1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for initializers.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/DeclObjC.h"
16 #include "clang/AST/ExprCXX.h"
17 #include "clang/AST/ExprObjC.h"
18 #include "clang/AST/TypeLoc.h"
19 #include "clang/Basic/TargetInfo.h"
20 #include "clang/Sema/Designator.h"
21 #include "clang/Sema/Initialization.h"
22 #include "clang/Sema/Lookup.h"
23 #include "clang/Sema/SemaInternal.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/raw_ostream.h"
28 
29 using namespace clang;
30 
31 //===----------------------------------------------------------------------===//
32 // Sema Initialization Checking
33 //===----------------------------------------------------------------------===//
34 
35 /// \brief Check whether T is compatible with a wide character type (wchar_t,
36 /// char16_t or char32_t).
37 static bool IsWideCharCompatible(QualType T, ASTContext &Context) {
38   if (Context.typesAreCompatible(Context.getWideCharType(), T))
39     return true;
40   if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) {
41     return Context.typesAreCompatible(Context.Char16Ty, T) ||
42            Context.typesAreCompatible(Context.Char32Ty, T);
43   }
44   return false;
45 }
46 
47 enum StringInitFailureKind {
48   SIF_None,
49   SIF_NarrowStringIntoWideChar,
50   SIF_WideStringIntoChar,
51   SIF_IncompatWideStringIntoWideChar,
52   SIF_Other
53 };
54 
55 /// \brief Check whether the array of type AT can be initialized by the Init
56 /// expression by means of string initialization. Returns SIF_None if so,
57 /// otherwise returns a StringInitFailureKind that describes why the
58 /// initialization would not work.
59 static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT,
60                                           ASTContext &Context) {
61   if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
62     return SIF_Other;
63 
64   // See if this is a string literal or @encode.
65   Init = Init->IgnoreParens();
66 
67   // Handle @encode, which is a narrow string.
68   if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
69     return SIF_None;
70 
71   // Otherwise we can only handle string literals.
72   StringLiteral *SL = dyn_cast<StringLiteral>(Init);
73   if (!SL)
74     return SIF_Other;
75 
76   const QualType ElemTy =
77       Context.getCanonicalType(AT->getElementType()).getUnqualifiedType();
78 
79   switch (SL->getKind()) {
80   case StringLiteral::Ascii:
81   case StringLiteral::UTF8:
82     // char array can be initialized with a narrow string.
83     // Only allow char x[] = "foo";  not char x[] = L"foo";
84     if (ElemTy->isCharType())
85       return SIF_None;
86     if (IsWideCharCompatible(ElemTy, Context))
87       return SIF_NarrowStringIntoWideChar;
88     return SIF_Other;
89   // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15:
90   // "An array with element type compatible with a qualified or unqualified
91   // version of wchar_t, char16_t, or char32_t may be initialized by a wide
92   // string literal with the corresponding encoding prefix (L, u, or U,
93   // respectively), optionally enclosed in braces.
94   case StringLiteral::UTF16:
95     if (Context.typesAreCompatible(Context.Char16Ty, ElemTy))
96       return SIF_None;
97     if (ElemTy->isCharType())
98       return SIF_WideStringIntoChar;
99     if (IsWideCharCompatible(ElemTy, Context))
100       return SIF_IncompatWideStringIntoWideChar;
101     return SIF_Other;
102   case StringLiteral::UTF32:
103     if (Context.typesAreCompatible(Context.Char32Ty, ElemTy))
104       return SIF_None;
105     if (ElemTy->isCharType())
106       return SIF_WideStringIntoChar;
107     if (IsWideCharCompatible(ElemTy, Context))
108       return SIF_IncompatWideStringIntoWideChar;
109     return SIF_Other;
110   case StringLiteral::Wide:
111     if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy))
112       return SIF_None;
113     if (ElemTy->isCharType())
114       return SIF_WideStringIntoChar;
115     if (IsWideCharCompatible(ElemTy, Context))
116       return SIF_IncompatWideStringIntoWideChar;
117     return SIF_Other;
118   }
119 
120   llvm_unreachable("missed a StringLiteral kind?");
121 }
122 
123 static StringInitFailureKind IsStringInit(Expr *init, QualType declType,
124                                           ASTContext &Context) {
125   const ArrayType *arrayType = Context.getAsArrayType(declType);
126   if (!arrayType)
127     return SIF_Other;
128   return IsStringInit(init, arrayType, Context);
129 }
130 
131 /// Update the type of a string literal, including any surrounding parentheses,
132 /// to match the type of the object which it is initializing.
133 static void updateStringLiteralType(Expr *E, QualType Ty) {
134   while (true) {
135     E->setType(Ty);
136     if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E))
137       break;
138     else if (ParenExpr *PE = dyn_cast<ParenExpr>(E))
139       E = PE->getSubExpr();
140     else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
141       E = UO->getSubExpr();
142     else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E))
143       E = GSE->getResultExpr();
144     else
145       llvm_unreachable("unexpected expr in string literal init");
146   }
147 }
148 
149 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
150                             Sema &S) {
151   // Get the length of the string as parsed.
152   auto *ConstantArrayTy =
153       cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe());
154   uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue();
155 
156   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
157     // C99 6.7.8p14. We have an array of character type with unknown size
158     // being initialized to a string literal.
159     llvm::APInt ConstVal(32, StrLength);
160     // Return a new array type (C99 6.7.8p22).
161     DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
162                                            ConstVal,
163                                            ArrayType::Normal, 0);
164     updateStringLiteralType(Str, DeclT);
165     return;
166   }
167 
168   const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
169 
170   // We have an array of character type with known size.  However,
171   // the size may be smaller or larger than the string we are initializing.
172   // FIXME: Avoid truncation for 64-bit length strings.
173   if (S.getLangOpts().CPlusPlus) {
174     if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
175       // For Pascal strings it's OK to strip off the terminating null character,
176       // so the example below is valid:
177       //
178       // unsigned char a[2] = "\pa";
179       if (SL->isPascal())
180         StrLength--;
181     }
182 
183     // [dcl.init.string]p2
184     if (StrLength > CAT->getSize().getZExtValue())
185       S.Diag(Str->getLocStart(),
186              diag::err_initializer_string_for_char_array_too_long)
187         << Str->getSourceRange();
188   } else {
189     // C99 6.7.8p14.
190     if (StrLength-1 > CAT->getSize().getZExtValue())
191       S.Diag(Str->getLocStart(),
192              diag::ext_initializer_string_for_char_array_too_long)
193         << Str->getSourceRange();
194   }
195 
196   // Set the type to the actual size that we are initializing.  If we have
197   // something like:
198   //   char x[1] = "foo";
199   // then this will set the string literal's type to char[1].
200   updateStringLiteralType(Str, DeclT);
201 }
202 
203 //===----------------------------------------------------------------------===//
204 // Semantic checking for initializer lists.
205 //===----------------------------------------------------------------------===//
206 
207 namespace {
208 
209 /// @brief Semantic checking for initializer lists.
210 ///
211 /// The InitListChecker class contains a set of routines that each
212 /// handle the initialization of a certain kind of entity, e.g.,
213 /// arrays, vectors, struct/union types, scalars, etc. The
214 /// InitListChecker itself performs a recursive walk of the subobject
215 /// structure of the type to be initialized, while stepping through
216 /// the initializer list one element at a time. The IList and Index
217 /// parameters to each of the Check* routines contain the active
218 /// (syntactic) initializer list and the index into that initializer
219 /// list that represents the current initializer. Each routine is
220 /// responsible for moving that Index forward as it consumes elements.
221 ///
222 /// Each Check* routine also has a StructuredList/StructuredIndex
223 /// arguments, which contains the current "structured" (semantic)
224 /// initializer list and the index into that initializer list where we
225 /// are copying initializers as we map them over to the semantic
226 /// list. Once we have completed our recursive walk of the subobject
227 /// structure, we will have constructed a full semantic initializer
228 /// list.
229 ///
230 /// C99 designators cause changes in the initializer list traversal,
231 /// because they make the initialization "jump" into a specific
232 /// subobject and then continue the initialization from that
233 /// point. CheckDesignatedInitializer() recursively steps into the
234 /// designated subobject and manages backing out the recursion to
235 /// initialize the subobjects after the one designated.
236 class InitListChecker {
237   Sema &SemaRef;
238   bool hadError;
239   bool VerifyOnly; // no diagnostics, no structure building
240   bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode.
241   llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic;
242   InitListExpr *FullyStructuredList;
243 
244   void CheckImplicitInitList(const InitializedEntity &Entity,
245                              InitListExpr *ParentIList, QualType T,
246                              unsigned &Index, InitListExpr *StructuredList,
247                              unsigned &StructuredIndex);
248   void CheckExplicitInitList(const InitializedEntity &Entity,
249                              InitListExpr *IList, QualType &T,
250                              InitListExpr *StructuredList,
251                              bool TopLevelObject = false);
252   void CheckListElementTypes(const InitializedEntity &Entity,
253                              InitListExpr *IList, QualType &DeclType,
254                              bool SubobjectIsDesignatorContext,
255                              unsigned &Index,
256                              InitListExpr *StructuredList,
257                              unsigned &StructuredIndex,
258                              bool TopLevelObject = false);
259   void CheckSubElementType(const InitializedEntity &Entity,
260                            InitListExpr *IList, QualType ElemType,
261                            unsigned &Index,
262                            InitListExpr *StructuredList,
263                            unsigned &StructuredIndex);
264   void CheckComplexType(const InitializedEntity &Entity,
265                         InitListExpr *IList, QualType DeclType,
266                         unsigned &Index,
267                         InitListExpr *StructuredList,
268                         unsigned &StructuredIndex);
269   void CheckScalarType(const InitializedEntity &Entity,
270                        InitListExpr *IList, QualType DeclType,
271                        unsigned &Index,
272                        InitListExpr *StructuredList,
273                        unsigned &StructuredIndex);
274   void CheckReferenceType(const InitializedEntity &Entity,
275                           InitListExpr *IList, QualType DeclType,
276                           unsigned &Index,
277                           InitListExpr *StructuredList,
278                           unsigned &StructuredIndex);
279   void CheckVectorType(const InitializedEntity &Entity,
280                        InitListExpr *IList, QualType DeclType, unsigned &Index,
281                        InitListExpr *StructuredList,
282                        unsigned &StructuredIndex);
283   void CheckStructUnionTypes(const InitializedEntity &Entity,
284                              InitListExpr *IList, QualType DeclType,
285                              CXXRecordDecl::base_class_range Bases,
286                              RecordDecl::field_iterator Field,
287                              bool SubobjectIsDesignatorContext, unsigned &Index,
288                              InitListExpr *StructuredList,
289                              unsigned &StructuredIndex,
290                              bool TopLevelObject = false);
291   void CheckArrayType(const InitializedEntity &Entity,
292                       InitListExpr *IList, QualType &DeclType,
293                       llvm::APSInt elementIndex,
294                       bool SubobjectIsDesignatorContext, unsigned &Index,
295                       InitListExpr *StructuredList,
296                       unsigned &StructuredIndex);
297   bool CheckDesignatedInitializer(const InitializedEntity &Entity,
298                                   InitListExpr *IList, DesignatedInitExpr *DIE,
299                                   unsigned DesigIdx,
300                                   QualType &CurrentObjectType,
301                                   RecordDecl::field_iterator *NextField,
302                                   llvm::APSInt *NextElementIndex,
303                                   unsigned &Index,
304                                   InitListExpr *StructuredList,
305                                   unsigned &StructuredIndex,
306                                   bool FinishSubobjectInit,
307                                   bool TopLevelObject);
308   InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
309                                            QualType CurrentObjectType,
310                                            InitListExpr *StructuredList,
311                                            unsigned StructuredIndex,
312                                            SourceRange InitRange,
313                                            bool IsFullyOverwritten = false);
314   void UpdateStructuredListElement(InitListExpr *StructuredList,
315                                    unsigned &StructuredIndex,
316                                    Expr *expr);
317   int numArrayElements(QualType DeclType);
318   int numStructUnionElements(QualType DeclType);
319 
320   static ExprResult PerformEmptyInit(Sema &SemaRef,
321                                      SourceLocation Loc,
322                                      const InitializedEntity &Entity,
323                                      bool VerifyOnly,
324                                      bool TreatUnavailableAsInvalid);
325 
326   // Explanation on the "FillWithNoInit" mode:
327   //
328   // Assume we have the following definitions (Case#1):
329   // struct P { char x[6][6]; } xp = { .x[1] = "bar" };
330   // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' };
331   //
332   // l.lp.x[1][0..1] should not be filled with implicit initializers because the
333   // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf".
334   //
335   // But if we have (Case#2):
336   // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } };
337   //
338   // l.lp.x[1][0..1] are implicitly initialized and do not use values from the
339   // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0".
340   //
341   // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes"
342   // in the InitListExpr, the "holes" in Case#1 are filled not with empty
343   // initializers but with special "NoInitExpr" place holders, which tells the
344   // CodeGen not to generate any initializers for these parts.
345   void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base,
346                               const InitializedEntity &ParentEntity,
347                               InitListExpr *ILE, bool &RequiresSecondPass,
348                               bool FillWithNoInit);
349   void FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
350                                const InitializedEntity &ParentEntity,
351                                InitListExpr *ILE, bool &RequiresSecondPass,
352                                bool FillWithNoInit = false);
353   void FillInEmptyInitializations(const InitializedEntity &Entity,
354                                   InitListExpr *ILE, bool &RequiresSecondPass,
355                                   bool FillWithNoInit = false);
356   bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
357                               Expr *InitExpr, FieldDecl *Field,
358                               bool TopLevelObject);
359   void CheckEmptyInitializable(const InitializedEntity &Entity,
360                                SourceLocation Loc);
361 
362 public:
363   InitListChecker(Sema &S, const InitializedEntity &Entity,
364                   InitListExpr *IL, QualType &T, bool VerifyOnly,
365                   bool TreatUnavailableAsInvalid);
366   bool HadError() { return hadError; }
367 
368   // @brief Retrieves the fully-structured initializer list used for
369   // semantic analysis and code generation.
370   InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
371 };
372 
373 } // end anonymous namespace
374 
375 ExprResult InitListChecker::PerformEmptyInit(Sema &SemaRef,
376                                              SourceLocation Loc,
377                                              const InitializedEntity &Entity,
378                                              bool VerifyOnly,
379                                              bool TreatUnavailableAsInvalid) {
380   InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
381                                                             true);
382   MultiExprArg SubInit;
383   Expr *InitExpr;
384   InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc);
385 
386   // C++ [dcl.init.aggr]p7:
387   //   If there are fewer initializer-clauses in the list than there are
388   //   members in the aggregate, then each member not explicitly initialized
389   //   ...
390   bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 &&
391       Entity.getType()->getBaseElementTypeUnsafe()->isRecordType();
392   if (EmptyInitList) {
393     // C++1y / DR1070:
394     //   shall be initialized [...] from an empty initializer list.
395     //
396     // We apply the resolution of this DR to C++11 but not C++98, since C++98
397     // does not have useful semantics for initialization from an init list.
398     // We treat this as copy-initialization, because aggregate initialization
399     // always performs copy-initialization on its elements.
400     //
401     // Only do this if we're initializing a class type, to avoid filling in
402     // the initializer list where possible.
403     InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context)
404                    InitListExpr(SemaRef.Context, Loc, None, Loc);
405     InitExpr->setType(SemaRef.Context.VoidTy);
406     SubInit = InitExpr;
407     Kind = InitializationKind::CreateCopy(Loc, Loc);
408   } else {
409     // C++03:
410     //   shall be value-initialized.
411   }
412 
413   InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit);
414   // libstdc++4.6 marks the vector default constructor as explicit in
415   // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case.
416   // stlport does so too. Look for std::__debug for libstdc++, and for
417   // std:: for stlport.  This is effectively a compiler-side implementation of
418   // LWG2193.
419   if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() ==
420           InitializationSequence::FK_ExplicitConstructor) {
421     OverloadCandidateSet::iterator Best;
422     OverloadingResult O =
423         InitSeq.getFailedCandidateSet()
424             .BestViableFunction(SemaRef, Kind.getLocation(), Best);
425     (void)O;
426     assert(O == OR_Success && "Inconsistent overload resolution");
427     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
428     CXXRecordDecl *R = CtorDecl->getParent();
429 
430     if (CtorDecl->getMinRequiredArguments() == 0 &&
431         CtorDecl->isExplicit() && R->getDeclName() &&
432         SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) {
433       bool IsInStd = false;
434       for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext());
435            ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) {
436         if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND))
437           IsInStd = true;
438       }
439 
440       if (IsInStd && llvm::StringSwitch<bool>(R->getName())
441               .Cases("basic_string", "deque", "forward_list", true)
442               .Cases("list", "map", "multimap", "multiset", true)
443               .Cases("priority_queue", "queue", "set", "stack", true)
444               .Cases("unordered_map", "unordered_set", "vector", true)
445               .Default(false)) {
446         InitSeq.InitializeFrom(
447             SemaRef, Entity,
448             InitializationKind::CreateValue(Loc, Loc, Loc, true),
449             MultiExprArg(), /*TopLevelOfInitList=*/false,
450             TreatUnavailableAsInvalid);
451         // Emit a warning for this.  System header warnings aren't shown
452         // by default, but people working on system headers should see it.
453         if (!VerifyOnly) {
454           SemaRef.Diag(CtorDecl->getLocation(),
455                        diag::warn_invalid_initializer_from_system_header);
456           if (Entity.getKind() == InitializedEntity::EK_Member)
457             SemaRef.Diag(Entity.getDecl()->getLocation(),
458                          diag::note_used_in_initialization_here);
459           else if (Entity.getKind() == InitializedEntity::EK_ArrayElement)
460             SemaRef.Diag(Loc, diag::note_used_in_initialization_here);
461         }
462       }
463     }
464   }
465   if (!InitSeq) {
466     if (!VerifyOnly) {
467       InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit);
468       if (Entity.getKind() == InitializedEntity::EK_Member)
469         SemaRef.Diag(Entity.getDecl()->getLocation(),
470                      diag::note_in_omitted_aggregate_initializer)
471           << /*field*/1 << Entity.getDecl();
472       else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) {
473         bool IsTrailingArrayNewMember =
474             Entity.getParent() &&
475             Entity.getParent()->isVariableLengthArrayNew();
476         SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer)
477           << (IsTrailingArrayNewMember ? 2 : /*array element*/0)
478           << Entity.getElementIndex();
479       }
480     }
481     return ExprError();
482   }
483 
484   return VerifyOnly ? ExprResult(static_cast<Expr *>(nullptr))
485                     : InitSeq.Perform(SemaRef, Entity, Kind, SubInit);
486 }
487 
488 void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity,
489                                               SourceLocation Loc) {
490   assert(VerifyOnly &&
491          "CheckEmptyInitializable is only inteded for verification mode.");
492   if (PerformEmptyInit(SemaRef, Loc, Entity, /*VerifyOnly*/true,
493                        TreatUnavailableAsInvalid).isInvalid())
494     hadError = true;
495 }
496 
497 void InitListChecker::FillInEmptyInitForBase(
498     unsigned Init, const CXXBaseSpecifier &Base,
499     const InitializedEntity &ParentEntity, InitListExpr *ILE,
500     bool &RequiresSecondPass, bool FillWithNoInit) {
501   assert(Init < ILE->getNumInits() && "should have been expanded");
502 
503   InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
504       SemaRef.Context, &Base, false, &ParentEntity);
505 
506   if (!ILE->getInit(Init)) {
507     ExprResult BaseInit =
508         FillWithNoInit ? new (SemaRef.Context) NoInitExpr(Base.getType())
509                        : PerformEmptyInit(SemaRef, ILE->getLocEnd(), BaseEntity,
510                                           /*VerifyOnly*/ false,
511                                           TreatUnavailableAsInvalid);
512     if (BaseInit.isInvalid()) {
513       hadError = true;
514       return;
515     }
516 
517     ILE->setInit(Init, BaseInit.getAs<Expr>());
518   } else if (InitListExpr *InnerILE =
519                  dyn_cast<InitListExpr>(ILE->getInit(Init))) {
520     FillInEmptyInitializations(BaseEntity, InnerILE,
521                                RequiresSecondPass, FillWithNoInit);
522   } else if (DesignatedInitUpdateExpr *InnerDIUE =
523                dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
524     FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(),
525                                RequiresSecondPass, /*FillWithNoInit =*/true);
526   }
527 }
528 
529 void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
530                                         const InitializedEntity &ParentEntity,
531                                               InitListExpr *ILE,
532                                               bool &RequiresSecondPass,
533                                               bool FillWithNoInit) {
534   SourceLocation Loc = ILE->getLocEnd();
535   unsigned NumInits = ILE->getNumInits();
536   InitializedEntity MemberEntity
537     = InitializedEntity::InitializeMember(Field, &ParentEntity);
538 
539   if (const RecordType *RType = ILE->getType()->getAs<RecordType>())
540     if (!RType->getDecl()->isUnion())
541       assert(Init < NumInits && "This ILE should have been expanded");
542 
543   if (Init >= NumInits || !ILE->getInit(Init)) {
544     if (FillWithNoInit) {
545       Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType());
546       if (Init < NumInits)
547         ILE->setInit(Init, Filler);
548       else
549         ILE->updateInit(SemaRef.Context, Init, Filler);
550       return;
551     }
552     // C++1y [dcl.init.aggr]p7:
553     //   If there are fewer initializer-clauses in the list than there are
554     //   members in the aggregate, then each member not explicitly initialized
555     //   shall be initialized from its brace-or-equal-initializer [...]
556     if (Field->hasInClassInitializer()) {
557       ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field);
558       if (DIE.isInvalid()) {
559         hadError = true;
560         return;
561       }
562       if (Init < NumInits)
563         ILE->setInit(Init, DIE.get());
564       else {
565         ILE->updateInit(SemaRef.Context, Init, DIE.get());
566         RequiresSecondPass = true;
567       }
568       return;
569     }
570 
571     if (Field->getType()->isReferenceType()) {
572       // C++ [dcl.init.aggr]p9:
573       //   If an incomplete or empty initializer-list leaves a
574       //   member of reference type uninitialized, the program is
575       //   ill-formed.
576       SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
577         << Field->getType()
578         << ILE->getSyntacticForm()->getSourceRange();
579       SemaRef.Diag(Field->getLocation(),
580                    diag::note_uninit_reference_member);
581       hadError = true;
582       return;
583     }
584 
585     ExprResult MemberInit = PerformEmptyInit(SemaRef, Loc, MemberEntity,
586                                              /*VerifyOnly*/false,
587                                              TreatUnavailableAsInvalid);
588     if (MemberInit.isInvalid()) {
589       hadError = true;
590       return;
591     }
592 
593     if (hadError) {
594       // Do nothing
595     } else if (Init < NumInits) {
596       ILE->setInit(Init, MemberInit.getAs<Expr>());
597     } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) {
598       // Empty initialization requires a constructor call, so
599       // extend the initializer list to include the constructor
600       // call and make a note that we'll need to take another pass
601       // through the initializer list.
602       ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>());
603       RequiresSecondPass = true;
604     }
605   } else if (InitListExpr *InnerILE
606                = dyn_cast<InitListExpr>(ILE->getInit(Init)))
607     FillInEmptyInitializations(MemberEntity, InnerILE,
608                                RequiresSecondPass, FillWithNoInit);
609   else if (DesignatedInitUpdateExpr *InnerDIUE
610                = dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init)))
611     FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(),
612                                RequiresSecondPass, /*FillWithNoInit =*/ true);
613 }
614 
615 /// Recursively replaces NULL values within the given initializer list
616 /// with expressions that perform value-initialization of the
617 /// appropriate type.
618 void
619 InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity,
620                                             InitListExpr *ILE,
621                                             bool &RequiresSecondPass,
622                                             bool FillWithNoInit) {
623   assert((ILE->getType() != SemaRef.Context.VoidTy) &&
624          "Should not have void type");
625 
626   if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
627     const RecordDecl *RDecl = RType->getDecl();
628     if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
629       FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(),
630                               Entity, ILE, RequiresSecondPass, FillWithNoInit);
631     else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
632              cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
633       for (auto *Field : RDecl->fields()) {
634         if (Field->hasInClassInitializer()) {
635           FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass,
636                                   FillWithNoInit);
637           break;
638         }
639       }
640     } else {
641       // The fields beyond ILE->getNumInits() are default initialized, so in
642       // order to leave them uninitialized, the ILE is expanded and the extra
643       // fields are then filled with NoInitExpr.
644       unsigned NumElems = numStructUnionElements(ILE->getType());
645       if (RDecl->hasFlexibleArrayMember())
646         ++NumElems;
647       if (ILE->getNumInits() < NumElems)
648         ILE->resizeInits(SemaRef.Context, NumElems);
649 
650       unsigned Init = 0;
651 
652       if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) {
653         for (auto &Base : CXXRD->bases()) {
654           if (hadError)
655             return;
656 
657           FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass,
658                                  FillWithNoInit);
659           ++Init;
660         }
661       }
662 
663       for (auto *Field : RDecl->fields()) {
664         if (Field->isUnnamedBitfield())
665           continue;
666 
667         if (hadError)
668           return;
669 
670         FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass,
671                                 FillWithNoInit);
672         if (hadError)
673           return;
674 
675         ++Init;
676 
677         // Only look at the first initialization of a union.
678         if (RDecl->isUnion())
679           break;
680       }
681     }
682 
683     return;
684   }
685 
686   QualType ElementType;
687 
688   InitializedEntity ElementEntity = Entity;
689   unsigned NumInits = ILE->getNumInits();
690   unsigned NumElements = NumInits;
691   if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
692     ElementType = AType->getElementType();
693     if (const auto *CAType = dyn_cast<ConstantArrayType>(AType))
694       NumElements = CAType->getSize().getZExtValue();
695     // For an array new with an unknown bound, ask for one additional element
696     // in order to populate the array filler.
697     if (Entity.isVariableLengthArrayNew())
698       ++NumElements;
699     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
700                                                          0, Entity);
701   } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
702     ElementType = VType->getElementType();
703     NumElements = VType->getNumElements();
704     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
705                                                          0, Entity);
706   } else
707     ElementType = ILE->getType();
708 
709   for (unsigned Init = 0; Init != NumElements; ++Init) {
710     if (hadError)
711       return;
712 
713     if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
714         ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
715       ElementEntity.setElementIndex(Init);
716 
717     Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr);
718     if (!InitExpr && Init < NumInits && ILE->hasArrayFiller())
719       ILE->setInit(Init, ILE->getArrayFiller());
720     else if (!InitExpr && !ILE->hasArrayFiller()) {
721       Expr *Filler = nullptr;
722 
723       if (FillWithNoInit)
724         Filler = new (SemaRef.Context) NoInitExpr(ElementType);
725       else {
726         ExprResult ElementInit = PerformEmptyInit(SemaRef, ILE->getLocEnd(),
727                                                   ElementEntity,
728                                                   /*VerifyOnly*/false,
729                                                   TreatUnavailableAsInvalid);
730         if (ElementInit.isInvalid()) {
731           hadError = true;
732           return;
733         }
734 
735         Filler = ElementInit.getAs<Expr>();
736       }
737 
738       if (hadError) {
739         // Do nothing
740       } else if (Init < NumInits) {
741         // For arrays, just set the expression used for value-initialization
742         // of the "holes" in the array.
743         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
744           ILE->setArrayFiller(Filler);
745         else
746           ILE->setInit(Init, Filler);
747       } else {
748         // For arrays, just set the expression used for value-initialization
749         // of the rest of elements and exit.
750         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
751           ILE->setArrayFiller(Filler);
752           return;
753         }
754 
755         if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) {
756           // Empty initialization requires a constructor call, so
757           // extend the initializer list to include the constructor
758           // call and make a note that we'll need to take another pass
759           // through the initializer list.
760           ILE->updateInit(SemaRef.Context, Init, Filler);
761           RequiresSecondPass = true;
762         }
763       }
764     } else if (InitListExpr *InnerILE
765                  = dyn_cast_or_null<InitListExpr>(InitExpr))
766       FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass,
767                                  FillWithNoInit);
768     else if (DesignatedInitUpdateExpr *InnerDIUE
769                  = dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr))
770       FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(),
771                                  RequiresSecondPass, /*FillWithNoInit =*/ true);
772   }
773 }
774 
775 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
776                                  InitListExpr *IL, QualType &T,
777                                  bool VerifyOnly,
778                                  bool TreatUnavailableAsInvalid)
779   : SemaRef(S), VerifyOnly(VerifyOnly),
780     TreatUnavailableAsInvalid(TreatUnavailableAsInvalid) {
781   // FIXME: Check that IL isn't already the semantic form of some other
782   // InitListExpr. If it is, we'd create a broken AST.
783 
784   hadError = false;
785 
786   FullyStructuredList =
787       getStructuredSubobjectInit(IL, 0, T, nullptr, 0, IL->getSourceRange());
788   CheckExplicitInitList(Entity, IL, T, FullyStructuredList,
789                         /*TopLevelObject=*/true);
790 
791   if (!hadError && !VerifyOnly) {
792     bool RequiresSecondPass = false;
793     FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass);
794     if (RequiresSecondPass && !hadError)
795       FillInEmptyInitializations(Entity, FullyStructuredList,
796                                  RequiresSecondPass);
797   }
798 }
799 
800 int InitListChecker::numArrayElements(QualType DeclType) {
801   // FIXME: use a proper constant
802   int maxElements = 0x7FFFFFFF;
803   if (const ConstantArrayType *CAT =
804         SemaRef.Context.getAsConstantArrayType(DeclType)) {
805     maxElements = static_cast<int>(CAT->getSize().getZExtValue());
806   }
807   return maxElements;
808 }
809 
810 int InitListChecker::numStructUnionElements(QualType DeclType) {
811   RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
812   int InitializableMembers = 0;
813   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl))
814     InitializableMembers += CXXRD->getNumBases();
815   for (const auto *Field : structDecl->fields())
816     if (!Field->isUnnamedBitfield())
817       ++InitializableMembers;
818 
819   if (structDecl->isUnion())
820     return std::min(InitializableMembers, 1);
821   return InitializableMembers - structDecl->hasFlexibleArrayMember();
822 }
823 
824 /// Check whether the range of the initializer \p ParentIList from element
825 /// \p Index onwards can be used to initialize an object of type \p T. Update
826 /// \p Index to indicate how many elements of the list were consumed.
827 ///
828 /// This also fills in \p StructuredList, from element \p StructuredIndex
829 /// onwards, with the fully-braced, desugared form of the initialization.
830 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
831                                             InitListExpr *ParentIList,
832                                             QualType T, unsigned &Index,
833                                             InitListExpr *StructuredList,
834                                             unsigned &StructuredIndex) {
835   int maxElements = 0;
836 
837   if (T->isArrayType())
838     maxElements = numArrayElements(T);
839   else if (T->isRecordType())
840     maxElements = numStructUnionElements(T);
841   else if (T->isVectorType())
842     maxElements = T->getAs<VectorType>()->getNumElements();
843   else
844     llvm_unreachable("CheckImplicitInitList(): Illegal type");
845 
846   if (maxElements == 0) {
847     if (!VerifyOnly)
848       SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
849                    diag::err_implicit_empty_initializer);
850     ++Index;
851     hadError = true;
852     return;
853   }
854 
855   // Build a structured initializer list corresponding to this subobject.
856   InitListExpr *StructuredSubobjectInitList
857     = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
858                                  StructuredIndex,
859           SourceRange(ParentIList->getInit(Index)->getLocStart(),
860                       ParentIList->getSourceRange().getEnd()));
861   unsigned StructuredSubobjectInitIndex = 0;
862 
863   // Check the element types and build the structural subobject.
864   unsigned StartIndex = Index;
865   CheckListElementTypes(Entity, ParentIList, T,
866                         /*SubobjectIsDesignatorContext=*/false, Index,
867                         StructuredSubobjectInitList,
868                         StructuredSubobjectInitIndex);
869 
870   if (!VerifyOnly) {
871     StructuredSubobjectInitList->setType(T);
872 
873     unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
874     // Update the structured sub-object initializer so that it's ending
875     // range corresponds with the end of the last initializer it used.
876     if (EndIndex < ParentIList->getNumInits() &&
877         ParentIList->getInit(EndIndex)) {
878       SourceLocation EndLoc
879         = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
880       StructuredSubobjectInitList->setRBraceLoc(EndLoc);
881     }
882 
883     // Complain about missing braces.
884     if (T->isArrayType() || T->isRecordType()) {
885       SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
886                    diag::warn_missing_braces)
887           << StructuredSubobjectInitList->getSourceRange()
888           << FixItHint::CreateInsertion(
889                  StructuredSubobjectInitList->getLocStart(), "{")
890           << FixItHint::CreateInsertion(
891                  SemaRef.getLocForEndOfToken(
892                      StructuredSubobjectInitList->getLocEnd()),
893                  "}");
894     }
895   }
896 }
897 
898 /// Warn that \p Entity was of scalar type and was initialized by a
899 /// single-element braced initializer list.
900 static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity,
901                                  SourceRange Braces) {
902   // Don't warn during template instantiation. If the initialization was
903   // non-dependent, we warned during the initial parse; otherwise, the
904   // type might not be scalar in some uses of the template.
905   if (!S.ActiveTemplateInstantiations.empty())
906     return;
907 
908   unsigned DiagID = 0;
909 
910   switch (Entity.getKind()) {
911   case InitializedEntity::EK_VectorElement:
912   case InitializedEntity::EK_ComplexElement:
913   case InitializedEntity::EK_ArrayElement:
914   case InitializedEntity::EK_Parameter:
915   case InitializedEntity::EK_Parameter_CF_Audited:
916   case InitializedEntity::EK_Result:
917     // Extra braces here are suspicious.
918     DiagID = diag::warn_braces_around_scalar_init;
919     break;
920 
921   case InitializedEntity::EK_Member:
922     // Warn on aggregate initialization but not on ctor init list or
923     // default member initializer.
924     if (Entity.getParent())
925       DiagID = diag::warn_braces_around_scalar_init;
926     break;
927 
928   case InitializedEntity::EK_Variable:
929   case InitializedEntity::EK_LambdaCapture:
930     // No warning, might be direct-list-initialization.
931     // FIXME: Should we warn for copy-list-initialization in these cases?
932     break;
933 
934   case InitializedEntity::EK_New:
935   case InitializedEntity::EK_Temporary:
936   case InitializedEntity::EK_CompoundLiteralInit:
937     // No warning, braces are part of the syntax of the underlying construct.
938     break;
939 
940   case InitializedEntity::EK_RelatedResult:
941     // No warning, we already warned when initializing the result.
942     break;
943 
944   case InitializedEntity::EK_Exception:
945   case InitializedEntity::EK_Base:
946   case InitializedEntity::EK_Delegating:
947   case InitializedEntity::EK_BlockElement:
948   case InitializedEntity::EK_Binding:
949     llvm_unreachable("unexpected braced scalar init");
950   }
951 
952   if (DiagID) {
953     S.Diag(Braces.getBegin(), DiagID)
954       << Braces
955       << FixItHint::CreateRemoval(Braces.getBegin())
956       << FixItHint::CreateRemoval(Braces.getEnd());
957   }
958 }
959 
960 /// Check whether the initializer \p IList (that was written with explicit
961 /// braces) can be used to initialize an object of type \p T.
962 ///
963 /// This also fills in \p StructuredList with the fully-braced, desugared
964 /// form of the initialization.
965 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
966                                             InitListExpr *IList, QualType &T,
967                                             InitListExpr *StructuredList,
968                                             bool TopLevelObject) {
969   if (!VerifyOnly) {
970     SyntacticToSemantic[IList] = StructuredList;
971     StructuredList->setSyntacticForm(IList);
972   }
973 
974   unsigned Index = 0, StructuredIndex = 0;
975   CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
976                         Index, StructuredList, StructuredIndex, TopLevelObject);
977   if (!VerifyOnly) {
978     QualType ExprTy = T;
979     if (!ExprTy->isArrayType())
980       ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
981     IList->setType(ExprTy);
982     StructuredList->setType(ExprTy);
983   }
984   if (hadError)
985     return;
986 
987   if (Index < IList->getNumInits()) {
988     // We have leftover initializers
989     if (VerifyOnly) {
990       if (SemaRef.getLangOpts().CPlusPlus ||
991           (SemaRef.getLangOpts().OpenCL &&
992            IList->getType()->isVectorType())) {
993         hadError = true;
994       }
995       return;
996     }
997 
998     if (StructuredIndex == 1 &&
999         IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) ==
1000             SIF_None) {
1001       unsigned DK = diag::ext_excess_initializers_in_char_array_initializer;
1002       if (SemaRef.getLangOpts().CPlusPlus) {
1003         DK = diag::err_excess_initializers_in_char_array_initializer;
1004         hadError = true;
1005       }
1006       // Special-case
1007       SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
1008         << IList->getInit(Index)->getSourceRange();
1009     } else if (!T->isIncompleteType()) {
1010       // Don't complain for incomplete types, since we'll get an error
1011       // elsewhere
1012       QualType CurrentObjectType = StructuredList->getType();
1013       int initKind =
1014         CurrentObjectType->isArrayType()? 0 :
1015         CurrentObjectType->isVectorType()? 1 :
1016         CurrentObjectType->isScalarType()? 2 :
1017         CurrentObjectType->isUnionType()? 3 :
1018         4;
1019 
1020       unsigned DK = diag::ext_excess_initializers;
1021       if (SemaRef.getLangOpts().CPlusPlus) {
1022         DK = diag::err_excess_initializers;
1023         hadError = true;
1024       }
1025       if (SemaRef.getLangOpts().OpenCL && initKind == 1) {
1026         DK = diag::err_excess_initializers;
1027         hadError = true;
1028       }
1029 
1030       SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
1031         << initKind << IList->getInit(Index)->getSourceRange();
1032     }
1033   }
1034 
1035   if (!VerifyOnly && T->isScalarType() &&
1036       IList->getNumInits() == 1 && !isa<InitListExpr>(IList->getInit(0)))
1037     warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange());
1038 }
1039 
1040 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
1041                                             InitListExpr *IList,
1042                                             QualType &DeclType,
1043                                             bool SubobjectIsDesignatorContext,
1044                                             unsigned &Index,
1045                                             InitListExpr *StructuredList,
1046                                             unsigned &StructuredIndex,
1047                                             bool TopLevelObject) {
1048   if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
1049     // Explicitly braced initializer for complex type can be real+imaginary
1050     // parts.
