 }
240 
241 //===----------------------------------------------------------------------===//
242 // Semantic checking for initializer lists.
243 //===----------------------------------------------------------------------===//
244 
245 namespace {
246 
247 /// Semantic checking for initializer lists.
248 ///
249 /// The InitListChecker class contains a set of routines that each
250 /// handle the initialization of a certain kind of entity, e.g.,
251 /// arrays, vectors, struct/union types, scalars, etc. The
252 /// InitListChecker itself performs a recursive walk of the subobject
253 /// structure of the type to be initialized, while stepping through
254 /// the initializer list one element at a time. The IList and Index
255 /// parameters to each of the Check* routines contain the active
256 /// (syntactic) initializer list and the index into that initializer
257 /// list that represents the current initializer. Each routine is
258 /// responsible for moving that Index forward as it consumes elements.
259 ///
260 /// Each Check* routine also has a StructuredList/StructuredIndex
261 /// arguments, which contains the current "structured" (semantic)
262 /// initializer list and the index into that initializer list where we
263 /// are copying initializers as we map them over to the semantic
264 /// list. Once we have completed our recursive walk of the subobject
265 /// structure, we will have constructed a full semantic initializer
266 /// list.
267 ///
268 /// C99 designators cause changes in the initializer list traversal,
269 /// because they make the initialization "jump" into a specific
270 /// subobject and then continue the initialization from that
271 /// point. CheckDesignatedInitializer() recursively steps into the
272 /// designated subobject and manages backing out the recursion to
273 /// initialize the subobjects after the one designated.
274 class InitListChecker {
275   Sema &SemaRef;
276   bool hadError;
277   bool VerifyOnly; // no diagnostics, no structure building
278   bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode.
279   llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic;
280   InitListExpr *FullyStructuredList;
281 
282   void CheckImplicitInitList(const InitializedEntity &Entity,
283                              InitListExpr *ParentIList, QualType T,
284                              unsigned &Index, InitListExpr *StructuredList,
285                              unsigned &StructuredIndex);
286   void CheckExplicitInitList(const InitializedEntity &Entity,
287                              InitListExpr *IList, QualType &T,
288                              InitListExpr *StructuredList,
289                              bool TopLevelObject = false);
290   void CheckListElementTypes(const InitializedEntity &Entity,
291                              InitListExpr *IList, QualType &DeclType,
292                              bool SubobjectIsDesignatorContext,
293                              unsigned &Index,
294                              InitListExpr *StructuredList,
295                              unsigned &StructuredIndex,
296                              bool TopLevelObject = false);
297   void CheckSubElementType(const InitializedEntity &Entity,
298                            InitListExpr *IList, QualType ElemType,
299                            unsigned &Index,
300                            InitListExpr *StructuredList,
301                            unsigned &StructuredIndex);
302   void CheckComplexType(const InitializedEntity &Entity,
303                         InitListExpr *IList, QualType DeclType,
304                         unsigned &Index,
305                         InitListExpr *StructuredList,
306                         unsigned &StructuredIndex);
307   void CheckScalarType(const InitializedEntity &Entity,
308                        InitListExpr *IList, QualType DeclType,
309                        unsigned &Index,
310                        InitListExpr *StructuredList,
311                        unsigned &StructuredIndex);
312   void CheckReferenceType(const InitializedEntity &Entity,
313                           InitListExpr *IList, QualType DeclType,
314                           unsigned &Index,
315                           InitListExpr *StructuredList,
316                           unsigned &StructuredIndex);
317   void CheckVectorType(const InitializedEntity &Entity,
318                        InitListExpr *IList, QualType DeclType, unsigned &Index,
319                        InitListExpr *StructuredList,
320                        unsigned &StructuredIndex);
321   void CheckStructUnionTypes(const InitializedEntity &Entity,
322                              InitListExpr *IList, QualType DeclType,
323                              CXXRecordDecl::base_class_range Bases,
324                              RecordDecl::field_iterator Field,
325                              bool SubobjectIsDesignatorContext, unsigned &Index,
326                              InitListExpr *StructuredList,
327                              unsigned &StructuredIndex,
328                              bool TopLevelObject = false);
329   void CheckArrayType(const InitializedEntity &Entity,
330                       InitListExpr *IList, QualType &DeclType,
331                       llvm::APSInt elementIndex,
332                       bool SubobjectIsDesignatorContext, unsigned &Index,
333                       InitListExpr *StructuredList,
334                       unsigned &StructuredIndex);
335   bool CheckDesignatedInitializer(const InitializedEntity &Entity,
336                                   InitListExpr *IList, DesignatedInitExpr *DIE,
337                                   unsigned DesigIdx,
338                                   QualType &CurrentObjectType,
339                                   RecordDecl::field_iterator *NextField,
340                                   llvm::APSInt *NextElementIndex,
341                                   unsigned &Index,
342                                   InitListExpr *StructuredList,
343                                   unsigned &StructuredIndex,
344                                   bool FinishSubobjectInit,
345                                   bool TopLevelObject);
346   InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
347                                            QualType CurrentObjectType,
348                                            InitListExpr *StructuredList,
349                                            unsigned StructuredIndex,
350                                            SourceRange InitRange,
351                                            bool IsFullyOverwritten = false);
352   void UpdateStructuredListElement(InitListExpr *StructuredList,
353                                    unsigned &StructuredIndex,
354                                    Expr *expr);
355   int numArrayElements(QualType DeclType);
356   int numStructUnionElements(QualType DeclType);
357 
358   static ExprResult PerformEmptyInit(Sema &SemaRef,
359                                      SourceLocation Loc,
360                                      const InitializedEntity &Entity,
361                                      bool VerifyOnly,
362                                      bool TreatUnavailableAsInvalid);
363 
364   // Explanation on the "FillWithNoInit" mode:
365   //
366   // Assume we have the following definitions (Case#1):
367   // struct P { char x[6][6]; } xp = { .x[1] = "bar" };
368   // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' };
369   //
370   // l.lp.x[1][0..1] should not be filled with implicit initializers because the
371   // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf".
372   //
373   // But if we have (Case#2):
374   // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } };
375   //
376   // l.lp.x[1][0..1] are implicitly initialized and do not use values from the
377   // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0".
378   //
379   // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes"
380   // in the InitListExpr, the "holes" in Case#1 are filled not with empty
381   // initializers but with special "NoInitExpr" place holders, which tells the
382   // CodeGen not to generate any initializers for these parts.
383   void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base,
384                               const InitializedEntity &ParentEntity,
385                               InitListExpr *ILE, bool &RequiresSecondPass,
386                               bool FillWithNoInit);
387   void FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
388                                const InitializedEntity &ParentEntity,
389                                InitListExpr *ILE, bool &RequiresSecondPass,
390                                bool FillWithNoInit = false);
391   void FillInEmptyInitializations(const InitializedEntity &Entity,
392                                   InitListExpr *ILE, bool &RequiresSecondPass,
393                                   InitListExpr *OuterILE, unsigned OuterIndex,
394                                   bool FillWithNoInit = false);
395   bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
396                               Expr *InitExpr, FieldDecl *Field,
397                               bool TopLevelObject);
398   void CheckEmptyInitializable(const InitializedEntity &Entity,
399                                SourceLocation Loc);
400 
401 public:
402   InitListChecker(Sema &S, const InitializedEntity &Entity,
403                   InitListExpr *IL, QualType &T, bool VerifyOnly,
404                   bool TreatUnavailableAsInvalid);
405   bool HadError() { return hadError; }
406 
407   // Retrieves the fully-structured initializer list used for
408   // semantic analysis and code generation.
409   InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
410 };
411 
412 } // end anonymous namespace
413 
414 ExprResult InitListChecker::PerformEmptyInit(Sema &SemaRef,
415                                              SourceLocation Loc,
416                                              const InitializedEntity &Entity,
417                                              bool VerifyOnly,
418                                              bool TreatUnavailableAsInvalid) {
419   InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
420                                                             true);
421   MultiExprArg SubInit;
422   Expr *InitExpr;
423   InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc);
424 
425   // C++ [dcl.init.aggr]p7:
426   //   If there are fewer initializer-clauses in the list than there are
427   //   members in the aggregate, then each member not explicitly initialized
428   //   ...
429   bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 &&
430       Entity.getType()->getBaseElementTypeUnsafe()->isRecordType();
431   if (EmptyInitList) {
432     // C++1y / DR1070:
433     //   shall be initialized [...] from an empty initializer list.
434     //
435     // We apply the resolution of this DR to C++11 but not C++98, since C++98
436     // does not have useful semantics for initialization from an init list.
437     // We treat this as copy-initialization, because aggregate initialization
438     // always performs copy-initialization on its elements.
439     //
440     // Only do this if we're initializing a class type, to avoid filling in
441     // the initializer list where possible.
442     InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context)
443                    InitListExpr(SemaRef.Context, Loc, None, Loc);
444     InitExpr->setType(SemaRef.Context.VoidTy);
445     SubInit = InitExpr;
446     Kind = InitializationKind::CreateCopy(Loc, Loc);
447   } else {
448     // C++03:
449     //   shall be value-initialized.
450   }
451 
452   InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit);
453   // libstdc++4.6 marks the vector default constructor as explicit in
454   // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case.
455   // stlport does so too. Look for std::__debug for libstdc++, and for
456   // std:: for stlport.  This is effectively a compiler-side implementation of
457   // LWG2193.
458   if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() ==
459           InitializationSequence::FK_ExplicitConstructor) {
460     OverloadCandidateSet::iterator Best;
461     OverloadingResult O =
462         InitSeq.getFailedCandidateSet()
463             .BestViableFunction(SemaRef, Kind.getLocation(), Best);
464     (void)O;
465     assert(O == OR_Success && "Inconsistent overload resolution");
466     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
467     CXXRecordDecl *R = CtorDecl->getParent();
468 
469     if (CtorDecl->getMinRequiredArguments() == 0 &&
470         CtorDecl->isExplicit() && R->getDeclName() &&
471         SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) {
472       bool IsInStd = false;
473       for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext());
474            ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) {
475         if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND))
476           IsInStd = true;
477       }
478 
479       if (IsInStd && llvm::StringSwitch<bool>(R->getName())
480               .Cases("basic_string", "deque", "forward_list", true)
481               .Cases("list", "map", "multimap", "multiset", true)
482               .Cases("priority_queue", "queue", "set", "stack", true)
483               .Cases("unordered_map", "unordered_set", "vector", true)
484               .Default(false)) {
485         InitSeq.InitializeFrom(
486             SemaRef, Entity,
487             InitializationKind::CreateValue(Loc, Loc, Loc, true),
488             MultiExprArg(), /*TopLevelOfInitList=*/false,
489             TreatUnavailableAsInvalid);
490         // Emit a warning for this.  System header warnings aren't shown
491         // by default, but people working on system headers should see it.
492         if (!VerifyOnly) {
493           SemaRef.Diag(CtorDecl->getLocation(),
494                        diag::warn_invalid_initializer_from_system_header);
495           if (Entity.getKind() == InitializedEntity::EK_Member)
496             SemaRef.Diag(Entity.getDecl()->getLocation(),
497                          diag::note_used_in_initialization_here);
498           else if (Entity.getKind() == InitializedEntity::EK_ArrayElement)
499             SemaRef.Diag(Loc, diag::note_used_in_initialization_here);
500         }
501       }
502     }
503   }
504   if (!InitSeq) {
505     if (!VerifyOnly) {
506       InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit);
507       if (Entity.getKind() == InitializedEntity::EK_Member)
508         SemaRef.Diag(Entity.getDecl()->getLocation(),
509                      diag::note_in_omitted_aggregate_initializer)
510           << /*field*/1 << Entity.getDecl();
511       else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) {
512         bool IsTrailingArrayNewMember =
513             Entity.getParent() &&
514             Entity.getParent()->isVariableLengthArrayNew();
515         SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer)
516           << (IsTrailingArrayNewMember ? 2 : /*array element*/0)
517           << Entity.getElementIndex();
518       }
519     }
520     return ExprError();
521   }
522 
523   return VerifyOnly ? ExprResult(static_cast<Expr *>(nullptr))
524                     : InitSeq.Perform(SemaRef, Entity, Kind, SubInit);
525 }
526 
527 void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity,
528                                               SourceLocation Loc) {
529   assert(VerifyOnly &&
530          "CheckEmptyInitializable is only inteded for verification mode.");
531   if (PerformEmptyInit(SemaRef, Loc, Entity, /*VerifyOnly*/true,
532                        TreatUnavailableAsInvalid).isInvalid())
533     hadError = true;
534 }
535 
536 void InitListChecker::FillInEmptyInitForBase(
537     unsigned Init, const CXXBaseSpecifier &Base,
538     const InitializedEntity &ParentEntity, InitListExpr *ILE,
539     bool &RequiresSecondPass, bool FillWithNoInit) {
540   assert(Init < ILE->getNumInits() && "should have been expanded");
541 
542   InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
543       SemaRef.Context, &Base, false, &ParentEntity);
544 
545   if (!ILE->getInit(Init)) {
546     ExprResult BaseInit =
547         FillWithNoInit
548             ? new (SemaRef.Context) NoInitExpr(Base.getType())
549             : PerformEmptyInit(SemaRef, ILE->getEndLoc(), BaseEntity,
550                                /*VerifyOnly*/ false, TreatUnavailableAsInvalid);
551     if (BaseInit.isInvalid()) {
552       hadError = true;
553       return;
554     }
555 
556     ILE->setInit(Init, BaseInit.getAs<Expr>());
557   } else if (InitListExpr *InnerILE =
558                  dyn_cast<InitListExpr>(ILE->getInit(Init))) {
559     FillInEmptyInitializations(BaseEntity, InnerILE, RequiresSecondPass,
560                                ILE, Init, FillWithNoInit);
561   } else if (DesignatedInitUpdateExpr *InnerDIUE =
562                dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
563     FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(),
564                                RequiresSecondPass, ILE, Init,
565                                /*FillWithNoInit =*/true);
566   }
567 }
568 
569 void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
570                                         const InitializedEntity &ParentEntity,
571                                               InitListExpr *ILE,
572                                               bool &RequiresSecondPass,
573                                               bool FillWithNoInit) {
574   SourceLocation Loc = ILE->getEndLoc();
575   unsigned NumInits = ILE->getNumInits();
576   InitializedEntity MemberEntity
577     = InitializedEntity::InitializeMember(Field, &ParentEntity);
578 
579   if (const RecordType *RType = ILE->getType()->getAs<RecordType>())
580     if (!RType->getDecl()->isUnion())
581       assert(Init < NumInits && "This ILE should have been expanded");
582 
583   if (Init >= NumInits || !ILE->getInit(Init)) {
584     if (FillWithNoInit) {
585       Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType());
586       if (Init < NumInits)
587         ILE->setInit(Init, Filler);
588       else
589         ILE->updateInit(SemaRef.Context, Init, Filler);
590       return;
591     }
592     // C++1y [dcl.init.aggr]p7:
593     //   If there are fewer initializer-clauses in the list than there are
594     //   members in the aggregate, then each member not explicitly initialized
595     //   shall be initialized from its brace-or-equal-initializer [...]
596     if (Field->hasInClassInitializer()) {
597       ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field);
598       if (DIE.isInvalid()) {
599         hadError = true;
600         return;
601       }
602       SemaRef.checkInitializerLifetime(MemberEntity, DIE.get());
603       if (Init < NumInits)
604         ILE->setInit(Init, DIE.get());
605       else {
606         ILE->updateInit(SemaRef.Context, Init, DIE.get());
607         RequiresSecondPass = true;
608       }
609       return;
610     }
611 
612     if (Field->getType()->isReferenceType()) {
613       // C++ [dcl.init.aggr]p9:
614       //   If an incomplete or empty initializer-list leaves a
615       //   member of reference type uninitialized, the program is
616       //   ill-formed.
617       SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
618         << Field->getType()
619         << ILE->getSyntacticForm()->getSourceRange();
620       SemaRef.Diag(Field->getLocation(),
621                    diag::note_uninit_reference_member);
622       hadError = true;
623       return;
624     }
625 
626     ExprResult MemberInit = PerformEmptyInit(SemaRef, Loc, MemberEntity,
627                                              /*VerifyOnly*/false,
628                                              TreatUnavailableAsInvalid);
629     if (MemberInit.isInvalid()) {
630       hadError = true;
631       return;
632     }
633 
634     if (hadError) {
635       // Do nothing
636     } else if (Init < NumInits) {
637       ILE->setInit(Init, MemberInit.getAs<Expr>());
638     } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) {
639       // Empty initialization requires a constructor call, so
640       // extend the initializer list to include the constructor
641       // call and make a note that we'll need to take another pass
642       // through the initializer list.
643       ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>());
644       RequiresSecondPass = true;
645     }
646   } else if (InitListExpr *InnerILE
647                = dyn_cast<InitListExpr>(ILE->getInit(Init)))
648     FillInEmptyInitializations(MemberEntity, InnerILE,
649                                RequiresSecondPass, ILE, Init, FillWithNoInit);
650   else if (DesignatedInitUpdateExpr *InnerDIUE
651                = dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init)))
652     FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(),
653                                RequiresSecondPass, ILE, Init,
654                                /*FillWithNoInit =*/true);
655 }
656 
657 /// Recursively replaces NULL values within the given initializer list
658 /// with expressions that perform value-initialization of the
659 /// appropriate type, and finish off the InitListExpr formation.
660 void
661 InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity,
662                                             InitListExpr *ILE,
663                                             bool &RequiresSecondPass,
664                                             InitListExpr *OuterILE,
665                                             unsigned OuterIndex,
666                                             bool FillWithNoInit) {
667   assert((ILE->getType() != SemaRef.Context.VoidTy) &&
668          "Should not have void type");
669 
670   // If this is a nested initializer list, we might have changed its contents
671   // (and therefore some of its properties, such as instantiation-dependence)
672   // while filling it in. Inform the outer initializer list so that its state
673   // can be updated to match.
674   // FIXME: We should fully build the inner initializers before constructing
675   // the outer InitListExpr instead of mutating AST nodes after they have
676   // been used as subexpressions of other nodes.
677   struct UpdateOuterILEWithUpdatedInit {
678     InitListExpr *Outer;
679     unsigned OuterIndex;
680     ~UpdateOuterILEWithUpdatedInit() {
681       if (Outer)
682         Outer->setInit(OuterIndex, Outer->getInit(OuterIndex));
683     }
684   } UpdateOuterRAII = {OuterILE, OuterIndex};
685 
686   // A transparent ILE is not performing aggregate initialization and should
687   // not be filled in.
688   if (ILE->isTransparent())
689     return;
690 
691   if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
692     const RecordDecl *RDecl = RType->getDecl();
693     if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
694       FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(),
695                               Entity, ILE, RequiresSecondPass, FillWithNoInit);
696     else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
697              cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
698       for (auto *Field : RDecl->fields()) {
699         if (Field->hasInClassInitializer()) {
700           FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass,
701                                   FillWithNoInit);
702           break;
703         }
704       }
705     } else {
706       // The fields beyond ILE->getNumInits() are default initialized, so in
707       // order to leave them uninitialized, the ILE is expanded and the extra
708       // fields are then filled with NoInitExpr.
709       unsigned NumElems = numStructUnionElements(ILE->getType());
710       if (RDecl->hasFlexibleArrayMember())
711         ++NumElems;
712       if (ILE->getNumInits() < NumElems)
713         ILE->resizeInits(SemaRef.Context, NumElems);
714 
715       unsigned Init = 0;
716 
717       if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) {
718         for (auto &Base : CXXRD->bases()) {
719           if (hadError)
720             return;
721 
722           FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass,
723                                  FillWithNoInit);
724           ++Init;
725         }
726       }
727 
728       for (auto *Field : RDecl->fields()) {
729         if (Field->isUnnamedBitfield())
730           continue;
731 
732         if (hadError)
733           return;
734 
735         FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass,
736                                 FillWithNoInit);
737         if (hadError)
738           return;
739 
740         ++Init;
741 
742         // Only look at the first initialization of a union.
743         if (RDecl->isUnion())
744           break;
745       }
746     }
747 
748     return;
749   }
750 
751   QualType ElementType;
752 
753   InitializedEntity ElementEntity = Entity;
754   unsigned NumInits = ILE->getNumInits();
755   unsigned NumElements = NumInits;
756   if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
757     ElementType = AType->getElementType();
758     if (const auto *CAType = dyn_cast<ConstantArrayType>(AType))
759       NumElements = CAType->getSize().getZExtValue();
760     // For an array new with an unknown bound, ask for one additional element
761     // in order to populate the array filler.
762     if (Entity.isVariableLengthArrayNew())
763       ++NumElements;
764     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
765                                                          0, Entity);
766   } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
767     ElementType = VType->getElementType();
768     NumElements = VType->getNumElements();
769     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
770                                                          0, Entity);
771   } else
772     ElementType = ILE->getType();
773 
774   for (unsigned Init = 0; Init != NumElements; ++Init) {
775     if (hadError)
776       return;
777 
778     if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
779         ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
780       ElementEntity.setElementIndex(Init);
781 
782     if (Init >= NumInits && ILE->hasArrayFiller())
783       return;
784 
785     Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr);
786     if (!InitExpr && Init < NumInits && ILE->hasArrayFiller())
787       ILE->setInit(Init, ILE->getArrayFiller());
788     else if (!InitExpr && !ILE->hasArrayFiller()) {
789       Expr *Filler = nullptr;
790 
791       if (FillWithNoInit)
792         Filler = new (SemaRef.Context) NoInitExpr(ElementType);
793       else {
794         ExprResult ElementInit =
795             PerformEmptyInit(SemaRef, ILE->getEndLoc(), ElementEntity,
796                              /*VerifyOnly*/ false, TreatUnavailableAsInvalid);
797         if (ElementInit.isInvalid()) {
798           hadError = true;
799           return;
800         }
801 
802         Filler = ElementInit.getAs<Expr>();
803       }
804 
805       if (hadError) {
806         // Do nothing
807       } else if (Init < NumInits) {
808         // For arrays, just set the expression used for value-initialization
809         // of the "holes" in the array.
810         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
811           ILE->setArrayFiller(Filler);
812         else
813           ILE->setInit(Init, Filler);
814       } else {
815         // For arrays, just set the expression used for value-initialization
816         // of the rest of elements and exit.
817         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
818           ILE->setArrayFiller(Filler);
819           return;
820         }
821 
822         if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) {
823           // Empty initialization requires a constructor call, so
824           // extend the initializer list to include the constructor
825           // call and make a note that we'll need to take another pass
826           // through the initializer list.
827           ILE->updateInit(SemaRef.Context, Init, Filler);
828           RequiresSecondPass = true;
829         }
830       }
831     } else if (InitListExpr *InnerILE
832                  = dyn_cast_or_null<InitListExpr>(InitExpr))
833       FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass,
834                                  ILE, Init, FillWithNoInit);
835     else if (DesignatedInitUpdateExpr *InnerDIUE
836                  = dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr))
837       FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(),
838                                  RequiresSecondPass, ILE, Init,
839                                  /*FillWithNoInit =*/true);
840   }
841 }
842 
843 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
844                                  InitListExpr *IL, QualType &T,
845                                  bool VerifyOnly,
846                                  bool TreatUnavailableAsInvalid)
847   : SemaRef(S), VerifyOnly(VerifyOnly),
848     TreatUnavailableAsInvalid(TreatUnavailableAsInvalid) {
849   // FIXME: Check that IL isn't already the semantic form of some other
850   // InitListExpr. If it is, we'd create a broken AST.
851 
852   hadError = false;
853 
854   FullyStructuredList =
855       getStructuredSubobjectInit(IL, 0, T, nullptr, 0, IL->getSourceRange());
856   CheckExplicitInitList(Entity, IL, T, FullyStructuredList,
857                         /*TopLevelObject=*/true);
858 
859   if (!hadError && !VerifyOnly) {
860     bool RequiresSecondPass = false;
861     FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass,
862                                /*OuterILE=*/nullptr, /*OuterIndex=*/0);
863     if (RequiresSecondPass && !hadError)
864       FillInEmptyInitializations(Entity, FullyStructuredList,
865                                  RequiresSecondPass, nullptr, 0);
866   }
867 }
868 
869 int InitListChecker::numArrayElements(QualType DeclType) {
870   // FIXME: use a proper constant
871   int maxElements = 0x7FFFFFFF;
872   if (const ConstantArrayType *CAT =
873         SemaRef.Context.getAsConstantArrayType(DeclType)) {
874     maxElements = static_cast<int>(CAT->getSize().getZExtValue());
875   }
876   return maxElements;
877 }
878 
879 int InitListChecker::numStructUnionElements(QualType DeclType) {
880   RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
881   int InitializableMembers = 0;
882   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl))
883     InitializableMembers += CXXRD->getNumBases();
884   for (const auto *Field : structDecl->fields())
885     if (!Field->isUnnamedBitfield())
886       ++InitializableMembers;
887 
888   if (structDecl->isUnion())
889     return std::min(InitializableMembers, 1);
890   return InitializableMembers - structDecl->hasFlexibleArrayMember();
891 }
892 
893 /// Determine whether Entity is an entity for which it is idiomatic to elide
894 /// the braces in aggregate initialization.
895 static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) {
896   // Recursive initialization of the one and only field within an aggregate
897   // class is considered idiomatic. This case arises in particular for
898   // initialization of std::array, where the C++ standard suggests the idiom of
899   //
900   //   std::array<T, N> arr = {1, 2, 3};
901   //
902   // (where std::array is an aggregate struct containing a single array field.
903 
904   // FIXME: Should aggregate initialization of a struct with a single
905   // base class and no members also suppress the warning?
906   if (Entity.getKind() != InitializedEntity::EK_Member || !Entity.getParent())
907     return false;
908 
909   auto *ParentRD =
910       Entity.getParent()->getType()->castAs<RecordType>()->getDecl();
911   if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(ParentRD))
912     if (CXXRD->getNumBases())
913       return false;
914 
915   auto FieldIt = ParentRD->field_begin();
916   assert(FieldIt != ParentRD->field_end() &&
917          "no fields but have initializer for member?");
918   return ++FieldIt == ParentRD->field_end();
919 }
920 
921 /// Check whether the range of the initializer \p ParentIList from element
922 /// \p Index onwards can be used to initialize an object of type \p T. Update
923 /// \p Index to indicate how many elements of the list were consumed.
924 ///
925 /// This also fills in \p StructuredList, from element \p StructuredIndex
926 /// onwards, with the fully-braced, desugared form of the initialization.
927 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
928                                             InitListExpr *ParentIList,
929                                             QualType T, unsigned &Index,
930                                             InitListExpr *StructuredList,
931                                             unsigned &StructuredIndex) {
932   int maxElements = 0;
933 
934   if (T->isArrayType())
935     maxElements = numArrayElements(T);
936   else if (T->isRecordType())
937     maxElements = numStructUnionElements(T);
938   else if (T->isVectorType())
939     maxElements = T->getAs<VectorType>()->getNumElements();
940   else
941     llvm_unreachable("CheckImplicitInitList(): Illegal type");
942 
943   if (maxElements == 0) {
944     if (!VerifyOnly)
945       SemaRef.Diag(ParentIList->getInit(Index)->getBeginLoc(),
946                    diag::err_implicit_empty_initializer);
947     ++Index;
948     hadError = true;
949     return;
950   }
951 
952   // Build a structured initializer list corresponding to this subobject.
953   InitListExpr *StructuredSubobjectInitList = getStructuredSubobjectInit(
954       ParentIList, Index, T, StructuredList, StructuredIndex,
955       SourceRange(ParentIList->getInit(Index)->getBeginLoc(),
956                   ParentIList->getSourceRange().getEnd()));
957   unsigned StructuredSubobjectInitIndex = 0;
958 
959   // Check the element types and build the structural subobject.
960   unsigned StartIndex = Index;
961   CheckListElementTypes(Entity, ParentIList, T,
962                         /*SubobjectIsDesignatorContext=*/false, Index,
963                         StructuredSubobjectInitList,
964                         StructuredSubobjectInitIndex);
965 
966   if (!VerifyOnly) {
967     StructuredSubobjectInitList->setType(T);
968 
969     unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
970     // Update the structured sub-object initializer so that it's ending
971     // range corresponds with the end of the last initializer it used.
972     if (EndIndex < ParentIList->getNumInits() &&
973         ParentIList->getInit(EndIndex)) {
974       SourceLocation EndLoc
975         = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
976       StructuredSubobjectInitList->setRBraceLoc(EndLoc);
977     }
978 
979     // Complain about missing braces.
980     if ((T->isArrayType() || T->isRecordType()) &&
981         !ParentIList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) &&
982         !isIdiomaticBraceElisionEntity(Entity)) {
983       SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
984                    diag::warn_missing_braces)
985           << StructuredSubobjectInitList->getSourceRange()
986           << FixItHint::CreateInsertion(
987                  StructuredSubobjectInitList->getBeginLoc(), "{")
988           << FixItHint::CreateInsertion(
989                  SemaRef.getLocForEndOfToken(
990                      StructuredSubobjectInitList->getEndLoc()),
991                  "}");
992     }
993 
994     // Warn if this type won't be an aggregate in future versions of C++.
995     auto *CXXRD = T->getAsCXXRecordDecl();
996     if (CXXRD && CXXRD->hasUserDeclaredConstructor()) {
997       SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
998                    diag::warn_cxx2a_compat_aggregate_init_with_ctors)
999           << StructuredSubobjectInitList->getSourceRange() << T;
1000     }
1001   }
1002 }
1003 
1004 /// Warn that \p Entity was of scalar type and was initialized by a
1005 /// single-element braced initializer list.
1006 static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity,
1007                                  SourceRange Braces) {
1008   // Don't warn during template instantiation. If the initialization was
1009   // non-dependent, we warned during the initial parse; otherwise, the
1010   // type might not be scalar in some uses of the template.
1011   if (S.inTemplateInstantiation())
1012     return;
1013 
1014   unsigned DiagID = 0;
1015 
1016   switch (Entity.getKind()) {
1017   case InitializedEntity::EK_VectorElement:
1018   case InitializedEntity::EK_ComplexElement:
1019   case InitializedEntity::EK_ArrayElement:
1020   case InitializedEntity::EK_Parameter:
1021   case InitializedEntity::EK_Parameter_CF_Audited:
1022   case InitializedEntity::EK_Result:
1023     // Extra braces here are suspicious.
1024     DiagID = diag::warn_braces_around_scalar_init;
1025     break;
1026 
1027   case InitializedEntity::EK_Member:
1028     // Warn on aggregate initialization but not on ctor init list or
1029     // default member initializer.
1030     if (Entity.getParent())
1031       DiagID = diag::warn_braces_around_scalar_init;
1032     break;
1033 
1034   case InitializedEntity::EK_Variable:
1035   case InitializedEntity::EK_LambdaCapture:
1036     // No warning, might be direct-list-initialization.
1037     // FIXME: Should we warn for copy-list-initialization in these cases?
1038     break;
1039 
1040   case InitializedEntity::EK_New:
1041   case InitializedEntity::EK_Temporary:
1042   case InitializedEntity::EK_CompoundLiteralInit:
1043     // No warning, braces are part of the syntax of the underlying construct.
1044     break;
1045 
1046   case InitializedEntity::EK_RelatedResult:
1047     // No warning, we already warned when initializing the result.
1048     break;
1049 
1050   case InitializedEntity::EK_Exception:
1051   case InitializedEntity::EK_Base:
1052   case InitializedEntity::EK_Delegating:
1053   case InitializedEntity::EK_BlockElement:
1054   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
1055   case InitializedEntity::EK_Binding:
1056   case InitializedEntity::EK_StmtExprResult:
1057     llvm_unreachable("unexpected braced scalar init");
1058   }
1059 
1060   if (DiagID) {
1061     S.Diag(Braces.getBegin(), DiagID)
1062       << Braces
1063       << FixItHint::CreateRemoval(Braces.getBegin())
1064       << FixItHint::CreateRemoval(Braces.getEnd());
1065   }
1066 }
1067 
1068 /// Check whether the initializer \p IList (that was written with explicit
1069 /// braces) can be used to initialize an object of type \p T.
1070 ///
1071 /// This also fills in \p StructuredList with the fully-braced, desugared
1072 /// form of the initialization.
1073 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
1074                                             InitListExpr *IList, QualType &T,
1075                                             InitListExpr *StructuredList,
1076                                             bool TopLevelObject) {
1077   if (!VerifyOnly) {
1078     SyntacticToSemantic[IList] = StructuredList;
1079     StructuredList->setSyntacticForm(IList);
1080   }
1081 
1082   unsigned Index = 0, StructuredIndex = 0;
1083   CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
1084                         Index, StructuredList, StructuredIndex, TopLevelObject);
1085   if (!VerifyOnly) {
1086     QualType ExprTy = T;
1087     if (!ExprTy->isArrayType())
1088       ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
1089     IList->setType(ExprTy);
1090     StructuredList->setType(ExprTy);
1091   }
1092   if (hadError)
1093     return;
1094 
1095   if (Index < IList->getNumInits()) {
1096     // We have leftover initializers
1097     if (VerifyOnly) {
1098       if (SemaRef.getLangOpts().CPlusPlus ||
1099           (SemaRef.getLangOpts().OpenCL &&
1100            IList->getType()->isVectorType())) {
1101         hadError = true;
1102       }
1103       return;
1104     }
1105 
1106     if (StructuredIndex == 1 &&
1107         IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) ==
1108             SIF_None) {
1109       unsigned DK = diag::ext_excess_initializers_in_char_array_initializer;
1110       if (SemaRef.getLangOpts().CPlusPlus) {
1111         DK = diag::err_excess_initializers_in_char_array_initializer;
1112         hadError = true;
1113       }
1114       // Special-case
1115       SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1116           << IList->getInit(Index)->getSourceRange();
1117     } else if (!T->isIncompleteType()) {
1118       // Don't complain for incomplete types, since we'll get an error
1119       // elsewhere
1120       QualType CurrentObjectType = StructuredList->getType();
1121       int initKind =
1122         CurrentObjectType->isArrayType()? 0 :
1123         CurrentObjectType->isVectorType()? 1 :
1124         CurrentObjectType->isScalarType()? 2 :
1125         CurrentObjectType->isUnionType()? 3 :
1126         4;
1127 
1128       unsigned DK = diag::ext_excess_initializers;
1129       if (SemaRef.getLangOpts().CPlusPlus) {
1130         DK = diag::err_excess_initializers;
1131         hadError = true;
1132       }
1133       if (SemaRef.getLangOpts().OpenCL && initKind == 1) {
1134         DK = diag::err_excess_initializers;
1135         hadError = true;
1136       }
1137 
1138       SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1139           << initKind << IList->getInit(Index)->getSourceRange();
1140     }
1141   }
1142 
1143   if (!VerifyOnly) {
1144     if (T->isScalarType() && IList->getNumInits() == 1 &&
1145         !isa<InitListExpr>(IList->getInit(0)))
1146       warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange());
1147 
1148     // Warn if this is a class type that won't be an aggregate in future
1149     // versions of C++.
1150     auto *CXXRD = T->getAsCXXRecordDecl();
1151     if (CXXRD && CXXRD->hasUserDeclaredConstructor()) {
1152       // Don't warn if there's an equivalent default constructor that would be
1153       // used instead.
1154       bool HasEquivCtor = false;
1155       if (IList->getNumInits() == 0) {
1156         auto *CD = SemaRef.LookupDefaultConstructor(CXXRD);
1157         HasEquivCtor = CD && !CD->isDeleted();
1158       }
1159 
1160       if (!HasEquivCtor) {
1161         SemaRef.Diag(IList->getBeginLoc(),
1162                      diag::warn_cxx2a_compat_aggregate_init_with_ctors)
1163             << IList->getSourceRange() << T;
1164       }
1165     }
1166   }
1167 }
1168 
1169 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
1170                                             InitListExpr *IList,
1171                                             QualType &DeclType,
1172                                             bool SubobjectIsDesignatorContext,
1173                                             unsigned &Index,
1174                                             InitListExpr *StructuredList,
1175                                             unsigned &StructuredIndex,
1176                                             bool TopLevelObject) {
1177   if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
1178     // Explicitly braced initializer for complex type can be real+imaginary
1179     // parts.
1180     CheckComplexType(Entity, IList, DeclType, Index,
1181                      StructuredList, StructuredIndex);
1182   } else if (DeclType->isScalarType()) {
1183     CheckScalarType(Entity, IList, DeclType, Index,
1184                     StructuredList, StructuredIndex);
1185   } else if (DeclType->isVectorType()) {
1186     CheckVectorType(Entity, IList, DeclType, Index,
1187                     StructuredList, StructuredIndex);
1188   } else if (DeclType->isRecordType()) {
1189     assert(DeclType->isAggregateType() &&
1190            "non-aggregate records should be handed in CheckSubElementType");
1191     RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1192     auto Bases =
1193         CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
1194                                         CXXRecordDecl::base_class_iterator());
1195     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1196       Bases = CXXRD->bases();
1197     CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(),
1198                           SubobjectIsDesignatorContext, Index, StructuredList,
1199                           StructuredIndex, TopLevelObject);
1200   } else if (DeclType->isArrayType()) {
1201     llvm::APSInt Zero(
1202                     SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
1203                     false);
1204     CheckArrayType(Entity, IList, DeclType, Zero,
1205                    SubobjectIsDesignatorContext, Index,
1206                    StructuredList, StructuredIndex);
1207   } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
1208     // This type is invalid, issue a diagnostic.
1209     ++Index;
1210     if (!VerifyOnly)
1211       SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
1212           << DeclType;
1213     hadError = true;
1214   } else if (DeclType->isReferenceType()) {
1215     CheckReferenceType(Entity, IList, DeclType, Index,
1216                        StructuredList, StructuredIndex);
1217   } else if (DeclType->isObjCObjectType()) {
1218     if (!VerifyOnly)
1219       SemaRef.Diag(IList->getBeginLoc(), diag::err_init_objc_class) << DeclType;
1220     hadError = true;
1221   } else if (DeclType->isOCLIntelSubgroupAVCType()) {
1222     // Checks for scalar type are sufficient for these types too.
1223     CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1224                     StructuredIndex);
1225   } else {
1226     if (!VerifyOnly)
1227       SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
1228           << DeclType;
1229     hadError = true;
1230   }
1231 }
1232 
1233 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
1234                                           InitListExpr *IList,
1235                                           QualType ElemType,
1236                                           unsigned &Index,
1237                                           InitListExpr *StructuredList,
1238                                           unsigned &StructuredIndex) {
1239   Expr *expr = IList->getInit(Index);
1240 
1241   if (ElemType->isReferenceType())
1242     return CheckReferenceType(Entity, IList, ElemType, Index,
1243                               StructuredList, StructuredIndex);
1244 
1245   if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
1246     if (SubInitList->getNumInits() == 1 &&
1247         IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) ==
1248         SIF_None) {
1249       expr = SubInitList->getInit(0);
1250     } else if (!SemaRef.getLangOpts().CPlusPlus) {
1251       InitListExpr *InnerStructuredList
1252         = getStructuredSubobjectInit(IList, Index, ElemType,
1253                                      StructuredList, StructuredIndex,
1254                                      SubInitList->getSourceRange(), true);
1255       CheckExplicitInitList(Entity, SubInitList, ElemType,
1256                             InnerStructuredList);
1257 
1258       if (!hadError && !VerifyOnly) {
1259         bool RequiresSecondPass = false;
1260         FillInEmptyInitializations(Entity, InnerStructuredList,
1261                                    RequiresSecondPass, StructuredList,
1262                                    StructuredIndex);
1263         if (RequiresSecondPass && !hadError)
1264           FillInEmptyInitializations(Entity, InnerStructuredList,
1265                                      RequiresSecondPass, StructuredList,
1266                                      StructuredIndex);
1267       }
1268       ++StructuredIndex;
1269       ++Index;
1270       return;
1271     }
1272     // C++ initialization is handled later.
1273   } else if (isa<ImplicitValueInitExpr>(expr)) {
1274     // This happens during template instantiation when we see an InitListExpr
1275     // that we've already checked once.
1276     assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) &&
1277            "found implicit initialization for the wrong type");
1278     if (!VerifyOnly)
1279       UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1280     ++Index;
1281     return;
1282   }
1283 
1284   if (SemaRef.getLangOpts().CPlusPlus) {
1285     // C++ [dcl.init.aggr]p2:
1286     //   Each member is copy-initialized from the corresponding
1287     //   initializer-clause.
1288 
1289     // FIXME: Better EqualLoc?
1290     InitializationKind Kind =
1291         InitializationKind::CreateCopy(expr->getBeginLoc(), SourceLocation());
1292     InitializationSequence Seq(SemaRef, Entity, Kind, expr,
1293                                /*TopLevelOfInitList*/ true);
1294 
1295     // C++14 [dcl.init.aggr]p13:
1296     //   If the assignment-expression can initialize a member, the member is
1297     //   initialized. Otherwise [...] brace elision is assumed
1298     //
1299     // Brace elision is never performed if the element is not an
1300     // assignment-expression.
1301     if (Seq || isa<InitListExpr>(expr)) {
1302       if (!VerifyOnly) {
1303         ExprResult Result =
1304           Seq.Perform(SemaRef, Entity, Kind, expr);
1305         if (Result.isInvalid())
1306           hadError = true;
1307 
1308         UpdateStructuredListElement(StructuredList, StructuredIndex,
1309                                     Result.getAs<Expr>());
1310       } else if (!Seq)
1311         hadError = true;
1312       ++Index;
1313       return;
1314     }
1315 
1316     // Fall through for subaggregate initialization
1317   } else if (ElemType->isScalarType() || ElemType->isAtomicType()) {
1318     // FIXME: Need to handle atomic aggregate types with implicit init lists.
1319     return CheckScalarType(Entity, IList, ElemType, Index,
1320                            StructuredList, StructuredIndex);
1321   } else if (const ArrayType *arrayType =
1322                  SemaRef.Context.getAsArrayType(ElemType)) {
1323     // arrayType can be incomplete if we're initializing a flexible
1324     // array member.  There's nothing we can do with the completed
1325     // type here, though.
1326 
1327     if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) {
1328       if (!VerifyOnly) {
1329         CheckStringInit(expr, ElemType, arrayType, SemaRef);
1330         UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1331       }
1332       ++Index;
1333       return;
1334     }
1335 
1336     // Fall through for subaggregate initialization.
1337 
1338   } else {
1339     assert((ElemType->isRecordType() || ElemType->isVectorType() ||
1340             ElemType->isOpenCLSpecificType()) && "Unexpected type");
1341 
1342     // C99 6.7.8p13:
1343     //
1344     //   The initializer for a structure or union object that has
1345     //   automatic storage duration shall be either an initializer
1346     //   list as described below, or a single expression that has
1347     //   compatible structure or union type. In the latter case, the
1348     //   initial value of the object, including unnamed members, is
1349     //   that of the expression.
1350     ExprResult ExprRes = expr;
1351     if (SemaRef.CheckSingleAssignmentConstraints(
1352             ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) {
1353       if (ExprRes.isInvalid())
1354         hadError = true;
1355       else {
1356         ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get());
1357           if (ExprRes.isInvalid())
1358             hadError = true;
1359       }
1360       UpdateStructuredListElement(StructuredList, StructuredIndex,
1361                                   ExprRes.getAs<Expr>());
1362       ++Index;
1363       return;
1364     }
1365     ExprRes.get();
1366     // Fall through for subaggregate initialization
1367   }
1368 
1369   // C++ [dcl.init.aggr]p12:
1370   //
1371   //   [...] Otherwise, if the member is itself a non-empty
1372   //   subaggregate, brace elision is assumed and the initializer is
1373   //   considered for the initialization of the first member of
1374   //   the subaggregate.
1375   // OpenCL vector initializer is handled elsewhere.
1376   if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) ||
1377       ElemType->isAggregateType()) {
1378     CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
1379                           StructuredIndex);
1380     ++StructuredIndex;
1381   } else {
1382     if (!VerifyOnly) {
1383       // We cannot initialize this element, so let
1384       // PerformCopyInitialization produce the appropriate diagnostic.
1385       SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr,
1386                                         /*TopLevelOfInitList=*/true);
1387     }
1388     hadError = true;
1389     ++Index;
1390     ++StructuredIndex;
1391   }
1392 }
1393 
1394 void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
1395                                        InitListExpr *IList, QualType DeclType,
1396                                        unsigned &Index,
1397                                        InitListExpr *StructuredList,
1398                                        unsigned &StructuredIndex) {
1399   assert(Index == 0 && "Index in explicit init list must be zero");
1400 
1401   // As an extension, clang supports complex initializers, which initialize
1402   // a complex number component-wise.  When an explicit initializer list for
1403   // a complex number contains two two initializers, this extension kicks in:
1404   // it exepcts the initializer list to contain two elements convertible to
1405   // the element type of the complex type. The first element initializes
1406   // the real part, and the second element intitializes the imaginary part.
