1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for initializers.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/DeclObjC.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/AST/ExprObjC.h"
17 #include "clang/AST/ExprOpenMP.h"
18 #include "clang/AST/TypeLoc.h"
19 #include "clang/Basic/TargetInfo.h"
20 #include "clang/Sema/Designator.h"
21 #include "clang/Sema/Initialization.h"
22 #include "clang/Sema/Lookup.h"
23 #include "clang/Sema/SemaInternal.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/raw_ostream.h"
28 
29 using namespace clang;
30 
31 //===----------------------------------------------------------------------===//
32 // Sema Initialization Checking
33 //===----------------------------------------------------------------------===//
34 
35 /// Check whether T is compatible with a wide character type (wchar_t,
36 /// char16_t or char32_t).
37 static bool IsWideCharCompatible(QualType T, ASTContext &Context) {
38   if (Context.typesAreCompatible(Context.getWideCharType(), T))
39     return true;
40   if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) {
41     return Context.typesAreCompatible(Context.Char16Ty, T) ||
42            Context.typesAreCompatible(Context.Char32Ty, T);
43   }
44   return false;
45 }
46 
47 enum StringInitFailureKind {
48   SIF_None,
49   SIF_NarrowStringIntoWideChar,
50   SIF_WideStringIntoChar,
51   SIF_IncompatWideStringIntoWideChar,
52   SIF_UTF8StringIntoPlainChar,
53   SIF_PlainStringIntoUTF8Char,
54   SIF_Other
55 };
56 
57 /// Check whether the array of type AT can be initialized by the Init
58 /// expression by means of string initialization. Returns SIF_None if so,
59 /// otherwise returns a StringInitFailureKind that describes why the
60 /// initialization would not work.
61 static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT,
62                                           ASTContext &Context) {
63   if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
64     return SIF_Other;
65 
66   // See if this is a string literal or @encode.
67   Init = Init->IgnoreParens();
68 
69   // Handle @encode, which is a narrow string.
70   if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
71     return SIF_None;
72 
73   // Otherwise we can only handle string literals.
74   StringLiteral *SL = dyn_cast<StringLiteral>(Init);
75   if (!SL)
76     return SIF_Other;
77 
78   const QualType ElemTy =
79       Context.getCanonicalType(AT->getElementType()).getUnqualifiedType();
80 
81   switch (SL->getKind()) {
82   case StringLiteral::UTF8:
83     // char8_t array can be initialized with a UTF-8 string.
84     if (ElemTy->isChar8Type())
85       return SIF_None;
86     LLVM_FALLTHROUGH;
87   case StringLiteral::Ascii:
88     // char array can be initialized with a narrow string.
89     // Only allow char x[] = "foo";  not char x[] = L"foo";
90     if (ElemTy->isCharType())
91       return (SL->getKind() == StringLiteral::UTF8 &&
92               Context.getLangOpts().Char8)
93                  ? SIF_UTF8StringIntoPlainChar
94                  : SIF_None;
95     if (ElemTy->isChar8Type())
96       return SIF_PlainStringIntoUTF8Char;
97     if (IsWideCharCompatible(ElemTy, Context))
98       return SIF_NarrowStringIntoWideChar;
99     return SIF_Other;
100   // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15:
101   // "An array with element type compatible with a qualified or unqualified
102   // version of wchar_t, char16_t, or char32_t may be initialized by a wide
103   // string literal with the corresponding encoding prefix (L, u, or U,
104   // respectively), optionally enclosed in braces.
105   case StringLiteral::UTF16:
106     if (Context.typesAreCompatible(Context.Char16Ty, ElemTy))
107       return SIF_None;
108     if (ElemTy->isCharType() || ElemTy->isChar8Type())
109       return SIF_WideStringIntoChar;
110     if (IsWideCharCompatible(ElemTy, Context))
111       return SIF_IncompatWideStringIntoWideChar;
112     return SIF_Other;
113   case StringLiteral::UTF32:
114     if (Context.typesAreCompatible(Context.Char32Ty, ElemTy))
115       return SIF_None;
116     if (ElemTy->isCharType() || ElemTy->isChar8Type())
117       return SIF_WideStringIntoChar;
118     if (IsWideCharCompatible(ElemTy, Context))
119       return SIF_IncompatWideStringIntoWideChar;
120     return SIF_Other;
121   case StringLiteral::Wide:
122     if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy))
123       return SIF_None;
124     if (ElemTy->isCharType() || ElemTy->isChar8Type())
125       return SIF_WideStringIntoChar;
126     if (IsWideCharCompatible(ElemTy, Context))
127       return SIF_IncompatWideStringIntoWideChar;
128     return SIF_Other;
129   }
130 
131   llvm_unreachable("missed a StringLiteral kind?");
132 }
133 
134 static StringInitFailureKind IsStringInit(Expr *init, QualType declType,
135                                           ASTContext &Context) {
136   const ArrayType *arrayType = Context.getAsArrayType(declType);
137   if (!arrayType)
138     return SIF_Other;
139   return IsStringInit(init, arrayType, Context);
140 }
141 
142 /// Update the type of a string literal, including any surrounding parentheses,
143 /// to match the type of the object which it is initializing.
144 static void updateStringLiteralType(Expr *E, QualType Ty) {
145   while (true) {
146     E->setType(Ty);
147     E->setValueKind(VK_RValue);
148     if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E)) {
149       break;
150     } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
151       E = PE->getSubExpr();
152     } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
153       assert(UO->getOpcode() == UO_Extension);
154       E = UO->getSubExpr();
155     } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) {
156       E = GSE->getResultExpr();
157     } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) {
158       E = CE->getChosenSubExpr();
159     } else {
160       llvm_unreachable("unexpected expr in string literal init");
161     }
162   }
163 }
164 
165 /// Fix a compound literal initializing an array so it's correctly marked
166 /// as an rvalue.
167 static void updateGNUCompoundLiteralRValue(Expr *E) {
168   while (true) {
169     E->setValueKind(VK_RValue);
170     if (isa<CompoundLiteralExpr>(E)) {
171       break;
172     } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
173       E = PE->getSubExpr();
174     } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
175       assert(UO->getOpcode() == UO_Extension);
176       E = UO->getSubExpr();
177     } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) {
178       E = GSE->getResultExpr();
179     } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) {
180       E = CE->getChosenSubExpr();
181     } else {
182       llvm_unreachable("unexpected expr in array compound literal init");
183     }
184   }
185 }
186 
187 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
188                             Sema &S) {
189   // Get the length of the string as parsed.
190   auto *ConstantArrayTy =
191       cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe());
192   uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue();
193 
194   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
195     // C99 6.7.8p14. We have an array of character type with unknown size
196     // being initialized to a string literal.
197     llvm::APInt ConstVal(32, StrLength);
198     // Return a new array type (C99 6.7.8p22).
199     DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
200                                            ConstVal,
201                                            ArrayType::Normal, 0);
202     updateStringLiteralType(Str, DeclT);
203     return;
204   }
205 
206   const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
207 
208   // We have an array of character type with known size.  However,
209   // the size may be smaller or larger than the string we are initializing.
210   // FIXME: Avoid truncation for 64-bit length strings.
211   if (S.getLangOpts().CPlusPlus) {
212     if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
213       // For Pascal strings it's OK to strip off the terminating null character,
214       // so the example below is valid:
215       //
216       // unsigned char a[2] = "\pa";
217       if (SL->isPascal())
218         StrLength--;
219     }
220 
221     // [dcl.init.string]p2
222     if (StrLength > CAT->getSize().getZExtValue())
223       S.Diag(Str->getBeginLoc(),
224              diag::err_initializer_string_for_char_array_too_long)
225           << Str->getSourceRange();
226   } else {
227     // C99 6.7.8p14.
228     if (StrLength-1 > CAT->getSize().getZExtValue())
229       S.Diag(Str->getBeginLoc(),
230              diag::ext_initializer_string_for_char_array_too_long)
231           << Str->getSourceRange();
232   }
233 
234   // Set the type to the actual size that we are initializing.  If we have
235   // something like:
236   //   char x[1] = "foo";
237   // then this will set the string literal's type to char[1].
238   updateStringLiteralType(Str, DeclT);
239 }
240 
241 //===----------------------------------------------------------------------===//
242 // Semantic checking for initializer lists.
243 //===----------------------------------------------------------------------===//
244 
245 namespace {
246 
247 /// Semantic checking for initializer lists.
248 ///
249 /// The InitListChecker class contains a set of routines that each
250 /// handle the initialization of a certain kind of entity, e.g.,
251 /// arrays, vectors, struct/union types, scalars, etc. The
252 /// InitListChecker itself performs a recursive walk of the subobject
253 /// structure of the type to be initialized, while stepping through
254 /// the initializer list one element at a time. The IList and Index
255 /// parameters to each of the Check* routines contain the active
256 /// (syntactic) initializer list and the index into that initializer
257 /// list that represents the current initializer. Each routine is
258 /// responsible for moving that Index forward as it consumes elements.
259 ///
260 /// Each Check* routine also has a StructuredList/StructuredIndex
261 /// arguments, which contains the current "structured" (semantic)
262 /// initializer list and the index into that initializer list where we
263 /// are copying initializers as we map them over to the semantic
264 /// list. Once we have completed our recursive walk of the subobject
265 /// structure, we will have constructed a full semantic initializer
266 /// list.
267 ///
268 /// C99 designators cause changes in the initializer list traversal,
269 /// because they make the initialization "jump" into a specific
270 /// subobject and then continue the initialization from that
271 /// point. CheckDesignatedInitializer() recursively steps into the
272 /// designated subobject and manages backing out the recursion to
273 /// initialize the subobjects after the one designated.
274 class InitListChecker {
275   Sema &SemaRef;
276   bool hadError;
277   bool VerifyOnly; // no diagnostics, no structure building
278   bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode.
279   llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic;
280   InitListExpr *FullyStructuredList;
281 
282   void CheckImplicitInitList(const InitializedEntity &Entity,
283                              InitListExpr *ParentIList, QualType T,
284                              unsigned &Index, InitListExpr *StructuredList,
285                              unsigned &StructuredIndex);
286   void CheckExplicitInitList(const InitializedEntity &Entity,
287                              InitListExpr *IList, QualType &T,
288                              InitListExpr *StructuredList,
289                              bool TopLevelObject = false);
290   void CheckListElementTypes(const InitializedEntity &Entity,
291                              InitListExpr *IList, QualType &DeclType,
292                              bool SubobjectIsDesignatorContext,
293                              unsigned &Index,
294                              InitListExpr *StructuredList,
295                              unsigned &StructuredIndex,
296                              bool TopLevelObject = false);
297   void CheckSubElementType(const InitializedEntity &Entity,
298                            InitListExpr *IList, QualType ElemType,
299                            unsigned &Index,
300                            InitListExpr *StructuredList,
301                            unsigned &StructuredIndex);
302   void CheckComplexType(const InitializedEntity &Entity,
303                         InitListExpr *IList, QualType DeclType,
304                         unsigned &Index,
305                         InitListExpr *StructuredList,
306                         unsigned &StructuredIndex);
307   void CheckScalarType(const InitializedEntity &Entity,
308                        InitListExpr *IList, QualType DeclType,
309                        unsigned &Index,
310                        InitListExpr *StructuredList,
311                        unsigned &StructuredIndex);
312   void CheckReferenceType(const InitializedEntity &Entity,
313                           InitListExpr *IList, QualType DeclType,
314                           unsigned &Index,
315                           InitListExpr *StructuredList,
316                           unsigned &StructuredIndex);
317   void CheckVectorType(const InitializedEntity &Entity,
318                        InitListExpr *IList, QualType DeclType, unsigned &Index,
319                        InitListExpr *StructuredList,
320                        unsigned &StructuredIndex);
321   void CheckStructUnionTypes(const InitializedEntity &Entity,
322                              InitListExpr *IList, QualType DeclType,
323                              CXXRecordDecl::base_class_range Bases,
324                              RecordDecl::field_iterator Field,
325                              bool SubobjectIsDesignatorContext, unsigned &Index,
326                              InitListExpr *StructuredList,
327                              unsigned &StructuredIndex,
328                              bool TopLevelObject = false);
329   void CheckArrayType(const InitializedEntity &Entity,
330                       InitListExpr *IList, QualType &DeclType,
331                       llvm::APSInt elementIndex,
332                       bool SubobjectIsDesignatorContext, unsigned &Index,
333                       InitListExpr *StructuredList,
334                       unsigned &StructuredIndex);
335   bool CheckDesignatedInitializer(const InitializedEntity &Entity,
336                                   InitListExpr *IList, DesignatedInitExpr *DIE,
337                                   unsigned DesigIdx,
338                                   QualType &CurrentObjectType,
339                                   RecordDecl::field_iterator *NextField,
340                                   llvm::APSInt *NextElementIndex,
341                                   unsigned &Index,
342                                   InitListExpr *StructuredList,
343                                   unsigned &StructuredIndex,
344                                   bool FinishSubobjectInit,
345                                   bool TopLevelObject);
346   InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
347                                            QualType CurrentObjectType,
348                                            InitListExpr *StructuredList,
349                                            unsigned StructuredIndex,
350                                            SourceRange InitRange,
351                                            bool IsFullyOverwritten = false);
352   void UpdateStructuredListElement(InitListExpr *StructuredList,
353                                    unsigned &StructuredIndex,
354                                    Expr *expr);
355   int numArrayElements(QualType DeclType);
356   int numStructUnionElements(QualType DeclType);
357 
358   static ExprResult PerformEmptyInit(Sema &SemaRef,
359                                      SourceLocation Loc,
360                                      const InitializedEntity &Entity,
361                                      bool VerifyOnly,
362                                      bool TreatUnavailableAsInvalid);
363 
364   // Explanation on the "FillWithNoInit" mode:
365   //
366   // Assume we have the following definitions (Case#1):
367   // struct P { char x[6][6]; } xp = { .x[1] = "bar" };
368   // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' };
369   //
370   // l.lp.x[1][0..1] should not be filled with implicit initializers because the
371   // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf".
372   //
373   // But if we have (Case#2):
374   // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } };
375   //
376   // l.lp.x[1][0..1] are implicitly initialized and do not use values from the
377   // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0".
378   //
379   // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes"
380   // in the InitListExpr, the "holes" in Case#1 are filled not with empty
381   // initializers but with special "NoInitExpr" place holders, which tells the
382   // CodeGen not to generate any initializers for these parts.
383   void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base,
384                               const InitializedEntity &ParentEntity,
385                               InitListExpr *ILE, bool &RequiresSecondPass,
386                               bool FillWithNoInit);
387   void FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
388                                const InitializedEntity &ParentEntity,
389                                InitListExpr *ILE, bool &RequiresSecondPass,
390                                bool FillWithNoInit = false);
391   void FillInEmptyInitializations(const InitializedEntity &Entity,
392                                   InitListExpr *ILE, bool &RequiresSecondPass,
393                                   InitListExpr *OuterILE, unsigned OuterIndex,
394                                   bool FillWithNoInit = false);
395   bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
396                               Expr *InitExpr, FieldDecl *Field,
397                               bool TopLevelObject);
398   void CheckEmptyInitializable(const InitializedEntity &Entity,
399                                SourceLocation Loc);
400 
401 public:
402   InitListChecker(Sema &S, const InitializedEntity &Entity,
403                   InitListExpr *IL, QualType &T, bool VerifyOnly,
404                   bool TreatUnavailableAsInvalid);
405   bool HadError() { return hadError; }
406 
407   // Retrieves the fully-structured initializer list used for
408   // semantic analysis and code generation.
409   InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
410 };
411 
412 } // end anonymous namespace
413 
414 ExprResult InitListChecker::PerformEmptyInit(Sema &SemaRef,
415                                              SourceLocation Loc,
416                                              const InitializedEntity &Entity,
417                                              bool VerifyOnly,
418                                              bool TreatUnavailableAsInvalid) {
419   InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
420                                                             true);
421   MultiExprArg SubInit;
422   Expr *InitExpr;
423   InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc);
424 
425   // C++ [dcl.init.aggr]p7:
426   //   If there are fewer initializer-clauses in the list than there are
427   //   members in the aggregate, then each member not explicitly initialized
428   //   ...
429   bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 &&
430       Entity.getType()->getBaseElementTypeUnsafe()->isRecordType();
431   if (EmptyInitList) {
432     // C++1y / DR1070:
433     //   shall be initialized [...] from an empty initializer list.
434     //
435     // We apply the resolution of this DR to C++11 but not C++98, since C++98
436     // does not have useful semantics for initialization from an init list.
437     // We treat this as copy-initialization, because aggregate initialization
438     // always performs copy-initialization on its elements.
439     //
440     // Only do this if we're initializing a class type, to avoid filling in
441     // the initializer list where possible.
442     InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context)
443                    InitListExpr(SemaRef.Context, Loc, None, Loc);
444     InitExpr->setType(SemaRef.Context.VoidTy);
445     SubInit = InitExpr;
446     Kind = InitializationKind::CreateCopy(Loc, Loc);
447   } else {
448     // C++03:
449     //   shall be value-initialized.
450   }
451 
452   InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit);
453   // libstdc++4.6 marks the vector default constructor as explicit in
454   // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case.
455   // stlport does so too. Look for std::__debug for libstdc++, and for
456   // std:: for stlport.  This is effectively a compiler-side implementation of
457   // LWG2193.
458   if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() ==
459           InitializationSequence::FK_ExplicitConstructor) {
460     OverloadCandidateSet::iterator Best;
461     OverloadingResult O =
462         InitSeq.getFailedCandidateSet()
463             .BestViableFunction(SemaRef, Kind.getLocation(), Best);
464     (void)O;
465     assert(O == OR_Success && "Inconsistent overload resolution");
466     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
467     CXXRecordDecl *R = CtorDecl->getParent();
468 
469     if (CtorDecl->getMinRequiredArguments() == 0 &&
470         CtorDecl->isExplicit() && R->getDeclName() &&
471         SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) {
472       bool IsInStd = false;
473       for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext());
474            ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) {
475         if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND))
476           IsInStd = true;
477       }
478 
479       if (IsInStd && llvm::StringSwitch<bool>(R->getName())
480               .Cases("basic_string", "deque", "forward_list", true)
481               .Cases("list", "map", "multimap", "multiset", true)
482               .Cases("priority_queue", "queue", "set", "stack", true)
483               .Cases("unordered_map", "unordered_set", "vector", true)
484               .Default(false)) {
485         InitSeq.InitializeFrom(
486             SemaRef, Entity,
487             InitializationKind::CreateValue(Loc, Loc, Loc, true),
488             MultiExprArg(), /*TopLevelOfInitList=*/false,
489             TreatUnavailableAsInvalid);
490         // Emit a warning for this.  System header warnings aren't shown
491         // by default, but people working on system headers should see it.
492         if (!VerifyOnly) {
493           SemaRef.Diag(CtorDecl->getLocation(),
494                        diag::warn_invalid_initializer_from_system_header);
495           if (Entity.getKind() == InitializedEntity::EK_Member)
496             SemaRef.Diag(Entity.getDecl()->getLocation(),
497                          diag::note_used_in_initialization_here);
498           else if (Entity.getKind() == InitializedEntity::EK_ArrayElement)
499             SemaRef.Diag(Loc, diag::note_used_in_initialization_here);
500         }
501       }
502     }
503   }
504   if (!InitSeq) {
505     if (!VerifyOnly) {
506       InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit);
507       if (Entity.getKind() == InitializedEntity::EK_Member)
508         SemaRef.Diag(Entity.getDecl()->getLocation(),
509                      diag::note_in_omitted_aggregate_initializer)
510           << /*field*/1 << Entity.getDecl();
511       else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) {
512         bool IsTrailingArrayNewMember =
513             Entity.getParent() &&
514             Entity.getParent()->isVariableLengthArrayNew();
515         SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer)
516           << (IsTrailingArrayNewMember ? 2 : /*array element*/0)
517           << Entity.getElementIndex();
518       }
519     }
520     return ExprError();
521   }
522 
523   return VerifyOnly ? ExprResult(static_cast<Expr *>(nullptr))
524                     : InitSeq.Perform(SemaRef, Entity, Kind, SubInit);
525 }
526 
527 void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity,
528                                               SourceLocation Loc) {
529   assert(VerifyOnly &&
530          "CheckEmptyInitializable is only inteded for verification mode.");
531   if (PerformEmptyInit(SemaRef, Loc, Entity, /*VerifyOnly*/true,
532                        TreatUnavailableAsInvalid).isInvalid())
533     hadError = true;
534 }
535 
536 void InitListChecker::FillInEmptyInitForBase(
537     unsigned Init, const CXXBaseSpecifier &Base,
538     const InitializedEntity &ParentEntity, InitListExpr *ILE,
539     bool &RequiresSecondPass, bool FillWithNoInit) {
540   assert(Init < ILE->getNumInits() && "should have been expanded");
541 
542   InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
543       SemaRef.Context, &Base, false, &ParentEntity);
544 
545   if (!ILE->getInit(Init)) {
546     ExprResult BaseInit =
547         FillWithNoInit
548             ? new (SemaRef.Context) NoInitExpr(Base.getType())
549             : PerformEmptyInit(SemaRef, ILE->getEndLoc(), BaseEntity,
550                                /*VerifyOnly*/ false, TreatUnavailableAsInvalid);
551     if (BaseInit.isInvalid()) {
552       hadError = true;
553       return;
554     }
555 
556     ILE->setInit(Init, BaseInit.getAs<Expr>());
557   } else if (InitListExpr *InnerILE =
558                  dyn_cast<InitListExpr>(ILE->getInit(Init))) {
559     FillInEmptyInitializations(BaseEntity, InnerILE, RequiresSecondPass,
560                                ILE, Init, FillWithNoInit);
561   } else if (DesignatedInitUpdateExpr *InnerDIUE =
562                dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
563     FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(),
564                                RequiresSecondPass, ILE, Init,
565                                /*FillWithNoInit =*/true);
566   }
567 }
568 
569 void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
570                                         const InitializedEntity &ParentEntity,
571                                               InitListExpr *ILE,
572                                               bool &RequiresSecondPass,
573                                               bool FillWithNoInit) {
574   SourceLocation Loc = ILE->getEndLoc();
575   unsigned NumInits = ILE->getNumInits();
576   InitializedEntity MemberEntity
577     = InitializedEntity::InitializeMember(Field, &ParentEntity);
578 
579   if (const RecordType *RType = ILE->getType()->getAs<RecordType>())
580     if (!RType->getDecl()->isUnion())
581       assert(Init < NumInits && "This ILE should have been expanded");
582 
583   if (Init >= NumInits || !ILE->getInit(Init)) {
584     if (FillWithNoInit) {
585       Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType());
586       if (Init < NumInits)
587         ILE->setInit(Init, Filler);
588       else
589         ILE->updateInit(SemaRef.Context, Init, Filler);
590       return;
591     }
592     // C++1y [dcl.init.aggr]p7:
593     //   If there are fewer initializer-clauses in the list than there are
594     //   members in the aggregate, then each member not explicitly initialized
595     //   shall be initialized from its brace-or-equal-initializer [...]
596     if (Field->hasInClassInitializer()) {
597       ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field);
598       if (DIE.isInvalid()) {
599         hadError = true;
600         return;
601       }
602       SemaRef.checkInitializerLifetime(MemberEntity, DIE.get());
603       if (Init < NumInits)
604         ILE->setInit(Init, DIE.get());
605       else {
606         ILE->updateInit(SemaRef.Context, Init, DIE.get());
607         RequiresSecondPass = true;
608       }
609       return;
610     }
611 
612     if (Field->getType()->isReferenceType()) {
613       // C++ [dcl.init.aggr]p9:
614       //   If an incomplete or empty initializer-list leaves a
615       //   member of reference type uninitialized, the program is
616       //   ill-formed.
617       SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
618         << Field->getType()
619         << ILE->getSyntacticForm()->getSourceRange();
620       SemaRef.Diag(Field->getLocation(),
621                    diag::note_uninit_reference_member);
622       hadError = true;
623       return;
624     }
625 
626     ExprResult MemberInit = PerformEmptyInit(SemaRef, Loc, MemberEntity,
627                                              /*VerifyOnly*/false,
628                                              TreatUnavailableAsInvalid);
629     if (MemberInit.isInvalid()) {
630       hadError = true;
631       return;
632     }
633 
634     if (hadError) {
635       // Do nothing
636     } else if (Init < NumInits) {
637       ILE->setInit(Init, MemberInit.getAs<Expr>());
638     } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) {
639       // Empty initialization requires a constructor call, so
640       // extend the initializer list to include the constructor
641       // call and make a note that we'll need to take another pass
642       // through the initializer list.
643       ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>());
644       RequiresSecondPass = true;
645     }
646   } else if (InitListExpr *InnerILE
647                = dyn_cast<InitListExpr>(ILE->getInit(Init)))
648     FillInEmptyInitializations(MemberEntity, InnerILE,
649                                RequiresSecondPass, ILE, Init, FillWithNoInit);
650   else if (DesignatedInitUpdateExpr *InnerDIUE
651                = dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init)))
652     FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(),
653                                RequiresSecondPass, ILE, Init,
654                                /*FillWithNoInit =*/true);
655 }
656 
657 /// Recursively replaces NULL values within the given initializer list
658 /// with expressions that perform value-initialization of the
659 /// appropriate type, and finish off the InitListExpr formation.
660 void
661 InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity,
662                                             InitListExpr *ILE,
663                                             bool &RequiresSecondPass,
664                                             InitListExpr *OuterILE,
665                                             unsigned OuterIndex,
666                                             bool FillWithNoInit) {
667   assert((ILE->getType() != SemaRef.Context.VoidTy) &&
668          "Should not have void type");
669 
670   // If this is a nested initializer list, we might have changed its contents
671   // (and therefore some of its properties, such as instantiation-dependence)
672   // while filling it in. Inform the outer initializer list so that its state
673   // can be updated to match.
674   // FIXME: We should fully build the inner initializers before constructing
675   // the outer InitListExpr instead of mutating AST nodes after they have
676   // been used as subexpressions of other nodes.
677   struct UpdateOuterILEWithUpdatedInit {
678     InitListExpr *Outer;
679     unsigned OuterIndex;
680     ~UpdateOuterILEWithUpdatedInit() {
681       if (Outer)
682         Outer->setInit(OuterIndex, Outer->getInit(OuterIndex));
683     }
684   } UpdateOuterRAII = {OuterILE, OuterIndex};
685 
686   // A transparent ILE is not performing aggregate initialization and should
687   // not be filled in.
688   if (ILE->isTransparent())
689     return;
690 
691   if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
692     const RecordDecl *RDecl = RType->getDecl();
693     if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
694       FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(),
695                               Entity, ILE, RequiresSecondPass, FillWithNoInit);
696     else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
697              cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
698       for (auto *Field : RDecl->fields()) {
699         if (Field->hasInClassInitializer()) {
700           FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass,
701                                   FillWithNoInit);
702           break;
703         }
704       }
705     } else {
706       // The fields beyond ILE->getNumInits() are default initialized, so in
707       // order to leave them uninitialized, the ILE is expanded and the extra
708       // fields are then filled with NoInitExpr.
709       unsigned NumElems = numStructUnionElements(ILE->getType());
710       if (RDecl->hasFlexibleArrayMember())
711         ++NumElems;
712       if (ILE->getNumInits() < NumElems)
713         ILE->resizeInits(SemaRef.Context, NumElems);
714 
715       unsigned Init = 0;
716 
717       if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) {
718         for (auto &Base : CXXRD->bases()) {
719           if (hadError)
720             return;
721 
722           FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass,
723                                  FillWithNoInit);
724           ++Init;
725         }
726       }
727 
728       for (auto *Field : RDecl->fields()) {
729         if (Field->isUnnamedBitfield())
730           continue;
731 
732         if (hadError)
733           return;
734 
735         FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass,
736                                 FillWithNoInit);
737         if (hadError)
738           return;
739 
740         ++Init;
741 
742         // Only look at the first initialization of a union.
743         if (RDecl->isUnion())
744           break;
745       }
746     }
747 
748     return;
749   }
750 
751   QualType ElementType;
752 
753   InitializedEntity ElementEntity = Entity;
754   unsigned NumInits = ILE->getNumInits();
755   unsigned NumElements = NumInits;
756   if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
757     ElementType = AType->getElementType();
758     if (const auto *CAType = dyn_cast<ConstantArrayType>(AType))
759       NumElements = CAType->getSize().getZExtValue();
760     // For an array new with an unknown bound, ask for one additional element
761     // in order to populate the array filler.
762     if (Entity.isVariableLengthArrayNew())
763       ++NumElements;
764     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
765                                                          0, Entity);
766   } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
767     ElementType = VType->getElementType();
768     NumElements = VType->getNumElements();
769     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
770                                                          0, Entity);
771   } else
772     ElementType = ILE->getType();
773 
774   for (unsigned Init = 0; Init != NumElements; ++Init) {
775     if (hadError)
776       return;
777 
778     if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
779         ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
780       ElementEntity.setElementIndex(Init);
781 
782     if (Init >= NumInits && ILE->hasArrayFiller())
783       return;
784 
785     Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr);
786     if (!InitExpr && Init < NumInits && ILE->hasArrayFiller())
787       ILE->setInit(Init, ILE->getArrayFiller());
788     else if (!InitExpr && !ILE->hasArrayFiller()) {
789       Expr *Filler = nullptr;
790 
791       if (FillWithNoInit)
792         Filler = new (SemaRef.Context) NoInitExpr(ElementType);
793       else {
794         ExprResult ElementInit =
795             PerformEmptyInit(SemaRef, ILE->getEndLoc(), ElementEntity,
796                              /*VerifyOnly*/ false, TreatUnavailableAsInvalid);
797         if (ElementInit.isInvalid()) {
798           hadError = true;
799           return;
800         }
801 
802         Filler = ElementInit.getAs<Expr>();
803       }
804 
805       if (hadError) {
806         // Do nothing
807       } else if (Init < NumInits) {
808         // For arrays, just set the expression used for value-initialization
809         // of the "holes" in the array.
810         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
811           ILE->setArrayFiller(Filler);
812         else
813           ILE->setInit(Init, Filler);
814       } else {
815         // For arrays, just set the expression used for value-initialization
816         // of the rest of elements and exit.
817         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
818           ILE->setArrayFiller(Filler);
819           return;
820         }
821 
822         if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) {
823           // Empty initialization requires a constructor call, so
824           // extend the initializer list to include the constructor
825           // call and make a note that we'll need to take another pass
826           // through the initializer list.
827           ILE->updateInit(SemaRef.Context, Init, Filler);
828           RequiresSecondPass = true;
829         }
830       }
831     } else if (InitListExpr *InnerILE
832                  = dyn_cast_or_null<InitListExpr>(InitExpr))
833       FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass,
834                                  ILE, Init, FillWithNoInit);
835     else if (DesignatedInitUpdateExpr *InnerDIUE
836                  = dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr))
837       FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(),
838                                  RequiresSecondPass, ILE, Init,
839                                  /*FillWithNoInit =*/true);
840   }
841 }
842 
843 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
844                                  InitListExpr *IL, QualType &T,
845                                  bool VerifyOnly,
846                                  bool TreatUnavailableAsInvalid)
847   : SemaRef(S), VerifyOnly(VerifyOnly),
848     TreatUnavailableAsInvalid(TreatUnavailableAsInvalid) {
849   // FIXME: Check that IL isn't already the semantic form of some other
850   // InitListExpr. If it is, we'd create a broken AST.
851 
852   hadError = false;
853 
854   FullyStructuredList =
855       getStructuredSubobjectInit(IL, 0, T, nullptr, 0, IL->getSourceRange());
856   CheckExplicitInitList(Entity, IL, T, FullyStructuredList,
857                         /*TopLevelObject=*/true);
858 
859   if (!hadError && !VerifyOnly) {
860     bool RequiresSecondPass = false;
861     FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass,
862                                /*OuterILE=*/nullptr, /*OuterIndex=*/0);
863     if (RequiresSecondPass && !hadError)
864       FillInEmptyInitializations(Entity, FullyStructuredList,
865                                  RequiresSecondPass, nullptr, 0);
866   }
867 }
868 
869 int InitListChecker::numArrayElements(QualType DeclType) {
870   // FIXME: use a proper constant
871   int maxElements = 0x7FFFFFFF;
872   if (const ConstantArrayType *CAT =
873         SemaRef.Context.getAsConstantArrayType(DeclType)) {
874     maxElements = static_cast<int>(CAT->getSize().getZExtValue());
875   }
876   return maxElements;
877 }
878 
879 int InitListChecker::numStructUnionElements(QualType DeclType) {
880   RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
881   int InitializableMembers = 0;
882   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl))
883     InitializableMembers += CXXRD->getNumBases();
884   for (const auto *Field : structDecl->fields())
885     if (!Field->isUnnamedBitfield())
886       ++InitializableMembers;
887 
888   if (structDecl->isUnion())
889     return std::min(InitializableMembers, 1);
890   return InitializableMembers - structDecl->hasFlexibleArrayMember();
891 }
892 
893 /// Determine whether Entity is an entity for which it is idiomatic to elide
894 /// the braces in aggregate initialization.
895 static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) {
896   // Recursive initialization of the one and only field within an aggregate
897   // class is considered idiomatic. This case arises in particular for
898   // initialization of std::array, where the C++ standard suggests the idiom of
899   //
900   //   std::array<T, N> arr = {1, 2, 3};
901   //
902   // (where std::array is an aggregate struct containing a single array field.
903 
904   // FIXME: Should aggregate initialization of a struct with a single
905   // base class and no members also suppress the warning?
906   if (Entity.getKind() != InitializedEntity::EK_Member || !Entity.getParent())
907     return false;
908 
909   auto *ParentRD =
910       Entity.getParent()->getType()->castAs<RecordType>()->getDecl();
911   if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(ParentRD))
912     if (CXXRD->getNumBases())
913       return false;
914 
915   auto FieldIt = ParentRD->field_begin();
916   assert(FieldIt != ParentRD->field_end() &&
917          "no fields but have initializer for member?");
918   return ++FieldIt == ParentRD->field_end();
919 }
920 
921 /// Check whether the range of the initializer \p ParentIList from element
922 /// \p Index onwards can be used to initialize an object of type \p T. Update
923 /// \p Index to indicate how many elements of the list were consumed.
924 ///
925 /// This also fills in \p StructuredList, from element \p StructuredIndex
926 /// onwards, with the fully-braced, desugared form of the initialization.
927 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
928                                             InitListExpr *ParentIList,
929                                             QualType T, unsigned &Index,
930                                             InitListExpr *StructuredList,
931                                             unsigned &StructuredIndex) {
932   int maxElements = 0;
933 
934   if (T->isArrayType())
935     maxElements = numArrayElements(T);
936   else if (T->isRecordType())
937     maxElements = numStructUnionElements(T);
938   else if (T->isVectorType())
939     maxElements = T->getAs<VectorType>()->getNumElements();
940   else
941     llvm_unreachable("CheckImplicitInitList(): Illegal type");
942 
943   if (maxElements == 0) {
944     if (!VerifyOnly)
945       SemaRef.Diag(ParentIList->getInit(Index)->getBeginLoc(),
946                    diag::err_implicit_empty_initializer);
947     ++Index;
948     hadError = true;
949     return;
950   }
951 
952   // Build a structured initializer list corresponding to this subobject.
953   InitListExpr *StructuredSubobjectInitList = getStructuredSubobjectInit(
954       ParentIList, Index, T, StructuredList, StructuredIndex,
955       SourceRange(ParentIList->getInit(Index)->getBeginLoc(),
956                   ParentIList->getSourceRange().getEnd()));
957   unsigned StructuredSubobjectInitIndex = 0;
958 
959   // Check the element types and build the structural subobject.
960   unsigned StartIndex = Index;
961   CheckListElementTypes(Entity, ParentIList, T,
962                         /*SubobjectIsDesignatorContext=*/false, Index,
963                         StructuredSubobjectInitList,
964                         StructuredSubobjectInitIndex);
965 
966   if (!VerifyOnly) {
967     StructuredSubobjectInitList->setType(T);
968 
969     unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
970     // Update the structured sub-object initializer so that it's ending
971     // range corresponds with the end of the last initializer it used.
972     if (EndIndex < ParentIList->getNumInits() &&
973         ParentIList->getInit(EndIndex)) {
974       SourceLocation EndLoc
975         = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
976       StructuredSubobjectInitList->setRBraceLoc(EndLoc);
977     }
978 
979     // Complain about missing braces.
980     if ((T->isArrayType() || T->isRecordType()) &&
981         !ParentIList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) &&
982         !isIdiomaticBraceElisionEntity(Entity)) {
983       SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
984                    diag::warn_missing_braces)
985           << StructuredSubobjectInitList->getSourceRange()
986           << FixItHint::CreateInsertion(
987                  StructuredSubobjectInitList->getBeginLoc(), "{")
988           << FixItHint::CreateInsertion(
989                  SemaRef.getLocForEndOfToken(
990                      StructuredSubobjectInitList->getEndLoc()),
991                  "}");
992     }
993 
994     // Warn if this type won't be an aggregate in future versions of C++.
995     auto *CXXRD = T->getAsCXXRecordDecl();
996     if (CXXRD && CXXRD->hasUserDeclaredConstructor()) {
997       SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
998                    diag::warn_cxx2a_compat_aggregate_init_with_ctors)
999           << StructuredSubobjectInitList->getSourceRange() << T;
1000     }
1001   }
1002 }
1003 
1004 /// Warn that \p Entity was of scalar type and was initialized by a
1005 /// single-element braced initializer list.
1006 static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity,
1007                                  SourceRange Braces) {
1008   // Don't warn during template instantiation. If the initialization was
1009   // non-dependent, we warned during the initial parse; otherwise, the
1010   // type might not be scalar in some uses of the template.
1011   if (S.inTemplateInstantiation())
1012     return;
1013 
1014   unsigned DiagID = 0;
1015 
1016   switch (Entity.getKind()) {
1017   case InitializedEntity::EK_VectorElement:
1018   case InitializedEntity::EK_ComplexElement:
1019   case InitializedEntity::EK_ArrayElement:
1020   case InitializedEntity::EK_Parameter:
1021   case InitializedEntity::EK_Parameter_CF_Audited:
1022   case InitializedEntity::EK_Result:
1023     // Extra braces here are suspicious.
1024     DiagID = diag::warn_braces_around_scalar_init;
1025     break;
1026 
1027   case InitializedEntity::EK_Member:
1028     // Warn on aggregate initialization but not on ctor init list or
1029     // default member initializer.
1030     if (Entity.getParent())
1031       DiagID = diag::warn_braces_around_scalar_init;
1032     break;
1033 
1034   case InitializedEntity::EK_Variable:
1035   case InitializedEntity::EK_LambdaCapture:
1036     // No warning, might be direct-list-initialization.
1037     // FIXME: Should we warn for copy-list-initialization in these cases?
1038     break;
1039 
1040   case InitializedEntity::EK_New:
1041   case InitializedEntity::EK_Temporary:
1042   case InitializedEntity::EK_CompoundLiteralInit:
1043     // No warning, braces are part of the syntax of the underlying construct.
1044     break;
1045 
1046   case InitializedEntity::EK_RelatedResult:
1047     // No warning, we already warned when initializing the result.
1048     break;
1049 
1050   case InitializedEntity::EK_Exception:
1051   case InitializedEntity::EK_Base:
1052   case InitializedEntity::EK_Delegating:
1053   case InitializedEntity::EK_BlockElement:
1054   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
1055   case InitializedEntity::EK_Binding:
1056   case InitializedEntity::EK_StmtExprResult:
1057     llvm_unreachable("unexpected braced scalar init");
1058   }
1059 
1060   if (DiagID) {
1061     S.Diag(Braces.getBegin(), DiagID)
1062       << Braces
1063       << FixItHint::CreateRemoval(Braces.getBegin())
1064       << FixItHint::CreateRemoval(Braces.getEnd());
1065   }
1066 }
1067 
1068 /// Check whether the initializer \p IList (that was written with explicit
1069 /// braces) can be used to initialize an object of type \p T.
1070 ///
1071 /// This also fills in \p StructuredList with the fully-braced, desugared
1072 /// form of the initialization.
1073 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
1074                                             InitListExpr *IList, QualType &T,
1075                                             InitListExpr *StructuredList,
1076                                             bool TopLevelObject) {
1077   if (!VerifyOnly) {
1078     SyntacticToSemantic[IList] = StructuredList;
1079     StructuredList->setSyntacticForm(IList);
1080   }
1081 
1082   unsigned Index = 0, StructuredIndex = 0;
1083   CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
1084                         Index, StructuredList, StructuredIndex, TopLevelObject);
1085   if (!VerifyOnly) {
1086     QualType ExprTy = T;
1087     if (!ExprTy->isArrayType())
1088       ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
1089     IList->setType(ExprTy);
1090     StructuredList->setType(ExprTy);
1091   }
1092   if (hadError)
1093     return;
1094 
1095   if (Index < IList->getNumInits()) {
1096     // We have leftover initializers
1097     if (VerifyOnly) {
1098       if (SemaRef.getLangOpts().CPlusPlus ||
1099           (SemaRef.getLangOpts().OpenCL &&
1100            IList->getType()->isVectorType())) {
1101         hadError = true;
1102       }
1103       return;
1104     }
1105 
1106     if (StructuredIndex == 1 &&
1107         IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) ==
1108             SIF_None) {
1109       unsigned DK = diag::ext_excess_initializers_in_char_array_initializer;
1110       if (SemaRef.getLangOpts().CPlusPlus) {
1111         DK = diag::err_excess_initializers_in_char_array_initializer;
1112         hadError = true;
1113       }
1114       // Special-case
1115       SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1116           << IList->getInit(Index)->getSourceRange();
1117     } else if (!T->isIncompleteType()) {
1118       // Don't complain for incomplete types, since we'll get an error
1119       // elsewhere
1120       QualType CurrentObjectType = StructuredList->getType();
1121       int initKind =
1122         CurrentObjectType->isArrayType()? 0 :
1123         CurrentObjectType->isVectorType()? 1 :
1124         CurrentObjectType->isScalarType()? 2 :
1125         CurrentObjectType->isUnionType()? 3 :
1126         4;
1127 
1128       unsigned DK = diag::ext_excess_initializers;
1129       if (SemaRef.getLangOpts().CPlusPlus) {
1130         DK = diag::err_excess_initializers;
1131         hadError = true;
1132       }
1133       if (SemaRef.getLangOpts().OpenCL && initKind == 1) {
1134         DK = diag::err_excess_initializers;
1135         hadError = true;
1136       }
1137 
1138       SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1139           << initKind << IList->getInit(Index)->getSourceRange();
1140     }
1141   }
1142 
1143   if (!VerifyOnly) {
1144     if (T->isScalarType() && IList->getNumInits() == 1 &&
1145         !isa<InitListExpr>(IList->getInit(0)))
1146       warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange());
1147 
1148     // Warn if this is a class type that won't be an aggregate in future
1149     // versions of C++.
1150     auto *CXXRD = T->getAsCXXRecordDecl();
1151     if (CXXRD && CXXRD->hasUserDeclaredConstructor()) {
1152       // Don't warn if there's an equivalent default constructor that would be
1153       // used instead.
1154       bool HasEquivCtor = false;
1155       if (IList->getNumInits() == 0) {
1156         auto *CD = SemaRef.LookupDefaultConstructor(CXXRD);
1157         HasEquivCtor = CD && !CD->isDeleted();
1158       }
1159 
1160       if (!HasEquivCtor) {
1161         SemaRef.Diag(IList->getBeginLoc(),
1162                      diag::warn_cxx2a_compat_aggregate_init_with_ctors)
1163             << IList->getSourceRange() << T;
1164       }
1165     }
1166   }
1167 }
1168 
1169 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
1170                                             InitListExpr *IList,
1171                                             QualType &DeclType,
1172                                             bool SubobjectIsDesignatorContext,
1173                                             unsigned &Index,
1174                                             InitListExpr *StructuredList,
1175                                             unsigned &StructuredIndex,
1176                                             bool TopLevelObject) {
1177   if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
1178     // Explicitly braced initializer for complex type can be real+imaginary
1179     // parts.
1180     CheckComplexType(Entity, IList, DeclType, Index,
1181                      StructuredList, StructuredIndex);
1182   } else if (DeclType->isScalarType()) {
1183     CheckScalarType(Entity, IList, DeclType, Index,
1184                     StructuredList, StructuredIndex);
1185   } else if (DeclType->isVectorType()) {
1186     CheckVectorType(Entity, IList, DeclType, Index,
1187                     StructuredList, StructuredIndex);
1188   } else if (DeclType->isRecordType()) {
1189     assert(DeclType->isAggregateType() &&
1190            "non-aggregate records should be handed in CheckSubElementType");
1191     RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1192     auto Bases =
1193         CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
1194                                         CXXRecordDecl::base_class_iterator());
1195     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1196       Bases = CXXRD->bases();
1197     CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(),
1198                           SubobjectIsDesignatorContext, Index, StructuredList,
1199                           StructuredIndex, TopLevelObject);
1200   } else if (DeclType->isArrayType()) {
1201     llvm::APSInt Zero(
1202                     SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
1203                     false);
1204     CheckArrayType(Entity, IList, DeclType, Zero,
1205                    SubobjectIsDesignatorContext, Index,
1206                    StructuredList, StructuredIndex);
1207   } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
1208     // This type is invalid, issue a diagnostic.