1051     CheckComplexType(Entity, IList, DeclType, Index,
1052                      StructuredList, StructuredIndex);
1053   } else if (DeclType->isScalarType()) {
1054     CheckScalarType(Entity, IList, DeclType, Index,
1055                     StructuredList, StructuredIndex);
1056   } else if (DeclType->isVectorType()) {
1057     CheckVectorType(Entity, IList, DeclType, Index,
1058                     StructuredList, StructuredIndex);
1059   } else if (DeclType->isRecordType()) {
1060     assert(DeclType->isAggregateType() &&
1061            "non-aggregate records should be handed in CheckSubElementType");
1062     RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1063     auto Bases =
1064         CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
1065                                         CXXRecordDecl::base_class_iterator());
1066     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1067       Bases = CXXRD->bases();
1068     CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(),
1069                           SubobjectIsDesignatorContext, Index, StructuredList,
1070                           StructuredIndex, TopLevelObject);
1071   } else if (DeclType->isArrayType()) {
1072     llvm::APSInt Zero(
1073                     SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
1074                     false);
1075     CheckArrayType(Entity, IList, DeclType, Zero,
1076                    SubobjectIsDesignatorContext, Index,
1077                    StructuredList, StructuredIndex);
1078   } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
1079     // This type is invalid, issue a diagnostic.
1080     ++Index;
1081     if (!VerifyOnly)
1082       SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
1083         << DeclType;
1084     hadError = true;
1085   } else if (DeclType->isReferenceType()) {
1086     CheckReferenceType(Entity, IList, DeclType, Index,
1087                        StructuredList, StructuredIndex);
1088   } else if (DeclType->isObjCObjectType()) {
1089     if (!VerifyOnly)
1090       SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class)
1091         << DeclType;
1092     hadError = true;
1093   } else {
1094     if (!VerifyOnly)
1095       SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
1096         << DeclType;
1097     hadError = true;
1098   }
1099 }
1100 
1101 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
1102                                           InitListExpr *IList,
1103                                           QualType ElemType,
1104                                           unsigned &Index,
1105                                           InitListExpr *StructuredList,
1106                                           unsigned &StructuredIndex) {
1107   Expr *expr = IList->getInit(Index);
1108 
1109   if (ElemType->isReferenceType())
1110     return CheckReferenceType(Entity, IList, ElemType, Index,
1111                               StructuredList, StructuredIndex);
1112 
1113   if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
1114     if (SubInitList->getNumInits() == 1 &&
1115         IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) ==
1116         SIF_None) {
1117       expr = SubInitList->getInit(0);
1118     } else if (!SemaRef.getLangOpts().CPlusPlus) {
1119       InitListExpr *InnerStructuredList
1120         = getStructuredSubobjectInit(IList, Index, ElemType,
1121                                      StructuredList, StructuredIndex,
1122                                      SubInitList->getSourceRange(), true);
1123       CheckExplicitInitList(Entity, SubInitList, ElemType,
1124                             InnerStructuredList);
1125 
1126       if (!hadError && !VerifyOnly) {
1127         bool RequiresSecondPass = false;
1128         FillInEmptyInitializations(Entity, InnerStructuredList,
1129                                    RequiresSecondPass);
1130         if (RequiresSecondPass && !hadError)
1131           FillInEmptyInitializations(Entity, InnerStructuredList,
1132                                      RequiresSecondPass);
1133       }
1134       ++StructuredIndex;
1135       ++Index;
1136       return;
1137     }
1138     // C++ initialization is handled later.
1139   } else if (isa<ImplicitValueInitExpr>(expr)) {
1140     // This happens during template instantiation when we see an InitListExpr
1141     // that we've already checked once.
1142     assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) &&
1143            "found implicit initialization for the wrong type");
1144     if (!VerifyOnly)
1145       UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1146     ++Index;
1147     return;
1148   }
1149 
1150   if (SemaRef.getLangOpts().CPlusPlus) {
1151     // C++ [dcl.init.aggr]p2:
1152     //   Each member is copy-initialized from the corresponding
1153     //   initializer-clause.
1154 
1155     // FIXME: Better EqualLoc?
1156     InitializationKind Kind =
1157       InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
1158     InitializationSequence Seq(SemaRef, Entity, Kind, expr,
1159                                /*TopLevelOfInitList*/ true);
1160 
1161     // C++14 [dcl.init.aggr]p13:
1162     //   If the assignment-expression can initialize a member, the member is
1163     //   initialized. Otherwise [...] brace elision is assumed
1164     //
1165     // Brace elision is never performed if the element is not an
1166     // assignment-expression.
1167     if (Seq || isa<InitListExpr>(expr)) {
1168       if (!VerifyOnly) {
1169         ExprResult Result =
1170           Seq.Perform(SemaRef, Entity, Kind, expr);
1171         if (Result.isInvalid())
1172           hadError = true;
1173 
1174         UpdateStructuredListElement(StructuredList, StructuredIndex,
1175                                     Result.getAs<Expr>());
1176       } else if (!Seq)
1177         hadError = true;
1178       ++Index;
1179       return;
1180     }
1181 
1182     // Fall through for subaggregate initialization
1183   } else if (ElemType->isScalarType() || ElemType->isAtomicType()) {
1184     // FIXME: Need to handle atomic aggregate types with implicit init lists.
1185     return CheckScalarType(Entity, IList, ElemType, Index,
1186                            StructuredList, StructuredIndex);
1187   } else if (const ArrayType *arrayType =
1188                  SemaRef.Context.getAsArrayType(ElemType)) {
1189     // arrayType can be incomplete if we're initializing a flexible
1190     // array member.  There's nothing we can do with the completed
1191     // type here, though.
1192 
1193     if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) {
1194       if (!VerifyOnly) {
1195         CheckStringInit(expr, ElemType, arrayType, SemaRef);
1196         UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1197       }
1198       ++Index;
1199       return;
1200     }
1201 
1202     // Fall through for subaggregate initialization.
1203 
1204   } else {
1205     assert((ElemType->isRecordType() || ElemType->isVectorType() ||
1206             ElemType->isClkEventT()) && "Unexpected type");
1207 
1208     // C99 6.7.8p13:
1209     //
1210     //   The initializer for a structure or union object that has
1211     //   automatic storage duration shall be either an initializer
1212     //   list as described below, or a single expression that has
1213     //   compatible structure or union type. In the latter case, the
1214     //   initial value of the object, including unnamed members, is
1215     //   that of the expression.
1216     ExprResult ExprRes = expr;
1217     if (SemaRef.CheckSingleAssignmentConstraints(
1218             ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) {
1219       if (ExprRes.isInvalid())
1220         hadError = true;
1221       else {
1222         ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get());
1223           if (ExprRes.isInvalid())
1224             hadError = true;
1225       }
1226       UpdateStructuredListElement(StructuredList, StructuredIndex,
1227                                   ExprRes.getAs<Expr>());
1228       ++Index;
1229       return;
1230     }
1231     ExprRes.get();
1232     // Fall through for subaggregate initialization
1233   }
1234 
1235   // C++ [dcl.init.aggr]p12:
1236   //
1237   //   [...] Otherwise, if the member is itself a non-empty
1238   //   subaggregate, brace elision is assumed and the initializer is
1239   //   considered for the initialization of the first member of
1240   //   the subaggregate.
1241   // OpenCL vector initializer is handled elsewhere.
1242   if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) ||
1243       ElemType->isAggregateType()) {
1244     CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
1245                           StructuredIndex);
1246     ++StructuredIndex;
1247   } else {
1248     if (!VerifyOnly) {
1249       // We cannot initialize this element, so let
1250       // PerformCopyInitialization produce the appropriate diagnostic.
1251       SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr,
1252                                         /*TopLevelOfInitList=*/true);
1253     }
1254     hadError = true;
1255     ++Index;
1256     ++StructuredIndex;
1257   }
1258 }
1259 
1260 void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
1261                                        InitListExpr *IList, QualType DeclType,
1262                                        unsigned &Index,
1263                                        InitListExpr *StructuredList,
1264                                        unsigned &StructuredIndex) {
1265   assert(Index == 0 && "Index in explicit init list must be zero");
1266 
1267   // As an extension, clang supports complex initializers, which initialize
1268   // a complex number component-wise.  When an explicit initializer list for
1269   // a complex number contains two two initializers, this extension kicks in:
1270   // it exepcts the initializer list to contain two elements convertible to
1271   // the element type of the complex type. The first element initializes
1272   // the real part, and the second element intitializes the imaginary part.
1273 
1274   if (IList->getNumInits() != 2)
1275     return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1276                            StructuredIndex);
1277 
1278   // This is an extension in C.  (The builtin _Complex type does not exist
1279   // in the C++ standard.)
1280   if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
1281     SemaRef.Diag(IList->getLocStart(), diag::ext_complex_component_init)
1282       << IList->getSourceRange();
1283 
1284   // Initialize the complex number.
1285   QualType elementType = DeclType->getAs<ComplexType>()->getElementType();
1286   InitializedEntity ElementEntity =
1287     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1288 
1289   for (unsigned i = 0; i < 2; ++i) {
1290     ElementEntity.setElementIndex(Index);
1291     CheckSubElementType(ElementEntity, IList, elementType, Index,
1292                         StructuredList, StructuredIndex);
1293   }
1294 }
1295 
1296 void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
1297                                       InitListExpr *IList, QualType DeclType,
1298                                       unsigned &Index,
1299                                       InitListExpr *StructuredList,
1300                                       unsigned &StructuredIndex) {
1301   if (Index >= IList->getNumInits()) {
1302     if (!VerifyOnly)
1303       SemaRef.Diag(IList->getLocStart(),
1304                    SemaRef.getLangOpts().CPlusPlus11 ?
1305                      diag::warn_cxx98_compat_empty_scalar_initializer :
1306                      diag::err_empty_scalar_initializer)
1307         << IList->getSourceRange();
1308     hadError = !SemaRef.getLangOpts().CPlusPlus11;
1309     ++Index;
1310     ++StructuredIndex;
1311     return;
1312   }
1313 
1314   Expr *expr = IList->getInit(Index);
1315   if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
1316     // FIXME: This is invalid, and accepting it causes overload resolution
1317     // to pick the wrong overload in some corner cases.
1318     if (!VerifyOnly)
1319       SemaRef.Diag(SubIList->getLocStart(),
1320                    diag::ext_many_braces_around_scalar_init)
1321         << SubIList->getSourceRange();
1322 
1323     CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
1324                     StructuredIndex);
1325     return;
1326   } else if (isa<DesignatedInitExpr>(expr)) {
1327     if (!VerifyOnly)
1328       SemaRef.Diag(expr->getLocStart(),
1329                    diag::err_designator_for_scalar_init)
1330         << DeclType << expr->getSourceRange();
1331     hadError = true;
1332     ++Index;
1333     ++StructuredIndex;
1334     return;
1335   }
1336 
1337   if (VerifyOnly) {
1338     if (!SemaRef.CanPerformCopyInitialization(Entity,expr))
1339       hadError = true;
1340     ++Index;
1341     return;
1342   }
1343 
1344   ExprResult Result =
1345     SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(), expr,
1346                                       /*TopLevelOfInitList=*/true);
1347 
1348   Expr *ResultExpr = nullptr;
1349 
1350   if (Result.isInvalid())
1351     hadError = true; // types weren't compatible.
1352   else {
1353     ResultExpr = Result.getAs<Expr>();
1354 
1355     if (ResultExpr != expr) {
1356       // The type was promoted, update initializer list.
1357       IList->setInit(Index, ResultExpr);
1358     }
1359   }
1360   if (hadError)
1361     ++StructuredIndex;
1362   else
1363     UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1364   ++Index;
1365 }
1366 
1367 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
1368                                          InitListExpr *IList, QualType DeclType,
1369                                          unsigned &Index,
1370                                          InitListExpr *StructuredList,
1371                                          unsigned &StructuredIndex) {
1372   if (Index >= IList->getNumInits()) {
1373     // FIXME: It would be wonderful if we could point at the actual member. In
1374     // general, it would be useful to pass location information down the stack,
1375     // so that we know the location (or decl) of the "current object" being
1376     // initialized.
1377     if (!VerifyOnly)
1378       SemaRef.Diag(IList->getLocStart(),
1379                     diag::err_init_reference_member_uninitialized)
1380         << DeclType
1381         << IList->getSourceRange();
1382     hadError = true;
1383     ++Index;
1384     ++StructuredIndex;
1385     return;
1386   }
1387 
1388   Expr *expr = IList->getInit(Index);
1389   if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
1390     if (!VerifyOnly)
1391       SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
1392         << DeclType << IList->getSourceRange();
1393     hadError = true;
1394     ++Index;
1395     ++StructuredIndex;
1396     return;
1397   }
1398 
1399   if (VerifyOnly) {
1400     if (!SemaRef.CanPerformCopyInitialization(Entity,expr))
1401       hadError = true;
1402     ++Index;
1403     return;
1404   }
1405 
1406   ExprResult Result =
1407       SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(), expr,
1408                                         /*TopLevelOfInitList=*/true);
1409 
1410   if (Result.isInvalid())
1411     hadError = true;
1412 
1413   expr = Result.getAs<Expr>();
1414   IList->setInit(Index, expr);
1415 
1416   if (hadError)
1417     ++StructuredIndex;
1418   else
1419     UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1420   ++Index;
1421 }
1422 
1423 void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1424                                       InitListExpr *IList, QualType DeclType,
1425                                       unsigned &Index,
1426                                       InitListExpr *StructuredList,
1427                                       unsigned &StructuredIndex) {
1428   const VectorType *VT = DeclType->getAs<VectorType>();
1429   unsigned maxElements = VT->getNumElements();
1430   unsigned numEltsInit = 0;
1431   QualType elementType = VT->getElementType();
1432 
1433   if (Index >= IList->getNumInits()) {
1434     // Make sure the element type can be value-initialized.
1435     if (VerifyOnly)
1436       CheckEmptyInitializable(
1437           InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1438           IList->getLocEnd());
1439     return;
1440   }
1441 
1442   if (!SemaRef.getLangOpts().OpenCL) {
1443     // If the initializing element is a vector, try to copy-initialize
1444     // instead of breaking it apart (which is doomed to failure anyway).
1445     Expr *Init = IList->getInit(Index);
1446     if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1447       if (VerifyOnly) {
1448         if (!SemaRef.CanPerformCopyInitialization(Entity, Init))
1449           hadError = true;
1450         ++Index;
1451         return;
1452       }
1453 
1454   ExprResult Result =
1455       SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(), Init,
1456                                         /*TopLevelOfInitList=*/true);
1457 
1458       Expr *ResultExpr = nullptr;
1459       if (Result.isInvalid())
1460         hadError = true; // types weren't compatible.
1461       else {
1462         ResultExpr = Result.getAs<Expr>();
1463 
1464         if (ResultExpr != Init) {
1465           // The type was promoted, update initializer list.
1466           IList->setInit(Index, ResultExpr);
1467         }
1468       }
1469       if (hadError)
1470         ++StructuredIndex;
1471       else
1472         UpdateStructuredListElement(StructuredList, StructuredIndex,
1473                                     ResultExpr);
1474       ++Index;
1475       return;
1476     }
1477 
1478     InitializedEntity ElementEntity =
1479       InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1480 
1481     for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1482       // Don't attempt to go past the end of the init list
1483       if (Index >= IList->getNumInits()) {
1484         if (VerifyOnly)
1485           CheckEmptyInitializable(ElementEntity, IList->getLocEnd());
1486         break;
1487       }
1488 
1489       ElementEntity.setElementIndex(Index);
1490       CheckSubElementType(ElementEntity, IList, elementType, Index,
1491                           StructuredList, StructuredIndex);
1492     }
1493 
1494     if (VerifyOnly)
1495       return;
1496 
1497     bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian();
1498     const VectorType *T = Entity.getType()->getAs<VectorType>();
1499     if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector ||
1500                         T->getVectorKind() == VectorType::NeonPolyVector)) {
1501       // The ability to use vector initializer lists is a GNU vector extension
1502       // and is unrelated to the NEON intrinsics in arm_neon.h. On little
1503       // endian machines it works fine, however on big endian machines it
1504       // exhibits surprising behaviour:
1505       //
1506       //   uint32x2_t x = {42, 64};
1507       //   return vget_lane_u32(x, 0); // Will return 64.
1508       //
1509       // Because of this, explicitly call out that it is non-portable.
1510       //
1511       SemaRef.Diag(IList->getLocStart(),
1512                    diag::warn_neon_vector_initializer_non_portable);
1513 
1514       const char *typeCode;
1515       unsigned typeSize = SemaRef.Context.getTypeSize(elementType);
1516 
1517       if (elementType->isFloatingType())
1518         typeCode = "f";
1519       else if (elementType->isSignedIntegerType())
1520         typeCode = "s";
1521       else if (elementType->isUnsignedIntegerType())
1522         typeCode = "u";
1523       else
1524         llvm_unreachable("Invalid element type!");
1525 
1526       SemaRef.Diag(IList->getLocStart(),
1527                    SemaRef.Context.getTypeSize(VT) > 64 ?
1528                    diag::note_neon_vector_initializer_non_portable_q :
1529                    diag::note_neon_vector_initializer_non_portable)
1530         << typeCode << typeSize;
1531     }
1532 
1533     return;
1534   }
1535 
1536   InitializedEntity ElementEntity =
1537     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1538 
1539   // OpenCL initializers allows vectors to be constructed from vectors.
1540   for (unsigned i = 0; i < maxElements; ++i) {
1541     // Don't attempt to go past the end of the init list
1542     if (Index >= IList->getNumInits())
1543       break;
1544 
1545     ElementEntity.setElementIndex(Index);
1546 
1547     QualType IType = IList->getInit(Index)->getType();
1548     if (!IType->isVectorType()) {
1549       CheckSubElementType(ElementEntity, IList, elementType, Index,
1550                           StructuredList, StructuredIndex);
1551       ++numEltsInit;
1552     } else {
1553       QualType VecType;
1554       const VectorType *IVT = IType->getAs<VectorType>();
1555       unsigned numIElts = IVT->getNumElements();
1556 
1557       if (IType->isExtVectorType())
1558         VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1559       else
1560         VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1561                                                 IVT->getVectorKind());
1562       CheckSubElementType(ElementEntity, IList, VecType, Index,
1563                           StructuredList, StructuredIndex);
1564       numEltsInit += numIElts;
1565     }
1566   }
1567 
1568   // OpenCL requires all elements to be initialized.
1569   if (numEltsInit != maxElements) {
1570     if (!VerifyOnly)
1571       SemaRef.Diag(IList->getLocStart(),
1572                    diag::err_vector_incorrect_num_initializers)
1573         << (numEltsInit < maxElements) << maxElements << numEltsInit;
1574     hadError = true;
1575   }
1576 }
1577 
1578 void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1579                                      InitListExpr *IList, QualType &DeclType,
1580                                      llvm::APSInt elementIndex,
1581                                      bool SubobjectIsDesignatorContext,
1582                                      unsigned &Index,
1583                                      InitListExpr *StructuredList,
1584                                      unsigned &StructuredIndex) {
1585   const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1586 
1587   // Check for the special-case of initializing an array with a string.
1588   if (Index < IList->getNumInits()) {
1589     if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) ==
1590         SIF_None) {
1591       // We place the string literal directly into the resulting
1592       // initializer list. This is the only place where the structure
1593       // of the structured initializer list doesn't match exactly,
1594       // because doing so would involve allocating one character
1595       // constant for each string.
1596       if (!VerifyOnly) {
1597         CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef);
1598         UpdateStructuredListElement(StructuredList, StructuredIndex,
1599                                     IList->getInit(Index));
1600         StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1601       }
1602       ++Index;
1603       return;
1604     }
1605   }
1606   if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1607     // Check for VLAs; in standard C it would be possible to check this
1608     // earlier, but I don't know where clang accepts VLAs (gcc accepts
1609     // them in all sorts of strange places).
1610     if (!VerifyOnly)
1611       SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
1612                     diag::err_variable_object_no_init)
1613         << VAT->getSizeExpr()->getSourceRange();
1614     hadError = true;
1615     ++Index;
1616     ++StructuredIndex;
1617     return;
1618   }
1619 
1620   // We might know the maximum number of elements in advance.
1621   llvm::APSInt maxElements(elementIndex.getBitWidth(),
1622                            elementIndex.isUnsigned());
1623   bool maxElementsKnown = false;
1624   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1625     maxElements = CAT->getSize();
1626     elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1627     elementIndex.setIsUnsigned(maxElements.isUnsigned());
1628     maxElementsKnown = true;
1629   }
1630 
1631   QualType elementType = arrayType->getElementType();
1632   while (Index < IList->getNumInits()) {
1633     Expr *Init = IList->getInit(Index);
1634     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1635       // If we're not the subobject that matches up with the '{' for
1636       // the designator, we shouldn't be handling the
1637       // designator. Return immediately.
1638       if (!SubobjectIsDesignatorContext)
1639         return;
1640 
1641       // Handle this designated initializer. elementIndex will be
1642       // updated to be the next array element we'll initialize.
1643       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1644                                      DeclType, nullptr, &elementIndex, Index,
1645                                      StructuredList, StructuredIndex, true,
1646                                      false)) {
1647         hadError = true;
1648         continue;
1649       }
1650 
1651       if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1652         maxElements = maxElements.extend(elementIndex.getBitWidth());
1653       else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1654         elementIndex = elementIndex.extend(maxElements.getBitWidth());
1655       elementIndex.setIsUnsigned(maxElements.isUnsigned());
1656 
1657       // If the array is of incomplete type, keep track of the number of
1658       // elements in the initializer.
1659       if (!maxElementsKnown && elementIndex > maxElements)
1660         maxElements = elementIndex;
1661 
1662       continue;
1663     }
1664 
1665     // If we know the maximum number of elements, and we've already
1666     // hit it, stop consuming elements in the initializer list.
1667     if (maxElementsKnown && elementIndex == maxElements)
1668       break;
1669 
1670     InitializedEntity ElementEntity =
1671       InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1672                                            Entity);
1673     // Check this element.
1674     CheckSubElementType(ElementEntity, IList, elementType, Index,
1675                         StructuredList, StructuredIndex);
1676     ++elementIndex;
1677 
1678     // If the array is of incomplete type, keep track of the number of
1679     // elements in the initializer.
1680     if (!maxElementsKnown && elementIndex > maxElements)
1681       maxElements = elementIndex;
1682   }
1683   if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1684     // If this is an incomplete array type, the actual type needs to
1685     // be calculated here.
1686     llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1687     if (maxElements == Zero) {
1688       // Sizing an array implicitly to zero is not allowed by ISO C,
1689       // but is supported by GNU.
1690       SemaRef.Diag(IList->getLocStart(),
1691                     diag::ext_typecheck_zero_array_size);
1692     }
1693 
1694     DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1695                                                      ArrayType::Normal, 0);
1696   }
1697   if (!hadError && VerifyOnly) {
1698     // If there are any members of the array that get value-initialized, check
1699     // that is possible. That happens if we know the bound and don't have
1700     // enough elements, or if we're performing an array new with an unknown
1701     // bound.
1702     // FIXME: This needs to detect holes left by designated initializers too.
1703     if ((maxElementsKnown && elementIndex < maxElements) ||
1704         Entity.isVariableLengthArrayNew())
1705       CheckEmptyInitializable(InitializedEntity::InitializeElement(
1706                                                   SemaRef.Context, 0, Entity),
1707                               IList->getLocEnd());
1708   }
1709 }
1710 
1711 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1712                                              Expr *InitExpr,
1713                                              FieldDecl *Field,
1714                                              bool TopLevelObject) {
1715   // Handle GNU flexible array initializers.
1716   unsigned FlexArrayDiag;
1717   if (isa<InitListExpr>(InitExpr) &&
1718       cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
1719     // Empty flexible array init always allowed as an extension
1720     FlexArrayDiag = diag::ext_flexible_array_init;
1721   } else if (SemaRef.getLangOpts().CPlusPlus) {
1722     // Disallow flexible array init in C++; it is not required for gcc
1723     // compatibility, and it needs work to IRGen correctly in general.
1724     FlexArrayDiag = diag::err_flexible_array_init;
1725   } else if (!TopLevelObject) {
1726     // Disallow flexible array init on non-top-level object
1727     FlexArrayDiag = diag::err_flexible_array_init;
1728   } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
1729     // Disallow flexible array init on anything which is not a variable.
1730     FlexArrayDiag = diag::err_flexible_array_init;
1731   } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
1732     // Disallow flexible array init on local variables.
1733     FlexArrayDiag = diag::err_flexible_array_init;
1734   } else {
1735     // Allow other cases.
1736     FlexArrayDiag = diag::ext_flexible_array_init;
1737   }
1738 
1739   if (!VerifyOnly) {
1740     SemaRef.Diag(InitExpr->getLocStart(),
1741                  FlexArrayDiag)
1742       << InitExpr->getLocStart();
1743     SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1744       << Field;
1745   }
1746 
1747   return FlexArrayDiag != diag::ext_flexible_array_init;
1748 }
1749 
1750 void InitListChecker::CheckStructUnionTypes(
1751     const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType,
1752     CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field,
1753     bool SubobjectIsDesignatorContext, unsigned &Index,
1754     InitListExpr *StructuredList, unsigned &StructuredIndex,
1755     bool TopLevelObject) {
1756   RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
1757 
1758   // If the record is invalid, some of it's members are invalid. To avoid
1759   // confusion, we forgo checking the intializer for the entire record.
1760   if (structDecl->isInvalidDecl()) {
1761     // Assume it was supposed to consume a single initializer.
1762     ++Index;
1763     hadError = true;
1764     return;
1765   }
1766 
1767   if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1768     RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1769 
1770     // If there's a default initializer, use it.
1771     if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
1772       if (VerifyOnly)
1773         return;
1774       for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1775            Field != FieldEnd; ++Field) {
1776         if (Field->hasInClassInitializer()) {
1777           StructuredList->setInitializedFieldInUnion(*Field);
1778           // FIXME: Actually build a CXXDefaultInitExpr?
1779           return;
1780         }
1781       }
1782     }
1783 
1784     // Value-initialize the first member of the union that isn't an unnamed
1785     // bitfield.
1786     for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1787          Field != FieldEnd; ++Field) {
1788       if (!Field->isUnnamedBitfield()) {
1789         if (VerifyOnly)
1790           CheckEmptyInitializable(
1791               InitializedEntity::InitializeMember(*Field, &Entity),
1792               IList->getLocEnd());
1793         else
1794           StructuredList->setInitializedFieldInUnion(*Field);
1795         break;
1796       }
1797     }
1798     return;
1799   }
1800 
1801   bool InitializedSomething = false;
1802 
1803   // If we have any base classes, they are initialized prior to the fields.
1804   for (auto &Base : Bases) {
1805     Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr;
1806     SourceLocation InitLoc = Init ? Init->getLocStart() : IList->getLocEnd();
1807 
1808     // Designated inits always initialize fields, so if we see one, all
1809     // remaining base classes have no explicit initializer.
1810     if (Init && isa<DesignatedInitExpr>(Init))
1811       Init = nullptr;
1812 
1813     InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
1814         SemaRef.Context, &Base, false, &Entity);
1815     if (Init) {
1816       CheckSubElementType(BaseEntity, IList, Base.getType(), Index,
1817                           StructuredList, StructuredIndex);
1818       InitializedSomething = true;
1819     } else if (VerifyOnly) {
1820       CheckEmptyInitializable(BaseEntity, InitLoc);
1821     }
1822   }
1823 
1824   // If structDecl is a forward declaration, this loop won't do
1825   // anything except look at designated initializers; That's okay,
1826   // because an error should get printed out elsewhere. It might be
1827   // worthwhile to skip over the rest of the initializer, though.
1828   RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1829   RecordDecl::field_iterator FieldEnd = RD->field_end();
1830   bool CheckForMissingFields = true;
1831   while (Index < IList->getNumInits()) {
1832     Expr *Init = IList->getInit(Index);
1833 
1834     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1835       // If we're not the subobject that matches up with the '{' for
1836       // the designator, we shouldn't be handling the
1837       // designator. Return immediately.
1838       if (!SubobjectIsDesignatorContext)
1839         return;
1840 
1841       // Handle this designated initializer. Field will be updated to
1842       // the next field that we'll be initializing.
1843       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1844                                      DeclType, &Field, nullptr, Index,
1845                                      StructuredList, StructuredIndex,
1846                                      true, TopLevelObject))
1847         hadError = true;
1848 
1849       InitializedSomething = true;
1850 
1851       // Disable check for missing fields when designators are used.
1852       // This matches gcc behaviour.
1853       CheckForMissingFields = false;
1854       continue;
1855     }
1856 
1857     if (Field == FieldEnd) {
1858       // We've run out of fields. We're done.
1859       break;
1860     }
1861 
1862     // We've already initialized a member of a union. We're done.
1863     if (InitializedSomething && DeclType->isUnionType())
1864       break;
1865 
1866     // If we've hit the flexible array member at the end, we're done.
1867     if (Field->getType()->isIncompleteArrayType())
1868       break;
1869 
1870     if (Field->isUnnamedBitfield()) {
1871       // Don't initialize unnamed bitfields, e.g. "int : 20;"
1872       ++Field;
1873       continue;
1874     }
1875 
1876     // Make sure we can use this declaration.
1877     bool InvalidUse;
1878     if (VerifyOnly)
1879       InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
1880     else
1881       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field,
1882                                           IList->getInit(Index)->getLocStart());
1883     if (InvalidUse) {
1884       ++Index;
1885       ++Field;
1886       hadError = true;
1887       continue;
1888     }
1889 
1890     InitializedEntity MemberEntity =
1891       InitializedEntity::InitializeMember(*Field, &Entity);
1892     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1893                         StructuredList, StructuredIndex);
1894     InitializedSomething = true;
1895 
1896     if (DeclType->isUnionType() && !VerifyOnly) {
1897       // Initialize the first field within the union.
1898       StructuredList->setInitializedFieldInUnion(*Field);
1899     }
1900 
1901     ++Field;
1902   }
1903 
1904   // Emit warnings for missing struct field initializers.
1905   if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
1906       Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
1907       !DeclType->isUnionType()) {
1908     // It is possible we have one or more unnamed bitfields remaining.
1909     // Find first (if any) named field and emit warning.
1910     for (RecordDecl::field_iterator it = Field, end = RD->field_end();
1911          it != end; ++it) {
1912       if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
1913         SemaRef.Diag(IList->getSourceRange().getEnd(),
1914                      diag::warn_missing_field_initializers) << *it;
1915         break;
1916       }
1917     }
1918   }
1919 
1920   // Check that any remaining fields can be value-initialized.
1921   if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() &&
1922       !Field->getType()->isIncompleteArrayType()) {
1923     // FIXME: Should check for holes left by designated initializers too.
1924     for (; Field != FieldEnd && !hadError; ++Field) {
1925       if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
1926         CheckEmptyInitializable(
1927             InitializedEntity::InitializeMember(*Field, &Entity),
1928             IList->getLocEnd());
1929     }
1930   }
1931 
1932   if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1933       Index >= IList->getNumInits())
1934     return;
1935 
1936   if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
1937                              TopLevelObject)) {
1938     hadError = true;
1939     ++Index;
1940     return;
1941   }
1942 
1943   InitializedEntity MemberEntity =
1944     InitializedEntity::InitializeMember(*Field, &Entity);
1945 
1946   if (isa<InitListExpr>(IList->getInit(Index)))
1947     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1948                         StructuredList, StructuredIndex);
1949   else
1950     CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
1951                           StructuredList, StructuredIndex);
1952 }
1953 
1954 /// \brief Expand a field designator that refers to a member of an
1955 /// anonymous struct or union into a series of field designators that
1956 /// refers to the field within the appropriate subobject.
1957 ///
1958 static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1959                                            DesignatedInitExpr *DIE,
1960                                            unsigned DesigIdx,
1961                                            IndirectFieldDecl *IndirectField) {
1962   typedef DesignatedInitExpr::Designator Designator;
1963 
1964   // Build the replacement designators.
1965   SmallVector<Designator, 4> Replacements;
1966   for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
1967        PE = IndirectField->chain_end(); PI != PE; ++PI) {
1968     if (PI + 1 == PE)
1969       Replacements.push_back(Designator((IdentifierInfo *)nullptr,
1970                                     DIE->getDesignator(DesigIdx)->getDotLoc(),
1971                                 DIE->getDesignator(DesigIdx)->getFieldLoc()));
1972     else
1973       Replacements.push_back(Designator((IdentifierInfo *)nullptr,
1974                                         SourceLocation(), SourceLocation()));
1975     assert(isa<FieldDecl>(*PI));
1976     Replacements.back().setField(cast<FieldDecl>(*PI));
1977   }
1978 
1979   // Expand the current designator into the set of replacement
1980   // designators, so we have a full subobject path down to where the
1981   // member of the anonymous struct/union is actually stored.
1982   DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
1983                         &Replacements[0] + Replacements.size());
1984 }
1985 
1986 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
1987                                                    DesignatedInitExpr *DIE) {
1988   unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
1989   SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
1990   for (unsigned I = 0; I < NumIndexExprs; ++I)
1991     IndexExprs[I] = DIE->getSubExpr(I + 1);
1992   return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(),
1993                                     IndexExprs,
1994                                     DIE->getEqualOrColonLoc(),
1995                                     DIE->usesGNUSyntax(), DIE->getInit());
1996 }
1997 
1998 namespace {
1999 
2000 // Callback to only accept typo corrections that are for field members of
2001 // the given struct or union.
2002 class FieldInitializerValidatorCCC : public CorrectionCandidateCallback {
2003  public:
2004   explicit FieldInitializerValidatorCCC(RecordDecl *RD)
2005       : Record(RD) {}
2006 
2007   bool ValidateCandidate(const TypoCorrection &candidate) override {
2008     FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
2009     return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
2010   }
2011 
2012  private:
2013   RecordDecl *Record;
2014 };
2015 
2016 } // end anonymous namespace
2017 
2018 /// @brief Check the well-formedness of a C99 designated initializer.
2019 ///
2020 /// Determines whether the designated initializer @p DIE, which
2021 /// resides at the given @p Index within the initializer list @p
2022 /// IList, is well-formed for a current object of type @p DeclType
2023 /// (C99 6.7.8). The actual subobject that this designator refers to
2024 /// within the current subobject is returned in either
2025 /// @p NextField or @p NextElementIndex (whichever is appropriate).
2026 ///
2027 /// @param IList  The initializer list in which this designated
2028 /// initializer occurs.
2029 ///
2030 /// @param DIE The designated initializer expression.
2031 ///
2032 /// @param DesigIdx  The index of the current designator.
2033 ///
2034 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
2035 /// into which the designation in @p DIE should refer.
2036 ///
2037 /// @param NextField  If non-NULL and the first designator in @p DIE is
2038 /// a field, this will be set to the field declaration corresponding
2039 /// to the field named by the designator.
2040 ///
2041 /// @param NextElementIndex  If non-NULL and the first designator in @p
2042 /// DIE is an array designator or GNU array-range designator, this
2043 /// will be set to the last index initialized by this designator.
2044 ///
2045 /// @param Index  Index into @p IList where the designated initializer
2046 /// @p DIE occurs.
2047 ///
2048 /// @param StructuredList  The initializer list expression that
2049 /// describes all of the subobject initializers in the order they'll
2050 /// actually be initialized.
2051 ///
2052 /// @returns true if there was an error, false otherwise.
2053 bool
2054 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
2055                                             InitListExpr *IList,
2056                                             DesignatedInitExpr *DIE,
2057                                             unsigned DesigIdx,
2058                                             QualType &CurrentObjectType,
2059                                           RecordDecl::field_iterator *NextField,
2060                                             llvm::APSInt *NextElementIndex,
2061                                             unsigned &Index,
2062                                             InitListExpr *StructuredList,
2063                                             unsigned &StructuredIndex,
2064                                             bool FinishSubobjectInit,
2065                                             bool TopLevelObject) {
2066   if (DesigIdx == DIE->size()) {
2067     // Check the actual initialization for the designated object type.
2068     bool prevHadError = hadError;
2069 
2070     // Temporarily remove the designator expression from the
2071     // initializer list that the child calls see, so that we don't try
2072     // to re-process the designator.
2073     unsigned OldIndex = Index;
2074     IList->setInit(OldIndex, DIE->getInit());
2075 
2076     CheckSubElementType(Entity, IList, CurrentObjectType, Index,
2077                         StructuredList, StructuredIndex);
2078 
2079     // Restore the designated initializer expression in the syntactic
2080     // form of the initializer list.
2081     if (IList->getInit(OldIndex) != DIE->getInit())
2082       DIE->setInit(IList->getInit(OldIndex));
2083     IList->setInit(OldIndex, DIE);
2084 
2085     return hadError && !prevHadError;
2086   }
2087 
2088   DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
2089   bool IsFirstDesignator = (DesigIdx == 0);
2090   if (!VerifyOnly) {
2091     assert((IsFirstDesignator || StructuredList) &&
2092            "Need a non-designated initializer list to start from");
2093 
2094     // Determine the structural initializer list that corresponds to the
2095     // current subobject.
2096     if (IsFirstDesignator)
2097       StructuredList = SyntacticToSemantic.lookup(IList);
2098     else {
2099       Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ?
