1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements semantic analysis for initializers. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Sema/Initialization.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/DeclObjC.h" 17 #include "clang/AST/ExprCXX.h" 18 #include "clang/AST/ExprObjC.h" 19 #include "clang/AST/TypeLoc.h" 20 #include "clang/Basic/TargetInfo.h" 21 #include "clang/Sema/Designator.h" 22 #include "clang/Sema/Lookup.h" 23 #include "clang/Sema/SemaInternal.h" 24 #include "llvm/ADT/APInt.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include <map> 29 using namespace clang; 30 31 //===----------------------------------------------------------------------===// 32 // Sema Initialization Checking 33 //===----------------------------------------------------------------------===// 34 35 /// \brief Check whether T is compatible with a wide character type (wchar_t, 36 /// char16_t or char32_t). 37 static bool IsWideCharCompatible(QualType T, ASTContext &Context) { 38 if (Context.typesAreCompatible(Context.getWideCharType(), T)) 39 return true; 40 if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) { 41 return Context.typesAreCompatible(Context.Char16Ty, T) || 42 Context.typesAreCompatible(Context.Char32Ty, T); 43 } 44 return false; 45 } 46 47 enum StringInitFailureKind { 48 SIF_None, 49 SIF_NarrowStringIntoWideChar, 50 SIF_WideStringIntoChar, 51 SIF_IncompatWideStringIntoWideChar, 52 SIF_Other 53 }; 54 55 /// \brief Check whether the array of type AT can be initialized by the Init 56 /// expression by means of string initialization. Returns SIF_None if so, 57 /// otherwise returns a StringInitFailureKind that describes why the 58 /// initialization would not work. 59 static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT, 60 ASTContext &Context) { 61 if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT)) 62 return SIF_Other; 63 64 // See if this is a string literal or @encode. 65 Init = Init->IgnoreParens(); 66 67 // Handle @encode, which is a narrow string. 68 if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType()) 69 return SIF_None; 70 71 // Otherwise we can only handle string literals. 72 StringLiteral *SL = dyn_cast<StringLiteral>(Init); 73 if (!SL) 74 return SIF_Other; 75 76 const QualType ElemTy = 77 Context.getCanonicalType(AT->getElementType()).getUnqualifiedType(); 78 79 switch (SL->getKind()) { 80 case StringLiteral::Ascii: 81 case StringLiteral::UTF8: 82 // char array can be initialized with a narrow string. 83 // Only allow char x[] = "foo"; not char x[] = L"foo"; 84 if (ElemTy->isCharType()) 85 return SIF_None; 86 if (IsWideCharCompatible(ElemTy, Context)) 87 return SIF_NarrowStringIntoWideChar; 88 return SIF_Other; 89 // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15: 90 // "An array with element type compatible with a qualified or unqualified 91 // version of wchar_t, char16_t, or char32_t may be initialized by a wide 92 // string literal with the corresponding encoding prefix (L, u, or U, 93 // respectively), optionally enclosed in braces. 94 case StringLiteral::UTF16: 95 if (Context.typesAreCompatible(Context.Char16Ty, ElemTy)) 96 return SIF_None; 97 if (ElemTy->isCharType()) 98 return SIF_WideStringIntoChar; 99 if (IsWideCharCompatible(ElemTy, Context)) 100 return SIF_IncompatWideStringIntoWideChar; 101 return SIF_Other; 102 case StringLiteral::UTF32: 103 if (Context.typesAreCompatible(Context.Char32Ty, ElemTy)) 104 return SIF_None; 105 if (ElemTy->isCharType()) 106 return SIF_WideStringIntoChar; 107 if (IsWideCharCompatible(ElemTy, Context)) 108 return SIF_IncompatWideStringIntoWideChar; 109 return SIF_Other; 110 case StringLiteral::Wide: 111 if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy)) 112 return SIF_None; 113 if (ElemTy->isCharType()) 114 return SIF_WideStringIntoChar; 115 if (IsWideCharCompatible(ElemTy, Context)) 116 return SIF_IncompatWideStringIntoWideChar; 117 return SIF_Other; 118 } 119 120 llvm_unreachable("missed a StringLiteral kind?"); 121 } 122 123 static StringInitFailureKind IsStringInit(Expr *init, QualType declType, 124 ASTContext &Context) { 125 const ArrayType *arrayType = Context.getAsArrayType(declType); 126 if (!arrayType) 127 return SIF_Other; 128 return IsStringInit(init, arrayType, Context); 129 } 130 131 /// Update the type of a string literal, including any surrounding parentheses, 132 /// to match the type of the object which it is initializing. 133 static void updateStringLiteralType(Expr *E, QualType Ty) { 134 while (true) { 135 E->setType(Ty); 136 if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E)) 137 break; 138 else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) 139 E = PE->getSubExpr(); 140 else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) 141 E = UO->getSubExpr(); 142 else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) 143 E = GSE->getResultExpr(); 144 else 145 llvm_unreachable("unexpected expr in string literal init"); 146 } 147 } 148 149 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT, 150 Sema &S) { 151 // Get the length of the string as parsed. 152 uint64_t StrLength = 153 cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue(); 154 155 156 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) { 157 // C99 6.7.8p14. We have an array of character type with unknown size 158 // being initialized to a string literal. 159 llvm::APInt ConstVal(32, StrLength); 160 // Return a new array type (C99 6.7.8p22). 161 DeclT = S.Context.getConstantArrayType(IAT->getElementType(), 162 ConstVal, 163 ArrayType::Normal, 0); 164 updateStringLiteralType(Str, DeclT); 165 return; 166 } 167 168 const ConstantArrayType *CAT = cast<ConstantArrayType>(AT); 169 170 // We have an array of character type with known size. However, 171 // the size may be smaller or larger than the string we are initializing. 172 // FIXME: Avoid truncation for 64-bit length strings. 173 if (S.getLangOpts().CPlusPlus) { 174 if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) { 175 // For Pascal strings it's OK to strip off the terminating null character, 176 // so the example below is valid: 177 // 178 // unsigned char a[2] = "\pa"; 179 if (SL->isPascal()) 180 StrLength--; 181 } 182 183 // [dcl.init.string]p2 184 if (StrLength > CAT->getSize().getZExtValue()) 185 S.Diag(Str->getLocStart(), 186 diag::err_initializer_string_for_char_array_too_long) 187 << Str->getSourceRange(); 188 } else { 189 // C99 6.7.8p14. 190 if (StrLength-1 > CAT->getSize().getZExtValue()) 191 S.Diag(Str->getLocStart(), 192 diag::warn_initializer_string_for_char_array_too_long) 193 << Str->getSourceRange(); 194 } 195 196 // Set the type to the actual size that we are initializing. If we have 197 // something like: 198 // char x[1] = "foo"; 199 // then this will set the string literal's type to char[1]. 200 updateStringLiteralType(Str, DeclT); 201 } 202 203 //===----------------------------------------------------------------------===// 204 // Semantic checking for initializer lists. 205 //===----------------------------------------------------------------------===// 206 207 /// @brief Semantic checking for initializer lists. 208 /// 209 /// The InitListChecker class contains a set of routines that each 210 /// handle the initialization of a certain kind of entity, e.g., 211 /// arrays, vectors, struct/union types, scalars, etc. The 212 /// InitListChecker itself performs a recursive walk of the subobject 213 /// structure of the type to be initialized, while stepping through 214 /// the initializer list one element at a time. The IList and Index 215 /// parameters to each of the Check* routines contain the active 216 /// (syntactic) initializer list and the index into that initializer 217 /// list that represents the current initializer. Each routine is 218 /// responsible for moving that Index forward as it consumes elements. 219 /// 220 /// Each Check* routine also has a StructuredList/StructuredIndex 221 /// arguments, which contains the current "structured" (semantic) 222 /// initializer list and the index into that initializer list where we 223 /// are copying initializers as we map them over to the semantic 224 /// list. Once we have completed our recursive walk of the subobject 225 /// structure, we will have constructed a full semantic initializer 226 /// list. 227 /// 228 /// C99 designators cause changes in the initializer list traversal, 229 /// because they make the initialization "jump" into a specific 230 /// subobject and then continue the initialization from that 231 /// point. CheckDesignatedInitializer() recursively steps into the 232 /// designated subobject and manages backing out the recursion to 233 /// initialize the subobjects after the one designated. 234 namespace { 235 class InitListChecker { 236 Sema &SemaRef; 237 bool hadError; 238 bool VerifyOnly; // no diagnostics, no structure building 239 llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic; 240 InitListExpr *FullyStructuredList; 241 242 void CheckImplicitInitList(const InitializedEntity &Entity, 243 InitListExpr *ParentIList, QualType T, 244 unsigned &Index, InitListExpr *StructuredList, 245 unsigned &StructuredIndex); 246 void CheckExplicitInitList(const InitializedEntity &Entity, 247 InitListExpr *IList, QualType &T, 248 InitListExpr *StructuredList, 249 bool TopLevelObject = false); 250 void CheckListElementTypes(const InitializedEntity &Entity, 251 InitListExpr *IList, QualType &DeclType, 252 bool SubobjectIsDesignatorContext, 253 unsigned &Index, 254 InitListExpr *StructuredList, 255 unsigned &StructuredIndex, 256 bool TopLevelObject = false); 257 void CheckSubElementType(const InitializedEntity &Entity, 258 InitListExpr *IList, QualType ElemType, 259 unsigned &Index, 260 InitListExpr *StructuredList, 261 unsigned &StructuredIndex); 262 void CheckComplexType(const InitializedEntity &Entity, 263 InitListExpr *IList, QualType DeclType, 264 unsigned &Index, 265 InitListExpr *StructuredList, 266 unsigned &StructuredIndex); 267 void CheckScalarType(const InitializedEntity &Entity, 268 InitListExpr *IList, QualType DeclType, 269 unsigned &Index, 270 InitListExpr *StructuredList, 271 unsigned &StructuredIndex); 272 void CheckReferenceType(const InitializedEntity &Entity, 273 InitListExpr *IList, QualType DeclType, 274 unsigned &Index, 275 InitListExpr *StructuredList, 276 unsigned &StructuredIndex); 277 void CheckVectorType(const InitializedEntity &Entity, 278 InitListExpr *IList, QualType DeclType, unsigned &Index, 279 InitListExpr *StructuredList, 280 unsigned &StructuredIndex); 281 void CheckStructUnionTypes(const InitializedEntity &Entity, 282 InitListExpr *IList, QualType DeclType, 283 RecordDecl::field_iterator Field, 284 bool SubobjectIsDesignatorContext, unsigned &Index, 285 InitListExpr *StructuredList, 286 unsigned &StructuredIndex, 287 bool TopLevelObject = false); 288 void CheckArrayType(const InitializedEntity &Entity, 289 InitListExpr *IList, QualType &DeclType, 290 llvm::APSInt elementIndex, 291 bool SubobjectIsDesignatorContext, unsigned &Index, 292 InitListExpr *StructuredList, 293 unsigned &StructuredIndex); 294 bool CheckDesignatedInitializer(const InitializedEntity &Entity, 295 InitListExpr *IList, DesignatedInitExpr *DIE, 296 unsigned DesigIdx, 297 QualType &CurrentObjectType, 298 RecordDecl::field_iterator *NextField, 299 llvm::APSInt *NextElementIndex, 300 unsigned &Index, 301 InitListExpr *StructuredList, 302 unsigned &StructuredIndex, 303 bool FinishSubobjectInit, 304 bool TopLevelObject); 305 InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, 306 QualType CurrentObjectType, 307 InitListExpr *StructuredList, 308 unsigned StructuredIndex, 309 SourceRange InitRange); 310 void UpdateStructuredListElement(InitListExpr *StructuredList, 311 unsigned &StructuredIndex, 312 Expr *expr); 313 int numArrayElements(QualType DeclType); 314 int numStructUnionElements(QualType DeclType); 315 316 static ExprResult PerformEmptyInit(Sema &SemaRef, 317 SourceLocation Loc, 318 const InitializedEntity &Entity, 319 bool VerifyOnly); 320 void FillInEmptyInitForField(unsigned Init, FieldDecl *Field, 321 const InitializedEntity &ParentEntity, 322 InitListExpr *ILE, bool &RequiresSecondPass); 323 void FillInEmptyInitializations(const InitializedEntity &Entity, 324 InitListExpr *ILE, bool &RequiresSecondPass); 325 bool CheckFlexibleArrayInit(const InitializedEntity &Entity, 326 Expr *InitExpr, FieldDecl *Field, 327 bool TopLevelObject); 328 void CheckEmptyInitializable(const InitializedEntity &Entity, 329 SourceLocation Loc); 330 331 public: 332 InitListChecker(Sema &S, const InitializedEntity &Entity, 333 InitListExpr *IL, QualType &T, bool VerifyOnly); 334 bool HadError() { return hadError; } 335 336 // @brief Retrieves the fully-structured initializer list used for 337 // semantic analysis and code generation. 338 InitListExpr *getFullyStructuredList() const { return FullyStructuredList; } 339 }; 340 } // end anonymous namespace 341 342 ExprResult InitListChecker::PerformEmptyInit(Sema &SemaRef, 343 SourceLocation Loc, 344 const InitializedEntity &Entity, 345 bool VerifyOnly) { 346 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc, 347 true); 348 MultiExprArg SubInit; 349 Expr *InitExpr; 350 InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc); 351 352 // C++ [dcl.init.aggr]p7: 353 // If there are fewer initializer-clauses in the list than there are 354 // members in the aggregate, then each member not explicitly initialized 355 // ... 356 if (SemaRef.getLangOpts().CPlusPlus11 && 357 Entity.getType()->getBaseElementTypeUnsafe()->isRecordType()) { 358 // C++1y / DR1070: 359 // shall be initialized [...] from an empty initializer list. 360 // 361 // We apply the resolution of this DR to C++11 but not C++98, since C++98 362 // does not have useful semantics for initialization from an init list. 363 // We treat this as copy-initialization, because aggregate initialization 364 // always performs copy-initialization on its elements. 365 // 366 // Only do this if we're initializing a class type, to avoid filling in 367 // the initializer list where possible. 368 InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context) 369 InitListExpr(SemaRef.Context, Loc, None, Loc); 370 InitExpr->setType(SemaRef.Context.VoidTy); 371 SubInit = InitExpr; 372 Kind = InitializationKind::CreateCopy(Loc, Loc); 373 } else { 374 // C++03: 375 // shall be value-initialized. 376 } 377 378 InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit); 379 if (!InitSeq) { 380 if (!VerifyOnly) { 381 InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit); 382 if (Entity.getKind() == InitializedEntity::EK_Member) 383 SemaRef.Diag(Entity.getDecl()->getLocation(), 384 diag::note_in_omitted_aggregate_initializer) 385 << /*field*/1 << Entity.getDecl(); 386 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) 387 SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer) 388 << /*array element*/0 << Entity.getElementIndex(); 389 } 390 return ExprError(); 391 } 392 393 return VerifyOnly ? ExprResult(static_cast<Expr *>(nullptr)) 394 : InitSeq.Perform(SemaRef, Entity, Kind, SubInit); 395 } 396 397 void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity, 398 SourceLocation Loc) { 399 assert(VerifyOnly && 400 "CheckEmptyInitializable is only inteded for verification mode."); 401 if (PerformEmptyInit(SemaRef, Loc, Entity, /*VerifyOnly*/true).isInvalid()) 402 hadError = true; 403 } 404 405 void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field, 406 const InitializedEntity &ParentEntity, 407 InitListExpr *ILE, 408 bool &RequiresSecondPass) { 409 SourceLocation Loc = ILE->getLocEnd(); 410 unsigned NumInits = ILE->getNumInits(); 411 InitializedEntity MemberEntity 412 = InitializedEntity::InitializeMember(Field, &ParentEntity); 413 if (Init >= NumInits || !ILE->getInit(Init)) { 414 // C++1y [dcl.init.aggr]p7: 415 // If there are fewer initializer-clauses in the list than there are 416 // members in the aggregate, then each member not explicitly initialized 417 // shall be initialized from its brace-or-equal-initializer [...] 418 if (Field->hasInClassInitializer()) { 419 Expr *DIE = CXXDefaultInitExpr::Create(SemaRef.Context, Loc, Field); 420 if (Init < NumInits) 421 ILE->setInit(Init, DIE); 422 else { 423 ILE->updateInit(SemaRef.Context, Init, DIE); 424 RequiresSecondPass = true; 425 } 426 return; 427 } 428 429 if (Field->getType()->isReferenceType()) { 430 // C++ [dcl.init.aggr]p9: 431 // If an incomplete or empty initializer-list leaves a 432 // member of reference type uninitialized, the program is 433 // ill-formed. 434 SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized) 435 << Field->getType() 436 << ILE->getSyntacticForm()->getSourceRange(); 437 SemaRef.Diag(Field->getLocation(), 438 diag::note_uninit_reference_member); 439 hadError = true; 440 return; 441 } 442 443 ExprResult MemberInit = PerformEmptyInit(SemaRef, Loc, MemberEntity, 444 /*VerifyOnly*/false); 445 if (MemberInit.isInvalid()) { 446 hadError = true; 447 return; 448 } 449 450 if (hadError) { 451 // Do nothing 452 } else if (Init < NumInits) { 453 ILE->setInit(Init, MemberInit.getAs<Expr>()); 454 } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) { 455 // Empty initialization requires a constructor call, so 456 // extend the initializer list to include the constructor 457 // call and make a note that we'll need to take another pass 458 // through the initializer list. 459 ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>()); 460 RequiresSecondPass = true; 461 } 462 } else if (InitListExpr *InnerILE 463 = dyn_cast<InitListExpr>(ILE->getInit(Init))) 464 FillInEmptyInitializations(MemberEntity, InnerILE, 465 RequiresSecondPass); 466 } 467 468 /// Recursively replaces NULL values within the given initializer list 469 /// with expressions that perform value-initialization of the 470 /// appropriate type. 471 void 472 InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity, 473 InitListExpr *ILE, 474 bool &RequiresSecondPass) { 475 assert((ILE->getType() != SemaRef.Context.VoidTy) && 476 "Should not have void type"); 477 478 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 479 const RecordDecl *RDecl = RType->getDecl(); 480 if (RDecl->isUnion() && ILE->getInitializedFieldInUnion()) 481 FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(), 482 Entity, ILE, RequiresSecondPass); 483 else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) && 484 cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) { 485 for (auto *Field : RDecl->fields()) { 486 if (Field->hasInClassInitializer()) { 487 FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass); 488 break; 489 } 490 } 491 } else { 492 unsigned Init = 0; 493 for (auto *Field : RDecl->fields()) { 494 if (Field->isUnnamedBitfield()) 495 continue; 496 497 if (hadError) 498 return; 499 500 FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass); 501 if (hadError) 502 return; 503 504 ++Init; 505 506 // Only look at the first initialization of a union. 507 if (RDecl->isUnion()) 508 break; 509 } 510 } 511 512 return; 513 } 514 515 QualType ElementType; 516 517 InitializedEntity ElementEntity = Entity; 518 unsigned NumInits = ILE->getNumInits(); 519 unsigned NumElements = NumInits; 520 if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) { 521 ElementType = AType->getElementType(); 522 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) 523 NumElements = CAType->getSize().getZExtValue(); 524 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, 525 0, Entity); 526 } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) { 527 ElementType = VType->getElementType(); 528 NumElements = VType->getNumElements(); 529 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, 530 0, Entity); 531 } else 532 ElementType = ILE->getType(); 533 534 for (unsigned Init = 0; Init != NumElements; ++Init) { 535 if (hadError) 536 return; 537 538 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement || 539 ElementEntity.getKind() == InitializedEntity::EK_VectorElement) 540 ElementEntity.setElementIndex(Init); 541 542 Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr); 543 if (!InitExpr && !ILE->hasArrayFiller()) { 544 ExprResult ElementInit = PerformEmptyInit(SemaRef, ILE->getLocEnd(), 545 ElementEntity, 546 /*VerifyOnly*/false); 547 if (ElementInit.isInvalid()) { 548 hadError = true; 549 return; 550 } 551 552 if (hadError) { 553 // Do nothing 554 } else if (Init < NumInits) { 555 // For arrays, just set the expression used for value-initialization 556 // of the "holes" in the array. 557 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) 558 ILE->setArrayFiller(ElementInit.getAs<Expr>()); 559 else 560 ILE->setInit(Init, ElementInit.getAs<Expr>()); 561 } else { 562 // For arrays, just set the expression used for value-initialization 563 // of the rest of elements and exit. 564 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) { 565 ILE->setArrayFiller(ElementInit.getAs<Expr>()); 566 return; 567 } 568 569 if (!isa<ImplicitValueInitExpr>(ElementInit.get())) { 570 // Empty initialization requires a constructor call, so 571 // extend the initializer list to include the constructor 572 // call and make a note that we'll need to take another pass 573 // through the initializer list. 574 ILE->updateInit(SemaRef.Context, Init, ElementInit.getAs<Expr>()); 575 RequiresSecondPass = true; 576 } 577 } 578 } else if (InitListExpr *InnerILE 579 = dyn_cast_or_null<InitListExpr>(InitExpr)) 580 FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass); 581 } 582 } 583 584 585 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity, 586 InitListExpr *IL, QualType &T, 587 bool VerifyOnly) 588 : SemaRef(S), VerifyOnly(VerifyOnly) { 589 hadError = false; 590 591 FullyStructuredList = 592 getStructuredSubobjectInit(IL, 0, T, nullptr, 0, IL->getSourceRange()); 593 CheckExplicitInitList(Entity, IL, T, FullyStructuredList, 594 /*TopLevelObject=*/true); 595 596 if (!hadError && !VerifyOnly) { 597 bool RequiresSecondPass = false; 598 FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass); 599 if (RequiresSecondPass && !hadError) 600 FillInEmptyInitializations(Entity, FullyStructuredList, 601 RequiresSecondPass); 602 } 603 } 604 605 int InitListChecker::numArrayElements(QualType DeclType) { 606 // FIXME: use a proper constant 607 int maxElements = 0x7FFFFFFF; 608 if (const ConstantArrayType *CAT = 609 SemaRef.Context.getAsConstantArrayType(DeclType)) { 610 maxElements = static_cast<int>(CAT->getSize().getZExtValue()); 611 } 612 return maxElements; 613 } 614 615 int InitListChecker::numStructUnionElements(QualType DeclType) { 616 RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl(); 617 int InitializableMembers = 0; 618 for (const auto *Field : structDecl->fields()) 619 if (!Field->isUnnamedBitfield()) 620 ++InitializableMembers; 621 622 if (structDecl->isUnion()) 623 return std::min(InitializableMembers, 1); 624 return InitializableMembers - structDecl->hasFlexibleArrayMember(); 625 } 626 627 /// Check whether the range of the initializer \p ParentIList from element 628 /// \p Index onwards can be used to initialize an object of type \p T. Update 629 /// \p Index to indicate how many elements of the list were consumed. 630 /// 631 /// This also fills in \p StructuredList, from element \p StructuredIndex 632 /// onwards, with the fully-braced, desugared form of the initialization. 633 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity, 634 InitListExpr *ParentIList, 635 QualType T, unsigned &Index, 636 InitListExpr *StructuredList, 637 unsigned &StructuredIndex) { 638 int maxElements = 0; 639 640 if (T->isArrayType()) 641 maxElements = numArrayElements(T); 642 else if (T->isRecordType()) 643 maxElements = numStructUnionElements(T); 644 else if (T->isVectorType()) 645 maxElements = T->getAs<VectorType>()->getNumElements(); 646 else 647 llvm_unreachable("CheckImplicitInitList(): Illegal type"); 648 649 if (maxElements == 0) { 650 if (!VerifyOnly) 651 SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(), 652 diag::err_implicit_empty_initializer); 653 ++Index; 654 hadError = true; 655 return; 656 } 657 658 // Build a structured initializer list corresponding to this subobject. 659 InitListExpr *StructuredSubobjectInitList 660 = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList, 661 StructuredIndex, 662 SourceRange(ParentIList->getInit(Index)->getLocStart(), 663 ParentIList->getSourceRange().getEnd())); 664 unsigned StructuredSubobjectInitIndex = 0; 665 666 // Check the element types and build the structural subobject. 667 unsigned StartIndex = Index; 668 CheckListElementTypes(Entity, ParentIList, T, 669 /*SubobjectIsDesignatorContext=*/false, Index, 670 StructuredSubobjectInitList, 671 StructuredSubobjectInitIndex); 672 673 if (!VerifyOnly) { 674 StructuredSubobjectInitList->setType(T); 675 676 unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1); 677 // Update the structured sub-object initializer so that it's ending 678 // range corresponds with the end of the last initializer it used. 679 if (EndIndex < ParentIList->getNumInits()) { 680 SourceLocation EndLoc 681 = ParentIList->getInit(EndIndex)->getSourceRange().getEnd(); 682 StructuredSubobjectInitList->setRBraceLoc(EndLoc); 683 } 684 685 // Complain about missing braces. 686 if (T->isArrayType() || T->isRecordType()) { 687 SemaRef.Diag(StructuredSubobjectInitList->getLocStart(), 688 diag::warn_missing_braces) 689 << StructuredSubobjectInitList->getSourceRange() 690 << FixItHint::CreateInsertion( 691 StructuredSubobjectInitList->getLocStart(), "{") 692 << FixItHint::CreateInsertion( 693 SemaRef.getLocForEndOfToken( 694 StructuredSubobjectInitList->getLocEnd()), 695 "}"); 696 } 697 } 698 } 699 700 /// Check whether the initializer \p IList (that was written with explicit 701 /// braces) can be used to initialize an object of type \p T. 702 /// 703 /// This also fills in \p StructuredList with the fully-braced, desugared 704 /// form of the initialization. 705 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity, 706 InitListExpr *IList, QualType &T, 707 InitListExpr *StructuredList, 708 bool TopLevelObject) { 709 if (!VerifyOnly) { 710 SyntacticToSemantic[IList] = StructuredList; 711 StructuredList->setSyntacticForm(IList); 712 } 713 714 unsigned Index = 0, StructuredIndex = 0; 715 CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true, 716 Index, StructuredList, StructuredIndex, TopLevelObject); 717 if (!VerifyOnly) { 718 QualType ExprTy = T; 719 if (!ExprTy->isArrayType()) 720 ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context); 721 IList->setType(ExprTy); 722 StructuredList->setType(ExprTy); 723 } 724 if (hadError) 725 return; 726 727 if (Index < IList->getNumInits()) { 728 // We have leftover initializers 729 if (VerifyOnly) { 730 if (SemaRef.getLangOpts().CPlusPlus || 731 (SemaRef.getLangOpts().OpenCL && 732 IList->getType()->isVectorType())) { 733 hadError = true; 734 } 735 return; 736 } 737 738 if (StructuredIndex == 1 && 739 IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) == 740 SIF_None) { 741 unsigned DK = diag::warn_excess_initializers_in_char_array_initializer; 742 if (SemaRef.getLangOpts().CPlusPlus) { 743 DK = diag::err_excess_initializers_in_char_array_initializer; 744 hadError = true; 745 } 746 // Special-case 747 SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK) 748 << IList->getInit(Index)->getSourceRange(); 749 } else if (!T->isIncompleteType()) { 750 // Don't complain for incomplete types, since we'll get an error 751 // elsewhere 752 QualType CurrentObjectType = StructuredList->getType(); 753 int initKind = 754 CurrentObjectType->isArrayType()? 0 : 755 CurrentObjectType->isVectorType()? 1 : 756 CurrentObjectType->isScalarType()? 2 : 757 CurrentObjectType->isUnionType()? 3 : 758 4; 759 760 unsigned DK = diag::warn_excess_initializers; 761 if (SemaRef.getLangOpts().CPlusPlus) { 762 DK = diag::err_excess_initializers; 763 hadError = true; 764 } 765 if (SemaRef.getLangOpts().OpenCL && initKind == 1) { 766 DK = diag::err_excess_initializers; 767 hadError = true; 768 } 769 770 SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK) 771 << initKind << IList->getInit(Index)->getSourceRange(); 772 } 773 } 774 775 if (!VerifyOnly && T->isScalarType() && IList->getNumInits() == 1 && 776 !TopLevelObject) 777 SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init) 778 << IList->getSourceRange() 779 << FixItHint::CreateRemoval(IList->getLocStart()) 780 << FixItHint::CreateRemoval(IList->getLocEnd()); 781 } 782 783 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity, 784 InitListExpr *IList, 785 QualType &DeclType, 786 bool SubobjectIsDesignatorContext, 787 unsigned &Index, 788 InitListExpr *StructuredList, 789 unsigned &StructuredIndex, 790 bool TopLevelObject) { 791 if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) { 792 // Explicitly braced initializer for complex type can be real+imaginary 793 // parts. 794 CheckComplexType(Entity, IList, DeclType, Index, 795 StructuredList, StructuredIndex); 796 } else if (DeclType->isScalarType()) { 797 CheckScalarType(Entity, IList, DeclType, Index, 798 StructuredList, StructuredIndex); 799 } else if (DeclType->isVectorType()) { 800 CheckVectorType(Entity, IList, DeclType, Index, 801 StructuredList, StructuredIndex); 802 } else if (DeclType->isRecordType()) { 803 assert(DeclType->isAggregateType() && 804 "non-aggregate records should be handed in CheckSubElementType"); 805 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl(); 806 CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(), 807 SubobjectIsDesignatorContext, Index, 808 StructuredList, StructuredIndex, 809 TopLevelObject); 810 } else if (DeclType->isArrayType()) { 811 llvm::APSInt Zero( 812 SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()), 813 false); 814 CheckArrayType(Entity, IList, DeclType, Zero, 815 SubobjectIsDesignatorContext, Index, 816 StructuredList, StructuredIndex); 817 } else if (DeclType->isVoidType() || DeclType->isFunctionType()) { 818 // This type is invalid, issue a diagnostic. 819 ++Index; 820 if (!VerifyOnly) 821 SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type) 822 << DeclType; 823 hadError = true; 824 } else if (DeclType->isReferenceType()) { 825 CheckReferenceType(Entity, IList, DeclType, Index, 826 StructuredList, StructuredIndex); 827 } else if (DeclType->isObjCObjectType()) { 828 if (!VerifyOnly) 829 SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class) 830 << DeclType; 831 hadError = true; 832 } else { 833 if (!VerifyOnly) 834 SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type) 835 << DeclType; 836 hadError = true; 837 } 838 } 839 840 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity, 841 InitListExpr *IList, 842 QualType ElemType, 843 unsigned &Index, 844 InitListExpr *StructuredList, 845 unsigned &StructuredIndex) { 846 Expr *expr = IList->getInit(Index); 847 848 if (ElemType->isReferenceType()) 849 return CheckReferenceType(Entity, IList, ElemType, Index, 850 StructuredList, StructuredIndex); 851 852 if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) { 853 if (!ElemType->isRecordType() || ElemType->isAggregateType()) { 854 InitListExpr *InnerStructuredList 855 = getStructuredSubobjectInit(IList, Index, ElemType, 856 StructuredList, StructuredIndex, 857 SubInitList->getSourceRange()); 858 CheckExplicitInitList(Entity, SubInitList, ElemType, 859 InnerStructuredList); 860 ++StructuredIndex; 861 ++Index; 862 return; 863 } 864 assert(SemaRef.getLangOpts().CPlusPlus && 865 "non-aggregate records are only possible in C++"); 866 // C++ initialization is handled later. 867 } 868 869 // FIXME: Need to handle atomic aggregate types with implicit init lists. 870 if (ElemType->isScalarType() || ElemType->isAtomicType()) 871 return CheckScalarType(Entity, IList, ElemType, Index, 872 StructuredList, StructuredIndex); 873 874 assert((ElemType->isRecordType() || ElemType->isVectorType() || 875 ElemType->isArrayType()) && "Unexpected type"); 876 877 if (const ArrayType *arrayType = SemaRef.Context.getAsArrayType(ElemType)) { 878 // arrayType can be incomplete if we're initializing a flexible 879 // array member. There's nothing we can do with the completed 880 // type here, though. 881 882 if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) { 883 if (!VerifyOnly) { 884 CheckStringInit(expr, ElemType, arrayType, SemaRef); 885 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 886 } 887 ++Index; 888 return; 889 } 890 891 // Fall through for subaggregate initialization. 