1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for initializers. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ASTContext.h" 14 #include "clang/AST/DeclObjC.h" 15 #include "clang/AST/ExprCXX.h" 16 #include "clang/AST/ExprObjC.h" 17 #include "clang/AST/ExprOpenMP.h" 18 #include "clang/AST/TypeLoc.h" 19 #include "clang/Basic/CharInfo.h" 20 #include "clang/Basic/TargetInfo.h" 21 #include "clang/Sema/Designator.h" 22 #include "clang/Sema/Initialization.h" 23 #include "clang/Sema/Lookup.h" 24 #include "clang/Sema/SemaInternal.h" 25 #include "llvm/ADT/APInt.h" 26 #include "llvm/ADT/SmallString.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/raw_ostream.h" 29 30 using namespace clang; 31 32 //===----------------------------------------------------------------------===// 33 // Sema Initialization Checking 34 //===----------------------------------------------------------------------===// 35 36 /// Check whether T is compatible with a wide character type (wchar_t, 37 /// char16_t or char32_t). 38 static bool IsWideCharCompatible(QualType T, ASTContext &Context) { 39 if (Context.typesAreCompatible(Context.getWideCharType(), T)) 40 return true; 41 if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) { 42 return Context.typesAreCompatible(Context.Char16Ty, T) || 43 Context.typesAreCompatible(Context.Char32Ty, T); 44 } 45 return false; 46 } 47 48 enum StringInitFailureKind { 49 SIF_None, 50 SIF_NarrowStringIntoWideChar, 51 SIF_WideStringIntoChar, 52 SIF_IncompatWideStringIntoWideChar, 53 SIF_UTF8StringIntoPlainChar, 54 SIF_PlainStringIntoUTF8Char, 55 SIF_Other 56 }; 57 58 /// Check whether the array of type AT can be initialized by the Init 59 /// expression by means of string initialization. Returns SIF_None if so, 60 /// otherwise returns a StringInitFailureKind that describes why the 61 /// initialization would not work. 62 static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT, 63 ASTContext &Context) { 64 if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT)) 65 return SIF_Other; 66 67 // See if this is a string literal or @encode. 68 Init = Init->IgnoreParens(); 69 70 // Handle @encode, which is a narrow string. 71 if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType()) 72 return SIF_None; 73 74 // Otherwise we can only handle string literals. 75 StringLiteral *SL = dyn_cast<StringLiteral>(Init); 76 if (!SL) 77 return SIF_Other; 78 79 const QualType ElemTy = 80 Context.getCanonicalType(AT->getElementType()).getUnqualifiedType(); 81 82 switch (SL->getKind()) { 83 case StringLiteral::UTF8: 84 // char8_t array can be initialized with a UTF-8 string. 85 if (ElemTy->isChar8Type()) 86 return SIF_None; 87 LLVM_FALLTHROUGH; 88 case StringLiteral::Ascii: 89 // char array can be initialized with a narrow string. 90 // Only allow char x[] = "foo"; not char x[] = L"foo"; 91 if (ElemTy->isCharType()) 92 return (SL->getKind() == StringLiteral::UTF8 && 93 Context.getLangOpts().Char8) 94 ? SIF_UTF8StringIntoPlainChar 95 : SIF_None; 96 if (ElemTy->isChar8Type()) 97 return SIF_PlainStringIntoUTF8Char; 98 if (IsWideCharCompatible(ElemTy, Context)) 99 return SIF_NarrowStringIntoWideChar; 100 return SIF_Other; 101 // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15: 102 // "An array with element type compatible with a qualified or unqualified 103 // version of wchar_t, char16_t, or char32_t may be initialized by a wide 104 // string literal with the corresponding encoding prefix (L, u, or U, 105 // respectively), optionally enclosed in braces. 106 case StringLiteral::UTF16: 107 if (Context.typesAreCompatible(Context.Char16Ty, ElemTy)) 108 return SIF_None; 109 if (ElemTy->isCharType() || ElemTy->isChar8Type()) 110 return SIF_WideStringIntoChar; 111 if (IsWideCharCompatible(ElemTy, Context)) 112 return SIF_IncompatWideStringIntoWideChar; 113 return SIF_Other; 114 case StringLiteral::UTF32: 115 if (Context.typesAreCompatible(Context.Char32Ty, ElemTy)) 116 return SIF_None; 117 if (ElemTy->isCharType() || ElemTy->isChar8Type()) 118 return SIF_WideStringIntoChar; 119 if (IsWideCharCompatible(ElemTy, Context)) 120 return SIF_IncompatWideStringIntoWideChar; 121 return SIF_Other; 122 case StringLiteral::Wide: 123 if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy)) 124 return SIF_None; 125 if (ElemTy->isCharType() || ElemTy->isChar8Type()) 126 return SIF_WideStringIntoChar; 127 if (IsWideCharCompatible(ElemTy, Context)) 128 return SIF_IncompatWideStringIntoWideChar; 129 return SIF_Other; 130 } 131 132 llvm_unreachable("missed a StringLiteral kind?"); 133 } 134 135 static StringInitFailureKind IsStringInit(Expr *init, QualType declType, 136 ASTContext &Context) { 137 const ArrayType *arrayType = Context.getAsArrayType(declType); 138 if (!arrayType) 139 return SIF_Other; 140 return IsStringInit(init, arrayType, Context); 141 } 142 143 /// Update the type of a string literal, including any surrounding parentheses, 144 /// to match the type of the object which it is initializing. 145 static void updateStringLiteralType(Expr *E, QualType Ty) { 146 while (true) { 147 E->setType(Ty); 148 E->setValueKind(VK_RValue); 149 if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E)) { 150 break; 151 } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 152 E = PE->getSubExpr(); 153 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 154 assert(UO->getOpcode() == UO_Extension); 155 E = UO->getSubExpr(); 156 } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) { 157 E = GSE->getResultExpr(); 158 } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) { 159 E = CE->getChosenSubExpr(); 160 } else { 161 llvm_unreachable("unexpected expr in string literal init"); 162 } 163 } 164 } 165 166 /// Fix a compound literal initializing an array so it's correctly marked 167 /// as an rvalue. 168 static void updateGNUCompoundLiteralRValue(Expr *E) { 169 while (true) { 170 E->setValueKind(VK_RValue); 171 if (isa<CompoundLiteralExpr>(E)) { 172 break; 173 } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 174 E = PE->getSubExpr(); 175 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 176 assert(UO->getOpcode() == UO_Extension); 177 E = UO->getSubExpr(); 178 } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) { 179 E = GSE->getResultExpr(); 180 } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) { 181 E = CE->getChosenSubExpr(); 182 } else { 183 llvm_unreachable("unexpected expr in array compound literal init"); 184 } 185 } 186 } 187 188 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT, 189 Sema &S) { 190 // Get the length of the string as parsed. 191 auto *ConstantArrayTy = 192 cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe()); 193 uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue(); 194 195 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) { 196 // C99 6.7.8p14. We have an array of character type with unknown size 197 // being initialized to a string literal. 198 llvm::APInt ConstVal(32, StrLength); 199 // Return a new array type (C99 6.7.8p22). 200 DeclT = S.Context.getConstantArrayType(IAT->getElementType(), 201 ConstVal, nullptr, 202 ArrayType::Normal, 0); 203 updateStringLiteralType(Str, DeclT); 204 return; 205 } 206 207 const ConstantArrayType *CAT = cast<ConstantArrayType>(AT); 208 209 // We have an array of character type with known size. However, 210 // the size may be smaller or larger than the string we are initializing. 211 // FIXME: Avoid truncation for 64-bit length strings. 212 if (S.getLangOpts().CPlusPlus) { 213 if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) { 214 // For Pascal strings it's OK to strip off the terminating null character, 215 // so the example below is valid: 216 // 217 // unsigned char a[2] = "\pa"; 218 if (SL->isPascal()) 219 StrLength--; 220 } 221 222 // [dcl.init.string]p2 223 if (StrLength > CAT->getSize().getZExtValue()) 224 S.Diag(Str->getBeginLoc(), 225 diag::err_initializer_string_for_char_array_too_long) 226 << Str->getSourceRange(); 227 } else { 228 // C99 6.7.8p14. 229 if (StrLength-1 > CAT->getSize().getZExtValue()) 230 S.Diag(Str->getBeginLoc(), 231 diag::ext_initializer_string_for_char_array_too_long) 232 << Str->getSourceRange(); 233 } 234 235 // Set the type to the actual size that we are initializing. If we have 236 // something like: 237 // char x[1] = "foo"; 238 // then this will set the string literal's type to char[1]. 239 updateStringLiteralType(Str, DeclT); 240 } 241 242 //===----------------------------------------------------------------------===// 243 // Semantic checking for initializer lists. 244 //===----------------------------------------------------------------------===// 245 246 namespace { 247 248 /// Semantic checking for initializer lists. 249 /// 250 /// The InitListChecker class contains a set of routines that each 251 /// handle the initialization of a certain kind of entity, e.g., 252 /// arrays, vectors, struct/union types, scalars, etc. The 253 /// InitListChecker itself performs a recursive walk of the subobject 254 /// structure of the type to be initialized, while stepping through 255 /// the initializer list one element at a time. The IList and Index 256 /// parameters to each of the Check* routines contain the active 257 /// (syntactic) initializer list and the index into that initializer 258 /// list that represents the current initializer. Each routine is 259 /// responsible for moving that Index forward as it consumes elements. 260 /// 261 /// Each Check* routine also has a StructuredList/StructuredIndex 262 /// arguments, which contains the current "structured" (semantic) 263 /// initializer list and the index into that initializer list where we 264 /// are copying initializers as we map them over to the semantic 265 /// list. Once we have completed our recursive walk of the subobject 266 /// structure, we will have constructed a full semantic initializer 267 /// list. 268 /// 269 /// C99 designators cause changes in the initializer list traversal, 270 /// because they make the initialization "jump" into a specific 271 /// subobject and then continue the initialization from that 272 /// point. CheckDesignatedInitializer() recursively steps into the 273 /// designated subobject and manages backing out the recursion to 274 /// initialize the subobjects after the one designated. 275 /// 276 /// If an initializer list contains any designators, we build a placeholder 277 /// structured list even in 'verify only' mode, so that we can track which 278 /// elements need 'empty' initializtion. 279 class InitListChecker { 280 Sema &SemaRef; 281 bool hadError = false; 282 bool VerifyOnly; // No diagnostics. 283 bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode. 284 bool InOverloadResolution; 285 InitListExpr *FullyStructuredList = nullptr; 286 NoInitExpr *DummyExpr = nullptr; 287 288 NoInitExpr *getDummyInit() { 289 if (!DummyExpr) 290 DummyExpr = new (SemaRef.Context) NoInitExpr(SemaRef.Context.VoidTy); 291 return DummyExpr; 292 } 293 294 void CheckImplicitInitList(const InitializedEntity &Entity, 295 InitListExpr *ParentIList, QualType T, 296 unsigned &Index, InitListExpr *StructuredList, 297 unsigned &StructuredIndex); 298 void CheckExplicitInitList(const InitializedEntity &Entity, 299 InitListExpr *IList, QualType &T, 300 InitListExpr *StructuredList, 301 bool TopLevelObject = false); 302 void CheckListElementTypes(const InitializedEntity &Entity, 303 InitListExpr *IList, QualType &DeclType, 304 bool SubobjectIsDesignatorContext, 305 unsigned &Index, 306 InitListExpr *StructuredList, 307 unsigned &StructuredIndex, 308 bool TopLevelObject = false); 309 void CheckSubElementType(const InitializedEntity &Entity, 310 InitListExpr *IList, QualType ElemType, 311 unsigned &Index, 312 InitListExpr *StructuredList, 313 unsigned &StructuredIndex); 314 void CheckComplexType(const InitializedEntity &Entity, 315 InitListExpr *IList, QualType DeclType, 316 unsigned &Index, 317 InitListExpr *StructuredList, 318 unsigned &StructuredIndex); 319 void CheckScalarType(const InitializedEntity &Entity, 320 InitListExpr *IList, QualType DeclType, 321 unsigned &Index, 322 InitListExpr *StructuredList, 323 unsigned &StructuredIndex); 324 void CheckReferenceType(const InitializedEntity &Entity, 325 InitListExpr *IList, QualType DeclType, 326 unsigned &Index, 327 InitListExpr *StructuredList, 328 unsigned &StructuredIndex); 329 void CheckVectorType(const InitializedEntity &Entity, 330 InitListExpr *IList, QualType DeclType, unsigned &Index, 331 InitListExpr *StructuredList, 332 unsigned &StructuredIndex); 333 void CheckStructUnionTypes(const InitializedEntity &Entity, 334 InitListExpr *IList, QualType DeclType, 335 CXXRecordDecl::base_class_range Bases, 336 RecordDecl::field_iterator Field, 337 bool SubobjectIsDesignatorContext, unsigned &Index, 338 InitListExpr *StructuredList, 339 unsigned &StructuredIndex, 340 bool TopLevelObject = false); 341 void CheckArrayType(const InitializedEntity &Entity, 342 InitListExpr *IList, QualType &DeclType, 343 llvm::APSInt elementIndex, 344 bool SubobjectIsDesignatorContext, unsigned &Index, 345 InitListExpr *StructuredList, 346 unsigned &StructuredIndex); 347 bool CheckDesignatedInitializer(const InitializedEntity &Entity, 348 InitListExpr *IList, DesignatedInitExpr *DIE, 349 unsigned DesigIdx, 350 QualType &CurrentObjectType, 351 RecordDecl::field_iterator *NextField, 352 llvm::APSInt *NextElementIndex, 353 unsigned &Index, 354 InitListExpr *StructuredList, 355 unsigned &StructuredIndex, 356 bool FinishSubobjectInit, 357 bool TopLevelObject); 358 InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, 359 QualType CurrentObjectType, 360 InitListExpr *StructuredList, 361 unsigned StructuredIndex, 362 SourceRange InitRange, 363 bool IsFullyOverwritten = false); 364 void UpdateStructuredListElement(InitListExpr *StructuredList, 365 unsigned &StructuredIndex, 366 Expr *expr); 367 InitListExpr *createInitListExpr(QualType CurrentObjectType, 368 SourceRange InitRange, 369 unsigned ExpectedNumInits); 370 int numArrayElements(QualType DeclType); 371 int numStructUnionElements(QualType DeclType); 372 373 ExprResult PerformEmptyInit(SourceLocation Loc, 374 const InitializedEntity &Entity); 375 376 /// Diagnose that OldInit (or part thereof) has been overridden by NewInit. 377 void diagnoseInitOverride(Expr *OldInit, SourceRange NewInitRange, 378 bool FullyOverwritten = true) { 379 // Overriding an initializer via a designator is valid with C99 designated 380 // initializers, but ill-formed with C++20 designated initializers. 381 unsigned DiagID = SemaRef.getLangOpts().CPlusPlus 382 ? diag::ext_initializer_overrides 383 : diag::warn_initializer_overrides; 384 385 if (InOverloadResolution && SemaRef.getLangOpts().CPlusPlus) { 386 // In overload resolution, we have to strictly enforce the rules, and so 387 // don't allow any overriding of prior initializers. This matters for a 388 // case such as: 389 // 390 // union U { int a, b; }; 391 // struct S { int a, b; }; 392 // void f(U), f(S); 393 // 394 // Here, f({.a = 1, .b = 2}) is required to call the struct overload. For 395 // consistency, we disallow all overriding of prior initializers in 396 // overload resolution, not only overriding of union members. 397 hadError = true; 398 } else if (OldInit->getType().isDestructedType() && !FullyOverwritten) { 399 // If we'll be keeping around the old initializer but overwriting part of 400 // the object it initialized, and that object is not trivially 401 // destructible, this can leak. Don't allow that, not even as an 402 // extension. 403 // 404 // FIXME: It might be reasonable to allow this in cases where the part of 405 // the initializer that we're overriding has trivial destruction. 406 DiagID = diag::err_initializer_overrides_destructed; 407 } else if (!OldInit->getSourceRange().isValid()) { 408 // We need to check on source range validity because the previous 409 // initializer does not have to be an explicit initializer. e.g., 410 // 411 // struct P { int a, b; }; 412 // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 }; 413 // 414 // There is an overwrite taking place because the first braced initializer 415 // list "{ .a = 2 }" already provides value for .p.b (which is zero). 416 // 417 // Such overwrites are harmless, so we don't diagnose them. (Note that in 418 // C++, this cannot be reached unless we've already seen and diagnosed a 419 // different conformance issue, such as a mixture of designated and 420 // non-designated initializers or a multi-level designator.) 421 return; 422 } 423 424 if (!VerifyOnly) { 425 SemaRef.Diag(NewInitRange.getBegin(), DiagID) 426 << NewInitRange << FullyOverwritten << OldInit->getType(); 427 SemaRef.Diag(OldInit->getBeginLoc(), diag::note_previous_initializer) 428 << (OldInit->HasSideEffects(SemaRef.Context) && FullyOverwritten) 429 << OldInit->getSourceRange(); 430 } 431 } 432 433 // Explanation on the "FillWithNoInit" mode: 434 // 435 // Assume we have the following definitions (Case#1): 436 // struct P { char x[6][6]; } xp = { .x[1] = "bar" }; 437 // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' }; 438 // 439 // l.lp.x[1][0..1] should not be filled with implicit initializers because the 440 // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf". 441 // 442 // But if we have (Case#2): 443 // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } }; 444 // 445 // l.lp.x[1][0..1] are implicitly initialized and do not use values from the 446 // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0". 447 // 448 // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes" 449 // in the InitListExpr, the "holes" in Case#1 are filled not with empty 450 // initializers but with special "NoInitExpr" place holders, which tells the 451 // CodeGen not to generate any initializers for these parts. 452 void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base, 453 const InitializedEntity &ParentEntity, 454 InitListExpr *ILE, bool &RequiresSecondPass, 455 bool FillWithNoInit); 456 void FillInEmptyInitForField(unsigned Init, FieldDecl *Field, 457 const InitializedEntity &ParentEntity, 458 InitListExpr *ILE, bool &RequiresSecondPass, 459 bool FillWithNoInit = false); 460 void FillInEmptyInitializations(const InitializedEntity &Entity, 461 InitListExpr *ILE, bool &RequiresSecondPass, 462 InitListExpr *OuterILE, unsigned OuterIndex, 463 bool FillWithNoInit = false); 464 bool CheckFlexibleArrayInit(const InitializedEntity &Entity, 465 Expr *InitExpr, FieldDecl *Field, 466 bool TopLevelObject); 467 void CheckEmptyInitializable(const InitializedEntity &Entity, 468 SourceLocation Loc); 469 470 public: 471 InitListChecker(Sema &S, const InitializedEntity &Entity, InitListExpr *IL, 472 QualType &T, bool VerifyOnly, bool TreatUnavailableAsInvalid, 473 bool InOverloadResolution = false); 474 bool HadError() { return hadError; } 475 476 // Retrieves the fully-structured initializer list used for 477 // semantic analysis and code generation. 478 InitListExpr *getFullyStructuredList() const { return FullyStructuredList; } 479 }; 480 481 } // end anonymous namespace 482 483 ExprResult InitListChecker::PerformEmptyInit(SourceLocation Loc, 484 const InitializedEntity &Entity) { 485 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc, 486 true); 487 MultiExprArg SubInit; 488 Expr *InitExpr; 489 InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc); 490 491 // C++ [dcl.init.aggr]p7: 492 // If there are fewer initializer-clauses in the list than there are 493 // members in the aggregate, then each member not explicitly initialized 494 // ... 495 bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 && 496 Entity.getType()->getBaseElementTypeUnsafe()->isRecordType(); 497 if (EmptyInitList) { 498 // C++1y / DR1070: 499 // shall be initialized [...] from an empty initializer list. 500 // 501 // We apply the resolution of this DR to C++11 but not C++98, since C++98 502 // does not have useful semantics for initialization from an init list. 503 // We treat this as copy-initialization, because aggregate initialization 504 // always performs copy-initialization on its elements. 505 // 506 // Only do this if we're initializing a class type, to avoid filling in 507 // the initializer list where possible. 508 InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context) 509 InitListExpr(SemaRef.Context, Loc, None, Loc); 510 InitExpr->setType(SemaRef.Context.VoidTy); 511 SubInit = InitExpr; 512 Kind = InitializationKind::CreateCopy(Loc, Loc); 513 } else { 514 // C++03: 515 // shall be value-initialized. 516 } 517 518 InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit); 519 // libstdc++4.6 marks the vector default constructor as explicit in 520 // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case. 521 // stlport does so too. Look for std::__debug for libstdc++, and for 522 // std:: for stlport. This is effectively a compiler-side implementation of 523 // LWG2193. 524 if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() == 525 InitializationSequence::FK_ExplicitConstructor) { 526 OverloadCandidateSet::iterator Best; 527 OverloadingResult O = 528 InitSeq.getFailedCandidateSet() 529 .BestViableFunction(SemaRef, Kind.getLocation(), Best); 530 (void)O; 531 assert(O == OR_Success && "Inconsistent overload resolution"); 532 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 533 CXXRecordDecl *R = CtorDecl->getParent(); 534 535 if (CtorDecl->getMinRequiredArguments() == 0 && 536 CtorDecl->isExplicit() && R->getDeclName() && 537 SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) { 538 bool IsInStd = false; 539 for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext()); 540 ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) { 541 if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND)) 542 IsInStd = true; 543 } 544 545 if (IsInStd && llvm::StringSwitch<bool>(R->getName()) 546 .Cases("basic_string", "deque", "forward_list", true) 547 .Cases("list", "map", "multimap", "multiset", true) 548 .Cases("priority_queue", "queue", "set", "stack", true) 549 .Cases("unordered_map", "unordered_set", "vector", true) 550 .Default(false)) { 551 InitSeq.InitializeFrom( 552 SemaRef, Entity, 553 InitializationKind::CreateValue(Loc, Loc, Loc, true), 554 MultiExprArg(), /*TopLevelOfInitList=*/false, 555 TreatUnavailableAsInvalid); 556 // Emit a warning for this. System header warnings aren't shown 557 // by default, but people working on system headers should see it. 558 if (!VerifyOnly) { 559 SemaRef.Diag(CtorDecl->getLocation(), 560 diag::warn_invalid_initializer_from_system_header); 561 if (Entity.getKind() == InitializedEntity::EK_Member) 562 SemaRef.Diag(Entity.getDecl()->getLocation(), 563 diag::note_used_in_initialization_here); 564 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) 565 SemaRef.Diag(Loc, diag::note_used_in_initialization_here); 566 } 567 } 568 } 569 } 570 if (!InitSeq) { 571 if (!VerifyOnly) { 572 InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit); 573 if (Entity.getKind() == InitializedEntity::EK_Member) 574 SemaRef.Diag(Entity.getDecl()->getLocation(), 575 diag::note_in_omitted_aggregate_initializer) 576 << /*field*/1 << Entity.getDecl(); 577 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) { 578 bool IsTrailingArrayNewMember = 579 Entity.getParent() && 580 Entity.getParent()->isVariableLengthArrayNew(); 581 SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer) 582 << (IsTrailingArrayNewMember ? 2 : /*array element*/0) 583 << Entity.getElementIndex(); 584 } 585 } 586 hadError = true; 587 return ExprError(); 588 } 589 590 return VerifyOnly ? ExprResult() 591 : InitSeq.Perform(SemaRef, Entity, Kind, SubInit); 592 } 593 594 void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity, 595 SourceLocation Loc) { 596 // If we're building a fully-structured list, we'll check this at the end 597 // once we know which elements are actually initialized. Otherwise, we know 598 // that there are no designators so we can just check now. 599 if (FullyStructuredList) 600 return; 601 PerformEmptyInit(Loc, Entity); 602 } 603 604 void InitListChecker::FillInEmptyInitForBase( 605 unsigned Init, const CXXBaseSpecifier &Base, 606 const InitializedEntity &ParentEntity, InitListExpr *ILE, 607 bool &RequiresSecondPass, bool FillWithNoInit) { 608 InitializedEntity BaseEntity = InitializedEntity::InitializeBase( 609 SemaRef.Context, &Base, false, &ParentEntity); 610 611 if (Init >= ILE->getNumInits() || !ILE->getInit(Init)) { 612 ExprResult BaseInit = FillWithNoInit 613 ? new (SemaRef.Context) NoInitExpr(Base.getType()) 614 : PerformEmptyInit(ILE->getEndLoc(), BaseEntity); 615 if (BaseInit.isInvalid()) { 616 hadError = true; 617 return; 618 } 619 620 if (!VerifyOnly) { 621 assert(Init < ILE->getNumInits() && "should have been expanded"); 622 ILE->setInit(Init, BaseInit.getAs<Expr>()); 623 } 624 } else if (InitListExpr *InnerILE = 625 dyn_cast<InitListExpr>(ILE->getInit(Init))) { 626 FillInEmptyInitializations(BaseEntity, InnerILE, RequiresSecondPass, 627 ILE, Init, FillWithNoInit); 628 } else if (DesignatedInitUpdateExpr *InnerDIUE = 629 dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) { 630 FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(), 631 RequiresSecondPass, ILE, Init, 632 /*FillWithNoInit =*/true); 633 } 634 } 635 636 void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field, 637 const InitializedEntity &ParentEntity, 638 InitListExpr *ILE, 639 bool &RequiresSecondPass, 640 bool FillWithNoInit) { 641 SourceLocation Loc = ILE->getEndLoc(); 642 unsigned NumInits = ILE->getNumInits(); 643 InitializedEntity MemberEntity 644 = InitializedEntity::InitializeMember(Field, &ParentEntity); 645 646 if (Init >= NumInits || !ILE->getInit(Init)) { 647 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) 648 if (!RType->getDecl()->isUnion()) 649 assert((Init < NumInits || VerifyOnly) && 650 "This ILE should have been expanded"); 651 652 if (FillWithNoInit) { 653 assert(!VerifyOnly && "should not fill with no-init in verify-only mode"); 654 Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType()); 655 if (Init < NumInits) 656 ILE->setInit(Init, Filler); 657 else 658 ILE->updateInit(SemaRef.Context, Init, Filler); 659 return; 660 } 661 // C++1y [dcl.init.aggr]p7: 662 // If there are fewer initializer-clauses in the list than there are 663 // members in the aggregate, then each member not explicitly initialized 664 // shall be initialized from its brace-or-equal-initializer [...] 665 if (Field->hasInClassInitializer()) { 666 if (VerifyOnly) 667 return; 668 669 ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field); 670 if (DIE.isInvalid()) { 671 hadError = true; 672 return; 673 } 674 SemaRef.checkInitializerLifetime(MemberEntity, DIE.get()); 675 if (Init < NumInits) 676 ILE->setInit(Init, DIE.get()); 677 else { 678 ILE->updateInit(SemaRef.Context, Init, DIE.get()); 679 RequiresSecondPass = true; 680 } 681 return; 682 } 683 684 if (Field->getType()->isReferenceType()) { 685 if (!VerifyOnly) { 686 // C++ [dcl.init.aggr]p9: 687 // If an incomplete or empty initializer-list leaves a 688 // member of reference type uninitialized, the program is 689 // ill-formed. 690 SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized) 691 << Field->getType() 692 << ILE->getSyntacticForm()->getSourceRange(); 693 SemaRef.Diag(Field->getLocation(), 694 diag::note_uninit_reference_member); 695 } 696 hadError = true; 697 return; 698 } 699 700 ExprResult MemberInit = PerformEmptyInit(Loc, MemberEntity); 701 if (MemberInit.isInvalid()) { 702 hadError = true; 703 return; 704 } 705 706 if (hadError || VerifyOnly) { 707 // Do nothing 708 } else if (Init < NumInits) { 709 ILE->setInit(Init, MemberInit.getAs<Expr>()); 710 } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) { 711 // Empty initialization requires a constructor call, so 712 // extend the initializer list to include the constructor 713 // call and make a note that we'll need to take another pass 714 // through the initializer list. 715 ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>()); 716 RequiresSecondPass = true; 717 } 718 } else if (InitListExpr *InnerILE 719 = dyn_cast<InitListExpr>(ILE->getInit(Init))) { 720 FillInEmptyInitializations(MemberEntity, InnerILE, 721 RequiresSecondPass, ILE, Init, FillWithNoInit); 722 } else if (DesignatedInitUpdateExpr *InnerDIUE = 723 dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) { 724 FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(), 725 RequiresSecondPass, ILE, Init, 726 /*FillWithNoInit =*/true); 727 } 728 } 729 730 /// Recursively replaces NULL values within the given initializer list 731 /// with expressions that perform value-initialization of the 732 /// appropriate type, and finish off the InitListExpr formation. 733 void 734 InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity, 735 InitListExpr *ILE, 736 bool &RequiresSecondPass, 737 InitListExpr *OuterILE, 738 unsigned OuterIndex, 739 bool FillWithNoInit) { 740 assert((ILE->getType() != SemaRef.Context.VoidTy) && 741 "Should not have void type"); 742 743 // We don't need to do any checks when just filling NoInitExprs; that can't 744 // fail. 745 if (FillWithNoInit && VerifyOnly) 746 return; 747 748 // If this is a nested initializer list, we might have changed its contents 749 // (and therefore some of its properties, such as instantiation-dependence) 750 // while filling it in. Inform the outer initializer list so that its state 751 // can be updated to match. 752 // FIXME: We should fully build the inner initializers before constructing 753 // the outer InitListExpr instead of mutating AST nodes after they have 754 // been used as subexpressions of other nodes. 755 struct UpdateOuterILEWithUpdatedInit { 756 InitListExpr *Outer; 757 unsigned OuterIndex; 758 ~UpdateOuterILEWithUpdatedInit() { 759 if (Outer) 760 Outer->setInit(OuterIndex, Outer->getInit(OuterIndex)); 761 } 762 } UpdateOuterRAII = {OuterILE, OuterIndex}; 763 764 // A transparent ILE is not performing aggregate initialization and should 765 // not be filled in. 766 if (ILE->isTransparent()) 767 return; 768 769 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 770 const RecordDecl *RDecl = RType->getDecl(); 771 if (RDecl->isUnion() && ILE->getInitializedFieldInUnion()) 772 FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(), 773 Entity, ILE, RequiresSecondPass, FillWithNoInit); 774 else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) && 775 cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) { 776 for (auto *Field : RDecl->fields()) { 777 if (Field->hasInClassInitializer()) { 778 FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass, 779 FillWithNoInit); 780 break; 781 } 782 } 783 } else { 784 // The fields beyond ILE->getNumInits() are default initialized, so in 785 // order to leave them uninitialized, the ILE is expanded and the extra 786 // fields are then filled with NoInitExpr. 787 unsigned NumElems = numStructUnionElements(ILE->getType()); 788 if (RDecl->hasFlexibleArrayMember()) 789 ++NumElems; 790 if (!VerifyOnly && ILE->getNumInits() < NumElems) 791 ILE->resizeInits(SemaRef.Context, NumElems); 792 793 unsigned Init = 0; 794 795 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) { 796 for (auto &Base : CXXRD->bases()) { 797 if (hadError) 798 return; 799 800 FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass, 801 FillWithNoInit); 802 ++Init; 803 } 804 } 805 806 for (auto *Field : RDecl->fields()) { 807 if (Field->isUnnamedBitfield()) 808 continue; 809 810 if (hadError) 811 return; 812 813 FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass, 814 FillWithNoInit); 815 if (hadError) 816 return; 817 818 ++Init; 819 820 // Only look at the first initialization of a union. 821 if (RDecl->isUnion()) 822 break; 823 } 824 } 825 826 return; 827 } 828 829 QualType ElementType; 830 831 InitializedEntity ElementEntity = Entity; 832 unsigned NumInits = ILE->getNumInits(); 833 unsigned NumElements = NumInits; 834 if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) { 835 ElementType = AType->getElementType(); 836 if (const auto *CAType = dyn_cast<ConstantArrayType>(AType)) 837 NumElements = CAType->getSize().getZExtValue(); 838 // For an array new with an unknown bound, ask for one additional element 839 // in order to populate the array filler. 840 if (Entity.isVariableLengthArrayNew()) 841 ++NumElements; 842 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, 843 0, Entity); 844 } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) { 845 ElementType = VType->getElementType(); 846 NumElements = VType->getNumElements(); 847 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, 848 0, Entity); 849 } else 850 ElementType = ILE->getType(); 851 852 bool SkipEmptyInitChecks = false; 853 for (unsigned Init = 0; Init != NumElements; ++Init) { 854 if (hadError) 855 return; 856 857 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement || 858 ElementEntity.getKind() == InitializedEntity::EK_VectorElement) 859 ElementEntity.setElementIndex(Init); 860 861 if (Init >= NumInits && (ILE->hasArrayFiller() || SkipEmptyInitChecks)) 862 return; 863 864 Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr); 865 if (!InitExpr && Init < NumInits && ILE->hasArrayFiller()) 866 ILE->setInit(Init, ILE->getArrayFiller()); 867 else if (!InitExpr && !ILE->hasArrayFiller()) { 868 // In VerifyOnly mode, there's no point performing empty initialization 869 // more than once. 870 if (SkipEmptyInitChecks) 871 continue; 872 873 Expr *Filler = nullptr; 874 875 if (FillWithNoInit) 876 Filler = new (SemaRef.Context) NoInitExpr(ElementType); 877 else { 878 ExprResult ElementInit = 879 PerformEmptyInit(ILE->getEndLoc(), ElementEntity); 880 if (ElementInit.isInvalid()) { 881 hadError = true; 882 return; 883 } 884 885 Filler = ElementInit.getAs<Expr>(); 886 } 887 888 if (hadError) { 889 // Do nothing 890 } else if (VerifyOnly) { 891 SkipEmptyInitChecks = true; 892 } else if (Init < NumInits) { 893 // For arrays, just set the expression used for value-initialization 894 // of the "holes" in the array. 895 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) 896 ILE->setArrayFiller(Filler); 897 else 898 ILE->setInit(Init, Filler); 899 } else { 900 // For arrays, just set the expression used for value-initialization 901 // of the rest of elements and exit. 902 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) { 903 ILE->setArrayFiller(Filler); 904 return; 905 } 906 907 if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) { 908 // Empty initialization requires a constructor call, so 909 // extend the initializer list to include the constructor 910 // call and make a note that we'll need to take another pass 911 // through the initializer list. 912 ILE->updateInit(SemaRef.Context, Init, Filler); 913 RequiresSecondPass = true; 914 } 915 } 916 } else if (InitListExpr *InnerILE 917 = dyn_cast_or_null<InitListExpr>(InitExpr)) { 918 FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass, 919 ILE, Init, FillWithNoInit); 920 } else if (DesignatedInitUpdateExpr *InnerDIUE = 921 dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr)) { 922 FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(), 923 RequiresSecondPass, ILE, Init, 924 /*FillWithNoInit =*/true); 925 } 926 } 927 } 928 929 static bool hasAnyDesignatedInits(const InitListExpr *IL) { 930 for (const Stmt *Init : *IL) 931 if (Init && isa<DesignatedInitExpr>(Init)) 932 return true; 933 return false; 934 } 935 936 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity, 937 InitListExpr *IL, QualType &T, bool VerifyOnly, 938 bool TreatUnavailableAsInvalid, 939 bool InOverloadResolution) 940 : SemaRef(S), VerifyOnly(VerifyOnly), 941 TreatUnavailableAsInvalid(TreatUnavailableAsInvalid), 942 InOverloadResolution(InOverloadResolution) { 943 if (!VerifyOnly || hasAnyDesignatedInits(IL)) { 944 FullyStructuredList = 945 createInitListExpr(T, IL->getSourceRange(), IL->getNumInits()); 946 947 // FIXME: Check that IL isn't already the semantic form of some other 948 // InitListExpr. If it is, we'd create a broken AST. 949 if (!VerifyOnly) 950 FullyStructuredList->setSyntacticForm(IL); 951 } 952 953 CheckExplicitInitList(Entity, IL, T, FullyStructuredList, 954 /*TopLevelObject=*/true); 955 956 if (!hadError && FullyStructuredList) { 957 bool RequiresSecondPass = false; 958 FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass, 959 /*OuterILE=*/nullptr, /*OuterIndex=*/0); 960 if (RequiresSecondPass && !hadError) 961 FillInEmptyInitializations(Entity, FullyStructuredList, 962 RequiresSecondPass, nullptr, 0); 963 } 964 } 965 966 int InitListChecker::numArrayElements(QualType DeclType) { 967 // FIXME: use a proper constant 968 int maxElements = 0x7FFFFFFF; 969 if (const ConstantArrayType *CAT = 970 SemaRef.Context.getAsConstantArrayType(DeclType)) { 971 maxElements = static_cast<int>(CAT->getSize().getZExtValue()); 972 } 973 return maxElements; 974 } 975 976 int InitListChecker::numStructUnionElements(QualType DeclType) { 977 RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl(); 978 int InitializableMembers = 0; 979 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl)) 980 InitializableMembers += CXXRD->getNumBases(); 981 for (const auto *Field : structDecl->fields()) 982 if (!Field->isUnnamedBitfield()) 983 ++InitializableMembers; 984 985 if (structDecl->isUnion()) 986 return std::min(InitializableMembers, 1); 987 return InitializableMembers - structDecl->hasFlexibleArrayMember(); 988 } 989 990 /// Determine whether Entity is an entity for which it is idiomatic to elide 991 /// the braces in aggregate initialization. 992 static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) { 993 // Recursive initialization of the one and only field within an aggregate 994 // class is considered idiomatic. This case arises in particular for 995 // initialization of std::array, where the C++ standard suggests the idiom of 996 // 997 // std::array<T, N> arr = {1, 2, 3}; 998 // 999 // (where std::array is an aggregate struct containing a single array field. 1000 1001 // FIXME: Should aggregate initialization of a struct with a single 1002 // base class and no members also suppress the warning? 1003 if (Entity.getKind() != InitializedEntity::EK_Member || !Entity.getParent()) 1004 return false; 1005 1006 auto *ParentRD = 1007 Entity.getParent()->getType()->castAs<RecordType>()->getDecl(); 1008 if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(ParentRD)) 1009 if (CXXRD->getNumBases()) 1010 return false; 1011 1012 auto FieldIt = ParentRD->field_begin(); 1013 assert(FieldIt != ParentRD->field_end() && 1014 "no fields but have initializer for member?"); 1015 return ++FieldIt == ParentRD->field_end(); 1016 } 1017 1018 /// Check whether the range of the initializer \p ParentIList from element 1019 /// \p Index onwards can be used to initialize an object of type \p T. Update 1020 /// \p Index to indicate how many elements of the list were consumed. 1021 /// 1022 /// This also fills in \p StructuredList, from element \p StructuredIndex 1023 /// onwards, with the fully-braced, desugared form of the initialization. 1024 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity, 1025 InitListExpr *ParentIList, 1026 QualType T, unsigned &Index, 1027 InitListExpr *StructuredList, 1028 unsigned &StructuredIndex) { 1029 int maxElements = 0; 1030 1031 if (T->isArrayType()) 1032 maxElements = numArrayElements(T); 1033 else if (T->isRecordType()) 1034 maxElements = numStructUnionElements(T); 1035 else if (T->isVectorType()) 1036 maxElements = T->castAs<VectorType>()->getNumElements(); 1037 else 1038 llvm_unreachable("CheckImplicitInitList(): Illegal type"); 1039 1040 if (maxElements == 0) { 1041 if (!VerifyOnly) 1042 SemaRef.Diag(ParentIList->getInit(Index)->getBeginLoc(), 1043 diag::err_implicit_empty_initializer); 1044 ++Index; 1045 hadError = true; 1046 return; 1047 } 1048 1049 // Build a structured initializer list corresponding to this subobject. 1050 InitListExpr *StructuredSubobjectInitList = getStructuredSubobjectInit( 1051 ParentIList, Index, T, StructuredList, StructuredIndex, 1052 SourceRange(ParentIList->getInit(Index)->getBeginLoc(), 1053 ParentIList->getSourceRange().getEnd())); 1054 unsigned StructuredSubobjectInitIndex = 0; 1055 1056 // Check the element types and build the structural subobject. 1057 unsigned StartIndex = Index; 1058 CheckListElementTypes(Entity, ParentIList, T, 1059 /*SubobjectIsDesignatorContext=*/false, Index, 1060 StructuredSubobjectInitList, 1061 StructuredSubobjectInitIndex); 1062 1063 if (StructuredSubobjectInitList) { 1064 StructuredSubobjectInitList->setType(T); 1065 1066 unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1); 1067 // Update the structured sub-object initializer so that it's ending 1068 // range corresponds with the end of the last initializer it used. 1069 if (EndIndex < ParentIList->getNumInits() && 1070 ParentIList->getInit(EndIndex)) { 1071 SourceLocation EndLoc 1072 = ParentIList->getInit(EndIndex)->getSourceRange().getEnd(); 1073 StructuredSubobjectInitList->setRBraceLoc(EndLoc); 1074 } 1075 1076 // Complain about missing braces. 1077 if (!VerifyOnly && (T->isArrayType() || T->isRecordType()) && 1078 !ParentIList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) && 1079 !isIdiomaticBraceElisionEntity(Entity)) { 1080 SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(), 1081 diag::warn_missing_braces) 1082 << StructuredSubobjectInitList->getSourceRange() 1083 << FixItHint::CreateInsertion( 1084 StructuredSubobjectInitList->getBeginLoc(), "{") 1085 << FixItHint::CreateInsertion( 1086 SemaRef.getLocForEndOfToken( 1087 StructuredSubobjectInitList->getEndLoc()), 1088 "}"); 1089 } 1090 1091 // Warn if this type won't be an aggregate in future versions of C++. 1092 auto *CXXRD = T->getAsCXXRecordDecl(); 1093 if (!VerifyOnly && CXXRD && CXXRD->hasUserDeclaredConstructor()) { 1094 SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(), 1095 diag::warn_cxx2a_compat_aggregate_init_with_ctors) 1096 << StructuredSubobjectInitList->getSourceRange() << T; 1097 } 1098 } 1099 } 1100 1101 /// Warn that \p Entity was of scalar type and was initialized by a 1102 /// single-element braced initializer list. 1103 static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity, 1104 SourceRange Braces) { 1105 // Don't warn during template instantiation. If the initialization was 1106 // non-dependent, we warned during the initial parse; otherwise, the 1107 // type might not be scalar in some uses of the template. 1108 if (S.inTemplateInstantiation()) 1109 return; 1110 1111 unsigned DiagID = 0; 1112 1113 switch (Entity.getKind()) { 1114 case InitializedEntity::EK_VectorElement: 1115 case InitializedEntity::EK_ComplexElement: 1116 case InitializedEntity::EK_ArrayElement: 1117 case InitializedEntity::EK_Parameter: 1118 case InitializedEntity::EK_Parameter_CF_Audited: 1119 case InitializedEntity::EK_Result: 1120 // Extra braces here are suspicious. 1121 DiagID = diag::warn_braces_around_scalar_init; 1122 break; 1123 1124 case InitializedEntity::EK_Member: 1125 // Warn on aggregate initialization but not on ctor init list or 1126 // default member initializer. 1127 if (Entity.getParent()) 1128 DiagID = diag::warn_braces_around_scalar_init; 1129 break; 1130 1131 case InitializedEntity::EK_Variable: 1132 case InitializedEntity::EK_LambdaCapture: 1133 // No warning, might be direct-list-initialization. 1134 // FIXME: Should we warn for copy-list-initialization in these cases? 1135 break; 1136 1137 case InitializedEntity::EK_New: 1138 case InitializedEntity::EK_Temporary: 1139 case InitializedEntity::EK_CompoundLiteralInit: 1140 // No warning, braces are part of the syntax of the underlying construct. 1141 break; 1142 1143 case InitializedEntity::EK_RelatedResult: 1144 // No warning, we already warned when initializing the result. 1145 break; 1146 1147 case InitializedEntity::EK_Exception: 1148 case InitializedEntity::EK_Base: 1149 case InitializedEntity::EK_Delegating: 1150 case InitializedEntity::EK_BlockElement: 1151 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 1152 case InitializedEntity::EK_Binding: 1153 case InitializedEntity::EK_StmtExprResult: 1154 llvm_unreachable("unexpected braced scalar init"); 1155 } 1156 1157 if (DiagID) { 1158 S.Diag(Braces.getBegin(), DiagID) 1159 << Braces 1160 << FixItHint::CreateRemoval(Braces.getBegin()) 1161 << FixItHint::CreateRemoval(Braces.getEnd()); 1162 } 1163 } 1164 1165 /// Check whether the initializer \p IList (that was written with explicit 1166 /// braces) can be used to initialize an object of type \p T. 1167 /// 1168 /// This also fills in \p StructuredList with the fully-braced, desugared 1169 /// form of the initialization. 1170 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity, 1171 InitListExpr *IList, QualType &T, 1172 InitListExpr *StructuredList, 1173 bool TopLevelObject) { 1174 unsigned Index = 0, StructuredIndex = 0; 1175 CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true, 1176 Index, StructuredList, StructuredIndex, TopLevelObject); 1177 if (StructuredList) { 1178 QualType ExprTy = T; 1179 if (!ExprTy->isArrayType()) 1180 ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context); 1181 if (!VerifyOnly) 1182 IList->setType(ExprTy); 1183 StructuredList->setType(ExprTy); 1184 } 1185 if (hadError) 1186 return; 1187 1188 // Don't complain for incomplete types, since we'll get an error elsewhere. 1189 if (Index < IList->getNumInits() && !T->isIncompleteType()) { 1190 // We have leftover initializers 1191 bool ExtraInitsIsError = SemaRef.getLangOpts().CPlusPlus || 1192 (SemaRef.getLangOpts().OpenCL && T->isVectorType()); 1193 hadError = ExtraInitsIsError; 1194 if (VerifyOnly) { 1195 return; 1196 } else if (StructuredIndex == 1 && 1197 IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) == 1198 SIF_None) { 1199 unsigned DK = 1200 ExtraInitsIsError 1201 ? diag::err_excess_initializers_in_char_array_initializer 1202 : diag::ext_excess_initializers_in_char_array_initializer; 1203 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK) 1204 << IList->getInit(Index)->getSourceRange(); 1205 } else { 1206 int initKind = T->isArrayType() ? 0 : 1207 T->isVectorType() ? 1 : 1208 T->isScalarType() ? 2 : 1209 T->isUnionType() ? 