1407 
1408   if (IList->getNumInits() != 2)
1409     return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1410                            StructuredIndex);
1411 
1412   // This is an extension in C.  (The builtin _Complex type does not exist
1413   // in the C++ standard.)
1414   if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
1415     SemaRef.Diag(IList->getBeginLoc(), diag::ext_complex_component_init)
1416         << IList->getSourceRange();
1417 
1418   // Initialize the complex number.
1419   QualType elementType = DeclType->getAs<ComplexType>()->getElementType();
1420   InitializedEntity ElementEntity =
1421     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1422 
1423   for (unsigned i = 0; i < 2; ++i) {
1424     ElementEntity.setElementIndex(Index);
1425     CheckSubElementType(ElementEntity, IList, elementType, Index,
1426                         StructuredList, StructuredIndex);
1427   }
1428 }
1429 
1430 void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
1431                                       InitListExpr *IList, QualType DeclType,
1432                                       unsigned &Index,
1433                                       InitListExpr *StructuredList,
1434                                       unsigned &StructuredIndex) {
1435   if (Index >= IList->getNumInits()) {
1436     if (!VerifyOnly)
1437       SemaRef.Diag(IList->getBeginLoc(),
1438                    SemaRef.getLangOpts().CPlusPlus11
1439                        ? diag::warn_cxx98_compat_empty_scalar_initializer
1440                        : diag::err_empty_scalar_initializer)
1441           << IList->getSourceRange();
1442     hadError = !SemaRef.getLangOpts().CPlusPlus11;
1443     ++Index;
1444     ++StructuredIndex;
1445     return;
1446   }
1447 
1448   Expr *expr = IList->getInit(Index);
1449   if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
1450     // FIXME: This is invalid, and accepting it causes overload resolution
1451     // to pick the wrong overload in some corner cases.
1452     if (!VerifyOnly)
1453       SemaRef.Diag(SubIList->getBeginLoc(),
1454                    diag::ext_many_braces_around_scalar_init)
1455           << SubIList->getSourceRange();
1456 
1457     CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
1458                     StructuredIndex);
1459     return;
1460   } else if (isa<DesignatedInitExpr>(expr)) {
1461     if (!VerifyOnly)
1462       SemaRef.Diag(expr->getBeginLoc(), diag::err_designator_for_scalar_init)
1463           << DeclType << expr->getSourceRange();
1464     hadError = true;
1465     ++Index;
1466     ++StructuredIndex;
1467     return;
1468   }
1469 
1470   if (VerifyOnly) {
1471     if (!SemaRef.CanPerformCopyInitialization(Entity,expr))
1472       hadError = true;
1473     ++Index;
1474     return;
1475   }
1476 
1477   ExprResult Result =
1478       SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
1479                                         /*TopLevelOfInitList=*/true);
1480 
1481   Expr *ResultExpr = nullptr;
1482 
1483   if (Result.isInvalid())
1484     hadError = true; // types weren't compatible.
1485   else {
1486     ResultExpr = Result.getAs<Expr>();
1487 
1488     if (ResultExpr != expr) {
1489       // The type was promoted, update initializer list.
1490       IList->setInit(Index, ResultExpr);
1491     }
1492   }
1493   if (hadError)
1494     ++StructuredIndex;
1495   else
1496     UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1497   ++Index;
1498 }
1499 
1500 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
1501                                          InitListExpr *IList, QualType DeclType,
1502                                          unsigned &Index,
1503                                          InitListExpr *StructuredList,
1504                                          unsigned &StructuredIndex) {
1505   if (Index >= IList->getNumInits()) {
1506     // FIXME: It would be wonderful if we could point at the actual member. In
1507     // general, it would be useful to pass location information down the stack,
1508     // so that we know the location (or decl) of the "current object" being
1509     // initialized.
1510     if (!VerifyOnly)
1511       SemaRef.Diag(IList->getBeginLoc(),
1512                    diag::err_init_reference_member_uninitialized)
1513           << DeclType << IList->getSourceRange();
1514     hadError = true;
1515     ++Index;
1516     ++StructuredIndex;
1517     return;
1518   }
1519 
1520   Expr *expr = IList->getInit(Index);
1521   if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
1522     if (!VerifyOnly)
1523       SemaRef.Diag(IList->getBeginLoc(), diag::err_init_non_aggr_init_list)
1524           << DeclType << IList->getSourceRange();
1525     hadError = true;
1526     ++Index;
1527     ++StructuredIndex;
1528     return;
1529   }
1530 
1531   if (VerifyOnly) {
1532     if (!SemaRef.CanPerformCopyInitialization(Entity,expr))
1533       hadError = true;
1534     ++Index;
1535     return;
1536   }
1537 
1538   ExprResult Result =
1539       SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
1540                                         /*TopLevelOfInitList=*/true);
1541 
1542   if (Result.isInvalid())
1543     hadError = true;
1544 
1545   expr = Result.getAs<Expr>();
1546   IList->setInit(Index, expr);
1547 
1548   if (hadError)
1549     ++StructuredIndex;
1550   else
1551     UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1552   ++Index;
1553 }
1554 
1555 void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1556                                       InitListExpr *IList, QualType DeclType,
1557                                       unsigned &Index,
1558                                       InitListExpr *StructuredList,
1559                                       unsigned &StructuredIndex) {
1560   const VectorType *VT = DeclType->getAs<VectorType>();
1561   unsigned maxElements = VT->getNumElements();
1562   unsigned numEltsInit = 0;
1563   QualType elementType = VT->getElementType();
1564 
1565   if (Index >= IList->getNumInits()) {
1566     // Make sure the element type can be value-initialized.
1567     if (VerifyOnly)
1568       CheckEmptyInitializable(
1569           InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1570           IList->getEndLoc());
1571     return;
1572   }
1573 
1574   if (!SemaRef.getLangOpts().OpenCL) {
1575     // If the initializing element is a vector, try to copy-initialize
1576     // instead of breaking it apart (which is doomed to failure anyway).
1577     Expr *Init = IList->getInit(Index);
1578     if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1579       if (VerifyOnly) {
1580         if (!SemaRef.CanPerformCopyInitialization(Entity, Init))
1581           hadError = true;
1582         ++Index;
1583         return;
1584       }
1585 
1586       ExprResult Result =
1587           SemaRef.PerformCopyInitialization(Entity, Init->getBeginLoc(), Init,
1588                                             /*TopLevelOfInitList=*/true);
1589 
1590       Expr *ResultExpr = nullptr;
1591       if (Result.isInvalid())
1592         hadError = true; // types weren't compatible.
1593       else {
1594         ResultExpr = Result.getAs<Expr>();
1595 
1596         if (ResultExpr != Init) {
1597           // The type was promoted, update initializer list.
1598           IList->setInit(Index, ResultExpr);
1599         }
1600       }
1601       if (hadError)
1602         ++StructuredIndex;
1603       else
1604         UpdateStructuredListElement(StructuredList, StructuredIndex,
1605                                     ResultExpr);
1606       ++Index;
1607       return;
1608     }
1609 
1610     InitializedEntity ElementEntity =
1611       InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1612 
1613     for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1614       // Don't attempt to go past the end of the init list
1615       if (Index >= IList->getNumInits()) {
1616         if (VerifyOnly)
1617           CheckEmptyInitializable(ElementEntity, IList->getEndLoc());
1618         break;
1619       }
1620 
1621       ElementEntity.setElementIndex(Index);
1622       CheckSubElementType(ElementEntity, IList, elementType, Index,
1623                           StructuredList, StructuredIndex);
1624     }
1625 
1626     if (VerifyOnly)
1627       return;
1628 
1629     bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian();
1630     const VectorType *T = Entity.getType()->getAs<VectorType>();
1631     if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector ||
1632                         T->getVectorKind() == VectorType::NeonPolyVector)) {
1633       // The ability to use vector initializer lists is a GNU vector extension
1634       // and is unrelated to the NEON intrinsics in arm_neon.h. On little
1635       // endian machines it works fine, however on big endian machines it
1636       // exhibits surprising behaviour:
1637       //
1638       //   uint32x2_t x = {42, 64};
1639       //   return vget_lane_u32(x, 0); // Will return 64.
1640       //
1641       // Because of this, explicitly call out that it is non-portable.
1642       //
1643       SemaRef.Diag(IList->getBeginLoc(),
1644                    diag::warn_neon_vector_initializer_non_portable);
1645 
1646       const char *typeCode;
1647       unsigned typeSize = SemaRef.Context.getTypeSize(elementType);
1648 
1649       if (elementType->isFloatingType())
1650         typeCode = "f";
1651       else if (elementType->isSignedIntegerType())
1652         typeCode = "s";
1653       else if (elementType->isUnsignedIntegerType())
1654         typeCode = "u";
1655       else
1656         llvm_unreachable("Invalid element type!");
1657 
1658       SemaRef.Diag(IList->getBeginLoc(),
1659                    SemaRef.Context.getTypeSize(VT) > 64
1660                        ? diag::note_neon_vector_initializer_non_portable_q
1661                        : diag::note_neon_vector_initializer_non_portable)
1662           << typeCode << typeSize;
1663     }
1664 
1665     return;
1666   }
1667 
1668   InitializedEntity ElementEntity =
1669     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1670 
1671   // OpenCL initializers allows vectors to be constructed from vectors.
1672   for (unsigned i = 0; i < maxElements; ++i) {
1673     // Don't attempt to go past the end of the init list
1674     if (Index >= IList->getNumInits())
1675       break;
1676 
1677     ElementEntity.setElementIndex(Index);
1678 
1679     QualType IType = IList->getInit(Index)->getType();
1680     if (!IType->isVectorType()) {
1681       CheckSubElementType(ElementEntity, IList, elementType, Index,
1682                           StructuredList, StructuredIndex);
1683       ++numEltsInit;
1684     } else {
1685       QualType VecType;
1686       const VectorType *IVT = IType->getAs<VectorType>();
1687       unsigned numIElts = IVT->getNumElements();
1688 
1689       if (IType->isExtVectorType())
1690         VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1691       else
1692         VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1693                                                 IVT->getVectorKind());
1694       CheckSubElementType(ElementEntity, IList, VecType, Index,
1695                           StructuredList, StructuredIndex);
1696       numEltsInit += numIElts;
1697     }
1698   }
1699 
1700   // OpenCL requires all elements to be initialized.
1701   if (numEltsInit != maxElements) {
1702     if (!VerifyOnly)
1703       SemaRef.Diag(IList->getBeginLoc(),
1704                    diag::err_vector_incorrect_num_initializers)
1705           << (numEltsInit < maxElements) << maxElements << numEltsInit;
1706     hadError = true;
1707   }
1708 }
1709 
1710 /// Check if the type of a class element has an accessible destructor, and marks
1711 /// it referenced. Returns true if we shouldn't form a reference to the
1712 /// destructor.
1713 ///
1714 /// Aggregate initialization requires a class element's destructor be
1715 /// accessible per 11.6.1 [dcl.init.aggr]:
1716 ///
1717 /// The destructor for each element of class type is potentially invoked
1718 /// (15.4 [class.dtor]) from the context where the aggregate initialization
1719 /// occurs.
1720 static bool checkDestructorReference(QualType ElementType, SourceLocation Loc,
1721                                      Sema &SemaRef) {
1722   auto *CXXRD = ElementType->getAsCXXRecordDecl();
1723   if (!CXXRD)
1724     return false;
1725 
1726   CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(CXXRD);
1727   SemaRef.CheckDestructorAccess(Loc, Destructor,
1728                                 SemaRef.PDiag(diag::err_access_dtor_temp)
1729                                 << ElementType);
1730   SemaRef.MarkFunctionReferenced(Loc, Destructor);
1731   return SemaRef.DiagnoseUseOfDecl(Destructor, Loc);
1732 }
1733 
1734 void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1735                                      InitListExpr *IList, QualType &DeclType,
1736                                      llvm::APSInt elementIndex,
1737                                      bool SubobjectIsDesignatorContext,
1738                                      unsigned &Index,
1739                                      InitListExpr *StructuredList,
1740                                      unsigned &StructuredIndex) {
1741   const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1742 
1743   if (!VerifyOnly) {
1744     if (checkDestructorReference(arrayType->getElementType(),
1745                                  IList->getEndLoc(), SemaRef)) {
1746       hadError = true;
1747       return;
1748     }
1749   }
1750 
1751   // Check for the special-case of initializing an array with a string.
1752   if (Index < IList->getNumInits()) {
1753     if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) ==
1754         SIF_None) {
1755       // We place the string literal directly into the resulting
1756       // initializer list. This is the only place where the structure
1757       // of the structured initializer list doesn't match exactly,
1758       // because doing so would involve allocating one character
1759       // constant for each string.
1760       if (!VerifyOnly) {
1761         CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef);
1762         UpdateStructuredListElement(StructuredList, StructuredIndex,
1763                                     IList->getInit(Index));
1764         StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1765       }
1766       ++Index;
1767       return;
1768     }
1769   }
1770   if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1771     // Check for VLAs; in standard C it would be possible to check this
1772     // earlier, but I don't know where clang accepts VLAs (gcc accepts
1773     // them in all sorts of strange places).
1774     if (!VerifyOnly)
1775       SemaRef.Diag(VAT->getSizeExpr()->getBeginLoc(),
1776                    diag::err_variable_object_no_init)
1777           << VAT->getSizeExpr()->getSourceRange();
1778     hadError = true;
1779     ++Index;
1780     ++StructuredIndex;
1781     return;
1782   }
1783 
1784   // We might know the maximum number of elements in advance.
1785   llvm::APSInt maxElements(elementIndex.getBitWidth(),
1786                            elementIndex.isUnsigned());
1787   bool maxElementsKnown = false;
1788   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1789     maxElements = CAT->getSize();
1790     elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1791     elementIndex.setIsUnsigned(maxElements.isUnsigned());
1792     maxElementsKnown = true;
1793   }
1794 
1795   QualType elementType = arrayType->getElementType();
1796   while (Index < IList->getNumInits()) {
1797     Expr *Init = IList->getInit(Index);
1798     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1799       // If we're not the subobject that matches up with the '{' for
1800       // the designator, we shouldn't be handling the
1801       // designator. Return immediately.
1802       if (!SubobjectIsDesignatorContext)
1803         return;
1804 
1805       // Handle this designated initializer. elementIndex will be
1806       // updated to be the next array element we'll initialize.
1807       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1808                                      DeclType, nullptr, &elementIndex, Index,
1809                                      StructuredList, StructuredIndex, true,
1810                                      false)) {
1811         hadError = true;
1812         continue;
1813       }
1814 
1815       if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1816         maxElements = maxElements.extend(elementIndex.getBitWidth());
1817       else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1818         elementIndex = elementIndex.extend(maxElements.getBitWidth());
1819       elementIndex.setIsUnsigned(maxElements.isUnsigned());
1820 
1821       // If the array is of incomplete type, keep track of the number of
1822       // elements in the initializer.
1823       if (!maxElementsKnown && elementIndex > maxElements)
1824         maxElements = elementIndex;
1825 
1826       continue;
1827     }
1828 
1829     // If we know the maximum number of elements, and we've already
1830     // hit it, stop consuming elements in the initializer list.
1831     if (maxElementsKnown && elementIndex == maxElements)
1832       break;
1833 
1834     InitializedEntity ElementEntity =
1835       InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1836                                            Entity);
1837     // Check this element.
1838     CheckSubElementType(ElementEntity, IList, elementType, Index,
1839                         StructuredList, StructuredIndex);
1840     ++elementIndex;
1841 
1842     // If the array is of incomplete type, keep track of the number of
1843     // elements in the initializer.
1844     if (!maxElementsKnown && elementIndex > maxElements)
1845       maxElements = elementIndex;
1846   }
1847   if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1848     // If this is an incomplete array type, the actual type needs to
1849     // be calculated here.
1850     llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1851     if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) {
1852       // Sizing an array implicitly to zero is not allowed by ISO C,
1853       // but is supported by GNU.
1854       SemaRef.Diag(IList->getBeginLoc(), diag::ext_typecheck_zero_array_size);
1855     }
1856 
1857     DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1858                                                      ArrayType::Normal, 0);
1859   }
1860   if (!hadError && VerifyOnly) {
1861     // If there are any members of the array that get value-initialized, check
1862     // that is possible. That happens if we know the bound and don't have
1863     // enough elements, or if we're performing an array new with an unknown
1864     // bound.
1865     // FIXME: This needs to detect holes left by designated initializers too.
1866     if ((maxElementsKnown && elementIndex < maxElements) ||
1867         Entity.isVariableLengthArrayNew())
1868       CheckEmptyInitializable(
1869           InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1870           IList->getEndLoc());
1871   }
1872 }
1873 
1874 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1875                                              Expr *InitExpr,
1876                                              FieldDecl *Field,
1877                                              bool TopLevelObject) {
1878   // Handle GNU flexible array initializers.
1879   unsigned FlexArrayDiag;
1880   if (isa<InitListExpr>(InitExpr) &&
1881       cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
1882     // Empty flexible array init always allowed as an extension
1883     FlexArrayDiag = diag::ext_flexible_array_init;
1884   } else if (SemaRef.getLangOpts().CPlusPlus) {
1885     // Disallow flexible array init in C++; it is not required for gcc
1886     // compatibility, and it needs work to IRGen correctly in general.
1887     FlexArrayDiag = diag::err_flexible_array_init;
1888   } else if (!TopLevelObject) {
1889     // Disallow flexible array init on non-top-level object
1890     FlexArrayDiag = diag::err_flexible_array_init;
1891   } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
1892     // Disallow flexible array init on anything which is not a variable.
1893     FlexArrayDiag = diag::err_flexible_array_init;
1894   } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
1895     // Disallow flexible array init on local variables.
1896     FlexArrayDiag = diag::err_flexible_array_init;
1897   } else {
1898     // Allow other cases.
1899     FlexArrayDiag = diag::ext_flexible_array_init;
1900   }
1901 
1902   if (!VerifyOnly) {
1903     SemaRef.Diag(InitExpr->getBeginLoc(), FlexArrayDiag)
1904         << InitExpr->getBeginLoc();
1905     SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1906       << Field;
1907   }
1908 
1909   return FlexArrayDiag != diag::ext_flexible_array_init;
1910 }
1911 
1912 void InitListChecker::CheckStructUnionTypes(
1913     const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType,
1914     CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field,
1915     bool SubobjectIsDesignatorContext, unsigned &Index,
1916     InitListExpr *StructuredList, unsigned &StructuredIndex,
1917     bool TopLevelObject) {
1918   RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
1919 
1920   // If the record is invalid, some of it's members are invalid. To avoid
1921   // confusion, we forgo checking the intializer for the entire record.
1922   if (structDecl->isInvalidDecl()) {
1923     // Assume it was supposed to consume a single initializer.
1924     ++Index;
1925     hadError = true;
1926     return;
1927   }
1928 
1929   if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1930     RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1931 
1932     if (!VerifyOnly)
1933       for (FieldDecl *FD : RD->fields()) {
1934         QualType ET = SemaRef.Context.getBaseElementType(FD->getType());
1935         if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) {
1936           hadError = true;
1937           return;
1938         }
1939       }
1940 
1941     // If there's a default initializer, use it.
1942     if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
1943       if (VerifyOnly)
1944         return;
1945       for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1946            Field != FieldEnd; ++Field) {
1947         if (Field->hasInClassInitializer()) {
1948           StructuredList->setInitializedFieldInUnion(*Field);
1949           // FIXME: Actually build a CXXDefaultInitExpr?
1950           return;
1951         }
1952       }
1953     }
1954 
1955     // Value-initialize the first member of the union that isn't an unnamed
1956     // bitfield.
1957     for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1958          Field != FieldEnd; ++Field) {
1959       if (!Field->isUnnamedBitfield()) {
1960         if (VerifyOnly)
1961           CheckEmptyInitializable(
1962               InitializedEntity::InitializeMember(*Field, &Entity),
1963               IList->getEndLoc());
1964         else
1965           StructuredList->setInitializedFieldInUnion(*Field);
1966         break;
1967       }
1968     }
1969     return;
1970   }
1971 
1972   bool InitializedSomething = false;
1973 
1974   // If we have any base classes, they are initialized prior to the fields.
1975   for (auto &Base : Bases) {
1976     Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr;
1977 
1978     // Designated inits always initialize fields, so if we see one, all
1979     // remaining base classes have no explicit initializer.
1980     if (Init && isa<DesignatedInitExpr>(Init))
1981       Init = nullptr;
1982 
1983     SourceLocation InitLoc = Init ? Init->getBeginLoc() : IList->getEndLoc();
1984     InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
1985         SemaRef.Context, &Base, false, &Entity);
1986     if (Init) {
1987       CheckSubElementType(BaseEntity, IList, Base.getType(), Index,
1988                           StructuredList, StructuredIndex);
1989       InitializedSomething = true;
1990     } else if (VerifyOnly) {
1991       CheckEmptyInitializable(BaseEntity, InitLoc);
1992     }
1993 
1994     if (!VerifyOnly)
1995       if (checkDestructorReference(Base.getType(), InitLoc, SemaRef)) {
1996         hadError = true;
1997         return;
1998       }
1999   }
2000 
2001   // If structDecl is a forward declaration, this loop won't do
2002   // anything except look at designated initializers; That's okay,
2003   // because an error should get printed out elsewhere. It might be
2004   // worthwhile to skip over the rest of the initializer, though.
2005   RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
2006   RecordDecl::field_iterator FieldEnd = RD->field_end();
2007   bool CheckForMissingFields =
2008     !IList->isIdiomaticZeroInitializer(SemaRef.getLangOpts());
2009   bool HasDesignatedInit = false;
2010 
2011   while (Index < IList->getNumInits()) {
2012     Expr *Init = IList->getInit(Index);
2013     SourceLocation InitLoc = Init->getBeginLoc();
2014 
2015     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
2016       // If we're not the subobject that matches up with the '{' for
2017       // the designator, we shouldn't be handling the
2018       // designator. Return immediately.
2019       if (!SubobjectIsDesignatorContext)
2020         return;
2021 
2022       HasDesignatedInit = true;
2023 
2024       // Handle this designated initializer. Field will be updated to
2025       // the next field that we'll be initializing.
2026       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
2027                                      DeclType, &Field, nullptr, Index,
2028                                      StructuredList, StructuredIndex,
2029                                      true, TopLevelObject))
2030         hadError = true;
2031       else if (!VerifyOnly) {
2032         // Find the field named by the designated initializer.
2033         RecordDecl::field_iterator F = RD->field_begin();
2034         while (std::next(F) != Field)
2035           ++F;
2036         QualType ET = SemaRef.Context.getBaseElementType(F->getType());
2037         if (checkDestructorReference(ET, InitLoc, SemaRef)) {
2038           hadError = true;
2039           return;
2040         }
2041       }
2042 
2043       InitializedSomething = true;
2044 
2045       // Disable check for missing fields when designators are used.
2046       // This matches gcc behaviour.
2047       CheckForMissingFields = false;
2048       continue;
2049     }
2050 
2051     if (Field == FieldEnd) {
2052       // We've run out of fields. We're done.
2053       break;
2054     }
2055 
2056     // We've already initialized a member of a union. We're done.
2057     if (InitializedSomething && DeclType->isUnionType())
2058       break;
2059 
2060     // If we've hit the flexible array member at the end, we're done.
2061     if (Field->getType()->isIncompleteArrayType())
2062       break;
2063 
2064     if (Field->isUnnamedBitfield()) {
2065       // Don't initialize unnamed bitfields, e.g. "int : 20;"
2066       ++Field;
2067       continue;
2068     }
2069 
2070     // Make sure we can use this declaration.
2071     bool InvalidUse;
2072     if (VerifyOnly)
2073       InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2074     else
2075       InvalidUse = SemaRef.DiagnoseUseOfDecl(
2076           *Field, IList->getInit(Index)->getBeginLoc());
2077     if (InvalidUse) {
2078       ++Index;
2079       ++Field;
2080       hadError = true;
2081       continue;
2082     }
2083 
2084     if (!VerifyOnly) {
2085       QualType ET = SemaRef.Context.getBaseElementType(Field->getType());
2086       if (checkDestructorReference(ET, InitLoc, SemaRef)) {
2087         hadError = true;
2088         return;
2089       }
2090     }
2091 
2092     InitializedEntity MemberEntity =
2093       InitializedEntity::InitializeMember(*Field, &Entity);
2094     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2095                         StructuredList, StructuredIndex);
2096     InitializedSomething = true;
2097 
2098     if (DeclType->isUnionType() && !VerifyOnly) {
2099       // Initialize the first field within the union.
2100       StructuredList->setInitializedFieldInUnion(*Field);
2101     }
2102 
2103     ++Field;
2104   }
2105 
2106   // Emit warnings for missing struct field initializers.
2107   if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
2108       Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
2109       !DeclType->isUnionType()) {
2110     // It is possible we have one or more unnamed bitfields remaining.
2111     // Find first (if any) named field and emit warning.
2112     for (RecordDecl::field_iterator it = Field, end = RD->field_end();
2113          it != end; ++it) {
2114       if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
2115         SemaRef.Diag(IList->getSourceRange().getEnd(),
2116                      diag::warn_missing_field_initializers) << *it;
2117         break;
2118       }
2119     }
2120   }
2121 
2122   // Check that any remaining fields can be value-initialized.
2123   if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() &&
2124       !Field->getType()->isIncompleteArrayType()) {
2125     // FIXME: Should check for holes left by designated initializers too.
2126     for (; Field != FieldEnd && !hadError; ++Field) {
2127       if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
2128         CheckEmptyInitializable(
2129             InitializedEntity::InitializeMember(*Field, &Entity),
2130             IList->getEndLoc());
2131     }
2132   }
2133 
2134   // Check that the types of the remaining fields have accessible destructors.
2135   if (!VerifyOnly) {
2136     // If the initializer expression has a designated initializer, check the
2137     // elements for which a designated initializer is not provided too.
2138     RecordDecl::field_iterator I = HasDesignatedInit ? RD->field_begin()
2139                                                      : Field;
2140     for (RecordDecl::field_iterator E = RD->field_end(); I != E; ++I) {
2141       QualType ET = SemaRef.Context.getBaseElementType(I->getType());
2142       if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) {
2143         hadError = true;
2144         return;
2145       }
2146     }
2147   }
2148 
2149   if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
2150       Index >= IList->getNumInits())
2151     return;
2152 
2153   if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
2154                              TopLevelObject)) {
2155     hadError = true;
2156     ++Index;
2157     return;
2158   }
2159 
2160   InitializedEntity MemberEntity =
2161     InitializedEntity::InitializeMember(*Field, &Entity);
2162 
2163   if (isa<InitListExpr>(IList->getInit(Index)))
2164     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2165                         StructuredList, StructuredIndex);
2166   else
2167     CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
2168                           StructuredList, StructuredIndex);
2169 }
2170 
2171 /// Expand a field designator that refers to a member of an
2172 /// anonymous struct or union into a series of field designators that
2173 /// refers to the field within the appropriate subobject.
2174 ///
2175 static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
2176                                            DesignatedInitExpr *DIE,
2177                                            unsigned DesigIdx,
2178                                            IndirectFieldDecl *IndirectField) {
2179   typedef DesignatedInitExpr::Designator Designator;
2180 
2181   // Build the replacement designators.
2182   SmallVector<Designator, 4> Replacements;
2183   for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
2184        PE = IndirectField->chain_end(); PI != PE; ++PI) {
2185     if (PI + 1 == PE)
2186       Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2187                                     DIE->getDesignator(DesigIdx)->getDotLoc(),
2188                                 DIE->getDesignator(DesigIdx)->getFieldLoc()));
2189     else
2190       Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2191                                         SourceLocation(), SourceLocation()));
2192     assert(isa<FieldDecl>(*PI));
2193     Replacements.back().setField(cast<FieldDecl>(*PI));
2194   }
2195 
2196   // Expand the current designator into the set of replacement
2197   // designators, so we have a full subobject path down to where the
2198   // member of the anonymous struct/union is actually stored.
2199   DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
2200                         &Replacements[0] + Replacements.size());
2201 }
2202 
2203 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
2204                                                    DesignatedInitExpr *DIE) {
2205   unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
2206   SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
2207   for (unsigned I = 0; I < NumIndexExprs; ++I)
2208     IndexExprs[I] = DIE->getSubExpr(I + 1);
2209   return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(),
2210                                     IndexExprs,
2211                                     DIE->getEqualOrColonLoc(),
2212                                     DIE->usesGNUSyntax(), DIE->getInit());
2213 }
2214 
2215 namespace {
2216 
2217 // Callback to only accept typo corrections that are for field members of
2218 // the given struct or union.
2219 class FieldInitializerValidatorCCC final : public CorrectionCandidateCallback {
2220  public:
2221   explicit FieldInitializerValidatorCCC(RecordDecl *RD)
2222       : Record(RD) {}
2223 
2224   bool ValidateCandidate(const TypoCorrection &candidate) override {
2225     FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
2226     return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
2227   }
2228 
2229   std::unique_ptr<CorrectionCandidateCallback> clone() override {
2230     return llvm::make_unique<FieldInitializerValidatorCCC>(*this);
2231   }
2232 
2233  private:
2234   RecordDecl *Record;
2235 };
2236 
2237 } // end anonymous namespace
2238 
2239 /// Check the well-formedness of a C99 designated initializer.
2240 ///
2241 /// Determines whether the designated initializer @p DIE, which
2242 /// resides at the given @p Index within the initializer list @p
2243 /// IList, is well-formed for a current object of type @p DeclType
2244 /// (C99 6.7.8). The actual subobject that this designator refers to
2245 /// within the current subobject is returned in either
2246 /// @p NextField or @p NextElementIndex (whichever is appropriate).
2247 ///
2248 /// @param IList  The initializer list in which this designated
2249 /// initializer occurs.
2250 ///
2251 /// @param DIE The designated initializer expression.
2252 ///
2253 /// @param DesigIdx  The index of the current designator.
2254 ///
2255 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
2256 /// into which the designation in @p DIE should refer.
2257 ///
2258 /// @param NextField  If non-NULL and the first designator in @p DIE is
2259 /// a field, this will be set to the field declaration corresponding
2260 /// to the field named by the designator.
2261 ///
2262 /// @param NextElementIndex  If non-NULL and the first designator in @p
2263 /// DIE is an array designator or GNU array-range designator, this
2264 /// will be set to the last index initialized by this designator.
2265 ///
2266 /// @param Index  Index into @p IList where the designated initializer
2267 /// @p DIE occurs.
2268 ///
2269 /// @param StructuredList  The initializer list expression that
2270 /// describes all of the subobject initializers in the order they'll
2271 /// actually be initialized.
2272 ///
2273 /// @returns true if there was an error, false otherwise.
2274 bool
2275 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
2276                                             InitListExpr *IList,
2277                                             DesignatedInitExpr *DIE,
2278                                             unsigned DesigIdx,
2279                                             QualType &CurrentObjectType,
2280                                           RecordDecl::field_iterator *NextField,
2281                                             llvm::APSInt *NextElementIndex,
2282                                             unsigned &Index,
2283                                             InitListExpr *StructuredList,
2284                                             unsigned &StructuredIndex,
2285                                             bool FinishSubobjectInit,
2286                                             bool TopLevelObject) {
2287   if (DesigIdx == DIE->size()) {
2288     // Check the actual initialization for the designated object type.
2289     bool prevHadError = hadError;
2290 
2291     // Temporarily remove the designator expression from the
2292     // initializer list that the child calls see, so that we don't try
2293     // to re-process the designator.
2294     unsigned OldIndex = Index;
2295     IList->setInit(OldIndex, DIE->getInit());
2296 
2297     CheckSubElementType(Entity, IList, CurrentObjectType, Index,
2298                         StructuredList, StructuredIndex);
2299 
2300     // Restore the designated initializer expression in the syntactic
2301     // form of the initializer list.
2302     if (IList->getInit(OldIndex) != DIE->getInit())
2303       DIE->setInit(IList->getInit(OldIndex));
2304     IList->setInit(OldIndex, DIE);
2305 
2306     return hadError && !prevHadError;
2307   }
2308 
2309   DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
2310   bool IsFirstDesignator = (DesigIdx == 0);
2311   if (!VerifyOnly) {
2312     assert((IsFirstDesignator || StructuredList) &&
2313            "Need a non-designated initializer list to start from");
2314 
2315     // Determine the structural initializer list that corresponds to the
2316     // current subobject.
2317     if (IsFirstDesignator)
2318       StructuredList = SyntacticToSemantic.lookup(IList);
2319     else {
2320       Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ?
2321           StructuredList->getInit(StructuredIndex) : nullptr;
2322       if (!ExistingInit && StructuredList->hasArrayFiller())
2323         ExistingInit = StructuredList->getArrayFiller();
2324 
2325       if (!ExistingInit)
2326         StructuredList = getStructuredSubobjectInit(
2327             IList, Index, CurrentObjectType, StructuredList, StructuredIndex,
2328             SourceRange(D->getBeginLoc(), DIE->getEndLoc()));
2329       else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit))
2330         StructuredList = Result;
2331       else {
2332         if (DesignatedInitUpdateExpr *E =
2333                 dyn_cast<DesignatedInitUpdateExpr>(ExistingInit))
2334           StructuredList = E->getUpdater();
2335         else {
2336           DesignatedInitUpdateExpr *DIUE = new (SemaRef.Context)
2337               DesignatedInitUpdateExpr(SemaRef.Context, D->getBeginLoc(),
2338                                        ExistingInit, DIE->getEndLoc());
2339           StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE);
2340           StructuredList = DIUE->getUpdater();
2341         }
2342 
2343         // We need to check on source range validity because the previous
2344         // initializer does not have to be an explicit initializer. e.g.,
2345         //
2346         // struct P { int a, b; };
2347         // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
2348         //
2349         // There is an overwrite taking place because the first braced initializer
2350         // list "{ .a = 2 }" already provides value for .p.b (which is zero).
2351         if (ExistingInit->getSourceRange().isValid()) {
2352           // We are creating an initializer list that initializes the
2353           // subobjects of the current object, but there was already an
2354           // initialization that completely initialized the current
2355           // subobject, e.g., by a compound literal:
2356           //
2357           // struct X { int a, b; };
2358           // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2359           //
2360           // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2361           // designated initializer re-initializes the whole
2362           // subobject [0], overwriting previous initializers.
2363           SemaRef.Diag(D->getBeginLoc(),
2364                        diag::warn_subobject_initializer_overrides)
2365               << SourceRange(D->getBeginLoc(), DIE->getEndLoc());
2366 
2367           SemaRef.Diag(ExistingInit->getBeginLoc(),
2368                        diag::note_previous_initializer)
2369               << /*FIXME:has side effects=*/0 << ExistingInit->getSourceRange();
2370         }
2371       }
2372     }
2373     assert(StructuredList && "Expected a structured initializer list");
2374   }
2375 
2376   if (D->isFieldDesignator()) {
2377     // C99 6.7.8p7:
2378     //
2379     //   If a designator has the form
2380     //
2381     //      . identifier
2382     //
2383     //   then the current object (defined below) shall have
2384     //   structure or union type and the identifier shall be the
2385     //   name of a member of that type.
2386     const RecordType *RT = CurrentObjectType->getAs<RecordType>();
2387     if (!RT) {
2388       SourceLocation Loc = D->getDotLoc();
2389       if (Loc.isInvalid())
2390         Loc = D->getFieldLoc();
2391       if (!VerifyOnly)
2392         SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
2393           << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
2394       ++Index;
2395       return true;
2396     }
2397 
2398     FieldDecl *KnownField = D->getField();
2399     if (!KnownField) {
2400       IdentifierInfo *FieldName = D->getFieldName();
2401       DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
2402       for (NamedDecl *ND : Lookup) {
2403         if (auto *FD = dyn_cast<FieldDecl>(ND)) {
2404           KnownField = FD;
2405           break;
2406         }
2407         if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) {
2408           // In verify mode, don't modify the original.
2409           if (VerifyOnly)
2410             DIE = CloneDesignatedInitExpr(SemaRef, DIE);
2411           ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD);
2412           D = DIE->getDesignator(DesigIdx);
2413           KnownField = cast<FieldDecl>(*IFD->chain_begin());
2414           break;
2415         }
2416       }
2417       if (!KnownField) {
2418         if (VerifyOnly) {
2419           ++Index;
2420           return true;  // No typo correction when just trying this out.
2421         }
2422 
2423         // Name lookup found something, but it wasn't a field.
2424         if (!Lookup.empty()) {
2425           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
2426             << FieldName;
2427           SemaRef.Diag(Lookup.front()->getLocation(),
2428                        diag::note_field_designator_found);
2429           ++Index;
2430           return true;
2431         }
2432 
2433         // Name lookup didn't find anything.
2434         // Determine whether this was a typo for another field name.
2435         FieldInitializerValidatorCCC CCC(RT->getDecl());
2436         if (TypoCorrection Corrected = SemaRef.CorrectTypo(
2437                 DeclarationNameInfo(FieldName, D->getFieldLoc()),
2438                 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr, CCC,
2439                 Sema::CTK_ErrorRecovery, RT->getDecl())) {
2440           SemaRef.diagnoseTypo(
2441               Corrected,
2442               SemaRef.PDiag(diag::err_field_designator_unknown_suggest)
2443                 << FieldName << CurrentObjectType);
2444           KnownField = Corrected.getCorrectionDeclAs<FieldDecl>();
2445           hadError = true;
2446         } else {
2447           // Typo correction didn't find anything.
2448           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
2449             << FieldName << CurrentObjectType;
2450           ++Index;
2451           return true;
2452         }
2453       }
2454     }
2455 
2456     unsigned FieldIndex = 0;
2457 
2458     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2459       FieldIndex = CXXRD->getNumBases();
2460 
2461     for (auto *FI : RT->getDecl()->fields()) {
2462       if (FI->isUnnamedBitfield())
2463         continue;
2464       if (declaresSameEntity(KnownField, FI)) {
2465         KnownField = FI;
2466         break;
2467       }
2468       ++FieldIndex;
2469     }
2470 
2471     RecordDecl::field_iterator Field =
2472         RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField));
2473 
2474     // All of the fields of a union are located at the same place in
2475     // the initializer list.
2476     if (RT->getDecl()->isUnion()) {
2477       FieldIndex = 0;
2478       if (!VerifyOnly) {
2479         FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion();
2480         if (CurrentField && !declaresSameEntity(CurrentField, *Field)) {
2481           assert(StructuredList->getNumInits() == 1
2482                  && "A union should never have more than one initializer!");
2483 
2484           Expr *ExistingInit = StructuredList->getInit(0);
2485           if (ExistingInit) {
2486             // We're about to throw away an initializer, emit warning.
2487             SemaRef.Diag(D->getFieldLoc(),
2488                          diag::warn_initializer_overrides)
2489               << D->getSourceRange();
2490             SemaRef.Diag(ExistingInit->getBeginLoc(),
2491                          diag::note_previous_initializer)
2492                 << /*FIXME:has side effects=*/0
2493                 << ExistingInit->getSourceRange();
2494           }
2495 
2496           // remove existing initializer
2497           StructuredList->resizeInits(SemaRef.Context, 0);
2498           StructuredList->setInitializedFieldInUnion(nullptr);
2499         }
2500 
2501         StructuredList->setInitializedFieldInUnion(*Field);
2502       }
2503     }
2504 
2505     // Make sure we can use this declaration.
2506     bool InvalidUse;
2507     if (VerifyOnly)
2508       InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2509     else
2510       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
2511     if (InvalidUse) {
2512       ++Index;
2513       return true;
2514     }
2515 
2516     if (!VerifyOnly) {
2517       // Update the designator with the field declaration.
2518       D->setField(*Field);
2519 
2520       // Make sure that our non-designated initializer list has space
2521       // for a subobject corresponding to this field.
2522       if (FieldIndex >= StructuredList->getNumInits())
2523         StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
2524     }
2525 
2526     // This designator names a flexible array member.
2527     if (Field->getType()->isIncompleteArrayType()) {
2528       bool Invalid = false;
2529       if ((DesigIdx + 1) != DIE->size()) {
2530         // We can't designate an object within the flexible array
2531         // member (because GCC doesn't allow it).
2532         if (!VerifyOnly) {
2533           DesignatedInitExpr::Designator *NextD
2534             = DIE->getDesignator(DesigIdx + 1);
2535           SemaRef.Diag(NextD->getBeginLoc(),
2536                        diag::err_designator_into_flexible_array_member)
2537               << SourceRange(NextD->getBeginLoc(), DIE->getEndLoc());
2538           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2539             << *Field;
2540         }
2541         Invalid = true;
2542       }
2543 
2544       if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
2545           !isa<StringLiteral>(DIE->getInit())) {
2546         // The initializer is not an initializer list.
2547         if (!VerifyOnly) {
2548           SemaRef.Diag(DIE->getInit()->getBeginLoc(),
2549                        diag::err_flexible_array_init_needs_braces)
2550               << DIE->getInit()->getSourceRange();
2551           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2552             << *Field;
2553         }
2554         Invalid = true;
2555       }
2556 
2557       // Check GNU flexible array initializer.
2558       if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
2559                                              TopLevelObject))
2560         Invalid = true;
2561 
2562       if (Invalid) {
2563         ++Index;
2564         return true;
2565       }
2566 
2567       // Initialize the array.
2568       bool prevHadError = hadError;
2569       unsigned newStructuredIndex = FieldIndex;
2570       unsigned OldIndex = Index;
2571       IList->setInit(Index, DIE->getInit());
2572 
2573       InitializedEntity MemberEntity =
2574         InitializedEntity::InitializeMember(*Field, &Entity);
2575       CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2576                           StructuredList, newStructuredIndex);
2577 
2578       IList->setInit(OldIndex, DIE);
2579       if (hadError && !prevHadError) {
2580         ++Field;
2581         ++FieldIndex;
2582         if (NextField)
2583           *NextField = Field;
2584         StructuredIndex = FieldIndex;
2585         return true;
2586       }
2587     } else {
2588       // Recurse to check later designated subobjects.
2589       QualType FieldType = Field->getType();
2590       unsigned newStructuredIndex = FieldIndex;
2591 
2592       InitializedEntity MemberEntity =
2593         InitializedEntity::InitializeMember(*Field, &Entity);
2594       if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
2595                                      FieldType, nullptr, nullptr, Index,
2596                                      StructuredList, newStructuredIndex,
2597                                      FinishSubobjectInit, false))
2598         return true;
2599     }
2600 
2601     // Find the position of the next field to be initialized in this
2602     // subobject.
2603     ++Field;
2604     ++FieldIndex;
2605 
2606     // If this the first designator, our caller will continue checking
2607     // the rest of this struct/class/union subobject.
2608     if (IsFirstDesignator) {
2609       if (NextField)
2610         *NextField = Field;
2611       StructuredIndex = FieldIndex;
2612       return false;
2613     }
2614 
2615     if (!FinishSubobjectInit)
2616       return false;
2617 
2618     // We've already initialized something in the union; we're done.
2619     if (RT->getDecl()->isUnion())
2620       return hadError;
2621 
2622     // Check the remaining fields within this class/struct/union subobject.
2623     bool prevHadError = hadError;
2624 
2625     auto NoBases =
2626         CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
2627                                         CXXRecordDecl::base_class_iterator());
2628     CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field,
2629                           false, Index, StructuredList, FieldIndex);
2630     return hadError && !prevHadError;
2631   }
2632 
2633   // C99 6.7.8p6:
2634   //
2635   //   If a designator has the form
2636   //
2637   //      [ constant-expression ]
2638   //
2639   //   then the current object (defined below) shall have array
2640   //   type and the expression shall be an integer constant
2641   //   expression. If the array is of unknown size, any
2642   //   nonnegative value is valid.
2643   //
2644   // Additionally, cope with the GNU extension that permits
2645   // designators of the form
2646   //
2647   //      [ constant-expression ... constant-expression ]
2648   const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
2649   if (!AT) {
2650     if (!VerifyOnly)
2651       SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
2652         << CurrentObjectType;
2653     ++Index;
2654     return true;
2655   }
2656 
2657   Expr *IndexExpr = nullptr;
2658   llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
2659   if (D->isArrayDesignator()) {
2660     IndexExpr = DIE->getArrayIndex(*D);
2661     DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
2662     DesignatedEndIndex = DesignatedStartIndex;
2663   } else {
2664     assert(D->isArrayRangeDesignator() && "Need array-range designator");
2665 
2666     DesignatedStartIndex =
2667       DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
2668     DesignatedEndIndex =
2669       DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
2670     IndexExpr = DIE->getArrayRangeEnd(*D);
2671 
2672     // Codegen can't handle evaluating array range designators that have side
2673     // effects, because we replicate the AST value for each initialized element.