892 893 } else if (SemaRef.getLangOpts().CPlusPlus) { 894 // C++ [dcl.init.aggr]p12: 895 // All implicit type conversions (clause 4) are considered when 896 // initializing the aggregate member with an initializer from 897 // an initializer-list. If the initializer can initialize a 898 // member, the member is initialized. [...] 899 900 // FIXME: Better EqualLoc? 901 InitializationKind Kind = 902 InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation()); 903 InitializationSequence Seq(SemaRef, Entity, Kind, expr); 904 905 if (Seq) { 906 if (!VerifyOnly) { 907 ExprResult Result = 908 Seq.Perform(SemaRef, Entity, Kind, expr); 909 if (Result.isInvalid()) 910 hadError = true; 911 912 UpdateStructuredListElement(StructuredList, StructuredIndex, 913 Result.getAs<Expr>()); 914 } 915 ++Index; 916 return; 917 } 918 919 // Fall through for subaggregate initialization 920 } else { 921 // C99 6.7.8p13: 922 // 923 // The initializer for a structure or union object that has 924 // automatic storage duration shall be either an initializer 925 // list as described below, or a single expression that has 926 // compatible structure or union type. In the latter case, the 927 // initial value of the object, including unnamed members, is 928 // that of the expression. 929 ExprResult ExprRes = expr; 930 if ((ElemType->isRecordType() || ElemType->isVectorType()) && 931 SemaRef.CheckSingleAssignmentConstraints(ElemType, ExprRes, 932 !VerifyOnly) 933 != Sema::Incompatible) { 934 if (ExprRes.isInvalid()) 935 hadError = true; 936 else { 937 ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get()); 938 if (ExprRes.isInvalid()) 939 hadError = true; 940 } 941 UpdateStructuredListElement(StructuredList, StructuredIndex, 942 ExprRes.getAs<Expr>()); 943 ++Index; 944 return; 945 } 946 ExprRes.get(); 947 // Fall through for subaggregate initialization 948 } 949 950 // C++ [dcl.init.aggr]p12: 951 // 952 // [...] Otherwise, if the member is itself a non-empty 953 // subaggregate, brace elision is assumed and the initializer is 954 // considered for the initialization of the first member of 955 // the subaggregate. 956 if (!SemaRef.getLangOpts().OpenCL && 957 (ElemType->isAggregateType() || ElemType->isVectorType())) { 958 CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList, 959 StructuredIndex); 960 ++StructuredIndex; 961 } else { 962 if (!VerifyOnly) { 963 // We cannot initialize this element, so let 964 // PerformCopyInitialization produce the appropriate diagnostic. 965 SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr, 966 /*TopLevelOfInitList=*/true); 967 } 968 hadError = true; 969 ++Index; 970 ++StructuredIndex; 971 } 972 } 973 974 void InitListChecker::CheckComplexType(const InitializedEntity &Entity, 975 InitListExpr *IList, QualType DeclType, 976 unsigned &Index, 977 InitListExpr *StructuredList, 978 unsigned &StructuredIndex) { 979 assert(Index == 0 && "Index in explicit init list must be zero"); 980 981 // As an extension, clang supports complex initializers, which initialize 982 // a complex number component-wise. When an explicit initializer list for 983 // a complex number contains two two initializers, this extension kicks in: 984 // it exepcts the initializer list to contain two elements convertible to 985 // the element type of the complex type. The first element initializes 986 // the real part, and the second element intitializes the imaginary part. 987 988 if (IList->getNumInits() != 2) 989 return CheckScalarType(Entity, IList, DeclType, Index, StructuredList, 990 StructuredIndex); 991 992 // This is an extension in C. (The builtin _Complex type does not exist 993 // in the C++ standard.) 994 if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly) 995 SemaRef.Diag(IList->getLocStart(), diag::ext_complex_component_init) 996 << IList->getSourceRange(); 997 998 // Initialize the complex number. 999 QualType elementType = DeclType->getAs<ComplexType>()->getElementType(); 1000 InitializedEntity ElementEntity = 1001 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1002 1003 for (unsigned i = 0; i < 2; ++i) { 1004 ElementEntity.setElementIndex(Index); 1005 CheckSubElementType(ElementEntity, IList, elementType, Index, 1006 StructuredList, StructuredIndex); 1007 } 1008 } 1009 1010 1011 void InitListChecker::CheckScalarType(const InitializedEntity &Entity, 1012 InitListExpr *IList, QualType DeclType, 1013 unsigned &Index, 1014 InitListExpr *StructuredList, 1015 unsigned &StructuredIndex) { 1016 if (Index >= IList->getNumInits()) { 1017 if (!VerifyOnly) 1018 SemaRef.Diag(IList->getLocStart(), 1019 SemaRef.getLangOpts().CPlusPlus11 ? 1020 diag::warn_cxx98_compat_empty_scalar_initializer : 1021 diag::err_empty_scalar_initializer) 1022 << IList->getSourceRange(); 1023 hadError = !SemaRef.getLangOpts().CPlusPlus11; 1024 ++Index; 1025 ++StructuredIndex; 1026 return; 1027 } 1028 1029 Expr *expr = IList->getInit(Index); 1030 if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) { 1031 // FIXME: This is invalid, and accepting it causes overload resolution 1032 // to pick the wrong overload in some corner cases. 1033 if (!VerifyOnly) 1034 SemaRef.Diag(SubIList->getLocStart(), 1035 diag::ext_many_braces_around_scalar_init) 1036 << SubIList->getSourceRange(); 1037 1038 CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList, 1039 StructuredIndex); 1040 return; 1041 } else if (isa<DesignatedInitExpr>(expr)) { 1042 if (!VerifyOnly) 1043 SemaRef.Diag(expr->getLocStart(), 1044 diag::err_designator_for_scalar_init) 1045 << DeclType << expr->getSourceRange(); 1046 hadError = true; 1047 ++Index; 1048 ++StructuredIndex; 1049 return; 1050 } 1051 1052 if (VerifyOnly) { 1053 if (!SemaRef.CanPerformCopyInitialization(Entity,expr)) 1054 hadError = true; 1055 ++Index; 1056 return; 1057 } 1058 1059 ExprResult Result = 1060 SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(), expr, 1061 /*TopLevelOfInitList=*/true); 1062 1063 Expr *ResultExpr = nullptr; 1064 1065 if (Result.isInvalid()) 1066 hadError = true; // types weren't compatible. 1067 else { 1068 ResultExpr = Result.getAs<Expr>(); 1069 1070 if (ResultExpr != expr) { 1071 // The type was promoted, update initializer list. 1072 IList->setInit(Index, ResultExpr); 1073 } 1074 } 1075 if (hadError) 1076 ++StructuredIndex; 1077 else 1078 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr); 1079 ++Index; 1080 } 1081 1082 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity, 1083 InitListExpr *IList, QualType DeclType, 1084 unsigned &Index, 1085 InitListExpr *StructuredList, 1086 unsigned &StructuredIndex) { 1087 if (Index >= IList->getNumInits()) { 1088 // FIXME: It would be wonderful if we could point at the actual member. In 1089 // general, it would be useful to pass location information down the stack, 1090 // so that we know the location (or decl) of the "current object" being 1091 // initialized. 1092 if (!VerifyOnly) 1093 SemaRef.Diag(IList->getLocStart(), 1094 diag::err_init_reference_member_uninitialized) 1095 << DeclType 1096 << IList->getSourceRange(); 1097 hadError = true; 1098 ++Index; 1099 ++StructuredIndex; 1100 return; 1101 } 1102 1103 Expr *expr = IList->getInit(Index); 1104 if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) { 1105 if (!VerifyOnly) 1106 SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list) 1107 << DeclType << IList->getSourceRange(); 1108 hadError = true; 1109 ++Index; 1110 ++StructuredIndex; 1111 return; 1112 } 1113 1114 if (VerifyOnly) { 1115 if (!SemaRef.CanPerformCopyInitialization(Entity,expr)) 1116 hadError = true; 1117 ++Index; 1118 return; 1119 } 1120 1121 ExprResult Result = 1122 SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(), expr, 1123 /*TopLevelOfInitList=*/true); 1124 1125 if (Result.isInvalid()) 1126 hadError = true; 1127 1128 expr = Result.getAs<Expr>(); 1129 IList->setInit(Index, expr); 1130 1131 if (hadError) 1132 ++StructuredIndex; 1133 else 1134 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1135 ++Index; 1136 } 1137 1138 void InitListChecker::CheckVectorType(const InitializedEntity &Entity, 1139 InitListExpr *IList, QualType DeclType, 1140 unsigned &Index, 1141 InitListExpr *StructuredList, 1142 unsigned &StructuredIndex) { 1143 const VectorType *VT = DeclType->getAs<VectorType>(); 1144 unsigned maxElements = VT->getNumElements(); 1145 unsigned numEltsInit = 0; 1146 QualType elementType = VT->getElementType(); 1147 1148 if (Index >= IList->getNumInits()) { 1149 // Make sure the element type can be value-initialized. 1150 if (VerifyOnly) 1151 CheckEmptyInitializable( 1152 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity), 1153 IList->getLocEnd()); 1154 return; 1155 } 1156 1157 if (!SemaRef.getLangOpts().OpenCL) { 1158 // If the initializing element is a vector, try to copy-initialize 1159 // instead of breaking it apart (which is doomed to failure anyway). 1160 Expr *Init = IList->getInit(Index); 1161 if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) { 1162 if (VerifyOnly) { 1163 if (!SemaRef.CanPerformCopyInitialization(Entity, Init)) 1164 hadError = true; 1165 ++Index; 1166 return; 1167 } 1168 1169 ExprResult Result = 1170 SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(), Init, 1171 /*TopLevelOfInitList=*/true); 1172 1173 Expr *ResultExpr = nullptr; 1174 if (Result.isInvalid()) 1175 hadError = true; // types weren't compatible. 1176 else { 1177 ResultExpr = Result.getAs<Expr>(); 1178 1179 if (ResultExpr != Init) { 1180 // The type was promoted, update initializer list. 1181 IList->setInit(Index, ResultExpr); 1182 } 1183 } 1184 if (hadError) 1185 ++StructuredIndex; 1186 else 1187 UpdateStructuredListElement(StructuredList, StructuredIndex, 1188 ResultExpr); 1189 ++Index; 1190 return; 1191 } 1192 1193 InitializedEntity ElementEntity = 1194 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1195 1196 for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) { 1197 // Don't attempt to go past the end of the init list 1198 if (Index >= IList->getNumInits()) { 1199 if (VerifyOnly) 1200 CheckEmptyInitializable(ElementEntity, IList->getLocEnd()); 1201 break; 1202 } 1203 1204 ElementEntity.setElementIndex(Index); 1205 CheckSubElementType(ElementEntity, IList, elementType, Index, 1206 StructuredList, StructuredIndex); 1207 } 1208 1209 if (VerifyOnly) 1210 return; 1211 1212 bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian(); 1213 const VectorType *T = Entity.getType()->getAs<VectorType>(); 1214 if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector || 1215 T->getVectorKind() == VectorType::NeonPolyVector)) { 1216 // The ability to use vector initializer lists is a GNU vector extension 1217 // and is unrelated to the NEON intrinsics in arm_neon.h. On little 1218 // endian machines it works fine, however on big endian machines it 1219 // exhibits surprising behaviour: 1220 // 1221 // uint32x2_t x = {42, 64}; 1222 // return vget_lane_u32(x, 0); // Will return 64. 1223 // 1224 // Because of this, explicitly call out that it is non-portable. 1225 // 1226 SemaRef.Diag(IList->getLocStart(), 1227 diag::warn_neon_vector_initializer_non_portable); 1228 1229 const char *typeCode; 1230 unsigned typeSize = SemaRef.Context.getTypeSize(elementType); 1231 1232 if (elementType->isFloatingType()) 1233 typeCode = "f"; 1234 else if (elementType->isSignedIntegerType()) 1235 typeCode = "s"; 1236 else if (elementType->isUnsignedIntegerType()) 1237 typeCode = "u"; 1238 else 1239 llvm_unreachable("Invalid element type!"); 1240 1241 SemaRef.Diag(IList->getLocStart(), 1242 SemaRef.Context.getTypeSize(VT) > 64 ? 1243 diag::note_neon_vector_initializer_non_portable_q : 1244 diag::note_neon_vector_initializer_non_portable) 1245 << typeCode << typeSize; 1246 } 1247 1248 return; 1249 } 1250 1251 InitializedEntity ElementEntity = 1252 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1253 1254 // OpenCL initializers allows vectors to be constructed from vectors. 1255 for (unsigned i = 0; i < maxElements; ++i) { 1256 // Don't attempt to go past the end of the init list 1257 if (Index >= IList->getNumInits()) 1258 break; 1259 1260 ElementEntity.setElementIndex(Index); 1261 1262 QualType IType = IList->getInit(Index)->getType(); 1263 if (!IType->isVectorType()) { 1264 CheckSubElementType(ElementEntity, IList, elementType, Index, 1265 StructuredList, StructuredIndex); 1266 ++numEltsInit; 1267 } else { 1268 QualType VecType; 1269 const VectorType *IVT = IType->getAs<VectorType>(); 1270 unsigned numIElts = IVT->getNumElements(); 1271 1272 if (IType->isExtVectorType()) 1273 VecType = SemaRef.Context.getExtVectorType(elementType, numIElts); 1274 else 1275 VecType = SemaRef.Context.getVectorType(elementType, numIElts, 1276 IVT->getVectorKind()); 1277 CheckSubElementType(ElementEntity, IList, VecType, Index, 1278 StructuredList, StructuredIndex); 1279 numEltsInit += numIElts; 1280 } 1281 } 1282 1283 // OpenCL requires all elements to be initialized. 1284 if (numEltsInit != maxElements) { 1285 if (!VerifyOnly) 1286 SemaRef.Diag(IList->getLocStart(), 1287 diag::err_vector_incorrect_num_initializers) 1288 << (numEltsInit < maxElements) << maxElements << numEltsInit; 1289 hadError = true; 1290 } 1291 } 1292 1293 void InitListChecker::CheckArrayType(const InitializedEntity &Entity, 1294 InitListExpr *IList, QualType &DeclType, 1295 llvm::APSInt elementIndex, 1296 bool SubobjectIsDesignatorContext, 1297 unsigned &Index, 1298 InitListExpr *StructuredList, 1299 unsigned &StructuredIndex) { 1300 const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType); 1301 1302 // Check for the special-case of initializing an array with a string. 1303 if (Index < IList->getNumInits()) { 1304 if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) == 1305 SIF_None) { 1306 // We place the string literal directly into the resulting 1307 // initializer list. This is the only place where the structure 1308 // of the structured initializer list doesn't match exactly, 1309 // because doing so would involve allocating one character 1310 // constant for each string. 1311 if (!VerifyOnly) { 1312 CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef); 1313 UpdateStructuredListElement(StructuredList, StructuredIndex, 1314 IList->getInit(Index)); 1315 StructuredList->resizeInits(SemaRef.Context, StructuredIndex); 1316 } 1317 ++Index; 1318 return; 1319 } 1320 } 1321 if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) { 1322 // Check for VLAs; in standard C it would be possible to check this 1323 // earlier, but I don't know where clang accepts VLAs (gcc accepts 1324 // them in all sorts of strange places). 1325 if (!VerifyOnly) 1326 SemaRef.Diag(VAT->getSizeExpr()->getLocStart(), 1327 diag::err_variable_object_no_init) 1328 << VAT->getSizeExpr()->getSourceRange(); 1329 hadError = true; 1330 ++Index; 1331 ++StructuredIndex; 1332 return; 1333 } 1334 1335 // We might know the maximum number of elements in advance. 1336 llvm::APSInt maxElements(elementIndex.getBitWidth(), 1337 elementIndex.isUnsigned()); 1338 bool maxElementsKnown = false; 1339 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) { 1340 maxElements = CAT->getSize(); 1341 elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth()); 1342 elementIndex.setIsUnsigned(maxElements.isUnsigned()); 1343 maxElementsKnown = true; 1344 } 1345 1346 QualType elementType = arrayType->getElementType(); 1347 while (Index < IList->getNumInits()) { 1348 Expr *Init = IList->getInit(Index); 1349 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { 1350 // If we're not the subobject that matches up with the '{' for 1351 // the designator, we shouldn't be handling the 1352 // designator. Return immediately. 1353 if (!SubobjectIsDesignatorContext) 1354 return; 1355 1356 // Handle this designated initializer. elementIndex will be 1357 // updated to be the next array element we'll initialize. 1358 if (CheckDesignatedInitializer(Entity, IList, DIE, 0, 1359 DeclType, nullptr, &elementIndex, Index, 1360 StructuredList, StructuredIndex, true, 1361 false)) { 1362 hadError = true; 1363 continue; 1364 } 1365 1366 if (elementIndex.getBitWidth() > maxElements.getBitWidth()) 1367 maxElements = maxElements.extend(elementIndex.getBitWidth()); 1368 else if (elementIndex.getBitWidth() < maxElements.getBitWidth()) 1369 elementIndex = elementIndex.extend(maxElements.getBitWidth()); 1370 elementIndex.setIsUnsigned(maxElements.isUnsigned()); 1371 1372 // If the array is of incomplete type, keep track of the number of 1373 // elements in the initializer. 1374 if (!maxElementsKnown && elementIndex > maxElements) 1375 maxElements = elementIndex; 1376 1377 continue; 1378 } 1379 1380 // If we know the maximum number of elements, and we've already 1381 // hit it, stop consuming elements in the initializer list. 1382 if (maxElementsKnown && elementIndex == maxElements) 1383 break; 1384 1385 InitializedEntity ElementEntity = 1386 InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex, 1387 Entity); 1388 // Check this element. 1389 CheckSubElementType(ElementEntity, IList, elementType, Index, 1390 StructuredList, StructuredIndex); 1391 ++elementIndex; 1392 1393 // If the array is of incomplete type, keep track of the number of 1394 // elements in the initializer. 1395 if (!maxElementsKnown && elementIndex > maxElements) 1396 maxElements = elementIndex; 1397 } 1398 if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) { 1399 // If this is an incomplete array type, the actual type needs to 1400 // be calculated here. 1401 llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned()); 1402 if (maxElements == Zero) { 1403 // Sizing an array implicitly to zero is not allowed by ISO C, 1404 // but is supported by GNU. 1405 SemaRef.Diag(IList->getLocStart(), 1406 diag::ext_typecheck_zero_array_size); 1407 } 1408 1409 DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements, 1410 ArrayType::Normal, 0); 1411 } 1412 if (!hadError && VerifyOnly) { 1413 // Check if there are any members of the array that get value-initialized. 1414 // If so, check if doing that is possible. 1415 // FIXME: This needs to detect holes left by designated initializers too. 1416 if (maxElementsKnown && elementIndex < maxElements) 1417 CheckEmptyInitializable(InitializedEntity::InitializeElement( 1418 SemaRef.Context, 0, Entity), 1419 IList->getLocEnd()); 1420 } 1421 } 1422 1423 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity, 1424 Expr *InitExpr, 1425 FieldDecl *Field, 1426 bool TopLevelObject) { 1427 // Handle GNU flexible array initializers. 1428 unsigned FlexArrayDiag; 1429 if (isa<InitListExpr>(InitExpr) && 1430 cast<InitListExpr>(InitExpr)->getNumInits() == 0) { 1431 // Empty flexible array init always allowed as an extension 1432 FlexArrayDiag = diag::ext_flexible_array_init; 1433 } else if (SemaRef.getLangOpts().CPlusPlus) { 1434 // Disallow flexible array init in C++; it is not required for gcc 1435 // compatibility, and it needs work to IRGen correctly in general. 1436 FlexArrayDiag = diag::err_flexible_array_init; 1437 } else if (!TopLevelObject) { 1438 // Disallow flexible array init on non-top-level object 1439 FlexArrayDiag = diag::err_flexible_array_init; 1440 } else if (Entity.getKind() != InitializedEntity::EK_Variable) { 1441 // Disallow flexible array init on anything which is not a variable. 1442 FlexArrayDiag = diag::err_flexible_array_init; 1443 } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) { 1444 // Disallow flexible array init on local variables. 1445 FlexArrayDiag = diag::err_flexible_array_init; 1446 } else { 1447 // Allow other cases. 1448 FlexArrayDiag = diag::ext_flexible_array_init; 1449 } 1450 1451 if (!VerifyOnly) { 1452 SemaRef.Diag(InitExpr->getLocStart(), 1453 FlexArrayDiag) 1454 << InitExpr->getLocStart(); 1455 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 1456 << Field; 1457 } 1458 1459 return FlexArrayDiag != diag::ext_flexible_array_init; 1460 } 1461 1462 void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity, 1463 InitListExpr *IList, 1464 QualType DeclType, 1465 RecordDecl::field_iterator Field, 1466 bool SubobjectIsDesignatorContext, 1467 unsigned &Index, 1468 InitListExpr *StructuredList, 1469 unsigned &StructuredIndex, 1470 bool TopLevelObject) { 1471 RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl(); 1472 1473 // If the record is invalid, some of it's members are invalid. To avoid 1474 // confusion, we forgo checking the intializer for the entire record. 1475 if (structDecl->isInvalidDecl()) { 1476 // Assume it was supposed to consume a single initializer. 1477 ++Index; 1478 hadError = true; 1479 return; 1480 } 1481 1482 if (DeclType->isUnionType() && IList->getNumInits() == 0) { 1483 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl(); 1484 1485 // If there's a default initializer, use it. 1486 if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->hasInClassInitializer()) { 1487 if (VerifyOnly) 1488 return; 1489 for (RecordDecl::field_iterator FieldEnd = RD->field_end(); 1490 Field != FieldEnd; ++Field) { 1491 if (Field->hasInClassInitializer()) { 1492 StructuredList->setInitializedFieldInUnion(*Field); 1493 // FIXME: Actually build a CXXDefaultInitExpr? 1494 return; 1495 } 1496 } 1497 } 1498 1499 // Value-initialize the first named member of the union. 1500 for (RecordDecl::field_iterator FieldEnd = RD->field_end(); 1501 Field != FieldEnd; ++Field) { 1502 if (Field->getDeclName()) { 1503 if (VerifyOnly) 1504 CheckEmptyInitializable( 1505 InitializedEntity::InitializeMember(*Field, &Entity), 1506 IList->getLocEnd()); 1507 else 1508 StructuredList->setInitializedFieldInUnion(*Field); 1509 break; 1510 } 1511 } 1512 return; 1513 } 1514 1515 // If structDecl is a forward declaration, this loop won't do 1516 // anything except look at designated initializers; That's okay, 1517 // because an error should get printed out elsewhere. It might be 1518 // worthwhile to skip over the rest of the initializer, though. 1519 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl(); 1520 RecordDecl::field_iterator FieldEnd = RD->field_end(); 1521 bool InitializedSomething = false; 1522 bool CheckForMissingFields = true; 1523 while (Index < IList->getNumInits()) { 1524 Expr *Init = IList->getInit(Index); 1525 1526 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { 1527 // If we're not the subobject that matches up with the '{' for 1528 // the designator, we shouldn't be handling the 1529 // designator. Return immediately. 1530 if (!SubobjectIsDesignatorContext) 1531 return; 1532 1533 // Handle this designated initializer. Field will be updated to 1534 // the next field that we'll be initializing. 1535 if (CheckDesignatedInitializer(Entity, IList, DIE, 0, 1536 DeclType, &Field, nullptr, Index, 1537 StructuredList, StructuredIndex, 1538 true, TopLevelObject)) 1539 hadError = true; 1540 1541 InitializedSomething = true; 1542 1543 // Disable check for missing fields when designators are used. 1544 // This matches gcc behaviour. 1545 CheckForMissingFields = false; 1546 continue; 1547 } 1548 1549 if (Field == FieldEnd) { 1550 // We've run out of fields. We're done. 1551 break; 1552 } 1553 1554 // We've already initialized a member of a union. We're done. 1555 if (InitializedSomething && DeclType->isUnionType()) 1556 break; 1557 1558 // If we've hit the flexible array member at the end, we're done. 1559 if (Field->getType()->isIncompleteArrayType()) 1560 break; 1561 1562 if (Field->isUnnamedBitfield()) { 1563 // Don't initialize unnamed bitfields, e.g. "int : 20;" 1564 ++Field; 1565 continue; 1566 } 1567 1568 // Make sure we can use this declaration. 1569 bool InvalidUse; 1570 if (VerifyOnly) 1571 InvalidUse = !SemaRef.CanUseDecl(*Field); 1572 else 1573 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, 1574 IList->getInit(Index)->getLocStart()); 1575 if (InvalidUse) { 1576 ++Index; 1577 ++Field; 1578 hadError = true; 1579 continue; 1580 } 1581 1582 InitializedEntity MemberEntity = 1583 InitializedEntity::InitializeMember(*Field, &Entity); 1584 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 1585 StructuredList, StructuredIndex); 1586 InitializedSomething = true; 1587 1588 if (DeclType->isUnionType() && !VerifyOnly) { 1589 // Initialize the first field within the union. 1590 StructuredList->setInitializedFieldInUnion(*Field); 1591 } 1592 1593 ++Field; 1594 } 1595 1596 // Emit warnings for missing struct field initializers. 1597 if (!VerifyOnly && InitializedSomething && CheckForMissingFields && 1598 Field != FieldEnd && !Field->getType()->isIncompleteArrayType() && 1599 !DeclType->isUnionType()) { 1600 // It is possible we have one or more unnamed bitfields remaining. 1601 // Find first (if any) named field and emit warning. 1602 for (RecordDecl::field_iterator it = Field, end = RD->field_end(); 1603 it != end; ++it) { 1604 if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) { 1605 SemaRef.Diag(IList->getSourceRange().getEnd(), 1606 diag::warn_missing_field_initializers) << *it; 1607 break; 1608 } 1609 } 1610 } 1611 1612 // Check that any remaining fields can be value-initialized. 1613 if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() && 1614 !Field->getType()->isIncompleteArrayType()) { 1615 // FIXME: Should check for holes left by designated initializers too. 1616 for (; Field != FieldEnd && !hadError; ++Field) { 1617 if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer()) 1618 CheckEmptyInitializable( 1619 InitializedEntity::InitializeMember(*Field, &Entity), 1620 IList->getLocEnd()); 1621 } 1622 } 1623 1624 if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() || 1625 Index >= IList->getNumInits()) 1626 return; 1627 1628 if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field, 1629 TopLevelObject)) { 1630 hadError = true; 1631 ++Index; 1632 return; 1633 } 1634 1635 InitializedEntity MemberEntity = 1636 InitializedEntity::InitializeMember(*Field, &Entity); 1637 1638 if (isa<InitListExpr>(IList->getInit(Index))) 1639 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 1640 StructuredList, StructuredIndex); 1641 else 1642 CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index, 1643 StructuredList, StructuredIndex); 1644 } 1645 1646 /// \brief Expand a field designator that refers to a member of an 1647 /// anonymous struct or union into a series of field designators that 1648 /// refers to the field within the appropriate subobject. 1649 /// 1650 static void ExpandAnonymousFieldDesignator(Sema &SemaRef, 1651 DesignatedInitExpr *DIE, 1652 unsigned DesigIdx, 1653 IndirectFieldDecl *IndirectField) { 1654 typedef DesignatedInitExpr::Designator Designator; 1655 1656 // Build the replacement designators. 1657 SmallVector<Designator, 4> Replacements; 1658 for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(), 1659 PE = IndirectField->chain_end(); PI != PE; ++PI) { 1660 if (PI + 1 == PE) 1661 Replacements.push_back(Designator((IdentifierInfo *)nullptr, 1662 DIE->getDesignator(DesigIdx)->getDotLoc(), 1663 DIE->getDesignator(DesigIdx)->getFieldLoc())); 1664 else 1665 Replacements.push_back(Designator((IdentifierInfo *)nullptr, 1666 SourceLocation(), SourceLocation())); 1667 assert(isa<FieldDecl>(*PI)); 1668 Replacements.back().setField(cast<FieldDecl>(*PI)); 1669 } 1670 1671 // Expand the current designator into the set of replacement 1672 // designators, so we have a full subobject path down to where the 1673 // member of the anonymous struct/union is actually stored. 1674 DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0], 1675 &Replacements[0] + Replacements.size()); 1676 } 1677 1678 /// \brief Given an implicit anonymous field, search the IndirectField that 1679 /// corresponds to FieldName. 1680 static IndirectFieldDecl *FindIndirectFieldDesignator(FieldDecl *AnonField, 1681 IdentifierInfo *FieldName) { 1682 if (!FieldName) 1683 return nullptr; 1684 1685 assert(AnonField->isAnonymousStructOrUnion()); 1686 Decl *NextDecl = AnonField->getNextDeclInContext(); 1687 while (IndirectFieldDecl *IF = 1688 dyn_cast_or_null<IndirectFieldDecl>(NextDecl)) { 1689 if (FieldName == IF->getAnonField()->getIdentifier()) 1690 return IF; 1691 NextDecl = NextDecl->getNextDeclInContext(); 1692 } 1693 return nullptr; 1694 } 1695 1696 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef, 1697 DesignatedInitExpr *DIE) { 1698 unsigned NumIndexExprs = DIE->getNumSubExprs() - 1; 1699 SmallVector<Expr*, 4> IndexExprs(NumIndexExprs); 1700 for (unsigned I = 0; I < NumIndexExprs; ++I) 1701 IndexExprs[I] = DIE->getSubExpr(I + 1); 1702 return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators_begin(), 1703 DIE->size(), IndexExprs, 1704 DIE->getEqualOrColonLoc(), 1705 DIE->usesGNUSyntax(), DIE->getInit()); 1706 } 1707 1708 namespace { 1709 1710 // Callback to only accept typo corrections that are for field members of 1711 // the given struct or union. 1712 class FieldInitializerValidatorCCC : public CorrectionCandidateCallback { 1713 public: 1714 explicit FieldInitializerValidatorCCC(RecordDecl *RD) 1715 : Record(RD) {} 1716 1717 bool ValidateCandidate(const TypoCorrection &candidate) override { 1718 FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>(); 1719 return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record); 1720 } 1721 1722 private: 1723 RecordDecl *Record; 1724 }; 1725 1726 } 1727 1728 /// @brief Check the well-formedness of a C99 designated initializer. 1729 /// 1730 /// Determines whether the designated initializer @p DIE, which 1731 /// resides at the given @p Index within the initializer list @p 1732 /// IList, is well-formed for a current object of type @p DeclType 1733 /// (C99 6.7.8). The actual subobject that this designator refers to 1734 /// within the current subobject is returned in either 1735 /// @p NextField or @p NextElementIndex (whichever is appropriate). 1736 /// 1737 /// @param IList The initializer list in which this designated 1738 /// initializer occurs. 1739 /// 1740 /// @param DIE The designated initializer expression. 1741 /// 1742 /// @param DesigIdx The index of the current designator. 1743 /// 1744 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17), 1745 /// into which the designation in @p DIE should refer. 1746 /// 1747 /// @param NextField If non-NULL and the first designator in @p DIE is 1748 /// a field, this will be set to the field declaration corresponding 1749 /// to the field named by the designator. 1750 /// 1751 /// @param NextElementIndex If non-NULL and the first designator in @p 1752 /// DIE is an array designator or GNU array-range designator, this 1753 /// will be set to the last index initialized by this designator. 1754 /// 1755 /// @param Index Index into @p IList where the designated initializer 1756 /// @p DIE occurs. 1757 /// 1758 /// @param StructuredList The initializer list expression that 1759 /// describes all of the subobject initializers in the order they'll 1760 /// actually be initialized. 1761 /// 1762 /// @returns true if there was an error, false otherwise. 1763 bool 1764 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity, 1765 InitListExpr *IList, 1766 DesignatedInitExpr *DIE, 1767 unsigned DesigIdx, 1768 QualType &CurrentObjectType, 1769 RecordDecl::field_iterator *NextField, 1770 llvm::APSInt *NextElementIndex, 1771 unsigned &Index, 1772 InitListExpr *StructuredList, 1773 unsigned &StructuredIndex, 1774 bool FinishSubobjectInit, 1775 bool TopLevelObject) { 1776 if (DesigIdx == DIE->size()) { 1777 // Check the actual initialization for the designated object type. 1778 bool prevHadError = hadError; 1779 1780 // Temporarily remove the designator expression from the 1781 // initializer list that the child calls see, so that we don't try 1782 // to re-process the designator. 1783 unsigned OldIndex = Index; 1784 IList->setInit(OldIndex, DIE->getInit()); 1785 1786 CheckSubElementType(Entity, IList, CurrentObjectType, Index, 1787 StructuredList, StructuredIndex); 1788 1789 // Restore the designated initializer expression in the syntactic 1790 // form of the initializer list. 1791 if (IList->getInit(OldIndex) != DIE->getInit()) 1792 DIE->setInit(IList->getInit(OldIndex)); 1793 IList->setInit(OldIndex, DIE); 1794 1795 return hadError && !prevHadError; 1796 } 1797 1798 DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx); 1799 bool IsFirstDesignator = (DesigIdx == 0); 1800 if (!VerifyOnly) { 1801 assert((IsFirstDesignator || StructuredList) && 1802 "Need a non-designated initializer list to start from"); 1803 1804 // Determine the structural initializer list that corresponds to the 1805 // current subobject. 