1209     ++Index;
1210     if (!VerifyOnly)
1211       SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
1212           << DeclType;
1213     hadError = true;
1214   } else if (DeclType->isReferenceType()) {
1215     CheckReferenceType(Entity, IList, DeclType, Index,
1216                        StructuredList, StructuredIndex);
1217   } else if (DeclType->isObjCObjectType()) {
1218     if (!VerifyOnly)
1219       SemaRef.Diag(IList->getBeginLoc(), diag::err_init_objc_class) << DeclType;
1220     hadError = true;
1221   } else if (DeclType->isOCLIntelSubgroupAVCType()) {
1222     // Checks for scalar type are sufficient for these types too.
1223     CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1224                     StructuredIndex);
1225   } else {
1226     if (!VerifyOnly)
1227       SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
1228           << DeclType;
1229     hadError = true;
1230   }
1231 }
1232 
1233 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
1234                                           InitListExpr *IList,
1235                                           QualType ElemType,
1236                                           unsigned &Index,
1237                                           InitListExpr *StructuredList,
1238                                           unsigned &StructuredIndex) {
1239   Expr *expr = IList->getInit(Index);
1240 
1241   if (ElemType->isReferenceType())
1242     return CheckReferenceType(Entity, IList, ElemType, Index,
1243                               StructuredList, StructuredIndex);
1244 
1245   if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
1246     if (SubInitList->getNumInits() == 1 &&
1247         IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) ==
1248         SIF_None) {
1249       expr = SubInitList->getInit(0);
1250     } else if (!SemaRef.getLangOpts().CPlusPlus) {
1251       InitListExpr *InnerStructuredList
1252         = getStructuredSubobjectInit(IList, Index, ElemType,
1253                                      StructuredList, StructuredIndex,
1254                                      SubInitList->getSourceRange(), true);
1255       CheckExplicitInitList(Entity, SubInitList, ElemType,
1256                             InnerStructuredList);
1257 
1258       if (!hadError && !VerifyOnly) {
1259         bool RequiresSecondPass = false;
1260         FillInEmptyInitializations(Entity, InnerStructuredList,
1261                                    RequiresSecondPass, StructuredList,
1262                                    StructuredIndex);
1263         if (RequiresSecondPass && !hadError)
1264           FillInEmptyInitializations(Entity, InnerStructuredList,
1265                                      RequiresSecondPass, StructuredList,
1266                                      StructuredIndex);
1267       }
1268       ++StructuredIndex;
1269       ++Index;
1270       return;
1271     }
1272     // C++ initialization is handled later.
1273   } else if (isa<ImplicitValueInitExpr>(expr)) {
1274     // This happens during template instantiation when we see an InitListExpr
1275     // that we've already checked once.
1276     assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) &&
1277            "found implicit initialization for the wrong type");
1278     if (!VerifyOnly)
1279       UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1280     ++Index;
1281     return;
1282   }
1283 
1284   if (SemaRef.getLangOpts().CPlusPlus) {
1285     // C++ [dcl.init.aggr]p2:
1286     //   Each member is copy-initialized from the corresponding
1287     //   initializer-clause.
1288 
1289     // FIXME: Better EqualLoc?
1290     InitializationKind Kind =
1291         InitializationKind::CreateCopy(expr->getBeginLoc(), SourceLocation());
1292     InitializationSequence Seq(SemaRef, Entity, Kind, expr,
1293                                /*TopLevelOfInitList*/ true);
1294 
1295     // C++14 [dcl.init.aggr]p13:
1296     //   If the assignment-expression can initialize a member, the member is
1297     //   initialized. Otherwise [...] brace elision is assumed
1298     //
1299     // Brace elision is never performed if the element is not an
1300     // assignment-expression.
1301     if (Seq || isa<InitListExpr>(expr)) {
1302       if (!VerifyOnly) {
1303         ExprResult Result =
1304           Seq.Perform(SemaRef, Entity, Kind, expr);
1305         if (Result.isInvalid())
1306           hadError = true;
1307 
1308         UpdateStructuredListElement(StructuredList, StructuredIndex,
1309                                     Result.getAs<Expr>());
1310       } else if (!Seq)
1311         hadError = true;
1312       ++Index;
1313       return;
1314     }
1315 
1316     // Fall through for subaggregate initialization
1317   } else if (ElemType->isScalarType() || ElemType->isAtomicType()) {
1318     // FIXME: Need to handle atomic aggregate types with implicit init lists.
1319     return CheckScalarType(Entity, IList, ElemType, Index,
1320                            StructuredList, StructuredIndex);
1321   } else if (const ArrayType *arrayType =
1322                  SemaRef.Context.getAsArrayType(ElemType)) {
1323     // arrayType can be incomplete if we're initializing a flexible
1324     // array member.  There's nothing we can do with the completed
1325     // type here, though.
1326 
1327     if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) {
1328       if (!VerifyOnly) {
1329         CheckStringInit(expr, ElemType, arrayType, SemaRef);
1330         UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1331       }
1332       ++Index;
1333       return;
1334     }
1335 
1336     // Fall through for subaggregate initialization.
1337 
1338   } else {
1339     assert((ElemType->isRecordType() || ElemType->isVectorType() ||
1340             ElemType->isOpenCLSpecificType()) && "Unexpected type");
1341 
1342     // C99 6.7.8p13:
1343     //
1344     //   The initializer for a structure or union object that has
1345     //   automatic storage duration shall be either an initializer
1346     //   list as described below, or a single expression that has
1347     //   compatible structure or union type. In the latter case, the
1348     //   initial value of the object, including unnamed members, is
1349     //   that of the expression.
1350     ExprResult ExprRes = expr;
1351     if (SemaRef.CheckSingleAssignmentConstraints(
1352             ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) {
1353       if (ExprRes.isInvalid())
1354         hadError = true;
1355       else {
1356         ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get());
1357           if (ExprRes.isInvalid())
1358             hadError = true;
1359       }
1360       UpdateStructuredListElement(StructuredList, StructuredIndex,
1361                                   ExprRes.getAs<Expr>());
1362       ++Index;
1363       return;
1364     }
1365     ExprRes.get();
1366     // Fall through for subaggregate initialization
1367   }
1368 
1369   // C++ [dcl.init.aggr]p12:
1370   //
1371   //   [...] Otherwise, if the member is itself a non-empty
1372   //   subaggregate, brace elision is assumed and the initializer is
1373   //   considered for the initialization of the first member of
1374   //   the subaggregate.
1375   // OpenCL vector initializer is handled elsewhere.
1376   if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) ||
1377       ElemType->isAggregateType()) {
1378     CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
1379                           StructuredIndex);
1380     ++StructuredIndex;
1381   } else {
1382     if (!VerifyOnly) {
1383       // We cannot initialize this element, so let
1384       // PerformCopyInitialization produce the appropriate diagnostic.
1385       SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr,
1386                                         /*TopLevelOfInitList=*/true);
1387     }
1388     hadError = true;
1389     ++Index;
1390     ++StructuredIndex;
1391   }
1392 }
1393 
1394 void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
1395                                        InitListExpr *IList, QualType DeclType,
1396                                        unsigned &Index,
1397                                        InitListExpr *StructuredList,
1398                                        unsigned &StructuredIndex) {
1399   assert(Index == 0 && "Index in explicit init list must be zero");
1400 
1401   // As an extension, clang supports complex initializers, which initialize
1402   // a complex number component-wise.  When an explicit initializer list for
1403   // a complex number contains two two initializers, this extension kicks in:
1404   // it exepcts the initializer list to contain two elements convertible to
1405   // the element type of the complex type. The first element initializes
1406   // the real part, and the second element intitializes the imaginary part.
1407 
1408   if (IList->getNumInits() != 2)
1409     return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1410                            StructuredIndex);
1411 
1412   // This is an extension in C.  (The builtin _Complex type does not exist
1413   // in the C++ standard.)
1414   if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
1415     SemaRef.Diag(IList->getBeginLoc(), diag::ext_complex_component_init)
1416         << IList->getSourceRange();
1417 
1418   // Initialize the complex number.
1419   QualType elementType = DeclType->getAs<ComplexType>()->getElementType();
1420   InitializedEntity ElementEntity =
1421     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1422 
1423   for (unsigned i = 0; i < 2; ++i) {
1424     ElementEntity.setElementIndex(Index);
1425     CheckSubElementType(ElementEntity, IList, elementType, Index,
1426                         StructuredList, StructuredIndex);
1427   }
1428 }
1429 
1430 void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
1431                                       InitListExpr *IList, QualType DeclType,
1432                                       unsigned &Index,
1433                                       InitListExpr *StructuredList,
1434                                       unsigned &StructuredIndex) {
1435   if (Index >= IList->getNumInits()) {
1436     if (!VerifyOnly)
1437       SemaRef.Diag(IList->getBeginLoc(),
1438                    SemaRef.getLangOpts().CPlusPlus11
1439                        ? diag::warn_cxx98_compat_empty_scalar_initializer
1440                        : diag::err_empty_scalar_initializer)
1441           << IList->getSourceRange();
1442     hadError = !SemaRef.getLangOpts().CPlusPlus11;
1443     ++Index;
1444     ++StructuredIndex;
1445     return;
1446   }
1447 
1448   Expr *expr = IList->getInit(Index);
1449   if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
1450     // FIXME: This is invalid, and accepting it causes overload resolution
1451     // to pick the wrong overload in some corner cases.
1452     if (!VerifyOnly)
1453       SemaRef.Diag(SubIList->getBeginLoc(),
1454                    diag::ext_many_braces_around_scalar_init)
1455           << SubIList->getSourceRange();
1456 
1457     CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
1458                     StructuredIndex);
1459     return;
1460   } else if (isa<DesignatedInitExpr>(expr)) {
1461     if (!VerifyOnly)
1462       SemaRef.Diag(expr->getBeginLoc(), diag::err_designator_for_scalar_init)
1463           << DeclType << expr->getSourceRange();
1464     hadError = true;
1465     ++Index;
1466     ++StructuredIndex;
1467     return;
1468   }
1469 
1470   if (VerifyOnly) {
1471     if (!SemaRef.CanPerformCopyInitialization(Entity,expr))
1472       hadError = true;
1473     ++Index;
1474     return;
1475   }
1476 
1477   ExprResult Result =
1478       SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
1479                                         /*TopLevelOfInitList=*/true);
1480 
1481   Expr *ResultExpr = nullptr;
1482 
1483   if (Result.isInvalid())
1484     hadError = true; // types weren't compatible.
1485   else {
1486     ResultExpr = Result.getAs<Expr>();
1487 
1488     if (ResultExpr != expr) {
1489       // The type was promoted, update initializer list.
1490       IList->setInit(Index, ResultExpr);
1491     }
1492   }
1493   if (hadError)
1494     ++StructuredIndex;
1495   else
1496     UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1497   ++Index;
1498 }
1499 
1500 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
1501                                          InitListExpr *IList, QualType DeclType,
1502                                          unsigned &Index,
1503                                          InitListExpr *StructuredList,
1504                                          unsigned &StructuredIndex) {
1505   if (Index >= IList->getNumInits()) {
1506     // FIXME: It would be wonderful if we could point at the actual member. In
1507     // general, it would be useful to pass location information down the stack,
1508     // so that we know the location (or decl) of the "current object" being
1509     // initialized.
1510     if (!VerifyOnly)
1511       SemaRef.Diag(IList->getBeginLoc(),
1512                    diag::err_init_reference_member_uninitialized)
1513           << DeclType << IList->getSourceRange();
1514     hadError = true;
1515     ++Index;
1516     ++StructuredIndex;
1517     return;
1518   }
1519 
1520   Expr *expr = IList->getInit(Index);
1521   if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
1522     if (!VerifyOnly)
1523       SemaRef.Diag(IList->getBeginLoc(), diag::err_init_non_aggr_init_list)
1524           << DeclType << IList->getSourceRange();
1525     hadError = true;
1526     ++Index;
1527     ++StructuredIndex;
1528     return;
1529   }
1530 
1531   if (VerifyOnly) {
1532     if (!SemaRef.CanPerformCopyInitialization(Entity,expr))
1533       hadError = true;
1534     ++Index;
1535     return;
1536   }
1537 
1538   ExprResult Result =
1539       SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
1540                                         /*TopLevelOfInitList=*/true);
1541 
1542   if (Result.isInvalid())
1543     hadError = true;
1544 
1545   expr = Result.getAs<Expr>();
1546   IList->setInit(Index, expr);
1547 
1548   if (hadError)
1549     ++StructuredIndex;
1550   else
1551     UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1552   ++Index;
1553 }
1554 
1555 void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1556                                       InitListExpr *IList, QualType DeclType,
1557                                       unsigned &Index,
1558                                       InitListExpr *StructuredList,
1559                                       unsigned &StructuredIndex) {
1560   const VectorType *VT = DeclType->getAs<VectorType>();
1561   unsigned maxElements = VT->getNumElements();
1562   unsigned numEltsInit = 0;
1563   QualType elementType = VT->getElementType();
1564 
1565   if (Index >= IList->getNumInits()) {
1566     // Make sure the element type can be value-initialized.
1567     if (VerifyOnly)
1568       CheckEmptyInitializable(
1569           InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1570           IList->getEndLoc());
1571     return;
1572   }
1573 
1574   if (!SemaRef.getLangOpts().OpenCL) {
1575     // If the initializing element is a vector, try to copy-initialize
1576     // instead of breaking it apart (which is doomed to failure anyway).
1577     Expr *Init = IList->getInit(Index);
1578     if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1579       if (VerifyOnly) {
1580         if (!SemaRef.CanPerformCopyInitialization(Entity, Init))
1581           hadError = true;
1582         ++Index;
1583         return;
1584       }
1585 
1586       ExprResult Result =
1587           SemaRef.PerformCopyInitialization(Entity, Init->getBeginLoc(), Init,
1588                                             /*TopLevelOfInitList=*/true);
1589 
1590       Expr *ResultExpr = nullptr;
1591       if (Result.isInvalid())
1592         hadError = true; // types weren't compatible.
1593       else {
1594         ResultExpr = Result.getAs<Expr>();
1595 
1596         if (ResultExpr != Init) {
1597           // The type was promoted, update initializer list.
1598           IList->setInit(Index, ResultExpr);
1599         }
1600       }
1601       if (hadError)
1602         ++StructuredIndex;
1603       else
1604         UpdateStructuredListElement(StructuredList, StructuredIndex,
1605                                     ResultExpr);
1606       ++Index;
1607       return;
1608     }
1609 
1610     InitializedEntity ElementEntity =
1611       InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1612 
1613     for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1614       // Don't attempt to go past the end of the init list
1615       if (Index >= IList->getNumInits()) {
1616         if (VerifyOnly)
1617           CheckEmptyInitializable(ElementEntity, IList->getEndLoc());
1618         break;
1619       }
1620 
1621       ElementEntity.setElementIndex(Index);
1622       CheckSubElementType(ElementEntity, IList, elementType, Index,
1623                           StructuredList, StructuredIndex);
1624     }
1625 
1626     if (VerifyOnly)
1627       return;
1628 
1629     bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian();
1630     const VectorType *T = Entity.getType()->getAs<VectorType>();
1631     if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector ||
1632                         T->getVectorKind() == VectorType::NeonPolyVector)) {
1633       // The ability to use vector initializer lists is a GNU vector extension
1634       // and is unrelated to the NEON intrinsics in arm_neon.h. On little
1635       // endian machines it works fine, however on big endian machines it
1636       // exhibits surprising behaviour:
1637       //
1638       //   uint32x2_t x = {42, 64};
1639       //   return vget_lane_u32(x, 0); // Will return 64.
1640       //
1641       // Because of this, explicitly call out that it is non-portable.
1642       //
1643       SemaRef.Diag(IList->getBeginLoc(),
1644                    diag::warn_neon_vector_initializer_non_portable);
1645 
1646       const char *typeCode;
1647       unsigned typeSize = SemaRef.Context.getTypeSize(elementType);
1648 
1649       if (elementType->isFloatingType())
1650         typeCode = "f";
1651       else if (elementType->isSignedIntegerType())
1652         typeCode = "s";
1653       else if (elementType->isUnsignedIntegerType())
1654         typeCode = "u";
1655       else
1656         llvm_unreachable("Invalid element type!");
1657 
1658       SemaRef.Diag(IList->getBeginLoc(),
1659                    SemaRef.Context.getTypeSize(VT) > 64
1660                        ? diag::note_neon_vector_initializer_non_portable_q
1661                        : diag::note_neon_vector_initializer_non_portable)
1662           << typeCode << typeSize;
1663     }
1664 
1665     return;
1666   }
1667 
1668   InitializedEntity ElementEntity =
1669     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1670 
1671   // OpenCL initializers allows vectors to be constructed from vectors.
1672   for (unsigned i = 0; i < maxElements; ++i) {
1673     // Don't attempt to go past the end of the init list
1674     if (Index >= IList->getNumInits())
1675       break;
1676 
1677     ElementEntity.setElementIndex(Index);
1678 
1679     QualType IType = IList->getInit(Index)->getType();
1680     if (!IType->isVectorType()) {
1681       CheckSubElementType(ElementEntity, IList, elementType, Index,
1682                           StructuredList, StructuredIndex);
1683       ++numEltsInit;
1684     } else {
1685       QualType VecType;
1686       const VectorType *IVT = IType->getAs<VectorType>();
1687       unsigned numIElts = IVT->getNumElements();
1688 
1689       if (IType->isExtVectorType())
1690         VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1691       else
1692         VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1693                                                 IVT->getVectorKind());
1694       CheckSubElementType(ElementEntity, IList, VecType, Index,
1695                           StructuredList, StructuredIndex);
1696       numEltsInit += numIElts;
1697     }
1698   }
1699 
1700   // OpenCL requires all elements to be initialized.
1701   if (numEltsInit != maxElements) {
1702     if (!VerifyOnly)
1703       SemaRef.Diag(IList->getBeginLoc(),
1704                    diag::err_vector_incorrect_num_initializers)
1705           << (numEltsInit < maxElements) << maxElements << numEltsInit;
1706     hadError = true;
1707   }
1708 }
1709 
1710 /// Check if the type of a class element has an accessible destructor, and marks
1711 /// it referenced. Returns true if we shouldn't form a reference to the
1712 /// destructor.
1713 ///
1714 /// Aggregate initialization requires a class element's destructor be
1715 /// accessible per 11.6.1 [dcl.init.aggr]:
1716 ///
1717 /// The destructor for each element of class type is potentially invoked
1718 /// (15.4 [class.dtor]) from the context where the aggregate initialization
1719 /// occurs.
1720 static bool checkDestructorReference(QualType ElementType, SourceLocation Loc,
1721                                      Sema &SemaRef) {
1722   auto *CXXRD = ElementType->getAsCXXRecordDecl();
1723   if (!CXXRD)
1724     return false;
1725 
1726   CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(CXXRD);
1727   SemaRef.CheckDestructorAccess(Loc, Destructor,
1728                                 SemaRef.PDiag(diag::err_access_dtor_temp)
1729                                 << ElementType);
1730   SemaRef.MarkFunctionReferenced(Loc, Destructor);
1731   return SemaRef.DiagnoseUseOfDecl(Destructor, Loc);
1732 }
1733 
1734 void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1735                                      InitListExpr *IList, QualType &DeclType,
1736                                      llvm::APSInt elementIndex,
1737                                      bool SubobjectIsDesignatorContext,
1738                                      unsigned &Index,
1739                                      InitListExpr *StructuredList,
1740                                      unsigned &StructuredIndex) {
1741   const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1742 
1743   if (!VerifyOnly) {
1744     if (checkDestructorReference(arrayType->getElementType(),
1745                                  IList->getEndLoc(), SemaRef)) {
1746       hadError = true;
1747       return;
1748     }
1749   }
1750 
1751   // Check for the special-case of initializing an array with a string.
1752   if (Index < IList->getNumInits()) {
1753     if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) ==
1754         SIF_None) {
1755       // We place the string literal directly into the resulting
1756       // initializer list. This is the only place where the structure
1757       // of the structured initializer list doesn't match exactly,
1758       // because doing so would involve allocating one character
1759       // constant for each string.
1760       if (!VerifyOnly) {
1761         CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef);
1762         UpdateStructuredListElement(StructuredList, StructuredIndex,
1763                                     IList->getInit(Index));
1764         StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1765       }
1766       ++Index;
1767       return;
1768     }
1769   }
1770   if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1771     // Check for VLAs; in standard C it would be possible to check this
1772     // earlier, but I don't know where clang accepts VLAs (gcc accepts
1773     // them in all sorts of strange places).
1774     if (!VerifyOnly)
1775       SemaRef.Diag(VAT->getSizeExpr()->getBeginLoc(),
1776                    diag::err_variable_object_no_init)
1777           << VAT->getSizeExpr()->getSourceRange();
1778     hadError = true;
1779     ++Index;
1780     ++StructuredIndex;
1781     return;
1782   }
1783 
1784   // We might know the maximum number of elements in advance.
1785   llvm::APSInt maxElements(elementIndex.getBitWidth(),
1786                            elementIndex.isUnsigned());
1787   bool maxElementsKnown = false;
1788   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1789     maxElements = CAT->getSize();
1790     elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1791     elementIndex.setIsUnsigned(maxElements.isUnsigned());
1792     maxElementsKnown = true;
1793   }
1794 
1795   QualType elementType = arrayType->getElementType();
1796   while (Index < IList->getNumInits()) {
1797     Expr *Init = IList->getInit(Index);
1798     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1799       // If we're not the subobject that matches up with the '{' for
1800       // the designator, we shouldn't be handling the
1801       // designator. Return immediately.
1802       if (!SubobjectIsDesignatorContext)
1803         return;
1804 
1805       // Handle this designated initializer. elementIndex will be
1806       // updated to be the next array element we'll initialize.
1807       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1808                                      DeclType, nullptr, &elementIndex, Index,
1809                                      StructuredList, StructuredIndex, true,
1810                                      false)) {
1811         hadError = true;
1812         continue;
1813       }
1814 
1815       if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1816         maxElements = maxElements.extend(elementIndex.getBitWidth());
1817       else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1818         elementIndex = elementIndex.extend(maxElements.getBitWidth());
1819       elementIndex.setIsUnsigned(maxElements.isUnsigned());
1820 
1821       // If the array is of incomplete type, keep track of the number of
1822       // elements in the initializer.
1823       if (!maxElementsKnown && elementIndex > maxElements)
1824         maxElements = elementIndex;
1825 
1826       continue;
1827     }
1828 
1829     // If we know the maximum number of elements, and we've already
1830     // hit it, stop consuming elements in the initializer list.
1831     if (maxElementsKnown && elementIndex == maxElements)
1832       break;
1833 
1834     InitializedEntity ElementEntity =
1835       InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1836                                            Entity);
1837     // Check this element.
1838     CheckSubElementType(ElementEntity, IList, elementType, Index,
1839                         StructuredList, StructuredIndex);
1840     ++elementIndex;
1841 
1842     // If the array is of incomplete type, keep track of the number of
1843     // elements in the initializer.
1844     if (!maxElementsKnown && elementIndex > maxElements)
1845       maxElements = elementIndex;
1846   }
1847   if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1848     // If this is an incomplete array type, the actual type needs to
1849     // be calculated here.
1850     llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1851     if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) {
1852       // Sizing an array implicitly to zero is not allowed by ISO C,
1853       // but is supported by GNU.
1854       SemaRef.Diag(IList->getBeginLoc(), diag::ext_typecheck_zero_array_size);
1855     }
1856 
1857     DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1858                                                      ArrayType::Normal, 0);
1859   }
1860   if (!hadError && VerifyOnly) {
1861     // If there are any members of the array that get value-initialized, check
1862     // that is possible. That happens if we know the bound and don't have
1863     // enough elements, or if we're performing an array new with an unknown
1864     // bound.
1865     // FIXME: This needs to detect holes left by designated initializers too.
1866     if ((maxElementsKnown && elementIndex < maxElements) ||
1867         Entity.isVariableLengthArrayNew())
1868       CheckEmptyInitializable(
1869           InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1870           IList->getEndLoc());
1871   }
1872 }
1873 
1874 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1875                                              Expr *InitExpr,
1876                                              FieldDecl *Field,
1877                                              bool TopLevelObject) {
1878   // Handle GNU flexible array initializers.
1879   unsigned FlexArrayDiag;
1880   if (isa<InitListExpr>(InitExpr) &&
1881       cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
1882     // Empty flexible array init always allowed as an extension
1883     FlexArrayDiag = diag::ext_flexible_array_init;
1884   } else if (SemaRef.getLangOpts().CPlusPlus) {
1885     // Disallow flexible array init in C++; it is not required for gcc
1886     // compatibility, and it needs work to IRGen correctly in general.
1887     FlexArrayDiag = diag::err_flexible_array_init;
1888   } else if (!TopLevelObject) {
1889     // Disallow flexible array init on non-top-level object
1890     FlexArrayDiag = diag::err_flexible_array_init;
1891   } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
1892     // Disallow flexible array init on anything which is not a variable.
1893     FlexArrayDiag = diag::err_flexible_array_init;
1894   } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
1895     // Disallow flexible array init on local variables.
1896     FlexArrayDiag = diag::err_flexible_array_init;
1897   } else {
1898     // Allow other cases.
1899     FlexArrayDiag = diag::ext_flexible_array_init;
1900   }
1901 
1902   if (!VerifyOnly) {
1903     SemaRef.Diag(InitExpr->getBeginLoc(), FlexArrayDiag)
1904         << InitExpr->getBeginLoc();
1905     SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1906       << Field;
1907   }
1908 
1909   return FlexArrayDiag != diag::ext_flexible_array_init;
1910 }
1911 
1912 void InitListChecker::CheckStructUnionTypes(
1913     const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType,
1914     CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field,
1915     bool SubobjectIsDesignatorContext, unsigned &Index,
1916     InitListExpr *StructuredList, unsigned &StructuredIndex,
1917     bool TopLevelObject) {
1918   RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
1919 
1920   // If the record is invalid, some of it's members are invalid. To avoid
1921   // confusion, we forgo checking the intializer for the entire record.
1922   if (structDecl->isInvalidDecl()) {
1923     // Assume it was supposed to consume a single initializer.
1924     ++Index;
1925     hadError = true;
1926     return;
1927   }
1928 
1929   if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1930     RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1931 
1932     if (!VerifyOnly)
1933       for (FieldDecl *FD : RD->fields()) {
1934         QualType ET = SemaRef.Context.getBaseElementType(FD->getType());
1935         if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) {
1936           hadError = true;
1937           return;
1938         }
1939       }
1940 
1941     // If there's a default initializer, use it.
1942     if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
1943       if (VerifyOnly)
1944         return;
1945       for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1946            Field != FieldEnd; ++Field) {
1947         if (Field->hasInClassInitializer()) {
1948           StructuredList->setInitializedFieldInUnion(*Field);
1949           // FIXME: Actually build a CXXDefaultInitExpr?
1950           return;
1951         }
1952       }
1953     }
1954 
1955     // Value-initialize the first member of the union that isn't an unnamed
1956     // bitfield.
1957     for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1958          Field != FieldEnd; ++Field) {
1959       if (!Field->isUnnamedBitfield()) {
1960         if (VerifyOnly)
1961           CheckEmptyInitializable(
1962               InitializedEntity::InitializeMember(*Field, &Entity),
1963               IList->getEndLoc());
1964         else
1965           StructuredList->setInitializedFieldInUnion(*Field);
1966         break;
1967       }
1968     }
1969     return;
1970   }
1971 
1972   bool InitializedSomething = false;
1973 
1974   // If we have any base classes, they are initialized prior to the fields.
1975   for (auto &Base : Bases) {
1976     Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr;
1977 
1978     // Designated inits always initialize fields, so if we see one, all
1979     // remaining base classes have no explicit initializer.
1980     if (Init && isa<DesignatedInitExpr>(Init))
1981       Init = nullptr;
1982 
1983     SourceLocation InitLoc = Init ? Init->getBeginLoc() : IList->getEndLoc();
1984     InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
1985         SemaRef.Context, &Base, false, &Entity);
1986     if (Init) {
1987       CheckSubElementType(BaseEntity, IList, Base.getType(), Index,
1988                           StructuredList, StructuredIndex);
1989       InitializedSomething = true;
1990     } else if (VerifyOnly) {
1991       CheckEmptyInitializable(BaseEntity, InitLoc);
1992     }
1993 
1994     if (!VerifyOnly)
1995       if (checkDestructorReference(Base.getType(), InitLoc, SemaRef)) {
1996         hadError = true;
1997         return;
1998       }
1999   }
2000 
2001   // If structDecl is a forward declaration, this loop won't do
2002   // anything except look at designated initializers; That's okay,
2003   // because an error should get printed out elsewhere. It might be
2004   // worthwhile to skip over the rest of the initializer, though.
2005   RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
2006   RecordDecl::field_iterator FieldEnd = RD->field_end();
2007   bool CheckForMissingFields =
2008     !IList->isIdiomaticZeroInitializer(SemaRef.getLangOpts());
2009   bool HasDesignatedInit = false;
2010 
2011   while (Index < IList->getNumInits()) {
2012     Expr *Init = IList->getInit(Index);
2013     SourceLocation InitLoc = Init->getBeginLoc();
2014 
2015     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
2016       // If we're not the subobject that matches up with the '{' for
2017       // the designator, we shouldn't be handling the
2018       // designator. Return immediately.
2019       if (!SubobjectIsDesignatorContext)
2020         return;
2021 
2022       HasDesignatedInit = true;
2023 
2024       // Handle this designated initializer. Field will be updated to
2025       // the next field that we'll be initializing.
2026       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
2027                                      DeclType, &Field, nullptr, Index,
2028                                      StructuredList, StructuredIndex,
2029                                      true, TopLevelObject))
2030         hadError = true;
2031       else if (!VerifyOnly) {
2032         // Find the field named by the designated initializer.
2033         RecordDecl::field_iterator F = RD->field_begin();
2034         while (std::next(F) != Field)
2035           ++F;
2036         QualType ET = SemaRef.Context.getBaseElementType(F->getType());
2037         if (checkDestructorReference(ET, InitLoc, SemaRef)) {
2038           hadError = true;
2039           return;
2040         }
2041       }
2042 
2043       InitializedSomething = true;
2044 
2045       // Disable check for missing fields when designators are used.
2046       // This matches gcc behaviour.
2047       CheckForMissingFields = false;
2048       continue;
2049     }
2050 
2051     if (Field == FieldEnd) {
2052       // We've run out of fields. We're done.
2053       break;
2054     }
2055 
2056     // We've already initialized a member of a union. We're done.
2057     if (InitializedSomething && DeclType->isUnionType())
2058       break;
2059 
2060     // If we've hit the flexible array member at the end, we're done.
2061     if (Field->getType()->isIncompleteArrayType())
2062       break;
2063 
2064     if (Field->isUnnamedBitfield()) {
2065       // Don't initialize unnamed bitfields, e.g. "int : 20;"
2066       ++Field;
2067       continue;
2068     }
2069 
2070     // Make sure we can use this declaration.
2071     bool InvalidUse;
2072     if (VerifyOnly)
2073       InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2074     else
2075       InvalidUse = SemaRef.DiagnoseUseOfDecl(
2076           *Field, IList->getInit(Index)->getBeginLoc());
2077     if (InvalidUse) {
2078       ++Index;
2079       ++Field;
2080       hadError = true;
2081       continue;
2082     }
2083 
2084     if (!VerifyOnly) {
2085       QualType ET = SemaRef.Context.getBaseElementType(Field->getType());
2086       if (checkDestructorReference(ET, InitLoc, SemaRef)) {
2087         hadError = true;
2088         return;
2089       }
2090     }
2091 
2092     InitializedEntity MemberEntity =
2093       InitializedEntity::InitializeMember(*Field, &Entity);
2094     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2095                         StructuredList, StructuredIndex);
2096     InitializedSomething = true;
2097 
2098     if (DeclType->isUnionType() && !VerifyOnly) {
2099       // Initialize the first field within the union.
2100       StructuredList->setInitializedFieldInUnion(*Field);
2101     }
2102 
2103     ++Field;
2104   }
2105 
2106   // Emit warnings for missing struct field initializers.
2107   if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
2108       Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
2109       !DeclType->isUnionType()) {
2110     // It is possible we have one or more unnamed bitfields remaining.
2111     // Find first (if any) named field and emit warning.
2112     for (RecordDecl::field_iterator it = Field, end = RD->field_end();
2113          it != end; ++it) {
2114       if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
2115         SemaRef.Diag(IList->getSourceRange().getEnd(),
2116                      diag::warn_missing_field_initializers) << *it;
2117         break;
2118       }
2119     }
2120   }
2121 
2122   // Check that any remaining fields can be value-initialized.
2123   if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() &&
2124       !Field->getType()->isIncompleteArrayType()) {
2125     // FIXME: Should check for holes left by designated initializers too.
2126     for (; Field != FieldEnd && !hadError; ++Field) {
2127       if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
2128         CheckEmptyInitializable(
2129             InitializedEntity::InitializeMember(*Field, &Entity),
2130             IList->getEndLoc());
2131     }
2132   }
2133 
2134   // Check that the types of the remaining fields have accessible destructors.
2135   if (!VerifyOnly) {
2136     // If the initializer expression has a designated initializer, check the
2137     // elements for which a designated initializer is not provided too.
2138     RecordDecl::field_iterator I = HasDesignatedInit ? RD->field_begin()
2139                                                      : Field;
2140     for (RecordDecl::field_iterator E = RD->field_end(); I != E; ++I) {
2141       QualType ET = SemaRef.Context.getBaseElementType(I->getType());
2142       if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) {
2143         hadError = true;
2144         return;
2145       }
2146     }
2147   }
2148 
2149   if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
2150       Index >= IList->getNumInits())
2151     return;
2152 
2153   if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
2154                              TopLevelObject)) {
2155     hadError = true;
2156     ++Index;
2157     return;
2158   }
2159 
2160   InitializedEntity MemberEntity =
2161     InitializedEntity::InitializeMember(*Field, &Entity);
2162 
2163   if (isa<InitListExpr>(IList->getInit(Index)))
2164     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2165                         StructuredList, StructuredIndex);
2166   else
2167     CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
2168                           StructuredList, StructuredIndex);
2169 }
2170 
2171 /// Expand a field designator that refers to a member of an
2172 /// anonymous struct or union into a series of field designators that
2173 /// refers to the field within the appropriate subobject.
2174 ///
2175 static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
2176                                            DesignatedInitExpr *DIE,
2177                                            unsigned DesigIdx,
2178                                            IndirectFieldDecl *IndirectField) {
2179   typedef DesignatedInitExpr::Designator Designator;
2180 
2181   // Build the replacement designators.
2182   SmallVector<Designator, 4> Replacements;
2183   for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
2184        PE = IndirectField->chain_end(); PI != PE; ++PI) {
2185     if (PI + 1 == PE)
2186       Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2187                                     DIE->getDesignator(DesigIdx)->getDotLoc(),
2188                                 DIE->getDesignator(DesigIdx)->getFieldLoc()));
2189     else
2190       Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2191                                         SourceLocation(), SourceLocation()));
2192     assert(isa<FieldDecl>(*PI));
2193     Replacements.back().setField(cast<FieldDecl>(*PI));
2194   }
2195 
2196   // Expand the current designator into the set of replacement
2197   // designators, so we have a full subobject path down to where the
2198   // member of the anonymous struct/union is actually stored.
2199   DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
2200                         &Replacements[0] + Replacements.size());
2201 }
2202 
2203 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
2204                                                    DesignatedInitExpr *DIE) {
2205   unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
2206   SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
2207   for (unsigned I = 0; I < NumIndexExprs; ++I)
2208     IndexExprs[I] = DIE->getSubExpr(I + 1);
2209   return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(),
2210                                     IndexExprs,
2211                                     DIE->getEqualOrColonLoc(),
2212                                     DIE->usesGNUSyntax(), DIE->getInit());
2213 }
2214 
2215 namespace {
2216 
2217 // Callback to only accept typo corrections that are for field members of
2218 // the given struct or union.
2219 class FieldInitializerValidatorCCC final : public CorrectionCandidateCallback {
2220  public:
2221   explicit FieldInitializerValidatorCCC(RecordDecl *RD)
2222       : Record(RD) {}
2223 
2224   bool ValidateCandidate(const TypoCorrection &candidate) override {
2225     FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
2226     return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
2227   }
2228 
2229   std::unique_ptr<CorrectionCandidateCallback> clone() override {
2230     return llvm::make_unique<FieldInitializerValidatorCCC>(*this);
2231   }
2232 
2233  private:
2234   RecordDecl *Record;
2235 };
2236 
2237 } // end anonymous namespace
2238 
2239 /// Check the well-formedness of a C99 designated initializer.
2240 ///
2241 /// Determines whether the designated initializer @p DIE, which
2242 /// resides at the given @p Index within the initializer list @p
2243 /// IList, is well-formed for a current object of type @p DeclType
2244 /// (C99 6.7.8). The actual subobject that this designator refers to
2245 /// within the current subobject is returned in either
2246 /// @p NextField or @p NextElementIndex (whichever is appropriate).
2247 ///
2248 /// @param IList  The initializer list in which this designated
2249 /// initializer occurs.
2250 ///
2251 /// @param DIE The designated initializer expression.
2252 ///
2253 /// @param DesigIdx  The index of the current designator.
2254 ///
2255 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
2256 /// into which the designation in @p DIE should refer.
2257 ///
2258 /// @param NextField  If non-NULL and the first designator in @p DIE is
2259 /// a field, this will be set to the field declaration corresponding
2260 /// to the field named by the designator.
2261 ///
2262 /// @param NextElementIndex  If non-NULL and the first designator in @p
2263 /// DIE is an array designator or GNU array-range designator, this
2264 /// will be set to the last index initialized by this designator.
2265 ///
2266 /// @param Index  Index into @p IList where the designated initializer
2267 /// @p DIE occurs.
2268 ///
2269 /// @param StructuredList  The initializer list expression that
2270 /// describes all of the subobject initializers in the order they'll
2271 /// actually be initialized.
2272 ///
2273 /// @returns true if there was an error, false otherwise.
2274 bool
2275 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
2276                                             InitListExpr *IList,
2277                                             DesignatedInitExpr *DIE,
2278                                             unsigned DesigIdx,
2279                                             QualType &CurrentObjectType,
2280                                           RecordDecl::field_iterator *NextField,
2281                                             llvm::APSInt *NextElementIndex,
2282                                             unsigned &Index,
2283                                             InitListExpr *StructuredList,
2284                                             unsigned &StructuredIndex,
2285                                             bool FinishSubobjectInit,
2286                                             bool TopLevelObject) {
2287   if (DesigIdx == DIE->size()) {
2288     // Check the actual initialization for the designated object type.
2289     bool prevHadError = hadError;
2290 
2291     // Temporarily remove the designator expression from the
2292     // initializer list that the child calls see, so that we don't try
2293     // to re-process the designator.
2294     unsigned OldIndex = Index;
2295     IList->setInit(OldIndex, DIE->getInit());
2296 
2297     CheckSubElementType(Entity, IList, CurrentObjectType, Index,
2298                         StructuredList, StructuredIndex);
2299 
2300     // Restore the designated initializer expression in the syntactic
2301     // form of the initializer list.
2302     if (IList->getInit(OldIndex) != DIE->getInit())
2303       DIE->setInit(IList->getInit(OldIndex));
2304     IList->setInit(OldIndex, DIE);
2305 
2306     return hadError && !prevHadError;
2307   }
2308 
2309   DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
2310   bool IsFirstDesignator = (DesigIdx == 0);
2311   if (!VerifyOnly) {
2312     assert((IsFirstDesignator || StructuredList) &&
2313            "Need a non-designated initializer list to start from");
2314 
2315     // Determine the structural initializer list that corresponds to the
2316     // current subobject.
2317     if (IsFirstDesignator)
2318       StructuredList = SyntacticToSemantic.lookup(IList);
2319     else {
2320       Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ?
2321           StructuredList->getInit(StructuredIndex) : nullptr;
2322       if (!ExistingInit && StructuredList->hasArrayFiller())
2323         ExistingInit = StructuredList->getArrayFiller();
2324 
2325       if (!ExistingInit)
2326         StructuredList = getStructuredSubobjectInit(
2327             IList, Index, CurrentObjectType, StructuredList, StructuredIndex,
2328             SourceRange(D->getBeginLoc(), DIE->getEndLoc()));
2329       else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit))
2330         StructuredList = Result;
2331       else {
2332         if (DesignatedInitUpdateExpr *E =
2333                 dyn_cast<DesignatedInitUpdateExpr>(ExistingInit))
2334           StructuredList = E->getUpdater();
2335         else {
2336           DesignatedInitUpdateExpr *DIUE = new (SemaRef.Context)
2337               DesignatedInitUpdateExpr(SemaRef.Context, D->getBeginLoc(),
2338                                        ExistingInit, DIE->getEndLoc());
2339           StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE);
2340           StructuredList = DIUE->getUpdater();
2341         }
2342 
2343         // We need to check on source range validity because the previous
2344         // initializer does not have to be an explicit initializer. e.g.,
2345         //
2346         // struct P { int a, b; };
2347         // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
2348         //
2349         // There is an overwrite taking place because the first braced initializer
2350         // list "{ .a = 2 }" already provides value for .p.b (which is zero).
2351         if (ExistingInit->getSourceRange().isValid()) {
2352           // We are creating an initializer list that initializes the
2353           // subobjects of the current object, but there was already an
2354           // initialization that completely initialized the current
2355           // subobject, e.g., by a compound literal:
2356           //
2357           // struct X { int a, b; };
2358           // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2359           //
2360           // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2361           // designated initializer re-initializes the whole
2362           // subobject [0], overwriting previous initializers.
2363           SemaRef.Diag(D->getBeginLoc(),
2364                        diag::warn_subobject_initializer_overrides)
2365               << SourceRange(D->getBeginLoc(), DIE->getEndLoc());
2366 
2367           SemaRef.Diag(ExistingInit->getBeginLoc(),
2368                        diag::note_previous_initializer)
2369               << /*FIXME:has side effects=*/0 << ExistingInit->getSourceRange();
2370         }
2371       }
2372     }
2373     assert(StructuredList && "Expected a structured initializer list");
2374   }
2375 
2376   if (D->isFieldDesignator()) {
2377     // C99 6.7.8p7:
2378     //
2379     //   If a designator has the form
2380     //
2381     //      . identifier
2382     //
2383     //   then the current object (defined below) shall have
2384     //   structure or union type and the identifier shall be the
2385     //   name of a member of that type.
2386     const RecordType *RT = CurrentObjectType->getAs<RecordType>();
2387     if (!RT) {
2388       SourceLocation Loc = D->getDotLoc();
2389       if (Loc.isInvalid())
2390         Loc = D->getFieldLoc();
2391       if (!VerifyOnly)
2392         SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
2393           << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
2394       ++Index;
2395       return true;
2396     }
2397 
2398     FieldDecl *KnownField = D->getField();
2399     if (!KnownField) {
2400       IdentifierInfo *FieldName = D->getFieldName();
2401       DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
2402       for (NamedDecl *ND : Lookup) {
2403         if (auto *FD = dyn_cast<FieldDecl>(ND)) {
2404           KnownField = FD;
2405           break;
2406         }
2407         if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) {
2408           // In verify mode, don't modify the original.
2409           if (VerifyOnly)
2410             DIE = CloneDesignatedInitExpr(SemaRef, DIE);
2411           ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD);
2412           D = DIE->getDesignator(DesigIdx);
2413           KnownField = cast<FieldDecl>(*IFD->chain_begin());
2414           break;
2415         }
2416       }
2417       if (!KnownField) {
2418         if (VerifyOnly) {
2419           ++Index;
2420           return true;  // No typo correction when just trying this out.
2421         }
2422 
2423         // Name lookup found something, but it wasn't a field.
2424         if (!Lookup.empty()) {
2425           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
2426             << FieldName;
2427           SemaRef.Diag(Lookup.front()->getLocation(),
2428                        diag::note_field_designator_found);
2429           ++Index;
2430           return true;
2431         }
2432 
2433         // Name lookup didn't find anything.
2434         // Determine whether this was a typo for another field name.
2435         FieldInitializerValidatorCCC CCC(RT->getDecl());
2436         if (TypoCorrection Corrected = SemaRef.CorrectTypo(
2437                 DeclarationNameInfo(FieldName, D->getFieldLoc()),
2438                 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr, CCC,
2439                 Sema::CTK_ErrorRecovery, RT->getDecl())) {
2440           SemaRef.diagnoseTypo(
2441               Corrected,
2442               SemaRef.PDiag(diag::err_field_designator_unknown_suggest)
2443                 << FieldName << CurrentObjectType);
2444           KnownField = Corrected.getCorrectionDeclAs<FieldDecl>();
2445           hadError = true;
2446         } else {
2447           // Typo correction didn't find anything.
2448           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
2449             << FieldName << CurrentObjectType;
2450           ++Index;
2451           return true;
2452         }
2453       }
2454     }
2455 
2456     unsigned FieldIndex = 0;
2457 
2458     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2459       FieldIndex = CXXRD->getNumBases();
2460 
2461     for (auto *FI : RT->getDecl()->fields()) {
2462       if (FI->isUnnamedBitfield())
2463         continue;
2464       if (declaresSameEntity(KnownField, FI)) {
2465         KnownField = FI;
2466         break;
2467       }
2468       ++FieldIndex;
2469     }
2470 
2471     RecordDecl::field_iterator Field =
2472         RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField));
2473 
2474     // All of the fields of a union are located at the same place in
2475     // the initializer list.