2674     // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
2675     // elements with something that has a side effect, so codegen can emit an
2676     // "error unsupported" error instead of miscompiling the app.
2677     if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
2678         DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
2679       FullyStructuredList->sawArrayRangeDesignator();
2680   }
2681 
2682   if (isa<ConstantArrayType>(AT)) {
2683     llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
2684     DesignatedStartIndex
2685       = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
2686     DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
2687     DesignatedEndIndex
2688       = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
2689     DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
2690     if (DesignatedEndIndex >= MaxElements) {
2691       if (!VerifyOnly)
2692         SemaRef.Diag(IndexExpr->getBeginLoc(),
2693                      diag::err_array_designator_too_large)
2694             << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
2695             << IndexExpr->getSourceRange();
2696       ++Index;
2697       return true;
2698     }
2699   } else {
2700     unsigned DesignatedIndexBitWidth =
2701       ConstantArrayType::getMaxSizeBits(SemaRef.Context);
2702     DesignatedStartIndex =
2703       DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth);
2704     DesignatedEndIndex =
2705       DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth);
2706     DesignatedStartIndex.setIsUnsigned(true);
2707     DesignatedEndIndex.setIsUnsigned(true);
2708   }
2709 
2710   if (!VerifyOnly && StructuredList->isStringLiteralInit()) {
2711     // We're modifying a string literal init; we have to decompose the string
2712     // so we can modify the individual characters.
2713     ASTContext &Context = SemaRef.Context;
2714     Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens();
2715 
2716     // Compute the character type
2717     QualType CharTy = AT->getElementType();
2718 
2719     // Compute the type of the integer literals.
2720     QualType PromotedCharTy = CharTy;
2721     if (CharTy->isPromotableIntegerType())
2722       PromotedCharTy = Context.getPromotedIntegerType(CharTy);
2723     unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy);
2724 
2725     if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) {
2726       // Get the length of the string.
2727       uint64_t StrLen = SL->getLength();
2728       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2729         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2730       StructuredList->resizeInits(Context, StrLen);
2731 
2732       // Build a literal for each character in the string, and put them into
2733       // the init list.
2734       for (unsigned i = 0, e = StrLen; i != e; ++i) {
2735         llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i));
2736         Expr *Init = new (Context) IntegerLiteral(
2737             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2738         if (CharTy != PromotedCharTy)
2739           Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2740                                           Init, nullptr, VK_RValue);
2741         StructuredList->updateInit(Context, i, Init);
2742       }
2743     } else {
2744       ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr);
2745       std::string Str;
2746       Context.getObjCEncodingForType(E->getEncodedType(), Str);
2747 
2748       // Get the length of the string.
2749       uint64_t StrLen = Str.size();
2750       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2751         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2752       StructuredList->resizeInits(Context, StrLen);
2753 
2754       // Build a literal for each character in the string, and put them into
2755       // the init list.
2756       for (unsigned i = 0, e = StrLen; i != e; ++i) {
2757         llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]);
2758         Expr *Init = new (Context) IntegerLiteral(
2759             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2760         if (CharTy != PromotedCharTy)
2761           Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2762                                           Init, nullptr, VK_RValue);
2763         StructuredList->updateInit(Context, i, Init);
2764       }
2765     }
2766   }
2767 
2768   // Make sure that our non-designated initializer list has space
2769   // for a subobject corresponding to this array element.
2770   if (!VerifyOnly &&
2771       DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
2772     StructuredList->resizeInits(SemaRef.Context,
2773                                 DesignatedEndIndex.getZExtValue() + 1);
2774 
2775   // Repeatedly perform subobject initializations in the range
2776   // [DesignatedStartIndex, DesignatedEndIndex].
2777 
2778   // Move to the next designator
2779   unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
2780   unsigned OldIndex = Index;
2781 
2782   InitializedEntity ElementEntity =
2783     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
2784 
2785   while (DesignatedStartIndex <= DesignatedEndIndex) {
2786     // Recurse to check later designated subobjects.
2787     QualType ElementType = AT->getElementType();
2788     Index = OldIndex;
2789 
2790     ElementEntity.setElementIndex(ElementIndex);
2791     if (CheckDesignatedInitializer(
2792             ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr,
2793             nullptr, Index, StructuredList, ElementIndex,
2794             FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex),
2795             false))
2796       return true;
2797 
2798     // Move to the next index in the array that we'll be initializing.
2799     ++DesignatedStartIndex;
2800     ElementIndex = DesignatedStartIndex.getZExtValue();
2801   }
2802 
2803   // If this the first designator, our caller will continue checking
2804   // the rest of this array subobject.
2805   if (IsFirstDesignator) {
2806     if (NextElementIndex)
2807       *NextElementIndex = DesignatedStartIndex;
2808     StructuredIndex = ElementIndex;
2809     return false;
2810   }
2811 
2812   if (!FinishSubobjectInit)
2813     return false;
2814 
2815   // Check the remaining elements within this array subobject.
2816   bool prevHadError = hadError;
2817   CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
2818                  /*SubobjectIsDesignatorContext=*/false, Index,
2819                  StructuredList, ElementIndex);
2820   return hadError && !prevHadError;
2821 }
2822 
2823 // Get the structured initializer list for a subobject of type
2824 // @p CurrentObjectType.
2825 InitListExpr *
2826 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
2827                                             QualType CurrentObjectType,
2828                                             InitListExpr *StructuredList,
2829                                             unsigned StructuredIndex,
2830                                             SourceRange InitRange,
2831                                             bool IsFullyOverwritten) {
2832   if (VerifyOnly)
2833     return nullptr; // No structured list in verification-only mode.
2834   Expr *ExistingInit = nullptr;
2835   if (!StructuredList)
2836     ExistingInit = SyntacticToSemantic.lookup(IList);
2837   else if (StructuredIndex < StructuredList->getNumInits())
2838     ExistingInit = StructuredList->getInit(StructuredIndex);
2839 
2840   if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
2841     // There might have already been initializers for subobjects of the current
2842     // object, but a subsequent initializer list will overwrite the entirety
2843     // of the current object. (See DR 253 and C99 6.7.8p21). e.g.,
2844     //
2845     // struct P { char x[6]; };
2846     // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } };
2847     //
2848     // The first designated initializer is ignored, and l.x is just "f".
2849     if (!IsFullyOverwritten)
2850       return Result;
2851 
2852   if (ExistingInit) {
2853     // We are creating an initializer list that initializes the
2854     // subobjects of the current object, but there was already an
2855     // initialization that completely initialized the current
2856     // subobject, e.g., by a compound literal:
2857     //
2858     // struct X { int a, b; };
2859     // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2860     //
2861     // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2862     // designated initializer re-initializes the whole
2863     // subobject [0], overwriting previous initializers.
2864     SemaRef.Diag(InitRange.getBegin(),
2865                  diag::warn_subobject_initializer_overrides)
2866       << InitRange;
2867     SemaRef.Diag(ExistingInit->getBeginLoc(), diag::note_previous_initializer)
2868         << /*FIXME:has side effects=*/0 << ExistingInit->getSourceRange();
2869   }
2870 
2871   InitListExpr *Result
2872     = new (SemaRef.Context) InitListExpr(SemaRef.Context,
2873                                          InitRange.getBegin(), None,
2874                                          InitRange.getEnd());
2875 
2876   QualType ResultType = CurrentObjectType;
2877   if (!ResultType->isArrayType())
2878     ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
2879   Result->setType(ResultType);
2880 
2881   // Pre-allocate storage for the structured initializer list.
2882   unsigned NumElements = 0;
2883   unsigned NumInits = 0;
2884   bool GotNumInits = false;
2885   if (!StructuredList) {
2886     NumInits = IList->getNumInits();
2887     GotNumInits = true;
2888   } else if (Index < IList->getNumInits()) {
2889     if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
2890       NumInits = SubList->getNumInits();
2891       GotNumInits = true;
2892     }
2893   }
2894 
2895   if (const ArrayType *AType
2896       = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
2897     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
2898       NumElements = CAType->getSize().getZExtValue();
2899       // Simple heuristic so that we don't allocate a very large
2900       // initializer with many empty entries at the end.
2901       if (GotNumInits && NumElements > NumInits)
2902         NumElements = 0;
2903     }
2904   } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
2905     NumElements = VType->getNumElements();
2906   else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
2907     RecordDecl *RDecl = RType->getDecl();
2908     if (RDecl->isUnion())
2909       NumElements = 1;
2910     else
2911       NumElements = std::distance(RDecl->field_begin(), RDecl->field_end());
2912   }
2913 
2914   Result->reserveInits(SemaRef.Context, NumElements);
2915 
2916   // Link this new initializer list into the structured initializer
2917   // lists.
2918   if (StructuredList)
2919     StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
2920   else {
2921     Result->setSyntacticForm(IList);
2922     SyntacticToSemantic[IList] = Result;
2923   }
2924 
2925   return Result;
2926 }
2927 
2928 /// Update the initializer at index @p StructuredIndex within the
2929 /// structured initializer list to the value @p expr.
2930 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
2931                                                   unsigned &StructuredIndex,
2932                                                   Expr *expr) {
2933   // No structured initializer list to update
2934   if (!StructuredList)
2935     return;
2936 
2937   if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
2938                                                   StructuredIndex, expr)) {
2939     // This initializer overwrites a previous initializer. Warn.
2940     // We need to check on source range validity because the previous
2941     // initializer does not have to be an explicit initializer.
2942     // struct P { int a, b; };
2943     // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
2944     // There is an overwrite taking place because the first braced initializer
2945     // list "{ .a = 2 }' already provides value for .p.b (which is zero).
2946     if (PrevInit->getSourceRange().isValid()) {
2947       SemaRef.Diag(expr->getBeginLoc(), diag::warn_initializer_overrides)
2948           << expr->getSourceRange();
2949 
2950       SemaRef.Diag(PrevInit->getBeginLoc(), diag::note_previous_initializer)
2951           << /*FIXME:has side effects=*/0 << PrevInit->getSourceRange();
2952     }
2953   }
2954 
2955   ++StructuredIndex;
2956 }
2957 
2958 /// Check that the given Index expression is a valid array designator
2959 /// value. This is essentially just a wrapper around
2960 /// VerifyIntegerConstantExpression that also checks for negative values
2961 /// and produces a reasonable diagnostic if there is a
2962 /// failure. Returns the index expression, possibly with an implicit cast
2963 /// added, on success.  If everything went okay, Value will receive the
2964 /// value of the constant expression.
2965 static ExprResult
2966 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
2967   SourceLocation Loc = Index->getBeginLoc();
2968 
2969   // Make sure this is an integer constant expression.
2970   ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value);
2971   if (Result.isInvalid())
2972     return Result;
2973 
2974   if (Value.isSigned() && Value.isNegative())
2975     return S.Diag(Loc, diag::err_array_designator_negative)
2976       << Value.toString(10) << Index->getSourceRange();
2977 
2978   Value.setIsUnsigned(true);
2979   return Result;
2980 }
2981 
2982 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
2983                                             SourceLocation Loc,
2984                                             bool GNUSyntax,
2985                                             ExprResult Init) {
2986   typedef DesignatedInitExpr::Designator ASTDesignator;
2987 
2988   bool Invalid = false;
2989   SmallVector<ASTDesignator, 32> Designators;
2990   SmallVector<Expr *, 32> InitExpressions;
2991 
2992   // Build designators and check array designator expressions.
2993   for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
2994     const Designator &D = Desig.getDesignator(Idx);
2995     switch (D.getKind()) {
2996     case Designator::FieldDesignator:
2997       Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
2998                                           D.getFieldLoc()));
2999       break;
3000 
3001     case Designator::ArrayDesignator: {
3002       Expr *Index = static_cast<Expr *>(D.getArrayIndex());
3003       llvm::APSInt IndexValue;
3004       if (!Index->isTypeDependent() && !Index->isValueDependent())
3005         Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get();
3006       if (!Index)
3007         Invalid = true;
3008       else {
3009         Designators.push_back(ASTDesignator(InitExpressions.size(),
3010                                             D.getLBracketLoc(),
3011                                             D.getRBracketLoc()));
3012         InitExpressions.push_back(Index);
3013       }
3014       break;
3015     }
3016 
3017     case Designator::ArrayRangeDesignator: {
3018       Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
3019       Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
3020       llvm::APSInt StartValue;
3021       llvm::APSInt EndValue;
3022       bool StartDependent = StartIndex->isTypeDependent() ||
3023                             StartIndex->isValueDependent();
3024       bool EndDependent = EndIndex->isTypeDependent() ||
3025                           EndIndex->isValueDependent();
3026       if (!StartDependent)
3027         StartIndex =
3028             CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get();
3029       if (!EndDependent)
3030         EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get();
3031 
3032       if (!StartIndex || !EndIndex)
3033         Invalid = true;
3034       else {
3035         // Make sure we're comparing values with the same bit width.
3036         if (StartDependent || EndDependent) {
3037           // Nothing to compute.
3038         } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
3039           EndValue = EndValue.extend(StartValue.getBitWidth());
3040         else if (StartValue.getBitWidth() < EndValue.getBitWidth())
3041           StartValue = StartValue.extend(EndValue.getBitWidth());
3042 
3043         if (!StartDependent && !EndDependent && EndValue < StartValue) {
3044           Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
3045             << StartValue.toString(10) << EndValue.toString(10)
3046             << StartIndex->getSourceRange() << EndIndex->getSourceRange();
3047           Invalid = true;
3048         } else {
3049           Designators.push_back(ASTDesignator(InitExpressions.size(),
3050                                               D.getLBracketLoc(),
3051                                               D.getEllipsisLoc(),
3052                                               D.getRBracketLoc()));
3053           InitExpressions.push_back(StartIndex);
3054           InitExpressions.push_back(EndIndex);
3055         }
3056       }
3057       break;
3058     }
3059     }
3060   }
3061 
3062   if (Invalid || Init.isInvalid())
3063     return ExprError();
3064 
3065   // Clear out the expressions within the designation.
3066   Desig.ClearExprs(*this);
3067 
3068   DesignatedInitExpr *DIE
3069     = DesignatedInitExpr::Create(Context,
3070                                  Designators,
3071                                  InitExpressions, Loc, GNUSyntax,
3072                                  Init.getAs<Expr>());
3073 
3074   if (!getLangOpts().C99)
3075     Diag(DIE->getBeginLoc(), diag::ext_designated_init)
3076         << DIE->getSourceRange();
3077 
3078   return DIE;
3079 }
3080 
3081 //===----------------------------------------------------------------------===//
3082 // Initialization entity
3083 //===----------------------------------------------------------------------===//
3084 
3085 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
3086                                      const InitializedEntity &Parent)
3087   : Parent(&Parent), Index(Index)
3088 {
3089   if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
3090     Kind = EK_ArrayElement;
3091     Type = AT->getElementType();
3092   } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
3093     Kind = EK_VectorElement;
3094     Type = VT->getElementType();
3095   } else {
3096     const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
3097     assert(CT && "Unexpected type");
3098     Kind = EK_ComplexElement;
3099     Type = CT->getElementType();
3100   }
3101 }
3102 
3103 InitializedEntity
3104 InitializedEntity::InitializeBase(ASTContext &Context,
3105                                   const CXXBaseSpecifier *Base,
3106                                   bool IsInheritedVirtualBase,
3107                                   const InitializedEntity *Parent) {
3108   InitializedEntity Result;
3109   Result.Kind = EK_Base;
3110   Result.Parent = Parent;
3111   Result.Base = reinterpret_cast<uintptr_t>(Base);
3112   if (IsInheritedVirtualBase)
3113     Result.Base |= 0x01;
3114 
3115   Result.Type = Base->getType();
3116   return Result;
3117 }
3118 
3119 DeclarationName InitializedEntity::getName() const {
3120   switch (getKind()) {
3121   case EK_Parameter:
3122   case EK_Parameter_CF_Audited: {
3123     ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
3124     return (D ? D->getDeclName() : DeclarationName());
3125   }
3126 
3127   case EK_Variable:
3128   case EK_Member:
3129   case EK_Binding:
3130     return Variable.VariableOrMember->getDeclName();
3131 
3132   case EK_LambdaCapture:
3133     return DeclarationName(Capture.VarID);
3134 
3135   case EK_Result:
3136   case EK_StmtExprResult:
3137   case EK_Exception:
3138   case EK_New:
3139   case EK_Temporary:
3140   case EK_Base:
3141   case EK_Delegating:
3142   case EK_ArrayElement:
3143   case EK_VectorElement:
3144   case EK_ComplexElement:
3145   case EK_BlockElement:
3146   case EK_LambdaToBlockConversionBlockElement:
3147   case EK_CompoundLiteralInit:
3148   case EK_RelatedResult:
3149     return DeclarationName();
3150   }
3151 
3152   llvm_unreachable("Invalid EntityKind!");
3153 }
3154 
3155 ValueDecl *InitializedEntity::getDecl() const {
3156   switch (getKind()) {
3157   case EK_Variable:
3158   case EK_Member:
3159   case EK_Binding:
3160     return Variable.VariableOrMember;
3161 
3162   case EK_Parameter:
3163   case EK_Parameter_CF_Audited:
3164     return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
3165 
3166   case EK_Result:
3167   case EK_StmtExprResult:
3168   case EK_Exception:
3169   case EK_New:
3170   case EK_Temporary:
3171   case EK_Base:
3172   case EK_Delegating:
3173   case EK_ArrayElement:
3174   case EK_VectorElement:
3175   case EK_ComplexElement:
3176   case EK_BlockElement:
3177   case EK_LambdaToBlockConversionBlockElement:
3178   case EK_LambdaCapture:
3179   case EK_CompoundLiteralInit:
3180   case EK_RelatedResult:
3181     return nullptr;
3182   }
3183 
3184   llvm_unreachable("Invalid EntityKind!");
3185 }
3186 
3187 bool InitializedEntity::allowsNRVO() const {
3188   switch (getKind()) {
3189   case EK_Result:
3190   case EK_Exception:
3191     return LocAndNRVO.NRVO;
3192 
3193   case EK_StmtExprResult:
3194   case EK_Variable:
3195   case EK_Parameter:
3196   case EK_Parameter_CF_Audited:
3197   case EK_Member:
3198   case EK_Binding:
3199   case EK_New:
3200   case EK_Temporary:
3201   case EK_CompoundLiteralInit:
3202   case EK_Base:
3203   case EK_Delegating:
3204   case EK_ArrayElement:
3205   case EK_VectorElement:
3206   case EK_ComplexElement:
3207   case EK_BlockElement:
3208   case EK_LambdaToBlockConversionBlockElement:
3209   case EK_LambdaCapture:
3210   case EK_RelatedResult:
3211     break;
3212   }
3213 
3214   return false;
3215 }
3216 
3217 unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const {
3218   assert(getParent() != this);
3219   unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0;
3220   for (unsigned I = 0; I != Depth; ++I)
3221     OS << "`-";
3222 
3223   switch (getKind()) {
3224   case EK_Variable: OS << "Variable"; break;
3225   case EK_Parameter: OS << "Parameter"; break;
3226   case EK_Parameter_CF_Audited: OS << "CF audited function Parameter";
3227     break;
3228   case EK_Result: OS << "Result"; break;
3229   case EK_StmtExprResult: OS << "StmtExprResult"; break;
3230   case EK_Exception: OS << "Exception"; break;
3231   case EK_Member: OS << "Member"; break;
3232   case EK_Binding: OS << "Binding"; break;
3233   case EK_New: OS << "New"; break;
3234   case EK_Temporary: OS << "Temporary"; break;
3235   case EK_CompoundLiteralInit: OS << "CompoundLiteral";break;
3236   case EK_RelatedResult: OS << "RelatedResult"; break;
3237   case EK_Base: OS << "Base"; break;
3238   case EK_Delegating: OS << "Delegating"; break;
3239   case EK_ArrayElement: OS << "ArrayElement " << Index; break;
3240   case EK_VectorElement: OS << "VectorElement " << Index; break;
3241   case EK_ComplexElement: OS << "ComplexElement " << Index; break;
3242   case EK_BlockElement: OS << "Block"; break;
3243   case EK_LambdaToBlockConversionBlockElement:
3244     OS << "Block (lambda)";
3245     break;
3246   case EK_LambdaCapture:
3247     OS << "LambdaCapture ";
3248     OS << DeclarationName(Capture.VarID);
3249     break;
3250   }
3251 
3252   if (auto *D = getDecl()) {
3253     OS << " ";
3254     D->printQualifiedName(OS);
3255   }
3256 
3257   OS << " '" << getType().getAsString() << "'\n";
3258 
3259   return Depth + 1;
3260 }
3261 
3262 LLVM_DUMP_METHOD void InitializedEntity::dump() const {
3263   dumpImpl(llvm::errs());
3264 }
3265 
3266 //===----------------------------------------------------------------------===//
3267 // Initialization sequence
3268 //===----------------------------------------------------------------------===//
3269 
3270 void InitializationSequence::Step::Destroy() {
3271   switch (Kind) {
3272   case SK_ResolveAddressOfOverloadedFunction:
3273   case SK_CastDerivedToBaseRValue:
3274   case SK_CastDerivedToBaseXValue:
3275   case SK_CastDerivedToBaseLValue:
3276   case SK_BindReference:
3277   case SK_BindReferenceToTemporary:
3278   case SK_FinalCopy:
3279   case SK_ExtraneousCopyToTemporary:
3280   case SK_UserConversion:
3281   case SK_QualificationConversionRValue:
3282   case SK_QualificationConversionXValue:
3283   case SK_QualificationConversionLValue:
3284   case SK_AtomicConversion:
3285   case SK_ListInitialization:
3286   case SK_UnwrapInitList:
3287   case SK_RewrapInitList:
3288   case SK_ConstructorInitialization:
3289   case SK_ConstructorInitializationFromList:
3290   case SK_ZeroInitialization:
3291   case SK_CAssignment:
3292   case SK_StringInit:
3293   case SK_ObjCObjectConversion:
3294   case SK_ArrayLoopIndex:
3295   case SK_ArrayLoopInit:
3296   case SK_ArrayInit:
3297   case SK_GNUArrayInit:
3298   case SK_ParenthesizedArrayInit:
3299   case SK_PassByIndirectCopyRestore:
3300   case SK_PassByIndirectRestore:
3301   case SK_ProduceObjCObject:
3302   case SK_StdInitializerList:
3303   case SK_StdInitializerListConstructorCall:
3304   case SK_OCLSamplerInit:
3305   case SK_OCLZeroOpaqueType:
3306     break;
3307 
3308   case SK_ConversionSequence:
3309   case SK_ConversionSequenceNoNarrowing:
3310     delete ICS;
3311   }
3312 }
3313 
3314 bool InitializationSequence::isDirectReferenceBinding() const {
3315   // There can be some lvalue adjustments after the SK_BindReference step.
3316   for (auto I = Steps.rbegin(); I != Steps.rend(); ++I) {
3317     if (I->Kind == SK_BindReference)
3318       return true;
3319     if (I->Kind == SK_BindReferenceToTemporary)
3320       return false;
3321   }
3322   return false;
3323 }
3324 
3325 bool InitializationSequence::isAmbiguous() const {
3326   if (!Failed())
3327     return false;
3328 
3329   switch (getFailureKind()) {
3330   case FK_TooManyInitsForReference:
3331   case FK_ParenthesizedListInitForReference:
3332   case FK_ArrayNeedsInitList:
3333   case FK_ArrayNeedsInitListOrStringLiteral:
3334   case FK_ArrayNeedsInitListOrWideStringLiteral:
3335   case FK_NarrowStringIntoWideCharArray:
3336   case FK_WideStringIntoCharArray:
3337   case FK_IncompatWideStringIntoWideChar:
3338   case FK_PlainStringIntoUTF8Char:
3339   case FK_UTF8StringIntoPlainChar:
3340   case FK_AddressOfOverloadFailed: // FIXME: Could do better
3341   case FK_NonConstLValueReferenceBindingToTemporary:
3342   case FK_NonConstLValueReferenceBindingToBitfield:
3343   case FK_NonConstLValueReferenceBindingToVectorElement:
3344   case FK_NonConstLValueReferenceBindingToUnrelated:
3345   case FK_RValueReferenceBindingToLValue:
3346   case FK_ReferenceAddrspaceMismatchTemporary:
3347   case FK_ReferenceInitDropsQualifiers:
3348   case FK_ReferenceInitFailed:
3349   case FK_ConversionFailed:
3350   case FK_ConversionFromPropertyFailed:
3351   case FK_TooManyInitsForScalar:
3352   case FK_ParenthesizedListInitForScalar:
3353   case FK_ReferenceBindingToInitList:
3354   case FK_InitListBadDestinationType:
3355   case FK_DefaultInitOfConst:
3356   case FK_Incomplete:
3357   case FK_ArrayTypeMismatch:
3358   case FK_NonConstantArrayInit:
3359   case FK_ListInitializationFailed:
3360   case FK_VariableLengthArrayHasInitializer:
3361   case FK_PlaceholderType:
3362   case FK_ExplicitConstructor:
3363   case FK_AddressOfUnaddressableFunction:
3364     return false;
3365 
3366   case FK_ReferenceInitOverloadFailed:
3367   case FK_UserConversionOverloadFailed:
3368   case FK_ConstructorOverloadFailed:
3369   case FK_ListConstructorOverloadFailed:
3370     return FailedOverloadResult == OR_Ambiguous;
3371   }
3372 
3373   llvm_unreachable("Invalid EntityKind!");
3374 }
3375 
3376 bool InitializationSequence::isConstructorInitialization() const {
3377   return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
3378 }
3379 
3380 void
3381 InitializationSequence
3382 ::AddAddressOverloadResolutionStep(FunctionDecl *Function,
3383                                    DeclAccessPair Found,
3384                                    bool HadMultipleCandidates) {
3385   Step S;
3386   S.Kind = SK_ResolveAddressOfOverloadedFunction;
3387   S.Type = Function->getType();
3388   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3389   S.Function.Function = Function;
3390   S.Function.FoundDecl = Found;
3391   Steps.push_back(S);
3392 }
3393 
3394 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
3395                                                       ExprValueKind VK) {
3396   Step S;
3397   switch (VK) {
3398   case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
3399   case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
3400   case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
3401   }
3402   S.Type = BaseType;
3403   Steps.push_back(S);
3404 }
3405 
3406 void InitializationSequence::AddReferenceBindingStep(QualType T,
3407                                                      bool BindingTemporary) {
3408   Step S;
3409   S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
3410   S.Type = T;
3411   Steps.push_back(S);
3412 }
3413 
3414 void InitializationSequence::AddFinalCopy(QualType T) {
3415   Step S;
3416   S.Kind = SK_FinalCopy;
3417   S.Type = T;
3418   Steps.push_back(S);
3419 }
3420 
3421 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
3422   Step S;
3423   S.Kind = SK_ExtraneousCopyToTemporary;
3424   S.Type = T;
3425   Steps.push_back(S);
3426 }
3427 
3428 void
3429 InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
3430                                               DeclAccessPair FoundDecl,
3431                                               QualType T,
3432                                               bool HadMultipleCandidates) {
3433   Step S;
3434   S.Kind = SK_UserConversion;
3435   S.Type = T;
3436   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3437   S.Function.Function = Function;
3438   S.Function.FoundDecl = FoundDecl;
3439   Steps.push_back(S);
3440 }
3441 
3442 void InitializationSequence::AddQualificationConversionStep(QualType Ty,
3443                                                             ExprValueKind VK) {
3444   Step S;
3445   S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
3446   switch (VK) {
3447   case VK_RValue:
3448     S.Kind = SK_QualificationConversionRValue;
3449     break;
3450   case VK_XValue:
3451     S.Kind = SK_QualificationConversionXValue;
3452     break;
3453   case VK_LValue:
3454     S.Kind = SK_QualificationConversionLValue;
3455     break;
3456   }
3457   S.Type = Ty;
3458   Steps.push_back(S);
3459 }
3460 
3461 void InitializationSequence::AddAtomicConversionStep(QualType Ty) {
3462   Step S;
3463   S.Kind = SK_AtomicConversion;
3464   S.Type = Ty;
3465   Steps.push_back(S);
3466 }
3467 
3468 void InitializationSequence::AddConversionSequenceStep(
3469     const ImplicitConversionSequence &ICS, QualType T,
3470     bool TopLevelOfInitList) {
3471   Step S;
3472   S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing
3473                               : SK_ConversionSequence;
3474   S.Type = T;
3475   S.ICS = new ImplicitConversionSequence(ICS);
3476   Steps.push_back(S);
3477 }
3478 
3479 void InitializationSequence::AddListInitializationStep(QualType T) {
3480   Step S;
3481   S.Kind = SK_ListInitialization;
3482   S.Type = T;
3483   Steps.push_back(S);
3484 }
3485 
3486 void InitializationSequence::AddConstructorInitializationStep(
3487     DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T,
3488     bool HadMultipleCandidates, bool FromInitList, bool AsInitList) {
3489   Step S;
3490   S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall
3491                                      : SK_ConstructorInitializationFromList
3492                         : SK_ConstructorInitialization;
3493   S.Type = T;
3494   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3495   S.Function.Function = Constructor;
3496   S.Function.FoundDecl = FoundDecl;
3497   Steps.push_back(S);
3498 }
3499 
3500 void InitializationSequence::AddZeroInitializationStep(QualType T) {
3501   Step S;
3502   S.Kind = SK_ZeroInitialization;
3503   S.Type = T;
3504   Steps.push_back(S);
3505 }
3506 
3507 void InitializationSequence::AddCAssignmentStep(QualType T) {
3508   Step S;
3509   S.Kind = SK_CAssignment;
3510   S.Type = T;
3511   Steps.push_back(S);
3512 }
3513 
3514 void InitializationSequence::AddStringInitStep(QualType T) {
3515   Step S;
3516   S.Kind = SK_StringInit;
3517   S.Type = T;
3518   Steps.push_back(S);
3519 }
3520 
3521 void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
3522   Step S;
3523   S.Kind = SK_ObjCObjectConversion;
3524   S.Type = T;
3525   Steps.push_back(S);
3526 }
3527 
3528 void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) {
3529   Step S;
3530   S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit;
3531   S.Type = T;
3532   Steps.push_back(S);
3533 }
3534 
3535 void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) {
3536   Step S;
3537   S.Kind = SK_ArrayLoopIndex;
3538   S.Type = EltT;
3539   Steps.insert(Steps.begin(), S);
3540 
3541   S.Kind = SK_ArrayLoopInit;
3542   S.Type = T;
3543   Steps.push_back(S);
3544 }
3545 
3546 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
3547   Step S;
3548   S.Kind = SK_ParenthesizedArrayInit;
3549   S.Type = T;
3550   Steps.push_back(S);
3551 }
3552 
3553 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
3554                                                               bool shouldCopy) {
3555   Step s;
3556   s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
3557                        : SK_PassByIndirectRestore);
3558   s.Type = type;
3559   Steps.push_back(s);
3560 }
3561 
3562 void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
3563   Step S;
3564   S.Kind = SK_ProduceObjCObject;
3565   S.Type = T;
3566   Steps.push_back(S);
3567 }
3568 
3569 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
3570   Step S;
3571   S.Kind = SK_StdInitializerList;
3572   S.Type = T;
3573   Steps.push_back(S);
3574 }
3575 
3576 void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
3577   Step S;
3578   S.Kind = SK_OCLSamplerInit;
3579   S.Type = T;
3580   Steps.push_back(S);
3581 }
3582 
3583 void InitializationSequence::AddOCLZeroOpaqueTypeStep(QualType T) {
3584   Step S;
3585   S.Kind = SK_OCLZeroOpaqueType;
3586   S.Type = T;
3587   Steps.push_back(S);
3588 }
3589 
3590 void InitializationSequence::RewrapReferenceInitList(QualType T,
3591                                                      InitListExpr *Syntactic) {
3592   assert(Syntactic->getNumInits() == 1 &&
3593          "Can only rewrap trivial init lists.");
3594   Step S;
3595   S.Kind = SK_UnwrapInitList;
3596   S.Type = Syntactic->getInit(0)->getType();
3597   Steps.insert(Steps.begin(), S);
3598 
3599   S.Kind = SK_RewrapInitList;
3600   S.Type = T;
3601   S.WrappingSyntacticList = Syntactic;
3602   Steps.push_back(S);
3603 }
3604 
3605 void InitializationSequence::SetOverloadFailure(FailureKind Failure,
3606                                                 OverloadingResult Result) {
3607   setSequenceKind(FailedSequence);
3608   this->Failure = Failure;
3609   this->FailedOverloadResult = Result;
3610 }
3611 
3612 //===----------------------------------------------------------------------===//
3613 // Attempt initialization
3614 //===----------------------------------------------------------------------===//
3615 
3616 /// Tries to add a zero initializer. Returns true if that worked.
3617 static bool
3618 maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence,
3619                                    const InitializedEntity &Entity) {
3620   if (Entity.getKind() != InitializedEntity::EK_Variable)
3621     return false;
3622 
3623   VarDecl *VD = cast<VarDecl>(Entity.getDecl());
3624   if (VD->getInit() || VD->getEndLoc().isMacroID())
3625     return false;
3626 
3627   QualType VariableTy = VD->getType().getCanonicalType();
3628   SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc());
3629   std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
3630   if (!Init.empty()) {
3631     Sequence.AddZeroInitializationStep(Entity.getType());
3632     Sequence.SetZeroInitializationFixit(Init, Loc);
3633     return true;
3634   }
3635   return false;
3636 }
3637 
3638 static void MaybeProduceObjCObject(Sema &S,
3639                                    InitializationSequence &Sequence,
3640                                    const InitializedEntity &Entity) {
3641   if (!S.getLangOpts().ObjCAutoRefCount) return;
3642 
3643   /// When initializing a parameter, produce the value if it's marked
3644   /// __attribute__((ns_consumed)).
3645   if (Entity.isParameterKind()) {
3646     if (!Entity.isParameterConsumed())
3647       return;
3648 
3649     assert(Entity.getType()->isObjCRetainableType() &&
3650            "consuming an object of unretainable type?");
3651     Sequence.AddProduceObjCObjectStep(Entity.getType());
3652 
3653   /// When initializing a return value, if the return type is a
3654   /// retainable type, then returns need to immediately retain the
3655   /// object.  If an autorelease is required, it will be done at the
3656   /// last instant.
3657   } else if (Entity.getKind() == InitializedEntity::EK_Result ||
3658              Entity.getKind() == InitializedEntity::EK_StmtExprResult) {
3659     if (!Entity.getType()->isObjCRetainableType())
3660       return;
3661 
3662     Sequence.AddProduceObjCObjectStep(Entity.getType());
3663   }
3664 }
3665 
3666 static void TryListInitialization(Sema &S,
3667                                   const InitializedEntity &Entity,
3668                                   const InitializationKind &Kind,
3669                                   InitListExpr *InitList,
3670                                   InitializationSequence &Sequence,
3671                                   bool TreatUnavailableAsInvalid);
3672 
3673 /// When initializing from init list via constructor, handle
3674 /// initialization of an object of type std::initializer_list<T>.
3675 ///
3676 /// \return true if we have handled initialization of an object of type
3677 /// std::initializer_list<T>, false otherwise.
3678 static bool TryInitializerListConstruction(Sema &S,
3679                                            InitListExpr *List,
3680                                            QualType DestType,
3681                                            InitializationSequence &Sequence,
3682                                            bool TreatUnavailableAsInvalid) {
3683   QualType E;
3684   if (!S.isStdInitializerList(DestType, &E))
3685     return false;
3686 
3687   if (!S.isCompleteType(List->getExprLoc(), E)) {
3688     Sequence.setIncompleteTypeFailure(E);
3689     return true;
3690   }
3691 
3692   // Try initializing a temporary array from the init list.
3693   QualType ArrayType = S.Context.getConstantArrayType(
3694       E.withConst(), llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
3695                                  List->getNumInits()),
3696       clang::ArrayType::Normal, 0);
3697   InitializedEntity HiddenArray =
3698       InitializedEntity::InitializeTemporary(ArrayType);
3699   InitializationKind Kind = InitializationKind::CreateDirectList(
3700       List->getExprLoc(), List->getBeginLoc(), List->getEndLoc());
3701   TryListInitialization(S, HiddenArray, Kind, List, Sequence,
3702                         TreatUnavailableAsInvalid);
3703   if (Sequence)
3704     Sequence.AddStdInitializerListConstructionStep(DestType);
3705   return true;
3706 }
3707 
3708 /// Determine if the constructor has the signature of a copy or move
3709 /// constructor for the type T of the class in which it was found. That is,
3710 /// determine if its first parameter is of type T or reference to (possibly
3711 /// cv-qualified) T.
3712 static bool hasCopyOrMoveCtorParam(ASTContext &Ctx,
3713                                    const ConstructorInfo &Info) {
3714   if (Info.Constructor->getNumParams() == 0)
3715     return false;
3716 
3717   QualType ParmT =
3718       Info.Constructor->getParamDecl(0)->getType().getNonReferenceType();
3719   QualType ClassT =
3720       Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext()));
3721 
3722   return Ctx.hasSameUnqualifiedType(ParmT, ClassT);
3723 }
3724 
3725 static OverloadingResult
3726 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
3727                            MultiExprArg Args,
3728                            OverloadCandidateSet &CandidateSet,
3729                            QualType DestType,
3730                            DeclContext::lookup_result Ctors,
3731                            OverloadCandidateSet::iterator &Best,
3732                            bool CopyInitializing, bool AllowExplicit,
3733                            bool OnlyListConstructors, bool IsListInit,
3734                            bool SecondStepOfCopyInit = false) {
3735   CandidateSet.clear(OverloadCandidateSet::CSK_InitByConstructor);
3736   CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace());
3737 
3738   for (NamedDecl *D : Ctors) {
3739     auto Info = getConstructorInfo(D);
3740     if (!Info.Constructor || Info.Constructor->isInvalidDecl())
3741       continue;
3742 
3743     if (!AllowExplicit && Info.Constructor->isExplicit())
3744       continue;
3745 
3746     if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor))
3747       continue;
3748 
3749     // C++11 [over.best.ics]p4:
3750     //   ... and the constructor or user-defined conversion function is a
3751     //   candidate by
3752     //   - 13.3.1.3, when the argument is the temporary in the second step
3753     //     of a class copy-initialization, or
3754     //   - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here]
3755     //   - the second phase of 13.3.1.7 when the initializer list has exactly
3756     //     one element that is itself an initializer list, and the target is
3757     //     the first parameter of a constructor of class X, and the conversion
3758     //     is to X or reference to (possibly cv-qualified X),
3759     //   user-defined conversion sequences are not considered.
3760     bool SuppressUserConversions =
3761         SecondStepOfCopyInit ||
3762         (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
3763          hasCopyOrMoveCtorParam(S.Context, Info));
3764 
3765     if (Info.ConstructorTmpl)
3766       S.AddTemplateOverloadCandidate(
3767           Info.ConstructorTmpl, Info.FoundDecl,
3768           /*ExplicitArgs*/ nullptr, Args, CandidateSet, SuppressUserConversions,
3769           /*PartialOverloading=*/false, AllowExplicit);
3770     else {
3771       // C++ [over.match.copy]p1:
3772       //   - When initializing a temporary to be bound to the first parameter
3773       //     of a constructor [for type T] that takes a reference to possibly
3774       //     cv-qualified T as its first argument, called with a single
3775       //     argument in the context of direct-initialization, explicit
3776       //     conversion functions are also considered.
3777       // FIXME: What if a constructor template instantiates to such a signature?
3778       bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
3779                                Args.size() == 1 &&
3780                                hasCopyOrMoveCtorParam(S.Context, Info);
3781       S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args,
3782                              CandidateSet, SuppressUserConversions,
3783                              /*PartialOverloading=*/false, AllowExplicit,
3784                              AllowExplicitConv);
3785     }
3786   }
3787 
3788   // FIXME: Work around a bug in C++17 guaranteed copy elision.
3789   //
3790   // When initializing an object of class type T by constructor
3791   // ([over.match.ctor]) or by list-initialization ([over.match.list])
3792   // from a single expression of class type U, conversion functions of
3793   // U that convert to the non-reference type cv T are candidates.
3794   // Explicit conversion functions are only candidates during
3795   // direct-initialization.
3796   //
3797   // Note: SecondStepOfCopyInit is only ever true in this case when
3798   // evaluating whether to produce a C++98 compatibility warning.
3799   if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 &&
3800       !SecondStepOfCopyInit) {
3801     Expr *Initializer = Args[0];
3802     auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl();
3803     if (SourceRD && S.isCompleteType(DeclLoc, Initializer->getType())) {
3804       const auto &Conversions = SourceRD->getVisibleConversionFunctions();
3805       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
3806         NamedDecl *D = *I;
3807         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3808         D = D->getUnderlyingDecl();
3809 
3810         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3811         CXXConversionDecl *Conv;
3812         if (ConvTemplate)
3813           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3814         else
3815           Conv = cast<CXXConversionDecl>(D);
3816 
3817         if (AllowExplicit || !Conv->isExplicit()) {
3818           if (ConvTemplate)
3819             S.AddTemplateConversionCandidate(
3820                 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
3821                 CandidateSet, AllowExplicit, AllowExplicit,
3822                 /*AllowResultConversion*/ false);
3823           else
3824             S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer,
3825                                      DestType, CandidateSet, AllowExplicit,
3826                                      AllowExplicit,
3827                                      /*AllowResultConversion*/ false);
3828         }
3829       }
3830     }
3831   }
3832 
3833   // Perform overload resolution and return the result.
3834   return CandidateSet.BestViableFunction(S, DeclLoc, Best);
3835 }
3836 
3837 /// Attempt initialization by constructor (C++ [dcl.init]), which
3838 /// enumerates the constructors of the initialized entity and performs overload
3839 /// resolution to select the best.
3840 /// \param DestType       The destination class type.
3841 /// \param DestArrayType  The destination type, which is either DestType or
3842 ///                       a (possibly multidimensional) array of DestType.
3843 /// \param IsListInit     Is this list-initialization?
3844 /// \param IsInitListCopy Is this non-list-initialization resulting from a
3845 ///                       list-initialization from {x} where x is the same
3846 ///                       type as the entity?
3847 static void TryConstructorInitialization(Sema &S,
3848                                          const InitializedEntity &Entity,
3849                                          const InitializationKind &Kind,
3850                                          MultiExprArg Args, QualType DestType,
3851                                          QualType DestArrayType,
3852                                          InitializationSequence &Sequence,
3853                                          bool IsListInit = false,
3854                                          bool IsInitListCopy = false) {
3855   assert(((!IsListInit && !IsInitListCopy) ||
3856           (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&
3857          "IsListInit/IsInitListCopy must come with a single initializer list "
3858          "argument.");
3859   InitListExpr *ILE =
3860       (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr;
3861   MultiExprArg UnwrappedArgs =
3862       ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args;
3863 
3864   // The type we're constructing needs to be complete.
3865   if (!S.isCompleteType(Kind.getLocation(), DestType)) {
3866     Sequence.setIncompleteTypeFailure(DestType);
3867     return;
3868   }
3869 
3870   // C++17 [dcl.init]p17:
3871   //     - If the initializer expression is a prvalue and the cv-unqualified
3872   //       version of the source type is the same class as the class of the
3873   //       destination, the initializer expression is used to initialize the
3874   //       destination object.
3875   // Per DR (no number yet), this does not apply when initializing a base
3876   // class or delegating to another constructor from a mem-initializer.
3877   // ObjC++: Lambda captured by the block in the lambda to block conversion
3878   // should avoid copy elision.
3879   if (S.getLangOpts().CPlusPlus17 &&
3880       Entity.getKind() != InitializedEntity::EK_Base &&
3881       Entity.getKind() != InitializedEntity::EK_Delegating &&
3882       Entity.getKind() !=
3883           InitializedEntity::EK_LambdaToBlockConversionBlockElement &&
3884       UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isRValue() &&
3885       S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) {
3886     // Convert qualifications if necessary.