1806 StructuredList = IsFirstDesignator? SyntacticToSemantic.lookup(IList) 1807 : getStructuredSubobjectInit(IList, Index, CurrentObjectType, 1808 StructuredList, StructuredIndex, 1809 SourceRange(D->getLocStart(), 1810 DIE->getLocEnd())); 1811 assert(StructuredList && "Expected a structured initializer list"); 1812 } 1813 1814 if (D->isFieldDesignator()) { 1815 // C99 6.7.8p7: 1816 // 1817 // If a designator has the form 1818 // 1819 // . identifier 1820 // 1821 // then the current object (defined below) shall have 1822 // structure or union type and the identifier shall be the 1823 // name of a member of that type. 1824 const RecordType *RT = CurrentObjectType->getAs<RecordType>(); 1825 if (!RT) { 1826 SourceLocation Loc = D->getDotLoc(); 1827 if (Loc.isInvalid()) 1828 Loc = D->getFieldLoc(); 1829 if (!VerifyOnly) 1830 SemaRef.Diag(Loc, diag::err_field_designator_non_aggr) 1831 << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType; 1832 ++Index; 1833 return true; 1834 } 1835 1836 // Note: we perform a linear search of the fields here, despite 1837 // the fact that we have a faster lookup method, because we always 1838 // need to compute the field's index. 1839 FieldDecl *KnownField = D->getField(); 1840 IdentifierInfo *FieldName = D->getFieldName(); 1841 unsigned FieldIndex = 0; 1842 RecordDecl::field_iterator 1843 Field = RT->getDecl()->field_begin(), 1844 FieldEnd = RT->getDecl()->field_end(); 1845 for (; Field != FieldEnd; ++Field) { 1846 if (Field->isUnnamedBitfield()) 1847 continue; 1848 1849 // If we find a field representing an anonymous field, look in the 1850 // IndirectFieldDecl that follow for the designated initializer. 1851 if (!KnownField && Field->isAnonymousStructOrUnion()) { 1852 if (IndirectFieldDecl *IF = 1853 FindIndirectFieldDesignator(*Field, FieldName)) { 1854 // In verify mode, don't modify the original. 1855 if (VerifyOnly) 1856 DIE = CloneDesignatedInitExpr(SemaRef, DIE); 1857 ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IF); 1858 D = DIE->getDesignator(DesigIdx); 1859 break; 1860 } 1861 } 1862 if (KnownField && KnownField == *Field) 1863 break; 1864 if (FieldName && FieldName == Field->getIdentifier()) 1865 break; 1866 1867 ++FieldIndex; 1868 } 1869 1870 if (Field == FieldEnd) { 1871 if (VerifyOnly) { 1872 ++Index; 1873 return true; // No typo correction when just trying this out. 1874 } 1875 1876 // There was no normal field in the struct with the designated 1877 // name. Perform another lookup for this name, which may find 1878 // something that we can't designate (e.g., a member function), 1879 // may find nothing, or may find a member of an anonymous 1880 // struct/union. 1881 DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName); 1882 FieldDecl *ReplacementField = nullptr; 1883 if (Lookup.empty()) { 1884 // Name lookup didn't find anything. Determine whether this 1885 // was a typo for another field name. 1886 FieldInitializerValidatorCCC Validator(RT->getDecl()); 1887 if (TypoCorrection Corrected = SemaRef.CorrectTypo( 1888 DeclarationNameInfo(FieldName, D->getFieldLoc()), 1889 Sema::LookupMemberName, /*Scope=*/ nullptr, /*SS=*/ nullptr, 1890 Validator, Sema::CTK_ErrorRecovery, RT->getDecl())) { 1891 SemaRef.diagnoseTypo( 1892 Corrected, 1893 SemaRef.PDiag(diag::err_field_designator_unknown_suggest) 1894 << FieldName << CurrentObjectType); 1895 ReplacementField = Corrected.getCorrectionDeclAs<FieldDecl>(); 1896 hadError = true; 1897 } else { 1898 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown) 1899 << FieldName << CurrentObjectType; 1900 ++Index; 1901 return true; 1902 } 1903 } 1904 1905 if (!ReplacementField) { 1906 // Name lookup found something, but it wasn't a field. 1907 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield) 1908 << FieldName; 1909 SemaRef.Diag(Lookup.front()->getLocation(), 1910 diag::note_field_designator_found); 1911 ++Index; 1912 return true; 1913 } 1914 1915 if (!KnownField) { 1916 // The replacement field comes from typo correction; find it 1917 // in the list of fields. 1918 FieldIndex = 0; 1919 Field = RT->getDecl()->field_begin(); 1920 for (; Field != FieldEnd; ++Field) { 1921 if (Field->isUnnamedBitfield()) 1922 continue; 1923 1924 if (ReplacementField == *Field || 1925 Field->getIdentifier() == ReplacementField->getIdentifier()) 1926 break; 1927 1928 ++FieldIndex; 1929 } 1930 } 1931 } 1932 1933 // All of the fields of a union are located at the same place in 1934 // the initializer list. 1935 if (RT->getDecl()->isUnion()) { 1936 FieldIndex = 0; 1937 if (!VerifyOnly) { 1938 FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion(); 1939 if (CurrentField && CurrentField != *Field) { 1940 assert(StructuredList->getNumInits() == 1 1941 && "A union should never have more than one initializer!"); 1942 1943 // we're about to throw away an initializer, emit warning 1944 SemaRef.Diag(D->getFieldLoc(), 1945 diag::warn_initializer_overrides) 1946 << D->getSourceRange(); 1947 Expr *ExistingInit = StructuredList->getInit(0); 1948 SemaRef.Diag(ExistingInit->getLocStart(), 1949 diag::note_previous_initializer) 1950 << /*FIXME:has side effects=*/0 1951 << ExistingInit->getSourceRange(); 1952 1953 // remove existing initializer 1954 StructuredList->resizeInits(SemaRef.Context, 0); 1955 StructuredList->setInitializedFieldInUnion(nullptr); 1956 } 1957 1958 StructuredList->setInitializedFieldInUnion(*Field); 1959 } 1960 } 1961 1962 // Make sure we can use this declaration. 1963 bool InvalidUse; 1964 if (VerifyOnly) 1965 InvalidUse = !SemaRef.CanUseDecl(*Field); 1966 else 1967 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc()); 1968 if (InvalidUse) { 1969 ++Index; 1970 return true; 1971 } 1972 1973 if (!VerifyOnly) { 1974 // Update the designator with the field declaration. 1975 D->setField(*Field); 1976 1977 // Make sure that our non-designated initializer list has space 1978 // for a subobject corresponding to this field. 1979 if (FieldIndex >= StructuredList->getNumInits()) 1980 StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1); 1981 } 1982 1983 // This designator names a flexible array member. 1984 if (Field->getType()->isIncompleteArrayType()) { 1985 bool Invalid = false; 1986 if ((DesigIdx + 1) != DIE->size()) { 1987 // We can't designate an object within the flexible array 1988 // member (because GCC doesn't allow it). 1989 if (!VerifyOnly) { 1990 DesignatedInitExpr::Designator *NextD 1991 = DIE->getDesignator(DesigIdx + 1); 1992 SemaRef.Diag(NextD->getLocStart(), 1993 diag::err_designator_into_flexible_array_member) 1994 << SourceRange(NextD->getLocStart(), 1995 DIE->getLocEnd()); 1996 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 1997 << *Field; 1998 } 1999 Invalid = true; 2000 } 2001 2002 if (!hadError && !isa<InitListExpr>(DIE->getInit()) && 2003 !isa<StringLiteral>(DIE->getInit())) { 2004 // The initializer is not an initializer list. 2005 if (!VerifyOnly) { 2006 SemaRef.Diag(DIE->getInit()->getLocStart(), 2007 diag::err_flexible_array_init_needs_braces) 2008 << DIE->getInit()->getSourceRange(); 2009 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 2010 << *Field; 2011 } 2012 Invalid = true; 2013 } 2014 2015 // Check GNU flexible array initializer. 2016 if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field, 2017 TopLevelObject)) 2018 Invalid = true; 2019 2020 if (Invalid) { 2021 ++Index; 2022 return true; 2023 } 2024 2025 // Initialize the array. 2026 bool prevHadError = hadError; 2027 unsigned newStructuredIndex = FieldIndex; 2028 unsigned OldIndex = Index; 2029 IList->setInit(Index, DIE->getInit()); 2030 2031 InitializedEntity MemberEntity = 2032 InitializedEntity::InitializeMember(*Field, &Entity); 2033 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 2034 StructuredList, newStructuredIndex); 2035 2036 IList->setInit(OldIndex, DIE); 2037 if (hadError && !prevHadError) { 2038 ++Field; 2039 ++FieldIndex; 2040 if (NextField) 2041 *NextField = Field; 2042 StructuredIndex = FieldIndex; 2043 return true; 2044 } 2045 } else { 2046 // Recurse to check later designated subobjects. 2047 QualType FieldType = Field->getType(); 2048 unsigned newStructuredIndex = FieldIndex; 2049 2050 InitializedEntity MemberEntity = 2051 InitializedEntity::InitializeMember(*Field, &Entity); 2052 if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1, 2053 FieldType, nullptr, nullptr, Index, 2054 StructuredList, newStructuredIndex, 2055 true, false)) 2056 return true; 2057 } 2058 2059 // Find the position of the next field to be initialized in this 2060 // subobject. 2061 ++Field; 2062 ++FieldIndex; 2063 2064 // If this the first designator, our caller will continue checking 2065 // the rest of this struct/class/union subobject. 2066 if (IsFirstDesignator) { 2067 if (NextField) 2068 *NextField = Field; 2069 StructuredIndex = FieldIndex; 2070 return false; 2071 } 2072 2073 if (!FinishSubobjectInit) 2074 return false; 2075 2076 // We've already initialized something in the union; we're done. 2077 if (RT->getDecl()->isUnion()) 2078 return hadError; 2079 2080 // Check the remaining fields within this class/struct/union subobject. 2081 bool prevHadError = hadError; 2082 2083 CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index, 2084 StructuredList, FieldIndex); 2085 return hadError && !prevHadError; 2086 } 2087 2088 // C99 6.7.8p6: 2089 // 2090 // If a designator has the form 2091 // 2092 // [ constant-expression ] 2093 // 2094 // then the current object (defined below) shall have array 2095 // type and the expression shall be an integer constant 2096 // expression. If the array is of unknown size, any 2097 // nonnegative value is valid. 2098 // 2099 // Additionally, cope with the GNU extension that permits 2100 // designators of the form 2101 // 2102 // [ constant-expression ... constant-expression ] 2103 const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType); 2104 if (!AT) { 2105 if (!VerifyOnly) 2106 SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array) 2107 << CurrentObjectType; 2108 ++Index; 2109 return true; 2110 } 2111 2112 Expr *IndexExpr = nullptr; 2113 llvm::APSInt DesignatedStartIndex, DesignatedEndIndex; 2114 if (D->isArrayDesignator()) { 2115 IndexExpr = DIE->getArrayIndex(*D); 2116 DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context); 2117 DesignatedEndIndex = DesignatedStartIndex; 2118 } else { 2119 assert(D->isArrayRangeDesignator() && "Need array-range designator"); 2120 2121 DesignatedStartIndex = 2122 DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context); 2123 DesignatedEndIndex = 2124 DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context); 2125 IndexExpr = DIE->getArrayRangeEnd(*D); 2126 2127 // Codegen can't handle evaluating array range designators that have side 2128 // effects, because we replicate the AST value for each initialized element. 2129 // As such, set the sawArrayRangeDesignator() bit if we initialize multiple 2130 // elements with something that has a side effect, so codegen can emit an 2131 // "error unsupported" error instead of miscompiling the app. 2132 if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&& 2133 DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly) 2134 FullyStructuredList->sawArrayRangeDesignator(); 2135 } 2136 2137 if (isa<ConstantArrayType>(AT)) { 2138 llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false); 2139 DesignatedStartIndex 2140 = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth()); 2141 DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned()); 2142 DesignatedEndIndex 2143 = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth()); 2144 DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned()); 2145 if (DesignatedEndIndex >= MaxElements) { 2146 if (!VerifyOnly) 2147 SemaRef.Diag(IndexExpr->getLocStart(), 2148 diag::err_array_designator_too_large) 2149 << DesignatedEndIndex.toString(10) << MaxElements.toString(10) 2150 << IndexExpr->getSourceRange(); 2151 ++Index; 2152 return true; 2153 } 2154 } else { 2155 // Make sure the bit-widths and signedness match. 2156 if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth()) 2157 DesignatedEndIndex 2158 = DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth()); 2159 else if (DesignatedStartIndex.getBitWidth() < 2160 DesignatedEndIndex.getBitWidth()) 2161 DesignatedStartIndex 2162 = DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth()); 2163 DesignatedStartIndex.setIsUnsigned(true); 2164 DesignatedEndIndex.setIsUnsigned(true); 2165 } 2166 2167 if (!VerifyOnly && StructuredList->isStringLiteralInit()) { 2168 // We're modifying a string literal init; we have to decompose the string 2169 // so we can modify the individual characters. 2170 ASTContext &Context = SemaRef.Context; 2171 Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens(); 2172 2173 // Compute the character type 2174 QualType CharTy = AT->getElementType(); 2175 2176 // Compute the type of the integer literals. 2177 QualType PromotedCharTy = CharTy; 2178 if (CharTy->isPromotableIntegerType()) 2179 PromotedCharTy = Context.getPromotedIntegerType(CharTy); 2180 unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy); 2181 2182 if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) { 2183 // Get the length of the string. 2184 uint64_t StrLen = SL->getLength(); 2185 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen)) 2186 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue(); 2187 StructuredList->resizeInits(Context, StrLen); 2188 2189 // Build a literal for each character in the string, and put them into 2190 // the init list. 2191 for (unsigned i = 0, e = StrLen; i != e; ++i) { 2192 llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i)); 2193 Expr *Init = new (Context) IntegerLiteral( 2194 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); 2195 if (CharTy != PromotedCharTy) 2196 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, 2197 Init, nullptr, VK_RValue); 2198 StructuredList->updateInit(Context, i, Init); 2199 } 2200 } else { 2201 ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr); 2202 std::string Str; 2203 Context.getObjCEncodingForType(E->getEncodedType(), Str); 2204 2205 // Get the length of the string. 2206 uint64_t StrLen = Str.size(); 2207 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen)) 2208 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue(); 2209 StructuredList->resizeInits(Context, StrLen); 2210 2211 // Build a literal for each character in the string, and put them into 2212 // the init list. 2213 for (unsigned i = 0, e = StrLen; i != e; ++i) { 2214 llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]); 2215 Expr *Init = new (Context) IntegerLiteral( 2216 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); 2217 if (CharTy != PromotedCharTy) 2218 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, 2219 Init, nullptr, VK_RValue); 2220 StructuredList->updateInit(Context, i, Init); 2221 } 2222 } 2223 } 2224 2225 // Make sure that our non-designated initializer list has space 2226 // for a subobject corresponding to this array element. 2227 if (!VerifyOnly && 2228 DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits()) 2229 StructuredList->resizeInits(SemaRef.Context, 2230 DesignatedEndIndex.getZExtValue() + 1); 2231 2232 // Repeatedly perform subobject initializations in the range 2233 // [DesignatedStartIndex, DesignatedEndIndex]. 2234 2235 // Move to the next designator 2236 unsigned ElementIndex = DesignatedStartIndex.getZExtValue(); 2237 unsigned OldIndex = Index; 2238 2239 InitializedEntity ElementEntity = 2240 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 2241 2242 while (DesignatedStartIndex <= DesignatedEndIndex) { 2243 // Recurse to check later designated subobjects. 2244 QualType ElementType = AT->getElementType(); 2245 Index = OldIndex; 2246 2247 ElementEntity.setElementIndex(ElementIndex); 2248 if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1, 2249 ElementType, nullptr, nullptr, Index, 2250 StructuredList, ElementIndex, 2251 (DesignatedStartIndex == DesignatedEndIndex), 2252 false)) 2253 return true; 2254 2255 // Move to the next index in the array that we'll be initializing. 2256 ++DesignatedStartIndex; 2257 ElementIndex = DesignatedStartIndex.getZExtValue(); 2258 } 2259 2260 // If this the first designator, our caller will continue checking 2261 // the rest of this array subobject. 2262 if (IsFirstDesignator) { 2263 if (NextElementIndex) 2264 *NextElementIndex = DesignatedStartIndex; 2265 StructuredIndex = ElementIndex; 2266 return false; 2267 } 2268 2269 if (!FinishSubobjectInit) 2270 return false; 2271 2272 // Check the remaining elements within this array subobject. 2273 bool prevHadError = hadError; 2274 CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex, 2275 /*SubobjectIsDesignatorContext=*/false, Index, 2276 StructuredList, ElementIndex); 2277 return hadError && !prevHadError; 2278 } 2279 2280 // Get the structured initializer list for a subobject of type 2281 // @p CurrentObjectType. 2282 InitListExpr * 2283 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, 2284 QualType CurrentObjectType, 2285 InitListExpr *StructuredList, 2286 unsigned StructuredIndex, 2287 SourceRange InitRange) { 2288 if (VerifyOnly) 2289 return nullptr; // No structured list in verification-only mode. 2290 Expr *ExistingInit = nullptr; 2291 if (!StructuredList) 2292 ExistingInit = SyntacticToSemantic.lookup(IList); 2293 else if (StructuredIndex < StructuredList->getNumInits()) 2294 ExistingInit = StructuredList->getInit(StructuredIndex); 2295 2296 if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit)) 2297 return Result; 2298 2299 if (ExistingInit) { 2300 // We are creating an initializer list that initializes the 2301 // subobjects of the current object, but there was already an 2302 // initialization that completely initialized the current 2303 // subobject, e.g., by a compound literal: 2304 // 2305 // struct X { int a, b; }; 2306 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; 2307 // 2308 // Here, xs[0].a == 0 and xs[0].b == 3, since the second, 2309 // designated initializer re-initializes the whole 2310 // subobject [0], overwriting previous initializers. 2311 SemaRef.Diag(InitRange.getBegin(), 2312 diag::warn_subobject_initializer_overrides) 2313 << InitRange; 2314 SemaRef.Diag(ExistingInit->getLocStart(), 2315 diag::note_previous_initializer) 2316 << /*FIXME:has side effects=*/0 2317 << ExistingInit->getSourceRange(); 2318 } 2319 2320 InitListExpr *Result 2321 = new (SemaRef.Context) InitListExpr(SemaRef.Context, 2322 InitRange.getBegin(), None, 2323 InitRange.getEnd()); 2324 2325 QualType ResultType = CurrentObjectType; 2326 if (!ResultType->isArrayType()) 2327 ResultType = ResultType.getNonLValueExprType(SemaRef.Context); 2328 Result->setType(ResultType); 2329 2330 // Pre-allocate storage for the structured initializer list. 2331 unsigned NumElements = 0; 2332 unsigned NumInits = 0; 2333 bool GotNumInits = false; 2334 if (!StructuredList) { 2335 NumInits = IList->getNumInits(); 2336 GotNumInits = true; 2337 } else if (Index < IList->getNumInits()) { 2338 if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) { 2339 NumInits = SubList->getNumInits(); 2340 GotNumInits = true; 2341 } 2342 } 2343 2344 if (const ArrayType *AType 2345 = SemaRef.Context.getAsArrayType(CurrentObjectType)) { 2346 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) { 2347 NumElements = CAType->getSize().getZExtValue(); 2348 // Simple heuristic so that we don't allocate a very large 2349 // initializer with many empty entries at the end. 2350 if (GotNumInits && NumElements > NumInits) 2351 NumElements = 0; 2352 } 2353 } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>()) 2354 NumElements = VType->getNumElements(); 2355 else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) { 2356 RecordDecl *RDecl = RType->getDecl(); 2357 if (RDecl->isUnion()) 2358 NumElements = 1; 2359 else 2360 NumElements = std::distance(RDecl->field_begin(), RDecl->field_end()); 2361 } 2362 2363 Result->reserveInits(SemaRef.Context, NumElements); 2364 2365 // Link this new initializer list into the structured initializer 2366 // lists. 2367 if (StructuredList) 2368 StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result); 2369 else { 2370 Result->setSyntacticForm(IList); 2371 SyntacticToSemantic[IList] = Result; 2372 } 2373 2374 return Result; 2375 } 2376 2377 /// Update the initializer at index @p StructuredIndex within the 2378 /// structured initializer list to the value @p expr. 2379 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList, 2380 unsigned &StructuredIndex, 2381 Expr *expr) { 2382 // No structured initializer list to update 2383 if (!StructuredList) 2384 return; 2385 2386 if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context, 2387 StructuredIndex, expr)) { 2388 // This initializer overwrites a previous initializer. Warn. 2389 SemaRef.Diag(expr->getLocStart(), 2390 diag::warn_initializer_overrides) 2391 << expr->getSourceRange(); 2392 SemaRef.Diag(PrevInit->getLocStart(), 2393 diag::note_previous_initializer) 2394 << /*FIXME:has side effects=*/0 2395 << PrevInit->getSourceRange(); 2396 } 2397 2398 ++StructuredIndex; 2399 } 2400 2401 /// Check that the given Index expression is a valid array designator 2402 /// value. This is essentially just a wrapper around 2403 /// VerifyIntegerConstantExpression that also checks for negative values 2404 /// and produces a reasonable diagnostic if there is a 2405 /// failure. Returns the index expression, possibly with an implicit cast 2406 /// added, on success. If everything went okay, Value will receive the 2407 /// value of the constant expression. 2408 static ExprResult 2409 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) { 2410 SourceLocation Loc = Index->getLocStart(); 2411 2412 // Make sure this is an integer constant expression. 2413 ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value); 2414 if (Result.isInvalid()) 2415 return Result; 2416 2417 if (Value.isSigned() && Value.isNegative()) 2418 return S.Diag(Loc, diag::err_array_designator_negative) 2419 << Value.toString(10) << Index->getSourceRange(); 2420 2421 Value.setIsUnsigned(true); 2422 return Result; 2423 } 2424 2425 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig, 2426 SourceLocation Loc, 2427 bool GNUSyntax, 2428 ExprResult Init) { 2429 typedef DesignatedInitExpr::Designator ASTDesignator; 2430 2431 bool Invalid = false; 2432 SmallVector<ASTDesignator, 32> Designators; 2433 SmallVector<Expr *, 32> InitExpressions; 2434 2435 // Build designators and check array designator expressions. 2436 for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) { 2437 const Designator &D = Desig.getDesignator(Idx); 2438 switch (D.getKind()) { 2439 case Designator::FieldDesignator: 2440 Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(), 2441 D.getFieldLoc())); 2442 break; 2443 2444 case Designator::ArrayDesignator: { 2445 Expr *Index = static_cast<Expr *>(D.getArrayIndex()); 2446 llvm::APSInt IndexValue; 2447 if (!Index->isTypeDependent() && !Index->isValueDependent()) 2448 Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get(); 2449 if (!Index) 2450 Invalid = true; 2451 else { 2452 Designators.push_back(ASTDesignator(InitExpressions.size(), 2453 D.getLBracketLoc(), 2454 D.getRBracketLoc())); 2455 InitExpressions.push_back(Index); 2456 } 2457 break; 2458 } 2459 2460 case Designator::ArrayRangeDesignator: { 2461 Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart()); 2462 Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd()); 2463 llvm::APSInt StartValue; 2464 llvm::APSInt EndValue; 2465 bool StartDependent = StartIndex->isTypeDependent() || 2466 StartIndex->isValueDependent(); 2467 bool EndDependent = EndIndex->isTypeDependent() || 2468 EndIndex->isValueDependent(); 2469 if (!StartDependent) 2470 StartIndex = 2471 CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get(); 2472 if (!EndDependent) 2473 EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get(); 2474 2475 if (!StartIndex || !EndIndex) 2476 Invalid = true; 2477 else { 2478 // Make sure we're comparing values with the same bit width. 2479 if (StartDependent || EndDependent) { 2480 // Nothing to compute. 2481 } else if (StartValue.getBitWidth() > EndValue.getBitWidth()) 2482 EndValue = EndValue.extend(StartValue.getBitWidth()); 2483 else if (StartValue.getBitWidth() < EndValue.getBitWidth()) 2484 StartValue = StartValue.extend(EndValue.getBitWidth()); 2485 2486 if (!StartDependent && !EndDependent && EndValue < StartValue) { 2487 Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range) 2488 << StartValue.toString(10) << EndValue.toString(10) 2489 << StartIndex->getSourceRange() << EndIndex->getSourceRange(); 2490 Invalid = true; 2491 } else { 2492 Designators.push_back(ASTDesignator(InitExpressions.size(), 2493 D.getLBracketLoc(), 2494 D.getEllipsisLoc(), 2495 D.getRBracketLoc())); 2496 InitExpressions.push_back(StartIndex); 2497 InitExpressions.push_back(EndIndex); 2498 } 2499 } 2500 break; 2501 } 2502 } 2503 } 2504 2505 if (Invalid || Init.isInvalid()) 2506 return ExprError(); 2507 2508 // Clear out the expressions within the designation. 2509 Desig.ClearExprs(*this); 2510 2511 DesignatedInitExpr *DIE 2512 = DesignatedInitExpr::Create(Context, 2513 Designators.data(), Designators.size(), 2514 InitExpressions, Loc, GNUSyntax, 2515 Init.getAs<Expr>()); 2516 2517 if (!getLangOpts().C99) 2518 Diag(DIE->getLocStart(), diag::ext_designated_init) 2519 << DIE->getSourceRange(); 2520 2521 return DIE; 2522 } 2523 2524 //===----------------------------------------------------------------------===// 2525 // Initialization entity 2526 //===----------------------------------------------------------------------===// 2527 2528 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index, 2529 const InitializedEntity &Parent) 2530 : Parent(&Parent), Index(Index) 2531 { 2532 if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) { 2533 Kind = EK_ArrayElement; 2534 Type = AT->getElementType(); 2535 } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) { 2536 Kind = EK_VectorElement; 2537 Type = VT->getElementType(); 2538 } else { 2539 const ComplexType *CT = Parent.getType()->getAs<ComplexType>(); 2540 assert(CT && "Unexpected type"); 2541 Kind = EK_ComplexElement; 2542 Type = CT->getElementType(); 2543 } 2544 } 2545 2546 InitializedEntity 2547 InitializedEntity::InitializeBase(ASTContext &Context, 2548 const CXXBaseSpecifier *Base, 2549 bool IsInheritedVirtualBase) { 2550 InitializedEntity Result; 2551 Result.Kind = EK_Base; 2552 Result.Parent = nullptr; 2553 Result.Base = reinterpret_cast<uintptr_t>(Base); 2554 if (IsInheritedVirtualBase) 2555 Result.Base |= 0x01; 2556 2557 Result.Type = Base->getType(); 2558 return Result; 2559 } 2560 2561 DeclarationName InitializedEntity::getName() const { 2562 switch (getKind()) { 2563 case EK_Parameter: 2564 case EK_Parameter_CF_Audited: { 2565 ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1); 2566 return (D ? D->getDeclName() : DeclarationName()); 2567 } 2568 2569 case EK_Variable: 2570 case EK_Member: 2571 return VariableOrMember->getDeclName(); 2572 2573 case EK_LambdaCapture: 2574 return DeclarationName(Capture.VarID); 2575 2576 case EK_Result: 2577 case EK_Exception: 2578 case EK_New: 2579 case EK_Temporary: 2580 case EK_Base: 2581 case EK_Delegating: 2582 case EK_ArrayElement: 2583 case EK_VectorElement: 2584 case EK_ComplexElement: 2585 case EK_BlockElement: 2586 case EK_CompoundLiteralInit: 2587 case EK_RelatedResult: 2588 return DeclarationName(); 2589 } 2590 2591 llvm_unreachable("Invalid EntityKind!"); 2592 } 2593 2594 DeclaratorDecl *InitializedEntity::getDecl() const { 2595 switch (getKind()) { 2596 case EK_Variable: 2597 case EK_Member: 2598 return VariableOrMember; 2599 2600 case EK_Parameter: 2601 case EK_Parameter_CF_Audited: 2602 return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1); 2603 2604 case EK_Result: 2605 case EK_Exception: 2606 case EK_New: 2607 case EK_Temporary: 2608 case EK_Base: 2609 case EK_Delegating: 2610 case EK_ArrayElement: 2611 case EK_VectorElement: 2612 case EK_ComplexElement: 2613 case EK_BlockElement: 2614 case EK_LambdaCapture: 2615 case EK_CompoundLiteralInit: 2616 case EK_RelatedResult: 2617 return nullptr; 2618 } 2619 2620 llvm_unreachable("Invalid EntityKind!"); 2621 } 2622 2623 bool InitializedEntity::allowsNRVO() const { 2624 switch (getKind()) { 2625 case EK_Result: 2626 case EK_Exception: 2627 return LocAndNRVO.NRVO; 2628 2629 case EK_Variable: 2630 case EK_Parameter: 2631 case EK_Parameter_CF_Audited: 2632 case EK_Member: 2633 case EK_New: 2634 case EK_Temporary: 2635 case EK_CompoundLiteralInit: 2636 case EK_Base: 2637 case EK_Delegating: 2638 case EK_ArrayElement: 2639 case EK_VectorElement: 2640 case EK_ComplexElement: 2641 case EK_BlockElement: 2642 case EK_LambdaCapture: 2643 case EK_RelatedResult: 2644 break; 2645 } 2646 2647 return false; 2648 } 2649 2650 unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const { 2651 assert(getParent() != this); 2652 unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0; 2653 for (unsigned I = 0; I != Depth; ++I) 2654 OS << "`-"; 2655 2656 switch (getKind()) { 2657 case EK_Variable: OS << "Variable"; break; 2658 case EK_Parameter: OS << "Parameter"; break; 2659 case EK_Parameter_CF_Audited: OS << "CF audited function Parameter"; 2660 break; 2661 case EK_Result: OS << "Result"; break; 2662 case EK_Exception: OS << "Exception"; break; 2663 case EK_Member: OS << "Member"; break; 2664 case EK_New: OS << "New"; break; 2665 case EK_Temporary: OS << "Temporary"; break; 2666 case EK_CompoundLiteralInit: OS << "CompoundLiteral";break; 2667 case EK_RelatedResult: OS << "RelatedResult"; break; 2668 case EK_Base: OS << "Base"; break; 2669 case EK_Delegating: OS << "Delegating"; break; 2670 case EK_ArrayElement: OS << "ArrayElement " << Index; break; 2671 case EK_VectorElement: OS << "VectorElement " << Index; break; 2672 case EK_ComplexElement: OS << "ComplexElement " << Index; break; 2673 case EK_BlockElement: OS << "Block"; break; 2674 case EK_LambdaCapture: 2675 OS << "LambdaCapture "; 2676 OS << DeclarationName(Capture.VarID); 2677 break; 2678 } 2679 2680 if (Decl *D = getDecl()) { 2681 OS << " "; 2682 cast<NamedDecl>(D)->printQualifiedName(OS); 2683 } 2684 2685 OS << " '" << getType().getAsString() << "'\n"; 2686 2687 return Depth + 1; 2688 } 2689 2690 void InitializedEntity::dump() const { 2691 dumpImpl(llvm::errs()); 2692 } 2693 2694 //===----------------------------------------------------------------------===// 2695 // Initialization sequence 2696 //===----------------------------------------------------------------------===// 2697 2698 void InitializationSequence::Step::Destroy() { 2699 switch (Kind) { 2700 case SK_ResolveAddressOfOverloadedFunction: 2701 case SK_CastDerivedToBaseRValue: 2702 case SK_CastDerivedToBaseXValue: 2703 case SK_CastDerivedToBaseLValue: 2704 case SK_BindReference: 2705 case SK_BindReferenceToTemporary: 2706 case SK_ExtraneousCopyToTemporary: 2707 case SK_UserConversion: 2708 case SK_QualificationConversionRValue: 2709 case SK_QualificationConversionXValue: 2710 case SK_QualificationConversionLValue: 2711 case SK_LValueToRValue: 2712 case SK_ListInitialization: 2713 case SK_ListConstructorCall: 2714 case SK_UnwrapInitList: 2715 case SK_RewrapInitList: 2716 case SK_ConstructorInitialization: 2717 case SK_ZeroInitialization: 2718 case SK_CAssignment: 2719 case SK_StringInit: 2720 case SK_ObjCObjectConversion: 2721 case SK_ArrayInit: 2722 case SK_ParenthesizedArrayInit: 2723 case SK_PassByIndirectCopyRestore: 2724 case SK_PassByIndirectRestore: 2725 case SK_ProduceObjCObject: 2726 case SK_StdInitializerList: 2727 case SK_OCLSamplerInit: 2728 case SK_OCLZeroEvent: 2729 break; 2730 2731 case SK_ConversionSequence: 2732 case SK_ConversionSequenceNoNarrowing: 2733 delete ICS; 2734 } 2735 } 2736 2737 bool InitializationSequence::isDirectReferenceBinding() const { 2738 return !Steps.empty() && Steps.back().Kind == SK_BindReference; 2739 } 2740 2741 bool InitializationSequence::isAmbiguous() const { 2742 if (!Failed()) 2743 return false; 2744 2745 switch (getFailureKind()) { 2746 case FK_TooManyInitsForReference: 2747 case FK_ArrayNeedsInitList: 2748 case FK_ArrayNeedsInitListOrStringLiteral: 2749 case FK_ArrayNeedsInitListOrWideStringLiteral: 2750 case FK_NarrowStringIntoWideCharArray: 2751 case FK_WideStringIntoCharArray: 2752 case FK_IncompatWideStringIntoWideChar: 2753 case FK_AddressOfOverloadFailed: // FIXME: Could do better 2754 case FK_NonConstLValueReferenceBindingToTemporary: 2755 case FK_NonConstLValueReferenceBindingToUnrelated: 2756 case FK_RValueReferenceBindingToLValue: 2757 case FK_ReferenceInitDropsQualifiers: 2758 case FK_ReferenceInitFailed: 2759 case FK_ConversionFailed: 2760 case FK_ConversionFromPropertyFailed: 2761 case FK_TooManyInitsForScalar: 2762 case FK_ReferenceBindingToInitList: 2763 case