1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for initializers. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/AST/ASTContext.h" 14 #include "clang/AST/DeclObjC.h" 15 #include "clang/AST/ExprCXX.h" 16 #include "clang/AST/ExprObjC.h" 17 #include "clang/AST/ExprOpenMP.h" 18 #include "clang/AST/TypeLoc.h" 19 #include "clang/Basic/TargetInfo.h" 20 #include "clang/Sema/Designator.h" 21 #include "clang/Sema/Initialization.h" 22 #include "clang/Sema/Lookup.h" 23 #include "clang/Sema/SemaInternal.h" 24 #include "llvm/ADT/APInt.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/raw_ostream.h" 28 29 using namespace clang; 30 31 //===----------------------------------------------------------------------===// 32 // Sema Initialization Checking 33 //===----------------------------------------------------------------------===// 34 35 /// Check whether T is compatible with a wide character type (wchar_t, 36 /// char16_t or char32_t). 37 static bool IsWideCharCompatible(QualType T, ASTContext &Context) { 38 if (Context.typesAreCompatible(Context.getWideCharType(), T)) 39 return true; 40 if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) { 41 return Context.typesAreCompatible(Context.Char16Ty, T) || 42 Context.typesAreCompatible(Context.Char32Ty, T); 43 } 44 return false; 45 } 46 47 enum StringInitFailureKind { 48 SIF_None, 49 SIF_NarrowStringIntoWideChar, 50 SIF_WideStringIntoChar, 51 SIF_IncompatWideStringIntoWideChar, 52 SIF_UTF8StringIntoPlainChar, 53 SIF_PlainStringIntoUTF8Char, 54 SIF_Other 55 }; 56 57 /// Check whether the array of type AT can be initialized by the Init 58 /// expression by means of string initialization. Returns SIF_None if so, 59 /// otherwise returns a StringInitFailureKind that describes why the 60 /// initialization would not work. 61 static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT, 62 ASTContext &Context) { 63 if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT)) 64 return SIF_Other; 65 66 // See if this is a string literal or @encode. 67 Init = Init->IgnoreParens(); 68 69 // Handle @encode, which is a narrow string. 70 if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType()) 71 return SIF_None; 72 73 // Otherwise we can only handle string literals. 74 StringLiteral *SL = dyn_cast<StringLiteral>(Init); 75 if (!SL) 76 return SIF_Other; 77 78 const QualType ElemTy = 79 Context.getCanonicalType(AT->getElementType()).getUnqualifiedType(); 80 81 switch (SL->getKind()) { 82 case StringLiteral::UTF8: 83 // char8_t array can be initialized with a UTF-8 string. 84 if (ElemTy->isChar8Type()) 85 return SIF_None; 86 LLVM_FALLTHROUGH; 87 case StringLiteral::Ascii: 88 // char array can be initialized with a narrow string. 89 // Only allow char x[] = "foo"; not char x[] = L"foo"; 90 if (ElemTy->isCharType()) 91 return (SL->getKind() == StringLiteral::UTF8 && 92 Context.getLangOpts().Char8) 93 ? SIF_UTF8StringIntoPlainChar 94 : SIF_None; 95 if (ElemTy->isChar8Type()) 96 return SIF_PlainStringIntoUTF8Char; 97 if (IsWideCharCompatible(ElemTy, Context)) 98 return SIF_NarrowStringIntoWideChar; 99 return SIF_Other; 100 // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15: 101 // "An array with element type compatible with a qualified or unqualified 102 // version of wchar_t, char16_t, or char32_t may be initialized by a wide 103 // string literal with the corresponding encoding prefix (L, u, or U, 104 // respectively), optionally enclosed in braces. 105 case StringLiteral::UTF16: 106 if (Context.typesAreCompatible(Context.Char16Ty, ElemTy)) 107 return SIF_None; 108 if (ElemTy->isCharType() || ElemTy->isChar8Type()) 109 return SIF_WideStringIntoChar; 110 if (IsWideCharCompatible(ElemTy, Context)) 111 return SIF_IncompatWideStringIntoWideChar; 112 return SIF_Other; 113 case StringLiteral::UTF32: 114 if (Context.typesAreCompatible(Context.Char32Ty, ElemTy)) 115 return SIF_None; 116 if (ElemTy->isCharType() || ElemTy->isChar8Type()) 117 return SIF_WideStringIntoChar; 118 if (IsWideCharCompatible(ElemTy, Context)) 119 return SIF_IncompatWideStringIntoWideChar; 120 return SIF_Other; 121 case StringLiteral::Wide: 122 if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy)) 123 return SIF_None; 124 if (ElemTy->isCharType() || ElemTy->isChar8Type()) 125 return SIF_WideStringIntoChar; 126 if (IsWideCharCompatible(ElemTy, Context)) 127 return SIF_IncompatWideStringIntoWideChar; 128 return SIF_Other; 129 } 130 131 llvm_unreachable("missed a StringLiteral kind?"); 132 } 133 134 static StringInitFailureKind IsStringInit(Expr *init, QualType declType, 135 ASTContext &Context) { 136 const ArrayType *arrayType = Context.getAsArrayType(declType); 137 if (!arrayType) 138 return SIF_Other; 139 return IsStringInit(init, arrayType, Context); 140 } 141 142 /// Update the type of a string literal, including any surrounding parentheses, 143 /// to match the type of the object which it is initializing. 144 static void updateStringLiteralType(Expr *E, QualType Ty) { 145 while (true) { 146 E->setType(Ty); 147 E->setValueKind(VK_RValue); 148 if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E)) { 149 break; 150 } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 151 E = PE->getSubExpr(); 152 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 153 assert(UO->getOpcode() == UO_Extension); 154 E = UO->getSubExpr(); 155 } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) { 156 E = GSE->getResultExpr(); 157 } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) { 158 E = CE->getChosenSubExpr(); 159 } else { 160 llvm_unreachable("unexpected expr in string literal init"); 161 } 162 } 163 } 164 165 /// Fix a compound literal initializing an array so it's correctly marked 166 /// as an rvalue. 167 static void updateGNUCompoundLiteralRValue(Expr *E) { 168 while (true) { 169 E->setValueKind(VK_RValue); 170 if (isa<CompoundLiteralExpr>(E)) { 171 break; 172 } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 173 E = PE->getSubExpr(); 174 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 175 assert(UO->getOpcode() == UO_Extension); 176 E = UO->getSubExpr(); 177 } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) { 178 E = GSE->getResultExpr(); 179 } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) { 180 E = CE->getChosenSubExpr(); 181 } else { 182 llvm_unreachable("unexpected expr in array compound literal init"); 183 } 184 } 185 } 186 187 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT, 188 Sema &S) { 189 // Get the length of the string as parsed. 190 auto *ConstantArrayTy = 191 cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe()); 192 uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue(); 193 194 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) { 195 // C99 6.7.8p14. We have an array of character type with unknown size 196 // being initialized to a string literal. 197 llvm::APInt ConstVal(32, StrLength); 198 // Return a new array type (C99 6.7.8p22). 199 DeclT = S.Context.getConstantArrayType(IAT->getElementType(), 200 ConstVal, 201 ArrayType::Normal, 0); 202 updateStringLiteralType(Str, DeclT); 203 return; 204 } 205 206 const ConstantArrayType *CAT = cast<ConstantArrayType>(AT); 207 208 // We have an array of character type with known size. However, 209 // the size may be smaller or larger than the string we are initializing. 210 // FIXME: Avoid truncation for 64-bit length strings. 211 if (S.getLangOpts().CPlusPlus) { 212 if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) { 213 // For Pascal strings it's OK to strip off the terminating null character, 214 // so the example below is valid: 215 // 216 // unsigned char a[2] = "\pa"; 217 if (SL->isPascal()) 218 StrLength--; 219 } 220 221 // [dcl.init.string]p2 222 if (StrLength > CAT->getSize().getZExtValue()) 223 S.Diag(Str->getBeginLoc(), 224 diag::err_initializer_string_for_char_array_too_long) 225 << Str->getSourceRange(); 226 } else { 227 // C99 6.7.8p14. 228 if (StrLength-1 > CAT->getSize().getZExtValue()) 229 S.Diag(Str->getBeginLoc(), 230 diag::ext_initializer_string_for_char_array_too_long) 231 << Str->getSourceRange(); 232 } 233 234 // Set the type to the actual size that we are initializing. If we have 235 // something like: 236 // char x[1] = "foo"; 237 // then this will set the string literal's type to char[1]. 238 updateStringLiteralType(Str, DeclT); 239 } 240 241 //===----------------------------------------------------------------------===// 242 // Semantic checking for initializer lists. 243 //===----------------------------------------------------------------------===// 244 245 namespace { 246 247 /// Semantic checking for initializer lists. 248 /// 249 /// The InitListChecker class contains a set of routines that each 250 /// handle the initialization of a certain kind of entity, e.g., 251 /// arrays, vectors, struct/union types, scalars, etc. The 252 /// InitListChecker itself performs a recursive walk of the subobject 253 /// structure of the type to be initialized, while stepping through 254 /// the initializer list one element at a time. The IList and Index 255 /// parameters to each of the Check* routines contain the active 256 /// (syntactic) initializer list and the index into that initializer 257 /// list that represents the current initializer. Each routine is 258 /// responsible for moving that Index forward as it consumes elements. 259 /// 260 /// Each Check* routine also has a StructuredList/StructuredIndex 261 /// arguments, which contains the current "structured" (semantic) 262 /// initializer list and the index into that initializer list where we 263 /// are copying initializers as we map them over to the semantic 264 /// list. Once we have completed our recursive walk of the subobject 265 /// structure, we will have constructed a full semantic initializer 266 /// list. 267 /// 268 /// C99 designators cause changes in the initializer list traversal, 269 /// because they make the initialization "jump" into a specific 270 /// subobject and then continue the initialization from that 271 /// point. CheckDesignatedInitializer() recursively steps into the 272 /// designated subobject and manages backing out the recursion to 273 /// initialize the subobjects after the one designated. 274 class InitListChecker { 275 Sema &SemaRef; 276 bool hadError; 277 bool VerifyOnly; // no diagnostics, no structure building 278 bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode. 279 llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic; 280 InitListExpr *FullyStructuredList; 281 282 void CheckImplicitInitList(const InitializedEntity &Entity, 283 InitListExpr *ParentIList, QualType T, 284 unsigned &Index, InitListExpr *StructuredList, 285 unsigned &StructuredIndex); 286 void CheckExplicitInitList(const InitializedEntity &Entity, 287 InitListExpr *IList, QualType &T, 288 InitListExpr *StructuredList, 289 bool TopLevelObject = false); 290 void CheckListElementTypes(const InitializedEntity &Entity, 291 InitListExpr *IList, QualType &DeclType, 292 bool SubobjectIsDesignatorContext, 293 unsigned &Index, 294 InitListExpr *StructuredList, 295 unsigned &StructuredIndex, 296 bool TopLevelObject = false); 297 void CheckSubElementType(const InitializedEntity &Entity, 298 InitListExpr *IList, QualType ElemType, 299 unsigned &Index, 300 InitListExpr *StructuredList, 301 unsigned &StructuredIndex); 302 void CheckComplexType(const InitializedEntity &Entity, 303 InitListExpr *IList, QualType DeclType, 304 unsigned &Index, 305 InitListExpr *StructuredList, 306 unsigned &StructuredIndex); 307 void CheckScalarType(const InitializedEntity &Entity, 308 InitListExpr *IList, QualType DeclType, 309 unsigned &Index, 310 InitListExpr *StructuredList, 311 unsigned &StructuredIndex); 312 void CheckReferenceType(const InitializedEntity &Entity, 313 InitListExpr *IList, QualType DeclType, 314 unsigned &Index, 315 InitListExpr *StructuredList, 316 unsigned &StructuredIndex); 317 void CheckVectorType(const InitializedEntity &Entity, 318 InitListExpr *IList, QualType DeclType, unsigned &Index, 319 InitListExpr *StructuredList, 320 unsigned &StructuredIndex); 321 void CheckStructUnionTypes(const InitializedEntity &Entity, 322 InitListExpr *IList, QualType DeclType, 323 CXXRecordDecl::base_class_range Bases, 324 RecordDecl::field_iterator Field, 325 bool SubobjectIsDesignatorContext, unsigned &Index, 326 InitListExpr *StructuredList, 327 unsigned &StructuredIndex, 328 bool TopLevelObject = false); 329 void CheckArrayType(const InitializedEntity &Entity, 330 InitListExpr *IList, QualType &DeclType, 331 llvm::APSInt elementIndex, 332 bool SubobjectIsDesignatorContext, unsigned &Index, 333 InitListExpr *StructuredList, 334 unsigned &StructuredIndex); 335 bool CheckDesignatedInitializer(const InitializedEntity &Entity, 336 InitListExpr *IList, DesignatedInitExpr *DIE, 337 unsigned DesigIdx, 338 QualType &CurrentObjectType, 339 RecordDecl::field_iterator *NextField, 340 llvm::APSInt *NextElementIndex, 341 unsigned &Index, 342 InitListExpr *StructuredList, 343 unsigned &StructuredIndex, 344 bool FinishSubobjectInit, 345 bool TopLevelObject); 346 InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, 347 QualType CurrentObjectType, 348 InitListExpr *StructuredList, 349 unsigned StructuredIndex, 350 SourceRange InitRange, 351 bool IsFullyOverwritten = false); 352 void UpdateStructuredListElement(InitListExpr *StructuredList, 353 unsigned &StructuredIndex, 354 Expr *expr); 355 int numArrayElements(QualType DeclType); 356 int numStructUnionElements(QualType DeclType); 357 358 static ExprResult PerformEmptyInit(Sema &SemaRef, 359 SourceLocation Loc, 360 const InitializedEntity &Entity, 361 bool VerifyOnly, 362 bool TreatUnavailableAsInvalid); 363 364 // Explanation on the "FillWithNoInit" mode: 365 // 366 // Assume we have the following definitions (Case#1): 367 // struct P { char x[6][6]; } xp = { .x[1] = "bar" }; 368 // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' }; 369 // 370 // l.lp.x[1][0..1] should not be filled with implicit initializers because the 371 // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf". 372 // 373 // But if we have (Case#2): 374 // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } }; 375 // 376 // l.lp.x[1][0..1] are implicitly initialized and do not use values from the 377 // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0". 378 // 379 // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes" 380 // in the InitListExpr, the "holes" in Case#1 are filled not with empty 381 // initializers but with special "NoInitExpr" place holders, which tells the 382 // CodeGen not to generate any initializers for these parts. 383 void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base, 384 const InitializedEntity &ParentEntity, 385 InitListExpr *ILE, bool &RequiresSecondPass, 386 bool FillWithNoInit); 387 void FillInEmptyInitForField(unsigned Init, FieldDecl *Field, 388 const InitializedEntity &ParentEntity, 389 InitListExpr *ILE, bool &RequiresSecondPass, 390 bool FillWithNoInit = false); 391 void FillInEmptyInitializations(const InitializedEntity &Entity, 392 InitListExpr *ILE, bool &RequiresSecondPass, 393 InitListExpr *OuterILE, unsigned OuterIndex, 394 bool FillWithNoInit = false); 395 bool CheckFlexibleArrayInit(const InitializedEntity &Entity, 396 Expr *InitExpr, FieldDecl *Field, 397 bool TopLevelObject); 398 void CheckEmptyInitializable(const InitializedEntity &Entity, 399 SourceLocation Loc); 400 401 public: 402 InitListChecker(Sema &S, const InitializedEntity &Entity, 403 InitListExpr *IL, QualType &T, bool VerifyOnly, 404 bool TreatUnavailableAsInvalid); 405 bool HadError() { return hadError; } 406 407 // Retrieves the fully-structured initializer list used for 408 // semantic analysis and code generation. 409 InitListExpr *getFullyStructuredList() const { return FullyStructuredList; } 410 }; 411 412 } // end anonymous namespace 413 414 ExprResult InitListChecker::PerformEmptyInit(Sema &SemaRef, 415 SourceLocation Loc, 416 const InitializedEntity &Entity, 417 bool VerifyOnly, 418 bool TreatUnavailableAsInvalid) { 419 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc, 420 true); 421 MultiExprArg SubInit; 422 Expr *InitExpr; 423 InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc); 424 425 // C++ [dcl.init.aggr]p7: 426 // If there are fewer initializer-clauses in the list than there are 427 // members in the aggregate, then each member not explicitly initialized 428 // ... 429 bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 && 430 Entity.getType()->getBaseElementTypeUnsafe()->isRecordType(); 431 if (EmptyInitList) { 432 // C++1y / DR1070: 433 // shall be initialized [...] from an empty initializer list. 434 // 435 // We apply the resolution of this DR to C++11 but not C++98, since C++98 436 // does not have useful semantics for initialization from an init list. 437 // We treat this as copy-initialization, because aggregate initialization 438 // always performs copy-initialization on its elements. 439 // 440 // Only do this if we're initializing a class type, to avoid filling in 441 // the initializer list where possible. 442 InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context) 443 InitListExpr(SemaRef.Context, Loc, None, Loc); 444 InitExpr->setType(SemaRef.Context.VoidTy); 445 SubInit = InitExpr; 446 Kind = InitializationKind::CreateCopy(Loc, Loc); 447 } else { 448 // C++03: 449 // shall be value-initialized. 450 } 451 452 InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit); 453 // libstdc++4.6 marks the vector default constructor as explicit in 454 // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case. 455 // stlport does so too. Look for std::__debug for libstdc++, and for 456 // std:: for stlport. This is effectively a compiler-side implementation of 457 // LWG2193. 458 if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() == 459 InitializationSequence::FK_ExplicitConstructor) { 460 OverloadCandidateSet::iterator Best; 461 OverloadingResult O = 462 InitSeq.getFailedCandidateSet() 463 .BestViableFunction(SemaRef, Kind.getLocation(), Best); 464 (void)O; 465 assert(O == OR_Success && "Inconsistent overload resolution"); 466 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 467 CXXRecordDecl *R = CtorDecl->getParent(); 468 469 if (CtorDecl->getMinRequiredArguments() == 0 && 470 CtorDecl->isExplicit() && R->getDeclName() && 471 SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) { 472 bool IsInStd = false; 473 for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext()); 474 ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) { 475 if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND)) 476 IsInStd = true; 477 } 478 479 if (IsInStd && llvm::StringSwitch<bool>(R->getName()) 480 .Cases("basic_string", "deque", "forward_list", true) 481 .Cases("list", "map", "multimap", "multiset", true) 482 .Cases("priority_queue", "queue", "set", "stack", true) 483 .Cases("unordered_map", "unordered_set", "vector", true) 484 .Default(false)) { 485 InitSeq.InitializeFrom( 486 SemaRef, Entity, 487 InitializationKind::CreateValue(Loc, Loc, Loc, true), 488 MultiExprArg(), /*TopLevelOfInitList=*/false, 489 TreatUnavailableAsInvalid); 490 // Emit a warning for this. System header warnings aren't shown 491 // by default, but people working on system headers should see it. 492 if (!VerifyOnly) { 493 SemaRef.Diag(CtorDecl->getLocation(), 494 diag::warn_invalid_initializer_from_system_header); 495 if (Entity.getKind() == InitializedEntity::EK_Member) 496 SemaRef.Diag(Entity.getDecl()->getLocation(), 497 diag::note_used_in_initialization_here); 498 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) 499 SemaRef.Diag(Loc, diag::note_used_in_initialization_here); 500 } 501 } 502 } 503 } 504 if (!InitSeq) { 505 if (!VerifyOnly) { 506 InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit); 507 if (Entity.getKind() == InitializedEntity::EK_Member) 508 SemaRef.Diag(Entity.getDecl()->getLocation(), 509 diag::note_in_omitted_aggregate_initializer) 510 << /*field*/1 << Entity.getDecl(); 511 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) { 512 bool IsTrailingArrayNewMember = 513 Entity.getParent() && 514 Entity.getParent()->isVariableLengthArrayNew(); 515 SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer) 516 << (IsTrailingArrayNewMember ? 2 : /*array element*/0) 517 << Entity.getElementIndex(); 518 } 519 } 520 return ExprError(); 521 } 522 523 return VerifyOnly ? ExprResult(static_cast<Expr *>(nullptr)) 524 : InitSeq.Perform(SemaRef, Entity, Kind, SubInit); 525 } 526 527 void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity, 528 SourceLocation Loc) { 529 assert(VerifyOnly && 530 "CheckEmptyInitializable is only inteded for verification mode."); 531 if (PerformEmptyInit(SemaRef, Loc, Entity, /*VerifyOnly*/true, 532 TreatUnavailableAsInvalid).isInvalid()) 533 hadError = true; 534 } 535 536 void InitListChecker::FillInEmptyInitForBase( 537 unsigned Init, const CXXBaseSpecifier &Base, 538 const InitializedEntity &ParentEntity, InitListExpr *ILE, 539 bool &RequiresSecondPass, bool FillWithNoInit) { 540 assert(Init < ILE->getNumInits() && "should have been expanded"); 541 542 InitializedEntity BaseEntity = InitializedEntity::InitializeBase( 543 SemaRef.Context, &Base, false, &ParentEntity); 544 545 if (!ILE->getInit(Init)) { 546 ExprResult BaseInit = 547 FillWithNoInit 548 ? new (SemaRef.Context) NoInitExpr(Base.getType()) 549 : PerformEmptyInit(SemaRef, ILE->getEndLoc(), BaseEntity, 550 /*VerifyOnly*/ false, TreatUnavailableAsInvalid); 551 if (BaseInit.isInvalid()) { 552 hadError = true; 553 return; 554 } 555 556 ILE->setInit(Init, BaseInit.getAs<Expr>()); 557 } else if (InitListExpr *InnerILE = 558 dyn_cast<InitListExpr>(ILE->getInit(Init))) { 559 FillInEmptyInitializations(BaseEntity, InnerILE, RequiresSecondPass, 560 ILE, Init, FillWithNoInit); 561 } else if (DesignatedInitUpdateExpr *InnerDIUE = 562 dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) { 563 FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(), 564 RequiresSecondPass, ILE, Init, 565 /*FillWithNoInit =*/true); 566 } 567 } 568 569 void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field, 570 const InitializedEntity &ParentEntity, 571 InitListExpr *ILE, 572 bool &RequiresSecondPass, 573 bool FillWithNoInit) { 574 SourceLocation Loc = ILE->getEndLoc(); 575 unsigned NumInits = ILE->getNumInits(); 576 InitializedEntity MemberEntity 577 = InitializedEntity::InitializeMember(Field, &ParentEntity); 578 579 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) 580 if (!RType->getDecl()->isUnion()) 581 assert(Init < NumInits && "This ILE should have been expanded"); 582 583 if (Init >= NumInits || !ILE->getInit(Init)) { 584 if (FillWithNoInit) { 585 Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType()); 586 if (Init < NumInits) 587 ILE->setInit(Init, Filler); 588 else 589 ILE->updateInit(SemaRef.Context, Init, Filler); 590 return; 591 } 592 // C++1y [dcl.init.aggr]p7: 593 // If there are fewer initializer-clauses in the list than there are 594 // members in the aggregate, then each member not explicitly initialized 595 // shall be initialized from its brace-or-equal-initializer [...] 596 if (Field->hasInClassInitializer()) { 597 ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field); 598 if (DIE.isInvalid()) { 599 hadError = true; 600 return; 601 } 602 SemaRef.checkInitializerLifetime(MemberEntity, DIE.get()); 603 if (Init < NumInits) 604 ILE->setInit(Init, DIE.get()); 605 else { 606 ILE->updateInit(SemaRef.Context, Init, DIE.get()); 607 RequiresSecondPass = true; 608 } 609 return; 610 } 611 612 if (Field->getType()->isReferenceType()) { 613 // C++ [dcl.init.aggr]p9: 614 // If an incomplete or empty initializer-list leaves a 615 // member of reference type uninitialized, the program is 616 // ill-formed. 617 SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized) 618 << Field->getType() 619 << ILE->getSyntacticForm()->getSourceRange(); 620 SemaRef.Diag(Field->getLocation(), 621 diag::note_uninit_reference_member); 622 hadError = true; 623 return; 624 } 625 626 ExprResult MemberInit = PerformEmptyInit(SemaRef, Loc, MemberEntity, 627 /*VerifyOnly*/false, 628 TreatUnavailableAsInvalid); 629 if (MemberInit.isInvalid()) { 630 hadError = true; 631 return; 632 } 633 634 if (hadError) { 635 // Do nothing 636 } else if (Init < NumInits) { 637 ILE->setInit(Init, MemberInit.getAs<Expr>()); 638 } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) { 639 // Empty initialization requires a constructor call, so 640 // extend the initializer list to include the constructor 641 // call and make a note that we'll need to take another pass 642 // through the initializer list. 643 ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>()); 644 RequiresSecondPass = true; 645 } 646 } else if (InitListExpr *InnerILE 647 = dyn_cast<InitListExpr>(ILE->getInit(Init))) 648 FillInEmptyInitializations(MemberEntity, InnerILE, 649 RequiresSecondPass, ILE, Init, FillWithNoInit); 650 else if (DesignatedInitUpdateExpr *InnerDIUE 651 = dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) 652 FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(), 653 RequiresSecondPass, ILE, Init, 654 /*FillWithNoInit =*/true); 655 } 656 657 /// Recursively replaces NULL values within the given initializer list 658 /// with expressions that perform value-initialization of the 659 /// appropriate type, and finish off the InitListExpr formation. 660 void 661 InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity, 662 InitListExpr *ILE, 663 bool &RequiresSecondPass, 664 InitListExpr *OuterILE, 665 unsigned OuterIndex, 666 bool FillWithNoInit) { 667 assert((ILE->getType() != SemaRef.Context.VoidTy) && 668 "Should not have void type"); 669 670 // If this is a nested initializer list, we might have changed its contents 671 // (and therefore some of its properties, such as instantiation-dependence) 672 // while filling it in. Inform the outer initializer list so that its state 673 // can be updated to match. 674 // FIXME: We should fully build the inner initializers before constructing 675 // the outer InitListExpr instead of mutating AST nodes after they have 676 // been used as subexpressions of other nodes. 677 struct UpdateOuterILEWithUpdatedInit { 678 InitListExpr *Outer; 679 unsigned OuterIndex; 680 ~UpdateOuterILEWithUpdatedInit() { 681 if (Outer) 682 Outer->setInit(OuterIndex, Outer->getInit(OuterIndex)); 683 } 684 } UpdateOuterRAII = {OuterILE, OuterIndex}; 685 686 // A transparent ILE is not performing aggregate initialization and should 687 // not be filled in. 688 if (ILE->isTransparent()) 689 return; 690 691 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { 692 const RecordDecl *RDecl = RType->getDecl(); 693 if (RDecl->isUnion() && ILE->getInitializedFieldInUnion()) 694 FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(), 695 Entity, ILE, RequiresSecondPass, FillWithNoInit); 696 else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) && 697 cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) { 698 for (auto *Field : RDecl->fields()) { 699 if (Field->hasInClassInitializer()) { 700 FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass, 701 FillWithNoInit); 702 break; 703 } 704 } 705 } else { 706 // The fields beyond ILE->getNumInits() are default initialized, so in 707 // order to leave them uninitialized, the ILE is expanded and the extra 708 // fields are then filled with NoInitExpr. 709 unsigned NumElems = numStructUnionElements(ILE->getType()); 710 if (RDecl->hasFlexibleArrayMember()) 711 ++NumElems; 712 if (ILE->getNumInits() < NumElems) 713 ILE->resizeInits(SemaRef.Context, NumElems); 714 715 unsigned Init = 0; 716 717 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) { 718 for (auto &Base : CXXRD->bases()) { 719 if (hadError) 720 return; 721 722 FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass, 723 FillWithNoInit); 724 ++Init; 725 } 726 } 727 728 for (auto *Field : RDecl->fields()) { 729 if (Field->isUnnamedBitfield()) 730 continue; 731 732 if (hadError) 733 return; 734 735 FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass, 736 FillWithNoInit); 737 if (hadError) 738 return; 739 740 ++Init; 741 742 // Only look at the first initialization of a union. 743 if (RDecl->isUnion()) 744 break; 745 } 746 } 747 748 return; 749 } 750 751 QualType ElementType; 752 753 InitializedEntity ElementEntity = Entity; 754 unsigned NumInits = ILE->getNumInits(); 755 unsigned NumElements = NumInits; 756 if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) { 757 ElementType = AType->getElementType(); 758 if (const auto *CAType = dyn_cast<ConstantArrayType>(AType)) 759 NumElements = CAType->getSize().getZExtValue(); 760 // For an array new with an unknown bound, ask for one additional element 761 // in order to populate the array filler. 762 if (Entity.isVariableLengthArrayNew()) 763 ++NumElements; 764 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, 765 0, Entity); 766 } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) { 767 ElementType = VType->getElementType(); 768 NumElements = VType->getNumElements(); 769 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, 770 0, Entity); 771 } else 772 ElementType = ILE->getType(); 773 774 for (unsigned Init = 0; Init != NumElements; ++Init) { 775 if (hadError) 776 return; 777 778 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement || 779 ElementEntity.getKind() == InitializedEntity::EK_VectorElement) 780 ElementEntity.setElementIndex(Init); 781 782 if (Init >= NumInits && ILE->hasArrayFiller()) 783 return; 784 785 Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr); 786 if (!InitExpr && Init < NumInits && ILE->hasArrayFiller()) 787 ILE->setInit(Init, ILE->getArrayFiller()); 788 else if (!InitExpr && !ILE->hasArrayFiller()) { 789 Expr *Filler = nullptr; 790 791 if (FillWithNoInit) 792 Filler = new (SemaRef.Context) NoInitExpr(ElementType); 793 else { 794 ExprResult ElementInit = 795 PerformEmptyInit(SemaRef, ILE->getEndLoc(), ElementEntity, 796 /*VerifyOnly*/ false, TreatUnavailableAsInvalid); 797 if (ElementInit.isInvalid()) { 798 hadError = true; 799 return; 800 } 801 802 Filler = ElementInit.getAs<Expr>(); 803 } 804 805 if (hadError) { 806 // Do nothing 807 } else if (Init < NumInits) { 808 // For arrays, just set the expression used for value-initialization 809 // of the "holes" in the array. 810 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) 811 ILE->setArrayFiller(Filler); 812 else 813 ILE->setInit(Init, Filler); 814 } else { 815 // For arrays, just set the expression used for value-initialization 816 // of the rest of elements and exit. 817 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) { 818 ILE->setArrayFiller(Filler); 819 return; 820 } 821 822 if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) { 823 // Empty initialization requires a constructor call, so 824 // extend the initializer list to include the constructor 825 // call and make a note that we'll need to take another pass 826 // through the initializer list. 827 ILE->updateInit(SemaRef.Context, Init, Filler); 828 RequiresSecondPass = true; 829 } 830 } 831 } else if (InitListExpr *InnerILE 832 = dyn_cast_or_null<InitListExpr>(InitExpr)) 833 FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass, 834 ILE, Init, FillWithNoInit); 835 else if (DesignatedInitUpdateExpr *InnerDIUE 836 = dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr)) 837 FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(), 838 RequiresSecondPass, ILE, Init, 839 /*FillWithNoInit =*/true); 840 } 841 } 842 843 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity, 844 InitListExpr *IL, QualType &T, 845 bool VerifyOnly, 846 bool TreatUnavailableAsInvalid) 847 : SemaRef(S), VerifyOnly(VerifyOnly), 848 TreatUnavailableAsInvalid(TreatUnavailableAsInvalid) { 849 // FIXME: Check that IL isn't already the semantic form of some other 850 // InitListExpr. If it is, we'd create a broken AST. 851 852 hadError = false; 853 854 FullyStructuredList = 855 getStructuredSubobjectInit(IL, 0, T, nullptr, 0, IL->getSourceRange()); 856 CheckExplicitInitList(Entity, IL, T, FullyStructuredList, 857 /*TopLevelObject=*/true); 858 859 if (!hadError && !VerifyOnly) { 860 bool RequiresSecondPass = false; 861 FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass, 862 /*OuterILE=*/nullptr, /*OuterIndex=*/0); 863 if (RequiresSecondPass && !hadError) 864 FillInEmptyInitializations(Entity, FullyStructuredList, 865 RequiresSecondPass, nullptr, 0); 866 } 867 } 868 869 int InitListChecker::numArrayElements(QualType DeclType) { 870 // FIXME: use a proper constant 871 int maxElements = 0x7FFFFFFF; 872 if (const ConstantArrayType *CAT = 873 SemaRef.Context.getAsConstantArrayType(DeclType)) { 874 maxElements = static_cast<int>(CAT->getSize().getZExtValue()); 875 } 876 return maxElements; 877 } 878 879 int InitListChecker::numStructUnionElements(QualType DeclType) { 880 RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl(); 881 int InitializableMembers = 0; 882 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl)) 883 InitializableMembers += CXXRD->getNumBases(); 884 for (const auto *Field : structDecl->fields()) 885 if (!Field->isUnnamedBitfield()) 886 ++InitializableMembers; 887 888 if (structDecl->isUnion()) 889 return std::min(InitializableMembers, 1); 890 return InitializableMembers - structDecl->hasFlexibleArrayMember(); 891 } 892 893 /// Determine whether Entity is an entity for which it is idiomatic to elide 894 /// the braces in aggregate initialization. 895 static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) { 896 // Recursive initialization of the one and only field within an aggregate 897 // class is considered idiomatic. This case arises in particular for 898 // initialization of std::array, where the C++ standard suggests the idiom of 899 // 900 // std::array<T, N> arr = {1, 2, 3}; 901 // 902 // (where std::array is an aggregate struct containing a single array field. 903 904 // FIXME: Should aggregate initialization of a struct with a single 905 // base class and no members also suppress the warning? 906 if (Entity.getKind() != InitializedEntity::EK_Member || !Entity.getParent()) 907 return false; 908 909 auto *ParentRD = 910 Entity.getParent()->getType()->castAs<RecordType>()->getDecl(); 911 if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(ParentRD)) 912 if (CXXRD->getNumBases()) 913 return false; 914 915 auto FieldIt = ParentRD->field_begin(); 916 assert(FieldIt != ParentRD->field_end() && 917 "no fields but have initializer for member?"); 918 return ++FieldIt == ParentRD->field_end(); 919 } 920 921 /// Check whether the range of the initializer \p ParentIList from element 922 /// \p Index onwards can be used to initialize an object of type \p T. Update 923 /// \p Index to indicate how many elements of the list were consumed. 924 /// 925 /// This also fills in \p StructuredList, from element \p StructuredIndex 926 /// onwards, with the fully-braced, desugared form of the initialization. 927 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity, 928 InitListExpr *ParentIList, 929 QualType T, unsigned &Index, 930 InitListExpr *StructuredList, 931 unsigned &StructuredIndex) { 932 int maxElements = 0; 933 934 if (T->isArrayType()) 935 maxElements = numArrayElements(T); 936 else if (T->isRecordType()) 937 maxElements = numStructUnionElements(T); 938 else if (T->isVectorType()) 939 maxElements = T->getAs<VectorType>()->getNumElements(); 940 else 941 llvm_unreachable("CheckImplicitInitList(): Illegal type"); 942 943 if (maxElements == 0) { 944 if (!VerifyOnly) 945 SemaRef.Diag(ParentIList->getInit(Index)->getBeginLoc(), 946 diag::err_implicit_empty_initializer); 947 ++Index; 948 hadError = true; 949 return; 950 } 951 952 // Build a structured initializer list corresponding to this subobject. 953 InitListExpr *StructuredSubobjectInitList = getStructuredSubobjectInit( 954 ParentIList, Index, T, StructuredList, StructuredIndex, 955 SourceRange(ParentIList->getInit(Index)->getBeginLoc(), 956 ParentIList->getSourceRange().getEnd())); 957 unsigned StructuredSubobjectInitIndex = 0; 958 959 // Check the element types and build the structural subobject. 960 unsigned StartIndex = Index; 961 CheckListElementTypes(Entity, ParentIList, T, 962 /*SubobjectIsDesignatorContext=*/false, Index, 963 StructuredSubobjectInitList, 964 StructuredSubobjectInitIndex); 965 966 if (!VerifyOnly) { 967 StructuredSubobjectInitList->setType(T); 968 969 unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1); 970 // Update the structured sub-object initializer so that it's ending 971 // range corresponds with the end of the last initializer it used. 972 if (EndIndex < ParentIList->getNumInits() && 973 ParentIList->getInit(EndIndex)) { 974 SourceLocation EndLoc 975 = ParentIList->getInit(EndIndex)->getSourceRange().getEnd(); 976 StructuredSubobjectInitList->setRBraceLoc(EndLoc); 977 } 978 979 // Complain about missing braces. 980 if ((T->isArrayType() || T->isRecordType()) && 981 !ParentIList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) && 982 !isIdiomaticBraceElisionEntity(Entity)) { 983 SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(), 984 diag::warn_missing_braces) 985 << StructuredSubobjectInitList->getSourceRange() 986 << FixItHint::CreateInsertion( 987 StructuredSubobjectInitList->getBeginLoc(), "{") 988 << FixItHint::CreateInsertion( 989 SemaRef.getLocForEndOfToken( 990 StructuredSubobjectInitList->getEndLoc()), 991 "}"); 992 } 993 994 // Warn if this type won't be an aggregate in future versions of C++. 995 auto *CXXRD = T->getAsCXXRecordDecl(); 996 if (CXXRD && CXXRD->hasUserDeclaredConstructor()) { 997 SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(), 998 diag::warn_cxx2a_compat_aggregate_init_with_ctors) 999 << StructuredSubobjectInitList->getSourceRange() << T; 1000 } 1001 } 1002 } 1003 1004 /// Warn that \p Entity was of scalar type and was initialized by a 1005 /// single-element braced initializer list. 1006 static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity, 1007 SourceRange Braces) { 1008 // Don't warn during template instantiation. If the initialization was 1009 // non-dependent, we warned during the initial parse; otherwise, the 1010 // type might not be scalar in some uses of the template. 1011 if (S.inTemplateInstantiation()) 1012 return; 1013 1014 unsigned DiagID = 0; 1015 1016 switch (Entity.getKind()) { 1017 case InitializedEntity::EK_VectorElement: 1018 case InitializedEntity::EK_ComplexElement: 1019 case InitializedEntity::EK_ArrayElement: 1020 case InitializedEntity::EK_Parameter: 1021 case InitializedEntity::EK_Parameter_CF_Audited: 1022 case InitializedEntity::EK_Result: 1023 // Extra braces here are suspicious. 1024 DiagID = diag::warn_braces_around_scalar_init; 1025 break; 1026 1027 case InitializedEntity::EK_Member: 1028 // Warn on aggregate initialization but not on ctor init list or 1029 // default member initializer. 1030 if (Entity.getParent()) 1031 DiagID = diag::warn_braces_around_scalar_init; 1032 break; 1033 1034 case InitializedEntity::EK_Variable: 1035 case InitializedEntity::EK_LambdaCapture: 1036 // No warning, might be direct-list-initialization. 1037 // FIXME: Should we warn for copy-list-initialization in these cases? 1038 break; 1039 1040 case InitializedEntity::EK_New: 1041 case InitializedEntity::EK_Temporary: 1042 case InitializedEntity::EK_CompoundLiteralInit: 1043 // No warning, braces are part of the syntax of the underlying construct. 1044 break; 1045 1046 case InitializedEntity::EK_RelatedResult: 1047 // No warning, we already warned when initializing the result. 1048 break; 1049 1050 case InitializedEntity::EK_Exception: 1051 case InitializedEntity::EK_Base: 1052 case InitializedEntity::EK_Delegating: 1053 case InitializedEntity::EK_BlockElement: 1054 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 1055 case InitializedEntity::EK_Binding: 1056 case InitializedEntity::EK_StmtExprResult: 1057 llvm_unreachable("unexpected braced scalar init"); 1058 } 1059 1060 if (DiagID) { 1061 S.Diag(Braces.getBegin(), DiagID) 1062 << Braces 1063 << FixItHint::CreateRemoval(Braces.getBegin()) 1064 << FixItHint::CreateRemoval(Braces.getEnd()); 1065 } 1066 } 1067 1068 /// Check whether the initializer \p IList (that was written with explicit 1069 /// braces) can be used to initialize an object of type \p T. 1070 /// 1071 /// This also fills in \p StructuredList with the fully-braced, desugared 1072 /// form of the initialization. 1073 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity, 1074 InitListExpr *IList, QualType &T, 1075 InitListExpr *StructuredList, 1076 bool TopLevelObject) { 1077 if (!VerifyOnly) { 1078 SyntacticToSemantic[IList] = StructuredList; 1079 StructuredList->setSyntacticForm(IList); 1080 } 1081 1082 unsigned Index = 0, StructuredIndex = 0; 1083 CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true, 1084 Index, StructuredList, StructuredIndex, TopLevelObject); 1085 if (!VerifyOnly) { 1086 QualType ExprTy = T; 1087 if (!ExprTy->isArrayType()) 1088 ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context); 1089 IList->setType(ExprTy); 1090 StructuredList->setType(ExprTy); 1091 } 1092 if (hadError) 1093 return; 1094 1095 if (Index < IList->getNumInits()) { 1096 // We have leftover initializers 1097 if (VerifyOnly) { 1098 if (SemaRef.getLangOpts().CPlusPlus || 1099 (SemaRef.getLangOpts().OpenCL && 1100 IList->getType()->isVectorType())) { 1101 hadError = true; 1102 } 1103 return; 1104 } 1105 1106 if (StructuredIndex == 1 && 1107 IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) == 1108 SIF_None) { 1109 unsigned DK = diag::ext_excess_initializers_in_char_array_initializer; 1110 if (SemaRef.getLangOpts().CPlusPlus) { 1111 DK = diag::err_excess_initializers_in_char_array_initializer; 1112 hadError = true; 1113 } 1114 // Special-case 1115 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK) 1116 << IList->getInit(Index)->getSourceRange(); 1117 } else if (!T->isIncompleteType()) { 1118 // Don't complain for incomplete types, since we'll get an error 1119 // elsewhere 1120 QualType CurrentObjectType = StructuredList->getType(); 1121 int initKind = 1122 CurrentObjectType->isArrayType()? 0 : 1123 CurrentObjectType->isVectorType()? 1 : 1124 CurrentObjectType->isScalarType()? 2 : 1125 CurrentObjectType->isUnionType()? 3 : 1126 4; 1127 1128 unsigned DK = diag::ext_excess_initializers; 1129 if (SemaRef.getLangOpts().CPlusPlus) { 1130 DK = diag::err_excess_initializers; 1131 hadError = true; 1132 } 1133 if (SemaRef.getLangOpts().OpenCL && initKind == 1) { 1134 DK = diag::err_excess_initializers; 1135 hadError = true; 1136 } 1137 1138 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK) 1139 << initKind << IList->getInit(Index)->getSourceRange(); 1140 } 1141 } 1142 1143 if (!VerifyOnly) { 1144 if (T->isScalarType() && IList->getNumInits() == 1 && 1145 !isa<InitListExpr>(IList->getInit(0))) 1146 warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange()); 1147 1148 // Warn if this is a class type that won't be an aggregate in future 1149 // versions of C++. 1150 auto *CXXRD = T->getAsCXXRecordDecl(); 1151 if (CXXRD && CXXRD->hasUserDeclaredConstructor()) { 1152 // Don't warn if there's an equivalent default constructor that would be 1153 // used instead. 1154 bool HasEquivCtor = false; 1155 if (IList->getNumInits() == 0) { 1156 auto *CD = SemaRef.LookupDefaultConstructor(CXXRD); 1157 HasEquivCtor = CD && !CD->isDeleted(); 1158 } 1159 1160 if (!HasEquivCtor) { 1161 SemaRef.Diag(IList->getBeginLoc(), 1162 diag::warn_cxx2a_compat_aggregate_init_with_ctors) 1163 << IList->getSourceRange() << T; 1164 } 1165 } 1166 } 1167 } 1168 1169 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity, 1170 InitListExpr *IList, 1171 QualType &DeclType, 1172 bool SubobjectIsDesignatorContext, 1173 unsigned &Index, 1174 InitListExpr *StructuredList, 1175 unsigned &StructuredIndex, 1176 bool TopLevelObject) { 1177 if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) { 1178 // Explicitly braced initializer for complex type can be real+imaginary 1179 // parts. 