3887     Sequence.AddQualificationConversionStep(DestType, VK_RValue);
3888     if (ILE)
3889       Sequence.RewrapReferenceInitList(DestType, ILE);
3890     return;
3891   }
3892 
3893   const RecordType *DestRecordType = DestType->getAs<RecordType>();
3894   assert(DestRecordType && "Constructor initialization requires record type");
3895   CXXRecordDecl *DestRecordDecl
3896     = cast<CXXRecordDecl>(DestRecordType->getDecl());
3897 
3898   // Build the candidate set directly in the initialization sequence
3899   // structure, so that it will persist if we fail.
3900   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3901 
3902   // Determine whether we are allowed to call explicit constructors or
3903   // explicit conversion operators.
3904   bool AllowExplicit = Kind.AllowExplicit() || IsListInit;
3905   bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
3906 
3907   //   - Otherwise, if T is a class type, constructors are considered. The
3908   //     applicable constructors are enumerated, and the best one is chosen
3909   //     through overload resolution.
3910   DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl);
3911 
3912   OverloadingResult Result = OR_No_Viable_Function;
3913   OverloadCandidateSet::iterator Best;
3914   bool AsInitializerList = false;
3915 
3916   // C++11 [over.match.list]p1, per DR1467:
3917   //   When objects of non-aggregate type T are list-initialized, such that
3918   //   8.5.4 [dcl.init.list] specifies that overload resolution is performed
3919   //   according to the rules in this section, overload resolution selects
3920   //   the constructor in two phases:
3921   //
3922   //   - Initially, the candidate functions are the initializer-list
3923   //     constructors of the class T and the argument list consists of the
3924   //     initializer list as a single argument.
3925   if (IsListInit) {
3926     AsInitializerList = true;
3927 
3928     // If the initializer list has no elements and T has a default constructor,
3929     // the first phase is omitted.
3930     if (!(UnwrappedArgs.empty() && DestRecordDecl->hasDefaultConstructor()))
3931       Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
3932                                           CandidateSet, DestType, Ctors, Best,
3933                                           CopyInitialization, AllowExplicit,
3934                                           /*OnlyListConstructors=*/true,
3935                                           IsListInit);
3936   }
3937 
3938   // C++11 [over.match.list]p1:
3939   //   - If no viable initializer-list constructor is found, overload resolution
3940   //     is performed again, where the candidate functions are all the
3941   //     constructors of the class T and the argument list consists of the
3942   //     elements of the initializer list.
3943   if (Result == OR_No_Viable_Function) {
3944     AsInitializerList = false;
3945     Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs,
3946                                         CandidateSet, DestType, Ctors, Best,
3947                                         CopyInitialization, AllowExplicit,
3948                                         /*OnlyListConstructors=*/false,
3949                                         IsListInit);
3950   }
3951   if (Result) {
3952     Sequence.SetOverloadFailure(IsListInit ?
3953                       InitializationSequence::FK_ListConstructorOverloadFailed :
3954                       InitializationSequence::FK_ConstructorOverloadFailed,
3955                                 Result);
3956     return;
3957   }
3958 
3959   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3960 
3961   // In C++17, ResolveConstructorOverload can select a conversion function
3962   // instead of a constructor.
3963   if (auto *CD = dyn_cast<CXXConversionDecl>(Best->Function)) {
3964     // Add the user-defined conversion step that calls the conversion function.
3965     QualType ConvType = CD->getConversionType();
3966     assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) &&
3967            "should not have selected this conversion function");
3968     Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType,
3969                                    HadMultipleCandidates);
3970     if (!S.Context.hasSameType(ConvType, DestType))
3971       Sequence.AddQualificationConversionStep(DestType, VK_RValue);
3972     if (IsListInit)
3973       Sequence.RewrapReferenceInitList(Entity.getType(), ILE);
3974     return;
3975   }
3976 
3977   // C++11 [dcl.init]p6:
3978   //   If a program calls for the default initialization of an object
3979   //   of a const-qualified type T, T shall be a class type with a
3980   //   user-provided default constructor.
3981   // C++ core issue 253 proposal:
3982   //   If the implicit default constructor initializes all subobjects, no
3983   //   initializer should be required.
3984   // The 253 proposal is for example needed to process libstdc++ headers in 5.x.
3985   CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
3986   if (Kind.getKind() == InitializationKind::IK_Default &&
3987       Entity.getType().isConstQualified()) {
3988     if (!CtorDecl->getParent()->allowConstDefaultInit()) {
3989       if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
3990         Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3991       return;
3992     }
3993   }
3994 
3995   // C++11 [over.match.list]p1:
3996   //   In copy-list-initialization, if an explicit constructor is chosen, the
3997   //   initializer is ill-formed.
3998   if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
3999     Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
4000     return;
4001   }
4002 
4003   // Add the constructor initialization step. Any cv-qualification conversion is
4004   // subsumed by the initialization.
4005   Sequence.AddConstructorInitializationStep(
4006       Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates,
4007       IsListInit | IsInitListCopy, AsInitializerList);
4008 }
4009 
4010 static bool
4011 ResolveOverloadedFunctionForReferenceBinding(Sema &S,
4012                                              Expr *Initializer,
4013                                              QualType &SourceType,
4014                                              QualType &UnqualifiedSourceType,
4015                                              QualType UnqualifiedTargetType,
4016                                              InitializationSequence &Sequence) {
4017   if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
4018         S.Context.OverloadTy) {
4019     DeclAccessPair Found;
4020     bool HadMultipleCandidates = false;
4021     if (FunctionDecl *Fn
4022         = S.ResolveAddressOfOverloadedFunction(Initializer,
4023                                                UnqualifiedTargetType,
4024                                                false, Found,
4025                                                &HadMultipleCandidates)) {
4026       Sequence.AddAddressOverloadResolutionStep(Fn, Found,
4027                                                 HadMultipleCandidates);
4028       SourceType = Fn->getType();
4029       UnqualifiedSourceType = SourceType.getUnqualifiedType();
4030     } else if (!UnqualifiedTargetType->isRecordType()) {
4031       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4032       return true;
4033     }
4034   }
4035   return false;
4036 }
4037 
4038 static void TryReferenceInitializationCore(Sema &S,
4039                                            const InitializedEntity &Entity,
4040                                            const InitializationKind &Kind,
4041                                            Expr *Initializer,
4042                                            QualType cv1T1, QualType T1,
4043                                            Qualifiers T1Quals,
4044                                            QualType cv2T2, QualType T2,
4045                                            Qualifiers T2Quals,
4046                                            InitializationSequence &Sequence);
4047 
4048 static void TryValueInitialization(Sema &S,
4049                                    const InitializedEntity &Entity,
4050                                    const InitializationKind &Kind,
4051                                    InitializationSequence &Sequence,
4052                                    InitListExpr *InitList = nullptr);
4053 
4054 /// Attempt list initialization of a reference.
4055 static void TryReferenceListInitialization(Sema &S,
4056                                            const InitializedEntity &Entity,
4057                                            const InitializationKind &Kind,
4058                                            InitListExpr *InitList,
4059                                            InitializationSequence &Sequence,
4060                                            bool TreatUnavailableAsInvalid) {
4061   // First, catch C++03 where this isn't possible.
4062   if (!S.getLangOpts().CPlusPlus11) {
4063     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
4064     return;
4065   }
4066   // Can't reference initialize a compound literal.
4067   if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) {
4068     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
4069     return;
4070   }
4071 
4072   QualType DestType = Entity.getType();
4073   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
4074   Qualifiers T1Quals;
4075   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4076 
4077   // Reference initialization via an initializer list works thus:
4078   // If the initializer list consists of a single element that is
4079   // reference-related to the referenced type, bind directly to that element
4080   // (possibly creating temporaries).
4081   // Otherwise, initialize a temporary with the initializer list and
4082   // bind to that.
4083   if (InitList->getNumInits() == 1) {
4084     Expr *Initializer = InitList->getInit(0);
4085     QualType cv2T2 = Initializer->getType();
4086     Qualifiers T2Quals;
4087     QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4088 
4089     // If this fails, creating a temporary wouldn't work either.
4090     if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4091                                                      T1, Sequence))
4092       return;
4093 
4094     SourceLocation DeclLoc = Initializer->getBeginLoc();
4095     bool dummy1, dummy2, dummy3;
4096     Sema::ReferenceCompareResult RefRelationship
4097       = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1,
4098                                        dummy2, dummy3);
4099     if (RefRelationship >= Sema::Ref_Related) {
4100       // Try to bind the reference here.
4101       TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4102                                      T1Quals, cv2T2, T2, T2Quals, Sequence);
4103       if (Sequence)
4104         Sequence.RewrapReferenceInitList(cv1T1, InitList);
4105       return;
4106     }
4107 
4108     // Update the initializer if we've resolved an overloaded function.
4109     if (Sequence.step_begin() != Sequence.step_end())
4110       Sequence.RewrapReferenceInitList(cv1T1, InitList);
4111   }
4112 
4113   // Not reference-related. Create a temporary and bind to that.
4114   InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
4115 
4116   TryListInitialization(S, TempEntity, Kind, InitList, Sequence,
4117                         TreatUnavailableAsInvalid);
4118   if (Sequence) {
4119     if (DestType->isRValueReferenceType() ||
4120         (T1Quals.hasConst() && !T1Quals.hasVolatile()))
4121       Sequence.AddReferenceBindingStep(cv1T1, /*BindingTemporary=*/true);
4122     else
4123       Sequence.SetFailed(
4124           InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
4125   }
4126 }
4127 
4128 /// Attempt list initialization (C++0x [dcl.init.list])
4129 static void TryListInitialization(Sema &S,
4130                                   const InitializedEntity &Entity,
4131                                   const InitializationKind &Kind,
4132                                   InitListExpr *InitList,
4133                                   InitializationSequence &Sequence,
4134                                   bool TreatUnavailableAsInvalid) {
4135   QualType DestType = Entity.getType();
4136 
4137   // C++ doesn't allow scalar initialization with more than one argument.
4138   // But C99 complex numbers are scalars and it makes sense there.
4139   if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
4140       !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
4141     Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
4142     return;
4143   }
4144   if (DestType->isReferenceType()) {
4145     TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence,
4146                                    TreatUnavailableAsInvalid);
4147     return;
4148   }
4149 
4150   if (DestType->isRecordType() &&
4151       !S.isCompleteType(InitList->getBeginLoc(), DestType)) {
4152     Sequence.setIncompleteTypeFailure(DestType);
4153     return;
4154   }
4155 
4156   // C++11 [dcl.init.list]p3, per DR1467:
4157   // - If T is a class type and the initializer list has a single element of
4158   //   type cv U, where U is T or a class derived from T, the object is
4159   //   initialized from that element (by copy-initialization for
4160   //   copy-list-initialization, or by direct-initialization for
4161   //   direct-list-initialization).
4162   // - Otherwise, if T is a character array and the initializer list has a
4163   //   single element that is an appropriately-typed string literal
4164   //   (8.5.2 [dcl.init.string]), initialization is performed as described
4165   //   in that section.
4166   // - Otherwise, if T is an aggregate, [...] (continue below).
4167   if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) {
4168     if (DestType->isRecordType()) {
4169       QualType InitType = InitList->getInit(0)->getType();
4170       if (S.Context.hasSameUnqualifiedType(InitType, DestType) ||
4171           S.IsDerivedFrom(InitList->getBeginLoc(), InitType, DestType)) {
4172         Expr *InitListAsExpr = InitList;
4173         TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4174                                      DestType, Sequence,
4175                                      /*InitListSyntax*/false,
4176                                      /*IsInitListCopy*/true);
4177         return;
4178       }
4179     }
4180     if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) {
4181       Expr *SubInit[1] = {InitList->getInit(0)};
4182       if (!isa<VariableArrayType>(DestAT) &&
4183           IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) {
4184         InitializationKind SubKind =
4185             Kind.getKind() == InitializationKind::IK_DirectList
4186                 ? InitializationKind::CreateDirect(Kind.getLocation(),
4187                                                    InitList->getLBraceLoc(),
4188                                                    InitList->getRBraceLoc())
4189                 : Kind;
4190         Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4191                                 /*TopLevelOfInitList*/ true,
4192                                 TreatUnavailableAsInvalid);
4193 
4194         // TryStringLiteralInitialization() (in InitializeFrom()) will fail if
4195         // the element is not an appropriately-typed string literal, in which
4196         // case we should proceed as in C++11 (below).
4197         if (Sequence) {
4198           Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4199           return;
4200         }
4201       }
4202     }
4203   }
4204 
4205   // C++11 [dcl.init.list]p3:
4206   //   - If T is an aggregate, aggregate initialization is performed.
4207   if ((DestType->isRecordType() && !DestType->isAggregateType()) ||
4208       (S.getLangOpts().CPlusPlus11 &&
4209        S.isStdInitializerList(DestType, nullptr))) {
4210     if (S.getLangOpts().CPlusPlus11) {
4211       //   - Otherwise, if the initializer list has no elements and T is a
4212       //     class type with a default constructor, the object is
4213       //     value-initialized.
4214       if (InitList->getNumInits() == 0) {
4215         CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
4216         if (RD->hasDefaultConstructor()) {
4217           TryValueInitialization(S, Entity, Kind, Sequence, InitList);
4218           return;
4219         }
4220       }
4221 
4222       //   - Otherwise, if T is a specialization of std::initializer_list<E>,
4223       //     an initializer_list object constructed [...]
4224       if (TryInitializerListConstruction(S, InitList, DestType, Sequence,
4225                                          TreatUnavailableAsInvalid))
4226         return;
4227 
4228       //   - Otherwise, if T is a class type, constructors are considered.
4229       Expr *InitListAsExpr = InitList;
4230       TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4231                                    DestType, Sequence, /*InitListSyntax*/true);
4232     } else
4233       Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
4234     return;
4235   }
4236 
4237   if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() &&
4238       InitList->getNumInits() == 1) {
4239     Expr *E = InitList->getInit(0);
4240 
4241     //   - Otherwise, if T is an enumeration with a fixed underlying type,
4242     //     the initializer-list has a single element v, and the initialization
4243     //     is direct-list-initialization, the object is initialized with the
4244     //     value T(v); if a narrowing conversion is required to convert v to
4245     //     the underlying type of T, the program is ill-formed.
4246     auto *ET = DestType->getAs<EnumType>();
4247     if (S.getLangOpts().CPlusPlus17 &&
4248         Kind.getKind() == InitializationKind::IK_DirectList &&
4249         ET && ET->getDecl()->isFixed() &&
4250         !S.Context.hasSameUnqualifiedType(E->getType(), DestType) &&
4251         (E->getType()->isIntegralOrEnumerationType() ||
4252          E->getType()->isFloatingType())) {
4253       // There are two ways that T(v) can work when T is an enumeration type.
4254       // If there is either an implicit conversion sequence from v to T or
4255       // a conversion function that can convert from v to T, then we use that.
4256       // Otherwise, if v is of integral, enumeration, or floating-point type,
4257       // it is converted to the enumeration type via its underlying type.
4258       // There is no overlap possible between these two cases (except when the
4259       // source value is already of the destination type), and the first
4260       // case is handled by the general case for single-element lists below.
4261       ImplicitConversionSequence ICS;
4262       ICS.setStandard();
4263       ICS.Standard.setAsIdentityConversion();
4264       if (!E->isRValue())
4265         ICS.Standard.First = ICK_Lvalue_To_Rvalue;
4266       // If E is of a floating-point type, then the conversion is ill-formed
4267       // due to narrowing, but go through the motions in order to produce the
4268       // right diagnostic.
4269       ICS.Standard.Second = E->getType()->isFloatingType()
4270                                 ? ICK_Floating_Integral
4271                                 : ICK_Integral_Conversion;
4272       ICS.Standard.setFromType(E->getType());
4273       ICS.Standard.setToType(0, E->getType());
4274       ICS.Standard.setToType(1, DestType);
4275       ICS.Standard.setToType(2, DestType);
4276       Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2),
4277                                          /*TopLevelOfInitList*/true);
4278       Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4279       return;
4280     }
4281 
4282     //   - Otherwise, if the initializer list has a single element of type E
4283     //     [...references are handled above...], the object or reference is
4284     //     initialized from that element (by copy-initialization for
4285     //     copy-list-initialization, or by direct-initialization for
4286     //     direct-list-initialization); if a narrowing conversion is required
4287     //     to convert the element to T, the program is ill-formed.
4288     //
4289     // Per core-24034, this is direct-initialization if we were performing
4290     // direct-list-initialization and copy-initialization otherwise.
4291     // We can't use InitListChecker for this, because it always performs
4292     // copy-initialization. This only matters if we might use an 'explicit'
4293     // conversion operator, so we only need to handle the cases where the source
4294     // is of record type.
4295     if (InitList->getInit(0)->getType()->isRecordType()) {
4296       InitializationKind SubKind =
4297           Kind.getKind() == InitializationKind::IK_DirectList
4298               ? InitializationKind::CreateDirect(Kind.getLocation(),
4299                                                  InitList->getLBraceLoc(),
4300                                                  InitList->getRBraceLoc())
4301               : Kind;
4302       Expr *SubInit[1] = { InitList->getInit(0) };
4303       Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4304                               /*TopLevelOfInitList*/true,
4305                               TreatUnavailableAsInvalid);
4306       if (Sequence)
4307         Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4308       return;
4309     }
4310   }
4311 
4312   InitListChecker CheckInitList(S, Entity, InitList,
4313           DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid);
4314   if (CheckInitList.HadError()) {
4315     Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
4316     return;
4317   }
4318 
4319   // Add the list initialization step with the built init list.
4320   Sequence.AddListInitializationStep(DestType);
4321 }
4322 
4323 /// Try a reference initialization that involves calling a conversion
4324 /// function.
4325 static OverloadingResult TryRefInitWithConversionFunction(
4326     Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind,
4327     Expr *Initializer, bool AllowRValues, bool IsLValueRef,
4328     InitializationSequence &Sequence) {
4329   QualType DestType = Entity.getType();
4330   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
4331   QualType T1 = cv1T1.getUnqualifiedType();
4332   QualType cv2T2 = Initializer->getType();
4333   QualType T2 = cv2T2.getUnqualifiedType();
4334 
4335   bool DerivedToBase;
4336   bool ObjCConversion;
4337   bool ObjCLifetimeConversion;
4338   assert(!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2,
4339                                          DerivedToBase, ObjCConversion,
4340                                          ObjCLifetimeConversion) &&
4341          "Must have incompatible references when binding via conversion");
4342   (void)DerivedToBase;
4343   (void)ObjCConversion;
4344   (void)ObjCLifetimeConversion;
4345 
4346   // Build the candidate set directly in the initialization sequence
4347   // structure, so that it will persist if we fail.
4348   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4349   CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4350 
4351   // Determine whether we are allowed to call explicit conversion operators.
4352   // Note that none of [over.match.copy], [over.match.conv], nor
4353   // [over.match.ref] permit an explicit constructor to be chosen when
4354   // initializing a reference, not even for direct-initialization.
4355   bool AllowExplicitCtors = false;
4356   bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding();
4357 
4358   const RecordType *T1RecordType = nullptr;
4359   if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
4360       S.isCompleteType(Kind.getLocation(), T1)) {
4361     // The type we're converting to is a class type. Enumerate its constructors
4362     // to see if there is a suitable conversion.
4363     CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
4364 
4365     for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) {
4366       auto Info = getConstructorInfo(D);
4367       if (!Info.Constructor)
4368         continue;
4369 
4370       if (!Info.Constructor->isInvalidDecl() &&
4371           Info.Constructor->isConvertingConstructor(AllowExplicitCtors)) {
4372         if (Info.ConstructorTmpl)
4373           S.AddTemplateOverloadCandidate(
4374               Info.ConstructorTmpl, Info.FoundDecl,
4375               /*ExplicitArgs*/ nullptr, Initializer, CandidateSet,
4376               /*SuppressUserConversions=*/true,
4377               /*PartialOverloading*/ false, AllowExplicitCtors);
4378         else
4379           S.AddOverloadCandidate(
4380               Info.Constructor, Info.FoundDecl, Initializer, CandidateSet,
4381               /*SuppressUserConversions=*/true,
4382               /*PartialOverloading*/ false, AllowExplicitCtors);
4383       }
4384     }
4385   }
4386   if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
4387     return OR_No_Viable_Function;
4388 
4389   const RecordType *T2RecordType = nullptr;
4390   if ((T2RecordType = T2->getAs<RecordType>()) &&
4391       S.isCompleteType(Kind.getLocation(), T2)) {
4392     // The type we're converting from is a class type, enumerate its conversion
4393     // functions.
4394     CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
4395 
4396     const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4397     for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4398       NamedDecl *D = *I;
4399       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4400       if (isa<UsingShadowDecl>(D))
4401         D = cast<UsingShadowDecl>(D)->getTargetDecl();
4402 
4403       FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4404       CXXConversionDecl *Conv;
4405       if (ConvTemplate)
4406         Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4407       else
4408         Conv = cast<CXXConversionDecl>(D);
4409 
4410       // If the conversion function doesn't return a reference type,
4411       // it can't be considered for this conversion unless we're allowed to
4412       // consider rvalues.
4413       // FIXME: Do we need to make sure that we only consider conversion
4414       // candidates with reference-compatible results? That might be needed to
4415       // break recursion.
4416       if ((AllowExplicitConvs || !Conv->isExplicit()) &&
4417           (AllowRValues ||
4418            Conv->getConversionType()->isLValueReferenceType())) {
4419         if (ConvTemplate)
4420           S.AddTemplateConversionCandidate(
4421               ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
4422               CandidateSet,
4423               /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs);
4424         else
4425           S.AddConversionCandidate(
4426               Conv, I.getPair(), ActingDC, Initializer, DestType, CandidateSet,
4427               /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs);
4428       }
4429     }
4430   }
4431   if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
4432     return OR_No_Viable_Function;
4433 
4434   SourceLocation DeclLoc = Initializer->getBeginLoc();
4435 
4436   // Perform overload resolution. If it fails, return the failed result.
4437   OverloadCandidateSet::iterator Best;
4438   if (OverloadingResult Result
4439         = CandidateSet.BestViableFunction(S, DeclLoc, Best))
4440     return Result;
4441 
4442   FunctionDecl *Function = Best->Function;
4443   // This is the overload that will be used for this initialization step if we
4444   // use this initialization. Mark it as referenced.
4445   Function->setReferenced();
4446 
4447   // Compute the returned type and value kind of the conversion.
4448   QualType cv3T3;
4449   if (isa<CXXConversionDecl>(Function))
4450     cv3T3 = Function->getReturnType();
4451   else
4452     cv3T3 = T1;
4453 
4454   ExprValueKind VK = VK_RValue;
4455   if (cv3T3->isLValueReferenceType())
4456     VK = VK_LValue;
4457   else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>())
4458     VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
4459   cv3T3 = cv3T3.getNonLValueExprType(S.Context);
4460 
4461   // Add the user-defined conversion step.
4462   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4463   Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3,
4464                                  HadMultipleCandidates);
4465 
4466   // Determine whether we'll need to perform derived-to-base adjustments or
4467   // other conversions.
4468   bool NewDerivedToBase = false;
4469   bool NewObjCConversion = false;
4470   bool NewObjCLifetimeConversion = false;
4471   Sema::ReferenceCompareResult NewRefRelationship
4472     = S.CompareReferenceRelationship(DeclLoc, T1, cv3T3,
4473                                      NewDerivedToBase, NewObjCConversion,
4474                                      NewObjCLifetimeConversion);
4475 
4476   // Add the final conversion sequence, if necessary.
4477   if (NewRefRelationship == Sema::Ref_Incompatible) {
4478     assert(!isa<CXXConstructorDecl>(Function) &&
4479            "should not have conversion after constructor");
4480 
4481     ImplicitConversionSequence ICS;
4482     ICS.setStandard();
4483     ICS.Standard = Best->FinalConversion;
4484     Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2));
4485 
4486     // Every implicit conversion results in a prvalue, except for a glvalue
4487     // derived-to-base conversion, which we handle below.
4488     cv3T3 = ICS.Standard.getToType(2);
4489     VK = VK_RValue;
4490   }
4491 
4492   //   If the converted initializer is a prvalue, its type T4 is adjusted to
4493   //   type "cv1 T4" and the temporary materialization conversion is applied.
4494   //
4495   // We adjust the cv-qualifications to match the reference regardless of
4496   // whether we have a prvalue so that the AST records the change. In this
4497   // case, T4 is "cv3 T3".
4498   QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers());
4499   if (cv1T4.getQualifiers() != cv3T3.getQualifiers())
4500     Sequence.AddQualificationConversionStep(cv1T4, VK);
4501   Sequence.AddReferenceBindingStep(cv1T4, VK == VK_RValue);
4502   VK = IsLValueRef ? VK_LValue : VK_XValue;
4503 
4504   if (NewDerivedToBase)
4505     Sequence.AddDerivedToBaseCastStep(cv1T1, VK);
4506   else if (NewObjCConversion)
4507     Sequence.AddObjCObjectConversionStep(cv1T1);
4508 
4509   return OR_Success;
4510 }
4511 
4512 static void CheckCXX98CompatAccessibleCopy(Sema &S,
4513                                            const InitializedEntity &Entity,
4514                                            Expr *CurInitExpr);
4515 
4516 /// Attempt reference initialization (C++0x [dcl.init.ref])
4517 static void TryReferenceInitialization(Sema &S,
4518                                        const InitializedEntity &Entity,
4519                                        const InitializationKind &Kind,
4520                                        Expr *Initializer,
4521                                        InitializationSequence &Sequence) {
4522   QualType DestType = Entity.getType();
4523   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
4524   Qualifiers T1Quals;
4525   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4526   QualType cv2T2 = Initializer->getType();
4527   Qualifiers T2Quals;
4528   QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4529 
4530   // If the initializer is the address of an overloaded function, try
4531   // to resolve the overloaded function. If all goes well, T2 is the
4532   // type of the resulting function.
4533   if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4534                                                    T1, Sequence))
4535     return;
4536 
4537   // Delegate everything else to a subfunction.
4538   TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4539                                  T1Quals, cv2T2, T2, T2Quals, Sequence);
4540 }
4541 
4542 /// Determine whether an expression is a non-referenceable glvalue (one to
4543 /// which a reference can never bind). Attempting to bind a reference to
4544 /// such a glvalue will always create a temporary.
4545 static bool isNonReferenceableGLValue(Expr *E) {
4546   return E->refersToBitField() || E->refersToVectorElement();
4547 }
4548 
4549 /// Reference initialization without resolving overloaded functions.
4550 static void TryReferenceInitializationCore(Sema &S,
4551                                            const InitializedEntity &Entity,
4552                                            const InitializationKind &Kind,
4553                                            Expr *Initializer,
4554                                            QualType cv1T1, QualType T1,
4555                                            Qualifiers T1Quals,
4556                                            QualType cv2T2, QualType T2,
4557                                            Qualifiers T2Quals,
4558                                            InitializationSequence &Sequence) {
4559   QualType DestType = Entity.getType();
4560   SourceLocation DeclLoc = Initializer->getBeginLoc();
4561   // Compute some basic properties of the types and the initializer.
4562   bool isLValueRef = DestType->isLValueReferenceType();
4563   bool isRValueRef = !isLValueRef;
4564   bool DerivedToBase = false;
4565   bool ObjCConversion = false;
4566   bool ObjCLifetimeConversion = false;
4567   Expr::Classification InitCategory = Initializer->Classify(S.Context);
4568   Sema::ReferenceCompareResult RefRelationship
4569     = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
4570                                      ObjCConversion, ObjCLifetimeConversion);
4571 
4572   // C++0x [dcl.init.ref]p5:
4573   //   A reference to type "cv1 T1" is initialized by an expression of type
4574   //   "cv2 T2" as follows:
4575   //
4576   //     - If the reference is an lvalue reference and the initializer
4577   //       expression
4578   // Note the analogous bullet points for rvalue refs to functions. Because
4579   // there are no function rvalues in C++, rvalue refs to functions are treated
4580   // like lvalue refs.
4581   OverloadingResult ConvOvlResult = OR_Success;
4582   bool T1Function = T1->isFunctionType();
4583   if (isLValueRef || T1Function) {
4584     if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) &&
4585         (RefRelationship == Sema::Ref_Compatible ||
4586          (Kind.isCStyleOrFunctionalCast() &&
4587           RefRelationship == Sema::Ref_Related))) {
4588       //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
4589       //     reference-compatible with "cv2 T2," or
4590       if (T1Quals != T2Quals)
4591         // Convert to cv1 T2. This should only add qualifiers unless this is a
4592         // c-style cast. The removal of qualifiers in that case notionally
4593         // happens after the reference binding, but that doesn't matter.
4594         Sequence.AddQualificationConversionStep(
4595             S.Context.getQualifiedType(T2, T1Quals),
4596             Initializer->getValueKind());
4597       if (DerivedToBase)
4598         Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue);
4599       else if (ObjCConversion)
4600         Sequence.AddObjCObjectConversionStep(cv1T1);
4601 
4602       // We only create a temporary here when binding a reference to a
4603       // bit-field or vector element. Those cases are't supposed to be
4604       // handled by this bullet, but the outcome is the same either way.
4605       Sequence.AddReferenceBindingStep(cv1T1, false);
4606       return;
4607     }
4608 
4609     //     - has a class type (i.e., T2 is a class type), where T1 is not
4610     //       reference-related to T2, and can be implicitly converted to an
4611     //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
4612     //       with "cv3 T3" (this conversion is selected by enumerating the
4613     //       applicable conversion functions (13.3.1.6) and choosing the best
4614     //       one through overload resolution (13.3)),
4615     // If we have an rvalue ref to function type here, the rhs must be
4616     // an rvalue. DR1287 removed the "implicitly" here.
4617     if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
4618         (isLValueRef || InitCategory.isRValue())) {
4619       ConvOvlResult = TryRefInitWithConversionFunction(
4620           S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef,
4621           /*IsLValueRef*/ isLValueRef, Sequence);
4622       if (ConvOvlResult == OR_Success)
4623         return;
4624       if (ConvOvlResult != OR_No_Viable_Function)
4625         Sequence.SetOverloadFailure(
4626             InitializationSequence::FK_ReferenceInitOverloadFailed,
4627             ConvOvlResult);
4628     }
4629   }
4630 
4631   //     - Otherwise, the reference shall be an lvalue reference to a
4632   //       non-volatile const type (i.e., cv1 shall be const), or the reference
4633   //       shall be an rvalue reference.
4634   //       For address spaces, we interpret this to mean that an addr space
4635   //       of a reference "cv1 T1" is a superset of addr space of "cv2 T2".
4636   if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile() &&
4637                        T1Quals.isAddressSpaceSupersetOf(T2Quals))) {
4638     if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4639       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4640     else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4641       Sequence.SetOverloadFailure(
4642                         InitializationSequence::FK_ReferenceInitOverloadFailed,
4643                                   ConvOvlResult);
4644     else if (!InitCategory.isLValue())
4645       Sequence.SetFailed(
4646           T1Quals.isAddressSpaceSupersetOf(T2Quals)
4647               ? InitializationSequence::
4648                     FK_NonConstLValueReferenceBindingToTemporary
4649               : InitializationSequence::FK_ReferenceInitDropsQualifiers);
4650     else {
4651       InitializationSequence::FailureKind FK;
4652       switch (RefRelationship) {
4653       case Sema::Ref_Compatible:
4654         if (Initializer->refersToBitField())
4655           FK = InitializationSequence::
4656               FK_NonConstLValueReferenceBindingToBitfield;
4657         else if (Initializer->refersToVectorElement())
4658           FK = InitializationSequence::
4659               FK_NonConstLValueReferenceBindingToVectorElement;
4660         else
4661           llvm_unreachable("unexpected kind of compatible initializer");
4662         break;
4663       case Sema::Ref_Related:
4664         FK = InitializationSequence::FK_ReferenceInitDropsQualifiers;
4665         break;
4666       case Sema::Ref_Incompatible:
4667         FK = InitializationSequence::
4668             FK_NonConstLValueReferenceBindingToUnrelated;
4669         break;
4670       }
4671       Sequence.SetFailed(FK);
4672     }
4673     return;
4674   }
4675 
4676   //    - If the initializer expression
4677   //      - is an
4678   // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or
4679   // [1z]   rvalue (but not a bit-field) or
4680   //        function lvalue and "cv1 T1" is reference-compatible with "cv2 T2"
4681   //
4682   // Note: functions are handled above and below rather than here...
4683   if (!T1Function &&
4684       (RefRelationship == Sema::Ref_Compatible ||
4685        (Kind.isCStyleOrFunctionalCast() &&
4686         RefRelationship == Sema::Ref_Related)) &&
4687       ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) ||
4688        (InitCategory.isPRValue() &&
4689         (S.getLangOpts().CPlusPlus17 || T2->isRecordType() ||
4690          T2->isArrayType())))) {
4691     ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_RValue;
4692     if (InitCategory.isPRValue() && T2->isRecordType()) {
4693       // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
4694       // compiler the freedom to perform a copy here or bind to the
4695       // object, while C++0x requires that we bind directly to the
4696       // object. Hence, we always bind to the object without making an
4697       // extra copy. However, in C++03 requires that we check for the
4698       // presence of a suitable copy constructor:
4699       //
4700       //   The constructor that would be used to make the copy shall
4701       //   be callable whether or not the copy is actually done.
4702       if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
4703         Sequence.AddExtraneousCopyToTemporary(cv2T2);
4704       else if (S.getLangOpts().CPlusPlus11)
4705         CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
4706     }
4707 
4708     // C++1z [dcl.init.ref]/5.2.1.2:
4709     //   If the converted initializer is a prvalue, its type T4 is adjusted
4710     //   to type "cv1 T4" and the temporary materialization conversion is
4711     //   applied.
4712     // Postpone address space conversions to after the temporary materialization
4713     // conversion to allow creating temporaries in the alloca address space.
4714     auto T1QualsIgnoreAS = T1Quals;
4715     auto T2QualsIgnoreAS = T2Quals;
4716     if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) {
4717       T1QualsIgnoreAS.removeAddressSpace();
4718       T2QualsIgnoreAS.removeAddressSpace();
4719     }
4720     QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1QualsIgnoreAS);
4721     if (T1QualsIgnoreAS != T2QualsIgnoreAS)
4722       Sequence.AddQualificationConversionStep(cv1T4, ValueKind);
4723     Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_RValue);
4724     ValueKind = isLValueRef ? VK_LValue : VK_XValue;
4725     // Add addr space conversion if required.
4726     if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) {
4727       auto T4Quals = cv1T4.getQualifiers();
4728       T4Quals.addAddressSpace(T1Quals.getAddressSpace());
4729       QualType cv1T4WithAS = S.Context.getQualifiedType(T2, T4Quals);
4730       Sequence.AddQualificationConversionStep(cv1T4WithAS, ValueKind);
4731     }
4732 
4733     //   In any case, the reference is bound to the resulting glvalue (or to
4734     //   an appropriate base class subobject).
4735     if (DerivedToBase)
4736       Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind);
4737     else if (ObjCConversion)
4738       Sequence.AddObjCObjectConversionStep(cv1T1);
4739     return;
4740   }
4741 
4742   //       - has a class type (i.e., T2 is a class type), where T1 is not
4743   //         reference-related to T2, and can be implicitly converted to an
4744   //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
4745   //         where "cv1 T1" is reference-compatible with "cv3 T3",
4746   //
4747   // DR1287 removes the "implicitly" here.
4748   if (T2->isRecordType()) {
4749     if (RefRelationship == Sema::Ref_Incompatible) {
4750       ConvOvlResult = TryRefInitWithConversionFunction(
4751           S, Entity, Kind, Initializer, /*AllowRValues*/ true,
4752           /*IsLValueRef*/ isLValueRef, Sequence);
4753       if (ConvOvlResult)
4754         Sequence.SetOverloadFailure(
4755             InitializationSequence::FK_ReferenceInitOverloadFailed,
4756             ConvOvlResult);
4757 
4758       return;
4759     }
4760 
4761     if (RefRelationship == Sema::Ref_Compatible &&
4762         isRValueRef && InitCategory.isLValue()) {
4763       Sequence.SetFailed(
4764         InitializationSequence::FK_RValueReferenceBindingToLValue);
4765       return;
4766     }
4767 
4768     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4769     return;
4770   }
4771 
4772   //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
4773   //        from the initializer expression using the rules for a non-reference
4774   //        copy-initialization (8.5). The reference is then bound to the
4775   //        temporary. [...]
4776 
4777   // Ignore address space of reference type at this point and perform address
4778   // space conversion after the reference binding step.
4779   QualType cv1T1IgnoreAS =
4780       T1Quals.hasAddressSpace()
4781           ? S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace())
4782           : cv1T1;
4783 
4784   InitializedEntity TempEntity =
4785       InitializedEntity::InitializeTemporary(cv1T1IgnoreAS);
4786 
4787   // FIXME: Why do we use an implicit conversion here rather than trying
4788   // copy-initialization?
4789   ImplicitConversionSequence ICS
4790     = S.TryImplicitConversion(Initializer, TempEntity.getType(),
4791                               /*SuppressUserConversions=*/false,
4792                               /*AllowExplicit=*/false,
4793                               /*FIXME:InOverloadResolution=*/false,
4794                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
4795                               /*AllowObjCWritebackConversion=*/false);
4796 
4797   if (ICS.isBad()) {
4798     // FIXME: Use the conversion function set stored in ICS to turn
4799     // this into an overloading ambiguity diagnostic. However, we need
4800     // to keep that set as an OverloadCandidateSet rather than as some
4801     // other kind of set.
4802     if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4803       Sequence.SetOverloadFailure(
4804                         InitializationSequence::FK_ReferenceInitOverloadFailed,
4805                                   ConvOvlResult);
4806     else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4807       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4808     else
4809       Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
4810     return;
4811   } else {
4812     Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
4813   }
4814 
4815   //        [...] If T1 is reference-related to T2, cv1 must be the
4816   //        same cv-qualification as, or greater cv-qualification
4817   //        than, cv2; otherwise, the program is ill-formed.
4818   unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
4819   unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
4820   if ((RefRelationship == Sema::Ref_Related &&
4821        (T1CVRQuals | T2CVRQuals) != T1CVRQuals) ||
4822       !T1Quals.isAddressSpaceSupersetOf(T2Quals)) {
4823     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4824     return;
4825   }
4826 
4827   //   [...] If T1 is reference-related to T2 and the reference is an rvalue
4828   //   reference, the initializer expression shall not be an lvalue.
4829   if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
4830       InitCategory.isLValue()) {
4831     Sequence.SetFailed(
4832                     InitializationSequence::FK_RValueReferenceBindingToLValue);
4833     return;
4834   }
4835 
4836   Sequence.AddReferenceBindingStep(cv1T1IgnoreAS, /*BindingTemporary=*/true);
4837 
4838   if (T1Quals.hasAddressSpace()) {
4839     if (!Qualifiers::isAddressSpaceSupersetOf(T1Quals.getAddressSpace(),
4840                                               LangAS::Default)) {
4841       Sequence.SetFailed(
4842           InitializationSequence::FK_ReferenceAddrspaceMismatchTemporary);
4843       return;
4844     }
4845     Sequence.AddQualificationConversionStep(cv1T1, isLValueRef ? VK_LValue
4846                                                                : VK_XValue);
4847   }
4848 }
4849 
4850 /// Attempt character array initialization from a string literal
4851 /// (C++ [dcl.init.string], C99 6.7.8).
4852 static void TryStringLiteralInitialization(Sema &S,
4853                                            const InitializedEntity &Entity,
4854                                            const InitializationKind &Kind,
4855                                            Expr *Initializer,
4856                                        InitializationSequence &Sequence) {
4857   Sequence.AddStringInitStep(Entity.getType());
4858 }
4859 
4860 /// Attempt value initialization (C++ [dcl.init]p7).
4861 static void TryValueInitialization(Sema &S,
4862                                    const InitializedEntity &Entity,
4863                                    const InitializationKind &Kind,
4864                                    InitializationSequence &Sequence,
4865                                    InitListExpr *InitList) {
4866   assert((!InitList || InitList->getNumInits() == 0) &&
4867          "Shouldn't use value-init for non-empty init lists");
4868 
4869   // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
4870   //
4871   //   To value-initialize an object of type T means:
4872   QualType T = Entity.getType();
4873 
4874   //     -- if T is an array type, then each element is value-initialized;
4875   T = S.Context.getBaseElementType(T);
4876 
4877   if (const RecordType *RT = T->getAs<RecordType>()) {
4878     if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
4879       bool NeedZeroInitialization = true;
4880       // C++98:
4881       // -- if T is a class type (clause 9) with a user-declared constructor
4882       //    (12.1), then the default constructor for T is called (and the
4883       //    initialization is ill-formed if T has no accessible default
4884       //    constructor);
4885       // C++11:
4886       // -- if T is a class type (clause 9) with either no default constructor
4887       //    (12.1 [class.ctor]) or a default constructor that is user-provided
4888       //    or deleted, then the object is default-initialized;
4889       //
4890       // Note that the C++11 rule is the same as the C++98 rule if there are no
4891       // defaulted or deleted constructors, so we just use it unconditionally.
4892       CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
4893       if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
4894         NeedZeroInitialization = false;
4895 
4896       // -- if T is a (possibly cv-qualified) non-union class type without a
4897       //    user-provided or deleted default constructor, then the object is
4898       //    zero-initialized and, if T has a non-trivial default constructor,
4899       //    default-initialized;
4900       // The 'non-union' here was removed by DR1502. The 'non-trivial default
4901       // constructor' part was removed by DR1507.
4902       if (NeedZeroInitialization)
4903         Sequence.AddZeroInitializationStep(Entity.getType());
4904 
4905       // C++03:
4906       // -- if T is a non-union class type without a user-declared constructor,
4907       //    then every non-static data member and base class component of T is
4908       //    value-initialized;
4909       // [...] A program that calls for [...] value-initialization of an
4910       // entity of reference type is ill-formed.
4911       //
4912       // C++11 doesn't need this handling, because value-initialization does not
4913       // occur recursively there, and the implicit default constructor is
4914       // defined as deleted in the problematic cases.
4915       if (!S.getLangOpts().CPlusPlus11 &&
4916           ClassDecl->hasUninitializedReferenceMember()) {
4917         Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
4918         return;
4919       }
4920 
4921       // If this is list-value-initialization, pass the empty init list on when
4922       // building the constructor call. This affects the semantics of a few
4923       // things (such as whether an explicit default constructor can be called).
4924       Expr *InitListAsExpr = InitList;
4925       MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
4926       bool InitListSyntax = InitList;
4927 
4928       // FIXME: Instead of creating a CXXConstructExpr of array type here,
4929       // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr.
4930       return TryConstructorInitialization(
4931           S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax);
4932     }
4933   }
4934 
4935   Sequence.AddZeroInitializationStep(Entity.getType());
4936 }
4937 
4938 /// Attempt default initialization (C++ [dcl.init]p6).
4939 static void TryDefaultInitialization(Sema &S,
4940                                      const InitializedEntity &Entity,
4941                                      const InitializationKind &Kind,
4942                                      InitializationSequence &Sequence) {
4943   assert(Kind.getKind() == InitializationKind::IK_Default);
4944 
4945   // C++ [dcl.init]p6:
4946   //   To default-initialize an object of type T means:
4947   //     - if T is an array type, each element is default-initialized;
4948   QualType DestType = S.Context.getBaseElementType(Entity.getType());
4949 
4950   //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
4951   //       constructor for T is called (and the initialization is ill-formed if
4952   //       T has no accessible default constructor);
4953   if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
4954     TryConstructorInitialization(S, Entity, Kind, None, DestType,
4955                                  Entity.getType(), Sequence);
4956     return;
4957   }
4958 
4959   //     - otherwise, no initialization is performed.
4960 
4961   //   If a program calls for the default initialization of an object of
4962   //   a const-qualified type T, T shall be a class type with a user-provided
4963   //   default constructor.
4964   if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
4965     if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
4966       Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
4967     return;
4968   }
4969 
4970   // If the destination type has a lifetime property, zero-initialize it.
4971   if (DestType.getQualifiers().hasObjCLifetime()) {
4972     Sequence.AddZeroInitializationStep(Entity.getType());
4973     return;
4974   }
4975 }
4976 
4977 /// Attempt a user-defined conversion between two types (C++ [dcl.init]),
4978 /// which enumerates all conversion functions and performs overload resolution
4979 /// to select the best.
4980 static void TryUserDefinedConversion(Sema &S,
4981                                      QualType DestType,
4982                                      const InitializationKind &Kind,
4983                                      Expr *Initializer,
4984                                      InitializationSequence &Sequence,
4985                                      bool TopLevelOfInitList) {
4986   assert(!DestType->isReferenceType() && "References are handled elsewhere");
4987   QualType SourceType = Initializer->getType();
4988   assert((DestType->isRecordType() || SourceType->isRecordType()) &&
4989          "Must have a class type to perform a user-defined conversion");
4990 
4991   // Build the candidate set directly in the initialization sequence
4992   // structure, so that it will persist if we fail.