3 : 1210 4; 1211 1212 unsigned DK = ExtraInitsIsError ? diag::err_excess_initializers 1213 : diag::ext_excess_initializers; 1214 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK) 1215 << initKind << IList->getInit(Index)->getSourceRange(); 1216 } 1217 } 1218 1219 if (!VerifyOnly) { 1220 if (T->isScalarType() && IList->getNumInits() == 1 && 1221 !isa<InitListExpr>(IList->getInit(0))) 1222 warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange()); 1223 1224 // Warn if this is a class type that won't be an aggregate in future 1225 // versions of C++. 1226 auto *CXXRD = T->getAsCXXRecordDecl(); 1227 if (CXXRD && CXXRD->hasUserDeclaredConstructor()) { 1228 // Don't warn if there's an equivalent default constructor that would be 1229 // used instead. 1230 bool HasEquivCtor = false; 1231 if (IList->getNumInits() == 0) { 1232 auto *CD = SemaRef.LookupDefaultConstructor(CXXRD); 1233 HasEquivCtor = CD && !CD->isDeleted(); 1234 } 1235 1236 if (!HasEquivCtor) { 1237 SemaRef.Diag(IList->getBeginLoc(), 1238 diag::warn_cxx2a_compat_aggregate_init_with_ctors) 1239 << IList->getSourceRange() << T; 1240 } 1241 } 1242 } 1243 } 1244 1245 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity, 1246 InitListExpr *IList, 1247 QualType &DeclType, 1248 bool SubobjectIsDesignatorContext, 1249 unsigned &Index, 1250 InitListExpr *StructuredList, 1251 unsigned &StructuredIndex, 1252 bool TopLevelObject) { 1253 if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) { 1254 // Explicitly braced initializer for complex type can be real+imaginary 1255 // parts. 1256 CheckComplexType(Entity, IList, DeclType, Index, 1257 StructuredList, StructuredIndex); 1258 } else if (DeclType->isScalarType()) { 1259 CheckScalarType(Entity, IList, DeclType, Index, 1260 StructuredList, StructuredIndex); 1261 } else if (DeclType->isVectorType()) { 1262 CheckVectorType(Entity, IList, DeclType, Index, 1263 StructuredList, StructuredIndex); 1264 } else if (DeclType->isRecordType()) { 1265 assert(DeclType->isAggregateType() && 1266 "non-aggregate records should be handed in CheckSubElementType"); 1267 RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl(); 1268 auto Bases = 1269 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(), 1270 CXXRecordDecl::base_class_iterator()); 1271 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1272 Bases = CXXRD->bases(); 1273 CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(), 1274 SubobjectIsDesignatorContext, Index, StructuredList, 1275 StructuredIndex, TopLevelObject); 1276 } else if (DeclType->isArrayType()) { 1277 llvm::APSInt Zero( 1278 SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()), 1279 false); 1280 CheckArrayType(Entity, IList, DeclType, Zero, 1281 SubobjectIsDesignatorContext, Index, 1282 StructuredList, StructuredIndex); 1283 } else if (DeclType->isVoidType() || DeclType->isFunctionType()) { 1284 // This type is invalid, issue a diagnostic. 1285 ++Index; 1286 if (!VerifyOnly) 1287 SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type) 1288 << DeclType; 1289 hadError = true; 1290 } else if (DeclType->isReferenceType()) { 1291 CheckReferenceType(Entity, IList, DeclType, Index, 1292 StructuredList, StructuredIndex); 1293 } else if (DeclType->isObjCObjectType()) { 1294 if (!VerifyOnly) 1295 SemaRef.Diag(IList->getBeginLoc(), diag::err_init_objc_class) << DeclType; 1296 hadError = true; 1297 } else if (DeclType->isOCLIntelSubgroupAVCType()) { 1298 // Checks for scalar type are sufficient for these types too. 1299 CheckScalarType(Entity, IList, DeclType, Index, StructuredList, 1300 StructuredIndex); 1301 } else { 1302 if (!VerifyOnly) 1303 SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type) 1304 << DeclType; 1305 hadError = true; 1306 } 1307 } 1308 1309 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity, 1310 InitListExpr *IList, 1311 QualType ElemType, 1312 unsigned &Index, 1313 InitListExpr *StructuredList, 1314 unsigned &StructuredIndex) { 1315 Expr *expr = IList->getInit(Index); 1316 1317 if (ElemType->isReferenceType()) 1318 return CheckReferenceType(Entity, IList, ElemType, Index, 1319 StructuredList, StructuredIndex); 1320 1321 if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) { 1322 if (SubInitList->getNumInits() == 1 && 1323 IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) == 1324 SIF_None) { 1325 // FIXME: It would be more faithful and no less correct to include an 1326 // InitListExpr in the semantic form of the initializer list in this case. 1327 expr = SubInitList->getInit(0); 1328 } 1329 // Nested aggregate initialization and C++ initialization are handled later. 1330 } else if (isa<ImplicitValueInitExpr>(expr)) { 1331 // This happens during template instantiation when we see an InitListExpr 1332 // that we've already checked once. 1333 assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) && 1334 "found implicit initialization for the wrong type"); 1335 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1336 ++Index; 1337 return; 1338 } 1339 1340 if (SemaRef.getLangOpts().CPlusPlus || isa<InitListExpr>(expr)) { 1341 // C++ [dcl.init.aggr]p2: 1342 // Each member is copy-initialized from the corresponding 1343 // initializer-clause. 1344 1345 // FIXME: Better EqualLoc? 1346 InitializationKind Kind = 1347 InitializationKind::CreateCopy(expr->getBeginLoc(), SourceLocation()); 1348 1349 // Vector elements can be initialized from other vectors in which case 1350 // we need initialization entity with a type of a vector (and not a vector 1351 // element!) initializing multiple vector elements. 1352 auto TmpEntity = 1353 (ElemType->isExtVectorType() && !Entity.getType()->isExtVectorType()) 1354 ? InitializedEntity::InitializeTemporary(ElemType) 1355 : Entity; 1356 1357 InitializationSequence Seq(SemaRef, TmpEntity, Kind, expr, 1358 /*TopLevelOfInitList*/ true); 1359 1360 // C++14 [dcl.init.aggr]p13: 1361 // If the assignment-expression can initialize a member, the member is 1362 // initialized. Otherwise [...] brace elision is assumed 1363 // 1364 // Brace elision is never performed if the element is not an 1365 // assignment-expression. 1366 if (Seq || isa<InitListExpr>(expr)) { 1367 if (!VerifyOnly) { 1368 ExprResult Result = Seq.Perform(SemaRef, TmpEntity, Kind, expr); 1369 if (Result.isInvalid()) 1370 hadError = true; 1371 1372 UpdateStructuredListElement(StructuredList, StructuredIndex, 1373 Result.getAs<Expr>()); 1374 } else if (!Seq) { 1375 hadError = true; 1376 } else if (StructuredList) { 1377 UpdateStructuredListElement(StructuredList, StructuredIndex, 1378 getDummyInit()); 1379 } 1380 ++Index; 1381 return; 1382 } 1383 1384 // Fall through for subaggregate initialization 1385 } else if (ElemType->isScalarType() || ElemType->isAtomicType()) { 1386 // FIXME: Need to handle atomic aggregate types with implicit init lists. 1387 return CheckScalarType(Entity, IList, ElemType, Index, 1388 StructuredList, StructuredIndex); 1389 } else if (const ArrayType *arrayType = 1390 SemaRef.Context.getAsArrayType(ElemType)) { 1391 // arrayType can be incomplete if we're initializing a flexible 1392 // array member. There's nothing we can do with the completed 1393 // type here, though. 1394 1395 if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) { 1396 // FIXME: Should we do this checking in verify-only mode? 1397 if (!VerifyOnly) 1398 CheckStringInit(expr, ElemType, arrayType, SemaRef); 1399 if (StructuredList) 1400 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1401 ++Index; 1402 return; 1403 } 1404 1405 // Fall through for subaggregate initialization. 1406 1407 } else { 1408 assert((ElemType->isRecordType() || ElemType->isVectorType() || 1409 ElemType->isOpenCLSpecificType()) && "Unexpected type"); 1410 1411 // C99 6.7.8p13: 1412 // 1413 // The initializer for a structure or union object that has 1414 // automatic storage duration shall be either an initializer 1415 // list as described below, or a single expression that has 1416 // compatible structure or union type. In the latter case, the 1417 // initial value of the object, including unnamed members, is 1418 // that of the expression. 1419 ExprResult ExprRes = expr; 1420 if (SemaRef.CheckSingleAssignmentConstraints( 1421 ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) { 1422 if (ExprRes.isInvalid()) 1423 hadError = true; 1424 else { 1425 ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get()); 1426 if (ExprRes.isInvalid()) 1427 hadError = true; 1428 } 1429 UpdateStructuredListElement(StructuredList, StructuredIndex, 1430 ExprRes.getAs<Expr>()); 1431 ++Index; 1432 return; 1433 } 1434 ExprRes.get(); 1435 // Fall through for subaggregate initialization 1436 } 1437 1438 // C++ [dcl.init.aggr]p12: 1439 // 1440 // [...] Otherwise, if the member is itself a non-empty 1441 // subaggregate, brace elision is assumed and the initializer is 1442 // considered for the initialization of the first member of 1443 // the subaggregate. 1444 // OpenCL vector initializer is handled elsewhere. 1445 if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) || 1446 ElemType->isAggregateType()) { 1447 CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList, 1448 StructuredIndex); 1449 ++StructuredIndex; 1450 } else { 1451 if (!VerifyOnly) { 1452 // We cannot initialize this element, so let PerformCopyInitialization 1453 // produce the appropriate diagnostic. We already checked that this 1454 // initialization will fail. 1455 ExprResult Copy = 1456 SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr, 1457 /*TopLevelOfInitList=*/true); 1458 (void)Copy; 1459 assert(Copy.isInvalid() && 1460 "expected non-aggregate initialization to fail"); 1461 } 1462 hadError = true; 1463 ++Index; 1464 ++StructuredIndex; 1465 } 1466 } 1467 1468 void InitListChecker::CheckComplexType(const InitializedEntity &Entity, 1469 InitListExpr *IList, QualType DeclType, 1470 unsigned &Index, 1471 InitListExpr *StructuredList, 1472 unsigned &StructuredIndex) { 1473 assert(Index == 0 && "Index in explicit init list must be zero"); 1474 1475 // As an extension, clang supports complex initializers, which initialize 1476 // a complex number component-wise. When an explicit initializer list for 1477 // a complex number contains two two initializers, this extension kicks in: 1478 // it exepcts the initializer list to contain two elements convertible to 1479 // the element type of the complex type. The first element initializes 1480 // the real part, and the second element intitializes the imaginary part. 1481 1482 if (IList->getNumInits() != 2) 1483 return CheckScalarType(Entity, IList, DeclType, Index, StructuredList, 1484 StructuredIndex); 1485 1486 // This is an extension in C. (The builtin _Complex type does not exist 1487 // in the C++ standard.) 1488 if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly) 1489 SemaRef.Diag(IList->getBeginLoc(), diag::ext_complex_component_init) 1490 << IList->getSourceRange(); 1491 1492 // Initialize the complex number. 1493 QualType elementType = DeclType->castAs<ComplexType>()->getElementType(); 1494 InitializedEntity ElementEntity = 1495 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1496 1497 for (unsigned i = 0; i < 2; ++i) { 1498 ElementEntity.setElementIndex(Index); 1499 CheckSubElementType(ElementEntity, IList, elementType, Index, 1500 StructuredList, StructuredIndex); 1501 } 1502 } 1503 1504 void InitListChecker::CheckScalarType(const InitializedEntity &Entity, 1505 InitListExpr *IList, QualType DeclType, 1506 unsigned &Index, 1507 InitListExpr *StructuredList, 1508 unsigned &StructuredIndex) { 1509 if (Index >= IList->getNumInits()) { 1510 if (!VerifyOnly) 1511 SemaRef.Diag(IList->getBeginLoc(), 1512 SemaRef.getLangOpts().CPlusPlus11 1513 ? diag::warn_cxx98_compat_empty_scalar_initializer 1514 : diag::err_empty_scalar_initializer) 1515 << IList->getSourceRange(); 1516 hadError = !SemaRef.getLangOpts().CPlusPlus11; 1517 ++Index; 1518 ++StructuredIndex; 1519 return; 1520 } 1521 1522 Expr *expr = IList->getInit(Index); 1523 if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) { 1524 // FIXME: This is invalid, and accepting it causes overload resolution 1525 // to pick the wrong overload in some corner cases. 1526 if (!VerifyOnly) 1527 SemaRef.Diag(SubIList->getBeginLoc(), 1528 diag::ext_many_braces_around_scalar_init) 1529 << SubIList->getSourceRange(); 1530 1531 CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList, 1532 StructuredIndex); 1533 return; 1534 } else if (isa<DesignatedInitExpr>(expr)) { 1535 if (!VerifyOnly) 1536 SemaRef.Diag(expr->getBeginLoc(), diag::err_designator_for_scalar_init) 1537 << DeclType << expr->getSourceRange(); 1538 hadError = true; 1539 ++Index; 1540 ++StructuredIndex; 1541 return; 1542 } 1543 1544 ExprResult Result; 1545 if (VerifyOnly) { 1546 if (SemaRef.CanPerformCopyInitialization(Entity, expr)) 1547 Result = getDummyInit(); 1548 else 1549 Result = ExprError(); 1550 } else { 1551 Result = 1552 SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr, 1553 /*TopLevelOfInitList=*/true); 1554 } 1555 1556 Expr *ResultExpr = nullptr; 1557 1558 if (Result.isInvalid()) 1559 hadError = true; // types weren't compatible. 1560 else { 1561 ResultExpr = Result.getAs<Expr>(); 1562 1563 if (ResultExpr != expr && !VerifyOnly) { 1564 // The type was promoted, update initializer list. 1565 // FIXME: Why are we updating the syntactic init list? 1566 IList->setInit(Index, ResultExpr); 1567 } 1568 } 1569 if (hadError) 1570 ++StructuredIndex; 1571 else 1572 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr); 1573 ++Index; 1574 } 1575 1576 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity, 1577 InitListExpr *IList, QualType DeclType, 1578 unsigned &Index, 1579 InitListExpr *StructuredList, 1580 unsigned &StructuredIndex) { 1581 if (Index >= IList->getNumInits()) { 1582 // FIXME: It would be wonderful if we could point at the actual member. In 1583 // general, it would be useful to pass location information down the stack, 1584 // so that we know the location (or decl) of the "current object" being 1585 // initialized. 1586 if (!VerifyOnly) 1587 SemaRef.Diag(IList->getBeginLoc(), 1588 diag::err_init_reference_member_uninitialized) 1589 << DeclType << IList->getSourceRange(); 1590 hadError = true; 1591 ++Index; 1592 ++StructuredIndex; 1593 return; 1594 } 1595 1596 Expr *expr = IList->getInit(Index); 1597 if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) { 1598 if (!VerifyOnly) 1599 SemaRef.Diag(IList->getBeginLoc(), diag::err_init_non_aggr_init_list) 1600 << DeclType << IList->getSourceRange(); 1601 hadError = true; 1602 ++Index; 1603 ++StructuredIndex; 1604 return; 1605 } 1606 1607 ExprResult Result; 1608 if (VerifyOnly) { 1609 if (SemaRef.CanPerformCopyInitialization(Entity,expr)) 1610 Result = getDummyInit(); 1611 else 1612 Result = ExprError(); 1613 } else { 1614 Result = 1615 SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr, 1616 /*TopLevelOfInitList=*/true); 1617 } 1618 1619 if (Result.isInvalid()) 1620 hadError = true; 1621 1622 expr = Result.getAs<Expr>(); 1623 // FIXME: Why are we updating the syntactic init list? 1624 if (!VerifyOnly) 1625 IList->setInit(Index, expr); 1626 1627 if (hadError) 1628 ++StructuredIndex; 1629 else 1630 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1631 ++Index; 1632 } 1633 1634 void InitListChecker::CheckVectorType(const InitializedEntity &Entity, 1635 InitListExpr *IList, QualType DeclType, 1636 unsigned &Index, 1637 InitListExpr *StructuredList, 1638 unsigned &StructuredIndex) { 1639 const VectorType *VT = DeclType->castAs<VectorType>(); 1640 unsigned maxElements = VT->getNumElements(); 1641 unsigned numEltsInit = 0; 1642 QualType elementType = VT->getElementType(); 1643 1644 if (Index >= IList->getNumInits()) { 1645 // Make sure the element type can be value-initialized. 1646 CheckEmptyInitializable( 1647 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity), 1648 IList->getEndLoc()); 1649 return; 1650 } 1651 1652 if (!SemaRef.getLangOpts().OpenCL) { 1653 // If the initializing element is a vector, try to copy-initialize 1654 // instead of breaking it apart (which is doomed to failure anyway). 1655 Expr *Init = IList->getInit(Index); 1656 if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) { 1657 ExprResult Result; 1658 if (VerifyOnly) { 1659 if (SemaRef.CanPerformCopyInitialization(Entity, Init)) 1660 Result = getDummyInit(); 1661 else 1662 Result = ExprError(); 1663 } else { 1664 Result = 1665 SemaRef.PerformCopyInitialization(Entity, Init->getBeginLoc(), Init, 1666 /*TopLevelOfInitList=*/true); 1667 } 1668 1669 Expr *ResultExpr = nullptr; 1670 if (Result.isInvalid()) 1671 hadError = true; // types weren't compatible. 1672 else { 1673 ResultExpr = Result.getAs<Expr>(); 1674 1675 if (ResultExpr != Init && !VerifyOnly) { 1676 // The type was promoted, update initializer list. 1677 // FIXME: Why are we updating the syntactic init list? 1678 IList->setInit(Index, ResultExpr); 1679 } 1680 } 1681 if (hadError) 1682 ++StructuredIndex; 1683 else 1684 UpdateStructuredListElement(StructuredList, StructuredIndex, 1685 ResultExpr); 1686 ++Index; 1687 return; 1688 } 1689 1690 InitializedEntity ElementEntity = 1691 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1692 1693 for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) { 1694 // Don't attempt to go past the end of the init list 1695 if (Index >= IList->getNumInits()) { 1696 CheckEmptyInitializable(ElementEntity, IList->getEndLoc()); 1697 break; 1698 } 1699 1700 ElementEntity.setElementIndex(Index); 1701 CheckSubElementType(ElementEntity, IList, elementType, Index, 1702 StructuredList, StructuredIndex); 1703 } 1704 1705 if (VerifyOnly) 1706 return; 1707 1708 bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian(); 1709 const VectorType *T = Entity.getType()->castAs<VectorType>(); 1710 if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector || 1711 T->getVectorKind() == VectorType::NeonPolyVector)) { 1712 // The ability to use vector initializer lists is a GNU vector extension 1713 // and is unrelated to the NEON intrinsics in arm_neon.h. On little 1714 // endian machines it works fine, however on big endian machines it 1715 // exhibits surprising behaviour: 1716 // 1717 // uint32x2_t x = {42, 64}; 1718 // return vget_lane_u32(x, 0); // Will return 64. 1719 // 1720 // Because of this, explicitly call out that it is non-portable. 1721 // 1722 SemaRef.Diag(IList->getBeginLoc(), 1723 diag::warn_neon_vector_initializer_non_portable); 1724 1725 const char *typeCode; 1726 unsigned typeSize = SemaRef.Context.getTypeSize(elementType); 1727 1728 if (elementType->isFloatingType()) 1729 typeCode = "f"; 1730 else if (elementType->isSignedIntegerType()) 1731 typeCode = "s"; 1732 else if (elementType->isUnsignedIntegerType()) 1733 typeCode = "u"; 1734 else 1735 llvm_unreachable("Invalid element type!"); 1736 1737 SemaRef.Diag(IList->getBeginLoc(), 1738 SemaRef.Context.getTypeSize(VT) > 64 1739 ? diag::note_neon_vector_initializer_non_portable_q 1740 : diag::note_neon_vector_initializer_non_portable) 1741 << typeCode << typeSize; 1742 } 1743 1744 return; 1745 } 1746 1747 InitializedEntity ElementEntity = 1748 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1749 1750 // OpenCL initializers allows vectors to be constructed from vectors. 1751 for (unsigned i = 0; i < maxElements; ++i) { 1752 // Don't attempt to go past the end of the init list 1753 if (Index >= IList->getNumInits()) 1754 break; 1755 1756 ElementEntity.setElementIndex(Index); 1757 1758 QualType IType = IList->getInit(Index)->getType(); 1759 if (!IType->isVectorType()) { 1760 CheckSubElementType(ElementEntity, IList, elementType, Index, 1761 StructuredList, StructuredIndex); 1762 ++numEltsInit; 1763 } else { 1764 QualType VecType; 1765 const VectorType *IVT = IType->castAs<VectorType>(); 1766 unsigned numIElts = IVT->getNumElements(); 1767 1768 if (IType->isExtVectorType()) 1769 VecType = SemaRef.Context.getExtVectorType(elementType, numIElts); 1770 else 1771 VecType = SemaRef.Context.getVectorType(elementType, numIElts, 1772 IVT->getVectorKind()); 1773 CheckSubElementType(ElementEntity, IList, VecType, Index, 1774 StructuredList, StructuredIndex); 1775 numEltsInit += numIElts; 1776 } 1777 } 1778 1779 // OpenCL requires all elements to be initialized. 1780 if (numEltsInit != maxElements) { 1781 if (!VerifyOnly) 1782 SemaRef.Diag(IList->getBeginLoc(), 1783 diag::err_vector_incorrect_num_initializers) 1784 << (numEltsInit < maxElements) << maxElements << numEltsInit; 1785 hadError = true; 1786 } 1787 } 1788 1789 /// Check if the type of a class element has an accessible destructor, and marks 1790 /// it referenced. Returns true if we shouldn't form a reference to the 1791 /// destructor. 1792 /// 1793 /// Aggregate initialization requires a class element's destructor be 1794 /// accessible per 11.6.1 [dcl.init.aggr]: 1795 /// 1796 /// The destructor for each element of class type is potentially invoked 1797 /// (15.4 [class.dtor]) from the context where the aggregate initialization 1798 /// occurs. 1799 static bool checkDestructorReference(QualType ElementType, SourceLocation Loc, 1800 Sema &SemaRef) { 1801 auto *CXXRD = ElementType->getAsCXXRecordDecl(); 1802 if (!CXXRD) 1803 return false; 1804 1805 CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(CXXRD); 1806 SemaRef.CheckDestructorAccess(Loc, Destructor, 1807 SemaRef.PDiag(diag::err_access_dtor_temp) 1808 << ElementType); 1809 SemaRef.MarkFunctionReferenced(Loc, Destructor); 1810 return SemaRef.DiagnoseUseOfDecl(Destructor, Loc); 1811 } 1812 1813 void InitListChecker::CheckArrayType(const InitializedEntity &Entity, 1814 InitListExpr *IList, QualType &DeclType, 1815 llvm::APSInt elementIndex, 1816 bool SubobjectIsDesignatorContext, 1817 unsigned &Index, 1818 InitListExpr *StructuredList, 1819 unsigned &StructuredIndex) { 1820 const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType); 1821 1822 if (!VerifyOnly) { 1823 if (checkDestructorReference(arrayType->getElementType(), 1824 IList->getEndLoc(), SemaRef)) { 1825 hadError = true; 1826 return; 1827 } 1828 } 1829 1830 // Check for the special-case of initializing an array with a string. 1831 if (Index < IList->getNumInits()) { 1832 if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) == 1833 SIF_None) { 1834 // We place the string literal directly into the resulting 1835 // initializer list. This is the only place where the structure 1836 // of the structured initializer list doesn't match exactly, 1837 // because doing so would involve allocating one character 1838 // constant for each string. 1839 // FIXME: Should we do these checks in verify-only mode too? 1840 if (!VerifyOnly) 1841 CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef); 1842 if (StructuredList) { 1843 UpdateStructuredListElement(StructuredList, StructuredIndex, 1844 IList->getInit(Index)); 1845 StructuredList->resizeInits(SemaRef.Context, StructuredIndex); 1846 } 1847 ++Index; 1848 return; 1849 } 1850 } 1851 if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) { 1852 // Check for VLAs; in standard C it would be possible to check this 1853 // earlier, but I don't know where clang accepts VLAs (gcc accepts 1854 // them in all sorts of strange places). 1855 if (!VerifyOnly) 1856 SemaRef.Diag(VAT->getSizeExpr()->getBeginLoc(), 1857 diag::err_variable_object_no_init) 1858 << VAT->getSizeExpr()->getSourceRange(); 1859 hadError = true; 1860 ++Index; 1861 ++StructuredIndex; 1862 return; 1863 } 1864 1865 // We might know the maximum number of elements in advance. 1866 llvm::APSInt maxElements(elementIndex.getBitWidth(), 1867 elementIndex.isUnsigned()); 1868 bool maxElementsKnown = false; 1869 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) { 1870 maxElements = CAT->getSize(); 1871 elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth()); 1872 elementIndex.setIsUnsigned(maxElements.isUnsigned()); 1873 maxElementsKnown = true; 1874 } 1875 1876 QualType elementType = arrayType->getElementType(); 1877 while (Index < IList->getNumInits()) { 1878 Expr *Init = IList->getInit(Index); 1879 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { 1880 // If we're not the subobject that matches up with the '{' for 1881 // the designator, we shouldn't be handling the 1882 // designator. Return immediately. 1883 if (!SubobjectIsDesignatorContext) 1884 return; 1885 1886 // Handle this designated initializer. elementIndex will be 1887 // updated to be the next array element we'll initialize. 1888 if (CheckDesignatedInitializer(Entity, IList, DIE, 0, 1889 DeclType, nullptr, &elementIndex, Index, 1890 StructuredList, StructuredIndex, true, 1891 false)) { 1892 hadError = true; 1893 continue; 1894 } 1895 1896 if (elementIndex.getBitWidth() > maxElements.getBitWidth()) 1897 maxElements = maxElements.extend(elementIndex.getBitWidth()); 1898 else if (elementIndex.getBitWidth() < maxElements.getBitWidth()) 1899 elementIndex = elementIndex.extend(maxElements.getBitWidth()); 1900 elementIndex.setIsUnsigned(maxElements.isUnsigned()); 1901 1902 // If the array is of incomplete type, keep track of the number of 1903 // elements in the initializer. 1904 if (!maxElementsKnown && elementIndex > maxElements) 1905 maxElements = elementIndex; 1906 1907 continue; 1908 } 1909 1910 // If we know the maximum number of elements, and we've already 1911 // hit it, stop consuming elements in the initializer list. 1912 if (maxElementsKnown && elementIndex == maxElements) 1913 break; 1914 1915 InitializedEntity ElementEntity = 1916 InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex, 1917 Entity); 1918 // Check this element. 1919 CheckSubElementType(ElementEntity, IList, elementType, Index, 1920 StructuredList, StructuredIndex); 1921 ++elementIndex; 1922 1923 // If the array is of incomplete type, keep track of the number of 1924 // elements in the initializer. 1925 if (!maxElementsKnown && elementIndex > maxElements) 1926 maxElements = elementIndex; 1927 } 1928 if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) { 1929 // If this is an incomplete array type, the actual type needs to 1930 // be calculated here. 1931 llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned()); 1932 if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) { 1933 // Sizing an array implicitly to zero is not allowed by ISO C, 1934 // but is supported by GNU. 1935 SemaRef.Diag(IList->getBeginLoc(), diag::ext_typecheck_zero_array_size); 1936 } 1937 1938 DeclType = SemaRef.Context.getConstantArrayType( 1939 elementType, maxElements, nullptr, ArrayType::Normal, 0); 1940 } 1941 if (!hadError) { 1942 // If there are any members of the array that get value-initialized, check 1943 // that is possible. That happens if we know the bound and don't have 1944 // enough elements, or if we're performing an array new with an unknown 1945 // bound. 1946 if ((maxElementsKnown && elementIndex < maxElements) || 1947 Entity.isVariableLengthArrayNew()) 1948 CheckEmptyInitializable( 1949 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity), 1950 IList->getEndLoc()); 1951 } 1952 } 1953 1954 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity, 1955 Expr *InitExpr, 1956 FieldDecl *Field, 1957 bool TopLevelObject) { 1958 // Handle GNU flexible array initializers. 1959 unsigned FlexArrayDiag; 1960 if (isa<InitListExpr>(InitExpr) && 1961 cast<InitListExpr>(InitExpr)->getNumInits() == 0) { 1962 // Empty flexible array init always allowed as an extension 1963 FlexArrayDiag = diag::ext_flexible_array_init; 1964 } else if (SemaRef.getLangOpts().CPlusPlus) { 1965 // Disallow flexible array init in C++; it is not required for gcc 1966 // compatibility, and it needs work to IRGen correctly in general. 1967 FlexArrayDiag = diag::err_flexible_array_init; 1968 } else if (!TopLevelObject) { 1969 // Disallow flexible array init on non-top-level object 1970 FlexArrayDiag = diag::err_flexible_array_init; 1971 } else if (Entity.getKind() != InitializedEntity::EK_Variable) { 1972 // Disallow flexible array init on anything which is not a variable. 1973 FlexArrayDiag = diag::err_flexible_array_init; 1974 } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) { 1975 // Disallow flexible array init on local variables. 1976 FlexArrayDiag = diag::err_flexible_array_init; 1977 } else { 1978 // Allow other cases. 1979 FlexArrayDiag = diag::ext_flexible_array_init; 1980 } 1981 1982 if (!VerifyOnly) { 1983 SemaRef.Diag(InitExpr->getBeginLoc(), FlexArrayDiag) 1984 << InitExpr->getBeginLoc(); 1985 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 1986 << Field; 1987 } 1988 1989 return FlexArrayDiag != diag::ext_flexible_array_init; 1990 } 1991 1992 void InitListChecker::CheckStructUnionTypes( 1993 const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType, 1994 CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field, 1995 bool SubobjectIsDesignatorContext, unsigned &Index, 1996 InitListExpr *StructuredList, unsigned &StructuredIndex, 1997 bool TopLevelObject) { 1998 RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl(); 1999 2000 // If the record is invalid, some of it's members are invalid. To avoid 2001 // confusion, we forgo checking the intializer for the entire record. 2002 if (structDecl->isInvalidDecl()) { 2003 // Assume it was supposed to consume a single initializer. 2004 ++Index; 2005 hadError = true; 2006 return; 2007 } 2008 2009 if (DeclType->isUnionType() && IList->getNumInits() == 0) { 2010 RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl(); 2011 2012 if (!VerifyOnly) 2013 for (FieldDecl *FD : RD->fields()) { 2014 QualType ET = SemaRef.Context.getBaseElementType(FD->getType()); 2015 if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) { 2016 hadError = true; 2017 return; 2018 } 2019 } 2020 2021 // If there's a default initializer, use it. 2022 if (isa<CXXRecordDecl>(RD) && 2023 cast<CXXRecordDecl>(RD)->hasInClassInitializer()) { 2024 if (!StructuredList) 2025 return; 2026 for (RecordDecl::field_iterator FieldEnd = RD->field_end(); 2027 Field != FieldEnd; ++Field) { 2028 if (Field->hasInClassInitializer()) { 2029 StructuredList->setInitializedFieldInUnion(*Field); 2030 // FIXME: Actually build a CXXDefaultInitExpr? 2031 return; 2032 } 2033 } 2034 } 2035 2036 // Value-initialize the first member of the union that isn't an unnamed 2037 // bitfield. 2038 for (RecordDecl::field_iterator FieldEnd = RD->field_end(); 2039 Field != FieldEnd; ++Field) { 2040 if (!Field->isUnnamedBitfield()) { 2041 CheckEmptyInitializable( 2042 InitializedEntity::InitializeMember(*Field, &Entity), 2043 IList->getEndLoc()); 2044 if (StructuredList) 2045 StructuredList->setInitializedFieldInUnion(*Field); 2046 break; 2047 } 2048 } 2049 return; 2050 } 2051 2052 bool InitializedSomething = false; 2053 2054 // If we have any base classes, they are initialized prior to the fields. 2055 for (auto &Base : Bases) { 2056 Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr; 2057 2058 // Designated inits always initialize fields, so if we see one, all 2059 // remaining base classes have no explicit initializer. 2060 if (Init && isa<DesignatedInitExpr>(Init)) 2061 Init = nullptr; 2062 2063 SourceLocation InitLoc = Init ? Init->getBeginLoc() : IList->getEndLoc(); 2064 InitializedEntity BaseEntity = InitializedEntity::InitializeBase( 2065 SemaRef.Context, &Base, false, &Entity); 2066 if (Init) { 2067 CheckSubElementType(BaseEntity, IList, Base.getType(), Index, 2068 StructuredList, StructuredIndex); 2069 InitializedSomething = true; 2070 } else { 2071 CheckEmptyInitializable(BaseEntity, InitLoc); 2072 } 2073 2074 if (!VerifyOnly) 2075 if (checkDestructorReference(Base.getType(), InitLoc, SemaRef)) { 2076 hadError = true; 2077 return; 2078 } 2079 } 2080 2081 // If structDecl is a forward declaration, this loop won't do 2082 // anything except look at designated initializers; That's okay, 2083 // because an error should get printed out elsewhere. It might be 2084 // worthwhile to skip over the rest of the initializer, though. 2085 RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl(); 2086 RecordDecl::field_iterator FieldEnd = RD->field_end(); 2087 bool CheckForMissingFields = 2088 !IList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()); 2089 bool HasDesignatedInit = false; 2090 2091 while (Index < IList->getNumInits()) { 2092 Expr *Init = IList->getInit(Index); 2093 SourceLocation InitLoc = Init->getBeginLoc(); 2094 2095 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { 2096 // If we're not the subobject that matches up with the '{' for 2097 // the designator, we shouldn't be handling the 2098 // designator. Return immediately. 2099 if (!SubobjectIsDesignatorContext) 2100 return; 2101 2102 HasDesignatedInit = true; 2103 2104 // Handle this designated initializer. Field will be updated to 2105 // the next field that we'll be initializing. 2106 if (CheckDesignatedInitializer(Entity, IList, DIE, 0, 2107 DeclType, &Field, nullptr, Index, 2108 StructuredList, StructuredIndex, 2109 true, TopLevelObject)) 2110 hadError = true; 2111 else if (!VerifyOnly) { 2112 // Find the field named by the designated initializer. 2113 RecordDecl::field_iterator F = RD->field_begin(); 2114 while (std::next(F) != Field) 2115 ++F; 2116 QualType ET = SemaRef.Context.getBaseElementType(F->getType()); 2117 if (checkDestructorReference(ET, InitLoc, SemaRef)) { 2118 hadError = true; 2119 return; 2120 } 2121 } 2122 2123 InitializedSomething = true; 2124 2125 // Disable check for missing fields when designators are used. 2126 // This matches gcc behaviour. 2127 CheckForMissingFields = false; 2128 continue; 2129 } 2130 2131 if (Field == FieldEnd) { 2132 // We've run out of fields. We're done. 2133 break; 2134 } 2135 2136 // We've already initialized a member of a union. We're done. 2137 if (InitializedSomething && DeclType->isUnionType()) 2138 break; 2139 2140 // If we've hit the flexible array member at the end, we're done. 2141 if (Field->getType()->isIncompleteArrayType()) 2142 break; 2143 2144 if (Field->isUnnamedBitfield()) { 2145 // Don't initialize unnamed bitfields, e.g. "int : 20;" 2146 ++Field; 2147 continue; 2148 } 2149 2150 // Make sure we can use this declaration. 2151 bool InvalidUse; 2152 if (VerifyOnly) 2153 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid); 2154 else 2155 InvalidUse = SemaRef.DiagnoseUseOfDecl( 2156 *Field, IList->getInit(Index)->getBeginLoc()); 2157 if (InvalidUse) { 2158 ++Index; 2159 ++Field; 2160 hadError = true; 2161 continue; 2162 } 2163 2164 if (!VerifyOnly) { 2165 QualType ET = SemaRef.Context.getBaseElementType(Field->getType()); 2166 if (checkDestructorReference(ET, InitLoc, SemaRef)) { 2167 hadError = true; 2168 return; 2169 } 2170 } 2171 2172 InitializedEntity MemberEntity = 2173 InitializedEntity::InitializeMember(*Field, &Entity); 2174 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 2175 StructuredList, StructuredIndex); 2176 InitializedSomething = true; 2177 2178 if (DeclType->isUnionType() && StructuredList) { 2179 // Initialize the first field within the union. 2180 StructuredList->setInitializedFieldInUnion(*Field); 2181 } 2182 2183 ++Field; 2184 } 2185 2186 // Emit warnings for missing struct field initializers. 2187 if (!VerifyOnly && InitializedSomething && CheckForMissingFields && 2188 Field != FieldEnd && !Field->getType()->isIncompleteArrayType() && 2189 !DeclType->isUnionType()) { 2190 // It is possible we have one or more unnamed bitfields remaining. 2191 // Find first (if any) named field and emit warning. 2192 for (RecordDecl::field_iterator it = Field, end = RD->field_end(); 2193 it != end; ++it) { 2194 if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) { 2195 SemaRef.Diag(IList->getSourceRange().getEnd(), 2196 diag::warn_missing_field_initializers) << *it; 2197 break; 2198 } 2199 } 2200 } 2201 2202 // Check that any remaining fields can be value-initialized if we're not 2203 // building a structured list. (If we are, we'll check this later.) 2204 if (!StructuredList && Field != FieldEnd && !DeclType->isUnionType() && 2205 !Field->getType()->isIncompleteArrayType()) { 2206 for (; Field != FieldEnd && !hadError; ++Field) { 2207 if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer()) 2208 CheckEmptyInitializable( 2209 InitializedEntity::InitializeMember(*Field, &Entity), 2210 IList->getEndLoc()); 2211 } 2212 } 2213 2214 // Check that the types of the remaining fields have accessible destructors. 2215 if (!VerifyOnly) { 2216 // If the initializer expression has a designated initializer, check the 2217 // elements for which a designated initializer is not provided too. 2218 RecordDecl::field_iterator I = HasDesignatedInit ? RD->field_begin() 2219 : Field; 2220 for (RecordDecl::field_iterator E = RD->field_end(); I != E; ++I) { 2221 QualType ET = SemaRef.Context.getBaseElementType(I->getType()); 2222 if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) { 2223 hadError = true; 2224 return; 2225 } 2226 } 2227 } 2228 2229 if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() || 2230 Index >= IList->getNumInits()) 2231 return; 2232 2233 if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field, 2234 TopLevelObject)) { 2235 hadError = true; 2236 ++Index; 2237 return; 2238 } 2239 2240 InitializedEntity MemberEntity = 2241 InitializedEntity::InitializeMember(*Field, &Entity); 2242 2243 if (isa<InitListExpr>(IList->getInit(Index))) 2244 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 2245 StructuredList, StructuredIndex); 2246 else 2247 CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index, 2248 StructuredList, StructuredIndex); 2249 } 2250 2251 /// Expand a field designator that refers to a member of an 2252 /// anonymous struct or union into a series of field designators that 2253 /// refers to the field within the appropriate subobject. 2254 /// 2255 static void ExpandAnonymousFieldDesignator(Sema &SemaRef, 2256 DesignatedInitExpr *DIE, 2257 unsigned DesigIdx, 2258 IndirectFieldDecl *IndirectField) { 2259 typedef DesignatedInitExpr::Designator Designator; 2260 2261 // Build the replacement designators. 2262 SmallVector<Designator, 4> Replacements; 2263 for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(), 2264 PE = IndirectField->chain_end(); PI != PE; ++PI) { 2265 if (PI + 1 == PE) 2266 Replacements.push_back(Designator((IdentifierInfo *)nullptr, 2267 DIE->getDesignator(DesigIdx)->getDotLoc(), 2268 DIE->getDesignator(DesigIdx)->getFieldLoc())); 2269 else 2270 Replacements.push_back(Designator((IdentifierInfo *)nullptr, 2271 SourceLocation(), SourceLocation())); 2272 assert(isa<FieldDecl>(*PI)); 2273 Replacements.back().setField(cast<FieldDecl>(*PI)); 2274 } 2275 2276 // Expand the current designator into the set of replacement 2277 // designators, so we have a full subobject path down to where the 2278 // member of the anonymous struct/union is actually stored. 2279 DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0], 2280 &Replacements[0] + Replacements.size()); 2281 } 2282 2283 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef, 2284 DesignatedInitExpr *DIE) { 2285 unsigned NumIndexExprs = DIE->getNumSubExprs() - 1; 2286 SmallVector<Expr*, 4> IndexExprs(NumIndexExprs); 2287 for (unsigned I = 0; I < NumIndexExprs; ++I) 2288 IndexExprs[I] = DIE->getSubExpr(I + 1); 2289 return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(), 2290 IndexExprs, 2291 DIE->getEqualOrColonLoc(), 2292 DIE->usesGNUSyntax(), DIE->getInit()); 2293 } 2294 2295 namespace { 2296 2297 // Callback to only accept typo corrections that are for field members of 2298 // the given struct or union. 2299 class FieldInitializerValidatorCCC final : public CorrectionCandidateCallback { 2300 public: 2301 explicit FieldInitializerValidatorCCC(RecordDecl *RD) 2302 : Record(RD) {} 2303 2304 bool ValidateCandidate(const TypoCorrection &candidate) override { 2305 FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>(); 2306 return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record); 2307 } 2308 2309 std::unique_ptr<CorrectionCandidateCallback> clone() override { 2310 return std::make_unique<FieldInitializerValidatorCCC>(*this); 2311 } 2312 2313 private: 2314 RecordDecl *Record; 2315 }; 2316 2317 } // end anonymous namespace 2318 2319 /// Check the well-formedness of a C99 designated initializer. 2320 /// 2321 /// Determines whether the designated initializer @p DIE, which 2322 /// resides at the given @p Index within the initializer list @p 2323 /// IList, is well-formed for a current object of type @p DeclType 2324 /// (C99 6.7.8). The actual subobject that this designator refers to 2325 /// within the current subobject is returned in either 2326 /// @p NextField or @p NextElementIndex (whichever is appropriate). 2327 /// 2328 /// @param IList The initializer list in which this designated 2329 /// initializer occurs. 2330 /// 2331 /// @param DIE The designated initializer expression. 2332 /// 2333 /// @param DesigIdx The index of the current designator. 2334 /// 2335 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17), 2336 /// into which the designation in @p DIE should refer. 2337 /// 2338 /// @param NextField If non-NULL and the first designator in @p DIE is 2339 /// a field, this will be set to the field declaration corresponding 2340 /// to the field named by the designator. On input, this is expected to be 2341 /// the next field that would be initialized in the absence of designation, 2342 /// if the complete object being initialized is a struct. 2343 /// 2344 /// @param NextElementIndex If non-NULL and the first designator in @p 2345 /// DIE is an array designator or GNU array-range designator, this 2346 /// will be set to the last index initialized by this designator. 2347 /// 2348 /// @param Index Index into @p IList where the designated initializer 2349 /// @p DIE occurs. 2350 /// 2351 /// @param StructuredList The initializer list expression that 2352 /// describes all of the subobject initializers in the order they'll 2353 /// actually be initialized. 2354 /// 2355 /// @returns true if there was an error, false otherwise. 2356 bool 2357 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity, 2358 InitListExpr *IList, 2359 DesignatedInitExpr *DIE, 2360 unsigned DesigIdx, 2361 QualType &CurrentObjectType, 2362 RecordDecl::field_iterator *NextField, 2363 llvm::APSInt *NextElementIndex, 2364 unsigned &Index, 2365 InitListExpr *StructuredList, 2366 unsigned &StructuredIndex, 2367 bool FinishSubobjectInit, 2368 bool TopLevelObject) { 2369 if (DesigIdx == DIE->size()) { 2370 // C++20 designated initialization can result in direct-list-initialization 2371 // of the designated subobject. This is the only way that we can end up 2372 // performing direct initialization as part of aggregate initialization, so 2373 // it needs special handling. 2374 if (DIE->isDirectInit()) { 2375 Expr *Init = DIE->getInit(); 2376 assert(isa<InitListExpr>(Init) && 2377 "designator result in direct non-list initialization?"); 2378 InitializationKind Kind = InitializationKind::CreateDirectList( 2379 DIE->getBeginLoc(), Init->getBeginLoc(), Init->getEndLoc()); 2380 InitializationSequence Seq(SemaRef, Entity, Kind, Init, 2381 /*TopLevelOfInitList*/ true); 2382 if (StructuredList) { 2383 ExprResult Result = VerifyOnly 2384 ? getDummyInit() 2385 : Seq.Perform(SemaRef, Entity, Kind, Init); 2386 UpdateStructuredListElement(StructuredList, StructuredIndex, 2387 Result.get()); 2388 } 2389 ++Index; 2390 return !Seq; 2391 } 2392 2393 // Check the actual initialization for the designated object type. 2394 bool prevHadError = hadError; 2395 2396 // Temporarily remove the designator expression from the 2397 // initializer list that the child calls see, so that we don't try 2398 // to re-process the designator. 2399 unsigned OldIndex = Index; 2400 IList->setInit(OldIndex, DIE->getInit()); 2401 2402 CheckSubElementType(Entity, IList, CurrentObjectType, Index, 2403 StructuredList, StructuredIndex); 2404 2405 // Restore the designated initializer expression in the syntactic 2406 // form of the initializer list. 2407 if (IList->getInit(OldIndex) != DIE->getInit()) 2408 DIE->setInit(IList->getInit(OldIndex)); 2409 IList->setInit(OldIndex, DIE); 2410 2411 return hadError && !prevHadError; 2412 } 2413 2414 DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx); 2415 bool IsFirstDesignator = (DesigIdx == 0); 2416 if (IsFirstDesignator ? FullyStructuredList : StructuredList) { 2417 // Determine the structural initializer list that corresponds to the 2418 // current subobject. 2419 if (IsFirstDesignator) 2420 StructuredList = FullyStructuredList; 2421 else { 2422 Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ? 2423 StructuredList->getInit(StructuredIndex) : nullptr; 2424 if (!ExistingInit && StructuredList->hasArrayFiller()) 2425 ExistingInit = StructuredList->getArrayFiller(); 2426 2427 if (!ExistingInit) 2428 StructuredList = getStructuredSubobjectInit( 2429 IList, Index, CurrentObjectType, StructuredList, StructuredIndex, 2430 SourceRange(D->getBeginLoc(), DIE->getEndLoc())); 2431 else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit)) 2432 StructuredList = Result; 2433 else { 2434 // We are creating an initializer list that initializes the 2435 // subobjects of the current object, but there was already an 2436 // initialization that completely initialized the current 2437 // subobject, e.g., by a compound literal: 2438 // 2439 // struct X { int a, b; }; 2440 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; 2441 // 2442 // Here, xs[0].a == 1 and xs[0].b == 3, since the second, 2443 // designated initializer re-initializes only its current object 2444 // subobject [0].b. 2445 diagnoseInitOverride(ExistingInit, 2446 SourceRange(D->getBeginLoc(), DIE->getEndLoc()), 2447 /*FullyOverwritten=*/false); 2448 2449 if (!VerifyOnly) { 2450 if (DesignatedInitUpdateExpr *E = 2451 dyn_cast<DesignatedInitUpdateExpr>(ExistingInit)) 2452 StructuredList = E->getUpdater(); 2453 else { 2454 DesignatedInitUpdateExpr *DIUE = new (SemaRef.Context) 2455 DesignatedInitUpdateExpr(SemaRef.Context, D->getBeginLoc(), 2456 ExistingInit, DIE->getEndLoc()); 2457 StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE); 2458 StructuredList = DIUE->getUpdater(); 2459 } 2460 } else { 2461 // We don't need to track the structured representation of a 2462 // designated init update of an already-fully-initialized object in 2463 // verify-only mode. The only reason we would need the structure is 2464 // to determine where the uninitialized "holes" are, and in this 2465 // case, we know there aren't any and we can't introduce any. 2466 StructuredList = nullptr; 2467 } 2468 } 2469 } 2470 } 2471 2472 if (D->isFieldDesignator()) { 2473 // C99 6.7.8p7: 2474 // 2475 // If a designator has the form 2476 // 2477 // . identifier 2478 // 2479 // then the current object (defined below) shall have 2480 // structure or union type and the identifier shall be the 2481 // name of a member of that type. 2482 const RecordType *RT = CurrentObjectType->getAs<RecordType>(); 2483 if (!RT) { 2484 SourceLocation Loc = D->getDotLoc(); 2485 if (Loc.isInvalid()) 2486 Loc = D->getFieldLoc(); 2487 if (!VerifyOnly) 2488 SemaRef.Diag(Loc, diag::err_field_designator_non_aggr) 2489 << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType; 2490 ++Index; 2491 return true; 2492 } 2493 2494 FieldDecl *KnownField = D->getField(); 2495 if (!KnownField) { 2496 IdentifierInfo *FieldName = D->getFieldName(); 2497 DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName); 2498 for (NamedDecl *ND : Lookup) { 2499 if (auto *FD = dyn_cast<FieldDecl>(ND)) { 2500 KnownField = FD; 2501 break; 2502 } 2503 if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) { 2504 // In verify mode, don't modify the original. 