2100           StructuredList->getInit(StructuredIndex) : nullptr;
2101       if (!ExistingInit && StructuredList->hasArrayFiller())
2102         ExistingInit = StructuredList->getArrayFiller();
2103 
2104       if (!ExistingInit)
2105         StructuredList =
2106           getStructuredSubobjectInit(IList, Index, CurrentObjectType,
2107                                      StructuredList, StructuredIndex,
2108                                      SourceRange(D->getLocStart(),
2109                                                  DIE->getLocEnd()));
2110       else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit))
2111         StructuredList = Result;
2112       else {
2113         if (DesignatedInitUpdateExpr *E =
2114                 dyn_cast<DesignatedInitUpdateExpr>(ExistingInit))
2115           StructuredList = E->getUpdater();
2116         else {
2117           DesignatedInitUpdateExpr *DIUE =
2118               new (SemaRef.Context) DesignatedInitUpdateExpr(SemaRef.Context,
2119                                         D->getLocStart(), ExistingInit,
2120                                         DIE->getLocEnd());
2121           StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE);
2122           StructuredList = DIUE->getUpdater();
2123         }
2124 
2125         // We need to check on source range validity because the previous
2126         // initializer does not have to be an explicit initializer. e.g.,
2127         //
2128         // struct P { int a, b; };
2129         // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
2130         //
2131         // There is an overwrite taking place because the first braced initializer
2132         // list "{ .a = 2 }" already provides value for .p.b (which is zero).
2133         if (ExistingInit->getSourceRange().isValid()) {
2134           // We are creating an initializer list that initializes the
2135           // subobjects of the current object, but there was already an
2136           // initialization that completely initialized the current
2137           // subobject, e.g., by a compound literal:
2138           //
2139           // struct X { int a, b; };
2140           // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2141           //
2142           // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2143           // designated initializer re-initializes the whole
2144           // subobject [0], overwriting previous initializers.
2145           SemaRef.Diag(D->getLocStart(),
2146                        diag::warn_subobject_initializer_overrides)
2147             << SourceRange(D->getLocStart(), DIE->getLocEnd());
2148 
2149           SemaRef.Diag(ExistingInit->getLocStart(),
2150                        diag::note_previous_initializer)
2151             << /*FIXME:has side effects=*/0
2152             << ExistingInit->getSourceRange();
2153         }
2154       }
2155     }
2156     assert(StructuredList && "Expected a structured initializer list");
2157   }
2158 
2159   if (D->isFieldDesignator()) {
2160     // C99 6.7.8p7:
2161     //
2162     //   If a designator has the form
2163     //
2164     //      . identifier
2165     //
2166     //   then the current object (defined below) shall have
2167     //   structure or union type and the identifier shall be the
2168     //   name of a member of that type.
2169     const RecordType *RT = CurrentObjectType->getAs<RecordType>();
2170     if (!RT) {
2171       SourceLocation Loc = D->getDotLoc();
2172       if (Loc.isInvalid())
2173         Loc = D->getFieldLoc();
2174       if (!VerifyOnly)
2175         SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
2176           << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
2177       ++Index;
2178       return true;
2179     }
2180 
2181     FieldDecl *KnownField = D->getField();
2182     if (!KnownField) {
2183       IdentifierInfo *FieldName = D->getFieldName();
2184       DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
2185       for (NamedDecl *ND : Lookup) {
2186         if (auto *FD = dyn_cast<FieldDecl>(ND)) {
2187           KnownField = FD;
2188           break;
2189         }
2190         if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) {
2191           // In verify mode, don't modify the original.
2192           if (VerifyOnly)
2193             DIE = CloneDesignatedInitExpr(SemaRef, DIE);
2194           ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD);
2195           D = DIE->getDesignator(DesigIdx);
2196           KnownField = cast<FieldDecl>(*IFD->chain_begin());
2197           break;
2198         }
2199       }
2200       if (!KnownField) {
2201         if (VerifyOnly) {
2202           ++Index;
2203           return true;  // No typo correction when just trying this out.
2204         }
2205 
2206         // Name lookup found something, but it wasn't a field.
2207         if (!Lookup.empty()) {
2208           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
2209             << FieldName;
2210           SemaRef.Diag(Lookup.front()->getLocation(),
2211                        diag::note_field_designator_found);
2212           ++Index;
2213           return true;
2214         }
2215 
2216         // Name lookup didn't find anything.
2217         // Determine whether this was a typo for another field name.
2218         if (TypoCorrection Corrected = SemaRef.CorrectTypo(
2219                 DeclarationNameInfo(FieldName, D->getFieldLoc()),
2220                 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr,
2221                 llvm::make_unique<FieldInitializerValidatorCCC>(RT->getDecl()),
2222                 Sema::CTK_ErrorRecovery, RT->getDecl())) {
2223           SemaRef.diagnoseTypo(
2224               Corrected,
2225               SemaRef.PDiag(diag::err_field_designator_unknown_suggest)
2226                 << FieldName << CurrentObjectType);
2227           KnownField = Corrected.getCorrectionDeclAs<FieldDecl>();
2228           hadError = true;
2229         } else {
2230           // Typo correction didn't find anything.
2231           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
2232             << FieldName << CurrentObjectType;
2233           ++Index;
2234           return true;
2235         }
2236       }
2237     }
2238 
2239     unsigned FieldIndex = 0;
2240 
2241     if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2242       FieldIndex = CXXRD->getNumBases();
2243 
2244     for (auto *FI : RT->getDecl()->fields()) {
2245       if (FI->isUnnamedBitfield())
2246         continue;
2247       if (declaresSameEntity(KnownField, FI)) {
2248         KnownField = FI;
2249         break;
2250       }
2251       ++FieldIndex;
2252     }
2253 
2254     RecordDecl::field_iterator Field =
2255         RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField));
2256 
2257     // All of the fields of a union are located at the same place in
2258     // the initializer list.
2259     if (RT->getDecl()->isUnion()) {
2260       FieldIndex = 0;
2261       if (!VerifyOnly) {
2262         FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion();
2263         if (CurrentField && !declaresSameEntity(CurrentField, *Field)) {
2264           assert(StructuredList->getNumInits() == 1
2265                  && "A union should never have more than one initializer!");
2266 
2267           // We're about to throw away an initializer, emit warning.
2268           SemaRef.Diag(D->getFieldLoc(),
2269                        diag::warn_initializer_overrides)
2270             << D->getSourceRange();
2271           Expr *ExistingInit = StructuredList->getInit(0);
2272           SemaRef.Diag(ExistingInit->getLocStart(),
2273                        diag::note_previous_initializer)
2274             << /*FIXME:has side effects=*/0
2275             << ExistingInit->getSourceRange();
2276 
2277           // remove existing initializer
2278           StructuredList->resizeInits(SemaRef.Context, 0);
2279           StructuredList->setInitializedFieldInUnion(nullptr);
2280         }
2281 
2282         StructuredList->setInitializedFieldInUnion(*Field);
2283       }
2284     }
2285 
2286     // Make sure we can use this declaration.
2287     bool InvalidUse;
2288     if (VerifyOnly)
2289       InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2290     else
2291       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
2292     if (InvalidUse) {
2293       ++Index;
2294       return true;
2295     }
2296 
2297     if (!VerifyOnly) {
2298       // Update the designator with the field declaration.
2299       D->setField(*Field);
2300 
2301       // Make sure that our non-designated initializer list has space
2302       // for a subobject corresponding to this field.
2303       if (FieldIndex >= StructuredList->getNumInits())
2304         StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
2305     }
2306 
2307     // This designator names a flexible array member.
2308     if (Field->getType()->isIncompleteArrayType()) {
2309       bool Invalid = false;
2310       if ((DesigIdx + 1) != DIE->size()) {
2311         // We can't designate an object within the flexible array
2312         // member (because GCC doesn't allow it).
2313         if (!VerifyOnly) {
2314           DesignatedInitExpr::Designator *NextD
2315             = DIE->getDesignator(DesigIdx + 1);
2316           SemaRef.Diag(NextD->getLocStart(),
2317                         diag::err_designator_into_flexible_array_member)
2318             << SourceRange(NextD->getLocStart(),
2319                            DIE->getLocEnd());
2320           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2321             << *Field;
2322         }
2323         Invalid = true;
2324       }
2325 
2326       if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
2327           !isa<StringLiteral>(DIE->getInit())) {
2328         // The initializer is not an initializer list.
2329         if (!VerifyOnly) {
2330           SemaRef.Diag(DIE->getInit()->getLocStart(),
2331                         diag::err_flexible_array_init_needs_braces)
2332             << DIE->getInit()->getSourceRange();
2333           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2334             << *Field;
2335         }
2336         Invalid = true;
2337       }
2338 
2339       // Check GNU flexible array initializer.
2340       if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
2341                                              TopLevelObject))
2342         Invalid = true;
2343 
2344       if (Invalid) {
2345         ++Index;
2346         return true;
2347       }
2348 
2349       // Initialize the array.
2350       bool prevHadError = hadError;
2351       unsigned newStructuredIndex = FieldIndex;
2352       unsigned OldIndex = Index;
2353       IList->setInit(Index, DIE->getInit());
2354 
2355       InitializedEntity MemberEntity =
2356         InitializedEntity::InitializeMember(*Field, &Entity);
2357       CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2358                           StructuredList, newStructuredIndex);
2359 
2360       IList->setInit(OldIndex, DIE);
2361       if (hadError && !prevHadError) {
2362         ++Field;
2363         ++FieldIndex;
2364         if (NextField)
2365           *NextField = Field;
2366         StructuredIndex = FieldIndex;
2367         return true;
2368       }
2369     } else {
2370       // Recurse to check later designated subobjects.
2371       QualType FieldType = Field->getType();
2372       unsigned newStructuredIndex = FieldIndex;
2373 
2374       InitializedEntity MemberEntity =
2375         InitializedEntity::InitializeMember(*Field, &Entity);
2376       if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
2377                                      FieldType, nullptr, nullptr, Index,
2378                                      StructuredList, newStructuredIndex,
2379                                      FinishSubobjectInit, false))
2380         return true;
2381     }
2382 
2383     // Find the position of the next field to be initialized in this
2384     // subobject.
2385     ++Field;
2386     ++FieldIndex;
2387 
2388     // If this the first designator, our caller will continue checking
2389     // the rest of this struct/class/union subobject.
2390     if (IsFirstDesignator) {
2391       if (NextField)
2392         *NextField = Field;
2393       StructuredIndex = FieldIndex;
2394       return false;
2395     }
2396 
2397     if (!FinishSubobjectInit)
2398       return false;
2399 
2400     // We've already initialized something in the union; we're done.
2401     if (RT->getDecl()->isUnion())
2402       return hadError;
2403 
2404     // Check the remaining fields within this class/struct/union subobject.
2405     bool prevHadError = hadError;
2406 
2407     auto NoBases =
2408         CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
2409                                         CXXRecordDecl::base_class_iterator());
2410     CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field,
2411                           false, Index, StructuredList, FieldIndex);
2412     return hadError && !prevHadError;
2413   }
2414 
2415   // C99 6.7.8p6:
2416   //
2417   //   If a designator has the form
2418   //
2419   //      [ constant-expression ]
2420   //
2421   //   then the current object (defined below) shall have array
2422   //   type and the expression shall be an integer constant
2423   //   expression. If the array is of unknown size, any
2424   //   nonnegative value is valid.
2425   //
2426   // Additionally, cope with the GNU extension that permits
2427   // designators of the form
2428   //
2429   //      [ constant-expression ... constant-expression ]
2430   const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
2431   if (!AT) {
2432     if (!VerifyOnly)
2433       SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
2434         << CurrentObjectType;
2435     ++Index;
2436     return true;
2437   }
2438 
2439   Expr *IndexExpr = nullptr;
2440   llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
2441   if (D->isArrayDesignator()) {
2442     IndexExpr = DIE->getArrayIndex(*D);
2443     DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
2444     DesignatedEndIndex = DesignatedStartIndex;
2445   } else {
2446     assert(D->isArrayRangeDesignator() && "Need array-range designator");
2447 
2448     DesignatedStartIndex =
2449       DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
2450     DesignatedEndIndex =
2451       DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
2452     IndexExpr = DIE->getArrayRangeEnd(*D);
2453 
2454     // Codegen can't handle evaluating array range designators that have side
2455     // effects, because we replicate the AST value for each initialized element.
2456     // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
2457     // elements with something that has a side effect, so codegen can emit an
2458     // "error unsupported" error instead of miscompiling the app.
2459     if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
2460         DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
2461       FullyStructuredList->sawArrayRangeDesignator();
2462   }
2463 
2464   if (isa<ConstantArrayType>(AT)) {
2465     llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
2466     DesignatedStartIndex
2467       = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
2468     DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
2469     DesignatedEndIndex
2470       = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
2471     DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
2472     if (DesignatedEndIndex >= MaxElements) {
2473       if (!VerifyOnly)
2474         SemaRef.Diag(IndexExpr->getLocStart(),
2475                       diag::err_array_designator_too_large)
2476           << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
2477           << IndexExpr->getSourceRange();
2478       ++Index;
2479       return true;
2480     }
2481   } else {
2482     unsigned DesignatedIndexBitWidth =
2483       ConstantArrayType::getMaxSizeBits(SemaRef.Context);
2484     DesignatedStartIndex =
2485       DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth);
2486     DesignatedEndIndex =
2487       DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth);
2488     DesignatedStartIndex.setIsUnsigned(true);
2489     DesignatedEndIndex.setIsUnsigned(true);
2490   }
2491 
2492   if (!VerifyOnly && StructuredList->isStringLiteralInit()) {
2493     // We're modifying a string literal init; we have to decompose the string
2494     // so we can modify the individual characters.
2495     ASTContext &Context = SemaRef.Context;
2496     Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens();
2497 
2498     // Compute the character type
2499     QualType CharTy = AT->getElementType();
2500 
2501     // Compute the type of the integer literals.
2502     QualType PromotedCharTy = CharTy;
2503     if (CharTy->isPromotableIntegerType())
2504       PromotedCharTy = Context.getPromotedIntegerType(CharTy);
2505     unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy);
2506 
2507     if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) {
2508       // Get the length of the string.
2509       uint64_t StrLen = SL->getLength();
2510       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2511         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2512       StructuredList->resizeInits(Context, StrLen);
2513 
2514       // Build a literal for each character in the string, and put them into
2515       // the init list.
2516       for (unsigned i = 0, e = StrLen; i != e; ++i) {
2517         llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i));
2518         Expr *Init = new (Context) IntegerLiteral(
2519             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2520         if (CharTy != PromotedCharTy)
2521           Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2522                                           Init, nullptr, VK_RValue);
2523         StructuredList->updateInit(Context, i, Init);
2524       }
2525     } else {
2526       ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr);
2527       std::string Str;
2528       Context.getObjCEncodingForType(E->getEncodedType(), Str);
2529 
2530       // Get the length of the string.
2531       uint64_t StrLen = Str.size();
2532       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2533         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2534       StructuredList->resizeInits(Context, StrLen);
2535 
2536       // Build a literal for each character in the string, and put them into
2537       // the init list.
2538       for (unsigned i = 0, e = StrLen; i != e; ++i) {
2539         llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]);
2540         Expr *Init = new (Context) IntegerLiteral(
2541             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2542         if (CharTy != PromotedCharTy)
2543           Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2544                                           Init, nullptr, VK_RValue);
2545         StructuredList->updateInit(Context, i, Init);
2546       }
2547     }
2548   }
2549 
2550   // Make sure that our non-designated initializer list has space
2551   // for a subobject corresponding to this array element.
2552   if (!VerifyOnly &&
2553       DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
2554     StructuredList->resizeInits(SemaRef.Context,
2555                                 DesignatedEndIndex.getZExtValue() + 1);
2556 
2557   // Repeatedly perform subobject initializations in the range
2558   // [DesignatedStartIndex, DesignatedEndIndex].
2559 
2560   // Move to the next designator
2561   unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
2562   unsigned OldIndex = Index;
2563 
2564   InitializedEntity ElementEntity =
2565     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
2566 
2567   while (DesignatedStartIndex <= DesignatedEndIndex) {
2568     // Recurse to check later designated subobjects.
2569     QualType ElementType = AT->getElementType();
2570     Index = OldIndex;
2571 
2572     ElementEntity.setElementIndex(ElementIndex);
2573     if (CheckDesignatedInitializer(
2574             ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr,
2575             nullptr, Index, StructuredList, ElementIndex,
2576             FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex),
2577             false))
2578       return true;
2579 
2580     // Move to the next index in the array that we'll be initializing.
2581     ++DesignatedStartIndex;
2582     ElementIndex = DesignatedStartIndex.getZExtValue();
2583   }
2584 
2585   // If this the first designator, our caller will continue checking
2586   // the rest of this array subobject.
2587   if (IsFirstDesignator) {
2588     if (NextElementIndex)
2589       *NextElementIndex = DesignatedStartIndex;
2590     StructuredIndex = ElementIndex;
2591     return false;
2592   }
2593 
2594   if (!FinishSubobjectInit)
2595     return false;
2596 
2597   // Check the remaining elements within this array subobject.
2598   bool prevHadError = hadError;
2599   CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
2600                  /*SubobjectIsDesignatorContext=*/false, Index,
2601                  StructuredList, ElementIndex);
2602   return hadError && !prevHadError;
2603 }
2604 
2605 // Get the structured initializer list for a subobject of type
2606 // @p CurrentObjectType.
2607 InitListExpr *
2608 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
2609                                             QualType CurrentObjectType,
2610                                             InitListExpr *StructuredList,
2611                                             unsigned StructuredIndex,
2612                                             SourceRange InitRange,
2613                                             bool IsFullyOverwritten) {
2614   if (VerifyOnly)
2615     return nullptr; // No structured list in verification-only mode.
2616   Expr *ExistingInit = nullptr;
2617   if (!StructuredList)
2618     ExistingInit = SyntacticToSemantic.lookup(IList);
2619   else if (StructuredIndex < StructuredList->getNumInits())
2620     ExistingInit = StructuredList->getInit(StructuredIndex);
2621 
2622   if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
2623     // There might have already been initializers for subobjects of the current
2624     // object, but a subsequent initializer list will overwrite the entirety
2625     // of the current object. (See DR 253 and C99 6.7.8p21). e.g.,
2626     //
2627     // struct P { char x[6]; };
2628     // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } };
2629     //
2630     // The first designated initializer is ignored, and l.x is just "f".
2631     if (!IsFullyOverwritten)
2632       return Result;
2633 
2634   if (ExistingInit) {
2635     // We are creating an initializer list that initializes the
2636     // subobjects of the current object, but there was already an
2637     // initialization that completely initialized the current
2638     // subobject, e.g., by a compound literal:
2639     //
2640     // struct X { int a, b; };
2641     // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2642     //
2643     // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2644     // designated initializer re-initializes the whole
2645     // subobject [0], overwriting previous initializers.
2646     SemaRef.Diag(InitRange.getBegin(),
2647                  diag::warn_subobject_initializer_overrides)
2648       << InitRange;
2649     SemaRef.Diag(ExistingInit->getLocStart(),
2650                   diag::note_previous_initializer)
2651       << /*FIXME:has side effects=*/0
2652       << ExistingInit->getSourceRange();
2653   }
2654 
2655   InitListExpr *Result
2656     = new (SemaRef.Context) InitListExpr(SemaRef.Context,
2657                                          InitRange.getBegin(), None,
2658                                          InitRange.getEnd());
2659 
2660   QualType ResultType = CurrentObjectType;
2661   if (!ResultType->isArrayType())
2662     ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
2663   Result->setType(ResultType);
2664 
2665   // Pre-allocate storage for the structured initializer list.
2666   unsigned NumElements = 0;
2667   unsigned NumInits = 0;
2668   bool GotNumInits = false;
2669   if (!StructuredList) {
2670     NumInits = IList->getNumInits();
2671     GotNumInits = true;
2672   } else if (Index < IList->getNumInits()) {
2673     if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
2674       NumInits = SubList->getNumInits();
2675       GotNumInits = true;
2676     }
2677   }
2678 
2679   if (const ArrayType *AType
2680       = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
2681     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
2682       NumElements = CAType->getSize().getZExtValue();
2683       // Simple heuristic so that we don't allocate a very large
2684       // initializer with many empty entries at the end.
2685       if (GotNumInits && NumElements > NumInits)
2686         NumElements = 0;
2687     }
2688   } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
2689     NumElements = VType->getNumElements();
2690   else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
2691     RecordDecl *RDecl = RType->getDecl();
2692     if (RDecl->isUnion())
2693       NumElements = 1;
2694     else
2695       NumElements = std::distance(RDecl->field_begin(), RDecl->field_end());
2696   }
2697 
2698   Result->reserveInits(SemaRef.Context, NumElements);
2699 
2700   // Link this new initializer list into the structured initializer
2701   // lists.
2702   if (StructuredList)
2703     StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
2704   else {
2705     Result->setSyntacticForm(IList);
2706     SyntacticToSemantic[IList] = Result;
2707   }
2708 
2709   return Result;
2710 }
2711 
2712 /// Update the initializer at index @p StructuredIndex within the
2713 /// structured initializer list to the value @p expr.
2714 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
2715                                                   unsigned &StructuredIndex,
2716                                                   Expr *expr) {
2717   // No structured initializer list to update
2718   if (!StructuredList)
2719     return;
2720 
2721   if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
2722                                                   StructuredIndex, expr)) {
2723     // This initializer overwrites a previous initializer. Warn.
2724     // We need to check on source range validity because the previous
2725     // initializer does not have to be an explicit initializer.
2726     // struct P { int a, b; };
2727     // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
2728     // There is an overwrite taking place because the first braced initializer
2729     // list "{ .a = 2 }' already provides value for .p.b (which is zero).
2730     if (PrevInit->getSourceRange().isValid()) {
2731       SemaRef.Diag(expr->getLocStart(),
2732                    diag::warn_initializer_overrides)
2733         << expr->getSourceRange();
2734 
2735       SemaRef.Diag(PrevInit->getLocStart(),
2736                    diag::note_previous_initializer)
2737         << /*FIXME:has side effects=*/0
2738         << PrevInit->getSourceRange();
2739     }
2740   }
2741 
2742   ++StructuredIndex;
2743 }
2744 
2745 /// Check that the given Index expression is a valid array designator
2746 /// value. This is essentially just a wrapper around
2747 /// VerifyIntegerConstantExpression that also checks for negative values
2748 /// and produces a reasonable diagnostic if there is a
2749 /// failure. Returns the index expression, possibly with an implicit cast
2750 /// added, on success.  If everything went okay, Value will receive the
2751 /// value of the constant expression.
2752 static ExprResult
2753 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
2754   SourceLocation Loc = Index->getLocStart();
2755 
2756   // Make sure this is an integer constant expression.
2757   ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value);
2758   if (Result.isInvalid())
2759     return Result;
2760 
2761   if (Value.isSigned() && Value.isNegative())
2762     return S.Diag(Loc, diag::err_array_designator_negative)
2763       << Value.toString(10) << Index->getSourceRange();
2764 
2765   Value.setIsUnsigned(true);
2766   return Result;
2767 }
2768 
2769 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
2770                                             SourceLocation Loc,
2771                                             bool GNUSyntax,
2772                                             ExprResult Init) {
2773   typedef DesignatedInitExpr::Designator ASTDesignator;
2774 
2775   bool Invalid = false;
2776   SmallVector<ASTDesignator, 32> Designators;
2777   SmallVector<Expr *, 32> InitExpressions;
2778 
2779   // Build designators and check array designator expressions.
2780   for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
2781     const Designator &D = Desig.getDesignator(Idx);
2782     switch (D.getKind()) {
2783     case Designator::FieldDesignator:
2784       Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
2785                                           D.getFieldLoc()));
2786       break;
2787 
2788     case Designator::ArrayDesignator: {
2789       Expr *Index = static_cast<Expr *>(D.getArrayIndex());
2790       llvm::APSInt IndexValue;
2791       if (!Index->isTypeDependent() && !Index->isValueDependent())
2792         Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get();
2793       if (!Index)
2794         Invalid = true;
2795       else {
2796         Designators.push_back(ASTDesignator(InitExpressions.size(),
2797                                             D.getLBracketLoc(),
2798                                             D.getRBracketLoc()));
2799         InitExpressions.push_back(Index);
2800       }
2801       break;
2802     }
2803 
2804     case Designator::ArrayRangeDesignator: {
2805       Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
2806       Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
2807       llvm::APSInt StartValue;
2808       llvm::APSInt EndValue;
2809       bool StartDependent = StartIndex->isTypeDependent() ||
2810                             StartIndex->isValueDependent();
2811       bool EndDependent = EndIndex->isTypeDependent() ||
2812                           EndIndex->isValueDependent();
2813       if (!StartDependent)
2814         StartIndex =
2815             CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get();
2816       if (!EndDependent)
2817         EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get();
2818 
2819       if (!StartIndex || !EndIndex)
2820         Invalid = true;
2821       else {
2822         // Make sure we're comparing values with the same bit width.
2823         if (StartDependent || EndDependent) {
2824           // Nothing to compute.
2825         } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
2826           EndValue = EndValue.extend(StartValue.getBitWidth());
2827         else if (StartValue.getBitWidth() < EndValue.getBitWidth())
2828           StartValue = StartValue.extend(EndValue.getBitWidth());
2829 
2830         if (!StartDependent && !EndDependent && EndValue < StartValue) {
2831           Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
2832             << StartValue.toString(10) << EndValue.toString(10)
2833             << StartIndex->getSourceRange() << EndIndex->getSourceRange();
2834           Invalid = true;
2835         } else {
2836           Designators.push_back(ASTDesignator(InitExpressions.size(),
2837                                               D.getLBracketLoc(),
2838                                               D.getEllipsisLoc(),
2839                                               D.getRBracketLoc()));
2840           InitExpressions.push_back(StartIndex);
2841           InitExpressions.push_back(EndIndex);
2842         }
2843       }
2844       break;
2845     }
2846     }
2847   }
2848 
2849   if (Invalid || Init.isInvalid())
2850     return ExprError();
2851 
2852   // Clear out the expressions within the designation.
2853   Desig.ClearExprs(*this);
2854 
2855   DesignatedInitExpr *DIE
2856     = DesignatedInitExpr::Create(Context,
2857                                  Designators,
2858                                  InitExpressions, Loc, GNUSyntax,
2859                                  Init.getAs<Expr>());
2860 
2861   if (!getLangOpts().C99)
2862     Diag(DIE->getLocStart(), diag::ext_designated_init)
2863       << DIE->getSourceRange();
2864 
2865   return DIE;
2866 }
2867 
2868 //===----------------------------------------------------------------------===//
2869 // Initialization entity
2870 //===----------------------------------------------------------------------===//
2871 
2872 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
2873                                      const InitializedEntity &Parent)
2874   : Parent(&Parent), Index(Index)
2875 {
2876   if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
2877     Kind = EK_ArrayElement;
2878     Type = AT->getElementType();
2879   } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
2880     Kind = EK_VectorElement;
2881     Type = VT->getElementType();
2882   } else {
2883     const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
2884     assert(CT && "Unexpected type");
2885     Kind = EK_ComplexElement;
2886     Type = CT->getElementType();
2887   }
2888 }
2889 
2890 InitializedEntity
2891 InitializedEntity::InitializeBase(ASTContext &Context,
2892                                   const CXXBaseSpecifier *Base,
2893                                   bool IsInheritedVirtualBase,
2894                                   const InitializedEntity *Parent) {
2895   InitializedEntity Result;
2896   Result.Kind = EK_Base;
2897   Result.Parent = Parent;
2898   Result.Base = reinterpret_cast<uintptr_t>(Base);
2899   if (IsInheritedVirtualBase)
2900     Result.Base |= 0x01;
2901 
2902   Result.Type = Base->getType();
2903   return Result;
2904 }
2905 
2906 DeclarationName InitializedEntity::getName() const {
2907   switch (getKind()) {
2908   case EK_Parameter:
2909   case EK_Parameter_CF_Audited: {
2910     ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2911     return (D ? D->getDeclName() : DeclarationName());
2912   }
2913 
2914   case EK_Variable:
2915   case EK_Member:
2916   case EK_Binding:
2917     return Variable.VariableOrMember->getDeclName();
2918 
2919   case EK_LambdaCapture:
2920     return DeclarationName(Capture.VarID);
2921 
2922   case EK_Result:
2923   case EK_Exception:
2924   case EK_New:
2925   case EK_Temporary:
2926   case EK_Base:
2927   case EK_Delegating:
2928   case EK_ArrayElement:
2929   case EK_VectorElement:
2930   case EK_ComplexElement:
2931   case EK_BlockElement:
2932   case EK_CompoundLiteralInit:
2933   case EK_RelatedResult:
2934     return DeclarationName();
2935   }
2936 
2937   llvm_unreachable("Invalid EntityKind!");
2938 }
2939 
2940 ValueDecl *InitializedEntity::getDecl() const {
2941   switch (getKind()) {
2942   case EK_Variable:
2943   case EK_Member:
2944   case EK_Binding:
2945     return Variable.VariableOrMember;
2946 
2947   case EK_Parameter:
2948   case EK_Parameter_CF_Audited:
2949     return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2950 
2951   case EK_Result:
2952   case EK_Exception:
2953   case EK_New:
2954   case EK_Temporary:
2955   case EK_Base:
2956   case EK_Delegating:
2957   case EK_ArrayElement:
2958   case EK_VectorElement:
2959   case EK_ComplexElement:
2960   case EK_BlockElement:
2961   case EK_LambdaCapture:
2962   case EK_CompoundLiteralInit:
2963   case EK_RelatedResult:
2964     return nullptr;
2965   }
2966 
2967   llvm_unreachable("Invalid EntityKind!");
2968 }
2969 
2970 bool InitializedEntity::allowsNRVO() const {
2971   switch (getKind()) {
2972   case EK_Result:
2973   case EK_Exception:
2974     return LocAndNRVO.NRVO;
2975 
2976   case EK_Variable:
2977   case EK_Parameter:
2978   case EK_Parameter_CF_Audited:
2979   case EK_Member:
2980   case EK_Binding:
2981   case EK_New:
2982   case EK_Temporary:
2983   case EK_CompoundLiteralInit:
2984   case EK_Base:
2985   case EK_Delegating:
2986   case EK_ArrayElement:
2987   case EK_VectorElement:
2988   case EK_ComplexElement:
2989   case EK_BlockElement:
2990   case EK_LambdaCapture:
2991   case EK_RelatedResult:
2992     break;
2993   }
2994 
2995   return false;
2996 }
2997 
2998 unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const {
2999   assert(getParent() != this);
3000   unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0;
3001   for (unsigned I = 0; I != Depth; ++I)
3002     OS << "`-";
3003 
3004   switch (getKind()) {
3005   case EK_Variable: OS << "Variable"; break;
3006   case EK_Parameter: OS << "Parameter"; break;
3007   case EK_Parameter_CF_Audited: OS << "CF audited function Parameter";
3008     break;
3009   case EK_Result: OS << "Result"; break;
3010   case EK_Exception: OS << "Exception"; break;
3011   case EK_Member: OS << "Member"; break;
3012   case EK_Binding: OS << "Binding"; break;
3013   case EK_New: OS << "New"; break;
3014   case EK_Temporary: OS << "Temporary"; break;
3015   case EK_CompoundLiteralInit: OS << "CompoundLiteral";break;
3016   case EK_RelatedResult: OS << "RelatedResult"; break;
3017   case EK_Base: OS << "Base"; break;
3018   case EK_Delegating: OS << "Delegating"; break;
3019   case EK_ArrayElement: OS << "ArrayElement " << Index; break;
3020   case EK_VectorElement: OS << "VectorElement " << Index; break;
3021   case EK_ComplexElement: OS << "ComplexElement " << Index; break;
3022   case EK_BlockElement: OS << "Block"; break;
3023   case EK_LambdaCapture:
3024     OS << "LambdaCapture ";
3025     OS << DeclarationName(Capture.VarID);
3026     break;
3027   }
3028 
3029   if (auto *D = getDecl()) {
3030     OS << " ";
3031     D->printQualifiedName(OS);
3032   }
3033 
3034   OS << " '" << getType().getAsString() << "'\n";
3035 
3036   return Depth + 1;
3037 }
3038 
3039 LLVM_DUMP_METHOD void InitializedEntity::dump() const {
3040   dumpImpl(llvm::errs());
3041 }
3042 
3043 //===----------------------------------------------------------------------===//
3044 // Initialization sequence
3045 //===----------------------------------------------------------------------===//
3046 
3047 void InitializationSequence::Step::Destroy() {
3048   switch (Kind) {
3049   case SK_ResolveAddressOfOverloadedFunction:
3050   case SK_CastDerivedToBaseRValue:
3051   case SK_CastDerivedToBaseXValue:
3052   case SK_CastDerivedToBaseLValue:
3053   case SK_BindReference:
3054   case SK_BindReferenceToTemporary:
3055   case SK_FinalCopy:
3056   case SK_ExtraneousCopyToTemporary:
3057   case SK_UserConversion:
3058   case SK_QualificationConversionRValue:
3059   case SK_QualificationConversionXValue:
3060   case SK_QualificationConversionLValue:
3061   case SK_AtomicConversion:
3062   case SK_LValueToRValue:
3063   case SK_ListInitialization:
3064   case SK_UnwrapInitList:
3065   case SK_RewrapInitList:
3066   case SK_ConstructorInitialization:
3067   case SK_ConstructorInitializationFromList:
3068   case SK_ZeroInitialization:
3069   case SK_CAssignment:
3070   case SK_StringInit:
3071   case SK_ObjCObjectConversion:
3072   case SK_ArrayLoopIndex:
3073   case SK_ArrayLoopInit:
3074   case SK_ArrayInit:
3075   case SK_GNUArrayInit:
3076   case SK_ParenthesizedArrayInit:
3077   case SK_PassByIndirectCopyRestore:
3078   case SK_PassByIndirectRestore:
3079   case SK_ProduceObjCObject:
3080   case SK_StdInitializerList:
3081   case SK_StdInitializerListConstructorCall:
3082   case SK_OCLSamplerInit:
3083   case SK_OCLZeroEvent:
3084   case SK_OCLZeroQueue:
3085     break;
3086 
3087   case SK_ConversionSequence:
3088   case SK_ConversionSequenceNoNarrowing:
3089     delete ICS;
3090   }
3091 }
3092 
3093 bool InitializationSequence::isDirectReferenceBinding() const {
3094   // There can be some lvalue adjustments after the SK_BindReference step.