2476     if (RT->getDecl()->isUnion()) {
2477       FieldIndex = 0;
2478       if (!VerifyOnly) {
2479         FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion();
2480         if (CurrentField && !declaresSameEntity(CurrentField, *Field)) {
2481           assert(StructuredList->getNumInits() == 1
2482                  && "A union should never have more than one initializer!");
2483 
2484           Expr *ExistingInit = StructuredList->getInit(0);
2485           if (ExistingInit) {
2486             // We're about to throw away an initializer, emit warning.
2487             SemaRef.Diag(D->getFieldLoc(),
2488                          diag::warn_initializer_overrides)
2489               << D->getSourceRange();
2490             SemaRef.Diag(ExistingInit->getBeginLoc(),
2491                          diag::note_previous_initializer)
2492                 << /*FIXME:has side effects=*/0
2493                 << ExistingInit->getSourceRange();
2494           }
2495 
2496           // remove existing initializer
2497           StructuredList->resizeInits(SemaRef.Context, 0);
2498           StructuredList->setInitializedFieldInUnion(nullptr);
2499         }
2500 
2501         StructuredList->setInitializedFieldInUnion(*Field);
2502       }
2503     }
2504 
2505     // Make sure we can use this declaration.
2506     bool InvalidUse;
2507     if (VerifyOnly)
2508       InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2509     else
2510       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
2511     if (InvalidUse) {
2512       ++Index;
2513       return true;
2514     }
2515 
2516     if (!VerifyOnly) {
2517       // Update the designator with the field declaration.
2518       D->setField(*Field);
2519 
2520       // Make sure that our non-designated initializer list has space
2521       // for a subobject corresponding to this field.
2522       if (FieldIndex >= StructuredList->getNumInits())
2523         StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
2524     }
2525 
2526     // This designator names a flexible array member.
2527     if (Field->getType()->isIncompleteArrayType()) {
2528       bool Invalid = false;
2529       if ((DesigIdx + 1) != DIE->size()) {
2530         // We can't designate an object within the flexible array
2531         // member (because GCC doesn't allow it).
2532         if (!VerifyOnly) {
2533           DesignatedInitExpr::Designator *NextD
2534             = DIE->getDesignator(DesigIdx + 1);
2535           SemaRef.Diag(NextD->getBeginLoc(),
2536                        diag::err_designator_into_flexible_array_member)
2537               << SourceRange(NextD->getBeginLoc(), DIE->getEndLoc());
2538           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2539             << *Field;
2540         }
2541         Invalid = true;
2542       }
2543 
2544       if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
2545           !isa<StringLiteral>(DIE->getInit())) {
2546         // The initializer is not an initializer list.
2547         if (!VerifyOnly) {
2548           SemaRef.Diag(DIE->getInit()->getBeginLoc(),
2549                        diag::err_flexible_array_init_needs_braces)
2550               << DIE->getInit()->getSourceRange();
2551           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2552             << *Field;
2553         }
2554         Invalid = true;
2555       }
2556 
2557       // Check GNU flexible array initializer.
2558       if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
2559                                              TopLevelObject))
2560         Invalid = true;
2561 
2562       if (Invalid) {
2563         ++Index;
2564         return true;
2565       }
2566 
2567       // Initialize the array.
2568       bool prevHadError = hadError;
2569       unsigned newStructuredIndex = FieldIndex;
2570       unsigned OldIndex = Index;
2571       IList->setInit(Index, DIE->getInit());
2572 
2573       InitializedEntity MemberEntity =
2574         InitializedEntity::InitializeMember(*Field, &Entity);
2575       CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2576                           StructuredList, newStructuredIndex);
2577 
2578       IList->setInit(OldIndex, DIE);
2579       if (hadError && !prevHadError) {
2580         ++Field;
2581         ++FieldIndex;
2582         if (NextField)
2583           *NextField = Field;
2584         StructuredIndex = FieldIndex;
2585         return true;
2586       }
2587     } else {
2588       // Recurse to check later designated subobjects.
2589       QualType FieldType = Field->getType();
2590       unsigned newStructuredIndex = FieldIndex;
2591 
2592       InitializedEntity MemberEntity =
2593         InitializedEntity::InitializeMember(*Field, &Entity);
2594       if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
2595                                      FieldType, nullptr, nullptr, Index,
2596                                      StructuredList, newStructuredIndex,
2597                                      FinishSubobjectInit, false))
2598         return true;
2599     }
2600 
2601     // Find the position of the next field to be initialized in this
2602     // subobject.
2603     ++Field;
2604     ++FieldIndex;
2605 
2606     // If this the first designator, our caller will continue checking
2607     // the rest of this struct/class/union subobject.
2608     if (IsFirstDesignator) {
2609       if (NextField)
2610         *NextField = Field;
2611       StructuredIndex = FieldIndex;
2612       return false;
2613     }
2614 
2615     if (!FinishSubobjectInit)
2616       return false;
2617 
2618     // We've already initialized something in the union; we're done.
2619     if (RT->getDecl()->isUnion())
2620       return hadError;
2621 
2622     // Check the remaining fields within this class/struct/union subobject.
2623     bool prevHadError = hadError;
2624 
2625     auto NoBases =
2626         CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
2627                                         CXXRecordDecl::base_class_iterator());
2628     CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field,
2629                           false, Index, StructuredList, FieldIndex);
2630     return hadError && !prevHadError;
2631   }
2632 
2633   // C99 6.7.8p6:
2634   //
2635   //   If a designator has the form
2636   //
2637   //      [ constant-expression ]
2638   //
2639   //   then the current object (defined below) shall have array
2640   //   type and the expression shall be an integer constant
2641   //   expression. If the array is of unknown size, any
2642   //   nonnegative value is valid.
2643   //
2644   // Additionally, cope with the GNU extension that permits
2645   // designators of the form
2646   //
2647   //      [ constant-expression ... constant-expression ]
2648   const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
2649   if (!AT) {
2650     if (!VerifyOnly)
2651       SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
2652         << CurrentObjectType;
2653     ++Index;
2654     return true;
2655   }
2656 
2657   Expr *IndexExpr = nullptr;
2658   llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
2659   if (D->isArrayDesignator()) {
2660     IndexExpr = DIE->getArrayIndex(*D);
2661     DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
2662     DesignatedEndIndex = DesignatedStartIndex;
2663   } else {
2664     assert(D->isArrayRangeDesignator() && "Need array-range designator");
2665 
2666     DesignatedStartIndex =
2667       DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
2668     DesignatedEndIndex =
2669       DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
2670     IndexExpr = DIE->getArrayRangeEnd(*D);
2671 
2672     // Codegen can't handle evaluating array range designators that have side
2673     // effects, because we replicate the AST value for each initialized element.
2674     // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
2675     // elements with something that has a side effect, so codegen can emit an
2676     // "error unsupported" error instead of miscompiling the app.
2677     if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
2678         DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
2679       FullyStructuredList->sawArrayRangeDesignator();
2680   }
2681 
2682   if (isa<ConstantArrayType>(AT)) {
2683     llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
2684     DesignatedStartIndex
2685       = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
2686     DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
2687     DesignatedEndIndex
2688       = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
2689     DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
2690     if (DesignatedEndIndex >= MaxElements) {
2691       if (!VerifyOnly)
2692         SemaRef.Diag(IndexExpr->getBeginLoc(),
2693                      diag::err_array_designator_too_large)
2694             << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
2695             << IndexExpr->getSourceRange();
2696       ++Index;
2697       return true;
2698     }
2699   } else {
2700     unsigned DesignatedIndexBitWidth =
2701       ConstantArrayType::getMaxSizeBits(SemaRef.Context);
2702     DesignatedStartIndex =
2703       DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth);
2704     DesignatedEndIndex =
2705       DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth);
2706     DesignatedStartIndex.setIsUnsigned(true);
2707     DesignatedEndIndex.setIsUnsigned(true);
2708   }
2709 
2710   if (!VerifyOnly && StructuredList->isStringLiteralInit()) {
2711     // We're modifying a string literal init; we have to decompose the string
2712     // so we can modify the individual characters.
2713     ASTContext &Context = SemaRef.Context;
2714     Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens();
2715 
2716     // Compute the character type
2717     QualType CharTy = AT->getElementType();
2718 
2719     // Compute the type of the integer literals.
2720     QualType PromotedCharTy = CharTy;
2721     if (CharTy->isPromotableIntegerType())
2722       PromotedCharTy = Context.getPromotedIntegerType(CharTy);
2723     unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy);
2724 
2725     if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) {
2726       // Get the length of the string.
2727       uint64_t StrLen = SL->getLength();
2728       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2729         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2730       StructuredList->resizeInits(Context, StrLen);
2731 
2732       // Build a literal for each character in the string, and put them into
2733       // the init list.
2734       for (unsigned i = 0, e = StrLen; i != e; ++i) {
2735         llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i));
2736         Expr *Init = new (Context) IntegerLiteral(
2737             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2738         if (CharTy != PromotedCharTy)
2739           Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2740                                           Init, nullptr, VK_RValue);
2741         StructuredList->updateInit(Context, i, Init);
2742       }
2743     } else {
2744       ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr);
2745       std::string Str;
2746       Context.getObjCEncodingForType(E->getEncodedType(), Str);
2747 
2748       // Get the length of the string.
2749       uint64_t StrLen = Str.size();
2750       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2751         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2752       StructuredList->resizeInits(Context, StrLen);
2753 
2754       // Build a literal for each character in the string, and put them into
2755       // the init list.
2756       for (unsigned i = 0, e = StrLen; i != e; ++i) {
2757         llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]);
2758         Expr *Init = new (Context) IntegerLiteral(
2759             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2760         if (CharTy != PromotedCharTy)
2761           Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2762                                           Init, nullptr, VK_RValue);
2763         StructuredList->updateInit(Context, i, Init);
2764       }
2765     }
2766   }
2767 
2768   // Make sure that our non-designated initializer list has space
2769   // for a subobject corresponding to this array element.
2770   if (!VerifyOnly &&
2771       DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
2772     StructuredList->resizeInits(SemaRef.Context,
2773                                 DesignatedEndIndex.getZExtValue() + 1);
2774 
2775   // Repeatedly perform subobject initializations in the range
2776   // [DesignatedStartIndex, DesignatedEndIndex].
2777 
2778   // Move to the next designator
2779   unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
2780   unsigned OldIndex = Index;
2781 
2782   InitializedEntity ElementEntity =
2783     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
2784 
2785   while (DesignatedStartIndex <= DesignatedEndIndex) {
2786     // Recurse to check later designated subobjects.
2787     QualType ElementType = AT->getElementType();
2788     Index = OldIndex;
2789 
2790     ElementEntity.setElementIndex(ElementIndex);
2791     if (CheckDesignatedInitializer(
2792             ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr,
2793             nullptr, Index, StructuredList, ElementIndex,
2794             FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex),
2795             false))
2796       return true;
2797 
2798     // Move to the next index in the array that we'll be initializing.
2799     ++DesignatedStartIndex;
2800     ElementIndex = DesignatedStartIndex.getZExtValue();
2801   }
2802 
2803   // If this the first designator, our caller will continue checking
2804   // the rest of this array subobject.
2805   if (IsFirstDesignator) {
2806     if (NextElementIndex)
2807       *NextElementIndex = DesignatedStartIndex;
2808     StructuredIndex = ElementIndex;
2809     return false;
2810   }
2811 
2812   if (!FinishSubobjectInit)
2813     return false;
2814 
2815   // Check the remaining elements within this array subobject.
2816   bool prevHadError = hadError;
2817   CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
2818                  /*SubobjectIsDesignatorContext=*/false, Index,
2819                  StructuredList, ElementIndex);
2820   return hadError && !prevHadError;
2821 }
2822 
2823 // Get the structured initializer list for a subobject of type
2824 // @p CurrentObjectType.
2825 InitListExpr *
2826 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
2827                                             QualType CurrentObjectType,
2828                                             InitListExpr *StructuredList,
2829                                             unsigned StructuredIndex,
2830                                             SourceRange InitRange,
2831                                             bool IsFullyOverwritten) {
2832   if (VerifyOnly)
2833     return nullptr; // No structured list in verification-only mode.
2834   Expr *ExistingInit = nullptr;
2835   if (!StructuredList)
2836     ExistingInit = SyntacticToSemantic.lookup(IList);
2837   else if (StructuredIndex < StructuredList->getNumInits())
2838     ExistingInit = StructuredList->getInit(StructuredIndex);
2839 
2840   if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
2841     // There might have already been initializers for subobjects of the current
2842     // object, but a subsequent initializer list will overwrite the entirety
2843     // of the current object. (See DR 253 and C99 6.7.8p21). e.g.,
2844     //
2845     // struct P { char x[6]; };
2846     // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } };
2847     //
2848     // The first designated initializer is ignored, and l.x is just "f".
2849     if (!IsFullyOverwritten)
2850       return Result;
2851 
2852   if (ExistingInit) {
2853     // We are creating an initializer list that initializes the
2854     // subobjects of the current object, but there was already an
2855     // initialization that completely initialized the current
2856     // subobject, e.g., by a compound literal:
2857     //
2858     // struct X { int a, b; };
2859     // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2860     //
2861     // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2862     // designated initializer re-initializes the whole
2863     // subobject [0], overwriting previous initializers.
2864     SemaRef.Diag(InitRange.getBegin(),
2865                  diag::warn_subobject_initializer_overrides)
2866       << InitRange;
2867     SemaRef.Diag(ExistingInit->getBeginLoc(), diag::note_previous_initializer)
2868         << /*FIXME:has side effects=*/0 << ExistingInit->getSourceRange();
2869   }
2870 
2871   InitListExpr *Result
2872     = new (SemaRef.Context) InitListExpr(SemaRef.Context,
2873                                          InitRange.getBegin(), None,
2874                                          InitRange.getEnd());
2875 
2876   QualType ResultType = CurrentObjectType;
2877   if (!ResultType->isArrayType())
2878     ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
2879   Result->setType(ResultType);
2880 
2881   // Pre-allocate storage for the structured initializer list.
2882   unsigned NumElements = 0;
2883   unsigned NumInits = 0;
2884   bool GotNumInits = false;
2885   if (!StructuredList) {
2886     NumInits = IList->getNumInits();
2887     GotNumInits = true;
2888   } else if (Index < IList->getNumInits()) {
2889     if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
2890       NumInits = SubList->getNumInits();
2891       GotNumInits = true;
2892     }
2893   }
2894 
2895   if (const ArrayType *AType
2896       = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
2897     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
2898       NumElements = CAType->getSize().getZExtValue();
2899       // Simple heuristic so that we don't allocate a very large
2900       // initializer with many empty entries at the end.
2901       if (GotNumInits && NumElements > NumInits)
2902         NumElements = 0;
2903     }
2904   } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
2905     NumElements = VType->getNumElements();
2906   else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
2907     RecordDecl *RDecl = RType->getDecl();
2908     if (RDecl->isUnion())
2909       NumElements = 1;
2910     else
2911       NumElements = std::distance(RDecl->field_begin(), RDecl->field_end());
2912   }
2913 
2914   Result->reserveInits(SemaRef.Context, NumElements);
2915 
2916   // Link this new initializer list into the structured initializer
2917   // lists.
2918   if (StructuredList)
2919     StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
2920   else {
2921     Result->setSyntacticForm(IList);
2922     SyntacticToSemantic[IList] = Result;
2923   }
2924 
2925   return Result;
2926 }
2927 
2928 /// Update the initializer at index @p StructuredIndex within the
2929 /// structured initializer list to the value @p expr.
2930 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
2931                                                   unsigned &StructuredIndex,
2932                                                   Expr *expr) {
2933   // No structured initializer list to update
2934   if (!StructuredList)
2935     return;
2936 
2937   if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
2938                                                   StructuredIndex, expr)) {
2939     // This initializer overwrites a previous initializer. Warn.
2940     // We need to check on source range validity because the previous
2941     // initializer does not have to be an explicit initializer.
2942     // struct P { int a, b; };
2943     // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
2944     // There is an overwrite taking place because the first braced initializer
2945     // list "{ .a = 2 }' already provides value for .p.b (which is zero).
2946     if (PrevInit->getSourceRange().isValid()) {
2947       SemaRef.Diag(expr->getBeginLoc(), diag::warn_initializer_overrides)
2948           << expr->getSourceRange();
2949 
2950       SemaRef.Diag(PrevInit->getBeginLoc(), diag::note_previous_initializer)
2951           << /*FIXME:has side effects=*/0 << PrevInit->getSourceRange();
2952     }
2953   }
2954 
2955   ++StructuredIndex;
2956 }
2957 
2958 /// Check that the given Index expression is a valid array designator
2959 /// value. This is essentially just a wrapper around
2960 /// VerifyIntegerConstantExpression that also checks for negative values
2961 /// and produces a reasonable diagnostic if there is a
2962 /// failure. Returns the index expression, possibly with an implicit cast
2963 /// added, on success.  If everything went okay, Value will receive the
2964 /// value of the constant expression.
2965 static ExprResult
2966 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
2967   SourceLocation Loc = Index->getBeginLoc();
2968 
2969   // Make sure this is an integer constant expression.
2970   ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value);
2971   if (Result.isInvalid())
2972     return Result;
2973 
2974   if (Value.isSigned() && Value.isNegative())
2975     return S.Diag(Loc, diag::err_array_designator_negative)
2976       << Value.toString(10) << Index->getSourceRange();
2977 
2978   Value.setIsUnsigned(true);
2979   return Result;
2980 }
2981 
2982 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
2983                                             SourceLocation Loc,
2984                                             bool GNUSyntax,
2985                                             ExprResult Init) {
2986   typedef DesignatedInitExpr::Designator ASTDesignator;
2987 
2988   bool Invalid = false;
2989   SmallVector<ASTDesignator, 32> Designators;
2990   SmallVector<Expr *, 32> InitExpressions;
2991 
2992   // Build designators and check array designator expressions.
2993   for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
2994     const Designator &D = Desig.getDesignator(Idx);
2995     switch (D.getKind()) {
2996     case Designator::FieldDesignator:
2997       Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
2998                                           D.getFieldLoc()));
2999       break;
3000 
3001     case Designator::ArrayDesignator: {
3002       Expr *Index = static_cast<Expr *>(D.getArrayIndex());
3003       llvm::APSInt IndexValue;
3004       if (!Index->isTypeDependent() && !Index->isValueDependent())
3005         Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get();
3006       if (!Index)
3007         Invalid = true;
3008       else {
3009         Designators.push_back(ASTDesignator(InitExpressions.size(),
3010                                             D.getLBracketLoc(),
3011                                             D.getRBracketLoc()));
3012         InitExpressions.push_back(Index);
3013       }
3014       break;
3015     }
3016 
3017     case Designator::ArrayRangeDesignator: {
3018       Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
3019       Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
3020       llvm::APSInt StartValue;
3021       llvm::APSInt EndValue;
3022       bool StartDependent = StartIndex->isTypeDependent() ||
3023                             StartIndex->isValueDependent();
3024       bool EndDependent = EndIndex->isTypeDependent() ||
3025                           EndIndex->isValueDependent();
3026       if (!StartDependent)
3027         StartIndex =
3028             CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get();
3029       if (!EndDependent)
3030         EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get();
3031 
3032       if (!StartIndex || !EndIndex)
3033         Invalid = true;
3034       else {
3035         // Make sure we're comparing values with the same bit width.
3036         if (StartDependent || EndDependent) {
3037           // Nothing to compute.
3038         } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
3039           EndValue = EndValue.extend(StartValue.getBitWidth());
3040         else if (StartValue.getBitWidth() < EndValue.getBitWidth())
3041           StartValue = StartValue.extend(EndValue.getBitWidth());
3042 
3043         if (!StartDependent && !EndDependent && EndValue < StartValue) {
3044           Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
3045             << StartValue.toString(10) << EndValue.toString(10)
3046             << StartIndex->getSourceRange() << EndIndex->getSourceRange();
3047           Invalid = true;
3048         } else {
3049           Designators.push_back(ASTDesignator(InitExpressions.size(),
3050                                               D.getLBracketLoc(),
3051                                               D.getEllipsisLoc(),
3052                                               D.getRBracketLoc()));
3053           InitExpressions.push_back(StartIndex);
3054           InitExpressions.push_back(EndIndex);
3055         }
3056       }
3057       break;
3058     }
3059     }
3060   }
3061 
3062   if (Invalid || Init.isInvalid())
3063     return ExprError();
3064 
3065   // Clear out the expressions within the designation.
3066   Desig.ClearExprs(*this);
3067 
3068   DesignatedInitExpr *DIE
3069     = DesignatedInitExpr::Create(Context,
3070                                  Designators,
3071                                  InitExpressions, Loc, GNUSyntax,
3072                                  Init.getAs<Expr>());
3073 
3074   if (!getLangOpts().C99)
3075     Diag(DIE->getBeginLoc(), diag::ext_designated_init)
3076         << DIE->getSourceRange();
3077 
3078   return DIE;
3079 }
3080 
3081 //===----------------------------------------------------------------------===//
3082 // Initialization entity
3083 //===----------------------------------------------------------------------===//
3084 
3085 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
3086                                      const InitializedEntity &Parent)
3087   : Parent(&Parent), Index(Index)
3088 {
3089   if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
3090     Kind = EK_ArrayElement;
3091     Type = AT->getElementType();
3092   } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
3093     Kind = EK_VectorElement;
3094     Type = VT->getElementType();
3095   } else {
3096     const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
3097     assert(CT && "Unexpected type");
3098     Kind = EK_ComplexElement;
3099     Type = CT->getElementType();
3100   }
3101 }
3102 
3103 InitializedEntity
3104 InitializedEntity::InitializeBase(ASTContext &Context,
3105                                   const CXXBaseSpecifier *Base,
3106                                   bool IsInheritedVirtualBase,
3107                                   const InitializedEntity *Parent) {
3108   InitializedEntity Result;
3109   Result.Kind = EK_Base;
3110   Result.Parent = Parent;
3111   Result.Base = reinterpret_cast<uintptr_t>(Base);
3112   if (IsInheritedVirtualBase)
3113     Result.Base |= 0x01;
3114 
3115   Result.Type = Base->getType();
3116   return Result;
3117 }
3118 
3119 DeclarationName InitializedEntity::getName() const {
3120   switch (getKind()) {
3121   case EK_Parameter:
3122   case EK_Parameter_CF_Audited: {
3123     ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
3124     return (D ? D->getDeclName() : DeclarationName());
3125   }
3126 
3127   case EK_Variable:
3128   case EK_Member:
3129   case EK_Binding:
3130     return Variable.VariableOrMember->getDeclName();
3131 
3132   case EK_LambdaCapture:
3133     return DeclarationName(Capture.VarID);
3134 
3135   case EK_Result:
3136   case EK_StmtExprResult:
3137   case EK_Exception:
3138   case EK_New:
3139   case EK_Temporary:
3140   case EK_Base:
3141   case EK_Delegating:
3142   case EK_ArrayElement:
3143   case EK_VectorElement:
3144   case EK_ComplexElement:
3145   case EK_BlockElement:
3146   case EK_LambdaToBlockConversionBlockElement:
3147   case EK_CompoundLiteralInit:
3148   case EK_RelatedResult:
3149     return DeclarationName();
3150   }
3151 
3152   llvm_unreachable("Invalid EntityKind!");
3153 }
3154 
3155 ValueDecl *InitializedEntity::getDecl() const {
3156   switch (getKind()) {
3157   case EK_Variable:
3158   case EK_Member:
3159   case EK_Binding:
3160     return Variable.VariableOrMember;
3161 
3162   case EK_Parameter:
3163   case EK_Parameter_CF_Audited:
3164     return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
3165 
3166   case EK_Result:
3167   case EK_StmtExprResult:
3168   case EK_Exception:
3169   case EK_New:
3170   case EK_Temporary:
3171   case EK_Base:
3172   case EK_Delegating:
3173   case EK_ArrayElement:
3174   case EK_VectorElement:
3175   case EK_ComplexElement:
3176   case EK_BlockElement:
3177   case EK_LambdaToBlockConversionBlockElement:
3178   case EK_LambdaCapture:
3179   case EK_CompoundLiteralInit:
3180   case EK_RelatedResult:
3181     return nullptr;
3182   }
3183 
3184   llvm_unreachable("Invalid EntityKind!");
3185 }
3186 
3187 bool InitializedEntity::allowsNRVO() const {
3188   switch (getKind()) {
3189   case EK_Result:
3190   case EK_Exception:
3191     return LocAndNRVO.NRVO;
3192 
3193   case EK_StmtExprResult:
3194   case EK_Variable:
3195   case EK_Parameter:
3196   case EK_Parameter_CF_Audited:
3197   case EK_Member:
3198   case EK_Binding:
3199   case EK_New:
3200   case EK_Temporary:
3201   case EK_CompoundLiteralInit:
3202   case EK_Base:
3203   case EK_Delegating:
3204   case EK_ArrayElement:
3205   case EK_VectorElement:
3206   case EK_ComplexElement:
3207   case EK_BlockElement:
3208   case EK_LambdaToBlockConversionBlockElement:
3209   case EK_LambdaCapture:
3210   case EK_RelatedResult:
3211     break;
3212   }
3213 
3214   return false;
3215 }
3216 
3217 unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const {
3218   assert(getParent() != this);
3219   unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0;
3220   for (unsigned I = 0; I != Depth; ++I)
3221     OS << "`-";
3222 
3223   switch (getKind()) {
3224   case EK_Variable: OS << "Variable"; break;
3225   case EK_Parameter: OS << "Parameter"; break;
3226   case EK_Parameter_CF_Audited: OS << "CF audited function Parameter";
3227     break;
3228   case EK_Result: OS << "Result"; break;
3229   case EK_StmtExprResult: OS << "StmtExprResult"; break;
3230   case EK_Exception: OS << "Exception"; break;
3231   case EK_Member: OS << "Member"; break;
3232   case EK_Binding: OS << "Binding"; break;
3233   case EK_New: OS << "New"; break;
3234   case EK_Temporary: OS << "Temporary"; break;
3235   case EK_CompoundLiteralInit: OS << "CompoundLiteral";break;
3236   case EK_RelatedResult: OS << "RelatedResult"; break;
3237   case EK_Base: OS << "Base"; break;
3238   case EK_Delegating: OS << "Delegating"; break;
3239   case EK_ArrayElement: OS << "ArrayElement " << Index; break;
3240   case EK_VectorElement: OS << "VectorElement " << Index; break;
3241   case EK_ComplexElement: OS << "ComplexElement " << Index; break;
3242   case EK_BlockElement: OS << "Block"; break;
3243   case EK_LambdaToBlockConversionBlockElement:
3244     OS << "Block (lambda)";
3245     break;
3246   case EK_LambdaCapture:
3247     OS << "LambdaCapture ";
3248     OS << DeclarationName(Capture.VarID);
3249     break;
3250   }
3251 
3252   if (auto *D = getDecl()) {
3253     OS << " ";
3254     D->printQualifiedName(OS);
3255   }
3256 
3257   OS << " '" << getType().getAsString() << "'\n";
3258 
3259   return Depth + 1;
3260 }
3261 
3262 LLVM_DUMP_METHOD void InitializedEntity::dump() const {
3263   dumpImpl(llvm::errs());
3264 }
3265 
3266 //===----------------------------------------------------------------------===//
3267 // Initialization sequence
3268 //===----------------------------------------------------------------------===//
3269 
3270 void InitializationSequence::Step::Destroy() {
3271   switch (Kind) {
3272   case SK_ResolveAddressOfOverloadedFunction:
3273   case SK_CastDerivedToBaseRValue:
3274   case SK_CastDerivedToBaseXValue:
3275   case SK_CastDerivedToBaseLValue:
3276   case SK_BindReference:
3277   case SK_BindReferenceToTemporary:
3278   case SK_FinalCopy:
3279   case SK_ExtraneousCopyToTemporary:
3280   case SK_UserConversion:
3281   case SK_QualificationConversionRValue:
3282   case SK_QualificationConversionXValue:
3283   case SK_QualificationConversionLValue:
3284   case SK_AtomicConversion:
3285   case SK_LValueToRValue:
3286   case SK_ListInitialization:
3287   case SK_UnwrapInitList:
3288   case SK_RewrapInitList:
3289   case SK_ConstructorInitialization:
3290   case SK_ConstructorInitializationFromList:
3291   case SK_ZeroInitialization:
3292   case SK_CAssignment:
3293   case SK_StringInit:
3294   case SK_ObjCObjectConversion:
3295   case SK_ArrayLoopIndex:
3296   case SK_ArrayLoopInit:
3297   case SK_ArrayInit:
3298   case SK_GNUArrayInit:
3299   case SK_ParenthesizedArrayInit:
3300   case SK_PassByIndirectCopyRestore:
3301   case SK_PassByIndirectRestore:
3302   case SK_ProduceObjCObject:
3303   case SK_StdInitializerList:
3304   case SK_StdInitializerListConstructorCall:
3305   case SK_OCLSamplerInit:
3306   case SK_OCLZeroOpaqueType:
3307     break;
3308 
3309   case SK_ConversionSequence:
3310   case SK_ConversionSequenceNoNarrowing:
3311     delete ICS;
3312   }
3313 }
3314 
3315 bool InitializationSequence::isDirectReferenceBinding() const {
3316   // There can be some lvalue adjustments after the SK_BindReference step.
3317   for (auto I = Steps.rbegin(); I != Steps.rend(); ++I) {
3318     if (I->Kind == SK_BindReference)
3319       return true;
3320     if (I->Kind == SK_BindReferenceToTemporary)
3321       return false;
3322   }
3323   return false;
3324 }
3325 
3326 bool InitializationSequence::isAmbiguous() const {
3327   if (!Failed())
3328     return false;
3329 
3330   switch (getFailureKind()) {
3331   case FK_TooManyInitsForReference:
3332   case FK_ParenthesizedListInitForReference:
3333   case FK_ArrayNeedsInitList:
3334   case FK_ArrayNeedsInitListOrStringLiteral:
3335   case FK_ArrayNeedsInitListOrWideStringLiteral:
3336   case FK_NarrowStringIntoWideCharArray:
3337   case FK_WideStringIntoCharArray:
3338   case FK_IncompatWideStringIntoWideChar:
3339   case FK_PlainStringIntoUTF8Char:
3340   case FK_UTF8StringIntoPlainChar:
3341   case FK_AddressOfOverloadFailed: // FIXME: Could do better
3342   case FK_NonConstLValueReferenceBindingToTemporary:
3343   case FK_NonConstLValueReferenceBindingToBitfield:
3344   case FK_NonConstLValueReferenceBindingToVectorElement:
3345   case FK_NonConstLValueReferenceBindingToUnrelated:
3346   case FK_RValueReferenceBindingToLValue:
3347   case FK_ReferenceInitDropsQualifiers:
3348   case FK_ReferenceInitFailed:
3349   case FK_ConversionFailed:
3350   case FK_ConversionFromPropertyFailed:
3351   case FK_TooManyInitsForScalar:
3352   case FK_ParenthesizedListInitForScalar:
3353   case FK_ReferenceBindingToInitList:
3354   case FK_InitListBadDestinationType:
3355   case FK_DefaultInitOfConst:
3356   case FK_Incomplete:
3357   case FK_ArrayTypeMismatch:
3358   case FK_NonConstantArrayInit:
3359   case FK_ListInitializationFailed:
3360   case FK_VariableLengthArrayHasInitializer:
3361   case FK_PlaceholderType:
3362   case FK_ExplicitConstructor:
3363   case FK_AddressOfUnaddressableFunction:
3364     return false;
3365 
3366   case FK_ReferenceInitOverloadFailed:
3367   case FK_UserConversionOverloadFailed:
3368   case FK_ConstructorOverloadFailed:
3369   case FK_ListConstructorOverloadFailed:
3370     return FailedOverloadResult == OR_Ambiguous;
3371   }
3372 
3373   llvm_unreachable("Invalid EntityKind!");
3374 }
3375 
3376 bool InitializationSequence::isConstructorInitialization() const {
3377   return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
3378 }
3379 
3380 void
3381 InitializationSequence
3382 ::AddAddressOverloadResolutionStep(FunctionDecl *Function,
3383                                    DeclAccessPair Found,
3384                                    bool HadMultipleCandidates) {
3385   Step S;
3386   S.Kind = SK_ResolveAddressOfOverloadedFunction;
3387   S.Type = Function->getType();
3388   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3389   S.Function.Function = Function;
3390   S.Function.FoundDecl = Found;
3391   Steps.push_back(S);
3392 }
3393 
3394 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
3395                                                       ExprValueKind VK) {
3396   Step S;
3397   switch (VK) {
3398   case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
3399   case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
3400   case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
3401   }
3402   S.Type = BaseType;
3403   Steps.push_back(S);
3404 }
3405 
3406 void InitializationSequence::AddReferenceBindingStep(QualType T,
3407                                                      bool BindingTemporary) {
3408   Step S;
3409   S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
3410   S.Type = T;
3411   Steps.push_back(S);
3412 }
3413 
3414 void InitializationSequence::AddFinalCopy(QualType T) {
3415   Step S;
3416   S.Kind = SK_FinalCopy;
3417   S.Type = T;
3418   Steps.push_back(S);
3419 }
3420 
3421 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
3422   Step S;
3423   S.Kind = SK_ExtraneousCopyToTemporary;
3424   S.Type = T;
3425   Steps.push_back(S);
3426 }
3427 
3428 void
3429 InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
3430                                               DeclAccessPair FoundDecl,
3431                                               QualType T,
3432                                               bool HadMultipleCandidates) {
3433   Step S;
3434   S.Kind = SK_UserConversion;
3435   S.Type = T;
3436   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3437   S.Function.Function = Function;
3438   S.Function.FoundDecl = FoundDecl;
3439   Steps.push_back(S);
3440 }
3441 
3442 void InitializationSequence::AddQualificationConversionStep(QualType Ty,
3443                                                             ExprValueKind VK) {
3444   Step S;
3445   S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
3446   switch (VK) {
3447   case VK_RValue:
3448     S.Kind = SK_QualificationConversionRValue;
3449     break;
3450   case VK_XValue:
3451     S.Kind = SK_QualificationConversionXValue;
3452     break;
3453   case VK_LValue:
3454     S.Kind = SK_QualificationConversionLValue;
3455     break;
3456   }
3457   S.Type = Ty;
3458   Steps.push_back(S);
3459 }
3460 
3461 void InitializationSequence::AddAtomicConversionStep(QualType Ty) {
3462   Step S;
3463   S.Kind = SK_AtomicConversion;
3464   S.Type = Ty;
3465   Steps.push_back(S);
3466 }
3467 
3468 void InitializationSequence::AddLValueToRValueStep(QualType Ty) {
3469   assert(!Ty.hasQualifiers() && "rvalues may not have qualifiers");
3470 
3471   Step S;
3472   S.Kind = SK_LValueToRValue;
3473   S.Type = Ty;
3474   Steps.push_back(S);
3475 }
3476 
3477 void InitializationSequence::AddConversionSequenceStep(
3478     const ImplicitConversionSequence &ICS, QualType T,
3479     bool TopLevelOfInitList) {
3480   Step S;
3481   S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing
3482                               : SK_ConversionSequence;
3483   S.Type = T;
3484   S.ICS = new ImplicitConversionSequence(ICS);
3485   Steps.push_back(S);
3486 }
3487 
3488 void InitializationSequence::AddListInitializationStep(QualType T) {
3489   Step S;
3490   S.Kind = SK_ListInitialization;
3491   S.Type = T;
3492   Steps.push_back(S);
3493 }
3494 
3495 void InitializationSequence::AddConstructorInitializationStep(
3496     DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T,
3497     bool HadMultipleCandidates, bool FromInitList, bool AsInitList) {
3498   Step S;
3499   S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall
3500                                      : SK_ConstructorInitializationFromList
3501                         : SK_ConstructorInitialization;
3502   S.Type = T;
3503   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3504   S.Function.Function = Constructor;
3505   S.Function.FoundDecl = FoundDecl;
3506   Steps.push_back(S);
3507 }
3508 
3509 void InitializationSequence::AddZeroInitializationStep(QualType T) {
3510   Step S;
3511   S.Kind = SK_ZeroInitialization;
3512   S.Type = T;
3513   Steps.push_back(S);
3514 }
3515 
3516 void InitializationSequence::AddCAssignmentStep(QualType T) {
3517   Step S;
3518   S.Kind = SK_CAssignment;
3519   S.Type = T;
3520   Steps.push_back(S);
3521 }
3522 
3523 void InitializationSequence::AddStringInitStep(QualType T) {
3524   Step S;
3525   S.Kind = SK_StringInit;
3526   S.Type = T;
3527   Steps.push_back(S);
3528 }
3529 
3530 void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
3531   Step S;
3532   S.Kind = SK_ObjCObjectConversion;
3533   S.Type = T;
3534   Steps.push_back(S);
3535 }
3536 
3537 void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) {
3538   Step S;
3539   S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit;
3540   S.Type = T;
3541   Steps.push_back(S);
3542 }
3543 
3544 void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) {
3545   Step S;
3546   S.Kind = SK_ArrayLoopIndex;
3547   S.Type = EltT;
3548   Steps.insert(Steps.begin(), S);
3549 
3550   S.Kind = SK_ArrayLoopInit;
3551   S.Type = T;
3552   Steps.push_back(S);
3553 }
3554 
3555 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
3556   Step S;
3557   S.Kind = SK_ParenthesizedArrayInit;
3558   S.Type = T;
3559   Steps.push_back(S);
3560 }
3561 
3562 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
3563                                                               bool shouldCopy) {
3564   Step s;
3565   s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
3566                        : SK_PassByIndirectRestore);
3567   s.Type = type;
3568   Steps.push_back(s);
3569 }
3570 
3571 void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
3572   Step S;
3573   S.Kind = SK_ProduceObjCObject;
3574   S.Type = T;
3575   Steps.push_back(S);
3576 }
3577 
3578 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
3579   Step S;
3580   S.Kind = SK_StdInitializerList;
3581   S.Type = T;
3582   Steps.push_back(S);
3583 }
3584 
3585 void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
3586   Step S;
3587   S.Kind = SK_OCLSamplerInit;
3588   S.Type = T;
3589   Steps.push_back(S);
3590 }
3591 
3592 void InitializationSequence::AddOCLZeroOpaqueTypeStep(QualType T) {
3593   Step S;
3594   S.Kind = SK_OCLZeroOpaqueType;
3595   S.Type = T;
3596   Steps.push_back(S);
3597 }
3598 
3599 void InitializationSequence::RewrapReferenceInitList(QualType T,
3600                                                      InitListExpr *Syntactic) {
3601   assert(Syntactic->getNumInits() == 1 &&
3602          "Can only rewrap trivial init lists.");
3603   Step S;
3604   S.Kind = SK_UnwrapInitList;
3605   S.Type = Syntactic->getInit(0)->getType();
3606   Steps.insert(Steps.begin(), S);
3607 
3608   S.Kind = SK_RewrapInitList;
3609   S.Type = T;
3610   S.WrappingSyntacticList = Syntactic;
3611   Steps.push_back(S);
3612 }
3613 
3614 void InitializationSequence::SetOverloadFailure(FailureKind Failure,
3615                                                 OverloadingResult Result) {
3616   setSequenceKind(FailedSequence);
3617   this->Failure = Failure;
3618   this->FailedOverloadResult = Result;
3619 }
3620 
3621 //===----------------------------------------------------------------------===//
3622 // Attempt initialization
3623 //===----------------------------------------------------------------------===//
3624 
3625 /// Tries to add a zero initializer. Returns true if that worked.
3626 static bool
3627 maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence,
3628                                    const InitializedEntity &Entity) {
3629   if (Entity.getKind() != InitializedEntity::EK_Variable)
3630     return false;
3631 
3632   VarDecl *VD = cast<VarDecl>(Entity.getDecl());
3633   if (VD->getInit() || VD->getEndLoc().isMacroID())
3634     return false;
3635 
3636   QualType VariableTy = VD->getType().getCanonicalType();
3637   SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc());
3638   std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
3639   if (!Init.empty()) {
3640     Sequence.AddZeroInitializationStep(Entity.getType());
3641     Sequence.SetZeroInitializationFixit(Init, Loc);
3642     return true;
3643   }
3644   return false;
3645 }
3646 
3647 static void MaybeProduceObjCObject(Sema &S,
3648                                    InitializationSequence &Sequence,
3649                                    const InitializedEntity &Entity) {
3650   if (!S.getLangOpts().ObjCAutoRefCount) return;
3651 
3652   /// When initializing a parameter, produce the value if it's marked
3653   /// __attribute__((ns_consumed)).
3654   if (Entity.isParameterKind()) {
3655     if (!Entity.isParameterConsumed())
3656       return;
3657 
3658     assert(Entity.getType()->isObjCRetainableType() &&
3659            "consuming an object of unretainable type?");
3660     Sequence.AddProduceObjCObjectStep(Entity.getType());
3661 
3662   /// When initializing a return value, if the return type is a
3663   /// retainable type, then returns need to immediately retain the
3664   /// object.  If an autorelease is required, it will be done at the
3665   /// last instant.
3666   } else if (Entity.getKind() == InitializedEntity::EK_Result ||
3667              Entity.getKind() == InitializedEntity::EK_StmtExprResult) {
3668     if (!Entity.getType()->isObjCRetainableType())
3669       return;
3670 
3671     Sequence.AddProduceObjCObjectStep(Entity.getType());
3672   }
3673 }
3674 
3675 static void TryListInitialization(Sema &S,
3676                                   const InitializedEntity &Entity,
3677                                   const InitializationKind &Kind,
3678                                   InitListExpr *InitList,
3679                                   InitializationSequence &Sequence,
3680                                   bool TreatUnavailableAsInvalid);
3681 
3682 /// When initializing from init list via constructor, handle
3683 /// initialization of an object of type std::initializer_list<T>.
3684 ///
3685 /// \return true if we have handled initialization of an object of type
3686 /// std::initializer_list<T>, false otherwise.
3687 static bool TryInitializerListConstruction(Sema &S,
3688                                            InitListExpr *List,
3689                                            QualType DestType,
3690                                            InitializationSequence &Sequence,
3691                                            bool TreatUnavailableAsInvalid) {
3692   QualType E;
3693   if (!S.isStdInitializerList(DestType, &E))
3694     return false;
3695 
3696   if (!S.isCompleteType(List->getExprLoc(), E)) {
3697     Sequence.setIncompleteTypeFailure(E);
3698     return true;
3699   }
3700 
3701   // Try initializing a temporary array from the init list.
3702   QualType ArrayType = S.Context.getConstantArrayType(
3703       E.withConst(), llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
3704                                  List->getNumInits()),
3705       clang::ArrayType::Normal, 0);
3706   InitializedEntity HiddenArray =
3707       InitializedEntity::InitializeTemporary(ArrayType);
3708   InitializationKind Kind = InitializationKind::CreateDirectList(
3709       List->getExprLoc(), List->getBeginLoc(), List->getEndLoc());
3710   TryListInitialization(S, HiddenArray, Kind, List, Sequence,
3711                         TreatUnavailableAsInvalid);
3712   if (Sequence)
3713     Sequence.AddStdInitializerListConstructionStep(DestType);
3714   return true;
3715 }
3716 
3717 /// Determine if the constructor has the signature of a copy or move
3718 /// constructor for the type T of the class in which it was found. That is,
3719 /// determine if its first parameter is of type T or reference to (possibly
3720 /// cv-qualified) T.
3721 static bool hasCopyOrMoveCtorParam(ASTContext &Ctx,
3722                                    const ConstructorInfo &Info) {
3723   if (Info.Constructor->getNumParams() == 0)
3724     return false;
3725 
3726   QualType ParmT =
3727       Info.Constructor->getParamDecl(0)->getType().getNonReferenceType();
3728   QualType ClassT =
3729       Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext()));
3730 
3731   return Ctx.hasSameUnqualifiedType(ParmT, ClassT);
3732 }
3733 
3734 static OverloadingResult
3735 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
3736                            MultiExprArg Args,
3737                            OverloadCandidateSet &CandidateSet,
3738                            QualType DestType,
3739                            DeclContext::lookup_result Ctors,
3740                            OverloadCandidateSet::iterator &Best,
3741                            bool CopyInitializing, bool AllowExplicit,
3742                            bool OnlyListConstructors, bool IsListInit,
3743                            bool SecondStepOfCopyInit = false) {
3744   CandidateSet.clear(OverloadCandidateSet::CSK_InitByConstructor);
3745 
3746   for (NamedDecl *D : Ctors) {
3747     auto Info = getConstructorInfo(D);
3748     if (!Info.Constructor || Info.Constructor->isInvalidDecl())
3749       continue;
3750 
3751     if (!AllowExplicit && Info.Constructor->isExplicit())
3752       continue;
3753 
3754     if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor))
3755       continue;
3756 
3757     // C++11 [over.best.ics]p4:
3758     //   ... and the constructor or user-defined conversion function is a
3759     //   candidate by
3760     //   - 13.3.1.3, when the argument is the temporary in the second step
3761     //     of a class copy-initialization, or
3762     //   - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here]
3763     //   - the second phase of 13.3.1.7 when the initializer list has exactly
3764     //     one element that is itself an initializer list, and the target is
3765     //     the first parameter of a constructor of class X, and the conversion
3766     //     is to X or reference to (possibly cv-qualified X),
3767     //   user-defined conversion sequences are not considered.