FK_InitListBadDestinationType: 2764 case FK_DefaultInitOfConst: 2765 case FK_Incomplete: 2766 case FK_ArrayTypeMismatch: 2767 case FK_NonConstantArrayInit: 2768 case FK_ListInitializationFailed: 2769 case FK_VariableLengthArrayHasInitializer: 2770 case FK_PlaceholderType: 2771 case FK_ExplicitConstructor: 2772 return false; 2773 2774 case FK_ReferenceInitOverloadFailed: 2775 case FK_UserConversionOverloadFailed: 2776 case FK_ConstructorOverloadFailed: 2777 case FK_ListConstructorOverloadFailed: 2778 return FailedOverloadResult == OR_Ambiguous; 2779 } 2780 2781 llvm_unreachable("Invalid EntityKind!"); 2782 } 2783 2784 bool InitializationSequence::isConstructorInitialization() const { 2785 return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization; 2786 } 2787 2788 void 2789 InitializationSequence 2790 ::AddAddressOverloadResolutionStep(FunctionDecl *Function, 2791 DeclAccessPair Found, 2792 bool HadMultipleCandidates) { 2793 Step S; 2794 S.Kind = SK_ResolveAddressOfOverloadedFunction; 2795 S.Type = Function->getType(); 2796 S.Function.HadMultipleCandidates = HadMultipleCandidates; 2797 S.Function.Function = Function; 2798 S.Function.FoundDecl = Found; 2799 Steps.push_back(S); 2800 } 2801 2802 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType, 2803 ExprValueKind VK) { 2804 Step S; 2805 switch (VK) { 2806 case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break; 2807 case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break; 2808 case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break; 2809 } 2810 S.Type = BaseType; 2811 Steps.push_back(S); 2812 } 2813 2814 void InitializationSequence::AddReferenceBindingStep(QualType T, 2815 bool BindingTemporary) { 2816 Step S; 2817 S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference; 2818 S.Type = T; 2819 Steps.push_back(S); 2820 } 2821 2822 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) { 2823 Step S; 2824 S.Kind = SK_ExtraneousCopyToTemporary; 2825 S.Type = T; 2826 Steps.push_back(S); 2827 } 2828 2829 void 2830 InitializationSequence::AddUserConversionStep(FunctionDecl *Function, 2831 DeclAccessPair FoundDecl, 2832 QualType T, 2833 bool HadMultipleCandidates) { 2834 Step S; 2835 S.Kind = SK_UserConversion; 2836 S.Type = T; 2837 S.Function.HadMultipleCandidates = HadMultipleCandidates; 2838 S.Function.Function = Function; 2839 S.Function.FoundDecl = FoundDecl; 2840 Steps.push_back(S); 2841 } 2842 2843 void InitializationSequence::AddQualificationConversionStep(QualType Ty, 2844 ExprValueKind VK) { 2845 Step S; 2846 S.Kind = SK_QualificationConversionRValue; // work around a gcc warning 2847 switch (VK) { 2848 case VK_RValue: 2849 S.Kind = SK_QualificationConversionRValue; 2850 break; 2851 case VK_XValue: 2852 S.Kind = SK_QualificationConversionXValue; 2853 break; 2854 case VK_LValue: 2855 S.Kind = SK_QualificationConversionLValue; 2856 break; 2857 } 2858 S.Type = Ty; 2859 Steps.push_back(S); 2860 } 2861 2862 void InitializationSequence::AddLValueToRValueStep(QualType Ty) { 2863 assert(!Ty.hasQualifiers() && "rvalues may not have qualifiers"); 2864 2865 Step S; 2866 S.Kind = SK_LValueToRValue; 2867 S.Type = Ty; 2868 Steps.push_back(S); 2869 } 2870 2871 void InitializationSequence::AddConversionSequenceStep( 2872 const ImplicitConversionSequence &ICS, QualType T, 2873 bool TopLevelOfInitList) { 2874 Step S; 2875 S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing 2876 : SK_ConversionSequence; 2877 S.Type = T; 2878 S.ICS = new ImplicitConversionSequence(ICS); 2879 Steps.push_back(S); 2880 } 2881 2882 void InitializationSequence::AddListInitializationStep(QualType T) { 2883 Step S; 2884 S.Kind = SK_ListInitialization; 2885 S.Type = T; 2886 Steps.push_back(S); 2887 } 2888 2889 void 2890 InitializationSequence 2891 ::AddConstructorInitializationStep(CXXConstructorDecl *Constructor, 2892 AccessSpecifier Access, 2893 QualType T, 2894 bool HadMultipleCandidates, 2895 bool FromInitList, bool AsInitList) { 2896 Step S; 2897 S.Kind = FromInitList && !AsInitList ? SK_ListConstructorCall 2898 : SK_ConstructorInitialization; 2899 S.Type = T; 2900 S.Function.HadMultipleCandidates = HadMultipleCandidates; 2901 S.Function.Function = Constructor; 2902 S.Function.FoundDecl = DeclAccessPair::make(Constructor, Access); 2903 Steps.push_back(S); 2904 } 2905 2906 void InitializationSequence::AddZeroInitializationStep(QualType T) { 2907 Step S; 2908 S.Kind = SK_ZeroInitialization; 2909 S.Type = T; 2910 Steps.push_back(S); 2911 } 2912 2913 void InitializationSequence::AddCAssignmentStep(QualType T) { 2914 Step S; 2915 S.Kind = SK_CAssignment; 2916 S.Type = T; 2917 Steps.push_back(S); 2918 } 2919 2920 void InitializationSequence::AddStringInitStep(QualType T) { 2921 Step S; 2922 S.Kind = SK_StringInit; 2923 S.Type = T; 2924 Steps.push_back(S); 2925 } 2926 2927 void InitializationSequence::AddObjCObjectConversionStep(QualType T) { 2928 Step S; 2929 S.Kind = SK_ObjCObjectConversion; 2930 S.Type = T; 2931 Steps.push_back(S); 2932 } 2933 2934 void InitializationSequence::AddArrayInitStep(QualType T) { 2935 Step S; 2936 S.Kind = SK_ArrayInit; 2937 S.Type = T; 2938 Steps.push_back(S); 2939 } 2940 2941 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) { 2942 Step S; 2943 S.Kind = SK_ParenthesizedArrayInit; 2944 S.Type = T; 2945 Steps.push_back(S); 2946 } 2947 2948 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type, 2949 bool shouldCopy) { 2950 Step s; 2951 s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore 2952 : SK_PassByIndirectRestore); 2953 s.Type = type; 2954 Steps.push_back(s); 2955 } 2956 2957 void InitializationSequence::AddProduceObjCObjectStep(QualType T) { 2958 Step S; 2959 S.Kind = SK_ProduceObjCObject; 2960 S.Type = T; 2961 Steps.push_back(S); 2962 } 2963 2964 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) { 2965 Step S; 2966 S.Kind = SK_StdInitializerList; 2967 S.Type = T; 2968 Steps.push_back(S); 2969 } 2970 2971 void InitializationSequence::AddOCLSamplerInitStep(QualType T) { 2972 Step S; 2973 S.Kind = SK_OCLSamplerInit; 2974 S.Type = T; 2975 Steps.push_back(S); 2976 } 2977 2978 void InitializationSequence::AddOCLZeroEventStep(QualType T) { 2979 Step S; 2980 S.Kind = SK_OCLZeroEvent; 2981 S.Type = T; 2982 Steps.push_back(S); 2983 } 2984 2985 void InitializationSequence::RewrapReferenceInitList(QualType T, 2986 InitListExpr *Syntactic) { 2987 assert(Syntactic->getNumInits() == 1 && 2988 "Can only rewrap trivial init lists."); 2989 Step S; 2990 S.Kind = SK_UnwrapInitList; 2991 S.Type = Syntactic->getInit(0)->getType(); 2992 Steps.insert(Steps.begin(), S); 2993 2994 S.Kind = SK_RewrapInitList; 2995 S.Type = T; 2996 S.WrappingSyntacticList = Syntactic; 2997 Steps.push_back(S); 2998 } 2999 3000 void InitializationSequence::SetOverloadFailure(FailureKind Failure, 3001 OverloadingResult Result) { 3002 setSequenceKind(FailedSequence); 3003 this->Failure = Failure; 3004 this->FailedOverloadResult = Result; 3005 } 3006 3007 //===----------------------------------------------------------------------===// 3008 // Attempt initialization 3009 //===----------------------------------------------------------------------===// 3010 3011 static void MaybeProduceObjCObject(Sema &S, 3012 InitializationSequence &Sequence, 3013 const InitializedEntity &Entity) { 3014 if (!S.getLangOpts().ObjCAutoRefCount) return; 3015 3016 /// When initializing a parameter, produce the value if it's marked 3017 /// __attribute__((ns_consumed)). 3018 if (Entity.isParameterKind()) { 3019 if (!Entity.isParameterConsumed()) 3020 return; 3021 3022 assert(Entity.getType()->isObjCRetainableType() && 3023 "consuming an object of unretainable type?"); 3024 Sequence.AddProduceObjCObjectStep(Entity.getType()); 3025 3026 /// When initializing a return value, if the return type is a 3027 /// retainable type, then returns need to immediately retain the 3028 /// object. If an autorelease is required, it will be done at the 3029 /// last instant. 3030 } else if (Entity.getKind() == InitializedEntity::EK_Result) { 3031 if (!Entity.getType()->isObjCRetainableType()) 3032 return; 3033 3034 Sequence.AddProduceObjCObjectStep(Entity.getType()); 3035 } 3036 } 3037 3038 static void TryListInitialization(Sema &S, 3039 const InitializedEntity &Entity, 3040 const InitializationKind &Kind, 3041 InitListExpr *InitList, 3042 InitializationSequence &Sequence); 3043 3044 /// \brief When initializing from init list via constructor, handle 3045 /// initialization of an object of type std::initializer_list<T>. 3046 /// 3047 /// \return true if we have handled initialization of an object of type 3048 /// std::initializer_list<T>, false otherwise. 3049 static bool TryInitializerListConstruction(Sema &S, 3050 InitListExpr *List, 3051 QualType DestType, 3052 InitializationSequence &Sequence) { 3053 QualType E; 3054 if (!S.isStdInitializerList(DestType, &E)) 3055 return false; 3056 3057 if (S.RequireCompleteType(List->getExprLoc(), E, 0)) { 3058 Sequence.setIncompleteTypeFailure(E); 3059 return true; 3060 } 3061 3062 // Try initializing a temporary array from the init list. 3063 QualType ArrayType = S.Context.getConstantArrayType( 3064 E.withConst(), llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()), 3065 List->getNumInits()), 3066 clang::ArrayType::Normal, 0); 3067 InitializedEntity HiddenArray = 3068 InitializedEntity::InitializeTemporary(ArrayType); 3069 InitializationKind Kind = 3070 InitializationKind::CreateDirectList(List->getExprLoc()); 3071 TryListInitialization(S, HiddenArray, Kind, List, Sequence); 3072 if (Sequence) 3073 Sequence.AddStdInitializerListConstructionStep(DestType); 3074 return true; 3075 } 3076 3077 static OverloadingResult 3078 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc, 3079 MultiExprArg Args, 3080 OverloadCandidateSet &CandidateSet, 3081 ArrayRef<NamedDecl *> Ctors, 3082 OverloadCandidateSet::iterator &Best, 3083 bool CopyInitializing, bool AllowExplicit, 3084 bool OnlyListConstructors, bool InitListSyntax) { 3085 CandidateSet.clear(); 3086 3087 for (ArrayRef<NamedDecl *>::iterator 3088 Con = Ctors.begin(), ConEnd = Ctors.end(); Con != ConEnd; ++Con) { 3089 NamedDecl *D = *Con; 3090 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess()); 3091 bool SuppressUserConversions = false; 3092 3093 // Find the constructor (which may be a template). 3094 CXXConstructorDecl *Constructor = nullptr; 3095 FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D); 3096 if (ConstructorTmpl) 3097 Constructor = cast<CXXConstructorDecl>( 3098 ConstructorTmpl->getTemplatedDecl()); 3099 else { 3100 Constructor = cast<CXXConstructorDecl>(D); 3101 3102 // C++11 [over.best.ics]p4: 3103 // However, when considering the argument of a constructor or 3104 // user-defined conversion function that is a candidate: 3105 // -- by 13.3.1.3 when invoked for the copying/moving of a temporary 3106 // in the second step of a class copy-initialization, 3107 // -- by 13.3.1.7 when passing the initializer list as a single 3108 // argument or when the initializer list has exactly one elementand 3109 // a conversion to some class X or reference to (possibly 3110 // cv-qualified) X is considered for the first parameter of a 3111 // constructor of X, or 3112 // -- by 13.3.1.4, 13.3.1.5, or 13.3.1.6 in all cases, 3113 // only standard conversion sequences and ellipsis conversion sequences 3114 // are considered. 3115 if ((CopyInitializing || (InitListSyntax && Args.size() == 1)) && 3116 Constructor->isCopyOrMoveConstructor()) 3117 SuppressUserConversions = true; 3118 } 3119 3120 if (!Constructor->isInvalidDecl() && 3121 (AllowExplicit || !Constructor->isExplicit()) && 3122 (!OnlyListConstructors || S.isInitListConstructor(Constructor))) { 3123 if (ConstructorTmpl) 3124 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 3125 /*ExplicitArgs*/ nullptr, Args, 3126 CandidateSet, SuppressUserConversions); 3127 else { 3128 // C++ [over.match.copy]p1: 3129 // - When initializing a temporary to be bound to the first parameter 3130 // of a constructor that takes a reference to possibly cv-qualified 3131 // T as its first argument, called with a single argument in the 3132 // context of direct-initialization, explicit conversion functions 3133 // are also considered. 3134 bool AllowExplicitConv = AllowExplicit && !CopyInitializing && 3135 Args.size() == 1 && 3136 Constructor->isCopyOrMoveConstructor(); 3137 S.AddOverloadCandidate(Constructor, FoundDecl, Args, CandidateSet, 3138 SuppressUserConversions, 3139 /*PartialOverloading=*/false, 3140 /*AllowExplicit=*/AllowExplicitConv); 3141 } 3142 } 3143 } 3144 3145 // Perform overload resolution and return the result. 3146 return CandidateSet.BestViableFunction(S, DeclLoc, Best); 3147 } 3148 3149 /// \brief Attempt initialization by constructor (C++ [dcl.init]), which 3150 /// enumerates the constructors of the initialized entity and performs overload 3151 /// resolution to select the best. 3152 /// If InitListSyntax is true, this is list-initialization of a non-aggregate 3153 /// class type. 3154 static void TryConstructorInitialization(Sema &S, 3155 const InitializedEntity &Entity, 3156 const InitializationKind &Kind, 3157 MultiExprArg Args, QualType DestType, 3158 InitializationSequence &Sequence, 3159 bool InitListSyntax = false) { 3160 assert((!InitListSyntax || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && 3161 "InitListSyntax must come with a single initializer list argument."); 3162 3163 // The type we're constructing needs to be complete. 3164 if (S.RequireCompleteType(Kind.getLocation(), DestType, 0)) { 3165 Sequence.setIncompleteTypeFailure(DestType); 3166 return; 3167 } 3168 3169 const RecordType *DestRecordType = DestType->getAs<RecordType>(); 3170 assert(DestRecordType && "Constructor initialization requires record type"); 3171 CXXRecordDecl *DestRecordDecl 3172 = cast<CXXRecordDecl>(DestRecordType->getDecl()); 3173 3174 // Build the candidate set directly in the initialization sequence 3175 // structure, so that it will persist if we fail. 3176 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 3177 3178 // Determine whether we are allowed to call explicit constructors or 3179 // explicit conversion operators. 3180 bool AllowExplicit = Kind.AllowExplicit() || InitListSyntax; 3181 bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy; 3182 3183 // - Otherwise, if T is a class type, constructors are considered. The 3184 // applicable constructors are enumerated, and the best one is chosen 3185 // through overload resolution. 3186 DeclContext::lookup_result R = S.LookupConstructors(DestRecordDecl); 3187 // The container holding the constructors can under certain conditions 3188 // be changed while iterating (e.g. because of deserialization). 3189 // To be safe we copy the lookup results to a new container. 3190 SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end()); 3191 3192 OverloadingResult Result = OR_No_Viable_Function; 3193 OverloadCandidateSet::iterator Best; 3194 bool AsInitializerList = false; 3195 3196 // C++11 [over.match.list]p1: 3197 // When objects of non-aggregate type T are list-initialized, overload 3198 // resolution selects the constructor in two phases: 3199 // - Initially, the candidate functions are the initializer-list 3200 // constructors of the class T and the argument list consists of the 3201 // initializer list as a single argument. 3202 if (InitListSyntax) { 3203 InitListExpr *ILE = cast<InitListExpr>(Args[0]); 3204 AsInitializerList = true; 3205 3206 // If the initializer list has no elements and T has a default constructor, 3207 // the first phase is omitted. 3208 if (ILE->getNumInits() != 0 || !DestRecordDecl->hasDefaultConstructor()) 3209 Result = ResolveConstructorOverload(S, Kind.getLocation(), Args, 3210 CandidateSet, Ctors, Best, 3211 CopyInitialization, AllowExplicit, 3212 /*OnlyListConstructor=*/true, 3213 InitListSyntax); 3214 3215 // Time to unwrap the init list. 3216 Args = MultiExprArg(ILE->getInits(), ILE->getNumInits()); 3217 } 3218 3219 // C++11 [over.match.list]p1: 3220 // - If no viable initializer-list constructor is found, overload resolution 3221 // is performed again, where the candidate functions are all the 3222 // constructors of the class T and the argument list consists of the 3223 // elements of the initializer list. 3224 if (Result == OR_No_Viable_Function) { 3225 AsInitializerList = false; 3226 Result = ResolveConstructorOverload(S, Kind.getLocation(), Args, 3227 CandidateSet, Ctors, Best, 3228 CopyInitialization, AllowExplicit, 3229 /*OnlyListConstructors=*/false, 3230 InitListSyntax); 3231 } 3232 if (Result) { 3233 Sequence.SetOverloadFailure(InitListSyntax ? 3234 InitializationSequence::FK_ListConstructorOverloadFailed : 3235 InitializationSequence::FK_ConstructorOverloadFailed, 3236 Result); 3237 return; 3238 } 3239 3240 // C++11 [dcl.init]p6: 3241 // If a program calls for the default initialization of an object 3242 // of a const-qualified type T, T shall be a class type with a 3243 // user-provided default constructor. 3244 if (Kind.getKind() == InitializationKind::IK_Default && 3245 Entity.getType().isConstQualified() && 3246 !cast<CXXConstructorDecl>(Best->Function)->isUserProvided()) { 3247 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); 3248 return; 3249 } 3250 3251 // C++11 [over.match.list]p1: 3252 // In copy-list-initialization, if an explicit constructor is chosen, the 3253 // initializer is ill-formed. 3254 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 3255 if (InitListSyntax && !Kind.AllowExplicit() && CtorDecl->isExplicit()) { 3256 Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor); 3257 return; 3258 } 3259 3260 // Add the constructor initialization step. Any cv-qualification conversion is 3261 // subsumed by the initialization. 3262 bool HadMultipleCandidates = (CandidateSet.size() > 1); 3263 Sequence.AddConstructorInitializationStep(CtorDecl, 3264 Best->FoundDecl.getAccess(), 3265 DestType, HadMultipleCandidates, 3266 InitListSyntax, AsInitializerList); 3267 } 3268 3269 static bool 3270 ResolveOverloadedFunctionForReferenceBinding(Sema &S, 3271 Expr *Initializer, 3272 QualType &SourceType, 3273 QualType &UnqualifiedSourceType, 3274 QualType UnqualifiedTargetType, 3275 InitializationSequence &Sequence) { 3276 if (S.Context.getCanonicalType(UnqualifiedSourceType) == 3277 S.Context.OverloadTy) { 3278 DeclAccessPair Found; 3279 bool HadMultipleCandidates = false; 3280 if (FunctionDecl *Fn 3281 = S.ResolveAddressOfOverloadedFunction(Initializer, 3282 UnqualifiedTargetType, 3283 false, Found, 3284 &HadMultipleCandidates)) { 3285 Sequence.AddAddressOverloadResolutionStep(Fn, Found, 3286 HadMultipleCandidates); 3287 SourceType = Fn->getType(); 3288 UnqualifiedSourceType = SourceType.getUnqualifiedType(); 3289 } else if (!UnqualifiedTargetType->isRecordType()) { 3290 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 3291 return true; 3292 } 3293 } 3294 return false; 3295 } 3296 3297 static void TryReferenceInitializationCore(Sema &S, 3298 const InitializedEntity &Entity, 3299 const InitializationKind &Kind, 3300 Expr *Initializer, 3301 QualType cv1T1, QualType T1, 3302 Qualifiers T1Quals, 3303 QualType cv2T2, QualType T2, 3304 Qualifiers T2Quals, 3305 InitializationSequence &Sequence); 3306 3307 static void TryValueInitialization(Sema &S, 3308 const InitializedEntity &Entity, 3309 const InitializationKind &Kind, 3310 InitializationSequence &Sequence, 3311 InitListExpr *InitList = nullptr); 3312 3313 /// \brief Attempt list initialization of a reference. 3314 static void TryReferenceListInitialization(Sema &S, 3315 const InitializedEntity &Entity, 3316 const InitializationKind &Kind, 3317 InitListExpr *InitList, 3318 InitializationSequence &Sequence) { 3319 // First, catch C++03 where this isn't possible. 3320 if (!S.getLangOpts().CPlusPlus11) { 3321 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); 3322 return; 3323 } 3324 3325 QualType DestType = Entity.getType(); 3326 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType(); 3327 Qualifiers T1Quals; 3328 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); 3329 3330 // Reference initialization via an initializer list works thus: 3331 // If the initializer list consists of a single element that is 3332 // reference-related to the referenced type, bind directly to that element 3333 // (possibly creating temporaries). 3334 // Otherwise, initialize a temporary with the initializer list and 3335 // bind to that. 3336 if (InitList->getNumInits() == 1) { 3337 Expr *Initializer = InitList->getInit(0); 3338 QualType cv2T2 = Initializer->getType(); 3339 Qualifiers T2Quals; 3340 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); 3341 3342 // If this fails, creating a temporary wouldn't work either. 3343 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, 3344 T1, Sequence)) 3345 return; 3346 3347 SourceLocation DeclLoc = Initializer->getLocStart(); 3348 bool dummy1, dummy2, dummy3; 3349 Sema::ReferenceCompareResult RefRelationship 3350 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1, 3351 dummy2, dummy3); 3352 if (RefRelationship >= Sema::Ref_Related) { 3353 // Try to bind the reference here. 3354 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, 3355 T1Quals, cv2T2, T2, T2Quals, Sequence); 3356 if (Sequence) 3357 Sequence.RewrapReferenceInitList(cv1T1, InitList); 3358 return; 3359 } 3360 3361 // Update the initializer if we've resolved an overloaded function. 3362 if (Sequence.step_begin() != Sequence.step_end()) 3363 Sequence.RewrapReferenceInitList(cv1T1, InitList); 3364 } 3365 3366 // Not reference-related. Create a temporary and bind to that. 3367 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1); 3368 3369 TryListInitialization(S, TempEntity, Kind, InitList, Sequence); 3370 if (Sequence) { 3371 if (DestType->isRValueReferenceType() || 3372 (T1Quals.hasConst() && !T1Quals.hasVolatile())) 3373 Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true); 3374 else 3375 Sequence.SetFailed( 3376 InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary); 3377 } 3378 } 3379 3380 /// \brief Attempt list initialization (C++0x [dcl.init.list]) 3381 static void TryListInitialization(Sema &S, 3382 const InitializedEntity &Entity, 3383 const InitializationKind &Kind, 3384 InitListExpr *InitList, 3385 InitializationSequence &Sequence) { 3386 QualType DestType = Entity.getType(); 3387 3388 // C++ doesn't allow scalar initialization with more than one argument. 3389 // But C99 complex numbers are scalars and it makes sense there. 3390 if (S.getLangOpts().CPlusPlus && DestType->isScalarType() && 3391 !DestType->isAnyComplexType() && InitList->getNumInits() > 1) { 3392 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar); 3393 return; 3394 } 3395 if (DestType->isReferenceType()) { 3396 TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence); 3397 return; 3398 } 3399 if (DestType->isRecordType()) { 3400 if (S.RequireCompleteType(InitList->getLocStart(), DestType, 0)) { 3401 Sequence.setIncompleteTypeFailure(DestType); 3402 return; 3403 } 3404 3405 // C++11 [dcl.init.list]p3: 3406 // - If T is an aggregate, aggregate initialization is performed. 3407 if (!DestType->isAggregateType()) { 3408 if (S.getLangOpts().CPlusPlus11) { 3409 // - Otherwise, if the initializer list has no elements and T is a 3410 // class type with a default constructor, the object is 3411 // value-initialized. 3412 if (InitList->getNumInits() == 0) { 3413 CXXRecordDecl *RD = DestType->getAsCXXRecordDecl(); 3414 if (RD->hasDefaultConstructor()) { 3415 TryValueInitialization(S, Entity, Kind, Sequence, InitList); 3416 return; 3417 } 3418 } 3419 3420 // - Otherwise, if T is a specialization of std::initializer_list<E>, 3421 // an initializer_list object constructed [...] 3422 if (TryInitializerListConstruction(S, InitList, DestType, Sequence)) 3423 return; 3424 3425 // - Otherwise, if T is a class type, constructors are considered. 3426 Expr *InitListAsExpr = InitList; 3427 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType, 3428 Sequence, /*InitListSyntax*/true); 3429 } else 3430 Sequence.SetFailed( 3431 InitializationSequence::FK_InitListBadDestinationType); 3432 return; 3433 } 3434 } 3435 if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() && 3436 InitList->getNumInits() == 1 && 3437 InitList->getInit(0)->getType()->isRecordType()) { 3438 // - Otherwise, if the initializer list has a single element of type E 3439 // [...references are handled above...], the object or reference is 3440 // initialized from that element; if a narrowing conversion is required 3441 // to convert the element to T, the program is ill-formed. 3442 // 3443 // Per core-24034, this is direct-initialization if we were performing 3444 // direct-list-initialization and copy-initialization otherwise. 3445 // We can't use InitListChecker for this, because it always performs 3446 // copy-initialization. This only matters if we might use an 'explicit' 3447 // conversion operator, so we only need to handle the cases where the source 3448 // is of record type. 3449 InitializationKind SubKind = 3450 Kind.getKind() == InitializationKind::IK_DirectList 3451 ? InitializationKind::CreateDirect(Kind.getLocation(), 3452 InitList->getLBraceLoc(), 3453 InitList->getRBraceLoc()) 3454 : Kind; 3455 Expr *SubInit[1] = { InitList->getInit(0) }; 3456 Sequence.InitializeFrom(S, Entity, SubKind, SubInit, 3457 /*TopLevelOfInitList*/true); 3458 if (Sequence) 3459 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 3460 return; 3461 } 3462 3463 InitListChecker CheckInitList(S, Entity, InitList, 3464 DestType, /*VerifyOnly=*/true); 3465 if (CheckInitList.HadError()) { 3466 Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed); 3467 return; 3468 } 3469 3470 // Add the list initialization step with the built init list. 3471 Sequence.AddListInitializationStep(DestType); 3472 } 3473 3474 /// \brief Try a reference initialization that involves calling a conversion 3475 /// function. 3476 static OverloadingResult TryRefInitWithConversionFunction(Sema &S, 3477 const InitializedEntity &Entity, 3478 const InitializationKind &Kind, 3479 Expr *Initializer, 3480 bool AllowRValues, 3481 InitializationSequence &Sequence) { 3482 QualType DestType = Entity.getType(); 3483 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType(); 3484 QualType T1 = cv1T1.getUnqualifiedType(); 3485 QualType cv2T2 = Initializer->getType(); 3486 QualType T2 = cv2T2.getUnqualifiedType(); 3487 3488 bool DerivedToBase; 3489 bool ObjCConversion; 3490 bool ObjCLifetimeConversion; 3491 assert(!S.CompareReferenceRelationship(Initializer->getLocStart(), 3492 T1, T2, DerivedToBase, 3493 ObjCConversion, 3494 ObjCLifetimeConversion) && 3495 "Must have incompatible references when binding via conversion"); 3496 (void)DerivedToBase; 3497 (void)ObjCConversion; 3498 (void)ObjCLifetimeConversion; 3499 3500 // Build the candidate set directly in the initialization sequence 3501 // structure, so that it will persist if we fail. 3502 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 3503 CandidateSet.clear(); 3504 3505 // Determine whether we are allowed to call explicit constructors or 3506 // explicit conversion operators. 3507 bool AllowExplicit = Kind.AllowExplicit(); 3508 bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding(); 3509 3510 const RecordType *T1RecordType = nullptr; 3511 if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) && 3512 !S.RequireCompleteType(Kind.getLocation(), T1, 0)) { 3513 // The type we're converting to is a class type. Enumerate its constructors 3514 // to see if there is a suitable conversion. 3515 CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl()); 3516 3517 DeclContext::lookup_result R = S.LookupConstructors(T1RecordDecl); 3518 // The container holding the constructors can under certain conditions 3519 // be changed while iterating (e.g. because of deserialization). 3520 // To be safe we copy the lookup results to a new container. 3521 SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end()); 3522 for (SmallVectorImpl<NamedDecl *>::iterator 3523 CI = Ctors.begin(), CE = Ctors.end(); CI != CE; ++CI) { 3524 NamedDecl *D = *CI; 3525 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess()); 3526 3527 // Find the constructor (which may be a template). 3528 CXXConstructorDecl *Constructor = nullptr; 3529 FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D); 3530 if (ConstructorTmpl) 3531 Constructor = cast<CXXConstructorDecl>( 3532 ConstructorTmpl->getTemplatedDecl()); 3533 else 3534 Constructor = cast<CXXConstructorDecl>(D); 3535 3536 if (!Constructor->isInvalidDecl() && 3537 Constructor->isConvertingConstructor(AllowExplicit)) { 3538 if (ConstructorTmpl) 3539 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 3540 /*ExplicitArgs*/ nullptr, 3541 Initializer, CandidateSet, 3542 /*SuppressUserConversions=*/true); 3543 else 3544 S.AddOverloadCandidate(Constructor, FoundDecl, 3545 Initializer, CandidateSet, 3546 /*SuppressUserConversions=*/true); 3547 } 3548 } 3549 } 3550 if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl()) 3551 return OR_No_Viable_Function; 3552 3553 const RecordType *T2RecordType = nullptr; 3554 if ((T2RecordType = T2->getAs<RecordType>()) && 3555 !S.RequireCompleteType(Kind.getLocation(), T2, 0)) { 3556 // The type we're converting from is a class type, enumerate its conversion 3557 // functions. 3558 CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl()); 3559 3560 std::pair<CXXRecordDecl::conversion_iterator, 3561 CXXRecordDecl::conversion_iterator> 3562 Conversions = T2RecordDecl->getVisibleConversionFunctions(); 3563 for (CXXRecordDecl::conversion_iterator 3564 I = Conversions.first, E = Conversions.second; I != E; ++I) { 3565 NamedDecl *D = *I; 3566 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 3567 if (isa<UsingShadowDecl>(D)) 3568 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 3569 3570 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 3571 CXXConversionDecl *Conv; 3572 if (ConvTemplate) 3573 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 3574 else 3575 Conv = cast<CXXConversionDecl>(D); 3576 3577 // If the conversion function doesn't return a reference type, 3578 // it can't be considered for this conversion unless we're allowed to 3579 // consider rvalues. 3580 // FIXME: Do we need to make sure that we only consider conversion 3581 // candidates with reference-compatible results? That might be needed to 3582 // break recursion. 3583 if ((AllowExplicitConvs || !Conv->isExplicit()) && 3584 (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){ 3585 if (ConvTemplate) 3586 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), 3587 ActingDC, Initializer, 3588 DestType, CandidateSet, 3589 /*AllowObjCConversionOnExplicit=*/ 3590 false); 3591 else 3592 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, 3593 Initializer, DestType, CandidateSet, 3594 /*AllowObjCConversionOnExplicit=*/false); 3595 } 3596 } 3597 } 3598 if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl()) 3599 return OR_No_Viable_Function; 3600 3601 SourceLocation DeclLoc = Initializer->getLocStart(); 3602 3603 // Perform overload resolution. If it fails, return the failed result. 3604 OverloadCandidateSet::iterator Best; 3605 if (OverloadingResult Result 3606 = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) 3607 return Result; 3608 3609 FunctionDecl *Function = Best->Function; 3610 // This is the overload that will be used for this initialization step if we 3611 // use this initialization. Mark it as referenced. 3612 Function->setReferenced(); 3613 3614 // Compute the returned type of the conversion. 3615 if (isa<CXXConversionDecl>(Function)) 3616 T2 = Function->getReturnType(); 3617 else 3618 T2 = cv1T1; 3619 3620 // Add the user-defined conversion step. 3621 bool HadMultipleCandidates = (CandidateSet.size() > 1); 3622 Sequence.AddUserConversionStep(Function, Best->FoundDecl, 3623 T2.getNonLValueExprType(S.Context), 3624 HadMultipleCandidates); 3625 3626 // Determine whether we need to perform derived-to-base or 3627 // cv-qualification adjustments. 