2505 if (VerifyOnly) 2506 DIE = CloneDesignatedInitExpr(SemaRef, DIE); 2507 ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD); 2508 D = DIE->getDesignator(DesigIdx); 2509 KnownField = cast<FieldDecl>(*IFD->chain_begin()); 2510 break; 2511 } 2512 } 2513 if (!KnownField) { 2514 if (VerifyOnly) { 2515 ++Index; 2516 return true; // No typo correction when just trying this out. 2517 } 2518 2519 // Name lookup found something, but it wasn't a field. 2520 if (!Lookup.empty()) { 2521 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield) 2522 << FieldName; 2523 SemaRef.Diag(Lookup.front()->getLocation(), 2524 diag::note_field_designator_found); 2525 ++Index; 2526 return true; 2527 } 2528 2529 // Name lookup didn't find anything. 2530 // Determine whether this was a typo for another field name. 2531 FieldInitializerValidatorCCC CCC(RT->getDecl()); 2532 if (TypoCorrection Corrected = SemaRef.CorrectTypo( 2533 DeclarationNameInfo(FieldName, D->getFieldLoc()), 2534 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr, CCC, 2535 Sema::CTK_ErrorRecovery, RT->getDecl())) { 2536 SemaRef.diagnoseTypo( 2537 Corrected, 2538 SemaRef.PDiag(diag::err_field_designator_unknown_suggest) 2539 << FieldName << CurrentObjectType); 2540 KnownField = Corrected.getCorrectionDeclAs<FieldDecl>(); 2541 hadError = true; 2542 } else { 2543 // Typo correction didn't find anything. 2544 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown) 2545 << FieldName << CurrentObjectType; 2546 ++Index; 2547 return true; 2548 } 2549 } 2550 } 2551 2552 unsigned NumBases = 0; 2553 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2554 NumBases = CXXRD->getNumBases(); 2555 2556 unsigned FieldIndex = NumBases; 2557 2558 for (auto *FI : RT->getDecl()->fields()) { 2559 if (FI->isUnnamedBitfield()) 2560 continue; 2561 if (declaresSameEntity(KnownField, FI)) { 2562 KnownField = FI; 2563 break; 2564 } 2565 ++FieldIndex; 2566 } 2567 2568 RecordDecl::field_iterator Field = 2569 RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField)); 2570 2571 // All of the fields of a union are located at the same place in 2572 // the initializer list. 2573 if (RT->getDecl()->isUnion()) { 2574 FieldIndex = 0; 2575 if (StructuredList) { 2576 FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion(); 2577 if (CurrentField && !declaresSameEntity(CurrentField, *Field)) { 2578 assert(StructuredList->getNumInits() == 1 2579 && "A union should never have more than one initializer!"); 2580 2581 Expr *ExistingInit = StructuredList->getInit(0); 2582 if (ExistingInit) { 2583 // We're about to throw away an initializer, emit warning. 2584 diagnoseInitOverride( 2585 ExistingInit, SourceRange(D->getBeginLoc(), DIE->getEndLoc())); 2586 } 2587 2588 // remove existing initializer 2589 StructuredList->resizeInits(SemaRef.Context, 0); 2590 StructuredList->setInitializedFieldInUnion(nullptr); 2591 } 2592 2593 StructuredList->setInitializedFieldInUnion(*Field); 2594 } 2595 } 2596 2597 // Make sure we can use this declaration. 2598 bool InvalidUse; 2599 if (VerifyOnly) 2600 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid); 2601 else 2602 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc()); 2603 if (InvalidUse) { 2604 ++Index; 2605 return true; 2606 } 2607 2608 // C++20 [dcl.init.list]p3: 2609 // The ordered identifiers in the designators of the designated- 2610 // initializer-list shall form a subsequence of the ordered identifiers 2611 // in the direct non-static data members of T. 2612 // 2613 // Note that this is not a condition on forming the aggregate 2614 // initialization, only on actually performing initialization, 2615 // so it is not checked in VerifyOnly mode. 2616 // 2617 // FIXME: This is the only reordering diagnostic we produce, and it only 2618 // catches cases where we have a top-level field designator that jumps 2619 // backwards. This is the only such case that is reachable in an 2620 // otherwise-valid C++20 program, so is the only case that's required for 2621 // conformance, but for consistency, we should diagnose all the other 2622 // cases where a designator takes us backwards too. 2623 if (IsFirstDesignator && !VerifyOnly && SemaRef.getLangOpts().CPlusPlus && 2624 NextField && 2625 (*NextField == RT->getDecl()->field_end() || 2626 (*NextField)->getFieldIndex() > Field->getFieldIndex() + 1)) { 2627 // Find the field that we just initialized. 2628 FieldDecl *PrevField = nullptr; 2629 for (auto FI = RT->getDecl()->field_begin(); 2630 FI != RT->getDecl()->field_end(); ++FI) { 2631 if (FI->isUnnamedBitfield()) 2632 continue; 2633 if (*NextField != RT->getDecl()->field_end() && 2634 declaresSameEntity(*FI, **NextField)) 2635 break; 2636 PrevField = *FI; 2637 } 2638 2639 if (PrevField && 2640 PrevField->getFieldIndex() > KnownField->getFieldIndex()) { 2641 SemaRef.Diag(DIE->getBeginLoc(), diag::ext_designated_init_reordered) 2642 << KnownField << PrevField << DIE->getSourceRange(); 2643 2644 unsigned OldIndex = NumBases + PrevField->getFieldIndex(); 2645 if (StructuredList && OldIndex <= StructuredList->getNumInits()) { 2646 if (Expr *PrevInit = StructuredList->getInit(OldIndex)) { 2647 SemaRef.Diag(PrevInit->getBeginLoc(), 2648 diag::note_previous_field_init) 2649 << PrevField << PrevInit->getSourceRange(); 2650 } 2651 } 2652 } 2653 } 2654 2655 2656 // Update the designator with the field declaration. 2657 if (!VerifyOnly) 2658 D->setField(*Field); 2659 2660 // Make sure that our non-designated initializer list has space 2661 // for a subobject corresponding to this field. 2662 if (StructuredList && FieldIndex >= StructuredList->getNumInits()) 2663 StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1); 2664 2665 // This designator names a flexible array member. 2666 if (Field->getType()->isIncompleteArrayType()) { 2667 bool Invalid = false; 2668 if ((DesigIdx + 1) != DIE->size()) { 2669 // We can't designate an object within the flexible array 2670 // member (because GCC doesn't allow it). 2671 if (!VerifyOnly) { 2672 DesignatedInitExpr::Designator *NextD 2673 = DIE->getDesignator(DesigIdx + 1); 2674 SemaRef.Diag(NextD->getBeginLoc(), 2675 diag::err_designator_into_flexible_array_member) 2676 << SourceRange(NextD->getBeginLoc(), DIE->getEndLoc()); 2677 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 2678 << *Field; 2679 } 2680 Invalid = true; 2681 } 2682 2683 if (!hadError && !isa<InitListExpr>(DIE->getInit()) && 2684 !isa<StringLiteral>(DIE->getInit())) { 2685 // The initializer is not an initializer list. 2686 if (!VerifyOnly) { 2687 SemaRef.Diag(DIE->getInit()->getBeginLoc(), 2688 diag::err_flexible_array_init_needs_braces) 2689 << DIE->getInit()->getSourceRange(); 2690 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 2691 << *Field; 2692 } 2693 Invalid = true; 2694 } 2695 2696 // Check GNU flexible array initializer. 2697 if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field, 2698 TopLevelObject)) 2699 Invalid = true; 2700 2701 if (Invalid) { 2702 ++Index; 2703 return true; 2704 } 2705 2706 // Initialize the array. 2707 bool prevHadError = hadError; 2708 unsigned newStructuredIndex = FieldIndex; 2709 unsigned OldIndex = Index; 2710 IList->setInit(Index, DIE->getInit()); 2711 2712 InitializedEntity MemberEntity = 2713 InitializedEntity::InitializeMember(*Field, &Entity); 2714 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 2715 StructuredList, newStructuredIndex); 2716 2717 IList->setInit(OldIndex, DIE); 2718 if (hadError && !prevHadError) { 2719 ++Field; 2720 ++FieldIndex; 2721 if (NextField) 2722 *NextField = Field; 2723 StructuredIndex = FieldIndex; 2724 return true; 2725 } 2726 } else { 2727 // Recurse to check later designated subobjects. 2728 QualType FieldType = Field->getType(); 2729 unsigned newStructuredIndex = FieldIndex; 2730 2731 InitializedEntity MemberEntity = 2732 InitializedEntity::InitializeMember(*Field, &Entity); 2733 if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1, 2734 FieldType, nullptr, nullptr, Index, 2735 StructuredList, newStructuredIndex, 2736 FinishSubobjectInit, false)) 2737 return true; 2738 } 2739 2740 // Find the position of the next field to be initialized in this 2741 // subobject. 2742 ++Field; 2743 ++FieldIndex; 2744 2745 // If this the first designator, our caller will continue checking 2746 // the rest of this struct/class/union subobject. 2747 if (IsFirstDesignator) { 2748 if (NextField) 2749 *NextField = Field; 2750 StructuredIndex = FieldIndex; 2751 return false; 2752 } 2753 2754 if (!FinishSubobjectInit) 2755 return false; 2756 2757 // We've already initialized something in the union; we're done. 2758 if (RT->getDecl()->isUnion()) 2759 return hadError; 2760 2761 // Check the remaining fields within this class/struct/union subobject. 2762 bool prevHadError = hadError; 2763 2764 auto NoBases = 2765 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(), 2766 CXXRecordDecl::base_class_iterator()); 2767 CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field, 2768 false, Index, StructuredList, FieldIndex); 2769 return hadError && !prevHadError; 2770 } 2771 2772 // C99 6.7.8p6: 2773 // 2774 // If a designator has the form 2775 // 2776 // [ constant-expression ] 2777 // 2778 // then the current object (defined below) shall have array 2779 // type and the expression shall be an integer constant 2780 // expression. If the array is of unknown size, any 2781 // nonnegative value is valid. 2782 // 2783 // Additionally, cope with the GNU extension that permits 2784 // designators of the form 2785 // 2786 // [ constant-expression ... constant-expression ] 2787 const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType); 2788 if (!AT) { 2789 if (!VerifyOnly) 2790 SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array) 2791 << CurrentObjectType; 2792 ++Index; 2793 return true; 2794 } 2795 2796 Expr *IndexExpr = nullptr; 2797 llvm::APSInt DesignatedStartIndex, DesignatedEndIndex; 2798 if (D->isArrayDesignator()) { 2799 IndexExpr = DIE->getArrayIndex(*D); 2800 DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context); 2801 DesignatedEndIndex = DesignatedStartIndex; 2802 } else { 2803 assert(D->isArrayRangeDesignator() && "Need array-range designator"); 2804 2805 DesignatedStartIndex = 2806 DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context); 2807 DesignatedEndIndex = 2808 DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context); 2809 IndexExpr = DIE->getArrayRangeEnd(*D); 2810 2811 // Codegen can't handle evaluating array range designators that have side 2812 // effects, because we replicate the AST value for each initialized element. 2813 // As such, set the sawArrayRangeDesignator() bit if we initialize multiple 2814 // elements with something that has a side effect, so codegen can emit an 2815 // "error unsupported" error instead of miscompiling the app. 2816 if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&& 2817 DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly) 2818 FullyStructuredList->sawArrayRangeDesignator(); 2819 } 2820 2821 if (isa<ConstantArrayType>(AT)) { 2822 llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false); 2823 DesignatedStartIndex 2824 = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth()); 2825 DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned()); 2826 DesignatedEndIndex 2827 = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth()); 2828 DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned()); 2829 if (DesignatedEndIndex >= MaxElements) { 2830 if (!VerifyOnly) 2831 SemaRef.Diag(IndexExpr->getBeginLoc(), 2832 diag::err_array_designator_too_large) 2833 << DesignatedEndIndex.toString(10) << MaxElements.toString(10) 2834 << IndexExpr->getSourceRange(); 2835 ++Index; 2836 return true; 2837 } 2838 } else { 2839 unsigned DesignatedIndexBitWidth = 2840 ConstantArrayType::getMaxSizeBits(SemaRef.Context); 2841 DesignatedStartIndex = 2842 DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth); 2843 DesignatedEndIndex = 2844 DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth); 2845 DesignatedStartIndex.setIsUnsigned(true); 2846 DesignatedEndIndex.setIsUnsigned(true); 2847 } 2848 2849 bool IsStringLiteralInitUpdate = 2850 StructuredList && StructuredList->isStringLiteralInit(); 2851 if (IsStringLiteralInitUpdate && VerifyOnly) { 2852 // We're just verifying an update to a string literal init. We don't need 2853 // to split the string up into individual characters to do that. 2854 StructuredList = nullptr; 2855 } else if (IsStringLiteralInitUpdate) { 2856 // We're modifying a string literal init; we have to decompose the string 2857 // so we can modify the individual characters. 2858 ASTContext &Context = SemaRef.Context; 2859 Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens(); 2860 2861 // Compute the character type 2862 QualType CharTy = AT->getElementType(); 2863 2864 // Compute the type of the integer literals. 2865 QualType PromotedCharTy = CharTy; 2866 if (CharTy->isPromotableIntegerType()) 2867 PromotedCharTy = Context.getPromotedIntegerType(CharTy); 2868 unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy); 2869 2870 if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) { 2871 // Get the length of the string. 2872 uint64_t StrLen = SL->getLength(); 2873 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen)) 2874 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue(); 2875 StructuredList->resizeInits(Context, StrLen); 2876 2877 // Build a literal for each character in the string, and put them into 2878 // the init list. 2879 for (unsigned i = 0, e = StrLen; i != e; ++i) { 2880 llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i)); 2881 Expr *Init = new (Context) IntegerLiteral( 2882 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); 2883 if (CharTy != PromotedCharTy) 2884 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, 2885 Init, nullptr, VK_RValue); 2886 StructuredList->updateInit(Context, i, Init); 2887 } 2888 } else { 2889 ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr); 2890 std::string Str; 2891 Context.getObjCEncodingForType(E->getEncodedType(), Str); 2892 2893 // Get the length of the string. 2894 uint64_t StrLen = Str.size(); 2895 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen)) 2896 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue(); 2897 StructuredList->resizeInits(Context, StrLen); 2898 2899 // Build a literal for each character in the string, and put them into 2900 // the init list. 2901 for (unsigned i = 0, e = StrLen; i != e; ++i) { 2902 llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]); 2903 Expr *Init = new (Context) IntegerLiteral( 2904 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); 2905 if (CharTy != PromotedCharTy) 2906 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, 2907 Init, nullptr, VK_RValue); 2908 StructuredList->updateInit(Context, i, Init); 2909 } 2910 } 2911 } 2912 2913 // Make sure that our non-designated initializer list has space 2914 // for a subobject corresponding to this array element. 2915 if (StructuredList && 2916 DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits()) 2917 StructuredList->resizeInits(SemaRef.Context, 2918 DesignatedEndIndex.getZExtValue() + 1); 2919 2920 // Repeatedly perform subobject initializations in the range 2921 // [DesignatedStartIndex, DesignatedEndIndex]. 2922 2923 // Move to the next designator 2924 unsigned ElementIndex = DesignatedStartIndex.getZExtValue(); 2925 unsigned OldIndex = Index; 2926 2927 InitializedEntity ElementEntity = 2928 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 2929 2930 while (DesignatedStartIndex <= DesignatedEndIndex) { 2931 // Recurse to check later designated subobjects. 2932 QualType ElementType = AT->getElementType(); 2933 Index = OldIndex; 2934 2935 ElementEntity.setElementIndex(ElementIndex); 2936 if (CheckDesignatedInitializer( 2937 ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr, 2938 nullptr, Index, StructuredList, ElementIndex, 2939 FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex), 2940 false)) 2941 return true; 2942 2943 // Move to the next index in the array that we'll be initializing. 2944 ++DesignatedStartIndex; 2945 ElementIndex = DesignatedStartIndex.getZExtValue(); 2946 } 2947 2948 // If this the first designator, our caller will continue checking 2949 // the rest of this array subobject. 2950 if (IsFirstDesignator) { 2951 if (NextElementIndex) 2952 *NextElementIndex = DesignatedStartIndex; 2953 StructuredIndex = ElementIndex; 2954 return false; 2955 } 2956 2957 if (!FinishSubobjectInit) 2958 return false; 2959 2960 // Check the remaining elements within this array subobject. 2961 bool prevHadError = hadError; 2962 CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex, 2963 /*SubobjectIsDesignatorContext=*/false, Index, 2964 StructuredList, ElementIndex); 2965 return hadError && !prevHadError; 2966 } 2967 2968 // Get the structured initializer list for a subobject of type 2969 // @p CurrentObjectType. 2970 InitListExpr * 2971 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, 2972 QualType CurrentObjectType, 2973 InitListExpr *StructuredList, 2974 unsigned StructuredIndex, 2975 SourceRange InitRange, 2976 bool IsFullyOverwritten) { 2977 if (!StructuredList) 2978 return nullptr; 2979 2980 Expr *ExistingInit = nullptr; 2981 if (StructuredIndex < StructuredList->getNumInits()) 2982 ExistingInit = StructuredList->getInit(StructuredIndex); 2983 2984 if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit)) 2985 // There might have already been initializers for subobjects of the current 2986 // object, but a subsequent initializer list will overwrite the entirety 2987 // of the current object. (See DR 253 and C99 6.7.8p21). e.g., 2988 // 2989 // struct P { char x[6]; }; 2990 // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } }; 2991 // 2992 // The first designated initializer is ignored, and l.x is just "f". 2993 if (!IsFullyOverwritten) 2994 return Result; 2995 2996 if (ExistingInit) { 2997 // We are creating an initializer list that initializes the 2998 // subobjects of the current object, but there was already an 2999 // initialization that completely initialized the current 3000 // subobject: 3001 // 3002 // struct X { int a, b; }; 3003 // struct X xs[] = { [0] = { 1, 2 }, [0].b = 3 }; 3004 // 3005 // Here, xs[0].a == 1 and xs[0].b == 3, since the second, 3006 // designated initializer overwrites the [0].b initializer 3007 // from the prior initialization. 3008 // 3009 // When the existing initializer is an expression rather than an 3010 // initializer list, we cannot decompose and update it in this way. 3011 // For example: 3012 // 3013 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; 3014 // 3015 // This case is handled by CheckDesignatedInitializer. 3016 diagnoseInitOverride(ExistingInit, InitRange); 3017 } 3018 3019 unsigned ExpectedNumInits = 0; 3020 if (Index < IList->getNumInits()) { 3021 if (auto *Init = dyn_cast_or_null<InitListExpr>(IList->getInit(Index))) 3022 ExpectedNumInits = Init->getNumInits(); 3023 else 3024 ExpectedNumInits = IList->getNumInits() - Index; 3025 } 3026 3027 InitListExpr *Result = 3028 createInitListExpr(CurrentObjectType, InitRange, ExpectedNumInits); 3029 3030 // Link this new initializer list into the structured initializer 3031 // lists. 3032 StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result); 3033 return Result; 3034 } 3035 3036 InitListExpr * 3037 InitListChecker::createInitListExpr(QualType CurrentObjectType, 3038 SourceRange InitRange, 3039 unsigned ExpectedNumInits) { 3040 InitListExpr *Result 3041 = new (SemaRef.Context) InitListExpr(SemaRef.Context, 3042 InitRange.getBegin(), None, 3043 InitRange.getEnd()); 3044 3045 QualType ResultType = CurrentObjectType; 3046 if (!ResultType->isArrayType()) 3047 ResultType = ResultType.getNonLValueExprType(SemaRef.Context); 3048 Result->setType(ResultType); 3049 3050 // Pre-allocate storage for the structured initializer list. 3051 unsigned NumElements = 0; 3052 3053 if (const ArrayType *AType 3054 = SemaRef.Context.getAsArrayType(CurrentObjectType)) { 3055 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) { 3056 NumElements = CAType->getSize().getZExtValue(); 3057 // Simple heuristic so that we don't allocate a very large 3058 // initializer with many empty entries at the end. 3059 if (NumElements > ExpectedNumInits) 3060 NumElements = 0; 3061 } 3062 } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>()) { 3063 NumElements = VType->getNumElements(); 3064 } else if (CurrentObjectType->isRecordType()) { 3065 NumElements = numStructUnionElements(CurrentObjectType); 3066 } 3067 3068 Result->reserveInits(SemaRef.Context, NumElements); 3069 3070 return Result; 3071 } 3072 3073 /// Update the initializer at index @p StructuredIndex within the 3074 /// structured initializer list to the value @p expr. 3075 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList, 3076 unsigned &StructuredIndex, 3077 Expr *expr) { 3078 // No structured initializer list to update 3079 if (!StructuredList) 3080 return; 3081 3082 if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context, 3083 StructuredIndex, expr)) { 3084 // This initializer overwrites a previous initializer. Warn. 3085 diagnoseInitOverride(PrevInit, expr->getSourceRange()); 3086 } 3087 3088 ++StructuredIndex; 3089 } 3090 3091 /// Determine whether we can perform aggregate initialization for the purposes 3092 /// of overload resolution. 3093 bool Sema::CanPerformAggregateInitializationForOverloadResolution( 3094 const InitializedEntity &Entity, InitListExpr *From) { 3095 QualType Type = Entity.getType(); 3096 InitListChecker Check(*this, Entity, From, Type, /*VerifyOnly=*/true, 3097 /*TreatUnavailableAsInvalid=*/false, 3098 /*InOverloadResolution=*/true); 3099 return !Check.HadError(); 3100 } 3101 3102 /// Check that the given Index expression is a valid array designator 3103 /// value. This is essentially just a wrapper around 3104 /// VerifyIntegerConstantExpression that also checks for negative values 3105 /// and produces a reasonable diagnostic if there is a 3106 /// failure. Returns the index expression, possibly with an implicit cast 3107 /// added, on success. If everything went okay, Value will receive the 3108 /// value of the constant expression. 3109 static ExprResult 3110 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) { 3111 SourceLocation Loc = Index->getBeginLoc(); 3112 3113 // Make sure this is an integer constant expression. 3114 ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value); 3115 if (Result.isInvalid()) 3116 return Result; 3117 3118 if (Value.isSigned() && Value.isNegative()) 3119 return S.Diag(Loc, diag::err_array_designator_negative) 3120 << Value.toString(10) << Index->getSourceRange(); 3121 3122 Value.setIsUnsigned(true); 3123 return Result; 3124 } 3125 3126 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig, 3127 SourceLocation EqualOrColonLoc, 3128 bool GNUSyntax, 3129 ExprResult Init) { 3130 typedef DesignatedInitExpr::Designator ASTDesignator; 3131 3132 bool Invalid = false; 3133 SmallVector<ASTDesignator, 32> Designators; 3134 SmallVector<Expr *, 32> InitExpressions; 3135 3136 // Build designators and check array designator expressions. 3137 for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) { 3138 const Designator &D = Desig.getDesignator(Idx); 3139 switch (D.getKind()) { 3140 case Designator::FieldDesignator: 3141 Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(), 3142 D.getFieldLoc())); 3143 break; 3144 3145 case Designator::ArrayDesignator: { 3146 Expr *Index = static_cast<Expr *>(D.getArrayIndex()); 3147 llvm::APSInt IndexValue; 3148 if (!Index->isTypeDependent() && !Index->isValueDependent()) 3149 Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get(); 3150 if (!Index) 3151 Invalid = true; 3152 else { 3153 Designators.push_back(ASTDesignator(InitExpressions.size(), 3154 D.getLBracketLoc(), 3155 D.getRBracketLoc())); 3156 InitExpressions.push_back(Index); 3157 } 3158 break; 3159 } 3160 3161 case Designator::ArrayRangeDesignator: { 3162 Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart()); 3163 Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd()); 3164 llvm::APSInt StartValue; 3165 llvm::APSInt EndValue; 3166 bool StartDependent = StartIndex->isTypeDependent() || 3167 StartIndex->isValueDependent(); 3168 bool EndDependent = EndIndex->isTypeDependent() || 3169 EndIndex->isValueDependent(); 3170 if (!StartDependent) 3171 StartIndex = 3172 CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get(); 3173 if (!EndDependent) 3174 EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get(); 3175 3176 if (!StartIndex || !EndIndex) 3177 Invalid = true; 3178 else { 3179 // Make sure we're comparing values with the same bit width. 3180 if (StartDependent || EndDependent) { 3181 // Nothing to compute. 3182 } else if (StartValue.getBitWidth() > EndValue.getBitWidth()) 3183 EndValue = EndValue.extend(StartValue.getBitWidth()); 3184 else if (StartValue.getBitWidth() < EndValue.getBitWidth()) 3185 StartValue = StartValue.extend(EndValue.getBitWidth()); 3186 3187 if (!StartDependent && !EndDependent && EndValue < StartValue) { 3188 Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range) 3189 << StartValue.toString(10) << EndValue.toString(10) 3190 << StartIndex->getSourceRange() << EndIndex->getSourceRange(); 3191 Invalid = true; 3192 } else { 3193 Designators.push_back(ASTDesignator(InitExpressions.size(), 3194 D.getLBracketLoc(), 3195 D.getEllipsisLoc(), 3196 D.getRBracketLoc())); 3197 InitExpressions.push_back(StartIndex); 3198 InitExpressions.push_back(EndIndex); 3199 } 3200 } 3201 break; 3202 } 3203 } 3204 } 3205 3206 if (Invalid || Init.isInvalid()) 3207 return ExprError(); 3208 3209 // Clear out the expressions within the designation. 3210 Desig.ClearExprs(*this); 3211 3212 return DesignatedInitExpr::Create(Context, Designators, InitExpressions, 3213 EqualOrColonLoc, GNUSyntax, 3214 Init.getAs<Expr>()); 3215 } 3216 3217 //===----------------------------------------------------------------------===// 3218 // Initialization entity 3219 //===----------------------------------------------------------------------===// 3220 3221 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index, 3222 const InitializedEntity &Parent) 3223 : Parent(&Parent), Index(Index) 3224 { 3225 if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) { 3226 Kind = EK_ArrayElement; 3227 Type = AT->getElementType(); 3228 } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) { 3229 Kind = EK_VectorElement; 3230 Type = VT->getElementType(); 3231 } else { 3232 const ComplexType *CT = Parent.getType()->getAs<ComplexType>(); 3233 assert(CT && "Unexpected type"); 3234 Kind = EK_ComplexElement; 3235 Type = CT->getElementType(); 3236 } 3237 } 3238 3239 InitializedEntity 3240 InitializedEntity::InitializeBase(ASTContext &Context, 3241 const CXXBaseSpecifier *Base, 3242 bool IsInheritedVirtualBase, 3243 const InitializedEntity *Parent) { 3244 InitializedEntity Result; 3245 Result.Kind = EK_Base; 3246 Result.Parent = Parent; 3247 Result.Base = reinterpret_cast<uintptr_t>(Base); 3248 if (IsInheritedVirtualBase) 3249 Result.Base |= 0x01; 3250 3251 Result.Type = Base->getType(); 3252 return Result; 3253 } 3254 3255 DeclarationName InitializedEntity::getName() const { 3256 switch (getKind()) { 3257 case EK_Parameter: 3258 case EK_Parameter_CF_Audited: { 3259 ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1); 3260 return (D ? D->getDeclName() : DeclarationName()); 3261 } 3262 3263 case EK_Variable: 3264 case EK_Member: 3265 case EK_Binding: 3266 return Variable.VariableOrMember->getDeclName(); 3267 3268 case EK_LambdaCapture: 3269 return DeclarationName(Capture.VarID); 3270 3271 case EK_Result: 3272 case EK_StmtExprResult: 3273 case EK_Exception: 3274 case EK_New: 3275 case EK_Temporary: 3276 case EK_Base: 3277 case EK_Delegating: 3278 case EK_ArrayElement: 3279 case EK_VectorElement: 3280 case EK_ComplexElement: 3281 case EK_BlockElement: 3282 case EK_LambdaToBlockConversionBlockElement: 3283 case EK_CompoundLiteralInit: 3284 case EK_RelatedResult: 3285 return DeclarationName(); 3286 } 3287 3288 llvm_unreachable("Invalid EntityKind!"); 3289 } 3290 3291 ValueDecl *InitializedEntity::getDecl() const { 3292 switch (getKind()) { 3293 case EK_Variable: 3294 case EK_Member: 3295 case EK_Binding: 3296 return Variable.VariableOrMember; 3297 3298 case EK_Parameter: 3299 case EK_Parameter_CF_Audited: 3300 return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1); 3301 3302 case EK_Result: 3303 case EK_StmtExprResult: 3304 case EK_Exception: 3305 case EK_New: 3306 case EK_Temporary: 3307 case EK_Base: 3308 case EK_Delegating: 3309 case EK_ArrayElement: 3310 case EK_VectorElement: 3311 case EK_ComplexElement: 3312 case EK_BlockElement: 3313 case EK_LambdaToBlockConversionBlockElement: 3314 case EK_LambdaCapture: 3315 case EK_CompoundLiteralInit: 3316 case EK_RelatedResult: 3317 return nullptr; 3318 } 3319 3320 llvm_unreachable("Invalid EntityKind!"); 3321 } 3322 3323 bool InitializedEntity::allowsNRVO() const { 3324 switch (getKind()) { 3325 case EK_Result: 3326 case EK_Exception: 3327 return LocAndNRVO.NRVO; 3328 3329 case EK_StmtExprResult: 3330 case EK_Variable: 3331 case EK_Parameter: 3332 case EK_Parameter_CF_Audited: 3333 case EK_Member: 3334 case EK_Binding: 3335 case EK_New: 3336 case EK_Temporary: 3337 case EK_CompoundLiteralInit: 3338 case EK_Base: 3339 case EK_Delegating: 3340 case EK_ArrayElement: 3341 case EK_VectorElement: 3342 case EK_ComplexElement: 3343 case EK_BlockElement: 3344 case EK_LambdaToBlockConversionBlockElement: 3345 case EK_LambdaCapture: 3346 case EK_RelatedResult: 3347 break; 3348 } 3349 3350 return false; 3351 } 3352 3353 unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const { 3354 assert(getParent() != this); 3355 unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0; 3356 for (unsigned I = 0; I != Depth; ++I) 3357 OS << "`-"; 3358 3359 switch (getKind()) { 3360 case EK_Variable: OS << "Variable"; break; 3361 case EK_Parameter: OS << "Parameter"; break; 3362 case EK_Parameter_CF_Audited: OS << "CF audited function Parameter"; 3363 break; 3364 case EK_Result: OS << "Result"; break; 3365 case EK_StmtExprResult: OS << "StmtExprResult"; break; 3366 case EK_Exception: OS << "Exception"; break; 3367 case EK_Member: OS << "Member"; break; 3368 case EK_Binding: OS << "Binding"; break; 3369 case EK_New: OS << "New"; break; 3370 case EK_Temporary: OS << "Temporary"; break; 3371 case EK_CompoundLiteralInit: OS << "CompoundLiteral";break; 3372 case EK_RelatedResult: OS << "RelatedResult"; break; 3373 case EK_Base: OS << "Base"; break; 3374 case EK_Delegating: OS << "Delegating"; break; 3375 case EK_ArrayElement: OS << "ArrayElement " << Index; break; 3376 case EK_VectorElement: OS << "VectorElement " << Index; break; 3377 case EK_ComplexElement: OS << "ComplexElement " << Index; break; 3378 case EK_BlockElement: OS << "Block"; break; 3379 case EK_LambdaToBlockConversionBlockElement: 3380 OS << "Block (lambda)"; 3381 break; 3382 case EK_LambdaCapture: 3383 OS << "LambdaCapture "; 3384 OS << DeclarationName(Capture.VarID); 3385 break; 3386 } 3387 3388 if (auto *D = getDecl()) { 3389 OS << " "; 3390 D->printQualifiedName(OS); 3391 } 3392 3393 OS << " '" << getType().getAsString() << "'\n"; 3394 3395 return Depth + 1; 3396 } 3397 3398 LLVM_DUMP_METHOD void InitializedEntity::dump() const { 3399 dumpImpl(llvm::errs()); 3400 } 3401 3402 //===----------------------------------------------------------------------===// 3403 // Initialization sequence 3404 //===----------------------------------------------------------------------===// 3405 3406 void InitializationSequence::Step::Destroy() { 3407 switch (Kind) { 3408 case SK_ResolveAddressOfOverloadedFunction: 3409 case SK_CastDerivedToBaseRValue: 3410 case SK_CastDerivedToBaseXValue: 3411 case SK_CastDerivedToBaseLValue: 3412 case SK_BindReference: 3413 case SK_BindReferenceToTemporary: 3414 case SK_FinalCopy: 3415 case SK_ExtraneousCopyToTemporary: 3416 case SK_UserConversion: 3417 case SK_QualificationConversionRValue: 3418 case SK_QualificationConversionXValue: 3419 case SK_QualificationConversionLValue: 3420 case SK_AtomicConversion: 3421 case SK_ListInitialization: 3422 case SK_UnwrapInitList: 3423 case SK_RewrapInitList: 3424 case SK_ConstructorInitialization: 3425 case SK_ConstructorInitializationFromList: 3426 case SK_ZeroInitialization: 3427 case SK_CAssignment: 3428 case SK_StringInit: 3429 case SK_ObjCObjectConversion: 3430 case SK_ArrayLoopIndex: 3431 case SK_ArrayLoopInit: 3432 case SK_ArrayInit: 3433 case SK_GNUArrayInit: 3434 case SK_ParenthesizedArrayInit: 3435 case SK_PassByIndirectCopyRestore: 3436 case SK_PassByIndirectRestore: 3437 case SK_ProduceObjCObject: 3438 case SK_StdInitializerList: 3439 case SK_StdInitializerListConstructorCall: 3440 case SK_OCLSamplerInit: 3441 case SK_OCLZeroOpaqueType: 3442 break; 3443 3444 case SK_ConversionSequence: 3445 case SK_ConversionSequenceNoNarrowing: 3446 delete ICS; 3447 } 3448 } 3449 3450 bool InitializationSequence::isDirectReferenceBinding() const { 3451 // There can be some lvalue adjustments after the SK_BindReference step. 3452 for (auto I = Steps.rbegin(); I != Steps.rend(); ++I) { 3453 if (I->Kind == SK_BindReference) 3454 return true; 3455 if (I->Kind == SK_BindReferenceToTemporary) 3456 return false; 3457 } 3458 return false; 3459 } 3460 3461 bool InitializationSequence::isAmbiguous() const { 3462 if (!Failed()) 3463 return false; 3464 3465 switch (getFailureKind()) { 3466 case FK_TooManyInitsForReference: 3467 case FK_ParenthesizedListInitForReference: 3468 case FK_ArrayNeedsInitList: 3469 case FK_ArrayNeedsInitListOrStringLiteral: 3470 case FK_ArrayNeedsInitListOrWideStringLiteral: 3471 case FK_NarrowStringIntoWideCharArray: 3472 case FK_WideStringIntoCharArray: 3473 case FK_IncompatWideStringIntoWideChar: 3474 case FK_PlainStringIntoUTF8Char: 3475 case FK_UTF8StringIntoPlainChar: 3476 case FK_AddressOfOverloadFailed: // FIXME: Could do better 3477 case FK_NonConstLValueReferenceBindingToTemporary: 3478 case FK_NonConstLValueReferenceBindingToBitfield: 3479 case FK_NonConstLValueReferenceBindingToVectorElement: 3480 case FK_NonConstLValueReferenceBindingToUnrelated: 3481 case FK_RValueReferenceBindingToLValue: 3482 case FK_ReferenceAddrspaceMismatchTemporary: 3483 case FK_ReferenceInitDropsQualifiers: 3484 case FK_ReferenceInitFailed: 3485 case FK_ConversionFailed: 3486 case FK_ConversionFromPropertyFailed: 3487 case FK_TooManyInitsForScalar: 3488 case FK_ParenthesizedListInitForScalar: 3489 case FK_ReferenceBindingToInitList: 3490 case FK_InitListBadDestinationType: 3491 case FK_DefaultInitOfConst: 3492 case FK_Incomplete: 3493 case FK_ArrayTypeMismatch: 3494 case FK_NonConstantArrayInit: 3495 case FK_ListInitializationFailed: 3496 case FK_VariableLengthArrayHasInitializer: 3497 case FK_PlaceholderType: 3498 case FK_ExplicitConstructor: 3499 case FK_AddressOfUnaddressableFunction: 3500 return false; 3501 3502 case FK_ReferenceInitOverloadFailed: 3503 case FK_UserConversionOverloadFailed: 3504 case FK_ConstructorOverloadFailed: 3505 case FK_ListConstructorOverloadFailed: 3506 return FailedOverloadResult == OR_Ambiguous; 3507 } 3508 3509 llvm_unreachable("Invalid EntityKind!"); 3510 } 3511 3512 bool InitializationSequence::isConstructorInitialization() const { 3513 return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization; 3514 } 3515 3516 void 3517 InitializationSequence 3518 ::AddAddressOverloadResolutionStep(FunctionDecl *Function, 3519 DeclAccessPair Found, 3520 bool HadMultipleCandidates) { 3521 Step S; 3522 S.Kind = SK_ResolveAddressOfOverloadedFunction; 3523 S.Type = Function->getType(); 3524 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3525 S.Function.Function = Function; 3526 S.Function.FoundDecl = Found; 3527 Steps.push_back(S); 3528 } 3529 3530 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType, 3531 ExprValueKind VK) { 3532 Step S; 3533 switch (VK) { 3534 case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break; 3535 case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break; 3536 case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break; 3537 } 3538 S.Type = BaseType; 3539 Steps.push_back(S); 3540 } 3541 3542 void InitializationSequence::AddReferenceBindingStep(QualType T, 3543 bool BindingTemporary) { 3544 Step S; 3545 S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference; 3546 S.Type = T; 3547 Steps.push_back(S); 3548 } 3549 3550 void InitializationSequence::AddFinalCopy(QualType T) { 3551 Step S; 3552 S.Kind = SK_FinalCopy; 3553 S.Type = T; 3554 Steps.push_back(S); 3555 } 3556 3557 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) { 3558 Step S; 3559 S.Kind = SK_ExtraneousCopyToTemporary; 3560 S.Type = T; 3561 Steps.push_back(S); 3562 } 3563 3564 void 3565 InitializationSequence::AddUserConversionStep(FunctionDecl *Function, 3566 DeclAccessPair FoundDecl, 3567 QualType T, 3568 bool HadMultipleCandidates) { 3569 Step S; 3570 S.Kind = SK_UserConversion; 3571 S.Type = T; 3572 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3573 S.Function.Function = Function; 3574 S.Function.FoundDecl = FoundDecl; 3575 Steps.push_back(S); 3576 } 3577 3578 void InitializationSequence::AddQualificationConversionStep(QualType Ty, 3579 ExprValueKind VK) { 3580 Step S; 3581 S.Kind = SK_QualificationConversionRValue; // work around a gcc warning 3582 switch (VK) { 3583 case VK_RValue: 3584 S.Kind = SK_QualificationConversionRValue; 3585 break; 3586 case VK_XValue: 3587 S.Kind = SK_QualificationConversionXValue; 3588 break; 3589 case VK_LValue: 3590 S.Kind = SK_QualificationConversionLValue; 3591 break; 3592 } 3593 S.Type = Ty; 3594 Steps.push_back(S); 3595 } 3596 3597 void InitializationSequence::AddAtomicConversionStep(QualType Ty) { 3598 Step S; 3599 S.Kind = SK_AtomicConversion; 3600 S.Type = Ty; 3601 Steps.push_back(S); 3602 } 3603 3604 void InitializationSequence::AddConversionSequenceStep( 3605 const ImplicitConversionSequence &ICS, QualType T, 3606 bool TopLevelOfInitList) { 3607 Step S; 3608 S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing 3609 : SK_ConversionSequence; 3610 S.Type = T; 3611 S.ICS = new ImplicitConversionSequence(ICS); 3612 Steps.push_back(S); 3613 } 3614 3615 void InitializationSequence::AddListInitializationStep(QualType T) { 3616 Step S; 3617 S.Kind = SK_ListInitialization; 3618 S.Type = T; 3619 Steps.push_back(S); 3620 } 3621 3622 void InitializationSequence::AddConstructorInitializationStep( 3623 DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T, 3624 bool HadMultipleCandidates, bool FromInitList, bool AsInitList) { 3625 Step S; 3626 S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall 3627 : SK_ConstructorInitializationFromList 3628 : SK_ConstructorInitialization; 3629 S.Type = T; 3630 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3631 S.Function.Function = Constructor; 3632 S.Function.FoundDecl = FoundDecl; 3633 Steps.push_back(S); 3634 } 3635 3636 void InitializationSequence::AddZeroInitializationStep(QualType T) { 3637 Step S; 3638 S.Kind = SK_ZeroInitialization; 3639 S.Type = T; 3640 Steps.push_back(S); 3641 } 3642 3643 void InitializationSequence::AddCAssignmentStep(QualType T) { 3644 Step S; 3645 S.Kind = SK_CAssignment; 3646 S.Type = T; 3647 Steps.push_back(S); 3648 } 3649 3650 void InitializationSequence::AddStringInitStep(QualType T) { 3651 Step S; 3652 S.Kind = SK_StringInit; 3653 S.Type = T; 3654 Steps.push_back(S); 3655 } 3656 3657 void InitializationSequence::AddObjCObjectConversionStep(QualType T) { 3658 Step S; 3659 S.Kind = SK_ObjCObjectConversion; 3660 S.Type = T; 3661 Steps.push_back(S); 3662 } 3663 3664 void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) { 3665 Step S; 3666 S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit; 3667 S.Type = T; 3668 Steps.push_back(S); 3669 } 3670 3671 void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) { 3672 Step S; 3673 S.Kind = SK_ArrayLoopIndex; 3674 S.Type = EltT; 3675 Steps.insert(Steps.begin(), S); 3676 3677 S.Kind = SK_ArrayLoopInit; 3678 S.Type = T; 3679 Steps.push_back(S); 3680 } 3681 3682 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) { 3683 Step S; 3684 S.Kind = SK_ParenthesizedArrayInit; 3685 S.Type = T; 3686 Steps.push_back(S); 3687 } 3688 3689 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type, 3690 bool shouldCopy) { 3691 Step s; 3692 s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore 3693 : SK_PassByIndirectRestore); 3694 s.Type = type; 3695 Steps.push_back(s); 3696 } 3697 3698 void InitializationSequence::AddProduceObjCObjectStep(QualType T) { 3699 Step S; 3700 S.Kind = SK_ProduceObjCObject; 3701 S.Type = T; 3702 Steps.push_back(S); 3703 } 3704 3705 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) { 3706 Step S; 3707 S.Kind = SK_StdInitializerList; 3708 S.Type = T; 3709 Steps.push_back(S); 3710 } 3711 3712 void InitializationSequence::AddOCLSamplerInitStep(QualType T) { 3713 Step S; 3714 S.Kind = SK_OCLSamplerInit; 3715 S.Type = T; 3716 Steps.push_back(S); 3717 } 3718 3719 void InitializationSequence::AddOCLZeroOpaqueTypeStep(QualType T) { 3720 Step S; 3721 S.Kind = SK_OCLZeroOpaqueType; 3722 S.Type = T; 3723 Steps.push_back(S); 3724 } 3725 3726 void InitializationSequence::RewrapReferenceInitList(QualType T, 3727 InitListExpr *Syntactic) { 3728 assert(Syntactic->getNumInits() == 1 && 3729 "Can only rewrap trivial init lists."); 3730 Step S; 3731 S.Kind = SK_UnwrapInitList; 3732 S.Type = Syntactic->getInit(0)->getType(); 3733 Steps.insert(Steps.begin(), S); 3734 3735 S.Kind = SK_RewrapInitList; 3736 S.Type = T; 3737 S.WrappingSyntacticList = Syntactic; 3738 Steps.push_back(S); 3739 } 3740 3741 void InitializationSequence::SetOverloadFailure(FailureKind Failure, 3742 OverloadingResult Result) { 3743 setSequenceKind(FailedSequence); 3744 this->Failure = Failure; 3745 this->FailedOverloadResult = Result; 3746 } 3747 3748 //===----------------------------------------------------------------------===// 3749 // Attempt initialization 3750 //===----------------------------------------------------------------------===// 3751 3752 /// Tries to add a zero initializer. Returns true if that worked. 3753 static bool 3754 maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence, 3755 const InitializedEntity &Entity) { 3756 if (Entity.getKind() != InitializedEntity::EK_Variable) 3757 return false; 3758 3759 VarDecl *VD = cast<VarDecl>(Entity.getDecl()); 3760 if (VD->getInit() || VD->getEndLoc().isMacroID()) 3761 return false; 3762 3763 QualType VariableTy = VD->getType().getCanonicalType(); 3764 SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc()); 3765 std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc); 3766 if (!Init.empty()) { 3767 Sequence.AddZeroInitializationStep(Entity.getType()); 3768 Sequence.SetZeroInitializationFixit(Init, Loc); 3769 return true; 3770 } 3771 return false; 3772 } 3773 3774 static void MaybeProduceObjCObject(Sema &S, 3775 InitializationSequence &Sequence, 3776 const InitializedEntity &Entity) { 3777 if (!S.getLangOpts().ObjCAutoRefCount) return; 3778 3779 /// When initializing a parameter, produce the value if it's marked 3780 /// __attribute__((ns_consumed)). 3781 if (Entity.isParameterKind()) { 3782 if (!Entity.isParameterConsumed()) 3783 return; 3784 3785 assert(Entity.getType()->isObjCRetainableType() && 3786 "consuming an object of unretainable type?"); 3787 Sequence.AddProduceObjCObjectStep(Entity.getType()); 3788 3789 /// When initializing a return value, if the return type is a 3790 /// retainable type, then returns need to immediately retain the 3791 /// object. If an autorelease is required, it will be done at the 3792 /// last instant. 3793 } else if (Entity.getKind() == InitializedEntity::EK_Result || 3794 Entity.getKind() == InitializedEntity::EK_StmtExprResult) { 3795 if (!Entity.getType()->isObjCRetainableType()) 3796 return; 3797 3798 Sequence.AddProduceObjCObjectStep(Entity.getType()); 3799 } 3800 } 3801 3802 static void TryListInitialization(Sema &S, 3803 const InitializedEntity &Entity, 3804 const InitializationKind &Kind, 3805 InitListExpr *InitList, 3806 InitializationSequence &Sequence, 3807 bool TreatUnavailableAsInvalid); 3808 3809 /// When initializing from init list via constructor, handle 3810 /// initialization of an object of type std::initializer_list<T>. 3811 /// 3812 /// \return true if we have handled initialization of an object of type 3813 /// std::initializer_list<T>, false otherwise. 