1180 CheckComplexType(Entity, IList, DeclType, Index, 1181 StructuredList, StructuredIndex); 1182 } else if (DeclType->isScalarType()) { 1183 CheckScalarType(Entity, IList, DeclType, Index, 1184 StructuredList, StructuredIndex); 1185 } else if (DeclType->isVectorType()) { 1186 CheckVectorType(Entity, IList, DeclType, Index, 1187 StructuredList, StructuredIndex); 1188 } else if (DeclType->isRecordType()) { 1189 assert(DeclType->isAggregateType() && 1190 "non-aggregate records should be handed in CheckSubElementType"); 1191 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl(); 1192 auto Bases = 1193 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(), 1194 CXXRecordDecl::base_class_iterator()); 1195 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1196 Bases = CXXRD->bases(); 1197 CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(), 1198 SubobjectIsDesignatorContext, Index, StructuredList, 1199 StructuredIndex, TopLevelObject); 1200 } else if (DeclType->isArrayType()) { 1201 llvm::APSInt Zero( 1202 SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()), 1203 false); 1204 CheckArrayType(Entity, IList, DeclType, Zero, 1205 SubobjectIsDesignatorContext, Index, 1206 StructuredList, StructuredIndex); 1207 } else if (DeclType->isVoidType() || DeclType->isFunctionType()) { 1208 // This type is invalid, issue a diagnostic. 1209 ++Index; 1210 if (!VerifyOnly) 1211 SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type) 1212 << DeclType; 1213 hadError = true; 1214 } else if (DeclType->isReferenceType()) { 1215 CheckReferenceType(Entity, IList, DeclType, Index, 1216 StructuredList, StructuredIndex); 1217 } else if (DeclType->isObjCObjectType()) { 1218 if (!VerifyOnly) 1219 SemaRef.Diag(IList->getBeginLoc(), diag::err_init_objc_class) << DeclType; 1220 hadError = true; 1221 } else if (DeclType->isOCLIntelSubgroupAVCType()) { 1222 // Checks for scalar type are sufficient for these types too. 1223 CheckScalarType(Entity, IList, DeclType, Index, StructuredList, 1224 StructuredIndex); 1225 } else { 1226 if (!VerifyOnly) 1227 SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type) 1228 << DeclType; 1229 hadError = true; 1230 } 1231 } 1232 1233 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity, 1234 InitListExpr *IList, 1235 QualType ElemType, 1236 unsigned &Index, 1237 InitListExpr *StructuredList, 1238 unsigned &StructuredIndex) { 1239 Expr *expr = IList->getInit(Index); 1240 1241 if (ElemType->isReferenceType()) 1242 return CheckReferenceType(Entity, IList, ElemType, Index, 1243 StructuredList, StructuredIndex); 1244 1245 if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) { 1246 if (SubInitList->getNumInits() == 1 && 1247 IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) == 1248 SIF_None) { 1249 expr = SubInitList->getInit(0); 1250 } else if (!SemaRef.getLangOpts().CPlusPlus) { 1251 InitListExpr *InnerStructuredList 1252 = getStructuredSubobjectInit(IList, Index, ElemType, 1253 StructuredList, StructuredIndex, 1254 SubInitList->getSourceRange(), true); 1255 CheckExplicitInitList(Entity, SubInitList, ElemType, 1256 InnerStructuredList); 1257 1258 if (!hadError && !VerifyOnly) { 1259 bool RequiresSecondPass = false; 1260 FillInEmptyInitializations(Entity, InnerStructuredList, 1261 RequiresSecondPass, StructuredList, 1262 StructuredIndex); 1263 if (RequiresSecondPass && !hadError) 1264 FillInEmptyInitializations(Entity, InnerStructuredList, 1265 RequiresSecondPass, StructuredList, 1266 StructuredIndex); 1267 } 1268 ++StructuredIndex; 1269 ++Index; 1270 return; 1271 } 1272 // C++ initialization is handled later. 1273 } else if (isa<ImplicitValueInitExpr>(expr)) { 1274 // This happens during template instantiation when we see an InitListExpr 1275 // that we've already checked once. 1276 assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) && 1277 "found implicit initialization for the wrong type"); 1278 if (!VerifyOnly) 1279 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1280 ++Index; 1281 return; 1282 } 1283 1284 if (SemaRef.getLangOpts().CPlusPlus) { 1285 // C++ [dcl.init.aggr]p2: 1286 // Each member is copy-initialized from the corresponding 1287 // initializer-clause. 1288 1289 // FIXME: Better EqualLoc? 1290 InitializationKind Kind = 1291 InitializationKind::CreateCopy(expr->getBeginLoc(), SourceLocation()); 1292 InitializationSequence Seq(SemaRef, Entity, Kind, expr, 1293 /*TopLevelOfInitList*/ true); 1294 1295 // C++14 [dcl.init.aggr]p13: 1296 // If the assignment-expression can initialize a member, the member is 1297 // initialized. Otherwise [...] brace elision is assumed 1298 // 1299 // Brace elision is never performed if the element is not an 1300 // assignment-expression. 1301 if (Seq || isa<InitListExpr>(expr)) { 1302 if (!VerifyOnly) { 1303 ExprResult Result = 1304 Seq.Perform(SemaRef, Entity, Kind, expr); 1305 if (Result.isInvalid()) 1306 hadError = true; 1307 1308 UpdateStructuredListElement(StructuredList, StructuredIndex, 1309 Result.getAs<Expr>()); 1310 } else if (!Seq) 1311 hadError = true; 1312 ++Index; 1313 return; 1314 } 1315 1316 // Fall through for subaggregate initialization 1317 } else if (ElemType->isScalarType() || ElemType->isAtomicType()) { 1318 // FIXME: Need to handle atomic aggregate types with implicit init lists. 1319 return CheckScalarType(Entity, IList, ElemType, Index, 1320 StructuredList, StructuredIndex); 1321 } else if (const ArrayType *arrayType = 1322 SemaRef.Context.getAsArrayType(ElemType)) { 1323 // arrayType can be incomplete if we're initializing a flexible 1324 // array member. There's nothing we can do with the completed 1325 // type here, though. 1326 1327 if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) { 1328 if (!VerifyOnly) { 1329 CheckStringInit(expr, ElemType, arrayType, SemaRef); 1330 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1331 } 1332 ++Index; 1333 return; 1334 } 1335 1336 // Fall through for subaggregate initialization. 1337 1338 } else { 1339 assert((ElemType->isRecordType() || ElemType->isVectorType() || 1340 ElemType->isOpenCLSpecificType()) && "Unexpected type"); 1341 1342 // C99 6.7.8p13: 1343 // 1344 // The initializer for a structure or union object that has 1345 // automatic storage duration shall be either an initializer 1346 // list as described below, or a single expression that has 1347 // compatible structure or union type. In the latter case, the 1348 // initial value of the object, including unnamed members, is 1349 // that of the expression. 1350 ExprResult ExprRes = expr; 1351 if (SemaRef.CheckSingleAssignmentConstraints( 1352 ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) { 1353 if (ExprRes.isInvalid()) 1354 hadError = true; 1355 else { 1356 ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get()); 1357 if (ExprRes.isInvalid()) 1358 hadError = true; 1359 } 1360 UpdateStructuredListElement(StructuredList, StructuredIndex, 1361 ExprRes.getAs<Expr>()); 1362 ++Index; 1363 return; 1364 } 1365 ExprRes.get(); 1366 // Fall through for subaggregate initialization 1367 } 1368 1369 // C++ [dcl.init.aggr]p12: 1370 // 1371 // [...] Otherwise, if the member is itself a non-empty 1372 // subaggregate, brace elision is assumed and the initializer is 1373 // considered for the initialization of the first member of 1374 // the subaggregate. 1375 // OpenCL vector initializer is handled elsewhere. 1376 if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) || 1377 ElemType->isAggregateType()) { 1378 CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList, 1379 StructuredIndex); 1380 ++StructuredIndex; 1381 } else { 1382 if (!VerifyOnly) { 1383 // We cannot initialize this element, so let 1384 // PerformCopyInitialization produce the appropriate diagnostic. 1385 SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr, 1386 /*TopLevelOfInitList=*/true); 1387 } 1388 hadError = true; 1389 ++Index; 1390 ++StructuredIndex; 1391 } 1392 } 1393 1394 void InitListChecker::CheckComplexType(const InitializedEntity &Entity, 1395 InitListExpr *IList, QualType DeclType, 1396 unsigned &Index, 1397 InitListExpr *StructuredList, 1398 unsigned &StructuredIndex) { 1399 assert(Index == 0 && "Index in explicit init list must be zero"); 1400 1401 // As an extension, clang supports complex initializers, which initialize 1402 // a complex number component-wise. When an explicit initializer list for 1403 // a complex number contains two two initializers, this extension kicks in: 1404 // it exepcts the initializer list to contain two elements convertible to 1405 // the element type of the complex type. The first element initializes 1406 // the real part, and the second element intitializes the imaginary part. 1407 1408 if (IList->getNumInits() != 2) 1409 return CheckScalarType(Entity, IList, DeclType, Index, StructuredList, 1410 StructuredIndex); 1411 1412 // This is an extension in C. (The builtin _Complex type does not exist 1413 // in the C++ standard.) 1414 if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly) 1415 SemaRef.Diag(IList->getBeginLoc(), diag::ext_complex_component_init) 1416 << IList->getSourceRange(); 1417 1418 // Initialize the complex number. 1419 QualType elementType = DeclType->getAs<ComplexType>()->getElementType(); 1420 InitializedEntity ElementEntity = 1421 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1422 1423 for (unsigned i = 0; i < 2; ++i) { 1424 ElementEntity.setElementIndex(Index); 1425 CheckSubElementType(ElementEntity, IList, elementType, Index, 1426 StructuredList, StructuredIndex); 1427 } 1428 } 1429 1430 void InitListChecker::CheckScalarType(const InitializedEntity &Entity, 1431 InitListExpr *IList, QualType DeclType, 1432 unsigned &Index, 1433 InitListExpr *StructuredList, 1434 unsigned &StructuredIndex) { 1435 if (Index >= IList->getNumInits()) { 1436 if (!VerifyOnly) 1437 SemaRef.Diag(IList->getBeginLoc(), 1438 SemaRef.getLangOpts().CPlusPlus11 1439 ? diag::warn_cxx98_compat_empty_scalar_initializer 1440 : diag::err_empty_scalar_initializer) 1441 << IList->getSourceRange(); 1442 hadError = !SemaRef.getLangOpts().CPlusPlus11; 1443 ++Index; 1444 ++StructuredIndex; 1445 return; 1446 } 1447 1448 Expr *expr = IList->getInit(Index); 1449 if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) { 1450 // FIXME: This is invalid, and accepting it causes overload resolution 1451 // to pick the wrong overload in some corner cases. 1452 if (!VerifyOnly) 1453 SemaRef.Diag(SubIList->getBeginLoc(), 1454 diag::ext_many_braces_around_scalar_init) 1455 << SubIList->getSourceRange(); 1456 1457 CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList, 1458 StructuredIndex); 1459 return; 1460 } else if (isa<DesignatedInitExpr>(expr)) { 1461 if (!VerifyOnly) 1462 SemaRef.Diag(expr->getBeginLoc(), diag::err_designator_for_scalar_init) 1463 << DeclType << expr->getSourceRange(); 1464 hadError = true; 1465 ++Index; 1466 ++StructuredIndex; 1467 return; 1468 } 1469 1470 if (VerifyOnly) { 1471 if (!SemaRef.CanPerformCopyInitialization(Entity,expr)) 1472 hadError = true; 1473 ++Index; 1474 return; 1475 } 1476 1477 ExprResult Result = 1478 SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr, 1479 /*TopLevelOfInitList=*/true); 1480 1481 Expr *ResultExpr = nullptr; 1482 1483 if (Result.isInvalid()) 1484 hadError = true; // types weren't compatible. 1485 else { 1486 ResultExpr = Result.getAs<Expr>(); 1487 1488 if (ResultExpr != expr) { 1489 // The type was promoted, update initializer list. 1490 IList->setInit(Index, ResultExpr); 1491 } 1492 } 1493 if (hadError) 1494 ++StructuredIndex; 1495 else 1496 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr); 1497 ++Index; 1498 } 1499 1500 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity, 1501 InitListExpr *IList, QualType DeclType, 1502 unsigned &Index, 1503 InitListExpr *StructuredList, 1504 unsigned &StructuredIndex) { 1505 if (Index >= IList->getNumInits()) { 1506 // FIXME: It would be wonderful if we could point at the actual member. In 1507 // general, it would be useful to pass location information down the stack, 1508 // so that we know the location (or decl) of the "current object" being 1509 // initialized. 1510 if (!VerifyOnly) 1511 SemaRef.Diag(IList->getBeginLoc(), 1512 diag::err_init_reference_member_uninitialized) 1513 << DeclType << IList->getSourceRange(); 1514 hadError = true; 1515 ++Index; 1516 ++StructuredIndex; 1517 return; 1518 } 1519 1520 Expr *expr = IList->getInit(Index); 1521 if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) { 1522 if (!VerifyOnly) 1523 SemaRef.Diag(IList->getBeginLoc(), diag::err_init_non_aggr_init_list) 1524 << DeclType << IList->getSourceRange(); 1525 hadError = true; 1526 ++Index; 1527 ++StructuredIndex; 1528 return; 1529 } 1530 1531 if (VerifyOnly) { 1532 if (!SemaRef.CanPerformCopyInitialization(Entity,expr)) 1533 hadError = true; 1534 ++Index; 1535 return; 1536 } 1537 1538 ExprResult Result = 1539 SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr, 1540 /*TopLevelOfInitList=*/true); 1541 1542 if (Result.isInvalid()) 1543 hadError = true; 1544 1545 expr = Result.getAs<Expr>(); 1546 IList->setInit(Index, expr); 1547 1548 if (hadError) 1549 ++StructuredIndex; 1550 else 1551 UpdateStructuredListElement(StructuredList, StructuredIndex, expr); 1552 ++Index; 1553 } 1554 1555 void InitListChecker::CheckVectorType(const InitializedEntity &Entity, 1556 InitListExpr *IList, QualType DeclType, 1557 unsigned &Index, 1558 InitListExpr *StructuredList, 1559 unsigned &StructuredIndex) { 1560 const VectorType *VT = DeclType->getAs<VectorType>(); 1561 unsigned maxElements = VT->getNumElements(); 1562 unsigned numEltsInit = 0; 1563 QualType elementType = VT->getElementType(); 1564 1565 if (Index >= IList->getNumInits()) { 1566 // Make sure the element type can be value-initialized. 1567 if (VerifyOnly) 1568 CheckEmptyInitializable( 1569 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity), 1570 IList->getEndLoc()); 1571 return; 1572 } 1573 1574 if (!SemaRef.getLangOpts().OpenCL) { 1575 // If the initializing element is a vector, try to copy-initialize 1576 // instead of breaking it apart (which is doomed to failure anyway). 1577 Expr *Init = IList->getInit(Index); 1578 if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) { 1579 if (VerifyOnly) { 1580 if (!SemaRef.CanPerformCopyInitialization(Entity, Init)) 1581 hadError = true; 1582 ++Index; 1583 return; 1584 } 1585 1586 ExprResult Result = 1587 SemaRef.PerformCopyInitialization(Entity, Init->getBeginLoc(), Init, 1588 /*TopLevelOfInitList=*/true); 1589 1590 Expr *ResultExpr = nullptr; 1591 if (Result.isInvalid()) 1592 hadError = true; // types weren't compatible. 1593 else { 1594 ResultExpr = Result.getAs<Expr>(); 1595 1596 if (ResultExpr != Init) { 1597 // The type was promoted, update initializer list. 1598 IList->setInit(Index, ResultExpr); 1599 } 1600 } 1601 if (hadError) 1602 ++StructuredIndex; 1603 else 1604 UpdateStructuredListElement(StructuredList, StructuredIndex, 1605 ResultExpr); 1606 ++Index; 1607 return; 1608 } 1609 1610 InitializedEntity ElementEntity = 1611 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1612 1613 for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) { 1614 // Don't attempt to go past the end of the init list 1615 if (Index >= IList->getNumInits()) { 1616 if (VerifyOnly) 1617 CheckEmptyInitializable(ElementEntity, IList->getEndLoc()); 1618 break; 1619 } 1620 1621 ElementEntity.setElementIndex(Index); 1622 CheckSubElementType(ElementEntity, IList, elementType, Index, 1623 StructuredList, StructuredIndex); 1624 } 1625 1626 if (VerifyOnly) 1627 return; 1628 1629 bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian(); 1630 const VectorType *T = Entity.getType()->getAs<VectorType>(); 1631 if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector || 1632 T->getVectorKind() == VectorType::NeonPolyVector)) { 1633 // The ability to use vector initializer lists is a GNU vector extension 1634 // and is unrelated to the NEON intrinsics in arm_neon.h. On little 1635 // endian machines it works fine, however on big endian machines it 1636 // exhibits surprising behaviour: 1637 // 1638 // uint32x2_t x = {42, 64}; 1639 // return vget_lane_u32(x, 0); // Will return 64. 1640 // 1641 // Because of this, explicitly call out that it is non-portable. 1642 // 1643 SemaRef.Diag(IList->getBeginLoc(), 1644 diag::warn_neon_vector_initializer_non_portable); 1645 1646 const char *typeCode; 1647 unsigned typeSize = SemaRef.Context.getTypeSize(elementType); 1648 1649 if (elementType->isFloatingType()) 1650 typeCode = "f"; 1651 else if (elementType->isSignedIntegerType()) 1652 typeCode = "s"; 1653 else if (elementType->isUnsignedIntegerType()) 1654 typeCode = "u"; 1655 else 1656 llvm_unreachable("Invalid element type!"); 1657 1658 SemaRef.Diag(IList->getBeginLoc(), 1659 SemaRef.Context.getTypeSize(VT) > 64 1660 ? diag::note_neon_vector_initializer_non_portable_q 1661 : diag::note_neon_vector_initializer_non_portable) 1662 << typeCode << typeSize; 1663 } 1664 1665 return; 1666 } 1667 1668 InitializedEntity ElementEntity = 1669 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 1670 1671 // OpenCL initializers allows vectors to be constructed from vectors. 1672 for (unsigned i = 0; i < maxElements; ++i) { 1673 // Don't attempt to go past the end of the init list 1674 if (Index >= IList->getNumInits()) 1675 break; 1676 1677 ElementEntity.setElementIndex(Index); 1678 1679 QualType IType = IList->getInit(Index)->getType(); 1680 if (!IType->isVectorType()) { 1681 CheckSubElementType(ElementEntity, IList, elementType, Index, 1682 StructuredList, StructuredIndex); 1683 ++numEltsInit; 1684 } else { 1685 QualType VecType; 1686 const VectorType *IVT = IType->getAs<VectorType>(); 1687 unsigned numIElts = IVT->getNumElements(); 1688 1689 if (IType->isExtVectorType()) 1690 VecType = SemaRef.Context.getExtVectorType(elementType, numIElts); 1691 else 1692 VecType = SemaRef.Context.getVectorType(elementType, numIElts, 1693 IVT->getVectorKind()); 1694 CheckSubElementType(ElementEntity, IList, VecType, Index, 1695 StructuredList, StructuredIndex); 1696 numEltsInit += numIElts; 1697 } 1698 } 1699 1700 // OpenCL requires all elements to be initialized. 1701 if (numEltsInit != maxElements) { 1702 if (!VerifyOnly) 1703 SemaRef.Diag(IList->getBeginLoc(), 1704 diag::err_vector_incorrect_num_initializers) 1705 << (numEltsInit < maxElements) << maxElements << numEltsInit; 1706 hadError = true; 1707 } 1708 } 1709 1710 /// Check if the type of a class element has an accessible destructor, and marks 1711 /// it referenced. Returns true if we shouldn't form a reference to the 1712 /// destructor. 1713 /// 1714 /// Aggregate initialization requires a class element's destructor be 1715 /// accessible per 11.6.1 [dcl.init.aggr]: 1716 /// 1717 /// The destructor for each element of class type is potentially invoked 1718 /// (15.4 [class.dtor]) from the context where the aggregate initialization 1719 /// occurs. 1720 static bool checkDestructorReference(QualType ElementType, SourceLocation Loc, 1721 Sema &SemaRef) { 1722 auto *CXXRD = ElementType->getAsCXXRecordDecl(); 1723 if (!CXXRD) 1724 return false; 1725 1726 CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(CXXRD); 1727 SemaRef.CheckDestructorAccess(Loc, Destructor, 1728 SemaRef.PDiag(diag::err_access_dtor_temp) 1729 << ElementType); 1730 SemaRef.MarkFunctionReferenced(Loc, Destructor); 1731 return SemaRef.DiagnoseUseOfDecl(Destructor, Loc); 1732 } 1733 1734 void InitListChecker::CheckArrayType(const InitializedEntity &Entity, 1735 InitListExpr *IList, QualType &DeclType, 1736 llvm::APSInt elementIndex, 1737 bool SubobjectIsDesignatorContext, 1738 unsigned &Index, 1739 InitListExpr *StructuredList, 1740 unsigned &StructuredIndex) { 1741 const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType); 1742 1743 if (!VerifyOnly) { 1744 if (checkDestructorReference(arrayType->getElementType(), 1745 IList->getEndLoc(), SemaRef)) { 1746 hadError = true; 1747 return; 1748 } 1749 } 1750 1751 // Check for the special-case of initializing an array with a string. 1752 if (Index < IList->getNumInits()) { 1753 if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) == 1754 SIF_None) { 1755 // We place the string literal directly into the resulting 1756 // initializer list. This is the only place where the structure 1757 // of the structured initializer list doesn't match exactly, 1758 // because doing so would involve allocating one character 1759 // constant for each string. 1760 if (!VerifyOnly) { 1761 CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef); 1762 UpdateStructuredListElement(StructuredList, StructuredIndex, 1763 IList->getInit(Index)); 1764 StructuredList->resizeInits(SemaRef.Context, StructuredIndex); 1765 } 1766 ++Index; 1767 return; 1768 } 1769 } 1770 if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) { 1771 // Check for VLAs; in standard C it would be possible to check this 1772 // earlier, but I don't know where clang accepts VLAs (gcc accepts 1773 // them in all sorts of strange places). 1774 if (!VerifyOnly) 1775 SemaRef.Diag(VAT->getSizeExpr()->getBeginLoc(), 1776 diag::err_variable_object_no_init) 1777 << VAT->getSizeExpr()->getSourceRange(); 1778 hadError = true; 1779 ++Index; 1780 ++StructuredIndex; 1781 return; 1782 } 1783 1784 // We might know the maximum number of elements in advance. 1785 llvm::APSInt maxElements(elementIndex.getBitWidth(), 1786 elementIndex.isUnsigned()); 1787 bool maxElementsKnown = false; 1788 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) { 1789 maxElements = CAT->getSize(); 1790 elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth()); 1791 elementIndex.setIsUnsigned(maxElements.isUnsigned()); 1792 maxElementsKnown = true; 1793 } 1794 1795 QualType elementType = arrayType->getElementType(); 1796 while (Index < IList->getNumInits()) { 1797 Expr *Init = IList->getInit(Index); 1798 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { 1799 // If we're not the subobject that matches up with the '{' for 1800 // the designator, we shouldn't be handling the 1801 // designator. Return immediately. 1802 if (!SubobjectIsDesignatorContext) 1803 return; 1804 1805 // Handle this designated initializer. elementIndex will be 1806 // updated to be the next array element we'll initialize. 1807 if (CheckDesignatedInitializer(Entity, IList, DIE, 0, 1808 DeclType, nullptr, &elementIndex, Index, 1809 StructuredList, StructuredIndex, true, 1810 false)) { 1811 hadError = true; 1812 continue; 1813 } 1814 1815 if (elementIndex.getBitWidth() > maxElements.getBitWidth()) 1816 maxElements = maxElements.extend(elementIndex.getBitWidth()); 1817 else if (elementIndex.getBitWidth() < maxElements.getBitWidth()) 1818 elementIndex = elementIndex.extend(maxElements.getBitWidth()); 1819 elementIndex.setIsUnsigned(maxElements.isUnsigned()); 1820 1821 // If the array is of incomplete type, keep track of the number of 1822 // elements in the initializer. 1823 if (!maxElementsKnown && elementIndex > maxElements) 1824 maxElements = elementIndex; 1825 1826 continue; 1827 } 1828 1829 // If we know the maximum number of elements, and we've already 1830 // hit it, stop consuming elements in the initializer list. 1831 if (maxElementsKnown && elementIndex == maxElements) 1832 break; 1833 1834 InitializedEntity ElementEntity = 1835 InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex, 1836 Entity); 1837 // Check this element. 1838 CheckSubElementType(ElementEntity, IList, elementType, Index, 1839 StructuredList, StructuredIndex); 1840 ++elementIndex; 1841 1842 // If the array is of incomplete type, keep track of the number of 1843 // elements in the initializer. 1844 if (!maxElementsKnown && elementIndex > maxElements) 1845 maxElements = elementIndex; 1846 } 1847 if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) { 1848 // If this is an incomplete array type, the actual type needs to 1849 // be calculated here. 1850 llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned()); 1851 if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) { 1852 // Sizing an array implicitly to zero is not allowed by ISO C, 1853 // but is supported by GNU. 1854 SemaRef.Diag(IList->getBeginLoc(), diag::ext_typecheck_zero_array_size); 1855 } 1856 1857 DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements, 1858 ArrayType::Normal, 0); 1859 } 1860 if (!hadError && VerifyOnly) { 1861 // If there are any members of the array that get value-initialized, check 1862 // that is possible. That happens if we know the bound and don't have 1863 // enough elements, or if we're performing an array new with an unknown 1864 // bound. 1865 // FIXME: This needs to detect holes left by designated initializers too. 1866 if ((maxElementsKnown && elementIndex < maxElements) || 1867 Entity.isVariableLengthArrayNew()) 1868 CheckEmptyInitializable( 1869 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity), 1870 IList->getEndLoc()); 1871 } 1872 } 1873 1874 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity, 1875 Expr *InitExpr, 1876 FieldDecl *Field, 1877 bool TopLevelObject) { 1878 // Handle GNU flexible array initializers. 1879 unsigned FlexArrayDiag; 1880 if (isa<InitListExpr>(InitExpr) && 1881 cast<InitListExpr>(InitExpr)->getNumInits() == 0) { 1882 // Empty flexible array init always allowed as an extension 1883 FlexArrayDiag = diag::ext_flexible_array_init; 1884 } else if (SemaRef.getLangOpts().CPlusPlus) { 1885 // Disallow flexible array init in C++; it is not required for gcc 1886 // compatibility, and it needs work to IRGen correctly in general. 1887 FlexArrayDiag = diag::err_flexible_array_init; 1888 } else if (!TopLevelObject) { 1889 // Disallow flexible array init on non-top-level object 1890 FlexArrayDiag = diag::err_flexible_array_init; 1891 } else if (Entity.getKind() != InitializedEntity::EK_Variable) { 1892 // Disallow flexible array init on anything which is not a variable. 1893 FlexArrayDiag = diag::err_flexible_array_init; 1894 } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) { 1895 // Disallow flexible array init on local variables. 1896 FlexArrayDiag = diag::err_flexible_array_init; 1897 } else { 1898 // Allow other cases. 1899 FlexArrayDiag = diag::ext_flexible_array_init; 1900 } 1901 1902 if (!VerifyOnly) { 1903 SemaRef.Diag(InitExpr->getBeginLoc(), FlexArrayDiag) 1904 << InitExpr->getBeginLoc(); 1905 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 1906 << Field; 1907 } 1908 1909 return FlexArrayDiag != diag::ext_flexible_array_init; 1910 } 1911 1912 void InitListChecker::CheckStructUnionTypes( 1913 const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType, 1914 CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field, 1915 bool SubobjectIsDesignatorContext, unsigned &Index, 1916 InitListExpr *StructuredList, unsigned &StructuredIndex, 1917 bool TopLevelObject) { 1918 RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl(); 1919 1920 // If the record is invalid, some of it's members are invalid. To avoid 1921 // confusion, we forgo checking the intializer for the entire record. 1922 if (structDecl->isInvalidDecl()) { 1923 // Assume it was supposed to consume a single initializer. 1924 ++Index; 1925 hadError = true; 1926 return; 1927 } 1928 1929 if (DeclType->isUnionType() && IList->getNumInits() == 0) { 1930 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl(); 1931 1932 if (!VerifyOnly) 1933 for (FieldDecl *FD : RD->fields()) { 1934 QualType ET = SemaRef.Context.getBaseElementType(FD->getType()); 1935 if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) { 1936 hadError = true; 1937 return; 1938 } 1939 } 1940 1941 // If there's a default initializer, use it. 1942 if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->hasInClassInitializer()) { 1943 if (VerifyOnly) 1944 return; 1945 for (RecordDecl::field_iterator FieldEnd = RD->field_end(); 1946 Field != FieldEnd; ++Field) { 1947 if (Field->hasInClassInitializer()) { 1948 StructuredList->setInitializedFieldInUnion(*Field); 1949 // FIXME: Actually build a CXXDefaultInitExpr? 1950 return; 1951 } 1952 } 1953 } 1954 1955 // Value-initialize the first member of the union that isn't an unnamed 1956 // bitfield. 1957 for (RecordDecl::field_iterator FieldEnd = RD->field_end(); 1958 Field != FieldEnd; ++Field) { 1959 if (!Field->isUnnamedBitfield()) { 1960 if (VerifyOnly) 1961 CheckEmptyInitializable( 1962 InitializedEntity::InitializeMember(*Field, &Entity), 1963 IList->getEndLoc()); 1964 else 1965 StructuredList->setInitializedFieldInUnion(*Field); 1966 break; 1967 } 1968 } 1969 return; 1970 } 1971 1972 bool InitializedSomething = false; 1973 1974 // If we have any base classes, they are initialized prior to the fields. 1975 for (auto &Base : Bases) { 1976 Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr; 1977 1978 // Designated inits always initialize fields, so if we see one, all 1979 // remaining base classes have no explicit initializer. 1980 if (Init && isa<DesignatedInitExpr>(Init)) 1981 Init = nullptr; 1982 1983 SourceLocation InitLoc = Init ? Init->getBeginLoc() : IList->getEndLoc(); 1984 InitializedEntity BaseEntity = InitializedEntity::InitializeBase( 1985 SemaRef.Context, &Base, false, &Entity); 1986 if (Init) { 1987 CheckSubElementType(BaseEntity, IList, Base.getType(), Index, 1988 StructuredList, StructuredIndex); 1989 InitializedSomething = true; 1990 } else if (VerifyOnly) { 1991 CheckEmptyInitializable(BaseEntity, InitLoc); 1992 } 1993 1994 if (!VerifyOnly) 1995 if (checkDestructorReference(Base.getType(), InitLoc, SemaRef)) { 1996 hadError = true; 1997 return; 1998 } 1999 } 2000 2001 // If structDecl is a forward declaration, this loop won't do 2002 // anything except look at designated initializers; That's okay, 2003 // because an error should get printed out elsewhere. It might be 2004 // worthwhile to skip over the rest of the initializer, though. 2005 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl(); 2006 RecordDecl::field_iterator FieldEnd = RD->field_end(); 2007 bool CheckForMissingFields = 2008 !IList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()); 2009 bool HasDesignatedInit = false; 2010 2011 while (Index < IList->getNumInits()) { 2012 Expr *Init = IList->getInit(Index); 2013 SourceLocation InitLoc = Init->getBeginLoc(); 2014 2015 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { 2016 // If we're not the subobject that matches up with the '{' for 2017 // the designator, we shouldn't be handling the 2018 // designator. Return immediately. 2019 if (!SubobjectIsDesignatorContext) 2020 return; 2021 2022 HasDesignatedInit = true; 2023 2024 // Handle this designated initializer. Field will be updated to 2025 // the next field that we'll be initializing. 2026 if (CheckDesignatedInitializer(Entity, IList, DIE, 0, 2027 DeclType, &Field, nullptr, Index, 2028 StructuredList, StructuredIndex, 2029 true, TopLevelObject)) 2030 hadError = true; 2031 else if (!VerifyOnly) { 2032 // Find the field named by the designated initializer. 2033 RecordDecl::field_iterator F = RD->field_begin(); 2034 while (std::next(F) != Field) 2035 ++F; 2036 QualType ET = SemaRef.Context.getBaseElementType(F->getType()); 2037 if (checkDestructorReference(ET, InitLoc, SemaRef)) { 2038 hadError = true; 2039 return; 2040 } 2041 } 2042 2043 InitializedSomething = true; 2044 2045 // Disable check for missing fields when designators are used. 2046 // This matches gcc behaviour. 2047 CheckForMissingFields = false; 2048 continue; 2049 } 2050 2051 if (Field == FieldEnd) { 2052 // We've run out of fields. We're done. 2053 break; 2054 } 2055 2056 // We've already initialized a member of a union. We're done. 2057 if (InitializedSomething && DeclType->isUnionType()) 2058 break; 2059 2060 // If we've hit the flexible array member at the end, we're done. 2061 if (Field->getType()->isIncompleteArrayType()) 2062 break; 2063 2064 if (Field->isUnnamedBitfield()) { 2065 // Don't initialize unnamed bitfields, e.g. "int : 20;" 2066 ++Field; 2067 continue; 2068 } 2069 2070 // Make sure we can use this declaration. 2071 bool InvalidUse; 2072 if (VerifyOnly) 2073 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid); 2074 else 2075 InvalidUse = SemaRef.DiagnoseUseOfDecl( 2076 *Field, IList->getInit(Index)->getBeginLoc()); 2077 if (InvalidUse) { 2078 ++Index; 2079 ++Field; 2080 hadError = true; 2081 continue; 2082 } 2083 2084 if (!VerifyOnly) { 2085 QualType ET = SemaRef.Context.getBaseElementType(Field->getType()); 2086 if (checkDestructorReference(ET, InitLoc, SemaRef)) { 2087 hadError = true; 2088 return; 2089 } 2090 } 2091 2092 InitializedEntity MemberEntity = 2093 InitializedEntity::InitializeMember(*Field, &Entity); 2094 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 2095 StructuredList, StructuredIndex); 2096 InitializedSomething = true; 2097 2098 if (DeclType->isUnionType() && !VerifyOnly) { 2099 // Initialize the first field within the union. 2100 StructuredList->setInitializedFieldInUnion(*Field); 2101 } 2102 2103 ++Field; 2104 } 2105 2106 // Emit warnings for missing struct field initializers. 2107 if (!VerifyOnly && InitializedSomething && CheckForMissingFields && 2108 Field != FieldEnd && !Field->getType()->isIncompleteArrayType() && 2109 !DeclType->isUnionType()) { 2110 // It is possible we have one or more unnamed bitfields remaining. 2111 // Find first (if any) named field and emit warning. 2112 for (RecordDecl::field_iterator it = Field, end = RD->field_end(); 2113 it != end; ++it) { 2114 if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) { 2115 SemaRef.Diag(IList->getSourceRange().getEnd(), 2116 diag::warn_missing_field_initializers) << *it; 2117 break; 2118 } 2119 } 2120 } 2121 2122 // Check that any remaining fields can be value-initialized. 2123 if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() && 2124 !Field->getType()->isIncompleteArrayType()) { 2125 // FIXME: Should check for holes left by designated initializers too. 2126 for (; Field != FieldEnd && !hadError; ++Field) { 2127 if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer()) 2128 CheckEmptyInitializable( 2129 InitializedEntity::InitializeMember(*Field, &Entity), 2130 IList->getEndLoc()); 2131 } 2132 } 2133 2134 // Check that the types of the remaining fields have accessible destructors. 2135 if (!VerifyOnly) { 2136 // If the initializer expression has a designated initializer, check the 2137 // elements for which a designated initializer is not provided too. 2138 RecordDecl::field_iterator I = HasDesignatedInit ? RD->field_begin() 2139 : Field; 2140 for (RecordDecl::field_iterator E = RD->field_end(); I != E; ++I) { 2141 QualType ET = SemaRef.Context.getBaseElementType(I->getType()); 2142 if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) { 2143 hadError = true; 2144 return; 2145 } 2146 } 2147 } 2148 2149 if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() || 2150 Index >= IList->getNumInits()) 2151 return; 2152 2153 if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field, 2154 TopLevelObject)) { 2155 hadError = true; 2156 ++Index; 2157 return; 2158 } 2159 2160 InitializedEntity MemberEntity = 2161 InitializedEntity::InitializeMember(*Field, &Entity); 2162 2163 if (isa<InitListExpr>(IList->getInit(Index))) 2164 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 2165 StructuredList, StructuredIndex); 2166 else 2167 CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index, 2168 StructuredList, StructuredIndex); 2169 } 2170 2171 /// Expand a field designator that refers to a member of an 2172 /// anonymous struct or union into a series of field designators that 2173 /// refers to the field within the appropriate subobject. 2174 /// 2175 static void ExpandAnonymousFieldDesignator(Sema &SemaRef, 2176 DesignatedInitExpr *DIE, 2177 unsigned DesigIdx, 2178 IndirectFieldDecl *IndirectField) { 2179 typedef DesignatedInitExpr::Designator Designator; 2180 2181 // Build the replacement designators. 2182 SmallVector<Designator, 4> Replacements; 2183 for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(), 2184 PE = IndirectField->chain_end(); PI != PE; ++PI) { 2185 if (PI + 1 == PE) 2186 Replacements.push_back(Designator((IdentifierInfo *)nullptr, 2187 DIE->getDesignator(DesigIdx)->getDotLoc(), 2188 DIE->getDesignator(DesigIdx)->getFieldLoc())); 2189 else 2190 Replacements.push_back(Designator((IdentifierInfo *)nullptr, 2191 SourceLocation(), SourceLocation())); 2192 assert(isa<FieldDecl>(*PI)); 2193 Replacements.back().setField(cast<FieldDecl>(*PI)); 2194 } 2195 2196 // Expand the current designator into the set of replacement 2197 // designators, so we have a full subobject path down to where the 2198 // member of the anonymous struct/union is actually stored. 2199 DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0], 2200 &Replacements[0] + Replacements.size()); 2201 } 2202 2203 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef, 2204 DesignatedInitExpr *DIE) { 2205 unsigned NumIndexExprs = DIE->getNumSubExprs() - 1; 2206 SmallVector<Expr*, 4> IndexExprs(NumIndexExprs); 2207 for (unsigned I = 0; I < NumIndexExprs; ++I) 2208 IndexExprs[I] = DIE->getSubExpr(I + 1); 2209 return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(), 2210 IndexExprs, 2211 DIE->getEqualOrColonLoc(), 2212 DIE->usesGNUSyntax(), DIE->getInit()); 2213 } 2214 2215 namespace { 2216 2217 // Callback to only accept typo corrections that are for field members of 2218 // the given struct or union. 2219 class FieldInitializerValidatorCCC final : public CorrectionCandidateCallback { 2220 public: 2221 explicit FieldInitializerValidatorCCC(RecordDecl *RD) 2222 : Record(RD) {} 2223 2224 bool ValidateCandidate(const TypoCorrection &candidate) override { 2225 FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>(); 2226 return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record); 2227 } 2228 2229 std::unique_ptr<CorrectionCandidateCallback> clone() override { 2230 return llvm::make_unique<FieldInitializerValidatorCCC>(*this); 2231 } 2232 2233 private: 2234 RecordDecl *Record; 2235 }; 2236 2237 } // end anonymous namespace 2238 2239 /// Check the well-formedness of a C99 designated initializer. 2240 /// 2241 /// Determines whether the designated initializer @p DIE, which 2242 /// resides at the given @p Index within the initializer list @p 2243 /// IList, is well-formed for a current object of type @p DeclType 2244 /// (C99 6.7.8). The actual subobject that this designator refers to 2245 /// within the current subobject is returned in either 2246 /// @p NextField or @p NextElementIndex (whichever is appropriate). 2247 /// 2248 /// @param IList The initializer list in which this designated 2249 /// initializer occurs. 2250 /// 2251 /// @param DIE The designated initializer expression. 2252 /// 2253 /// @param DesigIdx The index of the current designator. 2254 /// 2255 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17), 2256 /// into which the designation in @p DIE should refer. 2257 /// 2258 /// @param NextField If non-NULL and the first designator in @p DIE is 2259 /// a field, this will be set to the field declaration corresponding 2260 /// to the field named by the designator. 2261 /// 2262 /// @param NextElementIndex If non-NULL and the first designator in @p 2263 /// DIE is an array designator or GNU array-range designator, this 2264 /// will be set to the last index initialized by this designator. 2265 /// 2266 /// @param Index Index into @p IList where the designated initializer 2267 /// @p DIE occurs. 2268 /// 2269 /// @param StructuredList The initializer list expression that 2270 /// describes all of the subobject initializers in the order they'll 2271 /// actually be initialized. 2272 /// 2273 /// @returns true if there was an error, false otherwise. 2274 bool 2275 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity, 2276 InitListExpr *IList, 2277 DesignatedInitExpr *DIE, 2278 unsigned DesigIdx, 2279 QualType &CurrentObjectType, 2280 RecordDecl::field_iterator *NextField, 2281 llvm::APSInt *NextElementIndex, 2282 unsigned &Index, 2283 InitListExpr *StructuredList, 2284 unsigned &StructuredIndex, 2285 bool FinishSubobjectInit, 2286 bool TopLevelObject) { 2287 if (DesigIdx == DIE->size()) { 2288 // Check the actual initialization for the designated object type. 2289 bool prevHadError = hadError; 2290 2291 // Temporarily remove the designator expression from the 2292 // initializer list that the child calls see, so that we don't try 2293 // to re-process the designator. 2294 unsigned OldIndex = Index; 2295 IList->setInit(OldIndex, DIE->getInit()); 2296 2297 CheckSubElementType(Entity, IList, CurrentObjectType, Index, 2298 StructuredList, StructuredIndex); 2299 2300 // Restore the designated initializer expression in the syntactic 2301 // form of the initializer list. 2302 if (IList->getInit(OldIndex) != DIE->getInit()) 2303 DIE->setInit(IList->getInit(OldIndex)); 2304 IList->setInit(OldIndex, DIE); 2305 2306 return hadError && !prevHadError; 2307 } 2308 2309 DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx); 2310 bool IsFirstDesignator = (DesigIdx == 0); 2311 if (!VerifyOnly) { 2312 assert((IsFirstDesignator || StructuredList) && 2313 "Need a non-designated initializer list to start from"); 2314 2315 // Determine the structural initializer list that corresponds to the 2316 // current subobject. 2317 if (IsFirstDesignator) 2318 StructuredList = SyntacticToSemantic.lookup(IList); 2319 else { 2320 Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ? 2321 StructuredList->getInit(StructuredIndex) : nullptr; 2322 if (!ExistingInit && StructuredList->hasArrayFiller()) 2323 ExistingInit = StructuredList->getArrayFiller(); 2324 2325 if (!ExistingInit) 2326 StructuredList = getStructuredSubobjectInit( 2327 IList, Index, CurrentObjectType, StructuredList, StructuredIndex, 2328 SourceRange(D->getBeginLoc(), DIE->getEndLoc())); 2329 else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit)) 2330 StructuredList = Result; 2331 else { 2332 if (DesignatedInitUpdateExpr *E = 2333 dyn_cast<DesignatedInitUpdateExpr>(ExistingInit)) 2334 StructuredList = E->getUpdater(); 2335 else { 2336 DesignatedInitUpdateExpr *DIUE = new (SemaRef.Context) 2337 DesignatedInitUpdateExpr(SemaRef.Context, D->getBeginLoc(), 2338 ExistingInit, DIE->getEndLoc()); 2339 StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE); 2340 StructuredList = DIUE->getUpdater(); 2341 } 2342 2343 // We need to check on source range validity because the previous 2344 // initializer does not have to be an explicit initializer. e.g., 2345 // 2346 // struct P { int a, b; }; 2347 // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 }; 2348 // 2349 // There is an overwrite taking place because the first braced initializer 2350 // list "{ .a = 2 }" already provides value for .p.b (which is zero). 2351 if (ExistingInit->getSourceRange().isValid()) { 2352 // We are creating an initializer list that initializes the 2353 // subobjects of the current object, but there was already an 2354 // initialization that completely initialized the current 2355 // subobject, e.g., by a compound literal: 2356 // 2357 // struct X { int a, b; }; 2358 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; 2359 // 2360 // Here, xs[0].a == 0 and xs[0].b == 3, since the second, 2361 // designated initializer re-initializes the whole 2362 // subobject [0], overwriting previous initializers. 2363 SemaRef.Diag(D->getBeginLoc(), 2364 diag::warn_subobject_initializer_overrides) 2365 << SourceRange(D->getBeginLoc(), DIE->getEndLoc()); 2366 2367 SemaRef.Diag(ExistingInit->getBeginLoc(), 2368 diag::note_previous_initializer) 2369 << /*FIXME:has side effects=*/0 << ExistingInit->getSourceRange(); 2370 } 2371 } 2372 } 2373 assert(StructuredList && "Expected a structured initializer list"); 2374 } 2375 2376 if (D->isFieldDesignator()) { 2377 // C99 6.7.8p7: 2378 // 2379 // If a designator has the form 2380 // 2381 // . identifier 2382 // 2383 // then the current object (defined below) shall have 2384 // structure or union type and the identifier shall be the 2385 // name of a member of that type. 2386 const RecordType *RT = CurrentObjectType->getAs<RecordType>(); 2387 if (!RT) { 2388 SourceLocation Loc = D->getDotLoc(); 2389 if (Loc.isInvalid()) 2390 Loc = D->getFieldLoc(); 2391 if (!VerifyOnly) 2392 SemaRef.Diag(Loc, diag::err_field_designator_non_aggr) 2393 << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType; 2394 ++Index; 2395 return true; 2396 } 2397 2398 FieldDecl *KnownField = D->getField(); 2399 if (!KnownField) { 2400 IdentifierInfo *FieldName = D->getFieldName(); 2401 DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName); 2402 for (NamedDecl *ND : Lookup) { 2403 if (auto *FD = dyn_cast<FieldDecl>(ND)) { 2404 KnownField = FD; 2405 break; 2406 } 2407 if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) { 2408 // In verify mode, don't modify the original. 