3628 ExprValueKind VK = VK_RValue; 3629 if (T2->isLValueReferenceType()) 3630 VK = VK_LValue; 3631 else if (const RValueReferenceType *RRef = T2->getAs<RValueReferenceType>()) 3632 VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue; 3633 3634 bool NewDerivedToBase = false; 3635 bool NewObjCConversion = false; 3636 bool NewObjCLifetimeConversion = false; 3637 Sema::ReferenceCompareResult NewRefRelationship 3638 = S.CompareReferenceRelationship(DeclLoc, T1, 3639 T2.getNonLValueExprType(S.Context), 3640 NewDerivedToBase, NewObjCConversion, 3641 NewObjCLifetimeConversion); 3642 if (NewRefRelationship == Sema::Ref_Incompatible) { 3643 // If the type we've converted to is not reference-related to the 3644 // type we're looking for, then there is another conversion step 3645 // we need to perform to produce a temporary of the right type 3646 // that we'll be binding to. 3647 ImplicitConversionSequence ICS; 3648 ICS.setStandard(); 3649 ICS.Standard = Best->FinalConversion; 3650 T2 = ICS.Standard.getToType(2); 3651 Sequence.AddConversionSequenceStep(ICS, T2); 3652 } else if (NewDerivedToBase) 3653 Sequence.AddDerivedToBaseCastStep( 3654 S.Context.getQualifiedType(T1, 3655 T2.getNonReferenceType().getQualifiers()), 3656 VK); 3657 else if (NewObjCConversion) 3658 Sequence.AddObjCObjectConversionStep( 3659 S.Context.getQualifiedType(T1, 3660 T2.getNonReferenceType().getQualifiers())); 3661 3662 if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers()) 3663 Sequence.AddQualificationConversionStep(cv1T1, VK); 3664 3665 Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType()); 3666 return OR_Success; 3667 } 3668 3669 static void CheckCXX98CompatAccessibleCopy(Sema &S, 3670 const InitializedEntity &Entity, 3671 Expr *CurInitExpr); 3672 3673 /// \brief Attempt reference initialization (C++0x [dcl.init.ref]) 3674 static void TryReferenceInitialization(Sema &S, 3675 const InitializedEntity &Entity, 3676 const InitializationKind &Kind, 3677 Expr *Initializer, 3678 InitializationSequence &Sequence) { 3679 QualType DestType = Entity.getType(); 3680 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType(); 3681 Qualifiers T1Quals; 3682 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); 3683 QualType cv2T2 = Initializer->getType(); 3684 Qualifiers T2Quals; 3685 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); 3686 3687 // If the initializer is the address of an overloaded function, try 3688 // to resolve the overloaded function. If all goes well, T2 is the 3689 // type of the resulting function. 3690 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, 3691 T1, Sequence)) 3692 return; 3693 3694 // Delegate everything else to a subfunction. 3695 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, 3696 T1Quals, cv2T2, T2, T2Quals, Sequence); 3697 } 3698 3699 /// Converts the target of reference initialization so that it has the 3700 /// appropriate qualifiers and value kind. 3701 /// 3702 /// In this case, 'x' is an 'int' lvalue, but it needs to be 'const int'. 3703 /// \code 3704 /// int x; 3705 /// const int &r = x; 3706 /// \endcode 3707 /// 3708 /// In this case the reference is binding to a bitfield lvalue, which isn't 3709 /// valid. Perform a load to create a lifetime-extended temporary instead. 3710 /// \code 3711 /// const int &r = someStruct.bitfield; 3712 /// \endcode 3713 static ExprValueKind 3714 convertQualifiersAndValueKindIfNecessary(Sema &S, 3715 InitializationSequence &Sequence, 3716 Expr *Initializer, 3717 QualType cv1T1, 3718 Qualifiers T1Quals, 3719 Qualifiers T2Quals, 3720 bool IsLValueRef) { 3721 bool IsNonAddressableType = Initializer->refersToBitField() || 3722 Initializer->refersToVectorElement(); 3723 3724 if (IsNonAddressableType) { 3725 // C++11 [dcl.init.ref]p5: [...] Otherwise, the reference shall be an 3726 // lvalue reference to a non-volatile const type, or the reference shall be 3727 // an rvalue reference. 3728 // 3729 // If not, we can't make a temporary and bind to that. Give up and allow the 3730 // error to be diagnosed later. 3731 if (IsLValueRef && (!T1Quals.hasConst() || T1Quals.hasVolatile())) { 3732 assert(Initializer->isGLValue()); 3733 return Initializer->getValueKind(); 3734 } 3735 3736 // Force a load so we can materialize a temporary. 3737 Sequence.AddLValueToRValueStep(cv1T1.getUnqualifiedType()); 3738 return VK_RValue; 3739 } 3740 3741 if (T1Quals != T2Quals) { 3742 Sequence.AddQualificationConversionStep(cv1T1, 3743 Initializer->getValueKind()); 3744 } 3745 3746 return Initializer->getValueKind(); 3747 } 3748 3749 3750 /// \brief Reference initialization without resolving overloaded functions. 3751 static void TryReferenceInitializationCore(Sema &S, 3752 const InitializedEntity &Entity, 3753 const InitializationKind &Kind, 3754 Expr *Initializer, 3755 QualType cv1T1, QualType T1, 3756 Qualifiers T1Quals, 3757 QualType cv2T2, QualType T2, 3758 Qualifiers T2Quals, 3759 InitializationSequence &Sequence) { 3760 QualType DestType = Entity.getType(); 3761 SourceLocation DeclLoc = Initializer->getLocStart(); 3762 // Compute some basic properties of the types and the initializer. 3763 bool isLValueRef = DestType->isLValueReferenceType(); 3764 bool isRValueRef = !isLValueRef; 3765 bool DerivedToBase = false; 3766 bool ObjCConversion = false; 3767 bool ObjCLifetimeConversion = false; 3768 Expr::Classification InitCategory = Initializer->Classify(S.Context); 3769 Sema::ReferenceCompareResult RefRelationship 3770 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase, 3771 ObjCConversion, ObjCLifetimeConversion); 3772 3773 // C++0x [dcl.init.ref]p5: 3774 // A reference to type "cv1 T1" is initialized by an expression of type 3775 // "cv2 T2" as follows: 3776 // 3777 // - If the reference is an lvalue reference and the initializer 3778 // expression 3779 // Note the analogous bullet points for rvalue refs to functions. Because 3780 // there are no function rvalues in C++, rvalue refs to functions are treated 3781 // like lvalue refs. 3782 OverloadingResult ConvOvlResult = OR_Success; 3783 bool T1Function = T1->isFunctionType(); 3784 if (isLValueRef || T1Function) { 3785 if (InitCategory.isLValue() && 3786 (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification || 3787 (Kind.isCStyleOrFunctionalCast() && 3788 RefRelationship == Sema::Ref_Related))) { 3789 // - is an lvalue (but is not a bit-field), and "cv1 T1" is 3790 // reference-compatible with "cv2 T2," or 3791 // 3792 // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a 3793 // bit-field when we're determining whether the reference initialization 3794 // can occur. However, we do pay attention to whether it is a bit-field 3795 // to decide whether we're actually binding to a temporary created from 3796 // the bit-field. 3797 if (DerivedToBase) 3798 Sequence.AddDerivedToBaseCastStep( 3799 S.Context.getQualifiedType(T1, T2Quals), 3800 VK_LValue); 3801 else if (ObjCConversion) 3802 Sequence.AddObjCObjectConversionStep( 3803 S.Context.getQualifiedType(T1, T2Quals)); 3804 3805 ExprValueKind ValueKind = 3806 convertQualifiersAndValueKindIfNecessary(S, Sequence, Initializer, 3807 cv1T1, T1Quals, T2Quals, 3808 isLValueRef); 3809 Sequence.AddReferenceBindingStep(cv1T1, ValueKind == VK_RValue); 3810 return; 3811 } 3812 3813 // - has a class type (i.e., T2 is a class type), where T1 is not 3814 // reference-related to T2, and can be implicitly converted to an 3815 // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible 3816 // with "cv3 T3" (this conversion is selected by enumerating the 3817 // applicable conversion functions (13.3.1.6) and choosing the best 3818 // one through overload resolution (13.3)), 3819 // If we have an rvalue ref to function type here, the rhs must be 3820 // an rvalue. DR1287 removed the "implicitly" here. 3821 if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() && 3822 (isLValueRef || InitCategory.isRValue())) { 3823 ConvOvlResult = TryRefInitWithConversionFunction( 3824 S, Entity, Kind, Initializer, /*AllowRValues*/isRValueRef, Sequence); 3825 if (ConvOvlResult == OR_Success) 3826 return; 3827 if (ConvOvlResult != OR_No_Viable_Function) 3828 Sequence.SetOverloadFailure( 3829 InitializationSequence::FK_ReferenceInitOverloadFailed, 3830 ConvOvlResult); 3831 } 3832 } 3833 3834 // - Otherwise, the reference shall be an lvalue reference to a 3835 // non-volatile const type (i.e., cv1 shall be const), or the reference 3836 // shall be an rvalue reference. 3837 if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) { 3838 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) 3839 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 3840 else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) 3841 Sequence.SetOverloadFailure( 3842 InitializationSequence::FK_ReferenceInitOverloadFailed, 3843 ConvOvlResult); 3844 else 3845 Sequence.SetFailed(InitCategory.isLValue() 3846 ? (RefRelationship == Sema::Ref_Related 3847 ? InitializationSequence::FK_ReferenceInitDropsQualifiers 3848 : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated) 3849 : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary); 3850 3851 return; 3852 } 3853 3854 // - If the initializer expression 3855 // - is an xvalue, class prvalue, array prvalue, or function lvalue and 3856 // "cv1 T1" is reference-compatible with "cv2 T2" 3857 // Note: functions are handled below. 3858 if (!T1Function && 3859 (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification || 3860 (Kind.isCStyleOrFunctionalCast() && 3861 RefRelationship == Sema::Ref_Related)) && 3862 (InitCategory.isXValue() || 3863 (InitCategory.isPRValue() && T2->isRecordType()) || 3864 (InitCategory.isPRValue() && T2->isArrayType()))) { 3865 ExprValueKind ValueKind = InitCategory.isXValue()? VK_XValue : VK_RValue; 3866 if (InitCategory.isPRValue() && T2->isRecordType()) { 3867 // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the 3868 // compiler the freedom to perform a copy here or bind to the 3869 // object, while C++0x requires that we bind directly to the 3870 // object. Hence, we always bind to the object without making an 3871 // extra copy. However, in C++03 requires that we check for the 3872 // presence of a suitable copy constructor: 3873 // 3874 // The constructor that would be used to make the copy shall 3875 // be callable whether or not the copy is actually done. 3876 if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt) 3877 Sequence.AddExtraneousCopyToTemporary(cv2T2); 3878 else if (S.getLangOpts().CPlusPlus11) 3879 CheckCXX98CompatAccessibleCopy(S, Entity, Initializer); 3880 } 3881 3882 if (DerivedToBase) 3883 Sequence.AddDerivedToBaseCastStep(S.Context.getQualifiedType(T1, T2Quals), 3884 ValueKind); 3885 else if (ObjCConversion) 3886 Sequence.AddObjCObjectConversionStep( 3887 S.Context.getQualifiedType(T1, T2Quals)); 3888 3889 ValueKind = convertQualifiersAndValueKindIfNecessary(S, Sequence, 3890 Initializer, cv1T1, 3891 T1Quals, T2Quals, 3892 isLValueRef); 3893 3894 Sequence.AddReferenceBindingStep(cv1T1, ValueKind == VK_RValue); 3895 return; 3896 } 3897 3898 // - has a class type (i.e., T2 is a class type), where T1 is not 3899 // reference-related to T2, and can be implicitly converted to an 3900 // xvalue, class prvalue, or function lvalue of type "cv3 T3", 3901 // where "cv1 T1" is reference-compatible with "cv3 T3", 3902 // 3903 // DR1287 removes the "implicitly" here. 3904 if (T2->isRecordType()) { 3905 if (RefRelationship == Sema::Ref_Incompatible) { 3906 ConvOvlResult = TryRefInitWithConversionFunction( 3907 S, Entity, Kind, Initializer, /*AllowRValues*/true, Sequence); 3908 if (ConvOvlResult) 3909 Sequence.SetOverloadFailure( 3910 InitializationSequence::FK_ReferenceInitOverloadFailed, 3911 ConvOvlResult); 3912 3913 return; 3914 } 3915 3916 if ((RefRelationship == Sema::Ref_Compatible || 3917 RefRelationship == Sema::Ref_Compatible_With_Added_Qualification) && 3918 isRValueRef && InitCategory.isLValue()) { 3919 Sequence.SetFailed( 3920 InitializationSequence::FK_RValueReferenceBindingToLValue); 3921 return; 3922 } 3923 3924 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); 3925 return; 3926 } 3927 3928 // - Otherwise, a temporary of type "cv1 T1" is created and initialized 3929 // from the initializer expression using the rules for a non-reference 3930 // copy-initialization (8.5). The reference is then bound to the 3931 // temporary. [...] 3932 3933 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1); 3934 3935 // FIXME: Why do we use an implicit conversion here rather than trying 3936 // copy-initialization? 3937 ImplicitConversionSequence ICS 3938 = S.TryImplicitConversion(Initializer, TempEntity.getType(), 3939 /*SuppressUserConversions=*/false, 3940 /*AllowExplicit=*/false, 3941 /*FIXME:InOverloadResolution=*/false, 3942 /*CStyle=*/Kind.isCStyleOrFunctionalCast(), 3943 /*AllowObjCWritebackConversion=*/false); 3944 3945 if (ICS.isBad()) { 3946 // FIXME: Use the conversion function set stored in ICS to turn 3947 // this into an overloading ambiguity diagnostic. However, we need 3948 // to keep that set as an OverloadCandidateSet rather than as some 3949 // other kind of set. 3950 if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) 3951 Sequence.SetOverloadFailure( 3952 InitializationSequence::FK_ReferenceInitOverloadFailed, 3953 ConvOvlResult); 3954 else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) 3955 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 3956 else 3957 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed); 3958 return; 3959 } else { 3960 Sequence.AddConversionSequenceStep(ICS, TempEntity.getType()); 3961 } 3962 3963 // [...] If T1 is reference-related to T2, cv1 must be the 3964 // same cv-qualification as, or greater cv-qualification 3965 // than, cv2; otherwise, the program is ill-formed. 3966 unsigned T1CVRQuals = T1Quals.getCVRQualifiers(); 3967 unsigned T2CVRQuals = T2Quals.getCVRQualifiers(); 3968 if (RefRelationship == Sema::Ref_Related && 3969 (T1CVRQuals | T2CVRQuals) != T1CVRQuals) { 3970 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); 3971 return; 3972 } 3973 3974 // [...] If T1 is reference-related to T2 and the reference is an rvalue 3975 // reference, the initializer expression shall not be an lvalue. 3976 if (RefRelationship >= Sema::Ref_Related && !isLValueRef && 3977 InitCategory.isLValue()) { 3978 Sequence.SetFailed( 3979 InitializationSequence::FK_RValueReferenceBindingToLValue); 3980 return; 3981 } 3982 3983 Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true); 3984 return; 3985 } 3986 3987 /// \brief Attempt character array initialization from a string literal 3988 /// (C++ [dcl.init.string], C99 6.7.8). 3989 static void TryStringLiteralInitialization(Sema &S, 3990 const InitializedEntity &Entity, 3991 const InitializationKind &Kind, 3992 Expr *Initializer, 3993 InitializationSequence &Sequence) { 3994 Sequence.AddStringInitStep(Entity.getType()); 3995 } 3996 3997 /// \brief Attempt value initialization (C++ [dcl.init]p7). 3998 static void TryValueInitialization(Sema &S, 3999 const InitializedEntity &Entity, 4000 const InitializationKind &Kind, 4001 InitializationSequence &Sequence, 4002 InitListExpr *InitList) { 4003 assert((!InitList || InitList->getNumInits() == 0) && 4004 "Shouldn't use value-init for non-empty init lists"); 4005 4006 // C++98 [dcl.init]p5, C++11 [dcl.init]p7: 4007 // 4008 // To value-initialize an object of type T means: 4009 QualType T = Entity.getType(); 4010 4011 // -- if T is an array type, then each element is value-initialized; 4012 T = S.Context.getBaseElementType(T); 4013 4014 if (const RecordType *RT = T->getAs<RecordType>()) { 4015 if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 4016 bool NeedZeroInitialization = true; 4017 if (!S.getLangOpts().CPlusPlus11) { 4018 // C++98: 4019 // -- if T is a class type (clause 9) with a user-declared constructor 4020 // (12.1), then the default constructor for T is called (and the 4021 // initialization is ill-formed if T has no accessible default 4022 // constructor); 4023 if (ClassDecl->hasUserDeclaredConstructor()) 4024 NeedZeroInitialization = false; 4025 } else { 4026 // C++11: 4027 // -- if T is a class type (clause 9) with either no default constructor 4028 // (12.1 [class.ctor]) or a default constructor that is user-provided 4029 // or deleted, then the object is default-initialized; 4030 CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl); 4031 if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted()) 4032 NeedZeroInitialization = false; 4033 } 4034 4035 // -- if T is a (possibly cv-qualified) non-union class type without a 4036 // user-provided or deleted default constructor, then the object is 4037 // zero-initialized and, if T has a non-trivial default constructor, 4038 // default-initialized; 4039 // The 'non-union' here was removed by DR1502. The 'non-trivial default 4040 // constructor' part was removed by DR1507. 4041 if (NeedZeroInitialization) 4042 Sequence.AddZeroInitializationStep(Entity.getType()); 4043 4044 // C++03: 4045 // -- if T is a non-union class type without a user-declared constructor, 4046 // then every non-static data member and base class component of T is 4047 // value-initialized; 4048 // [...] A program that calls for [...] value-initialization of an 4049 // entity of reference type is ill-formed. 4050 // 4051 // C++11 doesn't need this handling, because value-initialization does not 4052 // occur recursively there, and the implicit default constructor is 4053 // defined as deleted in the problematic cases. 4054 if (!S.getLangOpts().CPlusPlus11 && 4055 ClassDecl->hasUninitializedReferenceMember()) { 4056 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference); 4057 return; 4058 } 4059 4060 // If this is list-value-initialization, pass the empty init list on when 4061 // building the constructor call. This affects the semantics of a few 4062 // things (such as whether an explicit default constructor can be called). 4063 Expr *InitListAsExpr = InitList; 4064 MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0); 4065 bool InitListSyntax = InitList; 4066 4067 return TryConstructorInitialization(S, Entity, Kind, Args, T, Sequence, 4068 InitListSyntax); 4069 } 4070 } 4071 4072 Sequence.AddZeroInitializationStep(Entity.getType()); 4073 } 4074 4075 /// \brief Attempt default initialization (C++ [dcl.init]p6). 4076 static void TryDefaultInitialization(Sema &S, 4077 const InitializedEntity &Entity, 4078 const InitializationKind &Kind, 4079 InitializationSequence &Sequence) { 4080 assert(Kind.getKind() == InitializationKind::IK_Default); 4081 4082 // C++ [dcl.init]p6: 4083 // To default-initialize an object of type T means: 4084 // - if T is an array type, each element is default-initialized; 4085 QualType DestType = S.Context.getBaseElementType(Entity.getType()); 4086 4087 // - if T is a (possibly cv-qualified) class type (Clause 9), the default 4088 // constructor for T is called (and the initialization is ill-formed if 4089 // T has no accessible default constructor); 4090 if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) { 4091 TryConstructorInitialization(S, Entity, Kind, None, DestType, Sequence); 4092 return; 4093 } 4094 4095 // - otherwise, no initialization is performed. 4096 4097 // If a program calls for the default initialization of an object of 4098 // a const-qualified type T, T shall be a class type with a user-provided 4099 // default constructor. 4100 if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) { 4101 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); 4102 return; 4103 } 4104 4105 // If the destination type has a lifetime property, zero-initialize it. 4106 if (DestType.getQualifiers().hasObjCLifetime()) { 4107 Sequence.AddZeroInitializationStep(Entity.getType()); 4108 return; 4109 } 4110 } 4111 4112 /// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]), 4113 /// which enumerates all conversion functions and performs overload resolution 4114 /// to select the best. 4115 static void TryUserDefinedConversion(Sema &S, 4116 const InitializedEntity &Entity, 4117 const InitializationKind &Kind, 4118 Expr *Initializer, 4119 InitializationSequence &Sequence, 4120 bool TopLevelOfInitList) { 4121 QualType DestType = Entity.getType(); 4122 assert(!DestType->isReferenceType() && "References are handled elsewhere"); 4123 QualType SourceType = Initializer->getType(); 4124 assert((DestType->isRecordType() || SourceType->isRecordType()) && 4125 "Must have a class type to perform a user-defined conversion"); 4126 4127 // Build the candidate set directly in the initialization sequence 4128 // structure, so that it will persist if we fail. 4129 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 4130 CandidateSet.clear(); 4131 4132 // Determine whether we are allowed to call explicit constructors or 4133 // explicit conversion operators. 4134 bool AllowExplicit = Kind.AllowExplicit(); 4135 4136 if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) { 4137 // The type we're converting to is a class type. Enumerate its constructors 4138 // to see if there is a suitable conversion. 4139 CXXRecordDecl *DestRecordDecl 4140 = cast<CXXRecordDecl>(DestRecordType->getDecl()); 4141 4142 // Try to complete the type we're converting to. 4143 if (!S.RequireCompleteType(Kind.getLocation(), DestType, 0)) { 4144 DeclContext::lookup_result R = S.LookupConstructors(DestRecordDecl); 4145 // The container holding the constructors can under certain conditions 4146 // be changed while iterating. To be safe we copy the lookup results 4147 // to a new container. 4148 SmallVector<NamedDecl*, 8> CopyOfCon(R.begin(), R.end()); 4149 for (SmallVectorImpl<NamedDecl *>::iterator 4150 Con = CopyOfCon.begin(), ConEnd = CopyOfCon.end(); 4151 Con != ConEnd; ++Con) { 4152 NamedDecl *D = *Con; 4153 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess()); 4154 4155 // Find the constructor (which may be a template). 4156 CXXConstructorDecl *Constructor = nullptr; 4157 FunctionTemplateDecl *ConstructorTmpl 4158 = dyn_cast<FunctionTemplateDecl>(D); 4159 if (ConstructorTmpl) 4160 Constructor = cast<CXXConstructorDecl>( 4161 ConstructorTmpl->getTemplatedDecl()); 4162 else 4163 Constructor = cast<CXXConstructorDecl>(D); 4164 4165 if (!Constructor->isInvalidDecl() && 4166 Constructor->isConvertingConstructor(AllowExplicit)) { 4167 if (ConstructorTmpl) 4168 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, 4169 /*ExplicitArgs*/ nullptr, 4170 Initializer, CandidateSet, 4171 /*SuppressUserConversions=*/true); 4172 else 4173 S.AddOverloadCandidate(Constructor, FoundDecl, 4174 Initializer, CandidateSet, 4175 /*SuppressUserConversions=*/true); 4176 } 4177 } 4178 } 4179 } 4180 4181 SourceLocation DeclLoc = Initializer->getLocStart(); 4182 4183 if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) { 4184 // The type we're converting from is a class type, enumerate its conversion 4185 // functions. 4186 4187 // We can only enumerate the conversion functions for a complete type; if 4188 // the type isn't complete, simply skip this step. 4189 if (!S.RequireCompleteType(DeclLoc, SourceType, 0)) { 4190 CXXRecordDecl *SourceRecordDecl 4191 = cast<CXXRecordDecl>(SourceRecordType->getDecl()); 4192 4193 std::pair<CXXRecordDecl::conversion_iterator, 4194 CXXRecordDecl::conversion_iterator> 4195 Conversions = SourceRecordDecl->getVisibleConversionFunctions(); 4196 for (CXXRecordDecl::conversion_iterator 4197 I = Conversions.first, E = Conversions.second; I != E; ++I) { 4198 NamedDecl *D = *I; 4199 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 4200 if (isa<UsingShadowDecl>(D)) 4201 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 4202 4203 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 4204 CXXConversionDecl *Conv; 4205 if (ConvTemplate) 4206 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 4207 else 4208 Conv = cast<CXXConversionDecl>(D); 4209 4210 if (AllowExplicit || !Conv->isExplicit()) { 4211 if (ConvTemplate) 4212 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), 4213 ActingDC, Initializer, DestType, 4214 CandidateSet, AllowExplicit); 4215 else 4216 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, 4217 Initializer, DestType, CandidateSet, 4218 AllowExplicit); 4219 } 4220 } 4221 } 4222 } 4223 4224 // Perform overload resolution. If it fails, return the failed result. 4225 OverloadCandidateSet::iterator Best; 4226 if (OverloadingResult Result 4227 = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) { 4228 Sequence.SetOverloadFailure( 4229 InitializationSequence::FK_UserConversionOverloadFailed, 4230 Result); 4231 return; 4232 } 4233 4234 FunctionDecl *Function = Best->Function; 4235 Function->setReferenced(); 4236 bool HadMultipleCandidates = (CandidateSet.size() > 1); 4237 4238 if (isa<CXXConstructorDecl>(Function)) { 4239 // Add the user-defined conversion step. Any cv-qualification conversion is 4240 // subsumed by the initialization. Per DR5, the created temporary is of the 4241 // cv-unqualified type of the destination. 4242 Sequence.AddUserConversionStep(Function, Best->FoundDecl, 4243 DestType.getUnqualifiedType(), 4244 HadMultipleCandidates); 4245 return; 4246 } 4247 4248 // Add the user-defined conversion step that calls the conversion function. 4249 QualType ConvType = Function->getCallResultType(); 4250 if (ConvType->getAs<RecordType>()) { 4251 // If we're converting to a class type, there may be an copy of 4252 // the resulting temporary object (possible to create an object of 4253 // a base class type). That copy is not a separate conversion, so 4254 // we just make a note of the actual destination type (possibly a 4255 // base class of the type returned by the conversion function) and 4256 // let the user-defined conversion step handle the conversion. 4257 Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType, 4258 HadMultipleCandidates); 4259 return; 4260 } 4261 4262 Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType, 4263 HadMultipleCandidates); 4264 4265 // If the conversion following the call to the conversion function 4266 // is interesting, add it as a separate step. 4267 if (Best->FinalConversion.First || Best->FinalConversion.Second || 4268 Best->FinalConversion.Third) { 4269 ImplicitConversionSequence ICS; 4270 ICS.setStandard(); 4271 ICS.Standard = Best->FinalConversion; 4272 Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList); 4273 } 4274 } 4275 4276 /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>, 4277 /// a function with a pointer return type contains a 'return false;' statement. 4278 /// In C++11, 'false' is not a null pointer, so this breaks the build of any 4279 /// code using that header. 4280 /// 4281 /// Work around this by treating 'return false;' as zero-initializing the result 4282 /// if it's used in a pointer-returning function in a system header. 4283 static bool isLibstdcxxPointerReturnFalseHack(Sema &S, 4284 const InitializedEntity &Entity, 4285 const Expr *Init) { 4286 return S.getLangOpts().CPlusPlus11 && 4287 Entity.getKind() == InitializedEntity::EK_Result && 4288 Entity.getType()->isPointerType() && 4289 isa<CXXBoolLiteralExpr>(Init) && 4290 !cast<CXXBoolLiteralExpr>(Init)->getValue() && 4291 S.getSourceManager().isInSystemHeader(Init->getExprLoc()); 4292 } 4293 4294 /// The non-zero enum values here are indexes into diagnostic alternatives. 4295 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar }; 4296 4297 /// Determines whether this expression is an acceptable ICR source. 4298 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e, 4299 bool isAddressOf, bool &isWeakAccess) { 4300 // Skip parens. 4301 e = e->IgnoreParens(); 4302 4303 // Skip address-of nodes. 4304 if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) { 4305 if (op->getOpcode() == UO_AddrOf) 4306 return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true, 4307 isWeakAccess); 4308 4309 // Skip certain casts. 4310 } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) { 4311 switch (ce->getCastKind()) { 4312 case CK_Dependent: 4313 case CK_BitCast: 4314 case CK_LValueBitCast: 4315 case CK_NoOp: 4316 return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess); 4317 4318 case CK_ArrayToPointerDecay: 4319 return IIK_nonscalar; 4320 4321 case CK_NullToPointer: 4322 return IIK_okay; 4323 4324 default: 4325 break; 4326 } 4327 4328 // If we have a declaration reference, it had better be a local variable. 4329 } else if (isa<DeclRefExpr>(e)) { 4330 // set isWeakAccess to true, to mean that there will be an implicit 4331 // load which requires a cleanup. 4332 if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak) 4333 isWeakAccess = true; 4334 4335 if (!isAddressOf) return IIK_nonlocal; 4336 4337 VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl()); 4338 if (!var) return IIK_nonlocal; 4339 4340 return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal); 4341 4342 // If we have a conditional operator, check both sides. 4343 } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) { 4344 if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf, 4345 isWeakAccess)) 4346 return iik; 4347 4348 return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess); 4349 4350 // These are never scalar. 4351 } else if (isa<ArraySubscriptExpr>(e)) { 4352 return IIK_nonscalar; 4353 4354 // Otherwise, it needs to be a null pointer constant. 4355 } else { 4356 return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull) 4357 ? IIK_okay : IIK_nonlocal); 4358 } 4359 4360 return IIK_nonlocal; 4361 } 4362 4363 /// Check whether the given expression is a valid operand for an 4364 /// indirect copy/restore. 4365 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) { 4366 assert(src->isRValue()); 4367 bool isWeakAccess = false; 4368 InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess); 4369 // If isWeakAccess to true, there will be an implicit 4370 // load which requires a cleanup. 4371 if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess) 4372 S.ExprNeedsCleanups = true; 4373 4374 if (iik == IIK_okay) return; 4375 4376 S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback) 4377 << ((unsigned) iik - 1) // shift index into diagnostic explanations 4378 << src->getSourceRange(); 4379 } 4380 4381 /// \brief Determine whether we have compatible array types for the 4382 /// purposes of GNU by-copy array initialization. 4383 static bool hasCompatibleArrayTypes(ASTContext &Context, 4384 const ArrayType *Dest, 4385 const ArrayType *Source) { 4386 // If the source and destination array types are equivalent, we're 4387 // done. 4388 if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0))) 4389 return true; 4390 4391 // Make sure that the element types are the same. 4392 if (!Context.hasSameType(Dest->getElementType(), Source->getElementType())) 4393 return false; 4394 4395 // The only mismatch we allow is when the destination is an 4396 // incomplete array type and the source is a constant array type. 4397 return Source->isConstantArrayType() && Dest->isIncompleteArrayType(); 4398 } 4399 4400 static bool tryObjCWritebackConversion(Sema &S, 4401 InitializationSequence &Sequence, 4402 const InitializedEntity &Entity, 4403 Expr *Initializer) { 4404 bool ArrayDecay = false; 4405 QualType ArgType = Initializer->getType(); 4406 QualType ArgPointee; 4407 if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) { 4408 ArrayDecay = true; 4409 ArgPointee = ArgArrayType->getElementType(); 4410 ArgType = S.Context.getPointerType(ArgPointee); 4411 } 4412 4413 // Handle write-back conversion. 4414 QualType ConvertedArgType; 4415 if (!S.isObjCWritebackConversion(ArgType, Entity.getType(), 4416 ConvertedArgType)) 4417 return false; 4418 4419 // We should copy unless we're passing to an argument explicitly 4420 // marked 'out'. 4421 bool ShouldCopy = true; 4422 if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl())) 4423 ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); 4424 4425 // Do we need an lvalue conversion? 