4993   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4994   CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4995   CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace());
4996 
4997   // Determine whether we are allowed to call explicit constructors or
4998   // explicit conversion operators.
4999   bool AllowExplicit = Kind.AllowExplicit();
5000 
5001   if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
5002     // The type we're converting to is a class type. Enumerate its constructors
5003     // to see if there is a suitable conversion.
5004     CXXRecordDecl *DestRecordDecl
5005       = cast<CXXRecordDecl>(DestRecordType->getDecl());
5006 
5007     // Try to complete the type we're converting to.
5008     if (S.isCompleteType(Kind.getLocation(), DestType)) {
5009       for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) {
5010         auto Info = getConstructorInfo(D);
5011         if (!Info.Constructor)
5012           continue;
5013 
5014         if (!Info.Constructor->isInvalidDecl() &&
5015             Info.Constructor->isConvertingConstructor(AllowExplicit)) {
5016           if (Info.ConstructorTmpl)
5017             S.AddTemplateOverloadCandidate(
5018                 Info.ConstructorTmpl, Info.FoundDecl,
5019                 /*ExplicitArgs*/ nullptr, Initializer, CandidateSet,
5020                 /*SuppressUserConversions=*/true,
5021                 /*PartialOverloading*/ false, AllowExplicit);
5022           else
5023             S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
5024                                    Initializer, CandidateSet,
5025                                    /*SuppressUserConversions=*/true,
5026                                    /*PartialOverloading*/ false, AllowExplicit);
5027         }
5028       }
5029     }
5030   }
5031 
5032   SourceLocation DeclLoc = Initializer->getBeginLoc();
5033 
5034   if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
5035     // The type we're converting from is a class type, enumerate its conversion
5036     // functions.
5037 
5038     // We can only enumerate the conversion functions for a complete type; if
5039     // the type isn't complete, simply skip this step.
5040     if (S.isCompleteType(DeclLoc, SourceType)) {
5041       CXXRecordDecl *SourceRecordDecl
5042         = cast<CXXRecordDecl>(SourceRecordType->getDecl());
5043 
5044       const auto &Conversions =
5045           SourceRecordDecl->getVisibleConversionFunctions();
5046       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
5047         NamedDecl *D = *I;
5048         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
5049         if (isa<UsingShadowDecl>(D))
5050           D = cast<UsingShadowDecl>(D)->getTargetDecl();
5051 
5052         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
5053         CXXConversionDecl *Conv;
5054         if (ConvTemplate)
5055           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5056         else
5057           Conv = cast<CXXConversionDecl>(D);
5058 
5059         if (AllowExplicit || !Conv->isExplicit()) {
5060           if (ConvTemplate)
5061             S.AddTemplateConversionCandidate(
5062                 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
5063                 CandidateSet, AllowExplicit, AllowExplicit);
5064           else
5065             S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer,
5066                                      DestType, CandidateSet, AllowExplicit,
5067                                      AllowExplicit);
5068         }
5069       }
5070     }
5071   }
5072 
5073   // Perform overload resolution. If it fails, return the failed result.
5074   OverloadCandidateSet::iterator Best;
5075   if (OverloadingResult Result
5076         = CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
5077     Sequence.SetOverloadFailure(
5078                         InitializationSequence::FK_UserConversionOverloadFailed,
5079                                 Result);
5080     return;
5081   }
5082 
5083   FunctionDecl *Function = Best->Function;
5084   Function->setReferenced();
5085   bool HadMultipleCandidates = (CandidateSet.size() > 1);
5086 
5087   if (isa<CXXConstructorDecl>(Function)) {
5088     // Add the user-defined conversion step. Any cv-qualification conversion is
5089     // subsumed by the initialization. Per DR5, the created temporary is of the
5090     // cv-unqualified type of the destination.
5091     Sequence.AddUserConversionStep(Function, Best->FoundDecl,
5092                                    DestType.getUnqualifiedType(),
5093                                    HadMultipleCandidates);
5094 
5095     // C++14 and before:
5096     //   - if the function is a constructor, the call initializes a temporary
5097     //     of the cv-unqualified version of the destination type. The [...]
5098     //     temporary [...] is then used to direct-initialize, according to the
5099     //     rules above, the object that is the destination of the
5100     //     copy-initialization.
5101     // Note that this just performs a simple object copy from the temporary.
5102     //
5103     // C++17:
5104     //   - if the function is a constructor, the call is a prvalue of the
5105     //     cv-unqualified version of the destination type whose return object
5106     //     is initialized by the constructor. The call is used to
5107     //     direct-initialize, according to the rules above, the object that
5108     //     is the destination of the copy-initialization.
5109     // Therefore we need to do nothing further.
5110     //
5111     // FIXME: Mark this copy as extraneous.
5112     if (!S.getLangOpts().CPlusPlus17)
5113       Sequence.AddFinalCopy(DestType);
5114     else if (DestType.hasQualifiers())
5115       Sequence.AddQualificationConversionStep(DestType, VK_RValue);
5116     return;
5117   }
5118 
5119   // Add the user-defined conversion step that calls the conversion function.
5120   QualType ConvType = Function->getCallResultType();
5121   Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
5122                                  HadMultipleCandidates);
5123 
5124   if (ConvType->getAs<RecordType>()) {
5125     //   The call is used to direct-initialize [...] the object that is the
5126     //   destination of the copy-initialization.
5127     //
5128     // In C++17, this does not call a constructor if we enter /17.6.1:
5129     //   - If the initializer expression is a prvalue and the cv-unqualified
5130     //     version of the source type is the same as the class of the
5131     //     destination [... do not make an extra copy]
5132     //
5133     // FIXME: Mark this copy as extraneous.
5134     if (!S.getLangOpts().CPlusPlus17 ||
5135         Function->getReturnType()->isReferenceType() ||
5136         !S.Context.hasSameUnqualifiedType(ConvType, DestType))
5137       Sequence.AddFinalCopy(DestType);
5138     else if (!S.Context.hasSameType(ConvType, DestType))
5139       Sequence.AddQualificationConversionStep(DestType, VK_RValue);
5140     return;
5141   }
5142 
5143   // If the conversion following the call to the conversion function
5144   // is interesting, add it as a separate step.
5145   if (Best->FinalConversion.First || Best->FinalConversion.Second ||
5146       Best->FinalConversion.Third) {
5147     ImplicitConversionSequence ICS;
5148     ICS.setStandard();
5149     ICS.Standard = Best->FinalConversion;
5150     Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5151   }
5152 }
5153 
5154 /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>,
5155 /// a function with a pointer return type contains a 'return false;' statement.
5156 /// In C++11, 'false' is not a null pointer, so this breaks the build of any
5157 /// code using that header.
5158 ///
5159 /// Work around this by treating 'return false;' as zero-initializing the result
5160 /// if it's used in a pointer-returning function in a system header.
5161 static bool isLibstdcxxPointerReturnFalseHack(Sema &S,
5162                                               const InitializedEntity &Entity,
5163                                               const Expr *Init) {
5164   return S.getLangOpts().CPlusPlus11 &&
5165          Entity.getKind() == InitializedEntity::EK_Result &&
5166          Entity.getType()->isPointerType() &&
5167          isa<CXXBoolLiteralExpr>(Init) &&
5168          !cast<CXXBoolLiteralExpr>(Init)->getValue() &&
5169          S.getSourceManager().isInSystemHeader(Init->getExprLoc());
5170 }
5171 
5172 /// The non-zero enum values here are indexes into diagnostic alternatives.
5173 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
5174 
5175 /// Determines whether this expression is an acceptable ICR source.
5176 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
5177                                          bool isAddressOf, bool &isWeakAccess) {
5178   // Skip parens.
5179   e = e->IgnoreParens();
5180 
5181   // Skip address-of nodes.
5182   if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
5183     if (op->getOpcode() == UO_AddrOf)
5184       return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
5185                                 isWeakAccess);
5186 
5187   // Skip certain casts.
5188   } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
5189     switch (ce->getCastKind()) {
5190     case CK_Dependent:
5191     case CK_BitCast:
5192     case CK_LValueBitCast:
5193     case CK_NoOp:
5194       return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
5195 
5196     case CK_ArrayToPointerDecay:
5197       return IIK_nonscalar;
5198 
5199     case CK_NullToPointer:
5200       return IIK_okay;
5201 
5202     default:
5203       break;
5204     }
5205 
5206   // If we have a declaration reference, it had better be a local variable.
5207   } else if (isa<DeclRefExpr>(e)) {
5208     // set isWeakAccess to true, to mean that there will be an implicit
5209     // load which requires a cleanup.
5210     if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
5211       isWeakAccess = true;
5212 
5213     if (!isAddressOf) return IIK_nonlocal;
5214 
5215     VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
5216     if (!var) return IIK_nonlocal;
5217 
5218     return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
5219 
5220   // If we have a conditional operator, check both sides.
5221   } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
5222     if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
5223                                                 isWeakAccess))
5224       return iik;
5225 
5226     return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
5227 
5228   // These are never scalar.
5229   } else if (isa<ArraySubscriptExpr>(e)) {
5230     return IIK_nonscalar;
5231 
5232   // Otherwise, it needs to be a null pointer constant.
5233   } else {
5234     return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
5235             ? IIK_okay : IIK_nonlocal);
5236   }
5237 
5238   return IIK_nonlocal;
5239 }
5240 
5241 /// Check whether the given expression is a valid operand for an
5242 /// indirect copy/restore.
5243 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
5244   assert(src->isRValue());
5245   bool isWeakAccess = false;
5246   InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
5247   // If isWeakAccess to true, there will be an implicit
5248   // load which requires a cleanup.
5249   if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
5250     S.Cleanup.setExprNeedsCleanups(true);
5251 
5252   if (iik == IIK_okay) return;
5253 
5254   S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
5255     << ((unsigned) iik - 1)  // shift index into diagnostic explanations
5256     << src->getSourceRange();
5257 }
5258 
5259 /// Determine whether we have compatible array types for the
5260 /// purposes of GNU by-copy array initialization.
5261 static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest,
5262                                     const ArrayType *Source) {
5263   // If the source and destination array types are equivalent, we're
5264   // done.
5265   if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
5266     return true;
5267 
5268   // Make sure that the element types are the same.
5269   if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
5270     return false;
5271 
5272   // The only mismatch we allow is when the destination is an
5273   // incomplete array type and the source is a constant array type.
5274   return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
5275 }
5276 
5277 static bool tryObjCWritebackConversion(Sema &S,
5278                                        InitializationSequence &Sequence,
5279                                        const InitializedEntity &Entity,
5280                                        Expr *Initializer) {
5281   bool ArrayDecay = false;
5282   QualType ArgType = Initializer->getType();
5283   QualType ArgPointee;
5284   if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
5285     ArrayDecay = true;
5286     ArgPointee = ArgArrayType->getElementType();
5287     ArgType = S.Context.getPointerType(ArgPointee);
5288   }
5289 
5290   // Handle write-back conversion.
5291   QualType ConvertedArgType;
5292   if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
5293                                    ConvertedArgType))
5294     return false;
5295 
5296   // We should copy unless we're passing to an argument explicitly
5297   // marked 'out'.
5298   bool ShouldCopy = true;
5299   if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5300     ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5301 
5302   // Do we need an lvalue conversion?
5303   if (ArrayDecay || Initializer->isGLValue()) {
5304     ImplicitConversionSequence ICS;
5305     ICS.setStandard();
5306     ICS.Standard.setAsIdentityConversion();
5307 
5308     QualType ResultType;
5309     if (ArrayDecay) {
5310       ICS.Standard.First = ICK_Array_To_Pointer;
5311       ResultType = S.Context.getPointerType(ArgPointee);
5312     } else {
5313       ICS.Standard.First = ICK_Lvalue_To_Rvalue;
5314       ResultType = Initializer->getType().getNonLValueExprType(S.Context);
5315     }
5316 
5317     Sequence.AddConversionSequenceStep(ICS, ResultType);
5318   }
5319 
5320   Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
5321   return true;
5322 }
5323 
5324 static bool TryOCLSamplerInitialization(Sema &S,
5325                                         InitializationSequence &Sequence,
5326                                         QualType DestType,
5327                                         Expr *Initializer) {
5328   if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
5329       (!Initializer->isIntegerConstantExpr(S.Context) &&
5330       !Initializer->getType()->isSamplerT()))
5331     return false;
5332 
5333   Sequence.AddOCLSamplerInitStep(DestType);
5334   return true;
5335 }
5336 
5337 static bool IsZeroInitializer(Expr *Initializer, Sema &S) {
5338   return Initializer->isIntegerConstantExpr(S.getASTContext()) &&
5339     (Initializer->EvaluateKnownConstInt(S.getASTContext()) == 0);
5340 }
5341 
5342 static bool TryOCLZeroOpaqueTypeInitialization(Sema &S,
5343                                                InitializationSequence &Sequence,
5344                                                QualType DestType,
5345                                                Expr *Initializer) {
5346   if (!S.getLangOpts().OpenCL)
5347     return false;
5348 
5349   //
5350   // OpenCL 1.2 spec, s6.12.10
5351   //
5352   // The event argument can also be used to associate the
5353   // async_work_group_copy with a previous async copy allowing
5354   // an event to be shared by multiple async copies; otherwise
5355   // event should be zero.
5356   //
5357   if (DestType->isEventT() || DestType->isQueueT()) {
5358     if (!IsZeroInitializer(Initializer, S))
5359       return false;
5360 
5361     Sequence.AddOCLZeroOpaqueTypeStep(DestType);
5362     return true;
5363   }
5364 
5365   // We should allow zero initialization for all types defined in the
5366   // cl_intel_device_side_avc_motion_estimation extension, except
5367   // intel_sub_group_avc_mce_payload_t and intel_sub_group_avc_mce_result_t.
5368   if (S.getOpenCLOptions().isEnabled(
5369           "cl_intel_device_side_avc_motion_estimation") &&
5370       DestType->isOCLIntelSubgroupAVCType()) {
5371     if (DestType->isOCLIntelSubgroupAVCMcePayloadType() ||
5372         DestType->isOCLIntelSubgroupAVCMceResultType())
5373       return false;
5374     if (!IsZeroInitializer(Initializer, S))
5375       return false;
5376 
5377     Sequence.AddOCLZeroOpaqueTypeStep(DestType);
5378     return true;
5379   }
5380 
5381   return false;
5382 }
5383 
5384 InitializationSequence::InitializationSequence(Sema &S,
5385                                                const InitializedEntity &Entity,
5386                                                const InitializationKind &Kind,
5387                                                MultiExprArg Args,
5388                                                bool TopLevelOfInitList,
5389                                                bool TreatUnavailableAsInvalid)
5390     : FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) {
5391   InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList,
5392                  TreatUnavailableAsInvalid);
5393 }
5394 
5395 /// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the
5396 /// address of that function, this returns true. Otherwise, it returns false.
5397 static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) {
5398   auto *DRE = dyn_cast<DeclRefExpr>(E);
5399   if (!DRE || !isa<FunctionDecl>(DRE->getDecl()))
5400     return false;
5401 
5402   return !S.checkAddressOfFunctionIsAvailable(
5403       cast<FunctionDecl>(DRE->getDecl()));
5404 }
5405 
5406 /// Determine whether we can perform an elementwise array copy for this kind
5407 /// of entity.
5408 static bool canPerformArrayCopy(const InitializedEntity &Entity) {
5409   switch (Entity.getKind()) {
5410   case InitializedEntity::EK_LambdaCapture:
5411     // C++ [expr.prim.lambda]p24:
5412     //   For array members, the array elements are direct-initialized in
5413     //   increasing subscript order.
5414     return true;
5415 
5416   case InitializedEntity::EK_Variable:
5417     // C++ [dcl.decomp]p1:
5418     //   [...] each element is copy-initialized or direct-initialized from the
5419     //   corresponding element of the assignment-expression [...]
5420     return isa<DecompositionDecl>(Entity.getDecl());
5421 
5422   case InitializedEntity::EK_Member:
5423     // C++ [class.copy.ctor]p14:
5424     //   - if the member is an array, each element is direct-initialized with
5425     //     the corresponding subobject of x
5426     return Entity.isImplicitMemberInitializer();
5427 
5428   case InitializedEntity::EK_ArrayElement:
5429     // All the above cases are intended to apply recursively, even though none
5430     // of them actually say that.
5431     if (auto *E = Entity.getParent())
5432       return canPerformArrayCopy(*E);
5433     break;
5434 
5435   default:
5436     break;
5437   }
5438 
5439   return false;
5440 }
5441 
5442 void InitializationSequence::InitializeFrom(Sema &S,
5443                                             const InitializedEntity &Entity,
5444                                             const InitializationKind &Kind,
5445                                             MultiExprArg Args,
5446                                             bool TopLevelOfInitList,
5447                                             bool TreatUnavailableAsInvalid) {
5448   ASTContext &Context = S.Context;
5449 
5450   // Eliminate non-overload placeholder types in the arguments.  We
5451   // need to do this before checking whether types are dependent
5452   // because lowering a pseudo-object expression might well give us
5453   // something of dependent type.
5454   for (unsigned I = 0, E = Args.size(); I != E; ++I)
5455     if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
5456       // FIXME: should we be doing this here?
5457       ExprResult result = S.CheckPlaceholderExpr(Args[I]);
5458       if (result.isInvalid()) {
5459         SetFailed(FK_PlaceholderType);
5460         return;
5461       }
5462       Args[I] = result.get();
5463     }
5464 
5465   // C++0x [dcl.init]p16:
5466   //   The semantics of initializers are as follows. The destination type is
5467   //   the type of the object or reference being initialized and the source
5468   //   type is the type of the initializer expression. The source type is not
5469   //   defined when the initializer is a braced-init-list or when it is a
5470   //   parenthesized list of expressions.
5471   QualType DestType = Entity.getType();
5472 
5473   if (DestType->isDependentType() ||
5474       Expr::hasAnyTypeDependentArguments(Args)) {
5475     SequenceKind = DependentSequence;
5476     return;
5477   }
5478 
5479   // Almost everything is a normal sequence.
5480   setSequenceKind(NormalSequence);
5481 
5482   QualType SourceType;
5483   Expr *Initializer = nullptr;
5484   if (Args.size() == 1) {
5485     Initializer = Args[0];
5486     if (S.getLangOpts().ObjC) {
5487       if (S.CheckObjCBridgeRelatedConversions(Initializer->getBeginLoc(),
5488                                               DestType, Initializer->getType(),
5489                                               Initializer) ||
5490           S.ConversionToObjCStringLiteralCheck(DestType, Initializer))
5491         Args[0] = Initializer;
5492     }
5493     if (!isa<InitListExpr>(Initializer))
5494       SourceType = Initializer->getType();
5495   }
5496 
5497   //     - If the initializer is a (non-parenthesized) braced-init-list, the
5498   //       object is list-initialized (8.5.4).
5499   if (Kind.getKind() != InitializationKind::IK_Direct) {
5500     if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
5501       TryListInitialization(S, Entity, Kind, InitList, *this,
5502                             TreatUnavailableAsInvalid);
5503       return;
5504     }
5505   }
5506 
5507   //     - If the destination type is a reference type, see 8.5.3.
5508   if (DestType->isReferenceType()) {
5509     // C++0x [dcl.init.ref]p1:
5510     //   A variable declared to be a T& or T&&, that is, "reference to type T"
5511     //   (8.3.2), shall be initialized by an object, or function, of type T or
5512     //   by an object that can be converted into a T.
5513     // (Therefore, multiple arguments are not permitted.)
5514     if (Args.size() != 1)
5515       SetFailed(FK_TooManyInitsForReference);
5516     // C++17 [dcl.init.ref]p5:
5517     //   A reference [...] is initialized by an expression [...] as follows:
5518     // If the initializer is not an expression, presumably we should reject,
5519     // but the standard fails to actually say so.
5520     else if (isa<InitListExpr>(Args[0]))
5521       SetFailed(FK_ParenthesizedListInitForReference);
5522     else
5523       TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
5524     return;
5525   }
5526 
5527   //     - If the initializer is (), the object is value-initialized.
5528   if (Kind.getKind() == InitializationKind::IK_Value ||
5529       (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
5530     TryValueInitialization(S, Entity, Kind, *this);
5531     return;
5532   }
5533 
5534   // Handle default initialization.
5535   if (Kind.getKind() == InitializationKind::IK_Default) {
5536     TryDefaultInitialization(S, Entity, Kind, *this);
5537     return;
5538   }
5539 
5540   //     - If the destination type is an array of characters, an array of
5541   //       char16_t, an array of char32_t, or an array of wchar_t, and the
5542   //       initializer is a string literal, see 8.5.2.
5543   //     - Otherwise, if the destination type is an array, the program is
5544   //       ill-formed.
5545   if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
5546     if (Initializer && isa<VariableArrayType>(DestAT)) {
5547       SetFailed(FK_VariableLengthArrayHasInitializer);
5548       return;
5549     }
5550 
5551     if (Initializer) {
5552       switch (IsStringInit(Initializer, DestAT, Context)) {
5553       case SIF_None:
5554         TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
5555         return;
5556       case SIF_NarrowStringIntoWideChar:
5557         SetFailed(FK_NarrowStringIntoWideCharArray);
5558         return;
5559       case SIF_WideStringIntoChar:
5560         SetFailed(FK_WideStringIntoCharArray);
5561         return;
5562       case SIF_IncompatWideStringIntoWideChar:
5563         SetFailed(FK_IncompatWideStringIntoWideChar);
5564         return;
5565       case SIF_PlainStringIntoUTF8Char:
5566         SetFailed(FK_PlainStringIntoUTF8Char);
5567         return;
5568       case SIF_UTF8StringIntoPlainChar:
5569         SetFailed(FK_UTF8StringIntoPlainChar);
5570         return;
5571       case SIF_Other:
5572         break;
5573       }
5574     }
5575 
5576     // Some kinds of initialization permit an array to be initialized from
5577     // another array of the same type, and perform elementwise initialization.
5578     if (Initializer && isa<ConstantArrayType>(DestAT) &&
5579         S.Context.hasSameUnqualifiedType(Initializer->getType(),
5580                                          Entity.getType()) &&
5581         canPerformArrayCopy(Entity)) {
5582       // If source is a prvalue, use it directly.
5583       if (Initializer->getValueKind() == VK_RValue) {
5584         AddArrayInitStep(DestType, /*IsGNUExtension*/false);
5585         return;
5586       }
5587 
5588       // Emit element-at-a-time copy loop.
5589       InitializedEntity Element =
5590           InitializedEntity::InitializeElement(S.Context, 0, Entity);
5591       QualType InitEltT =
5592           Context.getAsArrayType(Initializer->getType())->getElementType();
5593       OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT,
5594                           Initializer->getValueKind(),
5595                           Initializer->getObjectKind());
5596       Expr *OVEAsExpr = &OVE;
5597       InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList,
5598                      TreatUnavailableAsInvalid);
5599       if (!Failed())
5600         AddArrayInitLoopStep(Entity.getType(), InitEltT);
5601       return;
5602     }
5603 
5604     // Note: as an GNU C extension, we allow initialization of an
5605     // array from a compound literal that creates an array of the same
5606     // type, so long as the initializer has no side effects.
5607     if (!S.getLangOpts().CPlusPlus && Initializer &&
5608         isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
5609         Initializer->getType()->isArrayType()) {
5610       const ArrayType *SourceAT
5611         = Context.getAsArrayType(Initializer->getType());
5612       if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
5613         SetFailed(FK_ArrayTypeMismatch);
5614       else if (Initializer->HasSideEffects(S.Context))
5615         SetFailed(FK_NonConstantArrayInit);
5616       else {
5617         AddArrayInitStep(DestType, /*IsGNUExtension*/true);
5618       }
5619     }
5620     // Note: as a GNU C++ extension, we allow list-initialization of a
5621     // class member of array type from a parenthesized initializer list.
5622     else if (S.getLangOpts().CPlusPlus &&
5623              Entity.getKind() == InitializedEntity::EK_Member &&
5624              Initializer && isa<InitListExpr>(Initializer)) {
5625       TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
5626                             *this, TreatUnavailableAsInvalid);
5627       AddParenthesizedArrayInitStep(DestType);
5628     } else if (DestAT->getElementType()->isCharType())
5629       SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
5630     else if (IsWideCharCompatible(DestAT->getElementType(), Context))
5631       SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral);
5632     else
5633       SetFailed(FK_ArrayNeedsInitList);
5634 
5635     return;
5636   }
5637 
5638   // Determine whether we should consider writeback conversions for
5639   // Objective-C ARC.
5640   bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
5641          Entity.isParameterKind();
5642 
5643   if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
5644     return;
5645 
5646   // We're at the end of the line for C: it's either a write-back conversion
5647   // or it's a C assignment. There's no need to check anything else.
5648   if (!S.getLangOpts().CPlusPlus) {
5649     // If allowed, check whether this is an Objective-C writeback conversion.
5650     if (allowObjCWritebackConversion &&
5651         tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
5652       return;
5653     }
5654 
5655     if (TryOCLZeroOpaqueTypeInitialization(S, *this, DestType, Initializer))
5656       return;
5657 
5658     // Handle initialization in C
5659     AddCAssignmentStep(DestType);
5660     MaybeProduceObjCObject(S, *this, Entity);
5661     return;
5662   }
5663 
5664   assert(S.getLangOpts().CPlusPlus);
5665 
5666   //     - If the destination type is a (possibly cv-qualified) class type:
5667   if (DestType->isRecordType()) {
5668     //     - If the initialization is direct-initialization, or if it is
5669     //       copy-initialization where the cv-unqualified version of the
5670     //       source type is the same class as, or a derived class of, the
5671     //       class of the destination, constructors are considered. [...]
5672     if (Kind.getKind() == InitializationKind::IK_Direct ||
5673         (Kind.getKind() == InitializationKind::IK_Copy &&
5674          (Context.hasSameUnqualifiedType(SourceType, DestType) ||
5675           S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, DestType))))
5676       TryConstructorInitialization(S, Entity, Kind, Args,
5677                                    DestType, DestType, *this);
5678     //     - Otherwise (i.e., for the remaining copy-initialization cases),
5679     //       user-defined conversion sequences that can convert from the source
5680     //       type to the destination type or (when a conversion function is
5681     //       used) to a derived class thereof are enumerated as described in
5682     //       13.3.1.4, and the best one is chosen through overload resolution
5683     //       (13.3).
5684     else
5685       TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5686                                TopLevelOfInitList);
5687     return;
5688   }
5689 
5690   assert(Args.size() >= 1 && "Zero-argument case handled above");
5691 
5692   // The remaining cases all need a source type.
5693   if (Args.size() > 1) {
5694     SetFailed(FK_TooManyInitsForScalar);
5695     return;
5696   } else if (isa<InitListExpr>(Args[0])) {
5697     SetFailed(FK_ParenthesizedListInitForScalar);
5698     return;
5699   }
5700 
5701   //    - Otherwise, if the source type is a (possibly cv-qualified) class
5702   //      type, conversion functions are considered.
5703   if (!SourceType.isNull() && SourceType->isRecordType()) {
5704     // For a conversion to _Atomic(T) from either T or a class type derived
5705     // from T, initialize the T object then convert to _Atomic type.
5706     bool NeedAtomicConversion = false;
5707     if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) {
5708       if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) ||
5709           S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType,
5710                           Atomic->getValueType())) {
5711         DestType = Atomic->getValueType();
5712         NeedAtomicConversion = true;
5713       }
5714     }
5715 
5716     TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5717                              TopLevelOfInitList);
5718     MaybeProduceObjCObject(S, *this, Entity);
5719     if (!Failed() && NeedAtomicConversion)
5720       AddAtomicConversionStep(Entity.getType());
5721     return;
5722   }
5723 
5724   //    - Otherwise, the initial value of the object being initialized is the
5725   //      (possibly converted) value of the initializer expression. Standard
5726   //      conversions (Clause 4) will be used, if necessary, to convert the
5727   //      initializer expression to the cv-unqualified version of the
5728   //      destination type; no user-defined conversions are considered.
5729 
5730   ImplicitConversionSequence ICS
5731     = S.TryImplicitConversion(Initializer, DestType,
5732                               /*SuppressUserConversions*/true,
5733                               /*AllowExplicitConversions*/ false,
5734                               /*InOverloadResolution*/ false,
5735                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
5736                               allowObjCWritebackConversion);
5737 
5738   if (ICS.isStandard() &&
5739       ICS.Standard.Second == ICK_Writeback_Conversion) {
5740     // Objective-C ARC writeback conversion.
5741 
5742     // We should copy unless we're passing to an argument explicitly
5743     // marked 'out'.
5744     bool ShouldCopy = true;
5745     if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5746       ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5747 
5748     // If there was an lvalue adjustment, add it as a separate conversion.
5749     if (ICS.Standard.First == ICK_Array_To_Pointer ||
5750         ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
5751       ImplicitConversionSequence LvalueICS;
5752       LvalueICS.setStandard();
5753       LvalueICS.Standard.setAsIdentityConversion();
5754       LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
5755       LvalueICS.Standard.First = ICS.Standard.First;
5756       AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
5757     }
5758 
5759     AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy);
5760   } else if (ICS.isBad()) {
5761     DeclAccessPair dap;
5762     if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) {
5763       AddZeroInitializationStep(Entity.getType());
5764     } else if (Initializer->getType() == Context.OverloadTy &&
5765                !S.ResolveAddressOfOverloadedFunction(Initializer, DestType,
5766                                                      false, dap))
5767       SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
5768     else if (Initializer->getType()->isFunctionType() &&
5769              isExprAnUnaddressableFunction(S, Initializer))
5770       SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction);
5771     else
5772       SetFailed(InitializationSequence::FK_ConversionFailed);
5773   } else {
5774     AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5775 
5776     MaybeProduceObjCObject(S, *this, Entity);
5777   }
5778 }
5779 
5780 InitializationSequence::~InitializationSequence() {
5781   for (auto &S : Steps)
5782     S.Destroy();
5783 }
5784 
5785 //===----------------------------------------------------------------------===//
5786 // Perform initialization
5787 //===----------------------------------------------------------------------===//
5788 static Sema::AssignmentAction
5789 getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) {
5790   switch(Entity.getKind()) {
5791   case InitializedEntity::EK_Variable:
5792   case InitializedEntity::EK_New:
5793   case InitializedEntity::EK_Exception:
5794   case InitializedEntity::EK_Base:
5795   case InitializedEntity::EK_Delegating:
5796     return Sema::AA_Initializing;
5797 
5798   case InitializedEntity::EK_Parameter:
5799     if (Entity.getDecl() &&
5800         isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5801       return Sema::AA_Sending;
5802 
5803     return Sema::AA_Passing;
5804 
5805   case InitializedEntity::EK_Parameter_CF_Audited:
5806     if (Entity.getDecl() &&
5807       isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5808       return Sema::AA_Sending;
5809 
5810     return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited;
5811 
5812   case InitializedEntity::EK_Result:
5813   case InitializedEntity::EK_StmtExprResult: // FIXME: Not quite right.
5814     return Sema::AA_Returning;
5815 
5816   case InitializedEntity::EK_Temporary:
5817   case InitializedEntity::EK_RelatedResult:
5818     // FIXME: Can we tell apart casting vs. converting?
5819     return Sema::AA_Casting;
5820 
5821   case InitializedEntity::EK_Member:
5822   case InitializedEntity::EK_Binding:
5823   case InitializedEntity::EK_ArrayElement:
5824   case InitializedEntity::EK_VectorElement:
5825   case InitializedEntity::EK_ComplexElement:
5826   case InitializedEntity::EK_BlockElement:
5827   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5828   case InitializedEntity::EK_LambdaCapture:
5829   case InitializedEntity::EK_CompoundLiteralInit:
5830     return Sema::AA_Initializing;
5831   }
5832 
5833   llvm_unreachable("Invalid EntityKind!");
5834 }
5835 
5836 /// Whether we should bind a created object as a temporary when
5837 /// initializing the given entity.
5838 static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
5839   switch (Entity.getKind()) {
5840   case InitializedEntity::EK_ArrayElement:
5841   case InitializedEntity::EK_Member:
5842   case InitializedEntity::EK_Result:
5843   case InitializedEntity::EK_StmtExprResult:
5844   case InitializedEntity::EK_New:
5845   case InitializedEntity::EK_Variable:
5846   case InitializedEntity::EK_Base:
5847   case InitializedEntity::EK_Delegating:
5848   case InitializedEntity::EK_VectorElement:
5849   case InitializedEntity::EK_ComplexElement:
5850   case InitializedEntity::EK_Exception:
5851   case InitializedEntity::EK_BlockElement:
5852   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5853   case InitializedEntity::EK_LambdaCapture:
5854   case InitializedEntity::EK_CompoundLiteralInit:
5855     return false;
5856 
5857   case InitializedEntity::EK_Parameter:
5858   case InitializedEntity::EK_Parameter_CF_Audited:
5859   case InitializedEntity::EK_Temporary:
5860   case InitializedEntity::EK_RelatedResult:
5861   case InitializedEntity::EK_Binding:
5862     return true;
5863   }
5864 
5865   llvm_unreachable("missed an InitializedEntity kind?");
5866 }
5867 
5868 /// Whether the given entity, when initialized with an object
5869 /// created for that initialization, requires destruction.
5870 static bool shouldDestroyEntity(const InitializedEntity &Entity) {
5871   switch (Entity.getKind()) {
5872     case InitializedEntity::EK_Result:
5873     case InitializedEntity::EK_StmtExprResult:
5874     case InitializedEntity::EK_New:
5875     case InitializedEntity::EK_Base:
5876     case InitializedEntity::EK_Delegating:
5877     case InitializedEntity::EK_VectorElement:
5878     case InitializedEntity::EK_ComplexElement:
5879     case InitializedEntity::EK_BlockElement:
5880     case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5881     case InitializedEntity::EK_LambdaCapture:
5882       return false;
5883 
5884     case InitializedEntity::EK_Member:
5885     case InitializedEntity::EK_Binding:
5886     case InitializedEntity::EK_Variable:
5887     case InitializedEntity::EK_Parameter:
5888     case InitializedEntity::EK_Parameter_CF_Audited:
5889     case InitializedEntity::EK_Temporary:
5890     case InitializedEntity::EK_ArrayElement:
5891     case InitializedEntity::EK_Exception:
5892     case InitializedEntity::EK_CompoundLiteralInit:
5893     case InitializedEntity::EK_RelatedResult:
5894       return true;
5895   }
5896 
5897   llvm_unreachable("missed an InitializedEntity kind?");
5898 }
5899 
5900 /// Get the location at which initialization diagnostics should appear.
5901 static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
5902                                            Expr *Initializer) {
5903   switch (Entity.getKind()) {
5904   case InitializedEntity::EK_Result:
5905   case InitializedEntity::EK_StmtExprResult:
5906     return Entity.getReturnLoc();
5907 
5908   case InitializedEntity::EK_Exception:
5909     return Entity.getThrowLoc();
5910 
5911   case InitializedEntity::EK_Variable:
5912   case InitializedEntity::EK_Binding:
5913     return Entity.getDecl()->getLocation();
5914 
5915   case InitializedEntity::EK_LambdaCapture:
5916     return Entity.getCaptureLoc();
5917 
5918   case InitializedEntity::EK_ArrayElement:
5919   case InitializedEntity::EK_Member:
5920   case InitializedEntity::EK_Parameter:
5921   case InitializedEntity::EK_Parameter_CF_Audited:
5922   case InitializedEntity::EK_Temporary:
5923   case InitializedEntity::EK_New:
5924   case InitializedEntity::EK_Base:
5925   case InitializedEntity::EK_Delegating:
5926   case InitializedEntity::EK_VectorElement:
5927   case InitializedEntity::EK_ComplexElement:
5928   case InitializedEntity::EK_BlockElement:
5929   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5930   case InitializedEntity::EK_CompoundLiteralInit:
5931   case InitializedEntity::EK_RelatedResult:
5932     return Initializer->getBeginLoc();
5933   }
5934   llvm_unreachable("missed an InitializedEntity kind?");
5935 }
5936 
5937 /// Make a (potentially elidable) temporary copy of the object
5938 /// provided by the given initializer by calling the appropriate copy
5939 /// constructor.
5940 ///
5941 /// \param S The Sema object used for type-checking.
5942 ///
5943 /// \param T The type of the temporary object, which must either be
5944 /// the type of the initializer expression or a superclass thereof.
5945 ///
5946 /// \param Entity The entity being initialized.
5947 ///
5948 /// \param CurInit The initializer expression.
5949 ///
5950 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that
5951 /// is permitted in C++03 (but not C++0x) when binding a reference to
5952 /// an rvalue.
5953 ///
5954 /// \returns An expression that copies the initializer expression into
5955 /// a temporary object, or an error expression if a copy could not be
5956 /// created.
5957 static ExprResult CopyObject(Sema &S,
5958                              QualType T,
5959                              const InitializedEntity &Entity,
5960                              ExprResult CurInit,
5961                              bool IsExtraneousCopy) {
5962   if (CurInit.isInvalid())
5963     return CurInit;
5964   // Determine which class type we're copying to.
5965   Expr *CurInitExpr = (Expr *)CurInit.get();
5966   CXXRecordDecl *Class = nullptr;
5967   if (const RecordType *Record = T->getAs<RecordType>())
5968     Class = cast<CXXRecordDecl>(Record->getDecl());
5969   if (!Class)
5970     return CurInit;
5971 
5972   SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
5973 
5974   // Make sure that the type we are copying is complete.
5975   if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
5976     return CurInit;
5977 
5978   // Perform overload resolution using the class's constructors. Per
5979   // C++11 [dcl.init]p16, second bullet for class types, this initialization
5980   // is direct-initialization.
5981   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
5982   DeclContext::lookup_result Ctors = S.LookupConstructors(Class);
5983 
5984   OverloadCandidateSet::iterator Best;
5985   switch (ResolveConstructorOverload(
5986       S, Loc, CurInitExpr, CandidateSet, T, Ctors, Best,
5987       /*CopyInitializing=*/false, /*AllowExplicit=*/true,
5988       /*OnlyListConstructors=*/false, /*IsListInit=*/false,
5989       /*SecondStepOfCopyInit=*/true)) {
5990   case OR_Success:
5991     break;
5992 
5993   case OR_No_Viable_Function:
5994     CandidateSet.NoteCandidates(
5995         PartialDiagnosticAt(
5996             Loc, S.PDiag(IsExtraneousCopy && !S.isSFINAEContext()
5997                              ? diag::ext_rvalue_to_reference_temp_copy_no_viable
5998                              : diag::err_temp_copy_no_viable)
5999                      << (int)Entity.getKind() << CurInitExpr->getType()
6000                      << CurInitExpr->getSourceRange()),
6001         S, OCD_AllCandidates, CurInitExpr);
6002     if (!IsExtraneousCopy || S.isSFINAEContext())
6003       return ExprError();
6004     return CurInit;
6005 
6006   case OR_Ambiguous:
6007     CandidateSet.NoteCandidates(
6008         PartialDiagnosticAt(Loc, S.PDiag(diag::err_temp_copy_ambiguous)
6009                                      << (int)Entity.getKind()
6010                                      << CurInitExpr->getType()
6011                                      << CurInitExpr->getSourceRange()),
6012         S, OCD_ViableCandidates, CurInitExpr);
6013     return ExprError();
6014 
6015   case OR_Deleted:
6016     S.Diag(Loc, diag::err_temp_copy_deleted)
6017       << (int)Entity.getKind() << CurInitExpr->getType()
6018       << CurInitExpr->getSourceRange();
6019     S.NoteDeletedFunction(Best->Function);
6020     return ExprError();
6021   }
6022 
6023   bool HadMultipleCandidates = CandidateSet.size() > 1;
6024 
6025   CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
6026   SmallVector<Expr*, 8> ConstructorArgs;
6027   CurInit.get(); // Ownership transferred into MultiExprArg, below.
6028 
6029   S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity,
6030                            IsExtraneousCopy);
6031 
6032   if (IsExtraneousCopy) {
6033     // If this is a totally extraneous copy for C++03 reference
6034     // binding purposes, just return the original initialization
6035     // expression. We don't generate an (elided) copy operation here
6036     // because doing so would require us to pass down a flag to avoid
6037     // infinite recursion, where each step adds another extraneous,
6038     // elidable copy.
6039 
6040     // Instantiate the default arguments of any extra parameters in
6041     // the selected copy constructor, as if we were going to create a
6042     // proper call to the copy constructor.
6043     for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
6044       ParmVarDecl *Parm = Constructor->getParamDecl(I);
6045       if (S.RequireCompleteType(Loc, Parm->getType(),
6046                                 diag::err_call_incomplete_argument))
6047         break;
6048 
6049       // Build the default argument expression; we don't actually care
6050       // if this succeeds or not, because this routine will complain
6051       // if there was a problem.
6052       S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
6053     }
6054 
6055     return CurInitExpr;
6056   }
6057 
6058   // Determine the arguments required to actually perform the
6059   // constructor call (we might have derived-to-base conversions, or
6060   // the copy constructor may have default arguments).
6061   if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs))
6062     return ExprError();
6063 
6064   // C++0x [class.copy]p32:
6065   //   When certain criteria are met, an implementation is allowed to
6066   //   omit the copy/move construction of a class object, even if the
6067   //   copy/move constructor and/or destructor for the object have
6068   //   side effects. [...]
6069   //     - when a temporary class object that has not been bound to a
6070   //       reference (12.2) would be copied/moved to a class object
6071   //       with the same cv-unqualified type, the copy/move operation
6072   //       can be omitted by constructing the temporary object
6073   //       directly into the target of the omitted copy/move
6074   //
6075   // Note that the other three bullets are handled elsewhere. Copy
6076   // elision for return statements and throw expressions are handled as part
6077   // of constructor initialization, while copy elision for exception handlers
6078   // is handled by the run-time.
6079   //
6080   // FIXME: If the function parameter is not the same type as the temporary, we
6081   // should still be able to elide the copy, but we don't have a way to
6082   // represent in the AST how much should be elided in this case.
6083   bool Elidable =
6084       CurInitExpr->isTemporaryObject(S.Context, Class) &&
6085       S.Context.hasSameUnqualifiedType(
6086           Best->Function->getParamDecl(0)->getType().getNonReferenceType(),
6087           CurInitExpr->getType());
6088 
6089   // Actually perform the constructor call.
6090   CurInit = S.BuildCXXConstructExpr(Loc, T, Best->FoundDecl, Constructor,
6091                                     Elidable,
6092                                     ConstructorArgs,
6093                                     HadMultipleCandidates,
6094                                     /*ListInit*/ false,
6095                                     /*StdInitListInit*/ false,
6096                                     /*ZeroInit*/ false,
6097                                     CXXConstructExpr::CK_Complete,
6098                                     SourceRange());
6099 
6100   // If we're supposed to bind temporaries, do so.
6101   if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
6102     CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
6103   return CurInit;
6104 }
6105 
6106 /// Check whether elidable copy construction for binding a reference to
6107 /// a temporary would have succeeded if we were building in C++98 mode, for
6108 /// -Wc++98-compat.
6109 static void CheckCXX98CompatAccessibleCopy(Sema &S,
6110                                            const InitializedEntity &Entity,
6111                                            Expr *CurInitExpr) {
6112   assert(S.getLangOpts().CPlusPlus11);
6113 
6114   const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
6115   if (!Record)
6116     return;
6117 
6118   SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
6119   if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc))
6120     return;
6121 
6122   // Find constructors which would have been considered.
6123   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
6124   DeclContext::lookup_result Ctors =
6125       S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl()));
6126 
6127   // Perform overload resolution.
6128   OverloadCandidateSet::iterator Best;
6129   OverloadingResult OR = ResolveConstructorOverload(
6130       S, Loc, CurInitExpr, CandidateSet, CurInitExpr->getType(), Ctors, Best,
6131       /*CopyInitializing=*/false, /*AllowExplicit=*/true,
6132       /*OnlyListConstructors=*/false, /*IsListInit=*/false,
6133       /*SecondStepOfCopyInit=*/true);
6134 
6135   PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
6136     << OR << (int)Entity.getKind() << CurInitExpr->getType()
6137     << CurInitExpr->getSourceRange();
6138 
6139   switch (OR) {
6140   case OR_Success:
6141     S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
6142                              Best->FoundDecl, Entity, Diag);
6143     // FIXME: Check default arguments as far as that's possible.