2409 if (VerifyOnly) 2410 DIE = CloneDesignatedInitExpr(SemaRef, DIE); 2411 ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD); 2412 D = DIE->getDesignator(DesigIdx); 2413 KnownField = cast<FieldDecl>(*IFD->chain_begin()); 2414 break; 2415 } 2416 } 2417 if (!KnownField) { 2418 if (VerifyOnly) { 2419 ++Index; 2420 return true; // No typo correction when just trying this out. 2421 } 2422 2423 // Name lookup found something, but it wasn't a field. 2424 if (!Lookup.empty()) { 2425 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield) 2426 << FieldName; 2427 SemaRef.Diag(Lookup.front()->getLocation(), 2428 diag::note_field_designator_found); 2429 ++Index; 2430 return true; 2431 } 2432 2433 // Name lookup didn't find anything. 2434 // Determine whether this was a typo for another field name. 2435 FieldInitializerValidatorCCC CCC(RT->getDecl()); 2436 if (TypoCorrection Corrected = SemaRef.CorrectTypo( 2437 DeclarationNameInfo(FieldName, D->getFieldLoc()), 2438 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr, CCC, 2439 Sema::CTK_ErrorRecovery, RT->getDecl())) { 2440 SemaRef.diagnoseTypo( 2441 Corrected, 2442 SemaRef.PDiag(diag::err_field_designator_unknown_suggest) 2443 << FieldName << CurrentObjectType); 2444 KnownField = Corrected.getCorrectionDeclAs<FieldDecl>(); 2445 hadError = true; 2446 } else { 2447 // Typo correction didn't find anything. 2448 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown) 2449 << FieldName << CurrentObjectType; 2450 ++Index; 2451 return true; 2452 } 2453 } 2454 } 2455 2456 unsigned FieldIndex = 0; 2457 2458 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2459 FieldIndex = CXXRD->getNumBases(); 2460 2461 for (auto *FI : RT->getDecl()->fields()) { 2462 if (FI->isUnnamedBitfield()) 2463 continue; 2464 if (declaresSameEntity(KnownField, FI)) { 2465 KnownField = FI; 2466 break; 2467 } 2468 ++FieldIndex; 2469 } 2470 2471 RecordDecl::field_iterator Field = 2472 RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField)); 2473 2474 // All of the fields of a union are located at the same place in 2475 // the initializer list. 2476 if (RT->getDecl()->isUnion()) { 2477 FieldIndex = 0; 2478 if (!VerifyOnly) { 2479 FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion(); 2480 if (CurrentField && !declaresSameEntity(CurrentField, *Field)) { 2481 assert(StructuredList->getNumInits() == 1 2482 && "A union should never have more than one initializer!"); 2483 2484 Expr *ExistingInit = StructuredList->getInit(0); 2485 if (ExistingInit) { 2486 // We're about to throw away an initializer, emit warning. 2487 SemaRef.Diag(D->getFieldLoc(), 2488 diag::warn_initializer_overrides) 2489 << D->getSourceRange(); 2490 SemaRef.Diag(ExistingInit->getBeginLoc(), 2491 diag::note_previous_initializer) 2492 << /*FIXME:has side effects=*/0 2493 << ExistingInit->getSourceRange(); 2494 } 2495 2496 // remove existing initializer 2497 StructuredList->resizeInits(SemaRef.Context, 0); 2498 StructuredList->setInitializedFieldInUnion(nullptr); 2499 } 2500 2501 StructuredList->setInitializedFieldInUnion(*Field); 2502 } 2503 } 2504 2505 // Make sure we can use this declaration. 2506 bool InvalidUse; 2507 if (VerifyOnly) 2508 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid); 2509 else 2510 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc()); 2511 if (InvalidUse) { 2512 ++Index; 2513 return true; 2514 } 2515 2516 if (!VerifyOnly) { 2517 // Update the designator with the field declaration. 2518 D->setField(*Field); 2519 2520 // Make sure that our non-designated initializer list has space 2521 // for a subobject corresponding to this field. 2522 if (FieldIndex >= StructuredList->getNumInits()) 2523 StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1); 2524 } 2525 2526 // This designator names a flexible array member. 2527 if (Field->getType()->isIncompleteArrayType()) { 2528 bool Invalid = false; 2529 if ((DesigIdx + 1) != DIE->size()) { 2530 // We can't designate an object within the flexible array 2531 // member (because GCC doesn't allow it). 2532 if (!VerifyOnly) { 2533 DesignatedInitExpr::Designator *NextD 2534 = DIE->getDesignator(DesigIdx + 1); 2535 SemaRef.Diag(NextD->getBeginLoc(), 2536 diag::err_designator_into_flexible_array_member) 2537 << SourceRange(NextD->getBeginLoc(), DIE->getEndLoc()); 2538 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 2539 << *Field; 2540 } 2541 Invalid = true; 2542 } 2543 2544 if (!hadError && !isa<InitListExpr>(DIE->getInit()) && 2545 !isa<StringLiteral>(DIE->getInit())) { 2546 // The initializer is not an initializer list. 2547 if (!VerifyOnly) { 2548 SemaRef.Diag(DIE->getInit()->getBeginLoc(), 2549 diag::err_flexible_array_init_needs_braces) 2550 << DIE->getInit()->getSourceRange(); 2551 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) 2552 << *Field; 2553 } 2554 Invalid = true; 2555 } 2556 2557 // Check GNU flexible array initializer. 2558 if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field, 2559 TopLevelObject)) 2560 Invalid = true; 2561 2562 if (Invalid) { 2563 ++Index; 2564 return true; 2565 } 2566 2567 // Initialize the array. 2568 bool prevHadError = hadError; 2569 unsigned newStructuredIndex = FieldIndex; 2570 unsigned OldIndex = Index; 2571 IList->setInit(Index, DIE->getInit()); 2572 2573 InitializedEntity MemberEntity = 2574 InitializedEntity::InitializeMember(*Field, &Entity); 2575 CheckSubElementType(MemberEntity, IList, Field->getType(), Index, 2576 StructuredList, newStructuredIndex); 2577 2578 IList->setInit(OldIndex, DIE); 2579 if (hadError && !prevHadError) { 2580 ++Field; 2581 ++FieldIndex; 2582 if (NextField) 2583 *NextField = Field; 2584 StructuredIndex = FieldIndex; 2585 return true; 2586 } 2587 } else { 2588 // Recurse to check later designated subobjects. 2589 QualType FieldType = Field->getType(); 2590 unsigned newStructuredIndex = FieldIndex; 2591 2592 InitializedEntity MemberEntity = 2593 InitializedEntity::InitializeMember(*Field, &Entity); 2594 if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1, 2595 FieldType, nullptr, nullptr, Index, 2596 StructuredList, newStructuredIndex, 2597 FinishSubobjectInit, false)) 2598 return true; 2599 } 2600 2601 // Find the position of the next field to be initialized in this 2602 // subobject. 2603 ++Field; 2604 ++FieldIndex; 2605 2606 // If this the first designator, our caller will continue checking 2607 // the rest of this struct/class/union subobject. 2608 if (IsFirstDesignator) { 2609 if (NextField) 2610 *NextField = Field; 2611 StructuredIndex = FieldIndex; 2612 return false; 2613 } 2614 2615 if (!FinishSubobjectInit) 2616 return false; 2617 2618 // We've already initialized something in the union; we're done. 2619 if (RT->getDecl()->isUnion()) 2620 return hadError; 2621 2622 // Check the remaining fields within this class/struct/union subobject. 2623 bool prevHadError = hadError; 2624 2625 auto NoBases = 2626 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(), 2627 CXXRecordDecl::base_class_iterator()); 2628 CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field, 2629 false, Index, StructuredList, FieldIndex); 2630 return hadError && !prevHadError; 2631 } 2632 2633 // C99 6.7.8p6: 2634 // 2635 // If a designator has the form 2636 // 2637 // [ constant-expression ] 2638 // 2639 // then the current object (defined below) shall have array 2640 // type and the expression shall be an integer constant 2641 // expression. If the array is of unknown size, any 2642 // nonnegative value is valid. 2643 // 2644 // Additionally, cope with the GNU extension that permits 2645 // designators of the form 2646 // 2647 // [ constant-expression ... constant-expression ] 2648 const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType); 2649 if (!AT) { 2650 if (!VerifyOnly) 2651 SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array) 2652 << CurrentObjectType; 2653 ++Index; 2654 return true; 2655 } 2656 2657 Expr *IndexExpr = nullptr; 2658 llvm::APSInt DesignatedStartIndex, DesignatedEndIndex; 2659 if (D->isArrayDesignator()) { 2660 IndexExpr = DIE->getArrayIndex(*D); 2661 DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context); 2662 DesignatedEndIndex = DesignatedStartIndex; 2663 } else { 2664 assert(D->isArrayRangeDesignator() && "Need array-range designator"); 2665 2666 DesignatedStartIndex = 2667 DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context); 2668 DesignatedEndIndex = 2669 DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context); 2670 IndexExpr = DIE->getArrayRangeEnd(*D); 2671 2672 // Codegen can't handle evaluating array range designators that have side 2673 // effects, because we replicate the AST value for each initialized element. 2674 // As such, set the sawArrayRangeDesignator() bit if we initialize multiple 2675 // elements with something that has a side effect, so codegen can emit an 2676 // "error unsupported" error instead of miscompiling the app. 2677 if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&& 2678 DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly) 2679 FullyStructuredList->sawArrayRangeDesignator(); 2680 } 2681 2682 if (isa<ConstantArrayType>(AT)) { 2683 llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false); 2684 DesignatedStartIndex 2685 = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth()); 2686 DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned()); 2687 DesignatedEndIndex 2688 = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth()); 2689 DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned()); 2690 if (DesignatedEndIndex >= MaxElements) { 2691 if (!VerifyOnly) 2692 SemaRef.Diag(IndexExpr->getBeginLoc(), 2693 diag::err_array_designator_too_large) 2694 << DesignatedEndIndex.toString(10) << MaxElements.toString(10) 2695 << IndexExpr->getSourceRange(); 2696 ++Index; 2697 return true; 2698 } 2699 } else { 2700 unsigned DesignatedIndexBitWidth = 2701 ConstantArrayType::getMaxSizeBits(SemaRef.Context); 2702 DesignatedStartIndex = 2703 DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth); 2704 DesignatedEndIndex = 2705 DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth); 2706 DesignatedStartIndex.setIsUnsigned(true); 2707 DesignatedEndIndex.setIsUnsigned(true); 2708 } 2709 2710 if (!VerifyOnly && StructuredList->isStringLiteralInit()) { 2711 // We're modifying a string literal init; we have to decompose the string 2712 // so we can modify the individual characters. 2713 ASTContext &Context = SemaRef.Context; 2714 Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens(); 2715 2716 // Compute the character type 2717 QualType CharTy = AT->getElementType(); 2718 2719 // Compute the type of the integer literals. 2720 QualType PromotedCharTy = CharTy; 2721 if (CharTy->isPromotableIntegerType()) 2722 PromotedCharTy = Context.getPromotedIntegerType(CharTy); 2723 unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy); 2724 2725 if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) { 2726 // Get the length of the string. 2727 uint64_t StrLen = SL->getLength(); 2728 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen)) 2729 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue(); 2730 StructuredList->resizeInits(Context, StrLen); 2731 2732 // Build a literal for each character in the string, and put them into 2733 // the init list. 2734 for (unsigned i = 0, e = StrLen; i != e; ++i) { 2735 llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i)); 2736 Expr *Init = new (Context) IntegerLiteral( 2737 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); 2738 if (CharTy != PromotedCharTy) 2739 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, 2740 Init, nullptr, VK_RValue); 2741 StructuredList->updateInit(Context, i, Init); 2742 } 2743 } else { 2744 ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr); 2745 std::string Str; 2746 Context.getObjCEncodingForType(E->getEncodedType(), Str); 2747 2748 // Get the length of the string. 2749 uint64_t StrLen = Str.size(); 2750 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen)) 2751 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue(); 2752 StructuredList->resizeInits(Context, StrLen); 2753 2754 // Build a literal for each character in the string, and put them into 2755 // the init list. 2756 for (unsigned i = 0, e = StrLen; i != e; ++i) { 2757 llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]); 2758 Expr *Init = new (Context) IntegerLiteral( 2759 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); 2760 if (CharTy != PromotedCharTy) 2761 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, 2762 Init, nullptr, VK_RValue); 2763 StructuredList->updateInit(Context, i, Init); 2764 } 2765 } 2766 } 2767 2768 // Make sure that our non-designated initializer list has space 2769 // for a subobject corresponding to this array element. 2770 if (!VerifyOnly && 2771 DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits()) 2772 StructuredList->resizeInits(SemaRef.Context, 2773 DesignatedEndIndex.getZExtValue() + 1); 2774 2775 // Repeatedly perform subobject initializations in the range 2776 // [DesignatedStartIndex, DesignatedEndIndex]. 2777 2778 // Move to the next designator 2779 unsigned ElementIndex = DesignatedStartIndex.getZExtValue(); 2780 unsigned OldIndex = Index; 2781 2782 InitializedEntity ElementEntity = 2783 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); 2784 2785 while (DesignatedStartIndex <= DesignatedEndIndex) { 2786 // Recurse to check later designated subobjects. 2787 QualType ElementType = AT->getElementType(); 2788 Index = OldIndex; 2789 2790 ElementEntity.setElementIndex(ElementIndex); 2791 if (CheckDesignatedInitializer( 2792 ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr, 2793 nullptr, Index, StructuredList, ElementIndex, 2794 FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex), 2795 false)) 2796 return true; 2797 2798 // Move to the next index in the array that we'll be initializing. 2799 ++DesignatedStartIndex; 2800 ElementIndex = DesignatedStartIndex.getZExtValue(); 2801 } 2802 2803 // If this the first designator, our caller will continue checking 2804 // the rest of this array subobject. 2805 if (IsFirstDesignator) { 2806 if (NextElementIndex) 2807 *NextElementIndex = DesignatedStartIndex; 2808 StructuredIndex = ElementIndex; 2809 return false; 2810 } 2811 2812 if (!FinishSubobjectInit) 2813 return false; 2814 2815 // Check the remaining elements within this array subobject. 2816 bool prevHadError = hadError; 2817 CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex, 2818 /*SubobjectIsDesignatorContext=*/false, Index, 2819 StructuredList, ElementIndex); 2820 return hadError && !prevHadError; 2821 } 2822 2823 // Get the structured initializer list for a subobject of type 2824 // @p CurrentObjectType. 2825 InitListExpr * 2826 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, 2827 QualType CurrentObjectType, 2828 InitListExpr *StructuredList, 2829 unsigned StructuredIndex, 2830 SourceRange InitRange, 2831 bool IsFullyOverwritten) { 2832 if (VerifyOnly) 2833 return nullptr; // No structured list in verification-only mode. 2834 Expr *ExistingInit = nullptr; 2835 if (!StructuredList) 2836 ExistingInit = SyntacticToSemantic.lookup(IList); 2837 else if (StructuredIndex < StructuredList->getNumInits()) 2838 ExistingInit = StructuredList->getInit(StructuredIndex); 2839 2840 if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit)) 2841 // There might have already been initializers for subobjects of the current 2842 // object, but a subsequent initializer list will overwrite the entirety 2843 // of the current object. (See DR 253 and C99 6.7.8p21). e.g., 2844 // 2845 // struct P { char x[6]; }; 2846 // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } }; 2847 // 2848 // The first designated initializer is ignored, and l.x is just "f". 2849 if (!IsFullyOverwritten) 2850 return Result; 2851 2852 if (ExistingInit) { 2853 // We are creating an initializer list that initializes the 2854 // subobjects of the current object, but there was already an 2855 // initialization that completely initialized the current 2856 // subobject, e.g., by a compound literal: 2857 // 2858 // struct X { int a, b; }; 2859 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; 2860 // 2861 // Here, xs[0].a == 0 and xs[0].b == 3, since the second, 2862 // designated initializer re-initializes the whole 2863 // subobject [0], overwriting previous initializers. 2864 SemaRef.Diag(InitRange.getBegin(), 2865 diag::warn_subobject_initializer_overrides) 2866 << InitRange; 2867 SemaRef.Diag(ExistingInit->getBeginLoc(), diag::note_previous_initializer) 2868 << /*FIXME:has side effects=*/0 << ExistingInit->getSourceRange(); 2869 } 2870 2871 InitListExpr *Result 2872 = new (SemaRef.Context) InitListExpr(SemaRef.Context, 2873 InitRange.getBegin(), None, 2874 InitRange.getEnd()); 2875 2876 QualType ResultType = CurrentObjectType; 2877 if (!ResultType->isArrayType()) 2878 ResultType = ResultType.getNonLValueExprType(SemaRef.Context); 2879 Result->setType(ResultType); 2880 2881 // Pre-allocate storage for the structured initializer list. 2882 unsigned NumElements = 0; 2883 unsigned NumInits = 0; 2884 bool GotNumInits = false; 2885 if (!StructuredList) { 2886 NumInits = IList->getNumInits(); 2887 GotNumInits = true; 2888 } else if (Index < IList->getNumInits()) { 2889 if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) { 2890 NumInits = SubList->getNumInits(); 2891 GotNumInits = true; 2892 } 2893 } 2894 2895 if (const ArrayType *AType 2896 = SemaRef.Context.getAsArrayType(CurrentObjectType)) { 2897 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) { 2898 NumElements = CAType->getSize().getZExtValue(); 2899 // Simple heuristic so that we don't allocate a very large 2900 // initializer with many empty entries at the end. 2901 if (GotNumInits && NumElements > NumInits) 2902 NumElements = 0; 2903 } 2904 } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>()) 2905 NumElements = VType->getNumElements(); 2906 else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) { 2907 RecordDecl *RDecl = RType->getDecl(); 2908 if (RDecl->isUnion()) 2909 NumElements = 1; 2910 else 2911 NumElements = std::distance(RDecl->field_begin(), RDecl->field_end()); 2912 } 2913 2914 Result->reserveInits(SemaRef.Context, NumElements); 2915 2916 // Link this new initializer list into the structured initializer 2917 // lists. 2918 if (StructuredList) 2919 StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result); 2920 else { 2921 Result->setSyntacticForm(IList); 2922 SyntacticToSemantic[IList] = Result; 2923 } 2924 2925 return Result; 2926 } 2927 2928 /// Update the initializer at index @p StructuredIndex within the 2929 /// structured initializer list to the value @p expr. 2930 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList, 2931 unsigned &StructuredIndex, 2932 Expr *expr) { 2933 // No structured initializer list to update 2934 if (!StructuredList) 2935 return; 2936 2937 if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context, 2938 StructuredIndex, expr)) { 2939 // This initializer overwrites a previous initializer. Warn. 2940 // We need to check on source range validity because the previous 2941 // initializer does not have to be an explicit initializer. 2942 // struct P { int a, b; }; 2943 // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 }; 2944 // There is an overwrite taking place because the first braced initializer 2945 // list "{ .a = 2 }' already provides value for .p.b (which is zero). 2946 if (PrevInit->getSourceRange().isValid()) { 2947 SemaRef.Diag(expr->getBeginLoc(), diag::warn_initializer_overrides) 2948 << expr->getSourceRange(); 2949 2950 SemaRef.Diag(PrevInit->getBeginLoc(), diag::note_previous_initializer) 2951 << /*FIXME:has side effects=*/0 << PrevInit->getSourceRange(); 2952 } 2953 } 2954 2955 ++StructuredIndex; 2956 } 2957 2958 /// Check that the given Index expression is a valid array designator 2959 /// value. This is essentially just a wrapper around 2960 /// VerifyIntegerConstantExpression that also checks for negative values 2961 /// and produces a reasonable diagnostic if there is a 2962 /// failure. Returns the index expression, possibly with an implicit cast 2963 /// added, on success. If everything went okay, Value will receive the 2964 /// value of the constant expression. 2965 static ExprResult 2966 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) { 2967 SourceLocation Loc = Index->getBeginLoc(); 2968 2969 // Make sure this is an integer constant expression. 2970 ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value); 2971 if (Result.isInvalid()) 2972 return Result; 2973 2974 if (Value.isSigned() && Value.isNegative()) 2975 return S.Diag(Loc, diag::err_array_designator_negative) 2976 << Value.toString(10) << Index->getSourceRange(); 2977 2978 Value.setIsUnsigned(true); 2979 return Result; 2980 } 2981 2982 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig, 2983 SourceLocation Loc, 2984 bool GNUSyntax, 2985 ExprResult Init) { 2986 typedef DesignatedInitExpr::Designator ASTDesignator; 2987 2988 bool Invalid = false; 2989 SmallVector<ASTDesignator, 32> Designators; 2990 SmallVector<Expr *, 32> InitExpressions; 2991 2992 // Build designators and check array designator expressions. 2993 for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) { 2994 const Designator &D = Desig.getDesignator(Idx); 2995 switch (D.getKind()) { 2996 case Designator::FieldDesignator: 2997 Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(), 2998 D.getFieldLoc())); 2999 break; 3000 3001 case Designator::ArrayDesignator: { 3002 Expr *Index = static_cast<Expr *>(D.getArrayIndex()); 3003 llvm::APSInt IndexValue; 3004 if (!Index->isTypeDependent() && !Index->isValueDependent()) 3005 Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get(); 3006 if (!Index) 3007 Invalid = true; 3008 else { 3009 Designators.push_back(ASTDesignator(InitExpressions.size(), 3010 D.getLBracketLoc(), 3011 D.getRBracketLoc())); 3012 InitExpressions.push_back(Index); 3013 } 3014 break; 3015 } 3016 3017 case Designator::ArrayRangeDesignator: { 3018 Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart()); 3019 Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd()); 3020 llvm::APSInt StartValue; 3021 llvm::APSInt EndValue; 3022 bool StartDependent = StartIndex->isTypeDependent() || 3023 StartIndex->isValueDependent(); 3024 bool EndDependent = EndIndex->isTypeDependent() || 3025 EndIndex->isValueDependent(); 3026 if (!StartDependent) 3027 StartIndex = 3028 CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get(); 3029 if (!EndDependent) 3030 EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get(); 3031 3032 if (!StartIndex || !EndIndex) 3033 Invalid = true; 3034 else { 3035 // Make sure we're comparing values with the same bit width. 3036 if (StartDependent || EndDependent) { 3037 // Nothing to compute. 3038 } else if (StartValue.getBitWidth() > EndValue.getBitWidth()) 3039 EndValue = EndValue.extend(StartValue.getBitWidth()); 3040 else if (StartValue.getBitWidth() < EndValue.getBitWidth()) 3041 StartValue = StartValue.extend(EndValue.getBitWidth()); 3042 3043 if (!StartDependent && !EndDependent && EndValue < StartValue) { 3044 Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range) 3045 << StartValue.toString(10) << EndValue.toString(10) 3046 << StartIndex->getSourceRange() << EndIndex->getSourceRange(); 3047 Invalid = true; 3048 } else { 3049 Designators.push_back(ASTDesignator(InitExpressions.size(), 3050 D.getLBracketLoc(), 3051 D.getEllipsisLoc(), 3052 D.getRBracketLoc())); 3053 InitExpressions.push_back(StartIndex); 3054 InitExpressions.push_back(EndIndex); 3055 } 3056 } 3057 break; 3058 } 3059 } 3060 } 3061 3062 if (Invalid || Init.isInvalid()) 3063 return ExprError(); 3064 3065 // Clear out the expressions within the designation. 3066 Desig.ClearExprs(*this); 3067 3068 DesignatedInitExpr *DIE 3069 = DesignatedInitExpr::Create(Context, 3070 Designators, 3071 InitExpressions, Loc, GNUSyntax, 3072 Init.getAs<Expr>()); 3073 3074 if (!getLangOpts().C99) 3075 Diag(DIE->getBeginLoc(), diag::ext_designated_init) 3076 << DIE->getSourceRange(); 3077 3078 return DIE; 3079 } 3080 3081 //===----------------------------------------------------------------------===// 3082 // Initialization entity 3083 //===----------------------------------------------------------------------===// 3084 3085 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index, 3086 const InitializedEntity &Parent) 3087 : Parent(&Parent), Index(Index) 3088 { 3089 if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) { 3090 Kind = EK_ArrayElement; 3091 Type = AT->getElementType(); 3092 } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) { 3093 Kind = EK_VectorElement; 3094 Type = VT->getElementType(); 3095 } else { 3096 const ComplexType *CT = Parent.getType()->getAs<ComplexType>(); 3097 assert(CT && "Unexpected type"); 3098 Kind = EK_ComplexElement; 3099 Type = CT->getElementType(); 3100 } 3101 } 3102 3103 InitializedEntity 3104 InitializedEntity::InitializeBase(ASTContext &Context, 3105 const CXXBaseSpecifier *Base, 3106 bool IsInheritedVirtualBase, 3107 const InitializedEntity *Parent) { 3108 InitializedEntity Result; 3109 Result.Kind = EK_Base; 3110 Result.Parent = Parent; 3111 Result.Base = reinterpret_cast<uintptr_t>(Base); 3112 if (IsInheritedVirtualBase) 3113 Result.Base |= 0x01; 3114 3115 Result.Type = Base->getType(); 3116 return Result; 3117 } 3118 3119 DeclarationName InitializedEntity::getName() const { 3120 switch (getKind()) { 3121 case EK_Parameter: 3122 case EK_Parameter_CF_Audited: { 3123 ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1); 3124 return (D ? D->getDeclName() : DeclarationName()); 3125 } 3126 3127 case EK_Variable: 3128 case EK_Member: 3129 case EK_Binding: 3130 return Variable.VariableOrMember->getDeclName(); 3131 3132 case EK_LambdaCapture: 3133 return DeclarationName(Capture.VarID); 3134 3135 case EK_Result: 3136 case EK_StmtExprResult: 3137 case EK_Exception: 3138 case EK_New: 3139 case EK_Temporary: 3140 case EK_Base: 3141 case EK_Delegating: 3142 case EK_ArrayElement: 3143 case EK_VectorElement: 3144 case EK_ComplexElement: 3145 case EK_BlockElement: 3146 case EK_LambdaToBlockConversionBlockElement: 3147 case EK_CompoundLiteralInit: 3148 case EK_RelatedResult: 3149 return DeclarationName(); 3150 } 3151 3152 llvm_unreachable("Invalid EntityKind!"); 3153 } 3154 3155 ValueDecl *InitializedEntity::getDecl() const { 3156 switch (getKind()) { 3157 case EK_Variable: 3158 case EK_Member: 3159 case EK_Binding: 3160 return Variable.VariableOrMember; 3161 3162 case EK_Parameter: 3163 case EK_Parameter_CF_Audited: 3164 return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1); 3165 3166 case EK_Result: 3167 case EK_StmtExprResult: 3168 case EK_Exception: 3169 case EK_New: 3170 case EK_Temporary: 3171 case EK_Base: 3172 case EK_Delegating: 3173 case EK_ArrayElement: 3174 case EK_VectorElement: 3175 case EK_ComplexElement: 3176 case EK_BlockElement: 3177 case EK_LambdaToBlockConversionBlockElement: 3178 case EK_LambdaCapture: 3179 case EK_CompoundLiteralInit: 3180 case EK_RelatedResult: 3181 return nullptr; 3182 } 3183 3184 llvm_unreachable("Invalid EntityKind!"); 3185 } 3186 3187 bool InitializedEntity::allowsNRVO() const { 3188 switch (getKind()) { 3189 case EK_Result: 3190 case EK_Exception: 3191 return LocAndNRVO.NRVO; 3192 3193 case EK_StmtExprResult: 3194 case EK_Variable: 3195 case EK_Parameter: 3196 case EK_Parameter_CF_Audited: 3197 case EK_Member: 3198 case EK_Binding: 3199 case EK_New: 3200 case EK_Temporary: 3201 case EK_CompoundLiteralInit: 3202 case EK_Base: 3203 case EK_Delegating: 3204 case EK_ArrayElement: 3205 case EK_VectorElement: 3206 case EK_ComplexElement: 3207 case EK_BlockElement: 3208 case EK_LambdaToBlockConversionBlockElement: 3209 case EK_LambdaCapture: 3210 case EK_RelatedResult: 3211 break; 3212 } 3213 3214 return false; 3215 } 3216 3217 unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const { 3218 assert(getParent() != this); 3219 unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0; 3220 for (unsigned I = 0; I != Depth; ++I) 3221 OS << "`-"; 3222 3223 switch (getKind()) { 3224 case EK_Variable: OS << "Variable"; break; 3225 case EK_Parameter: OS << "Parameter"; break; 3226 case EK_Parameter_CF_Audited: OS << "CF audited function Parameter"; 3227 break; 3228 case EK_Result: OS << "Result"; break; 3229 case EK_StmtExprResult: OS << "StmtExprResult"; break; 3230 case EK_Exception: OS << "Exception"; break; 3231 case EK_Member: OS << "Member"; break; 3232 case EK_Binding: OS << "Binding"; break; 3233 case EK_New: OS << "New"; break; 3234 case EK_Temporary: OS << "Temporary"; break; 3235 case EK_CompoundLiteralInit: OS << "CompoundLiteral";break; 3236 case EK_RelatedResult: OS << "RelatedResult"; break; 3237 case EK_Base: OS << "Base"; break; 3238 case EK_Delegating: OS << "Delegating"; break; 3239 case EK_ArrayElement: OS << "ArrayElement " << Index; break; 3240 case EK_VectorElement: OS << "VectorElement " << Index; break; 3241 case EK_ComplexElement: OS << "ComplexElement " << Index; break; 3242 case EK_BlockElement: OS << "Block"; break; 3243 case EK_LambdaToBlockConversionBlockElement: 3244 OS << "Block (lambda)"; 3245 break; 3246 case EK_LambdaCapture: 3247 OS << "LambdaCapture "; 3248 OS << DeclarationName(Capture.VarID); 3249 break; 3250 } 3251 3252 if (auto *D = getDecl()) { 3253 OS << " "; 3254 D->printQualifiedName(OS); 3255 } 3256 3257 OS << " '" << getType().getAsString() << "'\n"; 3258 3259 return Depth + 1; 3260 } 3261 3262 LLVM_DUMP_METHOD void InitializedEntity::dump() const { 3263 dumpImpl(llvm::errs()); 3264 } 3265 3266 //===----------------------------------------------------------------------===// 3267 // Initialization sequence 3268 //===----------------------------------------------------------------------===// 3269 3270 void InitializationSequence::Step::Destroy() { 3271 switch (Kind) { 3272 case SK_ResolveAddressOfOverloadedFunction: 3273 case SK_CastDerivedToBaseRValue: 3274 case SK_CastDerivedToBaseXValue: 3275 case SK_CastDerivedToBaseLValue: 3276 case SK_BindReference: 3277 case SK_BindReferenceToTemporary: 3278 case SK_FinalCopy: 3279 case SK_ExtraneousCopyToTemporary: 3280 case SK_UserConversion: 3281 case SK_QualificationConversionRValue: 3282 case SK_QualificationConversionXValue: 3283 case SK_QualificationConversionLValue: 3284 case SK_AtomicConversion: 3285 case SK_ListInitialization: 3286 case SK_UnwrapInitList: 3287 case SK_RewrapInitList: 3288 case SK_ConstructorInitialization: 3289 case SK_ConstructorInitializationFromList: 3290 case SK_ZeroInitialization: 3291 case SK_CAssignment: 3292 case SK_StringInit: 3293 case SK_ObjCObjectConversion: 3294 case SK_ArrayLoopIndex: 3295 case SK_ArrayLoopInit: 3296 case SK_ArrayInit: 3297 case SK_GNUArrayInit: 3298 case SK_ParenthesizedArrayInit: 3299 case SK_PassByIndirectCopyRestore: 3300 case SK_PassByIndirectRestore: 3301 case SK_ProduceObjCObject: 3302 case SK_StdInitializerList: 3303 case SK_StdInitializerListConstructorCall: 3304 case SK_OCLSamplerInit: 3305 case SK_OCLZeroOpaqueType: 3306 break; 3307 3308 case SK_ConversionSequence: 3309 case SK_ConversionSequenceNoNarrowing: 3310 delete ICS; 3311 } 3312 } 3313 3314 bool InitializationSequence::isDirectReferenceBinding() const { 3315 // There can be some lvalue adjustments after the SK_BindReference step. 3316 for (auto I = Steps.rbegin(); I != Steps.rend(); ++I) { 3317 if (I->Kind == SK_BindReference) 3318 return true; 3319 if (I->Kind == SK_BindReferenceToTemporary) 3320 return false; 3321 } 3322 return false; 3323 } 3324 3325 bool InitializationSequence::isAmbiguous() const { 3326 if (!Failed()) 3327 return false; 3328 3329 switch (getFailureKind()) { 3330 case FK_TooManyInitsForReference: 3331 case FK_ParenthesizedListInitForReference: 3332 case FK_ArrayNeedsInitList: 3333 case FK_ArrayNeedsInitListOrStringLiteral: 3334 case FK_ArrayNeedsInitListOrWideStringLiteral: 3335 case FK_NarrowStringIntoWideCharArray: 3336 case FK_WideStringIntoCharArray: 3337 case FK_IncompatWideStringIntoWideChar: 3338 case FK_PlainStringIntoUTF8Char: 3339 case FK_UTF8StringIntoPlainChar: 3340 case FK_AddressOfOverloadFailed: // FIXME: Could do better 3341 case FK_NonConstLValueReferenceBindingToTemporary: 3342 case FK_NonConstLValueReferenceBindingToBitfield: 3343 case FK_NonConstLValueReferenceBindingToVectorElement: 3344 case FK_NonConstLValueReferenceBindingToUnrelated: 3345 case FK_RValueReferenceBindingToLValue: 3346 case FK_ReferenceAddrspaceMismatchTemporary: 3347 case FK_ReferenceInitDropsQualifiers: 3348 case FK_ReferenceInitFailed: 3349 case FK_ConversionFailed: 3350 case FK_ConversionFromPropertyFailed: 3351 case FK_TooManyInitsForScalar: 3352 case FK_ParenthesizedListInitForScalar: 3353 case FK_ReferenceBindingToInitList: 3354 case FK_InitListBadDestinationType: 3355 case FK_DefaultInitOfConst: 3356 case FK_Incomplete: 3357 case FK_ArrayTypeMismatch: 3358 case FK_NonConstantArrayInit: 3359 case FK_ListInitializationFailed: 3360 case FK_VariableLengthArrayHasInitializer: 3361 case FK_PlaceholderType: 3362 case FK_ExplicitConstructor: 3363 case FK_AddressOfUnaddressableFunction: 3364 return false; 3365 3366 case FK_ReferenceInitOverloadFailed: 3367 case FK_UserConversionOverloadFailed: 3368 case FK_ConstructorOverloadFailed: 3369 case FK_ListConstructorOverloadFailed: 3370 return FailedOverloadResult == OR_Ambiguous; 3371 } 3372 3373 llvm_unreachable("Invalid EntityKind!"); 3374 } 3375 3376 bool InitializationSequence::isConstructorInitialization() const { 3377 return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization; 3378 } 3379 3380 void 3381 InitializationSequence 3382 ::AddAddressOverloadResolutionStep(FunctionDecl *Function, 3383 DeclAccessPair Found, 3384 bool HadMultipleCandidates) { 3385 Step S; 3386 S.Kind = SK_ResolveAddressOfOverloadedFunction; 3387 S.Type = Function->getType(); 3388 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3389 S.Function.Function = Function; 3390 S.Function.FoundDecl = Found; 3391 Steps.push_back(S); 3392 } 3393 3394 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType, 3395 ExprValueKind VK) { 3396 Step S; 3397 switch (VK) { 3398 case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break; 3399 case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break; 3400 case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break; 3401 } 3402 S.Type = BaseType; 3403 Steps.push_back(S); 3404 } 3405 3406 void InitializationSequence::AddReferenceBindingStep(QualType T, 3407 bool BindingTemporary) { 3408 Step S; 3409 S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference; 3410 S.Type = T; 3411 Steps.push_back(S); 3412 } 3413 3414 void InitializationSequence::AddFinalCopy(QualType T) { 3415 Step S; 3416 S.Kind = SK_FinalCopy; 3417 S.Type = T; 3418 Steps.push_back(S); 3419 } 3420 3421 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) { 3422 Step S; 3423 S.Kind = SK_ExtraneousCopyToTemporary; 3424 S.Type = T; 3425 Steps.push_back(S); 3426 } 3427 3428 void 3429 InitializationSequence::AddUserConversionStep(FunctionDecl *Function, 3430 DeclAccessPair FoundDecl, 3431 QualType T, 3432 bool HadMultipleCandidates) { 3433 Step S; 3434 S.Kind = SK_UserConversion; 3435 S.Type = T; 3436 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3437 S.Function.Function = Function; 3438 S.Function.FoundDecl = FoundDecl; 3439 Steps.push_back(S); 3440 } 3441 3442 void InitializationSequence::AddQualificationConversionStep(QualType Ty, 3443 ExprValueKind VK) { 3444 Step S; 3445 S.Kind = SK_QualificationConversionRValue; // work around a gcc warning 3446 switch (VK) { 3447 case VK_RValue: 3448 S.Kind = SK_QualificationConversionRValue; 3449 break; 3450 case VK_XValue: 3451 S.Kind = SK_QualificationConversionXValue; 3452 break; 3453 case VK_LValue: 3454 S.Kind = SK_QualificationConversionLValue; 3455 break; 3456 } 3457 S.Type = Ty; 3458 Steps.push_back(S); 3459 } 3460 3461 void InitializationSequence::AddAtomicConversionStep(QualType Ty) { 3462 Step S; 3463 S.Kind = SK_AtomicConversion; 3464 S.Type = Ty; 3465 Steps.push_back(S); 3466 } 3467 3468 void InitializationSequence::AddConversionSequenceStep( 3469 const ImplicitConversionSequence &ICS, QualType T, 3470 bool TopLevelOfInitList) { 3471 Step S; 3472 S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing 3473 : SK_ConversionSequence; 3474 S.Type = T; 3475 S.ICS = new ImplicitConversionSequence(ICS); 3476 Steps.push_back(S); 3477 } 3478 3479 void InitializationSequence::AddListInitializationStep(QualType T) { 3480 Step S; 3481 S.Kind = SK_ListInitialization; 3482 S.Type = T; 3483 Steps.push_back(S); 3484 } 3485 3486 void InitializationSequence::AddConstructorInitializationStep( 3487 DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T, 3488 bool HadMultipleCandidates, bool FromInitList, bool AsInitList) { 3489 Step S; 3490 S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall 3491 : SK_ConstructorInitializationFromList 3492 : SK_ConstructorInitialization; 3493 S.Type = T; 3494 S.Function.HadMultipleCandidates = HadMultipleCandidates; 3495 S.Function.Function = Constructor; 3496 S.Function.FoundDecl = FoundDecl; 3497 Steps.push_back(S); 3498 } 3499 3500 void InitializationSequence::AddZeroInitializationStep(QualType T) { 3501 Step S; 3502 S.Kind = SK_ZeroInitialization; 3503 S.Type = T; 3504 Steps.push_back(S); 3505 } 3506 3507 void InitializationSequence::AddCAssignmentStep(QualType T) { 3508 Step S; 3509 S.Kind = SK_CAssignment; 3510 S.Type = T; 3511 Steps.push_back(S); 3512 } 3513 3514 void InitializationSequence::AddStringInitStep(QualType T) { 3515 Step S; 3516 S.Kind = SK_StringInit; 3517 S.Type = T; 3518 Steps.push_back(S); 3519 } 3520 3521 void InitializationSequence::AddObjCObjectConversionStep(QualType T) { 3522 Step S; 3523 S.Kind = SK_ObjCObjectConversion; 3524 S.Type = T; 3525 Steps.push_back(S); 3526 } 3527 3528 void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) { 3529 Step S; 3530 S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit; 3531 S.Type = T; 3532 Steps.push_back(S); 3533 } 3534 3535 void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) { 3536 Step S; 3537 S.Kind = SK_ArrayLoopIndex; 3538 S.Type = EltT; 3539 Steps.insert(Steps.begin(), S); 3540 3541 S.Kind = SK_ArrayLoopInit; 3542 S.Type = T; 3543 Steps.push_back(S); 3544 } 3545 3546 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) { 3547 Step S; 3548 S.Kind = SK_ParenthesizedArrayInit; 3549 S.Type = T; 3550 Steps.push_back(S); 3551 } 3552 3553 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type, 3554 bool shouldCopy) { 3555 Step s; 3556 s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore 3557 : SK_PassByIndirectRestore); 3558 s.Type = type; 3559 Steps.push_back(s); 3560 } 3561 3562 void InitializationSequence::AddProduceObjCObjectStep(QualType T) { 3563 Step S; 3564 S.Kind = SK_ProduceObjCObject; 3565 S.Type = T; 3566 Steps.push_back(S); 3567 } 3568 3569 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) { 3570 Step S; 3571 S.Kind = SK_StdInitializerList; 3572 S.Type = T; 3573 Steps.push_back(S); 3574 } 3575 3576 void InitializationSequence::AddOCLSamplerInitStep(QualType T) { 3577 Step S; 3578 S.Kind = SK_OCLSamplerInit; 3579 S.Type = T; 3580 Steps.push_back(S); 3581 } 3582 3583 void InitializationSequence::AddOCLZeroOpaqueTypeStep(QualType T) { 3584 Step S; 3585 S.Kind = SK_OCLZeroOpaqueType; 3586 S.Type = T; 3587 Steps.push_back(S); 3588 } 3589 3590 void InitializationSequence::RewrapReferenceInitList(QualType T, 3591 InitListExpr *Syntactic) { 3592 assert(Syntactic->getNumInits() == 1 && 3593 "Can only rewrap trivial init lists."); 3594 Step S; 3595 S.Kind = SK_UnwrapInitList; 3596 S.Type = Syntactic->getInit(0)->getType(); 3597 Steps.insert(Steps.begin(), S); 3598 3599 S.Kind = SK_RewrapInitList; 3600 S.Type = T; 3601 S.WrappingSyntacticList = Syntactic; 3602 Steps.push_back(S); 3603 } 3604 3605 void InitializationSequence::SetOverloadFailure(FailureKind Failure, 3606 OverloadingResult Result) { 3607 setSequenceKind(FailedSequence); 3608 this->Failure = Failure; 3609 this->FailedOverloadResult = Result; 3610 } 3611 3612 //===----------------------------------------------------------------------===// 3613 // Attempt initialization 3614 //===----------------------------------------------------------------------===// 3615 3616 /// Tries to add a zero initializer. Returns true if that worked. 3617 static bool 3618 maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence, 3619 const InitializedEntity &Entity) { 3620 if (Entity.getKind() != InitializedEntity::EK_Variable) 3621 return false; 3622 3623 VarDecl *VD = cast<VarDecl>(Entity.getDecl()); 3624 if (VD->getInit() || VD->getEndLoc().isMacroID()) 3625 return false; 3626 3627 QualType VariableTy = VD->getType().getCanonicalType(); 3628 SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc()); 3629 std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc); 3630 if (!Init.empty()) { 3631 Sequence.AddZeroInitializationStep(Entity.getType()); 3632 Sequence.SetZeroInitializationFixit(Init, Loc); 3633 return true; 3634 } 3635 return false; 3636 } 3637 3638 static void MaybeProduceObjCObject(Sema &S, 3639 InitializationSequence &Sequence, 3640 const InitializedEntity &Entity) { 3641 if (!S.getLangOpts().ObjCAutoRefCount) return; 3642 3643 /// When initializing a parameter, produce the value if it's marked 3644 /// __attribute__((ns_consumed)). 3645 if (Entity.isParameterKind()) { 3646 if (!Entity.isParameterConsumed()) 3647 return; 3648 3649 assert(Entity.getType()->isObjCRetainableType() && 3650 "consuming an object of unretainable type?"); 3651 Sequence.AddProduceObjCObjectStep(Entity.getType()); 3652 3653 /// When initializing a return value, if the return type is a 3654 /// retainable type, then returns need to immediately retain the 3655 /// object. If an autorelease is required, it will be done at the 3656 /// last instant. 3657 } else if (Entity.getKind() == InitializedEntity::EK_Result || 3658 Entity.getKind() == InitializedEntity::EK_StmtExprResult) { 3659 if (!Entity.getType()->isObjCRetainableType()) 3660 return; 3661 3662 Sequence.AddProduceObjCObjectStep(Entity.getType()); 3663 } 3664 } 3665 3666 static void TryListInitialization(Sema &S, 3667 const InitializedEntity &Entity, 3668 const InitializationKind &Kind, 3669 InitListExpr *InitList, 3670 InitializationSequence &Sequence, 3671 bool TreatUnavailableAsInvalid); 3672 3673 /// When initializing from init list via constructor, handle 3674 /// initialization of an object of type std::initializer_list<T>. 3675 /// 3676 /// \return true if we have handled initialization of an object of type 3677 /// std::initializer_list<T>, false otherwise. 