3095   for (auto I = Steps.rbegin(); I != Steps.rend(); ++I) {
3096     if (I->Kind == SK_BindReference)
3097       return true;
3098     if (I->Kind == SK_BindReferenceToTemporary)
3099       return false;
3100   }
3101   return false;
3102 }
3103 
3104 bool InitializationSequence::isAmbiguous() const {
3105   if (!Failed())
3106     return false;
3107 
3108   switch (getFailureKind()) {
3109   case FK_TooManyInitsForReference:
3110   case FK_ArrayNeedsInitList:
3111   case FK_ArrayNeedsInitListOrStringLiteral:
3112   case FK_ArrayNeedsInitListOrWideStringLiteral:
3113   case FK_NarrowStringIntoWideCharArray:
3114   case FK_WideStringIntoCharArray:
3115   case FK_IncompatWideStringIntoWideChar:
3116   case FK_AddressOfOverloadFailed: // FIXME: Could do better
3117   case FK_NonConstLValueReferenceBindingToTemporary:
3118   case FK_NonConstLValueReferenceBindingToBitfield:
3119   case FK_NonConstLValueReferenceBindingToVectorElement:
3120   case FK_NonConstLValueReferenceBindingToUnrelated:
3121   case FK_RValueReferenceBindingToLValue:
3122   case FK_ReferenceInitDropsQualifiers:
3123   case FK_ReferenceInitFailed:
3124   case FK_ConversionFailed:
3125   case FK_ConversionFromPropertyFailed:
3126   case FK_TooManyInitsForScalar:
3127   case FK_ReferenceBindingToInitList:
3128   case FK_InitListBadDestinationType:
3129   case FK_DefaultInitOfConst:
3130   case FK_Incomplete:
3131   case FK_ArrayTypeMismatch:
3132   case FK_NonConstantArrayInit:
3133   case FK_ListInitializationFailed:
3134   case FK_VariableLengthArrayHasInitializer:
3135   case FK_PlaceholderType:
3136   case FK_ExplicitConstructor:
3137   case FK_AddressOfUnaddressableFunction:
3138     return false;
3139 
3140   case FK_ReferenceInitOverloadFailed:
3141   case FK_UserConversionOverloadFailed:
3142   case FK_ConstructorOverloadFailed:
3143   case FK_ListConstructorOverloadFailed:
3144     return FailedOverloadResult == OR_Ambiguous;
3145   }
3146 
3147   llvm_unreachable("Invalid EntityKind!");
3148 }
3149 
3150 bool InitializationSequence::isConstructorInitialization() const {
3151   return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
3152 }
3153 
3154 void
3155 InitializationSequence
3156 ::AddAddressOverloadResolutionStep(FunctionDecl *Function,
3157                                    DeclAccessPair Found,
3158                                    bool HadMultipleCandidates) {
3159   Step S;
3160   S.Kind = SK_ResolveAddressOfOverloadedFunction;
3161   S.Type = Function->getType();
3162   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3163   S.Function.Function = Function;
3164   S.Function.FoundDecl = Found;
3165   Steps.push_back(S);
3166 }
3167 
3168 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
3169                                                       ExprValueKind VK) {
3170   Step S;
3171   switch (VK) {
3172   case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
3173   case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
3174   case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
3175   }
3176   S.Type = BaseType;
3177   Steps.push_back(S);
3178 }
3179 
3180 void InitializationSequence::AddReferenceBindingStep(QualType T,
3181                                                      bool BindingTemporary) {
3182   Step S;
3183   S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
3184   S.Type = T;
3185   Steps.push_back(S);
3186 }
3187 
3188 void InitializationSequence::AddFinalCopy(QualType T) {
3189   Step S;
3190   S.Kind = SK_FinalCopy;
3191   S.Type = T;
3192   Steps.push_back(S);
3193 }
3194 
3195 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
3196   Step S;
3197   S.Kind = SK_ExtraneousCopyToTemporary;
3198   S.Type = T;
3199   Steps.push_back(S);
3200 }
3201 
3202 void
3203 InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
3204                                               DeclAccessPair FoundDecl,
3205                                               QualType T,
3206                                               bool HadMultipleCandidates) {
3207   Step S;
3208   S.Kind = SK_UserConversion;
3209   S.Type = T;
3210   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3211   S.Function.Function = Function;
3212   S.Function.FoundDecl = FoundDecl;
3213   Steps.push_back(S);
3214 }
3215 
3216 void InitializationSequence::AddQualificationConversionStep(QualType Ty,
3217                                                             ExprValueKind VK) {
3218   Step S;
3219   S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
3220   switch (VK) {
3221   case VK_RValue:
3222     S.Kind = SK_QualificationConversionRValue;
3223     break;
3224   case VK_XValue:
3225     S.Kind = SK_QualificationConversionXValue;
3226     break;
3227   case VK_LValue:
3228     S.Kind = SK_QualificationConversionLValue;
3229     break;
3230   }
3231   S.Type = Ty;
3232   Steps.push_back(S);
3233 }
3234 
3235 void InitializationSequence::AddAtomicConversionStep(QualType Ty) {
3236   Step S;
3237   S.Kind = SK_AtomicConversion;
3238   S.Type = Ty;
3239   Steps.push_back(S);
3240 }
3241 
3242 void InitializationSequence::AddLValueToRValueStep(QualType Ty) {
3243   assert(!Ty.hasQualifiers() && "rvalues may not have qualifiers");
3244 
3245   Step S;
3246   S.Kind = SK_LValueToRValue;
3247   S.Type = Ty;
3248   Steps.push_back(S);
3249 }
3250 
3251 void InitializationSequence::AddConversionSequenceStep(
3252     const ImplicitConversionSequence &ICS, QualType T,
3253     bool TopLevelOfInitList) {
3254   Step S;
3255   S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing
3256                               : SK_ConversionSequence;
3257   S.Type = T;
3258   S.ICS = new ImplicitConversionSequence(ICS);
3259   Steps.push_back(S);
3260 }
3261 
3262 void InitializationSequence::AddListInitializationStep(QualType T) {
3263   Step S;
3264   S.Kind = SK_ListInitialization;
3265   S.Type = T;
3266   Steps.push_back(S);
3267 }
3268 
3269 void InitializationSequence::AddConstructorInitializationStep(
3270     DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T,
3271     bool HadMultipleCandidates, bool FromInitList, bool AsInitList) {
3272   Step S;
3273   S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall
3274                                      : SK_ConstructorInitializationFromList
3275                         : SK_ConstructorInitialization;
3276   S.Type = T;
3277   S.Function.HadMultipleCandidates = HadMultipleCandidates;
3278   S.Function.Function = Constructor;
3279   S.Function.FoundDecl = FoundDecl;
3280   Steps.push_back(S);
3281 }
3282 
3283 void InitializationSequence::AddZeroInitializationStep(QualType T) {
3284   Step S;
3285   S.Kind = SK_ZeroInitialization;
3286   S.Type = T;
3287   Steps.push_back(S);
3288 }
3289 
3290 void InitializationSequence::AddCAssignmentStep(QualType T) {
3291   Step S;
3292   S.Kind = SK_CAssignment;
3293   S.Type = T;
3294   Steps.push_back(S);
3295 }
3296 
3297 void InitializationSequence::AddStringInitStep(QualType T) {
3298   Step S;
3299   S.Kind = SK_StringInit;
3300   S.Type = T;
3301   Steps.push_back(S);
3302 }
3303 
3304 void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
3305   Step S;
3306   S.Kind = SK_ObjCObjectConversion;
3307   S.Type = T;
3308   Steps.push_back(S);
3309 }
3310 
3311 void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) {
3312   Step S;
3313   S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit;
3314   S.Type = T;
3315   Steps.push_back(S);
3316 }
3317 
3318 void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) {
3319   Step S;
3320   S.Kind = SK_ArrayLoopIndex;
3321   S.Type = EltT;
3322   Steps.insert(Steps.begin(), S);
3323 
3324   S.Kind = SK_ArrayLoopInit;
3325   S.Type = T;
3326   Steps.push_back(S);
3327 }
3328 
3329 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
3330   Step S;
3331   S.Kind = SK_ParenthesizedArrayInit;
3332   S.Type = T;
3333   Steps.push_back(S);
3334 }
3335 
3336 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
3337                                                               bool shouldCopy) {
3338   Step s;
3339   s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
3340                        : SK_PassByIndirectRestore);
3341   s.Type = type;
3342   Steps.push_back(s);
3343 }
3344 
3345 void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
3346   Step S;
3347   S.Kind = SK_ProduceObjCObject;
3348   S.Type = T;
3349   Steps.push_back(S);
3350 }
3351 
3352 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
3353   Step S;
3354   S.Kind = SK_StdInitializerList;
3355   S.Type = T;
3356   Steps.push_back(S);
3357 }
3358 
3359 void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
3360   Step S;
3361   S.Kind = SK_OCLSamplerInit;
3362   S.Type = T;
3363   Steps.push_back(S);
3364 }
3365 
3366 void InitializationSequence::AddOCLZeroEventStep(QualType T) {
3367   Step S;
3368   S.Kind = SK_OCLZeroEvent;
3369   S.Type = T;
3370   Steps.push_back(S);
3371 }
3372 
3373 void InitializationSequence::AddOCLZeroQueueStep(QualType T) {
3374   Step S;
3375   S.Kind = SK_OCLZeroQueue;
3376   S.Type = T;
3377   Steps.push_back(S);
3378 }
3379 
3380 void InitializationSequence::RewrapReferenceInitList(QualType T,
3381                                                      InitListExpr *Syntactic) {
3382   assert(Syntactic->getNumInits() == 1 &&
3383          "Can only rewrap trivial init lists.");
3384   Step S;
3385   S.Kind = SK_UnwrapInitList;
3386   S.Type = Syntactic->getInit(0)->getType();
3387   Steps.insert(Steps.begin(), S);
3388 
3389   S.Kind = SK_RewrapInitList;
3390   S.Type = T;
3391   S.WrappingSyntacticList = Syntactic;
3392   Steps.push_back(S);
3393 }
3394 
3395 void InitializationSequence::SetOverloadFailure(FailureKind Failure,
3396                                                 OverloadingResult Result) {
3397   setSequenceKind(FailedSequence);
3398   this->Failure = Failure;
3399   this->FailedOverloadResult = Result;
3400 }
3401 
3402 //===----------------------------------------------------------------------===//
3403 // Attempt initialization
3404 //===----------------------------------------------------------------------===//
3405 
3406 /// Tries to add a zero initializer. Returns true if that worked.
3407 static bool
3408 maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence,
3409                                    const InitializedEntity &Entity) {
3410   if (Entity.getKind() != InitializedEntity::EK_Variable)
3411     return false;
3412 
3413   VarDecl *VD = cast<VarDecl>(Entity.getDecl());
3414   if (VD->getInit() || VD->getLocEnd().isMacroID())
3415     return false;
3416 
3417   QualType VariableTy = VD->getType().getCanonicalType();
3418   SourceLocation Loc = S.getLocForEndOfToken(VD->getLocEnd());
3419   std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
3420   if (!Init.empty()) {
3421     Sequence.AddZeroInitializationStep(Entity.getType());
3422     Sequence.SetZeroInitializationFixit(Init, Loc);
3423     return true;
3424   }
3425   return false;
3426 }
3427 
3428 static void MaybeProduceObjCObject(Sema &S,
3429                                    InitializationSequence &Sequence,
3430                                    const InitializedEntity &Entity) {
3431   if (!S.getLangOpts().ObjCAutoRefCount) return;
3432 
3433   /// When initializing a parameter, produce the value if it's marked
3434   /// __attribute__((ns_consumed)).
3435   if (Entity.isParameterKind()) {
3436     if (!Entity.isParameterConsumed())
3437       return;
3438 
3439     assert(Entity.getType()->isObjCRetainableType() &&
3440            "consuming an object of unretainable type?");
3441     Sequence.AddProduceObjCObjectStep(Entity.getType());
3442 
3443   /// When initializing a return value, if the return type is a
3444   /// retainable type, then returns need to immediately retain the
3445   /// object.  If an autorelease is required, it will be done at the
3446   /// last instant.
3447   } else if (Entity.getKind() == InitializedEntity::EK_Result) {
3448     if (!Entity.getType()->isObjCRetainableType())
3449       return;
3450 
3451     Sequence.AddProduceObjCObjectStep(Entity.getType());
3452   }
3453 }
3454 
3455 static void TryListInitialization(Sema &S,
3456                                   const InitializedEntity &Entity,
3457                                   const InitializationKind &Kind,
3458                                   InitListExpr *InitList,
3459                                   InitializationSequence &Sequence,
3460                                   bool TreatUnavailableAsInvalid);
3461 
3462 /// \brief When initializing from init list via constructor, handle
3463 /// initialization of an object of type std::initializer_list<T>.
3464 ///
3465 /// \return true if we have handled initialization of an object of type
3466 /// std::initializer_list<T>, false otherwise.
3467 static bool TryInitializerListConstruction(Sema &S,
3468                                            InitListExpr *List,
3469                                            QualType DestType,
3470                                            InitializationSequence &Sequence,
3471                                            bool TreatUnavailableAsInvalid) {
3472   QualType E;
3473   if (!S.isStdInitializerList(DestType, &E))
3474     return false;
3475 
3476   if (!S.isCompleteType(List->getExprLoc(), E)) {
3477     Sequence.setIncompleteTypeFailure(E);
3478     return true;
3479   }
3480 
3481   // Try initializing a temporary array from the init list.
3482   QualType ArrayType = S.Context.getConstantArrayType(
3483       E.withConst(), llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
3484                                  List->getNumInits()),
3485       clang::ArrayType::Normal, 0);
3486   InitializedEntity HiddenArray =
3487       InitializedEntity::InitializeTemporary(ArrayType);
3488   InitializationKind Kind =
3489       InitializationKind::CreateDirectList(List->getExprLoc());
3490   TryListInitialization(S, HiddenArray, Kind, List, Sequence,
3491                         TreatUnavailableAsInvalid);
3492   if (Sequence)
3493     Sequence.AddStdInitializerListConstructionStep(DestType);
3494   return true;
3495 }
3496 
3497 /// Determine if the constructor has the signature of a copy or move
3498 /// constructor for the type T of the class in which it was found. That is,
3499 /// determine if its first parameter is of type T or reference to (possibly
3500 /// cv-qualified) T.
3501 static bool hasCopyOrMoveCtorParam(ASTContext &Ctx,
3502                                    const ConstructorInfo &Info) {
3503   if (Info.Constructor->getNumParams() == 0)
3504     return false;
3505 
3506   QualType ParmT =
3507       Info.Constructor->getParamDecl(0)->getType().getNonReferenceType();
3508   QualType ClassT =
3509       Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext()));
3510 
3511   return Ctx.hasSameUnqualifiedType(ParmT, ClassT);
3512 }
3513 
3514 static OverloadingResult
3515 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
3516                            MultiExprArg Args,
3517                            OverloadCandidateSet &CandidateSet,
3518                            DeclContext::lookup_result Ctors,
3519                            OverloadCandidateSet::iterator &Best,
3520                            bool CopyInitializing, bool AllowExplicit,
3521                            bool OnlyListConstructors, bool IsListInit,
3522                            bool SecondStepOfCopyInit = false) {
3523   CandidateSet.clear();
3524 
3525   for (NamedDecl *D : Ctors) {
3526     auto Info = getConstructorInfo(D);
3527     if (!Info.Constructor || Info.Constructor->isInvalidDecl())
3528       continue;
3529 
3530     if (!AllowExplicit && Info.Constructor->isExplicit())
3531       continue;
3532 
3533     if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor))
3534       continue;
3535 
3536     // C++11 [over.best.ics]p4:
3537     //   ... and the constructor or user-defined conversion function is a
3538     //   candidate by
3539     //   - 13.3.1.3, when the argument is the temporary in the second step
3540     //     of a class copy-initialization, or
3541     //   - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here]
3542     //   - the second phase of 13.3.1.7 when the initializer list has exactly
3543     //     one element that is itself an initializer list, and the target is
3544     //     the first parameter of a constructor of class X, and the conversion
3545     //     is to X or reference to (possibly cv-qualified X),
3546     //   user-defined conversion sequences are not considered.
3547     bool SuppressUserConversions =
3548         SecondStepOfCopyInit ||
3549         (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
3550          hasCopyOrMoveCtorParam(S.Context, Info));
3551 
3552     if (Info.ConstructorTmpl)
3553       S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
3554                                      /*ExplicitArgs*/ nullptr, Args,
3555                                      CandidateSet, SuppressUserConversions);
3556     else {
3557       // C++ [over.match.copy]p1:
3558       //   - When initializing a temporary to be bound to the first parameter
3559       //     of a constructor [for type T] that takes a reference to possibly
3560       //     cv-qualified T as its first argument, called with a single
3561       //     argument in the context of direct-initialization, explicit
3562       //     conversion functions are also considered.
3563       // FIXME: What if a constructor template instantiates to such a signature?
3564       bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
3565                                Args.size() == 1 &&
3566                                hasCopyOrMoveCtorParam(S.Context, Info);
3567       S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args,
3568                              CandidateSet, SuppressUserConversions,
3569                              /*PartialOverloading=*/false,
3570                              /*AllowExplicit=*/AllowExplicitConv);
3571     }
3572   }
3573 
3574   // Perform overload resolution and return the result.
3575   return CandidateSet.BestViableFunction(S, DeclLoc, Best);
3576 }
3577 
3578 /// \brief Attempt initialization by constructor (C++ [dcl.init]), which
3579 /// enumerates the constructors of the initialized entity and performs overload
3580 /// resolution to select the best.
3581 /// \param DestType       The destination class type.
3582 /// \param DestArrayType  The destination type, which is either DestType or
3583 ///                       a (possibly multidimensional) array of DestType.
3584 /// \param IsListInit     Is this list-initialization?
3585 /// \param IsInitListCopy Is this non-list-initialization resulting from a
3586 ///                       list-initialization from {x} where x is the same
3587 ///                       type as the entity?
3588 static void TryConstructorInitialization(Sema &S,
3589                                          const InitializedEntity &Entity,
3590                                          const InitializationKind &Kind,
3591                                          MultiExprArg Args, QualType DestType,
3592                                          QualType DestArrayType,
3593                                          InitializationSequence &Sequence,
3594                                          bool IsListInit = false,
3595                                          bool IsInitListCopy = false) {
3596   assert(((!IsListInit && !IsInitListCopy) ||
3597           (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&
3598          "IsListInit/IsInitListCopy must come with a single initializer list "
3599          "argument.");
3600   InitListExpr *ILE =
3601       (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr;
3602   MultiExprArg UnwrappedArgs =
3603       ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args;
3604 
3605   // The type we're constructing needs to be complete.
3606   if (!S.isCompleteType(Kind.getLocation(), DestType)) {
3607     Sequence.setIncompleteTypeFailure(DestType);
3608     return;
3609   }
3610 
3611   // C++1z [dcl.init]p17:
3612   //     - If the initializer expression is a prvalue and the cv-unqualified
3613   //       version of the source type is the same class as the class of the
3614   //       destination, the initializer expression is used to initialize the
3615   //       destination object.
3616   // Per DR (no number yet), this does not apply when initializing a base
3617   // class or delegating to another constructor from a mem-initializer.
3618   if (S.getLangOpts().CPlusPlus1z &&
3619       Entity.getKind() != InitializedEntity::EK_Base &&
3620       Entity.getKind() != InitializedEntity::EK_Delegating &&
3621       UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isRValue() &&
3622       S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) {
3623     // Convert qualifications if necessary.
3624     Sequence.AddQualificationConversionStep(DestType, VK_RValue);
3625     if (ILE)
3626       Sequence.RewrapReferenceInitList(DestType, ILE);
3627     return;
3628   }
3629 
3630   const RecordType *DestRecordType = DestType->getAs<RecordType>();
3631   assert(DestRecordType && "Constructor initialization requires record type");
3632   CXXRecordDecl *DestRecordDecl
3633     = cast<CXXRecordDecl>(DestRecordType->getDecl());
3634 
3635   // Build the candidate set directly in the initialization sequence
3636   // structure, so that it will persist if we fail.
3637   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3638 
3639   // Determine whether we are allowed to call explicit constructors or
3640   // explicit conversion operators.
3641   bool AllowExplicit = Kind.AllowExplicit() || IsListInit;
3642   bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
3643 
3644   //   - Otherwise, if T is a class type, constructors are considered. The
3645   //     applicable constructors are enumerated, and the best one is chosen
3646   //     through overload resolution.
3647   DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl);
3648 
3649   OverloadingResult Result = OR_No_Viable_Function;
3650   OverloadCandidateSet::iterator Best;
3651   bool AsInitializerList = false;
3652 
3653   // C++11 [over.match.list]p1, per DR1467:
3654   //   When objects of non-aggregate type T are list-initialized, such that
3655   //   8.5.4 [dcl.init.list] specifies that overload resolution is performed
3656   //   according to the rules in this section, overload resolution selects
3657   //   the constructor in two phases:
3658   //
3659   //   - Initially, the candidate functions are the initializer-list
3660   //     constructors of the class T and the argument list consists of the
3661   //     initializer list as a single argument.
3662   if (IsListInit) {
3663     AsInitializerList = true;
3664 
3665     // If the initializer list has no elements and T has a default constructor,
3666     // the first phase is omitted.
3667     if (!(UnwrappedArgs.empty() && DestRecordDecl->hasDefaultConstructor()))
3668       Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
3669                                           CandidateSet, Ctors, Best,
3670                                           CopyInitialization, AllowExplicit,
3671                                           /*OnlyListConstructor=*/true,
3672                                           IsListInit);
3673   }
3674 
3675   // C++11 [over.match.list]p1:
3676   //   - If no viable initializer-list constructor is found, overload resolution
3677   //     is performed again, where the candidate functions are all the
3678   //     constructors of the class T and the argument list consists of the
3679   //     elements of the initializer list.
3680   if (Result == OR_No_Viable_Function) {
3681     AsInitializerList = false;
3682     Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs,
3683                                         CandidateSet, Ctors, Best,
3684                                         CopyInitialization, AllowExplicit,
3685                                         /*OnlyListConstructors=*/false,
3686                                         IsListInit);
3687   }
3688   if (Result) {
3689     Sequence.SetOverloadFailure(IsListInit ?
3690                       InitializationSequence::FK_ListConstructorOverloadFailed :
3691                       InitializationSequence::FK_ConstructorOverloadFailed,
3692                                 Result);
3693     return;
3694   }
3695 
3696   // C++11 [dcl.init]p6:
3697   //   If a program calls for the default initialization of an object
3698   //   of a const-qualified type T, T shall be a class type with a
3699   //   user-provided default constructor.
3700   // C++ core issue 253 proposal:
3701   //   If the implicit default constructor initializes all subobjects, no
3702   //   initializer should be required.
3703   // The 253 proposal is for example needed to process libstdc++ headers in 5.x.
3704   CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
3705   if (Kind.getKind() == InitializationKind::IK_Default &&
3706       Entity.getType().isConstQualified()) {
3707     if (!CtorDecl->getParent()->allowConstDefaultInit()) {
3708       if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
3709         Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3710       return;
3711     }
3712   }
3713 
3714   // C++11 [over.match.list]p1:
3715   //   In copy-list-initialization, if an explicit constructor is chosen, the
3716   //   initializer is ill-formed.
3717   if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
3718     Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
3719     return;
3720   }
3721 
3722   // Add the constructor initialization step. Any cv-qualification conversion is
3723   // subsumed by the initialization.
3724   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3725   Sequence.AddConstructorInitializationStep(
3726       Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates,
3727       IsListInit | IsInitListCopy, AsInitializerList);
3728 }
3729 
3730 static bool
3731 ResolveOverloadedFunctionForReferenceBinding(Sema &S,
3732                                              Expr *Initializer,
3733                                              QualType &SourceType,
3734                                              QualType &UnqualifiedSourceType,
3735                                              QualType UnqualifiedTargetType,
3736                                              InitializationSequence &Sequence) {
3737   if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
3738         S.Context.OverloadTy) {
3739     DeclAccessPair Found;
3740     bool HadMultipleCandidates = false;
3741     if (FunctionDecl *Fn
3742         = S.ResolveAddressOfOverloadedFunction(Initializer,
3743                                                UnqualifiedTargetType,
3744                                                false, Found,
3745                                                &HadMultipleCandidates)) {
3746       Sequence.AddAddressOverloadResolutionStep(Fn, Found,
3747                                                 HadMultipleCandidates);
3748       SourceType = Fn->getType();
3749       UnqualifiedSourceType = SourceType.getUnqualifiedType();
3750     } else if (!UnqualifiedTargetType->isRecordType()) {
3751       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3752       return true;
3753     }
3754   }
3755   return false;
3756 }
3757 
3758 static void TryReferenceInitializationCore(Sema &S,
3759                                            const InitializedEntity &Entity,
3760                                            const InitializationKind &Kind,
3761                                            Expr *Initializer,
3762                                            QualType cv1T1, QualType T1,
3763                                            Qualifiers T1Quals,
3764                                            QualType cv2T2, QualType T2,
3765                                            Qualifiers T2Quals,
3766                                            InitializationSequence &Sequence);
3767 
3768 static void TryValueInitialization(Sema &S,
3769                                    const InitializedEntity &Entity,
3770                                    const InitializationKind &Kind,
3771                                    InitializationSequence &Sequence,
3772                                    InitListExpr *InitList = nullptr);
3773 
3774 /// \brief Attempt list initialization of a reference.
3775 static void TryReferenceListInitialization(Sema &S,
3776                                            const InitializedEntity &Entity,
3777                                            const InitializationKind &Kind,
3778                                            InitListExpr *InitList,
3779                                            InitializationSequence &Sequence,
3780                                            bool TreatUnavailableAsInvalid) {
3781   // First, catch C++03 where this isn't possible.
3782   if (!S.getLangOpts().CPlusPlus11) {
3783     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
3784     return;
3785   }
3786   // Can't reference initialize a compound literal.
3787   if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) {
3788     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
3789     return;
3790   }
3791 
3792   QualType DestType = Entity.getType();
3793   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3794   Qualifiers T1Quals;
3795   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3796 
3797   // Reference initialization via an initializer list works thus:
3798   // If the initializer list consists of a single element that is
3799   // reference-related to the referenced type, bind directly to that element
3800   // (possibly creating temporaries).
3801   // Otherwise, initialize a temporary with the initializer list and
3802   // bind to that.
3803   if (InitList->getNumInits() == 1) {
3804     Expr *Initializer = InitList->getInit(0);
3805     QualType cv2T2 = Initializer->getType();
3806     Qualifiers T2Quals;
3807     QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3808 
3809     // If this fails, creating a temporary wouldn't work either.
3810     if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3811                                                      T1, Sequence))
3812       return;
3813 
3814     SourceLocation DeclLoc = Initializer->getLocStart();
3815     bool dummy1, dummy2, dummy3;
3816     Sema::ReferenceCompareResult RefRelationship
3817       = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1,
3818                                        dummy2, dummy3);
3819     if (RefRelationship >= Sema::Ref_Related) {
3820       // Try to bind the reference here.
3821       TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3822                                      T1Quals, cv2T2, T2, T2Quals, Sequence);
3823       if (Sequence)
3824         Sequence.RewrapReferenceInitList(cv1T1, InitList);
3825       return;
3826     }
3827 
3828     // Update the initializer if we've resolved an overloaded function.
3829     if (Sequence.step_begin() != Sequence.step_end())
3830       Sequence.RewrapReferenceInitList(cv1T1, InitList);
3831   }
3832 
3833   // Not reference-related. Create a temporary and bind to that.
3834   InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3835 
3836   TryListInitialization(S, TempEntity, Kind, InitList, Sequence,
3837                         TreatUnavailableAsInvalid);
3838   if (Sequence) {
3839     if (DestType->isRValueReferenceType() ||
3840         (T1Quals.hasConst() && !T1Quals.hasVolatile()))
3841       Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3842     else
3843       Sequence.SetFailed(
3844           InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3845   }
3846 }
3847 
3848 /// \brief Attempt list initialization (C++0x [dcl.init.list])
3849 static void TryListInitialization(Sema &S,
3850                                   const InitializedEntity &Entity,
3851                                   const InitializationKind &Kind,
3852                                   InitListExpr *InitList,
3853                                   InitializationSequence &Sequence,
3854                                   bool TreatUnavailableAsInvalid) {
3855   QualType DestType = Entity.getType();
3856 
3857   // C++ doesn't allow scalar initialization with more than one argument.
3858   // But C99 complex numbers are scalars and it makes sense there.
3859   if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
3860       !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
3861     Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
3862     return;
3863   }
3864   if (DestType->isReferenceType()) {
3865     TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence,
3866                                    TreatUnavailableAsInvalid);
3867     return;
3868   }
3869 
3870   if (DestType->isRecordType() &&
3871       !S.isCompleteType(InitList->getLocStart(), DestType)) {
3872     Sequence.setIncompleteTypeFailure(DestType);
3873     return;
3874   }
3875 
3876   // C++11 [dcl.init.list]p3, per DR1467:
3877   // - If T is a class type and the initializer list has a single element of
3878   //   type cv U, where U is T or a class derived from T, the object is
3879   //   initialized from that element (by copy-initialization for
3880   //   copy-list-initialization, or by direct-initialization for
3881   //   direct-list-initialization).
3882   // - Otherwise, if T is a character array and the initializer list has a
3883   //   single element that is an appropriately-typed string literal
3884   //   (8.5.2 [dcl.init.string]), initialization is performed as described
3885   //   in that section.
3886   // - Otherwise, if T is an aggregate, [...] (continue below).
3887   if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) {
3888     if (DestType->isRecordType()) {
3889       QualType InitType = InitList->getInit(0)->getType();
3890       if (S.Context.hasSameUnqualifiedType(InitType, DestType) ||
3891           S.IsDerivedFrom(InitList->getLocStart(), InitType, DestType)) {
3892         Expr *InitListAsExpr = InitList;
3893         TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
3894                                      DestType, Sequence,
3895                                      /*InitListSyntax*/false,
3896                                      /*IsInitListCopy*/true);
3897         return;
3898       }
3899     }
3900     if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) {
3901       Expr *SubInit[1] = {InitList->getInit(0)};
3902       if (!isa<VariableArrayType>(DestAT) &&
3903           IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) {
3904         InitializationKind SubKind =
3905             Kind.getKind() == InitializationKind::IK_DirectList
3906                 ? InitializationKind::CreateDirect(Kind.getLocation(),
3907                                                    InitList->getLBraceLoc(),
3908                                                    InitList->getRBraceLoc())
3909                 : Kind;
3910         Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
3911                                 /*TopLevelOfInitList*/ true,
3912                                 TreatUnavailableAsInvalid);
3913 
3914         // TryStringLiteralInitialization() (in InitializeFrom()) will fail if
3915         // the element is not an appropriately-typed string literal, in which
3916         // case we should proceed as in C++11 (below).
3917         if (Sequence) {
3918           Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
3919           return;
3920         }
3921       }
3922     }
3923   }
3924 
3925   // C++11 [dcl.init.list]p3:
3926   //   - If T is an aggregate, aggregate initialization is performed.
3927   if ((DestType->isRecordType() && !DestType->isAggregateType()) ||
3928       (S.getLangOpts().CPlusPlus11 &&
3929        S.isStdInitializerList(DestType, nullptr))) {
3930     if (S.getLangOpts().CPlusPlus11) {
3931       //   - Otherwise, if the initializer list has no elements and T is a
3932       //     class type with a default constructor, the object is
3933       //     value-initialized.
3934       if (InitList->getNumInits() == 0) {
3935         CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
3936         if (RD->hasDefaultConstructor()) {
3937           TryValueInitialization(S, Entity, Kind, Sequence, InitList);
3938           return;
3939         }
3940       }
3941 
3942       //   - Otherwise, if T is a specialization of std::initializer_list<E>,
3943       //     an initializer_list object constructed [...]
3944       if (TryInitializerListConstruction(S, InitList, DestType, Sequence,
3945                                          TreatUnavailableAsInvalid))
3946         return;
3947 
3948       //   - Otherwise, if T is a class type, constructors are considered.
3949       Expr *InitListAsExpr = InitList;
3950       TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
3951                                    DestType, Sequence, /*InitListSyntax*/true);
3952     } else
3953       Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
3954     return;
3955   }
3956 
3957   if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() &&
3958       InitList->getNumInits() == 1) {
3959     Expr *E = InitList->getInit(0);
3960 
3961     //   - Otherwise, if T is an enumeration with a fixed underlying type,
3962     //     the initializer-list has a single element v, and the initialization
3963     //     is direct-list-initialization, the object is initialized with the
3964     //     value T(v); if a narrowing conversion is required to convert v to
3965     //     the underlying type of T, the program is ill-formed.
3966     auto *ET = DestType->getAs<EnumType>();
3967     if (S.getLangOpts().CPlusPlus1z &&
3968         Kind.getKind() == InitializationKind::IK_DirectList &&
3969         ET && ET->getDecl()->isFixed() &&
3970         !S.Context.hasSameUnqualifiedType(E->getType(), DestType) &&
3971         (E->getType()->isIntegralOrEnumerationType() ||
3972          E->getType()->isFloatingType())) {
3973       // There are two ways that T(v) can work when T is an enumeration type.
3974       // If there is either an implicit conversion sequence from v to T or
3975       // a conversion function that can convert from v to T, then we use that.
3976       // Otherwise, if v is of integral, enumeration, or floating-point type,
3977       // it is converted to the enumeration type via its underlying type.
3978       // There is no overlap possible between these two cases (except when the
3979       // source value is already of the destination type), and the first
3980       // case is handled by the general case for single-element lists below.
3981       ImplicitConversionSequence ICS;
3982       ICS.setStandard();
3983       ICS.Standard.setAsIdentityConversion();
3984       // If E is of a floating-point type, then the conversion is ill-formed
3985       // due to narrowing, but go through the motions in order to produce the
3986       // right diagnostic.
3987       ICS.Standard.Second = E->getType()->isFloatingType()
3988                                 ? ICK_Floating_Integral
3989                                 : ICK_Integral_Conversion;
3990       ICS.Standard.setFromType(E->getType());
3991       ICS.Standard.setToType(0, E->getType());
3992       ICS.Standard.setToType(1, DestType);
3993       ICS.Standard.setToType(2, DestType);
3994       Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2),
3995                                          /*TopLevelOfInitList*/true);
3996       Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
3997       return;
3998     }
3999 
4000     //   - Otherwise, if the initializer list has a single element of type E
4001     //     [...references are handled above...], the object or reference is
4002     //     initialized from that element (by copy-initialization for
4003     //     copy-list-initialization, or by direct-initialization for
4004     //     direct-list-initialization); if a narrowing conversion is required
4005     //     to convert the element to T, the program is ill-formed.
4006     //
4007     // Per core-24034, this is direct-initialization if we were performing
4008     // direct-list-initialization and copy-initialization otherwise.
4009     // We can't use InitListChecker for this, because it always performs
4010     // copy-initialization. This only matters if we might use an 'explicit'
4011     // conversion operator, so we only need to handle the cases where the source
4012     // is of record type.
4013     if (InitList->getInit(0)->getType()->isRecordType()) {
4014       InitializationKind SubKind =
4015           Kind.getKind() == InitializationKind::IK_DirectList
4016               ? InitializationKind::CreateDirect(Kind.getLocation(),
4017                                                  InitList->getLBraceLoc(),
4018                                                  InitList->getRBraceLoc())
4019               : Kind;
4020       Expr *SubInit[1] = { InitList->getInit(0) };
4021       Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4022                               /*TopLevelOfInitList*/true,
4023                               TreatUnavailableAsInvalid);
4024       if (Sequence)
4025         Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4026       return;
4027     }
4028   }
4029 
4030   InitListChecker CheckInitList(S, Entity, InitList,
4031           DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid);
4032   if (CheckInitList.HadError()) {
4033     Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
4034     return;
4035   }
4036 
4037   // Add the list initialization step with the built init list.
4038   Sequence.AddListInitializationStep(DestType);
4039 }
4040 
4041 /// \brief Try a reference initialization that involves calling a conversion
4042 /// function.
4043 static OverloadingResult TryRefInitWithConversionFunction(
4044     Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind,
4045     Expr *Initializer, bool AllowRValues, bool IsLValueRef,
4046     InitializationSequence &Sequence) {
4047   QualType DestType = Entity.getType();
4048   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
4049   QualType T1 = cv1T1.getUnqualifiedType();
4050   QualType cv2T2 = Initializer->getType();
4051   QualType T2 = cv2T2.getUnqualifiedType();
4052 
4053   bool DerivedToBase;
4054   bool ObjCConversion;
4055   bool ObjCLifetimeConversion;
4056   assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),
4057                                          T1, T2, DerivedToBase,
4058                                          ObjCConversion,
4059                                          ObjCLifetimeConversion) &&
4060          "Must have incompatible references when binding via conversion");
4061   (void)DerivedToBase;
4062   (void)ObjCConversion;
4063   (void)ObjCLifetimeConversion;
4064 
4065   // Build the candidate set directly in the initialization sequence
4066   // structure, so that it will persist if we fail.
4067   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4068   CandidateSet.clear();
4069 
4070   // Determine whether we are allowed to call explicit constructors or
4071   // explicit conversion operators.
4072   bool AllowExplicit = Kind.AllowExplicit();
4073   bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding();
4074 
4075   const RecordType *T1RecordType = nullptr;
4076   if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
4077       S.isCompleteType(Kind.getLocation(), T1)) {
4078     // The type we're converting to is a class type. Enumerate its constructors
4079     // to see if there is a suitable conversion.
4080     CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
4081 
4082     for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) {
4083       auto Info = getConstructorInfo(D);
4084       if (!Info.Constructor)
4085         continue;
4086 
4087       if (!Info.Constructor->isInvalidDecl() &&
4088           Info.Constructor->isConvertingConstructor(AllowExplicit)) {
4089         if (Info.ConstructorTmpl)
4090           S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
4091                                          /*ExplicitArgs*/ nullptr,
4092                                          Initializer, CandidateSet,
4093                                          /*SuppressUserConversions=*/true);
4094         else
4095           S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
4096                                  Initializer, CandidateSet,
4097                                  /*SuppressUserConversions=*/true);
4098       }
4099     }
4100   }
4101   if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
4102     return OR_No_Viable_Function;
4103 
4104   const RecordType *T2RecordType = nullptr;
4105   if ((T2RecordType = T2->getAs<RecordType>()) &&
4106       S.isCompleteType(Kind.getLocation(), T2)) {
4107     // The type we're converting from is a class type, enumerate its conversion
4108     // functions.
4109     CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
4110 
4111     const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4112     for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4113       NamedDecl *D = *I;
4114       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4115       if (isa<UsingShadowDecl>(D))
4116         D = cast<UsingShadowDecl>(D)->getTargetDecl();
4117 
4118       FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4119       CXXConversionDecl *Conv;
4120       if (ConvTemplate)
4121         Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4122       else
4123         Conv = cast<CXXConversionDecl>(D);
4124 
4125       // If the conversion function doesn't return a reference type,
4126       // it can't be considered for this conversion unless we're allowed to
4127       // consider rvalues.
4128       // FIXME: Do we need to make sure that we only consider conversion
4129       // candidates with reference-compatible results? That might be needed to
4130       // break recursion.
4131       if ((AllowExplicitConvs || !Conv->isExplicit()) &&
4132           (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
4133         if (ConvTemplate)
4134           S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
4135                                            ActingDC, Initializer,
4136                                            DestType, CandidateSet,
4137                                            /*AllowObjCConversionOnExplicit=*/
4138                                              false);
4139         else
4140           S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
4141                                    Initializer, DestType, CandidateSet,
4142                                    /*AllowObjCConversionOnExplicit=*/false);
4143       }
4144     }
4145   }
4146   if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
4147     return OR_No_Viable_Function;
4148 
4149   SourceLocation DeclLoc = Initializer->getLocStart();
4150 
4151   // Perform overload resolution. If it fails, return the failed result.
4152   OverloadCandidateSet::iterator Best;
4153   if (OverloadingResult Result
4154         = CandidateSet.BestViableFunction(S, DeclLoc, Best, true))
4155     return Result;
4156 
4157   FunctionDecl *Function = Best->Function;
4158   // This is the overload that will be used for this initialization step if we
4159   // use this initialization. Mark it as referenced.
4160   Function->setReferenced();
4161 
4162   // Compute the returned type and value kind of the conversion.
4163   QualType cv3T3;
4164   if (isa<CXXConversionDecl>(Function))
4165     cv3T3 = Function->getReturnType();
4166   else
4167     cv3T3 = T1;
4168 
4169   ExprValueKind VK = VK_RValue;
4170   if (cv3T3->isLValueReferenceType())
4171     VK = VK_LValue;
4172   else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>())
4173     VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
4174   cv3T3 = cv3T3.getNonLValueExprType(S.Context);
4175 
4176   // Add the user-defined conversion step.
4177   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4178   Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3,
4179                                  HadMultipleCandidates);
4180 
4181   // Determine whether we'll need to perform derived-to-base adjustments or
4182   // other conversions.
4183   bool NewDerivedToBase = false;
4184   bool NewObjCConversion = false;
4185   bool NewObjCLifetimeConversion = false;
4186   Sema::ReferenceCompareResult NewRefRelationship
4187     = S.CompareReferenceRelationship(DeclLoc, T1, cv3T3,
4188                                      NewDerivedToBase, NewObjCConversion,
4189                                      NewObjCLifetimeConversion);
4190 
4191   // Add the final conversion sequence, if necessary.
4192   if (NewRefRelationship == Sema::Ref_Incompatible) {
4193     assert(!isa<CXXConstructorDecl>(Function) &&
4194            "should not have conversion after constructor");
4195 
4196     ImplicitConversionSequence ICS;
4197     ICS.setStandard();
4198     ICS.Standard = Best->FinalConversion;
4199     Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2));
4200 
4201     // Every implicit conversion results in a prvalue, except for a glvalue
4202     // derived-to-base conversion, which we handle below.