6144     break;
6145 
6146   case OR_No_Viable_Function:
6147     CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S,
6148                                 OCD_AllCandidates, CurInitExpr);
6149     break;
6150 
6151   case OR_Ambiguous:
6152     CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S,
6153                                 OCD_ViableCandidates, CurInitExpr);
6154     break;
6155 
6156   case OR_Deleted:
6157     S.Diag(Loc, Diag);
6158     S.NoteDeletedFunction(Best->Function);
6159     break;
6160   }
6161 }
6162 
6163 void InitializationSequence::PrintInitLocationNote(Sema &S,
6164                                               const InitializedEntity &Entity) {
6165   if (Entity.isParameterKind() && Entity.getDecl()) {
6166     if (Entity.getDecl()->getLocation().isInvalid())
6167       return;
6168 
6169     if (Entity.getDecl()->getDeclName())
6170       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
6171         << Entity.getDecl()->getDeclName();
6172     else
6173       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
6174   }
6175   else if (Entity.getKind() == InitializedEntity::EK_RelatedResult &&
6176            Entity.getMethodDecl())
6177     S.Diag(Entity.getMethodDecl()->getLocation(),
6178            diag::note_method_return_type_change)
6179       << Entity.getMethodDecl()->getDeclName();
6180 }
6181 
6182 /// Returns true if the parameters describe a constructor initialization of
6183 /// an explicit temporary object, e.g. "Point(x, y)".
6184 static bool isExplicitTemporary(const InitializedEntity &Entity,
6185                                 const InitializationKind &Kind,
6186                                 unsigned NumArgs) {
6187   switch (Entity.getKind()) {
6188   case InitializedEntity::EK_Temporary:
6189   case InitializedEntity::EK_CompoundLiteralInit:
6190   case InitializedEntity::EK_RelatedResult:
6191     break;
6192   default:
6193     return false;
6194   }
6195 
6196   switch (Kind.getKind()) {
6197   case InitializationKind::IK_DirectList:
6198     return true;
6199   // FIXME: Hack to work around cast weirdness.
6200   case InitializationKind::IK_Direct:
6201   case InitializationKind::IK_Value:
6202     return NumArgs != 1;
6203   default:
6204     return false;
6205   }
6206 }
6207 
6208 static ExprResult
6209 PerformConstructorInitialization(Sema &S,
6210                                  const InitializedEntity &Entity,
6211                                  const InitializationKind &Kind,
6212                                  MultiExprArg Args,
6213                                  const InitializationSequence::Step& Step,
6214                                  bool &ConstructorInitRequiresZeroInit,
6215                                  bool IsListInitialization,
6216                                  bool IsStdInitListInitialization,
6217                                  SourceLocation LBraceLoc,
6218                                  SourceLocation RBraceLoc) {
6219   unsigned NumArgs = Args.size();
6220   CXXConstructorDecl *Constructor
6221     = cast<CXXConstructorDecl>(Step.Function.Function);
6222   bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
6223 
6224   // Build a call to the selected constructor.
6225   SmallVector<Expr*, 8> ConstructorArgs;
6226   SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
6227                          ? Kind.getEqualLoc()
6228                          : Kind.getLocation();
6229 
6230   if (Kind.getKind() == InitializationKind::IK_Default) {
6231     // Force even a trivial, implicit default constructor to be
6232     // semantically checked. We do this explicitly because we don't build
6233     // the definition for completely trivial constructors.
6234     assert(Constructor->getParent() && "No parent class for constructor.");
6235     if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6236         Constructor->isTrivial() && !Constructor->isUsed(false))
6237       S.DefineImplicitDefaultConstructor(Loc, Constructor);
6238   }
6239 
6240   ExprResult CurInit((Expr *)nullptr);
6241 
6242   // C++ [over.match.copy]p1:
6243   //   - When initializing a temporary to be bound to the first parameter
6244   //     of a constructor that takes a reference to possibly cv-qualified
6245   //     T as its first argument, called with a single argument in the
6246   //     context of direct-initialization, explicit conversion functions
6247   //     are also considered.
6248   bool AllowExplicitConv =
6249       Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 &&
6250       hasCopyOrMoveCtorParam(S.Context,
6251                              getConstructorInfo(Step.Function.FoundDecl));
6252 
6253   // Determine the arguments required to actually perform the constructor
6254   // call.
6255   if (S.CompleteConstructorCall(Constructor, Args,
6256                                 Loc, ConstructorArgs,
6257                                 AllowExplicitConv,
6258                                 IsListInitialization))
6259     return ExprError();
6260 
6261 
6262   if (isExplicitTemporary(Entity, Kind, NumArgs)) {
6263     // An explicitly-constructed temporary, e.g., X(1, 2).
6264     if (S.DiagnoseUseOfDecl(Constructor, Loc))
6265       return ExprError();
6266 
6267     TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
6268     if (!TSInfo)
6269       TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
6270     SourceRange ParenOrBraceRange =
6271         (Kind.getKind() == InitializationKind::IK_DirectList)
6272         ? SourceRange(LBraceLoc, RBraceLoc)
6273         : Kind.getParenOrBraceRange();
6274 
6275     if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(
6276             Step.Function.FoundDecl.getDecl())) {
6277       Constructor = S.findInheritingConstructor(Loc, Constructor, Shadow);
6278       if (S.DiagnoseUseOfDecl(Constructor, Loc))
6279         return ExprError();
6280     }
6281     S.MarkFunctionReferenced(Loc, Constructor);
6282 
6283     CurInit = CXXTemporaryObjectExpr::Create(
6284         S.Context, Constructor,
6285         Entity.getType().getNonLValueExprType(S.Context), TSInfo,
6286         ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates,
6287         IsListInitialization, IsStdInitListInitialization,
6288         ConstructorInitRequiresZeroInit);
6289   } else {
6290     CXXConstructExpr::ConstructionKind ConstructKind =
6291       CXXConstructExpr::CK_Complete;
6292 
6293     if (Entity.getKind() == InitializedEntity::EK_Base) {
6294       ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
6295         CXXConstructExpr::CK_VirtualBase :
6296         CXXConstructExpr::CK_NonVirtualBase;
6297     } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
6298       ConstructKind = CXXConstructExpr::CK_Delegating;
6299     }
6300 
6301     // Only get the parenthesis or brace range if it is a list initialization or
6302     // direct construction.
6303     SourceRange ParenOrBraceRange;
6304     if (IsListInitialization)
6305       ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc);
6306     else if (Kind.getKind() == InitializationKind::IK_Direct)
6307       ParenOrBraceRange = Kind.getParenOrBraceRange();
6308 
6309     // If the entity allows NRVO, mark the construction as elidable
6310     // unconditionally.
6311     if (Entity.allowsNRVO())
6312       CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
6313                                         Step.Function.FoundDecl,
6314                                         Constructor, /*Elidable=*/true,
6315                                         ConstructorArgs,
6316                                         HadMultipleCandidates,
6317                                         IsListInitialization,
6318                                         IsStdInitListInitialization,
6319                                         ConstructorInitRequiresZeroInit,
6320                                         ConstructKind,
6321                                         ParenOrBraceRange);
6322     else
6323       CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
6324                                         Step.Function.FoundDecl,
6325                                         Constructor,
6326                                         ConstructorArgs,
6327                                         HadMultipleCandidates,
6328                                         IsListInitialization,
6329                                         IsStdInitListInitialization,
6330                                         ConstructorInitRequiresZeroInit,
6331                                         ConstructKind,
6332                                         ParenOrBraceRange);
6333   }
6334   if (CurInit.isInvalid())
6335     return ExprError();
6336 
6337   // Only check access if all of that succeeded.
6338   S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity);
6339   if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc))
6340     return ExprError();
6341 
6342   if (const ArrayType *AT = S.Context.getAsArrayType(Entity.getType()))
6343     if (checkDestructorReference(S.Context.getBaseElementType(AT), Loc, S))
6344       return ExprError();
6345 
6346   if (shouldBindAsTemporary(Entity))
6347     CurInit = S.MaybeBindToTemporary(CurInit.get());
6348 
6349   return CurInit;
6350 }
6351 
6352 namespace {
6353 enum LifetimeKind {
6354   /// The lifetime of a temporary bound to this entity ends at the end of the
6355   /// full-expression, and that's (probably) fine.
6356   LK_FullExpression,
6357 
6358   /// The lifetime of a temporary bound to this entity is extended to the
6359   /// lifeitme of the entity itself.
6360   LK_Extended,
6361 
6362   /// The lifetime of a temporary bound to this entity probably ends too soon,
6363   /// because the entity is allocated in a new-expression.
6364   LK_New,
6365 
6366   /// The lifetime of a temporary bound to this entity ends too soon, because
6367   /// the entity is a return object.
6368   LK_Return,
6369 
6370   /// The lifetime of a temporary bound to this entity ends too soon, because
6371   /// the entity is the result of a statement expression.
6372   LK_StmtExprResult,
6373 
6374   /// This is a mem-initializer: if it would extend a temporary (other than via
6375   /// a default member initializer), the program is ill-formed.
6376   LK_MemInitializer,
6377 };
6378 using LifetimeResult =
6379     llvm::PointerIntPair<const InitializedEntity *, 3, LifetimeKind>;
6380 }
6381 
6382 /// Determine the declaration which an initialized entity ultimately refers to,
6383 /// for the purpose of lifetime-extending a temporary bound to a reference in
6384 /// the initialization of \p Entity.
6385 static LifetimeResult getEntityLifetime(
6386     const InitializedEntity *Entity,
6387     const InitializedEntity *InitField = nullptr) {
6388   // C++11 [class.temporary]p5:
6389   switch (Entity->getKind()) {
6390   case InitializedEntity::EK_Variable:
6391     //   The temporary [...] persists for the lifetime of the reference
6392     return {Entity, LK_Extended};
6393 
6394   case InitializedEntity::EK_Member:
6395     // For subobjects, we look at the complete object.
6396     if (Entity->getParent())
6397       return getEntityLifetime(Entity->getParent(), Entity);
6398 
6399     //   except:
6400     // C++17 [class.base.init]p8:
6401     //   A temporary expression bound to a reference member in a
6402     //   mem-initializer is ill-formed.
6403     // C++17 [class.base.init]p11:
6404     //   A temporary expression bound to a reference member from a
6405     //   default member initializer is ill-formed.
6406     //
6407     // The context of p11 and its example suggest that it's only the use of a
6408     // default member initializer from a constructor that makes the program
6409     // ill-formed, not its mere existence, and that it can even be used by
6410     // aggregate initialization.
6411     return {Entity, Entity->isDefaultMemberInitializer() ? LK_Extended
6412                                                          : LK_MemInitializer};
6413 
6414   case InitializedEntity::EK_Binding:
6415     // Per [dcl.decomp]p3, the binding is treated as a variable of reference
6416     // type.
6417     return {Entity, LK_Extended};
6418 
6419   case InitializedEntity::EK_Parameter:
6420   case InitializedEntity::EK_Parameter_CF_Audited:
6421     //   -- A temporary bound to a reference parameter in a function call
6422     //      persists until the completion of the full-expression containing
6423     //      the call.
6424     return {nullptr, LK_FullExpression};
6425 
6426   case InitializedEntity::EK_Result:
6427     //   -- The lifetime of a temporary bound to the returned value in a
6428     //      function return statement is not extended; the temporary is
6429     //      destroyed at the end of the full-expression in the return statement.
6430     return {nullptr, LK_Return};
6431 
6432   case InitializedEntity::EK_StmtExprResult:
6433     // FIXME: Should we lifetime-extend through the result of a statement
6434     // expression?
6435     return {nullptr, LK_StmtExprResult};
6436 
6437   case InitializedEntity::EK_New:
6438     //   -- A temporary bound to a reference in a new-initializer persists
6439     //      until the completion of the full-expression containing the
6440     //      new-initializer.
6441     return {nullptr, LK_New};
6442 
6443   case InitializedEntity::EK_Temporary:
6444   case InitializedEntity::EK_CompoundLiteralInit:
6445   case InitializedEntity::EK_RelatedResult:
6446     // We don't yet know the storage duration of the surrounding temporary.
6447     // Assume it's got full-expression duration for now, it will patch up our
6448     // storage duration if that's not correct.
6449     return {nullptr, LK_FullExpression};
6450 
6451   case InitializedEntity::EK_ArrayElement:
6452     // For subobjects, we look at the complete object.
6453     return getEntityLifetime(Entity->getParent(), InitField);
6454 
6455   case InitializedEntity::EK_Base:
6456     // For subobjects, we look at the complete object.
6457     if (Entity->getParent())
6458       return getEntityLifetime(Entity->getParent(), InitField);
6459     return {InitField, LK_MemInitializer};
6460 
6461   case InitializedEntity::EK_Delegating:
6462     // We can reach this case for aggregate initialization in a constructor:
6463     //   struct A { int &&r; };
6464     //   struct B : A { B() : A{0} {} };
6465     // In this case, use the outermost field decl as the context.
6466     return {InitField, LK_MemInitializer};
6467 
6468   case InitializedEntity::EK_BlockElement:
6469   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6470   case InitializedEntity::EK_LambdaCapture:
6471   case InitializedEntity::EK_VectorElement:
6472   case InitializedEntity::EK_ComplexElement:
6473     return {nullptr, LK_FullExpression};
6474 
6475   case InitializedEntity::EK_Exception:
6476     // FIXME: Can we diagnose lifetime problems with exceptions?
6477     return {nullptr, LK_FullExpression};
6478   }
6479   llvm_unreachable("unknown entity kind");
6480 }
6481 
6482 namespace {
6483 enum ReferenceKind {
6484   /// Lifetime would be extended by a reference binding to a temporary.
6485   RK_ReferenceBinding,
6486   /// Lifetime would be extended by a std::initializer_list object binding to
6487   /// its backing array.
6488   RK_StdInitializerList,
6489 };
6490 
6491 /// A temporary or local variable. This will be one of:
6492 ///  * A MaterializeTemporaryExpr.
6493 ///  * A DeclRefExpr whose declaration is a local.
6494 ///  * An AddrLabelExpr.
6495 ///  * A BlockExpr for a block with captures.
6496 using Local = Expr*;
6497 
6498 /// Expressions we stepped over when looking for the local state. Any steps
6499 /// that would inhibit lifetime extension or take us out of subexpressions of
6500 /// the initializer are included.
6501 struct IndirectLocalPathEntry {
6502   enum EntryKind {
6503     DefaultInit,
6504     AddressOf,
6505     VarInit,
6506     LValToRVal,
6507     LifetimeBoundCall,
6508   } Kind;
6509   Expr *E;
6510   const Decl *D = nullptr;
6511   IndirectLocalPathEntry() {}
6512   IndirectLocalPathEntry(EntryKind K, Expr *E) : Kind(K), E(E) {}
6513   IndirectLocalPathEntry(EntryKind K, Expr *E, const Decl *D)
6514       : Kind(K), E(E), D(D) {}
6515 };
6516 
6517 using IndirectLocalPath = llvm::SmallVectorImpl<IndirectLocalPathEntry>;
6518 
6519 struct RevertToOldSizeRAII {
6520   IndirectLocalPath &Path;
6521   unsigned OldSize = Path.size();
6522   RevertToOldSizeRAII(IndirectLocalPath &Path) : Path(Path) {}
6523   ~RevertToOldSizeRAII() { Path.resize(OldSize); }
6524 };
6525 
6526 using LocalVisitor = llvm::function_ref<bool(IndirectLocalPath &Path, Local L,
6527                                              ReferenceKind RK)>;
6528 }
6529 
6530 static bool isVarOnPath(IndirectLocalPath &Path, VarDecl *VD) {
6531   for (auto E : Path)
6532     if (E.Kind == IndirectLocalPathEntry::VarInit && E.D == VD)
6533       return true;
6534   return false;
6535 }
6536 
6537 static bool pathContainsInit(IndirectLocalPath &Path) {
6538   return llvm::any_of(Path, [=](IndirectLocalPathEntry E) {
6539     return E.Kind == IndirectLocalPathEntry::DefaultInit ||
6540            E.Kind == IndirectLocalPathEntry::VarInit;
6541   });
6542 }
6543 
6544 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
6545                                              Expr *Init, LocalVisitor Visit,
6546                                              bool RevisitSubinits);
6547 
6548 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
6549                                                   Expr *Init, ReferenceKind RK,
6550                                                   LocalVisitor Visit);
6551 
6552 static bool implicitObjectParamIsLifetimeBound(const FunctionDecl *FD) {
6553   const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
6554   if (!TSI)
6555     return false;
6556   // Don't declare this variable in the second operand of the for-statement;
6557   // GCC miscompiles that by ending its lifetime before evaluating the
6558   // third operand. See gcc.gnu.org/PR86769.
6559   AttributedTypeLoc ATL;
6560   for (TypeLoc TL = TSI->getTypeLoc();
6561        (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
6562        TL = ATL.getModifiedLoc()) {
6563     if (ATL.getAttrAs<LifetimeBoundAttr>())
6564       return true;
6565   }
6566   return false;
6567 }
6568 
6569 static void visitLifetimeBoundArguments(IndirectLocalPath &Path, Expr *Call,
6570                                         LocalVisitor Visit) {
6571   const FunctionDecl *Callee;
6572   ArrayRef<Expr*> Args;
6573 
6574   if (auto *CE = dyn_cast<CallExpr>(Call)) {
6575     Callee = CE->getDirectCallee();
6576     Args = llvm::makeArrayRef(CE->getArgs(), CE->getNumArgs());
6577   } else {
6578     auto *CCE = cast<CXXConstructExpr>(Call);
6579     Callee = CCE->getConstructor();
6580     Args = llvm::makeArrayRef(CCE->getArgs(), CCE->getNumArgs());
6581   }
6582   if (!Callee)
6583     return;
6584 
6585   Expr *ObjectArg = nullptr;
6586   if (isa<CXXOperatorCallExpr>(Call) && Callee->isCXXInstanceMember()) {
6587     ObjectArg = Args[0];
6588     Args = Args.slice(1);
6589   } else if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) {
6590     ObjectArg = MCE->getImplicitObjectArgument();
6591   }
6592 
6593   auto VisitLifetimeBoundArg = [&](const Decl *D, Expr *Arg) {
6594     Path.push_back({IndirectLocalPathEntry::LifetimeBoundCall, Arg, D});
6595     if (Arg->isGLValue())
6596       visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding,
6597                                             Visit);
6598     else
6599       visitLocalsRetainedByInitializer(Path, Arg, Visit, true);
6600     Path.pop_back();
6601   };
6602 
6603   if (ObjectArg && implicitObjectParamIsLifetimeBound(Callee))
6604     VisitLifetimeBoundArg(Callee, ObjectArg);
6605 
6606   for (unsigned I = 0,
6607                 N = std::min<unsigned>(Callee->getNumParams(), Args.size());
6608        I != N; ++I) {
6609     if (Callee->getParamDecl(I)->hasAttr<LifetimeBoundAttr>())
6610       VisitLifetimeBoundArg(Callee->getParamDecl(I), Args[I]);
6611   }
6612 }
6613 
6614 /// Visit the locals that would be reachable through a reference bound to the
6615 /// glvalue expression \c Init.
6616 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
6617                                                   Expr *Init, ReferenceKind RK,
6618                                                   LocalVisitor Visit) {
6619   RevertToOldSizeRAII RAII(Path);
6620 
6621   // Walk past any constructs which we can lifetime-extend across.
6622   Expr *Old;
6623   do {
6624     Old = Init;
6625 
6626     if (auto *FE = dyn_cast<FullExpr>(Init))
6627       Init = FE->getSubExpr();
6628 
6629     if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
6630       // If this is just redundant braces around an initializer, step over it.
6631       if (ILE->isTransparent())
6632         Init = ILE->getInit(0);
6633     }
6634 
6635     // Step over any subobject adjustments; we may have a materialized
6636     // temporary inside them.
6637     Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
6638 
6639     // Per current approach for DR1376, look through casts to reference type
6640     // when performing lifetime extension.
6641     if (CastExpr *CE = dyn_cast<CastExpr>(Init))
6642       if (CE->getSubExpr()->isGLValue())
6643         Init = CE->getSubExpr();
6644 
6645     // Per the current approach for DR1299, look through array element access
6646     // on array glvalues when performing lifetime extension.
6647     if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Init)) {
6648       Init = ASE->getBase();
6649       auto *ICE = dyn_cast<ImplicitCastExpr>(Init);
6650       if (ICE && ICE->getCastKind() == CK_ArrayToPointerDecay)
6651         Init = ICE->getSubExpr();
6652       else
6653         // We can't lifetime extend through this but we might still find some
6654         // retained temporaries.
6655         return visitLocalsRetainedByInitializer(Path, Init, Visit, true);
6656     }
6657 
6658     // Step into CXXDefaultInitExprs so we can diagnose cases where a
6659     // constructor inherits one as an implicit mem-initializer.
6660     if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
6661       Path.push_back(
6662           {IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
6663       Init = DIE->getExpr();
6664     }
6665   } while (Init != Old);
6666 
6667   if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Init)) {
6668     if (Visit(Path, Local(MTE), RK))
6669       visitLocalsRetainedByInitializer(Path, MTE->GetTemporaryExpr(), Visit,
6670                                        true);
6671   }
6672 
6673   if (isa<CallExpr>(Init))
6674     return visitLifetimeBoundArguments(Path, Init, Visit);
6675 
6676   switch (Init->getStmtClass()) {
6677   case Stmt::DeclRefExprClass: {
6678     // If we find the name of a local non-reference parameter, we could have a
6679     // lifetime problem.
6680     auto *DRE = cast<DeclRefExpr>(Init);
6681     auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
6682     if (VD && VD->hasLocalStorage() &&
6683         !DRE->refersToEnclosingVariableOrCapture()) {
6684       if (!VD->getType()->isReferenceType()) {
6685         Visit(Path, Local(DRE), RK);
6686       } else if (isa<ParmVarDecl>(DRE->getDecl())) {
6687         // The lifetime of a reference parameter is unknown; assume it's OK
6688         // for now.
6689         break;
6690       } else if (VD->getInit() && !isVarOnPath(Path, VD)) {
6691         Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
6692         visitLocalsRetainedByReferenceBinding(Path, VD->getInit(),
6693                                               RK_ReferenceBinding, Visit);
6694       }
6695     }
6696     break;
6697   }
6698 
6699   case Stmt::UnaryOperatorClass: {
6700     // The only unary operator that make sense to handle here
6701     // is Deref.  All others don't resolve to a "name."  This includes
6702     // handling all sorts of rvalues passed to a unary operator.
6703     const UnaryOperator *U = cast<UnaryOperator>(Init);
6704     if (U->getOpcode() == UO_Deref)
6705       visitLocalsRetainedByInitializer(Path, U->getSubExpr(), Visit, true);
6706     break;
6707   }
6708 
6709   case Stmt::OMPArraySectionExprClass: {
6710     visitLocalsRetainedByInitializer(
6711         Path, cast<OMPArraySectionExpr>(Init)->getBase(), Visit, true);
6712     break;
6713   }
6714 
6715   case Stmt::ConditionalOperatorClass:
6716   case Stmt::BinaryConditionalOperatorClass: {
6717     auto *C = cast<AbstractConditionalOperator>(Init);
6718     if (!C->getTrueExpr()->getType()->isVoidType())
6719       visitLocalsRetainedByReferenceBinding(Path, C->getTrueExpr(), RK, Visit);
6720     if (!C->getFalseExpr()->getType()->isVoidType())
6721       visitLocalsRetainedByReferenceBinding(Path, C->getFalseExpr(), RK, Visit);
6722     break;
6723   }
6724 
6725   // FIXME: Visit the left-hand side of an -> or ->*.
6726 
6727   default:
6728     break;
6729   }
6730 }
6731 
6732 /// Visit the locals that would be reachable through an object initialized by
6733 /// the prvalue expression \c Init.
6734 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
6735                                              Expr *Init, LocalVisitor Visit,
6736                                              bool RevisitSubinits) {
6737   RevertToOldSizeRAII RAII(Path);
6738 
6739   Expr *Old;
6740   do {
6741     Old = Init;
6742 
6743     // Step into CXXDefaultInitExprs so we can diagnose cases where a
6744     // constructor inherits one as an implicit mem-initializer.
6745     if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
6746       Path.push_back({IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
6747       Init = DIE->getExpr();
6748     }
6749 
6750     if (auto *FE = dyn_cast<FullExpr>(Init))
6751       Init = FE->getSubExpr();
6752 
6753     // Dig out the expression which constructs the extended temporary.
6754     Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
6755 
6756     if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init))
6757       Init = BTE->getSubExpr();
6758 
6759     Init = Init->IgnoreParens();
6760 
6761     // Step over value-preserving rvalue casts.
6762     if (auto *CE = dyn_cast<CastExpr>(Init)) {
6763       switch (CE->getCastKind()) {
6764       case CK_LValueToRValue:
6765         // If we can match the lvalue to a const object, we can look at its
6766         // initializer.
6767         Path.push_back({IndirectLocalPathEntry::LValToRVal, CE});
6768         return visitLocalsRetainedByReferenceBinding(
6769             Path, Init, RK_ReferenceBinding,
6770             [&](IndirectLocalPath &Path, Local L, ReferenceKind RK) -> bool {
6771           if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
6772             auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
6773             if (VD && VD->getType().isConstQualified() && VD->getInit() &&
6774                 !isVarOnPath(Path, VD)) {
6775               Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
6776               visitLocalsRetainedByInitializer(Path, VD->getInit(), Visit, true);
6777             }
6778           } else if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L)) {
6779             if (MTE->getType().isConstQualified())
6780               visitLocalsRetainedByInitializer(Path, MTE->GetTemporaryExpr(),
6781                                                Visit, true);
6782           }
6783           return false;
6784         });
6785 
6786         // We assume that objects can be retained by pointers cast to integers,
6787         // but not if the integer is cast to floating-point type or to _Complex.
6788         // We assume that casts to 'bool' do not preserve enough information to
6789         // retain a local object.
6790       case CK_NoOp:
6791       case CK_BitCast:
6792       case CK_BaseToDerived:
6793       case CK_DerivedToBase:
6794       case CK_UncheckedDerivedToBase:
6795       case CK_Dynamic:
6796       case CK_ToUnion:
6797       case CK_UserDefinedConversion:
6798       case CK_ConstructorConversion:
6799       case CK_IntegralToPointer:
6800       case CK_PointerToIntegral:
6801       case CK_VectorSplat:
6802       case CK_IntegralCast:
6803       case CK_CPointerToObjCPointerCast:
6804       case CK_BlockPointerToObjCPointerCast:
6805       case CK_AnyPointerToBlockPointerCast:
6806       case CK_AddressSpaceConversion:
6807         break;
6808 
6809       case CK_ArrayToPointerDecay:
6810         // Model array-to-pointer decay as taking the address of the array
6811         // lvalue.
6812         Path.push_back({IndirectLocalPathEntry::AddressOf, CE});
6813         return visitLocalsRetainedByReferenceBinding(Path, CE->getSubExpr(),
6814                                                      RK_ReferenceBinding, Visit);
6815 
6816       default:
6817         return;
6818       }
6819 
6820       Init = CE->getSubExpr();
6821     }
6822   } while (Old != Init);
6823 
6824   // C++17 [dcl.init.list]p6:
6825   //   initializing an initializer_list object from the array extends the
6826   //   lifetime of the array exactly like binding a reference to a temporary.
6827   if (auto *ILE = dyn_cast<CXXStdInitializerListExpr>(Init))
6828     return visitLocalsRetainedByReferenceBinding(Path, ILE->getSubExpr(),
6829                                                  RK_StdInitializerList, Visit);
6830 
6831   if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
6832     // We already visited the elements of this initializer list while
6833     // performing the initialization. Don't visit them again unless we've
6834     // changed the lifetime of the initialized entity.
6835     if (!RevisitSubinits)
6836       return;
6837 
6838     if (ILE->isTransparent())
6839       return visitLocalsRetainedByInitializer(Path, ILE->getInit(0), Visit,
6840                                               RevisitSubinits);
6841 
6842     if (ILE->getType()->isArrayType()) {
6843       for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I)
6844         visitLocalsRetainedByInitializer(Path, ILE->getInit(I), Visit,
6845                                          RevisitSubinits);
6846       return;
6847     }
6848 
6849     if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) {
6850       assert(RD->isAggregate() && "aggregate init on non-aggregate");
6851 
6852       // If we lifetime-extend a braced initializer which is initializing an
6853       // aggregate, and that aggregate contains reference members which are
6854       // bound to temporaries, those temporaries are also lifetime-extended.
6855       if (RD->isUnion() && ILE->getInitializedFieldInUnion() &&
6856           ILE->getInitializedFieldInUnion()->getType()->isReferenceType())
6857         visitLocalsRetainedByReferenceBinding(Path, ILE->getInit(0),
6858                                               RK_ReferenceBinding, Visit);
6859       else {
6860         unsigned Index = 0;
6861         for (; Index < RD->getNumBases() && Index < ILE->getNumInits(); ++Index)
6862           visitLocalsRetainedByInitializer(Path, ILE->getInit(Index), Visit,
6863                                            RevisitSubinits);
6864         for (const auto *I : RD->fields()) {
6865           if (Index >= ILE->getNumInits())
6866             break;
6867           if (I->isUnnamedBitfield())
6868             continue;
6869           Expr *SubInit = ILE->getInit(Index);
6870           if (I->getType()->isReferenceType())
6871             visitLocalsRetainedByReferenceBinding(Path, SubInit,
6872                                                   RK_ReferenceBinding, Visit);
6873           else
6874             // This might be either aggregate-initialization of a member or
6875             // initialization of a std::initializer_list object. Regardless,
6876             // we should recursively lifetime-extend that initializer.
6877             visitLocalsRetainedByInitializer(Path, SubInit, Visit,
6878                                              RevisitSubinits);
6879           ++Index;
6880         }
6881       }
6882     }
6883     return;
6884   }
6885 
6886   // The lifetime of an init-capture is that of the closure object constructed
6887   // by a lambda-expression.
6888   if (auto *LE = dyn_cast<LambdaExpr>(Init)) {
6889     for (Expr *E : LE->capture_inits()) {
6890       if (!E)
6891         continue;
6892       if (E->isGLValue())
6893         visitLocalsRetainedByReferenceBinding(Path, E, RK_ReferenceBinding,
6894                                               Visit);
6895       else
6896         visitLocalsRetainedByInitializer(Path, E, Visit, true);
6897     }
6898   }
6899 
6900   if (isa<CallExpr>(Init) || isa<CXXConstructExpr>(Init))
6901     return visitLifetimeBoundArguments(Path, Init, Visit);
6902 
6903   switch (Init->getStmtClass()) {
6904   case Stmt::UnaryOperatorClass: {
6905     auto *UO = cast<UnaryOperator>(Init);
6906     // If the initializer is the address of a local, we could have a lifetime
6907     // problem.
6908     if (UO->getOpcode() == UO_AddrOf) {
6909       // If this is &rvalue, then it's ill-formed and we have already diagnosed
6910       // it. Don't produce a redundant warning about the lifetime of the
6911       // temporary.
6912       if (isa<MaterializeTemporaryExpr>(UO->getSubExpr()))
6913         return;
6914 
6915       Path.push_back({IndirectLocalPathEntry::AddressOf, UO});
6916       visitLocalsRetainedByReferenceBinding(Path, UO->getSubExpr(),
6917                                             RK_ReferenceBinding, Visit);
6918     }
6919     break;
6920   }
6921 
6922   case Stmt::BinaryOperatorClass: {
6923     // Handle pointer arithmetic.
6924     auto *BO = cast<BinaryOperator>(Init);
6925     BinaryOperatorKind BOK = BO->getOpcode();
6926     if (!BO->getType()->isPointerType() || (BOK != BO_Add && BOK != BO_Sub))
6927       break;
6928 
6929     if (BO->getLHS()->getType()->isPointerType())
6930       visitLocalsRetainedByInitializer(Path, BO->getLHS(), Visit, true);
6931     else if (BO->getRHS()->getType()->isPointerType())
6932       visitLocalsRetainedByInitializer(Path, BO->getRHS(), Visit, true);
6933     break;
6934   }
6935 
6936   case Stmt::ConditionalOperatorClass:
6937   case Stmt::BinaryConditionalOperatorClass: {
6938     auto *C = cast<AbstractConditionalOperator>(Init);
6939     // In C++, we can have a throw-expression operand, which has 'void' type
6940     // and isn't interesting from a lifetime perspective.
6941     if (!C->getTrueExpr()->getType()->isVoidType())
6942       visitLocalsRetainedByInitializer(Path, C->getTrueExpr(), Visit, true);
6943     if (!C->getFalseExpr()->getType()->isVoidType())
6944       visitLocalsRetainedByInitializer(Path, C->getFalseExpr(), Visit, true);
6945     break;
6946   }
6947 
6948   case Stmt::BlockExprClass:
6949     if (cast<BlockExpr>(Init)->getBlockDecl()->hasCaptures()) {
6950       // This is a local block, whose lifetime is that of the function.
6951       Visit(Path, Local(cast<BlockExpr>(Init)), RK_ReferenceBinding);
6952     }
6953     break;
6954 
6955   case Stmt::AddrLabelExprClass:
6956     // We want to warn if the address of a label would escape the function.
6957     Visit(Path, Local(cast<AddrLabelExpr>(Init)), RK_ReferenceBinding);
6958     break;
6959 
6960   default:
6961     break;
6962   }
6963 }
6964 
6965 /// Determine whether this is an indirect path to a temporary that we are
6966 /// supposed to lifetime-extend along (but don't).
6967 static bool shouldLifetimeExtendThroughPath(const IndirectLocalPath &Path) {
6968   for (auto Elem : Path) {
6969     if (Elem.Kind != IndirectLocalPathEntry::DefaultInit)
6970       return false;
6971   }
6972   return true;
6973 }
6974 
6975 /// Find the range for the first interesting entry in the path at or after I.
6976 static SourceRange nextPathEntryRange(const IndirectLocalPath &Path, unsigned I,
6977                                       Expr *E) {
6978   for (unsigned N = Path.size(); I != N; ++I) {
6979     switch (Path[I].Kind) {
6980     case IndirectLocalPathEntry::AddressOf:
6981     case IndirectLocalPathEntry::LValToRVal:
6982     case IndirectLocalPathEntry::LifetimeBoundCall:
6983       // These exist primarily to mark the path as not permitting or
6984       // supporting lifetime extension.
6985       break;
6986 
6987     case IndirectLocalPathEntry::DefaultInit:
6988     case IndirectLocalPathEntry::VarInit:
6989       return Path[I].E->getSourceRange();
6990     }
6991   }
6992   return E->getSourceRange();
6993 }
6994 
6995 void Sema::checkInitializerLifetime(const InitializedEntity &Entity,
6996                                     Expr *Init) {
6997   LifetimeResult LR = getEntityLifetime(&Entity);
6998   LifetimeKind LK = LR.getInt();
6999   const InitializedEntity *ExtendingEntity = LR.getPointer();
7000 
7001   // If this entity doesn't have an interesting lifetime, don't bother looking
7002   // for temporaries within its initializer.
7003   if (LK == LK_FullExpression)
7004     return;
7005 
7006   auto TemporaryVisitor = [&](IndirectLocalPath &Path, Local L,
7007                               ReferenceKind RK) -> bool {
7008     SourceRange DiagRange = nextPathEntryRange(Path, 0, L);
7009     SourceLocation DiagLoc = DiagRange.getBegin();
7010 
7011     switch (LK) {
7012     case LK_FullExpression:
7013       llvm_unreachable("already handled this");
7014 
7015     case LK_Extended: {
7016       auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L);
7017       if (!MTE) {
7018         // The initialized entity has lifetime beyond the full-expression,
7019         // and the local entity does too, so don't warn.
7020         //
7021         // FIXME: We should consider warning if a static / thread storage
7022         // duration variable retains an automatic storage duration local.
7023         return false;
7024       }
7025 
7026       // Lifetime-extend the temporary.
7027       if (Path.empty()) {
7028         // Update the storage duration of the materialized temporary.
7029         // FIXME: Rebuild the expression instead of mutating it.
7030         MTE->setExtendingDecl(ExtendingEntity->getDecl(),
7031                               ExtendingEntity->allocateManglingNumber());
7032         // Also visit the temporaries lifetime-extended by this initializer.
7033         return true;
7034       }
7035 
7036       if (shouldLifetimeExtendThroughPath(Path)) {
7037         // We're supposed to lifetime-extend the temporary along this path (per
7038         // the resolution of DR1815), but we don't support that yet.
7039         //
7040         // FIXME: Properly handle this situation. Perhaps the easiest approach
7041         // would be to clone the initializer expression on each use that would
7042         // lifetime extend its temporaries.
7043         Diag(DiagLoc, diag::warn_unsupported_lifetime_extension)
7044             << RK << DiagRange;
7045       } else {
7046         // If the path goes through the initialization of a variable or field,
7047         // it can't possibly reach a temporary created in this full-expression.
7048         // We will have already diagnosed any problems with the initializer.
7049         if (pathContainsInit(Path))
7050           return false;
7051 
7052         Diag(DiagLoc, diag::warn_dangling_variable)
7053             << RK << !Entity.getParent()
7054             << ExtendingEntity->getDecl()->isImplicit()
7055             << ExtendingEntity->getDecl() << Init->isGLValue() << DiagRange;
7056       }
7057       break;
7058     }
7059 
7060     case LK_MemInitializer: {
7061       if (isa<MaterializeTemporaryExpr>(L)) {
7062         // Under C++ DR1696, if a mem-initializer (or a default member
7063         // initializer used by the absence of one) would lifetime-extend a
7064         // temporary, the program is ill-formed.
7065         if (auto *ExtendingDecl =
7066                 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
7067           bool IsSubobjectMember = ExtendingEntity != &Entity;
7068           Diag(DiagLoc, shouldLifetimeExtendThroughPath(Path)
7069                             ? diag::err_dangling_member
7070                             : diag::warn_dangling_member)
7071               << ExtendingDecl << IsSubobjectMember << RK << DiagRange;
7072           // Don't bother adding a note pointing to the field if we're inside
7073           // its default member initializer; our primary diagnostic points to
7074           // the same place in that case.
7075           if (Path.empty() ||
7076               Path.back().Kind != IndirectLocalPathEntry::DefaultInit) {
7077             Diag(ExtendingDecl->getLocation(),
7078                  diag::note_lifetime_extending_member_declared_here)
7079                 << RK << IsSubobjectMember;
7080           }
7081         } else {
7082           // We have a mem-initializer but no particular field within it; this
7083           // is either a base class or a delegating initializer directly
7084           // initializing the base-class from something that doesn't live long
7085           // enough.
7086           //
7087           // FIXME: Warn on this.
7088           return false;
7089         }
7090       } else {
7091         // Paths via a default initializer can only occur during error recovery
7092         // (there's no other way that a default initializer can refer to a
7093         // local). Don't produce a bogus warning on those cases.
7094         if (pathContainsInit(Path))
7095           return false;
7096 
7097         auto *DRE = dyn_cast<DeclRefExpr>(L);
7098         auto *VD = DRE ? dyn_cast<VarDecl>(DRE->getDecl()) : nullptr;
7099         if (!VD) {
7100           // A member was initialized to a local block.
7101           // FIXME: Warn on this.
7102           return false;
7103         }
7104 
7105         if (auto *Member =
7106                 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
7107           bool IsPointer = Member->getType()->isAnyPointerType();
7108           Diag(DiagLoc, IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
7109                                   : diag::warn_bind_ref_member_to_parameter)
7110               << Member << VD << isa<ParmVarDecl>(VD) << DiagRange;
7111           Diag(Member->getLocation(),
7112                diag::note_ref_or_ptr_member_declared_here)
7113               << (unsigned)IsPointer;
7114         }
7115       }
7116       break;
7117     }
7118 
7119     case LK_New:
7120       if (isa<MaterializeTemporaryExpr>(L)) {
7121         Diag(DiagLoc, RK == RK_ReferenceBinding
7122                           ? diag::warn_new_dangling_reference
7123                           : diag::warn_new_dangling_initializer_list)
7124             << !Entity.getParent() << DiagRange;
7125       } else {
7126         // We can't determine if the allocation outlives the local declaration.
7127         return false;
7128       }
7129       break;
7130 
7131     case LK_Return:
7132     case LK_StmtExprResult:
7133       if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
7134         // We can't determine if the local variable outlives the statement
7135         // expression.
7136         if (LK == LK_StmtExprResult)
7137           return false;
7138         Diag(DiagLoc, diag::warn_ret_stack_addr_ref)
7139             << Entity.getType()->isReferenceType() << DRE->getDecl()
7140             << isa<ParmVarDecl>(DRE->getDecl()) << DiagRange;
7141       } else if (isa<BlockExpr>(L)) {
7142         Diag(DiagLoc, diag::err_ret_local_block) << DiagRange;
7143       } else if (isa<AddrLabelExpr>(L)) {
7144         // Don't warn when returning a label from a statement expression.
7145         // Leaving the scope doesn't end its lifetime.
7146         if (LK == LK_StmtExprResult)
7147           return false;
7148         Diag(DiagLoc, diag::warn_ret_addr_label) << DiagRange;
7149       } else {
7150         Diag(DiagLoc, diag::warn_ret_local_temp_addr_ref)
7151          << Entity.getType()->isReferenceType() << DiagRange;
7152       }
7153       break;
7154     }
7155 
7156     for (unsigned I = 0; I != Path.size(); ++I) {
7157       auto Elem = Path[I];
7158 
7159       switch (Elem.Kind) {
7160       case IndirectLocalPathEntry::AddressOf:
7161       case IndirectLocalPathEntry::LValToRVal:
7162         // These exist primarily to mark the path as not permitting or
7163         // supporting lifetime extension.
7164         break;
7165 
7166       case IndirectLocalPathEntry::LifetimeBoundCall:
7167         // FIXME: Consider adding a note for this.
7168         break;
7169 
7170       case IndirectLocalPathEntry::DefaultInit: {
7171         auto *FD = cast<FieldDecl>(Elem.D);
7172         Diag(FD->getLocation(), diag::note_init_with_default_member_initalizer)
7173             << FD << nextPathEntryRange(Path, I + 1, L);
7174         break;
7175       }
7176 
7177       case IndirectLocalPathEntry::VarInit:
7178         const VarDecl *VD = cast<VarDecl>(Elem.D);
7179         Diag(VD->getLocation(), diag::note_local_var_initializer)
7180             << VD->getType()->isReferenceType()
7181             << VD->isImplicit() << VD->getDeclName()
7182             << nextPathEntryRange(Path, I + 1, L);
7183         break;
7184       }
7185     }
7186 
7187     // We didn't lifetime-extend, so don't go any further; we don't need more
7188     // warnings or errors on inner temporaries within this one's initializer.
7189     return false;
7190   };
7191 
7192   llvm::SmallVector<IndirectLocalPathEntry, 8> Path;
7193   if (Init->isGLValue())
7194     visitLocalsRetainedByReferenceBinding(Path, Init, RK_ReferenceBinding,
7195                                           TemporaryVisitor);
7196   else
7197     visitLocalsRetainedByInitializer(Path, Init, TemporaryVisitor, false);
7198 }
7199 
7200 static void DiagnoseNarrowingInInitList(Sema &S,
7201                                         const ImplicitConversionSequence &ICS,
7202                                         QualType PreNarrowingType,
7203                                         QualType EntityType,
7204                                         const Expr *PostInit);
7205 
7206 /// Provide warnings when std::move is used on construction.
7207 static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr,
7208                                     bool IsReturnStmt) {
7209   if (!InitExpr)
7210     return;
7211 
7212   if (S.inTemplateInstantiation())
7213     return;
7214 
7215   QualType DestType = InitExpr->getType();
7216   if (!DestType->isRecordType())
7217     return;
7218 
7219   unsigned DiagID = 0;
7220   if (IsReturnStmt) {
7221     const CXXConstructExpr *CCE =
7222         dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens());
7223     if (!CCE || CCE->getNumArgs() != 1)
7224       return;
7225 
7226     if (!CCE->getConstructor()->isCopyOrMoveConstructor())
7227       return;
7228 
7229     InitExpr = CCE->getArg(0)->IgnoreImpCasts();
7230   }
7231 
7232   // Find the std::move call and get the argument.
7233   const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens());
7234   if (!CE || !CE->isCallToStdMove())
7235     return;
7236 
7237   const Expr *Arg = CE->getArg(0)->IgnoreImplicit();
7238 
7239   if (IsReturnStmt) {
7240     const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts());
7241     if (!DRE || DRE->refersToEnclosingVariableOrCapture())
7242       return;
7243 
7244     const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
7245     if (!VD || !VD->hasLocalStorage())
7246       return;
7247 
7248     // __block variables are not moved implicitly.