3814 static bool TryInitializerListConstruction(Sema &S, 3815 InitListExpr *List, 3816 QualType DestType, 3817 InitializationSequence &Sequence, 3818 bool TreatUnavailableAsInvalid) { 3819 QualType E; 3820 if (!S.isStdInitializerList(DestType, &E)) 3821 return false; 3822 3823 if (!S.isCompleteType(List->getExprLoc(), E)) { 3824 Sequence.setIncompleteTypeFailure(E); 3825 return true; 3826 } 3827 3828 // Try initializing a temporary array from the init list. 3829 QualType ArrayType = S.Context.getConstantArrayType( 3830 E.withConst(), 3831 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()), 3832 List->getNumInits()), 3833 nullptr, clang::ArrayType::Normal, 0); 3834 InitializedEntity HiddenArray = 3835 InitializedEntity::InitializeTemporary(ArrayType); 3836 InitializationKind Kind = InitializationKind::CreateDirectList( 3837 List->getExprLoc(), List->getBeginLoc(), List->getEndLoc()); 3838 TryListInitialization(S, HiddenArray, Kind, List, Sequence, 3839 TreatUnavailableAsInvalid); 3840 if (Sequence) 3841 Sequence.AddStdInitializerListConstructionStep(DestType); 3842 return true; 3843 } 3844 3845 /// Determine if the constructor has the signature of a copy or move 3846 /// constructor for the type T of the class in which it was found. That is, 3847 /// determine if its first parameter is of type T or reference to (possibly 3848 /// cv-qualified) T. 3849 static bool hasCopyOrMoveCtorParam(ASTContext &Ctx, 3850 const ConstructorInfo &Info) { 3851 if (Info.Constructor->getNumParams() == 0) 3852 return false; 3853 3854 QualType ParmT = 3855 Info.Constructor->getParamDecl(0)->getType().getNonReferenceType(); 3856 QualType ClassT = 3857 Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext())); 3858 3859 return Ctx.hasSameUnqualifiedType(ParmT, ClassT); 3860 } 3861 3862 static OverloadingResult 3863 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc, 3864 MultiExprArg Args, 3865 OverloadCandidateSet &CandidateSet, 3866 QualType DestType, 3867 DeclContext::lookup_result Ctors, 3868 OverloadCandidateSet::iterator &Best, 3869 bool CopyInitializing, bool AllowExplicit, 3870 bool OnlyListConstructors, bool IsListInit, 3871 bool SecondStepOfCopyInit = false) { 3872 CandidateSet.clear(OverloadCandidateSet::CSK_InitByConstructor); 3873 CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace()); 3874 3875 for (NamedDecl *D : Ctors) { 3876 auto Info = getConstructorInfo(D); 3877 if (!Info.Constructor || Info.Constructor->isInvalidDecl()) 3878 continue; 3879 3880 if (!AllowExplicit && Info.Constructor->isExplicit()) 3881 continue; 3882 3883 if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor)) 3884 continue; 3885 3886 // C++11 [over.best.ics]p4: 3887 // ... and the constructor or user-defined conversion function is a 3888 // candidate by 3889 // - 13.3.1.3, when the argument is the temporary in the second step 3890 // of a class copy-initialization, or 3891 // - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here] 3892 // - the second phase of 13.3.1.7 when the initializer list has exactly 3893 // one element that is itself an initializer list, and the target is 3894 // the first parameter of a constructor of class X, and the conversion 3895 // is to X or reference to (possibly cv-qualified X), 3896 // user-defined conversion sequences are not considered. 3897 bool SuppressUserConversions = 3898 SecondStepOfCopyInit || 3899 (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) && 3900 hasCopyOrMoveCtorParam(S.Context, Info)); 3901 3902 if (Info.ConstructorTmpl) 3903 S.AddTemplateOverloadCandidate( 3904 Info.ConstructorTmpl, Info.FoundDecl, 3905 /*ExplicitArgs*/ nullptr, Args, CandidateSet, SuppressUserConversions, 3906 /*PartialOverloading=*/false, AllowExplicit); 3907 else { 3908 // C++ [over.match.copy]p1: 3909 // - When initializing a temporary to be bound to the first parameter 3910 // of a constructor [for type T] that takes a reference to possibly 3911 // cv-qualified T as its first argument, called with a single 3912 // argument in the context of direct-initialization, explicit 3913 // conversion functions are also considered. 3914 // FIXME: What if a constructor template instantiates to such a signature? 3915 bool AllowExplicitConv = AllowExplicit && !CopyInitializing && 3916 Args.size() == 1 && 3917 hasCopyOrMoveCtorParam(S.Context, Info); 3918 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args, 3919 CandidateSet, SuppressUserConversions, 3920 /*PartialOverloading=*/false, AllowExplicit, 3921 AllowExplicitConv); 3922 } 3923 } 3924 3925 // FIXME: Work around a bug in C++17 guaranteed copy elision. 3926 // 3927 // When initializing an object of class type T by constructor 3928 // ([over.match.ctor]) or by list-initialization ([over.match.list]) 3929 // from a single expression of class type U, conversion functions of 3930 // U that convert to the non-reference type cv T are candidates. 3931 // Explicit conversion functions are only candidates during 3932 // direct-initialization. 3933 // 3934 // Note: SecondStepOfCopyInit is only ever true in this case when 3935 // evaluating whether to produce a C++98 compatibility warning. 3936 if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 && 3937 !SecondStepOfCopyInit) { 3938 Expr *Initializer = Args[0]; 3939 auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl(); 3940 if (SourceRD && S.isCompleteType(DeclLoc, Initializer->getType())) { 3941 const auto &Conversions = SourceRD->getVisibleConversionFunctions(); 3942 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 3943 NamedDecl *D = *I; 3944 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 3945 D = D->getUnderlyingDecl(); 3946 3947 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 3948 CXXConversionDecl *Conv; 3949 if (ConvTemplate) 3950 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 3951 else 3952 Conv = cast<CXXConversionDecl>(D); 3953 3954 if (AllowExplicit || !Conv->isExplicit()) { 3955 if (ConvTemplate) 3956 S.AddTemplateConversionCandidate( 3957 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, 3958 CandidateSet, AllowExplicit, AllowExplicit, 3959 /*AllowResultConversion*/ false); 3960 else 3961 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer, 3962 DestType, CandidateSet, AllowExplicit, 3963 AllowExplicit, 3964 /*AllowResultConversion*/ false); 3965 } 3966 } 3967 } 3968 } 3969 3970 // Perform overload resolution and return the result. 3971 return CandidateSet.BestViableFunction(S, DeclLoc, Best); 3972 } 3973 3974 /// Attempt initialization by constructor (C++ [dcl.init]), which 3975 /// enumerates the constructors of the initialized entity and performs overload 3976 /// resolution to select the best. 3977 /// \param DestType The destination class type. 3978 /// \param DestArrayType The destination type, which is either DestType or 3979 /// a (possibly multidimensional) array of DestType. 3980 /// \param IsListInit Is this list-initialization? 3981 /// \param IsInitListCopy Is this non-list-initialization resulting from a 3982 /// list-initialization from {x} where x is the same 3983 /// type as the entity? 3984 static void TryConstructorInitialization(Sema &S, 3985 const InitializedEntity &Entity, 3986 const InitializationKind &Kind, 3987 MultiExprArg Args, QualType DestType, 3988 QualType DestArrayType, 3989 InitializationSequence &Sequence, 3990 bool IsListInit = false, 3991 bool IsInitListCopy = false) { 3992 assert(((!IsListInit && !IsInitListCopy) || 3993 (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && 3994 "IsListInit/IsInitListCopy must come with a single initializer list " 3995 "argument."); 3996 InitListExpr *ILE = 3997 (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr; 3998 MultiExprArg UnwrappedArgs = 3999 ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args; 4000 4001 // The type we're constructing needs to be complete. 4002 if (!S.isCompleteType(Kind.getLocation(), DestType)) { 4003 Sequence.setIncompleteTypeFailure(DestType); 4004 return; 4005 } 4006 4007 // C++17 [dcl.init]p17: 4008 // - If the initializer expression is a prvalue and the cv-unqualified 4009 // version of the source type is the same class as the class of the 4010 // destination, the initializer expression is used to initialize the 4011 // destination object. 4012 // Per DR (no number yet), this does not apply when initializing a base 4013 // class or delegating to another constructor from a mem-initializer. 4014 // ObjC++: Lambda captured by the block in the lambda to block conversion 4015 // should avoid copy elision. 4016 if (S.getLangOpts().CPlusPlus17 && 4017 Entity.getKind() != InitializedEntity::EK_Base && 4018 Entity.getKind() != InitializedEntity::EK_Delegating && 4019 Entity.getKind() != 4020 InitializedEntity::EK_LambdaToBlockConversionBlockElement && 4021 UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isRValue() && 4022 S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) { 4023 // Convert qualifications if necessary. 4024 Sequence.AddQualificationConversionStep(DestType, VK_RValue); 4025 if (ILE) 4026 Sequence.RewrapReferenceInitList(DestType, ILE); 4027 return; 4028 } 4029 4030 const RecordType *DestRecordType = DestType->getAs<RecordType>(); 4031 assert(DestRecordType && "Constructor initialization requires record type"); 4032 CXXRecordDecl *DestRecordDecl 4033 = cast<CXXRecordDecl>(DestRecordType->getDecl()); 4034 4035 // Build the candidate set directly in the initialization sequence 4036 // structure, so that it will persist if we fail. 4037 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 4038 4039 // Determine whether we are allowed to call explicit constructors or 4040 // explicit conversion operators. 4041 bool AllowExplicit = Kind.AllowExplicit() || IsListInit; 4042 bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy; 4043 4044 // - Otherwise, if T is a class type, constructors are considered. The 4045 // applicable constructors are enumerated, and the best one is chosen 4046 // through overload resolution. 4047 DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl); 4048 4049 OverloadingResult Result = OR_No_Viable_Function; 4050 OverloadCandidateSet::iterator Best; 4051 bool AsInitializerList = false; 4052 4053 // C++11 [over.match.list]p1, per DR1467: 4054 // When objects of non-aggregate type T are list-initialized, such that 4055 // 8.5.4 [dcl.init.list] specifies that overload resolution is performed 4056 // according to the rules in this section, overload resolution selects 4057 // the constructor in two phases: 4058 // 4059 // - Initially, the candidate functions are the initializer-list 4060 // constructors of the class T and the argument list consists of the 4061 // initializer list as a single argument. 4062 if (IsListInit) { 4063 AsInitializerList = true; 4064 4065 // If the initializer list has no elements and T has a default constructor, 4066 // the first phase is omitted. 4067 if (!(UnwrappedArgs.empty() && DestRecordDecl->hasDefaultConstructor())) 4068 Result = ResolveConstructorOverload(S, Kind.getLocation(), Args, 4069 CandidateSet, DestType, Ctors, Best, 4070 CopyInitialization, AllowExplicit, 4071 /*OnlyListConstructors=*/true, 4072 IsListInit); 4073 } 4074 4075 // C++11 [over.match.list]p1: 4076 // - If no viable initializer-list constructor is found, overload resolution 4077 // is performed again, where the candidate functions are all the 4078 // constructors of the class T and the argument list consists of the 4079 // elements of the initializer list. 4080 if (Result == OR_No_Viable_Function) { 4081 AsInitializerList = false; 4082 Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs, 4083 CandidateSet, DestType, Ctors, Best, 4084 CopyInitialization, AllowExplicit, 4085 /*OnlyListConstructors=*/false, 4086 IsListInit); 4087 } 4088 if (Result) { 4089 Sequence.SetOverloadFailure(IsListInit ? 4090 InitializationSequence::FK_ListConstructorOverloadFailed : 4091 InitializationSequence::FK_ConstructorOverloadFailed, 4092 Result); 4093 return; 4094 } 4095 4096 bool HadMultipleCandidates = (CandidateSet.size() > 1); 4097 4098 // In C++17, ResolveConstructorOverload can select a conversion function 4099 // instead of a constructor. 4100 if (auto *CD = dyn_cast<CXXConversionDecl>(Best->Function)) { 4101 // Add the user-defined conversion step that calls the conversion function. 4102 QualType ConvType = CD->getConversionType(); 4103 assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) && 4104 "should not have selected this conversion function"); 4105 Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType, 4106 HadMultipleCandidates); 4107 if (!S.Context.hasSameType(ConvType, DestType)) 4108 Sequence.AddQualificationConversionStep(DestType, VK_RValue); 4109 if (IsListInit) 4110 Sequence.RewrapReferenceInitList(Entity.getType(), ILE); 4111 return; 4112 } 4113 4114 // C++11 [dcl.init]p6: 4115 // If a program calls for the default initialization of an object 4116 // of a const-qualified type T, T shall be a class type with a 4117 // user-provided default constructor. 4118 // C++ core issue 253 proposal: 4119 // If the implicit default constructor initializes all subobjects, no 4120 // initializer should be required. 4121 // The 253 proposal is for example needed to process libstdc++ headers in 5.x. 4122 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 4123 if (Kind.getKind() == InitializationKind::IK_Default && 4124 Entity.getType().isConstQualified()) { 4125 if (!CtorDecl->getParent()->allowConstDefaultInit()) { 4126 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity)) 4127 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); 4128 return; 4129 } 4130 } 4131 4132 // C++11 [over.match.list]p1: 4133 // In copy-list-initialization, if an explicit constructor is chosen, the 4134 // initializer is ill-formed. 4135 if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) { 4136 Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor); 4137 return; 4138 } 4139 4140 // Add the constructor initialization step. Any cv-qualification conversion is 4141 // subsumed by the initialization. 4142 Sequence.AddConstructorInitializationStep( 4143 Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates, 4144 IsListInit | IsInitListCopy, AsInitializerList); 4145 } 4146 4147 static bool 4148 ResolveOverloadedFunctionForReferenceBinding(Sema &S, 4149 Expr *Initializer, 4150 QualType &SourceType, 4151 QualType &UnqualifiedSourceType, 4152 QualType UnqualifiedTargetType, 4153 InitializationSequence &Sequence) { 4154 if (S.Context.getCanonicalType(UnqualifiedSourceType) == 4155 S.Context.OverloadTy) { 4156 DeclAccessPair Found; 4157 bool HadMultipleCandidates = false; 4158 if (FunctionDecl *Fn 4159 = S.ResolveAddressOfOverloadedFunction(Initializer, 4160 UnqualifiedTargetType, 4161 false, Found, 4162 &HadMultipleCandidates)) { 4163 Sequence.AddAddressOverloadResolutionStep(Fn, Found, 4164 HadMultipleCandidates); 4165 SourceType = Fn->getType(); 4166 UnqualifiedSourceType = SourceType.getUnqualifiedType(); 4167 } else if (!UnqualifiedTargetType->isRecordType()) { 4168 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 4169 return true; 4170 } 4171 } 4172 return false; 4173 } 4174 4175 static void TryReferenceInitializationCore(Sema &S, 4176 const InitializedEntity &Entity, 4177 const InitializationKind &Kind, 4178 Expr *Initializer, 4179 QualType cv1T1, QualType T1, 4180 Qualifiers T1Quals, 4181 QualType cv2T2, QualType T2, 4182 Qualifiers T2Quals, 4183 InitializationSequence &Sequence); 4184 4185 static void TryValueInitialization(Sema &S, 4186 const InitializedEntity &Entity, 4187 const InitializationKind &Kind, 4188 InitializationSequence &Sequence, 4189 InitListExpr *InitList = nullptr); 4190 4191 /// Attempt list initialization of a reference. 4192 static void TryReferenceListInitialization(Sema &S, 4193 const InitializedEntity &Entity, 4194 const InitializationKind &Kind, 4195 InitListExpr *InitList, 4196 InitializationSequence &Sequence, 4197 bool TreatUnavailableAsInvalid) { 4198 // First, catch C++03 where this isn't possible. 4199 if (!S.getLangOpts().CPlusPlus11) { 4200 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); 4201 return; 4202 } 4203 // Can't reference initialize a compound literal. 4204 if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) { 4205 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); 4206 return; 4207 } 4208 4209 QualType DestType = Entity.getType(); 4210 QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); 4211 Qualifiers T1Quals; 4212 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); 4213 4214 // Reference initialization via an initializer list works thus: 4215 // If the initializer list consists of a single element that is 4216 // reference-related to the referenced type, bind directly to that element 4217 // (possibly creating temporaries). 4218 // Otherwise, initialize a temporary with the initializer list and 4219 // bind to that. 4220 if (InitList->getNumInits() == 1) { 4221 Expr *Initializer = InitList->getInit(0); 4222 QualType cv2T2 = Initializer->getType(); 4223 Qualifiers T2Quals; 4224 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); 4225 4226 // If this fails, creating a temporary wouldn't work either. 4227 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, 4228 T1, Sequence)) 4229 return; 4230 4231 SourceLocation DeclLoc = Initializer->getBeginLoc(); 4232 bool dummy1, dummy2, dummy3, dummy4; 4233 Sema::ReferenceCompareResult RefRelationship 4234 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1, 4235 dummy2, dummy3, dummy4); 4236 if (RefRelationship >= Sema::Ref_Related) { 4237 // Try to bind the reference here. 4238 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, 4239 T1Quals, cv2T2, T2, T2Quals, Sequence); 4240 if (Sequence) 4241 Sequence.RewrapReferenceInitList(cv1T1, InitList); 4242 return; 4243 } 4244 4245 // Update the initializer if we've resolved an overloaded function. 4246 if (Sequence.step_begin() != Sequence.step_end()) 4247 Sequence.RewrapReferenceInitList(cv1T1, InitList); 4248 } 4249 4250 // Not reference-related. Create a temporary and bind to that. 4251 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1); 4252 4253 TryListInitialization(S, TempEntity, Kind, InitList, Sequence, 4254 TreatUnavailableAsInvalid); 4255 if (Sequence) { 4256 if (DestType->isRValueReferenceType() || 4257 (T1Quals.hasConst() && !T1Quals.hasVolatile())) 4258 Sequence.AddReferenceBindingStep(cv1T1, /*BindingTemporary=*/true); 4259 else 4260 Sequence.SetFailed( 4261 InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary); 4262 } 4263 } 4264 4265 /// Attempt list initialization (C++0x [dcl.init.list]) 4266 static void TryListInitialization(Sema &S, 4267 const InitializedEntity &Entity, 4268 const InitializationKind &Kind, 4269 InitListExpr *InitList, 4270 InitializationSequence &Sequence, 4271 bool TreatUnavailableAsInvalid) { 4272 QualType DestType = Entity.getType(); 4273 4274 // C++ doesn't allow scalar initialization with more than one argument. 4275 // But C99 complex numbers are scalars and it makes sense there. 4276 if (S.getLangOpts().CPlusPlus && DestType->isScalarType() && 4277 !DestType->isAnyComplexType() && InitList->getNumInits() > 1) { 4278 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar); 4279 return; 4280 } 4281 if (DestType->isReferenceType()) { 4282 TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence, 4283 TreatUnavailableAsInvalid); 4284 return; 4285 } 4286 4287 if (DestType->isRecordType() && 4288 !S.isCompleteType(InitList->getBeginLoc(), DestType)) { 4289 Sequence.setIncompleteTypeFailure(DestType); 4290 return; 4291 } 4292 4293 // C++11 [dcl.init.list]p3, per DR1467: 4294 // - If T is a class type and the initializer list has a single element of 4295 // type cv U, where U is T or a class derived from T, the object is 4296 // initialized from that element (by copy-initialization for 4297 // copy-list-initialization, or by direct-initialization for 4298 // direct-list-initialization). 4299 // - Otherwise, if T is a character array and the initializer list has a 4300 // single element that is an appropriately-typed string literal 4301 // (8.5.2 [dcl.init.string]), initialization is performed as described 4302 // in that section. 4303 // - Otherwise, if T is an aggregate, [...] (continue below). 4304 if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) { 4305 if (DestType->isRecordType()) { 4306 QualType InitType = InitList->getInit(0)->getType(); 4307 if (S.Context.hasSameUnqualifiedType(InitType, DestType) || 4308 S.IsDerivedFrom(InitList->getBeginLoc(), InitType, DestType)) { 4309 Expr *InitListAsExpr = InitList; 4310 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType, 4311 DestType, Sequence, 4312 /*InitListSyntax*/false, 4313 /*IsInitListCopy*/true); 4314 return; 4315 } 4316 } 4317 if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) { 4318 Expr *SubInit[1] = {InitList->getInit(0)}; 4319 if (!isa<VariableArrayType>(DestAT) && 4320 IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) { 4321 InitializationKind SubKind = 4322 Kind.getKind() == InitializationKind::IK_DirectList 4323 ? InitializationKind::CreateDirect(Kind.getLocation(), 4324 InitList->getLBraceLoc(), 4325 InitList->getRBraceLoc()) 4326 : Kind; 4327 Sequence.InitializeFrom(S, Entity, SubKind, SubInit, 4328 /*TopLevelOfInitList*/ true, 4329 TreatUnavailableAsInvalid); 4330 4331 // TryStringLiteralInitialization() (in InitializeFrom()) will fail if 4332 // the element is not an appropriately-typed string literal, in which 4333 // case we should proceed as in C++11 (below). 4334 if (Sequence) { 4335 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 4336 return; 4337 } 4338 } 4339 } 4340 } 4341 4342 // C++11 [dcl.init.list]p3: 4343 // - If T is an aggregate, aggregate initialization is performed. 4344 if ((DestType->isRecordType() && !DestType->isAggregateType()) || 4345 (S.getLangOpts().CPlusPlus11 && 4346 S.isStdInitializerList(DestType, nullptr))) { 4347 if (S.getLangOpts().CPlusPlus11) { 4348 // - Otherwise, if the initializer list has no elements and T is a 4349 // class type with a default constructor, the object is 4350 // value-initialized. 4351 if (InitList->getNumInits() == 0) { 4352 CXXRecordDecl *RD = DestType->getAsCXXRecordDecl(); 4353 if (RD->hasDefaultConstructor()) { 4354 TryValueInitialization(S, Entity, Kind, Sequence, InitList); 4355 return; 4356 } 4357 } 4358 4359 // - Otherwise, if T is a specialization of std::initializer_list<E>, 4360 // an initializer_list object constructed [...] 4361 if (TryInitializerListConstruction(S, InitList, DestType, Sequence, 4362 TreatUnavailableAsInvalid)) 4363 return; 4364 4365 // - Otherwise, if T is a class type, constructors are considered. 4366 Expr *InitListAsExpr = InitList; 4367 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType, 4368 DestType, Sequence, /*InitListSyntax*/true); 4369 } else 4370 Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType); 4371 return; 4372 } 4373 4374 if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() && 4375 InitList->getNumInits() == 1) { 4376 Expr *E = InitList->getInit(0); 4377 4378 // - Otherwise, if T is an enumeration with a fixed underlying type, 4379 // the initializer-list has a single element v, and the initialization 4380 // is direct-list-initialization, the object is initialized with the 4381 // value T(v); if a narrowing conversion is required to convert v to 4382 // the underlying type of T, the program is ill-formed. 4383 auto *ET = DestType->getAs<EnumType>(); 4384 if (S.getLangOpts().CPlusPlus17 && 4385 Kind.getKind() == InitializationKind::IK_DirectList && 4386 ET && ET->getDecl()->isFixed() && 4387 !S.Context.hasSameUnqualifiedType(E->getType(), DestType) && 4388 (E->getType()->isIntegralOrEnumerationType() || 4389 E->getType()->isFloatingType())) { 4390 // There are two ways that T(v) can work when T is an enumeration type. 4391 // If there is either an implicit conversion sequence from v to T or 4392 // a conversion function that can convert from v to T, then we use that. 4393 // Otherwise, if v is of integral, enumeration, or floating-point type, 4394 // it is converted to the enumeration type via its underlying type. 4395 // There is no overlap possible between these two cases (except when the 4396 // source value is already of the destination type), and the first 4397 // case is handled by the general case for single-element lists below. 4398 ImplicitConversionSequence ICS; 4399 ICS.setStandard(); 4400 ICS.Standard.setAsIdentityConversion(); 4401 if (!E->isRValue()) 4402 ICS.Standard.First = ICK_Lvalue_To_Rvalue; 4403 // If E is of a floating-point type, then the conversion is ill-formed 4404 // due to narrowing, but go through the motions in order to produce the 4405 // right diagnostic. 4406 ICS.Standard.Second = E->getType()->isFloatingType() 4407 ? ICK_Floating_Integral 4408 : ICK_Integral_Conversion; 4409 ICS.Standard.setFromType(E->getType()); 4410 ICS.Standard.setToType(0, E->getType()); 4411 ICS.Standard.setToType(1, DestType); 4412 ICS.Standard.setToType(2, DestType); 4413 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2), 4414 /*TopLevelOfInitList*/true); 4415 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 4416 return; 4417 } 4418 4419 // - Otherwise, if the initializer list has a single element of type E 4420 // [...references are handled above...], the object or reference is 4421 // initialized from that element (by copy-initialization for 4422 // copy-list-initialization, or by direct-initialization for 4423 // direct-list-initialization); if a narrowing conversion is required 4424 // to convert the element to T, the program is ill-formed. 4425 // 4426 // Per core-24034, this is direct-initialization if we were performing 4427 // direct-list-initialization and copy-initialization otherwise. 4428 // We can't use InitListChecker for this, because it always performs 4429 // copy-initialization. This only matters if we might use an 'explicit' 4430 // conversion operator, so we only need to handle the cases where the source 4431 // is of record type. 4432 if (InitList->getInit(0)->getType()->isRecordType()) { 4433 InitializationKind SubKind = 4434 Kind.getKind() == InitializationKind::IK_DirectList 4435 ? InitializationKind::CreateDirect(Kind.getLocation(), 4436 InitList->getLBraceLoc(), 4437 InitList->getRBraceLoc()) 4438 : Kind; 4439 Expr *SubInit[1] = { InitList->getInit(0) }; 4440 Sequence.InitializeFrom(S, Entity, SubKind, SubInit, 4441 /*TopLevelOfInitList*/true, 4442 TreatUnavailableAsInvalid); 4443 if (Sequence) 4444 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 4445 return; 4446 } 4447 } 4448 4449 InitListChecker CheckInitList(S, Entity, InitList, 4450 DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid); 4451 if (CheckInitList.HadError()) { 4452 Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed); 4453 return; 4454 } 4455 4456 // Add the list initialization step with the built init list. 4457 Sequence.AddListInitializationStep(DestType); 4458 } 4459 4460 /// Try a reference initialization that involves calling a conversion 4461 /// function. 4462 static OverloadingResult TryRefInitWithConversionFunction( 4463 Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, 4464 Expr *Initializer, bool AllowRValues, bool IsLValueRef, 4465 InitializationSequence &Sequence) { 4466 QualType DestType = Entity.getType(); 4467 QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); 4468 QualType T1 = cv1T1.getUnqualifiedType(); 4469 QualType cv2T2 = Initializer->getType(); 4470 QualType T2 = cv2T2.getUnqualifiedType(); 4471 4472 bool DerivedToBase; 4473 bool ObjCConversion; 4474 bool ObjCLifetimeConversion; 4475 bool FunctionConversion; 4476 assert(!S.CompareReferenceRelationship( 4477 Initializer->getBeginLoc(), T1, T2, DerivedToBase, ObjCConversion, 4478 ObjCLifetimeConversion, FunctionConversion) && 4479 "Must have incompatible references when binding via conversion"); 4480 (void)DerivedToBase; 4481 (void)ObjCConversion; 4482 (void)ObjCLifetimeConversion; 4483 (void)FunctionConversion; 4484 4485 // Build the candidate set directly in the initialization sequence 4486 // structure, so that it will persist if we fail. 4487 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 4488 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); 4489 4490 // Determine whether we are allowed to call explicit conversion operators. 4491 // Note that none of [over.match.copy], [over.match.conv], nor 4492 // [over.match.ref] permit an explicit constructor to be chosen when 4493 // initializing a reference, not even for direct-initialization. 4494 bool AllowExplicitCtors = false; 4495 bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding(); 4496 4497 const RecordType *T1RecordType = nullptr; 4498 if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) && 4499 S.isCompleteType(Kind.getLocation(), T1)) { 4500 // The type we're converting to is a class type. Enumerate its constructors 4501 // to see if there is a suitable conversion. 4502 CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl()); 4503 4504 for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) { 4505 auto Info = getConstructorInfo(D); 4506 if (!Info.Constructor) 4507 continue; 4508 4509 if (!Info.Constructor->isInvalidDecl() && 4510 Info.Constructor->isConvertingConstructor(AllowExplicitCtors)) { 4511 if (Info.ConstructorTmpl) 4512 S.AddTemplateOverloadCandidate( 4513 Info.ConstructorTmpl, Info.FoundDecl, 4514 /*ExplicitArgs*/ nullptr, Initializer, CandidateSet, 4515 /*SuppressUserConversions=*/true, 4516 /*PartialOverloading*/ false, AllowExplicitCtors); 4517 else 4518 S.AddOverloadCandidate( 4519 Info.Constructor, Info.FoundDecl, Initializer, CandidateSet, 4520 /*SuppressUserConversions=*/true, 4521 /*PartialOverloading*/ false, AllowExplicitCtors); 4522 } 4523 } 4524 } 4525 if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl()) 4526 return OR_No_Viable_Function; 4527 4528 const RecordType *T2RecordType = nullptr; 4529 if ((T2RecordType = T2->getAs<RecordType>()) && 4530 S.isCompleteType(Kind.getLocation(), T2)) { 4531 // The type we're converting from is a class type, enumerate its conversion 4532 // functions. 4533 CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl()); 4534 4535 const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions(); 4536 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 4537 NamedDecl *D = *I; 4538 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 4539 if (isa<UsingShadowDecl>(D)) 4540 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 4541 4542 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 4543 CXXConversionDecl *Conv; 4544 if (ConvTemplate) 4545 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 4546 else 4547 Conv = cast<CXXConversionDecl>(D); 4548 4549 // If the conversion function doesn't return a reference type, 4550 // it can't be considered for this conversion unless we're allowed to 4551 // consider rvalues. 4552 // FIXME: Do we need to make sure that we only consider conversion 4553 // candidates with reference-compatible results? That might be needed to 4554 // break recursion. 4555 if ((AllowExplicitConvs || !Conv->isExplicit()) && 4556 (AllowRValues || 4557 Conv->getConversionType()->isLValueReferenceType())) { 4558 if (ConvTemplate) 4559 S.AddTemplateConversionCandidate( 4560 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, 4561 CandidateSet, 4562 /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs); 4563 else 4564 S.AddConversionCandidate( 4565 Conv, I.getPair(), ActingDC, Initializer, DestType, CandidateSet, 4566 /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs); 4567 } 4568 } 4569 } 4570 if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl()) 4571 return OR_No_Viable_Function; 4572 4573 SourceLocation DeclLoc = Initializer->getBeginLoc(); 4574 4575 // Perform overload resolution. If it fails, return the failed result. 4576 OverloadCandidateSet::iterator Best; 4577 if (OverloadingResult Result 4578 = CandidateSet.BestViableFunction(S, DeclLoc, Best)) 4579 return Result; 4580 4581 FunctionDecl *Function = Best->Function; 4582 // This is the overload that will be used for this initialization step if we 4583 // use this initialization. Mark it as referenced. 4584 Function->setReferenced(); 4585 4586 // Compute the returned type and value kind of the conversion. 4587 QualType cv3T3; 4588 if (isa<CXXConversionDecl>(Function)) 4589 cv3T3 = Function->getReturnType(); 4590 else 4591 cv3T3 = T1; 4592 4593 ExprValueKind VK = VK_RValue; 4594 if (cv3T3->isLValueReferenceType()) 4595 VK = VK_LValue; 4596 else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>()) 4597 VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue; 4598 cv3T3 = cv3T3.getNonLValueExprType(S.Context); 4599 4600 // Add the user-defined conversion step. 4601 bool HadMultipleCandidates = (CandidateSet.size() > 1); 4602 Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3, 4603 HadMultipleCandidates); 4604 4605 // Determine whether we'll need to perform derived-to-base adjustments or 4606 // other conversions. 4607 bool NewDerivedToBase = false; 4608 bool NewObjCConversion = false; 4609 bool NewObjCLifetimeConversion = false; 4610 bool NewFunctionConversion = false; 4611 Sema::ReferenceCompareResult NewRefRelationship = 4612 S.CompareReferenceRelationship( 4613 DeclLoc, T1, cv3T3, NewDerivedToBase, NewObjCConversion, 4614 NewObjCLifetimeConversion, NewFunctionConversion); 4615 4616 // Add the final conversion sequence, if necessary. 4617 if (NewRefRelationship == Sema::Ref_Incompatible) { 4618 assert(!isa<CXXConstructorDecl>(Function) && 4619 "should not have conversion after constructor"); 4620 4621 ImplicitConversionSequence ICS; 4622 ICS.setStandard(); 4623 ICS.Standard = Best->FinalConversion; 4624 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2)); 4625 4626 // Every implicit conversion results in a prvalue, except for a glvalue 4627 // derived-to-base conversion, which we handle below. 4628 cv3T3 = ICS.Standard.getToType(2); 4629 VK = VK_RValue; 4630 } 4631 4632 // If the converted initializer is a prvalue, its type T4 is adjusted to 4633 // type "cv1 T4" and the temporary materialization conversion is applied. 4634 // 4635 // We adjust the cv-qualifications to match the reference regardless of 4636 // whether we have a prvalue so that the AST records the change. In this 4637 // case, T4 is "cv3 T3". 4638 QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers()); 4639 if (cv1T4.getQualifiers() != cv3T3.getQualifiers()) 4640 Sequence.AddQualificationConversionStep(cv1T4, VK); 4641 Sequence.AddReferenceBindingStep(cv1T4, VK == VK_RValue); 4642 VK = IsLValueRef ? VK_LValue : VK_XValue; 4643 4644 if (NewDerivedToBase) 4645 Sequence.AddDerivedToBaseCastStep(cv1T1, VK); 4646 else if (NewObjCConversion) 4647 Sequence.AddObjCObjectConversionStep(cv1T1); 4648 else if (NewFunctionConversion) 4649 Sequence.AddQualificationConversionStep(cv1T1, VK); 4650 4651 return OR_Success; 4652 } 4653 4654 static void CheckCXX98CompatAccessibleCopy(Sema &S, 4655 const InitializedEntity &Entity, 4656 Expr *CurInitExpr); 4657 4658 /// Attempt reference initialization (C++0x [dcl.init.ref]) 4659 static void TryReferenceInitialization(Sema &S, 4660 const InitializedEntity &Entity, 4661 const InitializationKind &Kind, 4662 Expr *Initializer, 4663 InitializationSequence &Sequence) { 4664 QualType DestType = Entity.getType(); 4665 QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); 4666 Qualifiers T1Quals; 4667 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); 4668 QualType cv2T2 = Initializer->getType(); 4669 Qualifiers T2Quals; 4670 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); 4671 4672 // If the initializer is the address of an overloaded function, try 4673 // to resolve the overloaded function. If all goes well, T2 is the 4674 // type of the resulting function. 4675 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, 4676 T1, Sequence)) 4677 return; 4678 4679 // Delegate everything else to a subfunction. 4680 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, 4681 T1Quals, cv2T2, T2, T2Quals, Sequence); 4682 } 4683 4684 /// Determine whether an expression is a non-referenceable glvalue (one to 4685 /// which a reference can never bind). Attempting to bind a reference to 4686 /// such a glvalue will always create a temporary. 4687 static bool isNonReferenceableGLValue(Expr *E) { 4688 return E->refersToBitField() || E->refersToVectorElement(); 4689 } 4690 4691 /// Reference initialization without resolving overloaded functions. 4692 static void TryReferenceInitializationCore(Sema &S, 4693 const InitializedEntity &Entity, 4694 const InitializationKind &Kind, 4695 Expr *Initializer, 4696 QualType cv1T1, QualType T1, 4697 Qualifiers T1Quals, 4698 QualType cv2T2, QualType T2, 4699 Qualifiers T2Quals, 4700 InitializationSequence &Sequence) { 4701 QualType DestType = Entity.getType(); 4702 SourceLocation DeclLoc = Initializer->getBeginLoc(); 4703 // Compute some basic properties of the types and the initializer. 4704 bool isLValueRef = DestType->isLValueReferenceType(); 4705 bool isRValueRef = !isLValueRef; 4706 bool DerivedToBase = false; 4707 bool ObjCConversion = false; 4708 bool ObjCLifetimeConversion = false; 4709 bool FunctionConversion = false; 4710 Expr::Classification InitCategory = Initializer->Classify(S.Context); 4711 Sema::ReferenceCompareResult RefRelationship = S.CompareReferenceRelationship( 4712 DeclLoc, cv1T1, cv2T2, DerivedToBase, ObjCConversion, 4713 ObjCLifetimeConversion, FunctionConversion); 4714 4715 // C++0x [dcl.init.ref]p5: 4716 // A reference to type "cv1 T1" is initialized by an expression of type 4717 // "cv2 T2" as follows: 4718 // 4719 // - If the reference is an lvalue reference and the initializer 4720 // expression 4721 // Note the analogous bullet points for rvalue refs to functions. Because 4722 // there are no function rvalues in C++, rvalue refs to functions are treated 4723 // like lvalue refs. 4724 OverloadingResult ConvOvlResult = OR_Success; 4725 bool T1Function = T1->isFunctionType(); 4726 if (isLValueRef || T1Function) { 4727 if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) && 4728 (RefRelationship == Sema::Ref_Compatible || 4729 (Kind.isCStyleOrFunctionalCast() && 4730 RefRelationship == Sema::Ref_Related))) { 4731 // - is an lvalue (but is not a bit-field), and "cv1 T1" is 4732 // reference-compatible with "cv2 T2," or 4733 if (T1Quals != T2Quals) 4734 // Convert to cv1 T2. This should only add qualifiers unless this is a 4735 // c-style cast. The removal of qualifiers in that case notionally 4736 // happens after the reference binding, but that doesn't matter. 4737 Sequence.AddQualificationConversionStep( 4738 S.Context.getQualifiedType(T2, T1Quals), 4739 Initializer->getValueKind()); 4740 if (DerivedToBase) 4741 Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue); 4742 else if (ObjCConversion) 4743 Sequence.AddObjCObjectConversionStep(cv1T1); 4744 else if (FunctionConversion) 4745 Sequence.AddQualificationConversionStep(cv1T1, VK_LValue); 4746 4747 // We only create a temporary here when binding a reference to a 4748 // bit-field or vector element. Those cases are't supposed to be 4749 // handled by this bullet, but the outcome is the same either way. 4750 Sequence.AddReferenceBindingStep(cv1T1, false); 4751 return; 4752 } 4753 4754 // - has a class type (i.e., T2 is a class type), where T1 is not 4755 // reference-related to T2, and can be implicitly converted to an 4756 // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible 4757 // with "cv3 T3" (this conversion is selected by enumerating the 4758 // applicable conversion functions (13.3.1.6) and choosing the best 4759 // one through overload resolution (13.3)), 4760 // If we have an rvalue ref to function type here, the rhs must be 4761 // an rvalue. DR1287 removed the "implicitly" here. 4762 if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() && 4763 (isLValueRef || InitCategory.isRValue())) { 4764 ConvOvlResult = TryRefInitWithConversionFunction( 4765 S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef, 4766 /*IsLValueRef*/ isLValueRef, Sequence); 4767 if (ConvOvlResult == OR_Success) 4768 return; 4769 if (ConvOvlResult != OR_No_Viable_Function) 4770 Sequence.SetOverloadFailure( 4771 InitializationSequence::FK_ReferenceInitOverloadFailed, 4772 ConvOvlResult); 4773 } 4774 } 4775 4776 // - Otherwise, the reference shall be an lvalue reference to a 4777 // non-volatile const type (i.e., cv1 shall be const), or the reference 4778 // shall be an rvalue reference. 4779 // For address spaces, we interpret this to mean that an addr space 4780 // of a reference "cv1 T1" is a superset of addr space of "cv2 T2". 4781 if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile() && 4782 T1Quals.isAddressSpaceSupersetOf(T2Quals))) { 4783 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) 4784 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 4785 else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) 4786 Sequence.SetOverloadFailure( 4787 InitializationSequence::FK_ReferenceInitOverloadFailed, 4788 ConvOvlResult); 4789 else if (!InitCategory.isLValue()) 4790 Sequence.SetFailed( 4791 T1Quals.isAddressSpaceSupersetOf(T2Quals) 4792 ? InitializationSequence:: 4793 FK_NonConstLValueReferenceBindingToTemporary 4794 : InitializationSequence::FK_ReferenceInitDropsQualifiers); 4795 else { 4796 InitializationSequence::FailureKind FK; 4797 switch (RefRelationship) { 4798 case Sema::Ref_Compatible: 4799 if (Initializer->refersToBitField()) 4800 FK = InitializationSequence:: 4801 FK_NonConstLValueReferenceBindingToBitfield; 4802 else if (Initializer->refersToVectorElement()) 4803 FK = InitializationSequence:: 4804 FK_NonConstLValueReferenceBindingToVectorElement; 4805 else 4806 llvm_unreachable("unexpected kind of compatible initializer"); 4807 break; 4808 case Sema::Ref_Related: 4809 FK = InitializationSequence::FK_ReferenceInitDropsQualifiers; 4810 break; 4811 case Sema::Ref_Incompatible: 4812 FK = InitializationSequence:: 4813 FK_NonConstLValueReferenceBindingToUnrelated; 4814 break; 4815 } 4816 Sequence.SetFailed(FK); 4817 } 4818 return; 4819 } 4820 4821 // - If the initializer expression 4822 // - is an 4823 // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or 4824 // [1z] rvalue (but not a bit-field) or 4825 // function lvalue and "cv1 T1" is reference-compatible with "cv2 T2" 4826 // 4827 // Note: functions are handled above and below rather than here... 4828 if (!T1Function && 4829 (RefRelationship == Sema::Ref_Compatible || 4830 (Kind.isCStyleOrFunctionalCast() && 4831 RefRelationship == Sema::Ref_Related)) && 4832 ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) || 4833 (InitCategory.isPRValue() && 4834 (S.getLangOpts().CPlusPlus17 || T2->isRecordType() || 4835 T2->isArrayType())))) { 4836 ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_RValue; 4837 if (InitCategory.isPRValue() && T2->isRecordType()) { 4838 // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the 4839 // compiler the freedom to perform a copy here or bind to the 4840 // object, while C++0x requires that we bind directly to the 4841 // object. Hence, we always bind to the object without making an 4842 // extra copy. However, in C++03 requires that we check for the 4843 // presence of a suitable copy constructor: 4844 // 4845 // The constructor that would be used to make the copy shall 4846 // be callable whether or not the copy is actually done. 4847 if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt) 4848 Sequence.AddExtraneousCopyToTemporary(cv2T2); 4849 else if (S.getLangOpts().CPlusPlus11) 4850 CheckCXX98CompatAccessibleCopy(S, Entity, Initializer); 4851 } 4852 4853 // C++1z [dcl.init.ref]/5.2.1.2: 4854 // If the converted initializer is a prvalue, its type T4 is adjusted 4855 // to type "cv1 T4" and the temporary materialization conversion is 4856 // applied. 4857 // Postpone address space conversions to after the temporary materialization 4858 // conversion to allow creating temporaries in the alloca address space. 4859 auto T1QualsIgnoreAS = T1Quals; 4860 auto T2QualsIgnoreAS = T2Quals; 4861 if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) { 4862 T1QualsIgnoreAS.removeAddressSpace(); 4863 T2QualsIgnoreAS.removeAddressSpace(); 4864 } 4865 QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1QualsIgnoreAS); 4866 if (T1QualsIgnoreAS != T2QualsIgnoreAS) 4867 Sequence.AddQualificationConversionStep(cv1T4, ValueKind); 4868 Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_RValue); 4869 ValueKind = isLValueRef ? VK_LValue : VK_XValue; 4870 // Add addr space conversion if required. 4871 if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) { 4872 auto T4Quals = cv1T4.getQualifiers(); 4873 T4Quals.addAddressSpace(T1Quals.getAddressSpace()); 4874 QualType cv1T4WithAS = S.Context.getQualifiedType(T2, T4Quals); 4875 Sequence.AddQualificationConversionStep(cv1T4WithAS, ValueKind); 4876 } 4877 4878 // In any case, the reference is bound to the resulting glvalue (or to 4879 // an appropriate base class subobject). 4880 if (DerivedToBase) 4881 Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind); 4882 else if (ObjCConversion) 4883 Sequence.AddObjCObjectConversionStep(cv1T1); 4884 return; 4885 } 4886 4887 // - has a class type (i.e., T2 is a class type), where T1 is not 4888 // reference-related to T2, and can be implicitly converted to an 4889 // xvalue, class prvalue, or function lvalue of type "cv3 T3", 4890 // where "cv1 T1" is reference-compatible with "cv3 T3", 4891 // 4892 // DR1287 removes the "implicitly" here. 4893 if (T2->isRecordType()) { 4894 if (RefRelationship == Sema::Ref_Incompatible) { 4895 ConvOvlResult = TryRefInitWithConversionFunction( 4896 S, Entity, Kind, Initializer, /*AllowRValues*/ true, 4897 /*IsLValueRef*/ isLValueRef, Sequence); 4898 if (ConvOvlResult) 4899 Sequence.SetOverloadFailure( 4900 InitializationSequence::FK_ReferenceInitOverloadFailed, 4901 ConvOvlResult); 4902 4903 return; 4904 } 4905 4906 if (RefRelationship == Sema::Ref_Compatible && 4907 isRValueRef && InitCategory.isLValue()) { 4908 Sequence.SetFailed( 4909 InitializationSequence::FK_RValueReferenceBindingToLValue); 4910 return; 4911 } 4912 4913 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); 4914 return; 4915 } 4916 4917 // - Otherwise, a temporary of type "cv1 T1" is created and initialized 4918 // from the initializer expression using the rules for a non-reference 4919 // copy-initialization (8.5). The reference is then bound to the 4920 // temporary. [...] 4921 4922 // Ignore address space of reference type at this point and perform address 4923 // space conversion after the reference binding step. 4924 QualType cv1T1IgnoreAS = 4925 T1Quals.hasAddressSpace() 4926 ? S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace()) 4927 : cv1T1; 4928 4929 InitializedEntity TempEntity = 4930 InitializedEntity::InitializeTemporary(cv1T1IgnoreAS); 4931 4932 // FIXME: Why do we use an implicit conversion here rather than trying 4933 // copy-initialization? 