3768     bool SuppressUserConversions =
3769         SecondStepOfCopyInit ||
3770         (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
3771          hasCopyOrMoveCtorParam(S.Context, Info));
3772 
3773     if (Info.ConstructorTmpl)
3774       S.AddTemplateOverloadCandidate(
3775           Info.ConstructorTmpl, Info.FoundDecl,
3776           /*ExplicitArgs*/ nullptr, Args, CandidateSet, SuppressUserConversions,
3777           /*PartialOverloading=*/false, AllowExplicit);
3778     else {
3779       // C++ [over.match.copy]p1:
3780       //   - When initializing a temporary to be bound to the first parameter
3781       //     of a constructor [for type T] that takes a reference to possibly
3782       //     cv-qualified T as its first argument, called with a single
3783       //     argument in the context of direct-initialization, explicit
3784       //     conversion functions are also considered.
3785       // FIXME: What if a constructor template instantiates to such a signature?
3786       bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
3787                                Args.size() == 1 &&
3788                                hasCopyOrMoveCtorParam(S.Context, Info);
3789       S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args,
3790                              CandidateSet, SuppressUserConversions,
3791                              /*PartialOverloading=*/false, AllowExplicit,
3792                              AllowExplicitConv);
3793     }
3794   }
3795 
3796   // FIXME: Work around a bug in C++17 guaranteed copy elision.
3797   //
3798   // When initializing an object of class type T by constructor
3799   // ([over.match.ctor]) or by list-initialization ([over.match.list])
3800   // from a single expression of class type U, conversion functions of
3801   // U that convert to the non-reference type cv T are candidates.
3802   // Explicit conversion functions are only candidates during
3803   // direct-initialization.
3804   //
3805   // Note: SecondStepOfCopyInit is only ever true in this case when
3806   // evaluating whether to produce a C++98 compatibility warning.
3807   if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 &&
3808       !SecondStepOfCopyInit) {
3809     Expr *Initializer = Args[0];
3810     auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl();
3811     if (SourceRD && S.isCompleteType(DeclLoc, Initializer->getType())) {
3812       const auto &Conversions = SourceRD->getVisibleConversionFunctions();
3813       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
3814         NamedDecl *D = *I;
3815         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3816         D = D->getUnderlyingDecl();
3817 
3818         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3819         CXXConversionDecl *Conv;
3820         if (ConvTemplate)
3821           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3822         else
3823           Conv = cast<CXXConversionDecl>(D);
3824 
3825         if (AllowExplicit || !Conv->isExplicit()) {
3826           if (ConvTemplate)
3827             S.AddTemplateConversionCandidate(
3828                 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
3829                 CandidateSet, AllowExplicit, AllowExplicit,
3830                 /*AllowResultConversion*/ false);
3831           else
3832             S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer,
3833                                      DestType, CandidateSet, AllowExplicit,
3834                                      AllowExplicit,
3835                                      /*AllowResultConversion*/ false);
3836         }
3837       }
3838     }
3839   }
3840 
3841   // Perform overload resolution and return the result.
3842   return CandidateSet.BestViableFunction(S, DeclLoc, Best);
3843 }
3844 
3845 /// Attempt initialization by constructor (C++ [dcl.init]), which
3846 /// enumerates the constructors of the initialized entity and performs overload
3847 /// resolution to select the best.
3848 /// \param DestType       The destination class type.
3849 /// \param DestArrayType  The destination type, which is either DestType or
3850 ///                       a (possibly multidimensional) array of DestType.
3851 /// \param IsListInit     Is this list-initialization?
3852 /// \param IsInitListCopy Is this non-list-initialization resulting from a
3853 ///                       list-initialization from {x} where x is the same
3854 ///                       type as the entity?
3855 static void TryConstructorInitialization(Sema &S,
3856                                          const InitializedEntity &Entity,
3857                                          const InitializationKind &Kind,
3858                                          MultiExprArg Args, QualType DestType,
3859                                          QualType DestArrayType,
3860                                          InitializationSequence &Sequence,
3861                                          bool IsListInit = false,
3862                                          bool IsInitListCopy = false) {
3863   assert(((!IsListInit && !IsInitListCopy) ||
3864           (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&
3865          "IsListInit/IsInitListCopy must come with a single initializer list "
3866          "argument.");
3867   InitListExpr *ILE =
3868       (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr;
3869   MultiExprArg UnwrappedArgs =
3870       ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args;
3871 
3872   // The type we're constructing needs to be complete.
3873   if (!S.isCompleteType(Kind.getLocation(), DestType)) {
3874     Sequence.setIncompleteTypeFailure(DestType);
3875     return;
3876   }
3877 
3878   // C++17 [dcl.init]p17:
3879   //     - If the initializer expression is a prvalue and the cv-unqualified
3880   //       version of the source type is the same class as the class of the
3881   //       destination, the initializer expression is used to initialize the
3882   //       destination object.
3883   // Per DR (no number yet), this does not apply when initializing a base
3884   // class or delegating to another constructor from a mem-initializer.
3885   // ObjC++: Lambda captured by the block in the lambda to block conversion
3886   // should avoid copy elision.
3887   if (S.getLangOpts().CPlusPlus17 &&
3888       Entity.getKind() != InitializedEntity::EK_Base &&
3889       Entity.getKind() != InitializedEntity::EK_Delegating &&
3890       Entity.getKind() !=
3891           InitializedEntity::EK_LambdaToBlockConversionBlockElement &&
3892       UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isRValue() &&
3893       S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) {
3894     // Convert qualifications if necessary.
3895     Sequence.AddQualificationConversionStep(DestType, VK_RValue);
3896     if (ILE)
3897       Sequence.RewrapReferenceInitList(DestType, ILE);
3898     return;
3899   }
3900 
3901   const RecordType *DestRecordType = DestType->getAs<RecordType>();
3902   assert(DestRecordType && "Constructor initialization requires record type");
3903   CXXRecordDecl *DestRecordDecl
3904     = cast<CXXRecordDecl>(DestRecordType->getDecl());
3905 
3906   // Build the candidate set directly in the initialization sequence
3907   // structure, so that it will persist if we fail.
3908   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3909 
3910   // Determine whether we are allowed to call explicit constructors or
3911   // explicit conversion operators.
3912   bool AllowExplicit = Kind.AllowExplicit() || IsListInit;
3913   bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
3914 
3915   //   - Otherwise, if T is a class type, constructors are considered. The
3916   //     applicable constructors are enumerated, and the best one is chosen
3917   //     through overload resolution.
3918   DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl);
3919 
3920   OverloadingResult Result = OR_No_Viable_Function;
3921   OverloadCandidateSet::iterator Best;
3922   bool AsInitializerList = false;
3923 
3924   // C++11 [over.match.list]p1, per DR1467:
3925   //   When objects of non-aggregate type T are list-initialized, such that
3926   //   8.5.4 [dcl.init.list] specifies that overload resolution is performed
3927   //   according to the rules in this section, overload resolution selects
3928   //   the constructor in two phases:
3929   //
3930   //   - Initially, the candidate functions are the initializer-list
3931   //     constructors of the class T and the argument list consists of the
3932   //     initializer list as a single argument.
3933   if (IsListInit) {
3934     AsInitializerList = true;
3935 
3936     // If the initializer list has no elements and T has a default constructor,
3937     // the first phase is omitted.
3938     if (!(UnwrappedArgs.empty() && DestRecordDecl->hasDefaultConstructor()))
3939       Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
3940                                           CandidateSet, DestType, Ctors, Best,
3941                                           CopyInitialization, AllowExplicit,
3942                                           /*OnlyListConstructor=*/true,
3943                                           IsListInit);
3944   }
3945 
3946   // C++11 [over.match.list]p1:
3947   //   - If no viable initializer-list constructor is found, overload resolution
3948   //     is performed again, where the candidate functions are all the
3949   //     constructors of the class T and the argument list consists of the
3950   //     elements of the initializer list.
3951   if (Result == OR_No_Viable_Function) {
3952     AsInitializerList = false;
3953     Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs,
3954                                         CandidateSet, DestType, Ctors, Best,
3955                                         CopyInitialization, AllowExplicit,
3956                                         /*OnlyListConstructors=*/false,
3957                                         IsListInit);
3958   }
3959   if (Result) {
3960     Sequence.SetOverloadFailure(IsListInit ?
3961                       InitializationSequence::FK_ListConstructorOverloadFailed :
3962                       InitializationSequence::FK_ConstructorOverloadFailed,
3963                                 Result);
3964     return;
3965   }
3966 
3967   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3968 
3969   // In C++17, ResolveConstructorOverload can select a conversion function
3970   // instead of a constructor.
3971   if (auto *CD = dyn_cast<CXXConversionDecl>(Best->Function)) {
3972     // Add the user-defined conversion step that calls the conversion function.
3973     QualType ConvType = CD->getConversionType();
3974     assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) &&
3975            "should not have selected this conversion function");
3976     Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType,
3977                                    HadMultipleCandidates);
3978     if (!S.Context.hasSameType(ConvType, DestType))
3979       Sequence.AddQualificationConversionStep(DestType, VK_RValue);
3980     if (IsListInit)
3981       Sequence.RewrapReferenceInitList(Entity.getType(), ILE);
3982     return;
3983   }
3984 
3985   // C++11 [dcl.init]p6:
3986   //   If a program calls for the default initialization of an object
3987   //   of a const-qualified type T, T shall be a class type with a
3988   //   user-provided default constructor.
3989   // C++ core issue 253 proposal:
3990   //   If the implicit default constructor initializes all subobjects, no
3991   //   initializer should be required.
3992   // The 253 proposal is for example needed to process libstdc++ headers in 5.x.
3993   CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
3994   if (Kind.getKind() == InitializationKind::IK_Default &&
3995       Entity.getType().isConstQualified()) {
3996     if (!CtorDecl->getParent()->allowConstDefaultInit()) {
3997       if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
3998         Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3999       return;
4000     }
4001   }
4002 
4003   // C++11 [over.match.list]p1:
4004   //   In copy-list-initialization, if an explicit constructor is chosen, the
4005   //   initializer is ill-formed.
4006   if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
4007     Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
4008     return;
4009   }
4010 
4011   // Add the constructor initialization step. Any cv-qualification conversion is
4012   // subsumed by the initialization.
4013   Sequence.AddConstructorInitializationStep(
4014       Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates,
4015       IsListInit | IsInitListCopy, AsInitializerList);
4016 }
4017 
4018 static bool
4019 ResolveOverloadedFunctionForReferenceBinding(Sema &S,
4020                                              Expr *Initializer,
4021                                              QualType &SourceType,
4022                                              QualType &UnqualifiedSourceType,
4023                                              QualType UnqualifiedTargetType,
4024                                              InitializationSequence &Sequence) {
4025   if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
4026         S.Context.OverloadTy) {
4027     DeclAccessPair Found;
4028     bool HadMultipleCandidates = false;
4029     if (FunctionDecl *Fn
4030         = S.ResolveAddressOfOverloadedFunction(Initializer,
4031                                                UnqualifiedTargetType,
4032                                                false, Found,
4033                                                &HadMultipleCandidates)) {
4034       Sequence.AddAddressOverloadResolutionStep(Fn, Found,
4035                                                 HadMultipleCandidates);
4036       SourceType = Fn->getType();
4037       UnqualifiedSourceType = SourceType.getUnqualifiedType();
4038     } else if (!UnqualifiedTargetType->isRecordType()) {
4039       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4040       return true;
4041     }
4042   }
4043   return false;
4044 }
4045 
4046 static void TryReferenceInitializationCore(Sema &S,
4047                                            const InitializedEntity &Entity,
4048                                            const InitializationKind &Kind,
4049                                            Expr *Initializer,
4050                                            QualType cv1T1, QualType T1,
4051                                            Qualifiers T1Quals,
4052                                            QualType cv2T2, QualType T2,
4053                                            Qualifiers T2Quals,
4054                                            InitializationSequence &Sequence);
4055 
4056 static void TryValueInitialization(Sema &S,
4057                                    const InitializedEntity &Entity,
4058                                    const InitializationKind &Kind,
4059                                    InitializationSequence &Sequence,
4060                                    InitListExpr *InitList = nullptr);
4061 
4062 /// Attempt list initialization of a reference.
4063 static void TryReferenceListInitialization(Sema &S,
4064                                            const InitializedEntity &Entity,
4065                                            const InitializationKind &Kind,
4066                                            InitListExpr *InitList,
4067                                            InitializationSequence &Sequence,
4068                                            bool TreatUnavailableAsInvalid) {
4069   // First, catch C++03 where this isn't possible.
4070   if (!S.getLangOpts().CPlusPlus11) {
4071     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
4072     return;
4073   }
4074   // Can't reference initialize a compound literal.
4075   if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) {
4076     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
4077     return;
4078   }
4079 
4080   QualType DestType = Entity.getType();
4081   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
4082   Qualifiers T1Quals;
4083   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4084 
4085   // Reference initialization via an initializer list works thus:
4086   // If the initializer list consists of a single element that is
4087   // reference-related to the referenced type, bind directly to that element
4088   // (possibly creating temporaries).
4089   // Otherwise, initialize a temporary with the initializer list and
4090   // bind to that.
4091   if (InitList->getNumInits() == 1) {
4092     Expr *Initializer = InitList->getInit(0);
4093     QualType cv2T2 = Initializer->getType();
4094     Qualifiers T2Quals;
4095     QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4096 
4097     // If this fails, creating a temporary wouldn't work either.
4098     if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4099                                                      T1, Sequence))
4100       return;
4101 
4102     SourceLocation DeclLoc = Initializer->getBeginLoc();
4103     bool dummy1, dummy2, dummy3;
4104     Sema::ReferenceCompareResult RefRelationship
4105       = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1,
4106                                        dummy2, dummy3);
4107     if (RefRelationship >= Sema::Ref_Related) {
4108       // Try to bind the reference here.
4109       TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4110                                      T1Quals, cv2T2, T2, T2Quals, Sequence);
4111       if (Sequence)
4112         Sequence.RewrapReferenceInitList(cv1T1, InitList);
4113       return;
4114     }
4115 
4116     // Update the initializer if we've resolved an overloaded function.
4117     if (Sequence.step_begin() != Sequence.step_end())
4118       Sequence.RewrapReferenceInitList(cv1T1, InitList);
4119   }
4120 
4121   // Not reference-related. Create a temporary and bind to that.
4122   InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
4123 
4124   TryListInitialization(S, TempEntity, Kind, InitList, Sequence,
4125                         TreatUnavailableAsInvalid);
4126   if (Sequence) {
4127     if (DestType->isRValueReferenceType() ||
4128         (T1Quals.hasConst() && !T1Quals.hasVolatile()))
4129       Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
4130     else
4131       Sequence.SetFailed(
4132           InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
4133   }
4134 }
4135 
4136 /// Attempt list initialization (C++0x [dcl.init.list])
4137 static void TryListInitialization(Sema &S,
4138                                   const InitializedEntity &Entity,
4139                                   const InitializationKind &Kind,
4140                                   InitListExpr *InitList,
4141                                   InitializationSequence &Sequence,
4142                                   bool TreatUnavailableAsInvalid) {
4143   QualType DestType = Entity.getType();
4144 
4145   // C++ doesn't allow scalar initialization with more than one argument.
4146   // But C99 complex numbers are scalars and it makes sense there.
4147   if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
4148       !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
4149     Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
4150     return;
4151   }
4152   if (DestType->isReferenceType()) {
4153     TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence,
4154                                    TreatUnavailableAsInvalid);
4155     return;
4156   }
4157 
4158   if (DestType->isRecordType() &&
4159       !S.isCompleteType(InitList->getBeginLoc(), DestType)) {
4160     Sequence.setIncompleteTypeFailure(DestType);
4161     return;
4162   }
4163 
4164   // C++11 [dcl.init.list]p3, per DR1467:
4165   // - If T is a class type and the initializer list has a single element of
4166   //   type cv U, where U is T or a class derived from T, the object is
4167   //   initialized from that element (by copy-initialization for
4168   //   copy-list-initialization, or by direct-initialization for
4169   //   direct-list-initialization).
4170   // - Otherwise, if T is a character array and the initializer list has a
4171   //   single element that is an appropriately-typed string literal
4172   //   (8.5.2 [dcl.init.string]), initialization is performed as described
4173   //   in that section.
4174   // - Otherwise, if T is an aggregate, [...] (continue below).
4175   if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) {
4176     if (DestType->isRecordType()) {
4177       QualType InitType = InitList->getInit(0)->getType();
4178       if (S.Context.hasSameUnqualifiedType(InitType, DestType) ||
4179           S.IsDerivedFrom(InitList->getBeginLoc(), InitType, DestType)) {
4180         Expr *InitListAsExpr = InitList;
4181         TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4182                                      DestType, Sequence,
4183                                      /*InitListSyntax*/false,
4184                                      /*IsInitListCopy*/true);
4185         return;
4186       }
4187     }
4188     if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) {
4189       Expr *SubInit[1] = {InitList->getInit(0)};
4190       if (!isa<VariableArrayType>(DestAT) &&
4191           IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) {
4192         InitializationKind SubKind =
4193             Kind.getKind() == InitializationKind::IK_DirectList
4194                 ? InitializationKind::CreateDirect(Kind.getLocation(),
4195                                                    InitList->getLBraceLoc(),
4196                                                    InitList->getRBraceLoc())
4197                 : Kind;
4198         Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4199                                 /*TopLevelOfInitList*/ true,
4200                                 TreatUnavailableAsInvalid);
4201 
4202         // TryStringLiteralInitialization() (in InitializeFrom()) will fail if
4203         // the element is not an appropriately-typed string literal, in which
4204         // case we should proceed as in C++11 (below).
4205         if (Sequence) {
4206           Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4207           return;
4208         }
4209       }
4210     }
4211   }
4212 
4213   // C++11 [dcl.init.list]p3:
4214   //   - If T is an aggregate, aggregate initialization is performed.
4215   if ((DestType->isRecordType() && !DestType->isAggregateType()) ||
4216       (S.getLangOpts().CPlusPlus11 &&
4217        S.isStdInitializerList(DestType, nullptr))) {
4218     if (S.getLangOpts().CPlusPlus11) {
4219       //   - Otherwise, if the initializer list has no elements and T is a
4220       //     class type with a default constructor, the object is
4221       //     value-initialized.
4222       if (InitList->getNumInits() == 0) {
4223         CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
4224         if (RD->hasDefaultConstructor()) {
4225           TryValueInitialization(S, Entity, Kind, Sequence, InitList);
4226           return;
4227         }
4228       }
4229 
4230       //   - Otherwise, if T is a specialization of std::initializer_list<E>,
4231       //     an initializer_list object constructed [...]
4232       if (TryInitializerListConstruction(S, InitList, DestType, Sequence,
4233                                          TreatUnavailableAsInvalid))
4234         return;
4235 
4236       //   - Otherwise, if T is a class type, constructors are considered.
4237       Expr *InitListAsExpr = InitList;
4238       TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4239                                    DestType, Sequence, /*InitListSyntax*/true);
4240     } else
4241       Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
4242     return;
4243   }
4244 
4245   if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() &&
4246       InitList->getNumInits() == 1) {
4247     Expr *E = InitList->getInit(0);
4248 
4249     //   - Otherwise, if T is an enumeration with a fixed underlying type,
4250     //     the initializer-list has a single element v, and the initialization
4251     //     is direct-list-initialization, the object is initialized with the
4252     //     value T(v); if a narrowing conversion is required to convert v to
4253     //     the underlying type of T, the program is ill-formed.
4254     auto *ET = DestType->getAs<EnumType>();
4255     if (S.getLangOpts().CPlusPlus17 &&
4256         Kind.getKind() == InitializationKind::IK_DirectList &&
4257         ET && ET->getDecl()->isFixed() &&
4258         !S.Context.hasSameUnqualifiedType(E->getType(), DestType) &&
4259         (E->getType()->isIntegralOrEnumerationType() ||
4260          E->getType()->isFloatingType())) {
4261       // There are two ways that T(v) can work when T is an enumeration type.
4262       // If there is either an implicit conversion sequence from v to T or
4263       // a conversion function that can convert from v to T, then we use that.
4264       // Otherwise, if v is of integral, enumeration, or floating-point type,
4265       // it is converted to the enumeration type via its underlying type.
4266       // There is no overlap possible between these two cases (except when the
4267       // source value is already of the destination type), and the first
4268       // case is handled by the general case for single-element lists below.
4269       ImplicitConversionSequence ICS;
4270       ICS.setStandard();
4271       ICS.Standard.setAsIdentityConversion();
4272       if (!E->isRValue())
4273         ICS.Standard.First = ICK_Lvalue_To_Rvalue;
4274       // If E is of a floating-point type, then the conversion is ill-formed
4275       // due to narrowing, but go through the motions in order to produce the
4276       // right diagnostic.
4277       ICS.Standard.Second = E->getType()->isFloatingType()
4278                                 ? ICK_Floating_Integral
4279                                 : ICK_Integral_Conversion;
4280       ICS.Standard.setFromType(E->getType());
4281       ICS.Standard.setToType(0, E->getType());
4282       ICS.Standard.setToType(1, DestType);
4283       ICS.Standard.setToType(2, DestType);
4284       Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2),
4285                                          /*TopLevelOfInitList*/true);
4286       Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4287       return;
4288     }
4289 
4290     //   - Otherwise, if the initializer list has a single element of type E
4291     //     [...references are handled above...], the object or reference is
4292     //     initialized from that element (by copy-initialization for
4293     //     copy-list-initialization, or by direct-initialization for
4294     //     direct-list-initialization); if a narrowing conversion is required
4295     //     to convert the element to T, the program is ill-formed.
4296     //
4297     // Per core-24034, this is direct-initialization if we were performing
4298     // direct-list-initialization and copy-initialization otherwise.
4299     // We can't use InitListChecker for this, because it always performs
4300     // copy-initialization. This only matters if we might use an 'explicit'
4301     // conversion operator, so we only need to handle the cases where the source
4302     // is of record type.
4303     if (InitList->getInit(0)->getType()->isRecordType()) {
4304       InitializationKind SubKind =
4305           Kind.getKind() == InitializationKind::IK_DirectList
4306               ? InitializationKind::CreateDirect(Kind.getLocation(),
4307                                                  InitList->getLBraceLoc(),
4308                                                  InitList->getRBraceLoc())
4309               : Kind;
4310       Expr *SubInit[1] = { InitList->getInit(0) };
4311       Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4312                               /*TopLevelOfInitList*/true,
4313                               TreatUnavailableAsInvalid);
4314       if (Sequence)
4315         Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4316       return;
4317     }
4318   }
4319 
4320   InitListChecker CheckInitList(S, Entity, InitList,
4321           DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid);
4322   if (CheckInitList.HadError()) {
4323     Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
4324     return;
4325   }
4326 
4327   // Add the list initialization step with the built init list.
4328   Sequence.AddListInitializationStep(DestType);
4329 }
4330 
4331 /// Try a reference initialization that involves calling a conversion
4332 /// function.
4333 static OverloadingResult TryRefInitWithConversionFunction(
4334     Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind,
4335     Expr *Initializer, bool AllowRValues, bool IsLValueRef,
4336     InitializationSequence &Sequence) {
4337   QualType DestType = Entity.getType();
4338   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
4339   QualType T1 = cv1T1.getUnqualifiedType();
4340   QualType cv2T2 = Initializer->getType();
4341   QualType T2 = cv2T2.getUnqualifiedType();
4342 
4343   bool DerivedToBase;
4344   bool ObjCConversion;
4345   bool ObjCLifetimeConversion;
4346   assert(!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2,
4347                                          DerivedToBase, ObjCConversion,
4348                                          ObjCLifetimeConversion) &&
4349          "Must have incompatible references when binding via conversion");
4350   (void)DerivedToBase;
4351   (void)ObjCConversion;
4352   (void)ObjCLifetimeConversion;
4353 
4354   // Build the candidate set directly in the initialization sequence
4355   // structure, so that it will persist if we fail.
4356   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4357   CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4358 
4359   // Determine whether we are allowed to call explicit conversion operators.
4360   // Note that none of [over.match.copy], [over.match.conv], nor
4361   // [over.match.ref] permit an explicit constructor to be chosen when
4362   // initializing a reference, not even for direct-initialization.
4363   bool AllowExplicitCtors = false;
4364   bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding();
4365 
4366   const RecordType *T1RecordType = nullptr;
4367   if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
4368       S.isCompleteType(Kind.getLocation(), T1)) {
4369     // The type we're converting to is a class type. Enumerate its constructors
4370     // to see if there is a suitable conversion.
4371     CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
4372 
4373     for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) {
4374       auto Info = getConstructorInfo(D);
4375       if (!Info.Constructor)
4376         continue;
4377 
4378       if (!Info.Constructor->isInvalidDecl() &&
4379           Info.Constructor->isConvertingConstructor(AllowExplicitCtors)) {
4380         if (Info.ConstructorTmpl)
4381           S.AddTemplateOverloadCandidate(
4382               Info.ConstructorTmpl, Info.FoundDecl,
4383               /*ExplicitArgs*/ nullptr, Initializer, CandidateSet,
4384               /*SuppressUserConversions=*/true,
4385               /*PartialOverloading*/ false, AllowExplicitCtors);
4386         else
4387           S.AddOverloadCandidate(
4388               Info.Constructor, Info.FoundDecl, Initializer, CandidateSet,
4389               /*SuppressUserConversions=*/true,
4390               /*PartialOverloading*/ false, AllowExplicitCtors);
4391       }
4392     }
4393   }
4394   if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
4395     return OR_No_Viable_Function;
4396 
4397   const RecordType *T2RecordType = nullptr;
4398   if ((T2RecordType = T2->getAs<RecordType>()) &&
4399       S.isCompleteType(Kind.getLocation(), T2)) {
4400     // The type we're converting from is a class type, enumerate its conversion
4401     // functions.
4402     CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
4403 
4404     const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4405     for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4406       NamedDecl *D = *I;
4407       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4408       if (isa<UsingShadowDecl>(D))
4409         D = cast<UsingShadowDecl>(D)->getTargetDecl();
4410 
4411       FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4412       CXXConversionDecl *Conv;
4413       if (ConvTemplate)
4414         Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4415       else
4416         Conv = cast<CXXConversionDecl>(D);
4417 
4418       // If the conversion function doesn't return a reference type,
4419       // it can't be considered for this conversion unless we're allowed to
4420       // consider rvalues.
4421       // FIXME: Do we need to make sure that we only consider conversion
4422       // candidates with reference-compatible results? That might be needed to
4423       // break recursion.
4424       if ((AllowExplicitConvs || !Conv->isExplicit()) &&
4425           (AllowRValues ||
4426            Conv->getConversionType()->isLValueReferenceType())) {
4427         if (ConvTemplate)
4428           S.AddTemplateConversionCandidate(
4429               ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
4430               CandidateSet,
4431               /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs);
4432         else
4433           S.AddConversionCandidate(
4434               Conv, I.getPair(), ActingDC, Initializer, DestType, CandidateSet,
4435               /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs);
4436       }
4437     }
4438   }
4439   if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
4440     return OR_No_Viable_Function;
4441 
4442   SourceLocation DeclLoc = Initializer->getBeginLoc();
4443 
4444   // Perform overload resolution. If it fails, return the failed result.
4445   OverloadCandidateSet::iterator Best;
4446   if (OverloadingResult Result
4447         = CandidateSet.BestViableFunction(S, DeclLoc, Best))
4448     return Result;
4449 
4450   FunctionDecl *Function = Best->Function;
4451   // This is the overload that will be used for this initialization step if we
4452   // use this initialization. Mark it as referenced.
4453   Function->setReferenced();
4454 
4455   // Compute the returned type and value kind of the conversion.
4456   QualType cv3T3;
4457   if (isa<CXXConversionDecl>(Function))
4458     cv3T3 = Function->getReturnType();
4459   else
4460     cv3T3 = T1;
4461 
4462   ExprValueKind VK = VK_RValue;
4463   if (cv3T3->isLValueReferenceType())
4464     VK = VK_LValue;
4465   else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>())
4466     VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
4467   cv3T3 = cv3T3.getNonLValueExprType(S.Context);
4468 
4469   // Add the user-defined conversion step.
4470   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4471   Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3,
4472                                  HadMultipleCandidates);
4473 
4474   // Determine whether we'll need to perform derived-to-base adjustments or
4475   // other conversions.
4476   bool NewDerivedToBase = false;
4477   bool NewObjCConversion = false;
4478   bool NewObjCLifetimeConversion = false;
4479   Sema::ReferenceCompareResult NewRefRelationship
4480     = S.CompareReferenceRelationship(DeclLoc, T1, cv3T3,
4481                                      NewDerivedToBase, NewObjCConversion,
4482                                      NewObjCLifetimeConversion);
4483 
4484   // Add the final conversion sequence, if necessary.
4485   if (NewRefRelationship == Sema::Ref_Incompatible) {
4486     assert(!isa<CXXConstructorDecl>(Function) &&
4487            "should not have conversion after constructor");
4488 
4489     ImplicitConversionSequence ICS;
4490     ICS.setStandard();
4491     ICS.Standard = Best->FinalConversion;
4492     Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2));
4493 
4494     // Every implicit conversion results in a prvalue, except for a glvalue
4495     // derived-to-base conversion, which we handle below.
4496     cv3T3 = ICS.Standard.getToType(2);
4497     VK = VK_RValue;
4498   }
4499 
4500   //   If the converted initializer is a prvalue, its type T4 is adjusted to
4501   //   type "cv1 T4" and the temporary materialization conversion is applied.
4502   //
4503   // We adjust the cv-qualifications to match the reference regardless of
4504   // whether we have a prvalue so that the AST records the change. In this
4505   // case, T4 is "cv3 T3".
4506   QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers());
4507   if (cv1T4.getQualifiers() != cv3T3.getQualifiers())
4508     Sequence.AddQualificationConversionStep(cv1T4, VK);
4509   Sequence.AddReferenceBindingStep(cv1T4, VK == VK_RValue);
4510   VK = IsLValueRef ? VK_LValue : VK_XValue;
4511 
4512   if (NewDerivedToBase)
4513     Sequence.AddDerivedToBaseCastStep(cv1T1, VK);
4514   else if (NewObjCConversion)
4515     Sequence.AddObjCObjectConversionStep(cv1T1);
4516 
4517   return OR_Success;
4518 }
4519 
4520 static void CheckCXX98CompatAccessibleCopy(Sema &S,
4521                                            const InitializedEntity &Entity,
4522                                            Expr *CurInitExpr);
4523 
4524 /// Attempt reference initialization (C++0x [dcl.init.ref])
4525 static void TryReferenceInitialization(Sema &S,
4526                                        const InitializedEntity &Entity,
4527                                        const InitializationKind &Kind,
4528                                        Expr *Initializer,
4529                                        InitializationSequence &Sequence) {
4530   QualType DestType = Entity.getType();
4531   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
4532   Qualifiers T1Quals;
4533   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4534   QualType cv2T2 = Initializer->getType();
4535   Qualifiers T2Quals;
4536   QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4537 
4538   // If the initializer is the address of an overloaded function, try
4539   // to resolve the overloaded function. If all goes well, T2 is the
4540   // type of the resulting function.
4541   if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4542                                                    T1, Sequence))
4543     return;
4544 
4545   // Delegate everything else to a subfunction.
4546   TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4547                                  T1Quals, cv2T2, T2, T2Quals, Sequence);
4548 }
4549 
4550 /// Determine whether an expression is a non-referenceable glvalue (one to
4551 /// which a reference can never bind). Attempting to bind a reference to
4552 /// such a glvalue will always create a temporary.
4553 static bool isNonReferenceableGLValue(Expr *E) {
4554   return E->refersToBitField() || E->refersToVectorElement();
4555 }
4556 
4557 /// Reference initialization without resolving overloaded functions.
4558 static void TryReferenceInitializationCore(Sema &S,
4559                                            const InitializedEntity &Entity,
4560                                            const InitializationKind &Kind,
4561                                            Expr *Initializer,
4562                                            QualType cv1T1, QualType T1,
4563                                            Qualifiers T1Quals,
4564                                            QualType cv2T2, QualType T2,
4565                                            Qualifiers T2Quals,
4566                                            InitializationSequence &Sequence) {
4567   QualType DestType = Entity.getType();
4568   SourceLocation DeclLoc = Initializer->getBeginLoc();
4569   // Compute some basic properties of the types and the initializer.
4570   bool isLValueRef = DestType->isLValueReferenceType();
4571   bool isRValueRef = !isLValueRef;
4572   bool DerivedToBase = false;
4573   bool ObjCConversion = false;
4574   bool ObjCLifetimeConversion = false;
4575   Expr::Classification InitCategory = Initializer->Classify(S.Context);
4576   Sema::ReferenceCompareResult RefRelationship
4577     = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
4578                                      ObjCConversion, ObjCLifetimeConversion);
4579 
4580   // C++0x [dcl.init.ref]p5:
4581   //   A reference to type "cv1 T1" is initialized by an expression of type
4582   //   "cv2 T2" as follows:
4583   //
4584   //     - If the reference is an lvalue reference and the initializer
4585   //       expression
4586   // Note the analogous bullet points for rvalue refs to functions. Because
4587   // there are no function rvalues in C++, rvalue refs to functions are treated
4588   // like lvalue refs.
4589   OverloadingResult ConvOvlResult = OR_Success;
4590   bool T1Function = T1->isFunctionType();
4591   if (isLValueRef || T1Function) {
4592     if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) &&
4593         (RefRelationship == Sema::Ref_Compatible ||
4594          (Kind.isCStyleOrFunctionalCast() &&
4595           RefRelationship == Sema::Ref_Related))) {
4596       //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
4597       //     reference-compatible with "cv2 T2," or
4598       if (T1Quals != T2Quals)
4599         // Convert to cv1 T2. This should only add qualifiers unless this is a
4600         // c-style cast. The removal of qualifiers in that case notionally
4601         // happens after the reference binding, but that doesn't matter.
4602         Sequence.AddQualificationConversionStep(
4603             S.Context.getQualifiedType(T2, T1Quals),
4604             Initializer->getValueKind());
4605       if (DerivedToBase)
4606         Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue);
4607       else if (ObjCConversion)
4608         Sequence.AddObjCObjectConversionStep(cv1T1);
4609 
4610       // We only create a temporary here when binding a reference to a
4611       // bit-field or vector element. Those cases are't supposed to be
4612       // handled by this bullet, but the outcome is the same either way.
4613       Sequence.AddReferenceBindingStep(cv1T1, false);
4614       return;
4615     }
4616 
4617     //     - has a class type (i.e., T2 is a class type), where T1 is not
4618     //       reference-related to T2, and can be implicitly converted to an
4619     //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
4620     //       with "cv3 T3" (this conversion is selected by enumerating the
4621     //       applicable conversion functions (13.3.1.6) and choosing the best
4622     //       one through overload resolution (13.3)),
4623     // If we have an rvalue ref to function type here, the rhs must be
4624     // an rvalue. DR1287 removed the "implicitly" here.
4625     if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
4626         (isLValueRef || InitCategory.isRValue())) {
4627       ConvOvlResult = TryRefInitWithConversionFunction(
4628           S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef,
4629           /*IsLValueRef*/ isLValueRef, Sequence);
4630       if (ConvOvlResult == OR_Success)
4631         return;
4632       if (ConvOvlResult != OR_No_Viable_Function)
4633         Sequence.SetOverloadFailure(
4634             InitializationSequence::FK_ReferenceInitOverloadFailed,
4635             ConvOvlResult);
4636     }
4637   }
4638 
4639   //     - Otherwise, the reference shall be an lvalue reference to a
4640   //       non-volatile const type (i.e., cv1 shall be const), or the reference
4641   //       shall be an rvalue reference.
4642   if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
4643     if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4644       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4645     else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4646       Sequence.SetOverloadFailure(
4647                         InitializationSequence::FK_ReferenceInitOverloadFailed,
4648                                   ConvOvlResult);
4649     else if (!InitCategory.isLValue())
4650       Sequence.SetFailed(
4651           InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
4652     else {
4653       InitializationSequence::FailureKind FK;
4654       switch (RefRelationship) {
4655       case Sema::Ref_Compatible:
4656         if (Initializer->refersToBitField())
4657           FK = InitializationSequence::
4658               FK_NonConstLValueReferenceBindingToBitfield;
4659         else if (Initializer->refersToVectorElement())
4660           FK = InitializationSequence::
4661               FK_NonConstLValueReferenceBindingToVectorElement;
4662         else
4663           llvm_unreachable("unexpected kind of compatible initializer");
4664         break;
4665       case Sema::Ref_Related:
4666         FK = InitializationSequence::FK_ReferenceInitDropsQualifiers;
4667         break;
4668       case Sema::Ref_Incompatible:
4669         FK = InitializationSequence::
4670             FK_NonConstLValueReferenceBindingToUnrelated;
4671         break;
4672       }
4673       Sequence.SetFailed(FK);
4674     }
4675     return;
4676   }
4677 
4678   //    - If the initializer expression
4679   //      - is an
4680   // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or
4681   // [1z]   rvalue (but not a bit-field) or
4682   //        function lvalue and "cv1 T1" is reference-compatible with "cv2 T2"
4683   //
4684   // Note: functions are handled above and below rather than here...
4685   if (!T1Function &&
4686       (RefRelationship == Sema::Ref_Compatible ||
4687        (Kind.isCStyleOrFunctionalCast() &&
4688         RefRelationship == Sema::Ref_Related)) &&
4689       ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) ||
4690        (InitCategory.isPRValue() &&
4691         (S.getLangOpts().CPlusPlus17 || T2->isRecordType() ||
4692          T2->isArrayType())))) {
4693     ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_RValue;
4694     if (InitCategory.isPRValue() && T2->isRecordType()) {
4695       // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
4696       // compiler the freedom to perform a copy here or bind to the
4697       // object, while C++0x requires that we bind directly to the
4698       // object. Hence, we always bind to the object without making an
4699       // extra copy. However, in C++03 requires that we check for the
4700       // presence of a suitable copy constructor:
4701       //
4702       //   The constructor that would be used to make the copy shall
4703       //   be callable whether or not the copy is actually done.
4704       if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
4705         Sequence.AddExtraneousCopyToTemporary(cv2T2);
4706       else if (S.getLangOpts().CPlusPlus11)
4707         CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
4708     }
4709 
4710     // C++1z [dcl.init.ref]/5.2.1.2:
4711     //   If the converted initializer is a prvalue, its type T4 is adjusted
4712     //   to type "cv1 T4" and the temporary materialization conversion is
4713     //   applied.
4714     // Postpone address space conversions to after the temporary materialization
4715     // conversion to allow creating temporaries in the alloca address space.
4716     auto T1QualsIgnoreAS = T1Quals;
4717     auto T2QualsIgnoreAS = T2Quals;
4718     if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) {
4719       T1QualsIgnoreAS.removeAddressSpace();
4720       T2QualsIgnoreAS.removeAddressSpace();
4721     }
4722     QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1QualsIgnoreAS);
4723     if (T1QualsIgnoreAS != T2QualsIgnoreAS)
4724       Sequence.AddQualificationConversionStep(cv1T4, ValueKind);
4725     Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_RValue);
4726     ValueKind = isLValueRef ? VK_LValue : VK_XValue;
4727     // Add addr space conversion if required.
4728     if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) {
4729       auto T4Quals = cv1T4.getQualifiers();
4730       T4Quals.addAddressSpace(T1Quals.getAddressSpace());
4731       QualType cv1T4WithAS = S.Context.getQualifiedType(T2, T4Quals);
4732       Sequence.AddQualificationConversionStep(cv1T4WithAS, ValueKind);
4733     }
4734 
4735     //   In any case, the reference is bound to the resulting glvalue (or to
4736     //   an appropriate base class subobject).
4737     if (DerivedToBase)
4738       Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind);
4739     else if (ObjCConversion)
4740       Sequence.AddObjCObjectConversionStep(cv1T1);
4741     return;
4742   }
4743 
4744   //       - has a class type (i.e., T2 is a class type), where T1 is not
4745   //         reference-related to T2, and can be implicitly converted to an
4746   //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
4747   //         where "cv1 T1" is reference-compatible with "cv3 T3",
4748   //
4749   // DR1287 removes the "implicitly" here.
4750   if (T2->isRecordType()) {
4751     if (RefRelationship == Sema::Ref_Incompatible) {
4752       ConvOvlResult = TryRefInitWithConversionFunction(
4753           S, Entity, Kind, Initializer, /*AllowRValues*/ true,
4754           /*IsLValueRef*/ isLValueRef, Sequence);
4755       if (ConvOvlResult)
4756         Sequence.SetOverloadFailure(
4757             InitializationSequence::FK_ReferenceInitOverloadFailed,
4758             ConvOvlResult);
4759 
4760       return;
4761     }
4762 
4763     if (RefRelationship == Sema::Ref_Compatible &&
4764         isRValueRef && InitCategory.isLValue()) {
4765       Sequence.SetFailed(
4766         InitializationSequence::FK_RValueReferenceBindingToLValue);
4767       return;
4768     }
4769 
4770     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4771     return;
4772   }
4773 
4774   //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
4775   //        from the initializer expression using the rules for a non-reference
4776   //        copy-initialization (8.5). The reference is then bound to the
4777   //        temporary. [...]
4778 
4779   // Ignore address space of reference type at this point and perform address
4780   // space conversion after the reference binding step.
4781   QualType cv1T1IgnoreAS =
4782       T1Quals.hasAddressSpace()
4783           ? S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace())
4784           : cv1T1;
4785 
4786   InitializedEntity TempEntity =
4787       InitializedEntity::InitializeTemporary(cv1T1IgnoreAS);
4788 
4789   // FIXME: Why do we use an implicit conversion here rather than trying
4790   // copy-initialization?
4791   ImplicitConversionSequence ICS
4792     = S.TryImplicitConversion(Initializer, TempEntity.getType(),
4793                               /*SuppressUserConversions=*/false,
4794                               /*AllowExplicit=*/false,
4795                               /*FIXME:InOverloadResolution=*/false,
4796                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
4797                               /*AllowObjCWritebackConversion=*/false);
4798 
4799   if (ICS.isBad()) {
4800     // FIXME: Use the conversion function set stored in ICS to turn
4801     // this into an overloading ambiguity diagnostic. However, we need
4802     // to keep that set as an OverloadCandidateSet rather than as some
4803     // other kind of set.
4804     if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4805       Sequence.SetOverloadFailure(
4806                         InitializationSequence::FK_ReferenceInitOverloadFailed,
4807                                   ConvOvlResult);
4808     else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4809       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4810     else
4811       Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
4812     return;
4813   } else {
4814     Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
4815   }
4816 
4817   //        [...] If T1 is reference-related to T2, cv1 must be the
4818   //        same cv-qualification as, or greater cv-qualification
4819   //        than, cv2; otherwise, the program is ill-formed.
4820   unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
4821   unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
4822   if ((RefRelationship == Sema::Ref_Related &&
4823        (T1CVRQuals | T2CVRQuals) != T1CVRQuals) ||
4824       !T1Quals.isAddressSpaceSupersetOf(T2Quals)) {
4825     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4826     return;
4827   }
4828 
4829   //   [...] If T1 is reference-related to T2 and the reference is an rvalue
4830   //   reference, the initializer expression shall not be an lvalue.
4831   if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
4832       InitCategory.isLValue()) {
4833     Sequence.SetFailed(
4834                     InitializationSequence::FK_RValueReferenceBindingToLValue);
4835     return;
4836   }
4837 
4838   Sequence.AddReferenceBindingStep(cv1T1IgnoreAS, /*bindingTemporary=*/true);
4839 
4840   if (T1Quals.hasAddressSpace())
4841     Sequence.AddQualificationConversionStep(cv1T1, isLValueRef ? VK_LValue
4842                                                                : VK_XValue);
4843 }
4844 
4845 /// Attempt character array initialization from a string literal
4846 /// (C++ [dcl.init.string], C99 6.7.8).
4847 static void TryStringLiteralInitialization(Sema &S,
4848                                            const InitializedEntity &Entity,
4849                                            const InitializationKind &Kind,
4850                                            Expr *Initializer,
4851                                        InitializationSequence &Sequence) {
4852   Sequence.AddStringInitStep(Entity.getType());
4853 }
4854 
4855 /// Attempt value initialization (C++ [dcl.init]p7).
4856 static void TryValueInitialization(Sema &S,
4857                                    const InitializedEntity &Entity,
4858                                    const InitializationKind &Kind,
4859                                    InitializationSequence &Sequence,
4860                                    InitListExpr *InitList) {
4861   assert((!InitList || InitList->getNumInits() == 0) &&
4862          "Shouldn't use value-init for non-empty init lists");
4863 
4864   // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
4865   //
4866   //   To value-initialize an object of type T means:
4867   QualType T = Entity.getType();
4868 
4869   //     -- if T is an array type, then each element is value-initialized;
4870   T = S.Context.getBaseElementType(T);
4871 
4872   if (const RecordType *RT = T->getAs<RecordType>()) {
4873     if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
4874       bool NeedZeroInitialization = true;
4875       // C++98:
4876       // -- if T is a class type (clause 9) with a user-declared constructor
4877       //    (12.1), then the default constructor for T is called (and the
4878       //    initialization is ill-formed if T has no accessible default
4879       //    constructor);
4880       // C++11:
4881       // -- if T is a class type (clause 9) with either no default constructor
4882       //    (12.1 [class.ctor]) or a default constructor that is user-provided
4883       //    or deleted, then the object is default-initialized;
4884       //
4885       // Note that the C++11 rule is the same as the C++98 rule if there are no
4886       // defaulted or deleted constructors, so we just use it unconditionally.