4426 if (ArrayDecay || Initializer->isGLValue()) { 4427 ImplicitConversionSequence ICS; 4428 ICS.setStandard(); 4429 ICS.Standard.setAsIdentityConversion(); 4430 4431 QualType ResultType; 4432 if (ArrayDecay) { 4433 ICS.Standard.First = ICK_Array_To_Pointer; 4434 ResultType = S.Context.getPointerType(ArgPointee); 4435 } else { 4436 ICS.Standard.First = ICK_Lvalue_To_Rvalue; 4437 ResultType = Initializer->getType().getNonLValueExprType(S.Context); 4438 } 4439 4440 Sequence.AddConversionSequenceStep(ICS, ResultType); 4441 } 4442 4443 Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy); 4444 return true; 4445 } 4446 4447 static bool TryOCLSamplerInitialization(Sema &S, 4448 InitializationSequence &Sequence, 4449 QualType DestType, 4450 Expr *Initializer) { 4451 if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() || 4452 !Initializer->isIntegerConstantExpr(S.getASTContext())) 4453 return false; 4454 4455 Sequence.AddOCLSamplerInitStep(DestType); 4456 return true; 4457 } 4458 4459 // 4460 // OpenCL 1.2 spec, s6.12.10 4461 // 4462 // The event argument can also be used to associate the 4463 // async_work_group_copy with a previous async copy allowing 4464 // an event to be shared by multiple async copies; otherwise 4465 // event should be zero. 4466 // 4467 static bool TryOCLZeroEventInitialization(Sema &S, 4468 InitializationSequence &Sequence, 4469 QualType DestType, 4470 Expr *Initializer) { 4471 if (!S.getLangOpts().OpenCL || !DestType->isEventT() || 4472 !Initializer->isIntegerConstantExpr(S.getASTContext()) || 4473 (Initializer->EvaluateKnownConstInt(S.getASTContext()) != 0)) 4474 return false; 4475 4476 Sequence.AddOCLZeroEventStep(DestType); 4477 return true; 4478 } 4479 4480 InitializationSequence::InitializationSequence(Sema &S, 4481 const InitializedEntity &Entity, 4482 const InitializationKind &Kind, 4483 MultiExprArg Args, 4484 bool TopLevelOfInitList) 4485 : FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) { 4486 InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList); 4487 } 4488 4489 void InitializationSequence::InitializeFrom(Sema &S, 4490 const InitializedEntity &Entity, 4491 const InitializationKind &Kind, 4492 MultiExprArg Args, 4493 bool TopLevelOfInitList) { 4494 ASTContext &Context = S.Context; 4495 4496 // Eliminate non-overload placeholder types in the arguments. We 4497 // need to do this before checking whether types are dependent 4498 // because lowering a pseudo-object expression might well give us 4499 // something of dependent type. 4500 for (unsigned I = 0, E = Args.size(); I != E; ++I) 4501 if (Args[I]->getType()->isNonOverloadPlaceholderType()) { 4502 // FIXME: should we be doing this here? 4503 ExprResult result = S.CheckPlaceholderExpr(Args[I]); 4504 if (result.isInvalid()) { 4505 SetFailed(FK_PlaceholderType); 4506 return; 4507 } 4508 Args[I] = result.get(); 4509 } 4510 4511 // C++0x [dcl.init]p16: 4512 // The semantics of initializers are as follows. The destination type is 4513 // the type of the object or reference being initialized and the source 4514 // type is the type of the initializer expression. The source type is not 4515 // defined when the initializer is a braced-init-list or when it is a 4516 // parenthesized list of expressions. 4517 QualType DestType = Entity.getType(); 4518 4519 if (DestType->isDependentType() || 4520 Expr::hasAnyTypeDependentArguments(Args)) { 4521 SequenceKind = DependentSequence; 4522 return; 4523 } 4524 4525 // Almost everything is a normal sequence. 4526 setSequenceKind(NormalSequence); 4527 4528 QualType SourceType; 4529 Expr *Initializer = nullptr; 4530 if (Args.size() == 1) { 4531 Initializer = Args[0]; 4532 if (S.getLangOpts().ObjC1) { 4533 if (S.CheckObjCBridgeRelatedConversions(Initializer->getLocStart(), 4534 DestType, Initializer->getType(), 4535 Initializer) || 4536 S.ConversionToObjCStringLiteralCheck(DestType, Initializer)) 4537 Args[0] = Initializer; 4538 4539 } 4540 if (!isa<InitListExpr>(Initializer)) 4541 SourceType = Initializer->getType(); 4542 } 4543 4544 // - If the initializer is a (non-parenthesized) braced-init-list, the 4545 // object is list-initialized (8.5.4). 4546 if (Kind.getKind() != InitializationKind::IK_Direct) { 4547 if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) { 4548 TryListInitialization(S, Entity, Kind, InitList, *this); 4549 return; 4550 } 4551 } 4552 4553 // - If the destination type is a reference type, see 8.5.3. 4554 if (DestType->isReferenceType()) { 4555 // C++0x [dcl.init.ref]p1: 4556 // A variable declared to be a T& or T&&, that is, "reference to type T" 4557 // (8.3.2), shall be initialized by an object, or function, of type T or 4558 // by an object that can be converted into a T. 4559 // (Therefore, multiple arguments are not permitted.) 4560 if (Args.size() != 1) 4561 SetFailed(FK_TooManyInitsForReference); 4562 else 4563 TryReferenceInitialization(S, Entity, Kind, Args[0], *this); 4564 return; 4565 } 4566 4567 // - If the initializer is (), the object is value-initialized. 4568 if (Kind.getKind() == InitializationKind::IK_Value || 4569 (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) { 4570 TryValueInitialization(S, Entity, Kind, *this); 4571 return; 4572 } 4573 4574 // Handle default initialization. 4575 if (Kind.getKind() == InitializationKind::IK_Default) { 4576 TryDefaultInitialization(S, Entity, Kind, *this); 4577 return; 4578 } 4579 4580 // - If the destination type is an array of characters, an array of 4581 // char16_t, an array of char32_t, or an array of wchar_t, and the 4582 // initializer is a string literal, see 8.5.2. 4583 // - Otherwise, if the destination type is an array, the program is 4584 // ill-formed. 4585 if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) { 4586 if (Initializer && isa<VariableArrayType>(DestAT)) { 4587 SetFailed(FK_VariableLengthArrayHasInitializer); 4588 return; 4589 } 4590 4591 if (Initializer) { 4592 switch (IsStringInit(Initializer, DestAT, Context)) { 4593 case SIF_None: 4594 TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this); 4595 return; 4596 case SIF_NarrowStringIntoWideChar: 4597 SetFailed(FK_NarrowStringIntoWideCharArray); 4598 return; 4599 case SIF_WideStringIntoChar: 4600 SetFailed(FK_WideStringIntoCharArray); 4601 return; 4602 case SIF_IncompatWideStringIntoWideChar: 4603 SetFailed(FK_IncompatWideStringIntoWideChar); 4604 return; 4605 case SIF_Other: 4606 break; 4607 } 4608 } 4609 4610 // Note: as an GNU C extension, we allow initialization of an 4611 // array from a compound literal that creates an array of the same 4612 // type, so long as the initializer has no side effects. 4613 if (!S.getLangOpts().CPlusPlus && Initializer && 4614 isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) && 4615 Initializer->getType()->isArrayType()) { 4616 const ArrayType *SourceAT 4617 = Context.getAsArrayType(Initializer->getType()); 4618 if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT)) 4619 SetFailed(FK_ArrayTypeMismatch); 4620 else if (Initializer->HasSideEffects(S.Context)) 4621 SetFailed(FK_NonConstantArrayInit); 4622 else { 4623 AddArrayInitStep(DestType); 4624 } 4625 } 4626 // Note: as a GNU C++ extension, we allow list-initialization of a 4627 // class member of array type from a parenthesized initializer list. 4628 else if (S.getLangOpts().CPlusPlus && 4629 Entity.getKind() == InitializedEntity::EK_Member && 4630 Initializer && isa<InitListExpr>(Initializer)) { 4631 TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer), 4632 *this); 4633 AddParenthesizedArrayInitStep(DestType); 4634 } else if (DestAT->getElementType()->isCharType()) 4635 SetFailed(FK_ArrayNeedsInitListOrStringLiteral); 4636 else if (IsWideCharCompatible(DestAT->getElementType(), Context)) 4637 SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral); 4638 else 4639 SetFailed(FK_ArrayNeedsInitList); 4640 4641 return; 4642 } 4643 4644 // Determine whether we should consider writeback conversions for 4645 // Objective-C ARC. 4646 bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount && 4647 Entity.isParameterKind(); 4648 4649 // We're at the end of the line for C: it's either a write-back conversion 4650 // or it's a C assignment. There's no need to check anything else. 4651 if (!S.getLangOpts().CPlusPlus) { 4652 // If allowed, check whether this is an Objective-C writeback conversion. 4653 if (allowObjCWritebackConversion && 4654 tryObjCWritebackConversion(S, *this, Entity, Initializer)) { 4655 return; 4656 } 4657 4658 if (TryOCLSamplerInitialization(S, *this, DestType, Initializer)) 4659 return; 4660 4661 if (TryOCLZeroEventInitialization(S, *this, DestType, Initializer)) 4662 return; 4663 4664 // Handle initialization in C 4665 AddCAssignmentStep(DestType); 4666 MaybeProduceObjCObject(S, *this, Entity); 4667 return; 4668 } 4669 4670 assert(S.getLangOpts().CPlusPlus); 4671 4672 // - If the destination type is a (possibly cv-qualified) class type: 4673 if (DestType->isRecordType()) { 4674 // - If the initialization is direct-initialization, or if it is 4675 // copy-initialization where the cv-unqualified version of the 4676 // source type is the same class as, or a derived class of, the 4677 // class of the destination, constructors are considered. [...] 4678 if (Kind.getKind() == InitializationKind::IK_Direct || 4679 (Kind.getKind() == InitializationKind::IK_Copy && 4680 (Context.hasSameUnqualifiedType(SourceType, DestType) || 4681 S.IsDerivedFrom(SourceType, DestType)))) 4682 TryConstructorInitialization(S, Entity, Kind, Args, 4683 Entity.getType(), *this); 4684 // - Otherwise (i.e., for the remaining copy-initialization cases), 4685 // user-defined conversion sequences that can convert from the source 4686 // type to the destination type or (when a conversion function is 4687 // used) to a derived class thereof are enumerated as described in 4688 // 13.3.1.4, and the best one is chosen through overload resolution 4689 // (13.3). 4690 else 4691 TryUserDefinedConversion(S, Entity, Kind, Initializer, *this, 4692 TopLevelOfInitList); 4693 return; 4694 } 4695 4696 if (Args.size() > 1) { 4697 SetFailed(FK_TooManyInitsForScalar); 4698 return; 4699 } 4700 assert(Args.size() == 1 && "Zero-argument case handled above"); 4701 4702 // - Otherwise, if the source type is a (possibly cv-qualified) class 4703 // type, conversion functions are considered. 4704 if (!SourceType.isNull() && SourceType->isRecordType()) { 4705 TryUserDefinedConversion(S, Entity, Kind, Initializer, *this, 4706 TopLevelOfInitList); 4707 MaybeProduceObjCObject(S, *this, Entity); 4708 return; 4709 } 4710 4711 // - Otherwise, the initial value of the object being initialized is the 4712 // (possibly converted) value of the initializer expression. Standard 4713 // conversions (Clause 4) will be used, if necessary, to convert the 4714 // initializer expression to the cv-unqualified version of the 4715 // destination type; no user-defined conversions are considered. 4716 4717 ImplicitConversionSequence ICS 4718 = S.TryImplicitConversion(Initializer, Entity.getType(), 4719 /*SuppressUserConversions*/true, 4720 /*AllowExplicitConversions*/ false, 4721 /*InOverloadResolution*/ false, 4722 /*CStyle=*/Kind.isCStyleOrFunctionalCast(), 4723 allowObjCWritebackConversion); 4724 4725 if (ICS.isStandard() && 4726 ICS.Standard.Second == ICK_Writeback_Conversion) { 4727 // Objective-C ARC writeback conversion. 4728 4729 // We should copy unless we're passing to an argument explicitly 4730 // marked 'out'. 4731 bool ShouldCopy = true; 4732 if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl())) 4733 ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); 4734 4735 // If there was an lvalue adjustment, add it as a separate conversion. 4736 if (ICS.Standard.First == ICK_Array_To_Pointer || 4737 ICS.Standard.First == ICK_Lvalue_To_Rvalue) { 4738 ImplicitConversionSequence LvalueICS; 4739 LvalueICS.setStandard(); 4740 LvalueICS.Standard.setAsIdentityConversion(); 4741 LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0)); 4742 LvalueICS.Standard.First = ICS.Standard.First; 4743 AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0)); 4744 } 4745 4746 AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy); 4747 } else if (ICS.isBad()) { 4748 DeclAccessPair dap; 4749 if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) { 4750 AddZeroInitializationStep(Entity.getType()); 4751 } else if (Initializer->getType() == Context.OverloadTy && 4752 !S.ResolveAddressOfOverloadedFunction(Initializer, DestType, 4753 false, dap)) 4754 SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 4755 else 4756 SetFailed(InitializationSequence::FK_ConversionFailed); 4757 } else { 4758 AddConversionSequenceStep(ICS, Entity.getType(), TopLevelOfInitList); 4759 4760 MaybeProduceObjCObject(S, *this, Entity); 4761 } 4762 } 4763 4764 InitializationSequence::~InitializationSequence() { 4765 for (SmallVectorImpl<Step>::iterator Step = Steps.begin(), 4766 StepEnd = Steps.end(); 4767 Step != StepEnd; ++Step) 4768 Step->Destroy(); 4769 } 4770 4771 //===----------------------------------------------------------------------===// 4772 // Perform initialization 4773 //===----------------------------------------------------------------------===// 4774 static Sema::AssignmentAction 4775 getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) { 4776 switch(Entity.getKind()) { 4777 case InitializedEntity::EK_Variable: 4778 case InitializedEntity::EK_New: 4779 case InitializedEntity::EK_Exception: 4780 case InitializedEntity::EK_Base: 4781 case InitializedEntity::EK_Delegating: 4782 return Sema::AA_Initializing; 4783 4784 case InitializedEntity::EK_Parameter: 4785 if (Entity.getDecl() && 4786 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) 4787 return Sema::AA_Sending; 4788 4789 return Sema::AA_Passing; 4790 4791 case InitializedEntity::EK_Parameter_CF_Audited: 4792 if (Entity.getDecl() && 4793 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) 4794 return Sema::AA_Sending; 4795 4796 return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited; 4797 4798 case InitializedEntity::EK_Result: 4799 return Sema::AA_Returning; 4800 4801 case InitializedEntity::EK_Temporary: 4802 case InitializedEntity::EK_RelatedResult: 4803 // FIXME: Can we tell apart casting vs. converting? 4804 return Sema::AA_Casting; 4805 4806 case InitializedEntity::EK_Member: 4807 case InitializedEntity::EK_ArrayElement: 4808 case InitializedEntity::EK_VectorElement: 4809 case InitializedEntity::EK_ComplexElement: 4810 case InitializedEntity::EK_BlockElement: 4811 case InitializedEntity::EK_LambdaCapture: 4812 case InitializedEntity::EK_CompoundLiteralInit: 4813 return Sema::AA_Initializing; 4814 } 4815 4816 llvm_unreachable("Invalid EntityKind!"); 4817 } 4818 4819 /// \brief Whether we should bind a created object as a temporary when 4820 /// initializing the given entity. 4821 static bool shouldBindAsTemporary(const InitializedEntity &Entity) { 4822 switch (Entity.getKind()) { 4823 case InitializedEntity::EK_ArrayElement: 4824 case InitializedEntity::EK_Member: 4825 case InitializedEntity::EK_Result: 4826 case InitializedEntity::EK_New: 4827 case InitializedEntity::EK_Variable: 4828 case InitializedEntity::EK_Base: 4829 case InitializedEntity::EK_Delegating: 4830 case InitializedEntity::EK_VectorElement: 4831 case InitializedEntity::EK_ComplexElement: 4832 case InitializedEntity::EK_Exception: 4833 case InitializedEntity::EK_BlockElement: 4834 case InitializedEntity::EK_LambdaCapture: 4835 case InitializedEntity::EK_CompoundLiteralInit: 4836 return false; 4837 4838 case InitializedEntity::EK_Parameter: 4839 case InitializedEntity::EK_Parameter_CF_Audited: 4840 case InitializedEntity::EK_Temporary: 4841 case InitializedEntity::EK_RelatedResult: 4842 return true; 4843 } 4844 4845 llvm_unreachable("missed an InitializedEntity kind?"); 4846 } 4847 4848 /// \brief Whether the given entity, when initialized with an object 4849 /// created for that initialization, requires destruction. 4850 static bool shouldDestroyTemporary(const InitializedEntity &Entity) { 4851 switch (Entity.getKind()) { 4852 case InitializedEntity::EK_Result: 4853 case InitializedEntity::EK_New: 4854 case InitializedEntity::EK_Base: 4855 case InitializedEntity::EK_Delegating: 4856 case InitializedEntity::EK_VectorElement: 4857 case InitializedEntity::EK_ComplexElement: 4858 case InitializedEntity::EK_BlockElement: 4859 case InitializedEntity::EK_LambdaCapture: 4860 return false; 4861 4862 case InitializedEntity::EK_Member: 4863 case InitializedEntity::EK_Variable: 4864 case InitializedEntity::EK_Parameter: 4865 case InitializedEntity::EK_Parameter_CF_Audited: 4866 case InitializedEntity::EK_Temporary: 4867 case InitializedEntity::EK_ArrayElement: 4868 case InitializedEntity::EK_Exception: 4869 case InitializedEntity::EK_CompoundLiteralInit: 4870 case InitializedEntity::EK_RelatedResult: 4871 return true; 4872 } 4873 4874 llvm_unreachable("missed an InitializedEntity kind?"); 4875 } 4876 4877 /// \brief Look for copy and move constructors and constructor templates, for 4878 /// copying an object via direct-initialization (per C++11 [dcl.init]p16). 4879 static void LookupCopyAndMoveConstructors(Sema &S, 4880 OverloadCandidateSet &CandidateSet, 4881 CXXRecordDecl *Class, 4882 Expr *CurInitExpr) { 4883 DeclContext::lookup_result R = S.LookupConstructors(Class); 4884 // The container holding the constructors can under certain conditions 4885 // be changed while iterating (e.g. because of deserialization). 4886 // To be safe we copy the lookup results to a new container. 4887 SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end()); 4888 for (SmallVectorImpl<NamedDecl *>::iterator 4889 CI = Ctors.begin(), CE = Ctors.end(); CI != CE; ++CI) { 4890 NamedDecl *D = *CI; 4891 CXXConstructorDecl *Constructor = nullptr; 4892 4893 if ((Constructor = dyn_cast<CXXConstructorDecl>(D))) { 4894 // Handle copy/moveconstructors, only. 4895 if (!Constructor || Constructor->isInvalidDecl() || 4896 !Constructor->isCopyOrMoveConstructor() || 4897 !Constructor->isConvertingConstructor(/*AllowExplicit=*/true)) 4898 continue; 4899 4900 DeclAccessPair FoundDecl 4901 = DeclAccessPair::make(Constructor, Constructor->getAccess()); 4902 S.AddOverloadCandidate(Constructor, FoundDecl, 4903 CurInitExpr, CandidateSet); 4904 continue; 4905 } 4906 4907 // Handle constructor templates. 4908 FunctionTemplateDecl *ConstructorTmpl = cast<FunctionTemplateDecl>(D); 4909 if (ConstructorTmpl->isInvalidDecl()) 4910 continue; 4911 4912 Constructor = cast<CXXConstructorDecl>( 4913 ConstructorTmpl->getTemplatedDecl()); 4914 if (!Constructor->isConvertingConstructor(/*AllowExplicit=*/true)) 4915 continue; 4916 4917 // FIXME: Do we need to limit this to copy-constructor-like 4918 // candidates? 4919 DeclAccessPair FoundDecl 4920 = DeclAccessPair::make(ConstructorTmpl, ConstructorTmpl->getAccess()); 4921 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, nullptr, 4922 CurInitExpr, CandidateSet, true); 4923 } 4924 } 4925 4926 /// \brief Get the location at which initialization diagnostics should appear. 4927 static SourceLocation getInitializationLoc(const InitializedEntity &Entity, 4928 Expr *Initializer) { 4929 switch (Entity.getKind()) { 4930 case InitializedEntity::EK_Result: 4931 return Entity.getReturnLoc(); 4932 4933 case InitializedEntity::EK_Exception: 4934 return Entity.getThrowLoc(); 4935 4936 case InitializedEntity::EK_Variable: 4937 return Entity.getDecl()->getLocation(); 4938 4939 case InitializedEntity::EK_LambdaCapture: 4940 return Entity.getCaptureLoc(); 4941 4942 case InitializedEntity::EK_ArrayElement: 4943 case InitializedEntity::EK_Member: 4944 case InitializedEntity::EK_Parameter: 4945 case InitializedEntity::EK_Parameter_CF_Audited: 4946 case InitializedEntity::EK_Temporary: 4947 case InitializedEntity::EK_New: 4948 case InitializedEntity::EK_Base: 4949 case InitializedEntity::EK_Delegating: 4950 case InitializedEntity::EK_VectorElement: 4951 case InitializedEntity::EK_ComplexElement: 4952 case InitializedEntity::EK_BlockElement: 4953 case InitializedEntity::EK_CompoundLiteralInit: 4954 case InitializedEntity::EK_RelatedResult: 4955 return Initializer->getLocStart(); 4956 } 4957 llvm_unreachable("missed an InitializedEntity kind?"); 4958 } 4959 4960 /// \brief Make a (potentially elidable) temporary copy of the object 4961 /// provided by the given initializer by calling the appropriate copy 4962 /// constructor. 4963 /// 4964 /// \param S The Sema object used for type-checking. 4965 /// 4966 /// \param T The type of the temporary object, which must either be 4967 /// the type of the initializer expression or a superclass thereof. 4968 /// 4969 /// \param Entity The entity being initialized. 4970 /// 4971 /// \param CurInit The initializer expression. 4972 /// 4973 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that 4974 /// is permitted in C++03 (but not C++0x) when binding a reference to 4975 /// an rvalue. 4976 /// 4977 /// \returns An expression that copies the initializer expression into 4978 /// a temporary object, or an error expression if a copy could not be 4979 /// created. 4980 static ExprResult CopyObject(Sema &S, 4981 QualType T, 4982 const InitializedEntity &Entity, 4983 ExprResult CurInit, 4984 bool IsExtraneousCopy) { 4985 // Determine which class type we're copying to. 4986 Expr *CurInitExpr = (Expr *)CurInit.get(); 4987 CXXRecordDecl *Class = nullptr; 4988 if (const RecordType *Record = T->getAs<RecordType>()) 4989 Class = cast<CXXRecordDecl>(Record->getDecl()); 4990 if (!Class) 4991 return CurInit; 4992 4993 // C++0x [class.copy]p32: 4994 // When certain criteria are met, an implementation is allowed to 4995 // omit the copy/move construction of a class object, even if the 4996 // copy/move constructor and/or destructor for the object have 4997 // side effects. [...] 4998 // - when a temporary class object that has not been bound to a 4999 // reference (12.2) would be copied/moved to a class object 5000 // with the same cv-unqualified type, the copy/move operation 5001 // can be omitted by constructing the temporary object 5002 // directly into the target of the omitted copy/move 5003 // 5004 // Note that the other three bullets are handled elsewhere. Copy 5005 // elision for return statements and throw expressions are handled as part 5006 // of constructor initialization, while copy elision for exception handlers 5007 // is handled by the run-time. 5008 bool Elidable = CurInitExpr->isTemporaryObject(S.Context, Class); 5009 SourceLocation Loc = getInitializationLoc(Entity, CurInit.get()); 5010 5011 // Make sure that the type we are copying is complete. 5012 if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete)) 5013 return CurInit; 5014 5015 // Perform overload resolution using the class's copy/move constructors. 5016 // Only consider constructors and constructor templates. Per 5017 // C++0x [dcl.init]p16, second bullet to class types, this initialization 5018 // is direct-initialization. 5019 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); 5020 LookupCopyAndMoveConstructors(S, CandidateSet, Class, CurInitExpr); 5021 5022 bool HadMultipleCandidates = (CandidateSet.size() > 1); 5023 5024 OverloadCandidateSet::iterator Best; 5025 switch (CandidateSet.BestViableFunction(S, Loc, Best)) { 5026 case OR_Success: 5027 break; 5028 5029 case OR_No_Viable_Function: 5030 S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext() 5031 ? diag::ext_rvalue_to_reference_temp_copy_no_viable 5032 : diag::err_temp_copy_no_viable) 5033 << (int)Entity.getKind() << CurInitExpr->getType() 5034 << CurInitExpr->getSourceRange(); 5035 CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr); 5036 if (!IsExtraneousCopy || S.isSFINAEContext()) 5037 return ExprError(); 5038 return CurInit; 5039 5040 case OR_Ambiguous: 5041 S.Diag(Loc, diag::err_temp_copy_ambiguous) 5042 << (int)Entity.getKind() << CurInitExpr->getType() 5043 << CurInitExpr->getSourceRange(); 5044 CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr); 5045 return ExprError(); 5046 5047 case OR_Deleted: 5048 S.Diag(Loc, diag::err_temp_copy_deleted) 5049 << (int)Entity.getKind() << CurInitExpr->getType() 5050 << CurInitExpr->getSourceRange(); 5051 S.NoteDeletedFunction(Best->Function); 5052 return ExprError(); 5053 } 5054 5055 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function); 5056 SmallVector<Expr*, 8> ConstructorArgs; 5057 CurInit.get(); // Ownership transferred into MultiExprArg, below. 5058 5059 S.CheckConstructorAccess(Loc, Constructor, Entity, 5060 Best->FoundDecl.getAccess(), IsExtraneousCopy); 5061 5062 if (IsExtraneousCopy) { 5063 // If this is a totally extraneous copy for C++03 reference 5064 // binding purposes, just return the original initialization 5065 // expression. We don't generate an (elided) copy operation here 5066 // because doing so would require us to pass down a flag to avoid 5067 // infinite recursion, where each step adds another extraneous, 5068 // elidable copy. 5069 5070 // Instantiate the default arguments of any extra parameters in 5071 // the selected copy constructor, as if we were going to create a 5072 // proper call to the copy constructor. 5073 for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) { 5074 ParmVarDecl *Parm = Constructor->getParamDecl(I); 5075 if (S.RequireCompleteType(Loc, Parm->getType(), 5076 diag::err_call_incomplete_argument)) 5077 break; 5078 5079 // Build the default argument expression; we don't actually care 5080 // if this succeeds or not, because this routine will complain 5081 // if there was a problem. 5082 S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm); 5083 } 5084 5085 return CurInitExpr; 5086 } 5087 5088 // Determine the arguments required to actually perform the 5089 // constructor call (we might have derived-to-base conversions, or 5090 // the copy constructor may have default arguments). 5091 if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs)) 5092 return ExprError(); 5093 5094 // Actually perform the constructor call. 5095 CurInit = S.BuildCXXConstructExpr(Loc, T, Constructor, Elidable, 5096 ConstructorArgs, 5097 HadMultipleCandidates, 5098 /*ListInit*/ false, 5099 /*ZeroInit*/ false, 5100 CXXConstructExpr::CK_Complete, 5101 SourceRange()); 5102 5103 // If we're supposed to bind temporaries, do so. 5104 if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity)) 5105 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>()); 5106 return CurInit; 5107 } 5108 5109 /// \brief Check whether elidable copy construction for binding a reference to 5110 /// a temporary would have succeeded if we were building in C++98 mode, for 5111 /// -Wc++98-compat. 5112 static void CheckCXX98CompatAccessibleCopy(Sema &S, 5113 const InitializedEntity &Entity, 5114 Expr *CurInitExpr) { 5115 assert(S.getLangOpts().CPlusPlus11); 5116 5117 const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>(); 5118 if (!Record) 5119 return; 5120 5121 SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr); 5122 if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc)) 5123 return; 5124 5125 // Find constructors which would have been considered. 5126 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); 5127 LookupCopyAndMoveConstructors( 5128 S, CandidateSet, cast<CXXRecordDecl>(Record->getDecl()), CurInitExpr); 5129 5130 // Perform overload resolution. 5131 OverloadCandidateSet::iterator Best; 5132 OverloadingResult OR = CandidateSet.BestViableFunction(S, Loc, Best); 5133 5134 PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy) 5135 << OR << (int)Entity.getKind() << CurInitExpr->getType() 5136 << CurInitExpr->getSourceRange(); 5137 5138 switch (OR) { 5139 case OR_Success: 5140 S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function), 5141 Entity, Best->FoundDecl.getAccess(), Diag); 5142 // FIXME: Check default arguments as far as that's possible. 5143 break; 5144 5145 case OR_No_Viable_Function: 5146 S.Diag(Loc, Diag); 5147 CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr); 5148 break; 5149 5150 case OR_Ambiguous: 5151 S.Diag(Loc, Diag); 5152 CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr); 5153 break; 5154 5155 case OR_Deleted: 5156 S.Diag(Loc, Diag); 5157 S.NoteDeletedFunction(Best->Function); 5158 break; 5159 } 5160 } 5161 5162 void InitializationSequence::PrintInitLocationNote(Sema &S, 5163 const InitializedEntity &Entity) { 5164 if (Entity.isParameterKind() && Entity.getDecl()) { 5165 if (Entity.getDecl()->getLocation().isInvalid()) 5166 return; 5167 5168 if (Entity.getDecl()->getDeclName()) 5169 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here) 5170 << Entity.getDecl()->getDeclName(); 5171 else 5172 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here); 5173 } 5174 else if (Entity.getKind() == InitializedEntity::EK_RelatedResult && 5175 Entity.getMethodDecl()) 5176 S.Diag(Entity.getMethodDecl()->getLocation(), 5177 diag::note_method_return_type_change) 5178 << Entity.getMethodDecl()->getDeclName(); 5179 } 5180 5181 static bool isReferenceBinding(const InitializationSequence::Step &s) { 5182 return s.Kind == InitializationSequence::SK_BindReference || 5183 s.Kind == InitializationSequence::SK_BindReferenceToTemporary; 5184 } 5185 5186 /// Returns true if the parameters describe a constructor initialization of 5187 /// an explicit temporary object, e.g. "Point(x, y)". 5188 static bool isExplicitTemporary(const InitializedEntity &Entity, 5189 const InitializationKind &Kind, 5190 unsigned NumArgs) { 5191 switch (Entity.getKind()) { 5192 case InitializedEntity::EK_Temporary: 5193 case InitializedEntity::EK_CompoundLiteralInit: 5194 case InitializedEntity::EK_RelatedResult: 5195 break; 5196 default: 5197 return false; 5198 } 5199 5200 switch (Kind.getKind()) { 5201 case InitializationKind::IK_DirectList: 5202 return true; 5203 // FIXME: Hack to work around cast weirdness. 5204 case InitializationKind::IK_Direct: 5205 case InitializationKind::IK_Value: 5206 return NumArgs != 1; 5207 default: 5208 return false; 5209 } 5210 } 5211 5212 static ExprResult 5213 PerformConstructorInitialization(Sema &S, 5214 const InitializedEntity &Entity, 5215 const InitializationKind &Kind, 5216 MultiExprArg Args, 5217 const InitializationSequence::Step& Step, 5218 bool &ConstructorInitRequiresZeroInit, 5219 bool IsListInitialization, 5220 SourceLocation LBraceLoc, 5221 SourceLocation RBraceLoc) { 5222 unsigned NumArgs = Args.size(); 5223 CXXConstructorDecl *Constructor 5224 = cast<CXXConstructorDecl>(Step.Function.Function); 5225 bool HadMultipleCandidates = Step.Function.HadMultipleCandidates; 5226 5227 // Build a call to the selected constructor. 5228 SmallVector<Expr*, 8> ConstructorArgs; 5229 SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid()) 5230 ? Kind.getEqualLoc() 5231 : Kind.getLocation(); 5232 5233 if (Kind.getKind() == InitializationKind::IK_Default) { 5234 // Force even a trivial, implicit default constructor to be 5235 // semantically checked. We do this explicitly because we don't build 5236 // the definition for completely trivial constructors. 5237 assert(Constructor->getParent() && "No parent class for constructor."); 5238 if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() && 5239 Constructor->isTrivial() && !Constructor->isUsed(false)) 5240 S.DefineImplicitDefaultConstructor(Loc, Constructor); 5241 } 5242 5243 ExprResult CurInit((Expr *)nullptr); 5244 5245 // C++ [over.match.copy]p1: 5246 // - When initializing a temporary to be bound to the first parameter 5247 // of a constructor that takes a reference to possibly cv-qualified 5248 // T as its first argument, called with a single argument in the 5249 // context of direct-initialization, explicit conversion functions 5250 // are also considered. 5251 bool AllowExplicitConv = Kind.AllowExplicit() && !Kind.isCopyInit() && 5252 Args.size() == 1 && 5253 Constructor->isCopyOrMoveConstructor(); 5254 5255 // Determine the arguments required to actually perform the constructor 5256 // call. 5257 if (S.CompleteConstructorCall(Constructor, Args, 5258 Loc, ConstructorArgs, 5259 AllowExplicitConv, 5260 IsListInitialization)) 5261 return ExprError(); 5262 5263 5264 if (isExplicitTemporary(Entity, Kind, NumArgs)) { 5265 // An explicitly-constructed temporary, e.g., X(1, 2). 5266 S.MarkFunctionReferenced(Loc, Constructor); 5267 if (S.DiagnoseUseOfDecl(Constructor, Loc)) 5268 return ExprError(); 5269 5270 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); 5271 if (!TSInfo) 5272 TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc); 5273 SourceRange ParenOrBraceRange = 5274 (Kind.getKind() == InitializationKind::IK_DirectList) 5275 ? SourceRange(LBraceLoc, RBraceLoc) 5276 : Kind.getParenRange(); 5277 5278 CurInit = new (S.Context) CXXTemporaryObjectExpr( 5279 S.Context, Constructor, TSInfo, ConstructorArgs, ParenOrBraceRange, 5280 HadMultipleCandidates, IsListInitialization, 5281 ConstructorInitRequiresZeroInit); 5282 } else { 5283 CXXConstructExpr::ConstructionKind ConstructKind = 5284 CXXConstructExpr::CK_Complete; 5285 5286 if (Entity.getKind() == InitializedEntity::EK_Base) { 5287 ConstructKind = Entity.getBaseSpecifier()->isVirtual() ? 5288 CXXConstructExpr::CK_VirtualBase : 5289 CXXConstructExpr::CK_NonVirtualBase; 5290 } else if (Entity.getKind() == InitializedEntity::EK_Delegating) { 5291 ConstructKind = CXXConstructExpr::CK_Delegating; 5292 } 5293 5294 // Only get the parenthesis or brace range if it is a list initialization or 5295 // direct construction. 5296 SourceRange ParenOrBraceRange; 5297 if (IsListInitialization) 5298 ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc); 5299 else if (Kind.getKind() == InitializationKind::IK_Direct) 5300 ParenOrBraceRange = Kind.getParenRange(); 5301 5302 // If the entity allows NRVO, mark the construction as elidable 5303 // unconditionally. 