3678 static bool TryInitializerListConstruction(Sema &S, 3679 InitListExpr *List, 3680 QualType DestType, 3681 InitializationSequence &Sequence, 3682 bool TreatUnavailableAsInvalid) { 3683 QualType E; 3684 if (!S.isStdInitializerList(DestType, &E)) 3685 return false; 3686 3687 if (!S.isCompleteType(List->getExprLoc(), E)) { 3688 Sequence.setIncompleteTypeFailure(E); 3689 return true; 3690 } 3691 3692 // Try initializing a temporary array from the init list. 3693 QualType ArrayType = S.Context.getConstantArrayType( 3694 E.withConst(), llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()), 3695 List->getNumInits()), 3696 clang::ArrayType::Normal, 0); 3697 InitializedEntity HiddenArray = 3698 InitializedEntity::InitializeTemporary(ArrayType); 3699 InitializationKind Kind = InitializationKind::CreateDirectList( 3700 List->getExprLoc(), List->getBeginLoc(), List->getEndLoc()); 3701 TryListInitialization(S, HiddenArray, Kind, List, Sequence, 3702 TreatUnavailableAsInvalid); 3703 if (Sequence) 3704 Sequence.AddStdInitializerListConstructionStep(DestType); 3705 return true; 3706 } 3707 3708 /// Determine if the constructor has the signature of a copy or move 3709 /// constructor for the type T of the class in which it was found. That is, 3710 /// determine if its first parameter is of type T or reference to (possibly 3711 /// cv-qualified) T. 3712 static bool hasCopyOrMoveCtorParam(ASTContext &Ctx, 3713 const ConstructorInfo &Info) { 3714 if (Info.Constructor->getNumParams() == 0) 3715 return false; 3716 3717 QualType ParmT = 3718 Info.Constructor->getParamDecl(0)->getType().getNonReferenceType(); 3719 QualType ClassT = 3720 Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext())); 3721 3722 return Ctx.hasSameUnqualifiedType(ParmT, ClassT); 3723 } 3724 3725 static OverloadingResult 3726 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc, 3727 MultiExprArg Args, 3728 OverloadCandidateSet &CandidateSet, 3729 QualType DestType, 3730 DeclContext::lookup_result Ctors, 3731 OverloadCandidateSet::iterator &Best, 3732 bool CopyInitializing, bool AllowExplicit, 3733 bool OnlyListConstructors, bool IsListInit, 3734 bool SecondStepOfCopyInit = false) { 3735 CandidateSet.clear(OverloadCandidateSet::CSK_InitByConstructor); 3736 CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace()); 3737 3738 for (NamedDecl *D : Ctors) { 3739 auto Info = getConstructorInfo(D); 3740 if (!Info.Constructor || Info.Constructor->isInvalidDecl()) 3741 continue; 3742 3743 if (!AllowExplicit && Info.Constructor->isExplicit()) 3744 continue; 3745 3746 if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor)) 3747 continue; 3748 3749 // C++11 [over.best.ics]p4: 3750 // ... and the constructor or user-defined conversion function is a 3751 // candidate by 3752 // - 13.3.1.3, when the argument is the temporary in the second step 3753 // of a class copy-initialization, or 3754 // - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here] 3755 // - the second phase of 13.3.1.7 when the initializer list has exactly 3756 // one element that is itself an initializer list, and the target is 3757 // the first parameter of a constructor of class X, and the conversion 3758 // is to X or reference to (possibly cv-qualified X), 3759 // user-defined conversion sequences are not considered. 3760 bool SuppressUserConversions = 3761 SecondStepOfCopyInit || 3762 (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) && 3763 hasCopyOrMoveCtorParam(S.Context, Info)); 3764 3765 if (Info.ConstructorTmpl) 3766 S.AddTemplateOverloadCandidate( 3767 Info.ConstructorTmpl, Info.FoundDecl, 3768 /*ExplicitArgs*/ nullptr, Args, CandidateSet, SuppressUserConversions, 3769 /*PartialOverloading=*/false, AllowExplicit); 3770 else { 3771 // C++ [over.match.copy]p1: 3772 // - When initializing a temporary to be bound to the first parameter 3773 // of a constructor [for type T] that takes a reference to possibly 3774 // cv-qualified T as its first argument, called with a single 3775 // argument in the context of direct-initialization, explicit 3776 // conversion functions are also considered. 3777 // FIXME: What if a constructor template instantiates to such a signature? 3778 bool AllowExplicitConv = AllowExplicit && !CopyInitializing && 3779 Args.size() == 1 && 3780 hasCopyOrMoveCtorParam(S.Context, Info); 3781 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args, 3782 CandidateSet, SuppressUserConversions, 3783 /*PartialOverloading=*/false, AllowExplicit, 3784 AllowExplicitConv); 3785 } 3786 } 3787 3788 // FIXME: Work around a bug in C++17 guaranteed copy elision. 3789 // 3790 // When initializing an object of class type T by constructor 3791 // ([over.match.ctor]) or by list-initialization ([over.match.list]) 3792 // from a single expression of class type U, conversion functions of 3793 // U that convert to the non-reference type cv T are candidates. 3794 // Explicit conversion functions are only candidates during 3795 // direct-initialization. 3796 // 3797 // Note: SecondStepOfCopyInit is only ever true in this case when 3798 // evaluating whether to produce a C++98 compatibility warning. 3799 if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 && 3800 !SecondStepOfCopyInit) { 3801 Expr *Initializer = Args[0]; 3802 auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl(); 3803 if (SourceRD && S.isCompleteType(DeclLoc, Initializer->getType())) { 3804 const auto &Conversions = SourceRD->getVisibleConversionFunctions(); 3805 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 3806 NamedDecl *D = *I; 3807 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 3808 D = D->getUnderlyingDecl(); 3809 3810 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 3811 CXXConversionDecl *Conv; 3812 if (ConvTemplate) 3813 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 3814 else 3815 Conv = cast<CXXConversionDecl>(D); 3816 3817 if (AllowExplicit || !Conv->isExplicit()) { 3818 if (ConvTemplate) 3819 S.AddTemplateConversionCandidate( 3820 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, 3821 CandidateSet, AllowExplicit, AllowExplicit, 3822 /*AllowResultConversion*/ false); 3823 else 3824 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer, 3825 DestType, CandidateSet, AllowExplicit, 3826 AllowExplicit, 3827 /*AllowResultConversion*/ false); 3828 } 3829 } 3830 } 3831 } 3832 3833 // Perform overload resolution and return the result. 3834 return CandidateSet.BestViableFunction(S, DeclLoc, Best); 3835 } 3836 3837 /// Attempt initialization by constructor (C++ [dcl.init]), which 3838 /// enumerates the constructors of the initialized entity and performs overload 3839 /// resolution to select the best. 3840 /// \param DestType The destination class type. 3841 /// \param DestArrayType The destination type, which is either DestType or 3842 /// a (possibly multidimensional) array of DestType. 3843 /// \param IsListInit Is this list-initialization? 3844 /// \param IsInitListCopy Is this non-list-initialization resulting from a 3845 /// list-initialization from {x} where x is the same 3846 /// type as the entity? 3847 static void TryConstructorInitialization(Sema &S, 3848 const InitializedEntity &Entity, 3849 const InitializationKind &Kind, 3850 MultiExprArg Args, QualType DestType, 3851 QualType DestArrayType, 3852 InitializationSequence &Sequence, 3853 bool IsListInit = false, 3854 bool IsInitListCopy = false) { 3855 assert(((!IsListInit && !IsInitListCopy) || 3856 (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && 3857 "IsListInit/IsInitListCopy must come with a single initializer list " 3858 "argument."); 3859 InitListExpr *ILE = 3860 (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr; 3861 MultiExprArg UnwrappedArgs = 3862 ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args; 3863 3864 // The type we're constructing needs to be complete. 3865 if (!S.isCompleteType(Kind.getLocation(), DestType)) { 3866 Sequence.setIncompleteTypeFailure(DestType); 3867 return; 3868 } 3869 3870 // C++17 [dcl.init]p17: 3871 // - If the initializer expression is a prvalue and the cv-unqualified 3872 // version of the source type is the same class as the class of the 3873 // destination, the initializer expression is used to initialize the 3874 // destination object. 3875 // Per DR (no number yet), this does not apply when initializing a base 3876 // class or delegating to another constructor from a mem-initializer. 3877 // ObjC++: Lambda captured by the block in the lambda to block conversion 3878 // should avoid copy elision. 3879 if (S.getLangOpts().CPlusPlus17 && 3880 Entity.getKind() != InitializedEntity::EK_Base && 3881 Entity.getKind() != InitializedEntity::EK_Delegating && 3882 Entity.getKind() != 3883 InitializedEntity::EK_LambdaToBlockConversionBlockElement && 3884 UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isRValue() && 3885 S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) { 3886 // Convert qualifications if necessary. 3887 Sequence.AddQualificationConversionStep(DestType, VK_RValue); 3888 if (ILE) 3889 Sequence.RewrapReferenceInitList(DestType, ILE); 3890 return; 3891 } 3892 3893 const RecordType *DestRecordType = DestType->getAs<RecordType>(); 3894 assert(DestRecordType && "Constructor initialization requires record type"); 3895 CXXRecordDecl *DestRecordDecl 3896 = cast<CXXRecordDecl>(DestRecordType->getDecl()); 3897 3898 // Build the candidate set directly in the initialization sequence 3899 // structure, so that it will persist if we fail. 3900 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 3901 3902 // Determine whether we are allowed to call explicit constructors or 3903 // explicit conversion operators. 3904 bool AllowExplicit = Kind.AllowExplicit() || IsListInit; 3905 bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy; 3906 3907 // - Otherwise, if T is a class type, constructors are considered. The 3908 // applicable constructors are enumerated, and the best one is chosen 3909 // through overload resolution. 3910 DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl); 3911 3912 OverloadingResult Result = OR_No_Viable_Function; 3913 OverloadCandidateSet::iterator Best; 3914 bool AsInitializerList = false; 3915 3916 // C++11 [over.match.list]p1, per DR1467: 3917 // When objects of non-aggregate type T are list-initialized, such that 3918 // 8.5.4 [dcl.init.list] specifies that overload resolution is performed 3919 // according to the rules in this section, overload resolution selects 3920 // the constructor in two phases: 3921 // 3922 // - Initially, the candidate functions are the initializer-list 3923 // constructors of the class T and the argument list consists of the 3924 // initializer list as a single argument. 3925 if (IsListInit) { 3926 AsInitializerList = true; 3927 3928 // If the initializer list has no elements and T has a default constructor, 3929 // the first phase is omitted. 3930 if (!(UnwrappedArgs.empty() && DestRecordDecl->hasDefaultConstructor())) 3931 Result = ResolveConstructorOverload(S, Kind.getLocation(), Args, 3932 CandidateSet, DestType, Ctors, Best, 3933 CopyInitialization, AllowExplicit, 3934 /*OnlyListConstructor=*/true, 3935 IsListInit); 3936 } 3937 3938 // C++11 [over.match.list]p1: 3939 // - If no viable initializer-list constructor is found, overload resolution 3940 // is performed again, where the candidate functions are all the 3941 // constructors of the class T and the argument list consists of the 3942 // elements of the initializer list. 3943 if (Result == OR_No_Viable_Function) { 3944 AsInitializerList = false; 3945 Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs, 3946 CandidateSet, DestType, Ctors, Best, 3947 CopyInitialization, AllowExplicit, 3948 /*OnlyListConstructors=*/false, 3949 IsListInit); 3950 } 3951 if (Result) { 3952 Sequence.SetOverloadFailure(IsListInit ? 3953 InitializationSequence::FK_ListConstructorOverloadFailed : 3954 InitializationSequence::FK_ConstructorOverloadFailed, 3955 Result); 3956 return; 3957 } 3958 3959 bool HadMultipleCandidates = (CandidateSet.size() > 1); 3960 3961 // In C++17, ResolveConstructorOverload can select a conversion function 3962 // instead of a constructor. 3963 if (auto *CD = dyn_cast<CXXConversionDecl>(Best->Function)) { 3964 // Add the user-defined conversion step that calls the conversion function. 3965 QualType ConvType = CD->getConversionType(); 3966 assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) && 3967 "should not have selected this conversion function"); 3968 Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType, 3969 HadMultipleCandidates); 3970 if (!S.Context.hasSameType(ConvType, DestType)) 3971 Sequence.AddQualificationConversionStep(DestType, VK_RValue); 3972 if (IsListInit) 3973 Sequence.RewrapReferenceInitList(Entity.getType(), ILE); 3974 return; 3975 } 3976 3977 // C++11 [dcl.init]p6: 3978 // If a program calls for the default initialization of an object 3979 // of a const-qualified type T, T shall be a class type with a 3980 // user-provided default constructor. 3981 // C++ core issue 253 proposal: 3982 // If the implicit default constructor initializes all subobjects, no 3983 // initializer should be required. 3984 // The 253 proposal is for example needed to process libstdc++ headers in 5.x. 3985 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 3986 if (Kind.getKind() == InitializationKind::IK_Default && 3987 Entity.getType().isConstQualified()) { 3988 if (!CtorDecl->getParent()->allowConstDefaultInit()) { 3989 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity)) 3990 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); 3991 return; 3992 } 3993 } 3994 3995 // C++11 [over.match.list]p1: 3996 // In copy-list-initialization, if an explicit constructor is chosen, the 3997 // initializer is ill-formed. 3998 if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) { 3999 Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor); 4000 return; 4001 } 4002 4003 // Add the constructor initialization step. Any cv-qualification conversion is 4004 // subsumed by the initialization. 4005 Sequence.AddConstructorInitializationStep( 4006 Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates, 4007 IsListInit | IsInitListCopy, AsInitializerList); 4008 } 4009 4010 static bool 4011 ResolveOverloadedFunctionForReferenceBinding(Sema &S, 4012 Expr *Initializer, 4013 QualType &SourceType, 4014 QualType &UnqualifiedSourceType, 4015 QualType UnqualifiedTargetType, 4016 InitializationSequence &Sequence) { 4017 if (S.Context.getCanonicalType(UnqualifiedSourceType) == 4018 S.Context.OverloadTy) { 4019 DeclAccessPair Found; 4020 bool HadMultipleCandidates = false; 4021 if (FunctionDecl *Fn 4022 = S.ResolveAddressOfOverloadedFunction(Initializer, 4023 UnqualifiedTargetType, 4024 false, Found, 4025 &HadMultipleCandidates)) { 4026 Sequence.AddAddressOverloadResolutionStep(Fn, Found, 4027 HadMultipleCandidates); 4028 SourceType = Fn->getType(); 4029 UnqualifiedSourceType = SourceType.getUnqualifiedType(); 4030 } else if (!UnqualifiedTargetType->isRecordType()) { 4031 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 4032 return true; 4033 } 4034 } 4035 return false; 4036 } 4037 4038 static void TryReferenceInitializationCore(Sema &S, 4039 const InitializedEntity &Entity, 4040 const InitializationKind &Kind, 4041 Expr *Initializer, 4042 QualType cv1T1, QualType T1, 4043 Qualifiers T1Quals, 4044 QualType cv2T2, QualType T2, 4045 Qualifiers T2Quals, 4046 InitializationSequence &Sequence); 4047 4048 static void TryValueInitialization(Sema &S, 4049 const InitializedEntity &Entity, 4050 const InitializationKind &Kind, 4051 InitializationSequence &Sequence, 4052 InitListExpr *InitList = nullptr); 4053 4054 /// Attempt list initialization of a reference. 4055 static void TryReferenceListInitialization(Sema &S, 4056 const InitializedEntity &Entity, 4057 const InitializationKind &Kind, 4058 InitListExpr *InitList, 4059 InitializationSequence &Sequence, 4060 bool TreatUnavailableAsInvalid) { 4061 // First, catch C++03 where this isn't possible. 4062 if (!S.getLangOpts().CPlusPlus11) { 4063 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); 4064 return; 4065 } 4066 // Can't reference initialize a compound literal. 4067 if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) { 4068 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); 4069 return; 4070 } 4071 4072 QualType DestType = Entity.getType(); 4073 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType(); 4074 Qualifiers T1Quals; 4075 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); 4076 4077 // Reference initialization via an initializer list works thus: 4078 // If the initializer list consists of a single element that is 4079 // reference-related to the referenced type, bind directly to that element 4080 // (possibly creating temporaries). 4081 // Otherwise, initialize a temporary with the initializer list and 4082 // bind to that. 4083 if (InitList->getNumInits() == 1) { 4084 Expr *Initializer = InitList->getInit(0); 4085 QualType cv2T2 = Initializer->getType(); 4086 Qualifiers T2Quals; 4087 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); 4088 4089 // If this fails, creating a temporary wouldn't work either. 4090 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, 4091 T1, Sequence)) 4092 return; 4093 4094 SourceLocation DeclLoc = Initializer->getBeginLoc(); 4095 bool dummy1, dummy2, dummy3; 4096 Sema::ReferenceCompareResult RefRelationship 4097 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1, 4098 dummy2, dummy3); 4099 if (RefRelationship >= Sema::Ref_Related) { 4100 // Try to bind the reference here. 4101 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, 4102 T1Quals, cv2T2, T2, T2Quals, Sequence); 4103 if (Sequence) 4104 Sequence.RewrapReferenceInitList(cv1T1, InitList); 4105 return; 4106 } 4107 4108 // Update the initializer if we've resolved an overloaded function. 4109 if (Sequence.step_begin() != Sequence.step_end()) 4110 Sequence.RewrapReferenceInitList(cv1T1, InitList); 4111 } 4112 4113 // Not reference-related. Create a temporary and bind to that. 4114 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1); 4115 4116 TryListInitialization(S, TempEntity, Kind, InitList, Sequence, 4117 TreatUnavailableAsInvalid); 4118 if (Sequence) { 4119 if (DestType->isRValueReferenceType() || 4120 (T1Quals.hasConst() && !T1Quals.hasVolatile())) 4121 Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true); 4122 else 4123 Sequence.SetFailed( 4124 InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary); 4125 } 4126 } 4127 4128 /// Attempt list initialization (C++0x [dcl.init.list]) 4129 static void TryListInitialization(Sema &S, 4130 const InitializedEntity &Entity, 4131 const InitializationKind &Kind, 4132 InitListExpr *InitList, 4133 InitializationSequence &Sequence, 4134 bool TreatUnavailableAsInvalid) { 4135 QualType DestType = Entity.getType(); 4136 4137 // C++ doesn't allow scalar initialization with more than one argument. 4138 // But C99 complex numbers are scalars and it makes sense there. 4139 if (S.getLangOpts().CPlusPlus && DestType->isScalarType() && 4140 !DestType->isAnyComplexType() && InitList->getNumInits() > 1) { 4141 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar); 4142 return; 4143 } 4144 if (DestType->isReferenceType()) { 4145 TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence, 4146 TreatUnavailableAsInvalid); 4147 return; 4148 } 4149 4150 if (DestType->isRecordType() && 4151 !S.isCompleteType(InitList->getBeginLoc(), DestType)) { 4152 Sequence.setIncompleteTypeFailure(DestType); 4153 return; 4154 } 4155 4156 // C++11 [dcl.init.list]p3, per DR1467: 4157 // - If T is a class type and the initializer list has a single element of 4158 // type cv U, where U is T or a class derived from T, the object is 4159 // initialized from that element (by copy-initialization for 4160 // copy-list-initialization, or by direct-initialization for 4161 // direct-list-initialization). 4162 // - Otherwise, if T is a character array and the initializer list has a 4163 // single element that is an appropriately-typed string literal 4164 // (8.5.2 [dcl.init.string]), initialization is performed as described 4165 // in that section. 4166 // - Otherwise, if T is an aggregate, [...] (continue below). 4167 if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) { 4168 if (DestType->isRecordType()) { 4169 QualType InitType = InitList->getInit(0)->getType(); 4170 if (S.Context.hasSameUnqualifiedType(InitType, DestType) || 4171 S.IsDerivedFrom(InitList->getBeginLoc(), InitType, DestType)) { 4172 Expr *InitListAsExpr = InitList; 4173 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType, 4174 DestType, Sequence, 4175 /*InitListSyntax*/false, 4176 /*IsInitListCopy*/true); 4177 return; 4178 } 4179 } 4180 if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) { 4181 Expr *SubInit[1] = {InitList->getInit(0)}; 4182 if (!isa<VariableArrayType>(DestAT) && 4183 IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) { 4184 InitializationKind SubKind = 4185 Kind.getKind() == InitializationKind::IK_DirectList 4186 ? InitializationKind::CreateDirect(Kind.getLocation(), 4187 InitList->getLBraceLoc(), 4188 InitList->getRBraceLoc()) 4189 : Kind; 4190 Sequence.InitializeFrom(S, Entity, SubKind, SubInit, 4191 /*TopLevelOfInitList*/ true, 4192 TreatUnavailableAsInvalid); 4193 4194 // TryStringLiteralInitialization() (in InitializeFrom()) will fail if 4195 // the element is not an appropriately-typed string literal, in which 4196 // case we should proceed as in C++11 (below). 4197 if (Sequence) { 4198 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 4199 return; 4200 } 4201 } 4202 } 4203 } 4204 4205 // C++11 [dcl.init.list]p3: 4206 // - If T is an aggregate, aggregate initialization is performed. 4207 if ((DestType->isRecordType() && !DestType->isAggregateType()) || 4208 (S.getLangOpts().CPlusPlus11 && 4209 S.isStdInitializerList(DestType, nullptr))) { 4210 if (S.getLangOpts().CPlusPlus11) { 4211 // - Otherwise, if the initializer list has no elements and T is a 4212 // class type with a default constructor, the object is 4213 // value-initialized. 4214 if (InitList->getNumInits() == 0) { 4215 CXXRecordDecl *RD = DestType->getAsCXXRecordDecl(); 4216 if (RD->hasDefaultConstructor()) { 4217 TryValueInitialization(S, Entity, Kind, Sequence, InitList); 4218 return; 4219 } 4220 } 4221 4222 // - Otherwise, if T is a specialization of std::initializer_list<E>, 4223 // an initializer_list object constructed [...] 4224 if (TryInitializerListConstruction(S, InitList, DestType, Sequence, 4225 TreatUnavailableAsInvalid)) 4226 return; 4227 4228 // - Otherwise, if T is a class type, constructors are considered. 4229 Expr *InitListAsExpr = InitList; 4230 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType, 4231 DestType, Sequence, /*InitListSyntax*/true); 4232 } else 4233 Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType); 4234 return; 4235 } 4236 4237 if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() && 4238 InitList->getNumInits() == 1) { 4239 Expr *E = InitList->getInit(0); 4240 4241 // - Otherwise, if T is an enumeration with a fixed underlying type, 4242 // the initializer-list has a single element v, and the initialization 4243 // is direct-list-initialization, the object is initialized with the 4244 // value T(v); if a narrowing conversion is required to convert v to 4245 // the underlying type of T, the program is ill-formed. 4246 auto *ET = DestType->getAs<EnumType>(); 4247 if (S.getLangOpts().CPlusPlus17 && 4248 Kind.getKind() == InitializationKind::IK_DirectList && 4249 ET && ET->getDecl()->isFixed() && 4250 !S.Context.hasSameUnqualifiedType(E->getType(), DestType) && 4251 (E->getType()->isIntegralOrEnumerationType() || 4252 E->getType()->isFloatingType())) { 4253 // There are two ways that T(v) can work when T is an enumeration type. 4254 // If there is either an implicit conversion sequence from v to T or 4255 // a conversion function that can convert from v to T, then we use that. 4256 // Otherwise, if v is of integral, enumeration, or floating-point type, 4257 // it is converted to the enumeration type via its underlying type. 4258 // There is no overlap possible between these two cases (except when the 4259 // source value is already of the destination type), and the first 4260 // case is handled by the general case for single-element lists below. 4261 ImplicitConversionSequence ICS; 4262 ICS.setStandard(); 4263 ICS.Standard.setAsIdentityConversion(); 4264 if (!E->isRValue()) 4265 ICS.Standard.First = ICK_Lvalue_To_Rvalue; 4266 // If E is of a floating-point type, then the conversion is ill-formed 4267 // due to narrowing, but go through the motions in order to produce the 4268 // right diagnostic. 4269 ICS.Standard.Second = E->getType()->isFloatingType() 4270 ? ICK_Floating_Integral 4271 : ICK_Integral_Conversion; 4272 ICS.Standard.setFromType(E->getType()); 4273 ICS.Standard.setToType(0, E->getType()); 4274 ICS.Standard.setToType(1, DestType); 4275 ICS.Standard.setToType(2, DestType); 4276 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2), 4277 /*TopLevelOfInitList*/true); 4278 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 4279 return; 4280 } 4281 4282 // - Otherwise, if the initializer list has a single element of type E 4283 // [...references are handled above...], the object or reference is 4284 // initialized from that element (by copy-initialization for 4285 // copy-list-initialization, or by direct-initialization for 4286 // direct-list-initialization); if a narrowing conversion is required 4287 // to convert the element to T, the program is ill-formed. 4288 // 4289 // Per core-24034, this is direct-initialization if we were performing 4290 // direct-list-initialization and copy-initialization otherwise. 4291 // We can't use InitListChecker for this, because it always performs 4292 // copy-initialization. This only matters if we might use an 'explicit' 4293 // conversion operator, so we only need to handle the cases where the source 4294 // is of record type. 4295 if (InitList->getInit(0)->getType()->isRecordType()) { 4296 InitializationKind SubKind = 4297 Kind.getKind() == InitializationKind::IK_DirectList 4298 ? InitializationKind::CreateDirect(Kind.getLocation(), 4299 InitList->getLBraceLoc(), 4300 InitList->getRBraceLoc()) 4301 : Kind; 4302 Expr *SubInit[1] = { InitList->getInit(0) }; 4303 Sequence.InitializeFrom(S, Entity, SubKind, SubInit, 4304 /*TopLevelOfInitList*/true, 4305 TreatUnavailableAsInvalid); 4306 if (Sequence) 4307 Sequence.RewrapReferenceInitList(Entity.getType(), InitList); 4308 return; 4309 } 4310 } 4311 4312 InitListChecker CheckInitList(S, Entity, InitList, 4313 DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid); 4314 if (CheckInitList.HadError()) { 4315 Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed); 4316 return; 4317 } 4318 4319 // Add the list initialization step with the built init list. 4320 Sequence.AddListInitializationStep(DestType); 4321 } 4322 4323 /// Try a reference initialization that involves calling a conversion 4324 /// function. 4325 static OverloadingResult TryRefInitWithConversionFunction( 4326 Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, 4327 Expr *Initializer, bool AllowRValues, bool IsLValueRef, 4328 InitializationSequence &Sequence) { 4329 QualType DestType = Entity.getType(); 4330 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType(); 4331 QualType T1 = cv1T1.getUnqualifiedType(); 4332 QualType cv2T2 = Initializer->getType(); 4333 QualType T2 = cv2T2.getUnqualifiedType(); 4334 4335 bool DerivedToBase; 4336 bool ObjCConversion; 4337 bool ObjCLifetimeConversion; 4338 assert(!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2, 4339 DerivedToBase, ObjCConversion, 4340 ObjCLifetimeConversion) && 4341 "Must have incompatible references when binding via conversion"); 4342 (void)DerivedToBase; 4343 (void)ObjCConversion; 4344 (void)ObjCLifetimeConversion; 4345 4346 // Build the candidate set directly in the initialization sequence 4347 // structure, so that it will persist if we fail. 4348 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 4349 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); 4350 4351 // Determine whether we are allowed to call explicit conversion operators. 4352 // Note that none of [over.match.copy], [over.match.conv], nor 4353 // [over.match.ref] permit an explicit constructor to be chosen when 4354 // initializing a reference, not even for direct-initialization. 4355 bool AllowExplicitCtors = false; 4356 bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding(); 4357 4358 const RecordType *T1RecordType = nullptr; 4359 if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) && 4360 S.isCompleteType(Kind.getLocation(), T1)) { 4361 // The type we're converting to is a class type. Enumerate its constructors 4362 // to see if there is a suitable conversion. 4363 CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl()); 4364 4365 for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) { 4366 auto Info = getConstructorInfo(D); 4367 if (!Info.Constructor) 4368 continue; 4369 4370 if (!Info.Constructor->isInvalidDecl() && 4371 Info.Constructor->isConvertingConstructor(AllowExplicitCtors)) { 4372 if (Info.ConstructorTmpl) 4373 S.AddTemplateOverloadCandidate( 4374 Info.ConstructorTmpl, Info.FoundDecl, 4375 /*ExplicitArgs*/ nullptr, Initializer, CandidateSet, 4376 /*SuppressUserConversions=*/true, 4377 /*PartialOverloading*/ false, AllowExplicitCtors); 4378 else 4379 S.AddOverloadCandidate( 4380 Info.Constructor, Info.FoundDecl, Initializer, CandidateSet, 4381 /*SuppressUserConversions=*/true, 4382 /*PartialOverloading*/ false, AllowExplicitCtors); 4383 } 4384 } 4385 } 4386 if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl()) 4387 return OR_No_Viable_Function; 4388 4389 const RecordType *T2RecordType = nullptr; 4390 if ((T2RecordType = T2->getAs<RecordType>()) && 4391 S.isCompleteType(Kind.getLocation(), T2)) { 4392 // The type we're converting from is a class type, enumerate its conversion 4393 // functions. 4394 CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl()); 4395 4396 const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions(); 4397 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 4398 NamedDecl *D = *I; 4399 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 4400 if (isa<UsingShadowDecl>(D)) 4401 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 4402 4403 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 4404 CXXConversionDecl *Conv; 4405 if (ConvTemplate) 4406 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 4407 else 4408 Conv = cast<CXXConversionDecl>(D); 4409 4410 // If the conversion function doesn't return a reference type, 4411 // it can't be considered for this conversion unless we're allowed to 4412 // consider rvalues. 4413 // FIXME: Do we need to make sure that we only consider conversion 4414 // candidates with reference-compatible results? That might be needed to 4415 // break recursion. 4416 if ((AllowExplicitConvs || !Conv->isExplicit()) && 4417 (AllowRValues || 4418 Conv->getConversionType()->isLValueReferenceType())) { 4419 if (ConvTemplate) 4420 S.AddTemplateConversionCandidate( 4421 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, 4422 CandidateSet, 4423 /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs); 4424 else 4425 S.AddConversionCandidate( 4426 Conv, I.getPair(), ActingDC, Initializer, DestType, CandidateSet, 4427 /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs); 4428 } 4429 } 4430 } 4431 if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl()) 4432 return OR_No_Viable_Function; 4433 4434 SourceLocation DeclLoc = Initializer->getBeginLoc(); 4435 4436 // Perform overload resolution. If it fails, return the failed result. 4437 OverloadCandidateSet::iterator Best; 4438 if (OverloadingResult Result 4439 = CandidateSet.BestViableFunction(S, DeclLoc, Best)) 4440 return Result; 4441 4442 FunctionDecl *Function = Best->Function; 4443 // This is the overload that will be used for this initialization step if we 4444 // use this initialization. Mark it as referenced. 4445 Function->setReferenced(); 4446 4447 // Compute the returned type and value kind of the conversion. 4448 QualType cv3T3; 4449 if (isa<CXXConversionDecl>(Function)) 4450 cv3T3 = Function->getReturnType(); 4451 else 4452 cv3T3 = T1; 4453 4454 ExprValueKind VK = VK_RValue; 4455 if (cv3T3->isLValueReferenceType()) 4456 VK = VK_LValue; 4457 else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>()) 4458 VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue; 4459 cv3T3 = cv3T3.getNonLValueExprType(S.Context); 4460 4461 // Add the user-defined conversion step. 4462 bool HadMultipleCandidates = (CandidateSet.size() > 1); 4463 Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3, 4464 HadMultipleCandidates); 4465 4466 // Determine whether we'll need to perform derived-to-base adjustments or 4467 // other conversions. 4468 bool NewDerivedToBase = false; 4469 bool NewObjCConversion = false; 4470 bool NewObjCLifetimeConversion = false; 4471 Sema::ReferenceCompareResult NewRefRelationship 4472 = S.CompareReferenceRelationship(DeclLoc, T1, cv3T3, 4473 NewDerivedToBase, NewObjCConversion, 4474 NewObjCLifetimeConversion); 4475 4476 // Add the final conversion sequence, if necessary. 4477 if (NewRefRelationship == Sema::Ref_Incompatible) { 4478 assert(!isa<CXXConstructorDecl>(Function) && 4479 "should not have conversion after constructor"); 4480 4481 ImplicitConversionSequence ICS; 4482 ICS.setStandard(); 4483 ICS.Standard = Best->FinalConversion; 4484 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2)); 4485 4486 // Every implicit conversion results in a prvalue, except for a glvalue 4487 // derived-to-base conversion, which we handle below. 4488 cv3T3 = ICS.Standard.getToType(2); 4489 VK = VK_RValue; 4490 } 4491 4492 // If the converted initializer is a prvalue, its type T4 is adjusted to 4493 // type "cv1 T4" and the temporary materialization conversion is applied. 4494 // 4495 // We adjust the cv-qualifications to match the reference regardless of 4496 // whether we have a prvalue so that the AST records the change. In this 4497 // case, T4 is "cv3 T3". 4498 QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers()); 4499 if (cv1T4.getQualifiers() != cv3T3.getQualifiers()) 4500 Sequence.AddQualificationConversionStep(cv1T4, VK); 4501 Sequence.AddReferenceBindingStep(cv1T4, VK == VK_RValue); 4502 VK = IsLValueRef ? VK_LValue : VK_XValue; 4503 4504 if (NewDerivedToBase) 4505 Sequence.AddDerivedToBaseCastStep(cv1T1, VK); 4506 else if (NewObjCConversion) 4507 Sequence.AddObjCObjectConversionStep(cv1T1); 4508 4509 return OR_Success; 4510 } 4511 4512 static void CheckCXX98CompatAccessibleCopy(Sema &S, 4513 const InitializedEntity &Entity, 4514 Expr *CurInitExpr); 4515 4516 /// Attempt reference initialization (C++0x [dcl.init.ref]) 4517 static void TryReferenceInitialization(Sema &S, 4518 const InitializedEntity &Entity, 4519 const InitializationKind &Kind, 4520 Expr *Initializer, 4521 InitializationSequence &Sequence) { 4522 QualType DestType = Entity.getType(); 4523 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType(); 4524 Qualifiers T1Quals; 4525 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); 4526 QualType cv2T2 = Initializer->getType(); 4527 Qualifiers T2Quals; 4528 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); 4529 4530 // If the initializer is the address of an overloaded function, try 4531 // to resolve the overloaded function. If all goes well, T2 is the 4532 // type of the resulting function. 4533 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, 4534 T1, Sequence)) 4535 return; 4536 4537 // Delegate everything else to a subfunction. 4538 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, 4539 T1Quals, cv2T2, T2, T2Quals, Sequence); 4540 } 4541 4542 /// Determine whether an expression is a non-referenceable glvalue (one to 4543 /// which a reference can never bind). Attempting to bind a reference to 4544 /// such a glvalue will always create a temporary. 4545 static bool isNonReferenceableGLValue(Expr *E) { 4546 return E->refersToBitField() || E->refersToVectorElement(); 4547 } 4548 4549 /// Reference initialization without resolving overloaded functions. 4550 static void TryReferenceInitializationCore(Sema &S, 4551 const InitializedEntity &Entity, 4552 const InitializationKind &Kind, 4553 Expr *Initializer, 4554 QualType cv1T1, QualType T1, 4555 Qualifiers T1Quals, 4556 QualType cv2T2, QualType T2, 4557 Qualifiers T2Quals, 4558 InitializationSequence &Sequence) { 4559 QualType DestType = Entity.getType(); 4560 SourceLocation DeclLoc = Initializer->getBeginLoc(); 4561 // Compute some basic properties of the types and the initializer. 4562 bool isLValueRef = DestType->isLValueReferenceType(); 4563 bool isRValueRef = !isLValueRef; 4564 bool DerivedToBase = false; 4565 bool ObjCConversion = false; 4566 bool ObjCLifetimeConversion = false; 4567 Expr::Classification InitCategory = Initializer->Classify(S.Context); 4568 Sema::ReferenceCompareResult RefRelationship 4569 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase, 4570 ObjCConversion, ObjCLifetimeConversion); 4571 4572 // C++0x [dcl.init.ref]p5: 4573 // A reference to type "cv1 T1" is initialized by an expression of type 4574 // "cv2 T2" as follows: 4575 // 4576 // - If the reference is an lvalue reference and the initializer 4577 // expression 4578 // Note the analogous bullet points for rvalue refs to functions. Because 4579 // there are no function rvalues in C++, rvalue refs to functions are treated 4580 // like lvalue refs. 4581 OverloadingResult ConvOvlResult = OR_Success; 4582 bool T1Function = T1->isFunctionType(); 4583 if (isLValueRef || T1Function) { 4584 if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) && 4585 (RefRelationship == Sema::Ref_Compatible || 4586 (Kind.isCStyleOrFunctionalCast() && 4587 RefRelationship == Sema::Ref_Related))) { 4588 // - is an lvalue (but is not a bit-field), and "cv1 T1" is 4589 // reference-compatible with "cv2 T2," or 4590 if (T1Quals != T2Quals) 4591 // Convert to cv1 T2. This should only add qualifiers unless this is a 4592 // c-style cast. The removal of qualifiers in that case notionally 4593 // happens after the reference binding, but that doesn't matter. 4594 Sequence.AddQualificationConversionStep( 4595 S.Context.getQualifiedType(T2, T1Quals), 4596 Initializer->getValueKind()); 4597 if (DerivedToBase) 4598 Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue); 4599 else if (ObjCConversion) 4600 Sequence.AddObjCObjectConversionStep(cv1T1); 4601 4602 // We only create a temporary here when binding a reference to a 4603 // bit-field or vector element. Those cases are't supposed to be 4604 // handled by this bullet, but the outcome is the same either way. 4605 Sequence.AddReferenceBindingStep(cv1T1, false); 4606 return; 4607 } 4608 4609 // - has a class type (i.e., T2 is a class type), where T1 is not 4610 // reference-related to T2, and can be implicitly converted to an 4611 // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible 4612 // with "cv3 T3" (this conversion is selected by enumerating the 4613 // applicable conversion functions (13.3.1.6) and choosing the best 4614 // one through overload resolution (13.3)), 4615 // If we have an rvalue ref to function type here, the rhs must be 4616 // an rvalue. DR1287 removed the "implicitly" here. 4617 if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() && 4618 (isLValueRef || InitCategory.isRValue())) { 4619 ConvOvlResult = TryRefInitWithConversionFunction( 4620 S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef, 4621 /*IsLValueRef*/ isLValueRef, Sequence); 4622 if (ConvOvlResult == OR_Success) 4623 return; 4624 if (ConvOvlResult != OR_No_Viable_Function) 4625 Sequence.SetOverloadFailure( 4626 InitializationSequence::FK_ReferenceInitOverloadFailed, 4627 ConvOvlResult); 4628 } 4629 } 4630 4631 // - Otherwise, the reference shall be an lvalue reference to a 4632 // non-volatile const type (i.e., cv1 shall be const), or the reference 4633 // shall be an rvalue reference. 4634 if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) { 4635 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) 4636 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 4637 else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) 4638 Sequence.SetOverloadFailure( 4639 InitializationSequence::FK_ReferenceInitOverloadFailed, 4640 ConvOvlResult); 4641 else if (!InitCategory.isLValue()) 4642 Sequence.SetFailed( 4643 InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary); 4644 else { 4645 InitializationSequence::FailureKind FK; 4646 switch (RefRelationship) { 4647 case Sema::Ref_Compatible: 4648 if (Initializer->refersToBitField()) 4649 FK = InitializationSequence:: 4650 FK_NonConstLValueReferenceBindingToBitfield; 4651 else if (Initializer->refersToVectorElement()) 4652 FK = InitializationSequence:: 4653 FK_NonConstLValueReferenceBindingToVectorElement; 4654 else 4655 llvm_unreachable("unexpected kind of compatible initializer"); 4656 break; 4657 case Sema::Ref_Related: 4658 FK = InitializationSequence::FK_ReferenceInitDropsQualifiers; 4659 break; 4660 case Sema::Ref_Incompatible: 4661 FK = InitializationSequence:: 4662 FK_NonConstLValueReferenceBindingToUnrelated; 4663 break; 4664 } 4665 Sequence.SetFailed(FK); 4666 } 4667 return; 4668 } 4669 4670 // - If the initializer expression 4671 // - is an 4672 // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or 4673 // [1z] rvalue (but not a bit-field) or 4674 // function lvalue and "cv1 T1" is reference-compatible with "cv2 T2" 4675 // 4676 // Note: functions are handled above and below rather than here... 4677 if (!T1Function && 4678 (RefRelationship == Sema::Ref_Compatible || 4679 (Kind.isCStyleOrFunctionalCast() && 4680 RefRelationship == Sema::Ref_Related)) && 4681 ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) || 4682 (InitCategory.isPRValue() && 4683 (S.getLangOpts().CPlusPlus17 || T2->isRecordType() || 4684 T2->isArrayType())))) { 4685 ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_RValue; 4686 if (InitCategory.isPRValue() && T2->isRecordType()) { 4687 // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the 4688 // compiler the freedom to perform a copy here or bind to the 4689 // object, while C++0x requires that we bind directly to the 4690 // object. Hence, we always bind to the object without making an 4691 // extra copy. However, in C++03 requires that we check for the 4692 // presence of a suitable copy constructor: 4693 // 4694 // The constructor that would be used to make the copy shall 4695 // be callable whether or not the copy is actually done. 4696 if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt) 4697 Sequence.AddExtraneousCopyToTemporary(cv2T2); 4698 else if (S.getLangOpts().CPlusPlus11) 4699 CheckCXX98CompatAccessibleCopy(S, Entity, Initializer); 4700 } 4701 4702 // C++1z [dcl.init.ref]/5.2.1.2: 4703 // If the converted initializer is a prvalue, its type T4 is adjusted 4704 // to type "cv1 T4" and the temporary materialization conversion is 4705 // applied. 4706 // Postpone address space conversions to after the temporary materialization 4707 // conversion to allow creating temporaries in the alloca address space. 4708 auto T1QualsIgnoreAS = T1Quals; 4709 auto T2QualsIgnoreAS = T2Quals; 4710 if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) { 4711 T1QualsIgnoreAS.removeAddressSpace(); 4712 T2QualsIgnoreAS.removeAddressSpace(); 4713 } 4714 QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1QualsIgnoreAS); 4715 if (T1QualsIgnoreAS != T2QualsIgnoreAS) 4716 Sequence.AddQualificationConversionStep(cv1T4, ValueKind); 4717 Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_RValue); 4718 ValueKind = isLValueRef ? VK_LValue : VK_XValue; 4719 // Add addr space conversion if required. 4720 if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) { 4721 auto T4Quals = cv1T4.getQualifiers(); 4722 T4Quals.addAddressSpace(T1Quals.getAddressSpace()); 4723 QualType cv1T4WithAS = S.Context.getQualifiedType(T2, T4Quals); 4724 Sequence.AddQualificationConversionStep(cv1T4WithAS, ValueKind); 4725 } 4726 4727 // In any case, the reference is bound to the resulting glvalue (or to 4728 // an appropriate base class subobject). 4729 if (DerivedToBase) 4730 Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind); 4731 else if (ObjCConversion) 4732 Sequence.AddObjCObjectConversionStep(cv1T1); 4733 return; 4734 } 4735 4736 // - has a class type (i.e., T2 is a class type), where T1 is not 4737 // reference-related to T2, and can be implicitly converted to an 4738 // xvalue, class prvalue, or function lvalue of type "cv3 T3", 4739 // where "cv1 T1" is reference-compatible with "cv3 T3", 4740 // 4741 // DR1287 removes the "implicitly" here. 4742 if (T2->isRecordType()) { 4743 if (RefRelationship == Sema::Ref_Incompatible) { 4744 ConvOvlResult = TryRefInitWithConversionFunction( 4745 S, Entity, Kind, Initializer, /*AllowRValues*/ true, 4746 /*IsLValueRef*/ isLValueRef, Sequence); 4747 if (ConvOvlResult) 4748 Sequence.SetOverloadFailure( 4749 InitializationSequence::FK_ReferenceInitOverloadFailed, 4750 ConvOvlResult); 4751 4752 return; 4753 } 4754 4755 if (RefRelationship == Sema::Ref_Compatible && 4756 isRValueRef && InitCategory.isLValue()) { 4757 Sequence.SetFailed( 4758 InitializationSequence::FK_RValueReferenceBindingToLValue); 4759 return; 4760 } 4761 4762 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); 4763 return; 4764 } 4765 4766 // - Otherwise, a temporary of type "cv1 T1" is created and initialized 4767 // from the initializer expression using the rules for a non-reference 4768 // copy-initialization (8.5). The reference is then bound to the 4769 // temporary. [...] 