4887       CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
4888       if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
4889         NeedZeroInitialization = false;
4890 
4891       // -- if T is a (possibly cv-qualified) non-union class type without a
4892       //    user-provided or deleted default constructor, then the object is
4893       //    zero-initialized and, if T has a non-trivial default constructor,
4894       //    default-initialized;
4895       // The 'non-union' here was removed by DR1502. The 'non-trivial default
4896       // constructor' part was removed by DR1507.
4897       if (NeedZeroInitialization)
4898         Sequence.AddZeroInitializationStep(Entity.getType());
4899 
4900       // C++03:
4901       // -- if T is a non-union class type without a user-declared constructor,
4902       //    then every non-static data member and base class component of T is
4903       //    value-initialized;
4904       // [...] A program that calls for [...] value-initialization of an
4905       // entity of reference type is ill-formed.
4906       //
4907       // C++11 doesn't need this handling, because value-initialization does not
4908       // occur recursively there, and the implicit default constructor is
4909       // defined as deleted in the problematic cases.
4910       if (!S.getLangOpts().CPlusPlus11 &&
4911           ClassDecl->hasUninitializedReferenceMember()) {
4912         Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
4913         return;
4914       }
4915 
4916       // If this is list-value-initialization, pass the empty init list on when
4917       // building the constructor call. This affects the semantics of a few
4918       // things (such as whether an explicit default constructor can be called).
4919       Expr *InitListAsExpr = InitList;
4920       MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
4921       bool InitListSyntax = InitList;
4922 
4923       // FIXME: Instead of creating a CXXConstructExpr of array type here,
4924       // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr.
4925       return TryConstructorInitialization(
4926           S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax);
4927     }
4928   }
4929 
4930   Sequence.AddZeroInitializationStep(Entity.getType());
4931 }
4932 
4933 /// Attempt default initialization (C++ [dcl.init]p6).
4934 static void TryDefaultInitialization(Sema &S,
4935                                      const InitializedEntity &Entity,
4936                                      const InitializationKind &Kind,
4937                                      InitializationSequence &Sequence) {
4938   assert(Kind.getKind() == InitializationKind::IK_Default);
4939 
4940   // C++ [dcl.init]p6:
4941   //   To default-initialize an object of type T means:
4942   //     - if T is an array type, each element is default-initialized;
4943   QualType DestType = S.Context.getBaseElementType(Entity.getType());
4944 
4945   //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
4946   //       constructor for T is called (and the initialization is ill-formed if
4947   //       T has no accessible default constructor);
4948   if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
4949     TryConstructorInitialization(S, Entity, Kind, None, DestType,
4950                                  Entity.getType(), Sequence);
4951     return;
4952   }
4953 
4954   //     - otherwise, no initialization is performed.
4955 
4956   //   If a program calls for the default initialization of an object of
4957   //   a const-qualified type T, T shall be a class type with a user-provided
4958   //   default constructor.
4959   if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
4960     if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
4961       Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
4962     return;
4963   }
4964 
4965   // If the destination type has a lifetime property, zero-initialize it.
4966   if (DestType.getQualifiers().hasObjCLifetime()) {
4967     Sequence.AddZeroInitializationStep(Entity.getType());
4968     return;
4969   }
4970 }
4971 
4972 /// Attempt a user-defined conversion between two types (C++ [dcl.init]),
4973 /// which enumerates all conversion functions and performs overload resolution
4974 /// to select the best.
4975 static void TryUserDefinedConversion(Sema &S,
4976                                      QualType DestType,
4977                                      const InitializationKind &Kind,
4978                                      Expr *Initializer,
4979                                      InitializationSequence &Sequence,
4980                                      bool TopLevelOfInitList) {
4981   assert(!DestType->isReferenceType() && "References are handled elsewhere");
4982   QualType SourceType = Initializer->getType();
4983   assert((DestType->isRecordType() || SourceType->isRecordType()) &&
4984          "Must have a class type to perform a user-defined conversion");
4985 
4986   // Build the candidate set directly in the initialization sequence
4987   // structure, so that it will persist if we fail.
4988   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4989   CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4990 
4991   // Determine whether we are allowed to call explicit constructors or
4992   // explicit conversion operators.
4993   bool AllowExplicit = Kind.AllowExplicit();
4994 
4995   if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
4996     // The type we're converting to is a class type. Enumerate its constructors
4997     // to see if there is a suitable conversion.
4998     CXXRecordDecl *DestRecordDecl
4999       = cast<CXXRecordDecl>(DestRecordType->getDecl());
5000 
5001     // Try to complete the type we're converting to.
5002     if (S.isCompleteType(Kind.getLocation(), DestType)) {
5003       for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) {
5004         auto Info = getConstructorInfo(D);
5005         if (!Info.Constructor)
5006           continue;
5007 
5008         if (!Info.Constructor->isInvalidDecl() &&
5009             Info.Constructor->isConvertingConstructor(AllowExplicit)) {
5010           if (Info.ConstructorTmpl)
5011             S.AddTemplateOverloadCandidate(
5012                 Info.ConstructorTmpl, Info.FoundDecl,
5013                 /*ExplicitArgs*/ nullptr, Initializer, CandidateSet,
5014                 /*SuppressUserConversions=*/true,
5015                 /*PartialOverloading*/ false, AllowExplicit);
5016           else
5017             S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
5018                                    Initializer, CandidateSet,
5019                                    /*SuppressUserConversions=*/true,
5020                                    /*PartialOverloading*/ false, AllowExplicit);
5021         }
5022       }
5023     }
5024   }
5025 
5026   SourceLocation DeclLoc = Initializer->getBeginLoc();
5027 
5028   if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
5029     // The type we're converting from is a class type, enumerate its conversion
5030     // functions.
5031 
5032     // We can only enumerate the conversion functions for a complete type; if
5033     // the type isn't complete, simply skip this step.
5034     if (S.isCompleteType(DeclLoc, SourceType)) {
5035       CXXRecordDecl *SourceRecordDecl
5036         = cast<CXXRecordDecl>(SourceRecordType->getDecl());
5037 
5038       const auto &Conversions =
5039           SourceRecordDecl->getVisibleConversionFunctions();
5040       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
5041         NamedDecl *D = *I;
5042         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
5043         if (isa<UsingShadowDecl>(D))
5044           D = cast<UsingShadowDecl>(D)->getTargetDecl();
5045 
5046         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
5047         CXXConversionDecl *Conv;
5048         if (ConvTemplate)
5049           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5050         else
5051           Conv = cast<CXXConversionDecl>(D);
5052 
5053         if (AllowExplicit || !Conv->isExplicit()) {
5054           if (ConvTemplate)
5055             S.AddTemplateConversionCandidate(
5056                 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
5057                 CandidateSet, AllowExplicit, AllowExplicit);
5058           else
5059             S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer,
5060                                      DestType, CandidateSet, AllowExplicit,
5061                                      AllowExplicit);
5062         }
5063       }
5064     }
5065   }
5066 
5067   // Perform overload resolution. If it fails, return the failed result.
5068   OverloadCandidateSet::iterator Best;
5069   if (OverloadingResult Result
5070         = CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
5071     Sequence.SetOverloadFailure(
5072                         InitializationSequence::FK_UserConversionOverloadFailed,
5073                                 Result);
5074     return;
5075   }
5076 
5077   FunctionDecl *Function = Best->Function;
5078   Function->setReferenced();
5079   bool HadMultipleCandidates = (CandidateSet.size() > 1);
5080 
5081   if (isa<CXXConstructorDecl>(Function)) {
5082     // Add the user-defined conversion step. Any cv-qualification conversion is
5083     // subsumed by the initialization. Per DR5, the created temporary is of the
5084     // cv-unqualified type of the destination.
5085     Sequence.AddUserConversionStep(Function, Best->FoundDecl,
5086                                    DestType.getUnqualifiedType(),
5087                                    HadMultipleCandidates);
5088 
5089     // C++14 and before:
5090     //   - if the function is a constructor, the call initializes a temporary
5091     //     of the cv-unqualified version of the destination type. The [...]
5092     //     temporary [...] is then used to direct-initialize, according to the
5093     //     rules above, the object that is the destination of the
5094     //     copy-initialization.
5095     // Note that this just performs a simple object copy from the temporary.
5096     //
5097     // C++17:
5098     //   - if the function is a constructor, the call is a prvalue of the
5099     //     cv-unqualified version of the destination type whose return object
5100     //     is initialized by the constructor. The call is used to
5101     //     direct-initialize, according to the rules above, the object that
5102     //     is the destination of the copy-initialization.
5103     // Therefore we need to do nothing further.
5104     //
5105     // FIXME: Mark this copy as extraneous.
5106     if (!S.getLangOpts().CPlusPlus17)
5107       Sequence.AddFinalCopy(DestType);
5108     else if (DestType.hasQualifiers())
5109       Sequence.AddQualificationConversionStep(DestType, VK_RValue);
5110     return;
5111   }
5112 
5113   // Add the user-defined conversion step that calls the conversion function.
5114   QualType ConvType = Function->getCallResultType();
5115   Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
5116                                  HadMultipleCandidates);
5117 
5118   if (ConvType->getAs<RecordType>()) {
5119     //   The call is used to direct-initialize [...] the object that is the
5120     //   destination of the copy-initialization.
5121     //
5122     // In C++17, this does not call a constructor if we enter /17.6.1:
5123     //   - If the initializer expression is a prvalue and the cv-unqualified
5124     //     version of the source type is the same as the class of the
5125     //     destination [... do not make an extra copy]
5126     //
5127     // FIXME: Mark this copy as extraneous.
5128     if (!S.getLangOpts().CPlusPlus17 ||
5129         Function->getReturnType()->isReferenceType() ||
5130         !S.Context.hasSameUnqualifiedType(ConvType, DestType))
5131       Sequence.AddFinalCopy(DestType);
5132     else if (!S.Context.hasSameType(ConvType, DestType))
5133       Sequence.AddQualificationConversionStep(DestType, VK_RValue);
5134     return;
5135   }
5136 
5137   // If the conversion following the call to the conversion function
5138   // is interesting, add it as a separate step.
5139   if (Best->FinalConversion.First || Best->FinalConversion.Second ||
5140       Best->FinalConversion.Third) {
5141     ImplicitConversionSequence ICS;
5142     ICS.setStandard();
5143     ICS.Standard = Best->FinalConversion;
5144     Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5145   }
5146 }
5147 
5148 /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>,
5149 /// a function with a pointer return type contains a 'return false;' statement.
5150 /// In C++11, 'false' is not a null pointer, so this breaks the build of any
5151 /// code using that header.
5152 ///
5153 /// Work around this by treating 'return false;' as zero-initializing the result
5154 /// if it's used in a pointer-returning function in a system header.
5155 static bool isLibstdcxxPointerReturnFalseHack(Sema &S,
5156                                               const InitializedEntity &Entity,
5157                                               const Expr *Init) {
5158   return S.getLangOpts().CPlusPlus11 &&
5159          Entity.getKind() == InitializedEntity::EK_Result &&
5160          Entity.getType()->isPointerType() &&
5161          isa<CXXBoolLiteralExpr>(Init) &&
5162          !cast<CXXBoolLiteralExpr>(Init)->getValue() &&
5163          S.getSourceManager().isInSystemHeader(Init->getExprLoc());
5164 }
5165 
5166 /// The non-zero enum values here are indexes into diagnostic alternatives.
5167 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
5168 
5169 /// Determines whether this expression is an acceptable ICR source.
5170 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
5171                                          bool isAddressOf, bool &isWeakAccess) {
5172   // Skip parens.
5173   e = e->IgnoreParens();
5174 
5175   // Skip address-of nodes.
5176   if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
5177     if (op->getOpcode() == UO_AddrOf)
5178       return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
5179                                 isWeakAccess);
5180 
5181   // Skip certain casts.
5182   } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
5183     switch (ce->getCastKind()) {
5184     case CK_Dependent:
5185     case CK_BitCast:
5186     case CK_LValueBitCast:
5187     case CK_NoOp:
5188       return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
5189 
5190     case CK_ArrayToPointerDecay:
5191       return IIK_nonscalar;
5192 
5193     case CK_NullToPointer:
5194       return IIK_okay;
5195 
5196     default:
5197       break;
5198     }
5199 
5200   // If we have a declaration reference, it had better be a local variable.
5201   } else if (isa<DeclRefExpr>(e)) {
5202     // set isWeakAccess to true, to mean that there will be an implicit
5203     // load which requires a cleanup.
5204     if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
5205       isWeakAccess = true;
5206 
5207     if (!isAddressOf) return IIK_nonlocal;
5208 
5209     VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
5210     if (!var) return IIK_nonlocal;
5211 
5212     return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
5213 
5214   // If we have a conditional operator, check both sides.
5215   } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
5216     if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
5217                                                 isWeakAccess))
5218       return iik;
5219 
5220     return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
5221 
5222   // These are never scalar.
5223   } else if (isa<ArraySubscriptExpr>(e)) {
5224     return IIK_nonscalar;
5225 
5226   // Otherwise, it needs to be a null pointer constant.
5227   } else {
5228     return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
5229             ? IIK_okay : IIK_nonlocal);
5230   }
5231 
5232   return IIK_nonlocal;
5233 }
5234 
5235 /// Check whether the given expression is a valid operand for an
5236 /// indirect copy/restore.
5237 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
5238   assert(src->isRValue());
5239   bool isWeakAccess = false;
5240   InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
5241   // If isWeakAccess to true, there will be an implicit
5242   // load which requires a cleanup.
5243   if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
5244     S.Cleanup.setExprNeedsCleanups(true);
5245 
5246   if (iik == IIK_okay) return;
5247 
5248   S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
5249     << ((unsigned) iik - 1)  // shift index into diagnostic explanations
5250     << src->getSourceRange();
5251 }
5252 
5253 /// Determine whether we have compatible array types for the
5254 /// purposes of GNU by-copy array initialization.
5255 static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest,
5256                                     const ArrayType *Source) {
5257   // If the source and destination array types are equivalent, we're
5258   // done.
5259   if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
5260     return true;
5261 
5262   // Make sure that the element types are the same.
5263   if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
5264     return false;
5265 
5266   // The only mismatch we allow is when the destination is an
5267   // incomplete array type and the source is a constant array type.
5268   return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
5269 }
5270 
5271 static bool tryObjCWritebackConversion(Sema &S,
5272                                        InitializationSequence &Sequence,
5273                                        const InitializedEntity &Entity,
5274                                        Expr *Initializer) {
5275   bool ArrayDecay = false;
5276   QualType ArgType = Initializer->getType();
5277   QualType ArgPointee;
5278   if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
5279     ArrayDecay = true;
5280     ArgPointee = ArgArrayType->getElementType();
5281     ArgType = S.Context.getPointerType(ArgPointee);
5282   }
5283 
5284   // Handle write-back conversion.
5285   QualType ConvertedArgType;
5286   if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
5287                                    ConvertedArgType))
5288     return false;
5289 
5290   // We should copy unless we're passing to an argument explicitly
5291   // marked 'out'.
5292   bool ShouldCopy = true;
5293   if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5294     ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5295 
5296   // Do we need an lvalue conversion?
5297   if (ArrayDecay || Initializer->isGLValue()) {
5298     ImplicitConversionSequence ICS;
5299     ICS.setStandard();
5300     ICS.Standard.setAsIdentityConversion();
5301 
5302     QualType ResultType;
5303     if (ArrayDecay) {
5304       ICS.Standard.First = ICK_Array_To_Pointer;
5305       ResultType = S.Context.getPointerType(ArgPointee);
5306     } else {
5307       ICS.Standard.First = ICK_Lvalue_To_Rvalue;
5308       ResultType = Initializer->getType().getNonLValueExprType(S.Context);
5309     }
5310 
5311     Sequence.AddConversionSequenceStep(ICS, ResultType);
5312   }
5313 
5314   Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
5315   return true;
5316 }
5317 
5318 static bool TryOCLSamplerInitialization(Sema &S,
5319                                         InitializationSequence &Sequence,
5320                                         QualType DestType,
5321                                         Expr *Initializer) {
5322   if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
5323       (!Initializer->isIntegerConstantExpr(S.Context) &&
5324       !Initializer->getType()->isSamplerT()))
5325     return false;
5326 
5327   Sequence.AddOCLSamplerInitStep(DestType);
5328   return true;
5329 }
5330 
5331 static bool IsZeroInitializer(Expr *Initializer, Sema &S) {
5332   return Initializer->isIntegerConstantExpr(S.getASTContext()) &&
5333     (Initializer->EvaluateKnownConstInt(S.getASTContext()) == 0);
5334 }
5335 
5336 static bool TryOCLZeroOpaqueTypeInitialization(Sema &S,
5337                                                InitializationSequence &Sequence,
5338                                                QualType DestType,
5339                                                Expr *Initializer) {
5340   if (!S.getLangOpts().OpenCL)
5341     return false;
5342 
5343   //
5344   // OpenCL 1.2 spec, s6.12.10
5345   //
5346   // The event argument can also be used to associate the
5347   // async_work_group_copy with a previous async copy allowing
5348   // an event to be shared by multiple async copies; otherwise
5349   // event should be zero.
5350   //
5351   if (DestType->isEventT() || DestType->isQueueT()) {
5352     if (!IsZeroInitializer(Initializer, S))
5353       return false;
5354 
5355     Sequence.AddOCLZeroOpaqueTypeStep(DestType);
5356     return true;
5357   }
5358 
5359   // We should allow zero initialization for all types defined in the
5360   // cl_intel_device_side_avc_motion_estimation extension, except
5361   // intel_sub_group_avc_mce_payload_t and intel_sub_group_avc_mce_result_t.
5362   if (S.getOpenCLOptions().isEnabled(
5363           "cl_intel_device_side_avc_motion_estimation") &&
5364       DestType->isOCLIntelSubgroupAVCType()) {
5365     if (DestType->isOCLIntelSubgroupAVCMcePayloadType() ||
5366         DestType->isOCLIntelSubgroupAVCMceResultType())
5367       return false;
5368     if (!IsZeroInitializer(Initializer, S))
5369       return false;
5370 
5371     Sequence.AddOCLZeroOpaqueTypeStep(DestType);
5372     return true;
5373   }
5374 
5375   return false;
5376 }
5377 
5378 InitializationSequence::InitializationSequence(Sema &S,
5379                                                const InitializedEntity &Entity,
5380                                                const InitializationKind &Kind,
5381                                                MultiExprArg Args,
5382                                                bool TopLevelOfInitList,
5383                                                bool TreatUnavailableAsInvalid)
5384     : FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) {
5385   InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList,
5386                  TreatUnavailableAsInvalid);
5387 }
5388 
5389 /// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the
5390 /// address of that function, this returns true. Otherwise, it returns false.
5391 static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) {
5392   auto *DRE = dyn_cast<DeclRefExpr>(E);
5393   if (!DRE || !isa<FunctionDecl>(DRE->getDecl()))
5394     return false;
5395 
5396   return !S.checkAddressOfFunctionIsAvailable(
5397       cast<FunctionDecl>(DRE->getDecl()));
5398 }
5399 
5400 /// Determine whether we can perform an elementwise array copy for this kind
5401 /// of entity.
5402 static bool canPerformArrayCopy(const InitializedEntity &Entity) {
5403   switch (Entity.getKind()) {
5404   case InitializedEntity::EK_LambdaCapture:
5405     // C++ [expr.prim.lambda]p24:
5406     //   For array members, the array elements are direct-initialized in
5407     //   increasing subscript order.
5408     return true;
5409 
5410   case InitializedEntity::EK_Variable:
5411     // C++ [dcl.decomp]p1:
5412     //   [...] each element is copy-initialized or direct-initialized from the
5413     //   corresponding element of the assignment-expression [...]
5414     return isa<DecompositionDecl>(Entity.getDecl());
5415 
5416   case InitializedEntity::EK_Member:
5417     // C++ [class.copy.ctor]p14:
5418     //   - if the member is an array, each element is direct-initialized with
5419     //     the corresponding subobject of x
5420     return Entity.isImplicitMemberInitializer();
5421 
5422   case InitializedEntity::EK_ArrayElement:
5423     // All the above cases are intended to apply recursively, even though none
5424     // of them actually say that.
5425     if (auto *E = Entity.getParent())
5426       return canPerformArrayCopy(*E);
5427     break;
5428 
5429   default:
5430     break;
5431   }
5432 
5433   return false;
5434 }
5435 
5436 void InitializationSequence::InitializeFrom(Sema &S,
5437                                             const InitializedEntity &Entity,
5438                                             const InitializationKind &Kind,
5439                                             MultiExprArg Args,
5440                                             bool TopLevelOfInitList,
5441                                             bool TreatUnavailableAsInvalid) {
5442   ASTContext &Context = S.Context;
5443 
5444   // Eliminate non-overload placeholder types in the arguments.  We
5445   // need to do this before checking whether types are dependent
5446   // because lowering a pseudo-object expression might well give us
5447   // something of dependent type.
5448   for (unsigned I = 0, E = Args.size(); I != E; ++I)
5449     if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
5450       // FIXME: should we be doing this here?
5451       ExprResult result = S.CheckPlaceholderExpr(Args[I]);
5452       if (result.isInvalid()) {
5453         SetFailed(FK_PlaceholderType);
5454         return;
5455       }
5456       Args[I] = result.get();
5457     }
5458 
5459   // C++0x [dcl.init]p16:
5460   //   The semantics of initializers are as follows. The destination type is
5461   //   the type of the object or reference being initialized and the source
5462   //   type is the type of the initializer expression. The source type is not
5463   //   defined when the initializer is a braced-init-list or when it is a
5464   //   parenthesized list of expressions.
5465   QualType DestType = Entity.getType();
5466 
5467   if (DestType->isDependentType() ||
5468       Expr::hasAnyTypeDependentArguments(Args)) {
5469     SequenceKind = DependentSequence;
5470     return;
5471   }
5472 
5473   // Almost everything is a normal sequence.
5474   setSequenceKind(NormalSequence);
5475 
5476   QualType SourceType;
5477   Expr *Initializer = nullptr;
5478   if (Args.size() == 1) {
5479     Initializer = Args[0];
5480     if (S.getLangOpts().ObjC) {
5481       if (S.CheckObjCBridgeRelatedConversions(Initializer->getBeginLoc(),
5482                                               DestType, Initializer->getType(),
5483                                               Initializer) ||
5484           S.ConversionToObjCStringLiteralCheck(DestType, Initializer))
5485         Args[0] = Initializer;
5486     }
5487     if (!isa<InitListExpr>(Initializer))
5488       SourceType = Initializer->getType();
5489   }
5490 
5491   //     - If the initializer is a (non-parenthesized) braced-init-list, the
5492   //       object is list-initialized (8.5.4).
5493   if (Kind.getKind() != InitializationKind::IK_Direct) {
5494     if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
5495       TryListInitialization(S, Entity, Kind, InitList, *this,
5496                             TreatUnavailableAsInvalid);
5497       return;
5498     }
5499   }
5500 
5501   //     - If the destination type is a reference type, see 8.5.3.
5502   if (DestType->isReferenceType()) {
5503     // C++0x [dcl.init.ref]p1:
5504     //   A variable declared to be a T& or T&&, that is, "reference to type T"
5505     //   (8.3.2), shall be initialized by an object, or function, of type T or
5506     //   by an object that can be converted into a T.
5507     // (Therefore, multiple arguments are not permitted.)
5508     if (Args.size() != 1)
5509       SetFailed(FK_TooManyInitsForReference);
5510     // C++17 [dcl.init.ref]p5:
5511     //   A reference [...] is initialized by an expression [...] as follows:
5512     // If the initializer is not an expression, presumably we should reject,
5513     // but the standard fails to actually say so.
5514     else if (isa<InitListExpr>(Args[0]))
5515       SetFailed(FK_ParenthesizedListInitForReference);
5516     else
5517       TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
5518     return;
5519   }
5520 
5521   //     - If the initializer is (), the object is value-initialized.
5522   if (Kind.getKind() == InitializationKind::IK_Value ||
5523       (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
5524     TryValueInitialization(S, Entity, Kind, *this);
5525     return;
5526   }
5527 
5528   // Handle default initialization.
5529   if (Kind.getKind() == InitializationKind::IK_Default) {
5530     TryDefaultInitialization(S, Entity, Kind, *this);
5531     return;
5532   }
5533 
5534   //     - If the destination type is an array of characters, an array of
5535   //       char16_t, an array of char32_t, or an array of wchar_t, and the
5536   //       initializer is a string literal, see 8.5.2.
5537   //     - Otherwise, if the destination type is an array, the program is
5538   //       ill-formed.
5539   if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
5540     if (Initializer && isa<VariableArrayType>(DestAT)) {
5541       SetFailed(FK_VariableLengthArrayHasInitializer);
5542       return;
5543     }
5544 
5545     if (Initializer) {
5546       switch (IsStringInit(Initializer, DestAT, Context)) {
5547       case SIF_None:
5548         TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
5549         return;
5550       case SIF_NarrowStringIntoWideChar:
5551         SetFailed(FK_NarrowStringIntoWideCharArray);
5552         return;
5553       case SIF_WideStringIntoChar:
5554         SetFailed(FK_WideStringIntoCharArray);
5555         return;
5556       case SIF_IncompatWideStringIntoWideChar:
5557         SetFailed(FK_IncompatWideStringIntoWideChar);
5558         return;
5559       case SIF_PlainStringIntoUTF8Char:
5560         SetFailed(FK_PlainStringIntoUTF8Char);
5561         return;
5562       case SIF_UTF8StringIntoPlainChar:
5563         SetFailed(FK_UTF8StringIntoPlainChar);
5564         return;
5565       case SIF_Other:
5566         break;
5567       }
5568     }
5569 
5570     // Some kinds of initialization permit an array to be initialized from
5571     // another array of the same type, and perform elementwise initialization.
5572     if (Initializer && isa<ConstantArrayType>(DestAT) &&
5573         S.Context.hasSameUnqualifiedType(Initializer->getType(),
5574                                          Entity.getType()) &&
5575         canPerformArrayCopy(Entity)) {
5576       // If source is a prvalue, use it directly.
5577       if (Initializer->getValueKind() == VK_RValue) {
5578         AddArrayInitStep(DestType, /*IsGNUExtension*/false);
5579         return;
5580       }
5581 
5582       // Emit element-at-a-time copy loop.
5583       InitializedEntity Element =
5584           InitializedEntity::InitializeElement(S.Context, 0, Entity);
5585       QualType InitEltT =
5586           Context.getAsArrayType(Initializer->getType())->getElementType();
5587       OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT,
5588                           Initializer->getValueKind(),
5589                           Initializer->getObjectKind());
5590       Expr *OVEAsExpr = &OVE;
5591       InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList,
5592                      TreatUnavailableAsInvalid);
5593       if (!Failed())
5594         AddArrayInitLoopStep(Entity.getType(), InitEltT);
5595       return;
5596     }
5597 
5598     // Note: as an GNU C extension, we allow initialization of an
5599     // array from a compound literal that creates an array of the same
5600     // type, so long as the initializer has no side effects.
5601     if (!S.getLangOpts().CPlusPlus && Initializer &&
5602         isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
5603         Initializer->getType()->isArrayType()) {
5604       const ArrayType *SourceAT
5605         = Context.getAsArrayType(Initializer->getType());
5606       if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
5607         SetFailed(FK_ArrayTypeMismatch);
5608       else if (Initializer->HasSideEffects(S.Context))
5609         SetFailed(FK_NonConstantArrayInit);
5610       else {
5611         AddArrayInitStep(DestType, /*IsGNUExtension*/true);
5612       }
5613     }
5614     // Note: as a GNU C++ extension, we allow list-initialization of a
5615     // class member of array type from a parenthesized initializer list.
5616     else if (S.getLangOpts().CPlusPlus &&
5617              Entity.getKind() == InitializedEntity::EK_Member &&
5618              Initializer && isa<InitListExpr>(Initializer)) {
5619       TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
5620                             *this, TreatUnavailableAsInvalid);
5621       AddParenthesizedArrayInitStep(DestType);
5622     } else if (DestAT->getElementType()->isCharType())
5623       SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
5624     else if (IsWideCharCompatible(DestAT->getElementType(), Context))
5625       SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral);
5626     else
5627       SetFailed(FK_ArrayNeedsInitList);
5628 
5629     return;
5630   }
5631 
5632   // Determine whether we should consider writeback conversions for
5633   // Objective-C ARC.
5634   bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
5635          Entity.isParameterKind();
5636 
5637   // We're at the end of the line for C: it's either a write-back conversion
5638   // or it's a C assignment. There's no need to check anything else.
5639   if (!S.getLangOpts().CPlusPlus) {
5640     // If allowed, check whether this is an Objective-C writeback conversion.
5641     if (allowObjCWritebackConversion &&
5642         tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
5643       return;
5644     }
5645 
5646     if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
5647       return;
5648 
5649     if (TryOCLZeroOpaqueTypeInitialization(S, *this, DestType, Initializer))
5650       return;
5651 
5652     // Handle initialization in C
5653     AddCAssignmentStep(DestType);
5654     MaybeProduceObjCObject(S, *this, Entity);
5655     return;
5656   }
5657 
5658   assert(S.getLangOpts().CPlusPlus);
5659 
5660   //     - If the destination type is a (possibly cv-qualified) class type:
5661   if (DestType->isRecordType()) {
5662     //     - If the initialization is direct-initialization, or if it is
5663     //       copy-initialization where the cv-unqualified version of the
5664     //       source type is the same class as, or a derived class of, the
5665     //       class of the destination, constructors are considered. [...]
5666     if (Kind.getKind() == InitializationKind::IK_Direct ||
5667         (Kind.getKind() == InitializationKind::IK_Copy &&
5668          (Context.hasSameUnqualifiedType(SourceType, DestType) ||
5669           S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, DestType))))
5670       TryConstructorInitialization(S, Entity, Kind, Args,
5671                                    DestType, DestType, *this);
5672     //     - Otherwise (i.e., for the remaining copy-initialization cases),
5673     //       user-defined conversion sequences that can convert from the source
5674     //       type to the destination type or (when a conversion function is
5675     //       used) to a derived class thereof are enumerated as described in
5676     //       13.3.1.4, and the best one is chosen through overload resolution
5677     //       (13.3).
5678     else
5679       TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5680                                TopLevelOfInitList);
5681     return;
5682   }
5683 
5684   assert(Args.size() >= 1 && "Zero-argument case handled above");
5685 
5686   // The remaining cases all need a source type.
5687   if (Args.size() > 1) {
5688     SetFailed(FK_TooManyInitsForScalar);
5689     return;
5690   } else if (isa<InitListExpr>(Args[0])) {
5691     SetFailed(FK_ParenthesizedListInitForScalar);
5692     return;
5693   }
5694 
5695   //    - Otherwise, if the source type is a (possibly cv-qualified) class
5696   //      type, conversion functions are considered.
5697   if (!SourceType.isNull() && SourceType->isRecordType()) {
5698     // For a conversion to _Atomic(T) from either T or a class type derived
5699     // from T, initialize the T object then convert to _Atomic type.
5700     bool NeedAtomicConversion = false;
5701     if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) {
5702       if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) ||
5703           S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType,
5704                           Atomic->getValueType())) {
5705         DestType = Atomic->getValueType();
5706         NeedAtomicConversion = true;
5707       }
5708     }
5709 
5710     TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5711                              TopLevelOfInitList);
5712     MaybeProduceObjCObject(S, *this, Entity);
5713     if (!Failed() && NeedAtomicConversion)
5714       AddAtomicConversionStep(Entity.getType());
5715     return;
5716   }
5717 
5718   //    - Otherwise, the initial value of the object being initialized is the
5719   //      (possibly converted) value of the initializer expression. Standard
5720   //      conversions (Clause 4) will be used, if necessary, to convert the
5721   //      initializer expression to the cv-unqualified version of the
5722   //      destination type; no user-defined conversions are considered.
5723 
5724   ImplicitConversionSequence ICS
5725     = S.TryImplicitConversion(Initializer, DestType,
5726                               /*SuppressUserConversions*/true,
5727                               /*AllowExplicitConversions*/ false,
5728                               /*InOverloadResolution*/ false,
5729                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
5730                               allowObjCWritebackConversion);
5731 
5732   if (ICS.isStandard() &&
5733       ICS.Standard.Second == ICK_Writeback_Conversion) {
5734     // Objective-C ARC writeback conversion.
5735 
5736     // We should copy unless we're passing to an argument explicitly
5737     // marked 'out'.
5738     bool ShouldCopy = true;
5739     if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5740       ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5741 
5742     // If there was an lvalue adjustment, add it as a separate conversion.
5743     if (ICS.Standard.First == ICK_Array_To_Pointer ||
5744         ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
5745       ImplicitConversionSequence LvalueICS;
5746       LvalueICS.setStandard();
5747       LvalueICS.Standard.setAsIdentityConversion();
5748       LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
5749       LvalueICS.Standard.First = ICS.Standard.First;
5750       AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
5751     }
5752 
5753     AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy);
5754   } else if (ICS.isBad()) {
5755     DeclAccessPair dap;
5756     if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) {
5757       AddZeroInitializationStep(Entity.getType());
5758     } else if (Initializer->getType() == Context.OverloadTy &&
5759                !S.ResolveAddressOfOverloadedFunction(Initializer, DestType,
5760                                                      false, dap))
5761       SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
5762     else if (Initializer->getType()->isFunctionType() &&
5763              isExprAnUnaddressableFunction(S, Initializer))
5764       SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction);
5765     else
5766       SetFailed(InitializationSequence::FK_ConversionFailed);
5767   } else {
5768     AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5769 
5770     MaybeProduceObjCObject(S, *this, Entity);
5771   }
5772 }
5773 
5774 InitializationSequence::~InitializationSequence() {
5775   for (auto &S : Steps)
5776     S.Destroy();
5777 }
5778 
5779 //===----------------------------------------------------------------------===//
5780 // Perform initialization
5781 //===----------------------------------------------------------------------===//
5782 static Sema::AssignmentAction
5783 getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) {
5784   switch(Entity.getKind()) {
5785   case InitializedEntity::EK_Variable:
5786   case InitializedEntity::EK_New:
5787   case InitializedEntity::EK_Exception:
5788   case InitializedEntity::EK_Base:
5789   case InitializedEntity::EK_Delegating:
5790     return Sema::AA_Initializing;
5791 
5792   case InitializedEntity::EK_Parameter:
5793     if (Entity.getDecl() &&
5794         isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5795       return Sema::AA_Sending;
5796 
5797     return Sema::AA_Passing;
5798 
5799   case InitializedEntity::EK_Parameter_CF_Audited:
5800     if (Entity.getDecl() &&
5801       isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5802       return Sema::AA_Sending;
5803 
5804     return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited;
5805 
5806   case InitializedEntity::EK_Result:
5807   case InitializedEntity::EK_StmtExprResult: // FIXME: Not quite right.
5808     return Sema::AA_Returning;
5809 
5810   case InitializedEntity::EK_Temporary:
5811   case InitializedEntity::EK_RelatedResult:
5812     // FIXME: Can we tell apart casting vs. converting?
5813     return Sema::AA_Casting;
5814 
5815   case InitializedEntity::EK_Member:
5816   case InitializedEntity::EK_Binding:
5817   case InitializedEntity::EK_ArrayElement:
5818   case InitializedEntity::EK_VectorElement:
5819   case InitializedEntity::EK_ComplexElement:
5820   case InitializedEntity::EK_BlockElement:
5821   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5822   case InitializedEntity::EK_LambdaCapture:
5823   case InitializedEntity::EK_CompoundLiteralInit:
5824     return Sema::AA_Initializing;
5825   }
5826 
5827   llvm_unreachable("Invalid EntityKind!");
5828 }
5829 
5830 /// Whether we should bind a created object as a temporary when
5831 /// initializing the given entity.
5832 static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
5833   switch (Entity.getKind()) {
5834   case InitializedEntity::EK_ArrayElement:
5835   case InitializedEntity::EK_Member:
5836   case InitializedEntity::EK_Result:
5837   case InitializedEntity::EK_StmtExprResult:
5838   case InitializedEntity::EK_New:
5839   case InitializedEntity::EK_Variable:
5840   case InitializedEntity::EK_Base:
5841   case InitializedEntity::EK_Delegating:
5842   case InitializedEntity::EK_VectorElement:
5843   case InitializedEntity::EK_ComplexElement:
5844   case InitializedEntity::EK_Exception:
5845   case InitializedEntity::EK_BlockElement:
5846   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5847   case InitializedEntity::EK_LambdaCapture:
5848   case InitializedEntity::EK_CompoundLiteralInit:
5849     return false;
5850 
5851   case InitializedEntity::EK_Parameter:
5852   case InitializedEntity::EK_Parameter_CF_Audited:
5853   case InitializedEntity::EK_Temporary:
5854   case InitializedEntity::EK_RelatedResult:
5855   case InitializedEntity::EK_Binding:
5856     return true;
5857   }
5858 
5859   llvm_unreachable("missed an InitializedEntity kind?");
5860 }
5861 
5862 /// Whether the given entity, when initialized with an object
5863 /// created for that initialization, requires destruction.
5864 static bool shouldDestroyEntity(const InitializedEntity &Entity) {
5865   switch (Entity.getKind()) {
5866     case InitializedEntity::EK_Result:
5867     case InitializedEntity::EK_StmtExprResult:
5868     case InitializedEntity::EK_New:
5869     case InitializedEntity::EK_Base:
5870     case InitializedEntity::EK_Delegating:
5871     case InitializedEntity::EK_VectorElement:
5872     case InitializedEntity::EK_ComplexElement:
5873     case InitializedEntity::EK_BlockElement:
5874     case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5875     case InitializedEntity::EK_LambdaCapture:
5876       return false;
5877 
5878     case InitializedEntity::EK_Member:
5879     case InitializedEntity::EK_Binding:
5880     case InitializedEntity::EK_Variable:
5881     case InitializedEntity::EK_Parameter:
5882     case InitializedEntity::EK_Parameter_CF_Audited:
5883     case InitializedEntity::EK_Temporary:
5884     case InitializedEntity::EK_ArrayElement:
5885     case InitializedEntity::EK_Exception:
5886     case InitializedEntity::EK_CompoundLiteralInit:
5887     case InitializedEntity::EK_RelatedResult:
5888       return true;
5889   }
5890 
5891   llvm_unreachable("missed an InitializedEntity kind?");
5892 }
5893 
5894 /// Get the location at which initialization diagnostics should appear.
5895 static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
5896                                            Expr *Initializer) {
5897   switch (Entity.getKind()) {
5898   case InitializedEntity::EK_Result:
5899   case InitializedEntity::EK_StmtExprResult:
5900     return Entity.getReturnLoc();
5901 
5902   case InitializedEntity::EK_Exception:
5903     return Entity.getThrowLoc();
5904 
5905   case InitializedEntity::EK_Variable:
5906   case InitializedEntity::EK_Binding:
5907     return Entity.getDecl()->getLocation();
5908 
5909   case InitializedEntity::EK_LambdaCapture:
5910     return Entity.getCaptureLoc();
5911 
5912   case InitializedEntity::EK_ArrayElement:
5913   case InitializedEntity::EK_Member:
5914   case InitializedEntity::EK_Parameter:
5915   case InitializedEntity::EK_Parameter_CF_Audited:
5916   case InitializedEntity::EK_Temporary:
5917   case InitializedEntity::EK_New:
5918   case InitializedEntity::EK_Base:
5919   case InitializedEntity::EK_Delegating:
5920   case InitializedEntity::EK_VectorElement:
5921   case InitializedEntity::EK_ComplexElement:
5922   case InitializedEntity::EK_BlockElement:
5923   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5924   case InitializedEntity::EK_CompoundLiteralInit:
5925   case InitializedEntity::EK_RelatedResult:
5926     return Initializer->getBeginLoc();
5927   }
5928   llvm_unreachable("missed an InitializedEntity kind?");
5929 }
5930 
5931 /// Make a (potentially elidable) temporary copy of the object
5932 /// provided by the given initializer by calling the appropriate copy
5933 /// constructor.
5934 ///
5935 /// \param S The Sema object used for type-checking.
5936 ///
5937 /// \param T The type of the temporary object, which must either be
5938 /// the type of the initializer expression or a superclass thereof.
5939 ///
5940 /// \param Entity The entity being initialized.
5941 ///
5942 /// \param CurInit The initializer expression.
5943 ///
5944 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that
5945 /// is permitted in C++03 (but not C++0x) when binding a reference to
5946 /// an rvalue.
5947 ///
5948 /// \returns An expression that copies the initializer expression into
5949 /// a temporary object, or an error expression if a copy could not be
5950 /// created.
5951 static ExprResult CopyObject(Sema &S,
5952                              QualType T,
5953                              const InitializedEntity &Entity,
5954                              ExprResult CurInit,
5955                              bool IsExtraneousCopy) {
5956   if (CurInit.isInvalid())
5957     return CurInit;
5958   // Determine which class type we're copying to.
5959   Expr *CurInitExpr = (Expr *)CurInit.get();
5960   CXXRecordDecl *Class = nullptr;
5961   if (const RecordType *Record = T->getAs<RecordType>())
5962     Class = cast<CXXRecordDecl>(Record->getDecl());
5963   if (!Class)
5964     return CurInit;
5965 
5966   SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
5967 
5968   // Make sure that the type we are copying is complete.
5969   if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
5970     return CurInit;
5971 
5972   // Perform overload resolution using the class's constructors. Per
5973   // C++11 [dcl.init]p16, second bullet for class types, this initialization
5974   // is direct-initialization.
5975   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
5976   DeclContext::lookup_result Ctors = S.LookupConstructors(Class);
5977 
5978   OverloadCandidateSet::iterator Best;
5979   switch (ResolveConstructorOverload(
5980       S, Loc, CurInitExpr, CandidateSet, T, Ctors, Best,
5981       /*CopyInitializing=*/false, /*AllowExplicit=*/true,
5982       /*OnlyListConstructors=*/false, /*IsListInit=*/false,
5983       /*SecondStepOfCopyInit=*/true)) {
5984   case OR_Success:
5985     break;
5986 
5987   case OR_No_Viable_Function:
5988     CandidateSet.NoteCandidates(
5989         PartialDiagnosticAt(
5990             Loc, S.PDiag(IsExtraneousCopy && !S.isSFINAEContext()
5991                              ? diag::ext_rvalue_to_reference_temp_copy_no_viable
5992                              : diag::err_temp_copy_no_viable)
5993                      << (int)Entity.getKind() << CurInitExpr->getType()
5994                      << CurInitExpr->getSourceRange()),
5995         S, OCD_AllCandidates, CurInitExpr);
5996     if (!IsExtraneousCopy || S.isSFINAEContext())
5997       return ExprError();
5998     return CurInit;
5999 
6000   case OR_Ambiguous:
6001     CandidateSet.NoteCandidates(
6002         PartialDiagnosticAt(Loc, S.PDiag(diag::err_temp_copy_ambiguous)
6003                                      << (int)Entity.getKind()
6004                                      << CurInitExpr->getType()
6005                                      << CurInitExpr->getSourceRange()),
6006         S, OCD_ViableCandidates, CurInitExpr);
6007     return ExprError();
6008 
6009   case OR_Deleted:
6010     S.Diag(Loc, diag::err_temp_copy_deleted)
6011       << (int)Entity.getKind() << CurInitExpr->getType()
6012       << CurInitExpr->getSourceRange();
6013     S.NoteDeletedFunction(Best->Function);
6014     return ExprError();
6015   }
6016 
6017   bool HadMultipleCandidates = CandidateSet.size() > 1;
6018 
6019   CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
6020   SmallVector<Expr*, 8> ConstructorArgs;
6021   CurInit.get(); // Ownership transferred into MultiExprArg, below.
6022 
6023   S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity,
6024                            IsExtraneousCopy);
6025 
6026   if (IsExtraneousCopy) {
6027     // If this is a totally extraneous copy for C++03 reference
6028     // binding purposes, just return the original initialization
6029     // expression. We don't generate an (elided) copy operation here
6030     // because doing so would require us to pass down a flag to avoid
6031     // infinite recursion, where each step adds another extraneous,
6032     // elidable copy.
6033 
6034     // Instantiate the default arguments of any extra parameters in
6035     // the selected copy constructor, as if we were going to create a
6036     // proper call to the copy constructor.
6037     for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
6038       ParmVarDecl *Parm = Constructor->getParamDecl(I);
6039       if (S.RequireCompleteType(Loc, Parm->getType(),
6040                                 diag::err_call_incomplete_argument))
6041         break;
6042 
6043       // Build the default argument expression; we don't actually care
6044       // if this succeeds or not, because this routine will complain
6045       // if there was a problem.
6046       S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
6047     }
6048 
6049     return CurInitExpr;
6050   }
6051 
6052   // Determine the arguments required to actually perform the
6053   // constructor call (we might have derived-to-base conversions, or
6054   // the copy constructor may have default arguments).
6055   if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs))
6056     return ExprError();
6057 
6058   // C++0x [class.copy]p32:
6059   //   When certain criteria are met, an implementation is allowed to
6060   //   omit the copy/move construction of a class object, even if the
6061   //   copy/move constructor and/or destructor for the object have
6062   //   side effects. [...]