7249     if (VD->hasAttr<BlocksAttr>())
7250       return;
7251 
7252     QualType SourceType = VD->getType();
7253     if (!SourceType->isRecordType())
7254       return;
7255 
7256     if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) {
7257       return;
7258     }
7259 
7260     // If we're returning a function parameter, copy elision
7261     // is not possible.
7262     if (isa<ParmVarDecl>(VD))
7263       DiagID = diag::warn_redundant_move_on_return;
7264     else
7265       DiagID = diag::warn_pessimizing_move_on_return;
7266   } else {
7267     DiagID = diag::warn_pessimizing_move_on_initialization;
7268     const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens();
7269     if (!ArgStripped->isRValue() || !ArgStripped->getType()->isRecordType())
7270       return;
7271   }
7272 
7273   S.Diag(CE->getBeginLoc(), DiagID);
7274 
7275   // Get all the locations for a fix-it.  Don't emit the fix-it if any location
7276   // is within a macro.
7277   SourceLocation CallBegin = CE->getCallee()->getBeginLoc();
7278   if (CallBegin.isMacroID())
7279     return;
7280   SourceLocation RParen = CE->getRParenLoc();
7281   if (RParen.isMacroID())
7282     return;
7283   SourceLocation LParen;
7284   SourceLocation ArgLoc = Arg->getBeginLoc();
7285 
7286   // Special testing for the argument location.  Since the fix-it needs the
7287   // location right before the argument, the argument location can be in a
7288   // macro only if it is at the beginning of the macro.
7289   while (ArgLoc.isMacroID() &&
7290          S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) {
7291     ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).getBegin();
7292   }
7293 
7294   if (LParen.isMacroID())
7295     return;
7296 
7297   LParen = ArgLoc.getLocWithOffset(-1);
7298 
7299   S.Diag(CE->getBeginLoc(), diag::note_remove_move)
7300       << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen))
7301       << FixItHint::CreateRemoval(SourceRange(RParen, RParen));
7302 }
7303 
7304 static void CheckForNullPointerDereference(Sema &S, const Expr *E) {
7305   // Check to see if we are dereferencing a null pointer.  If so, this is
7306   // undefined behavior, so warn about it.  This only handles the pattern
7307   // "*null", which is a very syntactic check.
7308   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
7309     if (UO->getOpcode() == UO_Deref &&
7310         UO->getSubExpr()->IgnoreParenCasts()->
7311         isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) {
7312     S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
7313                           S.PDiag(diag::warn_binding_null_to_reference)
7314                             << UO->getSubExpr()->getSourceRange());
7315   }
7316 }
7317 
7318 MaterializeTemporaryExpr *
7319 Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary,
7320                                      bool BoundToLvalueReference) {
7321   auto MTE = new (Context)
7322       MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference);
7323 
7324   // Order an ExprWithCleanups for lifetime marks.
7325   //
7326   // TODO: It'll be good to have a single place to check the access of the
7327   // destructor and generate ExprWithCleanups for various uses. Currently these
7328   // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary,
7329   // but there may be a chance to merge them.
7330   Cleanup.setExprNeedsCleanups(false);
7331   return MTE;
7332 }
7333 
7334 ExprResult Sema::TemporaryMaterializationConversion(Expr *E) {
7335   // In C++98, we don't want to implicitly create an xvalue.
7336   // FIXME: This means that AST consumers need to deal with "prvalues" that
7337   // denote materialized temporaries. Maybe we should add another ValueKind
7338   // for "xvalue pretending to be a prvalue" for C++98 support.
7339   if (!E->isRValue() || !getLangOpts().CPlusPlus11)
7340     return E;
7341 
7342   // C++1z [conv.rval]/1: T shall be a complete type.
7343   // FIXME: Does this ever matter (can we form a prvalue of incomplete type)?
7344   // If so, we should check for a non-abstract class type here too.
7345   QualType T = E->getType();
7346   if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type))
7347     return ExprError();
7348 
7349   return CreateMaterializeTemporaryExpr(E->getType(), E, false);
7350 }
7351 
7352 ExprResult Sema::PerformQualificationConversion(Expr *E, QualType Ty,
7353                                                 ExprValueKind VK,
7354                                                 CheckedConversionKind CCK) {
7355 
7356   CastKind CK = CK_NoOp;
7357 
7358   if (VK == VK_RValue) {
7359     auto PointeeTy = Ty->getPointeeType();
7360     auto ExprPointeeTy = E->getType()->getPointeeType();
7361     if (!PointeeTy.isNull() &&
7362         PointeeTy.getAddressSpace() != ExprPointeeTy.getAddressSpace())
7363       CK = CK_AddressSpaceConversion;
7364   } else if (Ty.getAddressSpace() != E->getType().getAddressSpace()) {
7365     CK = CK_AddressSpaceConversion;
7366   }
7367 
7368   return ImpCastExprToType(E, Ty, CK, VK, /*BasePath=*/nullptr, CCK);
7369 }
7370 
7371 ExprResult InitializationSequence::Perform(Sema &S,
7372                                            const InitializedEntity &Entity,
7373                                            const InitializationKind &Kind,
7374                                            MultiExprArg Args,
7375                                            QualType *ResultType) {
7376   if (Failed()) {
7377     Diagnose(S, Entity, Kind, Args);
7378     return ExprError();
7379   }
7380   if (!ZeroInitializationFixit.empty()) {
7381     unsigned DiagID = diag::err_default_init_const;
7382     if (Decl *D = Entity.getDecl())
7383       if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>())
7384         DiagID = diag::ext_default_init_const;
7385 
7386     // The initialization would have succeeded with this fixit. Since the fixit
7387     // is on the error, we need to build a valid AST in this case, so this isn't
7388     // handled in the Failed() branch above.
7389     QualType DestType = Entity.getType();
7390     S.Diag(Kind.getLocation(), DiagID)
7391         << DestType << (bool)DestType->getAs<RecordType>()
7392         << FixItHint::CreateInsertion(ZeroInitializationFixitLoc,
7393                                       ZeroInitializationFixit);
7394   }
7395 
7396   if (getKind() == DependentSequence) {
7397     // If the declaration is a non-dependent, incomplete array type
7398     // that has an initializer, then its type will be completed once
7399     // the initializer is instantiated.
7400     if (ResultType && !Entity.getType()->isDependentType() &&
7401         Args.size() == 1) {
7402       QualType DeclType = Entity.getType();
7403       if (const IncompleteArrayType *ArrayT
7404                            = S.Context.getAsIncompleteArrayType(DeclType)) {
7405         // FIXME: We don't currently have the ability to accurately
7406         // compute the length of an initializer list without
7407         // performing full type-checking of the initializer list
7408         // (since we have to determine where braces are implicitly
7409         // introduced and such).  So, we fall back to making the array
7410         // type a dependently-sized array type with no specified
7411         // bound.
7412         if (isa<InitListExpr>((Expr *)Args[0])) {
7413           SourceRange Brackets;
7414 
7415           // Scavange the location of the brackets from the entity, if we can.
7416           if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Entity.getDecl())) {
7417             if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
7418               TypeLoc TL = TInfo->getTypeLoc();
7419               if (IncompleteArrayTypeLoc ArrayLoc =
7420                       TL.getAs<IncompleteArrayTypeLoc>())
7421                 Brackets = ArrayLoc.getBracketsRange();
7422             }
7423           }
7424 
7425           *ResultType
7426             = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
7427                                                    /*NumElts=*/nullptr,
7428                                                    ArrayT->getSizeModifier(),
7429                                        ArrayT->getIndexTypeCVRQualifiers(),
7430                                                    Brackets);
7431         }
7432 
7433       }
7434     }
7435     if (Kind.getKind() == InitializationKind::IK_Direct &&
7436         !Kind.isExplicitCast()) {
7437       // Rebuild the ParenListExpr.
7438       SourceRange ParenRange = Kind.getParenOrBraceRange();
7439       return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
7440                                   Args);
7441     }
7442     assert(Kind.getKind() == InitializationKind::IK_Copy ||
7443            Kind.isExplicitCast() ||
7444            Kind.getKind() == InitializationKind::IK_DirectList);
7445     return ExprResult(Args[0]);
7446   }
7447 
7448   // No steps means no initialization.
7449   if (Steps.empty())
7450     return ExprResult((Expr *)nullptr);
7451 
7452   if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
7453       Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
7454       !Entity.isParameterKind()) {
7455     // Produce a C++98 compatibility warning if we are initializing a reference
7456     // from an initializer list. For parameters, we produce a better warning
7457     // elsewhere.
7458     Expr *Init = Args[0];
7459     S.Diag(Init->getBeginLoc(), diag::warn_cxx98_compat_reference_list_init)
7460         << Init->getSourceRange();
7461   }
7462 
7463   // OpenCL v2.0 s6.13.11.1. atomic variables can be initialized in global scope
7464   QualType ETy = Entity.getType();
7465   Qualifiers TyQualifiers = ETy.getQualifiers();
7466   bool HasGlobalAS = TyQualifiers.hasAddressSpace() &&
7467                      TyQualifiers.getAddressSpace() == LangAS::opencl_global;
7468 
7469   if (S.getLangOpts().OpenCLVersion >= 200 &&
7470       ETy->isAtomicType() && !HasGlobalAS &&
7471       Entity.getKind() == InitializedEntity::EK_Variable && Args.size() > 0) {
7472     S.Diag(Args[0]->getBeginLoc(), diag::err_opencl_atomic_init)
7473         << 1
7474         << SourceRange(Entity.getDecl()->getBeginLoc(), Args[0]->getEndLoc());
7475     return ExprError();
7476   }
7477 
7478   QualType DestType = Entity.getType().getNonReferenceType();
7479   // FIXME: Ugly hack around the fact that Entity.getType() is not
7480   // the same as Entity.getDecl()->getType() in cases involving type merging,
7481   //  and we want latter when it makes sense.
7482   if (ResultType)
7483     *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
7484                                      Entity.getType();
7485 
7486   ExprResult CurInit((Expr *)nullptr);
7487   SmallVector<Expr*, 4> ArrayLoopCommonExprs;
7488 
7489   // For initialization steps that start with a single initializer,
7490   // grab the only argument out the Args and place it into the "current"
7491   // initializer.
7492   switch (Steps.front().Kind) {
7493   case SK_ResolveAddressOfOverloadedFunction:
7494   case SK_CastDerivedToBaseRValue:
7495   case SK_CastDerivedToBaseXValue:
7496   case SK_CastDerivedToBaseLValue:
7497   case SK_BindReference:
7498   case SK_BindReferenceToTemporary:
7499   case SK_FinalCopy:
7500   case SK_ExtraneousCopyToTemporary:
7501   case SK_UserConversion:
7502   case SK_QualificationConversionLValue:
7503   case SK_QualificationConversionXValue:
7504   case SK_QualificationConversionRValue:
7505   case SK_AtomicConversion:
7506   case SK_ConversionSequence:
7507   case SK_ConversionSequenceNoNarrowing:
7508   case SK_ListInitialization:
7509   case SK_UnwrapInitList:
7510   case SK_RewrapInitList:
7511   case SK_CAssignment:
7512   case SK_StringInit:
7513   case SK_ObjCObjectConversion:
7514   case SK_ArrayLoopIndex:
7515   case SK_ArrayLoopInit:
7516   case SK_ArrayInit:
7517   case SK_GNUArrayInit:
7518   case SK_ParenthesizedArrayInit:
7519   case SK_PassByIndirectCopyRestore:
7520   case SK_PassByIndirectRestore:
7521   case SK_ProduceObjCObject:
7522   case SK_StdInitializerList:
7523   case SK_OCLSamplerInit:
7524   case SK_OCLZeroOpaqueType: {
7525     assert(Args.size() == 1);
7526     CurInit = Args[0];
7527     if (!CurInit.get()) return ExprError();
7528     break;
7529   }
7530 
7531   case SK_ConstructorInitialization:
7532   case SK_ConstructorInitializationFromList:
7533   case SK_StdInitializerListConstructorCall:
7534   case SK_ZeroInitialization:
7535     break;
7536   }
7537 
7538   // Promote from an unevaluated context to an unevaluated list context in
7539   // C++11 list-initialization; we need to instantiate entities usable in
7540   // constant expressions here in order to perform narrowing checks =(
7541   EnterExpressionEvaluationContext Evaluated(
7542       S, EnterExpressionEvaluationContext::InitList,
7543       CurInit.get() && isa<InitListExpr>(CurInit.get()));
7544 
7545   // C++ [class.abstract]p2:
7546   //   no objects of an abstract class can be created except as subobjects
7547   //   of a class derived from it
7548   auto checkAbstractType = [&](QualType T) -> bool {
7549     if (Entity.getKind() == InitializedEntity::EK_Base ||
7550         Entity.getKind() == InitializedEntity::EK_Delegating)
7551       return false;
7552     return S.RequireNonAbstractType(Kind.getLocation(), T,
7553                                     diag::err_allocation_of_abstract_type);
7554   };
7555 
7556   // Walk through the computed steps for the initialization sequence,
7557   // performing the specified conversions along the way.
7558   bool ConstructorInitRequiresZeroInit = false;
7559   for (step_iterator Step = step_begin(), StepEnd = step_end();
7560        Step != StepEnd; ++Step) {
7561     if (CurInit.isInvalid())
7562       return ExprError();
7563 
7564     QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
7565 
7566     switch (Step->Kind) {
7567     case SK_ResolveAddressOfOverloadedFunction:
7568       // Overload resolution determined which function invoke; update the
7569       // initializer to reflect that choice.
7570       S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
7571       if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()))
7572         return ExprError();
7573       CurInit = S.FixOverloadedFunctionReference(CurInit,
7574                                                  Step->Function.FoundDecl,
7575                                                  Step->Function.Function);
7576       break;
7577 
7578     case SK_CastDerivedToBaseRValue:
7579     case SK_CastDerivedToBaseXValue:
7580     case SK_CastDerivedToBaseLValue: {
7581       // We have a derived-to-base cast that produces either an rvalue or an
7582       // lvalue. Perform that cast.
7583 
7584       CXXCastPath BasePath;
7585 
7586       // Casts to inaccessible base classes are allowed with C-style casts.
7587       bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
7588       if (S.CheckDerivedToBaseConversion(
7589               SourceType, Step->Type, CurInit.get()->getBeginLoc(),
7590               CurInit.get()->getSourceRange(), &BasePath, IgnoreBaseAccess))
7591         return ExprError();
7592 
7593       ExprValueKind VK =
7594           Step->Kind == SK_CastDerivedToBaseLValue ?
7595               VK_LValue :
7596               (Step->Kind == SK_CastDerivedToBaseXValue ?
7597                    VK_XValue :
7598                    VK_RValue);
7599       CurInit =
7600           ImplicitCastExpr::Create(S.Context, Step->Type, CK_DerivedToBase,
7601                                    CurInit.get(), &BasePath, VK);
7602       break;
7603     }
7604 
7605     case SK_BindReference:
7606       // Reference binding does not have any corresponding ASTs.
7607 
7608       // Check exception specifications
7609       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
7610         return ExprError();
7611 
7612       // We don't check for e.g. function pointers here, since address
7613       // availability checks should only occur when the function first decays
7614       // into a pointer or reference.
7615       if (CurInit.get()->getType()->isFunctionProtoType()) {
7616         if (auto *DRE = dyn_cast<DeclRefExpr>(CurInit.get()->IgnoreParens())) {
7617           if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
7618             if (!S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
7619                                                      DRE->getBeginLoc()))
7620               return ExprError();
7621           }
7622         }
7623       }
7624 
7625       CheckForNullPointerDereference(S, CurInit.get());
7626       break;
7627 
7628     case SK_BindReferenceToTemporary: {
7629       // Make sure the "temporary" is actually an rvalue.
7630       assert(CurInit.get()->isRValue() && "not a temporary");
7631 
7632       // Check exception specifications
7633       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
7634         return ExprError();
7635 
7636       // Materialize the temporary into memory.
7637       MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
7638           Step->Type, CurInit.get(), Entity.getType()->isLValueReferenceType());
7639       CurInit = MTE;
7640 
7641       // If we're extending this temporary to automatic storage duration -- we
7642       // need to register its cleanup during the full-expression's cleanups.
7643       if (MTE->getStorageDuration() == SD_Automatic &&
7644           MTE->getType().isDestructedType())
7645         S.Cleanup.setExprNeedsCleanups(true);
7646       break;
7647     }
7648 
7649     case SK_FinalCopy:
7650       if (checkAbstractType(Step->Type))
7651         return ExprError();
7652 
7653       // If the overall initialization is initializing a temporary, we already
7654       // bound our argument if it was necessary to do so. If not (if we're
7655       // ultimately initializing a non-temporary), our argument needs to be
7656       // bound since it's initializing a function parameter.
7657       // FIXME: This is a mess. Rationalize temporary destruction.
7658       if (!shouldBindAsTemporary(Entity))
7659         CurInit = S.MaybeBindToTemporary(CurInit.get());
7660       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
7661                            /*IsExtraneousCopy=*/false);
7662       break;
7663 
7664     case SK_ExtraneousCopyToTemporary:
7665       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
7666                            /*IsExtraneousCopy=*/true);
7667       break;
7668 
7669     case SK_UserConversion: {
7670       // We have a user-defined conversion that invokes either a constructor
7671       // or a conversion function.
7672       CastKind CastKind;
7673       FunctionDecl *Fn = Step->Function.Function;
7674       DeclAccessPair FoundFn = Step->Function.FoundDecl;
7675       bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
7676       bool CreatedObject = false;
7677       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
7678         // Build a call to the selected constructor.
7679         SmallVector<Expr*, 8> ConstructorArgs;
7680         SourceLocation Loc = CurInit.get()->getBeginLoc();
7681 
7682         // Determine the arguments required to actually perform the constructor
7683         // call.
7684         Expr *Arg = CurInit.get();
7685         if (S.CompleteConstructorCall(Constructor,
7686                                       MultiExprArg(&Arg, 1),
7687                                       Loc, ConstructorArgs))
7688           return ExprError();
7689 
7690         // Build an expression that constructs a temporary.
7691         CurInit = S.BuildCXXConstructExpr(Loc, Step->Type,
7692                                           FoundFn, Constructor,
7693                                           ConstructorArgs,
7694                                           HadMultipleCandidates,
7695                                           /*ListInit*/ false,
7696                                           /*StdInitListInit*/ false,
7697                                           /*ZeroInit*/ false,
7698                                           CXXConstructExpr::CK_Complete,
7699                                           SourceRange());
7700         if (CurInit.isInvalid())
7701           return ExprError();
7702 
7703         S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn,
7704                                  Entity);
7705         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
7706           return ExprError();
7707 
7708         CastKind = CK_ConstructorConversion;
7709         CreatedObject = true;
7710       } else {
7711         // Build a call to the conversion function.
7712         CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
7713         S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr,
7714                                     FoundFn);
7715         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
7716           return ExprError();
7717 
7718         CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
7719                                            HadMultipleCandidates);
7720         if (CurInit.isInvalid())
7721           return ExprError();
7722 
7723         CastKind = CK_UserDefinedConversion;
7724         CreatedObject = Conversion->getReturnType()->isRecordType();
7725       }
7726 
7727       if (CreatedObject && checkAbstractType(CurInit.get()->getType()))
7728         return ExprError();
7729 
7730       CurInit = ImplicitCastExpr::Create(S.Context, CurInit.get()->getType(),
7731                                          CastKind, CurInit.get(), nullptr,
7732                                          CurInit.get()->getValueKind());
7733 
7734       if (shouldBindAsTemporary(Entity))
7735         // The overall entity is temporary, so this expression should be
7736         // destroyed at the end of its full-expression.
7737         CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
7738       else if (CreatedObject && shouldDestroyEntity(Entity)) {
7739         // The object outlasts the full-expression, but we need to prepare for
7740         // a destructor being run on it.
7741         // FIXME: It makes no sense to do this here. This should happen
7742         // regardless of how we initialized the entity.
7743         QualType T = CurInit.get()->getType();
7744         if (const RecordType *Record = T->getAs<RecordType>()) {
7745           CXXDestructorDecl *Destructor
7746             = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
7747           S.CheckDestructorAccess(CurInit.get()->getBeginLoc(), Destructor,
7748                                   S.PDiag(diag::err_access_dtor_temp) << T);
7749           S.MarkFunctionReferenced(CurInit.get()->getBeginLoc(), Destructor);
7750           if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getBeginLoc()))
7751             return ExprError();
7752         }
7753       }
7754       break;
7755     }
7756 
7757     case SK_QualificationConversionLValue:
7758     case SK_QualificationConversionXValue:
7759     case SK_QualificationConversionRValue: {
7760       // Perform a qualification conversion; these can never go wrong.
7761       ExprValueKind VK =
7762           Step->Kind == SK_QualificationConversionLValue
7763               ? VK_LValue
7764               : (Step->Kind == SK_QualificationConversionXValue ? VK_XValue
7765                                                                 : VK_RValue);
7766       CurInit = S.PerformQualificationConversion(CurInit.get(), Step->Type, VK);
7767       break;
7768     }
7769 
7770     case SK_AtomicConversion: {
7771       assert(CurInit.get()->isRValue() && "cannot convert glvalue to atomic");
7772       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
7773                                     CK_NonAtomicToAtomic, VK_RValue);
7774       break;
7775     }
7776 
7777     case SK_ConversionSequence:
7778     case SK_ConversionSequenceNoNarrowing: {
7779       if (const auto *FromPtrType =
7780               CurInit.get()->getType()->getAs<PointerType>()) {
7781         if (const auto *ToPtrType = Step->Type->getAs<PointerType>()) {
7782           if (FromPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
7783               !ToPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
7784             S.Diag(CurInit.get()->getExprLoc(),
7785                    diag::warn_noderef_to_dereferenceable_pointer)
7786                 << CurInit.get()->getSourceRange();
7787           }
7788         }
7789       }
7790 
7791       Sema::CheckedConversionKind CCK
7792         = Kind.isCStyleCast()? Sema::CCK_CStyleCast
7793         : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
7794         : Kind.isExplicitCast()? Sema::CCK_OtherCast
7795         : Sema::CCK_ImplicitConversion;
7796       ExprResult CurInitExprRes =
7797         S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
7798                                     getAssignmentAction(Entity), CCK);
7799       if (CurInitExprRes.isInvalid())
7800         return ExprError();
7801 
7802       S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), CurInit.get());
7803 
7804       CurInit = CurInitExprRes;
7805 
7806       if (Step->Kind == SK_ConversionSequenceNoNarrowing &&
7807           S.getLangOpts().CPlusPlus)
7808         DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(),
7809                                     CurInit.get());
7810 
7811       break;
7812     }
7813 
7814     case SK_ListInitialization: {
7815       if (checkAbstractType(Step->Type))
7816         return ExprError();
7817 
7818       InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
7819       // If we're not initializing the top-level entity, we need to create an
7820       // InitializeTemporary entity for our target type.
7821       QualType Ty = Step->Type;
7822       bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty);
7823       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
7824       InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
7825       InitListChecker PerformInitList(S, InitEntity,
7826           InitList, Ty, /*VerifyOnly=*/false,
7827           /*TreatUnavailableAsInvalid=*/false);
7828       if (PerformInitList.HadError())
7829         return ExprError();
7830 
7831       // Hack: We must update *ResultType if available in order to set the
7832       // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
7833       // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
7834       if (ResultType &&
7835           ResultType->getNonReferenceType()->isIncompleteArrayType()) {
7836         if ((*ResultType)->isRValueReferenceType())
7837           Ty = S.Context.getRValueReferenceType(Ty);
7838         else if ((*ResultType)->isLValueReferenceType())
7839           Ty = S.Context.getLValueReferenceType(Ty,
7840             (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue());
7841         *ResultType = Ty;
7842       }
7843 
7844       InitListExpr *StructuredInitList =
7845           PerformInitList.getFullyStructuredList();
7846       CurInit.get();
7847       CurInit = shouldBindAsTemporary(InitEntity)
7848           ? S.MaybeBindToTemporary(StructuredInitList)
7849           : StructuredInitList;
7850       break;
7851     }
7852 
7853     case SK_ConstructorInitializationFromList: {
7854       if (checkAbstractType(Step->Type))
7855         return ExprError();
7856 
7857       // When an initializer list is passed for a parameter of type "reference
7858       // to object", we don't get an EK_Temporary entity, but instead an
7859       // EK_Parameter entity with reference type.
7860       // FIXME: This is a hack. What we really should do is create a user
7861       // conversion step for this case, but this makes it considerably more
7862       // complicated. For now, this will do.
7863       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
7864                                         Entity.getType().getNonReferenceType());
7865       bool UseTemporary = Entity.getType()->isReferenceType();
7866       assert(Args.size() == 1 && "expected a single argument for list init");
7867       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
7868       S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
7869         << InitList->getSourceRange();
7870       MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
7871       CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
7872                                                                    Entity,
7873                                                  Kind, Arg, *Step,
7874                                                ConstructorInitRequiresZeroInit,
7875                                                /*IsListInitialization*/true,
7876                                                /*IsStdInitListInit*/false,
7877                                                InitList->getLBraceLoc(),
7878                                                InitList->getRBraceLoc());
7879       break;
7880     }
7881 
7882     case SK_UnwrapInitList:
7883       CurInit = cast<InitListExpr>(CurInit.get())->getInit(0);
7884       break;
7885 
7886     case SK_RewrapInitList: {
7887       Expr *E = CurInit.get();
7888       InitListExpr *Syntactic = Step->WrappingSyntacticList;
7889       InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
7890           Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
7891       ILE->setSyntacticForm(Syntactic);
7892       ILE->setType(E->getType());
7893       ILE->setValueKind(E->getValueKind());
7894       CurInit = ILE;
7895       break;
7896     }
7897 
7898     case SK_ConstructorInitialization:
7899     case SK_StdInitializerListConstructorCall: {
7900       if (checkAbstractType(Step->Type))
7901         return ExprError();
7902 
7903       // When an initializer list is passed for a parameter of type "reference
7904       // to object", we don't get an EK_Temporary entity, but instead an
7905       // EK_Parameter entity with reference type.
7906       // FIXME: This is a hack. What we really should do is create a user
7907       // conversion step for this case, but this makes it considerably more
7908       // complicated. For now, this will do.
7909       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
7910                                         Entity.getType().getNonReferenceType());
7911       bool UseTemporary = Entity.getType()->isReferenceType();
7912       bool IsStdInitListInit =
7913           Step->Kind == SK_StdInitializerListConstructorCall;
7914       Expr *Source = CurInit.get();
7915       SourceRange Range = Kind.hasParenOrBraceRange()
7916                               ? Kind.getParenOrBraceRange()
7917                               : SourceRange();
7918       CurInit = PerformConstructorInitialization(
7919           S, UseTemporary ? TempEntity : Entity, Kind,
7920           Source ? MultiExprArg(Source) : Args, *Step,
7921           ConstructorInitRequiresZeroInit,
7922           /*IsListInitialization*/ IsStdInitListInit,
7923           /*IsStdInitListInitialization*/ IsStdInitListInit,
7924           /*LBraceLoc*/ Range.getBegin(),
7925           /*RBraceLoc*/ Range.getEnd());
7926       break;
7927     }
7928 
7929     case SK_ZeroInitialization: {
7930       step_iterator NextStep = Step;
7931       ++NextStep;
7932       if (NextStep != StepEnd &&
7933           (NextStep->Kind == SK_ConstructorInitialization ||
7934            NextStep->Kind == SK_ConstructorInitializationFromList)) {
7935         // The need for zero-initialization is recorded directly into
7936         // the call to the object's constructor within the next step.
7937         ConstructorInitRequiresZeroInit = true;
7938       } else if (Kind.getKind() == InitializationKind::IK_Value &&
7939                  S.getLangOpts().CPlusPlus &&
7940                  !Kind.isImplicitValueInit()) {
7941         TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
7942         if (!TSInfo)
7943           TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
7944                                                     Kind.getRange().getBegin());
7945 
7946         CurInit = new (S.Context) CXXScalarValueInitExpr(
7947             Entity.getType().getNonLValueExprType(S.Context), TSInfo,
7948             Kind.getRange().getEnd());
7949       } else {
7950         CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type);
7951       }
7952       break;
7953     }
7954 
7955     case SK_CAssignment: {
7956       QualType SourceType = CurInit.get()->getType();
7957 
7958       // Save off the initial CurInit in case we need to emit a diagnostic
7959       ExprResult InitialCurInit = CurInit;
7960       ExprResult Result = CurInit;
7961       Sema::AssignConvertType ConvTy =
7962         S.CheckSingleAssignmentConstraints(Step->Type, Result, true,
7963             Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited);
7964       if (Result.isInvalid())
7965         return ExprError();
7966       CurInit = Result;
7967 
7968       // If this is a call, allow conversion to a transparent union.
7969       ExprResult CurInitExprRes = CurInit;
7970       if (ConvTy != Sema::Compatible &&
7971           Entity.isParameterKind() &&
7972           S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
7973             == Sema::Compatible)
7974         ConvTy = Sema::Compatible;
7975       if (CurInitExprRes.isInvalid())
7976         return ExprError();
7977       CurInit = CurInitExprRes;
7978 
7979       bool Complained;
7980       if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
7981                                      Step->Type, SourceType,
7982                                      InitialCurInit.get(),
7983                                      getAssignmentAction(Entity, true),
7984                                      &Complained)) {
7985         PrintInitLocationNote(S, Entity);
7986         return ExprError();
7987       } else if (Complained)
7988         PrintInitLocationNote(S, Entity);
7989       break;
7990     }
7991 
7992     case SK_StringInit: {
7993       QualType Ty = Step->Type;
7994       CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
7995                       S.Context.getAsArrayType(Ty), S);
7996       break;
7997     }
7998 
7999     case SK_ObjCObjectConversion:
8000       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8001                           CK_ObjCObjectLValueCast,
8002                           CurInit.get()->getValueKind());
8003       break;
8004 
8005     case SK_ArrayLoopIndex: {
8006       Expr *Cur = CurInit.get();
8007       Expr *BaseExpr = new (S.Context)
8008           OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(),
8009                           Cur->getValueKind(), Cur->getObjectKind(), Cur);
8010       Expr *IndexExpr =
8011           new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType());
8012       CurInit = S.CreateBuiltinArraySubscriptExpr(
8013           BaseExpr, Kind.getLocation(), IndexExpr, Kind.getLocation());
8014       ArrayLoopCommonExprs.push_back(BaseExpr);
8015       break;
8016     }
8017 
8018     case SK_ArrayLoopInit: {
8019       assert(!ArrayLoopCommonExprs.empty() &&
8020              "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit");
8021       Expr *Common = ArrayLoopCommonExprs.pop_back_val();
8022       CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common,
8023                                                   CurInit.get());
8024       break;
8025     }
8026 
8027     case SK_GNUArrayInit:
8028       // Okay: we checked everything before creating this step. Note that
8029       // this is a GNU extension.
8030       S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
8031         << Step->Type << CurInit.get()->getType()
8032         << CurInit.get()->getSourceRange();
8033       updateGNUCompoundLiteralRValue(CurInit.get());
8034       LLVM_FALLTHROUGH;
8035     case SK_ArrayInit:
8036       // If the destination type is an incomplete array type, update the
8037       // type accordingly.
8038       if (ResultType) {
8039         if (const IncompleteArrayType *IncompleteDest
8040                            = S.Context.getAsIncompleteArrayType(Step->Type)) {
8041           if (const ConstantArrayType *ConstantSource
8042                  = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
8043             *ResultType = S.Context.getConstantArrayType(
8044                                              IncompleteDest->getElementType(),
8045                                              ConstantSource->getSize(),
8046                                              ArrayType::Normal, 0);
8047           }
8048         }
8049       }
8050       break;
8051 
8052     case SK_ParenthesizedArrayInit:
8053       // Okay: we checked everything before creating this step. Note that
8054       // this is a GNU extension.
8055       S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
8056         << CurInit.get()->getSourceRange();
8057       break;
8058 
8059     case SK_PassByIndirectCopyRestore:
8060     case SK_PassByIndirectRestore:
8061       checkIndirectCopyRestoreSource(S, CurInit.get());
8062       CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr(
8063           CurInit.get(), Step->Type,
8064           Step->Kind == SK_PassByIndirectCopyRestore);
8065       break;
8066 
8067     case SK_ProduceObjCObject:
8068       CurInit =
8069           ImplicitCastExpr::Create(S.Context, Step->Type, CK_ARCProduceObject,
8070                                    CurInit.get(), nullptr, VK_RValue);
8071       break;
8072 
8073     case SK_StdInitializerList: {
8074       S.Diag(CurInit.get()->getExprLoc(),
8075              diag::warn_cxx98_compat_initializer_list_init)
8076         << CurInit.get()->getSourceRange();
8077 
8078       // Materialize the temporary into memory.
8079       MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
8080           CurInit.get()->getType(), CurInit.get(),
8081           /*BoundToLvalueReference=*/false);
8082 
8083       // Wrap it in a construction of a std::initializer_list<T>.
8084       CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE);
8085 
8086       // Bind the result, in case the library has given initializer_list a
8087       // non-trivial destructor.
8088       if (shouldBindAsTemporary(Entity))
8089         CurInit = S.MaybeBindToTemporary(CurInit.get());
8090       break;
8091     }
8092 
8093     case SK_OCLSamplerInit: {
8094       // Sampler initialization have 5 cases:
8095       //   1. function argument passing
8096       //      1a. argument is a file-scope variable
8097       //      1b. argument is a function-scope variable
8098       //      1c. argument is one of caller function's parameters
8099       //   2. variable initialization
8100       //      2a. initializing a file-scope variable
8101       //      2b. initializing a function-scope variable
8102       //
8103       // For file-scope variables, since they cannot be initialized by function
8104       // call of __translate_sampler_initializer in LLVM IR, their references
8105       // need to be replaced by a cast from their literal initializers to
8106       // sampler type. Since sampler variables can only be used in function
8107       // calls as arguments, we only need to replace them when handling the
8108       // argument passing.
8109       assert(Step->Type->isSamplerT() &&
8110              "Sampler initialization on non-sampler type.");
8111       Expr *Init = CurInit.get();
8112       QualType SourceType = Init->getType();
8113       // Case 1
8114       if (Entity.isParameterKind()) {
8115         if (!SourceType->isSamplerT() && !SourceType->isIntegerType()) {
8116           S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
8117             << SourceType;
8118           break;
8119         } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init)) {
8120           auto Var = cast<VarDecl>(DRE->getDecl());
8121           // Case 1b and 1c
8122           // No cast from integer to sampler is needed.
8123           if (!Var->hasGlobalStorage()) {
8124             CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
8125                                                CK_LValueToRValue, Init,
8126                                                /*BasePath=*/nullptr, VK_RValue);
8127             break;
8128           }
8129           // Case 1a
8130           // For function call with a file-scope sampler variable as argument,
8131           // get the integer literal.
8132           // Do not diagnose if the file-scope variable does not have initializer
8133           // since this has already been diagnosed when parsing the variable
8134           // declaration.
8135           if (!Var->getInit() || !isa<ImplicitCastExpr>(Var->getInit()))
8136             break;
8137           Init = cast<ImplicitCastExpr>(const_cast<Expr*>(
8138             Var->getInit()))->getSubExpr();
8139           SourceType = Init->getType();
8140         }
8141       } else {
8142         // Case 2
8143         // Check initializer is 32 bit integer constant.
8144         // If the initializer is taken from global variable, do not diagnose since
8145         // this has already been done when parsing the variable declaration.
8146         if (!Init->isConstantInitializer(S.Context, false))
8147           break;
8148 
8149         if (!SourceType->isIntegerType() ||
8150             32 != S.Context.getIntWidth(SourceType)) {
8151           S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer)
8152             << SourceType;
8153           break;
8154         }
8155 
8156         Expr::EvalResult EVResult;
8157         Init->EvaluateAsInt(EVResult, S.Context);
8158         llvm::APSInt Result = EVResult.Val.getInt();
8159         const uint64_t SamplerValue = Result.getLimitedValue();
8160         // 32-bit value of sampler's initializer is interpreted as
8161         // bit-field with the following structure:
8162         // |unspecified|Filter|Addressing Mode| Normalized Coords|
8163         // |31        6|5    4|3             1|                 0|
8164         // This structure corresponds to enum values of sampler properties
8165         // defined in SPIR spec v1.2 and also opencl-c.h
8166         unsigned AddressingMode  = (0x0E & SamplerValue) >> 1;
8167         unsigned FilterMode      = (0x30 & SamplerValue) >> 4;
8168         if (FilterMode != 1 && FilterMode != 2 &&
8169             !S.getOpenCLOptions().isEnabled(
8170                 "cl_intel_device_side_avc_motion_estimation"))
8171           S.Diag(Kind.getLocation(),
8172                  diag::warn_sampler_initializer_invalid_bits)
8173                  << "Filter Mode";
8174         if (AddressingMode > 4)
8175           S.Diag(Kind.getLocation(),
8176                  diag::warn_sampler_initializer_invalid_bits)
8177                  << "Addressing Mode";
8178       }
8179 
8180       // Cases 1a, 2a and 2b
8181       // Insert cast from integer to sampler.
8182       CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy,
8183                                       CK_IntToOCLSampler);
8184       break;
8185     }
8186     case SK_OCLZeroOpaqueType: {
8187       assert((Step->Type->isEventT() || Step->Type->isQueueT() ||
8188               Step->Type->isOCLIntelSubgroupAVCType()) &&
8189              "Wrong type for initialization of OpenCL opaque type.");
8190 
8191       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8192                                     CK_ZeroToOCLOpaqueType,
8193                                     CurInit.get()->getValueKind());
8194       break;
8195     }
8196     }
8197   }
8198 
8199   // Check whether the initializer has a shorter lifetime than the initialized
8200   // entity, and if not, either lifetime-extend or warn as appropriate.
8201   if (auto *Init = CurInit.get())
8202     S.checkInitializerLifetime(Entity, Init);
8203 
8204   // Diagnose non-fatal problems with the completed initialization.
8205   if (Entity.getKind() == InitializedEntity::EK_Member &&
8206       cast<FieldDecl>(Entity.getDecl())->isBitField())
8207     S.CheckBitFieldInitialization(Kind.getLocation(),
8208                                   cast<FieldDecl>(Entity.getDecl()),
8209                                   CurInit.get());
8210 
8211   // Check for std::move on construction.
8212   if (const Expr *E = CurInit.get()) {
8213     CheckMoveOnConstruction(S, E,
8214                             Entity.getKind() == InitializedEntity::EK_Result);
8215   }
8216 
8217   return CurInit;
8218 }
8219 
8220 /// Somewhere within T there is an uninitialized reference subobject.
8221 /// Dig it out and diagnose it.
8222 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
8223                                            QualType T) {
8224   if (T->isReferenceType()) {
8225     S.Diag(Loc, diag::err_reference_without_init)
8226       << T.getNonReferenceType();
8227     return true;
8228   }
8229 
8230   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
8231   if (!RD || !RD->hasUninitializedReferenceMember())
8232     return false;
8233 
8234   for (const auto *FI : RD->fields()) {
8235     if (FI->isUnnamedBitfield())
8236       continue;
8237 
8238     if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
8239       S.Diag(Loc, diag::note_value_initialization_here) << RD;
8240       return true;
8241     }
8242   }
8243 
8244   for (const auto &BI : RD->bases()) {
8245     if (DiagnoseUninitializedReference(S, BI.getBeginLoc(), BI.getType())) {
8246       S.Diag(Loc, diag::note_value_initialization_here) << RD;
8247       return true;
8248     }
8249   }
8250 
8251   return false;
8252 }
8253 
8254 
8255 //===----------------------------------------------------------------------===//
8256 // Diagnose initialization failures
8257 //===----------------------------------------------------------------------===//
8258 
8259 /// Emit notes associated with an initialization that failed due to a
8260 /// "simple" conversion failure.
8261 static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity,
8262                                    Expr *op) {
8263   QualType destType = entity.getType();
8264   if (destType.getNonReferenceType()->isObjCObjectPointerType() &&
8265       op->getType()->isObjCObjectPointerType()) {
8266 
8267     // Emit a possible note about the conversion failing because the
8268     // operand is a message send with a related result type.
8269     S.EmitRelatedResultTypeNote(op);
8270 
8271     // Emit a possible note about a return failing because we're
8272     // expecting a related result type.
8273     if (entity.getKind() == InitializedEntity::EK_Result)
8274       S.EmitRelatedResultTypeNoteForReturn(destType);
8275   }
8276 }
8277 
8278 static void diagnoseListInit(Sema &S, const InitializedEntity &Entity,
8279                              InitListExpr *InitList) {
8280   QualType DestType = Entity.getType();
8281 
8282   QualType E;
8283   if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) {
8284     QualType ArrayType = S.Context.getConstantArrayType(
8285         E.withConst(),
8286         llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
8287                     InitList->getNumInits()),
8288         clang::ArrayType::Normal, 0);
8289     InitializedEntity HiddenArray =
8290         InitializedEntity::InitializeTemporary(ArrayType);
8291     return diagnoseListInit(S, HiddenArray, InitList);
8292   }
8293 
8294   if (DestType->isReferenceType()) {
8295     // A list-initialization failure for a reference means that we tried to
8296     // create a temporary of the inner type (per [dcl.init.list]p3.6) and the
8297     // inner initialization failed.
8298     QualType T = DestType->getAs<ReferenceType>()->getPointeeType();
8299     diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList);
8300     SourceLocation Loc = InitList->getBeginLoc();
8301     if (auto *D = Entity.getDecl())
8302       Loc = D->getLocation();
8303     S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T;
8304     return;
8305   }
8306 
8307   InitListChecker DiagnoseInitList(S, Entity, InitList, DestType,
8308                                    /*VerifyOnly=*/false,
8309                                    /*TreatUnavailableAsInvalid=*/false);
8310   assert(DiagnoseInitList.HadError() &&
8311          "Inconsistent init list check result.");
8312 }
8313 
8314 bool InitializationSequence::Diagnose(Sema &S,
8315                                       const InitializedEntity &Entity,
8316                                       const InitializationKind &Kind,
8317                                       ArrayRef<Expr *> Args) {
8318   if (!Failed())
8319     return false;
8320 
8321   // When we want to diagnose only one element of a braced-init-list,
8322   // we need to factor it out.
8323   Expr *OnlyArg;
8324   if (Args.size() == 1) {
8325     auto *List = dyn_cast<InitListExpr>(Args[0]);
8326     if (List && List->getNumInits() == 1)
8327       OnlyArg = List->getInit(0);
8328     else
8329       OnlyArg = Args[0];
8330   }
8331   else
8332     OnlyArg = nullptr;
8333 
8334   QualType DestType = Entity.getType();
8335   switch (Failure) {
8336   case FK_TooManyInitsForReference:
8337     // FIXME: Customize for the initialized entity?
8338     if (Args.empty()) {
8339       // Dig out the reference subobject which is uninitialized and diagnose it.
8340       // If this is value-initialization, this could be nested some way within
8341       // the target type.
8342       assert(Kind.getKind() == InitializationKind::IK_Value ||
8343              DestType->isReferenceType());
8344       bool Diagnosed =
8345         DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
8346       assert(Diagnosed && "couldn't find uninitialized reference to diagnose");
8347       (void)Diagnosed;
8348     } else  // FIXME: diagnostic below could be better!