4770 4771 // Ignore address space of reference type at this point and perform address 4772 // space conversion after the reference binding step. 4773 QualType cv1T1IgnoreAS = 4774 T1Quals.hasAddressSpace() 4775 ? S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace()) 4776 : cv1T1; 4777 4778 InitializedEntity TempEntity = 4779 InitializedEntity::InitializeTemporary(cv1T1IgnoreAS); 4780 4781 // FIXME: Why do we use an implicit conversion here rather than trying 4782 // copy-initialization? 4783 ImplicitConversionSequence ICS 4784 = S.TryImplicitConversion(Initializer, TempEntity.getType(), 4785 /*SuppressUserConversions=*/false, 4786 /*AllowExplicit=*/false, 4787 /*FIXME:InOverloadResolution=*/false, 4788 /*CStyle=*/Kind.isCStyleOrFunctionalCast(), 4789 /*AllowObjCWritebackConversion=*/false); 4790 4791 if (ICS.isBad()) { 4792 // FIXME: Use the conversion function set stored in ICS to turn 4793 // this into an overloading ambiguity diagnostic. However, we need 4794 // to keep that set as an OverloadCandidateSet rather than as some 4795 // other kind of set. 4796 if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) 4797 Sequence.SetOverloadFailure( 4798 InitializationSequence::FK_ReferenceInitOverloadFailed, 4799 ConvOvlResult); 4800 else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) 4801 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 4802 else 4803 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed); 4804 return; 4805 } else { 4806 Sequence.AddConversionSequenceStep(ICS, TempEntity.getType()); 4807 } 4808 4809 // [...] If T1 is reference-related to T2, cv1 must be the 4810 // same cv-qualification as, or greater cv-qualification 4811 // than, cv2; otherwise, the program is ill-formed. 4812 unsigned T1CVRQuals = T1Quals.getCVRQualifiers(); 4813 unsigned T2CVRQuals = T2Quals.getCVRQualifiers(); 4814 if ((RefRelationship == Sema::Ref_Related && 4815 (T1CVRQuals | T2CVRQuals) != T1CVRQuals) || 4816 !T1Quals.isAddressSpaceSupersetOf(T2Quals)) { 4817 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); 4818 return; 4819 } 4820 4821 // [...] If T1 is reference-related to T2 and the reference is an rvalue 4822 // reference, the initializer expression shall not be an lvalue. 4823 if (RefRelationship >= Sema::Ref_Related && !isLValueRef && 4824 InitCategory.isLValue()) { 4825 Sequence.SetFailed( 4826 InitializationSequence::FK_RValueReferenceBindingToLValue); 4827 return; 4828 } 4829 4830 Sequence.AddReferenceBindingStep(cv1T1IgnoreAS, /*bindingTemporary=*/true); 4831 4832 if (T1Quals.hasAddressSpace()) { 4833 if (!Qualifiers::isAddressSpaceSupersetOf(T1Quals.getAddressSpace(), 4834 LangAS::Default)) { 4835 Sequence.SetFailed( 4836 InitializationSequence::FK_ReferenceAddrspaceMismatchTemporary); 4837 return; 4838 } 4839 Sequence.AddQualificationConversionStep(cv1T1, isLValueRef ? VK_LValue 4840 : VK_XValue); 4841 } 4842 } 4843 4844 /// Attempt character array initialization from a string literal 4845 /// (C++ [dcl.init.string], C99 6.7.8). 4846 static void TryStringLiteralInitialization(Sema &S, 4847 const InitializedEntity &Entity, 4848 const InitializationKind &Kind, 4849 Expr *Initializer, 4850 InitializationSequence &Sequence) { 4851 Sequence.AddStringInitStep(Entity.getType()); 4852 } 4853 4854 /// Attempt value initialization (C++ [dcl.init]p7). 4855 static void TryValueInitialization(Sema &S, 4856 const InitializedEntity &Entity, 4857 const InitializationKind &Kind, 4858 InitializationSequence &Sequence, 4859 InitListExpr *InitList) { 4860 assert((!InitList || InitList->getNumInits() == 0) && 4861 "Shouldn't use value-init for non-empty init lists"); 4862 4863 // C++98 [dcl.init]p5, C++11 [dcl.init]p7: 4864 // 4865 // To value-initialize an object of type T means: 4866 QualType T = Entity.getType(); 4867 4868 // -- if T is an array type, then each element is value-initialized; 4869 T = S.Context.getBaseElementType(T); 4870 4871 if (const RecordType *RT = T->getAs<RecordType>()) { 4872 if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 4873 bool NeedZeroInitialization = true; 4874 // C++98: 4875 // -- if T is a class type (clause 9) with a user-declared constructor 4876 // (12.1), then the default constructor for T is called (and the 4877 // initialization is ill-formed if T has no accessible default 4878 // constructor); 4879 // C++11: 4880 // -- if T is a class type (clause 9) with either no default constructor 4881 // (12.1 [class.ctor]) or a default constructor that is user-provided 4882 // or deleted, then the object is default-initialized; 4883 // 4884 // Note that the C++11 rule is the same as the C++98 rule if there are no 4885 // defaulted or deleted constructors, so we just use it unconditionally. 4886 CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl); 4887 if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted()) 4888 NeedZeroInitialization = false; 4889 4890 // -- if T is a (possibly cv-qualified) non-union class type without a 4891 // user-provided or deleted default constructor, then the object is 4892 // zero-initialized and, if T has a non-trivial default constructor, 4893 // default-initialized; 4894 // The 'non-union' here was removed by DR1502. The 'non-trivial default 4895 // constructor' part was removed by DR1507. 4896 if (NeedZeroInitialization) 4897 Sequence.AddZeroInitializationStep(Entity.getType()); 4898 4899 // C++03: 4900 // -- if T is a non-union class type without a user-declared constructor, 4901 // then every non-static data member and base class component of T is 4902 // value-initialized; 4903 // [...] A program that calls for [...] value-initialization of an 4904 // entity of reference type is ill-formed. 4905 // 4906 // C++11 doesn't need this handling, because value-initialization does not 4907 // occur recursively there, and the implicit default constructor is 4908 // defined as deleted in the problematic cases. 4909 if (!S.getLangOpts().CPlusPlus11 && 4910 ClassDecl->hasUninitializedReferenceMember()) { 4911 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference); 4912 return; 4913 } 4914 4915 // If this is list-value-initialization, pass the empty init list on when 4916 // building the constructor call. This affects the semantics of a few 4917 // things (such as whether an explicit default constructor can be called). 4918 Expr *InitListAsExpr = InitList; 4919 MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0); 4920 bool InitListSyntax = InitList; 4921 4922 // FIXME: Instead of creating a CXXConstructExpr of array type here, 4923 // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr. 4924 return TryConstructorInitialization( 4925 S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax); 4926 } 4927 } 4928 4929 Sequence.AddZeroInitializationStep(Entity.getType()); 4930 } 4931 4932 /// Attempt default initialization (C++ [dcl.init]p6). 4933 static void TryDefaultInitialization(Sema &S, 4934 const InitializedEntity &Entity, 4935 const InitializationKind &Kind, 4936 InitializationSequence &Sequence) { 4937 assert(Kind.getKind() == InitializationKind::IK_Default); 4938 4939 // C++ [dcl.init]p6: 4940 // To default-initialize an object of type T means: 4941 // - if T is an array type, each element is default-initialized; 4942 QualType DestType = S.Context.getBaseElementType(Entity.getType()); 4943 4944 // - if T is a (possibly cv-qualified) class type (Clause 9), the default 4945 // constructor for T is called (and the initialization is ill-formed if 4946 // T has no accessible default constructor); 4947 if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) { 4948 TryConstructorInitialization(S, Entity, Kind, None, DestType, 4949 Entity.getType(), Sequence); 4950 return; 4951 } 4952 4953 // - otherwise, no initialization is performed. 4954 4955 // If a program calls for the default initialization of an object of 4956 // a const-qualified type T, T shall be a class type with a user-provided 4957 // default constructor. 4958 if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) { 4959 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity)) 4960 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); 4961 return; 4962 } 4963 4964 // If the destination type has a lifetime property, zero-initialize it. 4965 if (DestType.getQualifiers().hasObjCLifetime()) { 4966 Sequence.AddZeroInitializationStep(Entity.getType()); 4967 return; 4968 } 4969 } 4970 4971 /// Attempt a user-defined conversion between two types (C++ [dcl.init]), 4972 /// which enumerates all conversion functions and performs overload resolution 4973 /// to select the best. 4974 static void TryUserDefinedConversion(Sema &S, 4975 QualType DestType, 4976 const InitializationKind &Kind, 4977 Expr *Initializer, 4978 InitializationSequence &Sequence, 4979 bool TopLevelOfInitList) { 4980 assert(!DestType->isReferenceType() && "References are handled elsewhere"); 4981 QualType SourceType = Initializer->getType(); 4982 assert((DestType->isRecordType() || SourceType->isRecordType()) && 4983 "Must have a class type to perform a user-defined conversion"); 4984 4985 // Build the candidate set directly in the initialization sequence 4986 // structure, so that it will persist if we fail. 4987 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); 4988 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); 4989 CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace()); 4990 4991 // Determine whether we are allowed to call explicit constructors or 4992 // explicit conversion operators. 4993 bool AllowExplicit = Kind.AllowExplicit(); 4994 4995 if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) { 4996 // The type we're converting to is a class type. Enumerate its constructors 4997 // to see if there is a suitable conversion. 4998 CXXRecordDecl *DestRecordDecl 4999 = cast<CXXRecordDecl>(DestRecordType->getDecl()); 5000 5001 // Try to complete the type we're converting to. 5002 if (S.isCompleteType(Kind.getLocation(), DestType)) { 5003 for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) { 5004 auto Info = getConstructorInfo(D); 5005 if (!Info.Constructor) 5006 continue; 5007 5008 if (!Info.Constructor->isInvalidDecl() && 5009 Info.Constructor->isConvertingConstructor(AllowExplicit)) { 5010 if (Info.ConstructorTmpl) 5011 S.AddTemplateOverloadCandidate( 5012 Info.ConstructorTmpl, Info.FoundDecl, 5013 /*ExplicitArgs*/ nullptr, Initializer, CandidateSet, 5014 /*SuppressUserConversions=*/true, 5015 /*PartialOverloading*/ false, AllowExplicit); 5016 else 5017 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, 5018 Initializer, CandidateSet, 5019 /*SuppressUserConversions=*/true, 5020 /*PartialOverloading*/ false, AllowExplicit); 5021 } 5022 } 5023 } 5024 } 5025 5026 SourceLocation DeclLoc = Initializer->getBeginLoc(); 5027 5028 if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) { 5029 // The type we're converting from is a class type, enumerate its conversion 5030 // functions. 5031 5032 // We can only enumerate the conversion functions for a complete type; if 5033 // the type isn't complete, simply skip this step. 5034 if (S.isCompleteType(DeclLoc, SourceType)) { 5035 CXXRecordDecl *SourceRecordDecl 5036 = cast<CXXRecordDecl>(SourceRecordType->getDecl()); 5037 5038 const auto &Conversions = 5039 SourceRecordDecl->getVisibleConversionFunctions(); 5040 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { 5041 NamedDecl *D = *I; 5042 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); 5043 if (isa<UsingShadowDecl>(D)) 5044 D = cast<UsingShadowDecl>(D)->getTargetDecl(); 5045 5046 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); 5047 CXXConversionDecl *Conv; 5048 if (ConvTemplate) 5049 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); 5050 else 5051 Conv = cast<CXXConversionDecl>(D); 5052 5053 if (AllowExplicit || !Conv->isExplicit()) { 5054 if (ConvTemplate) 5055 S.AddTemplateConversionCandidate( 5056 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, 5057 CandidateSet, AllowExplicit, AllowExplicit); 5058 else 5059 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer, 5060 DestType, CandidateSet, AllowExplicit, 5061 AllowExplicit); 5062 } 5063 } 5064 } 5065 } 5066 5067 // Perform overload resolution. If it fails, return the failed result. 5068 OverloadCandidateSet::iterator Best; 5069 if (OverloadingResult Result 5070 = CandidateSet.BestViableFunction(S, DeclLoc, Best)) { 5071 Sequence.SetOverloadFailure( 5072 InitializationSequence::FK_UserConversionOverloadFailed, 5073 Result); 5074 return; 5075 } 5076 5077 FunctionDecl *Function = Best->Function; 5078 Function->setReferenced(); 5079 bool HadMultipleCandidates = (CandidateSet.size() > 1); 5080 5081 if (isa<CXXConstructorDecl>(Function)) { 5082 // Add the user-defined conversion step. Any cv-qualification conversion is 5083 // subsumed by the initialization. Per DR5, the created temporary is of the 5084 // cv-unqualified type of the destination. 5085 Sequence.AddUserConversionStep(Function, Best->FoundDecl, 5086 DestType.getUnqualifiedType(), 5087 HadMultipleCandidates); 5088 5089 // C++14 and before: 5090 // - if the function is a constructor, the call initializes a temporary 5091 // of the cv-unqualified version of the destination type. The [...] 5092 // temporary [...] is then used to direct-initialize, according to the 5093 // rules above, the object that is the destination of the 5094 // copy-initialization. 5095 // Note that this just performs a simple object copy from the temporary. 5096 // 5097 // C++17: 5098 // - if the function is a constructor, the call is a prvalue of the 5099 // cv-unqualified version of the destination type whose return object 5100 // is initialized by the constructor. The call is used to 5101 // direct-initialize, according to the rules above, the object that 5102 // is the destination of the copy-initialization. 5103 // Therefore we need to do nothing further. 5104 // 5105 // FIXME: Mark this copy as extraneous. 5106 if (!S.getLangOpts().CPlusPlus17) 5107 Sequence.AddFinalCopy(DestType); 5108 else if (DestType.hasQualifiers()) 5109 Sequence.AddQualificationConversionStep(DestType, VK_RValue); 5110 return; 5111 } 5112 5113 // Add the user-defined conversion step that calls the conversion function. 5114 QualType ConvType = Function->getCallResultType(); 5115 Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType, 5116 HadMultipleCandidates); 5117 5118 if (ConvType->getAs<RecordType>()) { 5119 // The call is used to direct-initialize [...] the object that is the 5120 // destination of the copy-initialization. 5121 // 5122 // In C++17, this does not call a constructor if we enter /17.6.1: 5123 // - If the initializer expression is a prvalue and the cv-unqualified 5124 // version of the source type is the same as the class of the 5125 // destination [... do not make an extra copy] 5126 // 5127 // FIXME: Mark this copy as extraneous. 5128 if (!S.getLangOpts().CPlusPlus17 || 5129 Function->getReturnType()->isReferenceType() || 5130 !S.Context.hasSameUnqualifiedType(ConvType, DestType)) 5131 Sequence.AddFinalCopy(DestType); 5132 else if (!S.Context.hasSameType(ConvType, DestType)) 5133 Sequence.AddQualificationConversionStep(DestType, VK_RValue); 5134 return; 5135 } 5136 5137 // If the conversion following the call to the conversion function 5138 // is interesting, add it as a separate step. 5139 if (Best->FinalConversion.First || Best->FinalConversion.Second || 5140 Best->FinalConversion.Third) { 5141 ImplicitConversionSequence ICS; 5142 ICS.setStandard(); 5143 ICS.Standard = Best->FinalConversion; 5144 Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList); 5145 } 5146 } 5147 5148 /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>, 5149 /// a function with a pointer return type contains a 'return false;' statement. 5150 /// In C++11, 'false' is not a null pointer, so this breaks the build of any 5151 /// code using that header. 5152 /// 5153 /// Work around this by treating 'return false;' as zero-initializing the result 5154 /// if it's used in a pointer-returning function in a system header. 5155 static bool isLibstdcxxPointerReturnFalseHack(Sema &S, 5156 const InitializedEntity &Entity, 5157 const Expr *Init) { 5158 return S.getLangOpts().CPlusPlus11 && 5159 Entity.getKind() == InitializedEntity::EK_Result && 5160 Entity.getType()->isPointerType() && 5161 isa<CXXBoolLiteralExpr>(Init) && 5162 !cast<CXXBoolLiteralExpr>(Init)->getValue() && 5163 S.getSourceManager().isInSystemHeader(Init->getExprLoc()); 5164 } 5165 5166 /// The non-zero enum values here are indexes into diagnostic alternatives. 5167 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar }; 5168 5169 /// Determines whether this expression is an acceptable ICR source. 5170 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e, 5171 bool isAddressOf, bool &isWeakAccess) { 5172 // Skip parens. 5173 e = e->IgnoreParens(); 5174 5175 // Skip address-of nodes. 5176 if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) { 5177 if (op->getOpcode() == UO_AddrOf) 5178 return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true, 5179 isWeakAccess); 5180 5181 // Skip certain casts. 5182 } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) { 5183 switch (ce->getCastKind()) { 5184 case CK_Dependent: 5185 case CK_BitCast: 5186 case CK_LValueBitCast: 5187 case CK_NoOp: 5188 return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess); 5189 5190 case CK_ArrayToPointerDecay: 5191 return IIK_nonscalar; 5192 5193 case CK_NullToPointer: 5194 return IIK_okay; 5195 5196 default: 5197 break; 5198 } 5199 5200 // If we have a declaration reference, it had better be a local variable. 5201 } else if (isa<DeclRefExpr>(e)) { 5202 // set isWeakAccess to true, to mean that there will be an implicit 5203 // load which requires a cleanup. 5204 if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak) 5205 isWeakAccess = true; 5206 5207 if (!isAddressOf) return IIK_nonlocal; 5208 5209 VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl()); 5210 if (!var) return IIK_nonlocal; 5211 5212 return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal); 5213 5214 // If we have a conditional operator, check both sides. 5215 } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) { 5216 if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf, 5217 isWeakAccess)) 5218 return iik; 5219 5220 return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess); 5221 5222 // These are never scalar. 5223 } else if (isa<ArraySubscriptExpr>(e)) { 5224 return IIK_nonscalar; 5225 5226 // Otherwise, it needs to be a null pointer constant. 5227 } else { 5228 return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull) 5229 ? IIK_okay : IIK_nonlocal); 5230 } 5231 5232 return IIK_nonlocal; 5233 } 5234 5235 /// Check whether the given expression is a valid operand for an 5236 /// indirect copy/restore. 5237 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) { 5238 assert(src->isRValue()); 5239 bool isWeakAccess = false; 5240 InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess); 5241 // If isWeakAccess to true, there will be an implicit 5242 // load which requires a cleanup. 5243 if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess) 5244 S.Cleanup.setExprNeedsCleanups(true); 5245 5246 if (iik == IIK_okay) return; 5247 5248 S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback) 5249 << ((unsigned) iik - 1) // shift index into diagnostic explanations 5250 << src->getSourceRange(); 5251 } 5252 5253 /// Determine whether we have compatible array types for the 5254 /// purposes of GNU by-copy array initialization. 5255 static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest, 5256 const ArrayType *Source) { 5257 // If the source and destination array types are equivalent, we're 5258 // done. 5259 if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0))) 5260 return true; 5261 5262 // Make sure that the element types are the same. 5263 if (!Context.hasSameType(Dest->getElementType(), Source->getElementType())) 5264 return false; 5265 5266 // The only mismatch we allow is when the destination is an 5267 // incomplete array type and the source is a constant array type. 5268 return Source->isConstantArrayType() && Dest->isIncompleteArrayType(); 5269 } 5270 5271 static bool tryObjCWritebackConversion(Sema &S, 5272 InitializationSequence &Sequence, 5273 const InitializedEntity &Entity, 5274 Expr *Initializer) { 5275 bool ArrayDecay = false; 5276 QualType ArgType = Initializer->getType(); 5277 QualType ArgPointee; 5278 if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) { 5279 ArrayDecay = true; 5280 ArgPointee = ArgArrayType->getElementType(); 5281 ArgType = S.Context.getPointerType(ArgPointee); 5282 } 5283 5284 // Handle write-back conversion. 5285 QualType ConvertedArgType; 5286 if (!S.isObjCWritebackConversion(ArgType, Entity.getType(), 5287 ConvertedArgType)) 5288 return false; 5289 5290 // We should copy unless we're passing to an argument explicitly 5291 // marked 'out'. 5292 bool ShouldCopy = true; 5293 if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl())) 5294 ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); 5295 5296 // Do we need an lvalue conversion? 5297 if (ArrayDecay || Initializer->isGLValue()) { 5298 ImplicitConversionSequence ICS; 5299 ICS.setStandard(); 5300 ICS.Standard.setAsIdentityConversion(); 5301 5302 QualType ResultType; 5303 if (ArrayDecay) { 5304 ICS.Standard.First = ICK_Array_To_Pointer; 5305 ResultType = S.Context.getPointerType(ArgPointee); 5306 } else { 5307 ICS.Standard.First = ICK_Lvalue_To_Rvalue; 5308 ResultType = Initializer->getType().getNonLValueExprType(S.Context); 5309 } 5310 5311 Sequence.AddConversionSequenceStep(ICS, ResultType); 5312 } 5313 5314 Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy); 5315 return true; 5316 } 5317 5318 static bool TryOCLSamplerInitialization(Sema &S, 5319 InitializationSequence &Sequence, 5320 QualType DestType, 5321 Expr *Initializer) { 5322 if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() || 5323 (!Initializer->isIntegerConstantExpr(S.Context) && 5324 !Initializer->getType()->isSamplerT())) 5325 return false; 5326 5327 Sequence.AddOCLSamplerInitStep(DestType); 5328 return true; 5329 } 5330 5331 static bool IsZeroInitializer(Expr *Initializer, Sema &S) { 5332 return Initializer->isIntegerConstantExpr(S.getASTContext()) && 5333 (Initializer->EvaluateKnownConstInt(S.getASTContext()) == 0); 5334 } 5335 5336 static bool TryOCLZeroOpaqueTypeInitialization(Sema &S, 5337 InitializationSequence &Sequence, 5338 QualType DestType, 5339 Expr *Initializer) { 5340 if (!S.getLangOpts().OpenCL) 5341 return false; 5342 5343 // 5344 // OpenCL 1.2 spec, s6.12.10 5345 // 5346 // The event argument can also be used to associate the 5347 // async_work_group_copy with a previous async copy allowing 5348 // an event to be shared by multiple async copies; otherwise 5349 // event should be zero. 5350 // 5351 if (DestType->isEventT() || DestType->isQueueT()) { 5352 if (!IsZeroInitializer(Initializer, S)) 5353 return false; 5354 5355 Sequence.AddOCLZeroOpaqueTypeStep(DestType); 5356 return true; 5357 } 5358 5359 // We should allow zero initialization for all types defined in the 5360 // cl_intel_device_side_avc_motion_estimation extension, except 5361 // intel_sub_group_avc_mce_payload_t and intel_sub_group_avc_mce_result_t. 5362 if (S.getOpenCLOptions().isEnabled( 5363 "cl_intel_device_side_avc_motion_estimation") && 5364 DestType->isOCLIntelSubgroupAVCType()) { 5365 if (DestType->isOCLIntelSubgroupAVCMcePayloadType() || 5366 DestType->isOCLIntelSubgroupAVCMceResultType()) 5367 return false; 5368 if (!IsZeroInitializer(Initializer, S)) 5369 return false; 5370 5371 Sequence.AddOCLZeroOpaqueTypeStep(DestType); 5372 return true; 5373 } 5374 5375 return false; 5376 } 5377 5378 InitializationSequence::InitializationSequence(Sema &S, 5379 const InitializedEntity &Entity, 5380 const InitializationKind &Kind, 5381 MultiExprArg Args, 5382 bool TopLevelOfInitList, 5383 bool TreatUnavailableAsInvalid) 5384 : FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) { 5385 InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList, 5386 TreatUnavailableAsInvalid); 5387 } 5388 5389 /// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the 5390 /// address of that function, this returns true. Otherwise, it returns false. 5391 static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) { 5392 auto *DRE = dyn_cast<DeclRefExpr>(E); 5393 if (!DRE || !isa<FunctionDecl>(DRE->getDecl())) 5394 return false; 5395 5396 return !S.checkAddressOfFunctionIsAvailable( 5397 cast<FunctionDecl>(DRE->getDecl())); 5398 } 5399 5400 /// Determine whether we can perform an elementwise array copy for this kind 5401 /// of entity. 5402 static bool canPerformArrayCopy(const InitializedEntity &Entity) { 5403 switch (Entity.getKind()) { 5404 case InitializedEntity::EK_LambdaCapture: 5405 // C++ [expr.prim.lambda]p24: 5406 // For array members, the array elements are direct-initialized in 5407 // increasing subscript order. 5408 return true; 5409 5410 case InitializedEntity::EK_Variable: 5411 // C++ [dcl.decomp]p1: 5412 // [...] each element is copy-initialized or direct-initialized from the 5413 // corresponding element of the assignment-expression [...] 5414 return isa<DecompositionDecl>(Entity.getDecl()); 5415 5416 case InitializedEntity::EK_Member: 5417 // C++ [class.copy.ctor]p14: 5418 // - if the member is an array, each element is direct-initialized with 5419 // the corresponding subobject of x 5420 return Entity.isImplicitMemberInitializer(); 5421 5422 case InitializedEntity::EK_ArrayElement: 5423 // All the above cases are intended to apply recursively, even though none 5424 // of them actually say that. 5425 if (auto *E = Entity.getParent()) 5426 return canPerformArrayCopy(*E); 5427 break; 5428 5429 default: 5430 break; 5431 } 5432 5433 return false; 5434 } 5435 5436 void InitializationSequence::InitializeFrom(Sema &S, 5437 const InitializedEntity &Entity, 5438 const InitializationKind &Kind, 5439 MultiExprArg Args, 5440 bool TopLevelOfInitList, 5441 bool TreatUnavailableAsInvalid) { 5442 ASTContext &Context = S.Context; 5443 5444 // Eliminate non-overload placeholder types in the arguments. We 5445 // need to do this before checking whether types are dependent 5446 // because lowering a pseudo-object expression might well give us 5447 // something of dependent type. 5448 for (unsigned I = 0, E = Args.size(); I != E; ++I) 5449 if (Args[I]->getType()->isNonOverloadPlaceholderType()) { 5450 // FIXME: should we be doing this here? 5451 ExprResult result = S.CheckPlaceholderExpr(Args[I]); 5452 if (result.isInvalid()) { 5453 SetFailed(FK_PlaceholderType); 5454 return; 5455 } 5456 Args[I] = result.get(); 5457 } 5458 5459 // C++0x [dcl.init]p16: 5460 // The semantics of initializers are as follows. The destination type is 5461 // the type of the object or reference being initialized and the source 5462 // type is the type of the initializer expression. The source type is not 5463 // defined when the initializer is a braced-init-list or when it is a 5464 // parenthesized list of expressions. 5465 QualType DestType = Entity.getType(); 5466 5467 if (DestType->isDependentType() || 5468 Expr::hasAnyTypeDependentArguments(Args)) { 5469 SequenceKind = DependentSequence; 5470 return; 5471 } 5472 5473 // Almost everything is a normal sequence. 5474 setSequenceKind(NormalSequence); 5475 5476 QualType SourceType; 5477 Expr *Initializer = nullptr; 5478 if (Args.size() == 1) { 5479 Initializer = Args[0]; 5480 if (S.getLangOpts().ObjC) { 5481 if (S.CheckObjCBridgeRelatedConversions(Initializer->getBeginLoc(), 5482 DestType, Initializer->getType(), 5483 Initializer) || 5484 S.ConversionToObjCStringLiteralCheck(DestType, Initializer)) 5485 Args[0] = Initializer; 5486 } 5487 if (!isa<InitListExpr>(Initializer)) 5488 SourceType = Initializer->getType(); 5489 } 5490 5491 // - If the initializer is a (non-parenthesized) braced-init-list, the 5492 // object is list-initialized (8.5.4). 5493 if (Kind.getKind() != InitializationKind::IK_Direct) { 5494 if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) { 5495 TryListInitialization(S, Entity, Kind, InitList, *this, 5496 TreatUnavailableAsInvalid); 5497 return; 5498 } 5499 } 5500 5501 // - If the destination type is a reference type, see 8.5.3. 5502 if (DestType->isReferenceType()) { 5503 // C++0x [dcl.init.ref]p1: 5504 // A variable declared to be a T& or T&&, that is, "reference to type T" 5505 // (8.3.2), shall be initialized by an object, or function, of type T or 5506 // by an object that can be converted into a T. 5507 // (Therefore, multiple arguments are not permitted.) 5508 if (Args.size() != 1) 5509 SetFailed(FK_TooManyInitsForReference); 5510 // C++17 [dcl.init.ref]p5: 5511 // A reference [...] is initialized by an expression [...] as follows: 5512 // If the initializer is not an expression, presumably we should reject, 5513 // but the standard fails to actually say so. 5514 else if (isa<InitListExpr>(Args[0])) 5515 SetFailed(FK_ParenthesizedListInitForReference); 5516 else 5517 TryReferenceInitialization(S, Entity, Kind, Args[0], *this); 5518 return; 5519 } 5520 5521 // - If the initializer is (), the object is value-initialized. 5522 if (Kind.getKind() == InitializationKind::IK_Value || 5523 (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) { 5524 TryValueInitialization(S, Entity, Kind, *this); 5525 return; 5526 } 5527 5528 // Handle default initialization. 5529 if (Kind.getKind() == InitializationKind::IK_Default) { 5530 TryDefaultInitialization(S, Entity, Kind, *this); 5531 return; 5532 } 5533 5534 // - If the destination type is an array of characters, an array of 5535 // char16_t, an array of char32_t, or an array of wchar_t, and the 5536 // initializer is a string literal, see 8.5.2. 5537 // - Otherwise, if the destination type is an array, the program is 5538 // ill-formed. 5539 if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) { 5540 if (Initializer && isa<VariableArrayType>(DestAT)) { 5541 SetFailed(FK_VariableLengthArrayHasInitializer); 5542 return; 5543 } 5544 5545 if (Initializer) { 5546 switch (IsStringInit(Initializer, DestAT, Context)) { 5547 case SIF_None: 5548 TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this); 5549 return; 5550 case SIF_NarrowStringIntoWideChar: 5551 SetFailed(FK_NarrowStringIntoWideCharArray); 5552 return; 5553 case SIF_WideStringIntoChar: 5554 SetFailed(FK_WideStringIntoCharArray); 5555 return; 5556 case SIF_IncompatWideStringIntoWideChar: 5557 SetFailed(FK_IncompatWideStringIntoWideChar); 5558 return; 5559 case SIF_PlainStringIntoUTF8Char: 5560 SetFailed(FK_PlainStringIntoUTF8Char); 5561 return; 5562 case SIF_UTF8StringIntoPlainChar: 5563 SetFailed(FK_UTF8StringIntoPlainChar); 5564 return; 5565 case SIF_Other: 5566 break; 5567 } 5568 } 5569 5570 // Some kinds of initialization permit an array to be initialized from 5571 // another array of the same type, and perform elementwise initialization. 5572 if (Initializer && isa<ConstantArrayType>(DestAT) && 5573 S.Context.hasSameUnqualifiedType(Initializer->getType(), 5574 Entity.getType()) && 5575 canPerformArrayCopy(Entity)) { 5576 // If source is a prvalue, use it directly. 5577 if (Initializer->getValueKind() == VK_RValue) { 5578 AddArrayInitStep(DestType, /*IsGNUExtension*/false); 5579 return; 5580 } 5581 5582 // Emit element-at-a-time copy loop. 5583 InitializedEntity Element = 5584 InitializedEntity::InitializeElement(S.Context, 0, Entity); 5585 QualType InitEltT = 5586 Context.getAsArrayType(Initializer->getType())->getElementType(); 5587 OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT, 5588 Initializer->getValueKind(), 5589 Initializer->getObjectKind()); 5590 Expr *OVEAsExpr = &OVE; 5591 InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList, 5592 TreatUnavailableAsInvalid); 5593 if (!Failed()) 5594 AddArrayInitLoopStep(Entity.getType(), InitEltT); 5595 return; 5596 } 5597 5598 // Note: as an GNU C extension, we allow initialization of an 5599 // array from a compound literal that creates an array of the same 5600 // type, so long as the initializer has no side effects. 5601 if (!S.getLangOpts().CPlusPlus && Initializer && 5602 isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) && 5603 Initializer->getType()->isArrayType()) { 5604 const ArrayType *SourceAT 5605 = Context.getAsArrayType(Initializer->getType()); 5606 if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT)) 5607 SetFailed(FK_ArrayTypeMismatch); 5608 else if (Initializer->HasSideEffects(S.Context)) 5609 SetFailed(FK_NonConstantArrayInit); 5610 else { 5611 AddArrayInitStep(DestType, /*IsGNUExtension*/true); 5612 } 5613 } 5614 // Note: as a GNU C++ extension, we allow list-initialization of a 5615 // class member of array type from a parenthesized initializer list. 5616 else if (S.getLangOpts().CPlusPlus && 5617 Entity.getKind() == InitializedEntity::EK_Member && 5618 Initializer && isa<InitListExpr>(Initializer)) { 5619 TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer), 5620 *this, TreatUnavailableAsInvalid); 5621 AddParenthesizedArrayInitStep(DestType); 5622 } else if (DestAT->getElementType()->isCharType()) 5623 SetFailed(FK_ArrayNeedsInitListOrStringLiteral); 5624 else if (IsWideCharCompatible(DestAT->getElementType(), Context)) 5625 SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral); 5626 else 5627 SetFailed(FK_ArrayNeedsInitList); 5628 5629 return; 5630 } 5631 5632 // Determine whether we should consider writeback conversions for 5633 // Objective-C ARC. 5634 bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount && 5635 Entity.isParameterKind(); 5636 5637 // We're at the end of the line for C: it's either a write-back conversion 5638 // or it's a C assignment. There's no need to check anything else. 5639 if (!S.getLangOpts().CPlusPlus) { 5640 // If allowed, check whether this is an Objective-C writeback conversion. 5641 if (allowObjCWritebackConversion && 5642 tryObjCWritebackConversion(S, *this, Entity, Initializer)) { 5643 return; 5644 } 5645 5646 if (TryOCLSamplerInitialization(S, *this, DestType, Initializer)) 5647 return; 5648 5649 if (TryOCLZeroOpaqueTypeInitialization(S, *this, DestType, Initializer)) 5650 return; 5651 5652 // Handle initialization in C 5653 AddCAssignmentStep(DestType); 5654 MaybeProduceObjCObject(S, *this, Entity); 5655 return; 5656 } 5657 5658 assert(S.getLangOpts().CPlusPlus); 5659 5660 // - If the destination type is a (possibly cv-qualified) class type: 5661 if (DestType->isRecordType()) { 5662 // - If the initialization is direct-initialization, or if it is 5663 // copy-initialization where the cv-unqualified version of the 5664 // source type is the same class as, or a derived class of, the 5665 // class of the destination, constructors are considered. [...] 5666 if (Kind.getKind() == InitializationKind::IK_Direct || 5667 (Kind.getKind() == InitializationKind::IK_Copy && 5668 (Context.hasSameUnqualifiedType(SourceType, DestType) || 5669 S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, DestType)))) 5670 TryConstructorInitialization(S, Entity, Kind, Args, 5671 DestType, DestType, *this); 5672 // - Otherwise (i.e., for the remaining copy-initialization cases), 5673 // user-defined conversion sequences that can convert from the source 5674 // type to the destination type or (when a conversion function is 5675 // used) to a derived class thereof are enumerated as described in 5676 // 13.3.1.4, and the best one is chosen through overload resolution 5677 // (13.3). 5678 else 5679 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this, 5680 TopLevelOfInitList); 5681 return; 5682 } 5683 5684 assert(Args.size() >= 1 && "Zero-argument case handled above"); 5685 5686 // The remaining cases all need a source type. 5687 if (Args.size() > 1) { 5688 SetFailed(FK_TooManyInitsForScalar); 5689 return; 5690 } else if (isa<InitListExpr>(Args[0])) { 5691 SetFailed(FK_ParenthesizedListInitForScalar); 5692 return; 5693 } 5694 5695 // - Otherwise, if the source type is a (possibly cv-qualified) class 5696 // type, conversion functions are considered. 5697 if (!SourceType.isNull() && SourceType->isRecordType()) { 5698 // For a conversion to _Atomic(T) from either T or a class type derived 5699 // from T, initialize the T object then convert to _Atomic type. 5700 bool NeedAtomicConversion = false; 5701 if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) { 5702 if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) || 5703 S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, 5704 Atomic->getValueType())) { 5705 DestType = Atomic->getValueType(); 5706 NeedAtomicConversion = true; 5707 } 5708 } 5709 5710 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this, 5711 TopLevelOfInitList); 5712 MaybeProduceObjCObject(S, *this, Entity); 5713 if (!Failed() && NeedAtomicConversion) 5714 AddAtomicConversionStep(Entity.getType()); 5715 return; 5716 } 5717 5718 // - Otherwise, the initial value of the object being initialized is the 5719 // (possibly converted) value of the initializer expression. Standard 5720 // conversions (Clause 4) will be used, if necessary, to convert the 5721 // initializer expression to the cv-unqualified version of the 5722 // destination type; no user-defined conversions are considered. 5723 5724 ImplicitConversionSequence ICS 5725 = S.TryImplicitConversion(Initializer, DestType, 5726 /*SuppressUserConversions*/true, 5727 /*AllowExplicitConversions*/ false, 5728 /*InOverloadResolution*/ false, 5729 /*CStyle=*/Kind.isCStyleOrFunctionalCast(), 5730 allowObjCWritebackConversion); 5731 5732 if (ICS.isStandard() && 5733 ICS.Standard.Second == ICK_Writeback_Conversion) { 5734 // Objective-C ARC writeback conversion. 5735 5736 // We should copy unless we're passing to an argument explicitly 5737 // marked 'out'. 5738 bool ShouldCopy = true; 5739 if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl())) 5740 ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); 5741 5742 // If there was an lvalue adjustment, add it as a separate conversion. 5743 if (ICS.Standard.First == ICK_Array_To_Pointer || 5744 ICS.Standard.First == ICK_Lvalue_To_Rvalue) { 5745 ImplicitConversionSequence LvalueICS; 5746 LvalueICS.setStandard(); 5747 LvalueICS.Standard.setAsIdentityConversion(); 5748 LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0)); 5749 LvalueICS.Standard.First = ICS.Standard.First; 5750 AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0)); 5751 } 5752 5753 AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy); 5754 } else if (ICS.isBad()) { 5755 DeclAccessPair dap; 5756 if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) { 5757 AddZeroInitializationStep(Entity.getType()); 5758 } else if (Initializer->getType() == Context.OverloadTy && 5759 !S.ResolveAddressOfOverloadedFunction(Initializer, DestType, 5760 false, dap)) 5761 SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); 5762 else if (Initializer->getType()->isFunctionType() && 5763 isExprAnUnaddressableFunction(S, Initializer)) 5764 SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction); 5765 else 5766 SetFailed(InitializationSequence::FK_ConversionFailed); 5767 } else { 5768 AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList); 5769 5770 MaybeProduceObjCObject(S, *this, Entity); 5771 } 5772 } 5773 5774 InitializationSequence::~InitializationSequence() { 5775 for (auto &S : Steps) 5776 S.Destroy(); 5777 } 5778 5779 //===----------------------------------------------------------------------===// 5780 // Perform initialization 5781 //===----------------------------------------------------------------------===// 5782 static Sema::AssignmentAction 5783 getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) { 5784 switch(Entity.getKind()) { 5785 case InitializedEntity::EK_Variable: 5786 case InitializedEntity::EK_New: 5787 case InitializedEntity::EK_Exception: 5788 case InitializedEntity::EK_Base: 5789 case InitializedEntity::EK_Delegating: 5790 return Sema::AA_Initializing; 5791 5792 case InitializedEntity::EK_Parameter: 5793 if (Entity.getDecl() && 5794 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) 5795 return Sema::AA_Sending; 5796 5797 return Sema::AA_Passing; 5798 5799 case InitializedEntity::EK_Parameter_CF_Audited: 5800 if (Entity.getDecl() && 5801 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) 5802 return Sema::AA_Sending; 5803 5804 return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited; 5805 5806 case InitializedEntity::EK_Result: 5807 case InitializedEntity::EK_StmtExprResult: // FIXME: Not quite right. 5808 return Sema::AA_Returning; 5809 5810 case InitializedEntity::EK_Temporary: 5811 case InitializedEntity::EK_RelatedResult: 5812 // FIXME: Can we tell apart casting vs. converting? 5813 return Sema::AA_Casting; 5814 5815 case InitializedEntity::EK_Member: 5816 case InitializedEntity::EK_Binding: 5817 case InitializedEntity::EK_ArrayElement: 5818 case InitializedEntity::EK_VectorElement: 5819 case InitializedEntity::EK_ComplexElement: 5820 case InitializedEntity::EK_BlockElement: 5821 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 5822 case InitializedEntity::EK_LambdaCapture: 5823 case InitializedEntity::EK_CompoundLiteralInit: 5824 return Sema::AA_Initializing; 5825 } 5826 5827 llvm_unreachable("Invalid EntityKind!"); 5828 } 5829 5830 /// Whether we should bind a created object as a temporary when 5831 /// initializing the given entity. 5832 static bool shouldBindAsTemporary(const InitializedEntity &Entity) { 5833 switch (Entity.getKind()) { 5834 case InitializedEntity::EK_ArrayElement: 5835 case InitializedEntity::EK_Member: 5836 case InitializedEntity::EK_Result: 5837 case InitializedEntity::EK_StmtExprResult: 5838 case InitializedEntity::EK_New: 5839 case InitializedEntity::EK_Variable: 5840 case InitializedEntity::EK_Base: 5841 case InitializedEntity::EK_Delegating: 5842 case InitializedEntity::EK_VectorElement: 5843 case InitializedEntity::EK_ComplexElement: 5844 case InitializedEntity::EK_Exception: 5845 case InitializedEntity::EK_BlockElement: 5846 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 5847 case InitializedEntity::EK_LambdaCapture: 5848 case InitializedEntity::EK_CompoundLiteralInit: 5849 return false; 5850 5851 case InitializedEntity::EK_Parameter: 5852 case InitializedEntity::EK_Parameter_CF_Audited: 5853 case InitializedEntity::EK_Temporary: 5854 case InitializedEntity::EK_RelatedResult: 5855 case InitializedEntity::EK_Binding: 5856 return true; 5857 } 5858 5859 llvm_unreachable("missed an InitializedEntity kind?"); 5860 } 5861 5862 /// Whether the given entity, when initialized with an object 5863 /// created for that initialization, requires destruction. 5864 static bool shouldDestroyEntity(const InitializedEntity &Entity) { 5865 switch (Entity.getKind()) { 5866 case InitializedEntity::EK_Result: 5867 case InitializedEntity::EK_StmtExprResult: 5868 case InitializedEntity::EK_New: 5869 case InitializedEntity::EK_Base: 5870 case InitializedEntity::EK_Delegating: 5871 case InitializedEntity::EK_VectorElement: 5872 case InitializedEntity::EK_ComplexElement: 5873 case InitializedEntity::EK_BlockElement: 5874 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 5875 case InitializedEntity::EK_LambdaCapture: 5876 return false; 5877 5878 case InitializedEntity::EK_Member: 5879 case InitializedEntity::EK_Binding: 5880 case InitializedEntity::EK_Variable: 5881 case InitializedEntity::EK_Parameter: 5882 case InitializedEntity::EK_Parameter_CF_Audited: 5883 case InitializedEntity::EK_Temporary: 5884 case InitializedEntity::EK_ArrayElement: 5885 case InitializedEntity::EK_Exception: 5886 case InitializedEntity::EK_CompoundLiteralInit: 5887 case InitializedEntity::EK_RelatedResult: 5888 return true; 5889 } 5890 5891 llvm_unreachable("missed an InitializedEntity kind?"); 5892 } 5893 5894 /// Get the location at which initialization diagnostics should appear. 