4934 ImplicitConversionSequence ICS 4935 = S.TryImplicitConversion(Initializer, TempEntity.getType(), 4936 /*SuppressUserConversions=*/false, 4937 /*AllowExplicit=*/false, 4938 /*FIXME:InOverloadResolution=*/false, 4939 /*CStyle=*/Kind.isCStyleOrFunctionalCast(), 4940 /*AllowObjCWritebackConversion=*/false); 4941 4942 if (ICS.isBad()) { 4943 // FIXME: Use the conversion function set stored in ICS to turn 4944 // this into an overloading ambiguity diagnostic. However, we need 4945 // to keep that set as an OverloadCandidateSet rather than as some 4946 // other kind of set. 4947 if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) 4948 Sequence.SetOverloadFailure( 4949 InitializationSequence::FK_ReferenceInitOverloadFailed, 4950 ConvOvlResult); 4951 else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) 4952 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 4953 else 4954 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed); 4955 return; 4956 } else { 4957 Sequence.AddConversionSequenceStep(ICS, TempEntity.getType()); 4958 } 4959 4960 // [...] If T1 is reference-related to T2, cv1 must be the 4961 // same cv-qualification as, or greater cv-qualification 4962 // than, cv2; otherwise, the program is ill-formed. 4963 unsigned T1CVRQuals = T1Quals.getCVRQualifiers(); 4964 unsigned T2CVRQuals = T2Quals.getCVRQualifiers(); 4965 if ((RefRelationship == Sema::Ref_Related && 4966 (T1CVRQuals | T2CVRQuals) != T1CVRQuals) || 4967 !T1Quals.isAddressSpaceSupersetOf(T2Quals)) { 4968 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); 4969 return; 4970 } 4971 4972 // [...] If T1 is reference-related to T2 and the reference is an rvalue 4973 // reference, the initializer expression shall not be an lvalue. 4974 if (RefRelationship >= Sema::Ref_Related && !isLValueRef && 4975 InitCategory.isLValue()) { 4976 Sequence.SetFailed( 4977 InitializationSequence::FK_RValueReferenceBindingToLValue); 4978 return; 4979 } 4980 4981 Sequence.AddReferenceBindingStep(cv1T1IgnoreAS, /*BindingTemporary=*/true); 4982 4983 if (T1Quals.hasAddressSpace()) { 4984 if (!Qualifiers::isAddressSpaceSupersetOf(T1Quals.getAddressSpace(), 4985 LangAS::Default)) { 4986 Sequence.SetFailed( 4987 InitializationSequence::FK_ReferenceAddrspaceMismatchTemporary); 4988 return; 4989 } 4990 Sequence.AddQualificationConversionStep(cv1T1, isLValueRef ? VK_LValue 4991 : VK_XValue); 4992 } 4993 } 4994 4995 /// Attempt character array initialization from a string literal 4996 /// (C++ [dcl.init.string], C99 6.7.8). 4997 static void TryStringLiteralInitialization(Sema &S, 4998 const InitializedEntity &Entity, 4999 const InitializationKind &Kind, 5000 Expr *Initializer, 5001 InitializationSequence &Sequence) { 5002 Sequence.AddStringInitStep(Entity.getType()); 5003 } 5004 5005 /// Attempt value initialization (C++ [dcl.init]p7). 5006 static void TryValueInitialization(Sema &S, 5007 const InitializedEntity &Entity, 5008 const InitializationKind &Kind, 5009 InitializationSequence &Sequence, 5010 InitListExpr *InitList) { 5011 assert((!InitList || InitList->getNumInits() == 0) && 5012 "Shouldn't use value-init for non-empty init lists"); 5013 5014 // C++98 [dcl.init]p5, C++11 [dcl.init]p7: 5015 // 5016 // To value-initialize an object of type T means: 5017 QualType T = Entity.getType(); 5018 5019 // -- if T is an array type, then each element is value-initialized; 5020 T = S.Context.getBaseElementType(T); 5021 5022 if (const RecordType *RT = T->getAs<RecordType>()) { 5023 if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 5024 bool NeedZeroInitialization = true; 5025 // C++98: 5026 // -- if T is a class type (clause 9) with a user-declared constructor 5027 // (12.1), then the default constructor for T is called (and the 5028 // initialization is ill-formed if T has no accessible default 5029 // constructor); 5030 // C++11: 5031 // -- if T is a class type (clause 9) with either no default constructor 5032 // (12.1 [class.ctor]) or a default constructor that is user-provided 5033 // or deleted, then the object is default-initialized; 5034 // 5035 // Note that the C++11 rule is the same as the C++98 rule if there are no 5036 // defaulted or deleted constructors, so we just use it unconditionally. 5037 CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl); 5038 if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted()) 5039 NeedZeroInitialization = false; 5040 5041 // -- if T is a (possibly cv-qualified) non-union class type without a 5042 // user-provided or deleted default constructor, then the object is 5043 // zero-initialized and, if T has a non-trivial default constructor, 5044 // default-initialized; 5045 // The 'non-union' here was removed by DR1502. The 'non-trivial default 5046 // constructor' part was removed by DR1507. 5047 if (NeedZeroInitialization) 5048 Sequence.AddZeroInitializationStep(Entity.getType()); 5049 5050 // C++03: 5051 // -- if T is a non-union class type without a user-declared constructor, 5052 // then every non-static data member and base class component of T is 5053 // value-initialized; 5054 // [...] A program that calls for [...] value-initialization of an 5055 // entity of reference type is ill-formed. 5056 // 5057 // C++11 doesn't need this handling, because value-initialization does not 5058 // occur recursively there, and the implicit default constructor is 5059 // defined as deleted in the problematic cases. 5060 if (!S.getLangOpts().CPlusPlus11 && 5061 ClassDecl->hasUninitializedReferenceMember()) { 5062 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference); 5063 return; 5064 } 5065 5066 // If this is list-value-initialization, pass the empty init list on when 5067 // building the constructor call. This affects the semantics of a few 5068 // things (such as whether an explicit default constructor can be called). 5069 Expr *InitListAsExpr = InitList; 5070 MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0); 5071 bool InitListSyntax = InitList; 5072 5073 // FIXME: Instead of creating a CXXConstructExpr of array type here, 5074 // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr. 5075 return TryConstructorInitialization( 5076 S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax); 5077 } 5078 } 5079 5080 Sequence.AddZeroInitializationStep(Entity.getType()); 5081 } 5082 5083 /// Attempt default initialization (C++ [dcl.init]p6). 5084 static void TryDefaultInitialization(Sema &S, 5085 const InitializedEntity &Entity, 5086 const InitializationKind &Kind, 5087 InitializationSequence &Sequence) { 5088 assert(Kind.getKind() == InitializationKind::IK_Default); 5089 5090 // C++ [dcl.init]p6: 5091 // To default-initialize an object of type T means: 5092 // - if T is an array type, each element is default-initialized; 5093 QualType DestType = S.Context.getBaseElementType(Entity.getType()); 5094 5095 // - if T is a (possibly cv-qualified) class type (Clause 9), the default 5096 // constructor for T is called (and the initialization is ill-formed if 5097 // T has no accessible default constructor); 5098 if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) { 5099 TryConstructorInitialization(S, Entity, Kind, None, DestType, 5100 Entity.getType(), Sequence); 5101 return; 5102 } 5103 5104 // - otherwise, no initialization is performed. 5105 5106 // If a program calls for the default initialization of an object of 5107 // a const-qualified type T, T shall be a class type with a user-provided 5108 // default constructor. 5109 if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) { 5110 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity)) 5111 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); 5112 return; 5113 } 5114 5115 // If the destination type has a lifetime property, zero-initialize it. 5116 if (DestType.getQualifiers().hasObjCLifetime()) { 5117 Sequence.AddZeroInitializationStep(Entity.getType()); 5118 return; 5119 } 5120 } 5121 5122 /// Attempt a user-defined conversion between two types (C++ [dcl.init]), 5123 /// which enumerates all conversion functions and performs overload resolution 5124 /// to select the best. 5125 static void TryUserDefinedConversion(Sema &S, 5126 QualType DestType, 5127 const InitializationKind &Kind, 5128 Expr *Initializer, 5129 InitializationSequence &Sequence, 5130 bool TopLevelOfInitList) { 5131 assert(!DestType->isReferenceType() && "References are handled elsewhere"); 5132 QualType SourceType = Initializer->getType(); 5133 assert((DestType->isRecordType() || SourceType->isRecordType()) && 5134 "Must have a class type to perform a user-defined conversion"); 5135 5136 // Build the candidate set directly in the initialization sequence 5137 // structure, so that it will persist if we fail. 5138 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 5139 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); 5140 CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace()); 5141 5142 // Determine whether we are allowed to call explicit constructors or 5143 // explicit conversion operators. 5144 bool AllowExplicit = Kind.AllowExplicit(); 5145 5146 if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) { 5147 // The type we're converting to is a class type. Enumerate its constructors 5148 // to see if there is a suitable conversion. 5149 CXXRecordDecl *DestRecordDecl 5150 = cast<CXXRecordDecl>(DestRecordType->getDecl()); 5151 5152 // Try to complete the type we're converting to. 5153 if (S.isCompleteType(Kind.getLocation(), DestType)) { 5154 for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) { 5155 auto Info = getConstructorInfo(D); 5156 if (!Info.Constructor) 5157 continue; 5158 5159 if (!Info.Constructor->isInvalidDecl() && 5160 Info.Constructor->isConvertingConstructor(AllowExplicit)) { 5161 if (Info.ConstructorTmpl) 5162 S.AddTemplateOverloadCandidate( 5163 Info.ConstructorTmpl, Info.FoundDecl, 5164 /*ExplicitArgs*/ nullptr, Initializer, CandidateSet, 5165 /*SuppressUserConversions=*/true, 5166 /*PartialOverloading*/ false, AllowExplicit); 5167 else 5168 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, 5169 Initializer, CandidateSet, 5170 /*SuppressUserConversions=*/true, 5171 /*PartialOverloading*/ false, AllowExplicit); 5172 } 5173 } 5174 } 5175 } 5176 5177 SourceLocation DeclLoc = Initializer->getBeginLoc(); 5178 5179 if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) { 5180 // The type we're converting from is a class type, enumerate its conversion 5181 // functions. 5182 5183 // We can only enumerate the conversion functions for a complete type; if 5184 // the type isn't complete, simply skip this step. 5185 if (S.isCompleteType(DeclLoc, SourceType)) { 5186 CXXRecordDecl *SourceRecordDecl 5187 = cast<CXXRecordDecl>(SourceRecordType->getDecl()); 5188 5189 const auto &Conversions = 5190 SourceRecordDecl->getVisibleConversionFunctions(); 5191 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 5192 NamedDecl *D = *I; 5193 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 5194 if (isa<UsingShadowDecl>(D)) 5195 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 5196 5197 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 5198 CXXConversionDecl *Conv; 5199 if (ConvTemplate) 5200 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 5201 else 5202 Conv = cast<CXXConversionDecl>(D); 5203 5204 if (AllowExplicit || !Conv->isExplicit()) { 5205 if (ConvTemplate) 5206 S.AddTemplateConversionCandidate( 5207 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, 5208 CandidateSet, AllowExplicit, AllowExplicit); 5209 else 5210 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer, 5211 DestType, CandidateSet, AllowExplicit, 5212 AllowExplicit); 5213 } 5214 } 5215 } 5216 } 5217 5218 // Perform overload resolution. If it fails, return the failed result. 5219 OverloadCandidateSet::iterator Best; 5220 if (OverloadingResult Result 5221 = CandidateSet.BestViableFunction(S, DeclLoc, Best)) { 5222 Sequence.SetOverloadFailure( 5223 InitializationSequence::FK_UserConversionOverloadFailed, 5224 Result); 5225 return; 5226 } 5227 5228 FunctionDecl *Function = Best->Function; 5229 Function->setReferenced(); 5230 bool HadMultipleCandidates = (CandidateSet.size() > 1); 5231 5232 if (isa<CXXConstructorDecl>(Function)) { 5233 // Add the user-defined conversion step. Any cv-qualification conversion is 5234 // subsumed by the initialization. Per DR5, the created temporary is of the 5235 // cv-unqualified type of the destination. 5236 Sequence.AddUserConversionStep(Function, Best->FoundDecl, 5237 DestType.getUnqualifiedType(), 5238 HadMultipleCandidates); 5239 5240 // C++14 and before: 5241 // - if the function is a constructor, the call initializes a temporary 5242 // of the cv-unqualified version of the destination type. The [...] 5243 // temporary [...] is then used to direct-initialize, according to the 5244 // rules above, the object that is the destination of the 5245 // copy-initialization. 5246 // Note that this just performs a simple object copy from the temporary. 5247 // 5248 // C++17: 5249 // - if the function is a constructor, the call is a prvalue of the 5250 // cv-unqualified version of the destination type whose return object 5251 // is initialized by the constructor. The call is used to 5252 // direct-initialize, according to the rules above, the object that 5253 // is the destination of the copy-initialization. 5254 // Therefore we need to do nothing further. 5255 // 5256 // FIXME: Mark this copy as extraneous. 5257 if (!S.getLangOpts().CPlusPlus17) 5258 Sequence.AddFinalCopy(DestType); 5259 else if (DestType.hasQualifiers()) 5260 Sequence.AddQualificationConversionStep(DestType, VK_RValue); 5261 return; 5262 } 5263 5264 // Add the user-defined conversion step that calls the conversion function. 5265 QualType ConvType = Function->getCallResultType(); 5266 Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType, 5267 HadMultipleCandidates); 5268 5269 if (ConvType->getAs<RecordType>()) { 5270 // The call is used to direct-initialize [...] the object that is the 5271 // destination of the copy-initialization. 5272 // 5273 // In C++17, this does not call a constructor if we enter /17.6.1: 5274 // - If the initializer expression is a prvalue and the cv-unqualified 5275 // version of the source type is the same as the class of the 5276 // destination [... do not make an extra copy] 5277 // 5278 // FIXME: Mark this copy as extraneous. 5279 if (!S.getLangOpts().CPlusPlus17 || 5280 Function->getReturnType()->isReferenceType() || 5281 !S.Context.hasSameUnqualifiedType(ConvType, DestType)) 5282 Sequence.AddFinalCopy(DestType); 5283 else if (!S.Context.hasSameType(ConvType, DestType)) 5284 Sequence.AddQualificationConversionStep(DestType, VK_RValue); 5285 return; 5286 } 5287 5288 // If the conversion following the call to the conversion function 5289 // is interesting, add it as a separate step. 5290 if (Best->FinalConversion.First || Best->FinalConversion.Second || 5291 Best->FinalConversion.Third) { 5292 ImplicitConversionSequence ICS; 5293 ICS.setStandard(); 5294 ICS.Standard = Best->FinalConversion; 5295 Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList); 5296 } 5297 } 5298 5299 /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>, 5300 /// a function with a pointer return type contains a 'return false;' statement. 5301 /// In C++11, 'false' is not a null pointer, so this breaks the build of any 5302 /// code using that header. 5303 /// 5304 /// Work around this by treating 'return false;' as zero-initializing the result 5305 /// if it's used in a pointer-returning function in a system header. 5306 static bool isLibstdcxxPointerReturnFalseHack(Sema &S, 5307 const InitializedEntity &Entity, 5308 const Expr *Init) { 5309 return S.getLangOpts().CPlusPlus11 && 5310 Entity.getKind() == InitializedEntity::EK_Result && 5311 Entity.getType()->isPointerType() && 5312 isa<CXXBoolLiteralExpr>(Init) && 5313 !cast<CXXBoolLiteralExpr>(Init)->getValue() && 5314 S.getSourceManager().isInSystemHeader(Init->getExprLoc()); 5315 } 5316 5317 /// The non-zero enum values here are indexes into diagnostic alternatives. 5318 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar }; 5319 5320 /// Determines whether this expression is an acceptable ICR source. 5321 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e, 5322 bool isAddressOf, bool &isWeakAccess) { 5323 // Skip parens. 5324 e = e->IgnoreParens(); 5325 5326 // Skip address-of nodes. 5327 if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) { 5328 if (op->getOpcode() == UO_AddrOf) 5329 return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true, 5330 isWeakAccess); 5331 5332 // Skip certain casts. 5333 } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) { 5334 switch (ce->getCastKind()) { 5335 case CK_Dependent: 5336 case CK_BitCast: 5337 case CK_LValueBitCast: 5338 case CK_NoOp: 5339 return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess); 5340 5341 case CK_ArrayToPointerDecay: 5342 return IIK_nonscalar; 5343 5344 case CK_NullToPointer: 5345 return IIK_okay; 5346 5347 default: 5348 break; 5349 } 5350 5351 // If we have a declaration reference, it had better be a local variable. 5352 } else if (isa<DeclRefExpr>(e)) { 5353 // set isWeakAccess to true, to mean that there will be an implicit 5354 // load which requires a cleanup. 5355 if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak) 5356 isWeakAccess = true; 5357 5358 if (!isAddressOf) return IIK_nonlocal; 5359 5360 VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl()); 5361 if (!var) return IIK_nonlocal; 5362 5363 return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal); 5364 5365 // If we have a conditional operator, check both sides. 5366 } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) { 5367 if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf, 5368 isWeakAccess)) 5369 return iik; 5370 5371 return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess); 5372 5373 // These are never scalar. 5374 } else if (isa<ArraySubscriptExpr>(e)) { 5375 return IIK_nonscalar; 5376 5377 // Otherwise, it needs to be a null pointer constant. 5378 } else { 5379 return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull) 5380 ? IIK_okay : IIK_nonlocal); 5381 } 5382 5383 return IIK_nonlocal; 5384 } 5385 5386 /// Check whether the given expression is a valid operand for an 5387 /// indirect copy/restore. 5388 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) { 5389 assert(src->isRValue()); 5390 bool isWeakAccess = false; 5391 InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess); 5392 // If isWeakAccess to true, there will be an implicit 5393 // load which requires a cleanup. 5394 if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess) 5395 S.Cleanup.setExprNeedsCleanups(true); 5396 5397 if (iik == IIK_okay) return; 5398 5399 S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback) 5400 << ((unsigned) iik - 1) // shift index into diagnostic explanations 5401 << src->getSourceRange(); 5402 } 5403 5404 /// Determine whether we have compatible array types for the 5405 /// purposes of GNU by-copy array initialization. 5406 static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest, 5407 const ArrayType *Source) { 5408 // If the source and destination array types are equivalent, we're 5409 // done. 5410 if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0))) 5411 return true; 5412 5413 // Make sure that the element types are the same. 5414 if (!Context.hasSameType(Dest->getElementType(), Source->getElementType())) 5415 return false; 5416 5417 // The only mismatch we allow is when the destination is an 5418 // incomplete array type and the source is a constant array type. 5419 return Source->isConstantArrayType() && Dest->isIncompleteArrayType(); 5420 } 5421 5422 static bool tryObjCWritebackConversion(Sema &S, 5423 InitializationSequence &Sequence, 5424 const InitializedEntity &Entity, 5425 Expr *Initializer) { 5426 bool ArrayDecay = false; 5427 QualType ArgType = Initializer->getType(); 5428 QualType ArgPointee; 5429 if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) { 5430 ArrayDecay = true; 5431 ArgPointee = ArgArrayType->getElementType(); 5432 ArgType = S.Context.getPointerType(ArgPointee); 5433 } 5434 5435 // Handle write-back conversion. 5436 QualType ConvertedArgType; 5437 if (!S.isObjCWritebackConversion(ArgType, Entity.getType(), 5438 ConvertedArgType)) 5439 return false; 5440 5441 // We should copy unless we're passing to an argument explicitly 5442 // marked 'out'. 5443 bool ShouldCopy = true; 5444 if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl())) 5445 ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); 5446 5447 // Do we need an lvalue conversion? 5448 if (ArrayDecay || Initializer->isGLValue()) { 5449 ImplicitConversionSequence ICS; 5450 ICS.setStandard(); 5451 ICS.Standard.setAsIdentityConversion(); 5452 5453 QualType ResultType; 5454 if (ArrayDecay) { 5455 ICS.Standard.First = ICK_Array_To_Pointer; 5456 ResultType = S.Context.getPointerType(ArgPointee); 5457 } else { 5458 ICS.Standard.First = ICK_Lvalue_To_Rvalue; 5459 ResultType = Initializer->getType().getNonLValueExprType(S.Context); 5460 } 5461 5462 Sequence.AddConversionSequenceStep(ICS, ResultType); 5463 } 5464 5465 Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy); 5466 return true; 5467 } 5468 5469 static bool TryOCLSamplerInitialization(Sema &S, 5470 InitializationSequence &Sequence, 5471 QualType DestType, 5472 Expr *Initializer) { 5473 if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() || 5474 (!Initializer->isIntegerConstantExpr(S.Context) && 5475 !Initializer->getType()->isSamplerT())) 5476 return false; 5477 5478 Sequence.AddOCLSamplerInitStep(DestType); 5479 return true; 5480 } 5481 5482 static bool IsZeroInitializer(Expr *Initializer, Sema &S) { 5483 return Initializer->isIntegerConstantExpr(S.getASTContext()) && 5484 (Initializer->EvaluateKnownConstInt(S.getASTContext()) == 0); 5485 } 5486 5487 static bool TryOCLZeroOpaqueTypeInitialization(Sema &S, 5488 InitializationSequence &Sequence, 5489 QualType DestType, 5490 Expr *Initializer) { 5491 if (!S.getLangOpts().OpenCL) 5492 return false; 5493 5494 // 5495 // OpenCL 1.2 spec, s6.12.10 5496 // 5497 // The event argument can also be used to associate the 5498 // async_work_group_copy with a previous async copy allowing 5499 // an event to be shared by multiple async copies; otherwise 5500 // event should be zero. 5501 // 5502 if (DestType->isEventT() || DestType->isQueueT()) { 5503 if (!IsZeroInitializer(Initializer, S)) 5504 return false; 5505 5506 Sequence.AddOCLZeroOpaqueTypeStep(DestType); 5507 return true; 5508 } 5509 5510 // We should allow zero initialization for all types defined in the 5511 // cl_intel_device_side_avc_motion_estimation extension, except 5512 // intel_sub_group_avc_mce_payload_t and intel_sub_group_avc_mce_result_t. 5513 if (S.getOpenCLOptions().isEnabled( 5514 "cl_intel_device_side_avc_motion_estimation") && 5515 DestType->isOCLIntelSubgroupAVCType()) { 5516 if (DestType->isOCLIntelSubgroupAVCMcePayloadType() || 5517 DestType->isOCLIntelSubgroupAVCMceResultType()) 5518 return false; 5519 if (!IsZeroInitializer(Initializer, S)) 5520 return false; 5521 5522 Sequence.AddOCLZeroOpaqueTypeStep(DestType); 5523 return true; 5524 } 5525 5526 return false; 5527 } 5528 5529 InitializationSequence::InitializationSequence(Sema &S, 5530 const InitializedEntity &Entity, 5531 const InitializationKind &Kind, 5532 MultiExprArg Args, 5533 bool TopLevelOfInitList, 5534 bool TreatUnavailableAsInvalid) 5535 : FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) { 5536 InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList, 5537 TreatUnavailableAsInvalid); 5538 } 5539 5540 /// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the 5541 /// address of that function, this returns true. Otherwise, it returns false. 5542 static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) { 5543 auto *DRE = dyn_cast<DeclRefExpr>(E); 5544 if (!DRE || !isa<FunctionDecl>(DRE->getDecl())) 5545 return false; 5546 5547 return !S.checkAddressOfFunctionIsAvailable( 5548 cast<FunctionDecl>(DRE->getDecl())); 5549 } 5550 5551 /// Determine whether we can perform an elementwise array copy for this kind 5552 /// of entity. 5553 static bool canPerformArrayCopy(const InitializedEntity &Entity) { 5554 switch (Entity.getKind()) { 5555 case InitializedEntity::EK_LambdaCapture: 5556 // C++ [expr.prim.lambda]p24: 5557 // For array members, the array elements are direct-initialized in 5558 // increasing subscript order. 5559 return true; 5560 5561 case InitializedEntity::EK_Variable: 5562 // C++ [dcl.decomp]p1: 5563 // [...] each element is copy-initialized or direct-initialized from the 5564 // corresponding element of the assignment-expression [...] 5565 return isa<DecompositionDecl>(Entity.getDecl()); 5566 5567 case InitializedEntity::EK_Member: 5568 // C++ [class.copy.ctor]p14: 5569 // - if the member is an array, each element is direct-initialized with 5570 // the corresponding subobject of x 5571 return Entity.isImplicitMemberInitializer(); 5572 5573 case InitializedEntity::EK_ArrayElement: 5574 // All the above cases are intended to apply recursively, even though none 5575 // of them actually say that. 5576 if (auto *E = Entity.getParent()) 5577 return canPerformArrayCopy(*E); 5578 break; 5579 5580 default: 5581 break; 5582 } 5583 5584 return false; 5585 } 5586 5587 void InitializationSequence::InitializeFrom(Sema &S, 5588 const InitializedEntity &Entity, 5589 const InitializationKind &Kind, 5590 MultiExprArg Args, 5591 bool TopLevelOfInitList, 5592 bool TreatUnavailableAsInvalid) { 5593 ASTContext &Context = S.Context; 5594 5595 // Eliminate non-overload placeholder types in the arguments. We 5596 // need to do this before checking whether types are dependent 5597 // because lowering a pseudo-object expression might well give us 5598 // something of dependent type. 5599 for (unsigned I = 0, E = Args.size(); I != E; ++I) 5600 if (Args[I]->getType()->isNonOverloadPlaceholderType()) { 5601 // FIXME: should we be doing this here? 5602 ExprResult result = S.CheckPlaceholderExpr(Args[I]); 5603 if (result.isInvalid()) { 5604 SetFailed(FK_PlaceholderType); 5605 return; 5606 } 5607 Args[I] = result.get(); 5608 } 5609 5610 // C++0x [dcl.init]p16: 5611 // The semantics of initializers are as follows. The destination type is 5612 // the type of the object or reference being initialized and the source 5613 // type is the type of the initializer expression. The source type is not 5614 // defined when the initializer is a braced-init-list or when it is a 5615 // parenthesized list of expressions. 5616 QualType DestType = Entity.getType(); 5617 5618 if (DestType->isDependentType() || 5619 Expr::hasAnyTypeDependentArguments(Args)) { 5620 SequenceKind = DependentSequence; 5621 return; 5622 } 5623 5624 // Almost everything is a normal sequence. 5625 setSequenceKind(NormalSequence); 5626 5627 QualType SourceType; 5628 Expr *Initializer = nullptr; 5629 if (Args.size() == 1) { 5630 Initializer = Args[0]; 5631 if (S.getLangOpts().ObjC) { 5632 if (S.CheckObjCBridgeRelatedConversions(Initializer->getBeginLoc(), 5633 DestType, Initializer->getType(), 5634 Initializer) || 5635 S.ConversionToObjCStringLiteralCheck(DestType, Initializer)) 5636 Args[0] = Initializer; 5637 } 5638 if (!isa<InitListExpr>(Initializer)) 5639 SourceType = Initializer->getType(); 5640 } 5641 5642 // - If the initializer is a (non-parenthesized) braced-init-list, the 5643 // object is list-initialized (8.5.4). 5644 if (Kind.getKind() != InitializationKind::IK_Direct) { 5645 if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) { 5646 TryListInitialization(S, Entity, Kind, InitList, *this, 5647 TreatUnavailableAsInvalid); 5648 return; 5649 } 5650 } 5651 5652 // - If the destination type is a reference type, see 8.5.3. 5653 if (DestType->isReferenceType()) { 5654 // C++0x [dcl.init.ref]p1: 5655 // A variable declared to be a T& or T&&, that is, "reference to type T" 5656 // (8.3.2), shall be initialized by an object, or function, of type T or 5657 // by an object that can be converted into a T. 5658 // (Therefore, multiple arguments are not permitted.) 5659 if (Args.size() != 1) 5660 SetFailed(FK_TooManyInitsForReference); 5661 // C++17 [dcl.init.ref]p5: 5662 // A reference [...] is initialized by an expression [...] as follows: 5663 // If the initializer is not an expression, presumably we should reject, 5664 // but the standard fails to actually say so. 5665 else if (isa<InitListExpr>(Args[0])) 5666 SetFailed(FK_ParenthesizedListInitForReference); 5667 else 5668 TryReferenceInitialization(S, Entity, Kind, Args[0], *this); 5669 return; 5670 } 5671 5672 // - If the initializer is (), the object is value-initialized. 5673 if (Kind.getKind() == InitializationKind::IK_Value || 5674 (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) { 5675 TryValueInitialization(S, Entity, Kind, *this); 5676 return; 5677 } 5678 5679 // Handle default initialization. 5680 if (Kind.getKind() == InitializationKind::IK_Default) { 5681 TryDefaultInitialization(S, Entity, Kind, *this); 5682 return; 5683 } 5684 5685 // - If the destination type is an array of characters, an array of 5686 // char16_t, an array of char32_t, or an array of wchar_t, and the 5687 // initializer is a string literal, see 8.5.2. 5688 // - Otherwise, if the destination type is an array, the program is 5689 // ill-formed. 5690 if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) { 5691 if (Initializer && isa<VariableArrayType>(DestAT)) { 5692 SetFailed(FK_VariableLengthArrayHasInitializer); 5693 return; 5694 } 5695 5696 if (Initializer) { 5697 switch (IsStringInit(Initializer, DestAT, Context)) { 5698 case SIF_None: 5699 TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this); 5700 return; 5701 case SIF_NarrowStringIntoWideChar: 5702 SetFailed(FK_NarrowStringIntoWideCharArray); 5703 return; 5704 case SIF_WideStringIntoChar: 5705 SetFailed(FK_WideStringIntoCharArray); 5706 return; 5707 case SIF_IncompatWideStringIntoWideChar: 5708 SetFailed(FK_IncompatWideStringIntoWideChar); 5709 return; 5710 case SIF_PlainStringIntoUTF8Char: 5711 SetFailed(FK_PlainStringIntoUTF8Char); 5712 return; 5713 case SIF_UTF8StringIntoPlainChar: 5714 SetFailed(FK_UTF8StringIntoPlainChar); 5715 return; 5716 case SIF_Other: 5717 break; 5718 } 5719 } 5720 5721 // Some kinds of initialization permit an array to be initialized from 5722 // another array of the same type, and perform elementwise initialization. 5723 if (Initializer && isa<ConstantArrayType>(DestAT) && 5724 S.Context.hasSameUnqualifiedType(Initializer->getType(), 5725 Entity.getType()) && 5726 canPerformArrayCopy(Entity)) { 5727 // If source is a prvalue, use it directly. 5728 if (Initializer->getValueKind() == VK_RValue) { 5729 AddArrayInitStep(DestType, /*IsGNUExtension*/false); 5730 return; 5731 } 5732 5733 // Emit element-at-a-time copy loop. 5734 InitializedEntity Element = 5735 InitializedEntity::InitializeElement(S.Context, 0, Entity); 5736 QualType InitEltT = 5737 Context.getAsArrayType(Initializer->getType())->getElementType(); 5738 OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT, 5739 Initializer->getValueKind(), 5740 Initializer->getObjectKind()); 5741 Expr *OVEAsExpr = &OVE; 5742 InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList, 5743 TreatUnavailableAsInvalid); 5744 if (!Failed()) 5745 AddArrayInitLoopStep(Entity.getType(), InitEltT); 5746 return; 5747 } 5748 5749 // Note: as an GNU C extension, we allow initialization of an 5750 // array from a compound literal that creates an array of the same 5751 // type, so long as the initializer has no side effects. 5752 if (!S.getLangOpts().CPlusPlus && Initializer && 5753 isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) && 5754 Initializer->getType()->isArrayType()) { 5755 const ArrayType *SourceAT 5756 = Context.getAsArrayType(Initializer->getType()); 5757 if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT)) 5758 SetFailed(FK_ArrayTypeMismatch); 5759 else if (Initializer->HasSideEffects(S.Context)) 5760 SetFailed(FK_NonConstantArrayInit); 5761 else { 5762 AddArrayInitStep(DestType, /*IsGNUExtension*/true); 5763 } 5764 } 5765 // Note: as a GNU C++ extension, we allow list-initialization of a 5766 // class member of array type from a parenthesized initializer list. 5767 else if (S.getLangOpts().CPlusPlus && 5768 Entity.getKind() == InitializedEntity::EK_Member && 5769 Initializer && isa<InitListExpr>(Initializer)) { 5770 TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer), 5771 *this, TreatUnavailableAsInvalid); 5772 AddParenthesizedArrayInitStep(DestType); 5773 } else if (DestAT->getElementType()->isCharType()) 5774 SetFailed(FK_ArrayNeedsInitListOrStringLiteral); 5775 else if (IsWideCharCompatible(DestAT->getElementType(), Context)) 5776 SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral); 5777 else 5778 SetFailed(FK_ArrayNeedsInitList); 5779 5780 return; 5781 } 5782 5783 // Determine whether we should consider writeback conversions for 5784 // Objective-C ARC. 5785 bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount && 5786 Entity.isParameterKind(); 5787 5788 if (TryOCLSamplerInitialization(S, *this, DestType, Initializer)) 5789 return; 5790 5791 // We're at the end of the line for C: it's either a write-back conversion 5792 // or it's a C assignment. There's no need to check anything else. 5793 if (!S.getLangOpts().CPlusPlus) { 5794 // If allowed, check whether this is an Objective-C writeback conversion. 5795 if (allowObjCWritebackConversion && 5796 tryObjCWritebackConversion(S, *this, Entity, Initializer)) { 5797 return; 5798 } 5799 5800 if (TryOCLZeroOpaqueTypeInitialization(S, *this, DestType, Initializer)) 5801 return; 5802 5803 // Handle initialization in C 5804 AddCAssignmentStep(DestType); 5805 MaybeProduceObjCObject(S, *this, Entity); 5806 return; 5807 } 5808 5809 assert(S.getLangOpts().CPlusPlus); 5810 5811 // - If the destination type is a (possibly cv-qualified) class type: 5812 if (DestType->isRecordType()) { 5813 // - If the initialization is direct-initialization, or if it is 5814 // copy-initialization where the cv-unqualified version of the 5815 // source type is the same class as, or a derived class of, the 5816 // class of the destination, constructors are considered. [...] 5817 if (Kind.getKind() == InitializationKind::IK_Direct || 5818 (Kind.getKind() == InitializationKind::IK_Copy && 5819 (Context.hasSameUnqualifiedType(SourceType, DestType) || 5820 S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, DestType)))) 5821 TryConstructorInitialization(S, Entity, Kind, Args, 5822 DestType, DestType, *this); 5823 // - Otherwise (i.e., for the remaining copy-initialization cases), 5824 // user-defined conversion sequences that can convert from the source 5825 // type to the destination type or (when a conversion function is 5826 // used) to a derived class thereof are enumerated as described in 5827 // 13.3.1.4, and the best one is chosen through overload resolution 5828 // (13.3). 5829 else 5830 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this, 5831 TopLevelOfInitList); 5832 return; 5833 } 5834 5835 assert(Args.size() >= 1 && "Zero-argument case handled above"); 5836 5837 // The remaining cases all need a source type. 5838 if (Args.size() > 1) { 5839 SetFailed(FK_TooManyInitsForScalar); 5840 return; 5841 } else if (isa<InitListExpr>(Args[0])) { 5842 SetFailed(FK_ParenthesizedListInitForScalar); 5843 return; 5844 } 5845 5846 // - Otherwise, if the source type is a (possibly cv-qualified) class 5847 // type, conversion functions are considered. 5848 if (!SourceType.isNull() && SourceType->isRecordType()) { 5849 // For a conversion to _Atomic(T) from either T or a class type derived 5850 // from T, initialize the T object then convert to _Atomic type. 5851 bool NeedAtomicConversion = false; 5852 if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) { 5853 if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) || 5854 S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, 5855 Atomic->getValueType())) { 5856 DestType = Atomic->getValueType(); 5857 NeedAtomicConversion = true; 5858 } 5859 } 5860 5861 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this, 5862 TopLevelOfInitList); 5863 MaybeProduceObjCObject(S, *this, Entity); 5864 if (!Failed() && NeedAtomicConversion) 5865 AddAtomicConversionStep(Entity.getType()); 5866 return; 5867 } 5868 5869 // - Otherwise, the initial value of the object being initialized is the 5870 // (possibly converted) value of the initializer expression. Standard 5871 // conversions (Clause 4) will be used, if necessary, to convert the 5872 // initializer expression to the cv-unqualified version of the 5873 // destination type; no user-defined conversions are considered. 5874 5875 ImplicitConversionSequence ICS 5876 = S.TryImplicitConversion(Initializer, DestType, 5877 /*SuppressUserConversions*/true, 5878 /*AllowExplicitConversions*/ false, 5879 /*InOverloadResolution*/ false, 5880 /*CStyle=*/Kind.isCStyleOrFunctionalCast(), 5881 allowObjCWritebackConversion); 5882 5883 if (ICS.isStandard() && 5884 ICS.Standard.Second == ICK_Writeback_Conversion) { 5885 // Objective-C ARC writeback conversion. 5886 5887 // We should copy unless we're passing to an argument explicitly 5888 // marked 'out'. 5889 bool ShouldCopy = true; 5890 if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl())) 5891 ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); 5892 5893 // If there was an lvalue adjustment, add it as a separate conversion. 5894 if (ICS.Standard.First == ICK_Array_To_Pointer || 5895 ICS.Standard.First == ICK_Lvalue_To_Rvalue) { 5896 ImplicitConversionSequence LvalueICS; 5897 LvalueICS.setStandard(); 5898 LvalueICS.Standard.setAsIdentityConversion(); 5899 LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0)); 5900 LvalueICS.Standard.First = ICS.Standard.First; 5901 AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0)); 5902 } 5903 5904 AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy); 5905 } else if (ICS.isBad()) { 5906 DeclAccessPair dap; 5907 if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) { 5908 AddZeroInitializationStep(Entity.getType()); 5909 } else if (Initializer->getType() == Context.OverloadTy && 5910 !S.ResolveAddressOfOverloadedFunction(Initializer, DestType, 5911 false, dap)) 5912 SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 5913 else if (Initializer->getType()->isFunctionType() && 5914 isExprAnUnaddressableFunction(S, Initializer)) 5915 SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction); 5916 else 5917 SetFailed(InitializationSequence::FK_ConversionFailed); 5918 } else { 5919 AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList); 5920 5921 MaybeProduceObjCObject(S, *this, Entity); 5922 } 5923 } 5924 5925 InitializationSequence::~InitializationSequence() { 5926 for (auto &S : Steps) 5927 S.Destroy(); 5928 } 5929 5930 //===----------------------------------------------------------------------===// 5931 // Perform initialization 5932 //===----------------------------------------------------------------------===// 5933 static Sema::AssignmentAction 5934 getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) { 5935 switch(Entity.getKind()) { 5936 case InitializedEntity::EK_Variable: 5937 case InitializedEntity::EK_New: 5938 case InitializedEntity::EK_Exception: 5939 case InitializedEntity::EK_Base: 5940 case InitializedEntity::EK_Delegating: 5941 return Sema::AA_Initializing; 5942 5943 case InitializedEntity::EK_Parameter: 5944 if (Entity.getDecl() && 5945 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) 5946 return Sema::AA_Sending; 5947 5948 return Sema::AA_Passing; 5949 5950 case InitializedEntity::EK_Parameter_CF_Audited: 5951 if (Entity.getDecl() && 5952 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) 5953 return Sema::AA_Sending; 5954 5955 return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited; 5956 5957 case InitializedEntity::EK_Result: 5958 case InitializedEntity::EK_StmtExprResult: // FIXME: Not quite right. 5959 return Sema::AA_Returning; 5960 5961 case InitializedEntity::EK_Temporary: 5962 case InitializedEntity::EK_RelatedResult: 5963 // FIXME: Can we tell apart casting vs. converting? 5964 return Sema::AA_Casting; 5965 5966 case InitializedEntity::EK_Member: 5967 case InitializedEntity::EK_Binding: 5968 case InitializedEntity::EK_ArrayElement: 5969 case InitializedEntity::EK_VectorElement: 5970 case InitializedEntity::EK_ComplexElement: 5971 case InitializedEntity::EK_BlockElement: 5972 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 5973 case InitializedEntity::EK_LambdaCapture: 5974 case InitializedEntity::EK_CompoundLiteralInit: 5975 return Sema::AA_Initializing; 5976 } 5977 5978 llvm_unreachable("Invalid EntityKind!"); 5979 } 5980 5981 /// Whether we should bind a created object as a temporary when 5982 /// initializing the given entity. 5983 static bool shouldBindAsTemporary(const InitializedEntity &Entity) { 5984 switch (Entity.getKind()) { 5985 case InitializedEntity::EK_ArrayElement: 5986 case InitializedEntity::EK_Member: 5987 case InitializedEntity::EK_Result: 5988 case InitializedEntity::EK_StmtExprResult: 5989 case InitializedEntity::EK_New: 5990 case InitializedEntity::EK_Variable: 5991 case InitializedEntity::EK_Base: 5992 case InitializedEntity::EK_Delegating: 5993 case InitializedEntity::EK_VectorElement: 5994 case InitializedEntity::EK_ComplexElement: 5995 case InitializedEntity::EK_Exception: 5996 case InitializedEntity::EK_BlockElement: 5997 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 5998 case InitializedEntity::EK_LambdaCapture: 5999 case InitializedEntity::EK_CompoundLiteralInit: 6000 return false; 6001 6002 case InitializedEntity::EK_Parameter: 6003 case InitializedEntity::EK_Parameter_CF_Audited: 6004 case InitializedEntity::EK_Temporary: 6005 case InitializedEntity::EK_RelatedResult: 6006 case InitializedEntity::EK_Binding: 6007 return true; 6008 } 6009 6010 llvm_unreachable("missed an InitializedEntity kind?"); 6011 } 6012 6013 /// Whether the given entity, when initialized with an object 6014 /// created for that initialization, requires destruction. 6015 static bool shouldDestroyEntity(const InitializedEntity &Entity) { 6016 switch (Entity.getKind()) { 6017 case InitializedEntity::EK_Result: 6018 case InitializedEntity::EK_StmtExprResult: 6019 case InitializedEntity::EK_New: 6020 case InitializedEntity::EK_Base: 6021 case InitializedEntity::EK_Delegating: 6022 case InitializedEntity::EK_VectorElement: 6023 case InitializedEntity::EK_ComplexElement: 6024 case InitializedEntity::EK_BlockElement: 6025 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 6026 case InitializedEntity::EK_LambdaCapture: 6027 return false; 6028 6029 case InitializedEntity::EK_Member: 6030 case InitializedEntity::EK_Binding: 6031 case InitializedEntity::EK_Variable: 6032 case InitializedEntity::EK_Parameter: 6033 case InitializedEntity::EK_Parameter_CF_Audited: 6034 case InitializedEntity::EK_Temporary: 6035 case InitializedEntity::EK_ArrayElement: 6036 case InitializedEntity::EK_Exception: 6037 case InitializedEntity::EK_CompoundLiteralInit: 6038 case InitializedEntity::EK_RelatedResult: 6039 return true; 6040 } 6041 6042 llvm_unreachable("missed an InitializedEntity kind?"); 6043 } 6044 6045 /// Get the location at which initialization diagnostics should appear. 6046 static SourceLocation getInitializationLoc(const InitializedEntity &Entity, 6047 Expr *Initializer) { 6048 switch (Entity.getKind()) { 6049 case InitializedEntity::EK_Result: 6050 case InitializedEntity::EK_StmtExprResult: 6051 return Entity.getReturnLoc(); 6052 6053 case InitializedEntity::EK_Exception: 6054 return Entity.getThrowLoc(); 6055 6056 case InitializedEntity::EK_Variable: 6057 case InitializedEntity::EK_Binding: 6058 return Entity.getDecl()->getLocation(); 6059 6060 case InitializedEntity::EK_LambdaCapture: 6061 return Entity.getCaptureLoc(); 6062 6063 case InitializedEntity::EK_ArrayElement: 6064 case InitializedEntity::EK_Member: 6065 case InitializedEntity::EK_Parameter: 6066 case InitializedEntity::EK_Parameter_CF_Audited: 6067 case InitializedEntity::EK_Temporary: 6068 case InitializedEntity::EK_New: 6069 case InitializedEntity::EK_Base: 6070 case InitializedEntity::EK_Delegating: 6071 case InitializedEntity::EK_VectorElement: 6072 case InitializedEntity::EK_ComplexElement: 6073 case InitializedEntity::EK_BlockElement: 6074 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 6075 case InitializedEntity::EK_CompoundLiteralInit: 6076 case InitializedEntity::EK_RelatedResult: 6077 return Initializer->getBeginLoc(); 6078 } 6079 llvm_unreachable("missed an InitializedEntity kind?"); 6080 } 6081 6082 /// Make a (potentially elidable) temporary copy of the object 6083 /// provided by the given initializer by calling the appropriate copy 6084 /// constructor. 6085 /// 6086 /// \param S The Sema object used for type-checking. 6087 /// 6088 /// \param T The type of the temporary object, which must either be 6089 /// the type of the initializer expression or a superclass thereof. 6090 /// 6091 /// \param Entity The entity being initialized. 6092 /// 6093 /// \param CurInit The initializer expression. 6094 /// 6095 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that 6096 /// is permitted in C++03 (but not C++0x) when binding a reference to 6097 /// an rvalue. 6098 /// 6099 /// \returns An expression that copies the initializer expression into 6100 /// a temporary object, or an error expression if a copy could not be 6101 /// created. 6102 static ExprResult CopyObject(Sema &S, 6103 QualType T, 6104 const InitializedEntity &Entity, 6105 ExprResult CurInit, 6106 bool IsExtraneousCopy) { 6107 if (CurInit.isInvalid()) 6108 return CurInit; 6109 // Determine which class type we're copying to. 6110 Expr *CurInitExpr = (Expr *)CurInit.get(); 6111 CXXRecordDecl *Class = nullptr; 6112 if (const RecordType *Record = T->getAs<RecordType>()) 6113 Class = cast<CXXRecordDecl>(Record->getDecl()); 6114 if (!Class) 6115 return CurInit; 6116 6117 SourceLocation Loc = getInitializationLoc(Entity, CurInit.get()); 6118 6119 // Make sure that the type we are copying is complete. 6120 if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete)) 6121 return CurInit; 6122 6123 // Perform overload resolution using the class's constructors. Per 6124 // C++11 [dcl.init]p16, second bullet for class types, this initialization 6125 // is direct-initialization. 