4203     cv3T3 = ICS.Standard.getToType(2);
4204     VK = VK_RValue;
4205   }
4206 
4207   //   If the converted initializer is a prvalue, its type T4 is adjusted to
4208   //   type "cv1 T4" and the temporary materialization conversion is applied.
4209   //
4210   // We adjust the cv-qualifications to match the reference regardless of
4211   // whether we have a prvalue so that the AST records the change. In this
4212   // case, T4 is "cv3 T3".
4213   QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers());
4214   if (cv1T4.getQualifiers() != cv3T3.getQualifiers())
4215     Sequence.AddQualificationConversionStep(cv1T4, VK);
4216   Sequence.AddReferenceBindingStep(cv1T4, VK == VK_RValue);
4217   VK = IsLValueRef ? VK_LValue : VK_XValue;
4218 
4219   if (NewDerivedToBase)
4220     Sequence.AddDerivedToBaseCastStep(cv1T1, VK);
4221   else if (NewObjCConversion)
4222     Sequence.AddObjCObjectConversionStep(cv1T1);
4223 
4224   return OR_Success;
4225 }
4226 
4227 static void CheckCXX98CompatAccessibleCopy(Sema &S,
4228                                            const InitializedEntity &Entity,
4229                                            Expr *CurInitExpr);
4230 
4231 /// \brief Attempt reference initialization (C++0x [dcl.init.ref])
4232 static void TryReferenceInitialization(Sema &S,
4233                                        const InitializedEntity &Entity,
4234                                        const InitializationKind &Kind,
4235                                        Expr *Initializer,
4236                                        InitializationSequence &Sequence) {
4237   QualType DestType = Entity.getType();
4238   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
4239   Qualifiers T1Quals;
4240   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4241   QualType cv2T2 = Initializer->getType();
4242   Qualifiers T2Quals;
4243   QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4244 
4245   // If the initializer is the address of an overloaded function, try
4246   // to resolve the overloaded function. If all goes well, T2 is the
4247   // type of the resulting function.
4248   if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4249                                                    T1, Sequence))
4250     return;
4251 
4252   // Delegate everything else to a subfunction.
4253   TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4254                                  T1Quals, cv2T2, T2, T2Quals, Sequence);
4255 }
4256 
4257 /// Determine whether an expression is a non-referenceable glvalue (one to
4258 /// which a reference can never bind). Attemting to bind a reference to
4259 /// such a glvalue will always create a temporary.
4260 static bool isNonReferenceableGLValue(Expr *E) {
4261   return E->refersToBitField() || E->refersToVectorElement();
4262 }
4263 
4264 /// \brief Reference initialization without resolving overloaded functions.
4265 static void TryReferenceInitializationCore(Sema &S,
4266                                            const InitializedEntity &Entity,
4267                                            const InitializationKind &Kind,
4268                                            Expr *Initializer,
4269                                            QualType cv1T1, QualType T1,
4270                                            Qualifiers T1Quals,
4271                                            QualType cv2T2, QualType T2,
4272                                            Qualifiers T2Quals,
4273                                            InitializationSequence &Sequence) {
4274   QualType DestType = Entity.getType();
4275   SourceLocation DeclLoc = Initializer->getLocStart();
4276   // Compute some basic properties of the types and the initializer.
4277   bool isLValueRef = DestType->isLValueReferenceType();
4278   bool isRValueRef = !isLValueRef;
4279   bool DerivedToBase = false;
4280   bool ObjCConversion = false;
4281   bool ObjCLifetimeConversion = false;
4282   Expr::Classification InitCategory = Initializer->Classify(S.Context);
4283   Sema::ReferenceCompareResult RefRelationship
4284     = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
4285                                      ObjCConversion, ObjCLifetimeConversion);
4286 
4287   // C++0x [dcl.init.ref]p5:
4288   //   A reference to type "cv1 T1" is initialized by an expression of type
4289   //   "cv2 T2" as follows:
4290   //
4291   //     - If the reference is an lvalue reference and the initializer
4292   //       expression
4293   // Note the analogous bullet points for rvalue refs to functions. Because
4294   // there are no function rvalues in C++, rvalue refs to functions are treated
4295   // like lvalue refs.
4296   OverloadingResult ConvOvlResult = OR_Success;
4297   bool T1Function = T1->isFunctionType();
4298   if (isLValueRef || T1Function) {
4299     if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) &&
4300         (RefRelationship == Sema::Ref_Compatible ||
4301          (Kind.isCStyleOrFunctionalCast() &&
4302           RefRelationship == Sema::Ref_Related))) {
4303       //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
4304       //     reference-compatible with "cv2 T2," or
4305       if (T1Quals != T2Quals)
4306         // Convert to cv1 T2. This should only add qualifiers unless this is a
4307         // c-style cast. The removal of qualifiers in that case notionally
4308         // happens after the reference binding, but that doesn't matter.
4309         Sequence.AddQualificationConversionStep(
4310             S.Context.getQualifiedType(T2, T1Quals),
4311             Initializer->getValueKind());
4312       if (DerivedToBase)
4313         Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue);
4314       else if (ObjCConversion)
4315         Sequence.AddObjCObjectConversionStep(cv1T1);
4316 
4317       // We only create a temporary here when binding a reference to a
4318       // bit-field or vector element. Those cases are't supposed to be
4319       // handled by this bullet, but the outcome is the same either way.
4320       Sequence.AddReferenceBindingStep(cv1T1, false);
4321       return;
4322     }
4323 
4324     //     - has a class type (i.e., T2 is a class type), where T1 is not
4325     //       reference-related to T2, and can be implicitly converted to an
4326     //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
4327     //       with "cv3 T3" (this conversion is selected by enumerating the
4328     //       applicable conversion functions (13.3.1.6) and choosing the best
4329     //       one through overload resolution (13.3)),
4330     // If we have an rvalue ref to function type here, the rhs must be
4331     // an rvalue. DR1287 removed the "implicitly" here.
4332     if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
4333         (isLValueRef || InitCategory.isRValue())) {
4334       ConvOvlResult = TryRefInitWithConversionFunction(
4335           S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef,
4336           /*IsLValueRef*/ isLValueRef, Sequence);
4337       if (ConvOvlResult == OR_Success)
4338         return;
4339       if (ConvOvlResult != OR_No_Viable_Function)
4340         Sequence.SetOverloadFailure(
4341             InitializationSequence::FK_ReferenceInitOverloadFailed,
4342             ConvOvlResult);
4343     }
4344   }
4345 
4346   //     - Otherwise, the reference shall be an lvalue reference to a
4347   //       non-volatile const type (i.e., cv1 shall be const), or the reference
4348   //       shall be an rvalue reference.
4349   if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
4350     if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4351       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4352     else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4353       Sequence.SetOverloadFailure(
4354                         InitializationSequence::FK_ReferenceInitOverloadFailed,
4355                                   ConvOvlResult);
4356     else if (!InitCategory.isLValue())
4357       Sequence.SetFailed(
4358           InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
4359     else {
4360       InitializationSequence::FailureKind FK;
4361       switch (RefRelationship) {
4362       case Sema::Ref_Compatible:
4363         if (Initializer->refersToBitField())
4364           FK = InitializationSequence::
4365               FK_NonConstLValueReferenceBindingToBitfield;
4366         else if (Initializer->refersToVectorElement())
4367           FK = InitializationSequence::
4368               FK_NonConstLValueReferenceBindingToVectorElement;
4369         else
4370           llvm_unreachable("unexpected kind of compatible initializer");
4371         break;
4372       case Sema::Ref_Related:
4373         FK = InitializationSequence::FK_ReferenceInitDropsQualifiers;
4374         break;
4375       case Sema::Ref_Incompatible:
4376         FK = InitializationSequence::
4377             FK_NonConstLValueReferenceBindingToUnrelated;
4378         break;
4379       }
4380       Sequence.SetFailed(FK);
4381     }
4382     return;
4383   }
4384 
4385   //    - If the initializer expression
4386   //      - is an
4387   // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or
4388   // [1z]   rvalue (but not a bit-field) or
4389   //        function lvalue and "cv1 T1" is reference-compatible with "cv2 T2"
4390   //
4391   // Note: functions are handled above and below rather than here...
4392   if (!T1Function &&
4393       (RefRelationship == Sema::Ref_Compatible ||
4394        (Kind.isCStyleOrFunctionalCast() &&
4395         RefRelationship == Sema::Ref_Related)) &&
4396       ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) ||
4397        (InitCategory.isPRValue() &&
4398         (S.getLangOpts().CPlusPlus1z || T2->isRecordType() ||
4399          T2->isArrayType())))) {
4400     ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_RValue;
4401     if (InitCategory.isPRValue() && T2->isRecordType()) {
4402       // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
4403       // compiler the freedom to perform a copy here or bind to the
4404       // object, while C++0x requires that we bind directly to the
4405       // object. Hence, we always bind to the object without making an
4406       // extra copy. However, in C++03 requires that we check for the
4407       // presence of a suitable copy constructor:
4408       //
4409       //   The constructor that would be used to make the copy shall
4410       //   be callable whether or not the copy is actually done.
4411       if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
4412         Sequence.AddExtraneousCopyToTemporary(cv2T2);
4413       else if (S.getLangOpts().CPlusPlus11)
4414         CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
4415     }
4416 
4417     // C++1z [dcl.init.ref]/5.2.1.2:
4418     //   If the converted initializer is a prvalue, its type T4 is adjusted
4419     //   to type "cv1 T4" and the temporary materialization conversion is
4420     //   applied.
4421     QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1Quals);
4422     if (T1Quals != T2Quals)
4423       Sequence.AddQualificationConversionStep(cv1T4, ValueKind);
4424     Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_RValue);
4425     ValueKind = isLValueRef ? VK_LValue : VK_XValue;
4426 
4427     //   In any case, the reference is bound to the resulting glvalue (or to
4428     //   an appropriate base class subobject).
4429     if (DerivedToBase)
4430       Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind);
4431     else if (ObjCConversion)
4432       Sequence.AddObjCObjectConversionStep(cv1T1);
4433     return;
4434   }
4435 
4436   //       - has a class type (i.e., T2 is a class type), where T1 is not
4437   //         reference-related to T2, and can be implicitly converted to an
4438   //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
4439   //         where "cv1 T1" is reference-compatible with "cv3 T3",
4440   //
4441   // DR1287 removes the "implicitly" here.
4442   if (T2->isRecordType()) {
4443     if (RefRelationship == Sema::Ref_Incompatible) {
4444       ConvOvlResult = TryRefInitWithConversionFunction(
4445           S, Entity, Kind, Initializer, /*AllowRValues*/ true,
4446           /*IsLValueRef*/ isLValueRef, Sequence);
4447       if (ConvOvlResult)
4448         Sequence.SetOverloadFailure(
4449             InitializationSequence::FK_ReferenceInitOverloadFailed,
4450             ConvOvlResult);
4451 
4452       return;
4453     }
4454 
4455     if (RefRelationship == Sema::Ref_Compatible &&
4456         isRValueRef && InitCategory.isLValue()) {
4457       Sequence.SetFailed(
4458         InitializationSequence::FK_RValueReferenceBindingToLValue);
4459       return;
4460     }
4461 
4462     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4463     return;
4464   }
4465 
4466   //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
4467   //        from the initializer expression using the rules for a non-reference
4468   //        copy-initialization (8.5). The reference is then bound to the
4469   //        temporary. [...]
4470 
4471   InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
4472 
4473   // FIXME: Why do we use an implicit conversion here rather than trying
4474   // copy-initialization?
4475   ImplicitConversionSequence ICS
4476     = S.TryImplicitConversion(Initializer, TempEntity.getType(),
4477                               /*SuppressUserConversions=*/false,
4478                               /*AllowExplicit=*/false,
4479                               /*FIXME:InOverloadResolution=*/false,
4480                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
4481                               /*AllowObjCWritebackConversion=*/false);
4482 
4483   if (ICS.isBad()) {
4484     // FIXME: Use the conversion function set stored in ICS to turn
4485     // this into an overloading ambiguity diagnostic. However, we need
4486     // to keep that set as an OverloadCandidateSet rather than as some
4487     // other kind of set.
4488     if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4489       Sequence.SetOverloadFailure(
4490                         InitializationSequence::FK_ReferenceInitOverloadFailed,
4491                                   ConvOvlResult);
4492     else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4493       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4494     else
4495       Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
4496     return;
4497   } else {
4498     Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
4499   }
4500 
4501   //        [...] If T1 is reference-related to T2, cv1 must be the
4502   //        same cv-qualification as, or greater cv-qualification
4503   //        than, cv2; otherwise, the program is ill-formed.
4504   unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
4505   unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
4506   if (RefRelationship == Sema::Ref_Related &&
4507       (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
4508     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4509     return;
4510   }
4511 
4512   //   [...] If T1 is reference-related to T2 and the reference is an rvalue
4513   //   reference, the initializer expression shall not be an lvalue.
4514   if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
4515       InitCategory.isLValue()) {
4516     Sequence.SetFailed(
4517                     InitializationSequence::FK_RValueReferenceBindingToLValue);
4518     return;
4519   }
4520 
4521   Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
4522 }
4523 
4524 /// \brief Attempt character array initialization from a string literal
4525 /// (C++ [dcl.init.string], C99 6.7.8).
4526 static void TryStringLiteralInitialization(Sema &S,
4527                                            const InitializedEntity &Entity,
4528                                            const InitializationKind &Kind,
4529                                            Expr *Initializer,
4530                                        InitializationSequence &Sequence) {
4531   Sequence.AddStringInitStep(Entity.getType());
4532 }
4533 
4534 /// \brief Attempt value initialization (C++ [dcl.init]p7).
4535 static void TryValueInitialization(Sema &S,
4536                                    const InitializedEntity &Entity,
4537                                    const InitializationKind &Kind,
4538                                    InitializationSequence &Sequence,
4539                                    InitListExpr *InitList) {
4540   assert((!InitList || InitList->getNumInits() == 0) &&
4541          "Shouldn't use value-init for non-empty init lists");
4542 
4543   // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
4544   //
4545   //   To value-initialize an object of type T means:
4546   QualType T = Entity.getType();
4547 
4548   //     -- if T is an array type, then each element is value-initialized;
4549   T = S.Context.getBaseElementType(T);
4550 
4551   if (const RecordType *RT = T->getAs<RecordType>()) {
4552     if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
4553       bool NeedZeroInitialization = true;
4554       // C++98:
4555       // -- if T is a class type (clause 9) with a user-declared constructor
4556       //    (12.1), then the default constructor for T is called (and the
4557       //    initialization is ill-formed if T has no accessible default
4558       //    constructor);
4559       // C++11:
4560       // -- if T is a class type (clause 9) with either no default constructor
4561       //    (12.1 [class.ctor]) or a default constructor that is user-provided
4562       //    or deleted, then the object is default-initialized;
4563       //
4564       // Note that the C++11 rule is the same as the C++98 rule if there are no
4565       // defaulted or deleted constructors, so we just use it unconditionally.
4566       CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
4567       if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
4568         NeedZeroInitialization = false;
4569 
4570       // -- if T is a (possibly cv-qualified) non-union class type without a
4571       //    user-provided or deleted default constructor, then the object is
4572       //    zero-initialized and, if T has a non-trivial default constructor,
4573       //    default-initialized;
4574       // The 'non-union' here was removed by DR1502. The 'non-trivial default
4575       // constructor' part was removed by DR1507.
4576       if (NeedZeroInitialization)
4577         Sequence.AddZeroInitializationStep(Entity.getType());
4578 
4579       // C++03:
4580       // -- if T is a non-union class type without a user-declared constructor,
4581       //    then every non-static data member and base class component of T is
4582       //    value-initialized;
4583       // [...] A program that calls for [...] value-initialization of an
4584       // entity of reference type is ill-formed.
4585       //
4586       // C++11 doesn't need this handling, because value-initialization does not
4587       // occur recursively there, and the implicit default constructor is
4588       // defined as deleted in the problematic cases.
4589       if (!S.getLangOpts().CPlusPlus11 &&
4590           ClassDecl->hasUninitializedReferenceMember()) {
4591         Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
4592         return;
4593       }
4594 
4595       // If this is list-value-initialization, pass the empty init list on when
4596       // building the constructor call. This affects the semantics of a few
4597       // things (such as whether an explicit default constructor can be called).
4598       Expr *InitListAsExpr = InitList;
4599       MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
4600       bool InitListSyntax = InitList;
4601 
4602       // FIXME: Instead of creating a CXXConstructExpr of array type here,
4603       // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr.
4604       return TryConstructorInitialization(
4605           S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax);
4606     }
4607   }
4608 
4609   Sequence.AddZeroInitializationStep(Entity.getType());
4610 }
4611 
4612 /// \brief Attempt default initialization (C++ [dcl.init]p6).
4613 static void TryDefaultInitialization(Sema &S,
4614                                      const InitializedEntity &Entity,
4615                                      const InitializationKind &Kind,
4616                                      InitializationSequence &Sequence) {
4617   assert(Kind.getKind() == InitializationKind::IK_Default);
4618 
4619   // C++ [dcl.init]p6:
4620   //   To default-initialize an object of type T means:
4621   //     - if T is an array type, each element is default-initialized;
4622   QualType DestType = S.Context.getBaseElementType(Entity.getType());
4623 
4624   //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
4625   //       constructor for T is called (and the initialization is ill-formed if
4626   //       T has no accessible default constructor);
4627   if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
4628     TryConstructorInitialization(S, Entity, Kind, None, DestType,
4629                                  Entity.getType(), Sequence);
4630     return;
4631   }
4632 
4633   //     - otherwise, no initialization is performed.
4634 
4635   //   If a program calls for the default initialization of an object of
4636   //   a const-qualified type T, T shall be a class type with a user-provided
4637   //   default constructor.
4638   if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
4639     if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
4640       Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
4641     return;
4642   }
4643 
4644   // If the destination type has a lifetime property, zero-initialize it.
4645   if (DestType.getQualifiers().hasObjCLifetime()) {
4646     Sequence.AddZeroInitializationStep(Entity.getType());
4647     return;
4648   }
4649 }
4650 
4651 /// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
4652 /// which enumerates all conversion functions and performs overload resolution
4653 /// to select the best.
4654 static void TryUserDefinedConversion(Sema &S,
4655                                      QualType DestType,
4656                                      const InitializationKind &Kind,
4657                                      Expr *Initializer,
4658                                      InitializationSequence &Sequence,
4659                                      bool TopLevelOfInitList) {
4660   assert(!DestType->isReferenceType() && "References are handled elsewhere");
4661   QualType SourceType = Initializer->getType();
4662   assert((DestType->isRecordType() || SourceType->isRecordType()) &&
4663          "Must have a class type to perform a user-defined conversion");
4664 
4665   // Build the candidate set directly in the initialization sequence
4666   // structure, so that it will persist if we fail.
4667   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4668   CandidateSet.clear();
4669 
4670   // Determine whether we are allowed to call explicit constructors or
4671   // explicit conversion operators.
4672   bool AllowExplicit = Kind.AllowExplicit();
4673 
4674   if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
4675     // The type we're converting to is a class type. Enumerate its constructors
4676     // to see if there is a suitable conversion.
4677     CXXRecordDecl *DestRecordDecl
4678       = cast<CXXRecordDecl>(DestRecordType->getDecl());
4679 
4680     // Try to complete the type we're converting to.
4681     if (S.isCompleteType(Kind.getLocation(), DestType)) {
4682       DeclContext::lookup_result R = S.LookupConstructors(DestRecordDecl);
4683       // The container holding the constructors can under certain conditions
4684       // be changed while iterating. To be safe we copy the lookup results
4685       // to a new container.
4686       SmallVector<NamedDecl*, 8> CopyOfCon(R.begin(), R.end());
4687       for (SmallVectorImpl<NamedDecl *>::iterator
4688              Con = CopyOfCon.begin(), ConEnd = CopyOfCon.end();
4689            Con != ConEnd; ++Con) {
4690         NamedDecl *D = *Con;
4691         auto Info = getConstructorInfo(D);
4692         if (!Info.Constructor)
4693           continue;
4694 
4695         if (!Info.Constructor->isInvalidDecl() &&
4696             Info.Constructor->isConvertingConstructor(AllowExplicit)) {
4697           if (Info.ConstructorTmpl)
4698             S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
4699                                            /*ExplicitArgs*/ nullptr,
4700                                            Initializer, CandidateSet,
4701                                            /*SuppressUserConversions=*/true);
4702           else
4703             S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
4704                                    Initializer, CandidateSet,
4705                                    /*SuppressUserConversions=*/true);
4706         }
4707       }
4708     }
4709   }
4710 
4711   SourceLocation DeclLoc = Initializer->getLocStart();
4712 
4713   if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
4714     // The type we're converting from is a class type, enumerate its conversion
4715     // functions.
4716 
4717     // We can only enumerate the conversion functions for a complete type; if
4718     // the type isn't complete, simply skip this step.
4719     if (S.isCompleteType(DeclLoc, SourceType)) {
4720       CXXRecordDecl *SourceRecordDecl
4721         = cast<CXXRecordDecl>(SourceRecordType->getDecl());
4722 
4723       const auto &Conversions =
4724           SourceRecordDecl->getVisibleConversionFunctions();
4725       for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4726         NamedDecl *D = *I;
4727         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4728         if (isa<UsingShadowDecl>(D))
4729           D = cast<UsingShadowDecl>(D)->getTargetDecl();
4730 
4731         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4732         CXXConversionDecl *Conv;
4733         if (ConvTemplate)
4734           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4735         else
4736           Conv = cast<CXXConversionDecl>(D);
4737 
4738         if (AllowExplicit || !Conv->isExplicit()) {
4739           if (ConvTemplate)
4740             S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
4741                                              ActingDC, Initializer, DestType,
4742                                              CandidateSet, AllowExplicit);
4743           else
4744             S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
4745                                      Initializer, DestType, CandidateSet,
4746                                      AllowExplicit);
4747         }
4748       }
4749     }
4750   }
4751 
4752   // Perform overload resolution. If it fails, return the failed result.
4753   OverloadCandidateSet::iterator Best;
4754   if (OverloadingResult Result
4755         = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
4756     Sequence.SetOverloadFailure(
4757                         InitializationSequence::FK_UserConversionOverloadFailed,
4758                                 Result);
4759     return;
4760   }
4761 
4762   FunctionDecl *Function = Best->Function;
4763   Function->setReferenced();
4764   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4765 
4766   if (isa<CXXConstructorDecl>(Function)) {
4767     // Add the user-defined conversion step. Any cv-qualification conversion is
4768     // subsumed by the initialization. Per DR5, the created temporary is of the
4769     // cv-unqualified type of the destination.
4770     Sequence.AddUserConversionStep(Function, Best->FoundDecl,
4771                                    DestType.getUnqualifiedType(),
4772                                    HadMultipleCandidates);
4773 
4774     // C++14 and before:
4775     //   - if the function is a constructor, the call initializes a temporary
4776     //     of the cv-unqualified version of the destination type. The [...]
4777     //     temporary [...] is then used to direct-initialize, according to the
4778     //     rules above, the object that is the destination of the
4779     //     copy-initialization.
4780     // Note that this just performs a simple object copy from the temporary.
4781     //
4782     // C++1z:
4783     //   - if the function is a constructor, the call is a prvalue of the
4784     //     cv-unqualified version of the destination type whose return object
4785     //     is initialized by the constructor. The call is used to
4786     //     direct-initialize, according to the rules above, the object that
4787     //     is the destination of the copy-initialization.
4788     // Therefore we need to do nothing further.
4789     //
4790     // FIXME: Mark this copy as extraneous.
4791     if (!S.getLangOpts().CPlusPlus1z)
4792       Sequence.AddFinalCopy(DestType);
4793     else if (DestType.hasQualifiers())
4794       Sequence.AddQualificationConversionStep(DestType, VK_RValue);
4795     return;
4796   }
4797 
4798   // Add the user-defined conversion step that calls the conversion function.
4799   QualType ConvType = Function->getCallResultType();
4800   Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
4801                                  HadMultipleCandidates);
4802 
4803   if (ConvType->getAs<RecordType>()) {
4804     //   The call is used to direct-initialize [...] the object that is the
4805     //   destination of the copy-initialization.
4806     //
4807     // In C++1z, this does not call a constructor if we enter /17.6.1:
4808     //   - If the initializer expression is a prvalue and the cv-unqualified
4809     //     version of the source type is the same as the class of the
4810     //     destination [... do not make an extra copy]
4811     //
4812     // FIXME: Mark this copy as extraneous.
4813     if (!S.getLangOpts().CPlusPlus1z ||
4814         Function->getReturnType()->isReferenceType() ||
4815         !S.Context.hasSameUnqualifiedType(ConvType, DestType))
4816       Sequence.AddFinalCopy(DestType);
4817     else if (!S.Context.hasSameType(ConvType, DestType))
4818       Sequence.AddQualificationConversionStep(DestType, VK_RValue);
4819     return;
4820   }
4821 
4822   // If the conversion following the call to the conversion function
4823   // is interesting, add it as a separate step.
4824   if (Best->FinalConversion.First || Best->FinalConversion.Second ||
4825       Best->FinalConversion.Third) {
4826     ImplicitConversionSequence ICS;
4827     ICS.setStandard();
4828     ICS.Standard = Best->FinalConversion;
4829     Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
4830   }
4831 }
4832 
4833 /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>,
4834 /// a function with a pointer return type contains a 'return false;' statement.
4835 /// In C++11, 'false' is not a null pointer, so this breaks the build of any
4836 /// code using that header.
4837 ///
4838 /// Work around this by treating 'return false;' as zero-initializing the result
4839 /// if it's used in a pointer-returning function in a system header.
4840 static bool isLibstdcxxPointerReturnFalseHack(Sema &S,
4841                                               const InitializedEntity &Entity,
4842                                               const Expr *Init) {
4843   return S.getLangOpts().CPlusPlus11 &&
4844          Entity.getKind() == InitializedEntity::EK_Result &&
4845          Entity.getType()->isPointerType() &&
4846          isa<CXXBoolLiteralExpr>(Init) &&
4847          !cast<CXXBoolLiteralExpr>(Init)->getValue() &&
4848          S.getSourceManager().isInSystemHeader(Init->getExprLoc());
4849 }
4850 
4851 /// The non-zero enum values here are indexes into diagnostic alternatives.
4852 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
4853 
4854 /// Determines whether this expression is an acceptable ICR source.
4855 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
4856                                          bool isAddressOf, bool &isWeakAccess) {
4857   // Skip parens.
4858   e = e->IgnoreParens();
4859 
4860   // Skip address-of nodes.
4861   if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
4862     if (op->getOpcode() == UO_AddrOf)
4863       return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
4864                                 isWeakAccess);
4865 
4866   // Skip certain casts.
4867   } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
4868     switch (ce->getCastKind()) {
4869     case CK_Dependent:
4870     case CK_BitCast:
4871     case CK_LValueBitCast:
4872     case CK_NoOp:
4873       return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
4874 
4875     case CK_ArrayToPointerDecay:
4876       return IIK_nonscalar;
4877 
4878     case CK_NullToPointer:
4879       return IIK_okay;
4880 
4881     default:
4882       break;
4883     }
4884 
4885   // If we have a declaration reference, it had better be a local variable.
4886   } else if (isa<DeclRefExpr>(e)) {
4887     // set isWeakAccess to true, to mean that there will be an implicit
4888     // load which requires a cleanup.
4889     if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
4890       isWeakAccess = true;
4891 
4892     if (!isAddressOf) return IIK_nonlocal;
4893 
4894     VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
4895     if (!var) return IIK_nonlocal;
4896 
4897     return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
4898 
4899   // If we have a conditional operator, check both sides.
4900   } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
4901     if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
4902                                                 isWeakAccess))
4903       return iik;
4904 
4905     return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
4906 
4907   // These are never scalar.
4908   } else if (isa<ArraySubscriptExpr>(e)) {
4909     return IIK_nonscalar;
4910 
4911   // Otherwise, it needs to be a null pointer constant.
4912   } else {
4913     return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
4914             ? IIK_okay : IIK_nonlocal);
4915   }
4916 
4917   return IIK_nonlocal;
4918 }
4919 
4920 /// Check whether the given expression is a valid operand for an
4921 /// indirect copy/restore.
4922 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
4923   assert(src->isRValue());
4924   bool isWeakAccess = false;
4925   InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
4926   // If isWeakAccess to true, there will be an implicit
4927   // load which requires a cleanup.
4928   if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
4929     S.Cleanup.setExprNeedsCleanups(true);
4930 
4931   if (iik == IIK_okay) return;
4932 
4933   S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
4934     << ((unsigned) iik - 1)  // shift index into diagnostic explanations
4935     << src->getSourceRange();
4936 }
4937 
4938 /// \brief Determine whether we have compatible array types for the
4939 /// purposes of GNU by-copy array initialization.
4940 static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest,
4941                                     const ArrayType *Source) {
4942   // If the source and destination array types are equivalent, we're
4943   // done.
4944   if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
4945     return true;
4946 
4947   // Make sure that the element types are the same.
4948   if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
4949     return false;
4950 
4951   // The only mismatch we allow is when the destination is an
4952   // incomplete array type and the source is a constant array type.
4953   return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
4954 }
4955 
4956 static bool tryObjCWritebackConversion(Sema &S,
4957                                        InitializationSequence &Sequence,
4958                                        const InitializedEntity &Entity,
4959                                        Expr *Initializer) {
4960   bool ArrayDecay = false;
4961   QualType ArgType = Initializer->getType();
4962   QualType ArgPointee;
4963   if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
4964     ArrayDecay = true;
4965     ArgPointee = ArgArrayType->getElementType();
4966     ArgType = S.Context.getPointerType(ArgPointee);
4967   }
4968 
4969   // Handle write-back conversion.
4970   QualType ConvertedArgType;
4971   if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
4972                                    ConvertedArgType))
4973     return false;
4974 
4975   // We should copy unless we're passing to an argument explicitly
4976   // marked 'out'.
4977   bool ShouldCopy = true;
4978   if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
4979     ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
4980 
4981   // Do we need an lvalue conversion?
4982   if (ArrayDecay || Initializer->isGLValue()) {
4983     ImplicitConversionSequence ICS;
4984     ICS.setStandard();
4985     ICS.Standard.setAsIdentityConversion();
4986 
4987     QualType ResultType;
4988     if (ArrayDecay) {
4989       ICS.Standard.First = ICK_Array_To_Pointer;
4990       ResultType = S.Context.getPointerType(ArgPointee);
4991     } else {
4992       ICS.Standard.First = ICK_Lvalue_To_Rvalue;
4993       ResultType = Initializer->getType().getNonLValueExprType(S.Context);
4994     }
4995 
4996     Sequence.AddConversionSequenceStep(ICS, ResultType);
4997   }
4998 
4999   Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
5000   return true;
5001 }
5002 
5003 static bool TryOCLSamplerInitialization(Sema &S,
5004                                         InitializationSequence &Sequence,
5005                                         QualType DestType,
5006                                         Expr *Initializer) {
5007   if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
5008       (!Initializer->isIntegerConstantExpr(S.Context) &&
5009       !Initializer->getType()->isSamplerT()))
5010     return false;
5011 
5012   Sequence.AddOCLSamplerInitStep(DestType);
5013   return true;
5014 }
5015 
5016 //
5017 // OpenCL 1.2 spec, s6.12.10
5018 //
5019 // The event argument can also be used to associate the
5020 // async_work_group_copy with a previous async copy allowing
5021 // an event to be shared by multiple async copies; otherwise
5022 // event should be zero.
5023 //
5024 static bool TryOCLZeroEventInitialization(Sema &S,
5025                                           InitializationSequence &Sequence,
5026                                           QualType DestType,
5027                                           Expr *Initializer) {
5028   if (!S.getLangOpts().OpenCL || !DestType->isEventT() ||
5029       !Initializer->isIntegerConstantExpr(S.getASTContext()) ||
5030       (Initializer->EvaluateKnownConstInt(S.getASTContext()) != 0))
5031     return false;
5032 
5033   Sequence.AddOCLZeroEventStep(DestType);
5034   return true;
5035 }
5036 
5037 static bool TryOCLZeroQueueInitialization(Sema &S,
5038                                           InitializationSequence &Sequence,
5039                                           QualType DestType,
5040                                           Expr *Initializer) {
5041   if (!S.getLangOpts().OpenCL || S.getLangOpts().OpenCLVersion < 200 ||
5042       !DestType->isQueueT() ||
5043       !Initializer->isIntegerConstantExpr(S.getASTContext()) ||
5044       (Initializer->EvaluateKnownConstInt(S.getASTContext()) != 0))
5045     return false;
5046 
5047   Sequence.AddOCLZeroQueueStep(DestType);
5048   return true;
5049 }
5050 
5051 InitializationSequence::InitializationSequence(Sema &S,
5052                                                const InitializedEntity &Entity,
5053                                                const InitializationKind &Kind,
5054                                                MultiExprArg Args,
5055                                                bool TopLevelOfInitList,
5056                                                bool TreatUnavailableAsInvalid)
5057     : FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) {
5058   InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList,
5059                  TreatUnavailableAsInvalid);
5060 }
5061 
5062 /// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the
5063 /// address of that function, this returns true. Otherwise, it returns false.
5064 static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) {
5065   auto *DRE = dyn_cast<DeclRefExpr>(E);
5066   if (!DRE || !isa<FunctionDecl>(DRE->getDecl()))
5067     return false;
5068 
5069   return !S.checkAddressOfFunctionIsAvailable(
5070       cast<FunctionDecl>(DRE->getDecl()));
5071 }
5072 
5073 /// Determine whether we can perform an elementwise array copy for this kind
5074 /// of entity.
5075 static bool canPerformArrayCopy(const InitializedEntity &Entity) {
5076   switch (Entity.getKind()) {
5077   case InitializedEntity::EK_LambdaCapture:
5078     // C++ [expr.prim.lambda]p24:
5079     //   For array members, the array elements are direct-initialized in
5080     //   increasing subscript order.
5081     return true;
5082 
5083   case InitializedEntity::EK_Variable:
5084     // C++ [dcl.decomp]p1:
5085     //   [...] each element is copy-initialized or direct-initialized from the
5086     //   corresponding element of the assignment-expression [...]
5087     return isa<DecompositionDecl>(Entity.getDecl());
5088 
5089   case InitializedEntity::EK_Member:
5090     // C++ [class.copy.ctor]p14:
5091     //   - if the member is an array, each element is direct-initialized with
5092     //     the corresponding subobject of x
5093     return Entity.isImplicitMemberInitializer();
5094 
5095   case InitializedEntity::EK_ArrayElement:
5096     // All the above cases are intended to apply recursively, even though none
5097     // of them actually say that.
5098     if (auto *E = Entity.getParent())
5099       return canPerformArrayCopy(*E);
5100     break;
5101 
5102   default:
5103     break;
5104   }
5105 
5106   return false;
5107 }
5108 
5109 void InitializationSequence::InitializeFrom(Sema &S,
5110                                             const InitializedEntity &Entity,
5111                                             const InitializationKind &Kind,
5112                                             MultiExprArg Args,
5113                                             bool TopLevelOfInitList,
5114                                             bool TreatUnavailableAsInvalid) {
5115   ASTContext &Context = S.Context;
5116 
5117   // Eliminate non-overload placeholder types in the arguments.  We
5118   // need to do this before checking whether types are dependent
5119   // because lowering a pseudo-object expression might well give us
5120   // something of dependent type.
5121   for (unsigned I = 0, E = Args.size(); I != E; ++I)
5122     if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
5123       // FIXME: should we be doing this here?
5124       ExprResult result = S.CheckPlaceholderExpr(Args[I]);
5125       if (result.isInvalid()) {
5126         SetFailed(FK_PlaceholderType);
5127         return;
5128       }
5129       Args[I] = result.get();
5130     }
5131 
5132   // C++0x [dcl.init]p16:
5133   //   The semantics of initializers are as follows. The destination type is
5134   //   the type of the object or reference being initialized and the source
5135   //   type is the type of the initializer expression. The source type is not
5136   //   defined when the initializer is a braced-init-list or when it is a
5137   //   parenthesized list of expressions.
5138   QualType DestType = Entity.getType();
5139 
5140   if (DestType->isDependentType() ||
5141       Expr::hasAnyTypeDependentArguments(Args)) {
5142     SequenceKind = DependentSequence;
5143     return;
5144   }
5145 
5146   // Almost everything is a normal sequence.
5147   setSequenceKind(NormalSequence);
5148 
5149   QualType SourceType;
5150   Expr *Initializer = nullptr;
5151   if (Args.size() == 1) {
5152     Initializer = Args[0];
5153     if (S.getLangOpts().ObjC1) {
5154       if (S.CheckObjCBridgeRelatedConversions(Initializer->getLocStart(),
5155                                               DestType, Initializer->getType(),
5156                                               Initializer) ||
5157           S.ConversionToObjCStringLiteralCheck(DestType, Initializer))
5158         Args[0] = Initializer;
5159     }
5160     if (!isa<InitListExpr>(Initializer))
5161       SourceType = Initializer->getType();
5162   }
5163 
5164   //     - If the initializer is a (non-parenthesized) braced-init-list, the
5165   //       object is list-initialized (8.5.4).
5166   if (Kind.getKind() != InitializationKind::IK_Direct) {
5167     if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
5168       TryListInitialization(S, Entity, Kind, InitList, *this,
5169                             TreatUnavailableAsInvalid);
5170       return;
5171     }
5172   }
5173 
5174   //     - If the destination type is a reference type, see 8.5.3.
5175   if (DestType->isReferenceType()) {
5176     // C++0x [dcl.init.ref]p1:
5177     //   A variable declared to be a T& or T&&, that is, "reference to type T"
5178     //   (8.3.2), shall be initialized by an object, or function, of type T or
5179     //   by an object that can be converted into a T.
5180     // (Therefore, multiple arguments are not permitted.)
5181     if (Args.size() != 1)
5182       SetFailed(FK_TooManyInitsForReference);
5183     else
5184       TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
5185     return;
5186   }
5187 
5188   //     - If the initializer is (), the object is value-initialized.