5304 if (Entity.allowsNRVO()) 5305 CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(), 5306 Constructor, /*Elidable=*/true, 5307 ConstructorArgs, 5308 HadMultipleCandidates, 5309 IsListInitialization, 5310 ConstructorInitRequiresZeroInit, 5311 ConstructKind, 5312 ParenOrBraceRange); 5313 else 5314 CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(), 5315 Constructor, 5316 ConstructorArgs, 5317 HadMultipleCandidates, 5318 IsListInitialization, 5319 ConstructorInitRequiresZeroInit, 5320 ConstructKind, 5321 ParenOrBraceRange); 5322 } 5323 if (CurInit.isInvalid()) 5324 return ExprError(); 5325 5326 // Only check access if all of that succeeded. 5327 S.CheckConstructorAccess(Loc, Constructor, Entity, 5328 Step.Function.FoundDecl.getAccess()); 5329 if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc)) 5330 return ExprError(); 5331 5332 if (shouldBindAsTemporary(Entity)) 5333 CurInit = S.MaybeBindToTemporary(CurInit.get()); 5334 5335 return CurInit; 5336 } 5337 5338 /// Determine whether the specified InitializedEntity definitely has a lifetime 5339 /// longer than the current full-expression. Conservatively returns false if 5340 /// it's unclear. 5341 static bool 5342 InitializedEntityOutlivesFullExpression(const InitializedEntity &Entity) { 5343 const InitializedEntity *Top = &Entity; 5344 while (Top->getParent()) 5345 Top = Top->getParent(); 5346 5347 switch (Top->getKind()) { 5348 case InitializedEntity::EK_Variable: 5349 case InitializedEntity::EK_Result: 5350 case InitializedEntity::EK_Exception: 5351 case InitializedEntity::EK_Member: 5352 case InitializedEntity::EK_New: 5353 case InitializedEntity::EK_Base: 5354 case InitializedEntity::EK_Delegating: 5355 return true; 5356 5357 case InitializedEntity::EK_ArrayElement: 5358 case InitializedEntity::EK_VectorElement: 5359 case InitializedEntity::EK_BlockElement: 5360 case InitializedEntity::EK_ComplexElement: 5361 // Could not determine what the full initialization is. Assume it might not 5362 // outlive the full-expression. 5363 return false; 5364 5365 case InitializedEntity::EK_Parameter: 5366 case InitializedEntity::EK_Parameter_CF_Audited: 5367 case InitializedEntity::EK_Temporary: 5368 case InitializedEntity::EK_LambdaCapture: 5369 case InitializedEntity::EK_CompoundLiteralInit: 5370 case InitializedEntity::EK_RelatedResult: 5371 // The entity being initialized might not outlive the full-expression. 5372 return false; 5373 } 5374 5375 llvm_unreachable("unknown entity kind"); 5376 } 5377 5378 /// Determine the declaration which an initialized entity ultimately refers to, 5379 /// for the purpose of lifetime-extending a temporary bound to a reference in 5380 /// the initialization of \p Entity. 5381 static const InitializedEntity *getEntityForTemporaryLifetimeExtension( 5382 const InitializedEntity *Entity, 5383 const InitializedEntity *FallbackDecl = nullptr) { 5384 // C++11 [class.temporary]p5: 5385 switch (Entity->getKind()) { 5386 case InitializedEntity::EK_Variable: 5387 // The temporary [...] persists for the lifetime of the reference 5388 return Entity; 5389 5390 case InitializedEntity::EK_Member: 5391 // For subobjects, we look at the complete object. 5392 if (Entity->getParent()) 5393 return getEntityForTemporaryLifetimeExtension(Entity->getParent(), 5394 Entity); 5395 5396 // except: 5397 // -- A temporary bound to a reference member in a constructor's 5398 // ctor-initializer persists until the constructor exits. 5399 return Entity; 5400 5401 case InitializedEntity::EK_Parameter: 5402 case InitializedEntity::EK_Parameter_CF_Audited: 5403 // -- A temporary bound to a reference parameter in a function call 5404 // persists until the completion of the full-expression containing 5405 // the call. 5406 case InitializedEntity::EK_Result: 5407 // -- The lifetime of a temporary bound to the returned value in a 5408 // function return statement is not extended; the temporary is 5409 // destroyed at the end of the full-expression in the return statement. 5410 case InitializedEntity::EK_New: 5411 // -- A temporary bound to a reference in a new-initializer persists 5412 // until the completion of the full-expression containing the 5413 // new-initializer. 5414 return nullptr; 5415 5416 case InitializedEntity::EK_Temporary: 5417 case InitializedEntity::EK_CompoundLiteralInit: 5418 case InitializedEntity::EK_RelatedResult: 5419 // We don't yet know the storage duration of the surrounding temporary. 5420 // Assume it's got full-expression duration for now, it will patch up our 5421 // storage duration if that's not correct. 5422 return nullptr; 5423 5424 case InitializedEntity::EK_ArrayElement: 5425 // For subobjects, we look at the complete object. 5426 return getEntityForTemporaryLifetimeExtension(Entity->getParent(), 5427 FallbackDecl); 5428 5429 case InitializedEntity::EK_Base: 5430 case InitializedEntity::EK_Delegating: 5431 // We can reach this case for aggregate initialization in a constructor: 5432 // struct A { int &&r; }; 5433 // struct B : A { B() : A{0} {} }; 5434 // In this case, use the innermost field decl as the context. 5435 return FallbackDecl; 5436 5437 case InitializedEntity::EK_BlockElement: 5438 case InitializedEntity::EK_LambdaCapture: 5439 case InitializedEntity::EK_Exception: 5440 case InitializedEntity::EK_VectorElement: 5441 case InitializedEntity::EK_ComplexElement: 5442 return nullptr; 5443 } 5444 llvm_unreachable("unknown entity kind"); 5445 } 5446 5447 static void performLifetimeExtension(Expr *Init, 5448 const InitializedEntity *ExtendingEntity); 5449 5450 /// Update a glvalue expression that is used as the initializer of a reference 5451 /// to note that its lifetime is extended. 5452 /// \return \c true if any temporary had its lifetime extended. 5453 static bool 5454 performReferenceExtension(Expr *Init, 5455 const InitializedEntity *ExtendingEntity) { 5456 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 5457 if (ILE->getNumInits() == 1 && ILE->isGLValue()) { 5458 // This is just redundant braces around an initializer. Step over it. 5459 Init = ILE->getInit(0); 5460 } 5461 } 5462 5463 // Walk past any constructs which we can lifetime-extend across. 5464 Expr *Old; 5465 do { 5466 Old = Init; 5467 5468 // Step over any subobject adjustments; we may have a materialized 5469 // temporary inside them. 5470 SmallVector<const Expr *, 2> CommaLHSs; 5471 SmallVector<SubobjectAdjustment, 2> Adjustments; 5472 Init = const_cast<Expr *>( 5473 Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments)); 5474 5475 // Per current approach for DR1376, look through casts to reference type 5476 // when performing lifetime extension. 5477 if (CastExpr *CE = dyn_cast<CastExpr>(Init)) 5478 if (CE->getSubExpr()->isGLValue()) 5479 Init = CE->getSubExpr(); 5480 5481 // FIXME: Per DR1213, subscripting on an array temporary produces an xvalue. 5482 // It's unclear if binding a reference to that xvalue extends the array 5483 // temporary. 5484 } while (Init != Old); 5485 5486 if (MaterializeTemporaryExpr *ME = dyn_cast<MaterializeTemporaryExpr>(Init)) { 5487 // Update the storage duration of the materialized temporary. 5488 // FIXME: Rebuild the expression instead of mutating it. 5489 ME->setExtendingDecl(ExtendingEntity->getDecl(), 5490 ExtendingEntity->allocateManglingNumber()); 5491 performLifetimeExtension(ME->GetTemporaryExpr(), ExtendingEntity); 5492 return true; 5493 } 5494 5495 return false; 5496 } 5497 5498 /// Update a prvalue expression that is going to be materialized as a 5499 /// lifetime-extended temporary. 5500 static void performLifetimeExtension(Expr *Init, 5501 const InitializedEntity *ExtendingEntity) { 5502 // Dig out the expression which constructs the extended temporary. 5503 SmallVector<const Expr *, 2> CommaLHSs; 5504 SmallVector<SubobjectAdjustment, 2> Adjustments; 5505 Init = const_cast<Expr *>( 5506 Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments)); 5507 5508 if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init)) 5509 Init = BTE->getSubExpr(); 5510 5511 if (CXXStdInitializerListExpr *ILE = 5512 dyn_cast<CXXStdInitializerListExpr>(Init)) { 5513 performReferenceExtension(ILE->getSubExpr(), ExtendingEntity); 5514 return; 5515 } 5516 5517 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 5518 if (ILE->getType()->isArrayType()) { 5519 for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I) 5520 performLifetimeExtension(ILE->getInit(I), ExtendingEntity); 5521 return; 5522 } 5523 5524 if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) { 5525 assert(RD->isAggregate() && "aggregate init on non-aggregate"); 5526 5527 // If we lifetime-extend a braced initializer which is initializing an 5528 // aggregate, and that aggregate contains reference members which are 5529 // bound to temporaries, those temporaries are also lifetime-extended. 5530 if (RD->isUnion() && ILE->getInitializedFieldInUnion() && 5531 ILE->getInitializedFieldInUnion()->getType()->isReferenceType()) 5532 performReferenceExtension(ILE->getInit(0), ExtendingEntity); 5533 else { 5534 unsigned Index = 0; 5535 for (const auto *I : RD->fields()) { 5536 if (Index >= ILE->getNumInits()) 5537 break; 5538 if (I->isUnnamedBitfield()) 5539 continue; 5540 Expr *SubInit = ILE->getInit(Index); 5541 if (I->getType()->isReferenceType()) 5542 performReferenceExtension(SubInit, ExtendingEntity); 5543 else if (isa<InitListExpr>(SubInit) || 5544 isa<CXXStdInitializerListExpr>(SubInit)) 5545 // This may be either aggregate-initialization of a member or 5546 // initialization of a std::initializer_list object. Either way, 5547 // we should recursively lifetime-extend that initializer. 5548 performLifetimeExtension(SubInit, ExtendingEntity); 5549 ++Index; 5550 } 5551 } 5552 } 5553 } 5554 } 5555 5556 static void warnOnLifetimeExtension(Sema &S, const InitializedEntity &Entity, 5557 const Expr *Init, bool IsInitializerList, 5558 const ValueDecl *ExtendingDecl) { 5559 // Warn if a field lifetime-extends a temporary. 5560 if (isa<FieldDecl>(ExtendingDecl)) { 5561 if (IsInitializerList) { 5562 S.Diag(Init->getExprLoc(), diag::warn_dangling_std_initializer_list) 5563 << /*at end of constructor*/true; 5564 return; 5565 } 5566 5567 bool IsSubobjectMember = false; 5568 for (const InitializedEntity *Ent = Entity.getParent(); Ent; 5569 Ent = Ent->getParent()) { 5570 if (Ent->getKind() != InitializedEntity::EK_Base) { 5571 IsSubobjectMember = true; 5572 break; 5573 } 5574 } 5575 S.Diag(Init->getExprLoc(), 5576 diag::warn_bind_ref_member_to_temporary) 5577 << ExtendingDecl << Init->getSourceRange() 5578 << IsSubobjectMember << IsInitializerList; 5579 if (IsSubobjectMember) 5580 S.Diag(ExtendingDecl->getLocation(), 5581 diag::note_ref_subobject_of_member_declared_here); 5582 else 5583 S.Diag(ExtendingDecl->getLocation(), 5584 diag::note_ref_or_ptr_member_declared_here) 5585 << /*is pointer*/false; 5586 } 5587 } 5588 5589 static void DiagnoseNarrowingInInitList(Sema &S, 5590 const ImplicitConversionSequence &ICS, 5591 QualType PreNarrowingType, 5592 QualType EntityType, 5593 const Expr *PostInit); 5594 5595 ExprResult 5596 InitializationSequence::Perform(Sema &S, 5597 const InitializedEntity &Entity, 5598 const InitializationKind &Kind, 5599 MultiExprArg Args, 5600 QualType *ResultType) { 5601 if (Failed()) { 5602 Diagnose(S, Entity, Kind, Args); 5603 return ExprError(); 5604 } 5605 5606 if (getKind() == DependentSequence) { 5607 // If the declaration is a non-dependent, incomplete array type 5608 // that has an initializer, then its type will be completed once 5609 // the initializer is instantiated. 5610 if (ResultType && !Entity.getType()->isDependentType() && 5611 Args.size() == 1) { 5612 QualType DeclType = Entity.getType(); 5613 if (const IncompleteArrayType *ArrayT 5614 = S.Context.getAsIncompleteArrayType(DeclType)) { 5615 // FIXME: We don't currently have the ability to accurately 5616 // compute the length of an initializer list without 5617 // performing full type-checking of the initializer list 5618 // (since we have to determine where braces are implicitly 5619 // introduced and such). So, we fall back to making the array 5620 // type a dependently-sized array type with no specified 5621 // bound. 5622 if (isa<InitListExpr>((Expr *)Args[0])) { 5623 SourceRange Brackets; 5624 5625 // Scavange the location of the brackets from the entity, if we can. 5626 if (DeclaratorDecl *DD = Entity.getDecl()) { 5627 if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) { 5628 TypeLoc TL = TInfo->getTypeLoc(); 5629 if (IncompleteArrayTypeLoc ArrayLoc = 5630 TL.getAs<IncompleteArrayTypeLoc>()) 5631 Brackets = ArrayLoc.getBracketsRange(); 5632 } 5633 } 5634 5635 *ResultType 5636 = S.Context.getDependentSizedArrayType(ArrayT->getElementType(), 5637 /*NumElts=*/nullptr, 5638 ArrayT->getSizeModifier(), 5639 ArrayT->getIndexTypeCVRQualifiers(), 5640 Brackets); 5641 } 5642 5643 } 5644 } 5645 if (Kind.getKind() == InitializationKind::IK_Direct && 5646 !Kind.isExplicitCast()) { 5647 // Rebuild the ParenListExpr. 5648 SourceRange ParenRange = Kind.getParenRange(); 5649 return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(), 5650 Args); 5651 } 5652 assert(Kind.getKind() == InitializationKind::IK_Copy || 5653 Kind.isExplicitCast() || 5654 Kind.getKind() == InitializationKind::IK_DirectList); 5655 return ExprResult(Args[0]); 5656 } 5657 5658 // No steps means no initialization. 5659 if (Steps.empty()) 5660 return ExprResult((Expr *)nullptr); 5661 5662 if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() && 5663 Args.size() == 1 && isa<InitListExpr>(Args[0]) && 5664 !Entity.isParameterKind()) { 5665 // Produce a C++98 compatibility warning if we are initializing a reference 5666 // from an initializer list. For parameters, we produce a better warning 5667 // elsewhere. 5668 Expr *Init = Args[0]; 5669 S.Diag(Init->getLocStart(), diag::warn_cxx98_compat_reference_list_init) 5670 << Init->getSourceRange(); 5671 } 5672 5673 // Diagnose cases where we initialize a pointer to an array temporary, and the 5674 // pointer obviously outlives the temporary. 5675 if (Args.size() == 1 && Args[0]->getType()->isArrayType() && 5676 Entity.getType()->isPointerType() && 5677 InitializedEntityOutlivesFullExpression(Entity)) { 5678 Expr *Init = Args[0]; 5679 Expr::LValueClassification Kind = Init->ClassifyLValue(S.Context); 5680 if (Kind == Expr::LV_ClassTemporary || Kind == Expr::LV_ArrayTemporary) 5681 S.Diag(Init->getLocStart(), diag::warn_temporary_array_to_pointer_decay) 5682 << Init->getSourceRange(); 5683 } 5684 5685 QualType DestType = Entity.getType().getNonReferenceType(); 5686 // FIXME: Ugly hack around the fact that Entity.getType() is not 5687 // the same as Entity.getDecl()->getType() in cases involving type merging, 5688 // and we want latter when it makes sense. 5689 if (ResultType) 5690 *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() : 5691 Entity.getType(); 5692 5693 ExprResult CurInit((Expr *)nullptr); 5694 5695 // For initialization steps that start with a single initializer, 5696 // grab the only argument out the Args and place it into the "current" 5697 // initializer. 5698 switch (Steps.front().Kind) { 5699 case SK_ResolveAddressOfOverloadedFunction: 5700 case SK_CastDerivedToBaseRValue: 5701 case SK_CastDerivedToBaseXValue: 5702 case SK_CastDerivedToBaseLValue: 5703 case SK_BindReference: 5704 case SK_BindReferenceToTemporary: 5705 case SK_ExtraneousCopyToTemporary: 5706 case SK_UserConversion: 5707 case SK_QualificationConversionLValue: 5708 case SK_QualificationConversionXValue: 5709 case SK_QualificationConversionRValue: 5710 case SK_LValueToRValue: 5711 case SK_ConversionSequence: 5712 case SK_ConversionSequenceNoNarrowing: 5713 case SK_ListInitialization: 5714 case SK_UnwrapInitList: 5715 case SK_RewrapInitList: 5716 case SK_CAssignment: 5717 case SK_StringInit: 5718 case SK_ObjCObjectConversion: 5719 case SK_ArrayInit: 5720 case SK_ParenthesizedArrayInit: 5721 case SK_PassByIndirectCopyRestore: 5722 case SK_PassByIndirectRestore: 5723 case SK_ProduceObjCObject: 5724 case SK_StdInitializerList: 5725 case SK_OCLSamplerInit: 5726 case SK_OCLZeroEvent: { 5727 assert(Args.size() == 1); 5728 CurInit = Args[0]; 5729 if (!CurInit.get()) return ExprError(); 5730 break; 5731 } 5732 5733 case SK_ConstructorInitialization: 5734 case SK_ListConstructorCall: 5735 case SK_ZeroInitialization: 5736 break; 5737 } 5738 5739 // Walk through the computed steps for the initialization sequence, 5740 // performing the specified conversions along the way. 5741 bool ConstructorInitRequiresZeroInit = false; 5742 for (step_iterator Step = step_begin(), StepEnd = step_end(); 5743 Step != StepEnd; ++Step) { 5744 if (CurInit.isInvalid()) 5745 return ExprError(); 5746 5747 QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType(); 5748 5749 switch (Step->Kind) { 5750 case SK_ResolveAddressOfOverloadedFunction: 5751 // Overload resolution determined which function invoke; update the 5752 // initializer to reflect that choice. 5753 S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl); 5754 if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation())) 5755 return ExprError(); 5756 CurInit = S.FixOverloadedFunctionReference(CurInit, 5757 Step->Function.FoundDecl, 5758 Step->Function.Function); 5759 break; 5760 5761 case SK_CastDerivedToBaseRValue: 5762 case SK_CastDerivedToBaseXValue: 5763 case SK_CastDerivedToBaseLValue: { 5764 // We have a derived-to-base cast that produces either an rvalue or an 5765 // lvalue. Perform that cast. 5766 5767 CXXCastPath BasePath; 5768 5769 // Casts to inaccessible base classes are allowed with C-style casts. 5770 bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast(); 5771 if (S.CheckDerivedToBaseConversion(SourceType, Step->Type, 5772 CurInit.get()->getLocStart(), 5773 CurInit.get()->getSourceRange(), 5774 &BasePath, IgnoreBaseAccess)) 5775 return ExprError(); 5776 5777 if (S.BasePathInvolvesVirtualBase(BasePath)) { 5778 QualType T = SourceType; 5779 if (const PointerType *Pointer = T->getAs<PointerType>()) 5780 T = Pointer->getPointeeType(); 5781 if (const RecordType *RecordTy = T->getAs<RecordType>()) 5782 S.MarkVTableUsed(CurInit.get()->getLocStart(), 5783 cast<CXXRecordDecl>(RecordTy->getDecl())); 5784 } 5785 5786 ExprValueKind VK = 5787 Step->Kind == SK_CastDerivedToBaseLValue ? 5788 VK_LValue : 5789 (Step->Kind == SK_CastDerivedToBaseXValue ? 5790 VK_XValue : 5791 VK_RValue); 5792 CurInit = 5793 ImplicitCastExpr::Create(S.Context, Step->Type, CK_DerivedToBase, 5794 CurInit.get(), &BasePath, VK); 5795 break; 5796 } 5797 5798 case SK_BindReference: 5799 // References cannot bind to bit-fields (C++ [dcl.init.ref]p5). 5800 if (CurInit.get()->refersToBitField()) { 5801 // We don't necessarily have an unambiguous source bit-field. 5802 FieldDecl *BitField = CurInit.get()->getSourceBitField(); 5803 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield) 5804 << Entity.getType().isVolatileQualified() 5805 << (BitField ? BitField->getDeclName() : DeclarationName()) 5806 << (BitField != nullptr) 5807 << CurInit.get()->getSourceRange(); 5808 if (BitField) 5809 S.Diag(BitField->getLocation(), diag::note_bitfield_decl); 5810 5811 return ExprError(); 5812 } 5813 5814 if (CurInit.get()->refersToVectorElement()) { 5815 // References cannot bind to vector elements. 5816 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element) 5817 << Entity.getType().isVolatileQualified() 5818 << CurInit.get()->getSourceRange(); 5819 PrintInitLocationNote(S, Entity); 5820 return ExprError(); 5821 } 5822 5823 // Reference binding does not have any corresponding ASTs. 5824 5825 // Check exception specifications 5826 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType)) 5827 return ExprError(); 5828 5829 // Even though we didn't materialize a temporary, the binding may still 5830 // extend the lifetime of a temporary. This happens if we bind a reference 5831 // to the result of a cast to reference type. 5832 if (const InitializedEntity *ExtendingEntity = 5833 getEntityForTemporaryLifetimeExtension(&Entity)) 5834 if (performReferenceExtension(CurInit.get(), ExtendingEntity)) 5835 warnOnLifetimeExtension(S, Entity, CurInit.get(), 5836 /*IsInitializerList=*/false, 5837 ExtendingEntity->getDecl()); 5838 5839 break; 5840 5841 case SK_BindReferenceToTemporary: { 5842 // Make sure the "temporary" is actually an rvalue. 5843 assert(CurInit.get()->isRValue() && "not a temporary"); 5844 5845 // Check exception specifications 5846 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType)) 5847 return ExprError(); 5848 5849 // Materialize the temporary into memory. 5850 MaterializeTemporaryExpr *MTE = new (S.Context) MaterializeTemporaryExpr( 5851 Entity.getType().getNonReferenceType(), CurInit.get(), 5852 Entity.getType()->isLValueReferenceType()); 5853 5854 // Maybe lifetime-extend the temporary's subobjects to match the 5855 // entity's lifetime. 5856 if (const InitializedEntity *ExtendingEntity = 5857 getEntityForTemporaryLifetimeExtension(&Entity)) 5858 if (performReferenceExtension(MTE, ExtendingEntity)) 5859 warnOnLifetimeExtension(S, Entity, CurInit.get(), /*IsInitializerList=*/false, 5860 ExtendingEntity->getDecl()); 5861 5862 // If we're binding to an Objective-C object that has lifetime, we 5863 // need cleanups. Likewise if we're extending this temporary to automatic 5864 // storage duration -- we need to register its cleanup during the 5865 // full-expression's cleanups. 5866 if ((S.getLangOpts().ObjCAutoRefCount && 5867 MTE->getType()->isObjCLifetimeType()) || 5868 (MTE->getStorageDuration() == SD_Automatic && 5869 MTE->getType().isDestructedType())) 5870 S.ExprNeedsCleanups = true; 5871 5872 CurInit = MTE; 5873 break; 5874 } 5875 5876 case SK_ExtraneousCopyToTemporary: 5877 CurInit = CopyObject(S, Step->Type, Entity, CurInit, 5878 /*IsExtraneousCopy=*/true); 5879 break; 5880 5881 case SK_UserConversion: { 5882 // We have a user-defined conversion that invokes either a constructor 5883 // or a conversion function. 5884 CastKind CastKind; 5885 bool IsCopy = false; 5886 FunctionDecl *Fn = Step->Function.Function; 5887 DeclAccessPair FoundFn = Step->Function.FoundDecl; 5888 bool HadMultipleCandidates = Step->Function.HadMultipleCandidates; 5889 bool CreatedObject = false; 5890 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) { 5891 // Build a call to the selected constructor. 5892 SmallVector<Expr*, 8> ConstructorArgs; 5893 SourceLocation Loc = CurInit.get()->getLocStart(); 5894 CurInit.get(); // Ownership transferred into MultiExprArg, below. 5895 5896 // Determine the arguments required to actually perform the constructor 5897 // call. 5898 Expr *Arg = CurInit.get(); 5899 if (S.CompleteConstructorCall(Constructor, 5900 MultiExprArg(&Arg, 1), 5901 Loc, ConstructorArgs)) 5902 return ExprError(); 5903 5904 // Build an expression that constructs a temporary. 5905 CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor, 5906 ConstructorArgs, 5907 HadMultipleCandidates, 5908 /*ListInit*/ false, 5909 /*ZeroInit*/ false, 5910 CXXConstructExpr::CK_Complete, 5911 SourceRange()); 5912 if (CurInit.isInvalid()) 5913 return ExprError(); 5914 5915 S.CheckConstructorAccess(Kind.getLocation(), Constructor, Entity, 5916 FoundFn.getAccess()); 5917 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation())) 5918 return ExprError(); 5919 5920 CastKind = CK_ConstructorConversion; 5921 QualType Class = S.Context.getTypeDeclType(Constructor->getParent()); 5922 if (S.Context.hasSameUnqualifiedType(SourceType, Class) || 5923 S.IsDerivedFrom(SourceType, Class)) 5924 IsCopy = true; 5925 5926 CreatedObject = true; 5927 } else { 5928 // Build a call to the conversion function. 5929 CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn); 5930 S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr, 5931 FoundFn); 5932 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation())) 5933 return ExprError(); 5934 5935 // FIXME: Should we move this initialization into a separate 5936 // derived-to-base conversion? I believe the answer is "no", because 5937 // we don't want to turn off access control here for c-style casts. 5938 ExprResult CurInitExprRes = 5939 S.PerformObjectArgumentInitialization(CurInit.get(), 5940 /*Qualifier=*/nullptr, 5941 FoundFn, Conversion); 5942 if(CurInitExprRes.isInvalid()) 5943 return ExprError(); 5944 CurInit = CurInitExprRes; 5945 5946 // Build the actual call to the conversion function. 5947 CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion, 5948 HadMultipleCandidates); 5949 if (CurInit.isInvalid() || !CurInit.get()) 5950 return ExprError(); 5951 5952 CastKind = CK_UserDefinedConversion; 5953 5954 CreatedObject = Conversion->getReturnType()->isRecordType(); 5955 } 5956 5957 bool RequiresCopy = !IsCopy && !isReferenceBinding(Steps.back()); 5958 bool MaybeBindToTemp = RequiresCopy || shouldBindAsTemporary(Entity); 5959 5960 if (!MaybeBindToTemp && CreatedObject && shouldDestroyTemporary(Entity)) { 5961 QualType T = CurInit.get()->getType(); 5962 if (const RecordType *Record = T->getAs<RecordType>()) { 5963 CXXDestructorDecl *Destructor 5964 = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl())); 5965 S.CheckDestructorAccess(CurInit.get()->getLocStart(), Destructor, 5966 S.PDiag(diag::err_access_dtor_temp) << T); 5967 S.MarkFunctionReferenced(CurInit.get()->getLocStart(), Destructor); 5968 if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getLocStart())) 5969 return ExprError(); 5970 } 5971 } 5972 5973 CurInit = ImplicitCastExpr::Create(S.Context, CurInit.get()->getType(), 5974 CastKind, CurInit.get(), nullptr, 5975 CurInit.get()->getValueKind()); 5976 if (MaybeBindToTemp) 5977 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>()); 5978 if (RequiresCopy) 5979 CurInit = CopyObject(S, Entity.getType().getNonReferenceType(), Entity, 5980 CurInit, /*IsExtraneousCopy=*/false); 5981 break; 5982 } 5983 5984 case SK_QualificationConversionLValue: 5985 case SK_QualificationConversionXValue: 5986 case SK_QualificationConversionRValue: { 5987 // Perform a qualification conversion; these can never go wrong. 5988 ExprValueKind VK = 5989 Step->Kind == SK_QualificationConversionLValue ? 5990 VK_LValue : 5991 (Step->Kind == SK_QualificationConversionXValue ? 5992 VK_XValue : 5993 VK_RValue); 5994 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, CK_NoOp, VK); 5995 break; 5996 } 5997 5998 case SK_LValueToRValue: { 5999 assert(CurInit.get()->isGLValue() && "cannot load from a prvalue"); 6000 CurInit = ImplicitCastExpr::Create(S.Context, Step->Type, 6001 CK_LValueToRValue, CurInit.get(), 6002 /*BasePath=*/nullptr, VK_RValue); 6003 break; 6004 } 6005 6006 case SK_ConversionSequence: 6007 case SK_ConversionSequenceNoNarrowing: { 6008 Sema::CheckedConversionKind CCK 6009 = Kind.isCStyleCast()? Sema::CCK_CStyleCast 6010 : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast 6011 : Kind.isExplicitCast()? Sema::CCK_OtherCast 6012 : Sema::CCK_ImplicitConversion; 6013 ExprResult CurInitExprRes = 6014 S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS, 6015 getAssignmentAction(Entity), CCK); 6016 if (CurInitExprRes.isInvalid()) 6017 return ExprError(); 6018 CurInit = CurInitExprRes; 6019 6020 if (Step->Kind == SK_ConversionSequenceNoNarrowing && 6021 S.getLangOpts().CPlusPlus && !CurInit.get()->isValueDependent()) 6022 DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(), 6023 CurInit.get()); 6024 break; 6025 } 6026 6027 case SK_ListInitialization: { 6028 InitListExpr *InitList = cast<InitListExpr>(CurInit.get()); 6029 // If we're not initializing the top-level entity, we need to create an 6030 // InitializeTemporary entity for our target type. 6031 QualType Ty = Step->Type; 6032 bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty); 6033 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty); 6034 InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity; 6035 InitListChecker PerformInitList(S, InitEntity, 6036 InitList, Ty, /*VerifyOnly=*/false); 6037 if (PerformInitList.HadError()) 6038 return ExprError(); 6039 6040 // Hack: We must update *ResultType if available in order to set the 6041 // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'. 6042 // Worst case: 'const int (&arref)[] = {1, 2, 3};'. 6043 if (ResultType && 6044 ResultType->getNonReferenceType()->isIncompleteArrayType()) { 6045 if ((*ResultType)->isRValueReferenceType()) 6046 Ty = S.Context.getRValueReferenceType(Ty); 6047 else if ((*ResultType)->isLValueReferenceType()) 6048 Ty = S.Context.getLValueReferenceType(Ty, 6049 (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue()); 6050 *ResultType = Ty; 6051 } 6052 6053 InitListExpr *StructuredInitList = 6054 PerformInitList.getFullyStructuredList(); 6055 CurInit.get(); 6056 CurInit = shouldBindAsTemporary(InitEntity) 6057 ? S.MaybeBindToTemporary(StructuredInitList) 6058 : StructuredInitList; 6059 break; 6060 } 6061 6062 case SK_ListConstructorCall: { 6063 // When an initializer list is passed for a parameter of type "reference 6064 // to object", we don't get an EK_Temporary entity, but instead an 6065 // EK_Parameter entity with reference type. 6066 // FIXME: This is a hack. What we really should do is create a user 6067 // conversion step for this case, but this makes it considerably more 6068 // complicated. For now, this will do. 6069 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( 6070 Entity.getType().getNonReferenceType()); 6071 bool UseTemporary = Entity.getType()->isReferenceType(); 6072 assert(Args.size() == 1 && "expected a single argument for list init"); 6073 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 6074 S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init) 6075 << InitList->getSourceRange(); 6076 MultiExprArg Arg(InitList->getInits(), InitList->getNumInits()); 6077 CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity : 6078 Entity, 6079 Kind, Arg, *Step, 6080 ConstructorInitRequiresZeroInit, 6081 /*IsListInitialization*/ true, 6082 InitList->getLBraceLoc(), 6083 InitList->getRBraceLoc()); 6084 break; 6085 } 6086 6087 case SK_UnwrapInitList: 6088 CurInit = cast<InitListExpr>(CurInit.get())->getInit(0); 6089 break; 6090 6091 case SK_RewrapInitList: { 6092 Expr *E = CurInit.get(); 6093 InitListExpr *Syntactic = Step->WrappingSyntacticList; 6094 InitListExpr *ILE = new (S.Context) InitListExpr(S.Context, 6095 Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc()); 6096 ILE->setSyntacticForm(Syntactic); 6097 ILE->setType(E->getType()); 6098 ILE->setValueKind(E->getValueKind()); 6099 CurInit = ILE; 6100 break; 6101 } 6102 6103 case SK_ConstructorInitialization: { 6104 // When an initializer list is passed for a parameter of type "reference 6105 // to object", we don't get an EK_Temporary entity, but instead an 6106 // EK_Parameter entity with reference type. 6107 // FIXME: This is a hack. What we really should do is create a user 6108 // conversion step for this case, but this makes it considerably more 6109 // complicated. For now, this will do. 6110 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( 6111 Entity.getType().getNonReferenceType()); 6112 bool UseTemporary = Entity.getType()->isReferenceType(); 6113 CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity 6114 : Entity, 6115 Kind, Args, *Step, 6116 ConstructorInitRequiresZeroInit, 6117 /*IsListInitialization*/ false, 6118 /*LBraceLoc*/ SourceLocation(), 6119 /*RBraceLoc*/ SourceLocation()); 6120 break; 6121 } 6122 6123 case SK_ZeroInitialization: { 6124 step_iterator NextStep = Step; 6125 ++NextStep; 6126 if (NextStep != StepEnd && 6127 (NextStep->Kind == SK_ConstructorInitialization || 6128 NextStep->Kind == SK_ListConstructorCall)) { 6129 // The need for zero-initialization is recorded directly into 6130 // the call to the object's constructor within the next step. 6131 ConstructorInitRequiresZeroInit = true; 6132 } else if (Kind.getKind() == InitializationKind::IK_Value && 6133 S.getLangOpts().CPlusPlus && 6134 !Kind.isImplicitValueInit()) { 6135 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); 6136 if (!TSInfo) 6137 TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type, 6138 Kind.getRange().getBegin()); 6139 6140 CurInit = new (S.Context) CXXScalarValueInitExpr( 6141 TSInfo->getType().getNonLValueExprType(S.Context), TSInfo, 6142 Kind.getRange().getEnd()); 6143 } else { 6144 CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type); 6145 } 6146 break; 6147 } 6148 6149 case SK_CAssignment: { 6150 QualType SourceType = CurInit.get()->getType(); 6151 ExprResult Result = CurInit; 6152 Sema::AssignConvertType ConvTy = 6153 S.CheckSingleAssignmentConstraints(Step->Type, Result, true, 6154 Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited); 6155 if (Result.isInvalid()) 6156 return ExprError(); 6157 CurInit = Result; 6158 6159 // If this is a call, allow conversion to a transparent union. 