6126 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); 6127 DeclContext::lookup_result Ctors = S.LookupConstructors(Class); 6128 6129 OverloadCandidateSet::iterator Best; 6130 switch (ResolveConstructorOverload( 6131 S, Loc, CurInitExpr, CandidateSet, T, Ctors, Best, 6132 /*CopyInitializing=*/false, /*AllowExplicit=*/true, 6133 /*OnlyListConstructors=*/false, /*IsListInit=*/false, 6134 /*SecondStepOfCopyInit=*/true)) { 6135 case OR_Success: 6136 break; 6137 6138 case OR_No_Viable_Function: 6139 CandidateSet.NoteCandidates( 6140 PartialDiagnosticAt( 6141 Loc, S.PDiag(IsExtraneousCopy && !S.isSFINAEContext() 6142 ? diag::ext_rvalue_to_reference_temp_copy_no_viable 6143 : diag::err_temp_copy_no_viable) 6144 << (int)Entity.getKind() << CurInitExpr->getType() 6145 << CurInitExpr->getSourceRange()), 6146 S, OCD_AllCandidates, CurInitExpr); 6147 if (!IsExtraneousCopy || S.isSFINAEContext()) 6148 return ExprError(); 6149 return CurInit; 6150 6151 case OR_Ambiguous: 6152 CandidateSet.NoteCandidates( 6153 PartialDiagnosticAt(Loc, S.PDiag(diag::err_temp_copy_ambiguous) 6154 << (int)Entity.getKind() 6155 << CurInitExpr->getType() 6156 << CurInitExpr->getSourceRange()), 6157 S, OCD_AmbiguousCandidates, CurInitExpr); 6158 return ExprError(); 6159 6160 case OR_Deleted: 6161 S.Diag(Loc, diag::err_temp_copy_deleted) 6162 << (int)Entity.getKind() << CurInitExpr->getType() 6163 << CurInitExpr->getSourceRange(); 6164 S.NoteDeletedFunction(Best->Function); 6165 return ExprError(); 6166 } 6167 6168 bool HadMultipleCandidates = CandidateSet.size() > 1; 6169 6170 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function); 6171 SmallVector<Expr*, 8> ConstructorArgs; 6172 CurInit.get(); // Ownership transferred into MultiExprArg, below. 6173 6174 S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity, 6175 IsExtraneousCopy); 6176 6177 if (IsExtraneousCopy) { 6178 // If this is a totally extraneous copy for C++03 reference 6179 // binding purposes, just return the original initialization 6180 // expression. We don't generate an (elided) copy operation here 6181 // because doing so would require us to pass down a flag to avoid 6182 // infinite recursion, where each step adds another extraneous, 6183 // elidable copy. 6184 6185 // Instantiate the default arguments of any extra parameters in 6186 // the selected copy constructor, as if we were going to create a 6187 // proper call to the copy constructor. 6188 for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) { 6189 ParmVarDecl *Parm = Constructor->getParamDecl(I); 6190 if (S.RequireCompleteType(Loc, Parm->getType(), 6191 diag::err_call_incomplete_argument)) 6192 break; 6193 6194 // Build the default argument expression; we don't actually care 6195 // if this succeeds or not, because this routine will complain 6196 // if there was a problem. 6197 S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm); 6198 } 6199 6200 return CurInitExpr; 6201 } 6202 6203 // Determine the arguments required to actually perform the 6204 // constructor call (we might have derived-to-base conversions, or 6205 // the copy constructor may have default arguments). 6206 if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs)) 6207 return ExprError(); 6208 6209 // C++0x [class.copy]p32: 6210 // When certain criteria are met, an implementation is allowed to 6211 // omit the copy/move construction of a class object, even if the 6212 // copy/move constructor and/or destructor for the object have 6213 // side effects. [...] 6214 // - when a temporary class object that has not been bound to a 6215 // reference (12.2) would be copied/moved to a class object 6216 // with the same cv-unqualified type, the copy/move operation 6217 // can be omitted by constructing the temporary object 6218 // directly into the target of the omitted copy/move 6219 // 6220 // Note that the other three bullets are handled elsewhere. Copy 6221 // elision for return statements and throw expressions are handled as part 6222 // of constructor initialization, while copy elision for exception handlers 6223 // is handled by the run-time. 6224 // 6225 // FIXME: If the function parameter is not the same type as the temporary, we 6226 // should still be able to elide the copy, but we don't have a way to 6227 // represent in the AST how much should be elided in this case. 6228 bool Elidable = 6229 CurInitExpr->isTemporaryObject(S.Context, Class) && 6230 S.Context.hasSameUnqualifiedType( 6231 Best->Function->getParamDecl(0)->getType().getNonReferenceType(), 6232 CurInitExpr->getType()); 6233 6234 // Actually perform the constructor call. 6235 CurInit = S.BuildCXXConstructExpr(Loc, T, Best->FoundDecl, Constructor, 6236 Elidable, 6237 ConstructorArgs, 6238 HadMultipleCandidates, 6239 /*ListInit*/ false, 6240 /*StdInitListInit*/ false, 6241 /*ZeroInit*/ false, 6242 CXXConstructExpr::CK_Complete, 6243 SourceRange()); 6244 6245 // If we're supposed to bind temporaries, do so. 6246 if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity)) 6247 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>()); 6248 return CurInit; 6249 } 6250 6251 /// Check whether elidable copy construction for binding a reference to 6252 /// a temporary would have succeeded if we were building in C++98 mode, for 6253 /// -Wc++98-compat. 6254 static void CheckCXX98CompatAccessibleCopy(Sema &S, 6255 const InitializedEntity &Entity, 6256 Expr *CurInitExpr) { 6257 assert(S.getLangOpts().CPlusPlus11); 6258 6259 const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>(); 6260 if (!Record) 6261 return; 6262 6263 SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr); 6264 if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc)) 6265 return; 6266 6267 // Find constructors which would have been considered. 6268 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); 6269 DeclContext::lookup_result Ctors = 6270 S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl())); 6271 6272 // Perform overload resolution. 6273 OverloadCandidateSet::iterator Best; 6274 OverloadingResult OR = ResolveConstructorOverload( 6275 S, Loc, CurInitExpr, CandidateSet, CurInitExpr->getType(), Ctors, Best, 6276 /*CopyInitializing=*/false, /*AllowExplicit=*/true, 6277 /*OnlyListConstructors=*/false, /*IsListInit=*/false, 6278 /*SecondStepOfCopyInit=*/true); 6279 6280 PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy) 6281 << OR << (int)Entity.getKind() << CurInitExpr->getType() 6282 << CurInitExpr->getSourceRange(); 6283 6284 switch (OR) { 6285 case OR_Success: 6286 S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function), 6287 Best->FoundDecl, Entity, Diag); 6288 // FIXME: Check default arguments as far as that's possible. 6289 break; 6290 6291 case OR_No_Viable_Function: 6292 CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S, 6293 OCD_AllCandidates, CurInitExpr); 6294 break; 6295 6296 case OR_Ambiguous: 6297 CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S, 6298 OCD_AmbiguousCandidates, CurInitExpr); 6299 break; 6300 6301 case OR_Deleted: 6302 S.Diag(Loc, Diag); 6303 S.NoteDeletedFunction(Best->Function); 6304 break; 6305 } 6306 } 6307 6308 void InitializationSequence::PrintInitLocationNote(Sema &S, 6309 const InitializedEntity &Entity) { 6310 if (Entity.isParameterKind() && Entity.getDecl()) { 6311 if (Entity.getDecl()->getLocation().isInvalid()) 6312 return; 6313 6314 if (Entity.getDecl()->getDeclName()) 6315 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here) 6316 << Entity.getDecl()->getDeclName(); 6317 else 6318 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here); 6319 } 6320 else if (Entity.getKind() == InitializedEntity::EK_RelatedResult && 6321 Entity.getMethodDecl()) 6322 S.Diag(Entity.getMethodDecl()->getLocation(), 6323 diag::note_method_return_type_change) 6324 << Entity.getMethodDecl()->getDeclName(); 6325 } 6326 6327 /// Returns true if the parameters describe a constructor initialization of 6328 /// an explicit temporary object, e.g. "Point(x, y)". 6329 static bool isExplicitTemporary(const InitializedEntity &Entity, 6330 const InitializationKind &Kind, 6331 unsigned NumArgs) { 6332 switch (Entity.getKind()) { 6333 case InitializedEntity::EK_Temporary: 6334 case InitializedEntity::EK_CompoundLiteralInit: 6335 case InitializedEntity::EK_RelatedResult: 6336 break; 6337 default: 6338 return false; 6339 } 6340 6341 switch (Kind.getKind()) { 6342 case InitializationKind::IK_DirectList: 6343 return true; 6344 // FIXME: Hack to work around cast weirdness. 6345 case InitializationKind::IK_Direct: 6346 case InitializationKind::IK_Value: 6347 return NumArgs != 1; 6348 default: 6349 return false; 6350 } 6351 } 6352 6353 static ExprResult 6354 PerformConstructorInitialization(Sema &S, 6355 const InitializedEntity &Entity, 6356 const InitializationKind &Kind, 6357 MultiExprArg Args, 6358 const InitializationSequence::Step& Step, 6359 bool &ConstructorInitRequiresZeroInit, 6360 bool IsListInitialization, 6361 bool IsStdInitListInitialization, 6362 SourceLocation LBraceLoc, 6363 SourceLocation RBraceLoc) { 6364 unsigned NumArgs = Args.size(); 6365 CXXConstructorDecl *Constructor 6366 = cast<CXXConstructorDecl>(Step.Function.Function); 6367 bool HadMultipleCandidates = Step.Function.HadMultipleCandidates; 6368 6369 // Build a call to the selected constructor. 6370 SmallVector<Expr*, 8> ConstructorArgs; 6371 SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid()) 6372 ? Kind.getEqualLoc() 6373 : Kind.getLocation(); 6374 6375 if (Kind.getKind() == InitializationKind::IK_Default) { 6376 // Force even a trivial, implicit default constructor to be 6377 // semantically checked. We do this explicitly because we don't build 6378 // the definition for completely trivial constructors. 6379 assert(Constructor->getParent() && "No parent class for constructor."); 6380 if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() && 6381 Constructor->isTrivial() && !Constructor->isUsed(false)) { 6382 S.runWithSufficientStackSpace(Loc, [&] { 6383 S.DefineImplicitDefaultConstructor(Loc, Constructor); 6384 }); 6385 } 6386 } 6387 6388 ExprResult CurInit((Expr *)nullptr); 6389 6390 // C++ [over.match.copy]p1: 6391 // - When initializing a temporary to be bound to the first parameter 6392 // of a constructor that takes a reference to possibly cv-qualified 6393 // T as its first argument, called with a single argument in the 6394 // context of direct-initialization, explicit conversion functions 6395 // are also considered. 6396 bool AllowExplicitConv = 6397 Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 && 6398 hasCopyOrMoveCtorParam(S.Context, 6399 getConstructorInfo(Step.Function.FoundDecl)); 6400 6401 // Determine the arguments required to actually perform the constructor 6402 // call. 6403 if (S.CompleteConstructorCall(Constructor, Args, 6404 Loc, ConstructorArgs, 6405 AllowExplicitConv, 6406 IsListInitialization)) 6407 return ExprError(); 6408 6409 6410 if (isExplicitTemporary(Entity, Kind, NumArgs)) { 6411 // An explicitly-constructed temporary, e.g., X(1, 2). 6412 if (S.DiagnoseUseOfDecl(Constructor, Loc)) 6413 return ExprError(); 6414 6415 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); 6416 if (!TSInfo) 6417 TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc); 6418 SourceRange ParenOrBraceRange = 6419 (Kind.getKind() == InitializationKind::IK_DirectList) 6420 ? SourceRange(LBraceLoc, RBraceLoc) 6421 : Kind.getParenOrBraceRange(); 6422 6423 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>( 6424 Step.Function.FoundDecl.getDecl())) { 6425 Constructor = S.findInheritingConstructor(Loc, Constructor, Shadow); 6426 if (S.DiagnoseUseOfDecl(Constructor, Loc)) 6427 return ExprError(); 6428 } 6429 S.MarkFunctionReferenced(Loc, Constructor); 6430 6431 CurInit = CXXTemporaryObjectExpr::Create( 6432 S.Context, Constructor, 6433 Entity.getType().getNonLValueExprType(S.Context), TSInfo, 6434 ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates, 6435 IsListInitialization, IsStdInitListInitialization, 6436 ConstructorInitRequiresZeroInit); 6437 } else { 6438 CXXConstructExpr::ConstructionKind ConstructKind = 6439 CXXConstructExpr::CK_Complete; 6440 6441 if (Entity.getKind() == InitializedEntity::EK_Base) { 6442 ConstructKind = Entity.getBaseSpecifier()->isVirtual() ? 6443 CXXConstructExpr::CK_VirtualBase : 6444 CXXConstructExpr::CK_NonVirtualBase; 6445 } else if (Entity.getKind() == InitializedEntity::EK_Delegating) { 6446 ConstructKind = CXXConstructExpr::CK_Delegating; 6447 } 6448 6449 // Only get the parenthesis or brace range if it is a list initialization or 6450 // direct construction. 6451 SourceRange ParenOrBraceRange; 6452 if (IsListInitialization) 6453 ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc); 6454 else if (Kind.getKind() == InitializationKind::IK_Direct) 6455 ParenOrBraceRange = Kind.getParenOrBraceRange(); 6456 6457 // If the entity allows NRVO, mark the construction as elidable 6458 // unconditionally. 6459 if (Entity.allowsNRVO()) 6460 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type, 6461 Step.Function.FoundDecl, 6462 Constructor, /*Elidable=*/true, 6463 ConstructorArgs, 6464 HadMultipleCandidates, 6465 IsListInitialization, 6466 IsStdInitListInitialization, 6467 ConstructorInitRequiresZeroInit, 6468 ConstructKind, 6469 ParenOrBraceRange); 6470 else 6471 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type, 6472 Step.Function.FoundDecl, 6473 Constructor, 6474 ConstructorArgs, 6475 HadMultipleCandidates, 6476 IsListInitialization, 6477 IsStdInitListInitialization, 6478 ConstructorInitRequiresZeroInit, 6479 ConstructKind, 6480 ParenOrBraceRange); 6481 } 6482 if (CurInit.isInvalid()) 6483 return ExprError(); 6484 6485 // Only check access if all of that succeeded. 6486 S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity); 6487 if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc)) 6488 return ExprError(); 6489 6490 if (const ArrayType *AT = S.Context.getAsArrayType(Entity.getType())) 6491 if (checkDestructorReference(S.Context.getBaseElementType(AT), Loc, S)) 6492 return ExprError(); 6493 6494 if (shouldBindAsTemporary(Entity)) 6495 CurInit = S.MaybeBindToTemporary(CurInit.get()); 6496 6497 return CurInit; 6498 } 6499 6500 namespace { 6501 enum LifetimeKind { 6502 /// The lifetime of a temporary bound to this entity ends at the end of the 6503 /// full-expression, and that's (probably) fine. 6504 LK_FullExpression, 6505 6506 /// The lifetime of a temporary bound to this entity is extended to the 6507 /// lifeitme of the entity itself. 6508 LK_Extended, 6509 6510 /// The lifetime of a temporary bound to this entity probably ends too soon, 6511 /// because the entity is allocated in a new-expression. 6512 LK_New, 6513 6514 /// The lifetime of a temporary bound to this entity ends too soon, because 6515 /// the entity is a return object. 6516 LK_Return, 6517 6518 /// The lifetime of a temporary bound to this entity ends too soon, because 6519 /// the entity is the result of a statement expression. 6520 LK_StmtExprResult, 6521 6522 /// This is a mem-initializer: if it would extend a temporary (other than via 6523 /// a default member initializer), the program is ill-formed. 6524 LK_MemInitializer, 6525 }; 6526 using LifetimeResult = 6527 llvm::PointerIntPair<const InitializedEntity *, 3, LifetimeKind>; 6528 } 6529 6530 /// Determine the declaration which an initialized entity ultimately refers to, 6531 /// for the purpose of lifetime-extending a temporary bound to a reference in 6532 /// the initialization of \p Entity. 6533 static LifetimeResult getEntityLifetime( 6534 const InitializedEntity *Entity, 6535 const InitializedEntity *InitField = nullptr) { 6536 // C++11 [class.temporary]p5: 6537 switch (Entity->getKind()) { 6538 case InitializedEntity::EK_Variable: 6539 // The temporary [...] persists for the lifetime of the reference 6540 return {Entity, LK_Extended}; 6541 6542 case InitializedEntity::EK_Member: 6543 // For subobjects, we look at the complete object. 6544 if (Entity->getParent()) 6545 return getEntityLifetime(Entity->getParent(), Entity); 6546 6547 // except: 6548 // C++17 [class.base.init]p8: 6549 // A temporary expression bound to a reference member in a 6550 // mem-initializer is ill-formed. 6551 // C++17 [class.base.init]p11: 6552 // A temporary expression bound to a reference member from a 6553 // default member initializer is ill-formed. 6554 // 6555 // The context of p11 and its example suggest that it's only the use of a 6556 // default member initializer from a constructor that makes the program 6557 // ill-formed, not its mere existence, and that it can even be used by 6558 // aggregate initialization. 6559 return {Entity, Entity->isDefaultMemberInitializer() ? LK_Extended 6560 : LK_MemInitializer}; 6561 6562 case InitializedEntity::EK_Binding: 6563 // Per [dcl.decomp]p3, the binding is treated as a variable of reference 6564 // type. 6565 return {Entity, LK_Extended}; 6566 6567 case InitializedEntity::EK_Parameter: 6568 case InitializedEntity::EK_Parameter_CF_Audited: 6569 // -- A temporary bound to a reference parameter in a function call 6570 // persists until the completion of the full-expression containing 6571 // the call. 6572 return {nullptr, LK_FullExpression}; 6573 6574 case InitializedEntity::EK_Result: 6575 // -- The lifetime of a temporary bound to the returned value in a 6576 // function return statement is not extended; the temporary is 6577 // destroyed at the end of the full-expression in the return statement. 6578 return {nullptr, LK_Return}; 6579 6580 case InitializedEntity::EK_StmtExprResult: 6581 // FIXME: Should we lifetime-extend through the result of a statement 6582 // expression? 6583 return {nullptr, LK_StmtExprResult}; 6584 6585 case InitializedEntity::EK_New: 6586 // -- A temporary bound to a reference in a new-initializer persists 6587 // until the completion of the full-expression containing the 6588 // new-initializer. 6589 return {nullptr, LK_New}; 6590 6591 case InitializedEntity::EK_Temporary: 6592 case InitializedEntity::EK_CompoundLiteralInit: 6593 case InitializedEntity::EK_RelatedResult: 6594 // We don't yet know the storage duration of the surrounding temporary. 6595 // Assume it's got full-expression duration for now, it will patch up our 6596 // storage duration if that's not correct. 6597 return {nullptr, LK_FullExpression}; 6598 6599 case InitializedEntity::EK_ArrayElement: 6600 // For subobjects, we look at the complete object. 6601 return getEntityLifetime(Entity->getParent(), InitField); 6602 6603 case InitializedEntity::EK_Base: 6604 // For subobjects, we look at the complete object. 6605 if (Entity->getParent()) 6606 return getEntityLifetime(Entity->getParent(), InitField); 6607 return {InitField, LK_MemInitializer}; 6608 6609 case InitializedEntity::EK_Delegating: 6610 // We can reach this case for aggregate initialization in a constructor: 6611 // struct A { int &&r; }; 6612 // struct B : A { B() : A{0} {} }; 6613 // In this case, use the outermost field decl as the context. 6614 return {InitField, LK_MemInitializer}; 6615 6616 case InitializedEntity::EK_BlockElement: 6617 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 6618 case InitializedEntity::EK_LambdaCapture: 6619 case InitializedEntity::EK_VectorElement: 6620 case InitializedEntity::EK_ComplexElement: 6621 return {nullptr, LK_FullExpression}; 6622 6623 case InitializedEntity::EK_Exception: 6624 // FIXME: Can we diagnose lifetime problems with exceptions? 6625 return {nullptr, LK_FullExpression}; 6626 } 6627 llvm_unreachable("unknown entity kind"); 6628 } 6629 6630 namespace { 6631 enum ReferenceKind { 6632 /// Lifetime would be extended by a reference binding to a temporary. 6633 RK_ReferenceBinding, 6634 /// Lifetime would be extended by a std::initializer_list object binding to 6635 /// its backing array. 6636 RK_StdInitializerList, 6637 }; 6638 6639 /// A temporary or local variable. This will be one of: 6640 /// * A MaterializeTemporaryExpr. 6641 /// * A DeclRefExpr whose declaration is a local. 6642 /// * An AddrLabelExpr. 6643 /// * A BlockExpr for a block with captures. 6644 using Local = Expr*; 6645 6646 /// Expressions we stepped over when looking for the local state. Any steps 6647 /// that would inhibit lifetime extension or take us out of subexpressions of 6648 /// the initializer are included. 6649 struct IndirectLocalPathEntry { 6650 enum EntryKind { 6651 DefaultInit, 6652 AddressOf, 6653 VarInit, 6654 LValToRVal, 6655 LifetimeBoundCall, 6656 GslReferenceInit, 6657 GslPointerInit 6658 } Kind; 6659 Expr *E; 6660 const Decl *D = nullptr; 6661 IndirectLocalPathEntry() {} 6662 IndirectLocalPathEntry(EntryKind K, Expr *E) : Kind(K), E(E) {} 6663 IndirectLocalPathEntry(EntryKind K, Expr *E, const Decl *D) 6664 : Kind(K), E(E), D(D) {} 6665 }; 6666 6667 using IndirectLocalPath = llvm::SmallVectorImpl<IndirectLocalPathEntry>; 6668 6669 struct RevertToOldSizeRAII { 6670 IndirectLocalPath &Path; 6671 unsigned OldSize = Path.size(); 6672 RevertToOldSizeRAII(IndirectLocalPath &Path) : Path(Path) {} 6673 ~RevertToOldSizeRAII() { Path.resize(OldSize); } 6674 }; 6675 6676 using LocalVisitor = llvm::function_ref<bool(IndirectLocalPath &Path, Local L, 6677 ReferenceKind RK)>; 6678 } 6679 6680 static bool isVarOnPath(IndirectLocalPath &Path, VarDecl *VD) { 6681 for (auto E : Path) 6682 if (E.Kind == IndirectLocalPathEntry::VarInit && E.D == VD) 6683 return true; 6684 return false; 6685 } 6686 6687 static bool pathContainsInit(IndirectLocalPath &Path) { 6688 return llvm::any_of(Path, [=](IndirectLocalPathEntry E) { 6689 return E.Kind == IndirectLocalPathEntry::DefaultInit || 6690 E.Kind == IndirectLocalPathEntry::VarInit; 6691 }); 6692 } 6693 6694 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path, 6695 Expr *Init, LocalVisitor Visit, 6696 bool RevisitSubinits, 6697 bool EnableLifetimeWarnings); 6698 6699 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path, 6700 Expr *Init, ReferenceKind RK, 6701 LocalVisitor Visit, 6702 bool EnableLifetimeWarnings); 6703 6704 template <typename T> static bool isRecordWithAttr(QualType Type) { 6705 if (auto *RD = Type->getAsCXXRecordDecl()) 6706 return RD->hasAttr<T>(); 6707 return false; 6708 } 6709 6710 // Decl::isInStdNamespace will return false for iterators in some STL 6711 // implementations due to them being defined in a namespace outside of the std 6712 // namespace. 6713 static bool isInStlNamespace(const Decl *D) { 6714 const DeclContext *DC = D->getDeclContext(); 6715 if (!DC) 6716 return false; 6717 if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) 6718 if (const IdentifierInfo *II = ND->getIdentifier()) { 6719 StringRef Name = II->getName(); 6720 if (Name.size() >= 2 && Name.front() == '_' && 6721 (Name[1] == '_' || isUppercase(Name[1]))) 6722 return true; 6723 } 6724 6725 return DC->isStdNamespace(); 6726 } 6727 6728 static bool shouldTrackImplicitObjectArg(const CXXMethodDecl *Callee) { 6729 if (auto *Conv = dyn_cast_or_null<CXXConversionDecl>(Callee)) 6730 if (isRecordWithAttr<PointerAttr>(Conv->getConversionType())) 6731 return true; 6732 if (!isInStlNamespace(Callee->getParent())) 6733 return false; 6734 if (!isRecordWithAttr<PointerAttr>(Callee->getThisObjectType()) && 6735 !isRecordWithAttr<OwnerAttr>(Callee->getThisObjectType())) 6736 return false; 6737 if (Callee->getReturnType()->isPointerType() || 6738 isRecordWithAttr<PointerAttr>(Callee->getReturnType())) { 6739 if (!Callee->getIdentifier()) 6740 return false; 6741 return llvm::StringSwitch<bool>(Callee->getName()) 6742 .Cases("begin", "rbegin", "cbegin", "crbegin", true) 6743 .Cases("end", "rend", "cend", "crend", true) 6744 .Cases("c_str", "data", "get", true) 6745 // Map and set types. 6746 .Cases("find", "equal_range", "lower_bound", "upper_bound", true) 6747 .Default(false); 6748 } else if (Callee->getReturnType()->isReferenceType()) { 6749 if (!Callee->getIdentifier()) { 6750 auto OO = Callee->getOverloadedOperator(); 6751 return OO == OverloadedOperatorKind::OO_Subscript || 6752 OO == OverloadedOperatorKind::OO_Star; 6753 } 6754 return llvm::StringSwitch<bool>(Callee->getName()) 6755 .Cases("front", "back", "at", "top", "value", true) 6756 .Default(false); 6757 } 6758 return false; 6759 } 6760 6761 static bool shouldTrackFirstArgument(const FunctionDecl *FD) { 6762 if (!FD->getIdentifier() || FD->getNumParams() != 1) 6763 return false; 6764 const auto *RD = FD->getParamDecl(0)->getType()->getPointeeCXXRecordDecl(); 6765 if (!FD->isInStdNamespace() || !RD || !RD->isInStdNamespace()) 6766 return false; 6767 if (!isRecordWithAttr<PointerAttr>(QualType(RD->getTypeForDecl(), 0)) && 6768 !isRecordWithAttr<OwnerAttr>(QualType(RD->getTypeForDecl(), 0))) 6769 return false; 6770 if (FD->getReturnType()->isPointerType() || 6771 isRecordWithAttr<PointerAttr>(FD->getReturnType())) { 6772 return llvm::StringSwitch<bool>(FD->getName()) 6773 .Cases("begin", "rbegin", "cbegin", "crbegin", true) 6774 .Cases("end", "rend", "cend", "crend", true) 6775 .Case("data", true) 6776 .Default(false); 6777 } else if (FD->getReturnType()->isReferenceType()) { 6778 return llvm::StringSwitch<bool>(FD->getName()) 6779 .Cases("get", "any_cast", true) 6780 .Default(false); 6781 } 6782 return false; 6783 } 6784 6785 static void handleGslAnnotatedTypes(IndirectLocalPath &Path, Expr *Call, 6786 LocalVisitor Visit) { 6787 auto VisitPointerArg = [&](const Decl *D, Expr *Arg, bool Value) { 6788 // We are not interested in the temporary base objects of gsl Pointers: 6789 // Temp().ptr; // Here ptr might not dangle. 6790 if (isa<MemberExpr>(Arg->IgnoreImpCasts())) 6791 return; 6792 // Once we initialized a value with a reference, it can no longer dangle. 6793 if (!Value) { 6794 for (auto It = Path.rbegin(), End = Path.rend(); It != End; ++It) { 6795 if (It->Kind == IndirectLocalPathEntry::GslReferenceInit) 6796 continue; 6797 if (It->Kind == IndirectLocalPathEntry::GslPointerInit) 6798 return; 6799 break; 6800 } 6801 } 6802 Path.push_back({Value ? IndirectLocalPathEntry::GslPointerInit 6803 : IndirectLocalPathEntry::GslReferenceInit, 6804 Arg, D}); 6805 if (Arg->isGLValue()) 6806 visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding, 6807 Visit, 6808 /*EnableLifetimeWarnings=*/true); 6809 else 6810 visitLocalsRetainedByInitializer(Path, Arg, Visit, true, 6811 /*EnableLifetimeWarnings=*/true); 6812 Path.pop_back(); 6813 }; 6814 6815 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) { 6816 const auto *MD = cast_or_null<CXXMethodDecl>(MCE->getDirectCallee()); 6817 if (MD && shouldTrackImplicitObjectArg(MD)) 6818 VisitPointerArg(MD, MCE->getImplicitObjectArgument(), 6819 !MD->getReturnType()->isReferenceType()); 6820 return; 6821 } else if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(Call)) { 6822 FunctionDecl *Callee = OCE->getDirectCallee(); 6823 if (Callee && Callee->isCXXInstanceMember() && 6824 shouldTrackImplicitObjectArg(cast<CXXMethodDecl>(Callee))) 6825 VisitPointerArg(Callee, OCE->getArg(0), 6826 !Callee->getReturnType()->isReferenceType()); 6827 return; 6828 } else if (auto *CE = dyn_cast<CallExpr>(Call)) { 6829 FunctionDecl *Callee = CE->getDirectCallee(); 6830 if (Callee && shouldTrackFirstArgument(Callee)) 6831 VisitPointerArg(Callee, CE->getArg(0), 6832 !Callee->getReturnType()->isReferenceType()); 6833 return; 6834 } 6835 6836 if (auto *CCE = dyn_cast<CXXConstructExpr>(Call)) { 6837 const auto *Ctor = CCE->getConstructor(); 6838 const CXXRecordDecl *RD = Ctor->getParent(); 6839 if (CCE->getNumArgs() > 0 && RD->hasAttr<PointerAttr>()) 6840 VisitPointerArg(Ctor->getParamDecl(0), CCE->getArgs()[0], true); 6841 } 6842 } 6843 6844 static bool implicitObjectParamIsLifetimeBound(const FunctionDecl *FD) { 6845 const TypeSourceInfo *TSI = FD->getTypeSourceInfo(); 6846 if (!TSI) 6847 return false; 6848 // Don't declare this variable in the second operand of the for-statement; 6849 // GCC miscompiles that by ending its lifetime before evaluating the 6850 // third operand. See gcc.gnu.org/PR86769. 6851 AttributedTypeLoc ATL; 6852 for (TypeLoc TL = TSI->getTypeLoc(); 6853 (ATL = TL.getAsAdjusted<AttributedTypeLoc>()); 6854 TL = ATL.getModifiedLoc()) { 6855 if (ATL.getAttrAs<LifetimeBoundAttr>()) 6856 return true; 6857 } 6858 return false; 6859 } 6860 6861 static void visitLifetimeBoundArguments(IndirectLocalPath &Path, Expr *Call, 6862 LocalVisitor Visit) { 6863 const FunctionDecl *Callee; 6864 ArrayRef<Expr*> Args; 6865 6866 if (auto *CE = dyn_cast<CallExpr>(Call)) { 6867 Callee = CE->getDirectCallee(); 6868 Args = llvm::makeArrayRef(CE->getArgs(), CE->getNumArgs()); 6869 } else { 6870 auto *CCE = cast<CXXConstructExpr>(Call); 6871 Callee = CCE->getConstructor(); 6872 Args = llvm::makeArrayRef(CCE->getArgs(), CCE->getNumArgs()); 6873 } 6874 if (!Callee) 6875 return; 6876 6877 Expr *ObjectArg = nullptr; 6878 if (isa<CXXOperatorCallExpr>(Call) && Callee->isCXXInstanceMember()) { 6879 ObjectArg = Args[0]; 6880 Args = Args.slice(1); 6881 } else if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) { 6882 ObjectArg = MCE->getImplicitObjectArgument(); 6883 } 6884 6885 auto VisitLifetimeBoundArg = [&](const Decl *D, Expr *Arg) { 6886 Path.push_back({IndirectLocalPathEntry::LifetimeBoundCall, Arg, D}); 6887 if (Arg->isGLValue()) 6888 visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding, 6889 Visit, 6890 /*EnableLifetimeWarnings=*/false); 6891 else 6892 visitLocalsRetainedByInitializer(Path, Arg, Visit, true, 6893 /*EnableLifetimeWarnings=*/false); 6894 Path.pop_back(); 6895 }; 6896 6897 if (ObjectArg && implicitObjectParamIsLifetimeBound(Callee)) 6898 VisitLifetimeBoundArg(Callee, ObjectArg); 6899 6900 for (unsigned I = 0, 6901 N = std::min<unsigned>(Callee->getNumParams(), Args.size()); 6902 I != N; ++I) { 6903 if (Callee->getParamDecl(I)->hasAttr<LifetimeBoundAttr>()) 6904 VisitLifetimeBoundArg(Callee->getParamDecl(I), Args[I]); 6905 } 6906 } 6907 6908 /// Visit the locals that would be reachable through a reference bound to the 6909 /// glvalue expression \c Init. 6910 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path, 6911 Expr *Init, ReferenceKind RK, 6912 LocalVisitor Visit, 6913 bool EnableLifetimeWarnings) { 6914 RevertToOldSizeRAII RAII(Path); 6915 6916 // Walk past any constructs which we can lifetime-extend across. 6917 Expr *Old; 6918 do { 6919 Old = Init; 6920 6921 if (auto *FE = dyn_cast<FullExpr>(Init)) 6922 Init = FE->getSubExpr(); 6923 6924 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 6925 // If this is just redundant braces around an initializer, step over it. 6926 if (ILE->isTransparent()) 6927 Init = ILE->getInit(0); 6928 } 6929 6930 // Step over any subobject adjustments; we may have a materialized 6931 // temporary inside them. 6932 Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments()); 6933 6934 // Per current approach for DR1376, look through casts to reference type 6935 // when performing lifetime extension. 6936 if (CastExpr *CE = dyn_cast<CastExpr>(Init)) 6937 if (CE->getSubExpr()->isGLValue()) 6938 Init = CE->getSubExpr(); 6939 6940 // Per the current approach for DR1299, look through array element access 6941 // on array glvalues when performing lifetime extension. 6942 if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Init)) { 6943 Init = ASE->getBase(); 6944 auto *ICE = dyn_cast<ImplicitCastExpr>(Init); 6945 if (ICE && ICE->getCastKind() == CK_ArrayToPointerDecay) 6946 Init = ICE->getSubExpr(); 6947 else 6948 // We can't lifetime extend through this but we might still find some 6949 // retained temporaries. 6950 return visitLocalsRetainedByInitializer(Path, Init, Visit, true, 6951 EnableLifetimeWarnings); 6952 } 6953 6954 // Step into CXXDefaultInitExprs so we can diagnose cases where a 6955 // constructor inherits one as an implicit mem-initializer. 6956 if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) { 6957 Path.push_back( 6958 {IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()}); 6959 Init = DIE->getExpr(); 6960 } 6961 } while (Init != Old); 6962 6963 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Init)) { 6964 if (Visit(Path, Local(MTE), RK)) 6965 visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit, true, 6966 EnableLifetimeWarnings); 6967 } 6968 6969 if (isa<CallExpr>(Init)) { 6970 if (EnableLifetimeWarnings) 6971 handleGslAnnotatedTypes(Path, Init, Visit); 6972 return visitLifetimeBoundArguments(Path, Init, Visit); 6973 } 6974 6975 switch (Init->getStmtClass()) { 6976 case Stmt::DeclRefExprClass: { 6977 // If we find the name of a local non-reference parameter, we could have a 6978 // lifetime problem. 6979 auto *DRE = cast<DeclRefExpr>(Init); 6980 auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); 6981 if (VD && VD->hasLocalStorage() && 6982 !DRE->refersToEnclosingVariableOrCapture()) { 6983 if (!VD->getType()->isReferenceType()) { 6984 Visit(Path, Local(DRE), RK); 6985 } else if (isa<ParmVarDecl>(DRE->getDecl())) { 6986 // The lifetime of a reference parameter is unknown; assume it's OK 6987 // for now. 6988 break; 6989 } else if (VD->getInit() && !isVarOnPath(Path, VD)) { 6990 Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD}); 6991 visitLocalsRetainedByReferenceBinding(Path, VD->getInit(), 6992 RK_ReferenceBinding, Visit, 6993 EnableLifetimeWarnings); 6994 } 6995 } 6996 break; 6997 } 6998 6999 case Stmt::UnaryOperatorClass: { 7000 // The only unary operator that make sense to handle here 7001 // is Deref. All others don't resolve to a "name." This includes 7002 // handling all sorts of rvalues passed to a unary operator. 7003 const UnaryOperator *U = cast<UnaryOperator>(Init); 7004 if (U->getOpcode() == UO_Deref) 7005 visitLocalsRetainedByInitializer(Path, U->getSubExpr(), Visit, true, 7006 EnableLifetimeWarnings); 7007 break; 7008 } 7009 7010 case Stmt::OMPArraySectionExprClass: { 7011 visitLocalsRetainedByInitializer(Path, 7012 cast<OMPArraySectionExpr>(Init)->getBase(), 7013 Visit, true, EnableLifetimeWarnings); 7014 break; 7015 } 7016 7017 case Stmt::ConditionalOperatorClass: 7018 case Stmt::BinaryConditionalOperatorClass: { 7019 auto *C = cast<AbstractConditionalOperator>(Init); 7020 if (!C->getTrueExpr()->getType()->isVoidType()) 7021 visitLocalsRetainedByReferenceBinding(Path, C->getTrueExpr(), RK, Visit, 7022 EnableLifetimeWarnings); 7023 if (!C->getFalseExpr()->getType()->isVoidType()) 7024 visitLocalsRetainedByReferenceBinding(Path, C->getFalseExpr(), RK, Visit, 7025 EnableLifetimeWarnings); 7026 break; 7027 } 7028 7029 // FIXME: Visit the left-hand side of an -> or ->*. 7030 7031 default: 7032 break; 7033 } 7034 } 7035 7036 /// Visit the locals that would be reachable through an object initialized by 7037 /// the prvalue expression \c Init. 7038 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path, 7039 Expr *Init, LocalVisitor Visit, 7040 bool RevisitSubinits, 7041 bool EnableLifetimeWarnings) { 7042 RevertToOldSizeRAII RAII(Path); 7043 7044 Expr *Old; 7045 do { 7046 Old = Init; 7047 7048 // Step into CXXDefaultInitExprs so we can diagnose cases where a 7049 // constructor inherits one as an implicit mem-initializer. 7050 if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) { 7051 Path.push_back({IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()}); 7052 Init = DIE->getExpr(); 7053 } 7054 7055 if (auto *FE = dyn_cast<FullExpr>(Init)) 7056 Init = FE->getSubExpr(); 7057 7058 // Dig out the expression which constructs the extended temporary. 7059 Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments()); 7060 7061 if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init)) 7062 Init = BTE->getSubExpr(); 7063 7064 Init = Init->IgnoreParens(); 7065 7066 // Step over value-preserving rvalue casts. 7067 if (auto *CE = dyn_cast<CastExpr>(Init)) { 7068 switch (CE->getCastKind()) { 7069 case CK_LValueToRValue: 7070 // If we can match the lvalue to a const object, we can look at its 7071 // initializer. 7072 Path.push_back({IndirectLocalPathEntry::LValToRVal, CE}); 7073 return visitLocalsRetainedByReferenceBinding( 7074 Path, Init, RK_ReferenceBinding, 7075 [&](IndirectLocalPath &Path, Local L, ReferenceKind RK) -> bool { 7076 if (auto *DRE = dyn_cast<DeclRefExpr>(L)) { 7077 auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); 7078 if (VD && VD->getType().isConstQualified() && VD->getInit() && 7079 !isVarOnPath(Path, VD)) { 7080 Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD}); 7081 visitLocalsRetainedByInitializer(Path, VD->getInit(), Visit, true, 7082 EnableLifetimeWarnings); 7083 } 7084 } else if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L)) { 7085 if (MTE->getType().isConstQualified()) 7086 visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit, 7087 true, EnableLifetimeWarnings); 7088 } 7089 return false; 7090 }, EnableLifetimeWarnings); 7091 7092 // We assume that objects can be retained by pointers cast to integers, 7093 // but not if the integer is cast to floating-point type or to _Complex. 7094 // We assume that casts to 'bool' do not preserve enough information to 7095 // retain a local object. 7096 case CK_NoOp: 7097 case CK_BitCast: 7098 case CK_BaseToDerived: 7099 case CK_DerivedToBase: 7100 case CK_UncheckedDerivedToBase: 7101 case CK_Dynamic: 7102 case CK_ToUnion: 7103 case CK_UserDefinedConversion: 7104 case CK_ConstructorConversion: 7105 case CK_IntegralToPointer: 7106 case CK_PointerToIntegral: 7107 case CK_VectorSplat: 7108 case CK_IntegralCast: 7109 case CK_CPointerToObjCPointerCast: 7110 case CK_BlockPointerToObjCPointerCast: 7111 case CK_AnyPointerToBlockPointerCast: 7112 case CK_AddressSpaceConversion: 7113 break; 7114 7115 case CK_ArrayToPointerDecay: 7116 // Model array-to-pointer decay as taking the address of the array 7117 // lvalue. 7118 Path.push_back({IndirectLocalPathEntry::AddressOf, CE}); 7119 return visitLocalsRetainedByReferenceBinding(Path, CE->getSubExpr(), 7120 RK_ReferenceBinding, Visit, 7121 EnableLifetimeWarnings); 7122 7123 default: 7124 return; 7125 } 7126 7127 Init = CE->getSubExpr(); 7128 } 7129 } while (Old != Init); 7130 7131 // C++17 [dcl.init.list]p6: 7132 // initializing an initializer_list object from the array extends the 7133 // lifetime of the array exactly like binding a reference to a temporary. 7134 if (auto *ILE = dyn_cast<CXXStdInitializerListExpr>(Init)) 7135 return visitLocalsRetainedByReferenceBinding(Path, ILE->getSubExpr(), 7136 RK_StdInitializerList, Visit, 7137 EnableLifetimeWarnings); 7138 7139 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 7140 // We already visited the elements of this initializer list while 7141 // performing the initialization. Don't visit them again unless we've 7142 // changed the lifetime of the initialized entity. 7143 if (!RevisitSubinits) 7144 return; 7145 7146 if (ILE->isTransparent()) 7147 return visitLocalsRetainedByInitializer(Path, ILE->getInit(0), Visit, 7148 RevisitSubinits, 7149 EnableLifetimeWarnings); 7150 7151 if (ILE->getType()->isArrayType()) { 7152 for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I) 7153 visitLocalsRetainedByInitializer(Path, ILE->getInit(I), Visit, 7154 RevisitSubinits, 7155 EnableLifetimeWarnings); 7156 return; 7157 } 7158 7159 if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) { 7160 assert(RD->isAggregate() && "aggregate init on non-aggregate"); 7161 7162 // If we lifetime-extend a braced initializer which is initializing an 7163 // aggregate, and that aggregate contains reference members which are 7164 // bound to temporaries, those temporaries are also lifetime-extended. 7165 if (RD->isUnion() && ILE->getInitializedFieldInUnion() && 7166 ILE->getInitializedFieldInUnion()->getType()->isReferenceType()) 7167 visitLocalsRetainedByReferenceBinding(Path, ILE->getInit(0), 7168 RK_ReferenceBinding, Visit, 7169 EnableLifetimeWarnings); 7170 else { 7171 unsigned Index = 0; 7172 for (; Index < RD->getNumBases() && Index < ILE->getNumInits(); ++Index) 7173 visitLocalsRetainedByInitializer(Path, ILE->getInit(Index), Visit, 7174 RevisitSubinits, 7175 EnableLifetimeWarnings); 7176 for (const auto *I : RD->fields()) { 7177 if (Index >= ILE->getNumInits()) 7178 break; 7179 if (I->isUnnamedBitfield()) 7180 continue; 7181 Expr *SubInit = ILE->getInit(Index); 7182 if (I->getType()->isReferenceType()) 7183 visitLocalsRetainedByReferenceBinding(Path, SubInit, 7184 RK_ReferenceBinding, Visit, 7185 EnableLifetimeWarnings); 7186 else 7187 // This might be either aggregate-initialization of a member or 7188 // initialization of a std::initializer_list object. Regardless, 7189 // we should recursively lifetime-extend that initializer. 7190 visitLocalsRetainedByInitializer(Path, SubInit, Visit, 7191 RevisitSubinits, 7192 EnableLifetimeWarnings); 7193 ++Index; 7194 } 7195 } 7196 } 7197 return; 7198 } 7199 7200 // The lifetime of an init-capture is that of the closure object constructed 7201 // by a lambda-expression. 7202 if (auto *LE = dyn_cast<LambdaExpr>(Init)) { 7203 for (Expr *E : LE->capture_inits()) { 7204 if (!E) 7205 continue; 7206 if (E->isGLValue()) 7207 visitLocalsRetainedByReferenceBinding(Path, E, RK_ReferenceBinding, 7208 Visit, EnableLifetimeWarnings); 7209 else 7210 visitLocalsRetainedByInitializer(Path, E, Visit, true, 7211 EnableLifetimeWarnings); 7212 } 7213 } 7214 7215 if (isa<CallExpr>(Init) || isa<CXXConstructExpr>(Init)) { 7216 if (EnableLifetimeWarnings) 7217 handleGslAnnotatedTypes(Path, Init, Visit); 7218 return visitLifetimeBoundArguments(Path, Init, Visit); 7219 } 7220 7221 switch (Init->getStmtClass()) { 7222 case Stmt::UnaryOperatorClass: { 7223 auto *UO = cast<UnaryOperator>(Init); 7224 // If the initializer is the address of a local, we could have a lifetime 7225 // problem. 7226 if (UO->getOpcode() == UO_AddrOf) { 7227 // If this is &rvalue, then it's ill-formed and we have already diagnosed 7228 // it. Don't produce a redundant warning about the lifetime of the 7229 // temporary. 7230 if (isa<MaterializeTemporaryExpr>(UO->getSubExpr())) 7231 return; 7232 7233 Path.push_back({IndirectLocalPathEntry::AddressOf, UO}); 7234 visitLocalsRetainedByReferenceBinding(Path, UO->getSubExpr(), 7235 RK_ReferenceBinding, Visit, 7236 EnableLifetimeWarnings); 7237 } 7238 break; 7239 } 7240 7241 case Stmt::BinaryOperatorClass: { 7242 // Handle pointer arithmetic. 7243 auto *BO = cast<BinaryOperator>(Init); 7244 BinaryOperatorKind BOK = BO->getOpcode(); 7245 if (!BO->getType()->isPointerType() || (BOK != BO_Add && BOK != BO_Sub)) 7246 break; 7247 7248 if (BO->getLHS()->getType()->isPointerType()) 7249 visitLocalsRetainedByInitializer(Path, BO->getLHS(), Visit, true, 7250 EnableLifetimeWarnings); 7251 else if (BO->getRHS()->getType()->isPointerType()) 7252 visitLocalsRetainedByInitializer(Path, BO->getRHS(), Visit, true, 7253 EnableLifetimeWarnings); 7254 break; 7255 } 7256 7257 case Stmt::ConditionalOperatorClass: 7258 case Stmt::BinaryConditionalOperatorClass: { 7259 auto *C = cast<AbstractConditionalOperator>(Init); 7260 // In C++, we can have a throw-expression operand, which has 'void' type 7261 // and isn't interesting from a lifetime perspective. 7262 if (!C->getTrueExpr()->getType()->isVoidType()) 7263 visitLocalsRetainedByInitializer(Path, C->getTrueExpr(), Visit, true, 7264 EnableLifetimeWarnings); 7265 if (!C->getFalseExpr()->getType()->isVoidType()) 7266 visitLocalsRetainedByInitializer(Path, C->getFalseExpr(), Visit, true, 7267 EnableLifetimeWarnings); 7268 break; 7269 } 7270 7271 case Stmt::BlockExprClass: 7272 if (cast<BlockExpr>(Init)->getBlockDecl()->hasCaptures()) { 7273 // This is a local block, whose lifetime is that of the function. 7274 Visit(Path, Local(cast<BlockExpr>(Init)), RK_ReferenceBinding); 7275 } 7276 break; 7277 7278 case Stmt::AddrLabelExprClass: 7279 // We want to warn if the address of a label would escape the function. 7280 Visit(Path, Local(cast<AddrLabelExpr>(Init)), RK_ReferenceBinding); 7281 break; 7282 7283 default: 7284 break; 7285 } 7286 } 7287 7288 /// Determine whether this is an indirect path to a temporary that we are 7289 /// supposed to lifetime-extend along (but don't). 7290 static bool shouldLifetimeExtendThroughPath(const IndirectLocalPath &Path) { 7291 for (auto Elem : Path) { 7292 if (Elem.Kind != IndirectLocalPathEntry::DefaultInit) 7293 return false; 7294 } 7295 return true; 7296 } 7297 7298 /// Find the range for the first interesting entry in the path at or after I. 7299 static SourceRange nextPathEntryRange(const IndirectLocalPath &Path, unsigned I, 7300 Expr *E) { 7301 for (unsigned N = Path.size(); I != N; ++I) { 7302 switch (Path[I].Kind) { 7303 case IndirectLocalPathEntry::AddressOf: 7304 case IndirectLocalPathEntry::LValToRVal: 7305 case IndirectLocalPathEntry::LifetimeBoundCall: 7306 case IndirectLocalPathEntry::GslReferenceInit: 7307 case IndirectLocalPathEntry::GslPointerInit: 7308 // These exist primarily to mark the path as not permitting or 7309 // supporting lifetime extension. 7310 break; 7311 7312 case IndirectLocalPathEntry::VarInit: 7313 if (cast<VarDecl>(Path[I].D)->isImplicit()) 7314 return SourceRange(); 7315 LLVM_FALLTHROUGH; 7316 case IndirectLocalPathEntry::DefaultInit: 7317 return Path[I].E->getSourceRange(); 7318 } 7319 } 7320 return E->getSourceRange(); 7321 } 7322 7323 static bool pathOnlyInitializesGslPointer(IndirectLocalPath &Path) { 7324 for (auto It = Path.rbegin(), End = Path.rend(); It != End; ++It) { 7325 if (It->Kind == IndirectLocalPathEntry::VarInit) 7326 continue; 7327 if (It->Kind == IndirectLocalPathEntry::AddressOf) 7328 continue; 7329 return It->Kind == IndirectLocalPathEntry::GslPointerInit || 7330 It->Kind == IndirectLocalPathEntry::GslReferenceInit; 7331 } 7332 return false; 7333 } 7334 7335 void Sema::checkInitializerLifetime(const InitializedEntity &Entity, 7336 Expr *Init) { 7337 LifetimeResult LR = getEntityLifetime(&Entity); 7338 LifetimeKind LK = LR.getInt(); 7339 const InitializedEntity *ExtendingEntity = LR.getPointer(); 7340 7341 // If this entity doesn't have an interesting lifetime, don't bother looking 7342 // for temporaries within its initializer. 7343 if (LK == LK_FullExpression) 7344 return; 7345 7346 auto TemporaryVisitor = [&](IndirectLocalPath &Path, Local L, 7347 ReferenceKind RK) -> bool { 7348 SourceRange DiagRange = nextPathEntryRange(Path, 0, L); 7349 SourceLocation DiagLoc = DiagRange.getBegin(); 7350 7351 auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L); 7352 7353 bool IsGslPtrInitWithGslTempOwner = false; 7354 bool IsLocalGslOwner = false; 7355 if (pathOnlyInitializesGslPointer(Path)) { 7356 if (isa<DeclRefExpr>(L)) { 7357 // We do not want to follow the references when returning a pointer originating 7358 // from a local owner to avoid the following false positive: 7359 // int &p = *localUniquePtr; 7360 // someContainer.add(std::move(localUniquePtr)); 7361 // return p; 7362 IsLocalGslOwner = isRecordWithAttr<OwnerAttr>(L->getType()); 7363 if (pathContainsInit(Path) || !IsLocalGslOwner) 7364 return false; 7365 } else { 7366 IsGslPtrInitWithGslTempOwner = MTE && !MTE->getExtendingDecl() && 7367 isRecordWithAttr<OwnerAttr>(MTE->getType()); 7368 // Skipping a chain of initializing gsl::Pointer annotated objects. 