5189   if (Kind.getKind() == InitializationKind::IK_Value ||
5190       (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
5191     TryValueInitialization(S, Entity, Kind, *this);
5192     return;
5193   }
5194 
5195   // Handle default initialization.
5196   if (Kind.getKind() == InitializationKind::IK_Default) {
5197     TryDefaultInitialization(S, Entity, Kind, *this);
5198     return;
5199   }
5200 
5201   //     - If the destination type is an array of characters, an array of
5202   //       char16_t, an array of char32_t, or an array of wchar_t, and the
5203   //       initializer is a string literal, see 8.5.2.
5204   //     - Otherwise, if the destination type is an array, the program is
5205   //       ill-formed.
5206   if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
5207     if (Initializer && isa<VariableArrayType>(DestAT)) {
5208       SetFailed(FK_VariableLengthArrayHasInitializer);
5209       return;
5210     }
5211 
5212     if (Initializer) {
5213       switch (IsStringInit(Initializer, DestAT, Context)) {
5214       case SIF_None:
5215         TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
5216         return;
5217       case SIF_NarrowStringIntoWideChar:
5218         SetFailed(FK_NarrowStringIntoWideCharArray);
5219         return;
5220       case SIF_WideStringIntoChar:
5221         SetFailed(FK_WideStringIntoCharArray);
5222         return;
5223       case SIF_IncompatWideStringIntoWideChar:
5224         SetFailed(FK_IncompatWideStringIntoWideChar);
5225         return;
5226       case SIF_Other:
5227         break;
5228       }
5229     }
5230 
5231     // Some kinds of initialization permit an array to be initialized from
5232     // another array of the same type, and perform elementwise initialization.
5233     if (Initializer && isa<ConstantArrayType>(DestAT) &&
5234         S.Context.hasSameUnqualifiedType(Initializer->getType(),
5235                                          Entity.getType()) &&
5236         canPerformArrayCopy(Entity)) {
5237       // If source is a prvalue, use it directly.
5238       if (Initializer->getValueKind() == VK_RValue) {
5239         AddArrayInitStep(DestType, /*IsGNUExtension*/false);
5240         return;
5241       }
5242 
5243       // Emit element-at-a-time copy loop.
5244       InitializedEntity Element =
5245           InitializedEntity::InitializeElement(S.Context, 0, Entity);
5246       QualType InitEltT =
5247           Context.getAsArrayType(Initializer->getType())->getElementType();
5248       OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT,
5249                           Initializer->getValueKind(),
5250                           Initializer->getObjectKind());
5251       Expr *OVEAsExpr = &OVE;
5252       InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList,
5253                      TreatUnavailableAsInvalid);
5254       if (!Failed())
5255         AddArrayInitLoopStep(Entity.getType(), InitEltT);
5256       return;
5257     }
5258 
5259     // Note: as an GNU C extension, we allow initialization of an
5260     // array from a compound literal that creates an array of the same
5261     // type, so long as the initializer has no side effects.
5262     if (!S.getLangOpts().CPlusPlus && Initializer &&
5263         isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
5264         Initializer->getType()->isArrayType()) {
5265       const ArrayType *SourceAT
5266         = Context.getAsArrayType(Initializer->getType());
5267       if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
5268         SetFailed(FK_ArrayTypeMismatch);
5269       else if (Initializer->HasSideEffects(S.Context))
5270         SetFailed(FK_NonConstantArrayInit);
5271       else {
5272         AddArrayInitStep(DestType, /*IsGNUExtension*/true);
5273       }
5274     }
5275     // Note: as a GNU C++ extension, we allow list-initialization of a
5276     // class member of array type from a parenthesized initializer list.
5277     else if (S.getLangOpts().CPlusPlus &&
5278              Entity.getKind() == InitializedEntity::EK_Member &&
5279              Initializer && isa<InitListExpr>(Initializer)) {
5280       TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
5281                             *this, TreatUnavailableAsInvalid);
5282       AddParenthesizedArrayInitStep(DestType);
5283     } else if (DestAT->getElementType()->isCharType())
5284       SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
5285     else if (IsWideCharCompatible(DestAT->getElementType(), Context))
5286       SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral);
5287     else
5288       SetFailed(FK_ArrayNeedsInitList);
5289 
5290     return;
5291   }
5292 
5293   // Determine whether we should consider writeback conversions for
5294   // Objective-C ARC.
5295   bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
5296          Entity.isParameterKind();
5297 
5298   // We're at the end of the line for C: it's either a write-back conversion
5299   // or it's a C assignment. There's no need to check anything else.
5300   if (!S.getLangOpts().CPlusPlus) {
5301     // If allowed, check whether this is an Objective-C writeback conversion.
5302     if (allowObjCWritebackConversion &&
5303         tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
5304       return;
5305     }
5306 
5307     if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
5308       return;
5309 
5310     if (TryOCLZeroEventInitialization(S, *this, DestType, Initializer))
5311       return;
5312 
5313     if (TryOCLZeroQueueInitialization(S, *this, DestType, Initializer))
5314        return;
5315 
5316     // Handle initialization in C
5317     AddCAssignmentStep(DestType);
5318     MaybeProduceObjCObject(S, *this, Entity);
5319     return;
5320   }
5321 
5322   assert(S.getLangOpts().CPlusPlus);
5323 
5324   //     - If the destination type is a (possibly cv-qualified) class type:
5325   if (DestType->isRecordType()) {
5326     //     - If the initialization is direct-initialization, or if it is
5327     //       copy-initialization where the cv-unqualified version of the
5328     //       source type is the same class as, or a derived class of, the
5329     //       class of the destination, constructors are considered. [...]
5330     if (Kind.getKind() == InitializationKind::IK_Direct ||
5331         (Kind.getKind() == InitializationKind::IK_Copy &&
5332          (Context.hasSameUnqualifiedType(SourceType, DestType) ||
5333           S.IsDerivedFrom(Initializer->getLocStart(), SourceType, DestType))))
5334       TryConstructorInitialization(S, Entity, Kind, Args,
5335                                    DestType, DestType, *this);
5336     //     - Otherwise (i.e., for the remaining copy-initialization cases),
5337     //       user-defined conversion sequences that can convert from the source
5338     //       type to the destination type or (when a conversion function is
5339     //       used) to a derived class thereof are enumerated as described in
5340     //       13.3.1.4, and the best one is chosen through overload resolution
5341     //       (13.3).
5342     else
5343       TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5344                                TopLevelOfInitList);
5345     return;
5346   }
5347 
5348   if (Args.size() > 1) {
5349     SetFailed(FK_TooManyInitsForScalar);
5350     return;
5351   }
5352   assert(Args.size() == 1 && "Zero-argument case handled above");
5353 
5354   //    - Otherwise, if the source type is a (possibly cv-qualified) class
5355   //      type, conversion functions are considered.
5356   if (!SourceType.isNull() && SourceType->isRecordType()) {
5357     // For a conversion to _Atomic(T) from either T or a class type derived
5358     // from T, initialize the T object then convert to _Atomic type.
5359     bool NeedAtomicConversion = false;
5360     if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) {
5361       if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) ||
5362           S.IsDerivedFrom(Initializer->getLocStart(), SourceType,
5363                           Atomic->getValueType())) {
5364         DestType = Atomic->getValueType();
5365         NeedAtomicConversion = true;
5366       }
5367     }
5368 
5369     TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5370                              TopLevelOfInitList);
5371     MaybeProduceObjCObject(S, *this, Entity);
5372     if (!Failed() && NeedAtomicConversion)
5373       AddAtomicConversionStep(Entity.getType());
5374     return;
5375   }
5376 
5377   //    - Otherwise, the initial value of the object being initialized is the
5378   //      (possibly converted) value of the initializer expression. Standard
5379   //      conversions (Clause 4) will be used, if necessary, to convert the
5380   //      initializer expression to the cv-unqualified version of the
5381   //      destination type; no user-defined conversions are considered.
5382 
5383   ImplicitConversionSequence ICS
5384     = S.TryImplicitConversion(Initializer, DestType,
5385                               /*SuppressUserConversions*/true,
5386                               /*AllowExplicitConversions*/ false,
5387                               /*InOverloadResolution*/ false,
5388                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
5389                               allowObjCWritebackConversion);
5390 
5391   if (ICS.isStandard() &&
5392       ICS.Standard.Second == ICK_Writeback_Conversion) {
5393     // Objective-C ARC writeback conversion.
5394 
5395     // We should copy unless we're passing to an argument explicitly
5396     // marked 'out'.
5397     bool ShouldCopy = true;
5398     if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5399       ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5400 
5401     // If there was an lvalue adjustment, add it as a separate conversion.
5402     if (ICS.Standard.First == ICK_Array_To_Pointer ||
5403         ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
5404       ImplicitConversionSequence LvalueICS;
5405       LvalueICS.setStandard();
5406       LvalueICS.Standard.setAsIdentityConversion();
5407       LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
5408       LvalueICS.Standard.First = ICS.Standard.First;
5409       AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
5410     }
5411 
5412     AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy);
5413   } else if (ICS.isBad()) {
5414     DeclAccessPair dap;
5415     if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) {
5416       AddZeroInitializationStep(Entity.getType());
5417     } else if (Initializer->getType() == Context.OverloadTy &&
5418                !S.ResolveAddressOfOverloadedFunction(Initializer, DestType,
5419                                                      false, dap))
5420       SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
5421     else if (Initializer->getType()->isFunctionType() &&
5422              isExprAnUnaddressableFunction(S, Initializer))
5423       SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction);
5424     else
5425       SetFailed(InitializationSequence::FK_ConversionFailed);
5426   } else {
5427     AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5428 
5429     MaybeProduceObjCObject(S, *this, Entity);
5430   }
5431 }
5432 
5433 InitializationSequence::~InitializationSequence() {
5434   for (auto &S : Steps)
5435     S.Destroy();
5436 }
5437 
5438 //===----------------------------------------------------------------------===//
5439 // Perform initialization
5440 //===----------------------------------------------------------------------===//
5441 static Sema::AssignmentAction
5442 getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) {
5443   switch(Entity.getKind()) {
5444   case InitializedEntity::EK_Variable:
5445   case InitializedEntity::EK_New:
5446   case InitializedEntity::EK_Exception:
5447   case InitializedEntity::EK_Base:
5448   case InitializedEntity::EK_Delegating:
5449     return Sema::AA_Initializing;
5450 
5451   case InitializedEntity::EK_Parameter:
5452     if (Entity.getDecl() &&
5453         isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5454       return Sema::AA_Sending;
5455 
5456     return Sema::AA_Passing;
5457 
5458   case InitializedEntity::EK_Parameter_CF_Audited:
5459     if (Entity.getDecl() &&
5460       isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5461       return Sema::AA_Sending;
5462 
5463     return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited;
5464 
5465   case InitializedEntity::EK_Result:
5466     return Sema::AA_Returning;
5467 
5468   case InitializedEntity::EK_Temporary:
5469   case InitializedEntity::EK_RelatedResult:
5470     // FIXME: Can we tell apart casting vs. converting?
5471     return Sema::AA_Casting;
5472 
5473   case InitializedEntity::EK_Member:
5474   case InitializedEntity::EK_Binding:
5475   case InitializedEntity::EK_ArrayElement:
5476   case InitializedEntity::EK_VectorElement:
5477   case InitializedEntity::EK_ComplexElement:
5478   case InitializedEntity::EK_BlockElement:
5479   case InitializedEntity::EK_LambdaCapture:
5480   case InitializedEntity::EK_CompoundLiteralInit:
5481     return Sema::AA_Initializing;
5482   }
5483 
5484   llvm_unreachable("Invalid EntityKind!");
5485 }
5486 
5487 /// \brief Whether we should bind a created object as a temporary when
5488 /// initializing the given entity.
5489 static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
5490   switch (Entity.getKind()) {
5491   case InitializedEntity::EK_ArrayElement:
5492   case InitializedEntity::EK_Member:
5493   case InitializedEntity::EK_Result:
5494   case InitializedEntity::EK_New:
5495   case InitializedEntity::EK_Variable:
5496   case InitializedEntity::EK_Base:
5497   case InitializedEntity::EK_Delegating:
5498   case InitializedEntity::EK_VectorElement:
5499   case InitializedEntity::EK_ComplexElement:
5500   case InitializedEntity::EK_Exception:
5501   case InitializedEntity::EK_BlockElement:
5502   case InitializedEntity::EK_LambdaCapture:
5503   case InitializedEntity::EK_CompoundLiteralInit:
5504     return false;
5505 
5506   case InitializedEntity::EK_Parameter:
5507   case InitializedEntity::EK_Parameter_CF_Audited:
5508   case InitializedEntity::EK_Temporary:
5509   case InitializedEntity::EK_RelatedResult:
5510   case InitializedEntity::EK_Binding:
5511     return true;
5512   }
5513 
5514   llvm_unreachable("missed an InitializedEntity kind?");
5515 }
5516 
5517 /// \brief Whether the given entity, when initialized with an object
5518 /// created for that initialization, requires destruction.
5519 static bool shouldDestroyEntity(const InitializedEntity &Entity) {
5520   switch (Entity.getKind()) {
5521     case InitializedEntity::EK_Result:
5522     case InitializedEntity::EK_New:
5523     case InitializedEntity::EK_Base:
5524     case InitializedEntity::EK_Delegating:
5525     case InitializedEntity::EK_VectorElement:
5526     case InitializedEntity::EK_ComplexElement:
5527     case InitializedEntity::EK_BlockElement:
5528     case InitializedEntity::EK_LambdaCapture:
5529       return false;
5530 
5531     case InitializedEntity::EK_Member:
5532     case InitializedEntity::EK_Binding:
5533     case InitializedEntity::EK_Variable:
5534     case InitializedEntity::EK_Parameter:
5535     case InitializedEntity::EK_Parameter_CF_Audited:
5536     case InitializedEntity::EK_Temporary:
5537     case InitializedEntity::EK_ArrayElement:
5538     case InitializedEntity::EK_Exception:
5539     case InitializedEntity::EK_CompoundLiteralInit:
5540     case InitializedEntity::EK_RelatedResult:
5541       return true;
5542   }
5543 
5544   llvm_unreachable("missed an InitializedEntity kind?");
5545 }
5546 
5547 /// \brief Get the location at which initialization diagnostics should appear.
5548 static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
5549                                            Expr *Initializer) {
5550   switch (Entity.getKind()) {
5551   case InitializedEntity::EK_Result:
5552     return Entity.getReturnLoc();
5553 
5554   case InitializedEntity::EK_Exception:
5555     return Entity.getThrowLoc();
5556 
5557   case InitializedEntity::EK_Variable:
5558   case InitializedEntity::EK_Binding:
5559     return Entity.getDecl()->getLocation();
5560 
5561   case InitializedEntity::EK_LambdaCapture:
5562     return Entity.getCaptureLoc();
5563 
5564   case InitializedEntity::EK_ArrayElement:
5565   case InitializedEntity::EK_Member:
5566   case InitializedEntity::EK_Parameter:
5567   case InitializedEntity::EK_Parameter_CF_Audited:
5568   case InitializedEntity::EK_Temporary:
5569   case InitializedEntity::EK_New:
5570   case InitializedEntity::EK_Base:
5571   case InitializedEntity::EK_Delegating:
5572   case InitializedEntity::EK_VectorElement:
5573   case InitializedEntity::EK_ComplexElement:
5574   case InitializedEntity::EK_BlockElement:
5575   case InitializedEntity::EK_CompoundLiteralInit:
5576   case InitializedEntity::EK_RelatedResult:
5577     return Initializer->getLocStart();
5578   }
5579   llvm_unreachable("missed an InitializedEntity kind?");
5580 }
5581 
5582 /// \brief Make a (potentially elidable) temporary copy of the object
5583 /// provided by the given initializer by calling the appropriate copy
5584 /// constructor.
5585 ///
5586 /// \param S The Sema object used for type-checking.
5587 ///
5588 /// \param T The type of the temporary object, which must either be
5589 /// the type of the initializer expression or a superclass thereof.
5590 ///
5591 /// \param Entity The entity being initialized.
5592 ///
5593 /// \param CurInit The initializer expression.
5594 ///
5595 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that
5596 /// is permitted in C++03 (but not C++0x) when binding a reference to
5597 /// an rvalue.
5598 ///
5599 /// \returns An expression that copies the initializer expression into
5600 /// a temporary object, or an error expression if a copy could not be
5601 /// created.
5602 static ExprResult CopyObject(Sema &S,
5603                              QualType T,
5604                              const InitializedEntity &Entity,
5605                              ExprResult CurInit,
5606                              bool IsExtraneousCopy) {
5607   if (CurInit.isInvalid())
5608     return CurInit;
5609   // Determine which class type we're copying to.
5610   Expr *CurInitExpr = (Expr *)CurInit.get();
5611   CXXRecordDecl *Class = nullptr;
5612   if (const RecordType *Record = T->getAs<RecordType>())
5613     Class = cast<CXXRecordDecl>(Record->getDecl());
5614   if (!Class)
5615     return CurInit;
5616 
5617   SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
5618 
5619   // Make sure that the type we are copying is complete.
5620   if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
5621     return CurInit;
5622 
5623   // Perform overload resolution using the class's constructors. Per
5624   // C++11 [dcl.init]p16, second bullet for class types, this initialization
5625   // is direct-initialization.
5626   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
5627   DeclContext::lookup_result Ctors = S.LookupConstructors(Class);
5628 
5629   OverloadCandidateSet::iterator Best;
5630   switch (ResolveConstructorOverload(
5631       S, Loc, CurInitExpr, CandidateSet, Ctors, Best,
5632       /*CopyInitializing=*/false, /*AllowExplicit=*/true,
5633       /*OnlyListConstructors=*/false, /*IsListInit=*/false,
5634       /*SecondStepOfCopyInit=*/true)) {
5635   case OR_Success:
5636     break;
5637 
5638   case OR_No_Viable_Function:
5639     S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
5640            ? diag::ext_rvalue_to_reference_temp_copy_no_viable
5641            : diag::err_temp_copy_no_viable)
5642       << (int)Entity.getKind() << CurInitExpr->getType()
5643       << CurInitExpr->getSourceRange();
5644     CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
5645     if (!IsExtraneousCopy || S.isSFINAEContext())
5646       return ExprError();
5647     return CurInit;
5648 
5649   case OR_Ambiguous:
5650     S.Diag(Loc, diag::err_temp_copy_ambiguous)
5651       << (int)Entity.getKind() << CurInitExpr->getType()
5652       << CurInitExpr->getSourceRange();
5653     CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
5654     return ExprError();
5655 
5656   case OR_Deleted:
5657     S.Diag(Loc, diag::err_temp_copy_deleted)
5658       << (int)Entity.getKind() << CurInitExpr->getType()
5659       << CurInitExpr->getSourceRange();
5660     S.NoteDeletedFunction(Best->Function);
5661     return ExprError();
5662   }
5663 
5664   bool HadMultipleCandidates = CandidateSet.size() > 1;
5665 
5666   CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
5667   SmallVector<Expr*, 8> ConstructorArgs;
5668   CurInit.get(); // Ownership transferred into MultiExprArg, below.
5669 
5670   S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity,
5671                            IsExtraneousCopy);
5672 
5673   if (IsExtraneousCopy) {
5674     // If this is a totally extraneous copy for C++03 reference
5675     // binding purposes, just return the original initialization
5676     // expression. We don't generate an (elided) copy operation here
5677     // because doing so would require us to pass down a flag to avoid
5678     // infinite recursion, where each step adds another extraneous,
5679     // elidable copy.
5680 
5681     // Instantiate the default arguments of any extra parameters in
5682     // the selected copy constructor, as if we were going to create a
5683     // proper call to the copy constructor.
5684     for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
5685       ParmVarDecl *Parm = Constructor->getParamDecl(I);
5686       if (S.RequireCompleteType(Loc, Parm->getType(),
5687                                 diag::err_call_incomplete_argument))
5688         break;
5689 
5690       // Build the default argument expression; we don't actually care
5691       // if this succeeds or not, because this routine will complain
5692       // if there was a problem.
5693       S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
5694     }
5695 
5696     return CurInitExpr;
5697   }
5698 
5699   // Determine the arguments required to actually perform the
5700   // constructor call (we might have derived-to-base conversions, or
5701   // the copy constructor may have default arguments).
5702   if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs))
5703     return ExprError();
5704 
5705   // C++0x [class.copy]p32:
5706   //   When certain criteria are met, an implementation is allowed to
5707   //   omit the copy/move construction of a class object, even if the
5708   //   copy/move constructor and/or destructor for the object have
5709   //   side effects. [...]
5710   //     - when a temporary class object that has not been bound to a
5711   //       reference (12.2) would be copied/moved to a class object
5712   //       with the same cv-unqualified type, the copy/move operation
5713   //       can be omitted by constructing the temporary object
5714   //       directly into the target of the omitted copy/move
5715   //
5716   // Note that the other three bullets are handled elsewhere. Copy
5717   // elision for return statements and throw expressions are handled as part
5718   // of constructor initialization, while copy elision for exception handlers
5719   // is handled by the run-time.
5720   //
5721   // FIXME: If the function parameter is not the same type as the temporary, we
5722   // should still be able to elide the copy, but we don't have a way to
5723   // represent in the AST how much should be elided in this case.
5724   bool Elidable =
5725       CurInitExpr->isTemporaryObject(S.Context, Class) &&
5726       S.Context.hasSameUnqualifiedType(
5727           Best->Function->getParamDecl(0)->getType().getNonReferenceType(),
5728           CurInitExpr->getType());
5729 
5730   // Actually perform the constructor call.
5731   CurInit = S.BuildCXXConstructExpr(Loc, T, Best->FoundDecl, Constructor,
5732                                     Elidable,
5733                                     ConstructorArgs,
5734                                     HadMultipleCandidates,
5735                                     /*ListInit*/ false,
5736                                     /*StdInitListInit*/ false,
5737                                     /*ZeroInit*/ false,
5738                                     CXXConstructExpr::CK_Complete,
5739                                     SourceRange());
5740 
5741   // If we're supposed to bind temporaries, do so.
5742   if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
5743     CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
5744   return CurInit;
5745 }
5746 
5747 /// \brief Check whether elidable copy construction for binding a reference to
5748 /// a temporary would have succeeded if we were building in C++98 mode, for
5749 /// -Wc++98-compat.
5750 static void CheckCXX98CompatAccessibleCopy(Sema &S,
5751                                            const InitializedEntity &Entity,
5752                                            Expr *CurInitExpr) {
5753   assert(S.getLangOpts().CPlusPlus11);
5754 
5755   const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
5756   if (!Record)
5757     return;
5758 
5759   SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
5760   if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc))
5761     return;
5762 
5763   // Find constructors which would have been considered.
5764   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
5765   DeclContext::lookup_result Ctors =
5766       S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl()));
5767 
5768   // Perform overload resolution.
5769   OverloadCandidateSet::iterator Best;
5770   OverloadingResult OR = ResolveConstructorOverload(
5771       S, Loc, CurInitExpr, CandidateSet, Ctors, Best,
5772       /*CopyInitializing=*/false, /*AllowExplicit=*/true,
5773       /*OnlyListConstructors=*/false, /*IsListInit=*/false,
5774       /*SecondStepOfCopyInit=*/true);
5775 
5776   PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
5777     << OR << (int)Entity.getKind() << CurInitExpr->getType()
5778     << CurInitExpr->getSourceRange();
5779 
5780   switch (OR) {
5781   case OR_Success:
5782     S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
5783                              Best->FoundDecl, Entity, Diag);
5784     // FIXME: Check default arguments as far as that's possible.
5785     break;
5786 
5787   case OR_No_Viable_Function:
5788     S.Diag(Loc, Diag);
5789     CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
5790     break;
5791 
5792   case OR_Ambiguous:
5793     S.Diag(Loc, Diag);
5794     CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
5795     break;
5796 
5797   case OR_Deleted:
5798     S.Diag(Loc, Diag);
5799     S.NoteDeletedFunction(Best->Function);
5800     break;
5801   }
5802 }
5803 
5804 void InitializationSequence::PrintInitLocationNote(Sema &S,
5805                                               const InitializedEntity &Entity) {
5806   if (Entity.isParameterKind() && Entity.getDecl()) {
5807     if (Entity.getDecl()->getLocation().isInvalid())
5808       return;
5809 
5810     if (Entity.getDecl()->getDeclName())
5811       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
5812         << Entity.getDecl()->getDeclName();
5813     else
5814       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
5815   }
5816   else if (Entity.getKind() == InitializedEntity::EK_RelatedResult &&
5817            Entity.getMethodDecl())
5818     S.Diag(Entity.getMethodDecl()->getLocation(),
5819            diag::note_method_return_type_change)
5820       << Entity.getMethodDecl()->getDeclName();
5821 }
5822 
5823 /// Returns true if the parameters describe a constructor initialization of
5824 /// an explicit temporary object, e.g. "Point(x, y)".
5825 static bool isExplicitTemporary(const InitializedEntity &Entity,
5826                                 const InitializationKind &Kind,
5827                                 unsigned NumArgs) {
5828   switch (Entity.getKind()) {
5829   case InitializedEntity::EK_Temporary:
5830   case InitializedEntity::EK_CompoundLiteralInit:
5831   case InitializedEntity::EK_RelatedResult:
5832     break;
5833   default:
5834     return false;
5835   }
5836 
5837   switch (Kind.getKind()) {
5838   case InitializationKind::IK_DirectList:
5839     return true;
5840   // FIXME: Hack to work around cast weirdness.
5841   case InitializationKind::IK_Direct:
5842   case InitializationKind::IK_Value:
5843     return NumArgs != 1;
5844   default:
5845     return false;
5846   }
5847 }
5848 
5849 static ExprResult
5850 PerformConstructorInitialization(Sema &S,
5851                                  const InitializedEntity &Entity,
5852                                  const InitializationKind &Kind,
5853                                  MultiExprArg Args,
5854                                  const InitializationSequence::Step& Step,
5855                                  bool &ConstructorInitRequiresZeroInit,
5856                                  bool IsListInitialization,
5857                                  bool IsStdInitListInitialization,
5858                                  SourceLocation LBraceLoc,
5859                                  SourceLocation RBraceLoc) {
5860   unsigned NumArgs = Args.size();
5861   CXXConstructorDecl *Constructor
5862     = cast<CXXConstructorDecl>(Step.Function.Function);
5863   bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
5864 
5865   // Build a call to the selected constructor.
5866   SmallVector<Expr*, 8> ConstructorArgs;
5867   SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
5868                          ? Kind.getEqualLoc()
5869                          : Kind.getLocation();
5870 
5871   if (Kind.getKind() == InitializationKind::IK_Default) {
5872     // Force even a trivial, implicit default constructor to be
5873     // semantically checked. We do this explicitly because we don't build
5874     // the definition for completely trivial constructors.
5875     assert(Constructor->getParent() && "No parent class for constructor.");
5876     if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
5877         Constructor->isTrivial() && !Constructor->isUsed(false))
5878       S.DefineImplicitDefaultConstructor(Loc, Constructor);
5879   }
5880 
5881   ExprResult CurInit((Expr *)nullptr);
5882 
5883   // C++ [over.match.copy]p1:
5884   //   - When initializing a temporary to be bound to the first parameter
5885   //     of a constructor that takes a reference to possibly cv-qualified
5886   //     T as its first argument, called with a single argument in the
5887   //     context of direct-initialization, explicit conversion functions
5888   //     are also considered.
5889   bool AllowExplicitConv =
5890       Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 &&
5891       hasCopyOrMoveCtorParam(S.Context,
5892                              getConstructorInfo(Step.Function.FoundDecl));
5893 
5894   // Determine the arguments required to actually perform the constructor
5895   // call.
5896   if (S.CompleteConstructorCall(Constructor, Args,
5897                                 Loc, ConstructorArgs,
5898                                 AllowExplicitConv,
5899                                 IsListInitialization))
5900     return ExprError();
5901 
5902 
5903   if (isExplicitTemporary(Entity, Kind, NumArgs)) {
5904     // An explicitly-constructed temporary, e.g., X(1, 2).
5905     if (S.DiagnoseUseOfDecl(Constructor, Loc))
5906       return ExprError();
5907 
5908     TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
5909     if (!TSInfo)
5910       TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
5911     SourceRange ParenOrBraceRange =
5912       (Kind.getKind() == InitializationKind::IK_DirectList)
5913       ? SourceRange(LBraceLoc, RBraceLoc)
5914       : Kind.getParenRange();
5915 
5916     if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(
5917             Step.Function.FoundDecl.getDecl())) {
5918       Constructor = S.findInheritingConstructor(Loc, Constructor, Shadow);
5919       if (S.DiagnoseUseOfDecl(Constructor, Loc))
5920         return ExprError();
5921     }
5922     S.MarkFunctionReferenced(Loc, Constructor);
5923 
5924     CurInit = new (S.Context) CXXTemporaryObjectExpr(
5925         S.Context, Constructor, TSInfo,
5926         ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates,
5927         IsListInitialization, IsStdInitListInitialization,
5928         ConstructorInitRequiresZeroInit);
5929   } else {
5930     CXXConstructExpr::ConstructionKind ConstructKind =
5931       CXXConstructExpr::CK_Complete;
5932 
5933     if (Entity.getKind() == InitializedEntity::EK_Base) {
5934       ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
5935         CXXConstructExpr::CK_VirtualBase :
5936         CXXConstructExpr::CK_NonVirtualBase;
5937     } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
5938       ConstructKind = CXXConstructExpr::CK_Delegating;
5939     }
5940 
5941     // Only get the parenthesis or brace range if it is a list initialization or
5942     // direct construction.
5943     SourceRange ParenOrBraceRange;
5944     if (IsListInitialization)
5945       ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc);
5946     else if (Kind.getKind() == InitializationKind::IK_Direct)
5947       ParenOrBraceRange = Kind.getParenRange();
5948 
5949     // If the entity allows NRVO, mark the construction as elidable
5950     // unconditionally.
5951     if (Entity.allowsNRVO())
5952       CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
5953                                         Step.Function.FoundDecl,
5954                                         Constructor, /*Elidable=*/true,
5955                                         ConstructorArgs,
5956                                         HadMultipleCandidates,
5957                                         IsListInitialization,
5958                                         IsStdInitListInitialization,
5959                                         ConstructorInitRequiresZeroInit,
5960                                         ConstructKind,
5961                                         ParenOrBraceRange);
5962     else
5963       CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
5964                                         Step.Function.FoundDecl,
5965                                         Constructor,
5966                                         ConstructorArgs,
5967                                         HadMultipleCandidates,
5968                                         IsListInitialization,
5969                                         IsStdInitListInitialization,
5970                                         ConstructorInitRequiresZeroInit,
5971                                         ConstructKind,
5972                                         ParenOrBraceRange);
5973   }
5974   if (CurInit.isInvalid())
5975     return ExprError();
5976 
5977   // Only check access if all of that succeeded.
5978   S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity);
5979   if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc))
5980     return ExprError();
5981 
5982   if (shouldBindAsTemporary(Entity))
5983     CurInit = S.MaybeBindToTemporary(CurInit.get());
5984 
5985   return CurInit;
5986 }
5987 
5988 /// Determine whether the specified InitializedEntity definitely has a lifetime
5989 /// longer than the current full-expression. Conservatively returns false if
5990 /// it's unclear.
5991 static bool
5992 InitializedEntityOutlivesFullExpression(const InitializedEntity &Entity) {
5993   const InitializedEntity *Top = &Entity;
5994   while (Top->getParent())
5995     Top = Top->getParent();
5996 
5997   switch (Top->getKind()) {
5998   case InitializedEntity::EK_Variable:
5999   case InitializedEntity::EK_Result:
6000   case InitializedEntity::EK_Exception:
6001   case InitializedEntity::EK_Member:
6002   case InitializedEntity::EK_Binding:
6003   case InitializedEntity::EK_New:
6004   case InitializedEntity::EK_Base:
6005   case InitializedEntity::EK_Delegating:
6006     return true;
6007 
6008   case InitializedEntity::EK_ArrayElement:
6009   case InitializedEntity::EK_VectorElement:
6010   case InitializedEntity::EK_BlockElement:
6011   case InitializedEntity::EK_ComplexElement:
6012     // Could not determine what the full initialization is. Assume it might not
6013     // outlive the full-expression.
6014     return false;
6015 
6016   case InitializedEntity::EK_Parameter:
6017   case InitializedEntity::EK_Parameter_CF_Audited:
6018   case InitializedEntity::EK_Temporary:
6019   case InitializedEntity::EK_LambdaCapture:
6020   case InitializedEntity::EK_CompoundLiteralInit:
6021   case InitializedEntity::EK_RelatedResult:
6022     // The entity being initialized might not outlive the full-expression.
6023     return false;
6024   }
6025 
6026   llvm_unreachable("unknown entity kind");
6027 }
6028 
6029 /// Determine the declaration which an initialized entity ultimately refers to,
6030 /// for the purpose of lifetime-extending a temporary bound to a reference in
6031 /// the initialization of \p Entity.
6032 static const InitializedEntity *getEntityForTemporaryLifetimeExtension(
6033     const InitializedEntity *Entity,
6034     const InitializedEntity *FallbackDecl = nullptr) {
6035   // C++11 [class.temporary]p5:
6036   switch (Entity->getKind()) {
6037   case InitializedEntity::EK_Variable:
6038     //   The temporary [...] persists for the lifetime of the reference
6039     return Entity;
6040 
6041   case InitializedEntity::EK_Member:
6042     // For subobjects, we look at the complete object.
6043     if (Entity->getParent())
6044       return getEntityForTemporaryLifetimeExtension(Entity->getParent(),
6045                                                     Entity);
6046 
6047     //   except:
6048     //   -- A temporary bound to a reference member in a constructor's
6049     //      ctor-initializer persists until the constructor exits.
6050     return Entity;
6051 
6052   case InitializedEntity::EK_Binding:
6053     // Per [dcl.decomp]p3, the binding is treated as a variable of reference
6054     // type.
6055     return Entity;
6056 
6057   case InitializedEntity::EK_Parameter:
6058   case InitializedEntity::EK_Parameter_CF_Audited:
6059     //   -- A temporary bound to a reference parameter in a function call
6060     //      persists until the completion of the full-expression containing
6061     //      the call.
6062   case InitializedEntity::EK_Result:
6063     //   -- The lifetime of a temporary bound to the returned value in a
6064     //      function return statement is not extended; the temporary is
6065     //      destroyed at the end of the full-expression in the return statement.
6066   case InitializedEntity::EK_New:
6067     //   -- A temporary bound to a reference in a new-initializer persists
6068     //      until the completion of the full-expression containing the
6069     //      new-initializer.
6070     return nullptr;
6071 
6072   case InitializedEntity::EK_Temporary:
6073   case InitializedEntity::EK_CompoundLiteralInit:
6074   case InitializedEntity::EK_RelatedResult:
6075     // We don't yet know the storage duration of the surrounding temporary.
6076     // Assume it's got full-expression duration for now, it will patch up our
6077     // storage duration if that's not correct.
6078     return nullptr;
6079 
6080   case InitializedEntity::EK_ArrayElement:
6081     // For subobjects, we look at the complete object.
6082     return getEntityForTemporaryLifetimeExtension(Entity->getParent(),
6083                                                   FallbackDecl);
6084 
6085   case InitializedEntity::EK_Base:
6086     // For subobjects, we look at the complete object.
6087     if (Entity->getParent())
6088       return getEntityForTemporaryLifetimeExtension(Entity->getParent(),
6089                                                     Entity);
6090     // Fall through.
6091   case InitializedEntity::EK_Delegating:
6092     // We can reach this case for aggregate initialization in a constructor:
6093     //   struct A { int &&r; };
6094     //   struct B : A { B() : A{0} {} };
6095     // In this case, use the innermost field decl as the context.
6096     return FallbackDecl;
6097 
6098   case InitializedEntity::EK_BlockElement:
6099   case InitializedEntity::EK_LambdaCapture:
6100   case InitializedEntity::EK_Exception:
6101   case InitializedEntity::EK_VectorElement:
6102   case InitializedEntity::EK_ComplexElement:
6103     return nullptr;
6104   }
6105   llvm_unreachable("unknown entity kind");
6106 }
6107 
6108 static void performLifetimeExtension(Expr *Init,
6109                                      const InitializedEntity *ExtendingEntity);
6110 
6111 /// Update a glvalue expression that is used as the initializer of a reference
6112 /// to note that its lifetime is extended.
6113 /// \return \c true if any temporary had its lifetime extended.
6114 static bool
6115 performReferenceExtension(Expr *Init,
6116                           const InitializedEntity *ExtendingEntity) {
6117   // Walk past any constructs which we can lifetime-extend across.
6118   Expr *Old;
6119   do {
6120     Old = Init;
6121 
6122     if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
6123       if (ILE->getNumInits() == 1 && ILE->isGLValue()) {
6124         // This is just redundant braces around an initializer. Step over it.
6125         Init = ILE->getInit(0);
6126       }
6127     }
6128 
6129     // Step over any subobject adjustments; we may have a materialized
6130     // temporary inside them.
6131     Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
6132 
6133     // Per current approach for DR1376, look through casts to reference type
6134     // when performing lifetime extension.
6135     if (CastExpr *CE = dyn_cast<CastExpr>(Init))
6136       if (CE->getSubExpr()->isGLValue())
6137         Init = CE->getSubExpr();
6138 
6139     // Per the current approach for DR1299, look through array element access
6140     // when performing lifetime extension.
6141     if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Init))
6142       Init = ASE->getBase();
6143   } while (Init != Old);
6144 
6145   if (MaterializeTemporaryExpr *ME = dyn_cast<MaterializeTemporaryExpr>(Init)) {
6146     // Update the storage duration of the materialized temporary.
6147     // FIXME: Rebuild the expression instead of mutating it.
6148     ME->setExtendingDecl(ExtendingEntity->getDecl(),
6149                          ExtendingEntity->allocateManglingNumber());
6150     performLifetimeExtension(ME->GetTemporaryExpr(), ExtendingEntity);
6151     return true;
6152   }
6153 
6154   return false;
6155 }
6156 
6157 /// Update a prvalue expression that is going to be materialized as a
6158 /// lifetime-extended temporary.