5895 static SourceLocation getInitializationLoc(const InitializedEntity &Entity, 5896 Expr *Initializer) { 5897 switch (Entity.getKind()) { 5898 case InitializedEntity::EK_Result: 5899 case InitializedEntity::EK_StmtExprResult: 5900 return Entity.getReturnLoc(); 5901 5902 case InitializedEntity::EK_Exception: 5903 return Entity.getThrowLoc(); 5904 5905 case InitializedEntity::EK_Variable: 5906 case InitializedEntity::EK_Binding: 5907 return Entity.getDecl()->getLocation(); 5908 5909 case InitializedEntity::EK_LambdaCapture: 5910 return Entity.getCaptureLoc(); 5911 5912 case InitializedEntity::EK_ArrayElement: 5913 case InitializedEntity::EK_Member: 5914 case InitializedEntity::EK_Parameter: 5915 case InitializedEntity::EK_Parameter_CF_Audited: 5916 case InitializedEntity::EK_Temporary: 5917 case InitializedEntity::EK_New: 5918 case InitializedEntity::EK_Base: 5919 case InitializedEntity::EK_Delegating: 5920 case InitializedEntity::EK_VectorElement: 5921 case InitializedEntity::EK_ComplexElement: 5922 case InitializedEntity::EK_BlockElement: 5923 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 5924 case InitializedEntity::EK_CompoundLiteralInit: 5925 case InitializedEntity::EK_RelatedResult: 5926 return Initializer->getBeginLoc(); 5927 } 5928 llvm_unreachable("missed an InitializedEntity kind?"); 5929 } 5930 5931 /// Make a (potentially elidable) temporary copy of the object 5932 /// provided by the given initializer by calling the appropriate copy 5933 /// constructor. 5934 /// 5935 /// \param S The Sema object used for type-checking. 5936 /// 5937 /// \param T The type of the temporary object, which must either be 5938 /// the type of the initializer expression or a superclass thereof. 5939 /// 5940 /// \param Entity The entity being initialized. 5941 /// 5942 /// \param CurInit The initializer expression. 5943 /// 5944 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that 5945 /// is permitted in C++03 (but not C++0x) when binding a reference to 5946 /// an rvalue. 5947 /// 5948 /// \returns An expression that copies the initializer expression into 5949 /// a temporary object, or an error expression if a copy could not be 5950 /// created. 5951 static ExprResult CopyObject(Sema &S, 5952 QualType T, 5953 const InitializedEntity &Entity, 5954 ExprResult CurInit, 5955 bool IsExtraneousCopy) { 5956 if (CurInit.isInvalid()) 5957 return CurInit; 5958 // Determine which class type we're copying to. 5959 Expr *CurInitExpr = (Expr *)CurInit.get(); 5960 CXXRecordDecl *Class = nullptr; 5961 if (const RecordType *Record = T->getAs<RecordType>()) 5962 Class = cast<CXXRecordDecl>(Record->getDecl()); 5963 if (!Class) 5964 return CurInit; 5965 5966 SourceLocation Loc = getInitializationLoc(Entity, CurInit.get()); 5967 5968 // Make sure that the type we are copying is complete. 5969 if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete)) 5970 return CurInit; 5971 5972 // Perform overload resolution using the class's constructors. Per 5973 // C++11 [dcl.init]p16, second bullet for class types, this initialization 5974 // is direct-initialization. 5975 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); 5976 DeclContext::lookup_result Ctors = S.LookupConstructors(Class); 5977 5978 OverloadCandidateSet::iterator Best; 5979 switch (ResolveConstructorOverload( 5980 S, Loc, CurInitExpr, CandidateSet, T, Ctors, Best, 5981 /*CopyInitializing=*/false, /*AllowExplicit=*/true, 5982 /*OnlyListConstructors=*/false, /*IsListInit=*/false, 5983 /*SecondStepOfCopyInit=*/true)) { 5984 case OR_Success: 5985 break; 5986 5987 case OR_No_Viable_Function: 5988 CandidateSet.NoteCandidates( 5989 PartialDiagnosticAt( 5990 Loc, S.PDiag(IsExtraneousCopy && !S.isSFINAEContext() 5991 ? diag::ext_rvalue_to_reference_temp_copy_no_viable 5992 : diag::err_temp_copy_no_viable) 5993 << (int)Entity.getKind() << CurInitExpr->getType() 5994 << CurInitExpr->getSourceRange()), 5995 S, OCD_AllCandidates, CurInitExpr); 5996 if (!IsExtraneousCopy || S.isSFINAEContext()) 5997 return ExprError(); 5998 return CurInit; 5999 6000 case OR_Ambiguous: 6001 CandidateSet.NoteCandidates( 6002 PartialDiagnosticAt(Loc, S.PDiag(diag::err_temp_copy_ambiguous) 6003 << (int)Entity.getKind() 6004 << CurInitExpr->getType() 6005 << CurInitExpr->getSourceRange()), 6006 S, OCD_ViableCandidates, CurInitExpr); 6007 return ExprError(); 6008 6009 case OR_Deleted: 6010 S.Diag(Loc, diag::err_temp_copy_deleted) 6011 << (int)Entity.getKind() << CurInitExpr->getType() 6012 << CurInitExpr->getSourceRange(); 6013 S.NoteDeletedFunction(Best->Function); 6014 return ExprError(); 6015 } 6016 6017 bool HadMultipleCandidates = CandidateSet.size() > 1; 6018 6019 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function); 6020 SmallVector<Expr*, 8> ConstructorArgs; 6021 CurInit.get(); // Ownership transferred into MultiExprArg, below. 6022 6023 S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity, 6024 IsExtraneousCopy); 6025 6026 if (IsExtraneousCopy) { 6027 // If this is a totally extraneous copy for C++03 reference 6028 // binding purposes, just return the original initialization 6029 // expression. We don't generate an (elided) copy operation here 6030 // because doing so would require us to pass down a flag to avoid 6031 // infinite recursion, where each step adds another extraneous, 6032 // elidable copy. 6033 6034 // Instantiate the default arguments of any extra parameters in 6035 // the selected copy constructor, as if we were going to create a 6036 // proper call to the copy constructor. 6037 for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) { 6038 ParmVarDecl *Parm = Constructor->getParamDecl(I); 6039 if (S.RequireCompleteType(Loc, Parm->getType(), 6040 diag::err_call_incomplete_argument)) 6041 break; 6042 6043 // Build the default argument expression; we don't actually care 6044 // if this succeeds or not, because this routine will complain 6045 // if there was a problem. 6046 S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm); 6047 } 6048 6049 return CurInitExpr; 6050 } 6051 6052 // Determine the arguments required to actually perform the 6053 // constructor call (we might have derived-to-base conversions, or 6054 // the copy constructor may have default arguments). 6055 if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs)) 6056 return ExprError(); 6057 6058 // C++0x [class.copy]p32: 6059 // When certain criteria are met, an implementation is allowed to 6060 // omit the copy/move construction of a class object, even if the 6061 // copy/move constructor and/or destructor for the object have 6062 // side effects. [...] 6063 // - when a temporary class object that has not been bound to a 6064 // reference (12.2) would be copied/moved to a class object 6065 // with the same cv-unqualified type, the copy/move operation 6066 // can be omitted by constructing the temporary object 6067 // directly into the target of the omitted copy/move 6068 // 6069 // Note that the other three bullets are handled elsewhere. Copy 6070 // elision for return statements and throw expressions are handled as part 6071 // of constructor initialization, while copy elision for exception handlers 6072 // is handled by the run-time. 6073 // 6074 // FIXME: If the function parameter is not the same type as the temporary, we 6075 // should still be able to elide the copy, but we don't have a way to 6076 // represent in the AST how much should be elided in this case. 6077 bool Elidable = 6078 CurInitExpr->isTemporaryObject(S.Context, Class) && 6079 S.Context.hasSameUnqualifiedType( 6080 Best->Function->getParamDecl(0)->getType().getNonReferenceType(), 6081 CurInitExpr->getType()); 6082 6083 // Actually perform the constructor call. 6084 CurInit = S.BuildCXXConstructExpr(Loc, T, Best->FoundDecl, Constructor, 6085 Elidable, 6086 ConstructorArgs, 6087 HadMultipleCandidates, 6088 /*ListInit*/ false, 6089 /*StdInitListInit*/ false, 6090 /*ZeroInit*/ false, 6091 CXXConstructExpr::CK_Complete, 6092 SourceRange()); 6093 6094 // If we're supposed to bind temporaries, do so. 6095 if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity)) 6096 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>()); 6097 return CurInit; 6098 } 6099 6100 /// Check whether elidable copy construction for binding a reference to 6101 /// a temporary would have succeeded if we were building in C++98 mode, for 6102 /// -Wc++98-compat. 6103 static void CheckCXX98CompatAccessibleCopy(Sema &S, 6104 const InitializedEntity &Entity, 6105 Expr *CurInitExpr) { 6106 assert(S.getLangOpts().CPlusPlus11); 6107 6108 const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>(); 6109 if (!Record) 6110 return; 6111 6112 SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr); 6113 if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc)) 6114 return; 6115 6116 // Find constructors which would have been considered. 6117 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); 6118 DeclContext::lookup_result Ctors = 6119 S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl())); 6120 6121 // Perform overload resolution. 6122 OverloadCandidateSet::iterator Best; 6123 OverloadingResult OR = ResolveConstructorOverload( 6124 S, Loc, CurInitExpr, CandidateSet, CurInitExpr->getType(), Ctors, Best, 6125 /*CopyInitializing=*/false, /*AllowExplicit=*/true, 6126 /*OnlyListConstructors=*/false, /*IsListInit=*/false, 6127 /*SecondStepOfCopyInit=*/true); 6128 6129 PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy) 6130 << OR << (int)Entity.getKind() << CurInitExpr->getType() 6131 << CurInitExpr->getSourceRange(); 6132 6133 switch (OR) { 6134 case OR_Success: 6135 S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function), 6136 Best->FoundDecl, Entity, Diag); 6137 // FIXME: Check default arguments as far as that's possible. 6138 break; 6139 6140 case OR_No_Viable_Function: 6141 CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S, 6142 OCD_AllCandidates, CurInitExpr); 6143 break; 6144 6145 case OR_Ambiguous: 6146 CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S, 6147 OCD_ViableCandidates, CurInitExpr); 6148 break; 6149 6150 case OR_Deleted: 6151 S.Diag(Loc, Diag); 6152 S.NoteDeletedFunction(Best->Function); 6153 break; 6154 } 6155 } 6156 6157 void InitializationSequence::PrintInitLocationNote(Sema &S, 6158 const InitializedEntity &Entity) { 6159 if (Entity.isParameterKind() && Entity.getDecl()) { 6160 if (Entity.getDecl()->getLocation().isInvalid()) 6161 return; 6162 6163 if (Entity.getDecl()->getDeclName()) 6164 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here) 6165 << Entity.getDecl()->getDeclName(); 6166 else 6167 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here); 6168 } 6169 else if (Entity.getKind() == InitializedEntity::EK_RelatedResult && 6170 Entity.getMethodDecl()) 6171 S.Diag(Entity.getMethodDecl()->getLocation(), 6172 diag::note_method_return_type_change) 6173 << Entity.getMethodDecl()->getDeclName(); 6174 } 6175 6176 /// Returns true if the parameters describe a constructor initialization of 6177 /// an explicit temporary object, e.g. "Point(x, y)". 6178 static bool isExplicitTemporary(const InitializedEntity &Entity, 6179 const InitializationKind &Kind, 6180 unsigned NumArgs) { 6181 switch (Entity.getKind()) { 6182 case InitializedEntity::EK_Temporary: 6183 case InitializedEntity::EK_CompoundLiteralInit: 6184 case InitializedEntity::EK_RelatedResult: 6185 break; 6186 default: 6187 return false; 6188 } 6189 6190 switch (Kind.getKind()) { 6191 case InitializationKind::IK_DirectList: 6192 return true; 6193 // FIXME: Hack to work around cast weirdness. 6194 case InitializationKind::IK_Direct: 6195 case InitializationKind::IK_Value: 6196 return NumArgs != 1; 6197 default: 6198 return false; 6199 } 6200 } 6201 6202 static ExprResult 6203 PerformConstructorInitialization(Sema &S, 6204 const InitializedEntity &Entity, 6205 const InitializationKind &Kind, 6206 MultiExprArg Args, 6207 const InitializationSequence::Step& Step, 6208 bool &ConstructorInitRequiresZeroInit, 6209 bool IsListInitialization, 6210 bool IsStdInitListInitialization, 6211 SourceLocation LBraceLoc, 6212 SourceLocation RBraceLoc) { 6213 unsigned NumArgs = Args.size(); 6214 CXXConstructorDecl *Constructor 6215 = cast<CXXConstructorDecl>(Step.Function.Function); 6216 bool HadMultipleCandidates = Step.Function.HadMultipleCandidates; 6217 6218 // Build a call to the selected constructor. 6219 SmallVector<Expr*, 8> ConstructorArgs; 6220 SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid()) 6221 ? Kind.getEqualLoc() 6222 : Kind.getLocation(); 6223 6224 if (Kind.getKind() == InitializationKind::IK_Default) { 6225 // Force even a trivial, implicit default constructor to be 6226 // semantically checked. We do this explicitly because we don't build 6227 // the definition for completely trivial constructors. 6228 assert(Constructor->getParent() && "No parent class for constructor."); 6229 if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() && 6230 Constructor->isTrivial() && !Constructor->isUsed(false)) 6231 S.DefineImplicitDefaultConstructor(Loc, Constructor); 6232 } 6233 6234 ExprResult CurInit((Expr *)nullptr); 6235 6236 // C++ [over.match.copy]p1: 6237 // - When initializing a temporary to be bound to the first parameter 6238 // of a constructor that takes a reference to possibly cv-qualified 6239 // T as its first argument, called with a single argument in the 6240 // context of direct-initialization, explicit conversion functions 6241 // are also considered. 6242 bool AllowExplicitConv = 6243 Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 && 6244 hasCopyOrMoveCtorParam(S.Context, 6245 getConstructorInfo(Step.Function.FoundDecl)); 6246 6247 // Determine the arguments required to actually perform the constructor 6248 // call. 6249 if (S.CompleteConstructorCall(Constructor, Args, 6250 Loc, ConstructorArgs, 6251 AllowExplicitConv, 6252 IsListInitialization)) 6253 return ExprError(); 6254 6255 6256 if (isExplicitTemporary(Entity, Kind, NumArgs)) { 6257 // An explicitly-constructed temporary, e.g., X(1, 2). 6258 if (S.DiagnoseUseOfDecl(Constructor, Loc)) 6259 return ExprError(); 6260 6261 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); 6262 if (!TSInfo) 6263 TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc); 6264 SourceRange ParenOrBraceRange = 6265 (Kind.getKind() == InitializationKind::IK_DirectList) 6266 ? SourceRange(LBraceLoc, RBraceLoc) 6267 : Kind.getParenOrBraceRange(); 6268 6269 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>( 6270 Step.Function.FoundDecl.getDecl())) { 6271 Constructor = S.findInheritingConstructor(Loc, Constructor, Shadow); 6272 if (S.DiagnoseUseOfDecl(Constructor, Loc)) 6273 return ExprError(); 6274 } 6275 S.MarkFunctionReferenced(Loc, Constructor); 6276 6277 CurInit = CXXTemporaryObjectExpr::Create( 6278 S.Context, Constructor, 6279 Entity.getType().getNonLValueExprType(S.Context), TSInfo, 6280 ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates, 6281 IsListInitialization, IsStdInitListInitialization, 6282 ConstructorInitRequiresZeroInit); 6283 } else { 6284 CXXConstructExpr::ConstructionKind ConstructKind = 6285 CXXConstructExpr::CK_Complete; 6286 6287 if (Entity.getKind() == InitializedEntity::EK_Base) { 6288 ConstructKind = Entity.getBaseSpecifier()->isVirtual() ? 6289 CXXConstructExpr::CK_VirtualBase : 6290 CXXConstructExpr::CK_NonVirtualBase; 6291 } else if (Entity.getKind() == InitializedEntity::EK_Delegating) { 6292 ConstructKind = CXXConstructExpr::CK_Delegating; 6293 } 6294 6295 // Only get the parenthesis or brace range if it is a list initialization or 6296 // direct construction. 6297 SourceRange ParenOrBraceRange; 6298 if (IsListInitialization) 6299 ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc); 6300 else if (Kind.getKind() == InitializationKind::IK_Direct) 6301 ParenOrBraceRange = Kind.getParenOrBraceRange(); 6302 6303 // If the entity allows NRVO, mark the construction as elidable 6304 // unconditionally. 6305 if (Entity.allowsNRVO()) 6306 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type, 6307 Step.Function.FoundDecl, 6308 Constructor, /*Elidable=*/true, 6309 ConstructorArgs, 6310 HadMultipleCandidates, 6311 IsListInitialization, 6312 IsStdInitListInitialization, 6313 ConstructorInitRequiresZeroInit, 6314 ConstructKind, 6315 ParenOrBraceRange); 6316 else 6317 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type, 6318 Step.Function.FoundDecl, 6319 Constructor, 6320 ConstructorArgs, 6321 HadMultipleCandidates, 6322 IsListInitialization, 6323 IsStdInitListInitialization, 6324 ConstructorInitRequiresZeroInit, 6325 ConstructKind, 6326 ParenOrBraceRange); 6327 } 6328 if (CurInit.isInvalid()) 6329 return ExprError(); 6330 6331 // Only check access if all of that succeeded. 6332 S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity); 6333 if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc)) 6334 return ExprError(); 6335 6336 if (const ArrayType *AT = S.Context.getAsArrayType(Entity.getType())) 6337 if (checkDestructorReference(S.Context.getBaseElementType(AT), Loc, S)) 6338 return ExprError(); 6339 6340 if (shouldBindAsTemporary(Entity)) 6341 CurInit = S.MaybeBindToTemporary(CurInit.get()); 6342 6343 return CurInit; 6344 } 6345 6346 namespace { 6347 enum LifetimeKind { 6348 /// The lifetime of a temporary bound to this entity ends at the end of the 6349 /// full-expression, and that's (probably) fine. 6350 LK_FullExpression, 6351 6352 /// The lifetime of a temporary bound to this entity is extended to the 6353 /// lifeitme of the entity itself. 6354 LK_Extended, 6355 6356 /// The lifetime of a temporary bound to this entity probably ends too soon, 6357 /// because the entity is allocated in a new-expression. 6358 LK_New, 6359 6360 /// The lifetime of a temporary bound to this entity ends too soon, because 6361 /// the entity is a return object. 6362 LK_Return, 6363 6364 /// The lifetime of a temporary bound to this entity ends too soon, because 6365 /// the entity is the result of a statement expression. 6366 LK_StmtExprResult, 6367 6368 /// This is a mem-initializer: if it would extend a temporary (other than via 6369 /// a default member initializer), the program is ill-formed. 6370 LK_MemInitializer, 6371 }; 6372 using LifetimeResult = 6373 llvm::PointerIntPair<const InitializedEntity *, 3, LifetimeKind>; 6374 } 6375 6376 /// Determine the declaration which an initialized entity ultimately refers to, 6377 /// for the purpose of lifetime-extending a temporary bound to a reference in 6378 /// the initialization of \p Entity. 6379 static LifetimeResult getEntityLifetime( 6380 const InitializedEntity *Entity, 6381 const InitializedEntity *InitField = nullptr) { 6382 // C++11 [class.temporary]p5: 6383 switch (Entity->getKind()) { 6384 case InitializedEntity::EK_Variable: 6385 // The temporary [...] persists for the lifetime of the reference 6386 return {Entity, LK_Extended}; 6387 6388 case InitializedEntity::EK_Member: 6389 // For subobjects, we look at the complete object. 6390 if (Entity->getParent()) 6391 return getEntityLifetime(Entity->getParent(), Entity); 6392 6393 // except: 6394 // C++17 [class.base.init]p8: 6395 // A temporary expression bound to a reference member in a 6396 // mem-initializer is ill-formed. 6397 // C++17 [class.base.init]p11: 6398 // A temporary expression bound to a reference member from a 6399 // default member initializer is ill-formed. 6400 // 6401 // The context of p11 and its example suggest that it's only the use of a 6402 // default member initializer from a constructor that makes the program 6403 // ill-formed, not its mere existence, and that it can even be used by 6404 // aggregate initialization. 6405 return {Entity, Entity->isDefaultMemberInitializer() ? LK_Extended 6406 : LK_MemInitializer}; 6407 6408 case InitializedEntity::EK_Binding: 6409 // Per [dcl.decomp]p3, the binding is treated as a variable of reference 6410 // type. 6411 return {Entity, LK_Extended}; 6412 6413 case InitializedEntity::EK_Parameter: 6414 case InitializedEntity::EK_Parameter_CF_Audited: 6415 // -- A temporary bound to a reference parameter in a function call 6416 // persists until the completion of the full-expression containing 6417 // the call. 6418 return {nullptr, LK_FullExpression}; 6419 6420 case InitializedEntity::EK_Result: 6421 // -- The lifetime of a temporary bound to the returned value in a 6422 // function return statement is not extended; the temporary is 6423 // destroyed at the end of the full-expression in the return statement. 6424 return {nullptr, LK_Return}; 6425 6426 case InitializedEntity::EK_StmtExprResult: 6427 // FIXME: Should we lifetime-extend through the result of a statement 6428 // expression? 6429 return {nullptr, LK_StmtExprResult}; 6430 6431 case InitializedEntity::EK_New: 6432 // -- A temporary bound to a reference in a new-initializer persists 6433 // until the completion of the full-expression containing the 6434 // new-initializer. 6435 return {nullptr, LK_New}; 6436 6437 case InitializedEntity::EK_Temporary: 6438 case InitializedEntity::EK_CompoundLiteralInit: 6439 case InitializedEntity::EK_RelatedResult: 6440 // We don't yet know the storage duration of the surrounding temporary. 6441 // Assume it's got full-expression duration for now, it will patch up our 6442 // storage duration if that's not correct. 6443 return {nullptr, LK_FullExpression}; 6444 6445 case InitializedEntity::EK_ArrayElement: 6446 // For subobjects, we look at the complete object. 6447 return getEntityLifetime(Entity->getParent(), InitField); 6448 6449 case InitializedEntity::EK_Base: 6450 // For subobjects, we look at the complete object. 6451 if (Entity->getParent()) 6452 return getEntityLifetime(Entity->getParent(), InitField); 6453 return {InitField, LK_MemInitializer}; 6454 6455 case InitializedEntity::EK_Delegating: 6456 // We can reach this case for aggregate initialization in a constructor: 6457 // struct A { int &&r; }; 6458 // struct B : A { B() : A{0} {} }; 6459 // In this case, use the outermost field decl as the context. 6460 return {InitField, LK_MemInitializer}; 6461 6462 case InitializedEntity::EK_BlockElement: 6463 case InitializedEntity::EK_LambdaToBlockConversionBlockElement: 6464 case InitializedEntity::EK_LambdaCapture: 6465 case InitializedEntity::EK_VectorElement: 6466 case InitializedEntity::EK_ComplexElement: 6467 return {nullptr, LK_FullExpression}; 6468 6469 case InitializedEntity::EK_Exception: 6470 // FIXME: Can we diagnose lifetime problems with exceptions? 6471 return {nullptr, LK_FullExpression}; 6472 } 6473 llvm_unreachable("unknown entity kind"); 6474 } 6475 6476 namespace { 6477 enum ReferenceKind { 6478 /// Lifetime would be extended by a reference binding to a temporary. 6479 RK_ReferenceBinding, 6480 /// Lifetime would be extended by a std::initializer_list object binding to 6481 /// its backing array. 6482 RK_StdInitializerList, 6483 }; 6484 6485 /// A temporary or local variable. This will be one of: 6486 /// * A MaterializeTemporaryExpr. 6487 /// * A DeclRefExpr whose declaration is a local. 6488 /// * An AddrLabelExpr. 6489 /// * A BlockExpr for a block with captures. 6490 using Local = Expr*; 6491 6492 /// Expressions we stepped over when looking for the local state. Any steps 6493 /// that would inhibit lifetime extension or take us out of subexpressions of 6494 /// the initializer are included. 6495 struct IndirectLocalPathEntry { 6496 enum EntryKind { 6497 DefaultInit, 6498 AddressOf, 6499 VarInit, 6500 LValToRVal, 6501 LifetimeBoundCall, 6502 } Kind; 6503 Expr *E; 6504 const Decl *D = nullptr; 6505 IndirectLocalPathEntry() {} 6506 IndirectLocalPathEntry(EntryKind K, Expr *E) : Kind(K), E(E) {} 6507 IndirectLocalPathEntry(EntryKind K, Expr *E, const Decl *D) 6508 : Kind(K), E(E), D(D) {} 6509 }; 6510 6511 using IndirectLocalPath = llvm::SmallVectorImpl<IndirectLocalPathEntry>; 6512 6513 struct RevertToOldSizeRAII { 6514 IndirectLocalPath &Path; 6515 unsigned OldSize = Path.size(); 6516 RevertToOldSizeRAII(IndirectLocalPath &Path) : Path(Path) {} 6517 ~RevertToOldSizeRAII() { Path.resize(OldSize); } 6518 }; 6519 6520 using LocalVisitor = llvm::function_ref<bool(IndirectLocalPath &Path, Local L, 6521 ReferenceKind RK)>; 6522 } 6523 6524 static bool isVarOnPath(IndirectLocalPath &Path, VarDecl *VD) { 6525 for (auto E : Path) 6526 if (E.Kind == IndirectLocalPathEntry::VarInit && E.D == VD) 6527 return true; 6528 return false; 6529 } 6530 6531 static bool pathContainsInit(IndirectLocalPath &Path) { 6532 return llvm::any_of(Path, [=](IndirectLocalPathEntry E) { 6533 return E.Kind == IndirectLocalPathEntry::DefaultInit || 6534 E.Kind == IndirectLocalPathEntry::VarInit; 6535 }); 6536 } 6537 6538 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path, 6539 Expr *Init, LocalVisitor Visit, 6540 bool RevisitSubinits); 6541 6542 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path, 6543 Expr *Init, ReferenceKind RK, 6544 LocalVisitor Visit); 6545 6546 static bool implicitObjectParamIsLifetimeBound(const FunctionDecl *FD) { 6547 const TypeSourceInfo *TSI = FD->getTypeSourceInfo(); 6548 if (!TSI) 6549 return false; 6550 // Don't declare this variable in the second operand of the for-statement; 6551 // GCC miscompiles that by ending its lifetime before evaluating the 6552 // third operand. See gcc.gnu.org/PR86769. 6553 AttributedTypeLoc ATL; 6554 for (TypeLoc TL = TSI->getTypeLoc(); 6555 (ATL = TL.getAsAdjusted<AttributedTypeLoc>()); 6556 TL = ATL.getModifiedLoc()) { 6557 if (ATL.getAttrAs<LifetimeBoundAttr>()) 6558 return true; 6559 } 6560 return false; 6561 } 6562 6563 static void visitLifetimeBoundArguments(IndirectLocalPath &Path, Expr *Call, 6564 LocalVisitor Visit) { 6565 const FunctionDecl *Callee; 6566 ArrayRef<Expr*> Args; 6567 6568 if (auto *CE = dyn_cast<CallExpr>(Call)) { 6569 Callee = CE->getDirectCallee(); 6570 Args = llvm::makeArrayRef(CE->getArgs(), CE->getNumArgs()); 6571 } else { 6572 auto *CCE = cast<CXXConstructExpr>(Call); 6573 Callee = CCE->getConstructor(); 6574 Args = llvm::makeArrayRef(CCE->getArgs(), CCE->getNumArgs()); 6575 } 6576 if (!Callee) 6577 return; 6578 6579 Expr *ObjectArg = nullptr; 6580 if (isa<CXXOperatorCallExpr>(Call) && Callee->isCXXInstanceMember()) { 6581 ObjectArg = Args[0]; 6582 Args = Args.slice(1); 6583 } else if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) { 6584 ObjectArg = MCE->getImplicitObjectArgument(); 6585 } 6586 6587 auto VisitLifetimeBoundArg = [&](const Decl *D, Expr *Arg) { 6588 Path.push_back({IndirectLocalPathEntry::LifetimeBoundCall, Arg, D}); 6589 if (Arg->isGLValue()) 6590 visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding, 6591 Visit); 6592 else 6593 visitLocalsRetainedByInitializer(Path, Arg, Visit, true); 6594 Path.pop_back(); 6595 }; 6596 6597 if (ObjectArg && implicitObjectParamIsLifetimeBound(Callee)) 6598 VisitLifetimeBoundArg(Callee, ObjectArg); 6599 6600 for (unsigned I = 0, 6601 N = std::min<unsigned>(Callee->getNumParams(), Args.size()); 6602 I != N; ++I) { 6603 if (Callee->getParamDecl(I)->hasAttr<LifetimeBoundAttr>()) 6604 VisitLifetimeBoundArg(Callee->getParamDecl(I), Args[I]); 6605 } 6606 } 6607 6608 /// Visit the locals that would be reachable through a reference bound to the 6609 /// glvalue expression \c Init. 6610 static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path, 6611 Expr *Init, ReferenceKind RK, 6612 LocalVisitor Visit) { 6613 RevertToOldSizeRAII RAII(Path); 6614 6615 // Walk past any constructs which we can lifetime-extend across. 6616 Expr *Old; 6617 do { 6618 Old = Init; 6619 6620 if (auto *FE = dyn_cast<FullExpr>(Init)) 6621 Init = FE->getSubExpr(); 6622 6623 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 6624 // If this is just redundant braces around an initializer, step over it. 6625 if (ILE->isTransparent()) 6626 Init = ILE->getInit(0); 6627 } 6628 6629 // Step over any subobject adjustments; we may have a materialized 6630 // temporary inside them. 6631 Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments()); 6632 6633 // Per current approach for DR1376, look through casts to reference type 6634 // when performing lifetime extension. 6635 if (CastExpr *CE = dyn_cast<CastExpr>(Init)) 6636 if (CE->getSubExpr()->isGLValue()) 6637 Init = CE->getSubExpr(); 6638 6639 // Per the current approach for DR1299, look through array element access 6640 // on array glvalues when performing lifetime extension. 6641 if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Init)) { 6642 Init = ASE->getBase(); 6643 auto *ICE = dyn_cast<ImplicitCastExpr>(Init); 6644 if (ICE && ICE->getCastKind() == CK_ArrayToPointerDecay) 6645 Init = ICE->getSubExpr(); 6646 else 6647 // We can't lifetime extend through this but we might still find some 6648 // retained temporaries. 6649 return visitLocalsRetainedByInitializer(Path, Init, Visit, true); 6650 } 6651 6652 // Step into CXXDefaultInitExprs so we can diagnose cases where a 6653 // constructor inherits one as an implicit mem-initializer. 6654 if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) { 6655 Path.push_back( 6656 {IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()}); 6657 Init = DIE->getExpr(); 6658 } 6659 } while (Init != Old); 6660 6661 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Init)) { 6662 if (Visit(Path, Local(MTE), RK)) 6663 visitLocalsRetainedByInitializer(Path, MTE->GetTemporaryExpr(), Visit, 6664 true); 6665 } 6666 6667 if (isa<CallExpr>(Init)) 6668 return visitLifetimeBoundArguments(Path, Init, Visit); 6669 6670 switch (Init->getStmtClass()) { 6671 case Stmt::DeclRefExprClass: { 6672 // If we find the name of a local non-reference parameter, we could have a 6673 // lifetime problem. 6674 auto *DRE = cast<DeclRefExpr>(Init); 6675 auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); 6676 if (VD && VD->hasLocalStorage() && 6677 !DRE->refersToEnclosingVariableOrCapture()) { 6678 if (!VD->getType()->isReferenceType()) { 6679 Visit(Path, Local(DRE), RK); 6680 } else if (isa<ParmVarDecl>(DRE->getDecl())) { 6681 // The lifetime of a reference parameter is unknown; assume it's OK 6682 // for now. 6683 break; 6684 } else if (VD->getInit() && !isVarOnPath(Path, VD)) { 6685 Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD}); 6686 visitLocalsRetainedByReferenceBinding(Path, VD->getInit(), 6687 RK_ReferenceBinding, Visit); 6688 } 6689 } 6690 break; 6691 } 6692 6693 case Stmt::UnaryOperatorClass: { 6694 // The only unary operator that make sense to handle here 6695 // is Deref. All others don't resolve to a "name." This includes 6696 // handling all sorts of rvalues passed to a unary operator. 6697 const UnaryOperator *U = cast<UnaryOperator>(Init); 6698 if (U->getOpcode() == UO_Deref) 6699 visitLocalsRetainedByInitializer(Path, U->getSubExpr(), Visit, true); 6700 break; 6701 } 6702 6703 case Stmt::OMPArraySectionExprClass: { 6704 visitLocalsRetainedByInitializer( 6705 Path, cast<OMPArraySectionExpr>(Init)->getBase(), Visit, true); 6706 break; 6707 } 6708 6709 case Stmt::ConditionalOperatorClass: 6710 case Stmt::BinaryConditionalOperatorClass: { 6711 auto *C = cast<AbstractConditionalOperator>(Init); 6712 if (!C->getTrueExpr()->getType()->isVoidType()) 6713 visitLocalsRetainedByReferenceBinding(Path, C->getTrueExpr(), RK, Visit); 6714 if (!C->getFalseExpr()->getType()->isVoidType()) 6715 visitLocalsRetainedByReferenceBinding(Path, C->getFalseExpr(), RK, Visit); 6716 break; 6717 } 6718 6719 // FIXME: Visit the left-hand side of an -> or ->*. 6720 6721 default: 6722 break; 6723 } 6724 } 6725 6726 /// Visit the locals that would be reachable through an object initialized by 6727 /// the prvalue expression \c Init. 6728 static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path, 6729 Expr *Init, LocalVisitor Visit, 6730 bool RevisitSubinits) { 6731 RevertToOldSizeRAII RAII(Path); 6732 6733 Expr *Old; 6734 do { 6735 Old = Init; 6736 6737 // Step into CXXDefaultInitExprs so we can diagnose cases where a 6738 // constructor inherits one as an implicit mem-initializer. 6739 if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) { 6740 Path.push_back({IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()}); 6741 Init = DIE->getExpr(); 6742 } 6743 6744 if (auto *FE = dyn_cast<FullExpr>(Init)) 6745 Init = FE->getSubExpr(); 6746 6747 // Dig out the expression which constructs the extended temporary. 6748 Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments()); 6749 6750 if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init)) 6751 Init = BTE->getSubExpr(); 6752 6753 Init = Init->IgnoreParens(); 6754 6755 // Step over value-preserving rvalue casts. 6756 if (auto *CE = dyn_cast<CastExpr>(Init)) { 6757 switch (CE->getCastKind()) { 6758 case CK_LValueToRValue: 6759 // If we can match the lvalue to a const object, we can look at its 6760 // initializer. 6761 Path.push_back({IndirectLocalPathEntry::LValToRVal, CE}); 6762 return visitLocalsRetainedByReferenceBinding( 6763 Path, Init, RK_ReferenceBinding, 6764 [&](IndirectLocalPath &Path, Local L, ReferenceKind RK) -> bool { 6765 if (auto *DRE = dyn_cast<DeclRefExpr>(L)) { 6766 auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); 6767 if (VD && VD->getType().isConstQualified() && VD->getInit() && 6768 !isVarOnPath(Path, VD)) { 6769 Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD}); 6770 visitLocalsRetainedByInitializer(Path, VD->getInit(), Visit, true); 6771 } 6772 } else if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L)) { 6773 if (MTE->getType().isConstQualified()) 6774 visitLocalsRetainedByInitializer(Path, MTE->GetTemporaryExpr(), 6775 Visit, true); 6776 } 6777 return false; 6778 }); 6779 6780 // We assume that objects can be retained by pointers cast to integers, 6781 // but not if the integer is cast to floating-point type or to _Complex. 6782 // We assume that casts to 'bool' do not preserve enough information to 6783 // retain a local object. 6784 case CK_NoOp: 6785 case CK_BitCast: 6786 case CK_BaseToDerived: 6787 case CK_DerivedToBase: 6788 case CK_UncheckedDerivedToBase: 6789 case CK_Dynamic: 6790 case CK_ToUnion: 6791 case CK_UserDefinedConversion: 6792 case CK_ConstructorConversion: 6793 case CK_IntegralToPointer: 6794 case CK_PointerToIntegral: 6795 case CK_VectorSplat: 6796 case CK_IntegralCast: 6797 case CK_CPointerToObjCPointerCast: 6798 case CK_BlockPointerToObjCPointerCast: 6799 case CK_AnyPointerToBlockPointerCast: 6800 case CK_AddressSpaceConversion: 6801 break; 6802 6803 case CK_ArrayToPointerDecay: 6804 // Model array-to-pointer decay as taking the address of the array 6805 // lvalue. 6806 Path.push_back({IndirectLocalPathEntry::AddressOf, CE}); 6807 return visitLocalsRetainedByReferenceBinding(Path, CE->getSubExpr(), 6808 RK_ReferenceBinding, Visit); 6809 6810 default: 6811 return; 6812 } 6813 6814 Init = CE->getSubExpr(); 6815 } 6816 } while (Old != Init); 6817 6818 // C++17 [dcl.init.list]p6: 6819 // initializing an initializer_list object from the array extends the 6820 // lifetime of the array exactly like binding a reference to a temporary. 6821 if (auto *ILE = dyn_cast<CXXStdInitializerListExpr>(Init)) 6822 return visitLocalsRetainedByReferenceBinding(Path, ILE->getSubExpr(), 6823 RK_StdInitializerList, Visit); 6824 6825 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { 6826 // We already visited the elements of this initializer list while 6827 // performing the initialization. Don't visit them again unless we've 6828 // changed the lifetime of the initialized entity. 6829 if (!RevisitSubinits) 6830 return; 6831 6832 if (ILE->isTransparent()) 6833 return visitLocalsRetainedByInitializer(Path, ILE->getInit(0), Visit, 6834 RevisitSubinits); 6835 6836 if (ILE->getType()->isArrayType()) { 6837 for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I) 6838 visitLocalsRetainedByInitializer(Path, ILE->getInit(I), Visit, 6839 RevisitSubinits); 6840 return; 6841 } 6842 6843 if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) { 6844 assert(RD->isAggregate() && "aggregate init on non-aggregate"); 6845 6846 // If we lifetime-extend a braced initializer which is initializing an 6847 // aggregate, and that aggregate contains reference members which are 6848 // bound to temporaries, those temporaries are also lifetime-extended. 6849 if (RD->isUnion() && ILE->getInitializedFieldInUnion() && 6850 ILE->getInitializedFieldInUnion()->getType()->isReferenceType()) 6851 visitLocalsRetainedByReferenceBinding(Path, ILE->getInit(0), 6852 RK_ReferenceBinding, Visit); 6853 else { 6854 unsigned Index = 0; 6855 for (; Index < RD->getNumBases() && Index < ILE->getNumInits(); ++Index) 6856 visitLocalsRetainedByInitializer(Path, ILE->getInit(Index), Visit, 6857 RevisitSubinits); 6858 for (const auto *I : RD->fields()) { 6859 if (Index >= ILE->getNumInits()) 6860 break; 6861 if (I->isUnnamedBitfield()) 6862 continue; 6863 Expr *SubInit = ILE->getInit(Index); 6864 if (I->getType()->isReferenceType()) 6865 visitLocalsRetainedByReferenceBinding(Path, SubInit, 6866 RK_ReferenceBinding, Visit); 6867 else 6868 // This might be either aggregate-initialization of a member or 6869 // initialization of a std::initializer_list object. Regardless, 6870 // we should recursively lifetime-extend that initializer. 6871 visitLocalsRetainedByInitializer(Path, SubInit, Visit, 6872 RevisitSubinits); 6873 ++Index; 6874 } 6875 } 6876 } 6877 return; 6878 } 6879 6880 // The lifetime of an init-capture is that of the closure object constructed 6881 // by a lambda-expression. 6882 if (auto *LE = dyn_cast<LambdaExpr>(Init)) { 6883 for (Expr *E : LE->capture_inits()) { 6884 if (!E) 6885 continue; 6886 if (E->isGLValue()) 6887 visitLocalsRetainedByReferenceBinding(Path, E, RK_ReferenceBinding, 6888 Visit); 6889 else 6890 visitLocalsRetainedByInitializer(Path, E, Visit, true); 6891 } 6892 } 6893 6894 if (isa<CallExpr>(Init) || isa<CXXConstructExpr>(Init)) 6895 return visitLifetimeBoundArguments(Path, Init, Visit); 6896 6897 switch (Init->getStmtClass()) { 6898 case Stmt::UnaryOperatorClass: { 6899 auto *UO = cast<UnaryOperator>(Init); 6900 // If the initializer is the address of a local, we could have a lifetime 6901 // problem. 6902 if (UO->getOpcode() == UO_AddrOf) { 6903 // If this is &rvalue, then it's ill-formed and we have already diagnosed 6904 // it. Don't produce a redundant warning about the lifetime of the 6905 // temporary. 6906 if (isa<MaterializeTemporaryExpr>(UO->getSubExpr())) 6907 return; 6908 6909 Path.push_back({IndirectLocalPathEntry::AddressOf, UO}); 6910 visitLocalsRetainedByReferenceBinding(Path, UO->getSubExpr(), 6911 RK_ReferenceBinding, Visit); 6912 } 6913 break; 6914 } 6915 6916 case Stmt::BinaryOperatorClass: { 6917 // Handle pointer arithmetic. 6918 auto *BO = cast<BinaryOperator>(Init); 6919 BinaryOperatorKind BOK = BO->getOpcode(); 6920 if (!BO->getType()->isPointerType() || (BOK != BO_Add && BOK != BO_Sub)) 6921 break; 6922 6923 if (BO->getLHS()->getType()->isPointerType()) 6924 visitLocalsRetainedByInitializer(Path, BO->getLHS(), Visit, true); 6925 else if (BO->getRHS()->getType()->isPointerType()) 6926 visitLocalsRetainedByInitializer(Path, BO->getRHS(), Visit, true); 6927 break; 6928 } 6929 6930 case Stmt::ConditionalOperatorClass: 6931 case Stmt::BinaryConditionalOperatorClass: { 6932 auto *C = cast<AbstractConditionalOperator>(Init); 6933 // In C++, we can have a throw-expression operand, which has 'void' type 6934 // and isn't interesting from a lifetime perspective. 6935 if (!C->getTrueExpr()->getType()->isVoidType()) 6936 visitLocalsRetainedByInitializer(Path, C->getTrueExpr(), Visit, true); 6937 if (!C->getFalseExpr()->getType()->isVoidType()) 6938 visitLocalsRetainedByInitializer(Path, C->getFalseExpr(), Visit, true); 6939 break; 6940 } 6941 6942 case Stmt::BlockExprClass: 6943 if (cast<BlockExpr>(Init)->getBlockDecl()->hasCaptures()) { 6944 // This is a local block, whose lifetime is that of the function. 6945 Visit(Path, Local(cast<BlockExpr>(Init)), RK_ReferenceBinding); 6946 } 6947 break; 6948 6949 case Stmt::AddrLabelExprClass: 6950 // We want to warn if the address of a label would escape the function. 6951 Visit(Path, Local(cast<AddrLabelExpr>(Init)), RK_ReferenceBinding); 6952 break; 6953 6954 default: 6955 break; 6956 } 6957 } 6958 6959 /// Determine whether this is an indirect path to a temporary that we are 6960 /// supposed to lifetime-extend along (but don't). 6961 static bool shouldLifetimeExtendThroughPath(const IndirectLocalPath &Path) { 6962 for (auto Elem : Path) { 6963 if (Elem.Kind != IndirectLocalPathEntry::DefaultInit) 6964 return false; 6965 } 6966 return true; 6967 } 6968 6969 /// Find the range for the first interesting entry in the path at or after I. 6970 static SourceRange nextPathEntryRange(const IndirectLocalPath &Path, unsigned I, 6971 Expr *E) { 6972 for (unsigned N = Path.size(); I != N; ++I) { 6973 switch (Path[I].Kind) { 6974 case IndirectLocalPathEntry::AddressOf: 6975 case IndirectLocalPathEntry::LValToRVal: 6976 case IndirectLocalPathEntry::LifetimeBoundCall: 6977 // These exist primarily to mark the path as not permitting or 6978 // supporting lifetime extension. 6979 break; 6980 6981 case IndirectLocalPathEntry::DefaultInit: 6982 case IndirectLocalPathEntry::VarInit: 6983 return Path[I].E->getSourceRange(); 6984 } 6985 } 6986 return E->getSourceRange(); 6987 } 6988 6989 void Sema::checkInitializerLifetime(const InitializedEntity &Entity, 6990 Expr *Init) { 6991 LifetimeResult LR = getEntityLifetime(&Entity); 6992 LifetimeKind LK = LR.getInt(); 6993 const InitializedEntity *ExtendingEntity = LR.getPointer(); 6994 6995 // If this entity doesn't have an interesting lifetime, don't bother looking 6996 // for temporaries within its initializer. 6997 if (LK == LK_FullExpression) 6998 return; 6999 7000 auto TemporaryVisitor = [&](IndirectLocalPath &Path, Local L, 7001 ReferenceKind RK) -> bool { 7002 SourceRange DiagRange = nextPathEntryRange(Path, 0, L); 7003 SourceLocation DiagLoc = DiagRange.getBegin(); 7004 7005 switch (LK) { 7006 case LK_FullExpression: 7007 llvm_unreachable("already handled this"); 7008 7009 case LK_Extended: { 7010 auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L); 7011 if (!MTE) { 7012 // The initialized entity has lifetime beyond the full-expression, 7013 // and the local entity does too, so don't warn. 7014 // 7015 // FIXME: We should consider warning if a static / thread storage 7016 // duration variable retains an automatic storage duration local. 7017 return false; 7018 } 7019 7020 // Lifetime-extend the temporary. 7021 if (Path.empty()) { 7022 // Update the storage duration of the materialized temporary. 7023 // FIXME: Rebuild the expression instead of mutating it. 7024 MTE->setExtendingDecl(ExtendingEntity->getDecl(), 7025 ExtendingEntity->allocateManglingNumber()); 7026 // Also visit the temporaries lifetime-extended by this initializer. 7027 return true; 7028 } 7029 7030 if (shouldLifetimeExtendThroughPath(Path)) { 7031 // We're supposed to lifetime-extend the temporary along this path (per 7032 // the resolution of DR1815), but we don't support that yet. 7033 // 7034 // FIXME: Properly handle this situation. Perhaps the easiest approach 7035 // would be to clone the initializer expression on each use that would 7036 // lifetime extend its temporaries. 7037 Diag(DiagLoc, diag::warn_unsupported_lifetime_extension) 7038 << RK << DiagRange; 7039 } else { 7040 // If the path goes through the initialization of a variable or field, 7041 // it can't possibly reach a temporary created in this full-expression. 7042 // We will have already diagnosed any problems with the initializer. 7043 if (pathContainsInit(Path)) 7044 return false; 7045 7046 Diag(DiagLoc, diag::warn_dangling_variable) 7047 << RK << !Entity.getParent() 7048 << ExtendingEntity->getDecl()->isImplicit() 7049 << ExtendingEntity->getDecl() << Init->isGLValue() << DiagRange; 7050 } 7051 break; 7052 } 7053 7054 case LK_MemInitializer: { 7055 if (isa<MaterializeTemporaryExpr>(L)) { 7056 // Under C++ DR1696, if a mem-initializer (or a default member 7057 // initializer used by the absence of one) would lifetime-extend a 7058 // temporary, the program is ill-formed. 