6063   //     - when a temporary class object that has not been bound to a
6064   //       reference (12.2) would be copied/moved to a class object
6065   //       with the same cv-unqualified type, the copy/move operation
6066   //       can be omitted by constructing the temporary object
6067   //       directly into the target of the omitted copy/move
6068   //
6069   // Note that the other three bullets are handled elsewhere. Copy
6070   // elision for return statements and throw expressions are handled as part
6071   // of constructor initialization, while copy elision for exception handlers
6072   // is handled by the run-time.
6073   //
6074   // FIXME: If the function parameter is not the same type as the temporary, we
6075   // should still be able to elide the copy, but we don't have a way to
6076   // represent in the AST how much should be elided in this case.
6077   bool Elidable =
6078       CurInitExpr->isTemporaryObject(S.Context, Class) &&
6079       S.Context.hasSameUnqualifiedType(
6080           Best->Function->getParamDecl(0)->getType().getNonReferenceType(),
6081           CurInitExpr->getType());
6082 
6083   // Actually perform the constructor call.
6084   CurInit = S.BuildCXXConstructExpr(Loc, T, Best->FoundDecl, Constructor,
6085                                     Elidable,
6086                                     ConstructorArgs,
6087                                     HadMultipleCandidates,
6088                                     /*ListInit*/ false,
6089                                     /*StdInitListInit*/ false,
6090                                     /*ZeroInit*/ false,
6091                                     CXXConstructExpr::CK_Complete,
6092                                     SourceRange());
6093 
6094   // If we're supposed to bind temporaries, do so.
6095   if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
6096     CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
6097   return CurInit;
6098 }
6099 
6100 /// Check whether elidable copy construction for binding a reference to
6101 /// a temporary would have succeeded if we were building in C++98 mode, for
6102 /// -Wc++98-compat.
6103 static void CheckCXX98CompatAccessibleCopy(Sema &S,
6104                                            const InitializedEntity &Entity,
6105                                            Expr *CurInitExpr) {
6106   assert(S.getLangOpts().CPlusPlus11);
6107 
6108   const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
6109   if (!Record)
6110     return;
6111 
6112   SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
6113   if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc))
6114     return;
6115 
6116   // Find constructors which would have been considered.
6117   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
6118   DeclContext::lookup_result Ctors =
6119       S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl()));
6120 
6121   // Perform overload resolution.
6122   OverloadCandidateSet::iterator Best;
6123   OverloadingResult OR = ResolveConstructorOverload(
6124       S, Loc, CurInitExpr, CandidateSet, CurInitExpr->getType(), Ctors, Best,
6125       /*CopyInitializing=*/false, /*AllowExplicit=*/true,
6126       /*OnlyListConstructors=*/false, /*IsListInit=*/false,
6127       /*SecondStepOfCopyInit=*/true);
6128 
6129   PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
6130     << OR << (int)Entity.getKind() << CurInitExpr->getType()
6131     << CurInitExpr->getSourceRange();
6132 
6133   switch (OR) {
6134   case OR_Success:
6135     S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
6136                              Best->FoundDecl, Entity, Diag);
6137     // FIXME: Check default arguments as far as that's possible.
6138     break;
6139 
6140   case OR_No_Viable_Function:
6141     CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S,
6142                                 OCD_AllCandidates, CurInitExpr);
6143     break;
6144 
6145   case OR_Ambiguous:
6146     CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S,
6147                                 OCD_ViableCandidates, CurInitExpr);
6148     break;
6149 
6150   case OR_Deleted:
6151     S.Diag(Loc, Diag);
6152     S.NoteDeletedFunction(Best->Function);
6153     break;
6154   }
6155 }
6156 
6157 void InitializationSequence::PrintInitLocationNote(Sema &S,
6158                                               const InitializedEntity &Entity) {
6159   if (Entity.isParameterKind() && Entity.getDecl()) {
6160     if (Entity.getDecl()->getLocation().isInvalid())
6161       return;
6162 
6163     if (Entity.getDecl()->getDeclName())
6164       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
6165         << Entity.getDecl()->getDeclName();
6166     else
6167       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
6168   }
6169   else if (Entity.getKind() == InitializedEntity::EK_RelatedResult &&
6170            Entity.getMethodDecl())
6171     S.Diag(Entity.getMethodDecl()->getLocation(),
6172            diag::note_method_return_type_change)
6173       << Entity.getMethodDecl()->getDeclName();
6174 }
6175 
6176 /// Returns true if the parameters describe a constructor initialization of
6177 /// an explicit temporary object, e.g. "Point(x, y)".
6178 static bool isExplicitTemporary(const InitializedEntity &Entity,
6179                                 const InitializationKind &Kind,
6180                                 unsigned NumArgs) {
6181   switch (Entity.getKind()) {
6182   case InitializedEntity::EK_Temporary:
6183   case InitializedEntity::EK_CompoundLiteralInit:
6184   case InitializedEntity::EK_RelatedResult:
6185     break;
6186   default:
6187     return false;
6188   }
6189 
6190   switch (Kind.getKind()) {
6191   case InitializationKind::IK_DirectList:
6192     return true;
6193   // FIXME: Hack to work around cast weirdness.
6194   case InitializationKind::IK_Direct:
6195   case InitializationKind::IK_Value:
6196     return NumArgs != 1;
6197   default:
6198     return false;
6199   }
6200 }
6201 
6202 static ExprResult
6203 PerformConstructorInitialization(Sema &S,
6204                                  const InitializedEntity &Entity,
6205                                  const InitializationKind &Kind,
6206                                  MultiExprArg Args,
6207                                  const InitializationSequence::Step& Step,
6208                                  bool &ConstructorInitRequiresZeroInit,
6209                                  bool IsListInitialization,
6210                                  bool IsStdInitListInitialization,
6211                                  SourceLocation LBraceLoc,
6212                                  SourceLocation RBraceLoc) {
6213   unsigned NumArgs = Args.size();
6214   CXXConstructorDecl *Constructor
6215     = cast<CXXConstructorDecl>(Step.Function.Function);
6216   bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
6217 
6218   // Build a call to the selected constructor.
6219   SmallVector<Expr*, 8> ConstructorArgs;
6220   SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
6221                          ? Kind.getEqualLoc()
6222                          : Kind.getLocation();
6223 
6224   if (Kind.getKind() == InitializationKind::IK_Default) {
6225     // Force even a trivial, implicit default constructor to be
6226     // semantically checked. We do this explicitly because we don't build
6227     // the definition for completely trivial constructors.
6228     assert(Constructor->getParent() && "No parent class for constructor.");
6229     if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6230         Constructor->isTrivial() && !Constructor->isUsed(false))
6231       S.DefineImplicitDefaultConstructor(Loc, Constructor);
6232   }
6233 
6234   ExprResult CurInit((Expr *)nullptr);
6235 
6236   // C++ [over.match.copy]p1:
6237   //   - When initializing a temporary to be bound to the first parameter
6238   //     of a constructor that takes a reference to possibly cv-qualified
6239   //     T as its first argument, called with a single argument in the
6240   //     context of direct-initialization, explicit conversion functions
6241   //     are also considered.
6242   bool AllowExplicitConv =
6243       Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 &&
6244       hasCopyOrMoveCtorParam(S.Context,
6245                              getConstructorInfo(Step.Function.FoundDecl));
6246 
6247   // Determine the arguments required to actually perform the constructor
6248   // call.
6249   if (S.CompleteConstructorCall(Constructor, Args,
6250                                 Loc, ConstructorArgs,
6251                                 AllowExplicitConv,
6252                                 IsListInitialization))
6253     return ExprError();
6254 
6255 
6256   if (isExplicitTemporary(Entity, Kind, NumArgs)) {
6257     // An explicitly-constructed temporary, e.g., X(1, 2).
6258     if (S.DiagnoseUseOfDecl(Constructor, Loc))
6259       return ExprError();
6260 
6261     TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
6262     if (!TSInfo)
6263       TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
6264     SourceRange ParenOrBraceRange =
6265         (Kind.getKind() == InitializationKind::IK_DirectList)
6266         ? SourceRange(LBraceLoc, RBraceLoc)
6267         : Kind.getParenOrBraceRange();
6268 
6269     if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(
6270             Step.Function.FoundDecl.getDecl())) {
6271       Constructor = S.findInheritingConstructor(Loc, Constructor, Shadow);
6272       if (S.DiagnoseUseOfDecl(Constructor, Loc))
6273         return ExprError();
6274     }
6275     S.MarkFunctionReferenced(Loc, Constructor);
6276 
6277     CurInit = CXXTemporaryObjectExpr::Create(
6278         S.Context, Constructor,
6279         Entity.getType().getNonLValueExprType(S.Context), TSInfo,
6280         ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates,
6281         IsListInitialization, IsStdInitListInitialization,
6282         ConstructorInitRequiresZeroInit);
6283   } else {
6284     CXXConstructExpr::ConstructionKind ConstructKind =
6285       CXXConstructExpr::CK_Complete;
6286 
6287     if (Entity.getKind() == InitializedEntity::EK_Base) {
6288       ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
6289         CXXConstructExpr::CK_VirtualBase :
6290         CXXConstructExpr::CK_NonVirtualBase;
6291     } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
6292       ConstructKind = CXXConstructExpr::CK_Delegating;
6293     }
6294 
6295     // Only get the parenthesis or brace range if it is a list initialization or
6296     // direct construction.
6297     SourceRange ParenOrBraceRange;
6298     if (IsListInitialization)
6299       ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc);
6300     else if (Kind.getKind() == InitializationKind::IK_Direct)
6301       ParenOrBraceRange = Kind.getParenOrBraceRange();
6302 
6303     // If the entity allows NRVO, mark the construction as elidable
6304     // unconditionally.
6305     if (Entity.allowsNRVO())
6306       CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
6307                                         Step.Function.FoundDecl,
6308                                         Constructor, /*Elidable=*/true,
6309                                         ConstructorArgs,
6310                                         HadMultipleCandidates,
6311                                         IsListInitialization,
6312                                         IsStdInitListInitialization,
6313                                         ConstructorInitRequiresZeroInit,
6314                                         ConstructKind,
6315                                         ParenOrBraceRange);
6316     else
6317       CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
6318                                         Step.Function.FoundDecl,
6319                                         Constructor,
6320                                         ConstructorArgs,
6321                                         HadMultipleCandidates,
6322                                         IsListInitialization,
6323                                         IsStdInitListInitialization,
6324                                         ConstructorInitRequiresZeroInit,
6325                                         ConstructKind,
6326                                         ParenOrBraceRange);
6327   }
6328   if (CurInit.isInvalid())
6329     return ExprError();
6330 
6331   // Only check access if all of that succeeded.
6332   S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity);
6333   if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc))
6334     return ExprError();
6335 
6336   if (const ArrayType *AT = S.Context.getAsArrayType(Entity.getType()))
6337     if (checkDestructorReference(S.Context.getBaseElementType(AT), Loc, S))
6338       return ExprError();
6339 
6340   if (shouldBindAsTemporary(Entity))
6341     CurInit = S.MaybeBindToTemporary(CurInit.get());
6342 
6343   return CurInit;
6344 }
6345 
6346 namespace {
6347 enum LifetimeKind {
6348   /// The lifetime of a temporary bound to this entity ends at the end of the
6349   /// full-expression, and that's (probably) fine.
6350   LK_FullExpression,
6351 
6352   /// The lifetime of a temporary bound to this entity is extended to the
6353   /// lifeitme of the entity itself.
6354   LK_Extended,
6355 
6356   /// The lifetime of a temporary bound to this entity probably ends too soon,
6357   /// because the entity is allocated in a new-expression.
6358   LK_New,
6359 
6360   /// The lifetime of a temporary bound to this entity ends too soon, because
6361   /// the entity is a return object.
6362   LK_Return,
6363 
6364   /// The lifetime of a temporary bound to this entity ends too soon, because
6365   /// the entity is the result of a statement expression.
6366   LK_StmtExprResult,
6367 
6368   /// This is a mem-initializer: if it would extend a temporary (other than via
6369   /// a default member initializer), the program is ill-formed.
6370   LK_MemInitializer,
6371 };
6372 using LifetimeResult =
6373     llvm::PointerIntPair<const InitializedEntity *, 3, LifetimeKind>;
6374 }
6375 
6376 /// Determine the declaration which an initialized entity ultimately refers to,
6377 /// for the purpose of lifetime-extending a temporary bound to a reference in
6378 /// the initialization of \p Entity.
6379 static LifetimeResult getEntityLifetime(
6380     const InitializedEntity *Entity,
6381     const InitializedEntity *InitField = nullptr) {
6382   // C++11 [class.temporary]p5:
6383   switch (Entity->getKind()) {
6384   case InitializedEntity::EK_Variable:
6385     //   The temporary [...] persists for the lifetime of the reference
6386     return {Entity, LK_Extended};
6387 
6388   case InitializedEntity::EK_Member:
6389     // For subobjects, we look at the complete object.
6390     if (Entity->getParent())
6391       return getEntityLifetime(Entity->getParent(), Entity);
6392 
6393     //   except:
6394     // C++17 [class.base.init]p8:
6395     //   A temporary expression bound to a reference member in a
6396     //   mem-initializer is ill-formed.
6397     // C++17 [class.base.init]p11:
6398     //   A temporary expression bound to a reference member from a
6399     //   default member initializer is ill-formed.
6400     //
6401     // The context of p11 and its example suggest that it's only the use of a
6402     // default member initializer from a constructor that makes the program
6403     // ill-formed, not its mere existence, and that it can even be used by
6404     // aggregate initialization.
6405     return {Entity, Entity->isDefaultMemberInitializer() ? LK_Extended
6406                                                          : LK_MemInitializer};
6407 
6408   case InitializedEntity::EK_Binding:
6409     // Per [dcl.decomp]p3, the binding is treated as a variable of reference
6410     // type.
6411     return {Entity, LK_Extended};
6412 
6413   case InitializedEntity::EK_Parameter:
6414   case InitializedEntity::EK_Parameter_CF_Audited:
6415     //   -- A temporary bound to a reference parameter in a function call
6416     //      persists until the completion of the full-expression containing
6417     //      the call.
6418     return {nullptr, LK_FullExpression};
6419 
6420   case InitializedEntity::EK_Result:
6421     //   -- The lifetime of a temporary bound to the returned value in a
6422     //      function return statement is not extended; the temporary is
6423     //      destroyed at the end of the full-expression in the return statement.
6424     return {nullptr, LK_Return};
6425 
6426   case InitializedEntity::EK_StmtExprResult:
6427     // FIXME: Should we lifetime-extend through the result of a statement
6428     // expression?
6429     return {nullptr, LK_StmtExprResult};
6430 
6431   case InitializedEntity::EK_New:
6432     //   -- A temporary bound to a reference in a new-initializer persists
6433     //      until the completion of the full-expression containing the
6434     //      new-initializer.
6435     return {nullptr, LK_New};
6436 
6437   case InitializedEntity::EK_Temporary:
6438   case InitializedEntity::EK_CompoundLiteralInit:
6439   case InitializedEntity::EK_RelatedResult:
6440     // We don't yet know the storage duration of the surrounding temporary.
6441     // Assume it's got full-expression duration for now, it will patch up our
6442     // storage duration if that's not correct.
6443     return {nullptr, LK_FullExpression};
6444 
6445   case InitializedEntity::EK_ArrayElement:
6446     // For subobjects, we look at the complete object.
6447     return getEntityLifetime(Entity->getParent(), InitField);
6448 
6449   case InitializedEntity::EK_Base:
6450     // For subobjects, we look at the complete object.
6451     if (Entity->getParent())
6452       return getEntityLifetime(Entity->getParent(), InitField);
6453     return {InitField, LK_MemInitializer};
6454 
6455   case InitializedEntity::EK_Delegating:
6456     // We can reach this case for aggregate initialization in a constructor:
6457     //   struct A { int &&r; };
6458     //   struct B : A { B() : A{0} {} };
6459     // In this case, use the outermost field decl as the context.
6460     return {InitField, LK_MemInitializer};
6461 
6462   case InitializedEntity::EK_BlockElement:
6463   case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6464   case InitializedEntity::EK_LambdaCapture:
6465   case InitializedEntity::EK_VectorElement:
6466   case InitializedEntity::EK_ComplexElement:
6467     return {nullptr, LK_FullExpression};
6468 
6469   case InitializedEntity::EK_Exception:
6470     // FIXME: Can we diagnose lifetime problems with exceptions?
6471     return {nullptr, LK_FullExpression};
6472   }
6473   llvm_unreachable("unknown entity kind");
6474 }
6475 
6476 namespace {
6477 enum ReferenceKind {
6478   /// Lifetime would be extended by a reference binding to a temporary.
6479   RK_ReferenceBinding,
6480   /// Lifetime would be extended by a std::initializer_list object binding to
6481   /// its backing array.
6482   RK_StdInitializerList,
6483 };
6484 
6485 /// A temporary or local variable. This will be one of:
6486 ///  * A MaterializeTemporaryExpr.
6487 ///  * A DeclRefExpr whose declaration is a local.
6488 ///  * An AddrLabelExpr.
6489 ///  * A BlockExpr for a block with captures.
6490 using Local = Expr*;
6491 
6492 /// Expressions we stepped over when looking for the local state. Any steps
6493 /// that would inhibit lifetime extension or take us out of subexpressions of
6494 /// the initializer are included.
6495 struct IndirectLocalPathEntry {
6496   enum EntryKind {
6497     DefaultInit,
6498     AddressOf,
6499     VarInit,
6500     LValToRVal,
6501     LifetimeBoundCall,
6502   } Kind;
6503   Expr *E;
6504   const Decl *D = nullptr;
6505   IndirectLocalPathEntry() {}
6506   IndirectLocalPathEntry(EntryKind K, Expr *E) : Kind(K), E(E) {}
6507   IndirectLocalPathEntry(EntryKind K, Expr *E, const Decl *D)
6508       : Kind(K), E(E), D(D) {}
6509 };
6510 
6511 using IndirectLocalPath = llvm::SmallVectorImpl<IndirectLocalPathEntry>;
6512 
6513 struct RevertToOldSizeRAII {
6514   IndirectLocalPath &Path;
6515   unsigned OldSize = Path.size();
6516   RevertToOldSizeRAII(IndirectLocalPath &Path) : Path(Path) {}
6517   ~RevertToOldSizeRAII() { Path.resize(OldSize); }
6518 };
6519 
6520 using LocalVisitor = llvm::function_ref<bool(IndirectLocalPath &Path, Local L,
6521                                              ReferenceKind RK)>;
6522 }
6523 
6524 static bool isVarOnPath(IndirectLocalPath &Path, VarDecl *VD) {
6525   for (auto E : Path)
6526     if (E.Kind == IndirectLocalPathEntry::VarInit && E.D == VD)
6527       return true;
6528   return false;
6529 }
6530 
6531 static bool pathContainsInit(IndirectLocalPath &Path) {
6532   return llvm::any_of(Path, [=](IndirectLocalPathEntry E) {
6533     return E.Kind == IndirectLocalPathEntry::DefaultInit ||
6534            E.Kind == IndirectLocalPathEntry::VarInit;
6535   });
6536 }
6537 
6538 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
6539                                              Expr *Init, LocalVisitor Visit,
6540                                              bool RevisitSubinits);
6541 
6542 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
6543                                                   Expr *Init, ReferenceKind RK,
6544                                                   LocalVisitor Visit);
6545 
6546 static bool implicitObjectParamIsLifetimeBound(const FunctionDecl *FD) {
6547   const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
6548   if (!TSI)
6549     return false;
6550   // Don't declare this variable in the second operand of the for-statement;
6551   // GCC miscompiles that by ending its lifetime before evaluating the
6552   // third operand. See gcc.gnu.org/PR86769.
6553   AttributedTypeLoc ATL;
6554   for (TypeLoc TL = TSI->getTypeLoc();
6555        (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
6556        TL = ATL.getModifiedLoc()) {
6557     if (ATL.getAttrAs<LifetimeBoundAttr>())
6558       return true;
6559   }
6560   return false;
6561 }
6562 
6563 static void visitLifetimeBoundArguments(IndirectLocalPath &Path, Expr *Call,
6564                                         LocalVisitor Visit) {
6565   const FunctionDecl *Callee;
6566   ArrayRef<Expr*> Args;
6567 
6568   if (auto *CE = dyn_cast<CallExpr>(Call)) {
6569     Callee = CE->getDirectCallee();
6570     Args = llvm::makeArrayRef(CE->getArgs(), CE->getNumArgs());
6571   } else {
6572     auto *CCE = cast<CXXConstructExpr>(Call);
6573     Callee = CCE->getConstructor();
6574     Args = llvm::makeArrayRef(CCE->getArgs(), CCE->getNumArgs());
6575   }
6576   if (!Callee)
6577     return;
6578 
6579   Expr *ObjectArg = nullptr;
6580   if (isa<CXXOperatorCallExpr>(Call) && Callee->isCXXInstanceMember()) {
6581     ObjectArg = Args[0];
6582     Args = Args.slice(1);
6583   } else if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) {
6584     ObjectArg = MCE->getImplicitObjectArgument();
6585   }
6586 
6587   auto VisitLifetimeBoundArg = [&](const Decl *D, Expr *Arg) {
6588     Path.push_back({IndirectLocalPathEntry::LifetimeBoundCall, Arg, D});
6589     if (Arg->isGLValue())
6590       visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding,
6591                                             Visit);
6592     else
6593       visitLocalsRetainedByInitializer(Path, Arg, Visit, true);
6594     Path.pop_back();
6595   };
6596 
6597   if (ObjectArg && implicitObjectParamIsLifetimeBound(Callee))
6598     VisitLifetimeBoundArg(Callee, ObjectArg);
6599 
6600   for (unsigned I = 0,
6601                 N = std::min<unsigned>(Callee->getNumParams(), Args.size());
6602        I != N; ++I) {
6603     if (Callee->getParamDecl(I)->hasAttr<LifetimeBoundAttr>())
6604       VisitLifetimeBoundArg(Callee->getParamDecl(I), Args[I]);
6605   }
6606 }
6607 
6608 /// Visit the locals that would be reachable through a reference bound to the
6609 /// glvalue expression \c Init.
6610 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
6611                                                   Expr *Init, ReferenceKind RK,
6612                                                   LocalVisitor Visit) {
6613   RevertToOldSizeRAII RAII(Path);
6614 
6615   // Walk past any constructs which we can lifetime-extend across.
6616   Expr *Old;
6617   do {
6618     Old = Init;
6619 
6620     if (auto *FE = dyn_cast<FullExpr>(Init))
6621       Init = FE->getSubExpr();
6622 
6623     if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
6624       // If this is just redundant braces around an initializer, step over it.
6625       if (ILE->isTransparent())
6626         Init = ILE->getInit(0);
6627     }
6628 
6629     // Step over any subobject adjustments; we may have a materialized
6630     // temporary inside them.
6631     Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
6632 
6633     // Per current approach for DR1376, look through casts to reference type
6634     // when performing lifetime extension.
6635     if (CastExpr *CE = dyn_cast<CastExpr>(Init))
6636       if (CE->getSubExpr()->isGLValue())
6637         Init = CE->getSubExpr();
6638 
6639     // Per the current approach for DR1299, look through array element access
6640     // on array glvalues when performing lifetime extension.
6641     if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Init)) {
6642       Init = ASE->getBase();
6643       auto *ICE = dyn_cast<ImplicitCastExpr>(Init);
6644       if (ICE && ICE->getCastKind() == CK_ArrayToPointerDecay)
6645         Init = ICE->getSubExpr();
6646       else
6647         // We can't lifetime extend through this but we might still find some
6648         // retained temporaries.
6649         return visitLocalsRetainedByInitializer(Path, Init, Visit, true);
6650     }
6651 
6652     // Step into CXXDefaultInitExprs so we can diagnose cases where a
6653     // constructor inherits one as an implicit mem-initializer.
6654     if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
6655       Path.push_back(
6656           {IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
6657       Init = DIE->getExpr();
6658     }
6659   } while (Init != Old);
6660 
6661   if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Init)) {
6662     if (Visit(Path, Local(MTE), RK))
6663       visitLocalsRetainedByInitializer(Path, MTE->GetTemporaryExpr(), Visit,
6664                                        true);
6665   }
6666 
6667   if (isa<CallExpr>(Init))
6668     return visitLifetimeBoundArguments(Path, Init, Visit);
6669 
6670   switch (Init->getStmtClass()) {
6671   case Stmt::DeclRefExprClass: {
6672     // If we find the name of a local non-reference parameter, we could have a
6673     // lifetime problem.
6674     auto *DRE = cast<DeclRefExpr>(Init);
6675     auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
6676     if (VD && VD->hasLocalStorage() &&
6677         !DRE->refersToEnclosingVariableOrCapture()) {
6678       if (!VD->getType()->isReferenceType()) {
6679         Visit(Path, Local(DRE), RK);
6680       } else if (isa<ParmVarDecl>(DRE->getDecl())) {
6681         // The lifetime of a reference parameter is unknown; assume it's OK
6682         // for now.
6683         break;
6684       } else if (VD->getInit() && !isVarOnPath(Path, VD)) {
6685         Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
6686         visitLocalsRetainedByReferenceBinding(Path, VD->getInit(),
6687                                               RK_ReferenceBinding, Visit);
6688       }
6689     }
6690     break;
6691   }
6692 
6693   case Stmt::UnaryOperatorClass: {
6694     // The only unary operator that make sense to handle here
6695     // is Deref.  All others don't resolve to a "name."  This includes
6696     // handling all sorts of rvalues passed to a unary operator.
6697     const UnaryOperator *U = cast<UnaryOperator>(Init);
6698     if (U->getOpcode() == UO_Deref)
6699       visitLocalsRetainedByInitializer(Path, U->getSubExpr(), Visit, true);
6700     break;
6701   }
6702 
6703   case Stmt::OMPArraySectionExprClass: {
6704     visitLocalsRetainedByInitializer(
6705         Path, cast<OMPArraySectionExpr>(Init)->getBase(), Visit, true);
6706     break;
6707   }
6708 
6709   case Stmt::ConditionalOperatorClass:
6710   case Stmt::BinaryConditionalOperatorClass: {
6711     auto *C = cast<AbstractConditionalOperator>(Init);
6712     if (!C->getTrueExpr()->getType()->isVoidType())
6713       visitLocalsRetainedByReferenceBinding(Path, C->getTrueExpr(), RK, Visit);
6714     if (!C->getFalseExpr()->getType()->isVoidType())
6715       visitLocalsRetainedByReferenceBinding(Path, C->getFalseExpr(), RK, Visit);
6716     break;
6717   }
6718 
6719   // FIXME: Visit the left-hand side of an -> or ->*.
6720 
6721   default:
6722     break;
6723   }
6724 }
6725 
6726 /// Visit the locals that would be reachable through an object initialized by
6727 /// the prvalue expression \c Init.
6728 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
6729                                              Expr *Init, LocalVisitor Visit,
6730                                              bool RevisitSubinits) {
6731   RevertToOldSizeRAII RAII(Path);
6732 
6733   Expr *Old;
6734   do {
6735     Old = Init;
6736 
6737     // Step into CXXDefaultInitExprs so we can diagnose cases where a
6738     // constructor inherits one as an implicit mem-initializer.
6739     if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
6740       Path.push_back({IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
6741       Init = DIE->getExpr();
6742     }
6743 
6744     if (auto *FE = dyn_cast<FullExpr>(Init))
6745       Init = FE->getSubExpr();
6746 
6747     // Dig out the expression which constructs the extended temporary.
6748     Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
6749 
6750     if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init))
6751       Init = BTE->getSubExpr();
6752 
6753     Init = Init->IgnoreParens();
6754 
6755     // Step over value-preserving rvalue casts.
6756     if (auto *CE = dyn_cast<CastExpr>(Init)) {
6757       switch (CE->getCastKind()) {
6758       case CK_LValueToRValue:
6759         // If we can match the lvalue to a const object, we can look at its
6760         // initializer.
6761         Path.push_back({IndirectLocalPathEntry::LValToRVal, CE});
6762         return visitLocalsRetainedByReferenceBinding(
6763             Path, Init, RK_ReferenceBinding,
6764             [&](IndirectLocalPath &Path, Local L, ReferenceKind RK) -> bool {
6765           if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
6766             auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
6767             if (VD && VD->getType().isConstQualified() && VD->getInit() &&
6768                 !isVarOnPath(Path, VD)) {
6769               Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
6770               visitLocalsRetainedByInitializer(Path, VD->getInit(), Visit, true);
6771             }
6772           } else if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L)) {
6773             if (MTE->getType().isConstQualified())
6774               visitLocalsRetainedByInitializer(Path, MTE->GetTemporaryExpr(),
6775                                                Visit, true);
6776           }
6777           return false;
6778         });
6779 
6780         // We assume that objects can be retained by pointers cast to integers,
6781         // but not if the integer is cast to floating-point type or to _Complex.
6782         // We assume that casts to 'bool' do not preserve enough information to
6783         // retain a local object.
6784       case CK_NoOp:
6785       case CK_BitCast:
6786       case CK_BaseToDerived:
6787       case CK_DerivedToBase:
6788       case CK_UncheckedDerivedToBase:
6789       case CK_Dynamic:
6790       case CK_ToUnion:
6791       case CK_UserDefinedConversion:
6792       case CK_ConstructorConversion:
6793       case CK_IntegralToPointer:
6794       case CK_PointerToIntegral:
6795       case CK_VectorSplat:
6796       case CK_IntegralCast:
6797       case CK_CPointerToObjCPointerCast:
6798       case CK_BlockPointerToObjCPointerCast:
6799       case CK_AnyPointerToBlockPointerCast:
6800       case CK_AddressSpaceConversion:
6801         break;
6802 
6803       case CK_ArrayToPointerDecay:
6804         // Model array-to-pointer decay as taking the address of the array
6805         // lvalue.
6806         Path.push_back({IndirectLocalPathEntry::AddressOf, CE});
6807         return visitLocalsRetainedByReferenceBinding(Path, CE->getSubExpr(),
6808                                                      RK_ReferenceBinding, Visit);
6809 
6810       default:
6811         return;
6812       }
6813 
6814       Init = CE->getSubExpr();
6815     }
6816   } while (Old != Init);
6817 
6818   // C++17 [dcl.init.list]p6:
6819   //   initializing an initializer_list object from the array extends the
6820   //   lifetime of the array exactly like binding a reference to a temporary.
6821   if (auto *ILE = dyn_cast<CXXStdInitializerListExpr>(Init))
6822     return visitLocalsRetainedByReferenceBinding(Path, ILE->getSubExpr(),
6823                                                  RK_StdInitializerList, Visit);
6824 
6825   if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
6826     // We already visited the elements of this initializer list while
6827     // performing the initialization. Don't visit them again unless we've
6828     // changed the lifetime of the initialized entity.
6829     if (!RevisitSubinits)
6830       return;
6831 
6832     if (ILE->isTransparent())
6833       return visitLocalsRetainedByInitializer(Path, ILE->getInit(0), Visit,
6834                                               RevisitSubinits);
6835 
6836     if (ILE->getType()->isArrayType()) {
6837       for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I)
6838         visitLocalsRetainedByInitializer(Path, ILE->getInit(I), Visit,
6839                                          RevisitSubinits);
6840       return;
6841     }
6842 
6843     if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) {
6844       assert(RD->isAggregate() && "aggregate init on non-aggregate");
6845 
6846       // If we lifetime-extend a braced initializer which is initializing an
6847       // aggregate, and that aggregate contains reference members which are
6848       // bound to temporaries, those temporaries are also lifetime-extended.
6849       if (RD->isUnion() && ILE->getInitializedFieldInUnion() &&
6850           ILE->getInitializedFieldInUnion()->getType()->isReferenceType())
6851         visitLocalsRetainedByReferenceBinding(Path, ILE->getInit(0),
6852                                               RK_ReferenceBinding, Visit);
6853       else {
6854         unsigned Index = 0;
6855         for (const auto *I : RD->fields()) {
6856           if (Index >= ILE->getNumInits())
6857             break;
6858           if (I->isUnnamedBitfield())
6859             continue;
6860           Expr *SubInit = ILE->getInit(Index);
6861           if (I->getType()->isReferenceType())
6862             visitLocalsRetainedByReferenceBinding(Path, SubInit,
6863                                                   RK_ReferenceBinding, Visit);
6864           else
6865             // This might be either aggregate-initialization of a member or
6866             // initialization of a std::initializer_list object. Regardless,
6867             // we should recursively lifetime-extend that initializer.
6868             visitLocalsRetainedByInitializer(Path, SubInit, Visit,
6869                                              RevisitSubinits);
6870           ++Index;
6871         }
6872       }
6873     }
6874     return;
6875   }
6876 
6877   // The lifetime of an init-capture is that of the closure object constructed
6878   // by a lambda-expression.
6879   if (auto *LE = dyn_cast<LambdaExpr>(Init)) {
6880     for (Expr *E : LE->capture_inits()) {
6881       if (!E)
6882         continue;
6883       if (E->isGLValue())
6884         visitLocalsRetainedByReferenceBinding(Path, E, RK_ReferenceBinding,
6885                                               Visit);
6886       else
6887         visitLocalsRetainedByInitializer(Path, E, Visit, true);
6888     }
6889   }
6890 
6891   if (isa<CallExpr>(Init) || isa<CXXConstructExpr>(Init))
6892     return visitLifetimeBoundArguments(Path, Init, Visit);
6893 
6894   switch (Init->getStmtClass()) {
6895   case Stmt::UnaryOperatorClass: {
6896     auto *UO = cast<UnaryOperator>(Init);
6897     // If the initializer is the address of a local, we could have a lifetime
6898     // problem.
6899     if (UO->getOpcode() == UO_AddrOf) {
6900       // If this is &rvalue, then it's ill-formed and we have already diagnosed
6901       // it. Don't produce a redundant warning about the lifetime of the
6902       // temporary.
6903       if (isa<MaterializeTemporaryExpr>(UO->getSubExpr()))
6904         return;
6905 
6906       Path.push_back({IndirectLocalPathEntry::AddressOf, UO});
6907       visitLocalsRetainedByReferenceBinding(Path, UO->getSubExpr(),
6908                                             RK_ReferenceBinding, Visit);
6909     }
6910     break;
6911   }
6912 
6913   case Stmt::BinaryOperatorClass: {
6914     // Handle pointer arithmetic.
6915     auto *BO = cast<BinaryOperator>(Init);
6916     BinaryOperatorKind BOK = BO->getOpcode();
6917     if (!BO->getType()->isPointerType() || (BOK != BO_Add && BOK != BO_Sub))
6918       break;
6919 
6920     if (BO->getLHS()->getType()->isPointerType())
6921       visitLocalsRetainedByInitializer(Path, BO->getLHS(), Visit, true);
6922     else if (BO->getRHS()->getType()->isPointerType())
6923       visitLocalsRetainedByInitializer(Path, BO->getRHS(), Visit, true);
6924     break;
6925   }
6926 
6927   case Stmt::ConditionalOperatorClass:
6928   case Stmt::BinaryConditionalOperatorClass: {
6929     auto *C = cast<AbstractConditionalOperator>(Init);
6930     // In C++, we can have a throw-expression operand, which has 'void' type
6931     // and isn't interesting from a lifetime perspective.
6932     if (!C->getTrueExpr()->getType()->isVoidType())
6933       visitLocalsRetainedByInitializer(Path, C->getTrueExpr(), Visit, true);
6934     if (!C->getFalseExpr()->getType()->isVoidType())
6935       visitLocalsRetainedByInitializer(Path, C->getFalseExpr(), Visit, true);
6936     break;
6937   }
6938 
6939   case Stmt::BlockExprClass:
6940     if (cast<BlockExpr>(Init)->getBlockDecl()->hasCaptures()) {
6941       // This is a local block, whose lifetime is that of the function.
6942       Visit(Path, Local(cast<BlockExpr>(Init)), RK_ReferenceBinding);
6943     }
6944     break;
6945 
6946   case Stmt::AddrLabelExprClass:
6947     // We want to warn if the address of a label would escape the function.
6948     Visit(Path, Local(cast<AddrLabelExpr>(Init)), RK_ReferenceBinding);
6949     break;
6950 
6951   default:
6952     break;
6953   }
6954 }
6955 
6956 /// Determine whether this is an indirect path to a temporary that we are
6957 /// supposed to lifetime-extend along (but don't).
6958 static bool shouldLifetimeExtendThroughPath(const IndirectLocalPath &Path) {
6959   for (auto Elem : Path) {
6960     if (Elem.Kind != IndirectLocalPathEntry::DefaultInit)
6961       return false;
6962   }
6963   return true;
6964 }
6965 
6966 /// Find the range for the first interesting entry in the path at or after I.
6967 static SourceRange nextPathEntryRange(const IndirectLocalPath &Path, unsigned I,
6968                                       Expr *E) {
6969   for (unsigned N = Path.size(); I != N; ++I) {
6970     switch (Path[I].Kind) {
6971     case IndirectLocalPathEntry::AddressOf:
6972     case IndirectLocalPathEntry::LValToRVal:
6973     case IndirectLocalPathEntry::LifetimeBoundCall:
6974       // These exist primarily to mark the path as not permitting or
6975       // supporting lifetime extension.
6976       break;
6977 
6978     case IndirectLocalPathEntry::DefaultInit:
6979     case IndirectLocalPathEntry::VarInit:
6980       return Path[I].E->getSourceRange();
6981     }
6982   }
6983   return E->getSourceRange();
6984 }
6985 
6986 void Sema::checkInitializerLifetime(const InitializedEntity &Entity,
6987                                     Expr *Init) {
6988   LifetimeResult LR = getEntityLifetime(&Entity);
6989   LifetimeKind LK = LR.getInt();
6990   const InitializedEntity *ExtendingEntity = LR.getPointer();
6991 
6992   // If this entity doesn't have an interesting lifetime, don't bother looking
6993   // for temporaries within its initializer.
6994   if (LK == LK_FullExpression)
6995     return;
6996 
6997   auto TemporaryVisitor = [&](IndirectLocalPath &Path, Local L,
6998                               ReferenceKind RK) -> bool {
6999     SourceRange DiagRange = nextPathEntryRange(Path, 0, L);
7000     SourceLocation DiagLoc = DiagRange.getBegin();
7001 
7002     switch (LK) {
7003     case LK_FullExpression:
7004       llvm_unreachable("already handled this");
7005 
7006     case LK_Extended: {
7007       auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L);
7008       if (!MTE) {
7009         // The initialized entity has lifetime beyond the full-expression,
7010         // and the local entity does too, so don't warn.
7011         //
7012         // FIXME: We should consider warning if a static / thread storage
7013         // duration variable retains an automatic storage duration local.
7014         return false;
7015       }
7016 
7017       // Lifetime-extend the temporary.
7018       if (Path.empty()) {
7019         // Update the storage duration of the materialized temporary.
7020         // FIXME: Rebuild the expression instead of mutating it.
7021         MTE->setExtendingDecl(ExtendingEntity->getDecl(),
7022                               ExtendingEntity->allocateManglingNumber());
7023         // Also visit the temporaries lifetime-extended by this initializer.
7024         return true;
7025       }
7026 
7027       if (shouldLifetimeExtendThroughPath(Path)) {
7028         // We're supposed to lifetime-extend the temporary along this path (per
7029         // the resolution of DR1815), but we don't support that yet.
7030         //
7031         // FIXME: Properly handle this situation. Perhaps the easiest approach
7032         // would be to clone the initializer expression on each use that would
7033         // lifetime extend its temporaries.
7034         Diag(DiagLoc, diag::warn_unsupported_lifetime_extension)
7035             << RK << DiagRange;
7036       } else {
7037         // If the path goes through the initialization of a variable or field,
7038         // it can't possibly reach a temporary created in this full-expression.
7039         // We will have already diagnosed any problems with the initializer.
7040         if (pathContainsInit(Path))
7041           return false;
7042 
7043         Diag(DiagLoc, diag::warn_dangling_variable)
7044             << RK << !Entity.getParent()
7045             << ExtendingEntity->getDecl()->isImplicit()
7046             << ExtendingEntity->getDecl() << Init->isGLValue() << DiagRange;
7047       }
7048       break;
7049     }
7050 
7051     case LK_MemInitializer: {
7052       if (isa<MaterializeTemporaryExpr>(L)) {
7053         // Under C++ DR1696, if a mem-initializer (or a default member
7054         // initializer used by the absence of one) would lifetime-extend a
7055         // temporary, the program is ill-formed.
7056         if (auto *ExtendingDecl =
7057                 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
7058           bool IsSubobjectMember = ExtendingEntity != &Entity;
7059           Diag(DiagLoc, shouldLifetimeExtendThroughPath(Path)
7060                             ? diag::err_dangling_member
7061                             : diag::warn_dangling_member)
7062               << ExtendingDecl << IsSubobjectMember << RK << DiagRange;
7063           // Don't bother adding a note pointing to the field if we're inside
7064           // its default member initializer; our primary diagnostic points to
7065           // the same place in that case.
7066           if (Path.empty() ||
7067               Path.back().Kind != IndirectLocalPathEntry::DefaultInit) {
7068             Diag(ExtendingDecl->getLocation(),
7069                  diag::note_lifetime_extending_member_declared_here)
7070                 << RK << IsSubobjectMember;
7071           }
7072         } else {
7073           // We have a mem-initializer but no particular field within it; this
7074           // is either a base class or a delegating initializer directly
7075           // initializing the base-class from something that doesn't live long
7076           // enough.
7077           //
7078           // FIXME: Warn on this.
7079           return false;
7080         }
7081       } else {
7082         // Paths via a default initializer can only occur during error recovery
7083         // (there's no other way that a default initializer can refer to a
7084         // local). Don't produce a bogus warning on those cases.
7085         if (pathContainsInit(Path))
7086           return false;
7087 
7088         auto *DRE = dyn_cast<DeclRefExpr>(L);
7089         auto *VD = DRE ? dyn_cast<VarDecl>(DRE->getDecl()) : nullptr;
7090         if (!VD) {
7091           // A member was initialized to a local block.
7092           // FIXME: Warn on this.
7093           return false;
7094         }
7095 
7096         if (auto *Member =
7097                 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
7098           bool IsPointer = Member->getType()->isAnyPointerType();
7099           Diag(DiagLoc, IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
7100                                   : diag::warn_bind_ref_member_to_parameter)
7101               << Member << VD << isa<ParmVarDecl>(VD) << DiagRange;
7102           Diag(Member->getLocation(),
7103                diag::note_ref_or_ptr_member_declared_here)
7104               << (unsigned)IsPointer;
7105         }
7106       }
7107       break;
7108     }
7109 
7110     case LK_New:
7111       if (isa<MaterializeTemporaryExpr>(L)) {
7112         Diag(DiagLoc, RK == RK_ReferenceBinding
7113                           ? diag::warn_new_dangling_reference
7114                           : diag::warn_new_dangling_initializer_list)
7115             << !Entity.getParent() << DiagRange;
7116       } else {
7117         // We can't determine if the allocation outlives the local declaration.
7118         return false;
7119       }
7120       break;
7121 
7122     case LK_Return:
7123     case LK_StmtExprResult:
7124       if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
7125         // We can't determine if the local variable outlives the statement
7126         // expression.
7127         if (LK == LK_StmtExprResult)
7128           return false;
7129         Diag(DiagLoc, diag::warn_ret_stack_addr_ref)
7130             << Entity.getType()->isReferenceType() << DRE->getDecl()
7131             << isa<ParmVarDecl>(DRE->getDecl()) << DiagRange;
7132       } else if (isa<BlockExpr>(L)) {
7133         Diag(DiagLoc, diag::err_ret_local_block) << DiagRange;
7134       } else if (isa<AddrLabelExpr>(L)) {
7135         // Don't warn when returning a label from a statement expression.
7136         // Leaving the scope doesn't end its lifetime.
7137         if (LK == LK_StmtExprResult)
7138           return false;
7139         Diag(DiagLoc, diag::warn_ret_addr_label) << DiagRange;
7140       } else {
7141         Diag(DiagLoc, diag::warn_ret_local_temp_addr_ref)
7142          << Entity.getType()->isReferenceType() << DiagRange;
7143       }
7144       break;
7145     }
7146 
7147     for (unsigned I = 0; I != Path.size(); ++I) {
7148       auto Elem = Path[I];
7149 
7150       switch (Elem.Kind) {
7151       case IndirectLocalPathEntry::AddressOf:
7152       case IndirectLocalPathEntry::LValToRVal:
7153         // These exist primarily to mark the path as not permitting or
7154         // supporting lifetime extension.
7155         break;
7156 
7157       case IndirectLocalPathEntry::LifetimeBoundCall:
7158         // FIXME: Consider adding a note for this.
7159         break;
7160 
7161       case IndirectLocalPathEntry::DefaultInit: {
7162         auto *FD = cast<FieldDecl>(Elem.D);
7163         Diag(FD->getLocation(), diag::note_init_with_default_member_initalizer)
7164             << FD << nextPathEntryRange(Path, I + 1, L);
7165         break;
7166       }
7167 
7168       case IndirectLocalPathEntry::VarInit:
7169         const VarDecl *VD = cast<VarDecl>(Elem.D);
7170         Diag(VD->getLocation(), diag::note_local_var_initializer)
7171             << VD->getType()->isReferenceType()
7172             << VD->isImplicit() << VD->getDeclName()
7173             << nextPathEntryRange(Path, I + 1, L);
7174         break;
7175       }
7176     }
7177 
7178     // We didn't lifetime-extend, so don't go any further; we don't need more
7179     // warnings or errors on inner temporaries within this one's initializer.