7369 // We are looking only for the final source to find out if it was 7370 // a local or temporary owner or the address of a local variable/param. 7371 if (!IsGslPtrInitWithGslTempOwner) 7372 return true; 7373 } 7374 } 7375 7376 switch (LK) { 7377 case LK_FullExpression: 7378 llvm_unreachable("already handled this"); 7379 7380 case LK_Extended: { 7381 if (!MTE) { 7382 // The initialized entity has lifetime beyond the full-expression, 7383 // and the local entity does too, so don't warn. 7384 // 7385 // FIXME: We should consider warning if a static / thread storage 7386 // duration variable retains an automatic storage duration local. 7387 return false; 7388 } 7389 7390 if (IsGslPtrInitWithGslTempOwner && DiagLoc.isValid()) { 7391 Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange; 7392 return false; 7393 } 7394 7395 // Lifetime-extend the temporary. 7396 if (Path.empty()) { 7397 // Update the storage duration of the materialized temporary. 7398 // FIXME: Rebuild the expression instead of mutating it. 7399 MTE->setExtendingDecl(ExtendingEntity->getDecl(), 7400 ExtendingEntity->allocateManglingNumber()); 7401 // Also visit the temporaries lifetime-extended by this initializer. 7402 return true; 7403 } 7404 7405 if (shouldLifetimeExtendThroughPath(Path)) { 7406 // We're supposed to lifetime-extend the temporary along this path (per 7407 // the resolution of DR1815), but we don't support that yet. 7408 // 7409 // FIXME: Properly handle this situation. Perhaps the easiest approach 7410 // would be to clone the initializer expression on each use that would 7411 // lifetime extend its temporaries. 7412 Diag(DiagLoc, diag::warn_unsupported_lifetime_extension) 7413 << RK << DiagRange; 7414 } else { 7415 // If the path goes through the initialization of a variable or field, 7416 // it can't possibly reach a temporary created in this full-expression. 7417 // We will have already diagnosed any problems with the initializer. 7418 if (pathContainsInit(Path)) 7419 return false; 7420 7421 Diag(DiagLoc, diag::warn_dangling_variable) 7422 << RK << !Entity.getParent() 7423 << ExtendingEntity->getDecl()->isImplicit() 7424 << ExtendingEntity->getDecl() << Init->isGLValue() << DiagRange; 7425 } 7426 break; 7427 } 7428 7429 case LK_MemInitializer: { 7430 if (isa<MaterializeTemporaryExpr>(L)) { 7431 // Under C++ DR1696, if a mem-initializer (or a default member 7432 // initializer used by the absence of one) would lifetime-extend a 7433 // temporary, the program is ill-formed. 7434 if (auto *ExtendingDecl = 7435 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) { 7436 if (IsGslPtrInitWithGslTempOwner) { 7437 Diag(DiagLoc, diag::warn_dangling_lifetime_pointer_member) 7438 << ExtendingDecl << DiagRange; 7439 Diag(ExtendingDecl->getLocation(), 7440 diag::note_ref_or_ptr_member_declared_here) 7441 << true; 7442 return false; 7443 } 7444 bool IsSubobjectMember = ExtendingEntity != &Entity; 7445 Diag(DiagLoc, shouldLifetimeExtendThroughPath(Path) 7446 ? diag::err_dangling_member 7447 : diag::warn_dangling_member) 7448 << ExtendingDecl << IsSubobjectMember << RK << DiagRange; 7449 // Don't bother adding a note pointing to the field if we're inside 7450 // its default member initializer; our primary diagnostic points to 7451 // the same place in that case. 7452 if (Path.empty() || 7453 Path.back().Kind != IndirectLocalPathEntry::DefaultInit) { 7454 Diag(ExtendingDecl->getLocation(), 7455 diag::note_lifetime_extending_member_declared_here) 7456 << RK << IsSubobjectMember; 7457 } 7458 } else { 7459 // We have a mem-initializer but no particular field within it; this 7460 // is either a base class or a delegating initializer directly 7461 // initializing the base-class from something that doesn't live long 7462 // enough. 7463 // 7464 // FIXME: Warn on this. 7465 return false; 7466 } 7467 } else { 7468 // Paths via a default initializer can only occur during error recovery 7469 // (there's no other way that a default initializer can refer to a 7470 // local). Don't produce a bogus warning on those cases. 7471 if (pathContainsInit(Path)) 7472 return false; 7473 7474 // Suppress false positives for code like the one below: 7475 // Ctor(unique_ptr<T> up) : member(*up), member2(move(up)) {} 7476 if (IsLocalGslOwner && pathOnlyInitializesGslPointer(Path)) 7477 return false; 7478 7479 auto *DRE = dyn_cast<DeclRefExpr>(L); 7480 auto *VD = DRE ? dyn_cast<VarDecl>(DRE->getDecl()) : nullptr; 7481 if (!VD) { 7482 // A member was initialized to a local block. 7483 // FIXME: Warn on this. 7484 return false; 7485 } 7486 7487 if (auto *Member = 7488 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) { 7489 bool IsPointer = !Member->getType()->isReferenceType(); 7490 Diag(DiagLoc, IsPointer ? diag::warn_init_ptr_member_to_parameter_addr 7491 : diag::warn_bind_ref_member_to_parameter) 7492 << Member << VD << isa<ParmVarDecl>(VD) << DiagRange; 7493 Diag(Member->getLocation(), 7494 diag::note_ref_or_ptr_member_declared_here) 7495 << (unsigned)IsPointer; 7496 } 7497 } 7498 break; 7499 } 7500 7501 case LK_New: 7502 if (isa<MaterializeTemporaryExpr>(L)) { 7503 if (IsGslPtrInitWithGslTempOwner) 7504 Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange; 7505 else 7506 Diag(DiagLoc, RK == RK_ReferenceBinding 7507 ? diag::warn_new_dangling_reference 7508 : diag::warn_new_dangling_initializer_list) 7509 << !Entity.getParent() << DiagRange; 7510 } else { 7511 // We can't determine if the allocation outlives the local declaration. 7512 return false; 7513 } 7514 break; 7515 7516 case LK_Return: 7517 case LK_StmtExprResult: 7518 if (auto *DRE = dyn_cast<DeclRefExpr>(L)) { 7519 // We can't determine if the local variable outlives the statement 7520 // expression. 7521 if (LK == LK_StmtExprResult) 7522 return false; 7523 Diag(DiagLoc, diag::warn_ret_stack_addr_ref) 7524 << Entity.getType()->isReferenceType() << DRE->getDecl() 7525 << isa<ParmVarDecl>(DRE->getDecl()) << DiagRange; 7526 } else if (isa<BlockExpr>(L)) { 7527 Diag(DiagLoc, diag::err_ret_local_block) << DiagRange; 7528 } else if (isa<AddrLabelExpr>(L)) { 7529 // Don't warn when returning a label from a statement expression. 7530 // Leaving the scope doesn't end its lifetime. 7531 if (LK == LK_StmtExprResult) 7532 return false; 7533 Diag(DiagLoc, diag::warn_ret_addr_label) << DiagRange; 7534 } else { 7535 Diag(DiagLoc, diag::warn_ret_local_temp_addr_ref) 7536 << Entity.getType()->isReferenceType() << DiagRange; 7537 } 7538 break; 7539 } 7540 7541 for (unsigned I = 0; I != Path.size(); ++I) { 7542 auto Elem = Path[I]; 7543 7544 switch (Elem.Kind) { 7545 case IndirectLocalPathEntry::AddressOf: 7546 case IndirectLocalPathEntry::LValToRVal: 7547 // These exist primarily to mark the path as not permitting or 7548 // supporting lifetime extension. 7549 break; 7550 7551 case IndirectLocalPathEntry::LifetimeBoundCall: 7552 case IndirectLocalPathEntry::GslPointerInit: 7553 case IndirectLocalPathEntry::GslReferenceInit: 7554 // FIXME: Consider adding a note for these. 7555 break; 7556 7557 case IndirectLocalPathEntry::DefaultInit: { 7558 auto *FD = cast<FieldDecl>(Elem.D); 7559 Diag(FD->getLocation(), diag::note_init_with_default_member_initalizer) 7560 << FD << nextPathEntryRange(Path, I + 1, L); 7561 break; 7562 } 7563 7564 case IndirectLocalPathEntry::VarInit: 7565 const VarDecl *VD = cast<VarDecl>(Elem.D); 7566 Diag(VD->getLocation(), diag::note_local_var_initializer) 7567 << VD->getType()->isReferenceType() 7568 << VD->isImplicit() << VD->getDeclName() 7569 << nextPathEntryRange(Path, I + 1, L); 7570 break; 7571 } 7572 } 7573 7574 // We didn't lifetime-extend, so don't go any further; we don't need more 7575 // warnings or errors on inner temporaries within this one's initializer. 7576 return false; 7577 }; 7578 7579 bool EnableLifetimeWarnings = !getDiagnostics().isIgnored( 7580 diag::warn_dangling_lifetime_pointer, SourceLocation()); 7581 llvm::SmallVector<IndirectLocalPathEntry, 8> Path; 7582 if (Init->isGLValue()) 7583 visitLocalsRetainedByReferenceBinding(Path, Init, RK_ReferenceBinding, 7584 TemporaryVisitor, 7585 EnableLifetimeWarnings); 7586 else 7587 visitLocalsRetainedByInitializer(Path, Init, TemporaryVisitor, false, 7588 EnableLifetimeWarnings); 7589 } 7590 7591 static void DiagnoseNarrowingInInitList(Sema &S, 7592 const ImplicitConversionSequence &ICS, 7593 QualType PreNarrowingType, 7594 QualType EntityType, 7595 const Expr *PostInit); 7596 7597 /// Provide warnings when std::move is used on construction. 7598 static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr, 7599 bool IsReturnStmt) { 7600 if (!InitExpr) 7601 return; 7602 7603 if (S.inTemplateInstantiation()) 7604 return; 7605 7606 QualType DestType = InitExpr->getType(); 7607 if (!DestType->isRecordType()) 7608 return; 7609 7610 unsigned DiagID = 0; 7611 if (IsReturnStmt) { 7612 const CXXConstructExpr *CCE = 7613 dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens()); 7614 if (!CCE || CCE->getNumArgs() != 1) 7615 return; 7616 7617 if (!CCE->getConstructor()->isCopyOrMoveConstructor()) 7618 return; 7619 7620 InitExpr = CCE->getArg(0)->IgnoreImpCasts(); 7621 } 7622 7623 // Find the std::move call and get the argument. 7624 const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens()); 7625 if (!CE || !CE->isCallToStdMove()) 7626 return; 7627 7628 const Expr *Arg = CE->getArg(0)->IgnoreImplicit(); 7629 7630 if (IsReturnStmt) { 7631 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts()); 7632 if (!DRE || DRE->refersToEnclosingVariableOrCapture()) 7633 return; 7634 7635 const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()); 7636 if (!VD || !VD->hasLocalStorage()) 7637 return; 7638 7639 // __block variables are not moved implicitly. 7640 if (VD->hasAttr<BlocksAttr>()) 7641 return; 7642 7643 QualType SourceType = VD->getType(); 7644 if (!SourceType->isRecordType()) 7645 return; 7646 7647 if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) { 7648 return; 7649 } 7650 7651 // If we're returning a function parameter, copy elision 7652 // is not possible. 7653 if (isa<ParmVarDecl>(VD)) 7654 DiagID = diag::warn_redundant_move_on_return; 7655 else 7656 DiagID = diag::warn_pessimizing_move_on_return; 7657 } else { 7658 DiagID = diag::warn_pessimizing_move_on_initialization; 7659 const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens(); 7660 if (!ArgStripped->isRValue() || !ArgStripped->getType()->isRecordType()) 7661 return; 7662 } 7663 7664 S.Diag(CE->getBeginLoc(), DiagID); 7665 7666 // Get all the locations for a fix-it. Don't emit the fix-it if any location 7667 // is within a macro. 7668 SourceLocation CallBegin = CE->getCallee()->getBeginLoc(); 7669 if (CallBegin.isMacroID()) 7670 return; 7671 SourceLocation RParen = CE->getRParenLoc(); 7672 if (RParen.isMacroID()) 7673 return; 7674 SourceLocation LParen; 7675 SourceLocation ArgLoc = Arg->getBeginLoc(); 7676 7677 // Special testing for the argument location. Since the fix-it needs the 7678 // location right before the argument, the argument location can be in a 7679 // macro only if it is at the beginning of the macro. 7680 while (ArgLoc.isMacroID() && 7681 S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) { 7682 ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).getBegin(); 7683 } 7684 7685 if (LParen.isMacroID()) 7686 return; 7687 7688 LParen = ArgLoc.getLocWithOffset(-1); 7689 7690 S.Diag(CE->getBeginLoc(), diag::note_remove_move) 7691 << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen)) 7692 << FixItHint::CreateRemoval(SourceRange(RParen, RParen)); 7693 } 7694 7695 static void CheckForNullPointerDereference(Sema &S, const Expr *E) { 7696 // Check to see if we are dereferencing a null pointer. If so, this is 7697 // undefined behavior, so warn about it. This only handles the pattern 7698 // "*null", which is a very syntactic check. 7699 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts())) 7700 if (UO->getOpcode() == UO_Deref && 7701 UO->getSubExpr()->IgnoreParenCasts()-> 7702 isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) { 7703 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO, 7704 S.PDiag(diag::warn_binding_null_to_reference) 7705 << UO->getSubExpr()->getSourceRange()); 7706 } 7707 } 7708 7709 MaterializeTemporaryExpr * 7710 Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary, 7711 bool BoundToLvalueReference) { 7712 auto MTE = new (Context) 7713 MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference); 7714 7715 // Order an ExprWithCleanups for lifetime marks. 7716 // 7717 // TODO: It'll be good to have a single place to check the access of the 7718 // destructor and generate ExprWithCleanups for various uses. Currently these 7719 // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary, 7720 // but there may be a chance to merge them. 7721 Cleanup.setExprNeedsCleanups(false); 7722 return MTE; 7723 } 7724 7725 ExprResult Sema::TemporaryMaterializationConversion(Expr *E) { 7726 // In C++98, we don't want to implicitly create an xvalue. 7727 // FIXME: This means that AST consumers need to deal with "prvalues" that 7728 // denote materialized temporaries. Maybe we should add another ValueKind 7729 // for "xvalue pretending to be a prvalue" for C++98 support. 7730 if (!E->isRValue() || !getLangOpts().CPlusPlus11) 7731 return E; 7732 7733 // C++1z [conv.rval]/1: T shall be a complete type. 7734 // FIXME: Does this ever matter (can we form a prvalue of incomplete type)? 7735 // If so, we should check for a non-abstract class type here too. 7736 QualType T = E->getType(); 7737 if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type)) 7738 return ExprError(); 7739 7740 return CreateMaterializeTemporaryExpr(E->getType(), E, false); 7741 } 7742 7743 ExprResult Sema::PerformQualificationConversion(Expr *E, QualType Ty, 7744 ExprValueKind VK, 7745 CheckedConversionKind CCK) { 7746 7747 CastKind CK = CK_NoOp; 7748 7749 if (VK == VK_RValue) { 7750 auto PointeeTy = Ty->getPointeeType(); 7751 auto ExprPointeeTy = E->getType()->getPointeeType(); 7752 if (!PointeeTy.isNull() && 7753 PointeeTy.getAddressSpace() != ExprPointeeTy.getAddressSpace()) 7754 CK = CK_AddressSpaceConversion; 7755 } else if (Ty.getAddressSpace() != E->getType().getAddressSpace()) { 7756 CK = CK_AddressSpaceConversion; 7757 } 7758 7759 return ImpCastExprToType(E, Ty, CK, VK, /*BasePath=*/nullptr, CCK); 7760 } 7761 7762 ExprResult InitializationSequence::Perform(Sema &S, 7763 const InitializedEntity &Entity, 7764 const InitializationKind &Kind, 7765 MultiExprArg Args, 7766 QualType *ResultType) { 7767 if (Failed()) { 7768 Diagnose(S, Entity, Kind, Args); 7769 return ExprError(); 7770 } 7771 if (!ZeroInitializationFixit.empty()) { 7772 unsigned DiagID = diag::err_default_init_const; 7773 if (Decl *D = Entity.getDecl()) 7774 if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>()) 7775 DiagID = diag::ext_default_init_const; 7776 7777 // The initialization would have succeeded with this fixit. Since the fixit 7778 // is on the error, we need to build a valid AST in this case, so this isn't 7779 // handled in the Failed() branch above. 7780 QualType DestType = Entity.getType(); 7781 S.Diag(Kind.getLocation(), DiagID) 7782 << DestType << (bool)DestType->getAs<RecordType>() 7783 << FixItHint::CreateInsertion(ZeroInitializationFixitLoc, 7784 ZeroInitializationFixit); 7785 } 7786 7787 if (getKind() == DependentSequence) { 7788 // If the declaration is a non-dependent, incomplete array type 7789 // that has an initializer, then its type will be completed once 7790 // the initializer is instantiated. 7791 if (ResultType && !Entity.getType()->isDependentType() && 7792 Args.size() == 1) { 7793 QualType DeclType = Entity.getType(); 7794 if (const IncompleteArrayType *ArrayT 7795 = S.Context.getAsIncompleteArrayType(DeclType)) { 7796 // FIXME: We don't currently have the ability to accurately 7797 // compute the length of an initializer list without 7798 // performing full type-checking of the initializer list 7799 // (since we have to determine where braces are implicitly 7800 // introduced and such). So, we fall back to making the array 7801 // type a dependently-sized array type with no specified 7802 // bound. 7803 if (isa<InitListExpr>((Expr *)Args[0])) { 7804 SourceRange Brackets; 7805 7806 // Scavange the location of the brackets from the entity, if we can. 7807 if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Entity.getDecl())) { 7808 if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) { 7809 TypeLoc TL = TInfo->getTypeLoc(); 7810 if (IncompleteArrayTypeLoc ArrayLoc = 7811 TL.getAs<IncompleteArrayTypeLoc>()) 7812 Brackets = ArrayLoc.getBracketsRange(); 7813 } 7814 } 7815 7816 *ResultType 7817 = S.Context.getDependentSizedArrayType(ArrayT->getElementType(), 7818 /*NumElts=*/nullptr, 7819 ArrayT->getSizeModifier(), 7820 ArrayT->getIndexTypeCVRQualifiers(), 7821 Brackets); 7822 } 7823 7824 } 7825 } 7826 if (Kind.getKind() == InitializationKind::IK_Direct && 7827 !Kind.isExplicitCast()) { 7828 // Rebuild the ParenListExpr. 7829 SourceRange ParenRange = Kind.getParenOrBraceRange(); 7830 return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(), 7831 Args); 7832 } 7833 assert(Kind.getKind() == InitializationKind::IK_Copy || 7834 Kind.isExplicitCast() || 7835 Kind.getKind() == InitializationKind::IK_DirectList); 7836 return ExprResult(Args[0]); 7837 } 7838 7839 // No steps means no initialization. 7840 if (Steps.empty()) 7841 return ExprResult((Expr *)nullptr); 7842 7843 if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() && 7844 Args.size() == 1 && isa<InitListExpr>(Args[0]) && 7845 !Entity.isParameterKind()) { 7846 // Produce a C++98 compatibility warning if we are initializing a reference 7847 // from an initializer list. For parameters, we produce a better warning 7848 // elsewhere. 7849 Expr *Init = Args[0]; 7850 S.Diag(Init->getBeginLoc(), diag::warn_cxx98_compat_reference_list_init) 7851 << Init->getSourceRange(); 7852 } 7853 7854 // OpenCL v2.0 s6.13.11.1. atomic variables can be initialized in global scope 7855 QualType ETy = Entity.getType(); 7856 bool HasGlobalAS = ETy.hasAddressSpace() && 7857 ETy.getAddressSpace() == LangAS::opencl_global; 7858 7859 if (S.getLangOpts().OpenCLVersion >= 200 && 7860 ETy->isAtomicType() && !HasGlobalAS && 7861 Entity.getKind() == InitializedEntity::EK_Variable && Args.size() > 0) { 7862 S.Diag(Args[0]->getBeginLoc(), diag::err_opencl_atomic_init) 7863 << 1 7864 << SourceRange(Entity.getDecl()->getBeginLoc(), Args[0]->getEndLoc()); 7865 return ExprError(); 7866 } 7867 7868 QualType DestType = Entity.getType().getNonReferenceType(); 7869 // FIXME: Ugly hack around the fact that Entity.getType() is not 7870 // the same as Entity.getDecl()->getType() in cases involving type merging, 7871 // and we want latter when it makes sense. 7872 if (ResultType) 7873 *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() : 7874 Entity.getType(); 7875 7876 ExprResult CurInit((Expr *)nullptr); 7877 SmallVector<Expr*, 4> ArrayLoopCommonExprs; 7878 7879 // For initialization steps that start with a single initializer, 7880 // grab the only argument out the Args and place it into the "current" 7881 // initializer. 7882 switch (Steps.front().Kind) { 7883 case SK_ResolveAddressOfOverloadedFunction: 7884 case SK_CastDerivedToBaseRValue: 7885 case SK_CastDerivedToBaseXValue: 7886 case SK_CastDerivedToBaseLValue: 7887 case SK_BindReference: 7888 case SK_BindReferenceToTemporary: 7889 case SK_FinalCopy: 7890 case SK_ExtraneousCopyToTemporary: 7891 case SK_UserConversion: 7892 case SK_QualificationConversionLValue: 7893 case SK_QualificationConversionXValue: 7894 case SK_QualificationConversionRValue: 7895 case SK_AtomicConversion: 7896 case SK_ConversionSequence: 7897 case SK_ConversionSequenceNoNarrowing: 7898 case SK_ListInitialization: 7899 case SK_UnwrapInitList: 7900 case SK_RewrapInitList: 7901 case SK_CAssignment: 7902 case SK_StringInit: 7903 case SK_ObjCObjectConversion: 7904 case SK_ArrayLoopIndex: 7905 case SK_ArrayLoopInit: 7906 case SK_ArrayInit: 7907 case SK_GNUArrayInit: 7908 case SK_ParenthesizedArrayInit: 7909 case SK_PassByIndirectCopyRestore: 7910 case SK_PassByIndirectRestore: 7911 case SK_ProduceObjCObject: 7912 case SK_StdInitializerList: 7913 case SK_OCLSamplerInit: 7914 case SK_OCLZeroOpaqueType: { 7915 assert(Args.size() == 1); 7916 CurInit = Args[0]; 7917 if (!CurInit.get()) return ExprError(); 7918 break; 7919 } 7920 7921 case SK_ConstructorInitialization: 7922 case SK_ConstructorInitializationFromList: 7923 case SK_StdInitializerListConstructorCall: 7924 case SK_ZeroInitialization: 7925 break; 7926 } 7927 7928 // Promote from an unevaluated context to an unevaluated list context in 7929 // C++11 list-initialization; we need to instantiate entities usable in 7930 // constant expressions here in order to perform narrowing checks =( 7931 EnterExpressionEvaluationContext Evaluated( 7932 S, EnterExpressionEvaluationContext::InitList, 7933 CurInit.get() && isa<InitListExpr>(CurInit.get())); 7934 7935 // C++ [class.abstract]p2: 7936 // no objects of an abstract class can be created except as subobjects 7937 // of a class derived from it 7938 auto checkAbstractType = [&](QualType T) -> bool { 7939 if (Entity.getKind() == InitializedEntity::EK_Base || 7940 Entity.getKind() == InitializedEntity::EK_Delegating) 7941 return false; 7942 return S.RequireNonAbstractType(Kind.getLocation(), T, 7943 diag::err_allocation_of_abstract_type); 7944 }; 7945 7946 // Walk through the computed steps for the initialization sequence, 7947 // performing the specified conversions along the way. 7948 bool ConstructorInitRequiresZeroInit = false; 7949 for (step_iterator Step = step_begin(), StepEnd = step_end(); 7950 Step != StepEnd; ++Step) { 7951 if (CurInit.isInvalid()) 7952 return ExprError(); 7953 7954 QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType(); 7955 7956 switch (Step->Kind) { 7957 case SK_ResolveAddressOfOverloadedFunction: 7958 // Overload resolution determined which function invoke; update the 7959 // initializer to reflect that choice. 7960 S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl); 7961 if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation())) 7962 return ExprError(); 7963 CurInit = S.FixOverloadedFunctionReference(CurInit, 7964 Step->Function.FoundDecl, 7965 Step->Function.Function); 7966 break; 7967 7968 case SK_CastDerivedToBaseRValue: 7969 case SK_CastDerivedToBaseXValue: 7970 case SK_CastDerivedToBaseLValue: { 7971 // We have a derived-to-base cast that produces either an rvalue or an 7972 // lvalue. Perform that cast. 7973 7974 CXXCastPath BasePath; 7975 7976 // Casts to inaccessible base classes are allowed with C-style casts. 7977 bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast(); 7978 if (S.CheckDerivedToBaseConversion( 7979 SourceType, Step->Type, CurInit.get()->getBeginLoc(), 7980 CurInit.get()->getSourceRange(), &BasePath, IgnoreBaseAccess)) 7981 return ExprError(); 7982 7983 ExprValueKind VK = 7984 Step->Kind == SK_CastDerivedToBaseLValue ? 7985 VK_LValue : 7986 (Step->Kind == SK_CastDerivedToBaseXValue ? 7987 VK_XValue : 7988 VK_RValue); 7989 CurInit = 7990 ImplicitCastExpr::Create(S.Context, Step->Type, CK_DerivedToBase, 7991 CurInit.get(), &BasePath, VK); 7992 break; 7993 } 7994 7995 case SK_BindReference: 7996 // Reference binding does not have any corresponding ASTs. 7997 7998 // Check exception specifications 7999 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType)) 8000 return ExprError(); 8001 8002 // We don't check for e.g. function pointers here, since address 8003 // availability checks should only occur when the function first decays 8004 // into a pointer or reference. 8005 if (CurInit.get()->getType()->isFunctionProtoType()) { 8006 if (auto *DRE = dyn_cast<DeclRefExpr>(CurInit.get()->IgnoreParens())) { 8007 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 8008 if (!S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, 8009 DRE->getBeginLoc())) 8010 return ExprError(); 8011 } 8012 } 8013 } 8014 8015 CheckForNullPointerDereference(S, CurInit.get()); 8016 break; 8017 8018 case SK_BindReferenceToTemporary: { 8019 // Make sure the "temporary" is actually an rvalue. 8020 assert(CurInit.get()->isRValue() && "not a temporary"); 8021 8022 // Check exception specifications 8023 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType)) 8024 return ExprError(); 8025 8026 // Materialize the temporary into memory. 8027 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr( 8028 Step->Type, CurInit.get(), Entity.getType()->isLValueReferenceType()); 8029 CurInit = MTE; 8030 8031 // If we're extending this temporary to automatic storage duration -- we 8032 // need to register its cleanup during the full-expression's cleanups. 8033 if (MTE->getStorageDuration() == SD_Automatic && 8034 MTE->getType().isDestructedType()) 8035 S.Cleanup.setExprNeedsCleanups(true); 8036 break; 8037 } 8038 8039 case SK_FinalCopy: 8040 if (checkAbstractType(Step->Type)) 8041 return ExprError(); 8042 8043 // If the overall initialization is initializing a temporary, we already 8044 // bound our argument if it was necessary to do so. If not (if we're 8045 // ultimately initializing a non-temporary), our argument needs to be 8046 // bound since it's initializing a function parameter. 8047 // FIXME: This is a mess. Rationalize temporary destruction. 8048 if (!shouldBindAsTemporary(Entity)) 8049 CurInit = S.MaybeBindToTemporary(CurInit.get()); 8050 CurInit = CopyObject(S, Step->Type, Entity, CurInit, 8051 /*IsExtraneousCopy=*/false); 8052 break; 8053 8054 case SK_ExtraneousCopyToTemporary: 8055 CurInit = CopyObject(S, Step->Type, Entity, CurInit, 8056 /*IsExtraneousCopy=*/true); 8057 break; 8058 8059 case SK_UserConversion: { 8060 // We have a user-defined conversion that invokes either a constructor 8061 // or a conversion function. 8062 CastKind CastKind; 8063 FunctionDecl *Fn = Step->Function.Function; 8064 DeclAccessPair FoundFn = Step->Function.FoundDecl; 8065 bool HadMultipleCandidates = Step->Function.HadMultipleCandidates; 8066 bool CreatedObject = false; 8067 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) { 8068 // Build a call to the selected constructor. 8069 SmallVector<Expr*, 8> ConstructorArgs; 8070 SourceLocation Loc = CurInit.get()->getBeginLoc(); 8071 8072 // Determine the arguments required to actually perform the constructor 8073 // call. 8074 Expr *Arg = CurInit.get(); 8075 if (S.CompleteConstructorCall(Constructor, 8076 MultiExprArg(&Arg, 1), 8077 Loc, ConstructorArgs)) 8078 return ExprError(); 8079 8080 // Build an expression that constructs a temporary. 8081 CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, 8082 FoundFn, Constructor, 8083 ConstructorArgs, 8084 HadMultipleCandidates, 8085 /*ListInit*/ false, 8086 /*StdInitListInit*/ false, 8087 /*ZeroInit*/ false, 8088 CXXConstructExpr::CK_Complete, 8089 SourceRange()); 8090 if (CurInit.isInvalid()) 8091 return ExprError(); 8092 8093 S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn, 8094 Entity); 8095 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation())) 8096 return ExprError(); 8097 8098 CastKind = CK_ConstructorConversion; 8099 CreatedObject = true; 8100 } else { 8101 // Build a call to the conversion function. 8102 CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn); 8103 S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr, 8104 FoundFn); 8105 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation())) 8106 return ExprError(); 8107 8108 CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion, 8109 HadMultipleCandidates); 8110 if (CurInit.isInvalid()) 8111 return ExprError(); 8112 8113 CastKind = CK_UserDefinedConversion; 8114 CreatedObject = Conversion->getReturnType()->isRecordType(); 8115 } 8116 8117 if (CreatedObject && checkAbstractType(CurInit.get()->getType())) 8118 return ExprError(); 8119 8120 CurInit = ImplicitCastExpr::Create(S.Context, CurInit.get()->getType(), 8121 CastKind, CurInit.get(), nullptr, 8122 CurInit.get()->getValueKind()); 8123 8124 if (shouldBindAsTemporary(Entity)) 8125 // The overall entity is temporary, so this expression should be 8126 // destroyed at the end of its full-expression. 8127 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>()); 8128 else if (CreatedObject && shouldDestroyEntity(Entity)) { 8129 // The object outlasts the full-expression, but we need to prepare for 8130 // a destructor being run on it. 8131 // FIXME: It makes no sense to do this here. This should happen 8132 // regardless of how we initialized the entity. 8133 QualType T = CurInit.get()->getType(); 8134 if (const RecordType *Record = T->getAs<RecordType>()) { 8135 CXXDestructorDecl *Destructor 8136 = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl())); 8137 S.CheckDestructorAccess(CurInit.get()->getBeginLoc(), Destructor, 8138 S.PDiag(diag::err_access_dtor_temp) << T); 8139 S.MarkFunctionReferenced(CurInit.get()->getBeginLoc(), Destructor); 8140 if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getBeginLoc())) 8141 return ExprError(); 8142 } 8143 } 8144 break; 8145 } 8146 8147 case SK_QualificationConversionLValue: 8148 case SK_QualificationConversionXValue: 8149 case SK_QualificationConversionRValue: { 8150 // Perform a qualification conversion; these can never go wrong. 8151 ExprValueKind VK = 8152 Step->Kind == SK_QualificationConversionLValue 8153 ? VK_LValue 8154 : (Step->Kind == SK_QualificationConversionXValue ? VK_XValue 8155 : VK_RValue); 8156 CurInit = S.PerformQualificationConversion(CurInit.get(), Step->Type, VK); 8157 break; 8158 } 8159 8160 case SK_AtomicConversion: { 8161 assert(CurInit.get()->isRValue() && "cannot convert glvalue to atomic"); 8162 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 8163 CK_NonAtomicToAtomic, VK_RValue); 8164 break; 8165 } 8166 8167 case SK_ConversionSequence: 8168 case SK_ConversionSequenceNoNarrowing: { 8169 if (const auto *FromPtrType = 8170 CurInit.get()->getType()->getAs<PointerType>()) { 8171 if (const auto *ToPtrType = Step->Type->getAs<PointerType>()) { 8172 if (FromPtrType->getPointeeType()->hasAttr(attr::NoDeref) && 8173 !ToPtrType->getPointeeType()->hasAttr(attr::NoDeref)) { 8174 S.Diag(CurInit.get()->getExprLoc(), 8175 diag::warn_noderef_to_dereferenceable_pointer) 8176 << CurInit.get()->getSourceRange(); 8177 } 8178 } 8179 } 8180 8181 Sema::CheckedConversionKind CCK 8182 = Kind.isCStyleCast()? Sema::CCK_CStyleCast 8183 : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast 8184 : Kind.isExplicitCast()? Sema::CCK_OtherCast 8185 : Sema::CCK_ImplicitConversion; 8186 ExprResult CurInitExprRes = 8187 S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS, 8188 getAssignmentAction(Entity), CCK); 8189 if (CurInitExprRes.isInvalid()) 8190 return ExprError(); 8191 8192 S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), CurInit.get()); 8193 8194 CurInit = CurInitExprRes; 8195 8196 if (Step->Kind == SK_ConversionSequenceNoNarrowing && 8197 S.getLangOpts().CPlusPlus) 8198 DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(), 8199 CurInit.get()); 8200 8201 break; 8202 } 8203 8204 case SK_ListInitialization: { 8205 if (checkAbstractType(Step->Type)) 8206 return ExprError(); 8207 8208 InitListExpr *InitList = cast<InitListExpr>(CurInit.get()); 8209 // If we're not initializing the top-level entity, we need to create an 8210 // InitializeTemporary entity for our target type. 8211 QualType Ty = Step->Type; 8212 bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty); 8213 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty); 8214 InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity; 8215 InitListChecker PerformInitList(S, InitEntity, 8216 InitList, Ty, /*VerifyOnly=*/false, 8217 /*TreatUnavailableAsInvalid=*/false); 8218 if (PerformInitList.HadError()) 8219 return ExprError(); 8220 8221 // Hack: We must update *ResultType if available in order to set the 8222 // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'. 8223 // Worst case: 'const int (&arref)[] = {1, 2, 3};'. 8224 if (ResultType && 8225 ResultType->getNonReferenceType()->isIncompleteArrayType()) { 8226 if ((*ResultType)->isRValueReferenceType()) 8227 Ty = S.Context.getRValueReferenceType(Ty); 8228 else if ((*ResultType)->isLValueReferenceType()) 8229 Ty = S.Context.getLValueReferenceType(Ty, 8230 (*ResultType)->castAs<LValueReferenceType>()->isSpelledAsLValue()); 8231 *ResultType = Ty; 8232 } 8233 8234 InitListExpr *StructuredInitList = 8235 PerformInitList.getFullyStructuredList(); 8236 CurInit.get(); 8237 CurInit = shouldBindAsTemporary(InitEntity) 8238 ? S.MaybeBindToTemporary(StructuredInitList) 8239 : StructuredInitList; 8240 break; 8241 } 8242 8243 case SK_ConstructorInitializationFromList: { 8244 if (checkAbstractType(Step->Type)) 8245 return ExprError(); 8246 8247 // When an initializer list is passed for a parameter of type "reference 8248 // to object", we don't get an EK_Temporary entity, but instead an 8249 // EK_Parameter entity with reference type. 8250 // FIXME: This is a hack. What we really should do is create a user 8251 // conversion step for this case, but this makes it considerably more 8252 // complicated. For now, this will do. 8253 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( 8254 Entity.getType().getNonReferenceType()); 8255 bool UseTemporary = Entity.getType()->isReferenceType(); 8256 assert(Args.size() == 1 && "expected a single argument for list init"); 8257 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 8258 S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init) 8259 << InitList->getSourceRange(); 8260 MultiExprArg Arg(InitList->getInits(), InitList->getNumInits()); 8261 CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity : 8262 Entity, 8263 Kind, Arg, *Step, 8264 ConstructorInitRequiresZeroInit, 8265 /*IsListInitialization*/true, 8266 /*IsStdInitListInit*/false, 8267 InitList->getLBraceLoc(), 8268 InitList->getRBraceLoc()); 8269 break; 8270 } 8271 8272 case SK_UnwrapInitList: 8273 CurInit = cast<InitListExpr>(CurInit.get())->getInit(0); 8274 break; 8275 8276 case SK_RewrapInitList: { 8277 Expr *E = CurInit.get(); 8278 InitListExpr *Syntactic = Step->WrappingSyntacticList; 8279 InitListExpr *ILE = new (S.Context) InitListExpr(S.Context, 8280 Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc()); 8281 ILE->setSyntacticForm(Syntactic); 8282 ILE->setType(E->getType()); 8283 ILE->setValueKind(E->getValueKind()); 8284 CurInit = ILE; 8285 break; 8286 } 8287 8288 case SK_ConstructorInitialization: 8289 case SK_StdInitializerListConstructorCall: { 8290 if (checkAbstractType(Step->Type)) 8291 return ExprError(); 8292 8293 // When an initializer list is passed for a parameter of type "reference 8294 // to object", we don't get an EK_Temporary entity, but instead an 8295 // EK_Parameter entity with reference type. 8296 // FIXME: This is a hack. What we really should do is create a user 8297 // conversion step for this case, but this makes it considerably more 8298 // complicated. For now, this will do. 8299 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( 8300 Entity.getType().getNonReferenceType()); 8301 bool UseTemporary = Entity.getType()->isReferenceType(); 8302 bool IsStdInitListInit = 8303 Step->Kind == SK_StdInitializerListConstructorCall; 8304 Expr *Source = CurInit.get(); 8305 SourceRange Range = Kind.hasParenOrBraceRange() 8306 ? Kind.getParenOrBraceRange() 8307 : SourceRange(); 8308 CurInit = PerformConstructorInitialization( 8309 S, UseTemporary ? TempEntity : Entity, Kind, 8310 Source ? MultiExprArg(Source) : Args, *Step, 8311 ConstructorInitRequiresZeroInit, 8312 /*IsListInitialization*/ IsStdInitListInit, 8313 /*IsStdInitListInitialization*/ IsStdInitListInit, 8314 /*LBraceLoc*/ Range.getBegin(), 8315 /*RBraceLoc*/ Range.getEnd()); 8316 break; 8317 } 8318 8319 case SK_ZeroInitialization: { 8320 step_iterator NextStep = Step; 8321 ++NextStep; 8322 if (NextStep != StepEnd && 8323 (NextStep->Kind == SK_ConstructorInitialization || 8324 NextStep->Kind == SK_ConstructorInitializationFromList)) { 8325 // The need for zero-initialization is recorded directly into 8326 // the call to the object's constructor within the next step. 8327 ConstructorInitRequiresZeroInit = true; 8328 } else if (Kind.getKind() == InitializationKind::IK_Value && 8329 S.getLangOpts().CPlusPlus && 8330 !Kind.isImplicitValueInit()) { 8331 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); 8332 if (!TSInfo) 8333 TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type, 8334 Kind.getRange().getBegin()); 8335 8336 CurInit = new (S.Context) CXXScalarValueInitExpr( 8337 Entity.getType().getNonLValueExprType(S.Context), TSInfo, 8338 Kind.getRange().getEnd()); 8339 } else { 8340 CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type); 8341 } 8342 break; 8343 } 8344 8345 case SK_CAssignment: { 8346 QualType SourceType = CurInit.get()->getType(); 8347 8348 // Save off the initial CurInit in case we need to emit a diagnostic 8349 ExprResult InitialCurInit = CurInit; 8350 ExprResult Result = CurInit; 8351 Sema::AssignConvertType ConvTy = 8352 S.CheckSingleAssignmentConstraints(Step->Type, Result, true, 8353 Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited); 8354 if (Result.isInvalid()) 8355 return ExprError(); 8356 CurInit = Result; 8357 8358 // If this is a call, allow conversion to a transparent union. 8359 ExprResult CurInitExprRes = CurInit; 8360 if (ConvTy != Sema::Compatible && 8361 Entity.isParameterKind() && 8362 S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes) 8363 == Sema::Compatible) 8364 ConvTy = Sema::Compatible; 8365 if (CurInitExprRes.isInvalid()) 8366 return ExprError(); 8367 CurInit = CurInitExprRes; 8368 8369 bool Complained; 8370 if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(), 8371 Step->Type, SourceType, 8372 InitialCurInit.get(), 8373 getAssignmentAction(Entity, true), 8374 &Complained)) { 8375 PrintInitLocationNote(S, Entity); 8376 return ExprError(); 8377 } else if (Complained) 8378 PrintInitLocationNote(S, Entity); 8379 break; 8380 } 8381 8382 case SK_StringInit: { 8383 QualType Ty = Step->Type; 8384 CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty, 8385 S.Context.getAsArrayType(Ty), S); 8386 break; 8387 } 8388 8389 case SK_ObjCObjectConversion: 8390 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 8391 CK_ObjCObjectLValueCast, 8392 CurInit.get()->getValueKind()); 8393 break; 8394 8395 case SK_ArrayLoopIndex: { 8396 Expr *Cur = CurInit.get(); 8397 Expr *BaseExpr = new (S.Context) 8398 OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(), 8399 Cur->getValueKind(), Cur->getObjectKind(), Cur); 8400 Expr *IndexExpr = 8401 new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType()); 8402 CurInit = S.CreateBuiltinArraySubscriptExpr( 8403 BaseExpr, Kind.getLocation(), IndexExpr, Kind.getLocation()); 8404 ArrayLoopCommonExprs.push_back(BaseExpr); 8405 break; 8406 } 8407 8408 case SK_ArrayLoopInit: { 8409 assert(!ArrayLoopCommonExprs.empty() && 8410 "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit"); 8411 Expr *Common = ArrayLoopCommonExprs.pop_back_val(); 8412 CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common, 8413 CurInit.get()); 8414 break; 8415 } 8416 8417 case SK_GNUArrayInit: 8418 // Okay: we checked everything before creating this step. Note that 8419 // this is a GNU extension. 8420 S.Diag(Kind.getLocation(), diag::ext_array_init_copy) 8421 << Step->Type << CurInit.get()->getType() 8422 << CurInit.get()->getSourceRange(); 8423 updateGNUCompoundLiteralRValue(CurInit.get()); 8424 LLVM_FALLTHROUGH; 8425 case SK_ArrayInit: 8426 // If the destination type is an incomplete array type, update the 8427 // type accordingly. 8428 if (ResultType) { 8429 if (const IncompleteArrayType *IncompleteDest 8430 = S.Context.getAsIncompleteArrayType(Step->Type)) { 8431 if (const ConstantArrayType *ConstantSource 8432 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) { 8433 *ResultType = S.Context.getConstantArrayType( 8434 IncompleteDest->getElementType(), 8435 ConstantSource->getSize(), 8436 ConstantSource->getSizeExpr(), 8437 ArrayType::Normal, 0); 8438 } 8439 } 8440 } 8441 break; 8442 8443 case SK_ParenthesizedArrayInit: 8444 // Okay: we checked everything before creating this step. Note that 8445 // this is a GNU extension. 8446 S.Diag(Kind.getLocation(), diag::ext_array_init_parens) 8447 << CurInit.get()->getSourceRange(); 8448 break; 8449 8450 case SK_PassByIndirectCopyRestore: 8451 case SK_PassByIndirectRestore: 8452 checkIndirectCopyRestoreSource(S, CurInit.get()); 8453 CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr( 8454 CurInit.get(), Step->Type, 8455 Step->Kind == SK_PassByIndirectCopyRestore); 8456 break; 8457 8458 case SK_ProduceObjCObject: 8459 CurInit = 8460 ImplicitCastExpr::Create(S.Context, Step->Type, CK_ARCProduceObject, 8461 CurInit.get(), nullptr, VK_RValue); 8462 break; 8463 8464 case SK_StdInitializerList: { 8465 S.Diag(CurInit.get()->getExprLoc(), 8466 diag::warn_cxx98_compat_initializer_list_init) 8467 << CurInit.get()->getSourceRange(); 8468 8469 // Materialize the temporary into memory. 8470 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr( 8471 CurInit.get()->getType(), CurInit.get(), 8472 /*BoundToLvalueReference=*/false); 8473 8474 // Wrap it in a construction of a std::initializer_list<T>. 8475 CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE); 8476 8477 // Bind the result, in case the library has given initializer_list a 8478 // non-trivial destructor. 8479 if (shouldBindAsTemporary(Entity)) 8480 CurInit = S.MaybeBindToTemporary(CurInit.get()); 8481 break; 8482 } 8483 8484 case SK_OCLSamplerInit: { 8485 // Sampler initialization have 5 cases: 8486 // 1. function argument passing 8487 // 1a. argument is a file-scope variable 8488 // 1b. argument is a function-scope variable 8489 // 1c. argument is one of caller function's parameters 8490 // 2. variable initialization 8491 // 2a. initializing a file-scope variable 8492 // 2b. initializing a function-scope variable 8493 // 8494 // For file-scope variables, since they cannot be initialized by function 8495 // call of __translate_sampler_initializer in LLVM IR, their references 8496 // need to be replaced by a cast from their literal initializers to 8497 // sampler type. Since sampler variables can only be used in function 8498 // calls as arguments, we only need to replace them when handling the 8499 // argument passing. 8500 assert(Step->Type->isSamplerT() && 8501 "Sampler initialization on non-sampler type."); 8502 Expr *Init = CurInit.get()->IgnoreParens(); 8503 QualType SourceType = Init->getType(); 8504 // Case 1 8505 if (Entity.isParameterKind()) { 8506 if (!SourceType->isSamplerT() && !SourceType->isIntegerType()) { 8507 S.Diag(Kind.getLocation(), diag::err_sampler_argument_required) 8508 << SourceType; 8509 break; 8510 } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init)) { 8511 auto Var = cast<VarDecl>(DRE->getDecl()); 8512 // Case 1b and 1c 8513 // No cast from integer to sampler is needed. 8514 if (!Var->hasGlobalStorage()) { 8515 CurInit = ImplicitCastExpr::Create(S.Context, Step->Type, 8516 CK_LValueToRValue, Init, 8517 /*BasePath=*/nullptr, VK_RValue); 8518 break; 8519 } 8520 // Case 1a 8521 // For function call with a file-scope sampler variable as argument, 8522 // get the integer literal. 8523 // Do not diagnose if the file-scope variable does not have initializer 8524 // since this has already been diagnosed when parsing the variable 8525 // declaration. 8526 if (!Var->getInit() || !isa<ImplicitCastExpr>(Var->getInit())) 8527 break; 8528 Init = cast<ImplicitCastExpr>(const_cast<Expr*>( 8529 Var->getInit()))->getSubExpr(); 8530 SourceType = Init->getType(); 8531 } 8532 } else { 8533 // Case 2 8534 // Check initializer is 32 bit integer constant. 8535 // If the initializer is taken from global variable, do not diagnose since 8536 // this has already been done when parsing the variable declaration. 8537 if (!Init->isConstantInitializer(S.Context, false)) 8538 break; 8539 8540 if (!SourceType->isIntegerType() || 8541 32 != S.Context.getIntWidth(SourceType)) { 8542 S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer) 8543 << SourceType; 8544 break; 8545 } 8546 8547 Expr::EvalResult EVResult; 8548 Init->EvaluateAsInt(EVResult, S.Context); 8549 llvm::APSInt Result = EVResult.Val.getInt(); 8550 const uint64_t SamplerValue = Result.getLimitedValue(); 8551 // 32-bit value of sampler's initializer is interpreted as 8552 // bit-field with the following structure: 8553 // |unspecified|Filter|Addressing Mode| Normalized Coords| 8554 // |31 6|5 4|3 1| 0| 8555 // This structure corresponds to enum values of sampler properties 8556 // defined in SPIR spec v1.2 and also opencl-c.h 8557 unsigned AddressingMode = (0x0E & SamplerValue) >> 1; 8558 unsigned FilterMode = (0x30 & SamplerValue) >> 4; 8559 if (FilterMode != 1 && FilterMode != 2 && 8560 !S.getOpenCLOptions().isEnabled( 8561 "cl_intel_device_side_avc_motion_estimation")) 8562 S.Diag(Kind.getLocation(), 8563 diag::warn_sampler_initializer_invalid_bits) 8564 << "Filter Mode"; 8565 if (AddressingMode > 4) 8566 S.Diag(Kind.getLocation(), 8567 diag::warn_sampler_initializer_invalid_bits) 8568 << "Addressing Mode"; 8569 } 8570 8571 // Cases 1a, 2a and 2b 8572 // Insert cast from integer to sampler. 8573 CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy, 8574 CK_IntToOCLSampler); 8575 break; 8576 } 8577 case SK_OCLZeroOpaqueType: { 8578 assert((Step->Type->isEventT() || Step->Type->isQueueT() || 8579 Step->Type->isOCLIntelSubgroupAVCType()) && 8580 "Wrong type for initialization of OpenCL opaque type."); 8581 8582 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 8583 CK_ZeroToOCLOpaqueType, 8584 CurInit.get()->getValueKind()); 8585 break; 8586 } 8587 } 8588 } 8589 8590 // Check whether the initializer has a shorter lifetime than the initialized 8591 // entity, and if not, either lifetime-extend or warn as appropriate. 8592 if (auto *Init = CurInit.get()) 8593 S.checkInitializerLifetime(Entity, Init); 8594 8595 // Diagnose non-fatal problems with the completed initialization. 8596 if (Entity.getKind() == InitializedEntity::EK_Member && 8597 cast<FieldDecl>(Entity.getDecl())->isBitField()) 8598 S.CheckBitFieldInitialization(Kind.getLocation(), 8599 cast<FieldDecl>(Entity.getDecl()), 8600 CurInit.get()); 8601 8602 // Check for std::move on construction. 