8349       S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
8350           << SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
8351     break;
8352   case FK_ParenthesizedListInitForReference:
8353     S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
8354       << 1 << Entity.getType() << Args[0]->getSourceRange();
8355     break;
8356 
8357   case FK_ArrayNeedsInitList:
8358     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0;
8359     break;
8360   case FK_ArrayNeedsInitListOrStringLiteral:
8361     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1;
8362     break;
8363   case FK_ArrayNeedsInitListOrWideStringLiteral:
8364     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2;
8365     break;
8366   case FK_NarrowStringIntoWideCharArray:
8367     S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar);
8368     break;
8369   case FK_WideStringIntoCharArray:
8370     S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char);
8371     break;
8372   case FK_IncompatWideStringIntoWideChar:
8373     S.Diag(Kind.getLocation(),
8374            diag::err_array_init_incompat_wide_string_into_wchar);
8375     break;
8376   case FK_PlainStringIntoUTF8Char:
8377     S.Diag(Kind.getLocation(),
8378            diag::err_array_init_plain_string_into_char8_t);
8379     S.Diag(Args.front()->getBeginLoc(),
8380            diag::note_array_init_plain_string_into_char8_t)
8381         << FixItHint::CreateInsertion(Args.front()->getBeginLoc(), "u8");
8382     break;
8383   case FK_UTF8StringIntoPlainChar:
8384     S.Diag(Kind.getLocation(),
8385            diag::err_array_init_utf8_string_into_char)
8386       << S.getLangOpts().CPlusPlus2a;
8387     break;
8388   case FK_ArrayTypeMismatch:
8389   case FK_NonConstantArrayInit:
8390     S.Diag(Kind.getLocation(),
8391            (Failure == FK_ArrayTypeMismatch
8392               ? diag::err_array_init_different_type
8393               : diag::err_array_init_non_constant_array))
8394       << DestType.getNonReferenceType()
8395       << OnlyArg->getType()
8396       << Args[0]->getSourceRange();
8397     break;
8398 
8399   case FK_VariableLengthArrayHasInitializer:
8400     S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
8401       << Args[0]->getSourceRange();
8402     break;
8403 
8404   case FK_AddressOfOverloadFailed: {
8405     DeclAccessPair Found;
8406     S.ResolveAddressOfOverloadedFunction(OnlyArg,
8407                                          DestType.getNonReferenceType(),
8408                                          true,
8409                                          Found);
8410     break;
8411   }
8412 
8413   case FK_AddressOfUnaddressableFunction: {
8414     auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(OnlyArg)->getDecl());
8415     S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
8416                                         OnlyArg->getBeginLoc());
8417     break;
8418   }
8419 
8420   case FK_ReferenceInitOverloadFailed:
8421   case FK_UserConversionOverloadFailed:
8422     switch (FailedOverloadResult) {
8423     case OR_Ambiguous:
8424 
8425       FailedCandidateSet.NoteCandidates(
8426           PartialDiagnosticAt(
8427               Kind.getLocation(),
8428               Failure == FK_UserConversionOverloadFailed
8429                   ? (S.PDiag(diag::err_typecheck_ambiguous_condition)
8430                      << OnlyArg->getType() << DestType
8431                      << Args[0]->getSourceRange())
8432                   : (S.PDiag(diag::err_ref_init_ambiguous)
8433                      << DestType << OnlyArg->getType()
8434                      << Args[0]->getSourceRange())),
8435           S, OCD_ViableCandidates, Args);
8436       break;
8437 
8438     case OR_No_Viable_Function: {
8439       auto Cands = FailedCandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args);
8440       if (!S.RequireCompleteType(Kind.getLocation(),
8441                                  DestType.getNonReferenceType(),
8442                           diag::err_typecheck_nonviable_condition_incomplete,
8443                                OnlyArg->getType(), Args[0]->getSourceRange()))
8444         S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
8445           << (Entity.getKind() == InitializedEntity::EK_Result)
8446           << OnlyArg->getType() << Args[0]->getSourceRange()
8447           << DestType.getNonReferenceType();
8448 
8449       FailedCandidateSet.NoteCandidates(S, Args, Cands);
8450       break;
8451     }
8452     case OR_Deleted: {
8453       S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
8454         << OnlyArg->getType() << DestType.getNonReferenceType()
8455         << Args[0]->getSourceRange();
8456       OverloadCandidateSet::iterator Best;
8457       OverloadingResult Ovl
8458         = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
8459       if (Ovl == OR_Deleted) {
8460         S.NoteDeletedFunction(Best->Function);
8461       } else {
8462         llvm_unreachable("Inconsistent overload resolution?");
8463       }
8464       break;
8465     }
8466 
8467     case OR_Success:
8468       llvm_unreachable("Conversion did not fail!");
8469     }
8470     break;
8471 
8472   case FK_NonConstLValueReferenceBindingToTemporary:
8473     if (isa<InitListExpr>(Args[0])) {
8474       S.Diag(Kind.getLocation(),
8475              diag::err_lvalue_reference_bind_to_initlist)
8476       << DestType.getNonReferenceType().isVolatileQualified()
8477       << DestType.getNonReferenceType()
8478       << Args[0]->getSourceRange();
8479       break;
8480     }
8481     LLVM_FALLTHROUGH;
8482 
8483   case FK_NonConstLValueReferenceBindingToUnrelated:
8484     S.Diag(Kind.getLocation(),
8485            Failure == FK_NonConstLValueReferenceBindingToTemporary
8486              ? diag::err_lvalue_reference_bind_to_temporary
8487              : diag::err_lvalue_reference_bind_to_unrelated)
8488       << DestType.getNonReferenceType().isVolatileQualified()
8489       << DestType.getNonReferenceType()
8490       << OnlyArg->getType()
8491       << Args[0]->getSourceRange();
8492     break;
8493 
8494   case FK_NonConstLValueReferenceBindingToBitfield: {
8495     // We don't necessarily have an unambiguous source bit-field.
8496     FieldDecl *BitField = Args[0]->getSourceBitField();
8497     S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
8498       << DestType.isVolatileQualified()
8499       << (BitField ? BitField->getDeclName() : DeclarationName())
8500       << (BitField != nullptr)
8501       << Args[0]->getSourceRange();
8502     if (BitField)
8503       S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
8504     break;
8505   }
8506 
8507   case FK_NonConstLValueReferenceBindingToVectorElement:
8508     S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
8509       << DestType.isVolatileQualified()
8510       << Args[0]->getSourceRange();
8511     break;
8512 
8513   case FK_RValueReferenceBindingToLValue:
8514     S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
8515       << DestType.getNonReferenceType() << OnlyArg->getType()
8516       << Args[0]->getSourceRange();
8517     break;
8518 
8519   case FK_ReferenceAddrspaceMismatchTemporary:
8520     S.Diag(Kind.getLocation(), diag::err_reference_bind_temporary_addrspace)
8521         << DestType << Args[0]->getSourceRange();
8522     break;
8523 
8524   case FK_ReferenceInitDropsQualifiers: {
8525     QualType SourceType = OnlyArg->getType();
8526     QualType NonRefType = DestType.getNonReferenceType();
8527     Qualifiers DroppedQualifiers =
8528         SourceType.getQualifiers() - NonRefType.getQualifiers();
8529 
8530     if (!NonRefType.getQualifiers().isAddressSpaceSupersetOf(
8531             SourceType.getQualifiers()))
8532       S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
8533           << NonRefType << SourceType << 1 /*addr space*/
8534           << Args[0]->getSourceRange();
8535     else
8536       S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
8537           << NonRefType << SourceType << 0 /*cv quals*/
8538           << Qualifiers::fromCVRMask(DroppedQualifiers.getCVRQualifiers())
8539           << DroppedQualifiers.getCVRQualifiers() << Args[0]->getSourceRange();
8540     break;
8541   }
8542 
8543   case FK_ReferenceInitFailed:
8544     S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
8545       << DestType.getNonReferenceType()
8546       << DestType.getNonReferenceType()->isIncompleteType()
8547       << OnlyArg->isLValue()
8548       << OnlyArg->getType()
8549       << Args[0]->getSourceRange();
8550     emitBadConversionNotes(S, Entity, Args[0]);
8551     break;
8552 
8553   case FK_ConversionFailed: {
8554     QualType FromType = OnlyArg->getType();
8555     PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
8556       << (int)Entity.getKind()
8557       << DestType
8558       << OnlyArg->isLValue()
8559       << FromType
8560       << Args[0]->getSourceRange();
8561     S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
8562     S.Diag(Kind.getLocation(), PDiag);
8563     emitBadConversionNotes(S, Entity, Args[0]);
8564     break;
8565   }
8566 
8567   case FK_ConversionFromPropertyFailed:
8568     // No-op. This error has already been reported.
8569     break;
8570 
8571   case FK_TooManyInitsForScalar: {
8572     SourceRange R;
8573 
8574     auto *InitList = dyn_cast<InitListExpr>(Args[0]);
8575     if (InitList && InitList->getNumInits() >= 1) {
8576       R = SourceRange(InitList->getInit(0)->getEndLoc(), InitList->getEndLoc());
8577     } else {
8578       assert(Args.size() > 1 && "Expected multiple initializers!");
8579       R = SourceRange(Args.front()->getEndLoc(), Args.back()->getEndLoc());
8580     }
8581 
8582     R.setBegin(S.getLocForEndOfToken(R.getBegin()));
8583     if (Kind.isCStyleOrFunctionalCast())
8584       S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
8585         << R;
8586     else
8587       S.Diag(Kind.getLocation(), diag::err_excess_initializers)
8588         << /*scalar=*/2 << R;
8589     break;
8590   }
8591 
8592   case FK_ParenthesizedListInitForScalar:
8593     S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
8594       << 0 << Entity.getType() << Args[0]->getSourceRange();
8595     break;
8596 
8597   case FK_ReferenceBindingToInitList:
8598     S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
8599       << DestType.getNonReferenceType() << Args[0]->getSourceRange();
8600     break;
8601 
8602   case FK_InitListBadDestinationType:
8603     S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
8604       << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
8605     break;
8606 
8607   case FK_ListConstructorOverloadFailed:
8608   case FK_ConstructorOverloadFailed: {
8609     SourceRange ArgsRange;
8610     if (Args.size())
8611       ArgsRange =
8612           SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
8613 
8614     if (Failure == FK_ListConstructorOverloadFailed) {
8615       assert(Args.size() == 1 &&
8616              "List construction from other than 1 argument.");
8617       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
8618       Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
8619     }
8620 
8621     // FIXME: Using "DestType" for the entity we're printing is probably
8622     // bad.
8623     switch (FailedOverloadResult) {
8624       case OR_Ambiguous:
8625         FailedCandidateSet.NoteCandidates(
8626             PartialDiagnosticAt(Kind.getLocation(),
8627                                 S.PDiag(diag::err_ovl_ambiguous_init)
8628                                     << DestType << ArgsRange),
8629             S, OCD_ViableCandidates, Args);
8630         break;
8631 
8632       case OR_No_Viable_Function:
8633         if (Kind.getKind() == InitializationKind::IK_Default &&
8634             (Entity.getKind() == InitializedEntity::EK_Base ||
8635              Entity.getKind() == InitializedEntity::EK_Member) &&
8636             isa<CXXConstructorDecl>(S.CurContext)) {
8637           // This is implicit default initialization of a member or
8638           // base within a constructor. If no viable function was
8639           // found, notify the user that they need to explicitly
8640           // initialize this base/member.
8641           CXXConstructorDecl *Constructor
8642             = cast<CXXConstructorDecl>(S.CurContext);
8643           const CXXRecordDecl *InheritedFrom = nullptr;
8644           if (auto Inherited = Constructor->getInheritedConstructor())
8645             InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass();
8646           if (Entity.getKind() == InitializedEntity::EK_Base) {
8647             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
8648               << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
8649               << S.Context.getTypeDeclType(Constructor->getParent())
8650               << /*base=*/0
8651               << Entity.getType()
8652               << InheritedFrom;
8653 
8654             RecordDecl *BaseDecl
8655               = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
8656                                                                   ->getDecl();
8657             S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
8658               << S.Context.getTagDeclType(BaseDecl);
8659           } else {
8660             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
8661               << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
8662               << S.Context.getTypeDeclType(Constructor->getParent())
8663               << /*member=*/1
8664               << Entity.getName()
8665               << InheritedFrom;
8666             S.Diag(Entity.getDecl()->getLocation(),
8667                    diag::note_member_declared_at);
8668 
8669             if (const RecordType *Record
8670                                  = Entity.getType()->getAs<RecordType>())
8671               S.Diag(Record->getDecl()->getLocation(),
8672                      diag::note_previous_decl)
8673                 << S.Context.getTagDeclType(Record->getDecl());
8674           }
8675           break;
8676         }
8677 
8678         FailedCandidateSet.NoteCandidates(
8679             PartialDiagnosticAt(
8680                 Kind.getLocation(),
8681                 S.PDiag(diag::err_ovl_no_viable_function_in_init)
8682                     << DestType << ArgsRange),
8683             S, OCD_AllCandidates, Args);
8684         break;
8685 
8686       case OR_Deleted: {
8687         OverloadCandidateSet::iterator Best;
8688         OverloadingResult Ovl
8689           = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
8690         if (Ovl != OR_Deleted) {
8691           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
8692               << DestType << ArgsRange;
8693           llvm_unreachable("Inconsistent overload resolution?");
8694           break;
8695         }
8696 
8697         // If this is a defaulted or implicitly-declared function, then
8698         // it was implicitly deleted. Make it clear that the deletion was
8699         // implicit.
8700         if (S.isImplicitlyDeleted(Best->Function))
8701           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
8702             << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
8703             << DestType << ArgsRange;
8704         else
8705           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
8706               << DestType << ArgsRange;
8707 
8708         S.NoteDeletedFunction(Best->Function);
8709         break;
8710       }
8711 
8712       case OR_Success:
8713         llvm_unreachable("Conversion did not fail!");
8714     }
8715   }
8716   break;
8717 
8718   case FK_DefaultInitOfConst:
8719     if (Entity.getKind() == InitializedEntity::EK_Member &&
8720         isa<CXXConstructorDecl>(S.CurContext)) {
8721       // This is implicit default-initialization of a const member in
8722       // a constructor. Complain that it needs to be explicitly
8723       // initialized.
8724       CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
8725       S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
8726         << (Constructor->getInheritedConstructor() ? 2 :
8727             Constructor->isImplicit() ? 1 : 0)
8728         << S.Context.getTypeDeclType(Constructor->getParent())
8729         << /*const=*/1
8730         << Entity.getName();
8731       S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
8732         << Entity.getName();
8733     } else {
8734       S.Diag(Kind.getLocation(), diag::err_default_init_const)
8735           << DestType << (bool)DestType->getAs<RecordType>();
8736     }
8737     break;
8738 
8739   case FK_Incomplete:
8740     S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
8741                           diag::err_init_incomplete_type);
8742     break;
8743 
8744   case FK_ListInitializationFailed: {
8745     // Run the init list checker again to emit diagnostics.
8746     InitListExpr *InitList = cast<InitListExpr>(Args[0]);
8747     diagnoseListInit(S, Entity, InitList);
8748     break;
8749   }
8750 
8751   case FK_PlaceholderType: {
8752     // FIXME: Already diagnosed!
8753     break;
8754   }
8755 
8756   case FK_ExplicitConstructor: {
8757     S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
8758       << Args[0]->getSourceRange();
8759     OverloadCandidateSet::iterator Best;
8760     OverloadingResult Ovl
8761       = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
8762     (void)Ovl;
8763     assert(Ovl == OR_Success && "Inconsistent overload resolution");
8764     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
8765     S.Diag(CtorDecl->getLocation(),
8766            diag::note_explicit_ctor_deduction_guide_here) << false;
8767     break;
8768   }
8769   }
8770 
8771   PrintInitLocationNote(S, Entity);
8772   return true;
8773 }
8774 
8775 void InitializationSequence::dump(raw_ostream &OS) const {
8776   switch (SequenceKind) {
8777   case FailedSequence: {
8778     OS << "Failed sequence: ";
8779     switch (Failure) {
8780     case FK_TooManyInitsForReference:
8781       OS << "too many initializers for reference";
8782       break;
8783 
8784     case FK_ParenthesizedListInitForReference:
8785       OS << "parenthesized list init for reference";
8786       break;
8787 
8788     case FK_ArrayNeedsInitList:
8789       OS << "array requires initializer list";
8790       break;
8791 
8792     case FK_AddressOfUnaddressableFunction:
8793       OS << "address of unaddressable function was taken";
8794       break;
8795 
8796     case FK_ArrayNeedsInitListOrStringLiteral:
8797       OS << "array requires initializer list or string literal";
8798       break;
8799 
8800     case FK_ArrayNeedsInitListOrWideStringLiteral:
8801       OS << "array requires initializer list or wide string literal";
8802       break;
8803 
8804     case FK_NarrowStringIntoWideCharArray:
8805       OS << "narrow string into wide char array";
8806       break;
8807 
8808     case FK_WideStringIntoCharArray:
8809       OS << "wide string into char array";
8810       break;
8811 
8812     case FK_IncompatWideStringIntoWideChar:
8813       OS << "incompatible wide string into wide char array";
8814       break;
8815 
8816     case FK_PlainStringIntoUTF8Char:
8817       OS << "plain string literal into char8_t array";
8818       break;
8819 
8820     case FK_UTF8StringIntoPlainChar:
8821       OS << "u8 string literal into char array";
8822       break;
8823 
8824     case FK_ArrayTypeMismatch:
8825       OS << "array type mismatch";
8826       break;
8827 
8828     case FK_NonConstantArrayInit:
8829       OS << "non-constant array initializer";
8830       break;
8831 
8832     case FK_AddressOfOverloadFailed:
8833       OS << "address of overloaded function failed";
8834       break;
8835 
8836     case FK_ReferenceInitOverloadFailed:
8837       OS << "overload resolution for reference initialization failed";
8838       break;
8839 
8840     case FK_NonConstLValueReferenceBindingToTemporary:
8841       OS << "non-const lvalue reference bound to temporary";
8842       break;
8843 
8844     case FK_NonConstLValueReferenceBindingToBitfield:
8845       OS << "non-const lvalue reference bound to bit-field";
8846       break;
8847 
8848     case FK_NonConstLValueReferenceBindingToVectorElement:
8849       OS << "non-const lvalue reference bound to vector element";
8850       break;
8851 
8852     case FK_NonConstLValueReferenceBindingToUnrelated:
8853       OS << "non-const lvalue reference bound to unrelated type";
8854       break;
8855 
8856     case FK_RValueReferenceBindingToLValue:
8857       OS << "rvalue reference bound to an lvalue";
8858       break;
8859 
8860     case FK_ReferenceInitDropsQualifiers:
8861       OS << "reference initialization drops qualifiers";
8862       break;
8863 
8864     case FK_ReferenceAddrspaceMismatchTemporary:
8865       OS << "reference with mismatching address space bound to temporary";
8866       break;
8867 
8868     case FK_ReferenceInitFailed:
8869       OS << "reference initialization failed";
8870       break;
8871 
8872     case FK_ConversionFailed:
8873       OS << "conversion failed";
8874       break;
8875 
8876     case FK_ConversionFromPropertyFailed:
8877       OS << "conversion from property failed";
8878       break;
8879 
8880     case FK_TooManyInitsForScalar:
8881       OS << "too many initializers for scalar";
8882       break;
8883 
8884     case FK_ParenthesizedListInitForScalar:
8885       OS << "parenthesized list init for reference";
8886       break;
8887 
8888     case FK_ReferenceBindingToInitList:
8889       OS << "referencing binding to initializer list";
8890       break;
8891 
8892     case FK_InitListBadDestinationType:
8893       OS << "initializer list for non-aggregate, non-scalar type";
8894       break;
8895 
8896     case FK_UserConversionOverloadFailed:
8897       OS << "overloading failed for user-defined conversion";
8898       break;
8899 
8900     case FK_ConstructorOverloadFailed:
8901       OS << "constructor overloading failed";
8902       break;
8903 
8904     case FK_DefaultInitOfConst:
8905       OS << "default initialization of a const variable";
8906       break;
8907 
8908     case FK_Incomplete:
8909       OS << "initialization of incomplete type";
8910       break;
8911 
8912     case FK_ListInitializationFailed:
8913       OS << "list initialization checker failure";
8914       break;
8915 
8916     case FK_VariableLengthArrayHasInitializer:
8917       OS << "variable length array has an initializer";
8918       break;
8919 
8920     case FK_PlaceholderType:
8921       OS << "initializer expression isn't contextually valid";
8922       break;
8923 
8924     case FK_ListConstructorOverloadFailed:
8925       OS << "list constructor overloading failed";
8926       break;
8927 
8928     case FK_ExplicitConstructor:
8929       OS << "list copy initialization chose explicit constructor";
8930       break;
8931     }
8932     OS << '\n';
8933     return;
8934   }
8935 
8936   case DependentSequence:
8937     OS << "Dependent sequence\n";
8938     return;
8939 
8940   case NormalSequence:
8941     OS << "Normal sequence: ";
8942     break;
8943   }
8944 
8945   for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
8946     if (S != step_begin()) {
8947       OS << " -> ";
8948     }
8949 
8950     switch (S->Kind) {
8951     case SK_ResolveAddressOfOverloadedFunction:
8952       OS << "resolve address of overloaded function";
8953       break;
8954 
8955     case SK_CastDerivedToBaseRValue:
8956       OS << "derived-to-base (rvalue)";
8957       break;
8958 
8959     case SK_CastDerivedToBaseXValue:
8960       OS << "derived-to-base (xvalue)";
8961       break;
8962 
8963     case SK_CastDerivedToBaseLValue:
8964       OS << "derived-to-base (lvalue)";
8965       break;
8966 
8967     case SK_BindReference:
8968       OS << "bind reference to lvalue";
8969       break;
8970 
8971     case SK_BindReferenceToTemporary:
8972       OS << "bind reference to a temporary";
8973       break;
8974 
8975     case SK_FinalCopy:
8976       OS << "final copy in class direct-initialization";
8977       break;
8978 
8979     case SK_ExtraneousCopyToTemporary:
8980       OS << "extraneous C++03 copy to temporary";
8981       break;
8982 
8983     case SK_UserConversion:
8984       OS << "user-defined conversion via " << *S->Function.Function;
8985       break;
8986 
8987     case SK_QualificationConversionRValue:
8988       OS << "qualification conversion (rvalue)";
8989       break;
8990 
8991     case SK_QualificationConversionXValue:
8992       OS << "qualification conversion (xvalue)";
8993       break;
8994 
8995     case SK_QualificationConversionLValue:
8996       OS << "qualification conversion (lvalue)";
8997       break;
8998 
8999     case SK_AtomicConversion:
9000       OS << "non-atomic-to-atomic conversion";
9001       break;
9002 
9003     case SK_ConversionSequence:
9004       OS << "implicit conversion sequence (";
9005       S->ICS->dump(); // FIXME: use OS
9006       OS << ")";
9007       break;
9008 
9009     case SK_ConversionSequenceNoNarrowing:
9010       OS << "implicit conversion sequence with narrowing prohibited (";
9011       S->ICS->dump(); // FIXME: use OS
9012       OS << ")";
9013       break;
9014 
9015     case SK_ListInitialization:
9016       OS << "list aggregate initialization";
9017       break;
9018 
9019     case SK_UnwrapInitList:
9020       OS << "unwrap reference initializer list";
9021       break;
9022 
9023     case SK_RewrapInitList:
9024       OS << "rewrap reference initializer list";
9025       break;
9026 
9027     case SK_ConstructorInitialization:
9028       OS << "constructor initialization";
9029       break;
9030 
9031     case SK_ConstructorInitializationFromList:
9032       OS << "list initialization via constructor";
9033       break;
9034 
9035     case SK_ZeroInitialization:
9036       OS << "zero initialization";
9037       break;
9038 
9039     case SK_CAssignment:
9040       OS << "C assignment";
9041       break;
9042 
9043     case SK_StringInit:
9044       OS << "string initialization";
9045       break;
9046 
9047     case SK_ObjCObjectConversion:
9048       OS << "Objective-C object conversion";
9049       break;
9050 
9051     case SK_ArrayLoopIndex:
9052       OS << "indexing for array initialization loop";
9053       break;
9054 
9055     case SK_ArrayLoopInit:
9056       OS << "array initialization loop";
9057       break;
9058 
9059     case SK_ArrayInit:
9060       OS << "array initialization";
9061       break;
9062 
9063     case SK_GNUArrayInit:
9064       OS << "array initialization (GNU extension)";
9065       break;
9066 
9067     case SK_ParenthesizedArrayInit:
9068       OS << "parenthesized array initialization";
9069       break;
9070 
9071     case SK_PassByIndirectCopyRestore:
9072       OS << "pass by indirect copy and restore";
9073       break;
9074 
9075     case SK_PassByIndirectRestore:
9076       OS << "pass by indirect restore";
9077       break;
9078 
9079     case SK_ProduceObjCObject:
9080       OS << "Objective-C object retension";
9081       break;
9082 
9083     case SK_StdInitializerList:
9084       OS << "std::initializer_list from initializer list";
9085       break;
9086 
9087     case SK_StdInitializerListConstructorCall:
9088       OS << "list initialization from std::initializer_list";
9089       break;
9090 
9091     case SK_OCLSamplerInit:
9092       OS << "OpenCL sampler_t from integer constant";
9093       break;
9094 
9095     case SK_OCLZeroOpaqueType:
9096       OS << "OpenCL opaque type from zero";
9097       break;
9098     }
9099 
9100     OS << " [" << S->Type.getAsString() << ']';
9101   }
9102 
9103   OS << '\n';
9104 }
9105 
9106 void InitializationSequence::dump() const {
9107   dump(llvm::errs());
9108 }
9109 
9110 static bool NarrowingErrs(const LangOptions &L) {
9111   return L.CPlusPlus11 &&
9112          (!L.MicrosoftExt || L.isCompatibleWithMSVC(LangOptions::MSVC2015));
9113 }
9114 
9115 static void DiagnoseNarrowingInInitList(Sema &S,
9116                                         const ImplicitConversionSequence &ICS,
9117                                         QualType PreNarrowingType,
9118                                         QualType EntityType,
9119                                         const Expr *PostInit) {
9120   const StandardConversionSequence *SCS = nullptr;
9121   switch (ICS.getKind()) {
9122   case ImplicitConversionSequence::StandardConversion:
9123     SCS = &ICS.Standard;
9124     break;
9125   case ImplicitConversionSequence::UserDefinedConversion:
9126     SCS = &ICS.UserDefined.After;
9127     break;
9128   case ImplicitConversionSequence::AmbiguousConversion:
9129   case ImplicitConversionSequence::EllipsisConversion:
9130   case ImplicitConversionSequence::BadConversion:
9131     return;
9132   }
9133 
9134   // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
9135   APValue ConstantValue;
9136   QualType ConstantType;
9137   switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
9138                                 ConstantType)) {
9139   case NK_Not_Narrowing:
9140   case NK_Dependent_Narrowing:
9141     // No narrowing occurred.
9142     return;
9143 
9144   case NK_Type_Narrowing:
9145     // This was a floating-to-integer conversion, which is always considered a
9146     // narrowing conversion even if the value is a constant and can be
9147     // represented exactly as an integer.
9148     S.Diag(PostInit->getBeginLoc(), NarrowingErrs(S.getLangOpts())
9149                                         ? diag::ext_init_list_type_narrowing
9150                                         : diag::warn_init_list_type_narrowing)
9151         << PostInit->getSourceRange()
9152         << PreNarrowingType.getLocalUnqualifiedType()
9153         << EntityType.getLocalUnqualifiedType();
9154     break;
9155 
9156   case NK_Constant_Narrowing:
9157     // A constant value was narrowed.
9158     S.Diag(PostInit->getBeginLoc(),
9159            NarrowingErrs(S.getLangOpts())
9160                ? diag::ext_init_list_constant_narrowing
9161                : diag::warn_init_list_constant_narrowing)
9162         << PostInit->getSourceRange()
9163         << ConstantValue.getAsString(S.getASTContext(), ConstantType)
9164         << EntityType.getLocalUnqualifiedType();
9165     break;
9166 
9167   case NK_Variable_Narrowing:
9168     // A variable's value may have been narrowed.
9169     S.Diag(PostInit->getBeginLoc(),
9170            NarrowingErrs(S.getLangOpts())
9171                ? diag::ext_init_list_variable_narrowing
9172                : diag::warn_init_list_variable_narrowing)
9173         << PostInit->getSourceRange()
9174         << PreNarrowingType.getLocalUnqualifiedType()
9175         << EntityType.getLocalUnqualifiedType();
9176     break;
9177   }
9178 
9179   SmallString<128> StaticCast;
9180   llvm::raw_svector_ostream OS(StaticCast);
9181   OS << "static_cast<";
9182   if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
9183     // It's important to use the typedef's name if there is one so that the
9184     // fixit doesn't break code using types like int64_t.
9185     //
9186     // FIXME: This will break if the typedef requires qualification.  But
9187     // getQualifiedNameAsString() includes non-machine-parsable components.
9188     OS << *TT->getDecl();
9189   } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
9190     OS << BT->getName(S.getLangOpts());
9191   else {
9192     // Oops, we didn't find the actual type of the variable.  Don't emit a fixit
9193     // with a broken cast.
9194     return;
9195   }
9196   OS << ">(";
9197   S.Diag(PostInit->getBeginLoc(), diag::note_init_list_narrowing_silence)
9198       << PostInit->getSourceRange()
9199       << FixItHint::CreateInsertion(PostInit->getBeginLoc(), OS.str())
9200       << FixItHint::CreateInsertion(
9201              S.getLocForEndOfToken(PostInit->getEndLoc()), ")");
9202 }
9203 
9204 //===----------------------------------------------------------------------===//
9205 // Initialization helper functions
9206 //===----------------------------------------------------------------------===//
9207 bool
9208 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
9209                                    ExprResult Init) {
9210   if (Init.isInvalid())
9211     return false;
9212 
9213   Expr *InitE = Init.get();
9214   assert(InitE && "No initialization expression");
9215 
9216   InitializationKind Kind =
9217       InitializationKind::CreateCopy(InitE->getBeginLoc(), SourceLocation());
9218   InitializationSequence Seq(*this, Entity, Kind, InitE);
9219   return !Seq.Failed();
9220 }
9221 
9222 ExprResult
9223 Sema::PerformCopyInitialization(const InitializedEntity &Entity,
9224                                 SourceLocation EqualLoc,
9225                                 ExprResult Init,
9226                                 bool TopLevelOfInitList,
9227                                 bool AllowExplicit) {
9228   if (Init.isInvalid())
9229     return ExprError();
9230 
9231   Expr *InitE = Init.get();
9232   assert(InitE && "No initialization expression?");
9233 
9234   if (EqualLoc.isInvalid())
9235     EqualLoc = InitE->getBeginLoc();
9236 
9237   InitializationKind Kind = InitializationKind::CreateCopy(
9238       InitE->getBeginLoc(), EqualLoc, AllowExplicit);
9239   InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList);
9240 
9241   // Prevent infinite recursion when performing parameter copy-initialization.
9242   const bool ShouldTrackCopy =
9243       Entity.isParameterKind() && Seq.isConstructorInitialization();
9244   if (ShouldTrackCopy) {
9245     if (llvm::find(CurrentParameterCopyTypes, Entity.getType()) !=
9246         CurrentParameterCopyTypes.end()) {
9247       Seq.SetOverloadFailure(
9248           InitializationSequence::FK_ConstructorOverloadFailed,
9249           OR_No_Viable_Function);
9250 
9251       // Try to give a meaningful diagnostic note for the problematic
9252       // constructor.
9253       const auto LastStep = Seq.step_end() - 1;
9254       assert(LastStep->Kind ==
9255              InitializationSequence::SK_ConstructorInitialization);
9256       const FunctionDecl *Function = LastStep->Function.Function;
9257       auto Candidate =
9258           llvm::find_if(Seq.getFailedCandidateSet(),
9259                         [Function](const OverloadCandidate &Candidate) -> bool {
9260                           return Candidate.Viable &&
9261                                  Candidate.Function == Function &&
9262                                  Candidate.Conversions.size() > 0;
9263                         });
9264       if (Candidate != Seq.getFailedCandidateSet().end() &&
9265           Function->getNumParams() > 0) {
9266         Candidate->Viable = false;
9267         Candidate->FailureKind = ovl_fail_bad_conversion;
9268         Candidate->Conversions[0].setBad(BadConversionSequence::no_conversion,
9269                                          InitE,
9270                                          Function->getParamDecl(0)->getType());
9271       }
9272     }
9273     CurrentParameterCopyTypes.push_back(Entity.getType());
9274   }
9275 
9276   ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE);
9277 
9278   if (ShouldTrackCopy)
9279     CurrentParameterCopyTypes.pop_back();
9280 
9281   return Result;
9282 }
9283 
9284 /// Determine whether RD is, or is derived from, a specialization of CTD.
9285 static bool isOrIsDerivedFromSpecializationOf(CXXRecordDecl *RD,
9286                                               ClassTemplateDecl *CTD) {
9287   auto NotSpecialization = [&] (const CXXRecordDecl *Candidate) {
9288     auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Candidate);
9289     return !CTSD || !declaresSameEntity(CTSD->getSpecializedTemplate(), CTD);
9290   };
9291   return !(NotSpecialization(RD) && RD->forallBases(NotSpecialization));
9292 }
9293 
9294 QualType Sema::DeduceTemplateSpecializationFromInitializer(
9295     TypeSourceInfo *TSInfo, const InitializedEntity &Entity,
9296     const InitializationKind &Kind, MultiExprArg Inits) {
9297   auto *DeducedTST = dyn_cast<DeducedTemplateSpecializationType>(
9298       TSInfo->getType()->getContainedDeducedType());
9299   assert(DeducedTST && "not a deduced template specialization type");
9300 
9301   auto TemplateName = DeducedTST->getTemplateName();
9302   if (TemplateName.isDependent())
9303     return Context.DependentTy;
9304 
9305   // We can only perform deduction for class templates.
9306   auto *Template =
9307       dyn_cast_or_null<ClassTemplateDecl>(TemplateName.getAsTemplateDecl());
9308   if (!Template) {
9309     Diag(Kind.getLocation(),
9310          diag::err_deduced_non_class_template_specialization_type)
9311       << (int)getTemplateNameKindForDiagnostics(TemplateName) << TemplateName;
9312     if (auto *TD = TemplateName.getAsTemplateDecl())
9313       Diag(TD->getLocation(), diag::note_template_decl_here);
9314     return QualType();
9315   }
9316 
9317   // Can't deduce from dependent arguments.
9318   if (Expr::hasAnyTypeDependentArguments(Inits)) {
9319     Diag(TSInfo->getTypeLoc().getBeginLoc(),
9320          diag::warn_cxx14_compat_class_template_argument_deduction)
9321         << TSInfo->getTypeLoc().getSourceRange() << 0;
9322     return Context.DependentTy;
9323   }
9324 
9325   // FIXME: Perform "exact type" matching first, per CWG discussion?
9326   //        Or implement this via an implied 'T(T) -> T' deduction guide?
9327 
9328   // FIXME: Do we need/want a std::initializer_list<T> special case?
9329 
9330   // Look up deduction guides, including those synthesized from constructors.
9331   //
9332   // C++1z [over.match.class.deduct]p1:
9333   //   A set of functions and function templates is formed comprising:
9334   //   - For each constructor of the class template designated by the
9335   //     template-name, a function template [...]
9336   //  - For each deduction-guide, a function or function template [...]
9337   DeclarationNameInfo NameInfo(
9338       Context.DeclarationNames.getCXXDeductionGuideName(Template),
9339       TSInfo->getTypeLoc().getEndLoc());
9340   LookupResult Guides(*this, NameInfo, LookupOrdinaryName);
9341   LookupQualifiedName(Guides, Template->getDeclContext());
9342 
9343   // FIXME: Do not diagnose inaccessible deduction guides. The standard isn't
9344   // clear on this, but they're not found by name so access does not apply.
9345   Guides.suppressDiagnostics();
9346 
9347   // Figure out if this is list-initialization.
9348   InitListExpr *ListInit =
9349       (Inits.size() == 1 && Kind.getKind() != InitializationKind::IK_Direct)
9350           ? dyn_cast<InitListExpr>(Inits[0])
9351           : nullptr;
9352 
9353   // C++1z [over.match.class.deduct]p1:
9354   //   Initialization and overload resolution are performed as described in
9355   //   [dcl.init] and [over.match.ctor], [over.match.copy], or [over.match.list]
9356   //   (as appropriate for the type of initialization performed) for an object
9357   //   of a hypothetical class type, where the selected functions and function
9358   //   templates are considered to be the constructors of that class type
9359   //
9360   // Since we know we're initializing a class type of a type unrelated to that
9361   // of the initializer, this reduces to something fairly reasonable.
9362   OverloadCandidateSet Candidates(Kind.getLocation(),
9363                                   OverloadCandidateSet::CSK_Normal);
9364   OverloadCandidateSet::iterator Best;
9365 
9366   bool HasAnyDeductionGuide = false;
9367   bool AllowExplicit = !Kind.isCopyInit() || ListInit;
9368 
9369   auto tryToResolveOverload =
9370       [&](bool OnlyListConstructors) -> OverloadingResult {
9371     Candidates.clear(OverloadCandidateSet::CSK_Normal);
9372     HasAnyDeductionGuide = false;
9373 
9374     for (auto I = Guides.begin(), E = Guides.end(); I != E; ++I) {
9375       NamedDecl *D = (*I)->getUnderlyingDecl();
9376       if (D->isInvalidDecl())
9377         continue;
9378 
9379       auto *TD = dyn_cast<FunctionTemplateDecl>(D);
9380       auto *GD = dyn_cast_or_null<CXXDeductionGuideDecl>(
9381           TD ? TD->getTemplatedDecl() : dyn_cast<FunctionDecl>(D));
9382       if (!GD)
9383         continue;
9384 
9385       if (!GD->isImplicit())
9386         HasAnyDeductionGuide = true;
9387 
9388       // C++ [over.match.ctor]p1: (non-list copy-initialization from non-class)
9389       //   For copy-initialization, the candidate functions are all the
9390       //   converting constructors (12.3.1) of that class.
9391       // C++ [over.match.copy]p1: (non-list copy-initialization from class)
9392       //   The converting constructors of T are candidate functions.
9393       if (!AllowExplicit) {
9394         // Only consider converting constructors.
9395         if (GD->isExplicit())
9396           continue;
9397 
9398         // When looking for a converting constructor, deduction guides that
9399         // could never be called with one argument are not interesting to
9400         // check or note.
9401         if (GD->getMinRequiredArguments() > 1 ||
9402             (GD->getNumParams() == 0 && !GD->isVariadic()))
9403           continue;
9404       }
9405 
9406       // C++ [over.match.list]p1.1: (first phase list initialization)
9407       //   Initially, the candidate functions are the initializer-list
9408       //   constructors of the class T
9409       if (OnlyListConstructors && !isInitListConstructor(GD))
9410         continue;
9411 
9412       // C++ [over.match.list]p1.2: (second phase list initialization)
9413       //   the candidate functions are all the constructors of the class T
9414       // C++ [over.match.ctor]p1: (all other cases)
9415       //   the candidate functions are all the constructors of the class of
9416       //   the object being initialized
9417 
9418       // C++ [over.best.ics]p4:
9419       //   When [...] the constructor [...] is a candidate by
9420       //    - [over.match.copy] (in all cases)
9421       // FIXME: The "second phase of [over.match.list] case can also
9422       // theoretically happen here, but it's not clear whether we can
9423       // ever have a parameter of the right type.
9424       bool SuppressUserConversions = Kind.isCopyInit();
9425 
9426       if (TD)
9427         AddTemplateOverloadCandidate(TD, I.getPair(), /*ExplicitArgs*/ nullptr,
9428                                      Inits, Candidates, SuppressUserConversions,
9429                                      /*PartialOverloading*/ false,
9430                                      AllowExplicit);
9431       else
9432         AddOverloadCandidate(GD, I.getPair(), Inits, Candidates,
9433                              SuppressUserConversions,
9434                              /*PartialOverloading*/ false, AllowExplicit);
9435     }
9436     return Candidates.BestViableFunction(*this, Kind.getLocation(), Best);
9437   };
9438 
9439   OverloadingResult Result = OR_No_Viable_Function;
9440 
9441   // C++11 [over.match.list]p1, per DR1467: for list-initialization, first
9442   // try initializer-list constructors.
9443   if (ListInit) {
9444     bool TryListConstructors = true;
9445 
9446     // Try list constructors unless the list is empty and the class has one or
9447     // more default constructors, in which case those constructors win.
9448     if (!ListInit->getNumInits()) {
9449       for (NamedDecl *D : Guides) {
9450         auto *FD = dyn_cast<FunctionDecl>(D->getUnderlyingDecl());
9451         if (FD && FD->getMinRequiredArguments() == 0) {
9452           TryListConstructors = false;
9453           break;
9454         }
9455       }
9456     } else if (ListInit->getNumInits() == 1) {
9457       // C++ [over.match.class.deduct]:
9458       //   As an exception, the first phase in [over.match.list] (considering
9459       //   initializer-list constructors) is omitted if the initializer list
9460       //   consists of a single expression of type cv U, where U is a
9461       //   specialization of C or a class derived from a specialization of C.
9462       Expr *E = ListInit->getInit(0);
9463       auto *RD = E->getType()->getAsCXXRecordDecl();
9464       if (!isa<InitListExpr>(E) && RD &&
9465           isCompleteType(Kind.getLocation(), E->getType()) &&
9466           isOrIsDerivedFromSpecializationOf(RD, Template))
9467         TryListConstructors = false;
9468     }
9469 
9470     if (TryListConstructors)
9471       Result = tryToResolveOverload(/*OnlyListConstructor*/true);
9472     // Then unwrap the initializer list and try again considering all
9473     // constructors.
9474     Inits = MultiExprArg(ListInit->getInits(), ListInit->getNumInits());
9475   }
9476 
9477   // If list-initialization fails, or if we're doing any other kind of
9478   // initialization, we (eventually) consider constructors.
9479   if (Result == OR_No_Viable_Function)
9480     Result = tryToResolveOverload(/*OnlyListConstructor*/false);
9481 
9482   switch (Result) {
9483   case OR_Ambiguous:
9484     // FIXME: For list-initialization candidates, it'd usually be better to
9485     // list why they were not viable when given the initializer list itself as
9486     // an argument.
9487     Candidates.NoteCandidates(
9488         PartialDiagnosticAt(
9489             Kind.getLocation(),
9490             PDiag(diag::err_deduced_class_template_ctor_ambiguous)
9491                 << TemplateName),
9492         *this, OCD_ViableCandidates, Inits);
9493     return QualType();
9494 
9495   case OR_No_Viable_Function: {
9496     CXXRecordDecl *Primary =
9497         cast<ClassTemplateDecl>(Template)->getTemplatedDecl();
9498     bool Complete =
9499         isCompleteType(Kind.getLocation(), Context.getTypeDeclType(Primary));
9500     Candidates.NoteCandidates(
9501         PartialDiagnosticAt(
9502             Kind.getLocation(),
9503             PDiag(Complete ? diag::err_deduced_class_template_ctor_no_viable
9504                            : diag::err_deduced_class_template_incomplete)
9505                 << TemplateName << !Guides.empty()),
9506         *this, OCD_AllCandidates, Inits);
9507     return QualType();
9508   }
9509 
9510   case OR_Deleted: {
9511     Diag(Kind.getLocation(), diag::err_deduced_class_template_deleted)
9512       << TemplateName;
9513     NoteDeletedFunction(Best->Function);
9514     return QualType();
9515   }
9516 
9517   case OR_Success:
9518     // C++ [over.match.list]p1:
9519     //   In copy-list-initialization, if an explicit constructor is chosen, the
9520     //   initialization is ill-formed.
9521     if (Kind.isCopyInit() && ListInit &&
9522         cast<CXXDeductionGuideDecl>(Best->Function)->isExplicit()) {
9523       bool IsDeductionGuide = !Best->Function->isImplicit();
9524       Diag(Kind.getLocation(), diag::err_deduced_class_template_explicit)
9525           << TemplateName << IsDeductionGuide;
9526       Diag(Best->Function->getLocation(),
9527            diag::note_explicit_ctor_deduction_guide_here)
9528           << IsDeductionGuide;
9529       return QualType();
9530     }
9531 
9532     // Make sure we didn't select an unusable deduction guide, and mark it
9533     // as referenced.
9534     DiagnoseUseOfDecl(Best->Function, Kind.getLocation());
9535     MarkFunctionReferenced(Kind.getLocation(), Best->Function);
9536     break;
9537   }
9538 
9539   // C++ [dcl.type.class.deduct]p1:
9540   //  The placeholder is replaced by the return type of the function selected
9541   //  by overload resolution for class template deduction.
9542   QualType DeducedType =
9543       SubstAutoType(TSInfo->getType(), Best->Function->getReturnType());
9544   Diag(TSInfo->getTypeLoc().getBeginLoc(),
9545        diag::warn_cxx14_compat_class_template_argument_deduction)
9546       << TSInfo->getTypeLoc().getSourceRange() << 1 << DeducedType;
9547 
9548   // Warn if CTAD was used on a type that does not have any user-defined
9549   // deduction guides.
9550   if (!HasAnyDeductionGuide) {
9551     Diag(TSInfo->getTypeLoc().getBeginLoc(),
9552          diag::warn_ctad_maybe_unsupported)
9553         << TemplateName;
9554     Diag(Template->getLocation(), diag::note_suppress_ctad_maybe_unsupported);
9555   }
9556 
9557   return DeducedType;
9558 }
9559