7180     return false;
7181   };
7182 
7183   llvm::SmallVector<IndirectLocalPathEntry, 8> Path;
7184   if (Init->isGLValue())
7185     visitLocalsRetainedByReferenceBinding(Path, Init, RK_ReferenceBinding,
7186                                           TemporaryVisitor);
7187   else
7188     visitLocalsRetainedByInitializer(Path, Init, TemporaryVisitor, false);
7189 }
7190 
7191 static void DiagnoseNarrowingInInitList(Sema &S,
7192                                         const ImplicitConversionSequence &ICS,
7193                                         QualType PreNarrowingType,
7194                                         QualType EntityType,
7195                                         const Expr *PostInit);
7196 
7197 /// Provide warnings when std::move is used on construction.
7198 static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr,
7199                                     bool IsReturnStmt) {
7200   if (!InitExpr)
7201     return;
7202 
7203   if (S.inTemplateInstantiation())
7204     return;
7205 
7206   QualType DestType = InitExpr->getType();
7207   if (!DestType->isRecordType())
7208     return;
7209 
7210   unsigned DiagID = 0;
7211   if (IsReturnStmt) {
7212     const CXXConstructExpr *CCE =
7213         dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens());
7214     if (!CCE || CCE->getNumArgs() != 1)
7215       return;
7216 
7217     if (!CCE->getConstructor()->isCopyOrMoveConstructor())
7218       return;
7219 
7220     InitExpr = CCE->getArg(0)->IgnoreImpCasts();
7221   }
7222 
7223   // Find the std::move call and get the argument.
7224   const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens());
7225   if (!CE || !CE->isCallToStdMove())
7226     return;
7227 
7228   const Expr *Arg = CE->getArg(0)->IgnoreImplicit();
7229 
7230   if (IsReturnStmt) {
7231     const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts());
7232     if (!DRE || DRE->refersToEnclosingVariableOrCapture())
7233       return;
7234 
7235     const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
7236     if (!VD || !VD->hasLocalStorage())
7237       return;
7238 
7239     // __block variables are not moved implicitly.
7240     if (VD->hasAttr<BlocksAttr>())
7241       return;
7242 
7243     QualType SourceType = VD->getType();
7244     if (!SourceType->isRecordType())
7245       return;
7246 
7247     if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) {
7248       return;
7249     }
7250 
7251     // If we're returning a function parameter, copy elision
7252     // is not possible.
7253     if (isa<ParmVarDecl>(VD))
7254       DiagID = diag::warn_redundant_move_on_return;
7255     else
7256       DiagID = diag::warn_pessimizing_move_on_return;
7257   } else {
7258     DiagID = diag::warn_pessimizing_move_on_initialization;
7259     const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens();
7260     if (!ArgStripped->isRValue() || !ArgStripped->getType()->isRecordType())
7261       return;
7262   }
7263 
7264   S.Diag(CE->getBeginLoc(), DiagID);
7265 
7266   // Get all the locations for a fix-it.  Don't emit the fix-it if any location
7267   // is within a macro.
7268   SourceLocation CallBegin = CE->getCallee()->getBeginLoc();
7269   if (CallBegin.isMacroID())
7270     return;
7271   SourceLocation RParen = CE->getRParenLoc();
7272   if (RParen.isMacroID())
7273     return;
7274   SourceLocation LParen;
7275   SourceLocation ArgLoc = Arg->getBeginLoc();
7276 
7277   // Special testing for the argument location.  Since the fix-it needs the
7278   // location right before the argument, the argument location can be in a
7279   // macro only if it is at the beginning of the macro.
7280   while (ArgLoc.isMacroID() &&
7281          S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) {
7282     ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).getBegin();
7283   }
7284 
7285   if (LParen.isMacroID())
7286     return;
7287 
7288   LParen = ArgLoc.getLocWithOffset(-1);
7289 
7290   S.Diag(CE->getBeginLoc(), diag::note_remove_move)
7291       << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen))
7292       << FixItHint::CreateRemoval(SourceRange(RParen, RParen));
7293 }
7294 
7295 static void CheckForNullPointerDereference(Sema &S, const Expr *E) {
7296   // Check to see if we are dereferencing a null pointer.  If so, this is
7297   // undefined behavior, so warn about it.  This only handles the pattern
7298   // "*null", which is a very syntactic check.
7299   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
7300     if (UO->getOpcode() == UO_Deref &&
7301         UO->getSubExpr()->IgnoreParenCasts()->
7302         isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) {
7303     S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
7304                           S.PDiag(diag::warn_binding_null_to_reference)
7305                             << UO->getSubExpr()->getSourceRange());
7306   }
7307 }
7308 
7309 MaterializeTemporaryExpr *
7310 Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary,
7311                                      bool BoundToLvalueReference) {
7312   auto MTE = new (Context)
7313       MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference);
7314 
7315   // Order an ExprWithCleanups for lifetime marks.
7316   //
7317   // TODO: It'll be good to have a single place to check the access of the
7318   // destructor and generate ExprWithCleanups for various uses. Currently these
7319   // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary,
7320   // but there may be a chance to merge them.
7321   Cleanup.setExprNeedsCleanups(false);
7322   return MTE;
7323 }
7324 
7325 ExprResult Sema::TemporaryMaterializationConversion(Expr *E) {
7326   // In C++98, we don't want to implicitly create an xvalue.
7327   // FIXME: This means that AST consumers need to deal with "prvalues" that
7328   // denote materialized temporaries. Maybe we should add another ValueKind
7329   // for "xvalue pretending to be a prvalue" for C++98 support.
7330   if (!E->isRValue() || !getLangOpts().CPlusPlus11)
7331     return E;
7332 
7333   // C++1z [conv.rval]/1: T shall be a complete type.
7334   // FIXME: Does this ever matter (can we form a prvalue of incomplete type)?
7335   // If so, we should check for a non-abstract class type here too.
7336   QualType T = E->getType();
7337   if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type))
7338     return ExprError();
7339 
7340   return CreateMaterializeTemporaryExpr(E->getType(), E, false);
7341 }
7342 
7343 ExprResult Sema::PerformQualificationConversion(Expr *E, QualType Ty,
7344                                                 ExprValueKind VK,
7345                                                 CheckedConversionKind CCK) {
7346 
7347   CastKind CK = CK_NoOp;
7348 
7349   if (VK == VK_RValue) {
7350     auto PointeeTy = Ty->getPointeeType();
7351     auto ExprPointeeTy = E->getType()->getPointeeType();
7352     if (!PointeeTy.isNull() &&
7353         PointeeTy.getAddressSpace() != ExprPointeeTy.getAddressSpace())
7354       CK = CK_AddressSpaceConversion;
7355   } else if (Ty.getAddressSpace() != E->getType().getAddressSpace()) {
7356     CK = CK_AddressSpaceConversion;
7357   }
7358 
7359   return ImpCastExprToType(E, Ty, CK, VK, /*BasePath=*/nullptr, CCK);
7360 }
7361 
7362 ExprResult InitializationSequence::Perform(Sema &S,
7363                                            const InitializedEntity &Entity,
7364                                            const InitializationKind &Kind,
7365                                            MultiExprArg Args,
7366                                            QualType *ResultType) {
7367   if (Failed()) {
7368     Diagnose(S, Entity, Kind, Args);
7369     return ExprError();
7370   }
7371   if (!ZeroInitializationFixit.empty()) {
7372     unsigned DiagID = diag::err_default_init_const;
7373     if (Decl *D = Entity.getDecl())
7374       if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>())
7375         DiagID = diag::ext_default_init_const;
7376 
7377     // The initialization would have succeeded with this fixit. Since the fixit
7378     // is on the error, we need to build a valid AST in this case, so this isn't
7379     // handled in the Failed() branch above.
7380     QualType DestType = Entity.getType();
7381     S.Diag(Kind.getLocation(), DiagID)
7382         << DestType << (bool)DestType->getAs<RecordType>()
7383         << FixItHint::CreateInsertion(ZeroInitializationFixitLoc,
7384                                       ZeroInitializationFixit);
7385   }
7386 
7387   if (getKind() == DependentSequence) {
7388     // If the declaration is a non-dependent, incomplete array type
7389     // that has an initializer, then its type will be completed once
7390     // the initializer is instantiated.
7391     if (ResultType && !Entity.getType()->isDependentType() &&
7392         Args.size() == 1) {
7393       QualType DeclType = Entity.getType();
7394       if (const IncompleteArrayType *ArrayT
7395                            = S.Context.getAsIncompleteArrayType(DeclType)) {
7396         // FIXME: We don't currently have the ability to accurately
7397         // compute the length of an initializer list without
7398         // performing full type-checking of the initializer list
7399         // (since we have to determine where braces are implicitly
7400         // introduced and such).  So, we fall back to making the array
7401         // type a dependently-sized array type with no specified
7402         // bound.
7403         if (isa<InitListExpr>((Expr *)Args[0])) {
7404           SourceRange Brackets;
7405 
7406           // Scavange the location of the brackets from the entity, if we can.
7407           if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Entity.getDecl())) {
7408             if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
7409               TypeLoc TL = TInfo->getTypeLoc();
7410               if (IncompleteArrayTypeLoc ArrayLoc =
7411                       TL.getAs<IncompleteArrayTypeLoc>())
7412                 Brackets = ArrayLoc.getBracketsRange();
7413             }
7414           }
7415 
7416           *ResultType
7417             = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
7418                                                    /*NumElts=*/nullptr,
7419                                                    ArrayT->getSizeModifier(),
7420                                        ArrayT->getIndexTypeCVRQualifiers(),
7421                                                    Brackets);
7422         }
7423 
7424       }
7425     }
7426     if (Kind.getKind() == InitializationKind::IK_Direct &&
7427         !Kind.isExplicitCast()) {
7428       // Rebuild the ParenListExpr.
7429       SourceRange ParenRange = Kind.getParenOrBraceRange();
7430       return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
7431                                   Args);
7432     }
7433     assert(Kind.getKind() == InitializationKind::IK_Copy ||
7434            Kind.isExplicitCast() ||
7435            Kind.getKind() == InitializationKind::IK_DirectList);
7436     return ExprResult(Args[0]);
7437   }
7438 
7439   // No steps means no initialization.
7440   if (Steps.empty())
7441     return ExprResult((Expr *)nullptr);
7442 
7443   if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
7444       Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
7445       !Entity.isParameterKind()) {
7446     // Produce a C++98 compatibility warning if we are initializing a reference
7447     // from an initializer list. For parameters, we produce a better warning
7448     // elsewhere.
7449     Expr *Init = Args[0];
7450     S.Diag(Init->getBeginLoc(), diag::warn_cxx98_compat_reference_list_init)
7451         << Init->getSourceRange();
7452   }
7453 
7454   // OpenCL v2.0 s6.13.11.1. atomic variables can be initialized in global scope
7455   QualType ETy = Entity.getType();
7456   Qualifiers TyQualifiers = ETy.getQualifiers();
7457   bool HasGlobalAS = TyQualifiers.hasAddressSpace() &&
7458                      TyQualifiers.getAddressSpace() == LangAS::opencl_global;
7459 
7460   if (S.getLangOpts().OpenCLVersion >= 200 &&
7461       ETy->isAtomicType() && !HasGlobalAS &&
7462       Entity.getKind() == InitializedEntity::EK_Variable && Args.size() > 0) {
7463     S.Diag(Args[0]->getBeginLoc(), diag::err_opencl_atomic_init)
7464         << 1
7465         << SourceRange(Entity.getDecl()->getBeginLoc(), Args[0]->getEndLoc());
7466     return ExprError();
7467   }
7468 
7469   QualType DestType = Entity.getType().getNonReferenceType();
7470   // FIXME: Ugly hack around the fact that Entity.getType() is not
7471   // the same as Entity.getDecl()->getType() in cases involving type merging,
7472   //  and we want latter when it makes sense.
7473   if (ResultType)
7474     *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
7475                                      Entity.getType();
7476 
7477   ExprResult CurInit((Expr *)nullptr);
7478   SmallVector<Expr*, 4> ArrayLoopCommonExprs;
7479 
7480   // For initialization steps that start with a single initializer,
7481   // grab the only argument out the Args and place it into the "current"
7482   // initializer.
7483   switch (Steps.front().Kind) {
7484   case SK_ResolveAddressOfOverloadedFunction:
7485   case SK_CastDerivedToBaseRValue:
7486   case SK_CastDerivedToBaseXValue:
7487   case SK_CastDerivedToBaseLValue:
7488   case SK_BindReference:
7489   case SK_BindReferenceToTemporary:
7490   case SK_FinalCopy:
7491   case SK_ExtraneousCopyToTemporary:
7492   case SK_UserConversion:
7493   case SK_QualificationConversionLValue:
7494   case SK_QualificationConversionXValue:
7495   case SK_QualificationConversionRValue:
7496   case SK_AtomicConversion:
7497   case SK_LValueToRValue:
7498   case SK_ConversionSequence:
7499   case SK_ConversionSequenceNoNarrowing:
7500   case SK_ListInitialization:
7501   case SK_UnwrapInitList:
7502   case SK_RewrapInitList:
7503   case SK_CAssignment:
7504   case SK_StringInit:
7505   case SK_ObjCObjectConversion:
7506   case SK_ArrayLoopIndex:
7507   case SK_ArrayLoopInit:
7508   case SK_ArrayInit:
7509   case SK_GNUArrayInit:
7510   case SK_ParenthesizedArrayInit:
7511   case SK_PassByIndirectCopyRestore:
7512   case SK_PassByIndirectRestore:
7513   case SK_ProduceObjCObject:
7514   case SK_StdInitializerList:
7515   case SK_OCLSamplerInit:
7516   case SK_OCLZeroOpaqueType: {
7517     assert(Args.size() == 1);
7518     CurInit = Args[0];
7519     if (!CurInit.get()) return ExprError();
7520     break;
7521   }
7522 
7523   case SK_ConstructorInitialization:
7524   case SK_ConstructorInitializationFromList:
7525   case SK_StdInitializerListConstructorCall:
7526   case SK_ZeroInitialization:
7527     break;
7528   }
7529 
7530   // Promote from an unevaluated context to an unevaluated list context in
7531   // C++11 list-initialization; we need to instantiate entities usable in
7532   // constant expressions here in order to perform narrowing checks =(
7533   EnterExpressionEvaluationContext Evaluated(
7534       S, EnterExpressionEvaluationContext::InitList,
7535       CurInit.get() && isa<InitListExpr>(CurInit.get()));
7536 
7537   // C++ [class.abstract]p2:
7538   //   no objects of an abstract class can be created except as subobjects
7539   //   of a class derived from it
7540   auto checkAbstractType = [&](QualType T) -> bool {
7541     if (Entity.getKind() == InitializedEntity::EK_Base ||
7542         Entity.getKind() == InitializedEntity::EK_Delegating)
7543       return false;
7544     return S.RequireNonAbstractType(Kind.getLocation(), T,
7545                                     diag::err_allocation_of_abstract_type);
7546   };
7547 
7548   // Walk through the computed steps for the initialization sequence,
7549   // performing the specified conversions along the way.
7550   bool ConstructorInitRequiresZeroInit = false;
7551   for (step_iterator Step = step_begin(), StepEnd = step_end();
7552        Step != StepEnd; ++Step) {
7553     if (CurInit.isInvalid())
7554       return ExprError();
7555 
7556     QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
7557 
7558     switch (Step->Kind) {
7559     case SK_ResolveAddressOfOverloadedFunction:
7560       // Overload resolution determined which function invoke; update the
7561       // initializer to reflect that choice.
7562       S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
7563       if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()))
7564         return ExprError();
7565       CurInit = S.FixOverloadedFunctionReference(CurInit,
7566                                                  Step->Function.FoundDecl,
7567                                                  Step->Function.Function);
7568       break;
7569 
7570     case SK_CastDerivedToBaseRValue:
7571     case SK_CastDerivedToBaseXValue:
7572     case SK_CastDerivedToBaseLValue: {
7573       // We have a derived-to-base cast that produces either an rvalue or an
7574       // lvalue. Perform that cast.
7575 
7576       CXXCastPath BasePath;
7577 
7578       // Casts to inaccessible base classes are allowed with C-style casts.
7579       bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
7580       if (S.CheckDerivedToBaseConversion(
7581               SourceType, Step->Type, CurInit.get()->getBeginLoc(),
7582               CurInit.get()->getSourceRange(), &BasePath, IgnoreBaseAccess))
7583         return ExprError();
7584 
7585       ExprValueKind VK =
7586           Step->Kind == SK_CastDerivedToBaseLValue ?
7587               VK_LValue :
7588               (Step->Kind == SK_CastDerivedToBaseXValue ?
7589                    VK_XValue :
7590                    VK_RValue);
7591       CurInit =
7592           ImplicitCastExpr::Create(S.Context, Step->Type, CK_DerivedToBase,
7593                                    CurInit.get(), &BasePath, VK);
7594       break;
7595     }
7596 
7597     case SK_BindReference:
7598       // Reference binding does not have any corresponding ASTs.
7599 
7600       // Check exception specifications
7601       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
7602         return ExprError();
7603 
7604       // We don't check for e.g. function pointers here, since address
7605       // availability checks should only occur when the function first decays
7606       // into a pointer or reference.
7607       if (CurInit.get()->getType()->isFunctionProtoType()) {
7608         if (auto *DRE = dyn_cast<DeclRefExpr>(CurInit.get()->IgnoreParens())) {
7609           if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
7610             if (!S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
7611                                                      DRE->getBeginLoc()))
7612               return ExprError();
7613           }
7614         }
7615       }
7616 
7617       CheckForNullPointerDereference(S, CurInit.get());
7618       break;
7619 
7620     case SK_BindReferenceToTemporary: {
7621       // Make sure the "temporary" is actually an rvalue.
7622       assert(CurInit.get()->isRValue() && "not a temporary");
7623 
7624       // Check exception specifications
7625       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
7626         return ExprError();
7627 
7628       // Materialize the temporary into memory.
7629       MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
7630           Step->Type, CurInit.get(), Entity.getType()->isLValueReferenceType());
7631       CurInit = MTE;
7632 
7633       // If we're extending this temporary to automatic storage duration -- we
7634       // need to register its cleanup during the full-expression's cleanups.
7635       if (MTE->getStorageDuration() == SD_Automatic &&
7636           MTE->getType().isDestructedType())
7637         S.Cleanup.setExprNeedsCleanups(true);
7638       break;
7639     }
7640 
7641     case SK_FinalCopy:
7642       if (checkAbstractType(Step->Type))
7643         return ExprError();
7644 
7645       // If the overall initialization is initializing a temporary, we already
7646       // bound our argument if it was necessary to do so. If not (if we're
7647       // ultimately initializing a non-temporary), our argument needs to be
7648       // bound since it's initializing a function parameter.
7649       // FIXME: This is a mess. Rationalize temporary destruction.
7650       if (!shouldBindAsTemporary(Entity))
7651         CurInit = S.MaybeBindToTemporary(CurInit.get());
7652       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
7653                            /*IsExtraneousCopy=*/false);
7654       break;
7655 
7656     case SK_ExtraneousCopyToTemporary:
7657       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
7658                            /*IsExtraneousCopy=*/true);
7659       break;
7660 
7661     case SK_UserConversion: {
7662       // We have a user-defined conversion that invokes either a constructor
7663       // or a conversion function.
7664       CastKind CastKind;
7665       FunctionDecl *Fn = Step->Function.Function;
7666       DeclAccessPair FoundFn = Step->Function.FoundDecl;
7667       bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
7668       bool CreatedObject = false;
7669       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
7670         // Build a call to the selected constructor.
7671         SmallVector<Expr*, 8> ConstructorArgs;
7672         SourceLocation Loc = CurInit.get()->getBeginLoc();
7673 
7674         // Determine the arguments required to actually perform the constructor
7675         // call.
7676         Expr *Arg = CurInit.get();
7677         if (S.CompleteConstructorCall(Constructor,
7678                                       MultiExprArg(&Arg, 1),
7679                                       Loc, ConstructorArgs))
7680           return ExprError();
7681 
7682         // Build an expression that constructs a temporary.
7683         CurInit = S.BuildCXXConstructExpr(Loc, Step->Type,
7684                                           FoundFn, Constructor,
7685                                           ConstructorArgs,
7686                                           HadMultipleCandidates,
7687                                           /*ListInit*/ false,
7688                                           /*StdInitListInit*/ false,
7689                                           /*ZeroInit*/ false,
7690                                           CXXConstructExpr::CK_Complete,
7691                                           SourceRange());
7692         if (CurInit.isInvalid())
7693           return ExprError();
7694 
7695         S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn,
7696                                  Entity);
7697         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
7698           return ExprError();
7699 
7700         CastKind = CK_ConstructorConversion;
7701         CreatedObject = true;
7702       } else {
7703         // Build a call to the conversion function.
7704         CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
7705         S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr,
7706                                     FoundFn);
7707         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
7708           return ExprError();
7709 
7710         CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
7711                                            HadMultipleCandidates);
7712         if (CurInit.isInvalid())
7713           return ExprError();
7714 
7715         CastKind = CK_UserDefinedConversion;
7716         CreatedObject = Conversion->getReturnType()->isRecordType();
7717       }
7718 
7719       if (CreatedObject && checkAbstractType(CurInit.get()->getType()))
7720         return ExprError();
7721 
7722       CurInit = ImplicitCastExpr::Create(S.Context, CurInit.get()->getType(),
7723                                          CastKind, CurInit.get(), nullptr,
7724                                          CurInit.get()->getValueKind());
7725 
7726       if (shouldBindAsTemporary(Entity))
7727         // The overall entity is temporary, so this expression should be
7728         // destroyed at the end of its full-expression.
7729         CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
7730       else if (CreatedObject && shouldDestroyEntity(Entity)) {
7731         // The object outlasts the full-expression, but we need to prepare for
7732         // a destructor being run on it.
7733         // FIXME: It makes no sense to do this here. This should happen
7734         // regardless of how we initialized the entity.
7735         QualType T = CurInit.get()->getType();
7736         if (const RecordType *Record = T->getAs<RecordType>()) {
7737           CXXDestructorDecl *Destructor
7738             = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
7739           S.CheckDestructorAccess(CurInit.get()->getBeginLoc(), Destructor,
7740                                   S.PDiag(diag::err_access_dtor_temp) << T);
7741           S.MarkFunctionReferenced(CurInit.get()->getBeginLoc(), Destructor);
7742           if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getBeginLoc()))
7743             return ExprError();
7744         }
7745       }
7746       break;
7747     }
7748 
7749     case SK_QualificationConversionLValue:
7750     case SK_QualificationConversionXValue:
7751     case SK_QualificationConversionRValue: {
7752       // Perform a qualification conversion; these can never go wrong.
7753       ExprValueKind VK =
7754           Step->Kind == SK_QualificationConversionLValue
7755               ? VK_LValue
7756               : (Step->Kind == SK_QualificationConversionXValue ? VK_XValue
7757                                                                 : VK_RValue);
7758       CurInit = S.PerformQualificationConversion(CurInit.get(), Step->Type, VK);
7759       break;
7760     }
7761 
7762     case SK_AtomicConversion: {
7763       assert(CurInit.get()->isRValue() && "cannot convert glvalue to atomic");
7764       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
7765                                     CK_NonAtomicToAtomic, VK_RValue);
7766       break;
7767     }
7768 
7769     case SK_LValueToRValue: {
7770       assert(CurInit.get()->isGLValue() && "cannot load from a prvalue");
7771       CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
7772                                          CK_LValueToRValue, CurInit.get(),
7773                                          /*BasePath=*/nullptr, VK_RValue);
7774       break;
7775     }
7776 
7777     case SK_ConversionSequence:
7778     case SK_ConversionSequenceNoNarrowing: {
7779       if (const auto *FromPtrType =
7780               CurInit.get()->getType()->getAs<PointerType>()) {
7781         if (const auto *ToPtrType = Step->Type->getAs<PointerType>()) {
7782           if (FromPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
7783               !ToPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
7784             S.Diag(CurInit.get()->getExprLoc(),
7785                    diag::warn_noderef_to_dereferenceable_pointer)
7786                 << CurInit.get()->getSourceRange();
7787           }
7788         }
7789       }
7790 
7791       Sema::CheckedConversionKind CCK
7792         = Kind.isCStyleCast()? Sema::CCK_CStyleCast
7793         : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
7794         : Kind.isExplicitCast()? Sema::CCK_OtherCast
7795         : Sema::CCK_ImplicitConversion;
7796       ExprResult CurInitExprRes =
7797         S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
7798                                     getAssignmentAction(Entity), CCK);
7799       if (CurInitExprRes.isInvalid())
7800         return ExprError();
7801 
7802       S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), CurInit.get());
7803 
7804       CurInit = CurInitExprRes;
7805 
7806       if (Step->Kind == SK_ConversionSequenceNoNarrowing &&
7807           S.getLangOpts().CPlusPlus)
7808         DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(),
7809                                     CurInit.get());
7810 
7811       break;
7812     }
7813 
7814     case SK_ListInitialization: {
7815       if (checkAbstractType(Step->Type))
7816         return ExprError();
7817 
7818       InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
7819       // If we're not initializing the top-level entity, we need to create an
7820       // InitializeTemporary entity for our target type.
7821       QualType Ty = Step->Type;
7822       bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty);
7823       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
7824       InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
7825       InitListChecker PerformInitList(S, InitEntity,
7826           InitList, Ty, /*VerifyOnly=*/false,
7827           /*TreatUnavailableAsInvalid=*/false);
7828       if (PerformInitList.HadError())
7829         return ExprError();
7830 
7831       // Hack: We must update *ResultType if available in order to set the
7832       // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
7833       // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
7834       if (ResultType &&
7835           ResultType->getNonReferenceType()->isIncompleteArrayType()) {
7836         if ((*ResultType)->isRValueReferenceType())
7837           Ty = S.Context.getRValueReferenceType(Ty);
7838         else if ((*ResultType)->isLValueReferenceType())
7839           Ty = S.Context.getLValueReferenceType(Ty,
7840             (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue());
7841         *ResultType = Ty;
7842       }
7843 
7844       InitListExpr *StructuredInitList =
7845           PerformInitList.getFullyStructuredList();
7846       CurInit.get();
7847       CurInit = shouldBindAsTemporary(InitEntity)
7848           ? S.MaybeBindToTemporary(StructuredInitList)
7849           : StructuredInitList;
7850       break;
7851     }
7852 
7853     case SK_ConstructorInitializationFromList: {
7854       if (checkAbstractType(Step->Type))
7855         return ExprError();
7856 
7857       // When an initializer list is passed for a parameter of type "reference
7858       // to object", we don't get an EK_Temporary entity, but instead an
7859       // EK_Parameter entity with reference type.
7860       // FIXME: This is a hack. What we really should do is create a user
7861       // conversion step for this case, but this makes it considerably more
7862       // complicated. For now, this will do.
7863       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
7864                                         Entity.getType().getNonReferenceType());
7865       bool UseTemporary = Entity.getType()->isReferenceType();
7866       assert(Args.size() == 1 && "expected a single argument for list init");
7867       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
7868       S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
7869         << InitList->getSourceRange();
7870       MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
7871       CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
7872                                                                    Entity,
7873                                                  Kind, Arg, *Step,
7874                                                ConstructorInitRequiresZeroInit,
7875                                                /*IsListInitialization*/true,
7876                                                /*IsStdInitListInit*/false,
7877                                                InitList->getLBraceLoc(),
7878                                                InitList->getRBraceLoc());
7879       break;
7880     }
7881 
7882     case SK_UnwrapInitList:
7883       CurInit = cast<InitListExpr>(CurInit.get())->getInit(0);
7884       break;
7885 
7886     case SK_RewrapInitList: {
7887       Expr *E = CurInit.get();
7888       InitListExpr *Syntactic = Step->WrappingSyntacticList;
7889       InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
7890           Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
7891       ILE->setSyntacticForm(Syntactic);
7892       ILE->setType(E->getType());
7893       ILE->setValueKind(E->getValueKind());
7894       CurInit = ILE;
7895       break;
7896     }
7897 
7898     case SK_ConstructorInitialization:
7899     case SK_StdInitializerListConstructorCall: {
7900       if (checkAbstractType(Step->Type))
7901         return ExprError();
7902 
7903       // When an initializer list is passed for a parameter of type "reference
7904       // to object", we don't get an EK_Temporary entity, but instead an
7905       // EK_Parameter entity with reference type.
7906       // FIXME: This is a hack. What we really should do is create a user
7907       // conversion step for this case, but this makes it considerably more
7908       // complicated. For now, this will do.
7909       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
7910                                         Entity.getType().getNonReferenceType());
7911       bool UseTemporary = Entity.getType()->isReferenceType();
7912       bool IsStdInitListInit =
7913           Step->Kind == SK_StdInitializerListConstructorCall;
7914       Expr *Source = CurInit.get();
7915       SourceRange Range = Kind.hasParenOrBraceRange()
7916                               ? Kind.getParenOrBraceRange()
7917                               : SourceRange();
7918       CurInit = PerformConstructorInitialization(
7919           S, UseTemporary ? TempEntity : Entity, Kind,
7920           Source ? MultiExprArg(Source) : Args, *Step,
7921           ConstructorInitRequiresZeroInit,
7922           /*IsListInitialization*/ IsStdInitListInit,
7923           /*IsStdInitListInitialization*/ IsStdInitListInit,
7924           /*LBraceLoc*/ Range.getBegin(),
7925           /*RBraceLoc*/ Range.getEnd());
7926       break;
7927     }
7928 
7929     case SK_ZeroInitialization: {
7930       step_iterator NextStep = Step;
7931       ++NextStep;
7932       if (NextStep != StepEnd &&
7933           (NextStep->Kind == SK_ConstructorInitialization ||
7934            NextStep->Kind == SK_ConstructorInitializationFromList)) {
7935         // The need for zero-initialization is recorded directly into
7936         // the call to the object's constructor within the next step.
7937         ConstructorInitRequiresZeroInit = true;
7938       } else if (Kind.getKind() == InitializationKind::IK_Value &&
7939                  S.getLangOpts().CPlusPlus &&
7940                  !Kind.isImplicitValueInit()) {
7941         TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
7942         if (!TSInfo)
7943           TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
7944                                                     Kind.getRange().getBegin());
7945 
7946         CurInit = new (S.Context) CXXScalarValueInitExpr(
7947             Entity.getType().getNonLValueExprType(S.Context), TSInfo,
7948             Kind.getRange().getEnd());
7949       } else {
7950         CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type);
7951       }
7952       break;
7953     }
7954 
7955     case SK_CAssignment: {
7956       QualType SourceType = CurInit.get()->getType();
7957 
7958       // Save off the initial CurInit in case we need to emit a diagnostic
7959       ExprResult InitialCurInit = CurInit;
7960       ExprResult Result = CurInit;
7961       Sema::AssignConvertType ConvTy =
7962         S.CheckSingleAssignmentConstraints(Step->Type, Result, true,
7963             Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited);
7964       if (Result.isInvalid())
7965         return ExprError();
7966       CurInit = Result;
7967 
7968       // If this is a call, allow conversion to a transparent union.
7969       ExprResult CurInitExprRes = CurInit;
7970       if (ConvTy != Sema::Compatible &&
7971           Entity.isParameterKind() &&
7972           S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
7973             == Sema::Compatible)
7974         ConvTy = Sema::Compatible;
7975       if (CurInitExprRes.isInvalid())
7976         return ExprError();
7977       CurInit = CurInitExprRes;
7978 
7979       bool Complained;
7980       if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
7981                                      Step->Type, SourceType,
7982                                      InitialCurInit.get(),
7983                                      getAssignmentAction(Entity, true),
7984                                      &Complained)) {
7985         PrintInitLocationNote(S, Entity);
7986         return ExprError();
7987       } else if (Complained)
7988         PrintInitLocationNote(S, Entity);
7989       break;
7990     }
7991 
7992     case SK_StringInit: {
7993       QualType Ty = Step->Type;
7994       CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
7995                       S.Context.getAsArrayType(Ty), S);
7996       break;
7997     }
7998 
7999     case SK_ObjCObjectConversion:
8000       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8001                           CK_ObjCObjectLValueCast,
8002                           CurInit.get()->getValueKind());
8003       break;
8004 
8005     case SK_ArrayLoopIndex: {
8006       Expr *Cur = CurInit.get();
8007       Expr *BaseExpr = new (S.Context)
8008           OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(),
8009                           Cur->getValueKind(), Cur->getObjectKind(), Cur);
8010       Expr *IndexExpr =
8011           new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType());
8012       CurInit = S.CreateBuiltinArraySubscriptExpr(
8013           BaseExpr, Kind.getLocation(), IndexExpr, Kind.getLocation());
8014       ArrayLoopCommonExprs.push_back(BaseExpr);
8015       break;
8016     }
8017 
8018     case SK_ArrayLoopInit: {
8019       assert(!ArrayLoopCommonExprs.empty() &&
8020              "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit");
8021       Expr *Common = ArrayLoopCommonExprs.pop_back_val();
8022       CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common,
8023                                                   CurInit.get());
8024       break;
8025     }
8026 
8027     case SK_GNUArrayInit:
8028       // Okay: we checked everything before creating this step. Note that
8029       // this is a GNU extension.
8030       S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
8031         << Step->Type << CurInit.get()->getType()
8032         << CurInit.get()->getSourceRange();
8033       updateGNUCompoundLiteralRValue(CurInit.get());
8034       LLVM_FALLTHROUGH;
8035     case SK_ArrayInit:
8036       // If the destination type is an incomplete array type, update the
8037       // type accordingly.
8038       if (ResultType) {
8039         if (const IncompleteArrayType *IncompleteDest
8040                            = S.Context.getAsIncompleteArrayType(Step->Type)) {
8041           if (const ConstantArrayType *ConstantSource
8042                  = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
8043             *ResultType = S.Context.getConstantArrayType(
8044                                              IncompleteDest->getElementType(),
8045                                              ConstantSource->getSize(),
8046                                              ArrayType::Normal, 0);
8047           }
8048         }
8049       }
8050       break;
8051 
8052     case SK_ParenthesizedArrayInit:
8053       // Okay: we checked everything before creating this step. Note that
8054       // this is a GNU extension.
8055       S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
8056         << CurInit.get()->getSourceRange();
8057       break;
8058 
8059     case SK_PassByIndirectCopyRestore:
8060     case SK_PassByIndirectRestore:
8061       checkIndirectCopyRestoreSource(S, CurInit.get());
8062       CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr(
8063           CurInit.get(), Step->Type,
8064           Step->Kind == SK_PassByIndirectCopyRestore);
8065       break;
8066 
8067     case SK_ProduceObjCObject:
8068       CurInit =
8069           ImplicitCastExpr::Create(S.Context, Step->Type, CK_ARCProduceObject,
8070                                    CurInit.get(), nullptr, VK_RValue);
8071       break;
8072 
8073     case SK_StdInitializerList: {
8074       S.Diag(CurInit.get()->getExprLoc(),
8075              diag::warn_cxx98_compat_initializer_list_init)
8076         << CurInit.get()->getSourceRange();
8077 
8078       // Materialize the temporary into memory.
8079       MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
8080           CurInit.get()->getType(), CurInit.get(),
8081           /*BoundToLvalueReference=*/false);
8082 
8083       // Wrap it in a construction of a std::initializer_list<T>.
8084       CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE);
8085 
8086       // Bind the result, in case the library has given initializer_list a
8087       // non-trivial destructor.
8088       if (shouldBindAsTemporary(Entity))
8089         CurInit = S.MaybeBindToTemporary(CurInit.get());
8090       break;
8091     }
8092 
8093     case SK_OCLSamplerInit: {
8094       // Sampler initialization have 5 cases:
8095       //   1. function argument passing
8096       //      1a. argument is a file-scope variable
8097       //      1b. argument is a function-scope variable
8098       //      1c. argument is one of caller function's parameters
8099       //   2. variable initialization
8100       //      2a. initializing a file-scope variable
8101       //      2b. initializing a function-scope variable
8102       //
8103       // For file-scope variables, since they cannot be initialized by function
8104       // call of __translate_sampler_initializer in LLVM IR, their references
8105       // need to be replaced by a cast from their literal initializers to
8106       // sampler type. Since sampler variables can only be used in function
8107       // calls as arguments, we only need to replace them when handling the
8108       // argument passing.
8109       assert(Step->Type->isSamplerT() &&
8110              "Sampler initialization on non-sampler type.");
8111       Expr *Init = CurInit.get();
8112       QualType SourceType = Init->getType();
8113       // Case 1
8114       if (Entity.isParameterKind()) {
8115         if (!SourceType->isSamplerT() && !SourceType->isIntegerType()) {
8116           S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
8117             << SourceType;
8118           break;
8119         } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init)) {
8120           auto Var = cast<VarDecl>(DRE->getDecl());
8121           // Case 1b and 1c
8122           // No cast from integer to sampler is needed.
8123           if (!Var->hasGlobalStorage()) {
8124             CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
8125                                                CK_LValueToRValue, Init,
8126                                                /*BasePath=*/nullptr, VK_RValue);
8127             break;
8128           }
8129           // Case 1a
8130           // For function call with a file-scope sampler variable as argument,
8131           // get the integer literal.
8132           // Do not diagnose if the file-scope variable does not have initializer
8133           // since this has already been diagnosed when parsing the variable
8134           // declaration.
8135           if (!Var->getInit() || !isa<ImplicitCastExpr>(Var->getInit()))
8136             break;
8137           Init = cast<ImplicitCastExpr>(const_cast<Expr*>(
8138             Var->getInit()))->getSubExpr();
8139           SourceType = Init->getType();
8140         }
8141       } else {
8142         // Case 2
8143         // Check initializer is 32 bit integer constant.
8144         // If the initializer is taken from global variable, do not diagnose since
8145         // this has already been done when parsing the variable declaration.
8146         if (!Init->isConstantInitializer(S.Context, false))
8147           break;
8148 
8149         if (!SourceType->isIntegerType() ||
8150             32 != S.Context.getIntWidth(SourceType)) {
8151           S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer)
8152             << SourceType;
8153           break;
8154         }
8155 
8156         Expr::EvalResult EVResult;
8157         Init->EvaluateAsInt(EVResult, S.Context);
8158         llvm::APSInt Result = EVResult.Val.getInt();
8159         const uint64_t SamplerValue = Result.getLimitedValue();
8160         // 32-bit value of sampler's initializer is interpreted as
8161         // bit-field with the following structure:
8162         // |unspecified|Filter|Addressing Mode| Normalized Coords|
8163         // |31        6|5    4|3             1|                 0|
8164         // This structure corresponds to enum values of sampler properties
8165         // defined in SPIR spec v1.2 and also opencl-c.h
8166         unsigned AddressingMode  = (0x0E & SamplerValue) >> 1;
8167         unsigned FilterMode      = (0x30 & SamplerValue) >> 4;
8168         if (FilterMode != 1 && FilterMode != 2 &&
8169             !S.getOpenCLOptions().isEnabled(
8170                 "cl_intel_device_side_avc_motion_estimation"))
8171           S.Diag(Kind.getLocation(),
8172                  diag::warn_sampler_initializer_invalid_bits)
8173                  << "Filter Mode";
8174         if (AddressingMode > 4)
8175           S.Diag(Kind.getLocation(),
8176                  diag::warn_sampler_initializer_invalid_bits)
8177                  << "Addressing Mode";
8178       }
8179 
8180       // Cases 1a, 2a and 2b
8181       // Insert cast from integer to sampler.
8182       CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy,
8183                                       CK_IntToOCLSampler);
8184       break;
8185     }
8186     case SK_OCLZeroOpaqueType: {
8187       assert((Step->Type->isEventT() || Step->Type->isQueueT() ||
8188               Step->Type->isOCLIntelSubgroupAVCType()) &&
8189              "Wrong type for initialization of OpenCL opaque type.");
8190 
8191       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8192                                     CK_ZeroToOCLOpaqueType,
8193                                     CurInit.get()->getValueKind());
8194       break;
8195     }
8196     }
8197   }
8198 
8199   // Check whether the initializer has a shorter lifetime than the initialized
8200   // entity, and if not, either lifetime-extend or warn as appropriate.
8201   if (auto *Init = CurInit.get())
8202     S.checkInitializerLifetime(Entity, Init);
8203 
8204   // Diagnose non-fatal problems with the completed initialization.
8205   if (Entity.getKind() == InitializedEntity::EK_Member &&
8206       cast<FieldDecl>(Entity.getDecl())->isBitField())
8207     S.CheckBitFieldInitialization(Kind.getLocation(),
8208                                   cast<FieldDecl>(Entity.getDecl()),
8209                                   CurInit.get());
8210 
8211   // Check for std::move on construction.
8212   if (const Expr *E = CurInit.get()) {
8213     CheckMoveOnConstruction(S, E,
8214                             Entity.getKind() == InitializedEntity::EK_Result);
8215   }
8216 
8217   return CurInit;
8218 }
8219 
8220 /// Somewhere within T there is an uninitialized reference subobject.
8221 /// Dig it out and diagnose it.
8222 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
8223                                            QualType T) {
8224   if (T->isReferenceType()) {
8225     S.Diag(Loc, diag::err_reference_without_init)
8226       << T.getNonReferenceType();
8227     return true;
8228   }
8229 
8230   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
8231   if (!RD || !RD->hasUninitializedReferenceMember())
8232     return false;
8233 
8234   for (const auto *FI : RD->fields()) {
8235     if (FI->isUnnamedBitfield())
8236       continue;
8237 
8238     if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
8239       S.Diag(Loc, diag::note_value_initialization_here) << RD;
8240       return true;
8241     }
8242   }
8243 
8244   for (const auto &BI : RD->bases()) {
8245     if (DiagnoseUninitializedReference(S, BI.getBeginLoc(), BI.getType())) {
8246       S.Diag(Loc, diag::note_value_initialization_here) << RD;
8247       return true;
8248     }
8249   }
8250 
8251   return false;
8252 }
8253 
8254 
8255 //===----------------------------------------------------------------------===//
8256 // Diagnose initialization failures
8257 //===----------------------------------------------------------------------===//
8258 
8259 /// Emit notes associated with an initialization that failed due to a
8260 /// "simple" conversion failure.
8261 static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity,
8262                                    Expr *op) {
8263   QualType destType = entity.getType();
8264   if (destType.getNonReferenceType()->isObjCObjectPointerType() &&
8265       op->getType()->isObjCObjectPointerType()) {
8266 
8267     // Emit a possible note about the conversion failing because the
8268     // operand is a message send with a related result type.
8269     S.EmitRelatedResultTypeNote(op);
8270 
8271     // Emit a possible note about a return failing because we're
8272     // expecting a related result type.
8273     if (entity.getKind() == InitializedEntity::EK_Result)
8274       S.EmitRelatedResultTypeNoteForReturn(destType);
8275   }
8276 }
8277 
8278 static void diagnoseListInit(Sema &S, const InitializedEntity &Entity,
8279                              InitListExpr *InitList) {
8280   QualType DestType = Entity.getType();
8281 
8282   QualType E;
8283   if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) {
8284     QualType ArrayType = S.Context.getConstantArrayType(
8285         E.withConst(),
8286         llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
8287                     InitList->getNumInits()),
8288         clang::ArrayType::Normal, 0);
8289     InitializedEntity HiddenArray =
8290         InitializedEntity::InitializeTemporary(ArrayType);
8291     return diagnoseListInit(S, HiddenArray, InitList);
8292   }
8293 
8294   if (DestType->isReferenceType()) {
8295     // A list-initialization failure for a reference means that we tried to
8296     // create a temporary of the inner type (per [dcl.init.list]p3.6) and the
8297     // inner initialization failed.
8298     QualType T = DestType->getAs<ReferenceType>()->getPointeeType();
8299     diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList);
8300     SourceLocation Loc = InitList->getBeginLoc();
8301     if (auto *D = Entity.getDecl())
8302       Loc = D->getLocation();
8303     S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T;
8304     return;
8305   }
8306 
8307   InitListChecker DiagnoseInitList(S, Entity, InitList, DestType,
8308                                    /*VerifyOnly=*/false,
8309                                    /*TreatUnavailableAsInvalid=*/false);
8310   assert(DiagnoseInitList.HadError() &&
8311          "Inconsistent init list check result.");
8312 }
8313 
8314 bool InitializationSequence::Diagnose(Sema &S,
8315                                       const InitializedEntity &Entity,
8316                                       const InitializationKind &Kind,
8317                                       ArrayRef<Expr *> Args) {
8318   if (!Failed())
8319     return false;
8320 
8321   // When we want to diagnose only one element of a braced-init-list,
8322   // we need to factor it out.
8323   Expr *OnlyArg;
8324   if (Args.size() == 1) {
8325     auto *List = dyn_cast<InitListExpr>(Args[0]);
8326     if (List && List->getNumInits() == 1)
8327       OnlyArg = List->getInit(0);
8328     else
8329       OnlyArg = Args[0];
8330   }
8331   else
8332     OnlyArg = nullptr;
8333 
8334   QualType DestType = Entity.getType();
8335   switch (Failure) {
8336   case FK_TooManyInitsForReference:
8337     // FIXME: Customize for the initialized entity?
8338     if (Args.empty()) {
8339       // Dig out the reference subobject which is uninitialized and diagnose it.
8340       // If this is value-initialization, this could be nested some way within
8341       // the target type.