6159 static void performLifetimeExtension(Expr *Init,
6160                                      const InitializedEntity *ExtendingEntity) {
6161   // Dig out the expression which constructs the extended temporary.
6162   Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
6163 
6164   if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init))
6165     Init = BTE->getSubExpr();
6166 
6167   if (CXXStdInitializerListExpr *ILE =
6168           dyn_cast<CXXStdInitializerListExpr>(Init)) {
6169     performReferenceExtension(ILE->getSubExpr(), ExtendingEntity);
6170     return;
6171   }
6172 
6173   if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
6174     if (ILE->getType()->isArrayType()) {
6175       for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I)
6176         performLifetimeExtension(ILE->getInit(I), ExtendingEntity);
6177       return;
6178     }
6179 
6180     if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) {
6181       assert(RD->isAggregate() && "aggregate init on non-aggregate");
6182 
6183       // If we lifetime-extend a braced initializer which is initializing an
6184       // aggregate, and that aggregate contains reference members which are
6185       // bound to temporaries, those temporaries are also lifetime-extended.
6186       if (RD->isUnion() && ILE->getInitializedFieldInUnion() &&
6187           ILE->getInitializedFieldInUnion()->getType()->isReferenceType())
6188         performReferenceExtension(ILE->getInit(0), ExtendingEntity);
6189       else {
6190         unsigned Index = 0;
6191         for (const auto *I : RD->fields()) {
6192           if (Index >= ILE->getNumInits())
6193             break;
6194           if (I->isUnnamedBitfield())
6195             continue;
6196           Expr *SubInit = ILE->getInit(Index);
6197           if (I->getType()->isReferenceType())
6198             performReferenceExtension(SubInit, ExtendingEntity);
6199           else if (isa<InitListExpr>(SubInit) ||
6200                    isa<CXXStdInitializerListExpr>(SubInit))
6201             // This may be either aggregate-initialization of a member or
6202             // initialization of a std::initializer_list object. Either way,
6203             // we should recursively lifetime-extend that initializer.
6204             performLifetimeExtension(SubInit, ExtendingEntity);
6205           ++Index;
6206         }
6207       }
6208     }
6209   }
6210 }
6211 
6212 static void warnOnLifetimeExtension(Sema &S, const InitializedEntity &Entity,
6213                                     const Expr *Init, bool IsInitializerList,
6214                                     const ValueDecl *ExtendingDecl) {
6215   // Warn if a field lifetime-extends a temporary.
6216   if (isa<FieldDecl>(ExtendingDecl)) {
6217     if (IsInitializerList) {
6218       S.Diag(Init->getExprLoc(), diag::warn_dangling_std_initializer_list)
6219         << /*at end of constructor*/true;
6220       return;
6221     }
6222 
6223     bool IsSubobjectMember = false;
6224     for (const InitializedEntity *Ent = Entity.getParent(); Ent;
6225          Ent = Ent->getParent()) {
6226       if (Ent->getKind() != InitializedEntity::EK_Base) {
6227         IsSubobjectMember = true;
6228         break;
6229       }
6230     }
6231     S.Diag(Init->getExprLoc(),
6232            diag::warn_bind_ref_member_to_temporary)
6233       << ExtendingDecl << Init->getSourceRange()
6234       << IsSubobjectMember << IsInitializerList;
6235     if (IsSubobjectMember)
6236       S.Diag(ExtendingDecl->getLocation(),
6237              diag::note_ref_subobject_of_member_declared_here);
6238     else
6239       S.Diag(ExtendingDecl->getLocation(),
6240              diag::note_ref_or_ptr_member_declared_here)
6241         << /*is pointer*/false;
6242   }
6243 }
6244 
6245 static void DiagnoseNarrowingInInitList(Sema &S,
6246                                         const ImplicitConversionSequence &ICS,
6247                                         QualType PreNarrowingType,
6248                                         QualType EntityType,
6249                                         const Expr *PostInit);
6250 
6251 /// Provide warnings when std::move is used on construction.
6252 static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr,
6253                                     bool IsReturnStmt) {
6254   if (!InitExpr)
6255     return;
6256 
6257   if (!S.ActiveTemplateInstantiations.empty())
6258     return;
6259 
6260   QualType DestType = InitExpr->getType();
6261   if (!DestType->isRecordType())
6262     return;
6263 
6264   unsigned DiagID = 0;
6265   if (IsReturnStmt) {
6266     const CXXConstructExpr *CCE =
6267         dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens());
6268     if (!CCE || CCE->getNumArgs() != 1)
6269       return;
6270 
6271     if (!CCE->getConstructor()->isCopyOrMoveConstructor())
6272       return;
6273 
6274     InitExpr = CCE->getArg(0)->IgnoreImpCasts();
6275   }
6276 
6277   // Find the std::move call and get the argument.
6278   const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens());
6279   if (!CE || CE->getNumArgs() != 1)
6280     return;
6281 
6282   const FunctionDecl *MoveFunction = CE->getDirectCallee();
6283   if (!MoveFunction || !MoveFunction->isInStdNamespace() ||
6284       !MoveFunction->getIdentifier() ||
6285       !MoveFunction->getIdentifier()->isStr("move"))
6286     return;
6287 
6288   const Expr *Arg = CE->getArg(0)->IgnoreImplicit();
6289 
6290   if (IsReturnStmt) {
6291     const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts());
6292     if (!DRE || DRE->refersToEnclosingVariableOrCapture())
6293       return;
6294 
6295     const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
6296     if (!VD || !VD->hasLocalStorage())
6297       return;
6298 
6299     QualType SourceType = VD->getType();
6300     if (!SourceType->isRecordType())
6301       return;
6302 
6303     if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) {
6304       return;
6305     }
6306 
6307     // If we're returning a function parameter, copy elision
6308     // is not possible.
6309     if (isa<ParmVarDecl>(VD))
6310       DiagID = diag::warn_redundant_move_on_return;
6311     else
6312       DiagID = diag::warn_pessimizing_move_on_return;
6313   } else {
6314     DiagID = diag::warn_pessimizing_move_on_initialization;
6315     const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens();
6316     if (!ArgStripped->isRValue() || !ArgStripped->getType()->isRecordType())
6317       return;
6318   }
6319 
6320   S.Diag(CE->getLocStart(), DiagID);
6321 
6322   // Get all the locations for a fix-it.  Don't emit the fix-it if any location
6323   // is within a macro.
6324   SourceLocation CallBegin = CE->getCallee()->getLocStart();
6325   if (CallBegin.isMacroID())
6326     return;
6327   SourceLocation RParen = CE->getRParenLoc();
6328   if (RParen.isMacroID())
6329     return;
6330   SourceLocation LParen;
6331   SourceLocation ArgLoc = Arg->getLocStart();
6332 
6333   // Special testing for the argument location.  Since the fix-it needs the
6334   // location right before the argument, the argument location can be in a
6335   // macro only if it is at the beginning of the macro.
6336   while (ArgLoc.isMacroID() &&
6337          S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) {
6338     ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).first;
6339   }
6340 
6341   if (LParen.isMacroID())
6342     return;
6343 
6344   LParen = ArgLoc.getLocWithOffset(-1);
6345 
6346   S.Diag(CE->getLocStart(), diag::note_remove_move)
6347       << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen))
6348       << FixItHint::CreateRemoval(SourceRange(RParen, RParen));
6349 }
6350 
6351 static void CheckForNullPointerDereference(Sema &S, const Expr *E) {
6352   // Check to see if we are dereferencing a null pointer.  If so, this is
6353   // undefined behavior, so warn about it.  This only handles the pattern
6354   // "*null", which is a very syntactic check.
6355   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
6356     if (UO->getOpcode() == UO_Deref &&
6357         UO->getSubExpr()->IgnoreParenCasts()->
6358         isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) {
6359     S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
6360                           S.PDiag(diag::warn_binding_null_to_reference)
6361                             << UO->getSubExpr()->getSourceRange());
6362   }
6363 }
6364 
6365 MaterializeTemporaryExpr *
6366 Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary,
6367                                      bool BoundToLvalueReference) {
6368   auto MTE = new (Context)
6369       MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference);
6370 
6371   // Order an ExprWithCleanups for lifetime marks.
6372   //
6373   // TODO: It'll be good to have a single place to check the access of the
6374   // destructor and generate ExprWithCleanups for various uses. Currently these
6375   // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary,
6376   // but there may be a chance to merge them.
6377   Cleanup.setExprNeedsCleanups(false);
6378   return MTE;
6379 }
6380 
6381 ExprResult Sema::TemporaryMaterializationConversion(Expr *E) {
6382   // In C++98, we don't want to implicitly create an xvalue.
6383   // FIXME: This means that AST consumers need to deal with "prvalues" that
6384   // denote materialized temporaries. Maybe we should add another ValueKind
6385   // for "xvalue pretending to be a prvalue" for C++98 support.
6386   if (!E->isRValue() || !getLangOpts().CPlusPlus11)
6387     return E;
6388 
6389   // C++1z [conv.rval]/1: T shall be a complete type.
6390   // FIXME: Does this ever matter (can we form a prvalue of incomplete type)?
6391   // If so, we should check for a non-abstract class type here too.
6392   QualType T = E->getType();
6393   if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type))
6394     return ExprError();
6395 
6396   return CreateMaterializeTemporaryExpr(E->getType(), E, false);
6397 }
6398 
6399 ExprResult
6400 InitializationSequence::Perform(Sema &S,
6401                                 const InitializedEntity &Entity,
6402                                 const InitializationKind &Kind,
6403                                 MultiExprArg Args,
6404                                 QualType *ResultType) {
6405   if (Failed()) {
6406     Diagnose(S, Entity, Kind, Args);
6407     return ExprError();
6408   }
6409   if (!ZeroInitializationFixit.empty()) {
6410     unsigned DiagID = diag::err_default_init_const;
6411     if (Decl *D = Entity.getDecl())
6412       if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>())
6413         DiagID = diag::ext_default_init_const;
6414 
6415     // The initialization would have succeeded with this fixit. Since the fixit
6416     // is on the error, we need to build a valid AST in this case, so this isn't
6417     // handled in the Failed() branch above.
6418     QualType DestType = Entity.getType();
6419     S.Diag(Kind.getLocation(), DiagID)
6420         << DestType << (bool)DestType->getAs<RecordType>()
6421         << FixItHint::CreateInsertion(ZeroInitializationFixitLoc,
6422                                       ZeroInitializationFixit);
6423   }
6424 
6425   if (getKind() == DependentSequence) {
6426     // If the declaration is a non-dependent, incomplete array type
6427     // that has an initializer, then its type will be completed once
6428     // the initializer is instantiated.
6429     if (ResultType && !Entity.getType()->isDependentType() &&
6430         Args.size() == 1) {
6431       QualType DeclType = Entity.getType();
6432       if (const IncompleteArrayType *ArrayT
6433                            = S.Context.getAsIncompleteArrayType(DeclType)) {
6434         // FIXME: We don't currently have the ability to accurately
6435         // compute the length of an initializer list without
6436         // performing full type-checking of the initializer list
6437         // (since we have to determine where braces are implicitly
6438         // introduced and such).  So, we fall back to making the array
6439         // type a dependently-sized array type with no specified
6440         // bound.
6441         if (isa<InitListExpr>((Expr *)Args[0])) {
6442           SourceRange Brackets;
6443 
6444           // Scavange the location of the brackets from the entity, if we can.
6445           if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Entity.getDecl())) {
6446             if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
6447               TypeLoc TL = TInfo->getTypeLoc();
6448               if (IncompleteArrayTypeLoc ArrayLoc =
6449                       TL.getAs<IncompleteArrayTypeLoc>())
6450                 Brackets = ArrayLoc.getBracketsRange();
6451             }
6452           }
6453 
6454           *ResultType
6455             = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
6456                                                    /*NumElts=*/nullptr,
6457                                                    ArrayT->getSizeModifier(),
6458                                        ArrayT->getIndexTypeCVRQualifiers(),
6459                                                    Brackets);
6460         }
6461 
6462       }
6463     }
6464     if (Kind.getKind() == InitializationKind::IK_Direct &&
6465         !Kind.isExplicitCast()) {
6466       // Rebuild the ParenListExpr.
6467       SourceRange ParenRange = Kind.getParenRange();
6468       return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
6469                                   Args);
6470     }
6471     assert(Kind.getKind() == InitializationKind::IK_Copy ||
6472            Kind.isExplicitCast() ||
6473            Kind.getKind() == InitializationKind::IK_DirectList);
6474     return ExprResult(Args[0]);
6475   }
6476 
6477   // No steps means no initialization.
6478   if (Steps.empty())
6479     return ExprResult((Expr *)nullptr);
6480 
6481   if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
6482       Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
6483       !Entity.isParameterKind()) {
6484     // Produce a C++98 compatibility warning if we are initializing a reference
6485     // from an initializer list. For parameters, we produce a better warning
6486     // elsewhere.
6487     Expr *Init = Args[0];
6488     S.Diag(Init->getLocStart(), diag::warn_cxx98_compat_reference_list_init)
6489       << Init->getSourceRange();
6490   }
6491 
6492   // Diagnose cases where we initialize a pointer to an array temporary, and the
6493   // pointer obviously outlives the temporary.
6494   if (Args.size() == 1 && Args[0]->getType()->isArrayType() &&
6495       Entity.getType()->isPointerType() &&
6496       InitializedEntityOutlivesFullExpression(Entity)) {
6497     const Expr *Init = Args[0]->skipRValueSubobjectAdjustments();
6498     if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Init))
6499       Init = MTE->GetTemporaryExpr();
6500     Expr::LValueClassification Kind = Init->ClassifyLValue(S.Context);
6501     if (Kind == Expr::LV_ClassTemporary || Kind == Expr::LV_ArrayTemporary)
6502       S.Diag(Init->getLocStart(), diag::warn_temporary_array_to_pointer_decay)
6503         << Init->getSourceRange();
6504   }
6505 
6506   QualType DestType = Entity.getType().getNonReferenceType();
6507   // FIXME: Ugly hack around the fact that Entity.getType() is not
6508   // the same as Entity.getDecl()->getType() in cases involving type merging,
6509   //  and we want latter when it makes sense.
6510   if (ResultType)
6511     *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
6512                                      Entity.getType();
6513 
6514   ExprResult CurInit((Expr *)nullptr);
6515   SmallVector<Expr*, 4> ArrayLoopCommonExprs;
6516 
6517   // For initialization steps that start with a single initializer,
6518   // grab the only argument out the Args and place it into the "current"
6519   // initializer.
6520   switch (Steps.front().Kind) {
6521   case SK_ResolveAddressOfOverloadedFunction:
6522   case SK_CastDerivedToBaseRValue:
6523   case SK_CastDerivedToBaseXValue:
6524   case SK_CastDerivedToBaseLValue:
6525   case SK_BindReference:
6526   case SK_BindReferenceToTemporary:
6527   case SK_FinalCopy:
6528   case SK_ExtraneousCopyToTemporary:
6529   case SK_UserConversion:
6530   case SK_QualificationConversionLValue:
6531   case SK_QualificationConversionXValue:
6532   case SK_QualificationConversionRValue:
6533   case SK_AtomicConversion:
6534   case SK_LValueToRValue:
6535   case SK_ConversionSequence:
6536   case SK_ConversionSequenceNoNarrowing:
6537   case SK_ListInitialization:
6538   case SK_UnwrapInitList:
6539   case SK_RewrapInitList:
6540   case SK_CAssignment:
6541   case SK_StringInit:
6542   case SK_ObjCObjectConversion:
6543   case SK_ArrayLoopIndex:
6544   case SK_ArrayLoopInit:
6545   case SK_ArrayInit:
6546   case SK_GNUArrayInit:
6547   case SK_ParenthesizedArrayInit:
6548   case SK_PassByIndirectCopyRestore:
6549   case SK_PassByIndirectRestore:
6550   case SK_ProduceObjCObject:
6551   case SK_StdInitializerList:
6552   case SK_OCLSamplerInit:
6553   case SK_OCLZeroEvent:
6554   case SK_OCLZeroQueue: {
6555     assert(Args.size() == 1);
6556     CurInit = Args[0];
6557     if (!CurInit.get()) return ExprError();
6558     break;
6559   }
6560 
6561   case SK_ConstructorInitialization:
6562   case SK_ConstructorInitializationFromList:
6563   case SK_StdInitializerListConstructorCall:
6564   case SK_ZeroInitialization:
6565     break;
6566   }
6567 
6568   // Promote from an unevaluated context to an unevaluated list context in
6569   // C++11 list-initialization; we need to instantiate entities usable in
6570   // constant expressions here in order to perform narrowing checks =(
6571   EnterExpressionEvaluationContext Evaluated(
6572       S, EnterExpressionEvaluationContext::InitList,
6573       CurInit.get() && isa<InitListExpr>(CurInit.get()));
6574 
6575   // C++ [class.abstract]p2:
6576   //   no objects of an abstract class can be created except as subobjects
6577   //   of a class derived from it
6578   auto checkAbstractType = [&](QualType T) -> bool {
6579     if (Entity.getKind() == InitializedEntity::EK_Base ||
6580         Entity.getKind() == InitializedEntity::EK_Delegating)
6581       return false;
6582     return S.RequireNonAbstractType(Kind.getLocation(), T,
6583                                     diag::err_allocation_of_abstract_type);
6584   };
6585 
6586   // Walk through the computed steps for the initialization sequence,
6587   // performing the specified conversions along the way.
6588   bool ConstructorInitRequiresZeroInit = false;
6589   for (step_iterator Step = step_begin(), StepEnd = step_end();
6590        Step != StepEnd; ++Step) {
6591     if (CurInit.isInvalid())
6592       return ExprError();
6593 
6594     QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
6595 
6596     switch (Step->Kind) {
6597     case SK_ResolveAddressOfOverloadedFunction:
6598       // Overload resolution determined which function invoke; update the
6599       // initializer to reflect that choice.
6600       S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
6601       if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()))
6602         return ExprError();
6603       CurInit = S.FixOverloadedFunctionReference(CurInit,
6604                                                  Step->Function.FoundDecl,
6605                                                  Step->Function.Function);
6606       break;
6607 
6608     case SK_CastDerivedToBaseRValue:
6609     case SK_CastDerivedToBaseXValue:
6610     case SK_CastDerivedToBaseLValue: {
6611       // We have a derived-to-base cast that produces either an rvalue or an
6612       // lvalue. Perform that cast.
6613 
6614       CXXCastPath BasePath;
6615 
6616       // Casts to inaccessible base classes are allowed with C-style casts.
6617       bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
6618       if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
6619                                          CurInit.get()->getLocStart(),
6620                                          CurInit.get()->getSourceRange(),
6621                                          &BasePath, IgnoreBaseAccess))
6622         return ExprError();
6623 
6624       ExprValueKind VK =
6625           Step->Kind == SK_CastDerivedToBaseLValue ?
6626               VK_LValue :
6627               (Step->Kind == SK_CastDerivedToBaseXValue ?
6628                    VK_XValue :
6629                    VK_RValue);
6630       CurInit =
6631           ImplicitCastExpr::Create(S.Context, Step->Type, CK_DerivedToBase,
6632                                    CurInit.get(), &BasePath, VK);
6633       break;
6634     }
6635 
6636     case SK_BindReference:
6637       // Reference binding does not have any corresponding ASTs.
6638 
6639       // Check exception specifications
6640       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
6641         return ExprError();
6642 
6643       // Even though we didn't materialize a temporary, the binding may still
6644       // extend the lifetime of a temporary. This happens if we bind a reference
6645       // to the result of a cast to reference type.
6646       if (const InitializedEntity *ExtendingEntity =
6647               getEntityForTemporaryLifetimeExtension(&Entity))
6648         if (performReferenceExtension(CurInit.get(), ExtendingEntity))
6649           warnOnLifetimeExtension(S, Entity, CurInit.get(),
6650                                   /*IsInitializerList=*/false,
6651                                   ExtendingEntity->getDecl());
6652 
6653       CheckForNullPointerDereference(S, CurInit.get());
6654       break;
6655 
6656     case SK_BindReferenceToTemporary: {
6657       // Make sure the "temporary" is actually an rvalue.
6658       assert(CurInit.get()->isRValue() && "not a temporary");
6659 
6660       // Check exception specifications
6661       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
6662         return ExprError();
6663 
6664       // Materialize the temporary into memory.
6665       MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
6666           Step->Type, CurInit.get(), Entity.getType()->isLValueReferenceType());
6667 
6668       // Maybe lifetime-extend the temporary's subobjects to match the
6669       // entity's lifetime.
6670       if (const InitializedEntity *ExtendingEntity =
6671               getEntityForTemporaryLifetimeExtension(&Entity))
6672         if (performReferenceExtension(MTE, ExtendingEntity))
6673           warnOnLifetimeExtension(S, Entity, CurInit.get(),
6674                                   /*IsInitializerList=*/false,
6675                                   ExtendingEntity->getDecl());
6676 
6677       // If we're binding to an Objective-C object that has lifetime, we
6678       // need cleanups. Likewise if we're extending this temporary to automatic
6679       // storage duration -- we need to register its cleanup during the
6680       // full-expression's cleanups.
6681       if ((S.getLangOpts().ObjCAutoRefCount &&
6682            MTE->getType()->isObjCLifetimeType()) ||
6683           (MTE->getStorageDuration() == SD_Automatic &&
6684            MTE->getType().isDestructedType()))
6685         S.Cleanup.setExprNeedsCleanups(true);
6686 
6687       CurInit = MTE;
6688       break;
6689     }
6690 
6691     case SK_FinalCopy:
6692       if (checkAbstractType(Step->Type))
6693         return ExprError();
6694 
6695       // If the overall initialization is initializing a temporary, we already
6696       // bound our argument if it was necessary to do so. If not (if we're
6697       // ultimately initializing a non-temporary), our argument needs to be
6698       // bound since it's initializing a function parameter.
6699       // FIXME: This is a mess. Rationalize temporary destruction.
6700       if (!shouldBindAsTemporary(Entity))
6701         CurInit = S.MaybeBindToTemporary(CurInit.get());
6702       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
6703                            /*IsExtraneousCopy=*/false);
6704       break;
6705 
6706     case SK_ExtraneousCopyToTemporary:
6707       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
6708                            /*IsExtraneousCopy=*/true);
6709       break;
6710 
6711     case SK_UserConversion: {
6712       // We have a user-defined conversion that invokes either a constructor
6713       // or a conversion function.
6714       CastKind CastKind;
6715       FunctionDecl *Fn = Step->Function.Function;
6716       DeclAccessPair FoundFn = Step->Function.FoundDecl;
6717       bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
6718       bool CreatedObject = false;
6719       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
6720         // Build a call to the selected constructor.
6721         SmallVector<Expr*, 8> ConstructorArgs;
6722         SourceLocation Loc = CurInit.get()->getLocStart();
6723 
6724         // Determine the arguments required to actually perform the constructor
6725         // call.
6726         Expr *Arg = CurInit.get();
6727         if (S.CompleteConstructorCall(Constructor,
6728                                       MultiExprArg(&Arg, 1),
6729                                       Loc, ConstructorArgs))
6730           return ExprError();
6731 
6732         // Build an expression that constructs a temporary.
6733         CurInit = S.BuildCXXConstructExpr(Loc, Step->Type,
6734                                           FoundFn, Constructor,
6735                                           ConstructorArgs,
6736                                           HadMultipleCandidates,
6737                                           /*ListInit*/ false,
6738                                           /*StdInitListInit*/ false,
6739                                           /*ZeroInit*/ false,
6740                                           CXXConstructExpr::CK_Complete,
6741                                           SourceRange());
6742         if (CurInit.isInvalid())
6743           return ExprError();
6744 
6745         S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn,
6746                                  Entity);
6747         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
6748           return ExprError();
6749 
6750         CastKind = CK_ConstructorConversion;
6751         CreatedObject = true;
6752       } else {
6753         // Build a call to the conversion function.
6754         CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
6755         S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr,
6756                                     FoundFn);
6757         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
6758           return ExprError();
6759 
6760         // FIXME: Should we move this initialization into a separate
6761         // derived-to-base conversion? I believe the answer is "no", because
6762         // we don't want to turn off access control here for c-style casts.
6763         CurInit = S.PerformObjectArgumentInitialization(CurInit.get(),
6764                                                         /*Qualifier=*/nullptr,
6765                                                         FoundFn, Conversion);
6766         if (CurInit.isInvalid())
6767           return ExprError();
6768 
6769         // Build the actual call to the conversion function.
6770         CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
6771                                            HadMultipleCandidates);
6772         if (CurInit.isInvalid())
6773           return ExprError();
6774 
6775         CastKind = CK_UserDefinedConversion;
6776         CreatedObject = Conversion->getReturnType()->isRecordType();
6777       }
6778 
6779       if (CreatedObject && checkAbstractType(CurInit.get()->getType()))
6780         return ExprError();
6781 
6782       CurInit = ImplicitCastExpr::Create(S.Context, CurInit.get()->getType(),
6783                                          CastKind, CurInit.get(), nullptr,
6784                                          CurInit.get()->getValueKind());
6785 
6786       if (shouldBindAsTemporary(Entity))
6787         // The overall entity is temporary, so this expression should be
6788         // destroyed at the end of its full-expression.
6789         CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
6790       else if (CreatedObject && shouldDestroyEntity(Entity)) {
6791         // The object outlasts the full-expression, but we need to prepare for
6792         // a destructor being run on it.
6793         // FIXME: It makes no sense to do this here. This should happen
6794         // regardless of how we initialized the entity.
6795         QualType T = CurInit.get()->getType();
6796         if (const RecordType *Record = T->getAs<RecordType>()) {
6797           CXXDestructorDecl *Destructor
6798             = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
6799           S.CheckDestructorAccess(CurInit.get()->getLocStart(), Destructor,
6800                                   S.PDiag(diag::err_access_dtor_temp) << T);
6801           S.MarkFunctionReferenced(CurInit.get()->getLocStart(), Destructor);
6802           if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getLocStart()))
6803             return ExprError();
6804         }
6805       }
6806       break;
6807     }
6808 
6809     case SK_QualificationConversionLValue:
6810     case SK_QualificationConversionXValue:
6811     case SK_QualificationConversionRValue: {
6812       // Perform a qualification conversion; these can never go wrong.
6813       ExprValueKind VK =
6814           Step->Kind == SK_QualificationConversionLValue ?
6815               VK_LValue :
6816               (Step->Kind == SK_QualificationConversionXValue ?
6817                    VK_XValue :
6818                    VK_RValue);
6819       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, CK_NoOp, VK);
6820       break;
6821     }
6822 
6823     case SK_AtomicConversion: {
6824       assert(CurInit.get()->isRValue() && "cannot convert glvalue to atomic");
6825       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
6826                                     CK_NonAtomicToAtomic, VK_RValue);
6827       break;
6828     }
6829 
6830     case SK_LValueToRValue: {
6831       assert(CurInit.get()->isGLValue() && "cannot load from a prvalue");
6832       CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
6833                                          CK_LValueToRValue, CurInit.get(),
6834                                          /*BasePath=*/nullptr, VK_RValue);
6835       break;
6836     }
6837 
6838     case SK_ConversionSequence:
6839     case SK_ConversionSequenceNoNarrowing: {
6840       Sema::CheckedConversionKind CCK
6841         = Kind.isCStyleCast()? Sema::CCK_CStyleCast
6842         : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
6843         : Kind.isExplicitCast()? Sema::CCK_OtherCast
6844         : Sema::CCK_ImplicitConversion;
6845       ExprResult CurInitExprRes =
6846         S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
6847                                     getAssignmentAction(Entity), CCK);
6848       if (CurInitExprRes.isInvalid())
6849         return ExprError();
6850 
6851       S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), CurInit.get());
6852 
6853       CurInit = CurInitExprRes;
6854 
6855       if (Step->Kind == SK_ConversionSequenceNoNarrowing &&
6856           S.getLangOpts().CPlusPlus)
6857         DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(),
6858                                     CurInit.get());
6859 
6860       break;
6861     }
6862 
6863     case SK_ListInitialization: {
6864       if (checkAbstractType(Step->Type))
6865         return ExprError();
6866 
6867       InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
6868       // If we're not initializing the top-level entity, we need to create an
6869       // InitializeTemporary entity for our target type.
6870       QualType Ty = Step->Type;
6871       bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty);
6872       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
6873       InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
6874       InitListChecker PerformInitList(S, InitEntity,
6875           InitList, Ty, /*VerifyOnly=*/false,
6876           /*TreatUnavailableAsInvalid=*/false);
6877       if (PerformInitList.HadError())
6878         return ExprError();
6879 
6880       // Hack: We must update *ResultType if available in order to set the
6881       // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
6882       // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
6883       if (ResultType &&
6884           ResultType->getNonReferenceType()->isIncompleteArrayType()) {
6885         if ((*ResultType)->isRValueReferenceType())
6886           Ty = S.Context.getRValueReferenceType(Ty);
6887         else if ((*ResultType)->isLValueReferenceType())
6888           Ty = S.Context.getLValueReferenceType(Ty,
6889             (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue());
6890         *ResultType = Ty;
6891       }
6892 
6893       InitListExpr *StructuredInitList =
6894           PerformInitList.getFullyStructuredList();
6895       CurInit.get();
6896       CurInit = shouldBindAsTemporary(InitEntity)
6897           ? S.MaybeBindToTemporary(StructuredInitList)
6898           : StructuredInitList;
6899       break;
6900     }
6901 
6902     case SK_ConstructorInitializationFromList: {
6903       if (checkAbstractType(Step->Type))
6904         return ExprError();
6905 
6906       // When an initializer list is passed for a parameter of type "reference
6907       // to object", we don't get an EK_Temporary entity, but instead an
6908       // EK_Parameter entity with reference type.
6909       // FIXME: This is a hack. What we really should do is create a user
6910       // conversion step for this case, but this makes it considerably more
6911       // complicated. For now, this will do.
6912       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
6913                                         Entity.getType().getNonReferenceType());
6914       bool UseTemporary = Entity.getType()->isReferenceType();
6915       assert(Args.size() == 1 && "expected a single argument for list init");
6916       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
6917       S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
6918         << InitList->getSourceRange();
6919       MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
6920       CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
6921                                                                    Entity,
6922                                                  Kind, Arg, *Step,
6923                                                ConstructorInitRequiresZeroInit,
6924                                                /*IsListInitialization*/true,
6925                                                /*IsStdInitListInit*/false,
6926                                                InitList->getLBraceLoc(),
6927                                                InitList->getRBraceLoc());
6928       break;
6929     }
6930 
6931     case SK_UnwrapInitList:
6932       CurInit = cast<InitListExpr>(CurInit.get())->getInit(0);
6933       break;
6934 
6935     case SK_RewrapInitList: {
6936       Expr *E = CurInit.get();
6937       InitListExpr *Syntactic = Step->WrappingSyntacticList;
6938       InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
6939           Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
6940       ILE->setSyntacticForm(Syntactic);
6941       ILE->setType(E->getType());
6942       ILE->setValueKind(E->getValueKind());
6943       CurInit = ILE;
6944       break;
6945     }
6946 
6947     case SK_ConstructorInitialization:
6948     case SK_StdInitializerListConstructorCall: {
6949       if (checkAbstractType(Step->Type))
6950         return ExprError();
6951 
6952       // When an initializer list is passed for a parameter of type "reference
6953       // to object", we don't get an EK_Temporary entity, but instead an
6954       // EK_Parameter entity with reference type.
6955       // FIXME: This is a hack. What we really should do is create a user
6956       // conversion step for this case, but this makes it considerably more
6957       // complicated. For now, this will do.
6958       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
6959                                         Entity.getType().getNonReferenceType());
6960       bool UseTemporary = Entity.getType()->isReferenceType();
6961       bool IsStdInitListInit =
6962           Step->Kind == SK_StdInitializerListConstructorCall;
6963       Expr *Source = CurInit.get();
6964       CurInit = PerformConstructorInitialization(
6965           S, UseTemporary ? TempEntity : Entity, Kind,
6966           Source ? MultiExprArg(Source) : Args, *Step,
6967           ConstructorInitRequiresZeroInit,
6968           /*IsListInitialization*/ IsStdInitListInit,
6969           /*IsStdInitListInitialization*/ IsStdInitListInit,
6970           /*LBraceLoc*/ SourceLocation(),
6971           /*RBraceLoc*/ SourceLocation());
6972       break;
6973     }
6974 
6975     case SK_ZeroInitialization: {
6976       step_iterator NextStep = Step;
6977       ++NextStep;
6978       if (NextStep != StepEnd &&
6979           (NextStep->Kind == SK_ConstructorInitialization ||
6980            NextStep->Kind == SK_ConstructorInitializationFromList)) {
6981         // The need for zero-initialization is recorded directly into
6982         // the call to the object's constructor within the next step.
6983         ConstructorInitRequiresZeroInit = true;
6984       } else if (Kind.getKind() == InitializationKind::IK_Value &&
6985                  S.getLangOpts().CPlusPlus &&
6986                  !Kind.isImplicitValueInit()) {
6987         TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
6988         if (!TSInfo)
6989           TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
6990                                                     Kind.getRange().getBegin());
6991 
6992         CurInit = new (S.Context) CXXScalarValueInitExpr(
6993             TSInfo->getType().getNonLValueExprType(S.Context), TSInfo,
6994             Kind.getRange().getEnd());
6995       } else {
6996         CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type);
6997       }
6998       break;
6999     }
7000 
7001     case SK_CAssignment: {
7002       QualType SourceType = CurInit.get()->getType();
7003       // Save off the initial CurInit in case we need to emit a diagnostic
7004       ExprResult InitialCurInit = CurInit;
7005       ExprResult Result = CurInit;
7006       Sema::AssignConvertType ConvTy =
7007         S.CheckSingleAssignmentConstraints(Step->Type, Result, true,
7008             Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited);
7009       if (Result.isInvalid())
7010         return ExprError();
7011       CurInit = Result;
7012 
7013       // If this is a call, allow conversion to a transparent union.
7014       ExprResult CurInitExprRes = CurInit;
7015       if (ConvTy != Sema::Compatible &&
7016           Entity.isParameterKind() &&
7017           S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
7018             == Sema::Compatible)
7019         ConvTy = Sema::Compatible;
7020       if (CurInitExprRes.isInvalid())
7021         return ExprError();
7022       CurInit = CurInitExprRes;
7023 
7024       bool Complained;
7025       if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
7026                                      Step->Type, SourceType,
7027                                      InitialCurInit.get(),
7028                                      getAssignmentAction(Entity, true),
7029                                      &Complained)) {
7030         PrintInitLocationNote(S, Entity);
7031         return ExprError();
7032       } else if (Complained)
7033         PrintInitLocationNote(S, Entity);
7034       break;
7035     }
7036 
7037     case SK_StringInit: {
7038       QualType Ty = Step->Type;
7039       CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
7040                       S.Context.getAsArrayType(Ty), S);
7041       break;
7042     }
7043 
7044     case SK_ObjCObjectConversion:
7045       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
7046                           CK_ObjCObjectLValueCast,
7047                           CurInit.get()->getValueKind());
7048       break;
7049 
7050     case SK_ArrayLoopIndex: {
7051       Expr *Cur = CurInit.get();
7052       Expr *BaseExpr = new (S.Context)
7053           OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(),
7054                           Cur->getValueKind(), Cur->getObjectKind(), Cur);
7055       Expr *IndexExpr =
7056           new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType());
7057       CurInit = S.CreateBuiltinArraySubscriptExpr(
7058           BaseExpr, Kind.getLocation(), IndexExpr, Kind.getLocation());
7059       ArrayLoopCommonExprs.push_back(BaseExpr);
7060       break;
7061     }
7062 
7063     case SK_ArrayLoopInit: {
7064       assert(!ArrayLoopCommonExprs.empty() &&
7065              "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit");
7066       Expr *Common = ArrayLoopCommonExprs.pop_back_val();
7067       CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common,
7068                                                   CurInit.get());
7069       break;
7070     }
7071 
7072     case SK_GNUArrayInit:
7073       // Okay: we checked everything before creating this step. Note that
7074       // this is a GNU extension.
7075       S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
7076         << Step->Type << CurInit.get()->getType()
7077         << CurInit.get()->getSourceRange();
7078       LLVM_FALLTHROUGH;
7079     case SK_ArrayInit:
7080       // If the destination type is an incomplete array type, update the
7081       // type accordingly.
7082       if (ResultType) {
7083         if (const IncompleteArrayType *IncompleteDest
7084                            = S.Context.getAsIncompleteArrayType(Step->Type)) {
7085           if (const ConstantArrayType *ConstantSource
7086                  = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
7087             *ResultType = S.Context.getConstantArrayType(
7088                                              IncompleteDest->getElementType(),
7089                                              ConstantSource->getSize(),
7090                                              ArrayType::Normal, 0);
7091           }
7092         }
7093       }
7094       break;
7095 
7096     case SK_ParenthesizedArrayInit:
7097       // Okay: we checked everything before creating this step. Note that
7098       // this is a GNU extension.
7099       S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
7100         << CurInit.get()->getSourceRange();
7101       break;
7102 
7103     case SK_PassByIndirectCopyRestore:
7104     case SK_PassByIndirectRestore:
7105       checkIndirectCopyRestoreSource(S, CurInit.get());
7106       CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr(
7107           CurInit.get(), Step->Type,
7108           Step->Kind == SK_PassByIndirectCopyRestore);
7109       break;
7110 
7111     case SK_ProduceObjCObject:
7112       CurInit =
7113           ImplicitCastExpr::Create(S.Context, Step->Type, CK_ARCProduceObject,
7114                                    CurInit.get(), nullptr, VK_RValue);
7115       break;
7116 
7117     case SK_StdInitializerList: {
7118       S.Diag(CurInit.get()->getExprLoc(),
7119              diag::warn_cxx98_compat_initializer_list_init)
7120         << CurInit.get()->getSourceRange();
7121 
7122       // Materialize the temporary into memory.