7059 if (auto *ExtendingDecl = 7060 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) { 7061 bool IsSubobjectMember = ExtendingEntity != &Entity; 7062 Diag(DiagLoc, shouldLifetimeExtendThroughPath(Path) 7063 ? diag::err_dangling_member 7064 : diag::warn_dangling_member) 7065 << ExtendingDecl << IsSubobjectMember << RK << DiagRange; 7066 // Don't bother adding a note pointing to the field if we're inside 7067 // its default member initializer; our primary diagnostic points to 7068 // the same place in that case. 7069 if (Path.empty() || 7070 Path.back().Kind != IndirectLocalPathEntry::DefaultInit) { 7071 Diag(ExtendingDecl->getLocation(), 7072 diag::note_lifetime_extending_member_declared_here) 7073 << RK << IsSubobjectMember; 7074 } 7075 } else { 7076 // We have a mem-initializer but no particular field within it; this 7077 // is either a base class or a delegating initializer directly 7078 // initializing the base-class from something that doesn't live long 7079 // enough. 7080 // 7081 // FIXME: Warn on this. 7082 return false; 7083 } 7084 } else { 7085 // Paths via a default initializer can only occur during error recovery 7086 // (there's no other way that a default initializer can refer to a 7087 // local). Don't produce a bogus warning on those cases. 7088 if (pathContainsInit(Path)) 7089 return false; 7090 7091 auto *DRE = dyn_cast<DeclRefExpr>(L); 7092 auto *VD = DRE ? dyn_cast<VarDecl>(DRE->getDecl()) : nullptr; 7093 if (!VD) { 7094 // A member was initialized to a local block. 7095 // FIXME: Warn on this. 7096 return false; 7097 } 7098 7099 if (auto *Member = 7100 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) { 7101 bool IsPointer = Member->getType()->isAnyPointerType(); 7102 Diag(DiagLoc, IsPointer ? diag::warn_init_ptr_member_to_parameter_addr 7103 : diag::warn_bind_ref_member_to_parameter) 7104 << Member << VD << isa<ParmVarDecl>(VD) << DiagRange; 7105 Diag(Member->getLocation(), 7106 diag::note_ref_or_ptr_member_declared_here) 7107 << (unsigned)IsPointer; 7108 } 7109 } 7110 break; 7111 } 7112 7113 case LK_New: 7114 if (isa<MaterializeTemporaryExpr>(L)) { 7115 Diag(DiagLoc, RK == RK_ReferenceBinding 7116 ? diag::warn_new_dangling_reference 7117 : diag::warn_new_dangling_initializer_list) 7118 << !Entity.getParent() << DiagRange; 7119 } else { 7120 // We can't determine if the allocation outlives the local declaration. 7121 return false; 7122 } 7123 break; 7124 7125 case LK_Return: 7126 case LK_StmtExprResult: 7127 if (auto *DRE = dyn_cast<DeclRefExpr>(L)) { 7128 // We can't determine if the local variable outlives the statement 7129 // expression. 7130 if (LK == LK_StmtExprResult) 7131 return false; 7132 Diag(DiagLoc, diag::warn_ret_stack_addr_ref) 7133 << Entity.getType()->isReferenceType() << DRE->getDecl() 7134 << isa<ParmVarDecl>(DRE->getDecl()) << DiagRange; 7135 } else if (isa<BlockExpr>(L)) { 7136 Diag(DiagLoc, diag::err_ret_local_block) << DiagRange; 7137 } else if (isa<AddrLabelExpr>(L)) { 7138 // Don't warn when returning a label from a statement expression. 7139 // Leaving the scope doesn't end its lifetime. 7140 if (LK == LK_StmtExprResult) 7141 return false; 7142 Diag(DiagLoc, diag::warn_ret_addr_label) << DiagRange; 7143 } else { 7144 Diag(DiagLoc, diag::warn_ret_local_temp_addr_ref) 7145 << Entity.getType()->isReferenceType() << DiagRange; 7146 } 7147 break; 7148 } 7149 7150 for (unsigned I = 0; I != Path.size(); ++I) { 7151 auto Elem = Path[I]; 7152 7153 switch (Elem.Kind) { 7154 case IndirectLocalPathEntry::AddressOf: 7155 case IndirectLocalPathEntry::LValToRVal: 7156 // These exist primarily to mark the path as not permitting or 7157 // supporting lifetime extension. 7158 break; 7159 7160 case IndirectLocalPathEntry::LifetimeBoundCall: 7161 // FIXME: Consider adding a note for this. 7162 break; 7163 7164 case IndirectLocalPathEntry::DefaultInit: { 7165 auto *FD = cast<FieldDecl>(Elem.D); 7166 Diag(FD->getLocation(), diag::note_init_with_default_member_initalizer) 7167 << FD << nextPathEntryRange(Path, I + 1, L); 7168 break; 7169 } 7170 7171 case IndirectLocalPathEntry::VarInit: 7172 const VarDecl *VD = cast<VarDecl>(Elem.D); 7173 Diag(VD->getLocation(), diag::note_local_var_initializer) 7174 << VD->getType()->isReferenceType() 7175 << VD->isImplicit() << VD->getDeclName() 7176 << nextPathEntryRange(Path, I + 1, L); 7177 break; 7178 } 7179 } 7180 7181 // We didn't lifetime-extend, so don't go any further; we don't need more 7182 // warnings or errors on inner temporaries within this one's initializer. 7183 return false; 7184 }; 7185 7186 llvm::SmallVector<IndirectLocalPathEntry, 8> Path; 7187 if (Init->isGLValue()) 7188 visitLocalsRetainedByReferenceBinding(Path, Init, RK_ReferenceBinding, 7189 TemporaryVisitor); 7190 else 7191 visitLocalsRetainedByInitializer(Path, Init, TemporaryVisitor, false); 7192 } 7193 7194 static void DiagnoseNarrowingInInitList(Sema &S, 7195 const ImplicitConversionSequence &ICS, 7196 QualType PreNarrowingType, 7197 QualType EntityType, 7198 const Expr *PostInit); 7199 7200 /// Provide warnings when std::move is used on construction. 7201 static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr, 7202 bool IsReturnStmt) { 7203 if (!InitExpr) 7204 return; 7205 7206 if (S.inTemplateInstantiation()) 7207 return; 7208 7209 QualType DestType = InitExpr->getType(); 7210 if (!DestType->isRecordType()) 7211 return; 7212 7213 unsigned DiagID = 0; 7214 if (IsReturnStmt) { 7215 const CXXConstructExpr *CCE = 7216 dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens()); 7217 if (!CCE || CCE->getNumArgs() != 1) 7218 return; 7219 7220 if (!CCE->getConstructor()->isCopyOrMoveConstructor()) 7221 return; 7222 7223 InitExpr = CCE->getArg(0)->IgnoreImpCasts(); 7224 } 7225 7226 // Find the std::move call and get the argument. 7227 const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens()); 7228 if (!CE || !CE->isCallToStdMove()) 7229 return; 7230 7231 const Expr *Arg = CE->getArg(0)->IgnoreImplicit(); 7232 7233 if (IsReturnStmt) { 7234 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts()); 7235 if (!DRE || DRE->refersToEnclosingVariableOrCapture()) 7236 return; 7237 7238 const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()); 7239 if (!VD || !VD->hasLocalStorage()) 7240 return; 7241 7242 // __block variables are not moved implicitly. 7243 if (VD->hasAttr<BlocksAttr>()) 7244 return; 7245 7246 QualType SourceType = VD->getType(); 7247 if (!SourceType->isRecordType()) 7248 return; 7249 7250 if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) { 7251 return; 7252 } 7253 7254 // If we're returning a function parameter, copy elision 7255 // is not possible. 7256 if (isa<ParmVarDecl>(VD)) 7257 DiagID = diag::warn_redundant_move_on_return; 7258 else 7259 DiagID = diag::warn_pessimizing_move_on_return; 7260 } else { 7261 DiagID = diag::warn_pessimizing_move_on_initialization; 7262 const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens(); 7263 if (!ArgStripped->isRValue() || !ArgStripped->getType()->isRecordType()) 7264 return; 7265 } 7266 7267 S.Diag(CE->getBeginLoc(), DiagID); 7268 7269 // Get all the locations for a fix-it. Don't emit the fix-it if any location 7270 // is within a macro. 7271 SourceLocation CallBegin = CE->getCallee()->getBeginLoc(); 7272 if (CallBegin.isMacroID()) 7273 return; 7274 SourceLocation RParen = CE->getRParenLoc(); 7275 if (RParen.isMacroID()) 7276 return; 7277 SourceLocation LParen; 7278 SourceLocation ArgLoc = Arg->getBeginLoc(); 7279 7280 // Special testing for the argument location. Since the fix-it needs the 7281 // location right before the argument, the argument location can be in a 7282 // macro only if it is at the beginning of the macro. 7283 while (ArgLoc.isMacroID() && 7284 S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) { 7285 ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).getBegin(); 7286 } 7287 7288 if (LParen.isMacroID()) 7289 return; 7290 7291 LParen = ArgLoc.getLocWithOffset(-1); 7292 7293 S.Diag(CE->getBeginLoc(), diag::note_remove_move) 7294 << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen)) 7295 << FixItHint::CreateRemoval(SourceRange(RParen, RParen)); 7296 } 7297 7298 static void CheckForNullPointerDereference(Sema &S, const Expr *E) { 7299 // Check to see if we are dereferencing a null pointer. If so, this is 7300 // undefined behavior, so warn about it. This only handles the pattern 7301 // "*null", which is a very syntactic check. 7302 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts())) 7303 if (UO->getOpcode() == UO_Deref && 7304 UO->getSubExpr()->IgnoreParenCasts()-> 7305 isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) { 7306 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO, 7307 S.PDiag(diag::warn_binding_null_to_reference) 7308 << UO->getSubExpr()->getSourceRange()); 7309 } 7310 } 7311 7312 MaterializeTemporaryExpr * 7313 Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary, 7314 bool BoundToLvalueReference) { 7315 auto MTE = new (Context) 7316 MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference); 7317 7318 // Order an ExprWithCleanups for lifetime marks. 7319 // 7320 // TODO: It'll be good to have a single place to check the access of the 7321 // destructor and generate ExprWithCleanups for various uses. Currently these 7322 // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary, 7323 // but there may be a chance to merge them. 7324 Cleanup.setExprNeedsCleanups(false); 7325 return MTE; 7326 } 7327 7328 ExprResult Sema::TemporaryMaterializationConversion(Expr *E) { 7329 // In C++98, we don't want to implicitly create an xvalue. 7330 // FIXME: This means that AST consumers need to deal with "prvalues" that 7331 // denote materialized temporaries. Maybe we should add another ValueKind 7332 // for "xvalue pretending to be a prvalue" for C++98 support. 7333 if (!E->isRValue() || !getLangOpts().CPlusPlus11) 7334 return E; 7335 7336 // C++1z [conv.rval]/1: T shall be a complete type. 7337 // FIXME: Does this ever matter (can we form a prvalue of incomplete type)? 7338 // If so, we should check for a non-abstract class type here too. 7339 QualType T = E->getType(); 7340 if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type)) 7341 return ExprError(); 7342 7343 return CreateMaterializeTemporaryExpr(E->getType(), E, false); 7344 } 7345 7346 ExprResult Sema::PerformQualificationConversion(Expr *E, QualType Ty, 7347 ExprValueKind VK, 7348 CheckedConversionKind CCK) { 7349 7350 CastKind CK = CK_NoOp; 7351 7352 if (VK == VK_RValue) { 7353 auto PointeeTy = Ty->getPointeeType(); 7354 auto ExprPointeeTy = E->getType()->getPointeeType(); 7355 if (!PointeeTy.isNull() && 7356 PointeeTy.getAddressSpace() != ExprPointeeTy.getAddressSpace()) 7357 CK = CK_AddressSpaceConversion; 7358 } else if (Ty.getAddressSpace() != E->getType().getAddressSpace()) { 7359 CK = CK_AddressSpaceConversion; 7360 } 7361 7362 return ImpCastExprToType(E, Ty, CK, VK, /*BasePath=*/nullptr, CCK); 7363 } 7364 7365 ExprResult InitializationSequence::Perform(Sema &S, 7366 const InitializedEntity &Entity, 7367 const InitializationKind &Kind, 7368 MultiExprArg Args, 7369 QualType *ResultType) { 7370 if (Failed()) { 7371 Diagnose(S, Entity, Kind, Args); 7372 return ExprError(); 7373 } 7374 if (!ZeroInitializationFixit.empty()) { 7375 unsigned DiagID = diag::err_default_init_const; 7376 if (Decl *D = Entity.getDecl()) 7377 if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>()) 7378 DiagID = diag::ext_default_init_const; 7379 7380 // The initialization would have succeeded with this fixit. Since the fixit 7381 // is on the error, we need to build a valid AST in this case, so this isn't 7382 // handled in the Failed() branch above. 7383 QualType DestType = Entity.getType(); 7384 S.Diag(Kind.getLocation(), DiagID) 7385 << DestType << (bool)DestType->getAs<RecordType>() 7386 << FixItHint::CreateInsertion(ZeroInitializationFixitLoc, 7387 ZeroInitializationFixit); 7388 } 7389 7390 if (getKind() == DependentSequence) { 7391 // If the declaration is a non-dependent, incomplete array type 7392 // that has an initializer, then its type will be completed once 7393 // the initializer is instantiated. 7394 if (ResultType && !Entity.getType()->isDependentType() && 7395 Args.size() == 1) { 7396 QualType DeclType = Entity.getType(); 7397 if (const IncompleteArrayType *ArrayT 7398 = S.Context.getAsIncompleteArrayType(DeclType)) { 7399 // FIXME: We don't currently have the ability to accurately 7400 // compute the length of an initializer list without 7401 // performing full type-checking of the initializer list 7402 // (since we have to determine where braces are implicitly 7403 // introduced and such). So, we fall back to making the array 7404 // type a dependently-sized array type with no specified 7405 // bound. 7406 if (isa<InitListExpr>((Expr *)Args[0])) { 7407 SourceRange Brackets; 7408 7409 // Scavange the location of the brackets from the entity, if we can. 7410 if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Entity.getDecl())) { 7411 if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) { 7412 TypeLoc TL = TInfo->getTypeLoc(); 7413 if (IncompleteArrayTypeLoc ArrayLoc = 7414 TL.getAs<IncompleteArrayTypeLoc>()) 7415 Brackets = ArrayLoc.getBracketsRange(); 7416 } 7417 } 7418 7419 *ResultType 7420 = S.Context.getDependentSizedArrayType(ArrayT->getElementType(), 7421 /*NumElts=*/nullptr, 7422 ArrayT->getSizeModifier(), 7423 ArrayT->getIndexTypeCVRQualifiers(), 7424 Brackets); 7425 } 7426 7427 } 7428 } 7429 if (Kind.getKind() == InitializationKind::IK_Direct && 7430 !Kind.isExplicitCast()) { 7431 // Rebuild the ParenListExpr. 7432 SourceRange ParenRange = Kind.getParenOrBraceRange(); 7433 return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(), 7434 Args); 7435 } 7436 assert(Kind.getKind() == InitializationKind::IK_Copy || 7437 Kind.isExplicitCast() || 7438 Kind.getKind() == InitializationKind::IK_DirectList); 7439 return ExprResult(Args[0]); 7440 } 7441 7442 // No steps means no initialization. 7443 if (Steps.empty()) 7444 return ExprResult((Expr *)nullptr); 7445 7446 if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() && 7447 Args.size() == 1 && isa<InitListExpr>(Args[0]) && 7448 !Entity.isParameterKind()) { 7449 // Produce a C++98 compatibility warning if we are initializing a reference 7450 // from an initializer list. For parameters, we produce a better warning 7451 // elsewhere. 7452 Expr *Init = Args[0]; 7453 S.Diag(Init->getBeginLoc(), diag::warn_cxx98_compat_reference_list_init) 7454 << Init->getSourceRange(); 7455 } 7456 7457 // OpenCL v2.0 s6.13.11.1. atomic variables can be initialized in global scope 7458 QualType ETy = Entity.getType(); 7459 Qualifiers TyQualifiers = ETy.getQualifiers(); 7460 bool HasGlobalAS = TyQualifiers.hasAddressSpace() && 7461 TyQualifiers.getAddressSpace() == LangAS::opencl_global; 7462 7463 if (S.getLangOpts().OpenCLVersion >= 200 && 7464 ETy->isAtomicType() && !HasGlobalAS && 7465 Entity.getKind() == InitializedEntity::EK_Variable && Args.size() > 0) { 7466 S.Diag(Args[0]->getBeginLoc(), diag::err_opencl_atomic_init) 7467 << 1 7468 << SourceRange(Entity.getDecl()->getBeginLoc(), Args[0]->getEndLoc()); 7469 return ExprError(); 7470 } 7471 7472 QualType DestType = Entity.getType().getNonReferenceType(); 7473 // FIXME: Ugly hack around the fact that Entity.getType() is not 7474 // the same as Entity.getDecl()->getType() in cases involving type merging, 7475 // and we want latter when it makes sense. 7476 if (ResultType) 7477 *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() : 7478 Entity.getType(); 7479 7480 ExprResult CurInit((Expr *)nullptr); 7481 SmallVector<Expr*, 4> ArrayLoopCommonExprs; 7482 7483 // For initialization steps that start with a single initializer, 7484 // grab the only argument out the Args and place it into the "current" 7485 // initializer. 7486 switch (Steps.front().Kind) { 7487 case SK_ResolveAddressOfOverloadedFunction: 7488 case SK_CastDerivedToBaseRValue: 7489 case SK_CastDerivedToBaseXValue: 7490 case SK_CastDerivedToBaseLValue: 7491 case SK_BindReference: 7492 case SK_BindReferenceToTemporary: 7493 case SK_FinalCopy: 7494 case SK_ExtraneousCopyToTemporary: 7495 case SK_UserConversion: 7496 case SK_QualificationConversionLValue: 7497 case SK_QualificationConversionXValue: 7498 case SK_QualificationConversionRValue: 7499 case SK_AtomicConversion: 7500 case SK_ConversionSequence: 7501 case SK_ConversionSequenceNoNarrowing: 7502 case SK_ListInitialization: 7503 case SK_UnwrapInitList: 7504 case SK_RewrapInitList: 7505 case SK_CAssignment: 7506 case SK_StringInit: 7507 case SK_ObjCObjectConversion: 7508 case SK_ArrayLoopIndex: 7509 case SK_ArrayLoopInit: 7510 case SK_ArrayInit: 7511 case SK_GNUArrayInit: 7512 case SK_ParenthesizedArrayInit: 7513 case SK_PassByIndirectCopyRestore: 7514 case SK_PassByIndirectRestore: 7515 case SK_ProduceObjCObject: 7516 case SK_StdInitializerList: 7517 case SK_OCLSamplerInit: 7518 case SK_OCLZeroOpaqueType: { 7519 assert(Args.size() == 1); 7520 CurInit = Args[0]; 7521 if (!CurInit.get()) return ExprError(); 7522 break; 7523 } 7524 7525 case SK_ConstructorInitialization: 7526 case SK_ConstructorInitializationFromList: 7527 case SK_StdInitializerListConstructorCall: 7528 case SK_ZeroInitialization: 7529 break; 7530 } 7531 7532 // Promote from an unevaluated context to an unevaluated list context in 7533 // C++11 list-initialization; we need to instantiate entities usable in 7534 // constant expressions here in order to perform narrowing checks =( 7535 EnterExpressionEvaluationContext Evaluated( 7536 S, EnterExpressionEvaluationContext::InitList, 7537 CurInit.get() && isa<InitListExpr>(CurInit.get())); 7538 7539 // C++ [class.abstract]p2: 7540 // no objects of an abstract class can be created except as subobjects 7541 // of a class derived from it 7542 auto checkAbstractType = [&](QualType T) -> bool { 7543 if (Entity.getKind() == InitializedEntity::EK_Base || 7544 Entity.getKind() == InitializedEntity::EK_Delegating) 7545 return false; 7546 return S.RequireNonAbstractType(Kind.getLocation(), T, 7547 diag::err_allocation_of_abstract_type); 7548 }; 7549 7550 // Walk through the computed steps for the initialization sequence, 7551 // performing the specified conversions along the way. 7552 bool ConstructorInitRequiresZeroInit = false; 7553 for (step_iterator Step = step_begin(), StepEnd = step_end(); 7554 Step != StepEnd; ++Step) { 7555 if (CurInit.isInvalid()) 7556 return ExprError(); 7557 7558 QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType(); 7559 7560 switch (Step->Kind) { 7561 case SK_ResolveAddressOfOverloadedFunction: 7562 // Overload resolution determined which function invoke; update the 7563 // initializer to reflect that choice. 7564 S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl); 7565 if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation())) 7566 return ExprError(); 7567 CurInit = S.FixOverloadedFunctionReference(CurInit, 7568 Step->Function.FoundDecl, 7569 Step->Function.Function); 7570 break; 7571 7572 case SK_CastDerivedToBaseRValue: 7573 case SK_CastDerivedToBaseXValue: 7574 case SK_CastDerivedToBaseLValue: { 7575 // We have a derived-to-base cast that produces either an rvalue or an 7576 // lvalue. Perform that cast. 7577 7578 CXXCastPath BasePath; 7579 7580 // Casts to inaccessible base classes are allowed with C-style casts. 7581 bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast(); 7582 if (S.CheckDerivedToBaseConversion( 7583 SourceType, Step->Type, CurInit.get()->getBeginLoc(), 7584 CurInit.get()->getSourceRange(), &BasePath, IgnoreBaseAccess)) 7585 return ExprError(); 7586 7587 ExprValueKind VK = 7588 Step->Kind == SK_CastDerivedToBaseLValue ? 7589 VK_LValue : 7590 (Step->Kind == SK_CastDerivedToBaseXValue ? 7591 VK_XValue : 7592 VK_RValue); 7593 CurInit = 7594 ImplicitCastExpr::Create(S.Context, Step->Type, CK_DerivedToBase, 7595 CurInit.get(), &BasePath, VK); 7596 break; 7597 } 7598 7599 case SK_BindReference: 7600 // Reference binding does not have any corresponding ASTs. 7601 7602 // Check exception specifications 7603 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType)) 7604 return ExprError(); 7605 7606 // We don't check for e.g. function pointers here, since address 7607 // availability checks should only occur when the function first decays 7608 // into a pointer or reference. 7609 if (CurInit.get()->getType()->isFunctionProtoType()) { 7610 if (auto *DRE = dyn_cast<DeclRefExpr>(CurInit.get()->IgnoreParens())) { 7611 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { 7612 if (!S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, 7613 DRE->getBeginLoc())) 7614 return ExprError(); 7615 } 7616 } 7617 } 7618 7619 CheckForNullPointerDereference(S, CurInit.get()); 7620 break; 7621 7622 case SK_BindReferenceToTemporary: { 7623 // Make sure the "temporary" is actually an rvalue. 7624 assert(CurInit.get()->isRValue() && "not a temporary"); 7625 7626 // Check exception specifications 7627 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType)) 7628 return ExprError(); 7629 7630 // Materialize the temporary into memory. 7631 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr( 7632 Step->Type, CurInit.get(), Entity.getType()->isLValueReferenceType()); 7633 CurInit = MTE; 7634 7635 // If we're extending this temporary to automatic storage duration -- we 7636 // need to register its cleanup during the full-expression's cleanups. 7637 if (MTE->getStorageDuration() == SD_Automatic && 7638 MTE->getType().isDestructedType()) 7639 S.Cleanup.setExprNeedsCleanups(true); 7640 break; 7641 } 7642 7643 case SK_FinalCopy: 7644 if (checkAbstractType(Step->Type)) 7645 return ExprError(); 7646 7647 // If the overall initialization is initializing a temporary, we already 7648 // bound our argument if it was necessary to do so. If not (if we're 7649 // ultimately initializing a non-temporary), our argument needs to be 7650 // bound since it's initializing a function parameter. 7651 // FIXME: This is a mess. Rationalize temporary destruction. 7652 if (!shouldBindAsTemporary(Entity)) 7653 CurInit = S.MaybeBindToTemporary(CurInit.get()); 7654 CurInit = CopyObject(S, Step->Type, Entity, CurInit, 7655 /*IsExtraneousCopy=*/false); 7656 break; 7657 7658 case SK_ExtraneousCopyToTemporary: 7659 CurInit = CopyObject(S, Step->Type, Entity, CurInit, 7660 /*IsExtraneousCopy=*/true); 7661 break; 7662 7663 case SK_UserConversion: { 7664 // We have a user-defined conversion that invokes either a constructor 7665 // or a conversion function. 7666 CastKind CastKind; 7667 FunctionDecl *Fn = Step->Function.Function; 7668 DeclAccessPair FoundFn = Step->Function.FoundDecl; 7669 bool HadMultipleCandidates = Step->Function.HadMultipleCandidates; 7670 bool CreatedObject = false; 7671 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) { 7672 // Build a call to the selected constructor. 7673 SmallVector<Expr*, 8> ConstructorArgs; 7674 SourceLocation Loc = CurInit.get()->getBeginLoc(); 7675 7676 // Determine the arguments required to actually perform the constructor 7677 // call. 7678 Expr *Arg = CurInit.get(); 7679 if (S.CompleteConstructorCall(Constructor, 7680 MultiExprArg(&Arg, 1), 7681 Loc, ConstructorArgs)) 7682 return ExprError(); 7683 7684 // Build an expression that constructs a temporary. 7685 CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, 7686 FoundFn, Constructor, 7687 ConstructorArgs, 7688 HadMultipleCandidates, 7689 /*ListInit*/ false, 7690 /*StdInitListInit*/ false, 7691 /*ZeroInit*/ false, 7692 CXXConstructExpr::CK_Complete, 7693 SourceRange()); 7694 if (CurInit.isInvalid()) 7695 return ExprError(); 7696 7697 S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn, 7698 Entity); 7699 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation())) 7700 return ExprError(); 7701 7702 CastKind = CK_ConstructorConversion; 7703 CreatedObject = true; 7704 } else { 7705 // Build a call to the conversion function. 7706 CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn); 7707 S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr, 7708 FoundFn); 7709 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation())) 7710 return ExprError(); 7711 7712 CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion, 7713 HadMultipleCandidates); 7714 if (CurInit.isInvalid()) 7715 return ExprError(); 7716 7717 CastKind = CK_UserDefinedConversion; 7718 CreatedObject = Conversion->getReturnType()->isRecordType(); 7719 } 7720 7721 if (CreatedObject && checkAbstractType(CurInit.get()->getType())) 7722 return ExprError(); 7723 7724 CurInit = ImplicitCastExpr::Create(S.Context, CurInit.get()->getType(), 7725 CastKind, CurInit.get(), nullptr, 7726 CurInit.get()->getValueKind()); 7727 7728 if (shouldBindAsTemporary(Entity)) 7729 // The overall entity is temporary, so this expression should be 7730 // destroyed at the end of its full-expression. 7731 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>()); 7732 else if (CreatedObject && shouldDestroyEntity(Entity)) { 7733 // The object outlasts the full-expression, but we need to prepare for 7734 // a destructor being run on it. 7735 // FIXME: It makes no sense to do this here. This should happen 7736 // regardless of how we initialized the entity. 7737 QualType T = CurInit.get()->getType(); 7738 if (const RecordType *Record = T->getAs<RecordType>()) { 7739 CXXDestructorDecl *Destructor 7740 = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl())); 7741 S.CheckDestructorAccess(CurInit.get()->getBeginLoc(), Destructor, 7742 S.PDiag(diag::err_access_dtor_temp) << T); 7743 S.MarkFunctionReferenced(CurInit.get()->getBeginLoc(), Destructor); 7744 if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getBeginLoc())) 7745 return ExprError(); 7746 } 7747 } 7748 break; 7749 } 7750 7751 case SK_QualificationConversionLValue: 7752 case SK_QualificationConversionXValue: 7753 case SK_QualificationConversionRValue: { 7754 // Perform a qualification conversion; these can never go wrong. 7755 ExprValueKind VK = 7756 Step->Kind == SK_QualificationConversionLValue 7757 ? VK_LValue 7758 : (Step->Kind == SK_QualificationConversionXValue ? VK_XValue 7759 : VK_RValue); 7760 CurInit = S.PerformQualificationConversion(CurInit.get(), Step->Type, VK); 7761 break; 7762 } 7763 7764 case SK_AtomicConversion: { 7765 assert(CurInit.get()->isRValue() && "cannot convert glvalue to atomic"); 7766 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 7767 CK_NonAtomicToAtomic, VK_RValue); 7768 break; 7769 } 7770 7771 case SK_ConversionSequence: 7772 case SK_ConversionSequenceNoNarrowing: { 7773 if (const auto *FromPtrType = 7774 CurInit.get()->getType()->getAs<PointerType>()) { 7775 if (const auto *ToPtrType = Step->Type->getAs<PointerType>()) { 7776 if (FromPtrType->getPointeeType()->hasAttr(attr::NoDeref) && 7777 !ToPtrType->getPointeeType()->hasAttr(attr::NoDeref)) { 7778 S.Diag(CurInit.get()->getExprLoc(), 7779 diag::warn_noderef_to_dereferenceable_pointer) 7780 << CurInit.get()->getSourceRange(); 7781 } 7782 } 7783 } 7784 7785 Sema::CheckedConversionKind CCK 7786 = Kind.isCStyleCast()? Sema::CCK_CStyleCast 7787 : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast 7788 : Kind.isExplicitCast()? Sema::CCK_OtherCast 7789 : Sema::CCK_ImplicitConversion; 7790 ExprResult CurInitExprRes = 7791 S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS, 7792 getAssignmentAction(Entity), CCK); 7793 if (CurInitExprRes.isInvalid()) 7794 return ExprError(); 7795 7796 S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), CurInit.get()); 7797 7798 CurInit = CurInitExprRes; 7799 7800 if (Step->Kind == SK_ConversionSequenceNoNarrowing && 7801 S.getLangOpts().CPlusPlus) 7802 DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(), 7803 CurInit.get()); 7804 7805 break; 7806 } 7807 7808 case SK_ListInitialization: { 7809 if (checkAbstractType(Step->Type)) 7810 return ExprError(); 7811 7812 InitListExpr *InitList = cast<InitListExpr>(CurInit.get()); 7813 // If we're not initializing the top-level entity, we need to create an 7814 // InitializeTemporary entity for our target type. 7815 QualType Ty = Step->Type; 7816 bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty); 7817 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty); 7818 InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity; 7819 InitListChecker PerformInitList(S, InitEntity, 7820 InitList, Ty, /*VerifyOnly=*/false, 7821 /*TreatUnavailableAsInvalid=*/false); 7822 if (PerformInitList.HadError()) 7823 return ExprError(); 7824 7825 // Hack: We must update *ResultType if available in order to set the 7826 // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'. 7827 // Worst case: 'const int (&arref)[] = {1, 2, 3};'. 7828 if (ResultType && 7829 ResultType->getNonReferenceType()->isIncompleteArrayType()) { 7830 if ((*ResultType)->isRValueReferenceType()) 7831 Ty = S.Context.getRValueReferenceType(Ty); 7832 else if ((*ResultType)->isLValueReferenceType()) 7833 Ty = S.Context.getLValueReferenceType(Ty, 7834 (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue()); 7835 *ResultType = Ty; 7836 } 7837 7838 InitListExpr *StructuredInitList = 7839 PerformInitList.getFullyStructuredList(); 7840 CurInit.get(); 7841 CurInit = shouldBindAsTemporary(InitEntity) 7842 ? S.MaybeBindToTemporary(StructuredInitList) 7843 : StructuredInitList; 7844 break; 7845 } 7846 7847 case SK_ConstructorInitializationFromList: { 7848 if (checkAbstractType(Step->Type)) 7849 return ExprError(); 7850 7851 // When an initializer list is passed for a parameter of type "reference 7852 // to object", we don't get an EK_Temporary entity, but instead an 7853 // EK_Parameter entity with reference type. 7854 // FIXME: This is a hack. What we really should do is create a user 7855 // conversion step for this case, but this makes it considerably more 7856 // complicated. For now, this will do. 7857 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( 7858 Entity.getType().getNonReferenceType()); 7859 bool UseTemporary = Entity.getType()->isReferenceType(); 7860 assert(Args.size() == 1 && "expected a single argument for list init"); 7861 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 7862 S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init) 7863 << InitList->getSourceRange(); 7864 MultiExprArg Arg(InitList->getInits(), InitList->getNumInits()); 7865 CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity : 7866 Entity, 7867 Kind, Arg, *Step, 7868 ConstructorInitRequiresZeroInit, 7869 /*IsListInitialization*/true, 7870 /*IsStdInitListInit*/false, 7871 InitList->getLBraceLoc(), 7872 InitList->getRBraceLoc()); 7873 break; 7874 } 7875 7876 case SK_UnwrapInitList: 7877 CurInit = cast<InitListExpr>(CurInit.get())->getInit(0); 7878 break; 7879 7880 case SK_RewrapInitList: { 7881 Expr *E = CurInit.get(); 7882 InitListExpr *Syntactic = Step->WrappingSyntacticList; 7883 InitListExpr *ILE = new (S.Context) InitListExpr(S.Context, 7884 Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc()); 7885 ILE->setSyntacticForm(Syntactic); 7886 ILE->setType(E->getType()); 7887 ILE->setValueKind(E->getValueKind()); 7888 CurInit = ILE; 7889 break; 7890 } 7891 7892 case SK_ConstructorInitialization: 7893 case SK_StdInitializerListConstructorCall: { 7894 if (checkAbstractType(Step->Type)) 7895 return ExprError(); 7896 7897 // When an initializer list is passed for a parameter of type "reference 7898 // to object", we don't get an EK_Temporary entity, but instead an 7899 // EK_Parameter entity with reference type. 7900 // FIXME: This is a hack. What we really should do is create a user 7901 // conversion step for this case, but this makes it considerably more 7902 // complicated. For now, this will do. 7903 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( 7904 Entity.getType().getNonReferenceType()); 7905 bool UseTemporary = Entity.getType()->isReferenceType(); 7906 bool IsStdInitListInit = 7907 Step->Kind == SK_StdInitializerListConstructorCall; 7908 Expr *Source = CurInit.get(); 7909 SourceRange Range = Kind.hasParenOrBraceRange() 7910 ? Kind.getParenOrBraceRange() 7911 : SourceRange(); 7912 CurInit = PerformConstructorInitialization( 7913 S, UseTemporary ? TempEntity : Entity, Kind, 7914 Source ? MultiExprArg(Source) : Args, *Step, 7915 ConstructorInitRequiresZeroInit, 7916 /*IsListInitialization*/ IsStdInitListInit, 7917 /*IsStdInitListInitialization*/ IsStdInitListInit, 7918 /*LBraceLoc*/ Range.getBegin(), 7919 /*RBraceLoc*/ Range.getEnd()); 7920 break; 7921 } 7922 7923 case SK_ZeroInitialization: { 7924 step_iterator NextStep = Step; 7925 ++NextStep; 7926 if (NextStep != StepEnd && 7927 (NextStep->Kind == SK_ConstructorInitialization || 7928 NextStep->Kind == SK_ConstructorInitializationFromList)) { 7929 // The need for zero-initialization is recorded directly into 7930 // the call to the object's constructor within the next step. 7931 ConstructorInitRequiresZeroInit = true; 7932 } else if (Kind.getKind() == InitializationKind::IK_Value && 7933 S.getLangOpts().CPlusPlus && 7934 !Kind.isImplicitValueInit()) { 7935 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); 7936 if (!TSInfo) 7937 TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type, 7938 Kind.getRange().getBegin()); 7939 7940 CurInit = new (S.Context) CXXScalarValueInitExpr( 7941 Entity.getType().getNonLValueExprType(S.Context), TSInfo, 7942 Kind.getRange().getEnd()); 7943 } else { 7944 CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type); 7945 } 7946 break; 7947 } 7948 7949 case SK_CAssignment: { 7950 QualType SourceType = CurInit.get()->getType(); 7951 7952 // Save off the initial CurInit in case we need to emit a diagnostic 7953 ExprResult InitialCurInit = CurInit; 7954 ExprResult Result = CurInit; 7955 Sema::AssignConvertType ConvTy = 7956 S.CheckSingleAssignmentConstraints(Step->Type, Result, true, 7957 Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited); 7958 if (Result.isInvalid()) 7959 return ExprError(); 7960 CurInit = Result; 7961 7962 // If this is a call, allow conversion to a transparent union. 7963 ExprResult CurInitExprRes = CurInit; 7964 if (ConvTy != Sema::Compatible && 7965 Entity.isParameterKind() && 7966 S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes) 7967 == Sema::Compatible) 7968 ConvTy = Sema::Compatible; 7969 if (CurInitExprRes.isInvalid()) 7970 return ExprError(); 7971 CurInit = CurInitExprRes; 7972 7973 bool Complained; 7974 if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(), 7975 Step->Type, SourceType, 7976 InitialCurInit.get(), 7977 getAssignmentAction(Entity, true), 7978 &Complained)) { 7979 PrintInitLocationNote(S, Entity); 7980 return ExprError(); 7981 } else if (Complained) 7982 PrintInitLocationNote(S, Entity); 7983 break; 7984 } 7985 7986 case SK_StringInit: { 7987 QualType Ty = Step->Type; 7988 CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty, 7989 S.Context.getAsArrayType(Ty), S); 7990 break; 7991 } 7992 7993 case SK_ObjCObjectConversion: 7994 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 7995 CK_ObjCObjectLValueCast, 7996 CurInit.get()->getValueKind()); 7997 break; 7998 7999 case SK_ArrayLoopIndex: { 8000 Expr *Cur = CurInit.get(); 8001 Expr *BaseExpr = new (S.Context) 8002 OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(), 8003 Cur->getValueKind(), Cur->getObjectKind(), Cur); 8004 Expr *IndexExpr = 8005 new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType()); 8006 CurInit = S.CreateBuiltinArraySubscriptExpr( 8007 BaseExpr, Kind.getLocation(), IndexExpr, Kind.getLocation()); 8008 ArrayLoopCommonExprs.push_back(BaseExpr); 8009 break; 8010 } 8011 8012 case SK_ArrayLoopInit: { 8013 assert(!ArrayLoopCommonExprs.empty() && 8014 "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit"); 8015 Expr *Common = ArrayLoopCommonExprs.pop_back_val(); 8016 CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common, 8017 CurInit.get()); 8018 break; 8019 } 8020 8021 case SK_GNUArrayInit: 8022 // Okay: we checked everything before creating this step. Note that 8023 // this is a GNU extension. 8024 S.Diag(Kind.getLocation(), diag::ext_array_init_copy) 8025 << Step->Type << CurInit.get()->getType() 8026 << CurInit.get()->getSourceRange(); 8027 updateGNUCompoundLiteralRValue(CurInit.get()); 8028 LLVM_FALLTHROUGH; 8029 case SK_ArrayInit: 8030 // If the destination type is an incomplete array type, update the 8031 // type accordingly. 8032 if (ResultType) { 8033 if (const IncompleteArrayType *IncompleteDest 8034 = S.Context.getAsIncompleteArrayType(Step->Type)) { 8035 if (const ConstantArrayType *ConstantSource 8036 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) { 8037 *ResultType = S.Context.getConstantArrayType( 8038 IncompleteDest->getElementType(), 8039 ConstantSource->getSize(), 8040 ArrayType::Normal, 0); 8041 } 8042 } 8043 } 8044 break; 8045 8046 case SK_ParenthesizedArrayInit: 8047 // Okay: we checked everything before creating this step. Note that 8048 // this is a GNU extension. 8049 S.Diag(Kind.getLocation(), diag::ext_array_init_parens) 8050 << CurInit.get()->getSourceRange(); 8051 break; 8052 8053 case SK_PassByIndirectCopyRestore: 8054 case SK_PassByIndirectRestore: 8055 checkIndirectCopyRestoreSource(S, CurInit.get()); 8056 CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr( 8057 CurInit.get(), Step->Type, 8058 Step->Kind == SK_PassByIndirectCopyRestore); 8059 break; 8060 8061 case SK_ProduceObjCObject: 8062 CurInit = 8063 ImplicitCastExpr::Create(S.Context, Step->Type, CK_ARCProduceObject, 8064 CurInit.get(), nullptr, VK_RValue); 8065 break; 8066 8067 case SK_StdInitializerList: { 8068 S.Diag(CurInit.get()->getExprLoc(), 8069 diag::warn_cxx98_compat_initializer_list_init) 8070 << CurInit.get()->getSourceRange(); 8071 8072 // Materialize the temporary into memory. 8073 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr( 8074 CurInit.get()->getType(), CurInit.get(), 8075 /*BoundToLvalueReference=*/false); 8076 8077 // Wrap it in a construction of a std::initializer_list<T>. 8078 CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE); 8079 8080 // Bind the result, in case the library has given initializer_list a 8081 // non-trivial destructor. 8082 if (shouldBindAsTemporary(Entity)) 8083 CurInit = S.MaybeBindToTemporary(CurInit.get()); 8084 break; 8085 } 8086 8087 case SK_OCLSamplerInit: { 8088 // Sampler initialization have 5 cases: 8089 // 1. function argument passing 8090 // 1a. argument is a file-scope variable 8091 // 1b. argument is a function-scope variable 8092 // 1c. argument is one of caller function's parameters 8093 // 2. variable initialization 8094 // 2a. initializing a file-scope variable 8095 // 2b. initializing a function-scope variable 8096 // 8097 // For file-scope variables, since they cannot be initialized by function 8098 // call of __translate_sampler_initializer in LLVM IR, their references 8099 // need to be replaced by a cast from their literal initializers to 8100 // sampler type. Since sampler variables can only be used in function 8101 // calls as arguments, we only need to replace them when handling the 8102 // argument passing. 8103 assert(Step->Type->isSamplerT() && 8104 "Sampler initialization on non-sampler type."); 8105 Expr *Init = CurInit.get(); 8106 QualType SourceType = Init->getType(); 8107 // Case 1 8108 if (Entity.isParameterKind()) { 8109 if (!SourceType->isSamplerT() && !SourceType->isIntegerType()) { 8110 S.Diag(Kind.getLocation(), diag::err_sampler_argument_required) 8111 << SourceType; 8112 break; 8113 } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init)) { 8114 auto Var = cast<VarDecl>(DRE->getDecl()); 8115 // Case 1b and 1c 8116 // No cast from integer to sampler is needed. 8117 if (!Var->hasGlobalStorage()) { 8118 CurInit = ImplicitCastExpr::Create(S.Context, Step->Type, 8119 CK_LValueToRValue, Init, 8120 /*BasePath=*/nullptr, VK_RValue); 8121 break; 8122 } 8123 // Case 1a 8124 // For function call with a file-scope sampler variable as argument, 8125 // get the integer literal. 8126 // Do not diagnose if the file-scope variable does not have initializer 8127 // since this has already been diagnosed when parsing the variable 8128 // declaration. 8129 if (!Var->getInit() || !isa<ImplicitCastExpr>(Var->getInit())) 8130 break; 8131 Init = cast<ImplicitCastExpr>(const_cast<Expr*>( 8132 Var->getInit()))->getSubExpr(); 8133 SourceType = Init->getType(); 8134 } 8135 } else { 8136 // Case 2 8137 // Check initializer is 32 bit integer constant. 8138 // If the initializer is taken from global variable, do not diagnose since 8139 // this has already been done when parsing the variable declaration. 8140 if (!Init->isConstantInitializer(S.Context, false)) 8141 break; 8142 8143 if (!SourceType->isIntegerType() || 8144 32 != S.Context.getIntWidth(SourceType)) { 8145 S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer) 8146 << SourceType; 8147 break; 8148 } 8149 8150 Expr::EvalResult EVResult; 8151 Init->EvaluateAsInt(EVResult, S.Context); 8152 llvm::APSInt Result = EVResult.Val.getInt(); 8153 const uint64_t SamplerValue = Result.getLimitedValue(); 8154 // 32-bit value of sampler's initializer is interpreted as 8155 // bit-field with the following structure: 8156 // |unspecified|Filter|Addressing Mode| Normalized Coords| 8157 // |31 6|5 4|3 1| 0| 8158 // This structure corresponds to enum values of sampler properties 8159 // defined in SPIR spec v1.2 and also opencl-c.h 8160 unsigned AddressingMode = (0x0E & SamplerValue) >> 1; 8161 unsigned FilterMode = (0x30 & SamplerValue) >> 4; 8162 if (FilterMode != 1 && FilterMode != 2 && 8163 !S.getOpenCLOptions().isEnabled( 8164 "cl_intel_device_side_avc_motion_estimation")) 8165 S.Diag(Kind.getLocation(), 8166 diag::warn_sampler_initializer_invalid_bits) 8167 << "Filter Mode"; 8168 if (AddressingMode > 4) 8169 S.Diag(Kind.getLocation(), 8170 diag::warn_sampler_initializer_invalid_bits) 8171 << "Addressing Mode"; 8172 } 8173 8174 // Cases 1a, 2a and 2b 8175 // Insert cast from integer to sampler. 8176 CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy, 8177 CK_IntToOCLSampler); 8178 break; 8179 } 8180 case SK_OCLZeroOpaqueType: { 8181 assert((Step->Type->isEventT() || Step->Type->isQueueT() || 8182 Step->Type->isOCLIntelSubgroupAVCType()) && 8183 "Wrong type for initialization of OpenCL opaque type."); 8184 8185 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, 8186 CK_ZeroToOCLOpaqueType, 8187 CurInit.get()->getValueKind()); 8188 break; 8189 } 8190 } 8191 } 8192 8193 // Check whether the initializer has a shorter lifetime than the initialized 8194 // entity, and if not, either lifetime-extend or warn as appropriate. 8195 if (auto *Init = CurInit.get()) 8196 S.checkInitializerLifetime(Entity, Init); 8197 8198 // Diagnose non-fatal problems with the completed initialization. 8199 if (Entity.getKind() == InitializedEntity::EK_Member && 8200 cast<FieldDecl>(Entity.getDecl())->isBitField()) 8201 S.CheckBitFieldInitialization(Kind.getLocation(), 8202 cast<FieldDecl>(Entity.getDecl()), 8203 CurInit.get()); 8204 8205 // Check for std::move on construction. 8206 if (const Expr *E = CurInit.get()) { 8207 CheckMoveOnConstruction(S, E, 8208 Entity.getKind() == InitializedEntity::EK_Result); 8209 } 8210 8211 return CurInit; 8212 } 8213 8214 /// Somewhere within T there is an uninitialized reference subobject. 8215 /// Dig it out and diagnose it. 8216 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc, 8217 QualType T) { 8218 if (T->isReferenceType()) { 8219 S.Diag(Loc, diag::err_reference_without_init) 8220 << T.getNonReferenceType(); 8221 return true; 8222 } 8223 8224 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 8225 if (!RD || !RD->hasUninitializedReferenceMember()) 8226 return false; 8227 8228 for (const auto *FI : RD->fields()) { 8229 if (FI->isUnnamedBitfield()) 8230 continue; 8231 8232 if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) { 8233 S.Diag(Loc, diag::note_value_initialization_here) << RD; 8234 return true; 8235 } 8236 } 8237 8238 for (const auto &BI : RD->bases()) { 8239 if (DiagnoseUninitializedReference(S, BI.getBeginLoc(), BI.getType())) { 8240 S.Diag(Loc, diag::note_value_initialization_here) << RD; 8241 return true; 8242 } 8243 } 8244 8245 return false; 8246 } 8247 8248 8249 //===----------------------------------------------------------------------===// 8250 // Diagnose initialization failures 8251 //===----------------------------------------------------------------------===// 8252 8253 /// Emit notes associated with an initialization that failed due to a 8254 /// "simple" conversion failure. 