8342       assert(Kind.getKind() == InitializationKind::IK_Value ||
8343              DestType->isReferenceType());
8344       bool Diagnosed =
8345         DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
8346       assert(Diagnosed && "couldn't find uninitialized reference to diagnose");
8347       (void)Diagnosed;
8348     } else  // FIXME: diagnostic below could be better!
8349       S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
8350           << SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
8351     break;
8352   case FK_ParenthesizedListInitForReference:
8353     S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
8354       << 1 << Entity.getType() << Args[0]->getSourceRange();
8355     break;
8356 
8357   case FK_ArrayNeedsInitList:
8358     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0;
8359     break;
8360   case FK_ArrayNeedsInitListOrStringLiteral:
8361     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1;
8362     break;
8363   case FK_ArrayNeedsInitListOrWideStringLiteral:
8364     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2;
8365     break;
8366   case FK_NarrowStringIntoWideCharArray:
8367     S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar);
8368     break;
8369   case FK_WideStringIntoCharArray:
8370     S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char);
8371     break;
8372   case FK_IncompatWideStringIntoWideChar:
8373     S.Diag(Kind.getLocation(),
8374            diag::err_array_init_incompat_wide_string_into_wchar);
8375     break;
8376   case FK_PlainStringIntoUTF8Char:
8377     S.Diag(Kind.getLocation(),
8378            diag::err_array_init_plain_string_into_char8_t);
8379     S.Diag(Args.front()->getBeginLoc(),
8380            diag::note_array_init_plain_string_into_char8_t)
8381         << FixItHint::CreateInsertion(Args.front()->getBeginLoc(), "u8");
8382     break;
8383   case FK_UTF8StringIntoPlainChar:
8384     S.Diag(Kind.getLocation(),
8385            diag::err_array_init_utf8_string_into_char)
8386       << S.getLangOpts().CPlusPlus2a;
8387     break;
8388   case FK_ArrayTypeMismatch:
8389   case FK_NonConstantArrayInit:
8390     S.Diag(Kind.getLocation(),
8391            (Failure == FK_ArrayTypeMismatch
8392               ? diag::err_array_init_different_type
8393               : diag::err_array_init_non_constant_array))
8394       << DestType.getNonReferenceType()
8395       << OnlyArg->getType()
8396       << Args[0]->getSourceRange();
8397     break;
8398 
8399   case FK_VariableLengthArrayHasInitializer:
8400     S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
8401       << Args[0]->getSourceRange();
8402     break;
8403 
8404   case FK_AddressOfOverloadFailed: {
8405     DeclAccessPair Found;
8406     S.ResolveAddressOfOverloadedFunction(OnlyArg,
8407                                          DestType.getNonReferenceType(),
8408                                          true,
8409                                          Found);
8410     break;
8411   }
8412 
8413   case FK_AddressOfUnaddressableFunction: {
8414     auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(OnlyArg)->getDecl());
8415     S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
8416                                         OnlyArg->getBeginLoc());
8417     break;
8418   }
8419 
8420   case FK_ReferenceInitOverloadFailed:
8421   case FK_UserConversionOverloadFailed:
8422     switch (FailedOverloadResult) {
8423     case OR_Ambiguous:
8424 
8425       FailedCandidateSet.NoteCandidates(
8426           PartialDiagnosticAt(
8427               Kind.getLocation(),
8428               Failure == FK_UserConversionOverloadFailed
8429                   ? (S.PDiag(diag::err_typecheck_ambiguous_condition)
8430                      << OnlyArg->getType() << DestType
8431                      << Args[0]->getSourceRange())
8432                   : (S.PDiag(diag::err_ref_init_ambiguous)
8433                      << DestType << OnlyArg->getType()
8434                      << Args[0]->getSourceRange())),
8435           S, OCD_ViableCandidates, Args);
8436       break;
8437 
8438     case OR_No_Viable_Function: {
8439       auto Cands = FailedCandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args);
8440       if (!S.RequireCompleteType(Kind.getLocation(),
8441                                  DestType.getNonReferenceType(),
8442                           diag::err_typecheck_nonviable_condition_incomplete,
8443                                OnlyArg->getType(), Args[0]->getSourceRange()))
8444         S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
8445           << (Entity.getKind() == InitializedEntity::EK_Result)
8446           << OnlyArg->getType() << Args[0]->getSourceRange()
8447           << DestType.getNonReferenceType();
8448 
8449       FailedCandidateSet.NoteCandidates(S, Args, Cands);
8450       break;
8451     }
8452     case OR_Deleted: {
8453       S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
8454         << OnlyArg->getType() << DestType.getNonReferenceType()
8455         << Args[0]->getSourceRange();
8456       OverloadCandidateSet::iterator Best;
8457       OverloadingResult Ovl
8458         = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
8459       if (Ovl == OR_Deleted) {
8460         S.NoteDeletedFunction(Best->Function);
8461       } else {
8462         llvm_unreachable("Inconsistent overload resolution?");
8463       }
8464       break;
8465     }
8466 
8467     case OR_Success:
8468       llvm_unreachable("Conversion did not fail!");
8469     }
8470     break;
8471 
8472   case FK_NonConstLValueReferenceBindingToTemporary:
8473     if (isa<InitListExpr>(Args[0])) {
8474       S.Diag(Kind.getLocation(),
8475              diag::err_lvalue_reference_bind_to_initlist)
8476       << DestType.getNonReferenceType().isVolatileQualified()
8477       << DestType.getNonReferenceType()
8478       << Args[0]->getSourceRange();
8479       break;
8480     }
8481     LLVM_FALLTHROUGH;
8482 
8483   case FK_NonConstLValueReferenceBindingToUnrelated:
8484     S.Diag(Kind.getLocation(),
8485            Failure == FK_NonConstLValueReferenceBindingToTemporary
8486              ? diag::err_lvalue_reference_bind_to_temporary
8487              : diag::err_lvalue_reference_bind_to_unrelated)
8488       << DestType.getNonReferenceType().isVolatileQualified()
8489       << DestType.getNonReferenceType()
8490       << OnlyArg->getType()
8491       << Args[0]->getSourceRange();
8492     break;
8493 
8494   case FK_NonConstLValueReferenceBindingToBitfield: {
8495     // We don't necessarily have an unambiguous source bit-field.
8496     FieldDecl *BitField = Args[0]->getSourceBitField();
8497     S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
8498       << DestType.isVolatileQualified()
8499       << (BitField ? BitField->getDeclName() : DeclarationName())
8500       << (BitField != nullptr)
8501       << Args[0]->getSourceRange();
8502     if (BitField)
8503       S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
8504     break;
8505   }
8506 
8507   case FK_NonConstLValueReferenceBindingToVectorElement:
8508     S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
8509       << DestType.isVolatileQualified()
8510       << Args[0]->getSourceRange();
8511     break;
8512 
8513   case FK_RValueReferenceBindingToLValue:
8514     S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
8515       << DestType.getNonReferenceType() << OnlyArg->getType()
8516       << Args[0]->getSourceRange();
8517     break;
8518 
8519   case FK_ReferenceInitDropsQualifiers: {
8520     QualType SourceType = OnlyArg->getType();
8521     QualType NonRefType = DestType.getNonReferenceType();
8522     Qualifiers DroppedQualifiers =
8523         SourceType.getQualifiers() - NonRefType.getQualifiers();
8524 
8525     S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
8526       << SourceType
8527       << NonRefType
8528       << DroppedQualifiers.getCVRQualifiers()
8529       << Args[0]->getSourceRange();
8530     break;
8531   }
8532 
8533   case FK_ReferenceInitFailed:
8534     S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
8535       << DestType.getNonReferenceType()
8536       << DestType.getNonReferenceType()->isIncompleteType()
8537       << OnlyArg->isLValue()
8538       << OnlyArg->getType()
8539       << Args[0]->getSourceRange();
8540     emitBadConversionNotes(S, Entity, Args[0]);
8541     break;
8542 
8543   case FK_ConversionFailed: {
8544     QualType FromType = OnlyArg->getType();
8545     PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
8546       << (int)Entity.getKind()
8547       << DestType
8548       << OnlyArg->isLValue()
8549       << FromType
8550       << Args[0]->getSourceRange();
8551     S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
8552     S.Diag(Kind.getLocation(), PDiag);
8553     emitBadConversionNotes(S, Entity, Args[0]);
8554     break;
8555   }
8556 
8557   case FK_ConversionFromPropertyFailed:
8558     // No-op. This error has already been reported.
8559     break;
8560 
8561   case FK_TooManyInitsForScalar: {
8562     SourceRange R;
8563 
8564     auto *InitList = dyn_cast<InitListExpr>(Args[0]);
8565     if (InitList && InitList->getNumInits() >= 1) {
8566       R = SourceRange(InitList->getInit(0)->getEndLoc(), InitList->getEndLoc());
8567     } else {
8568       assert(Args.size() > 1 && "Expected multiple initializers!");
8569       R = SourceRange(Args.front()->getEndLoc(), Args.back()->getEndLoc());
8570     }
8571 
8572     R.setBegin(S.getLocForEndOfToken(R.getBegin()));
8573     if (Kind.isCStyleOrFunctionalCast())
8574       S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
8575         << R;
8576     else
8577       S.Diag(Kind.getLocation(), diag::err_excess_initializers)
8578         << /*scalar=*/2 << R;
8579     break;
8580   }
8581 
8582   case FK_ParenthesizedListInitForScalar:
8583     S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
8584       << 0 << Entity.getType() << Args[0]->getSourceRange();
8585     break;
8586 
8587   case FK_ReferenceBindingToInitList:
8588     S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
8589       << DestType.getNonReferenceType() << Args[0]->getSourceRange();
8590     break;
8591 
8592   case FK_InitListBadDestinationType:
8593     S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
8594       << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
8595     break;
8596 
8597   case FK_ListConstructorOverloadFailed:
8598   case FK_ConstructorOverloadFailed: {
8599     SourceRange ArgsRange;
8600     if (Args.size())
8601       ArgsRange =
8602           SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
8603 
8604     if (Failure == FK_ListConstructorOverloadFailed) {
8605       assert(Args.size() == 1 &&
8606              "List construction from other than 1 argument.");
8607       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
8608       Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
8609     }
8610 
8611     // FIXME: Using "DestType" for the entity we're printing is probably
8612     // bad.
8613     switch (FailedOverloadResult) {
8614       case OR_Ambiguous:
8615         FailedCandidateSet.NoteCandidates(
8616             PartialDiagnosticAt(Kind.getLocation(),
8617                                 S.PDiag(diag::err_ovl_ambiguous_init)
8618                                     << DestType << ArgsRange),
8619             S, OCD_ViableCandidates, Args);
8620         break;
8621 
8622       case OR_No_Viable_Function:
8623         if (Kind.getKind() == InitializationKind::IK_Default &&
8624             (Entity.getKind() == InitializedEntity::EK_Base ||
8625              Entity.getKind() == InitializedEntity::EK_Member) &&
8626             isa<CXXConstructorDecl>(S.CurContext)) {
8627           // This is implicit default initialization of a member or
8628           // base within a constructor. If no viable function was
8629           // found, notify the user that they need to explicitly
8630           // initialize this base/member.
8631           CXXConstructorDecl *Constructor
8632             = cast<CXXConstructorDecl>(S.CurContext);
8633           const CXXRecordDecl *InheritedFrom = nullptr;
8634           if (auto Inherited = Constructor->getInheritedConstructor())
8635             InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass();
8636           if (Entity.getKind() == InitializedEntity::EK_Base) {
8637             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
8638               << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
8639               << S.Context.getTypeDeclType(Constructor->getParent())
8640               << /*base=*/0
8641               << Entity.getType()
8642               << InheritedFrom;
8643 
8644             RecordDecl *BaseDecl
8645               = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
8646                                                                   ->getDecl();
8647             S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
8648               << S.Context.getTagDeclType(BaseDecl);
8649           } else {
8650             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
8651               << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
8652               << S.Context.getTypeDeclType(Constructor->getParent())
8653               << /*member=*/1
8654               << Entity.getName()
8655               << InheritedFrom;
8656             S.Diag(Entity.getDecl()->getLocation(),
8657                    diag::note_member_declared_at);
8658 
8659             if (const RecordType *Record
8660                                  = Entity.getType()->getAs<RecordType>())
8661               S.Diag(Record->getDecl()->getLocation(),
8662                      diag::note_previous_decl)
8663                 << S.Context.getTagDeclType(Record->getDecl());
8664           }
8665           break;
8666         }
8667 
8668         FailedCandidateSet.NoteCandidates(
8669             PartialDiagnosticAt(
8670                 Kind.getLocation(),
8671                 S.PDiag(diag::err_ovl_no_viable_function_in_init)
8672                     << DestType << ArgsRange),
8673             S, OCD_AllCandidates, Args);
8674         break;
8675 
8676       case OR_Deleted: {
8677         OverloadCandidateSet::iterator Best;
8678         OverloadingResult Ovl
8679           = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
8680         if (Ovl != OR_Deleted) {
8681           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
8682               << DestType << ArgsRange;
8683           llvm_unreachable("Inconsistent overload resolution?");
8684           break;
8685         }
8686 
8687         // If this is a defaulted or implicitly-declared function, then
8688         // it was implicitly deleted. Make it clear that the deletion was
8689         // implicit.
8690         if (S.isImplicitlyDeleted(Best->Function))
8691           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
8692             << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
8693             << DestType << ArgsRange;
8694         else
8695           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
8696               << DestType << ArgsRange;
8697 
8698         S.NoteDeletedFunction(Best->Function);
8699         break;
8700       }
8701 
8702       case OR_Success:
8703         llvm_unreachable("Conversion did not fail!");
8704     }
8705   }
8706   break;
8707 
8708   case FK_DefaultInitOfConst:
8709     if (Entity.getKind() == InitializedEntity::EK_Member &&
8710         isa<CXXConstructorDecl>(S.CurContext)) {
8711       // This is implicit default-initialization of a const member in
8712       // a constructor. Complain that it needs to be explicitly
8713       // initialized.
8714       CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
8715       S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
8716         << (Constructor->getInheritedConstructor() ? 2 :
8717             Constructor->isImplicit() ? 1 : 0)
8718         << S.Context.getTypeDeclType(Constructor->getParent())
8719         << /*const=*/1
8720         << Entity.getName();
8721       S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
8722         << Entity.getName();
8723     } else {
8724       S.Diag(Kind.getLocation(), diag::err_default_init_const)
8725           << DestType << (bool)DestType->getAs<RecordType>();
8726     }
8727     break;
8728 
8729   case FK_Incomplete:
8730     S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
8731                           diag::err_init_incomplete_type);
8732     break;
8733 
8734   case FK_ListInitializationFailed: {
8735     // Run the init list checker again to emit diagnostics.
8736     InitListExpr *InitList = cast<InitListExpr>(Args[0]);
8737     diagnoseListInit(S, Entity, InitList);
8738     break;
8739   }
8740 
8741   case FK_PlaceholderType: {
8742     // FIXME: Already diagnosed!
8743     break;
8744   }
8745 
8746   case FK_ExplicitConstructor: {
8747     S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
8748       << Args[0]->getSourceRange();
8749     OverloadCandidateSet::iterator Best;
8750     OverloadingResult Ovl
8751       = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
8752     (void)Ovl;
8753     assert(Ovl == OR_Success && "Inconsistent overload resolution");
8754     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
8755     S.Diag(CtorDecl->getLocation(),
8756            diag::note_explicit_ctor_deduction_guide_here) << false;
8757     break;
8758   }
8759   }
8760 
8761   PrintInitLocationNote(S, Entity);
8762   return true;
8763 }
8764 
8765 void InitializationSequence::dump(raw_ostream &OS) const {
8766   switch (SequenceKind) {
8767   case FailedSequence: {
8768     OS << "Failed sequence: ";
8769     switch (Failure) {
8770     case FK_TooManyInitsForReference:
8771       OS << "too many initializers for reference";
8772       break;
8773 
8774     case FK_ParenthesizedListInitForReference:
8775       OS << "parenthesized list init for reference";
8776       break;
8777 
8778     case FK_ArrayNeedsInitList:
8779       OS << "array requires initializer list";
8780       break;
8781 
8782     case FK_AddressOfUnaddressableFunction:
8783       OS << "address of unaddressable function was taken";
8784       break;
8785 
8786     case FK_ArrayNeedsInitListOrStringLiteral:
8787       OS << "array requires initializer list or string literal";
8788       break;
8789 
8790     case FK_ArrayNeedsInitListOrWideStringLiteral:
8791       OS << "array requires initializer list or wide string literal";
8792       break;
8793 
8794     case FK_NarrowStringIntoWideCharArray:
8795       OS << "narrow string into wide char array";
8796       break;
8797 
8798     case FK_WideStringIntoCharArray:
8799       OS << "wide string into char array";
8800       break;
8801 
8802     case FK_IncompatWideStringIntoWideChar:
8803       OS << "incompatible wide string into wide char array";
8804       break;
8805 
8806     case FK_PlainStringIntoUTF8Char:
8807       OS << "plain string literal into char8_t array";
8808       break;
8809 
8810     case FK_UTF8StringIntoPlainChar:
8811       OS << "u8 string literal into char array";
8812       break;
8813 
8814     case FK_ArrayTypeMismatch:
8815       OS << "array type mismatch";
8816       break;
8817 
8818     case FK_NonConstantArrayInit:
8819       OS << "non-constant array initializer";
8820       break;
8821 
8822     case FK_AddressOfOverloadFailed:
8823       OS << "address of overloaded function failed";
8824       break;
8825 
8826     case FK_ReferenceInitOverloadFailed:
8827       OS << "overload resolution for reference initialization failed";
8828       break;
8829 
8830     case FK_NonConstLValueReferenceBindingToTemporary:
8831       OS << "non-const lvalue reference bound to temporary";
8832       break;
8833 
8834     case FK_NonConstLValueReferenceBindingToBitfield:
8835       OS << "non-const lvalue reference bound to bit-field";
8836       break;
8837 
8838     case FK_NonConstLValueReferenceBindingToVectorElement:
8839       OS << "non-const lvalue reference bound to vector element";
8840       break;
8841 
8842     case FK_NonConstLValueReferenceBindingToUnrelated:
8843       OS << "non-const lvalue reference bound to unrelated type";
8844       break;
8845 
8846     case FK_RValueReferenceBindingToLValue:
8847       OS << "rvalue reference bound to an lvalue";
8848       break;
8849 
8850     case FK_ReferenceInitDropsQualifiers:
8851       OS << "reference initialization drops qualifiers";
8852       break;
8853 
8854     case FK_ReferenceInitFailed:
8855       OS << "reference initialization failed";
8856       break;
8857 
8858     case FK_ConversionFailed:
8859       OS << "conversion failed";
8860       break;
8861 
8862     case FK_ConversionFromPropertyFailed:
8863       OS << "conversion from property failed";
8864       break;
8865 
8866     case FK_TooManyInitsForScalar:
8867       OS << "too many initializers for scalar";
8868       break;
8869 
8870     case FK_ParenthesizedListInitForScalar:
8871       OS << "parenthesized list init for reference";
8872       break;
8873 
8874     case FK_ReferenceBindingToInitList:
8875       OS << "referencing binding to initializer list";
8876       break;
8877 
8878     case FK_InitListBadDestinationType:
8879       OS << "initializer list for non-aggregate, non-scalar type";
8880       break;
8881 
8882     case FK_UserConversionOverloadFailed:
8883       OS << "overloading failed for user-defined conversion";
8884       break;
8885 
8886     case FK_ConstructorOverloadFailed:
8887       OS << "constructor overloading failed";
8888       break;
8889 
8890     case FK_DefaultInitOfConst:
8891       OS << "default initialization of a const variable";
8892       break;
8893 
8894     case FK_Incomplete:
8895       OS << "initialization of incomplete type";
8896       break;
8897 
8898     case FK_ListInitializationFailed:
8899       OS << "list initialization checker failure";
8900       break;
8901 
8902     case FK_VariableLengthArrayHasInitializer:
8903       OS << "variable length array has an initializer";
8904       break;
8905 
8906     case FK_PlaceholderType:
8907       OS << "initializer expression isn't contextually valid";
8908       break;
8909 
8910     case FK_ListConstructorOverloadFailed:
8911       OS << "list constructor overloading failed";
8912       break;
8913 
8914     case FK_ExplicitConstructor:
8915       OS << "list copy initialization chose explicit constructor";
8916       break;
8917     }
8918     OS << '\n';
8919     return;
8920   }
8921 
8922   case DependentSequence:
8923     OS << "Dependent sequence\n";
8924     return;
8925 
8926   case NormalSequence:
8927     OS << "Normal sequence: ";
8928     break;
8929   }
8930 
8931   for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
8932     if (S != step_begin()) {
8933       OS << " -> ";
8934     }
8935 
8936     switch (S->Kind) {
8937     case SK_ResolveAddressOfOverloadedFunction:
8938       OS << "resolve address of overloaded function";
8939       break;
8940 
8941     case SK_CastDerivedToBaseRValue:
8942       OS << "derived-to-base (rvalue)";
8943       break;
8944 
8945     case SK_CastDerivedToBaseXValue:
8946       OS << "derived-to-base (xvalue)";
8947       break;
8948 
8949     case SK_CastDerivedToBaseLValue:
8950       OS << "derived-to-base (lvalue)";
8951       break;
8952 
8953     case SK_BindReference:
8954       OS << "bind reference to lvalue";
8955       break;
8956 
8957     case SK_BindReferenceToTemporary:
8958       OS << "bind reference to a temporary";
8959       break;
8960 
8961     case SK_FinalCopy:
8962       OS << "final copy in class direct-initialization";
8963       break;
8964 
8965     case SK_ExtraneousCopyToTemporary:
8966       OS << "extraneous C++03 copy to temporary";
8967       break;
8968 
8969     case SK_UserConversion:
8970       OS << "user-defined conversion via " << *S->Function.Function;
8971       break;
8972 
8973     case SK_QualificationConversionRValue:
8974       OS << "qualification conversion (rvalue)";
8975       break;
8976 
8977     case SK_QualificationConversionXValue:
8978       OS << "qualification conversion (xvalue)";
8979       break;
8980 
8981     case SK_QualificationConversionLValue:
8982       OS << "qualification conversion (lvalue)";
8983       break;
8984 
8985     case SK_AtomicConversion:
8986       OS << "non-atomic-to-atomic conversion";
8987       break;
8988 
8989     case SK_LValueToRValue:
8990       OS << "load (lvalue to rvalue)";
8991       break;
8992 
8993     case SK_ConversionSequence:
8994       OS << "implicit conversion sequence (";
8995       S->ICS->dump(); // FIXME: use OS
8996       OS << ")";
8997       break;
8998 
8999     case SK_ConversionSequenceNoNarrowing:
9000       OS << "implicit conversion sequence with narrowing prohibited (";
9001       S->ICS->dump(); // FIXME: use OS
9002       OS << ")";
9003       break;
9004 
9005     case SK_ListInitialization:
9006       OS << "list aggregate initialization";
9007       break;
9008 
9009     case SK_UnwrapInitList:
9010       OS << "unwrap reference initializer list";
9011       break;
9012 
9013     case SK_RewrapInitList:
9014       OS << "rewrap reference initializer list";
9015       break;
9016 
9017     case SK_ConstructorInitialization:
9018       OS << "constructor initialization";
9019       break;
9020 
9021     case SK_ConstructorInitializationFromList:
9022       OS << "list initialization via constructor";
9023       break;
9024 
9025     case SK_ZeroInitialization:
9026       OS << "zero initialization";
9027       break;
9028 
9029     case SK_CAssignment:
9030       OS << "C assignment";
9031       break;
9032 
9033     case SK_StringInit:
9034       OS << "string initialization";
9035       break;
9036 
9037     case SK_ObjCObjectConversion:
9038       OS << "Objective-C object conversion";
9039       break;
9040 
9041     case SK_ArrayLoopIndex:
9042       OS << "indexing for array initialization loop";
9043       break;
9044 
9045     case SK_ArrayLoopInit:
9046       OS << "array initialization loop";
9047       break;
9048 
9049     case SK_ArrayInit:
9050       OS << "array initialization";
9051       break;
9052 
9053     case SK_GNUArrayInit:
9054       OS << "array initialization (GNU extension)";
9055       break;
9056 
9057     case SK_ParenthesizedArrayInit:
9058       OS << "parenthesized array initialization";
9059       break;
9060 
9061     case SK_PassByIndirectCopyRestore:
9062       OS << "pass by indirect copy and restore";
9063       break;
9064 
9065     case SK_PassByIndirectRestore:
9066       OS << "pass by indirect restore";
9067       break;
9068 
9069     case SK_ProduceObjCObject:
9070       OS << "Objective-C object retension";
9071       break;
9072 
9073     case SK_StdInitializerList:
9074       OS << "std::initializer_list from initializer list";
9075       break;
9076 
9077     case SK_StdInitializerListConstructorCall:
9078       OS << "list initialization from std::initializer_list";
9079       break;
9080 
9081     case SK_OCLSamplerInit:
9082       OS << "OpenCL sampler_t from integer constant";
9083       break;
9084 
9085     case SK_OCLZeroOpaqueType:
9086       OS << "OpenCL opaque type from zero";
9087       break;
9088     }
9089 
9090     OS << " [" << S->Type.getAsString() << ']';
9091   }
9092 
9093   OS << '\n';
9094 }
9095 
9096 void InitializationSequence::dump() const {
9097   dump(llvm::errs());
9098 }
9099 
9100 static bool NarrowingErrs(const LangOptions &L) {
9101   return L.CPlusPlus11 &&
9102          (!L.MicrosoftExt || L.isCompatibleWithMSVC(LangOptions::MSVC2015));
9103 }
9104 
9105 static void DiagnoseNarrowingInInitList(Sema &S,
9106                                         const ImplicitConversionSequence &ICS,
9107                                         QualType PreNarrowingType,
9108                                         QualType EntityType,
9109                                         const Expr *PostInit) {
9110   const StandardConversionSequence *SCS = nullptr;
9111   switch (ICS.getKind()) {
9112   case ImplicitConversionSequence::StandardConversion:
9113     SCS = &ICS.Standard;
9114     break;
9115   case ImplicitConversionSequence::UserDefinedConversion:
9116     SCS = &ICS.UserDefined.After;
9117     break;
9118   case ImplicitConversionSequence::AmbiguousConversion:
9119   case ImplicitConversionSequence::EllipsisConversion:
9120   case ImplicitConversionSequence::BadConversion:
9121     return;
9122   }
9123 
9124   // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
9125   APValue ConstantValue;
9126   QualType ConstantType;
9127   switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
9128                                 ConstantType)) {
9129   case NK_Not_Narrowing:
9130   case NK_Dependent_Narrowing:
9131     // No narrowing occurred.
9132     return;
9133 
9134   case NK_Type_Narrowing:
9135     // This was a floating-to-integer conversion, which is always considered a
9136     // narrowing conversion even if the value is a constant and can be
9137     // represented exactly as an integer.
9138     S.Diag(PostInit->getBeginLoc(), NarrowingErrs(S.getLangOpts())
9139                                         ? diag::ext_init_list_type_narrowing
9140                                         : diag::warn_init_list_type_narrowing)
9141         << PostInit->getSourceRange()
9142         << PreNarrowingType.getLocalUnqualifiedType()
9143         << EntityType.getLocalUnqualifiedType();
9144     break;
9145 
9146   case NK_Constant_Narrowing:
9147     // A constant value was narrowed.
9148     S.Diag(PostInit->getBeginLoc(),
9149            NarrowingErrs(S.getLangOpts())
9150                ? diag::ext_init_list_constant_narrowing
9151                : diag::warn_init_list_constant_narrowing)
9152         << PostInit->getSourceRange()
9153         << ConstantValue.getAsString(S.getASTContext(), ConstantType)
9154         << EntityType.getLocalUnqualifiedType();
9155     break;
9156 
9157   case NK_Variable_Narrowing:
9158     // A variable's value may have been narrowed.
9159     S.Diag(PostInit->getBeginLoc(),
9160            NarrowingErrs(S.getLangOpts())
9161                ? diag::ext_init_list_variable_narrowing
9162                : diag::warn_init_list_variable_narrowing)
9163         << PostInit->getSourceRange()
9164         << PreNarrowingType.getLocalUnqualifiedType()
9165         << EntityType.getLocalUnqualifiedType();
9166     break;
9167   }
9168 
9169   SmallString<128> StaticCast;
9170   llvm::raw_svector_ostream OS(StaticCast);
9171   OS << "static_cast<";
9172   if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
9173     // It's important to use the typedef's name if there is one so that the
9174     // fixit doesn't break code using types like int64_t.
9175     //
9176     // FIXME: This will break if the typedef requires qualification.  But
9177     // getQualifiedNameAsString() includes non-machine-parsable components.
9178     OS << *TT->getDecl();
9179   } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
9180     OS << BT->getName(S.getLangOpts());
9181   else {
9182     // Oops, we didn't find the actual type of the variable.  Don't emit a fixit
9183     // with a broken cast.
9184     return;
9185   }
9186   OS << ">(";
9187   S.Diag(PostInit->getBeginLoc(), diag::note_init_list_narrowing_silence)
9188       << PostInit->getSourceRange()
9189       << FixItHint::CreateInsertion(PostInit->getBeginLoc(), OS.str())
9190       << FixItHint::CreateInsertion(
9191              S.getLocForEndOfToken(PostInit->getEndLoc()), ")");
9192 }
9193 
9194 //===----------------------------------------------------------------------===//
9195 // Initialization helper functions
9196 //===----------------------------------------------------------------------===//
9197 bool
9198 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
9199                                    ExprResult Init) {
9200   if (Init.isInvalid())
9201     return false;
9202 
9203   Expr *InitE = Init.get();
9204   assert(InitE && "No initialization expression");
9205 
9206   InitializationKind Kind =
9207       InitializationKind::CreateCopy(InitE->getBeginLoc(), SourceLocation());
9208   InitializationSequence Seq(*this, Entity, Kind, InitE);
9209   return !Seq.Failed();
9210 }
9211 
9212 ExprResult
9213 Sema::PerformCopyInitialization(const InitializedEntity &Entity,
9214                                 SourceLocation EqualLoc,
9215                                 ExprResult Init,
9216                                 bool TopLevelOfInitList,
9217                                 bool AllowExplicit) {
9218   if (Init.isInvalid())
9219     return ExprError();
9220 
9221   Expr *InitE = Init.get();
9222   assert(InitE && "No initialization expression?");
9223 
9224   if (EqualLoc.isInvalid())
9225     EqualLoc = InitE->getBeginLoc();
9226 
9227   InitializationKind Kind = InitializationKind::CreateCopy(
9228       InitE->getBeginLoc(), EqualLoc, AllowExplicit);
9229   InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList);
9230 
9231   // Prevent infinite recursion when performing parameter copy-initialization.
9232   const bool ShouldTrackCopy =
9233       Entity.isParameterKind() && Seq.isConstructorInitialization();
9234   if (ShouldTrackCopy) {
9235     if (llvm::find(CurrentParameterCopyTypes, Entity.getType()) !=
9236         CurrentParameterCopyTypes.end()) {
9237       Seq.SetOverloadFailure(
9238           InitializationSequence::FK_ConstructorOverloadFailed,
9239           OR_No_Viable_Function);
9240 
9241       // Try to give a meaningful diagnostic note for the problematic
9242       // constructor.
9243       const auto LastStep = Seq.step_end() - 1;
9244       assert(LastStep->Kind ==
9245              InitializationSequence::SK_ConstructorInitialization);
9246       const FunctionDecl *Function = LastStep->Function.Function;
9247       auto Candidate =
9248           llvm::find_if(Seq.getFailedCandidateSet(),
9249                         [Function](const OverloadCandidate &Candidate) -> bool {
9250                           return Candidate.Viable &&
9251                                  Candidate.Function == Function &&
9252                                  Candidate.Conversions.size() > 0;
9253                         });
9254       if (Candidate != Seq.getFailedCandidateSet().end() &&
9255           Function->getNumParams() > 0) {
9256         Candidate->Viable = false;
9257         Candidate->FailureKind = ovl_fail_bad_conversion;
9258         Candidate->Conversions[0].setBad(BadConversionSequence::no_conversion,
9259                                          InitE,
9260                                          Function->getParamDecl(0)->getType());
9261       }
9262     }
9263     CurrentParameterCopyTypes.push_back(Entity.getType());
9264   }
9265 
9266   ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE);
9267 
9268   if (ShouldTrackCopy)
9269     CurrentParameterCopyTypes.pop_back();
9270 
9271   return Result;
9272 }
9273 
9274 /// Determine whether RD is, or is derived from, a specialization of CTD.
9275 static bool isOrIsDerivedFromSpecializationOf(CXXRecordDecl *RD,
9276                                               ClassTemplateDecl *CTD) {
9277   auto NotSpecialization = [&] (const CXXRecordDecl *Candidate) {
9278     auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Candidate);
9279     return !CTSD || !declaresSameEntity(CTSD->getSpecializedTemplate(), CTD);
9280   };
9281   return !(NotSpecialization(RD) && RD->forallBases(NotSpecialization));
9282 }
9283 
9284 QualType Sema::DeduceTemplateSpecializationFromInitializer(
9285     TypeSourceInfo *TSInfo, const InitializedEntity &Entity,
9286     const InitializationKind &Kind, MultiExprArg Inits) {
9287   auto *DeducedTST = dyn_cast<DeducedTemplateSpecializationType>(
9288       TSInfo->getType()->getContainedDeducedType());
9289   assert(DeducedTST && "not a deduced template specialization type");
9290 
9291   auto TemplateName = DeducedTST->getTemplateName();
9292   if (TemplateName.isDependent())
9293     return Context.DependentTy;
9294 
9295   // We can only perform deduction for class templates.
9296   auto *Template =
9297       dyn_cast_or_null<ClassTemplateDecl>(TemplateName.getAsTemplateDecl());
9298   if (!Template) {
9299     Diag(Kind.getLocation(),
9300          diag::err_deduced_non_class_template_specialization_type)
9301       << (int)getTemplateNameKindForDiagnostics(TemplateName) << TemplateName;
9302     if (auto *TD = TemplateName.getAsTemplateDecl())
9303       Diag(TD->getLocation(), diag::note_template_decl_here);
9304     return QualType();
9305   }
9306 
9307   // Can't deduce from dependent arguments.
9308   if (Expr::hasAnyTypeDependentArguments(Inits)) {
9309     Diag(TSInfo->getTypeLoc().getBeginLoc(),
9310          diag::warn_cxx14_compat_class_template_argument_deduction)
9311         << TSInfo->getTypeLoc().getSourceRange() << 0;
9312     return Context.DependentTy;
9313   }
9314 
9315   // FIXME: Perform "exact type" matching first, per CWG discussion?
9316   //        Or implement this via an implied 'T(T) -> T' deduction guide?
9317 
9318   // FIXME: Do we need/want a std::initializer_list<T> special case?
9319 
9320   // Look up deduction guides, including those synthesized from constructors.
9321   //
9322   // C++1z [over.match.class.deduct]p1:
9323   //   A set of functions and function templates is formed comprising:
9324   //   - For each constructor of the class template designated by the
9325   //     template-name, a function template [...]
9326   //  - For each deduction-guide, a function or function template [...]
9327   DeclarationNameInfo NameInfo(
9328       Context.DeclarationNames.getCXXDeductionGuideName(Template),
9329       TSInfo->getTypeLoc().getEndLoc());
9330   LookupResult Guides(*this, NameInfo, LookupOrdinaryName);
9331   LookupQualifiedName(Guides, Template->getDeclContext());
9332 
9333   // FIXME: Do not diagnose inaccessible deduction guides. The standard isn't
9334   // clear on this, but they're not found by name so access does not apply.
9335   Guides.suppressDiagnostics();
9336 
9337   // Figure out if this is list-initialization.
9338   InitListExpr *ListInit =
9339       (Inits.size() == 1 && Kind.getKind() != InitializationKind::IK_Direct)
9340           ? dyn_cast<InitListExpr>(Inits[0])
9341           : nullptr;
9342 
9343   // C++1z [over.match.class.deduct]p1:
9344   //   Initialization and overload resolution are performed as described in
9345   //   [dcl.init] and [over.match.ctor], [over.match.copy], or [over.match.list]
9346   //   (as appropriate for the type of initialization performed) for an object
9347   //   of a hypothetical class type, where the selected functions and function
9348   //   templates are considered to be the constructors of that class type
9349   //
9350   // Since we know we're initializing a class type of a type unrelated to that
9351   // of the initializer, this reduces to something fairly reasonable.
9352   OverloadCandidateSet Candidates(Kind.getLocation(),
9353                                   OverloadCandidateSet::CSK_Normal);
9354   OverloadCandidateSet::iterator Best;
9355 
9356   bool HasAnyDeductionGuide = false;
9357   bool AllowExplicit = !Kind.isCopyInit() || ListInit;
9358 
9359   auto tryToResolveOverload =
9360       [&](bool OnlyListConstructors) -> OverloadingResult {
9361     Candidates.clear(OverloadCandidateSet::CSK_Normal);
9362     HasAnyDeductionGuide = false;
9363 
9364     for (auto I = Guides.begin(), E = Guides.end(); I != E; ++I) {
9365       NamedDecl *D = (*I)->getUnderlyingDecl();
9366       if (D->isInvalidDecl())
9367         continue;
9368 
9369       auto *TD = dyn_cast<FunctionTemplateDecl>(D);
9370       auto *GD = dyn_cast_or_null<CXXDeductionGuideDecl>(
9371           TD ? TD->getTemplatedDecl() : dyn_cast<FunctionDecl>(D));
9372       if (!GD)
9373         continue;
9374 
9375       if (!GD->isImplicit())
9376         HasAnyDeductionGuide = true;
9377 
9378       // C++ [over.match.ctor]p1: (non-list copy-initialization from non-class)
9379       //   For copy-initialization, the candidate functions are all the
9380       //   converting constructors (12.3.1) of that class.
9381       // C++ [over.match.copy]p1: (non-list copy-initialization from class)
9382       //   The converting constructors of T are candidate functions.
9383       if (!AllowExplicit) {
9384         // Only consider converting constructors.
9385         if (GD->isExplicit())
9386           continue;
9387 
9388         // When looking for a converting constructor, deduction guides that
9389         // could never be called with one argument are not interesting to
9390         // check or note.
9391         if (GD->getMinRequiredArguments() > 1 ||
9392             (GD->getNumParams() == 0 && !GD->isVariadic()))
9393           continue;
9394       }
9395 
9396       // C++ [over.match.list]p1.1: (first phase list initialization)
9397       //   Initially, the candidate functions are the initializer-list
9398       //   constructors of the class T
9399       if (OnlyListConstructors && !isInitListConstructor(GD))
9400         continue;
9401 
9402       // C++ [over.match.list]p1.2: (second phase list initialization)
9403       //   the candidate functions are all the constructors of the class T
9404       // C++ [over.match.ctor]p1: (all other cases)
9405       //   the candidate functions are all the constructors of the class of
9406       //   the object being initialized
9407 
9408       // C++ [over.best.ics]p4:
9409       //   When [...] the constructor [...] is a candidate by
9410       //    - [over.match.copy] (in all cases)
9411       // FIXME: The "second phase of [over.match.list] case can also
9412       // theoretically happen here, but it's not clear whether we can
9413       // ever have a parameter of the right type.
9414       bool SuppressUserConversions = Kind.isCopyInit();
9415 
9416       if (TD)
9417         AddTemplateOverloadCandidate(TD, I.getPair(), /*ExplicitArgs*/ nullptr,
9418                                      Inits, Candidates, SuppressUserConversions,
9419                                      /*PartialOverloading*/ false,
9420                                      AllowExplicit);
9421       else
9422         AddOverloadCandidate(GD, I.getPair(), Inits, Candidates,
9423                              SuppressUserConversions,
9424                              /*PartialOverloading*/ false, AllowExplicit);
9425     }
9426     return Candidates.BestViableFunction(*this, Kind.getLocation(), Best);
9427   };
9428 
9429   OverloadingResult Result = OR_No_Viable_Function;
9430 
9431   // C++11 [over.match.list]p1, per DR1467: for list-initialization, first
9432   // try initializer-list constructors.
9433   if (ListInit) {
9434     bool TryListConstructors = true;
9435 
9436     // Try list constructors unless the list is empty and the class has one or
9437     // more default constructors, in which case those constructors win.
9438     if (!ListInit->getNumInits()) {
9439       for (NamedDecl *D : Guides) {
9440         auto *FD = dyn_cast<FunctionDecl>(D->getUnderlyingDecl());
9441         if (FD && FD->getMinRequiredArguments() == 0) {
9442           TryListConstructors = false;
9443           break;
9444         }
9445       }
9446     } else if (ListInit->getNumInits() == 1) {
9447       // C++ [over.match.class.deduct]:
9448       //   As an exception, the first phase in [over.match.list] (considering
9449       //   initializer-list constructors) is omitted if the initializer list
9450       //   consists of a single expression of type cv U, where U is a
9451       //   specialization of C or a class derived from a specialization of C.
9452       Expr *E = ListInit->getInit(0);
9453       auto *RD = E->getType()->getAsCXXRecordDecl();
9454       if (!isa<InitListExpr>(E) && RD &&
9455           isCompleteType(Kind.getLocation(), E->getType()) &&
9456           isOrIsDerivedFromSpecializationOf(RD, Template))
9457         TryListConstructors = false;
9458     }
9459 
9460     if (TryListConstructors)
9461       Result = tryToResolveOverload(/*OnlyListConstructor*/true);
9462     // Then unwrap the initializer list and try again considering all
9463     // constructors.
9464     Inits = MultiExprArg(ListInit->getInits(), ListInit->getNumInits());
9465   }
9466 
9467   // If list-initialization fails, or if we're doing any other kind of
9468   // initialization, we (eventually) consider constructors.
9469   if (Result == OR_No_Viable_Function)
9470     Result = tryToResolveOverload(/*OnlyListConstructor*/false);
9471 
9472   switch (Result) {
9473   case OR_Ambiguous:
9474     // FIXME: For list-initialization candidates, it'd usually be better to
9475     // list why they were not viable when given the initializer list itself as
9476     // an argument.
9477     Candidates.NoteCandidates(
9478         PartialDiagnosticAt(
9479             Kind.getLocation(),
9480             PDiag(diag::err_deduced_class_template_ctor_ambiguous)
9481                 << TemplateName),
9482         *this, OCD_ViableCandidates, Inits);
9483     return QualType();
9484 
9485   case OR_No_Viable_Function: {
9486     CXXRecordDecl *Primary =
9487         cast<ClassTemplateDecl>(Template)->getTemplatedDecl();
9488     bool Complete =
9489         isCompleteType(Kind.getLocation(), Context.getTypeDeclType(Primary));
9490     Candidates.NoteCandidates(
9491         PartialDiagnosticAt(
9492             Kind.getLocation(),
9493             PDiag(Complete ? diag::err_deduced_class_template_ctor_no_viable
9494                            : diag::err_deduced_class_template_incomplete)
9495                 << TemplateName << !Guides.empty()),
9496         *this, OCD_AllCandidates, Inits);
9497     return QualType();
9498   }
9499 
9500   case OR_Deleted: {
9501     Diag(Kind.getLocation(), diag::err_deduced_class_template_deleted)
9502       << TemplateName;
9503     NoteDeletedFunction(Best->Function);
9504     return QualType();
9505   }
9506 
9507   case OR_Success:
9508     // C++ [over.match.list]p1:
9509     //   In copy-list-initialization, if an explicit constructor is chosen, the
9510     //   initialization is ill-formed.
9511     if (Kind.isCopyInit() && ListInit &&
9512         cast<CXXDeductionGuideDecl>(Best->Function)->isExplicit()) {
9513       bool IsDeductionGuide = !Best->Function->isImplicit();
9514       Diag(Kind.getLocation(), diag::err_deduced_class_template_explicit)
9515           << TemplateName << IsDeductionGuide;
9516       Diag(Best->Function->getLocation(),
9517            diag::note_explicit_ctor_deduction_guide_here)
9518           << IsDeductionGuide;
9519       return QualType();
9520     }
9521 
9522     // Make sure we didn't select an unusable deduction guide, and mark it
9523     // as referenced.
9524     DiagnoseUseOfDecl(Best->Function, Kind.getLocation());
9525     MarkFunctionReferenced(Kind.getLocation(), Best->Function);
9526     break;
9527   }
9528 
9529   // C++ [dcl.type.class.deduct]p1:
9530   //  The placeholder is replaced by the return type of the function selected
9531   //  by overload resolution for class template deduction.
9532   QualType DeducedType =
9533       SubstAutoType(TSInfo->getType(), Best->Function->getReturnType());
9534   Diag(TSInfo->getTypeLoc().getBeginLoc(),
9535        diag::warn_cxx14_compat_class_template_argument_deduction)
9536       << TSInfo->getTypeLoc().getSourceRange() << 1 << DeducedType;
9537 
9538   // Warn if CTAD was used on a type that does not have any user-defined
9539   // deduction guides.
9540   if (!HasAnyDeductionGuide) {
9541     Diag(TSInfo->getTypeLoc().getBeginLoc(),
9542          diag::warn_ctad_maybe_unsupported)
9543         << TemplateName;
9544     Diag(Template->getLocation(), diag::note_suppress_ctad_maybe_unsupported);
9545   }
9546 
9547   return DeducedType;
9548 }
9549