7123       MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
7124           CurInit.get()->getType(), CurInit.get(),
7125           /*BoundToLvalueReference=*/false);
7126 
7127       // Maybe lifetime-extend the array temporary's subobjects to match the
7128       // entity's lifetime.
7129       if (const InitializedEntity *ExtendingEntity =
7130               getEntityForTemporaryLifetimeExtension(&Entity))
7131         if (performReferenceExtension(MTE, ExtendingEntity))
7132           warnOnLifetimeExtension(S, Entity, CurInit.get(),
7133                                   /*IsInitializerList=*/true,
7134                                   ExtendingEntity->getDecl());
7135 
7136       // Wrap it in a construction of a std::initializer_list<T>.
7137       CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE);
7138 
7139       // Bind the result, in case the library has given initializer_list a
7140       // non-trivial destructor.
7141       if (shouldBindAsTemporary(Entity))
7142         CurInit = S.MaybeBindToTemporary(CurInit.get());
7143       break;
7144     }
7145 
7146     case SK_OCLSamplerInit: {
7147       // Sampler initialzation have 5 cases:
7148       //   1. function argument passing
7149       //      1a. argument is a file-scope variable
7150       //      1b. argument is a function-scope variable
7151       //      1c. argument is one of caller function's parameters
7152       //   2. variable initialization
7153       //      2a. initializing a file-scope variable
7154       //      2b. initializing a function-scope variable
7155       //
7156       // For file-scope variables, since they cannot be initialized by function
7157       // call of __translate_sampler_initializer in LLVM IR, their references
7158       // need to be replaced by a cast from their literal initializers to
7159       // sampler type. Since sampler variables can only be used in function
7160       // calls as arguments, we only need to replace them when handling the
7161       // argument passing.
7162       assert(Step->Type->isSamplerT() &&
7163              "Sampler initialization on non-sampler type.");
7164       Expr *Init = CurInit.get();
7165       QualType SourceType = Init->getType();
7166       // Case 1
7167       if (Entity.isParameterKind()) {
7168         if (!SourceType->isSamplerT()) {
7169           S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
7170             << SourceType;
7171           break;
7172         } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init)) {
7173           auto Var = cast<VarDecl>(DRE->getDecl());
7174           // Case 1b and 1c
7175           // No cast from integer to sampler is needed.
7176           if (!Var->hasGlobalStorage()) {
7177             CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
7178                                                CK_LValueToRValue, Init,
7179                                                /*BasePath=*/nullptr, VK_RValue);
7180             break;
7181           }
7182           // Case 1a
7183           // For function call with a file-scope sampler variable as argument,
7184           // get the integer literal.
7185           // Do not diagnose if the file-scope variable does not have initializer
7186           // since this has already been diagnosed when parsing the variable
7187           // declaration.
7188           if (!Var->getInit() || !isa<ImplicitCastExpr>(Var->getInit()))
7189             break;
7190           Init = cast<ImplicitCastExpr>(const_cast<Expr*>(
7191             Var->getInit()))->getSubExpr();
7192           SourceType = Init->getType();
7193         }
7194       } else {
7195         // Case 2
7196         // Check initializer is 32 bit integer constant.
7197         // If the initializer is taken from global variable, do not diagnose since
7198         // this has already been done when parsing the variable declaration.
7199         if (!Init->isConstantInitializer(S.Context, false))
7200           break;
7201 
7202         if (!SourceType->isIntegerType() ||
7203             32 != S.Context.getIntWidth(SourceType)) {
7204           S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer)
7205             << SourceType;
7206           break;
7207         }
7208 
7209         llvm::APSInt Result;
7210         Init->EvaluateAsInt(Result, S.Context);
7211         const uint64_t SamplerValue = Result.getLimitedValue();
7212         // 32-bit value of sampler's initializer is interpreted as
7213         // bit-field with the following structure:
7214         // |unspecified|Filter|Addressing Mode| Normalized Coords|
7215         // |31        6|5    4|3             1|                 0|
7216         // This structure corresponds to enum values of sampler properties
7217         // defined in SPIR spec v1.2 and also opencl-c.h
7218         unsigned AddressingMode  = (0x0E & SamplerValue) >> 1;
7219         unsigned FilterMode      = (0x30 & SamplerValue) >> 4;
7220         if (FilterMode != 1 && FilterMode != 2)
7221           S.Diag(Kind.getLocation(),
7222                  diag::warn_sampler_initializer_invalid_bits)
7223                  << "Filter Mode";
7224         if (AddressingMode > 4)
7225           S.Diag(Kind.getLocation(),
7226                  diag::warn_sampler_initializer_invalid_bits)
7227                  << "Addressing Mode";
7228       }
7229 
7230       // Cases 1a, 2a and 2b
7231       // Insert cast from integer to sampler.
7232       CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy,
7233                                       CK_IntToOCLSampler);
7234       break;
7235     }
7236     case SK_OCLZeroEvent: {
7237       assert(Step->Type->isEventT() &&
7238              "Event initialization on non-event type.");
7239 
7240       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
7241                                     CK_ZeroToOCLEvent,
7242                                     CurInit.get()->getValueKind());
7243       break;
7244     }
7245     case SK_OCLZeroQueue: {
7246       assert(Step->Type->isQueueT() &&
7247              "Event initialization on non queue type.");
7248 
7249       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
7250                                     CK_ZeroToOCLQueue,
7251                                     CurInit.get()->getValueKind());
7252       break;
7253     }
7254     }
7255   }
7256 
7257   // Diagnose non-fatal problems with the completed initialization.
7258   if (Entity.getKind() == InitializedEntity::EK_Member &&
7259       cast<FieldDecl>(Entity.getDecl())->isBitField())
7260     S.CheckBitFieldInitialization(Kind.getLocation(),
7261                                   cast<FieldDecl>(Entity.getDecl()),
7262                                   CurInit.get());
7263 
7264   // Check for std::move on construction.
7265   if (const Expr *E = CurInit.get()) {
7266     CheckMoveOnConstruction(S, E,
7267                             Entity.getKind() == InitializedEntity::EK_Result);
7268   }
7269 
7270   return CurInit;
7271 }
7272 
7273 /// Somewhere within T there is an uninitialized reference subobject.
7274 /// Dig it out and diagnose it.
7275 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
7276                                            QualType T) {
7277   if (T->isReferenceType()) {
7278     S.Diag(Loc, diag::err_reference_without_init)
7279       << T.getNonReferenceType();
7280     return true;
7281   }
7282 
7283   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
7284   if (!RD || !RD->hasUninitializedReferenceMember())
7285     return false;
7286 
7287   for (const auto *FI : RD->fields()) {
7288     if (FI->isUnnamedBitfield())
7289       continue;
7290 
7291     if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
7292       S.Diag(Loc, diag::note_value_initialization_here) << RD;
7293       return true;
7294     }
7295   }
7296 
7297   for (const auto &BI : RD->bases()) {
7298     if (DiagnoseUninitializedReference(S, BI.getLocStart(), BI.getType())) {
7299       S.Diag(Loc, diag::note_value_initialization_here) << RD;
7300       return true;
7301     }
7302   }
7303 
7304   return false;
7305 }
7306 
7307 
7308 //===----------------------------------------------------------------------===//
7309 // Diagnose initialization failures
7310 //===----------------------------------------------------------------------===//
7311 
7312 /// Emit notes associated with an initialization that failed due to a
7313 /// "simple" conversion failure.
7314 static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity,
7315                                    Expr *op) {
7316   QualType destType = entity.getType();
7317   if (destType.getNonReferenceType()->isObjCObjectPointerType() &&
7318       op->getType()->isObjCObjectPointerType()) {
7319 
7320     // Emit a possible note about the conversion failing because the
7321     // operand is a message send with a related result type.
7322     S.EmitRelatedResultTypeNote(op);
7323 
7324     // Emit a possible note about a return failing because we're
7325     // expecting a related result type.
7326     if (entity.getKind() == InitializedEntity::EK_Result)
7327       S.EmitRelatedResultTypeNoteForReturn(destType);
7328   }
7329 }
7330 
7331 static void diagnoseListInit(Sema &S, const InitializedEntity &Entity,
7332                              InitListExpr *InitList) {
7333   QualType DestType = Entity.getType();
7334 
7335   QualType E;
7336   if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) {
7337     QualType ArrayType = S.Context.getConstantArrayType(
7338         E.withConst(),
7339         llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
7340                     InitList->getNumInits()),
7341         clang::ArrayType::Normal, 0);
7342     InitializedEntity HiddenArray =
7343         InitializedEntity::InitializeTemporary(ArrayType);
7344     return diagnoseListInit(S, HiddenArray, InitList);
7345   }
7346 
7347   if (DestType->isReferenceType()) {
7348     // A list-initialization failure for a reference means that we tried to
7349     // create a temporary of the inner type (per [dcl.init.list]p3.6) and the
7350     // inner initialization failed.
7351     QualType T = DestType->getAs<ReferenceType>()->getPointeeType();
7352     diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList);
7353     SourceLocation Loc = InitList->getLocStart();
7354     if (auto *D = Entity.getDecl())
7355       Loc = D->getLocation();
7356     S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T;
7357     return;
7358   }
7359 
7360   InitListChecker DiagnoseInitList(S, Entity, InitList, DestType,
7361                                    /*VerifyOnly=*/false,
7362                                    /*TreatUnavailableAsInvalid=*/false);
7363   assert(DiagnoseInitList.HadError() &&
7364          "Inconsistent init list check result.");
7365 }
7366 
7367 bool InitializationSequence::Diagnose(Sema &S,
7368                                       const InitializedEntity &Entity,
7369                                       const InitializationKind &Kind,
7370                                       ArrayRef<Expr *> Args) {
7371   if (!Failed())
7372     return false;
7373 
7374   QualType DestType = Entity.getType();
7375   switch (Failure) {
7376   case FK_TooManyInitsForReference:
7377     // FIXME: Customize for the initialized entity?
7378     if (Args.empty()) {
7379       // Dig out the reference subobject which is uninitialized and diagnose it.
7380       // If this is value-initialization, this could be nested some way within
7381       // the target type.
7382       assert(Kind.getKind() == InitializationKind::IK_Value ||
7383              DestType->isReferenceType());
7384       bool Diagnosed =
7385         DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
7386       assert(Diagnosed && "couldn't find uninitialized reference to diagnose");
7387       (void)Diagnosed;
7388     } else  // FIXME: diagnostic below could be better!
7389       S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
7390         << SourceRange(Args.front()->getLocStart(), Args.back()->getLocEnd());
7391     break;
7392 
7393   case FK_ArrayNeedsInitList:
7394     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0;
7395     break;
7396   case FK_ArrayNeedsInitListOrStringLiteral:
7397     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1;
7398     break;
7399   case FK_ArrayNeedsInitListOrWideStringLiteral:
7400     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2;
7401     break;
7402   case FK_NarrowStringIntoWideCharArray:
7403     S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar);
7404     break;
7405   case FK_WideStringIntoCharArray:
7406     S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char);
7407     break;
7408   case FK_IncompatWideStringIntoWideChar:
7409     S.Diag(Kind.getLocation(),
7410            diag::err_array_init_incompat_wide_string_into_wchar);
7411     break;
7412   case FK_ArrayTypeMismatch:
7413   case FK_NonConstantArrayInit:
7414     S.Diag(Kind.getLocation(),
7415            (Failure == FK_ArrayTypeMismatch
7416               ? diag::err_array_init_different_type
7417               : diag::err_array_init_non_constant_array))
7418       << DestType.getNonReferenceType()
7419       << Args[0]->getType()
7420       << Args[0]->getSourceRange();
7421     break;
7422 
7423   case FK_VariableLengthArrayHasInitializer:
7424     S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
7425       << Args[0]->getSourceRange();
7426     break;
7427 
7428   case FK_AddressOfOverloadFailed: {
7429     DeclAccessPair Found;
7430     S.ResolveAddressOfOverloadedFunction(Args[0],
7431                                          DestType.getNonReferenceType(),
7432                                          true,
7433                                          Found);
7434     break;
7435   }
7436 
7437   case FK_AddressOfUnaddressableFunction: {
7438     auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(Args[0])->getDecl());
7439     S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
7440                                         Args[0]->getLocStart());
7441     break;
7442   }
7443 
7444   case FK_ReferenceInitOverloadFailed:
7445   case FK_UserConversionOverloadFailed:
7446     switch (FailedOverloadResult) {
7447     case OR_Ambiguous:
7448       if (Failure == FK_UserConversionOverloadFailed)
7449         S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
7450           << Args[0]->getType() << DestType
7451           << Args[0]->getSourceRange();
7452       else
7453         S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
7454           << DestType << Args[0]->getType()
7455           << Args[0]->getSourceRange();
7456 
7457       FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
7458       break;
7459 
7460     case OR_No_Viable_Function:
7461       if (!S.RequireCompleteType(Kind.getLocation(),
7462                                  DestType.getNonReferenceType(),
7463                           diag::err_typecheck_nonviable_condition_incomplete,
7464                                Args[0]->getType(), Args[0]->getSourceRange()))
7465         S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
7466           << (Entity.getKind() == InitializedEntity::EK_Result)
7467           << Args[0]->getType() << Args[0]->getSourceRange()
7468           << DestType.getNonReferenceType();
7469 
7470       FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
7471       break;
7472 
7473     case OR_Deleted: {
7474       S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
7475         << Args[0]->getType() << DestType.getNonReferenceType()
7476         << Args[0]->getSourceRange();
7477       OverloadCandidateSet::iterator Best;
7478       OverloadingResult Ovl
7479         = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best,
7480                                                 true);
7481       if (Ovl == OR_Deleted) {
7482         S.NoteDeletedFunction(Best->Function);
7483       } else {
7484         llvm_unreachable("Inconsistent overload resolution?");
7485       }
7486       break;
7487     }
7488 
7489     case OR_Success:
7490       llvm_unreachable("Conversion did not fail!");
7491     }
7492     break;
7493 
7494   case FK_NonConstLValueReferenceBindingToTemporary:
7495     if (isa<InitListExpr>(Args[0])) {
7496       S.Diag(Kind.getLocation(),
7497              diag::err_lvalue_reference_bind_to_initlist)
7498       << DestType.getNonReferenceType().isVolatileQualified()
7499       << DestType.getNonReferenceType()
7500       << Args[0]->getSourceRange();
7501       break;
7502     }
7503     // Intentional fallthrough
7504 
7505   case FK_NonConstLValueReferenceBindingToUnrelated:
7506     S.Diag(Kind.getLocation(),
7507            Failure == FK_NonConstLValueReferenceBindingToTemporary
7508              ? diag::err_lvalue_reference_bind_to_temporary
7509              : diag::err_lvalue_reference_bind_to_unrelated)
7510       << DestType.getNonReferenceType().isVolatileQualified()
7511       << DestType.getNonReferenceType()
7512       << Args[0]->getType()
7513       << Args[0]->getSourceRange();
7514     break;
7515 
7516   case FK_NonConstLValueReferenceBindingToBitfield: {
7517     // We don't necessarily have an unambiguous source bit-field.
7518     FieldDecl *BitField = Args[0]->getSourceBitField();
7519     S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
7520       << DestType.isVolatileQualified()
7521       << (BitField ? BitField->getDeclName() : DeclarationName())
7522       << (BitField != nullptr)
7523       << Args[0]->getSourceRange();
7524     if (BitField)
7525       S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
7526     break;
7527   }
7528 
7529   case FK_NonConstLValueReferenceBindingToVectorElement:
7530     S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
7531       << DestType.isVolatileQualified()
7532       << Args[0]->getSourceRange();
7533     break;
7534 
7535   case FK_RValueReferenceBindingToLValue:
7536     S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
7537       << DestType.getNonReferenceType() << Args[0]->getType()
7538       << Args[0]->getSourceRange();
7539     break;
7540 
7541   case FK_ReferenceInitDropsQualifiers: {
7542     QualType SourceType = Args[0]->getType();
7543     QualType NonRefType = DestType.getNonReferenceType();
7544     Qualifiers DroppedQualifiers =
7545         SourceType.getQualifiers() - NonRefType.getQualifiers();
7546 
7547     S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
7548       << SourceType
7549       << NonRefType
7550       << DroppedQualifiers.getCVRQualifiers()
7551       << Args[0]->getSourceRange();
7552     break;
7553   }
7554 
7555   case FK_ReferenceInitFailed:
7556     S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
7557       << DestType.getNonReferenceType()
7558       << Args[0]->isLValue()
7559       << Args[0]->getType()
7560       << Args[0]->getSourceRange();
7561     emitBadConversionNotes(S, Entity, Args[0]);
7562     break;
7563 
7564   case FK_ConversionFailed: {
7565     QualType FromType = Args[0]->getType();
7566     PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
7567       << (int)Entity.getKind()
7568       << DestType
7569       << Args[0]->isLValue()
7570       << FromType
7571       << Args[0]->getSourceRange();
7572     S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
7573     S.Diag(Kind.getLocation(), PDiag);
7574     emitBadConversionNotes(S, Entity, Args[0]);
7575     break;
7576   }
7577 
7578   case FK_ConversionFromPropertyFailed:
7579     // No-op. This error has already been reported.
7580     break;
7581 
7582   case FK_TooManyInitsForScalar: {
7583     SourceRange R;
7584 
7585     auto *InitList = dyn_cast<InitListExpr>(Args[0]);
7586     if (InitList && InitList->getNumInits() >= 1) {
7587       R = SourceRange(InitList->getInit(0)->getLocEnd(), InitList->getLocEnd());
7588     } else {
7589       assert(Args.size() > 1 && "Expected multiple initializers!");
7590       R = SourceRange(Args.front()->getLocEnd(), Args.back()->getLocEnd());
7591     }
7592 
7593     R.setBegin(S.getLocForEndOfToken(R.getBegin()));
7594     if (Kind.isCStyleOrFunctionalCast())
7595       S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
7596         << R;
7597     else
7598       S.Diag(Kind.getLocation(), diag::err_excess_initializers)
7599         << /*scalar=*/2 << R;
7600     break;
7601   }
7602 
7603   case FK_ReferenceBindingToInitList:
7604     S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
7605       << DestType.getNonReferenceType() << Args[0]->getSourceRange();
7606     break;
7607 
7608   case FK_InitListBadDestinationType:
7609     S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
7610       << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
7611     break;
7612 
7613   case FK_ListConstructorOverloadFailed:
7614   case FK_ConstructorOverloadFailed: {
7615     SourceRange ArgsRange;
7616     if (Args.size())
7617       ArgsRange = SourceRange(Args.front()->getLocStart(),
7618                               Args.back()->getLocEnd());
7619 
7620     if (Failure == FK_ListConstructorOverloadFailed) {
7621       assert(Args.size() == 1 &&
7622              "List construction from other than 1 argument.");
7623       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
7624       Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
7625     }
7626 
7627     // FIXME: Using "DestType" for the entity we're printing is probably
7628     // bad.
7629     switch (FailedOverloadResult) {
7630       case OR_Ambiguous:
7631         S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
7632           << DestType << ArgsRange;
7633         FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
7634         break;
7635 
7636       case OR_No_Viable_Function:
7637         if (Kind.getKind() == InitializationKind::IK_Default &&
7638             (Entity.getKind() == InitializedEntity::EK_Base ||
7639              Entity.getKind() == InitializedEntity::EK_Member) &&
7640             isa<CXXConstructorDecl>(S.CurContext)) {
7641           // This is implicit default initialization of a member or
7642           // base within a constructor. If no viable function was
7643           // found, notify the user that they need to explicitly
7644           // initialize this base/member.
7645           CXXConstructorDecl *Constructor
7646             = cast<CXXConstructorDecl>(S.CurContext);
7647           const CXXRecordDecl *InheritedFrom = nullptr;
7648           if (auto Inherited = Constructor->getInheritedConstructor())
7649             InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass();
7650           if (Entity.getKind() == InitializedEntity::EK_Base) {
7651             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
7652               << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
7653               << S.Context.getTypeDeclType(Constructor->getParent())
7654               << /*base=*/0
7655               << Entity.getType()
7656               << InheritedFrom;
7657 
7658             RecordDecl *BaseDecl
7659               = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
7660                                                                   ->getDecl();
7661             S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
7662               << S.Context.getTagDeclType(BaseDecl);
7663           } else {
7664             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
7665               << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
7666               << S.Context.getTypeDeclType(Constructor->getParent())
7667               << /*member=*/1
7668               << Entity.getName()
7669               << InheritedFrom;
7670             S.Diag(Entity.getDecl()->getLocation(),
7671                    diag::note_member_declared_at);
7672 
7673             if (const RecordType *Record
7674                                  = Entity.getType()->getAs<RecordType>())
7675               S.Diag(Record->getDecl()->getLocation(),
7676                      diag::note_previous_decl)
7677                 << S.Context.getTagDeclType(Record->getDecl());
7678           }
7679           break;
7680         }
7681 
7682         S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
7683           << DestType << ArgsRange;
7684         FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
7685         break;
7686 
7687       case OR_Deleted: {
7688         OverloadCandidateSet::iterator Best;
7689         OverloadingResult Ovl
7690           = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
7691         if (Ovl != OR_Deleted) {
7692           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
7693             << true << DestType << ArgsRange;
7694           llvm_unreachable("Inconsistent overload resolution?");
7695           break;
7696         }
7697 
7698         // If this is a defaulted or implicitly-declared function, then
7699         // it was implicitly deleted. Make it clear that the deletion was
7700         // implicit.
7701         if (S.isImplicitlyDeleted(Best->Function))
7702           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
7703             << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
7704             << DestType << ArgsRange;
7705         else
7706           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
7707             << true << DestType << ArgsRange;
7708 
7709         S.NoteDeletedFunction(Best->Function);
7710         break;
7711       }
7712 
7713       case OR_Success:
7714         llvm_unreachable("Conversion did not fail!");
7715     }
7716   }
7717   break;
7718 
7719   case FK_DefaultInitOfConst:
7720     if (Entity.getKind() == InitializedEntity::EK_Member &&
7721         isa<CXXConstructorDecl>(S.CurContext)) {
7722       // This is implicit default-initialization of a const member in
7723       // a constructor. Complain that it needs to be explicitly
7724       // initialized.
7725       CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
7726       S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
7727         << (Constructor->getInheritedConstructor() ? 2 :
7728             Constructor->isImplicit() ? 1 : 0)
7729         << S.Context.getTypeDeclType(Constructor->getParent())
7730         << /*const=*/1
7731         << Entity.getName();
7732       S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
7733         << Entity.getName();
7734     } else {
7735       S.Diag(Kind.getLocation(), diag::err_default_init_const)
7736           << DestType << (bool)DestType->getAs<RecordType>();
7737     }
7738     break;
7739 
7740   case FK_Incomplete:
7741     S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
7742                           diag::err_init_incomplete_type);
7743     break;
7744 
7745   case FK_ListInitializationFailed: {
7746     // Run the init list checker again to emit diagnostics.
7747     InitListExpr *InitList = cast<InitListExpr>(Args[0]);
7748     diagnoseListInit(S, Entity, InitList);
7749     break;
7750   }
7751 
7752   case FK_PlaceholderType: {
7753     // FIXME: Already diagnosed!
7754     break;
7755   }
7756 
7757   case FK_ExplicitConstructor: {
7758     S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
7759       << Args[0]->getSourceRange();
7760     OverloadCandidateSet::iterator Best;
7761     OverloadingResult Ovl
7762       = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
7763     (void)Ovl;
7764     assert(Ovl == OR_Success && "Inconsistent overload resolution");
7765     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
7766     S.Diag(CtorDecl->getLocation(), diag::note_constructor_declared_here);
7767     break;
7768   }
7769   }
7770 
7771   PrintInitLocationNote(S, Entity);
7772   return true;
7773 }
7774 
7775 void InitializationSequence::dump(raw_ostream &OS) const {
7776   switch (SequenceKind) {
7777   case FailedSequence: {
7778     OS << "Failed sequence: ";
7779     switch (Failure) {
7780     case FK_TooManyInitsForReference:
7781       OS << "too many initializers for reference";
7782       break;
7783 
7784     case FK_ArrayNeedsInitList:
7785       OS << "array requires initializer list";
7786       break;
7787 
7788     case FK_AddressOfUnaddressableFunction:
7789       OS << "address of unaddressable function was taken";
7790       break;
7791 
7792     case FK_ArrayNeedsInitListOrStringLiteral:
7793       OS << "array requires initializer list or string literal";
7794       break;
7795 
7796     case FK_ArrayNeedsInitListOrWideStringLiteral:
7797       OS << "array requires initializer list or wide string literal";
7798       break;
7799 
7800     case FK_NarrowStringIntoWideCharArray:
7801       OS << "narrow string into wide char array";
7802       break;
7803 
7804     case FK_WideStringIntoCharArray:
7805       OS << "wide string into char array";
7806       break;
7807 
7808     case FK_IncompatWideStringIntoWideChar:
7809       OS << "incompatible wide string into wide char array";
7810       break;
7811 
7812     case FK_ArrayTypeMismatch:
7813       OS << "array type mismatch";
7814       break;
7815 
7816     case FK_NonConstantArrayInit:
7817       OS << "non-constant array initializer";
7818       break;
7819 
7820     case FK_AddressOfOverloadFailed:
7821       OS << "address of overloaded function failed";
7822       break;
7823 
7824     case FK_ReferenceInitOverloadFailed:
7825       OS << "overload resolution for reference initialization failed";
7826       break;
7827 
7828     case FK_NonConstLValueReferenceBindingToTemporary:
7829       OS << "non-const lvalue reference bound to temporary";
7830       break;
7831 
7832     case FK_NonConstLValueReferenceBindingToBitfield:
7833       OS << "non-const lvalue reference bound to bit-field";
7834       break;
7835 
7836     case FK_NonConstLValueReferenceBindingToVectorElement:
7837       OS << "non-const lvalue reference bound to vector element";
7838       break;
7839 
7840     case FK_NonConstLValueReferenceBindingToUnrelated:
7841       OS << "non-const lvalue reference bound to unrelated type";
7842       break;
7843 
7844     case FK_RValueReferenceBindingToLValue:
7845       OS << "rvalue reference bound to an lvalue";
7846       break;
7847 
7848     case FK_ReferenceInitDropsQualifiers:
7849       OS << "reference initialization drops qualifiers";
7850       break;
7851 
7852     case FK_ReferenceInitFailed:
7853       OS << "reference initialization failed";
7854       break;
7855 
7856     case FK_ConversionFailed:
7857       OS << "conversion failed";
7858       break;
7859 
7860     case FK_ConversionFromPropertyFailed:
7861       OS << "conversion from property failed";
7862       break;
7863 
7864     case FK_TooManyInitsForScalar:
7865       OS << "too many initializers for scalar";
7866       break;
7867 
7868     case FK_ReferenceBindingToInitList:
7869       OS << "referencing binding to initializer list";
7870       break;
7871 
7872     case FK_InitListBadDestinationType:
7873       OS << "initializer list for non-aggregate, non-scalar type";
7874       break;
7875 
7876     case FK_UserConversionOverloadFailed:
7877       OS << "overloading failed for user-defined conversion";
7878       break;
7879 
7880     case FK_ConstructorOverloadFailed:
7881       OS << "constructor overloading failed";
7882       break;
7883 
7884     case FK_DefaultInitOfConst:
7885       OS << "default initialization of a const variable";
7886       break;
7887 
7888     case FK_Incomplete:
7889       OS << "initialization of incomplete type";
7890       break;
7891 
7892     case FK_ListInitializationFailed:
7893       OS << "list initialization checker failure";
7894       break;
7895 
7896     case FK_VariableLengthArrayHasInitializer:
7897       OS << "variable length array has an initializer";
7898       break;
7899 
7900     case FK_PlaceholderType:
7901       OS << "initializer expression isn't contextually valid";
7902       break;
7903 
7904     case FK_ListConstructorOverloadFailed:
7905       OS << "list constructor overloading failed";
7906       break;
7907 
7908     case FK_ExplicitConstructor:
7909       OS << "list copy initialization chose explicit constructor";
7910       break;
7911     }
7912     OS << '\n';
7913     return;
7914   }
7915 
7916   case DependentSequence:
7917     OS << "Dependent sequence\n";
7918     return;
7919 
7920   case NormalSequence:
7921     OS << "Normal sequence: ";
7922     break;
7923   }
7924 
7925   for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
7926     if (S != step_begin()) {
7927       OS << " -> ";
7928     }
7929 
7930     switch (S->Kind) {
7931     case SK_ResolveAddressOfOverloadedFunction:
7932       OS << "resolve address of overloaded function";
7933       break;
7934 
7935     case SK_CastDerivedToBaseRValue:
7936       OS << "derived-to-base (rvalue)";
7937       break;
7938 
7939     case SK_CastDerivedToBaseXValue:
7940       OS << "derived-to-base (xvalue)";
7941       break;
7942 
7943     case SK_CastDerivedToBaseLValue:
7944       OS << "derived-to-base (lvalue)";
7945       break;
7946 
7947     case SK_BindReference:
7948       OS << "bind reference to lvalue";
7949       break;
7950 
7951     case SK_BindReferenceToTemporary:
7952       OS << "bind reference to a temporary";
7953       break;
7954 
7955     case SK_FinalCopy:
7956       OS << "final copy in class direct-initialization";
7957       break;
7958 
7959     case SK_ExtraneousCopyToTemporary:
7960       OS << "extraneous C++03 copy to temporary";
7961       break;
7962 
7963     case SK_UserConversion:
7964       OS << "user-defined conversion via " << *S->Function.Function;
7965       break;
7966 
7967     case SK_QualificationConversionRValue:
7968       OS << "qualification conversion (rvalue)";
7969       break;
7970 
7971     case SK_QualificationConversionXValue:
7972       OS << "qualification conversion (xvalue)";
7973       break;
7974 
7975     case SK_QualificationConversionLValue:
7976       OS << "qualification conversion (lvalue)";
7977       break;
7978 
7979     case SK_AtomicConversion:
7980       OS << "non-atomic-to-atomic conversion";
7981       break;
7982 
7983     case SK_LValueToRValue:
7984       OS << "load (lvalue to rvalue)";
7985       break;
7986 
7987     case SK_ConversionSequence:
7988       OS << "implicit conversion sequence (";
7989       S->ICS->dump(); // FIXME: use OS
7990       OS << ")";
7991       break;
7992 
7993     case SK_ConversionSequenceNoNarrowing:
7994       OS << "implicit conversion sequence with narrowing prohibited (";
7995       S->ICS->dump(); // FIXME: use OS
7996       OS << ")";
7997       break;
7998 
7999     case SK_ListInitialization:
8000       OS << "list aggregate initialization";
8001       break;
8002 
8003     case SK_UnwrapInitList:
8004       OS << "unwrap reference initializer list";
8005       break;
8006 
8007     case SK_RewrapInitList:
8008       OS << "rewrap reference initializer list";
8009       break;
8010 
8011     case SK_ConstructorInitialization:
8012       OS << "constructor initialization";
8013       break;
8014 
8015     case SK_ConstructorInitializationFromList:
8016       OS << "list initialization via constructor";
8017       break;
8018 
8019     case SK_ZeroInitialization:
8020       OS << "zero initialization";
8021       break;
8022 
8023     case SK_CAssignment:
8024       OS << "C assignment";
8025       break;
8026 
8027     case SK_StringInit:
8028       OS << "string initialization";
8029       break;
8030 
8031     case SK_ObjCObjectConversion:
8032       OS << "Objective-C object conversion";
8033       break;
8034 
8035     case SK_ArrayLoopIndex:
8036       OS << "indexing for array initialization loop";
8037       break;
8038 
8039     case SK_ArrayLoopInit:
8040       OS << "array initialization loop";
8041       break;
8042 
8043     case SK_ArrayInit:
8044       OS << "array initialization";
8045       break;
8046 
8047     case SK_GNUArrayInit:
8048       OS << "array initialization (GNU extension)";
8049       break;
8050 
8051     case SK_ParenthesizedArrayInit:
8052       OS << "parenthesized array initialization";
8053       break;
8054 
8055     case SK_PassByIndirectCopyRestore:
8056       OS << "pass by indirect copy and restore";
8057       break;
8058 
8059     case SK_PassByIndirectRestore:
8060       OS << "pass by indirect restore";
8061       break;
8062 
8063     case SK_ProduceObjCObject:
8064       OS << "Objective-C object retension";
8065       break;
8066 
8067     case SK_StdInitializerList:
8068       OS << "std::initializer_list from initializer list";
8069       break;
8070 
8071     case SK_StdInitializerListConstructorCall:
8072       OS << "list initialization from std::initializer_list";
8073       break;
8074 
8075     case SK_OCLSamplerInit:
8076       OS << "OpenCL sampler_t from integer constant";
8077       break;
8078 
8079     case SK_OCLZeroEvent:
8080       OS << "OpenCL event_t from zero";
8081       break;
8082 
8083     case SK_OCLZeroQueue:
8084       OS << "OpenCL queue_t from zero";
8085       break;
8086     }
8087 
8088     OS << " [" << S->Type.getAsString() << ']';
8089   }
8090 
8091   OS << '\n';
8092 }
8093 
8094 void InitializationSequence::dump() const {
8095   dump(llvm::errs());
8096 }
8097 
8098 static void DiagnoseNarrowingInInitList(Sema &S,
8099                                         const ImplicitConversionSequence &ICS,
8100                                         QualType PreNarrowingType,
8101                                         QualType EntityType,
8102                                         const Expr *PostInit) {
8103   const StandardConversionSequence *SCS = nullptr;
8104   switch (ICS.getKind()) {
8105   case ImplicitConversionSequence::StandardConversion:
8106     SCS = &ICS.Standard;
8107     break;
8108   case ImplicitConversionSequence::UserDefinedConversion:
8109     SCS = &ICS.UserDefined.After;
8110     break;
8111   case ImplicitConversionSequence::AmbiguousConversion:
8112   case ImplicitConversionSequence::EllipsisConversion:
8113   case ImplicitConversionSequence::BadConversion:
8114     return;
8115   }
8116 
8117   // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
8118   APValue ConstantValue;
8119   QualType ConstantType;
8120   switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
8121                                 ConstantType)) {
8122   case NK_Not_Narrowing:
8123   case NK_Dependent_Narrowing:
8124     // No narrowing occurred.
8125     return;
8126 
8127   case NK_Type_Narrowing:
8128     // This was a floating-to-integer conversion, which is always considered a
8129     // narrowing conversion even if the value is a constant and can be
8130     // represented exactly as an integer.
8131     S.Diag(PostInit->getLocStart(),
8132            (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11)
8133                ? diag::warn_init_list_type_narrowing
8134                : diag::ext_init_list_type_narrowing)
8135       << PostInit->getSourceRange()
8136       << PreNarrowingType.getLocalUnqualifiedType()
8137       << EntityType.getLocalUnqualifiedType();
8138     break;
8139 
8140   case NK_Constant_Narrowing:
8141     // A constant value was narrowed.
8142     S.Diag(PostInit->getLocStart(),
8143            (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11)
8144                ? diag::warn_init_list_constant_narrowing
8145                : diag::ext_init_list_constant_narrowing)
8146       << PostInit->getSourceRange()
8147       << ConstantValue.getAsString(S.getASTContext(), ConstantType)
8148       << EntityType.getLocalUnqualifiedType();
8149     break;
8150 
8151   case NK_Variable_Narrowing:
8152     // A variable's value may have been narrowed.
8153     S.Diag(PostInit->getLocStart(),
8154            (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11)
8155                ? diag::warn_init_list_variable_narrowing
8156                : diag::ext_init_list_variable_narrowing)
8157       << PostInit->getSourceRange()
8158       << PreNarrowingType.getLocalUnqualifiedType()
8159       << EntityType.getLocalUnqualifiedType();
8160     break;
8161   }
8162 
8163   SmallString<128> StaticCast;
8164   llvm::raw_svector_ostream OS(StaticCast);
8165   OS << "static_cast<";
8166   if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
8167     // It's important to use the typedef's name if there is one so that the
8168     // fixit doesn't break code using types like int64_t.
8169     //
8170     // FIXME: This will break if the typedef requires qualification.  But
8171     // getQualifiedNameAsString() includes non-machine-parsable components.
8172     OS << *TT->getDecl();
8173   } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
8174     OS << BT->getName(S.getLangOpts());
8175   else {
8176     // Oops, we didn't find the actual type of the variable.  Don't emit a fixit
8177     // with a broken cast.
8178     return;
8179   }
8180   OS << ">(";
8181   S.Diag(PostInit->getLocStart(), diag::note_init_list_narrowing_silence)
8182       << PostInit->getSourceRange()
8183       << FixItHint::CreateInsertion(PostInit->getLocStart(), OS.str())
8184       << FixItHint::CreateInsertion(
8185              S.getLocForEndOfToken(PostInit->getLocEnd()), ")");
8186 }
8187 
8188 //===----------------------------------------------------------------------===//
8189 // Initialization helper functions
8190 //===----------------------------------------------------------------------===//
8191 bool
8192 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
8193                                    ExprResult Init) {
8194   if (Init.isInvalid())
8195     return false;
8196 
8197   Expr *InitE = Init.get();
8198   assert(InitE && "No initialization expression");
8199 
8200   InitializationKind Kind
8201     = InitializationKind::CreateCopy(InitE->getLocStart(), SourceLocation());
8202   InitializationSequence Seq(*this, Entity, Kind, InitE);
8203   return !Seq.Failed();
8204 }
8205 
8206 ExprResult
8207 Sema::PerformCopyInitialization(const InitializedEntity &Entity,
8208                                 SourceLocation EqualLoc,
8209                                 ExprResult Init,
8210                                 bool TopLevelOfInitList,
8211                                 bool AllowExplicit) {
8212   if (Init.isInvalid())
8213     return ExprError();
8214 
8215   Expr *InitE = Init.get();
8216   assert(InitE && "No initialization expression?");
8217 
8218   if (EqualLoc.isInvalid())
8219     EqualLoc = InitE->getLocStart();
8220 
8221   InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
8222                                                            EqualLoc,
8223                                                            AllowExplicit);
8224   InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList);
8225 
8226   ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE);
8227 
8228   return Result;
8229 }
8230