8603 if (const Expr *E = CurInit.get()) { 8604 CheckMoveOnConstruction(S, E, 8605 Entity.getKind() == InitializedEntity::EK_Result); 8606 } 8607 8608 return CurInit; 8609 } 8610 8611 /// Somewhere within T there is an uninitialized reference subobject. 8612 /// Dig it out and diagnose it. 8613 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc, 8614 QualType T) { 8615 if (T->isReferenceType()) { 8616 S.Diag(Loc, diag::err_reference_without_init) 8617 << T.getNonReferenceType(); 8618 return true; 8619 } 8620 8621 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 8622 if (!RD || !RD->hasUninitializedReferenceMember()) 8623 return false; 8624 8625 for (const auto *FI : RD->fields()) { 8626 if (FI->isUnnamedBitfield()) 8627 continue; 8628 8629 if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) { 8630 S.Diag(Loc, diag::note_value_initialization_here) << RD; 8631 return true; 8632 } 8633 } 8634 8635 for (const auto &BI : RD->bases()) { 8636 if (DiagnoseUninitializedReference(S, BI.getBeginLoc(), BI.getType())) { 8637 S.Diag(Loc, diag::note_value_initialization_here) << RD; 8638 return true; 8639 } 8640 } 8641 8642 return false; 8643 } 8644 8645 8646 //===----------------------------------------------------------------------===// 8647 // Diagnose initialization failures 8648 //===----------------------------------------------------------------------===// 8649 8650 /// Emit notes associated with an initialization that failed due to a 8651 /// "simple" conversion failure. 8652 static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity, 8653 Expr *op) { 8654 QualType destType = entity.getType(); 8655 if (destType.getNonReferenceType()->isObjCObjectPointerType() && 8656 op->getType()->isObjCObjectPointerType()) { 8657 8658 // Emit a possible note about the conversion failing because the 8659 // operand is a message send with a related result type. 8660 S.EmitRelatedResultTypeNote(op); 8661 8662 // Emit a possible note about a return failing because we're 8663 // expecting a related result type. 8664 if (entity.getKind() == InitializedEntity::EK_Result) 8665 S.EmitRelatedResultTypeNoteForReturn(destType); 8666 } 8667 } 8668 8669 static void diagnoseListInit(Sema &S, const InitializedEntity &Entity, 8670 InitListExpr *InitList) { 8671 QualType DestType = Entity.getType(); 8672 8673 QualType E; 8674 if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) { 8675 QualType ArrayType = S.Context.getConstantArrayType( 8676 E.withConst(), 8677 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()), 8678 InitList->getNumInits()), 8679 nullptr, clang::ArrayType::Normal, 0); 8680 InitializedEntity HiddenArray = 8681 InitializedEntity::InitializeTemporary(ArrayType); 8682 return diagnoseListInit(S, HiddenArray, InitList); 8683 } 8684 8685 if (DestType->isReferenceType()) { 8686 // A list-initialization failure for a reference means that we tried to 8687 // create a temporary of the inner type (per [dcl.init.list]p3.6) and the 8688 // inner initialization failed. 8689 QualType T = DestType->castAs<ReferenceType>()->getPointeeType(); 8690 diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList); 8691 SourceLocation Loc = InitList->getBeginLoc(); 8692 if (auto *D = Entity.getDecl()) 8693 Loc = D->getLocation(); 8694 S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T; 8695 return; 8696 } 8697 8698 InitListChecker DiagnoseInitList(S, Entity, InitList, DestType, 8699 /*VerifyOnly=*/false, 8700 /*TreatUnavailableAsInvalid=*/false); 8701 assert(DiagnoseInitList.HadError() && 8702 "Inconsistent init list check result."); 8703 } 8704 8705 bool InitializationSequence::Diagnose(Sema &S, 8706 const InitializedEntity &Entity, 8707 const InitializationKind &Kind, 8708 ArrayRef<Expr *> Args) { 8709 if (!Failed()) 8710 return false; 8711 8712 // When we want to diagnose only one element of a braced-init-list, 8713 // we need to factor it out. 8714 Expr *OnlyArg; 8715 if (Args.size() == 1) { 8716 auto *List = dyn_cast<InitListExpr>(Args[0]); 8717 if (List && List->getNumInits() == 1) 8718 OnlyArg = List->getInit(0); 8719 else 8720 OnlyArg = Args[0]; 8721 } 8722 else 8723 OnlyArg = nullptr; 8724 8725 QualType DestType = Entity.getType(); 8726 switch (Failure) { 8727 case FK_TooManyInitsForReference: 8728 // FIXME: Customize for the initialized entity? 8729 if (Args.empty()) { 8730 // Dig out the reference subobject which is uninitialized and diagnose it. 8731 // If this is value-initialization, this could be nested some way within 8732 // the target type. 8733 assert(Kind.getKind() == InitializationKind::IK_Value || 8734 DestType->isReferenceType()); 8735 bool Diagnosed = 8736 DiagnoseUninitializedReference(S, Kind.getLocation(), DestType); 8737 assert(Diagnosed && "couldn't find uninitialized reference to diagnose"); 8738 (void)Diagnosed; 8739 } else // FIXME: diagnostic below could be better! 8740 S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits) 8741 << SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc()); 8742 break; 8743 case FK_ParenthesizedListInitForReference: 8744 S.Diag(Kind.getLocation(), diag::err_list_init_in_parens) 8745 << 1 << Entity.getType() << Args[0]->getSourceRange(); 8746 break; 8747 8748 case FK_ArrayNeedsInitList: 8749 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0; 8750 break; 8751 case FK_ArrayNeedsInitListOrStringLiteral: 8752 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1; 8753 break; 8754 case FK_ArrayNeedsInitListOrWideStringLiteral: 8755 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2; 8756 break; 8757 case FK_NarrowStringIntoWideCharArray: 8758 S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar); 8759 break; 8760 case FK_WideStringIntoCharArray: 8761 S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char); 8762 break; 8763 case FK_IncompatWideStringIntoWideChar: 8764 S.Diag(Kind.getLocation(), 8765 diag::err_array_init_incompat_wide_string_into_wchar); 8766 break; 8767 case FK_PlainStringIntoUTF8Char: 8768 S.Diag(Kind.getLocation(), 8769 diag::err_array_init_plain_string_into_char8_t); 8770 S.Diag(Args.front()->getBeginLoc(), 8771 diag::note_array_init_plain_string_into_char8_t) 8772 << FixItHint::CreateInsertion(Args.front()->getBeginLoc(), "u8"); 8773 break; 8774 case FK_UTF8StringIntoPlainChar: 8775 S.Diag(Kind.getLocation(), 8776 diag::err_array_init_utf8_string_into_char) 8777 << S.getLangOpts().CPlusPlus2a; 8778 break; 8779 case FK_ArrayTypeMismatch: 8780 case FK_NonConstantArrayInit: 8781 S.Diag(Kind.getLocation(), 8782 (Failure == FK_ArrayTypeMismatch 8783 ? diag::err_array_init_different_type 8784 : diag::err_array_init_non_constant_array)) 8785 << DestType.getNonReferenceType() 8786 << OnlyArg->getType() 8787 << Args[0]->getSourceRange(); 8788 break; 8789 8790 case FK_VariableLengthArrayHasInitializer: 8791 S.Diag(Kind.getLocation(), diag::err_variable_object_no_init) 8792 << Args[0]->getSourceRange(); 8793 break; 8794 8795 case FK_AddressOfOverloadFailed: { 8796 DeclAccessPair Found; 8797 S.ResolveAddressOfOverloadedFunction(OnlyArg, 8798 DestType.getNonReferenceType(), 8799 true, 8800 Found); 8801 break; 8802 } 8803 8804 case FK_AddressOfUnaddressableFunction: { 8805 auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(OnlyArg)->getDecl()); 8806 S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, 8807 OnlyArg->getBeginLoc()); 8808 break; 8809 } 8810 8811 case FK_ReferenceInitOverloadFailed: 8812 case FK_UserConversionOverloadFailed: 8813 switch (FailedOverloadResult) { 8814 case OR_Ambiguous: 8815 8816 FailedCandidateSet.NoteCandidates( 8817 PartialDiagnosticAt( 8818 Kind.getLocation(), 8819 Failure == FK_UserConversionOverloadFailed 8820 ? (S.PDiag(diag::err_typecheck_ambiguous_condition) 8821 << OnlyArg->getType() << DestType 8822 << Args[0]->getSourceRange()) 8823 : (S.PDiag(diag::err_ref_init_ambiguous) 8824 << DestType << OnlyArg->getType() 8825 << Args[0]->getSourceRange())), 8826 S, OCD_AmbiguousCandidates, Args); 8827 break; 8828 8829 case OR_No_Viable_Function: { 8830 auto Cands = FailedCandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args); 8831 if (!S.RequireCompleteType(Kind.getLocation(), 8832 DestType.getNonReferenceType(), 8833 diag::err_typecheck_nonviable_condition_incomplete, 8834 OnlyArg->getType(), Args[0]->getSourceRange())) 8835 S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition) 8836 << (Entity.getKind() == InitializedEntity::EK_Result) 8837 << OnlyArg->getType() << Args[0]->getSourceRange() 8838 << DestType.getNonReferenceType(); 8839 8840 FailedCandidateSet.NoteCandidates(S, Args, Cands); 8841 break; 8842 } 8843 case OR_Deleted: { 8844 S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function) 8845 << OnlyArg->getType() << DestType.getNonReferenceType() 8846 << Args[0]->getSourceRange(); 8847 OverloadCandidateSet::iterator Best; 8848 OverloadingResult Ovl 8849 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 8850 if (Ovl == OR_Deleted) { 8851 S.NoteDeletedFunction(Best->Function); 8852 } else { 8853 llvm_unreachable("Inconsistent overload resolution?"); 8854 } 8855 break; 8856 } 8857 8858 case OR_Success: 8859 llvm_unreachable("Conversion did not fail!"); 8860 } 8861 break; 8862 8863 case FK_NonConstLValueReferenceBindingToTemporary: 8864 if (isa<InitListExpr>(Args[0])) { 8865 S.Diag(Kind.getLocation(), 8866 diag::err_lvalue_reference_bind_to_initlist) 8867 << DestType.getNonReferenceType().isVolatileQualified() 8868 << DestType.getNonReferenceType() 8869 << Args[0]->getSourceRange(); 8870 break; 8871 } 8872 LLVM_FALLTHROUGH; 8873 8874 case FK_NonConstLValueReferenceBindingToUnrelated: 8875 S.Diag(Kind.getLocation(), 8876 Failure == FK_NonConstLValueReferenceBindingToTemporary 8877 ? diag::err_lvalue_reference_bind_to_temporary 8878 : diag::err_lvalue_reference_bind_to_unrelated) 8879 << DestType.getNonReferenceType().isVolatileQualified() 8880 << DestType.getNonReferenceType() 8881 << OnlyArg->getType() 8882 << Args[0]->getSourceRange(); 8883 break; 8884 8885 case FK_NonConstLValueReferenceBindingToBitfield: { 8886 // We don't necessarily have an unambiguous source bit-field. 8887 FieldDecl *BitField = Args[0]->getSourceBitField(); 8888 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield) 8889 << DestType.isVolatileQualified() 8890 << (BitField ? BitField->getDeclName() : DeclarationName()) 8891 << (BitField != nullptr) 8892 << Args[0]->getSourceRange(); 8893 if (BitField) 8894 S.Diag(BitField->getLocation(), diag::note_bitfield_decl); 8895 break; 8896 } 8897 8898 case FK_NonConstLValueReferenceBindingToVectorElement: 8899 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element) 8900 << DestType.isVolatileQualified() 8901 << Args[0]->getSourceRange(); 8902 break; 8903 8904 case FK_RValueReferenceBindingToLValue: 8905 S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref) 8906 << DestType.getNonReferenceType() << OnlyArg->getType() 8907 << Args[0]->getSourceRange(); 8908 break; 8909 8910 case FK_ReferenceAddrspaceMismatchTemporary: 8911 S.Diag(Kind.getLocation(), diag::err_reference_bind_temporary_addrspace) 8912 << DestType << Args[0]->getSourceRange(); 8913 break; 8914 8915 case FK_ReferenceInitDropsQualifiers: { 8916 QualType SourceType = OnlyArg->getType(); 8917 QualType NonRefType = DestType.getNonReferenceType(); 8918 Qualifiers DroppedQualifiers = 8919 SourceType.getQualifiers() - NonRefType.getQualifiers(); 8920 8921 if (!NonRefType.getQualifiers().isAddressSpaceSupersetOf( 8922 SourceType.getQualifiers())) 8923 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) 8924 << NonRefType << SourceType << 1 /*addr space*/ 8925 << Args[0]->getSourceRange(); 8926 else 8927 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) 8928 << NonRefType << SourceType << 0 /*cv quals*/ 8929 << Qualifiers::fromCVRMask(DroppedQualifiers.getCVRQualifiers()) 8930 << DroppedQualifiers.getCVRQualifiers() << Args[0]->getSourceRange(); 8931 break; 8932 } 8933 8934 case FK_ReferenceInitFailed: 8935 S.Diag(Kind.getLocation(), diag::err_reference_bind_failed) 8936 << DestType.getNonReferenceType() 8937 << DestType.getNonReferenceType()->isIncompleteType() 8938 << OnlyArg->isLValue() 8939 << OnlyArg->getType() 8940 << Args[0]->getSourceRange(); 8941 emitBadConversionNotes(S, Entity, Args[0]); 8942 break; 8943 8944 case FK_ConversionFailed: { 8945 QualType FromType = OnlyArg->getType(); 8946 PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed) 8947 << (int)Entity.getKind() 8948 << DestType 8949 << OnlyArg->isLValue() 8950 << FromType 8951 << Args[0]->getSourceRange(); 8952 S.HandleFunctionTypeMismatch(PDiag, FromType, DestType); 8953 S.Diag(Kind.getLocation(), PDiag); 8954 emitBadConversionNotes(S, Entity, Args[0]); 8955 break; 8956 } 8957 8958 case FK_ConversionFromPropertyFailed: 8959 // No-op. This error has already been reported. 8960 break; 8961 8962 case FK_TooManyInitsForScalar: { 8963 SourceRange R; 8964 8965 auto *InitList = dyn_cast<InitListExpr>(Args[0]); 8966 if (InitList && InitList->getNumInits() >= 1) { 8967 R = SourceRange(InitList->getInit(0)->getEndLoc(), InitList->getEndLoc()); 8968 } else { 8969 assert(Args.size() > 1 && "Expected multiple initializers!"); 8970 R = SourceRange(Args.front()->getEndLoc(), Args.back()->getEndLoc()); 8971 } 8972 8973 R.setBegin(S.getLocForEndOfToken(R.getBegin())); 8974 if (Kind.isCStyleOrFunctionalCast()) 8975 S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg) 8976 << R; 8977 else 8978 S.Diag(Kind.getLocation(), diag::err_excess_initializers) 8979 << /*scalar=*/2 << R; 8980 break; 8981 } 8982 8983 case FK_ParenthesizedListInitForScalar: 8984 S.Diag(Kind.getLocation(), diag::err_list_init_in_parens) 8985 << 0 << Entity.getType() << Args[0]->getSourceRange(); 8986 break; 8987 8988 case FK_ReferenceBindingToInitList: 8989 S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list) 8990 << DestType.getNonReferenceType() << Args[0]->getSourceRange(); 8991 break; 8992 8993 case FK_InitListBadDestinationType: 8994 S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type) 8995 << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange(); 8996 break; 8997 8998 case FK_ListConstructorOverloadFailed: 8999 case FK_ConstructorOverloadFailed: { 9000 SourceRange ArgsRange; 9001 if (Args.size()) 9002 ArgsRange = 9003 SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc()); 9004 9005 if (Failure == FK_ListConstructorOverloadFailed) { 9006 assert(Args.size() == 1 && 9007 "List construction from other than 1 argument."); 9008 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 9009 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits()); 9010 } 9011 9012 // FIXME: Using "DestType" for the entity we're printing is probably 9013 // bad. 9014 switch (FailedOverloadResult) { 9015 case OR_Ambiguous: 9016 FailedCandidateSet.NoteCandidates( 9017 PartialDiagnosticAt(Kind.getLocation(), 9018 S.PDiag(diag::err_ovl_ambiguous_init) 9019 << DestType << ArgsRange), 9020 S, OCD_AmbiguousCandidates, Args); 9021 break; 9022 9023 case OR_No_Viable_Function: 9024 if (Kind.getKind() == InitializationKind::IK_Default && 9025 (Entity.getKind() == InitializedEntity::EK_Base || 9026 Entity.getKind() == InitializedEntity::EK_Member) && 9027 isa<CXXConstructorDecl>(S.CurContext)) { 9028 // This is implicit default initialization of a member or 9029 // base within a constructor. If no viable function was 9030 // found, notify the user that they need to explicitly 9031 // initialize this base/member. 9032 CXXConstructorDecl *Constructor 9033 = cast<CXXConstructorDecl>(S.CurContext); 9034 const CXXRecordDecl *InheritedFrom = nullptr; 9035 if (auto Inherited = Constructor->getInheritedConstructor()) 9036 InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass(); 9037 if (Entity.getKind() == InitializedEntity::EK_Base) { 9038 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) 9039 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0) 9040 << S.Context.getTypeDeclType(Constructor->getParent()) 9041 << /*base=*/0 9042 << Entity.getType() 9043 << InheritedFrom; 9044 9045 RecordDecl *BaseDecl 9046 = Entity.getBaseSpecifier()->getType()->castAs<RecordType>() 9047 ->getDecl(); 9048 S.Diag(BaseDecl->getLocation(), diag::note_previous_decl) 9049 << S.Context.getTagDeclType(BaseDecl); 9050 } else { 9051 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) 9052 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0) 9053 << S.Context.getTypeDeclType(Constructor->getParent()) 9054 << /*member=*/1 9055 << Entity.getName() 9056 << InheritedFrom; 9057 S.Diag(Entity.getDecl()->getLocation(), 9058 diag::note_member_declared_at); 9059 9060 if (const RecordType *Record 9061 = Entity.getType()->getAs<RecordType>()) 9062 S.Diag(Record->getDecl()->getLocation(), 9063 diag::note_previous_decl) 9064 << S.Context.getTagDeclType(Record->getDecl()); 9065 } 9066 break; 9067 } 9068 9069 FailedCandidateSet.NoteCandidates( 9070 PartialDiagnosticAt( 9071 Kind.getLocation(), 9072 S.PDiag(diag::err_ovl_no_viable_function_in_init) 9073 << DestType << ArgsRange), 9074 S, OCD_AllCandidates, Args); 9075 break; 9076 9077 case OR_Deleted: { 9078 OverloadCandidateSet::iterator Best; 9079 OverloadingResult Ovl 9080 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 9081 if (Ovl != OR_Deleted) { 9082 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) 9083 << DestType << ArgsRange; 9084 llvm_unreachable("Inconsistent overload resolution?"); 9085 break; 9086 } 9087 9088 // If this is a defaulted or implicitly-declared function, then 9089 // it was implicitly deleted. Make it clear that the deletion was 9090 // implicit. 9091 if (S.isImplicitlyDeleted(Best->Function)) 9092 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init) 9093 << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function)) 9094 << DestType << ArgsRange; 9095 else 9096 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) 9097 << DestType << ArgsRange; 9098 9099 S.NoteDeletedFunction(Best->Function); 9100 break; 9101 } 9102 9103 case OR_Success: 9104 llvm_unreachable("Conversion did not fail!"); 9105 } 9106 } 9107 break; 9108 9109 case FK_DefaultInitOfConst: 9110 if (Entity.getKind() == InitializedEntity::EK_Member && 9111 isa<CXXConstructorDecl>(S.CurContext)) { 9112 // This is implicit default-initialization of a const member in 9113 // a constructor. Complain that it needs to be explicitly 9114 // initialized. 9115 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext); 9116 S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor) 9117 << (Constructor->getInheritedConstructor() ? 2 : 9118 Constructor->isImplicit() ? 1 : 0) 9119 << S.Context.getTypeDeclType(Constructor->getParent()) 9120 << /*const=*/1 9121 << Entity.getName(); 9122 S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl) 9123 << Entity.getName(); 9124 } else { 9125 S.Diag(Kind.getLocation(), diag::err_default_init_const) 9126 << DestType << (bool)DestType->getAs<RecordType>(); 9127 } 9128 break; 9129 9130 case FK_Incomplete: 9131 S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType, 9132 diag::err_init_incomplete_type); 9133 break; 9134 9135 case FK_ListInitializationFailed: { 9136 // Run the init list checker again to emit diagnostics. 9137 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 9138 diagnoseListInit(S, Entity, InitList); 9139 break; 9140 } 9141 9142 case FK_PlaceholderType: { 9143 // FIXME: Already diagnosed! 9144 break; 9145 } 9146 9147 case FK_ExplicitConstructor: { 9148 S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor) 9149 << Args[0]->getSourceRange(); 9150 OverloadCandidateSet::iterator Best; 9151 OverloadingResult Ovl 9152 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 9153 (void)Ovl; 9154 assert(Ovl == OR_Success && "Inconsistent overload resolution"); 9155 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 9156 S.Diag(CtorDecl->getLocation(), 9157 diag::note_explicit_ctor_deduction_guide_here) << false; 9158 break; 9159 } 9160 } 9161 9162 PrintInitLocationNote(S, Entity); 9163 return true; 9164 } 9165 9166 void InitializationSequence::dump(raw_ostream &OS) const { 9167 switch (SequenceKind) { 9168 case FailedSequence: { 9169 OS << "Failed sequence: "; 9170 switch (Failure) { 9171 case FK_TooManyInitsForReference: 9172 OS << "too many initializers for reference"; 9173 break; 9174 9175 case FK_ParenthesizedListInitForReference: 9176 OS << "parenthesized list init for reference"; 9177 break; 9178 9179 case FK_ArrayNeedsInitList: 9180 OS << "array requires initializer list"; 9181 break; 9182 9183 case FK_AddressOfUnaddressableFunction: 9184 OS << "address of unaddressable function was taken"; 9185 break; 9186 9187 case FK_ArrayNeedsInitListOrStringLiteral: 9188 OS << "array requires initializer list or string literal"; 9189 break; 9190 9191 case FK_ArrayNeedsInitListOrWideStringLiteral: 9192 OS << "array requires initializer list or wide string literal"; 9193 break; 9194 9195 case FK_NarrowStringIntoWideCharArray: 9196 OS << "narrow string into wide char array"; 9197 break; 9198 9199 case FK_WideStringIntoCharArray: 9200 OS << "wide string into char array"; 9201 break; 9202 9203 case FK_IncompatWideStringIntoWideChar: 9204 OS << "incompatible wide string into wide char array"; 9205 break; 9206 9207 case FK_PlainStringIntoUTF8Char: 9208 OS << "plain string literal into char8_t array"; 9209 break; 9210 9211 case FK_UTF8StringIntoPlainChar: 9212 OS << "u8 string literal into char array"; 9213 break; 9214 9215 case FK_ArrayTypeMismatch: 9216 OS << "array type mismatch"; 9217 break; 9218 9219 case FK_NonConstantArrayInit: 9220 OS << "non-constant array initializer"; 9221 break; 9222 9223 case FK_AddressOfOverloadFailed: 9224 OS << "address of overloaded function failed"; 9225 break; 9226 9227 case FK_ReferenceInitOverloadFailed: 9228 OS << "overload resolution for reference initialization failed"; 9229 break; 9230 9231 case FK_NonConstLValueReferenceBindingToTemporary: 9232 OS << "non-const lvalue reference bound to temporary"; 9233 break; 9234 9235 case FK_NonConstLValueReferenceBindingToBitfield: 9236 OS << "non-const lvalue reference bound to bit-field"; 9237 break; 9238 9239 case FK_NonConstLValueReferenceBindingToVectorElement: 9240 OS << "non-const lvalue reference bound to vector element"; 9241 break; 9242 9243 case FK_NonConstLValueReferenceBindingToUnrelated: 9244 OS << "non-const lvalue reference bound to unrelated type"; 9245 break; 9246 9247 case FK_RValueReferenceBindingToLValue: 9248 OS << "rvalue reference bound to an lvalue"; 9249 break; 9250 9251 case FK_ReferenceInitDropsQualifiers: 9252 OS << "reference initialization drops qualifiers"; 9253 break; 9254 9255 case FK_ReferenceAddrspaceMismatchTemporary: 9256 OS << "reference with mismatching address space bound to temporary"; 9257 break; 9258 9259 case FK_ReferenceInitFailed: 9260 OS << "reference initialization failed"; 9261 break; 9262 9263 case FK_ConversionFailed: 9264 OS << "conversion failed"; 9265 break; 9266 9267 case FK_ConversionFromPropertyFailed: 9268 OS << "conversion from property failed"; 9269 break; 9270 9271 case FK_TooManyInitsForScalar: 9272 OS << "too many initializers for scalar"; 9273 break; 9274 9275 case FK_ParenthesizedListInitForScalar: 9276 OS << "parenthesized list init for reference"; 9277 break; 9278 9279 case FK_ReferenceBindingToInitList: 9280 OS << "referencing binding to initializer list"; 9281 break; 9282 9283 case FK_InitListBadDestinationType: 9284 OS << "initializer list for non-aggregate, non-scalar type"; 9285 break; 9286 9287 case FK_UserConversionOverloadFailed: 9288 OS << "overloading failed for user-defined conversion"; 9289 break; 9290 9291 case FK_ConstructorOverloadFailed: 9292 OS << "constructor overloading failed"; 9293 break; 9294 9295 case FK_DefaultInitOfConst: 9296 OS << "default initialization of a const variable"; 9297 break; 9298 9299 case FK_Incomplete: 9300 OS << "initialization of incomplete type"; 9301 break; 9302 9303 case FK_ListInitializationFailed: 9304 OS << "list initialization checker failure"; 9305 break; 9306 9307 case FK_VariableLengthArrayHasInitializer: 9308 OS << "variable length array has an initializer"; 9309 break; 9310 9311 case FK_PlaceholderType: 9312 OS << "initializer expression isn't contextually valid"; 9313 break; 9314 9315 case FK_ListConstructorOverloadFailed: 9316 OS << "list constructor overloading failed"; 9317 break; 9318 9319 case FK_ExplicitConstructor: 9320 OS << "list copy initialization chose explicit constructor"; 9321 break; 9322 } 9323 OS << '\n'; 9324 return; 9325 } 9326 9327 case DependentSequence: 9328 OS << "Dependent sequence\n"; 9329 return; 9330 9331 case NormalSequence: 9332 OS << "Normal sequence: "; 9333 break; 9334 } 9335 9336 for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) { 9337 if (S != step_begin()) { 9338 OS << " -> "; 9339 } 9340 9341 switch (S->Kind) { 9342 case SK_ResolveAddressOfOverloadedFunction: 9343 OS << "resolve address of overloaded function"; 9344 break; 9345 9346 case SK_CastDerivedToBaseRValue: 9347 OS << "derived-to-base (rvalue)"; 9348 break; 9349 9350 case SK_CastDerivedToBaseXValue: 9351 OS << "derived-to-base (xvalue)"; 9352 break; 9353 9354 case SK_CastDerivedToBaseLValue: 9355 OS << "derived-to-base (lvalue)"; 9356 break; 9357 9358 case SK_BindReference: 9359 OS << "bind reference to lvalue"; 9360 break; 9361 9362 case SK_BindReferenceToTemporary: 9363 OS << "bind reference to a temporary"; 9364 break; 9365 9366 case SK_FinalCopy: 9367 OS << "final copy in class direct-initialization"; 9368 break; 9369 9370 case SK_ExtraneousCopyToTemporary: 9371 OS << "extraneous C++03 copy to temporary"; 9372 break; 9373 9374 case SK_UserConversion: 9375 OS << "user-defined conversion via " << *S->Function.Function; 9376 break; 9377 9378 case SK_QualificationConversionRValue: 9379 OS << "qualification conversion (rvalue)"; 9380 break; 9381 9382 case SK_QualificationConversionXValue: 9383 OS << "qualification conversion (xvalue)"; 9384 break; 9385 9386 case SK_QualificationConversionLValue: 9387 OS << "qualification conversion (lvalue)"; 9388 break; 9389 9390 case SK_AtomicConversion: 9391 OS << "non-atomic-to-atomic conversion"; 9392 break; 9393 9394 case SK_ConversionSequence: 9395 OS << "implicit conversion sequence ("; 9396 S->ICS->dump(); // FIXME: use OS 9397 OS << ")"; 9398 break; 9399 9400 case SK_ConversionSequenceNoNarrowing: 9401 OS << "implicit conversion sequence with narrowing prohibited ("; 9402 S->ICS->dump(); // FIXME: use OS 9403 OS << ")"; 9404 break; 9405 9406 case SK_ListInitialization: 9407 OS << "list aggregate initialization"; 9408 break; 9409 9410 case SK_UnwrapInitList: 9411 OS << "unwrap reference initializer list"; 9412 break; 9413 9414 case SK_RewrapInitList: 9415 OS << "rewrap reference initializer list"; 9416 break; 9417 9418 case SK_ConstructorInitialization: 9419 OS << "constructor initialization"; 9420 break; 9421 9422 case SK_ConstructorInitializationFromList: 9423 OS << "list initialization via constructor"; 9424 break; 9425 9426 case SK_ZeroInitialization: 9427 OS << "zero initialization"; 9428 break; 9429 9430 case SK_CAssignment: 9431 OS << "C assignment"; 9432 break; 9433 9434 case SK_StringInit: 9435 OS << "string initialization"; 9436 break; 9437 9438 case SK_ObjCObjectConversion: 9439 OS << "Objective-C object conversion"; 9440 break; 9441 9442 case SK_ArrayLoopIndex: 9443 OS << "indexing for array initialization loop"; 9444 break; 9445 9446 case SK_ArrayLoopInit: 9447 OS << "array initialization loop"; 9448 break; 9449 9450 case SK_ArrayInit: 9451 OS << "array initialization"; 9452 break; 9453 9454 case SK_GNUArrayInit: 9455 OS << "array initialization (GNU extension)"; 9456 break; 9457 9458 case SK_ParenthesizedArrayInit: 9459 OS << "parenthesized array initialization"; 9460 break; 9461 9462 case SK_PassByIndirectCopyRestore: 9463 OS << "pass by indirect copy and restore"; 9464 break; 9465 9466 case SK_PassByIndirectRestore: 9467 OS << "pass by indirect restore"; 9468 break; 9469 9470 case SK_ProduceObjCObject: 9471 OS << "Objective-C object retension"; 9472 break; 9473 9474 case SK_StdInitializerList: 9475 OS << "std::initializer_list from initializer list"; 9476 break; 9477 9478 case SK_StdInitializerListConstructorCall: 9479 OS << "list initialization from std::initializer_list"; 9480 break; 9481 9482 case SK_OCLSamplerInit: 9483 OS << "OpenCL sampler_t from integer constant"; 9484 break; 9485 9486 case SK_OCLZeroOpaqueType: 9487 OS << "OpenCL opaque type from zero"; 9488 break; 9489 } 9490 9491 OS << " [" << S->Type.getAsString() << ']'; 9492 } 9493 9494 OS << '\n'; 9495 } 9496 9497 void InitializationSequence::dump() const { 9498 dump(llvm::errs()); 9499 } 9500 9501 static bool NarrowingErrs(const LangOptions &L) { 9502 return L.CPlusPlus11 && 9503 (!L.MicrosoftExt || L.isCompatibleWithMSVC(LangOptions::MSVC2015)); 9504 } 9505 9506 static void DiagnoseNarrowingInInitList(Sema &S, 9507 const ImplicitConversionSequence &ICS, 9508 QualType PreNarrowingType, 9509 QualType EntityType, 9510 const Expr *PostInit) { 9511 const StandardConversionSequence *SCS = nullptr; 9512 switch (ICS.getKind()) { 9513 case ImplicitConversionSequence::StandardConversion: 9514 SCS = &ICS.Standard; 9515 break; 9516 case ImplicitConversionSequence::UserDefinedConversion: 9517 SCS = &ICS.UserDefined.After; 9518 break; 9519 case ImplicitConversionSequence::AmbiguousConversion: 9520 case ImplicitConversionSequence::EllipsisConversion: 9521 case ImplicitConversionSequence::BadConversion: 9522 return; 9523 } 9524 9525 // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion. 9526 APValue ConstantValue; 9527 QualType ConstantType; 9528 switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue, 9529 ConstantType)) { 9530 case NK_Not_Narrowing: 9531 case NK_Dependent_Narrowing: 9532 // No narrowing occurred. 9533 return; 9534 9535 case NK_Type_Narrowing: 9536 // This was a floating-to-integer conversion, which is always considered a 9537 // narrowing conversion even if the value is a constant and can be 9538 // represented exactly as an integer. 9539 S.Diag(PostInit->getBeginLoc(), NarrowingErrs(S.getLangOpts()) 9540 ? diag::ext_init_list_type_narrowing 9541 : diag::warn_init_list_type_narrowing) 9542 << PostInit->getSourceRange() 9543 << PreNarrowingType.getLocalUnqualifiedType() 9544 << EntityType.getLocalUnqualifiedType(); 9545 break; 9546 9547 case NK_Constant_Narrowing: 9548 // A constant value was narrowed. 9549 S.Diag(PostInit->getBeginLoc(), 9550 NarrowingErrs(S.getLangOpts()) 9551 ? diag::ext_init_list_constant_narrowing 9552 : diag::warn_init_list_constant_narrowing) 9553 << PostInit->getSourceRange() 9554 << ConstantValue.getAsString(S.getASTContext(), ConstantType) 9555 << EntityType.getLocalUnqualifiedType(); 9556 break; 9557 9558 case NK_Variable_Narrowing: 9559 // A variable's value may have been narrowed. 9560 S.Diag(PostInit->getBeginLoc(), 9561 NarrowingErrs(S.getLangOpts()) 9562 ? diag::ext_init_list_variable_narrowing 9563 : diag::warn_init_list_variable_narrowing) 9564 << PostInit->getSourceRange() 9565 << PreNarrowingType.getLocalUnqualifiedType() 9566 << EntityType.getLocalUnqualifiedType(); 9567 break; 9568 } 9569 9570 SmallString<128> StaticCast; 9571 llvm::raw_svector_ostream OS(StaticCast); 9572 OS << "static_cast<"; 9573 if (const TypedefType *TT = EntityType->getAs<TypedefType>()) { 9574 // It's important to use the typedef's name if there is one so that the 9575 // fixit doesn't break code using types like int64_t. 9576 // 9577 // FIXME: This will break if the typedef requires qualification. But 9578 // getQualifiedNameAsString() includes non-machine-parsable components. 9579 OS << *TT->getDecl(); 9580 } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>()) 9581 OS << BT->getName(S.getLangOpts()); 9582 else { 9583 // Oops, we didn't find the actual type of the variable. Don't emit a fixit 9584 // with a broken cast. 9585 return; 9586 } 9587 OS << ">("; 9588 S.Diag(PostInit->getBeginLoc(), diag::note_init_list_narrowing_silence) 9589 << PostInit->getSourceRange() 9590 << FixItHint::CreateInsertion(PostInit->getBeginLoc(), OS.str()) 9591 << FixItHint::CreateInsertion( 9592 S.getLocForEndOfToken(PostInit->getEndLoc()), ")"); 9593 } 9594 9595 //===----------------------------------------------------------------------===// 9596 // Initialization helper functions 9597 //===----------------------------------------------------------------------===// 9598 bool 9599 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity, 9600 ExprResult Init) { 9601 if (Init.isInvalid()) 9602 return false; 9603 9604 Expr *InitE = Init.get(); 9605 assert(InitE && "No initialization expression"); 9606 9607 InitializationKind Kind = 9608 InitializationKind::CreateCopy(InitE->getBeginLoc(), SourceLocation()); 9609 InitializationSequence Seq(*this, Entity, Kind, InitE); 9610 return !Seq.Failed(); 9611 } 9612 9613 ExprResult 9614 Sema::PerformCopyInitialization(const InitializedEntity &Entity, 9615 SourceLocation EqualLoc, 9616 ExprResult Init, 9617 bool TopLevelOfInitList, 9618 bool AllowExplicit) { 9619 if (Init.isInvalid()) 9620 return ExprError(); 9621 9622 Expr *InitE = Init.get(); 9623 assert(InitE && "No initialization expression?"); 9624 9625 if (EqualLoc.isInvalid()) 9626 EqualLoc = InitE->getBeginLoc(); 9627 9628 InitializationKind Kind = InitializationKind::CreateCopy( 9629 InitE->getBeginLoc(), EqualLoc, AllowExplicit); 9630 InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList); 9631 9632 // Prevent infinite recursion when performing parameter copy-initialization. 9633 const bool ShouldTrackCopy = 9634 Entity.isParameterKind() && Seq.isConstructorInitialization(); 9635 if (ShouldTrackCopy) { 9636 if (llvm::find(CurrentParameterCopyTypes, Entity.getType()) != 9637 CurrentParameterCopyTypes.end()) { 9638 Seq.SetOverloadFailure( 9639 InitializationSequence::FK_ConstructorOverloadFailed, 9640 OR_No_Viable_Function); 9641 9642 // Try to give a meaningful diagnostic note for the problematic 9643 // constructor. 9644 const auto LastStep = Seq.step_end() - 1; 9645 assert(LastStep->Kind == 9646 InitializationSequence::SK_ConstructorInitialization); 9647 const FunctionDecl *Function = LastStep->Function.Function; 9648 auto Candidate = 9649 llvm::find_if(Seq.getFailedCandidateSet(), 9650 [Function](const OverloadCandidate &Candidate) -> bool { 9651 return Candidate.Viable && 9652 Candidate.Function == Function && 9653 Candidate.Conversions.size() > 0; 9654 }); 9655 if (Candidate != Seq.getFailedCandidateSet().end() && 9656 Function->getNumParams() > 0) { 9657 Candidate->Viable = false; 9658 Candidate->FailureKind = ovl_fail_bad_conversion; 9659 Candidate->Conversions[0].setBad(BadConversionSequence::no_conversion, 9660 InitE, 9661 Function->getParamDecl(0)->getType()); 9662 } 9663 } 9664 CurrentParameterCopyTypes.push_back(Entity.getType()); 9665 } 9666 9667 ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE); 9668 9669 if (ShouldTrackCopy) 9670 CurrentParameterCopyTypes.pop_back(); 9671 9672 return Result; 9673 } 9674 9675 /// Determine whether RD is, or is derived from, a specialization of CTD. 9676 static bool isOrIsDerivedFromSpecializationOf(CXXRecordDecl *RD, 9677 ClassTemplateDecl *CTD) { 9678 auto NotSpecialization = [&] (const CXXRecordDecl *Candidate) { 9679 auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Candidate); 9680 return !CTSD || !declaresSameEntity(CTSD->getSpecializedTemplate(), CTD); 9681 }; 9682 return !(NotSpecialization(RD) && RD->forallBases(NotSpecialization)); 9683 } 9684 9685 QualType Sema::DeduceTemplateSpecializationFromInitializer( 9686 TypeSourceInfo *TSInfo, const InitializedEntity &Entity, 9687 const InitializationKind &Kind, MultiExprArg Inits) { 9688 auto *DeducedTST = dyn_cast<DeducedTemplateSpecializationType>( 9689 TSInfo->getType()->getContainedDeducedType()); 9690 assert(DeducedTST && "not a deduced template specialization type"); 9691 9692 auto TemplateName = DeducedTST->getTemplateName(); 9693 if (TemplateName.isDependent()) 9694 return Context.DependentTy; 9695 9696 // We can only perform deduction for class templates. 9697 auto *Template = 9698 dyn_cast_or_null<ClassTemplateDecl>(TemplateName.getAsTemplateDecl()); 9699 if (!Template) { 9700 Diag(Kind.getLocation(), 9701 diag::err_deduced_non_class_template_specialization_type) 9702 << (int)getTemplateNameKindForDiagnostics(TemplateName) << TemplateName; 9703 if (auto *TD = TemplateName.getAsTemplateDecl()) 9704 Diag(TD->getLocation(), diag::note_template_decl_here); 9705 return QualType(); 9706 } 9707 9708 // Can't deduce from dependent arguments. 9709 if (Expr::hasAnyTypeDependentArguments(Inits)) { 9710 Diag(TSInfo->getTypeLoc().getBeginLoc(), 9711 diag::warn_cxx14_compat_class_template_argument_deduction) 9712 << TSInfo->getTypeLoc().getSourceRange() << 0; 9713 return Context.DependentTy; 9714 } 9715 9716 // FIXME: Perform "exact type" matching first, per CWG discussion? 9717 // Or implement this via an implied 'T(T) -> T' deduction guide? 9718 9719 // FIXME: Do we need/want a std::initializer_list<T> special case? 9720 9721 // Look up deduction guides, including those synthesized from constructors. 9722 // 9723 // C++1z [over.match.class.deduct]p1: 9724 // A set of functions and function templates is formed comprising: 9725 // - For each constructor of the class template designated by the 9726 // template-name, a function template [...] 9727 // - For each deduction-guide, a function or function template [...] 9728 DeclarationNameInfo NameInfo( 9729 Context.DeclarationNames.getCXXDeductionGuideName(Template), 9730 TSInfo->getTypeLoc().getEndLoc()); 9731 LookupResult Guides(*this, NameInfo, LookupOrdinaryName); 9732 LookupQualifiedName(Guides, Template->getDeclContext()); 9733 9734 // FIXME: Do not diagnose inaccessible deduction guides. The standard isn't 9735 // clear on this, but they're not found by name so access does not apply. 9736 Guides.suppressDiagnostics(); 9737 9738 // Figure out if this is list-initialization. 9739 InitListExpr *ListInit = 9740 (Inits.size() == 1 && Kind.getKind() != InitializationKind::IK_Direct) 9741 ? dyn_cast<InitListExpr>(Inits[0]) 9742 : nullptr; 9743 9744 // C++1z [over.match.class.deduct]p1: 9745 // Initialization and overload resolution are performed as described in 9746 // [dcl.init] and [over.match.ctor], [over.match.copy], or [over.match.list] 9747 // (as appropriate for the type of initialization performed) for an object 9748 // of a hypothetical class type, where the selected functions and function 9749 // templates are considered to be the constructors of that class type 9750 // 9751 // Since we know we're initializing a class type of a type unrelated to that 9752 // of the initializer, this reduces to something fairly reasonable. 9753 OverloadCandidateSet Candidates(Kind.getLocation(), 9754 OverloadCandidateSet::CSK_Normal); 9755 OverloadCandidateSet::iterator Best; 9756 9757 bool HasAnyDeductionGuide = false; 9758 bool AllowExplicit = !Kind.isCopyInit() || ListInit; 9759 9760 auto tryToResolveOverload = 9761 [&](bool OnlyListConstructors) -> OverloadingResult { 9762 Candidates.clear(OverloadCandidateSet::CSK_Normal); 9763 HasAnyDeductionGuide = false; 9764 9765 for (auto I = Guides.begin(), E = Guides.end(); I != E; ++I) { 9766 NamedDecl *D = (*I)->getUnderlyingDecl(); 9767 if (D->isInvalidDecl()) 9768 continue; 9769 9770 auto *TD = dyn_cast<FunctionTemplateDecl>(D); 9771 auto *GD = dyn_cast_or_null<CXXDeductionGuideDecl>( 9772 TD ? TD->getTemplatedDecl() : dyn_cast<FunctionDecl>(D)); 9773 if (!GD) 9774 continue; 9775 9776 if (!GD->isImplicit()) 9777 HasAnyDeductionGuide = true; 9778 9779 // C++ [over.match.ctor]p1: (non-list copy-initialization from non-class) 9780 // For copy-initialization, the candidate functions are all the 9781 // converting constructors (12.3.1) of that class. 9782 // C++ [over.match.copy]p1: (non-list copy-initialization from class) 9783 // The converting constructors of T are candidate functions. 9784 if (!AllowExplicit) { 9785 // Only consider converting constructors. 9786 if (GD->isExplicit()) 9787 continue; 9788 9789 // When looking for a converting constructor, deduction guides that 9790 // could never be called with one argument are not interesting to 9791 // check or note. 9792 if (GD->getMinRequiredArguments() > 1 || 9793 (GD->getNumParams() == 0 && !GD->isVariadic())) 9794 continue; 9795 } 9796 9797 // C++ [over.match.list]p1.1: (first phase list initialization) 9798 // Initially, the candidate functions are the initializer-list 9799 // constructors of the class T 9800 if (OnlyListConstructors && !isInitListConstructor(GD)) 9801 continue; 9802 9803 // C++ [over.match.list]p1.2: (second phase list initialization) 9804 // the candidate functions are all the constructors of the class T 9805 // C++ [over.match.ctor]p1: (all other cases) 9806 // the candidate functions are all the constructors of the class of 9807 // the object being initialized 9808 9809 // C++ [over.best.ics]p4: 9810 // When [...] the constructor [...] is a candidate by 9811 // - [over.match.copy] (in all cases) 9812 // FIXME: The "second phase of [over.match.list] case can also 9813 // theoretically happen here, but it's not clear whether we can 9814 // ever have a parameter of the right type. 9815 bool SuppressUserConversions = Kind.isCopyInit(); 9816 9817 if (TD) 9818 AddTemplateOverloadCandidate(TD, I.getPair(), /*ExplicitArgs*/ nullptr, 9819 Inits, Candidates, SuppressUserConversions, 9820 /*PartialOverloading*/ false, 9821 AllowExplicit); 9822 else 9823 AddOverloadCandidate(GD, I.getPair(), Inits, Candidates, 9824 SuppressUserConversions, 9825 /*PartialOverloading*/ false, AllowExplicit); 9826 } 9827 return Candidates.BestViableFunction(*this, Kind.getLocation(), Best); 9828 }; 9829 9830 OverloadingResult Result = OR_No_Viable_Function; 9831 9832 // C++11 [over.match.list]p1, per DR1467: for list-initialization, first 9833 // try initializer-list constructors. 9834 if (ListInit) { 9835 bool TryListConstructors = true; 9836 9837 // Try list constructors unless the list is empty and the class has one or 9838 // more default constructors, in which case those constructors win. 9839 if (!ListInit->getNumInits()) { 9840 for (NamedDecl *D : Guides) { 9841 auto *FD = dyn_cast<FunctionDecl>(D->getUnderlyingDecl()); 9842 if (FD && FD->getMinRequiredArguments() == 0) { 9843 TryListConstructors = false; 9844 break; 9845 } 9846 } 9847 } else if (ListInit->getNumInits() == 1) { 9848 // C++ [over.match.class.deduct]: 9849 // As an exception, the first phase in [over.match.list] (considering 9850 // initializer-list constructors) is omitted if the initializer list 9851 // consists of a single expression of type cv U, where U is a 9852 // specialization of C or a class derived from a specialization of C. 9853 Expr *E = ListInit->getInit(0); 9854 auto *RD = E->getType()->getAsCXXRecordDecl(); 9855 if (!isa<InitListExpr>(E) && RD && 9856 isCompleteType(Kind.getLocation(), E->getType()) && 9857 isOrIsDerivedFromSpecializationOf(RD, Template)) 9858 TryListConstructors = false; 9859 } 9860 9861 if (TryListConstructors) 9862 Result = tryToResolveOverload(/*OnlyListConstructor*/true); 9863 // Then unwrap the initializer list and try again considering all 9864 // constructors. 9865 Inits = MultiExprArg(ListInit->getInits(), ListInit->getNumInits()); 9866 } 9867 9868 // If list-initialization fails, or if we're doing any other kind of 9869 // initialization, we (eventually) consider constructors. 9870 if (Result == OR_No_Viable_Function) 9871 Result = tryToResolveOverload(/*OnlyListConstructor*/false); 9872 9873 switch (Result) { 9874 case OR_Ambiguous: 9875 // FIXME: For list-initialization candidates, it'd usually be better to 9876 // list why they were not viable when given the initializer list itself as 9877 // an argument. 9878 Candidates.NoteCandidates( 9879 PartialDiagnosticAt( 9880 Kind.getLocation(), 9881 PDiag(diag::err_deduced_class_template_ctor_ambiguous) 9882 << TemplateName), 9883 *this, OCD_AmbiguousCandidates, Inits); 9884 return QualType(); 9885 9886 case OR_No_Viable_Function: { 9887 CXXRecordDecl *Primary = 9888 cast<ClassTemplateDecl>(Template)->getTemplatedDecl(); 9889 bool Complete = 9890 isCompleteType(Kind.getLocation(), Context.getTypeDeclType(Primary)); 9891 Candidates.NoteCandidates( 9892 PartialDiagnosticAt( 9893 Kind.getLocation(), 9894 PDiag(Complete ? diag::err_deduced_class_template_ctor_no_viable 9895 : diag::err_deduced_class_template_incomplete) 9896 << TemplateName << !Guides.empty()), 9897 *this, OCD_AllCandidates, Inits); 9898 return QualType(); 9899 } 9900 9901 case OR_Deleted: { 9902 Diag(Kind.getLocation(), diag::err_deduced_class_template_deleted) 9903 << TemplateName; 9904 NoteDeletedFunction(Best->Function); 9905 return QualType(); 9906 } 9907 9908 case OR_Success: 9909 // C++ [over.match.list]p1: 9910 // In copy-list-initialization, if an explicit constructor is chosen, the 9911 // initialization is ill-formed. 9912 if (Kind.isCopyInit() && ListInit && 9913 cast<CXXDeductionGuideDecl>(Best->Function)->isExplicit()) { 9914 bool IsDeductionGuide = !Best->Function->isImplicit(); 9915 Diag(Kind.getLocation(), diag::err_deduced_class_template_explicit) 9916 << TemplateName << IsDeductionGuide; 9917 Diag(Best->Function->getLocation(), 9918 diag::note_explicit_ctor_deduction_guide_here) 9919 << IsDeductionGuide; 9920 return QualType(); 9921 } 9922 9923 // Make sure we didn't select an unusable deduction guide, and mark it 9924 // as referenced. 9925 DiagnoseUseOfDecl(Best->Function, Kind.getLocation()); 9926 MarkFunctionReferenced(Kind.getLocation(), Best->Function); 9927 break; 9928 } 9929 9930 // C++ [dcl.type.class.deduct]p1: 9931 // The placeholder is replaced by the return type of the function selected 9932 // by overload resolution for class template deduction. 9933 QualType DeducedType = 9934 SubstAutoType(TSInfo->getType(), Best->Function->getReturnType()); 9935 Diag(TSInfo->getTypeLoc().getBeginLoc(), 9936 diag::warn_cxx14_compat_class_template_argument_deduction) 9937 << TSInfo->getTypeLoc().getSourceRange() << 1 << DeducedType; 9938 9939 // Warn if CTAD was used on a type that does not have any user-defined 9940 // deduction guides. 9941 if (!HasAnyDeductionGuide) { 9942 Diag(TSInfo->getTypeLoc().getBeginLoc(), 9943 diag::warn_ctad_maybe_unsupported) 9944 << TemplateName; 9945 Diag(Template->getLocation(), diag::note_suppress_ctad_maybe_unsupported); 9946 } 9947 9948 return DeducedType; 9949 } 9950