8255 static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity, 8256 Expr *op) { 8257 QualType destType = entity.getType(); 8258 if (destType.getNonReferenceType()->isObjCObjectPointerType() && 8259 op->getType()->isObjCObjectPointerType()) { 8260 8261 // Emit a possible note about the conversion failing because the 8262 // operand is a message send with a related result type. 8263 S.EmitRelatedResultTypeNote(op); 8264 8265 // Emit a possible note about a return failing because we're 8266 // expecting a related result type. 8267 if (entity.getKind() == InitializedEntity::EK_Result) 8268 S.EmitRelatedResultTypeNoteForReturn(destType); 8269 } 8270 } 8271 8272 static void diagnoseListInit(Sema &S, const InitializedEntity &Entity, 8273 InitListExpr *InitList) { 8274 QualType DestType = Entity.getType(); 8275 8276 QualType E; 8277 if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) { 8278 QualType ArrayType = S.Context.getConstantArrayType( 8279 E.withConst(), 8280 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()), 8281 InitList->getNumInits()), 8282 clang::ArrayType::Normal, 0); 8283 InitializedEntity HiddenArray = 8284 InitializedEntity::InitializeTemporary(ArrayType); 8285 return diagnoseListInit(S, HiddenArray, InitList); 8286 } 8287 8288 if (DestType->isReferenceType()) { 8289 // A list-initialization failure for a reference means that we tried to 8290 // create a temporary of the inner type (per [dcl.init.list]p3.6) and the 8291 // inner initialization failed. 8292 QualType T = DestType->getAs<ReferenceType>()->getPointeeType(); 8293 diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList); 8294 SourceLocation Loc = InitList->getBeginLoc(); 8295 if (auto *D = Entity.getDecl()) 8296 Loc = D->getLocation(); 8297 S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T; 8298 return; 8299 } 8300 8301 InitListChecker DiagnoseInitList(S, Entity, InitList, DestType, 8302 /*VerifyOnly=*/false, 8303 /*TreatUnavailableAsInvalid=*/false); 8304 assert(DiagnoseInitList.HadError() && 8305 "Inconsistent init list check result."); 8306 } 8307 8308 bool InitializationSequence::Diagnose(Sema &S, 8309 const InitializedEntity &Entity, 8310 const InitializationKind &Kind, 8311 ArrayRef<Expr *> Args) { 8312 if (!Failed()) 8313 return false; 8314 8315 // When we want to diagnose only one element of a braced-init-list, 8316 // we need to factor it out. 8317 Expr *OnlyArg; 8318 if (Args.size() == 1) { 8319 auto *List = dyn_cast<InitListExpr>(Args[0]); 8320 if (List && List->getNumInits() == 1) 8321 OnlyArg = List->getInit(0); 8322 else 8323 OnlyArg = Args[0]; 8324 } 8325 else 8326 OnlyArg = nullptr; 8327 8328 QualType DestType = Entity.getType(); 8329 switch (Failure) { 8330 case FK_TooManyInitsForReference: 8331 // FIXME: Customize for the initialized entity? 8332 if (Args.empty()) { 8333 // Dig out the reference subobject which is uninitialized and diagnose it. 8334 // If this is value-initialization, this could be nested some way within 8335 // the target type. 8336 assert(Kind.getKind() == InitializationKind::IK_Value || 8337 DestType->isReferenceType()); 8338 bool Diagnosed = 8339 DiagnoseUninitializedReference(S, Kind.getLocation(), DestType); 8340 assert(Diagnosed && "couldn't find uninitialized reference to diagnose"); 8341 (void)Diagnosed; 8342 } else // FIXME: diagnostic below could be better! 8343 S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits) 8344 << SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc()); 8345 break; 8346 case FK_ParenthesizedListInitForReference: 8347 S.Diag(Kind.getLocation(), diag::err_list_init_in_parens) 8348 << 1 << Entity.getType() << Args[0]->getSourceRange(); 8349 break; 8350 8351 case FK_ArrayNeedsInitList: 8352 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0; 8353 break; 8354 case FK_ArrayNeedsInitListOrStringLiteral: 8355 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1; 8356 break; 8357 case FK_ArrayNeedsInitListOrWideStringLiteral: 8358 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2; 8359 break; 8360 case FK_NarrowStringIntoWideCharArray: 8361 S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar); 8362 break; 8363 case FK_WideStringIntoCharArray: 8364 S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char); 8365 break; 8366 case FK_IncompatWideStringIntoWideChar: 8367 S.Diag(Kind.getLocation(), 8368 diag::err_array_init_incompat_wide_string_into_wchar); 8369 break; 8370 case FK_PlainStringIntoUTF8Char: 8371 S.Diag(Kind.getLocation(), 8372 diag::err_array_init_plain_string_into_char8_t); 8373 S.Diag(Args.front()->getBeginLoc(), 8374 diag::note_array_init_plain_string_into_char8_t) 8375 << FixItHint::CreateInsertion(Args.front()->getBeginLoc(), "u8"); 8376 break; 8377 case FK_UTF8StringIntoPlainChar: 8378 S.Diag(Kind.getLocation(), 8379 diag::err_array_init_utf8_string_into_char) 8380 << S.getLangOpts().CPlusPlus2a; 8381 break; 8382 case FK_ArrayTypeMismatch: 8383 case FK_NonConstantArrayInit: 8384 S.Diag(Kind.getLocation(), 8385 (Failure == FK_ArrayTypeMismatch 8386 ? diag::err_array_init_different_type 8387 : diag::err_array_init_non_constant_array)) 8388 << DestType.getNonReferenceType() 8389 << OnlyArg->getType() 8390 << Args[0]->getSourceRange(); 8391 break; 8392 8393 case FK_VariableLengthArrayHasInitializer: 8394 S.Diag(Kind.getLocation(), diag::err_variable_object_no_init) 8395 << Args[0]->getSourceRange(); 8396 break; 8397 8398 case FK_AddressOfOverloadFailed: { 8399 DeclAccessPair Found; 8400 S.ResolveAddressOfOverloadedFunction(OnlyArg, 8401 DestType.getNonReferenceType(), 8402 true, 8403 Found); 8404 break; 8405 } 8406 8407 case FK_AddressOfUnaddressableFunction: { 8408 auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(OnlyArg)->getDecl()); 8409 S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, 8410 OnlyArg->getBeginLoc()); 8411 break; 8412 } 8413 8414 case FK_ReferenceInitOverloadFailed: 8415 case FK_UserConversionOverloadFailed: 8416 switch (FailedOverloadResult) { 8417 case OR_Ambiguous: 8418 8419 FailedCandidateSet.NoteCandidates( 8420 PartialDiagnosticAt( 8421 Kind.getLocation(), 8422 Failure == FK_UserConversionOverloadFailed 8423 ? (S.PDiag(diag::err_typecheck_ambiguous_condition) 8424 << OnlyArg->getType() << DestType 8425 << Args[0]->getSourceRange()) 8426 : (S.PDiag(diag::err_ref_init_ambiguous) 8427 << DestType << OnlyArg->getType() 8428 << Args[0]->getSourceRange())), 8429 S, OCD_ViableCandidates, Args); 8430 break; 8431 8432 case OR_No_Viable_Function: { 8433 auto Cands = FailedCandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args); 8434 if (!S.RequireCompleteType(Kind.getLocation(), 8435 DestType.getNonReferenceType(), 8436 diag::err_typecheck_nonviable_condition_incomplete, 8437 OnlyArg->getType(), Args[0]->getSourceRange())) 8438 S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition) 8439 << (Entity.getKind() == InitializedEntity::EK_Result) 8440 << OnlyArg->getType() << Args[0]->getSourceRange() 8441 << DestType.getNonReferenceType(); 8442 8443 FailedCandidateSet.NoteCandidates(S, Args, Cands); 8444 break; 8445 } 8446 case OR_Deleted: { 8447 S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function) 8448 << OnlyArg->getType() << DestType.getNonReferenceType() 8449 << Args[0]->getSourceRange(); 8450 OverloadCandidateSet::iterator Best; 8451 OverloadingResult Ovl 8452 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 8453 if (Ovl == OR_Deleted) { 8454 S.NoteDeletedFunction(Best->Function); 8455 } else { 8456 llvm_unreachable("Inconsistent overload resolution?"); 8457 } 8458 break; 8459 } 8460 8461 case OR_Success: 8462 llvm_unreachable("Conversion did not fail!"); 8463 } 8464 break; 8465 8466 case FK_NonConstLValueReferenceBindingToTemporary: 8467 if (isa<InitListExpr>(Args[0])) { 8468 S.Diag(Kind.getLocation(), 8469 diag::err_lvalue_reference_bind_to_initlist) 8470 << DestType.getNonReferenceType().isVolatileQualified() 8471 << DestType.getNonReferenceType() 8472 << Args[0]->getSourceRange(); 8473 break; 8474 } 8475 LLVM_FALLTHROUGH; 8476 8477 case FK_NonConstLValueReferenceBindingToUnrelated: 8478 S.Diag(Kind.getLocation(), 8479 Failure == FK_NonConstLValueReferenceBindingToTemporary 8480 ? diag::err_lvalue_reference_bind_to_temporary 8481 : diag::err_lvalue_reference_bind_to_unrelated) 8482 << DestType.getNonReferenceType().isVolatileQualified() 8483 << DestType.getNonReferenceType() 8484 << OnlyArg->getType() 8485 << Args[0]->getSourceRange(); 8486 break; 8487 8488 case FK_NonConstLValueReferenceBindingToBitfield: { 8489 // We don't necessarily have an unambiguous source bit-field. 8490 FieldDecl *BitField = Args[0]->getSourceBitField(); 8491 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield) 8492 << DestType.isVolatileQualified() 8493 << (BitField ? BitField->getDeclName() : DeclarationName()) 8494 << (BitField != nullptr) 8495 << Args[0]->getSourceRange(); 8496 if (BitField) 8497 S.Diag(BitField->getLocation(), diag::note_bitfield_decl); 8498 break; 8499 } 8500 8501 case FK_NonConstLValueReferenceBindingToVectorElement: 8502 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element) 8503 << DestType.isVolatileQualified() 8504 << Args[0]->getSourceRange(); 8505 break; 8506 8507 case FK_RValueReferenceBindingToLValue: 8508 S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref) 8509 << DestType.getNonReferenceType() << OnlyArg->getType() 8510 << Args[0]->getSourceRange(); 8511 break; 8512 8513 case FK_ReferenceAddrspaceMismatchTemporary: 8514 S.Diag(Kind.getLocation(), diag::err_reference_bind_temporary_addrspace) 8515 << DestType << Args[0]->getSourceRange(); 8516 break; 8517 8518 case FK_ReferenceInitDropsQualifiers: { 8519 QualType SourceType = OnlyArg->getType(); 8520 QualType NonRefType = DestType.getNonReferenceType(); 8521 Qualifiers DroppedQualifiers = 8522 SourceType.getQualifiers() - NonRefType.getQualifiers(); 8523 8524 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) 8525 << SourceType 8526 << NonRefType 8527 << DroppedQualifiers.getCVRQualifiers() 8528 << Args[0]->getSourceRange(); 8529 break; 8530 } 8531 8532 case FK_ReferenceInitFailed: 8533 S.Diag(Kind.getLocation(), diag::err_reference_bind_failed) 8534 << DestType.getNonReferenceType() 8535 << DestType.getNonReferenceType()->isIncompleteType() 8536 << OnlyArg->isLValue() 8537 << OnlyArg->getType() 8538 << Args[0]->getSourceRange(); 8539 emitBadConversionNotes(S, Entity, Args[0]); 8540 break; 8541 8542 case FK_ConversionFailed: { 8543 QualType FromType = OnlyArg->getType(); 8544 PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed) 8545 << (int)Entity.getKind() 8546 << DestType 8547 << OnlyArg->isLValue() 8548 << FromType 8549 << Args[0]->getSourceRange(); 8550 S.HandleFunctionTypeMismatch(PDiag, FromType, DestType); 8551 S.Diag(Kind.getLocation(), PDiag); 8552 emitBadConversionNotes(S, Entity, Args[0]); 8553 break; 8554 } 8555 8556 case FK_ConversionFromPropertyFailed: 8557 // No-op. This error has already been reported. 8558 break; 8559 8560 case FK_TooManyInitsForScalar: { 8561 SourceRange R; 8562 8563 auto *InitList = dyn_cast<InitListExpr>(Args[0]); 8564 if (InitList && InitList->getNumInits() >= 1) { 8565 R = SourceRange(InitList->getInit(0)->getEndLoc(), InitList->getEndLoc()); 8566 } else { 8567 assert(Args.size() > 1 && "Expected multiple initializers!"); 8568 R = SourceRange(Args.front()->getEndLoc(), Args.back()->getEndLoc()); 8569 } 8570 8571 R.setBegin(S.getLocForEndOfToken(R.getBegin())); 8572 if (Kind.isCStyleOrFunctionalCast()) 8573 S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg) 8574 << R; 8575 else 8576 S.Diag(Kind.getLocation(), diag::err_excess_initializers) 8577 << /*scalar=*/2 << R; 8578 break; 8579 } 8580 8581 case FK_ParenthesizedListInitForScalar: 8582 S.Diag(Kind.getLocation(), diag::err_list_init_in_parens) 8583 << 0 << Entity.getType() << Args[0]->getSourceRange(); 8584 break; 8585 8586 case FK_ReferenceBindingToInitList: 8587 S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list) 8588 << DestType.getNonReferenceType() << Args[0]->getSourceRange(); 8589 break; 8590 8591 case FK_InitListBadDestinationType: 8592 S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type) 8593 << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange(); 8594 break; 8595 8596 case FK_ListConstructorOverloadFailed: 8597 case FK_ConstructorOverloadFailed: { 8598 SourceRange ArgsRange; 8599 if (Args.size()) 8600 ArgsRange = 8601 SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc()); 8602 8603 if (Failure == FK_ListConstructorOverloadFailed) { 8604 assert(Args.size() == 1 && 8605 "List construction from other than 1 argument."); 8606 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 8607 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits()); 8608 } 8609 8610 // FIXME: Using "DestType" for the entity we're printing is probably 8611 // bad. 8612 switch (FailedOverloadResult) { 8613 case OR_Ambiguous: 8614 FailedCandidateSet.NoteCandidates( 8615 PartialDiagnosticAt(Kind.getLocation(), 8616 S.PDiag(diag::err_ovl_ambiguous_init) 8617 << DestType << ArgsRange), 8618 S, OCD_ViableCandidates, Args); 8619 break; 8620 8621 case OR_No_Viable_Function: 8622 if (Kind.getKind() == InitializationKind::IK_Default && 8623 (Entity.getKind() == InitializedEntity::EK_Base || 8624 Entity.getKind() == InitializedEntity::EK_Member) && 8625 isa<CXXConstructorDecl>(S.CurContext)) { 8626 // This is implicit default initialization of a member or 8627 // base within a constructor. If no viable function was 8628 // found, notify the user that they need to explicitly 8629 // initialize this base/member. 8630 CXXConstructorDecl *Constructor 8631 = cast<CXXConstructorDecl>(S.CurContext); 8632 const CXXRecordDecl *InheritedFrom = nullptr; 8633 if (auto Inherited = Constructor->getInheritedConstructor()) 8634 InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass(); 8635 if (Entity.getKind() == InitializedEntity::EK_Base) { 8636 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) 8637 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0) 8638 << S.Context.getTypeDeclType(Constructor->getParent()) 8639 << /*base=*/0 8640 << Entity.getType() 8641 << InheritedFrom; 8642 8643 RecordDecl *BaseDecl 8644 = Entity.getBaseSpecifier()->getType()->getAs<RecordType>() 8645 ->getDecl(); 8646 S.Diag(BaseDecl->getLocation(), diag::note_previous_decl) 8647 << S.Context.getTagDeclType(BaseDecl); 8648 } else { 8649 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) 8650 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0) 8651 << S.Context.getTypeDeclType(Constructor->getParent()) 8652 << /*member=*/1 8653 << Entity.getName() 8654 << InheritedFrom; 8655 S.Diag(Entity.getDecl()->getLocation(), 8656 diag::note_member_declared_at); 8657 8658 if (const RecordType *Record 8659 = Entity.getType()->getAs<RecordType>()) 8660 S.Diag(Record->getDecl()->getLocation(), 8661 diag::note_previous_decl) 8662 << S.Context.getTagDeclType(Record->getDecl()); 8663 } 8664 break; 8665 } 8666 8667 FailedCandidateSet.NoteCandidates( 8668 PartialDiagnosticAt( 8669 Kind.getLocation(), 8670 S.PDiag(diag::err_ovl_no_viable_function_in_init) 8671 << DestType << ArgsRange), 8672 S, OCD_AllCandidates, Args); 8673 break; 8674 8675 case OR_Deleted: { 8676 OverloadCandidateSet::iterator Best; 8677 OverloadingResult Ovl 8678 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 8679 if (Ovl != OR_Deleted) { 8680 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) 8681 << DestType << ArgsRange; 8682 llvm_unreachable("Inconsistent overload resolution?"); 8683 break; 8684 } 8685 8686 // If this is a defaulted or implicitly-declared function, then 8687 // it was implicitly deleted. Make it clear that the deletion was 8688 // implicit. 8689 if (S.isImplicitlyDeleted(Best->Function)) 8690 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init) 8691 << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function)) 8692 << DestType << ArgsRange; 8693 else 8694 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) 8695 << DestType << ArgsRange; 8696 8697 S.NoteDeletedFunction(Best->Function); 8698 break; 8699 } 8700 8701 case OR_Success: 8702 llvm_unreachable("Conversion did not fail!"); 8703 } 8704 } 8705 break; 8706 8707 case FK_DefaultInitOfConst: 8708 if (Entity.getKind() == InitializedEntity::EK_Member && 8709 isa<CXXConstructorDecl>(S.CurContext)) { 8710 // This is implicit default-initialization of a const member in 8711 // a constructor. Complain that it needs to be explicitly 8712 // initialized. 8713 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext); 8714 S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor) 8715 << (Constructor->getInheritedConstructor() ? 2 : 8716 Constructor->isImplicit() ? 1 : 0) 8717 << S.Context.getTypeDeclType(Constructor->getParent()) 8718 << /*const=*/1 8719 << Entity.getName(); 8720 S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl) 8721 << Entity.getName(); 8722 } else { 8723 S.Diag(Kind.getLocation(), diag::err_default_init_const) 8724 << DestType << (bool)DestType->getAs<RecordType>(); 8725 } 8726 break; 8727 8728 case FK_Incomplete: 8729 S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType, 8730 diag::err_init_incomplete_type); 8731 break; 8732 8733 case FK_ListInitializationFailed: { 8734 // Run the init list checker again to emit diagnostics. 8735 InitListExpr *InitList = cast<InitListExpr>(Args[0]); 8736 diagnoseListInit(S, Entity, InitList); 8737 break; 8738 } 8739 8740 case FK_PlaceholderType: { 8741 // FIXME: Already diagnosed! 8742 break; 8743 } 8744 8745 case FK_ExplicitConstructor: { 8746 S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor) 8747 << Args[0]->getSourceRange(); 8748 OverloadCandidateSet::iterator Best; 8749 OverloadingResult Ovl 8750 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); 8751 (void)Ovl; 8752 assert(Ovl == OR_Success && "Inconsistent overload resolution"); 8753 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); 8754 S.Diag(CtorDecl->getLocation(), 8755 diag::note_explicit_ctor_deduction_guide_here) << false; 8756 break; 8757 } 8758 } 8759 8760 PrintInitLocationNote(S, Entity); 8761 return true; 8762 } 8763 8764 void InitializationSequence::dump(raw_ostream &OS) const { 8765 switch (SequenceKind) { 8766 case FailedSequence: { 8767 OS << "Failed sequence: "; 8768 switch (Failure) { 8769 case FK_TooManyInitsForReference: 8770 OS << "too many initializers for reference"; 8771 break; 8772 8773 case FK_ParenthesizedListInitForReference: 8774 OS << "parenthesized list init for reference"; 8775 break; 8776 8777 case FK_ArrayNeedsInitList: 8778 OS << "array requires initializer list"; 8779 break; 8780 8781 case FK_AddressOfUnaddressableFunction: 8782 OS << "address of unaddressable function was taken"; 8783 break; 8784 8785 case FK_ArrayNeedsInitListOrStringLiteral: 8786 OS << "array requires initializer list or string literal"; 8787 break; 8788 8789 case FK_ArrayNeedsInitListOrWideStringLiteral: 8790 OS << "array requires initializer list or wide string literal"; 8791 break; 8792 8793 case FK_NarrowStringIntoWideCharArray: 8794 OS << "narrow string into wide char array"; 8795 break; 8796 8797 case FK_WideStringIntoCharArray: 8798 OS << "wide string into char array"; 8799 break; 8800 8801 case FK_IncompatWideStringIntoWideChar: 8802 OS << "incompatible wide string into wide char array"; 8803 break; 8804 8805 case FK_PlainStringIntoUTF8Char: 8806 OS << "plain string literal into char8_t array"; 8807 break; 8808 8809 case FK_UTF8StringIntoPlainChar: 8810 OS << "u8 string literal into char array"; 8811 break; 8812 8813 case FK_ArrayTypeMismatch: 8814 OS << "array type mismatch"; 8815 break; 8816 8817 case FK_NonConstantArrayInit: 8818 OS << "non-constant array initializer"; 8819 break; 8820 8821 case FK_AddressOfOverloadFailed: 8822 OS << "address of overloaded function failed"; 8823 break; 8824 8825 case FK_ReferenceInitOverloadFailed: 8826 OS << "overload resolution for reference initialization failed"; 8827 break; 8828 8829 case FK_NonConstLValueReferenceBindingToTemporary: 8830 OS << "non-const lvalue reference bound to temporary"; 8831 break; 8832 8833 case FK_NonConstLValueReferenceBindingToBitfield: 8834 OS << "non-const lvalue reference bound to bit-field"; 8835 break; 8836 8837 case FK_NonConstLValueReferenceBindingToVectorElement: 8838 OS << "non-const lvalue reference bound to vector element"; 8839 break; 8840 8841 case FK_NonConstLValueReferenceBindingToUnrelated: 8842 OS << "non-const lvalue reference bound to unrelated type"; 8843 break; 8844 8845 case FK_RValueReferenceBindingToLValue: 8846 OS << "rvalue reference bound to an lvalue"; 8847 break; 8848 8849 case FK_ReferenceInitDropsQualifiers: 8850 OS << "reference initialization drops qualifiers"; 8851 break; 8852 8853 case FK_ReferenceAddrspaceMismatchTemporary: 8854 OS << "reference with mismatching address space bound to temporary"; 8855 break; 8856 8857 case FK_ReferenceInitFailed: 8858 OS << "reference initialization failed"; 8859 break; 8860 8861 case FK_ConversionFailed: 8862 OS << "conversion failed"; 8863 break; 8864 8865 case FK_ConversionFromPropertyFailed: 8866 OS << "conversion from property failed"; 8867 break; 8868 8869 case FK_TooManyInitsForScalar: 8870 OS << "too many initializers for scalar"; 8871 break; 8872 8873 case FK_ParenthesizedListInitForScalar: 8874 OS << "parenthesized list init for reference"; 8875 break; 8876 8877 case FK_ReferenceBindingToInitList: 8878 OS << "referencing binding to initializer list"; 8879 break; 8880 8881 case FK_InitListBadDestinationType: 8882 OS << "initializer list for non-aggregate, non-scalar type"; 8883 break; 8884 8885 case FK_UserConversionOverloadFailed: 8886 OS << "overloading failed for user-defined conversion"; 8887 break; 8888 8889 case FK_ConstructorOverloadFailed: 8890 OS << "constructor overloading failed"; 8891 break; 8892 8893 case FK_DefaultInitOfConst: 8894 OS << "default initialization of a const variable"; 8895 break; 8896 8897 case FK_Incomplete: 8898 OS << "initialization of incomplete type"; 8899 break; 8900 8901 case FK_ListInitializationFailed: 8902 OS << "list initialization checker failure"; 8903 break; 8904 8905 case FK_VariableLengthArrayHasInitializer: 8906 OS << "variable length array has an initializer"; 8907 break; 8908 8909 case FK_PlaceholderType: 8910 OS << "initializer expression isn't contextually valid"; 8911 break; 8912 8913 case FK_ListConstructorOverloadFailed: 8914 OS << "list constructor overloading failed"; 8915 break; 8916 8917 case FK_ExplicitConstructor: 8918 OS << "list copy initialization chose explicit constructor"; 8919 break; 8920 } 8921 OS << '\n'; 8922 return; 8923 } 8924 8925 case DependentSequence: 8926 OS << "Dependent sequence\n"; 8927 return; 8928 8929 case NormalSequence: 8930 OS << "Normal sequence: "; 8931 break; 8932 } 8933 8934 for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) { 8935 if (S != step_begin()) { 8936 OS << " -> "; 8937 } 8938 8939 switch (S->Kind) { 8940 case SK_ResolveAddressOfOverloadedFunction: 8941 OS << "resolve address of overloaded function"; 8942 break; 8943 8944 case SK_CastDerivedToBaseRValue: 8945 OS << "derived-to-base (rvalue)"; 8946 break; 8947 8948 case SK_CastDerivedToBaseXValue: 8949 OS << "derived-to-base (xvalue)"; 8950 break; 8951 8952 case SK_CastDerivedToBaseLValue: 8953 OS << "derived-to-base (lvalue)"; 8954 break; 8955 8956 case SK_BindReference: 8957 OS << "bind reference to lvalue"; 8958 break; 8959 8960 case SK_BindReferenceToTemporary: 8961 OS << "bind reference to a temporary"; 8962 break; 8963 8964 case SK_FinalCopy: 8965 OS << "final copy in class direct-initialization"; 8966 break; 8967 8968 case SK_ExtraneousCopyToTemporary: 8969 OS << "extraneous C++03 copy to temporary"; 8970 break; 8971 8972 case SK_UserConversion: 8973 OS << "user-defined conversion via " << *S->Function.Function; 8974 break; 8975 8976 case SK_QualificationConversionRValue: 8977 OS << "qualification conversion (rvalue)"; 8978 break; 8979 8980 case SK_QualificationConversionXValue: 8981 OS << "qualification conversion (xvalue)"; 8982 break; 8983 8984 case SK_QualificationConversionLValue: 8985 OS << "qualification conversion (lvalue)"; 8986 break; 8987 8988 case SK_AtomicConversion: 8989 OS << "non-atomic-to-atomic conversion"; 8990 break; 8991 8992 case SK_ConversionSequence: 8993 OS << "implicit conversion sequence ("; 8994 S->ICS->dump(); // FIXME: use OS 8995 OS << ")"; 8996 break; 8997 8998 case SK_ConversionSequenceNoNarrowing: 8999 OS << "implicit conversion sequence with narrowing prohibited ("; 9000 S->ICS->dump(); // FIXME: use OS 9001 OS << ")"; 9002 break; 9003 9004 case SK_ListInitialization: 9005 OS << "list aggregate initialization"; 9006 break; 9007 9008 case SK_UnwrapInitList: 9009 OS << "unwrap reference initializer list"; 9010 break; 9011 9012 case SK_RewrapInitList: 9013 OS << "rewrap reference initializer list"; 9014 break; 9015 9016 case SK_ConstructorInitialization: 9017 OS << "constructor initialization"; 9018 break; 9019 9020 case SK_ConstructorInitializationFromList: 9021 OS << "list initialization via constructor"; 9022 break; 9023 9024 case SK_ZeroInitialization: 9025 OS << "zero initialization"; 9026 break; 9027 9028 case SK_CAssignment: 9029 OS << "C assignment"; 9030 break; 9031 9032 case SK_StringInit: 9033 OS << "string initialization"; 9034 break; 9035 9036 case SK_ObjCObjectConversion: 9037 OS << "Objective-C object conversion"; 9038 break; 9039 9040 case SK_ArrayLoopIndex: 9041 OS << "indexing for array initialization loop"; 9042 break; 9043 9044 case SK_ArrayLoopInit: 9045 OS << "array initialization loop"; 9046 break; 9047 9048 case SK_ArrayInit: 9049 OS << "array initialization"; 9050 break; 9051 9052 case SK_GNUArrayInit: 9053 OS << "array initialization (GNU extension)"; 9054 break; 9055 9056 case SK_ParenthesizedArrayInit: 9057 OS << "parenthesized array initialization"; 9058 break; 9059 9060 case SK_PassByIndirectCopyRestore: 9061 OS << "pass by indirect copy and restore"; 9062 break; 9063 9064 case SK_PassByIndirectRestore: 9065 OS << "pass by indirect restore"; 9066 break; 9067 9068 case SK_ProduceObjCObject: 9069 OS << "Objective-C object retension"; 9070 break; 9071 9072 case SK_StdInitializerList: 9073 OS << "std::initializer_list from initializer list"; 9074 break; 9075 9076 case SK_StdInitializerListConstructorCall: 9077 OS << "list initialization from std::initializer_list"; 9078 break; 9079 9080 case SK_OCLSamplerInit: 9081 OS << "OpenCL sampler_t from integer constant"; 9082 break; 9083 9084 case SK_OCLZeroOpaqueType: 9085 OS << "OpenCL opaque type from zero"; 9086 break; 9087 } 9088 9089 OS << " [" << S->Type.getAsString() << ']'; 9090 } 9091 9092 OS << '\n'; 9093 } 9094 9095 void InitializationSequence::dump() const { 9096 dump(llvm::errs()); 9097 } 9098 9099 static bool NarrowingErrs(const LangOptions &L) { 9100 return L.CPlusPlus11 && 9101 (!L.MicrosoftExt || L.isCompatibleWithMSVC(LangOptions::MSVC2015)); 9102 } 9103 9104 static void DiagnoseNarrowingInInitList(Sema &S, 9105 const ImplicitConversionSequence &ICS, 9106 QualType PreNarrowingType, 9107 QualType EntityType, 9108 const Expr *PostInit) { 9109 const StandardConversionSequence *SCS = nullptr; 9110 switch (ICS.getKind()) { 9111 case ImplicitConversionSequence::StandardConversion: 9112 SCS = &ICS.Standard; 9113 break; 9114 case ImplicitConversionSequence::UserDefinedConversion: 9115 SCS = &ICS.UserDefined.After; 9116 break; 9117 case ImplicitConversionSequence::AmbiguousConversion: 9118 case ImplicitConversionSequence::EllipsisConversion: 9119 case ImplicitConversionSequence::BadConversion: 9120 return; 9121 } 9122 9123 // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion. 9124 APValue ConstantValue; 9125 QualType ConstantType; 9126 switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue, 9127 ConstantType)) { 9128 case NK_Not_Narrowing: 9129 case NK_Dependent_Narrowing: 9130 // No narrowing occurred. 9131 return; 9132 9133 case NK_Type_Narrowing: 9134 // This was a floating-to-integer conversion, which is always considered a 9135 // narrowing conversion even if the value is a constant and can be 9136 // represented exactly as an integer. 9137 S.Diag(PostInit->getBeginLoc(), NarrowingErrs(S.getLangOpts()) 9138 ? diag::ext_init_list_type_narrowing 9139 : diag::warn_init_list_type_narrowing) 9140 << PostInit->getSourceRange() 9141 << PreNarrowingType.getLocalUnqualifiedType() 9142 << EntityType.getLocalUnqualifiedType(); 9143 break; 9144 9145 case NK_Constant_Narrowing: 9146 // A constant value was narrowed. 9147 S.Diag(PostInit->getBeginLoc(), 9148 NarrowingErrs(S.getLangOpts()) 9149 ? diag::ext_init_list_constant_narrowing 9150 : diag::warn_init_list_constant_narrowing) 9151 << PostInit->getSourceRange() 9152 << ConstantValue.getAsString(S.getASTContext(), ConstantType) 9153 << EntityType.getLocalUnqualifiedType(); 9154 break; 9155 9156 case NK_Variable_Narrowing: 9157 // A variable's value may have been narrowed. 9158 S.Diag(PostInit->getBeginLoc(), 9159 NarrowingErrs(S.getLangOpts()) 9160 ? diag::ext_init_list_variable_narrowing 9161 : diag::warn_init_list_variable_narrowing) 9162 << PostInit->getSourceRange() 9163 << PreNarrowingType.getLocalUnqualifiedType() 9164 << EntityType.getLocalUnqualifiedType(); 9165 break; 9166 } 9167 9168 SmallString<128> StaticCast; 9169 llvm::raw_svector_ostream OS(StaticCast); 9170 OS << "static_cast<"; 9171 if (const TypedefType *TT = EntityType->getAs<TypedefType>()) { 9172 // It's important to use the typedef's name if there is one so that the 9173 // fixit doesn't break code using types like int64_t. 9174 // 9175 // FIXME: This will break if the typedef requires qualification. But 9176 // getQualifiedNameAsString() includes non-machine-parsable components. 9177 OS << *TT->getDecl(); 9178 } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>()) 9179 OS << BT->getName(S.getLangOpts()); 9180 else { 9181 // Oops, we didn't find the actual type of the variable. Don't emit a fixit 9182 // with a broken cast. 9183 return; 9184 } 9185 OS << ">("; 9186 S.Diag(PostInit->getBeginLoc(), diag::note_init_list_narrowing_silence) 9187 << PostInit->getSourceRange() 9188 << FixItHint::CreateInsertion(PostInit->getBeginLoc(), OS.str()) 9189 << FixItHint::CreateInsertion( 9190 S.getLocForEndOfToken(PostInit->getEndLoc()), ")"); 9191 } 9192 9193 //===----------------------------------------------------------------------===// 9194 // Initialization helper functions 9195 //===----------------------------------------------------------------------===// 9196 bool 9197 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity, 9198 ExprResult Init) { 9199 if (Init.isInvalid()) 9200 return false; 9201 9202 Expr *InitE = Init.get(); 9203 assert(InitE && "No initialization expression"); 9204 9205 InitializationKind Kind = 9206 InitializationKind::CreateCopy(InitE->getBeginLoc(), SourceLocation()); 9207 InitializationSequence Seq(*this, Entity, Kind, InitE); 9208 return !Seq.Failed(); 9209 } 9210 9211 ExprResult 9212 Sema::PerformCopyInitialization(const InitializedEntity &Entity, 9213 SourceLocation EqualLoc, 9214 ExprResult Init, 9215 bool TopLevelOfInitList, 9216 bool AllowExplicit) { 9217 if (Init.isInvalid()) 9218 return ExprError(); 9219 9220 Expr *InitE = Init.get(); 9221 assert(InitE && "No initialization expression?"); 9222 9223 if (EqualLoc.isInvalid()) 9224 EqualLoc = InitE->getBeginLoc(); 9225 9226 InitializationKind Kind = InitializationKind::CreateCopy( 9227 InitE->getBeginLoc(), EqualLoc, AllowExplicit); 9228 InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList); 9229 9230 // Prevent infinite recursion when performing parameter copy-initialization. 9231 const bool ShouldTrackCopy = 9232 Entity.isParameterKind() && Seq.isConstructorInitialization(); 9233 if (ShouldTrackCopy) { 9234 if (llvm::find(CurrentParameterCopyTypes, Entity.getType()) != 9235 CurrentParameterCopyTypes.end()) { 9236 Seq.SetOverloadFailure( 9237 InitializationSequence::FK_ConstructorOverloadFailed, 9238 OR_No_Viable_Function); 9239 9240 // Try to give a meaningful diagnostic note for the problematic 9241 // constructor. 9242 const auto LastStep = Seq.step_end() - 1; 9243 assert(LastStep->Kind == 9244 InitializationSequence::SK_ConstructorInitialization); 9245 const FunctionDecl *Function = LastStep->Function.Function; 9246 auto Candidate = 9247 llvm::find_if(Seq.getFailedCandidateSet(), 9248 [Function](const OverloadCandidate &Candidate) -> bool { 9249 return Candidate.Viable && 9250 Candidate.Function == Function && 9251 Candidate.Conversions.size() > 0; 9252 }); 9253 if (Candidate != Seq.getFailedCandidateSet().end() && 9254 Function->getNumParams() > 0) { 9255 Candidate->Viable = false; 9256 Candidate->FailureKind = ovl_fail_bad_conversion; 9257 Candidate->Conversions[0].setBad(BadConversionSequence::no_conversion, 9258 InitE, 9259 Function->getParamDecl(0)->getType()); 9260 } 9261 } 9262 CurrentParameterCopyTypes.push_back(Entity.getType()); 9263 } 9264 9265 ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE); 9266 9267 if (ShouldTrackCopy) 9268 CurrentParameterCopyTypes.pop_back(); 9269 9270 return Result; 9271 } 9272 9273 /// Determine whether RD is, or is derived from, a specialization of CTD. 9274 static bool isOrIsDerivedFromSpecializationOf(CXXRecordDecl *RD, 9275 ClassTemplateDecl *CTD) { 9276 auto NotSpecialization = [&] (const CXXRecordDecl *Candidate) { 9277 auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Candidate); 9278 return !CTSD || !declaresSameEntity(CTSD->getSpecializedTemplate(), CTD); 9279 }; 9280 return !(NotSpecialization(RD) && RD->forallBases(NotSpecialization)); 9281 } 9282 9283 QualType Sema::DeduceTemplateSpecializationFromInitializer( 9284 TypeSourceInfo *TSInfo, const InitializedEntity &Entity, 9285 const InitializationKind &Kind, MultiExprArg Inits) { 9286 auto *DeducedTST = dyn_cast<DeducedTemplateSpecializationType>( 9287 TSInfo->getType()->getContainedDeducedType()); 9288 assert(DeducedTST && "not a deduced template specialization type"); 9289 9290 auto TemplateName = DeducedTST->getTemplateName(); 9291 if (TemplateName.isDependent()) 9292 return Context.DependentTy; 9293 9294 // We can only perform deduction for class templates. 9295 auto *Template = 9296 dyn_cast_or_null<ClassTemplateDecl>(TemplateName.getAsTemplateDecl()); 9297 if (!Template) { 9298 Diag(Kind.getLocation(), 9299 diag::err_deduced_non_class_template_specialization_type) 9300 << (int)getTemplateNameKindForDiagnostics(TemplateName) << TemplateName; 9301 if (auto *TD = TemplateName.getAsTemplateDecl()) 9302 Diag(TD->getLocation(), diag::note_template_decl_here); 9303 return QualType(); 9304 } 9305 9306 // Can't deduce from dependent arguments. 9307 if (Expr::hasAnyTypeDependentArguments(Inits)) { 9308 Diag(TSInfo->getTypeLoc().getBeginLoc(), 9309 diag::warn_cxx14_compat_class_template_argument_deduction) 9310 << TSInfo->getTypeLoc().getSourceRange() << 0; 9311 return Context.DependentTy; 9312 } 9313 9314 // FIXME: Perform "exact type" matching first, per CWG discussion? 9315 // Or implement this via an implied 'T(T) -> T' deduction guide? 9316 9317 // FIXME: Do we need/want a std::initializer_list<T> special case? 9318 9319 // Look up deduction guides, including those synthesized from constructors. 9320 // 9321 // C++1z [over.match.class.deduct]p1: 9322 // A set of functions and function templates is formed comprising: 9323 // - For each constructor of the class template designated by the 9324 // template-name, a function template [...] 9325 // - For each deduction-guide, a function or function template [...] 9326 DeclarationNameInfo NameInfo( 9327 Context.DeclarationNames.getCXXDeductionGuideName(Template), 9328 TSInfo->getTypeLoc().getEndLoc()); 9329 LookupResult Guides(*this, NameInfo, LookupOrdinaryName); 9330 LookupQualifiedName(Guides, Template->getDeclContext()); 9331 9332 // FIXME: Do not diagnose inaccessible deduction guides. The standard isn't 9333 // clear on this, but they're not found by name so access does not apply. 9334 Guides.suppressDiagnostics(); 9335 9336 // Figure out if this is list-initialization. 9337 InitListExpr *ListInit = 9338 (Inits.size() == 1 && Kind.getKind() != InitializationKind::IK_Direct) 9339 ? dyn_cast<InitListExpr>(Inits[0]) 9340 : nullptr; 9341 9342 // C++1z [over.match.class.deduct]p1: 9343 // Initialization and overload resolution are performed as described in 9344 // [dcl.init] and [over.match.ctor], [over.match.copy], or [over.match.list] 9345 // (as appropriate for the type of initialization performed) for an object 9346 // of a hypothetical class type, where the selected functions and function 9347 // templates are considered to be the constructors of that class type 9348 // 9349 // Since we know we're initializing a class type of a type unrelated to that 9350 // of the initializer, this reduces to something fairly reasonable. 9351 OverloadCandidateSet Candidates(Kind.getLocation(), 9352 OverloadCandidateSet::CSK_Normal); 9353 OverloadCandidateSet::iterator Best; 9354 9355 bool HasAnyDeductionGuide = false; 9356 bool AllowExplicit = !Kind.isCopyInit() || ListInit; 9357 9358 auto tryToResolveOverload = 9359 [&](bool OnlyListConstructors) -> OverloadingResult { 9360 Candidates.clear(OverloadCandidateSet::CSK_Normal); 9361 HasAnyDeductionGuide = false; 9362 9363 for (auto I = Guides.begin(), E = Guides.end(); I != E; ++I) { 9364 NamedDecl *D = (*I)->getUnderlyingDecl(); 9365 if (D->isInvalidDecl()) 9366 continue; 9367 9368 auto *TD = dyn_cast<FunctionTemplateDecl>(D); 9369 auto *GD = dyn_cast_or_null<CXXDeductionGuideDecl>( 9370 TD ? TD->getTemplatedDecl() : dyn_cast<FunctionDecl>(D)); 9371 if (!GD) 9372 continue; 9373 9374 if (!GD->isImplicit()) 9375 HasAnyDeductionGuide = true; 9376 9377 // C++ [over.match.ctor]p1: (non-list copy-initialization from non-class) 9378 // For copy-initialization, the candidate functions are all the 9379 // converting constructors (12.3.1) of that class. 9380 // C++ [over.match.copy]p1: (non-list copy-initialization from class) 9381 // The converting constructors of T are candidate functions. 9382 if (!AllowExplicit) { 9383 // Only consider converting constructors. 9384 if (GD->isExplicit()) 9385 continue; 9386 9387 // When looking for a converting constructor, deduction guides that 9388 // could never be called with one argument are not interesting to 9389 // check or note. 9390 if (GD->getMinRequiredArguments() > 1 || 9391 (GD->getNumParams() == 0 && !GD->isVariadic())) 9392 continue; 9393 } 9394 9395 // C++ [over.match.list]p1.1: (first phase list initialization) 9396 // Initially, the candidate functions are the initializer-list 9397 // constructors of the class T 9398 if (OnlyListConstructors && !isInitListConstructor(GD)) 9399 continue; 9400 9401 // C++ [over.match.list]p1.2: (second phase list initialization) 9402 // the candidate functions are all the constructors of the class T 9403 // C++ [over.match.ctor]p1: (all other cases) 9404 // the candidate functions are all the constructors of the class of 9405 // the object being initialized 9406 9407 // C++ [over.best.ics]p4: 9408 // When [...] the constructor [...] is a candidate by 9409 // - [over.match.copy] (in all cases) 9410 // FIXME: The "second phase of [over.match.list] case can also 9411 // theoretically happen here, but it's not clear whether we can 9412 // ever have a parameter of the right type. 9413 bool SuppressUserConversions = Kind.isCopyInit(); 9414 9415 if (TD) 9416 AddTemplateOverloadCandidate(TD, I.getPair(), /*ExplicitArgs*/ nullptr, 9417 Inits, Candidates, SuppressUserConversions, 9418 /*PartialOverloading*/ false, 9419 AllowExplicit); 9420 else 9421 AddOverloadCandidate(GD, I.getPair(), Inits, Candidates, 9422 SuppressUserConversions, 9423 /*PartialOverloading*/ false, AllowExplicit); 9424 } 9425 return Candidates.BestViableFunction(*this, Kind.getLocation(), Best); 9426 }; 9427 9428 OverloadingResult Result = OR_No_Viable_Function; 9429 9430 // C++11 [over.match.list]p1, per DR1467: for list-initialization, first 9431 // try initializer-list constructors. 9432 if (ListInit) { 9433 bool TryListConstructors = true; 9434 9435 // Try list constructors unless the list is empty and the class has one or 9436 // more default constructors, in which case those constructors win. 9437 if (!ListInit->getNumInits()) { 9438 for (NamedDecl *D : Guides) { 9439 auto *FD = dyn_cast<FunctionDecl>(D->getUnderlyingDecl()); 9440 if (FD && FD->getMinRequiredArguments() == 0) { 9441 TryListConstructors = false; 9442 break; 9443 } 9444 } 9445 } else if (ListInit->getNumInits() == 1) { 9446 // C++ [over.match.class.deduct]: 9447 // As an exception, the first phase in [over.match.list] (considering 9448 // initializer-list constructors) is omitted if the initializer list 9449 // consists of a single expression of type cv U, where U is a 9450 // specialization of C or a class derived from a specialization of C. 9451 Expr *E = ListInit->getInit(0); 9452 auto *RD = E->getType()->getAsCXXRecordDecl(); 9453 if (!isa<InitListExpr>(E) && RD && 9454 isCompleteType(Kind.getLocation(), E->getType()) && 9455 isOrIsDerivedFromSpecializationOf(RD, Template)) 9456 TryListConstructors = false; 9457 } 9458 9459 if (TryListConstructors) 9460 Result = tryToResolveOverload(/*OnlyListConstructor*/true); 9461 // Then unwrap the initializer list and try again considering all 9462 // constructors. 9463 Inits = MultiExprArg(ListInit->getInits(), ListInit->getNumInits()); 9464 } 9465 9466 // If list-initialization fails, or if we're doing any other kind of 9467 // initialization, we (eventually) consider constructors. 9468 if (Result == OR_No_Viable_Function) 9469 Result = tryToResolveOverload(/*OnlyListConstructor*/false); 9470 9471 switch (Result) { 9472 case OR_Ambiguous: 9473 // FIXME: For list-initialization candidates, it'd usually be better to 9474 // list why they were not viable when given the initializer list itself as 9475 // an argument. 9476 Candidates.NoteCandidates( 9477 PartialDiagnosticAt( 9478 Kind.getLocation(), 9479 PDiag(diag::err_deduced_class_template_ctor_ambiguous) 9480 << TemplateName), 9481 *this, OCD_ViableCandidates, Inits); 9482 return QualType(); 9483 9484 case OR_No_Viable_Function: { 9485 CXXRecordDecl *Primary = 9486 cast<ClassTemplateDecl>(Template)->getTemplatedDecl(); 9487 bool Complete = 9488 isCompleteType(Kind.getLocation(), Context.getTypeDeclType(Primary)); 9489 Candidates.NoteCandidates( 9490 PartialDiagnosticAt( 9491 Kind.getLocation(), 9492 PDiag(Complete ? diag::err_deduced_class_template_ctor_no_viable 9493 : diag::err_deduced_class_template_incomplete) 9494 << TemplateName << !Guides.empty()), 9495 *this, OCD_AllCandidates, Inits); 9496 return QualType(); 9497 } 9498 9499 case OR_Deleted: { 9500 Diag(Kind.getLocation(), diag::err_deduced_class_template_deleted) 9501 << TemplateName; 9502 NoteDeletedFunction(Best->Function); 9503 return QualType(); 9504 } 9505 9506 case OR_Success: 9507 // C++ [over.match.list]p1: 9508 // In copy-list-initialization, if an explicit constructor is chosen, the 9509 // initialization is ill-formed. 9510 if (Kind.isCopyInit() && ListInit && 9511 cast<CXXDeductionGuideDecl>(Best->Function)->isExplicit()) { 9512 bool IsDeductionGuide = !Best->Function->isImplicit(); 9513 Diag(Kind.getLocation(), diag::err_deduced_class_template_explicit) 9514 << TemplateName << IsDeductionGuide; 9515 Diag(Best->Function->getLocation(), 9516 diag::note_explicit_ctor_deduction_guide_here) 9517 << IsDeductionGuide; 9518 return QualType(); 9519 } 9520 9521 // Make sure we didn't select an unusable deduction guide, and mark it 9522 // as referenced. 9523 DiagnoseUseOfDecl(Best->Function, Kind.getLocation()); 9524 MarkFunctionReferenced(Kind.getLocation(), Best->Function); 9525 break; 9526 } 9527 9528 // C++ [dcl.type.class.deduct]p1: 9529 // The placeholder is replaced by the return type of the function selected 9530 // by overload resolution for class template deduction. 9531 QualType DeducedType = 9532 SubstAutoType(TSInfo->getType(), Best->Function->getReturnType()); 9533 Diag(TSInfo->getTypeLoc().getBeginLoc(), 9534 diag::warn_cxx14_compat_class_template_argument_deduction) 9535 << TSInfo->getTypeLoc().getSourceRange() << 1 << DeducedType; 9536 9537 // Warn if CTAD was used on a type that does not have any user-defined 9538 // deduction guides. 9539 if (!HasAnyDeductionGuide) { 9540 Diag(TSInfo->getTypeLoc().getBeginLoc(), 9541 diag::warn_ctad_maybe_unsupported) 9542 << TemplateName; 9543 Diag(Template->getLocation(), diag::note_suppress_ctad_maybe_unsupported); 9544 } 9545 9546 return DeducedType; 9547 } 9548