6160 ExprResult CurInitExprRes = CurInit; 6161 if (ConvTy != Sema::Compatible && 6162 Entity.isParameterKind() && 6163 S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes) 6164 == Sema::Compatible) 6165 ConvTy = Sema::Compatible; 6166 if (CurInitExprRes.isInvalid()) 6167 return ExprError(); 6168 CurInit = CurInitExprRes; 6169 6170 bool Complained; 6171 if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(), 6172 Step->Type, SourceType, 6173 CurInit.get(), 6174 getAssignmentAction(Entity, true), 6175 &Complained)) { 6176 PrintInitLocationNote(S, Entity); 6177 return ExprError(); 6178 } else if (Complained) 6179 PrintInitLocationNote(S, Entity); 6180 break; 6181 } 6182 6183 case SK_StringInit: { 6184 QualType Ty = Step->Type; 6185 CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty, 6186 S.Context.getAsArrayType(Ty), S); 6187 break; 6188 } 6189 6190 case SK_ObjCObjectConversion: 6191 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 6192 CK_ObjCObjectLValueCast, 6193 CurInit.get()->getValueKind()); 6194 break; 6195 6196 case SK_ArrayInit: 6197 // Okay: we checked everything before creating this step. Note that 6198 // this is a GNU extension. 6199 S.Diag(Kind.getLocation(), diag::ext_array_init_copy) 6200 << Step->Type << CurInit.get()->getType() 6201 << CurInit.get()->getSourceRange(); 6202 6203 // If the destination type is an incomplete array type, update the 6204 // type accordingly. 6205 if (ResultType) { 6206 if (const IncompleteArrayType *IncompleteDest 6207 = S.Context.getAsIncompleteArrayType(Step->Type)) { 6208 if (const ConstantArrayType *ConstantSource 6209 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) { 6210 *ResultType = S.Context.getConstantArrayType( 6211 IncompleteDest->getElementType(), 6212 ConstantSource->getSize(), 6213 ArrayType::Normal, 0); 6214 } 6215 } 6216 } 6217 break; 6218 6219 case SK_ParenthesizedArrayInit: 6220 // Okay: we checked everything before creating this step. Note that 6221 // this is a GNU extension. 6222 S.Diag(Kind.getLocation(), diag::ext_array_init_parens) 6223 << CurInit.get()->getSourceRange(); 6224 break; 6225 6226 case SK_PassByIndirectCopyRestore: 6227 case SK_PassByIndirectRestore: 6228 checkIndirectCopyRestoreSource(S, CurInit.get()); 6229 CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr( 6230 CurInit.get(), Step->Type, 6231 Step->Kind == SK_PassByIndirectCopyRestore); 6232 break; 6233 6234 case SK_ProduceObjCObject: 6235 CurInit = 6236 ImplicitCastExpr::Create(S.Context, Step->Type, CK_ARCProduceObject, 6237 CurInit.get(), nullptr, VK_RValue); 6238 break; 6239 6240 case SK_StdInitializerList: { 6241 S.Diag(CurInit.get()->getExprLoc(), 6242 diag::warn_cxx98_compat_initializer_list_init) 6243 << CurInit.get()->getSourceRange(); 6244 6245 // Materialize the temporary into memory. 6246 MaterializeTemporaryExpr *MTE = new (S.Context) 6247 MaterializeTemporaryExpr(CurInit.get()->getType(), CurInit.get(), 6248 /*BoundToLvalueReference=*/false); 6249 6250 // Maybe lifetime-extend the array temporary's subobjects to match the 6251 // entity's lifetime. 6252 if (const InitializedEntity *ExtendingEntity = 6253 getEntityForTemporaryLifetimeExtension(&Entity)) 6254 if (performReferenceExtension(MTE, ExtendingEntity)) 6255 warnOnLifetimeExtension(S, Entity, CurInit.get(), 6256 /*IsInitializerList=*/true, 6257 ExtendingEntity->getDecl()); 6258 6259 // Wrap it in a construction of a std::initializer_list<T>. 6260 CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE); 6261 6262 // Bind the result, in case the library has given initializer_list a 6263 // non-trivial destructor. 6264 if (shouldBindAsTemporary(Entity)) 6265 CurInit = S.MaybeBindToTemporary(CurInit.get()); 6266 break; 6267 } 6268 6269 case SK_OCLSamplerInit: { 6270 assert(Step->Type->isSamplerT() && 6271 "Sampler initialization on non-sampler type."); 6272 6273 QualType SourceType = CurInit.get()->getType(); 6274 6275 if (Entity.isParameterKind()) { 6276 if (!SourceType->isSamplerT()) 6277 S.Diag(Kind.getLocation(), diag::err_sampler_argument_required) 6278 << SourceType; 6279 } else if (Entity.getKind() != InitializedEntity::EK_Variable) { 6280 llvm_unreachable("Invalid EntityKind!"); 6281 } 6282 6283 break; 6284 } 6285 case SK_OCLZeroEvent: { 6286 assert(Step->Type->isEventT() && 6287 "Event initialization on non-event type."); 6288 6289 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 6290 CK_ZeroToOCLEvent, 6291 CurInit.get()->getValueKind()); 6292 break; 6293 } 6294 } 6295 } 6296 6297 // Diagnose non-fatal problems with the completed initialization. 6298 if (Entity.getKind() == InitializedEntity::EK_Member && 6299 cast<FieldDecl>(Entity.getDecl())->isBitField()) 6300 S.CheckBitFieldInitialization(Kind.getLocation(), 6301 cast<FieldDecl>(Entity.getDecl()), 6302 CurInit.get()); 6303 6304 return CurInit; 6305 } 6306 6307 /// Somewhere within T there is an uninitialized reference subobject. 6308 /// Dig it out and diagnose it. 6309 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc, 6310 QualType T) { 6311 if (T->isReferenceType()) { 6312 S.Diag(Loc, diag::err_reference_without_init) 6313 << T.getNonReferenceType(); 6314 return true; 6315 } 6316 6317 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 6318 if (!RD || !RD->hasUninitializedReferenceMember()) 6319 return false; 6320 6321 for (const auto *FI : RD->fields()) { 6322 if (FI->isUnnamedBitfield()) 6323 continue; 6324 6325 if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) { 6326 S.Diag(Loc, diag::note_value_initialization_here) << RD; 6327 return true; 6328 } 6329 } 6330 6331 for (const auto &BI : RD->bases()) { 6332 if (DiagnoseUninitializedReference(S, BI.getLocStart(), BI.getType())) { 6333 S.Diag(Loc, diag::note_value_initialization_here) << RD; 6334 return true; 6335 } 6336 } 6337 6338 return false; 6339 } 6340 6341 6342 //===----------------------------------------------------------------------===// 6343 // Diagnose initialization failures 6344 //===----------------------------------------------------------------------===// 6345 6346 /// Emit notes associated with an initialization that failed due to a 6347 /// "simple" conversion failure. 6348 static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity, 6349 Expr *op) { 6350 QualType destType = entity.getType(); 6351 if (destType.getNonReferenceType()->isObjCObjectPointerType() && 6352 op->getType()->isObjCObjectPointerType()) { 6353 6354 // Emit a possible note about the conversion failing because the 6355 // operand is a message send with a related result type. 6356 S.EmitRelatedResultTypeNote(op); 6357 6358 // Emit a possible note about a return failing because we're 6359 // expecting a related result type. 6360 if (entity.getKind() == InitializedEntity::EK_Result) 6361 S.EmitRelatedResultTypeNoteForReturn(destType); 6362 } 6363 } 6364 6365 static void diagnoseListInit(Sema &S, const InitializedEntity &Entity, 6366 InitListExpr *InitList) { 6367 QualType DestType = Entity.getType(); 6368 6369 QualType E; 6370 if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) { 6371 QualType ArrayType = S.Context.getConstantArrayType( 6372 E.withConst(), 6373 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()), 6374 InitList->getNumInits()), 6375 clang::ArrayType::Normal, 0); 6376 InitializedEntity HiddenArray = 6377 InitializedEntity::InitializeTemporary(ArrayType); 6378 return diagnoseListInit(S, HiddenArray, InitList); 6379 } 6380 6381 InitListChecker DiagnoseInitList(S, Entity, InitList, DestType, 6382 /*VerifyOnly=*/false); 6383 assert(DiagnoseInitList.HadError() && 6384 "Inconsistent init list check result."); 6385 } 6386 6387 bool InitializationSequence::Diagnose(Sema &S, 6388 const InitializedEntity &Entity, 6389 const InitializationKind &Kind, 6390 ArrayRef<Expr *> Args) { 6391 if (!Failed()) 6392 return false; 6393 6394 QualType DestType = Entity.getType(); 6395 switch (Failure) { 6396 case FK_TooManyInitsForReference: 6397 // FIXME: Customize for the initialized entity? 6398 if (Args.empty()) { 6399 // Dig out the reference subobject which is uninitialized and diagnose it. 6400 // If this is value-initialization, this could be nested some way within 6401 // the target type. 6402 assert(Kind.getKind() == InitializationKind::IK_Value || 6403 DestType->isReferenceType()); 6404 bool Diagnosed = 6405 DiagnoseUninitializedReference(S, Kind.getLocation(), DestType); 6406 assert(Diagnosed && "couldn't find uninitialized reference to diagnose"); 6407 (void)Diagnosed; 6408 } else // FIXME: diagnostic below could be better! 6409 S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits) 6410 << SourceRange(Args.front()->getLocStart(), Args.back()->getLocEnd()); 6411 break; 6412 6413 case FK_ArrayNeedsInitList: 6414 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0; 6415 break; 6416 case FK_ArrayNeedsInitListOrStringLiteral: 6417 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1; 6418 break; 6419 case FK_ArrayNeedsInitListOrWideStringLiteral: 6420 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2; 6421 break; 6422 case FK_NarrowStringIntoWideCharArray: 6423 S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar); 6424 break; 6425 case FK_WideStringIntoCharArray: 6426 S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char); 6427 break; 6428 case FK_IncompatWideStringIntoWideChar: 6429 S.Diag(Kind.getLocation(), 6430 diag::err_array_init_incompat_wide_string_into_wchar); 6431 break; 6432 case FK_ArrayTypeMismatch: 6433 case FK_NonConstantArrayInit: 6434 S.Diag(Kind.getLocation(), 6435 (Failure == FK_ArrayTypeMismatch 6436 ? diag::err_array_init_different_type 6437 : diag::err_array_init_non_constant_array)) 6438 << DestType.getNonReferenceType() 6439 << Args[0]->getType() 6440 << Args[0]->getSourceRange(); 6441 break; 6442 6443 case FK_VariableLengthArrayHasInitializer: 6444 S.Diag(Kind.getLocation(), diag::err_variable_object_no_init) 6445 << Args[0]->getSourceRange(); 6446 break; 6447 6448 case FK_AddressOfOverloadFailed: { 6449 DeclAccessPair Found; 6450 S.ResolveAddressOfOverloadedFunction(Args[0], 6451 DestType.getNonReferenceType(), 6452 true, 6453 Found); 6454 break; 6455 } 6456 6457 case FK_ReferenceInitOverloadFailed: 6458 case FK_UserConversionOverloadFailed: 6459 switch (FailedOverloadResult) { 6460 case OR_Ambiguous: 6461 if (Failure == FK_UserConversionOverloadFailed) 6462 S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition) 6463 << Args[0]->getType() << DestType 6464 << Args[0]->getSourceRange(); 6465 else 6466 S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous) 6467 << DestType << Args[0]->getType() 6468 << Args[0]->getSourceRange(); 6469 6470 FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args); 6471 break; 6472 6473 case OR_No_Viable_Function: 6474 if (!S.RequireCompleteType(Kind.getLocation(), 6475 DestType.getNonReferenceType(), 6476 diag::err_typecheck_nonviable_condition_incomplete, 6477 Args[0]->getType(), Args[0]->getSourceRange())) 6478 S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition) 6479 << Args[0]->getType() << Args[0]->getSourceRange() 6480 << DestType.getNonReferenceType(); 6481 6482 FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args); 6483 break; 6484 6485 case OR_Deleted: { 6486 S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function) 6487 << Args[0]->getType() << DestType.getNonReferenceType() 6488 << Args[0]->getSourceRange(); 6489 OverloadCandidateSet::iterator Best; 6490 OverloadingResult Ovl 6491 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best, 6492 true); 6493 if (Ovl == OR_Deleted) { 6494 S.NoteDeletedFunction(Best->Function); 6495 } else { 6496 llvm_unreachable("Inconsistent overload resolution?"); 6497 } 6498 break; 6499 } 6500 6501 case OR_Success: 6502 llvm_unreachable("Conversion did not fail!"); 6503 } 6504 break; 6505 6506 case FK_NonConstLValueReferenceBindingToTemporary: 6507 if (isa<InitListExpr>(Args[0])) { 6508 S.Diag(Kind.getLocation(), 6509 diag::err_lvalue_reference_bind_to_initlist) 6510 << DestType.getNonReferenceType().isVolatileQualified() 6511 << DestType.getNonReferenceType() 6512 << Args[0]->getSourceRange(); 6513 break; 6514 } 6515 // Intentional fallthrough 6516 6517 case FK_NonConstLValueReferenceBindingToUnrelated: 6518 S.Diag(Kind.getLocation(), 6519 Failure == FK_NonConstLValueReferenceBindingToTemporary 6520 ? diag::err_lvalue_reference_bind_to_temporary 6521 : diag::err_lvalue_reference_bind_to_unrelated) 6522 << DestType.getNonReferenceType().isVolatileQualified() 6523 << DestType.getNonReferenceType() 6524 << Args[0]->getType() 6525 << Args[0]->getSourceRange(); 6526 break; 6527 6528 case FK_RValueReferenceBindingToLValue: 6529 S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref) 6530 << DestType.getNonReferenceType() << Args[0]->getType() 6531 << Args[0]->getSourceRange(); 6532 break; 6533 6534 case FK_ReferenceInitDropsQualifiers: 6535 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) 6536 << DestType.getNonReferenceType() 6537 << Args[0]->getType() 6538 << Args[0]->getSourceRange(); 6539 break; 6540 6541 case FK_ReferenceInitFailed: 6542 S.Diag(Kind.getLocation(), diag::err_reference_bind_failed) 6543 << DestType.getNonReferenceType() 6544 << Args[0]->isLValue() 6545 << Args[0]->getType() 6546 << Args[0]->getSourceRange(); 6547 emitBadConversionNotes(S, Entity, Args[0]); 6548 break; 6549 6550 case FK_ConversionFailed: { 6551 QualType FromType = Args[0]->getType(); 6552 PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed) 6553 << (int)Entity.getKind() 6554 << DestType 6555 << Args[0]->isLValue() 6556 << FromType 6557 << Args[0]->getSourceRange(); 6558 S.HandleFunctionTypeMismatch(PDiag, FromType, DestType); 6559 S.Diag(Kind.getLocation(), PDiag); 6560 emitBadConversionNotes(S, Entity, Args[0]); 6561 break; 6562 } 6563 6564 case FK_ConversionFromPropertyFailed: 6565 // No-op. This error has already been reported. 6566 break; 6567 6568 case FK_TooManyInitsForScalar: { 6569 SourceRange R; 6570 6571 if (InitListExpr *InitList = dyn_cast<InitListExpr>(Args[0])) 6572 R = SourceRange(InitList->getInit(0)->getLocEnd(), 6573 InitList->getLocEnd()); 6574 else 6575 R = SourceRange(Args.front()->getLocEnd(), Args.back()->getLocEnd()); 6576 6577 R.setBegin(S.getLocForEndOfToken(R.getBegin())); 6578 if (Kind.isCStyleOrFunctionalCast()) 6579 S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg) 6580 << R; 6581 else 6582 S.Diag(Kind.getLocation(), diag::err_excess_initializers) 6583 << /*scalar=*/2 << R; 6584 break; 6585 } 6586 6587 case FK_ReferenceBindingToInitList: 6588 S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list) 6589 << DestType.getNonReferenceType() << Args[0]->getSourceRange(); 6590 break; 6591 6592 case FK_InitListBadDestinationType: 6593 S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type) 6594 << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange(); 6595 break; 6596 6597 case FK_ListConstructorOverloadFailed: 6598 case FK_ConstructorOverloadFailed: { 6599 SourceRange ArgsRange; 6600 if (Args.size()) 6601 ArgsRange = SourceRange(Args.front()->getLocStart(), 6602 Args.back()->getLocEnd()); 6603 6604 if (Failure == FK_ListConstructorOverloadFailed) { 6605 assert(Args.size() == 1 && "List construction from other than 1 argument."); 6606 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 6607 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits()); 6608 } 6609 6610 // FIXME: Using "DestType" for the entity we're printing is probably 6611 // bad. 6612 switch (FailedOverloadResult) { 6613 case OR_Ambiguous: 6614 S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init) 6615 << DestType << ArgsRange; 6616 FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args); 6617 break; 6618 6619 case OR_No_Viable_Function: 6620 if (Kind.getKind() == InitializationKind::IK_Default && 6621 (Entity.getKind() == InitializedEntity::EK_Base || 6622 Entity.getKind() == InitializedEntity::EK_Member) && 6623 isa<CXXConstructorDecl>(S.CurContext)) { 6624 // This is implicit default initialization of a member or 6625 // base within a constructor. If no viable function was 6626 // found, notify the user that she needs to explicitly 6627 // initialize this base/member. 6628 CXXConstructorDecl *Constructor 6629 = cast<CXXConstructorDecl>(S.CurContext); 6630 if (Entity.getKind() == InitializedEntity::EK_Base) { 6631 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) 6632 << (Constructor->getInheritedConstructor() ? 2 : 6633 Constructor->isImplicit() ? 1 : 0) 6634 << S.Context.getTypeDeclType(Constructor->getParent()) 6635 << /*base=*/0 6636 << Entity.getType(); 6637 6638 RecordDecl *BaseDecl 6639 = Entity.getBaseSpecifier()->getType()->getAs<RecordType>() 6640 ->getDecl(); 6641 S.Diag(BaseDecl->getLocation(), diag::note_previous_decl) 6642 << S.Context.getTagDeclType(BaseDecl); 6643 } else { 6644 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) 6645 << (Constructor->getInheritedConstructor() ? 2 : 6646 Constructor->isImplicit() ? 1 : 0) 6647 << S.Context.getTypeDeclType(Constructor->getParent()) 6648 << /*member=*/1 6649 << Entity.getName(); 6650 S.Diag(Entity.getDecl()->getLocation(), 6651 diag::note_member_declared_at); 6652 6653 if (const RecordType *Record 6654 = Entity.getType()->getAs<RecordType>()) 6655 S.Diag(Record->getDecl()->getLocation(), 6656 diag::note_previous_decl) 6657 << S.Context.getTagDeclType(Record->getDecl()); 6658 } 6659 break; 6660 } 6661 6662 S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init) 6663 << DestType << ArgsRange; 6664 FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args); 6665 break; 6666 6667 case OR_Deleted: { 6668 OverloadCandidateSet::iterator Best; 6669 OverloadingResult Ovl 6670 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 6671 if (Ovl != OR_Deleted) { 6672 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) 6673 << true << DestType << ArgsRange; 6674 llvm_unreachable("Inconsistent overload resolution?"); 6675 break; 6676 } 6677 6678 // If this is a defaulted or implicitly-declared function, then 6679 // it was implicitly deleted. Make it clear that the deletion was 6680 // implicit. 6681 if (S.isImplicitlyDeleted(Best->Function)) 6682 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init) 6683 << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function)) 6684 << DestType << ArgsRange; 6685 else 6686 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) 6687 << true << DestType << ArgsRange; 6688 6689 S.NoteDeletedFunction(Best->Function); 6690 break; 6691 } 6692 6693 case OR_Success: 6694 llvm_unreachable("Conversion did not fail!"); 6695 } 6696 } 6697 break; 6698 6699 case FK_DefaultInitOfConst: 6700 if (Entity.getKind() == InitializedEntity::EK_Member && 6701 isa<CXXConstructorDecl>(S.CurContext)) { 6702 // This is implicit default-initialization of a const member in 6703 // a constructor. Complain that it needs to be explicitly 6704 // initialized. 6705 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext); 6706 S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor) 6707 << (Constructor->getInheritedConstructor() ? 2 : 6708 Constructor->isImplicit() ? 1 : 0) 6709 << S.Context.getTypeDeclType(Constructor->getParent()) 6710 << /*const=*/1 6711 << Entity.getName(); 6712 S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl) 6713 << Entity.getName(); 6714 } else { 6715 S.Diag(Kind.getLocation(), diag::err_default_init_const) 6716 << DestType << (bool)DestType->getAs<RecordType>(); 6717 } 6718 break; 6719 6720 case FK_Incomplete: 6721 S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType, 6722 diag::err_init_incomplete_type); 6723 break; 6724 6725 case FK_ListInitializationFailed: { 6726 // Run the init list checker again to emit diagnostics. 6727 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 6728 diagnoseListInit(S, Entity, InitList); 6729 break; 6730 } 6731 6732 case FK_PlaceholderType: { 6733 // FIXME: Already diagnosed! 6734 break; 6735 } 6736 6737 case FK_ExplicitConstructor: { 6738 S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor) 6739 << Args[0]->getSourceRange(); 6740 OverloadCandidateSet::iterator Best; 6741 OverloadingResult Ovl 6742 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 6743 (void)Ovl; 6744 assert(Ovl == OR_Success && "Inconsistent overload resolution"); 6745 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 6746 S.Diag(CtorDecl->getLocation(), diag::note_constructor_declared_here); 6747 break; 6748 } 6749 } 6750 6751 PrintInitLocationNote(S, Entity); 6752 return true; 6753 } 6754 6755 void InitializationSequence::dump(raw_ostream &OS) const { 6756 switch (SequenceKind) { 6757 case FailedSequence: { 6758 OS << "Failed sequence: "; 6759 switch (Failure) { 6760 case FK_TooManyInitsForReference: 6761 OS << "too many initializers for reference"; 6762 break; 6763 6764 case FK_ArrayNeedsInitList: 6765 OS << "array requires initializer list"; 6766 break; 6767 6768 case FK_ArrayNeedsInitListOrStringLiteral: 6769 OS << "array requires initializer list or string literal"; 6770 break; 6771 6772 case FK_ArrayNeedsInitListOrWideStringLiteral: 6773 OS << "array requires initializer list or wide string literal"; 6774 break; 6775 6776 case FK_NarrowStringIntoWideCharArray: 6777 OS << "narrow string into wide char array"; 6778 break; 6779 6780 case FK_WideStringIntoCharArray: 6781 OS << "wide string into char array"; 6782 break; 6783 6784 case FK_IncompatWideStringIntoWideChar: 6785 OS << "incompatible wide string into wide char array"; 6786 break; 6787 6788 case FK_ArrayTypeMismatch: 6789 OS << "array type mismatch"; 6790 break; 6791 6792 case FK_NonConstantArrayInit: 6793 OS << "non-constant array initializer"; 6794 break; 6795 6796 case FK_AddressOfOverloadFailed: 6797 OS << "address of overloaded function failed"; 6798 break; 6799 6800 case FK_ReferenceInitOverloadFailed: 6801 OS << "overload resolution for reference initialization failed"; 6802 break; 6803 6804 case FK_NonConstLValueReferenceBindingToTemporary: 6805 OS << "non-const lvalue reference bound to temporary"; 6806 break; 6807 6808 case FK_NonConstLValueReferenceBindingToUnrelated: 6809 OS << "non-const lvalue reference bound to unrelated type"; 6810 break; 6811 6812 case FK_RValueReferenceBindingToLValue: 6813 OS << "rvalue reference bound to an lvalue"; 6814 break; 6815 6816 case FK_ReferenceInitDropsQualifiers: 6817 OS << "reference initialization drops qualifiers"; 6818 break; 6819 6820 case FK_ReferenceInitFailed: 6821 OS << "reference initialization failed"; 6822 break; 6823 6824 case FK_ConversionFailed: 6825 OS << "conversion failed"; 6826 break; 6827 6828 case FK_ConversionFromPropertyFailed: 6829 OS << "conversion from property failed"; 6830 break; 6831 6832 case FK_TooManyInitsForScalar: 6833 OS << "too many initializers for scalar"; 6834 break; 6835 6836 case FK_ReferenceBindingToInitList: 6837 OS << "referencing binding to initializer list"; 6838 break; 6839 6840 case FK_InitListBadDestinationType: 6841 OS << "initializer list for non-aggregate, non-scalar type"; 6842 break; 6843 6844 case FK_UserConversionOverloadFailed: 6845 OS << "overloading failed for user-defined conversion"; 6846 break; 6847 6848 case FK_ConstructorOverloadFailed: 6849 OS << "constructor overloading failed"; 6850 break; 6851 6852 case FK_DefaultInitOfConst: 6853 OS << "default initialization of a const variable"; 6854 break; 6855 6856 case FK_Incomplete: 6857 OS << "initialization of incomplete type"; 6858 break; 6859 6860 case FK_ListInitializationFailed: 6861 OS << "list initialization checker failure"; 6862 break; 6863 6864 case FK_VariableLengthArrayHasInitializer: 6865 OS << "variable length array has an initializer"; 6866 break; 6867 6868 case FK_PlaceholderType: 6869 OS << "initializer expression isn't contextually valid"; 6870 break; 6871 6872 case FK_ListConstructorOverloadFailed: 6873 OS << "list constructor overloading failed"; 6874 break; 6875 6876 case FK_ExplicitConstructor: 6877 OS << "list copy initialization chose explicit constructor"; 6878 break; 6879 } 6880 OS << '\n'; 6881 return; 6882 } 6883 6884 case DependentSequence: 6885 OS << "Dependent sequence\n"; 6886 return; 6887 6888 case NormalSequence: 6889 OS << "Normal sequence: "; 6890 break; 6891 } 6892 6893 for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) { 6894 if (S != step_begin()) { 6895 OS << " -> "; 6896 } 6897 6898 switch (S->Kind) { 6899 case SK_ResolveAddressOfOverloadedFunction: 6900 OS << "resolve address of overloaded function"; 6901 break; 6902 6903 case SK_CastDerivedToBaseRValue: 6904 OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")"; 6905 break; 6906 6907 case SK_CastDerivedToBaseXValue: 6908 OS << "derived-to-base case (xvalue" << S->Type.getAsString() << ")"; 6909 break; 6910 6911 case SK_CastDerivedToBaseLValue: 6912 OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")"; 6913 break; 6914 6915 case SK_BindReference: 6916 OS << "bind reference to lvalue"; 6917 break; 6918 6919 case SK_BindReferenceToTemporary: 6920 OS << "bind reference to a temporary"; 6921 break; 6922 6923 case SK_ExtraneousCopyToTemporary: 6924 OS << "extraneous C++03 copy to temporary"; 6925 break; 6926 6927 case SK_UserConversion: 6928 OS << "user-defined conversion via " << *S->Function.Function; 6929 break; 6930 6931 case SK_QualificationConversionRValue: 6932 OS << "qualification conversion (rvalue)"; 6933 break; 6934 6935 case SK_QualificationConversionXValue: 6936 OS << "qualification conversion (xvalue)"; 6937 break; 6938 6939 case SK_QualificationConversionLValue: 6940 OS << "qualification conversion (lvalue)"; 6941 break; 6942 6943 case SK_LValueToRValue: 6944 OS << "load (lvalue to rvalue)"; 6945 break; 6946 6947 case SK_ConversionSequence: 6948 OS << "implicit conversion sequence ("; 6949 S->ICS->dump(); // FIXME: use OS 6950 OS << ")"; 6951 break; 6952 6953 case SK_ConversionSequenceNoNarrowing: 6954 OS << "implicit conversion sequence with narrowing prohibited ("; 6955 S->ICS->dump(); // FIXME: use OS 6956 OS << ")"; 6957 break; 6958 6959 case SK_ListInitialization: 6960 OS << "list aggregate initialization"; 6961 break; 6962 6963 case SK_ListConstructorCall: 6964 OS << "list initialization via constructor"; 6965 break; 6966 6967 case SK_UnwrapInitList: 6968 OS << "unwrap reference initializer list"; 6969 break; 6970 6971 case SK_RewrapInitList: 6972 OS << "rewrap reference initializer list"; 6973 break; 6974 6975 case SK_ConstructorInitialization: 6976 OS << "constructor initialization"; 6977 break; 6978 6979 case SK_ZeroInitialization: 6980 OS << "zero initialization"; 6981 break; 6982 6983 case SK_CAssignment: 6984 OS << "C assignment"; 6985 break; 6986 6987 case SK_StringInit: 6988 OS << "string initialization"; 6989 break; 6990 6991 case SK_ObjCObjectConversion: 6992 OS << "Objective-C object conversion"; 6993 break; 6994 6995 case SK_ArrayInit: 6996 OS << "array initialization"; 6997 break; 6998 6999 case SK_ParenthesizedArrayInit: 7000 OS << "parenthesized array initialization"; 7001 break; 7002 7003 case SK_PassByIndirectCopyRestore: 7004 OS << "pass by indirect copy and restore"; 7005 break; 7006 7007 case SK_PassByIndirectRestore: 7008 OS << "pass by indirect restore"; 7009 break; 7010 7011 case SK_ProduceObjCObject: 7012 OS << "Objective-C object retension"; 7013 break; 7014 7015 case SK_StdInitializerList: 7016 OS << "std::initializer_list from initializer list"; 7017 break; 7018 7019 case SK_OCLSamplerInit: 7020 OS << "OpenCL sampler_t from integer constant"; 7021 break; 7022 7023 case SK_OCLZeroEvent: 7024 OS << "OpenCL event_t from zero"; 7025 break; 7026 } 7027 7028 OS << " [" << S->Type.getAsString() << ']'; 7029 } 7030 7031 OS << '\n'; 7032 } 7033 7034 void InitializationSequence::dump() const { 7035 dump(llvm::errs()); 7036 } 7037 7038 static void DiagnoseNarrowingInInitList(Sema &S, 7039 const ImplicitConversionSequence &ICS, 7040 QualType PreNarrowingType, 7041 QualType EntityType, 7042 const Expr *PostInit) { 7043 const StandardConversionSequence *SCS = nullptr; 7044 switch (ICS.getKind()) { 7045 case ImplicitConversionSequence::StandardConversion: 7046 SCS = &ICS.Standard; 7047 break; 7048 case ImplicitConversionSequence::UserDefinedConversion: 7049 SCS = &ICS.UserDefined.After; 7050 break; 7051 case ImplicitConversionSequence::AmbiguousConversion: 7052 case ImplicitConversionSequence::EllipsisConversion: 7053 case ImplicitConversionSequence::BadConversion: 7054 return; 7055 } 7056 7057 // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion. 7058 APValue ConstantValue; 7059 QualType ConstantType; 7060 switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue, 7061 ConstantType)) { 7062 case NK_Not_Narrowing: 7063 // No narrowing occurred. 7064 return; 7065 7066 case NK_Type_Narrowing: 7067 // This was a floating-to-integer conversion, which is always considered a 7068 // narrowing conversion even if the value is a constant and can be 7069 // represented exactly as an integer. 7070 S.Diag(PostInit->getLocStart(), 7071 (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11) 7072 ? diag::warn_init_list_type_narrowing 7073 : diag::ext_init_list_type_narrowing) 7074 << PostInit->getSourceRange() 7075 << PreNarrowingType.getLocalUnqualifiedType() 7076 << EntityType.getLocalUnqualifiedType(); 7077 break; 7078 7079 case NK_Constant_Narrowing: 7080 // A constant value was narrowed. 7081 S.Diag(PostInit->getLocStart(), 7082 (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11) 7083 ? diag::warn_init_list_constant_narrowing 7084 : diag::ext_init_list_constant_narrowing) 7085 << PostInit->getSourceRange() 7086 << ConstantValue.getAsString(S.getASTContext(), ConstantType) 7087 << EntityType.getLocalUnqualifiedType(); 7088 break; 7089 7090 case NK_Variable_Narrowing: 7091 // A variable's value may have been narrowed. 7092 S.Diag(PostInit->getLocStart(), 7093 (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11) 7094 ? diag::warn_init_list_variable_narrowing 7095 : diag::ext_init_list_variable_narrowing) 7096 << PostInit->getSourceRange() 7097 << PreNarrowingType.getLocalUnqualifiedType() 7098 << EntityType.getLocalUnqualifiedType(); 7099 break; 7100 } 7101 7102 SmallString<128> StaticCast; 7103 llvm::raw_svector_ostream OS(StaticCast); 7104 OS << "static_cast<"; 7105 if (const TypedefType *TT = EntityType->getAs<TypedefType>()) { 7106 // It's important to use the typedef's name if there is one so that the 7107 // fixit doesn't break code using types like int64_t. 7108 // 7109 // FIXME: This will break if the typedef requires qualification. But 7110 // getQualifiedNameAsString() includes non-machine-parsable components. 7111 OS << *TT->getDecl(); 7112 } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>()) 7113 OS << BT->getName(S.getLangOpts()); 7114 else { 7115 // Oops, we didn't find the actual type of the variable. Don't emit a fixit 7116 // with a broken cast. 7117 return; 7118 } 7119 OS << ">("; 7120 S.Diag(PostInit->getLocStart(), diag::note_init_list_narrowing_silence) 7121 << PostInit->getSourceRange() 7122 << FixItHint::CreateInsertion(PostInit->getLocStart(), OS.str()) 7123 << FixItHint::CreateInsertion( 7124 S.getLocForEndOfToken(PostInit->getLocEnd()), ")"); 7125 } 7126 7127 //===----------------------------------------------------------------------===// 7128 // Initialization helper functions 7129 //===----------------------------------------------------------------------===// 7130 bool 7131 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity, 7132 ExprResult Init) { 7133 if (Init.isInvalid()) 7134 return false; 7135 7136 Expr *InitE = Init.get(); 7137 assert(InitE && "No initialization expression"); 7138 7139 InitializationKind Kind 7140 = InitializationKind::CreateCopy(InitE->getLocStart(), SourceLocation()); 7141 InitializationSequence Seq(*this, Entity, Kind, InitE); 7142 return !Seq.Failed(); 7143 } 7144 7145 ExprResult 7146 Sema::PerformCopyInitialization(const InitializedEntity &Entity, 7147 SourceLocation EqualLoc, 7148 ExprResult Init, 7149 bool TopLevelOfInitList, 7150 bool AllowExplicit) { 7151 if (Init.isInvalid()) 7152 return ExprError(); 7153 7154 Expr *InitE = Init.get(); 7155 assert(InitE && "No initialization expression?"); 7156 7157 if (EqualLoc.isInvalid()) 7158 EqualLoc = InitE->getLocStart(); 7159 7160 InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(), 7161 EqualLoc, 7162 AllowExplicit); 7163 InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList); 7164 Init.get(); 7165 7166 ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE); 7167 7168 return Result; 7169 } 7170